
Algebraic Approaches to Distributed Data Systems

Conor Power

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-103
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-103.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Algebraic Approaches to Distributed Data Systems

by

Conor Power

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joseph M. Hellerstein, Chair

Associate Professor Joseph Gonzalez

Associate Professor Paraschos Koutris

Associate Professor Matei Zaharia

Spring 2025

Algebraic Approaches to Distributed Data Systems

Copyright 2025

by

Conor Power

1

Abstract

Algebraic Approaches to Distributed Data Systems

by

Conor Power

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Joseph M. Hellerstein, Chair

With the rise of cloud computing, software systems have become increasingly distributed. Dis-

tributed systems offer myriad benefits such as scalability, availability, and fault tolerance. How-

ever, they introduce complexity for the programmers of these systems to ensure correctness

and hide non-determinism from the end-user. To address this challenge of programming cloud-

scale systems, the Hydro project at Berkeley explores bringing declarative programming to the

distributed systems space. Declarative programming has had enormous success in the field of

databases in the form of SQL. Its benefit is that it allows developers to specify their goals at a

high level and leave complex implementation decisions up to the database system.

In this thesis, we explore the marriage of these twoworlds: distributed systems programming and

declarative database systems. In pursuit of this marriage, we study independent trends towards

algebraic models in distributed systems and database systems. This thesis extends these works,

explores the relationship between them, and demonstrates the practical applicability of algebraic

properties to optimizing distributed data systems.

In particular, we study four lines of research on algebraic properties for distributed data systems:

conflict-free replicated data types (CRDTs), algebraic models of incremental view maintenance

(IVM), parallel database aggregates, and the CALM Theorem. While these topics have been stud-

ied under different formalisms across different research communities, we are able to build bridges

between them. We are able to bring the system model and mathematical model of CRDTs, stud-

ied in the distributed systems and programming languages communities, to these three other

topics that have been studied entirely within the databases research community. The result is a

foundation on which to support the benefits of declarativity in distributed systems programming.

i

To my wife, Laura.

ii

Contents

Contents ii

List of Figures v

List of Tables vii

1 Introduction 1
1.0.1 Motivation . 1

1.0.2 State of the Art . 1

1.1 Thesis Overview . 2

2 Background 4
2.1 Algebra Background . 4

2.1.1 Commutativity . 4

2.1.2 Associativity . 5

2.1.3 Idempotence . 6

2.1.4 Invertibility . 7

2.1.5 Monotonicity and Inflationary Behavior 7

2.1.6 Algebraic Structure Definitions . 8

2.2 CRDT Background . 9

2.2.1 Semi-Lattices and Conflict-Free Replicated Data Types 9

2.3 CALM History Background . 12

I Bridging Approaches to Coordination Avoidance 14

3 The Free Termination Property of Queries Over Time 15
3.1 Introduction . 16

3.1.1 Motivating Examples . 17

3.2 Related Work . 18

3.3 Definitions of Free Termination . 19

3.3.1 Applications of Free Termination . 22

3.4 Algebraic Properties and Free Termination . 23

iii

3.4.1 Partial Orders . 23

3.4.2 Commutativity . 27

3.4.3 Group-Like Structures . 28

3.5 Free Termination in Distributed Systems . 29

3.5.1 Distributed Model . 29

3.5.2 Distributed Computation with Metadata 32

3.6 Free Termination with Finite States . 34

3.6.1 Detecting Free Termination . 34

3.6.2 State Minimization . 35

3.7 Free Termination in CRDTs . 36

3.8 Conclusion . 38

II Algebraic Upgrades 39

4 Once Upon a Tree: Distributed Idempotence in O(1) Space 40
4.1 Introduction . 41

4.2 Background . 42

4.2.1 Uncoordinated “Like” Gossip . 43

4.2.2 Once Upon a Tree . 44

4.3 The OnceTree Protocol . 45

4.3.1 The High Level . 45

4.3.2 State and Gossip . 46

4.3.3 Aggregating Queries . 47

4.3.4 Constant Space . 48

4.4 Convergence Guarantees . 49

4.4.1 Assumptions . 50

4.4.2 Preliminary Definitions and Proof Outline 50

4.4.3 Proofs . 51

4.5 Initialization and Reorganization . 53

4.5.1 Tree Initialization . 54

4.5.2 Planned Modifications to the Topology . 54

4.6 Fault Tolerance . 56

4.6.1 Simple Process Groups . 56

4.6.2 Resetting The Tree . 57

4.7 Evaluation . 57

4.7.1 Experimental Setup . 58

4.7.2 Memory Consumption . 59

4.7.3 Propagation Latency . 59

4.7.4 Operation Throughput . 61

4.8 Future Work . 62

4.8.1 Consistency and Recency Guarantees . 62

iv

4.8.2 Algebraic Formalizations . 63

4.8.3 Dynamics . 63

4.9 Related Work . 64

4.9.1 Idempotence Enforcement . 64

4.9.2 CRDT Memory Efficiency . 64

4.9.3 Distributed Aggregates . 64

4.10 Conclusion . 65

IIICo-Habitation of Algebraic Structures in Distributed Data Sys-
tems 66

5 WrappingRings in Lattices: AnAlgebraic Symbiosis of IncrementalViewMain-
tenance and Eventual Consistency 67
5.1 Introduction . 68

5.2 Background . 68

5.2.1 Groups and Incremental View Maintenance 69

5.3 Co-habitation of Abelian Groups and Semi-lattices 70

5.3.1 The Very Simple Construction . 71

5.3.2 The Performant Construction . 71

5.4 Rings in Incremental View Maintenance . 73

5.5 Inverses, Two-Phase Sets, and the Semantics of Deletion 74

5.6 Discussion and Future Work . 75

5.7 Related Work . 75

5.8 Conclusion . 76

IVSimplifying the Developer Experience 77

6 Emmy: Peering Into the UDF Black Box Using Formal Verification of Algebraic
Properties 78
6.1 Introduction . 79

6.2 Emmy Verification Tools Background . 80

6.3 Emmy Architecture . 81

6.4 Evaluation . 83

6.5 Examples of Verification with Emmy . 84

6.6 Related Work . 85

6.7 Future Work . 86

6.8 Conclusion . 87

7 Conclusion 88

Bibliography 90

v

List of Figures

3.1 Four DFAs with labels {𝑎, 𝑏, 𝑐} showing four different categories of free termination.

The doubly-lined states represent the accepting states of the DFA (query is true). . . . 21

3.2 A state transition system for the set union state transition over the universe {𝑎, 𝑏, 𝑐}.
The green dotted line across the states indicates the threshold line for the query “the

set contains an 𝑎”. The doubly-lined states return True and single-lined states return

False in the query. 24

4.1 Instead of randomized broadcasts (left), we apply a tree topology (right), which en-

ables constant memory usage. 42

4.2 The dataflow of a OnceTree node: blue arrows contribute to query results, green

arrows are messages from peers, and red arrows contribute to peer aggregates. 47

4.3 The flow of communication when an update occurs at a node; t=k denotes the kth

propagation step. 48

4.4 The five move operations described in Section 5.2. Each node post-move tracks its

local state as well as the aggregates of each neighbor post-move. Aggregates of pre-

move neighbors are forgotten. 53

4.5 The median memory consumed by each node as the number of replicas is scaled. . . . 60

4.6 Propagation latency across a cluster for each replication protocol as the number of

replicas is scaled. 61

4.7 Latency versus throughput when varying the number of clients (# of nodes = 63). . . 62

5.1 We depict three replicas of our lattice-wrapped view groups. Blue solid arrows are the

incoming updates to the database instance of type Z-set. Red dotted arrows are CRDT

merge operations being broadcast to each replica. The green diamonds represent

the lattice wrappers and we see the solid blue updates are converted into dotted red

merges via the lattice wrapper. The conversion is depicted by a purple semi-dotted

arrow. We see that the updates are passed through to the black group (circle) inside

the lattice wrapper. The red dot in the center is the materialized view that users

can observe and where the dataflow pours into. We see that merge operations are

received by the lattice wrappers and converted into update operations that are then

passed through to the inner group structure. 72

vi

6.1 The code for encoding the three CRDT semi-lattice properties in the Kani verification

language. 82

6.2 Results of running Kani against the Github .fold() dataset of Rust closures. 83

6.3 Results of running Kani against the Github .reduce() dataset of Rust closures. 84

6.4 Four different approaches to findingminimumvalues in Rust closures from theGithub

.reduce() dataset. 85

6.5 A Rust closure implementing least common multiple from the Github .reduce() dataset. 85

vii

List of Tables

2.1 Comparison of algebraic structures . 9

viii

Acknowledgments

I have a lot of people to thank. First, I would like to thank the numerous mentors that have

encouraged me throughout my career prior to the PhD: Jennifer Welborn, David Mix Barrington,

Neil Immerman, Kedar Dubhashi, Carlo Curino, and Rich Draves. I would not be where I am

today without all of your support. Next, I would like to thank the people that took the time to

mentor me during the last four years: Mae Milano, Natacha Crooks, Paris Koutris, Val Tannen,

Dan Suciu, and Hein Meling. I really appreciate all of the time you all have spent with me and

I’ve learned so much from each of you. The last mentor I would like to thank is my advisor, Joe

Hellerstein. Thank you for teaching me how to be a scientist. You’ve taught me how to do good

research and how to communicate that research to a wide range of audiences. You’ve also taught

me how to build a research culture that thinks outside the box and that always prioritizes the

people behind the science.

The thing that has made the last years so special, without question, is the students I’ve been

surrounded by at Berkeley. I can’t imagine what my PhDwould have been like had I not sat in the

Berkeley Sky Lab. The constant flow of ideas and energy that comes with being surrounded by so

many brilliant people has been truly amazing. First, I want to thank the Hydro team for endless

hours both thinking deeply about hard problems and living PhD life to the fullest. David Chu,

Shadaj Laddad, Chris Douglas, Mae Milano, Tiemo Bang, Mingwei Samuel, Justin Jaffray, and

LuckyKatahanas - you have all had enormous influence on theway that I think about computers. I

also want to thank the other people that I got the chance to collaborate with on research: Lakshya

Agrawal, Alvin Cheung, Tathagata Das, Tyler Griggs, Tyler Hou, Paras Jain, Darya Kaviani, Sam

Kumar, Shu Liu, Raluca Popa, Laura Power, Peter Kraft, Samyu Yagati, Ion Stoica, Tenzin Ukyab,

JustinWong, andMatei Zaharia. I would also like to thank the students that I had the opportunity

to mentor during the PhD: Sai Achalla, Ryan Cottone, Chae Lee, and Nathaniel Macasaet.

There are a lot of other people that have had enormous influence on the experience of my

PhD. Although we never got the chance to write papers together, I am forever appreciative for

the energy they’ve brought to the Sky Lab and to the Berkeley EECS department: Ale Escontrela,

Alok Tripathy, Altan Haan, Ameesh Shah, Anna Yoon, Audrey Cheng, Carolyn Dunlap, Carson

Young, Charles Packer, Daniel Rothchild, Devesh Rathee, Emily Marx, Emma Dauterman, Gabriel

Matute, Grace Dinh, Isabelle Lee, Jae Hong, Jean-Luc Watson, Jiwon Park, Julien Piet, Justin

Kalloor, Kate McElroy, Kevin Lin, Laurenz Heppding, Lily Liu, Lisa Dunlap, Louis Lafair, Manish

Shetty, Mayank Rathee, Medhini Narasimhan, Micah Murray, Michael Luo, Mick Kittivorawong,

Naman Jain, Neil Giridharan, Nithin Chalapathi, Norman Mu, Parker Ziegler, Paul Crews, Peter

Schafhalter, Preetum Nakkiran, Reggie Frank, Ritwik Gupta, Rolando Garcia, Ryan Almeddine,

Sarah Wooders, Sarah McClure, Shishir Patil, Shm Almeda, Shreya Shenker, Slivery Fu, Soujanya

Ponnapalli, Stephanie Wang, Sukrit Kalra, Suyash Gupta, Tess Despres, Tianjun Zhang, Vivian

Fang, Wanda Mora, Wen Zhang, Zhuohan Li, and Ziming Mao. These folks, along with dozens of

other people I’ve shared lunches with, hung out at DSF with, traveled to conferences with, and

just generally orbited each other, made the last four years what they were - very very special.

Thank you so much to everyone.

ix

Finally, I’d like to thank my family. Mom, Dad, Ciara, Gramps, and Pammy - I love you guys.

Maura - you didn’t really help all that much with the PhD, but you’re my favorite anyways. Laura

- I’m glad we both like math and fun; thank you for being my partner in all things and supporting

me through all my dreams and schemes.

1

Chapter 1

Introduction

1.0.1 Motivation
Computer systems have become increasingly distributed over the past twenty years. There are

a variety of trends that have driven this paradigm shift. The first two drivers of this are infras-

tructural. The end of Moore’s law means that scaling up a system cannot be reasonably achieved

by vertical scaling (larger individual machines). Instead, scaling must be horizontal (adding more

machines to the system). In parallel to this shift away from vertical scaling, Cloud Computing

has arisen as the defacto way that developers manage computing infrastructure. This has made

it operationally trivial to add more machines to the system and achieve this horizontal scaling.

Concurrent with these infrastructural trends towards horizontal scaling are application trends

that drive the need for this scaling. The rise of the internet drove the need for massive “web scale”

systems and also came with new user expectations of these systems. The internet is shared across

the globe and online twenty four seven. This has driven extreme requirements on the availability

of software systems. It has also driven the need for systems that are spread across the globe and

able to serve low-latency reads and writes on every continent simultaneously.

Despite this rapid growth in globally distributed cloud systems, the way that developers pro-

gram distributed systems has made little progress to keep up with this trend.

1.0.2 State of the Art
The topic of distributed systems has been studied across different communities, each bringing a

unique perspective, mental model, and formalism. In the database community, e.g SIGMOD and

VLDB, the world is often divided into read-heavy workloads (OLAP) and write-heavy workloads

(OLTP). OLTP is studied in terms of ANSI Consistency levels, based on the distinguishing feature

that state mutations are in the forms of atomic transactions that touch multiple pieces of data.

The OLAP view of databases and distributed systems has extensively studied the conditions

for distributed optimization of SQL queries, both through the lens of logic [8] and through the

lens of algebra [35, 79]. The database theory community, e.g. PODS and ICDT, introduced a

new model for studying distributed systems called relational transducer networks [2, 10]. This

CHAPTER 1. INTRODUCTION 2

line of work proved the CALM Theorem, stating an equivalence between queries expressible in

monotonic logic and queries being computable without coordination.

The systems community, e.g. SOSP, OSDI, and EuroSys, often study distributed systems in

terms of the consistency hierarchy. The guarantees of the system are broken up into categories

like linearizable, sequential, causal, or read your writes. For weaker consistency levels (e.g. causal

consistency), this community introduced the study of coordination-avoidance through conver-

gent state mutation. Early work in this space such as Bayou [106] paved the way for the most

common form of weak-consistency research today which is conflict-free replicated data types

(CRDTs).

CRDTs offer an algebraic model of weak consistency based on guaranteeing convergence

of replicated state without any central authority for ordering of operations and without risk of

interference from network nondeterminism. The earliest use of this algebraic model of weak con-

sistency was by Carlos Baquero and Francisco Moura in 1999 [15]. CRDTs have caught traction

in the programming languages community and are an active area of research there. Common

topics of interest are the verification of CRDT correctness [53, 70, 113] and designing languages

that can take advantage of CRDTs [12, 68, 81, 83]. CRDTs are also notable for their significant

adoption in industry. Apple Notes, League of Legends Chat, Sound Cloud, and the Delta Airlines

and Lufthansa Airlines apps are all built on top of CRDTs.

While each of these research communities havemade great progress in the study of distributed

data systems, their approaches remain largely siloed from one-another due to the severe differ-

ences in perspective and inmathematical formalism. In this thesis, we take steps towards unifying

these disconnected branches of scientific study.

1.1 Thesis Overview
This thesis is presented in four parts. In part one, we explore the relationship between CRDTs and

the CALM theorem. To do this, we introduce a simple mathematical formalism based on semi-

automata. This formalism allows us to reason about future states of the system based entirely

on the question of graph reachability. We then are able to model the guarantees offered by the

CALM Theorem in terms of graph reachability, and can extend this study to arbitrary functions

and data types. This extends the previous state of the art on the CALM Theorem whose study

was restricted to programs expressed as logical formulas being executed over set data types (the
relational data model). This allows us reason about the guarantees on queries for any kind of

CRDT or even non-CRDT data structures. In doing this, what we found was that the guarantee

of the CALM Theorem [10] is not a natural user-facing guarantee outside of the realm of set

data types. We remedy this by defining a more general property called Free Termination that the

CALM Theorem is a special case of. The Free Termination property gives a simple and desirable

guarantee: if you query a replica state and the replica has not converged, will the query result be

the same when it does converge? If so, then this state is free terminating.

In part two, we look at the algebraic properties of CRDTs that make eventual consistency

possible in the face of asynchronous networks. We question the notion that developers need to

CHAPTER 1. INTRODUCTION 3

design CRDTs that satisfy all three properties and observe that properties can often be enforced

programmatically via metadata. We call this process of enforcing properties programmatically

algebraic upgrades and explore in depth the limits of this technique for the idempotence prop-

erty of CRDTs. Our exploration brings us to the development of a novel distributed protocol for

idempotence upgrades called OnceTree that achieves constant-space metadata overhead. This

improves on the prior state of the art tricks which require linear space in the number of replicas

to enforce idempotence.

In part three, wewiden our view beyond the algebraicmodel of coordination-freeness (CRDTs)

to algebraic data models that are popular in the databases community. We look specifically at

two algebraic models of incremental view maintenance, which can be thought of as the database

perspective on incremental computation. Given the importance of both coordination-avoidance

and incremental computation in the design of real-time distributed applications, we explore how

these different algebraic models interact with one-another. Despite appearing to be incompat-

ible, we show that by utilizing different algebraic structures at different layers of the system,

we can achieve both an algebraic model of incremental computation and an algebraic model of

coordination-free consistency. The tricks that make this cohabitation possible come from the al-
gebraic upgrades view of the world introduced in part two. We will see that while the algebraic

requirements are mathematically incompatible, we can translate between the two structures us-

ing metadata wrappers i.e. algebraic upgrades.

In part four, we look at the practical considerations of how to make it easy for developers

to get the benefits of all the work on algebraic properties for program optimization. There is a

tension here between wanting the developer to program in a way that is comfortable to them and

wanting the system to have all of the information it needs about algebraic properties to perform

optimizations. We see this same tension in SQL systems, where programs expressed using built-

in SQL operators like SELECT, PROJECT, and JOIN are highly amenable to optimization, but it

is often awkward or even impossible for developers to express the programs they want using

relational algebra. To enable developer ergonomics, SQL supports user-defined functions in a

wide range of turing-complete programming languages. Thismakes things easy for the developer,

but completely intractable for the optimizer to reason about what properties the code satisfies.

In this section, we demonstrate the applicability of formal verification tools for detecting the

algebraic properties that are satisfied by arbitrary user code in the Rust programming language.

4

Chapter 2

Background

In this chapter, we provide relevant background on algebraic properties, CRDTs, and CALM that

will show up throughout this thesis. Feel free to skip sections you are already familiar with or

return to them later for reference.

2.1 Algebra Background
Abstract algebra is the study of properties of mathematical functions. Given that computer pro-

grams are mathematical functions, algebra applied to computer science can be thought of as the

study of what properties code satisfies. Throughout the history of computer science, properties

of code have been used to guarantee correctness of programs as well as equivalence of programs.

Combined, these allow for program optimization. We can consider the set of equivalent programs

made possible by the properties and then identify which of those programs will perform best in

our setting.

In this section, we will define the various terms from abstract algebra used in this thesis and

throughout the research literature. We will also provide examples and intuition for how each

algebraic property is useful in the study of distributed data systems.

2.1.1 Commutativity
Definitions and Examples: Formally, a binary operator ◦ is commutative if for all inputs 𝑥,𝑦,

it holds that 𝑥 ◦ 𝑦 = 𝑦 ◦ 𝑥 .
In computer science, with a function 𝑓 that takes in multiple inputs of the same type, we can

swap any two inputs 𝑥 and 𝑦 and 𝑓 will return the same result, i.e., 𝑓 (𝑥,𝑦) = 𝑓 (𝑦, 𝑥).
A pair of functions 𝑓 , 𝑔 can also be commutative, meaning the order in which the functions are

applied doesn’t change the output. That is, 𝑓 (𝑔(𝑥)) = 𝑔(𝑓 (𝑥)). For example, in relational algebra

for database queries, the ordering of selection operators and projection operators doesn’t change

the query result, so an optimizer can choose whichever ordering will give better performance.

CHAPTER 2. BACKGROUND 5

Common examples of functions with commutative inputs are addition, multiplication, and set

union. Some examples of non-commutative input functions are matrix multiplication and string

concatenation.

In English, commutativity is the indifference to ordering. This indifference is valuable in

settings like distributed systems where ordering of events is expensive to achieve, or compilation

and query optimization where it means the compiler or optimizer has more degrees of freedom

in finding an optimal program execution plan.

Distributed Systems: Two of the fundamental challenges of distributed systems are that

there are no globally synchronized clocks and that messages over the network may arrive out of

order. The lack of globally synchronized clocks is the challenge that consensus algorithms such

as Paxos and Raft aim to solve. The ordering in which events in the system occur is determined

by a leader node. This introduces a single-node bottleneck in the processing of requests in the

system. In many applications, different orderings of events will result in different outputs. For

example, one user updates a database row to the value 5 and another updates it to the value 8.

Should the row’s value be 5 or 8? It depends on which update is considered to have happened last.

In some applications, the ordering does not influence the outcome which enables the applications

to avoid the bottleneck of a consensus protocol. For example, if the two updates are to different

rows in the database then their ordering is unimportant. For another example, consider an update

operation that does not overwrite the row with the new value, but rather to add the values 5 and

8 respectively to the current total of the row. In this case, the ordering of the updates does not

matter because addition is a commutative operation.
A variety of techniques in distributed systems make use of this commutativity. One of the

most popular is conflict-free replicated data types (CRDTs), which are an object-oriented way of

specifying a distributed object that can be modified without the need for consensus algorithms.

There are two ways to model CRDTs, state-based on operation-based. The state-based version

is based on semi-lattices, whereas the operation-based approach is simply about commutativ-

ity [102]. If the application of the update method you define on your CRDT object is commutative,

then replicas are guaranteed to achieve strong eventual consistency via disorganized gossip com-

munication. This consistency guarantee roughly means that all replicas will eventually converge

to the same state regardless of the order in which messages are delivered over the network.

Query Optimization: Query optimizers leverage both forms of commutativity to achieve

more efficient query plans. The commutativity of function application is used to reorganize query

plans to put, for example, column projections before row filters. The commutativity of inputs to a

function are used to avoid the use of ordering enforcers [44]. Note that while the relational algebra
is defined over sets, an unordered data type, database query planners use physical operators that

are sometimes order sensitive. Merge Join is an example of a physical operator that is non-

commutative with respect to input order.

2.1.2 Associativity
Definitions and Examples: Formally, a binary operator ◦ is associative if for all inputs 𝑥,𝑦, 𝑧, it
holds that (𝑥 ◦𝑦) ◦𝑧 = 𝑥 ◦ (𝑦 ◦𝑧). In English, associativity is the indifference to grouping of terms.

CHAPTER 2. BACKGROUND 6

That is, any parenthesization of the expression will give the same result. We will see that both

partitioning and batching in computer science can be seen as changes to the parenthesization of

the function we are computing.

Common examples of associative functions include addition, multiplication, matrix multipli-

cation, and string concatenation. Examples of non-associative functions include floating point

addition, averaging, and exponentiation.

Query Optimization: Associativity is a property needed to enable parallel computation of

partitioned input data sets. It allows for SIMD parallelism and is used heavily in OLAP Databases,

Map Reduce, MPI, and multi-core computation. Intuitively, we can think of the partitioning of

inputs as a parenthesization of the function application.

Distributed Systems: Associativity allows arbitrary batching together of operations which

is an important optimization in distributed systems and streaming systems. Batching can be

thought of as doing partial work on partial inputs and is often used to amortize fixed costs of

operations, to allow work to be done in parallel without waiting for the full input, or to reduce

the size of data before sending it over a networked channel. For this reason, it is one of the three

properties required of a state-based CRDT.

2.1.3 Idempotence
Definitions and Examples: Formally, a binary operator ◦ is idempotent if for all 𝑥 , it holds that

𝑥 ◦𝑥 = 𝑥 . In other words, performing the operation any arbitrary number of times with the same

input value has the same effect as performing it only once. For a unary operator, idempotence is

defined as for all 𝑥 , 𝑓 (𝑓 (𝑥)) = 𝑓 (𝑥). In English, idempotence is indifference to repeated function

calls. No matter how many times a function is called, the result will match that of when the

function is only called once. This allows for indifference to the duplication of messages.

Common examples of idempotent functions include set union, min, and max. Common non-

idempotent functions include addition, multiplication, and string concatenation.

Distributed systems: Idempotence is commonly used in distributed systems where mes-

sages can be dropped or duplicated by an unreliable network. In the presence of an unreliable

network, applications may need to “retry” sending messages and idempotence ensures that if the

original message and the retried message both arrive then the outcome is the same as if it arrived

once. Idempotence is one of the three requirements of merge operations in CRDTs to ensure

states convergence regardless of network non-determinism. In that setting, idempotence is also

needed to handle duplicate delivery of messages along multiple paths in the network via gossip

protocols. We explore the role of idempotence in CRDTs in depth later in this thesis.

Recursive computation andfixpoints: Idempotence is also used to ensure the convergence

of recursive computation. For example, the idempotence of set union is used to guarantee that

recursive Datalog programs always converge in finite time.

Idempotence is a special case of a more general property called k-stability, defined as 𝑓 𝑘+1 =

𝑓 𝑘 , which can also be used to guarantee convergence of Datalog-style programs [3].

CHAPTER 2. BACKGROUND 7

2.1.4 Invertibility
Definitions and examples: Formally, inverses come in twomajor forms. The first is for a binary

operation, where we say the operator satisfies the inverse element property if for all 𝑥 there exists

a 𝑦 such that 𝑥 ◦ 𝑦 = 0 where 0 stands for the identity element. In other words, you can go from

any value 𝑥 back to 0 by applying ◦ with the inverse value of 𝑥 . In this sense, the inverse of 5

with respect to addition is −5. The inverse of 3 with respect to multiplication is 1/3.
The second form is inverse functions. Formally, for a function 𝑓 , 𝑓 −1

is the inverse of 𝑓 if for

all 𝑥 , 𝑓 −1(𝑓 (𝑥)) = 𝑥 and for all 𝑦, 𝑓 (𝑓 −1(𝑦)) = 𝑦. In this sense, subtraction is the inverse function

of addition and division is the inverse function of multiplication.

Common examples of structures with inverses include addition over the integers or multpli-

cation over the rational numbers. However, addition or multiplication over the natural numbers

do not have inverses.

In computer science, invertibility is a property that allows operations to undo themselves.

This is important for both user experience and program optimization. For user experience, having

a mathematically exact inverse means that a user pressing an “undo” button will have intuitive

semantics. Wewill see throughout this thesis that “undo” semantics are actually amajor challenge

in coordination-free distributed systems because of the incompatibility of inverses with other

relevant algebraic properties.

For program optimization, we can think of having inverses as giving us the ability to perform

speculative work on partial inputs and then undo any part of the speculation that turned out to

be wrong. This use of inverses is an essential component of designs for incremental computation

such as DBSP [24].

2.1.5 Monotonicity and Inflationary Behavior
Definitions and Examples: In the context of functions over sets like databases (database tables

are just sets of tuples), monotonicity is defined as 𝐴 ⊆ 𝐵 → 𝐹 (𝐴) ⊆ 𝐹 (𝐵) . For arbitrary data

types, monotonicity is defined as 𝑥 ≤ 𝑦 → 𝑓 (𝑥) ≤ 𝑓 (𝑦). If the domain and range of the function

𝑓 are the same then a similar property called 𝑖𝑛𝑓 𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 is often used which states that ∀𝑥 :

𝑓 (𝑥) ≥ 𝑥 for a unary function 𝑓 [20]. Common examples ofmonotone functions include set union

or squaring over natural numbers. Common examples of non-monotone functions include xor

and set difference. Common examples of inflationary functions include set union, addition over

the natural numbers, and the immediate consequence operator of a Datalog program. Common

examples of non-inflationary functions include modular addition, addition over the integers, or

sine.

Observe that a function can be monotone but not inflationary, such as 𝑓 (𝑥) = 𝑥/2 over the

positive real numbers. Further, a function can be inflationary but not monotone such as absolute
value over the integers.

In English,Monotonicity is the property of a function that as the input grows, the output also

grows. The related inflationary property says that a state will always grow upon application of

a function. These guarantees about a function allow for strong system guarantees such as con-

CHAPTER 2. BACKGROUND 8

vergence of replicated state, convergence of recursive computations, and guarantees on partial

outputs of queries that they won’t be retracted in the future. These properties show up frequently

in the study of CRDTs, the CALM Theorem, query optimization, and Datalog.

Query Optimization: Of the five relational algebra operators select, project, join, union, and
set difference, the only non-monotone operation is set difference. This enables streaming compu-

tation ie pipeline parallelism inside of database query executors. The guarantee that an operator

is monotone gives us that the tuples output by running the operator on a portion of the input

will be a subset of the tuples output by running the operator on the full input. For example, a join

operator receiving tuples for the two input tables one at a time can store the state of the tuples

it has seen so far and compare any new incoming tuples to check if they match the join equality

condition. If they match, then the join can output the resulting tuple to downstream operators.

The monotonicity of join guarantees that any such tuples output by the join will be included in

the final result of the join, so there is no chance of needed to retract a tuple that was output earlier

in the computation.

Distributed Systems: Monotonicity plays a large role in techniques for avoiding coordi-

nation in distributed systems. The CALM Theorem, which stands for Consistency as Logical

Monotonicity, applies the same intuition about monotonic operators being safe to compute in a

streaming manner to the distributed setting. In that setting, machines don’t have enough infor-

mation to figure out if they have seen all of the messages that have been sent by other machines.

This setting is common in decentralized distributed computing and the CALM Theorem shows

that the only queries that can be safely computed in this settingwithout coordination andwithout

retracting outputs are monotone queries.

CRDTs leverage the inflationary property to guarantee convergence of replicated state with-

out coordination. The guarantee they offer is strong eventual consistency under the requirement

that state modifications be inflationary and that merging together states of replicas is done using

an operation that is associative, commutative, and idempotent. Mathematically, a function that is

associative, commutative, and idempotent induces a partial ordering and is inflationary with re-

spect to that ordering. Thus, replica state can be seen as always increasing from both the update

operation and the merge operation. The basic intuition for why this helps with convergence in

CRDTs is that the larger states in the partial ordering will always be the newer states temporally,

so the newer states will replace the older states.

2.1.6 Algebraic Structure Definitions
Terms for different combinations of properties are provided here for reference.

+ has an additive identity if ∃0 ∈ 𝑆 : ∀𝑎 ∈ 𝑆 : 𝑎 + 0 = 𝑎. We call this element “0” the additive

identity.

+ has an additive inverse if ∀𝑎 ∈ 𝑆 : ∃𝑏 ∈ 𝑆 : 𝑎 +𝑏 = 0. We say b is the additive inverse of a in

this case, and will often denote this element b as 𝑎−1
.

× has a multiplicative identity if ∃1 ∈ 𝑆 : ∀𝑎 ∈ 𝑆 : 𝑎 × 1 = 1 × 𝑎 = 𝑎. We call this element “1”

the multiplicative identity.

× is left-distributive over + if ∀𝑎, 𝑏, 𝑐 ∈ 𝑆 : 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)

CHAPTER 2. BACKGROUND 9

× is right-distributive over + if ∀𝑎, 𝑏, 𝑐 ∈ 𝑆 : (𝑏 + 𝑐) × 𝑎 = (𝑏 × 𝑎) + (𝑐 × 𝑎)
invertibility: ∀𝑔 ∈ 𝐺∃ − 𝑔 ∈ 𝐺 : 𝑔 + (−𝑔) = 0

A semi-lattice is an set 𝐿 equipped with a binary operation ⊔ that satisfies three properties:

associativity, commutativity, and idempotence.

Any valid semi-lattice operator induces the following partial ordering on the set 𝐿: 𝑎 ⊔ 𝑏 =

𝑏 → 𝑎 ≤ 𝑏.
A monoid is a set𝑀 equipped with a binary operation + that is associative. A monoid is also

required to have an identity element, 0, satisfying ∀𝑚 ∈ 𝑀 : 0 +𝑚 =𝑚 + 0 =𝑚.

A group is a set 𝐺 equipped with a binary operation + that satisfies two properties: asso-

ciativity and invertibility. A group is also required to have an identity element, 0, satisfying

∀𝑔 ∈ 𝐺 : 0 + 𝑔 = 𝑔 + 0 = 𝑔.

A abelian group is simply a group where + is also commutative.

A ring is a set S equipped with two binary operations + and × satisfying the following alge-

braic properties: + is associative, commutative, has an additive identity, and has additive inverses,

× is associative and has amultiplicative identity, and× is distributive over+ (both left-distributive
and right-distributive). On their own, the + operation forms an abelian group over S and the ×
operation forms a monoid over S.

a semi-ring is just a ring where the + operation does not need to be invertible.

a map 𝜑 from one ring 𝑅 to another ring 𝑆 is a ring homomorphism if it satisfies: (1) 𝜑 (𝑎+𝑏) =
𝜑 (𝑎) + 𝜑 (𝑏), (2) 𝜑 (𝑎𝑏) = 𝜑 (𝑎)𝜑 (𝑏), (3) 𝜑 (1) = 1, and (4) 𝜑 (0) = 0.

a ring homomorphism 𝜑 is a ring isomorphism if and only if 𝜑 is bijective. Two rings are

isomorphic if and only if there exists a ring isomorphism between them.

We summarize which properties are required for each structure in Table 2.1.

Structure Associative Commutative Idempotent Identity Inverse Distributive
Semi-lattice (⊔) ✓ ✓ ✓
Monoid (+) ✓ ✓
Group (+) ✓ ✓ ✓
Abelian Group (+) ✓ ✓ ✓ ✓
Semi-ring (+,×) ✓,✓ ✓,– ✓,✓ –,– ✓
Ring (+,×) ✓,✓ ✓,– ✓,✓ ✓,– ✓

Table 2.1: Comparison of algebraic structures

2.2 CRDT Background

2.2.1 Semi-Lattices and Conflict-Free Replicated Data Types
Conflict-free replicated data types (CRDTs) are a popular interface for designing systems with

strong eventual consistency of writes. In simple terms, this consistency guarantee means that

CHAPTER 2. BACKGROUND 10

all replicas in a system will converge to the same state as long as all updates eventually propa-

gate to them. The interface that CRDTs provide is an object-oriented one with roots in abstract

algebra. A state based CRDT requires that a user defines two operations on their state: an up-
date operation for changes to the state from outside the system (e.g. from users), and a merge
operation for replicas to combine the updates they have seen into one state. By satisfying certain

algebraic properties in the selection of update and merge operations, a developer is guaranteed

strong eventual consistency of the replica state via gossip communication over an asynchronous

computer network [102, 103].

The requirements on the CRDT operations are that merge is associative, commutative, and
idempotent and that update is inflationary with respect to the ordering induced by the merge

operation. An algebraic structure that is associative, commutative, and idempotent is called a

semi-lattice, so the state-based CRDT model offers us an algebraic lens on eventual consistency

in distributed systems. This model is sometimes referred to as the “semilattice data model” and

was dubbed “ACID 2.0” by Helland, Campbell, and Finkelstein [48].

The reason for these three requirements on the merge operation of CRDTs is that they each

provide protection against different sources of nondeterminism on the communication network.

Associativity gives the system robustness to arbitrary batching, commutativity gives robustness

to different interleaving or reordering of messages on the network, and idempotence gives robust-

ness to messages being delivered multiple times or being “retried”. The power of this robustness

is that without coordination replicas can process updates and guarantee eventual convergence.

This allows geo-replicated systems to service requests with local latencywithout sacrificing avail-

ability or consistency under network partitions (circumventing the CAP Theorem [21]).

A common example of a CRDT is a set. Merge is performed via set union which is associative,

commutative, and idempotent. The update operation is also set union, so an update can add an

element to the set and all replicas will eventually converge to exactly the set of individual updates

applied across the replicas.

Below, we present some common examples of state-based CRDTs that we will refer back to

throughout this thesis.

Grow-Only Set CRDT. This CRDT is defined as follows:

state: Set 𝑆 over the universe U

update: Set 𝑆 over U and𝑚 ∈ U. Then, update(𝑆,𝑚) = 𝑆 ∪ {𝑚}

merge: merge(𝐴, 𝐵) = 𝐴 ∪ 𝐵

query: 𝑄 (𝑆) = 𝑆 (identity query)

This merge operation, set union, forms a semi-lattice.

Two-Phase Set CRDT.We define it as follows:

state: Two sets over the universe U, INSERTS and DELETES.

CHAPTER 2. BACKGROUND 11

update: The operation “delete(𝑚)” givesDELETES = DELETES∪{𝑚}. The operation “insert(𝑚)”

gives INSERTS = INSERTS ∪ {𝑚}.

merge: To merge two states, we set-union the INSERTS and DELETES sets respectively

query: INSERTS − DELETES (set difference)

The internal state of this CRDT is the product of two grow-only set CRDTs or a “free product

semi-lattice” of two set semi-lattices.

Grow-only Counter CRDT. This is defined as follows:

state: A map k from unique replica IDs to natural numbers.

update: An update at replica with ID 𝑗 increments the value of k[𝑗].

merge: Element-wise max of the map elements using the natural ordering of the natural num-

bers.

query: Sum over the values in the map.

The max operation forms a semi-lattice and the internal state of this CRDT is a map of these

max semi-lattices. The query translates this internal structure into the desired output to the user

- the total number of increments that have occurred globally in the system.

Positive-Negative Counter CRDT.We define this CRDT as follows:

state: A map k from unique replica IDs to pairs of natural numbers.

update: An update at replica with ID 𝑗 increments one of the two natural numbers in the pair

at key 𝑗 in the map. An update meant to decrement the global counter will increment the

right number and an update meant to increment the global counter will increment the left

number.

merge: Element-wise max of the map elements using the natural ordering of the pairs of natural

numbers (N × N).

query: Compute a new map k′[𝑗] = k1 [𝑗] − k2 [𝑗] for all 𝑗 . Then sum over values in this map.

The internal state of this CRDT is a map of free product semi-lattices of twomax semi-lattices.

The query translates this internal structure into the desired output to the user - the total number

of increments that have occurred globally in the system minus the total number of decrements.

CHAPTER 2. BACKGROUND 12

2.3 CALM History Background
The CALM Theorem is a research area that studies the role of the monotonicity property in the

correctness and optimization of distributed systems. Originally conjectured by Joe Hellerstein at

the PODS 2009 Keynote [49], the CALM Conjecture was based on observations while implement-

ing distributed systems in Datalog-like logic languages such as Overlog [78] and NDLog [78]. The

original conjecture states “A program has an eventually consistent, coordination-free execution

strategy if and only if it is expressible in (monotonic) Datalog” [49].

A version of the CALM Conjecture was proven by a group of researchers in Belgium shortly

after its original statement. The result is a theorem that proves a relationship between monotonic

logic programs over relational data and the global invariant on outputs over time that tuples will

not be retracted. In many settings, this guarantee on outputs can additionally be thought of as

an opportunity to make partial progress on partial inputs. We give relevant background on the

mathematical framework and proof techniques of this work in relevant sections of this thesis.

In the systems literature, the term “CALM Theorem” is often used to refer to a broader set of

intuitions around the relationship between monotonicity and distributed systems preformance.

To a theoretician, the “CALM Theorem” might refer specifically to the result proven about rela-

tional transducer networks in [10]. This creates a lot of confusion in the study ofmonotonicity for

distributed systems. For example, the terms CRDT and CALM Theorem are sometimes used in-

terchangeably. Further, the implications of calling this broader topic a “theorem” has discouraged

further theoretical study in this space as the use of the term implies there is nothing left to prove.

However, it is clear from this broader use of the term that there is appetite for a broader investiga-

tion beyond the original statement of the conjecture. To alleviate this problem, we now propose a

rephrasing that distinguishes between the results that have already been mathematically proven

in work on the CALM Theorem from the broader agenda of monotonicity for distributed sys-

tems. We hope that in clarifying the aspects of the larger agenda that are still conjecture, it will

encourage further research in this area.

There are a few constraints in the phrasing of the original CALM Conjecture that we suggest

to relax in the broader study of the topic that we dub the Generalized CALM Agenda. We pro-

pose a rephrasing of this research agenda to encompass a broad and ambitious set of problems

in the spirit of the original conjecture. First, we wish to generalize to not just the monotonicity

property, but also the inflationary property. Second, we wish to relax the sepecific use of “Dat-

alog” in the conjecture. Monotonicity and the inflationary property can be defined for arbitrary

languages and data structures, so there is no need to restrict the study to logic languages or the

relational data model. The original conjecture being in the realm of Datalog also made it difficult

to disentangle guarantees that are the result of the monotonicity property itself from guarantees

that come from the use of the relational data model based on sets. Recall that sets (with respect

to set union) are associative, commutative, and idempotent (ACI) structures and each of these

properties has a role to play in distributed correctness and optimization.

Lastly, we believe that monotonicity has a role to play in the power of coordination-free

systems beyond just being “eventually consistent”. Observing the world of monotonic Datalog,

we see numerous optimizations that are important for distributed systems that stem from mono-

CHAPTER 2. BACKGROUND 13

tonicity and related properties. To state it broadly, the research agenda we propose is to study the

role of monotonicity and the inflationary property as they relate to the optimizations and guar-

antees that can be offered in distributed systems. A non-exhaustive list of examples to start with

include guarantees of convergence to fixpoint, semi-naive evaluation, incremental computation,

horizontal partitioning, pipeline parallelism, sideways information passing, partial progress on

partial inputs, disorderly evaluation, invariants on global outputs over time, and convergence of

replicated states. Given that CRDTs are monotonically growing structures, their study is included

in the Generalized CALM Agenda.

In this thesis, we do not attempt to prove all facets of the Generalized CALM Agenda. In

Section 1, we clarify the relationship between the CALM Theorem, as proven [10], and CRDTs.

We also build a bridge to the realm of arbitrary algebraic structures rather than logic programs

over sets, which lets us further disentangle the roles of individual properties such as associativity,

commutativity, andmonotonicity in distributed data systems. The Free Termination Property that

we introduce studies the relationship between monotonicity and the invariants on global outputs

over time. This is the benefit of monotonicity that the CALM Theorem work [10] focused on, but

just one of the many optimizations that the Generalized CALM Agenda is concerned with. We

hope that the more general mathematical framework we introduce will ease the future study of

the Generalized CALM Agenda.

14

Part I

Bridging Approaches to Coordination
Avoidance

15

Chapter 3

The Free Termination Property of
Queries Over Time

Building on prior work on distributed databases and the CALMTheorem, we define and study the

question of free termination: in the absence of distributed coordination, what query properties

allow nodes in a distributed (database) system to unilaterally terminate execution even though

they may receive additional data or messages in the future? This completeness question extends

beyond the soundness questions studied in the CALM literature. We also develop a new model

based on semiautomata that allows us to bridge from the relational transducermodel of the CALM

papers to algebraic models that are popular among software engineers (e.g. CRDTs) and of in-

creasing interest to database theory for datalog extensions and incremental view maintenance.

Under this more general model, we are able to reason about both soundness and completeness in

a unified light.

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 16

3.1 Introduction
A central technical challenge in distributed computing and databases is the use—and avoidance—

of coordination mechanisms [21, 52]. Coordination in distributed systems is both slow and sus-

ceptible to unavailability via the CAP Theorem [21]. In response, theoreticians have studied the

question of what programs are computable in a distributed fashion without the use of coordina-

tion, most notably in the CALM Theorem [9, 10, 14, 118] for coordination-free queries. Mean-

while, language designers and systems researchers have begun building systems that encourage

coordination-free programming, exemplified by Conflict-free Replicated Data Types (CRDTs) [94,

102], which are popular data structure libraries based on semi-lattices.

In this work we push beyond CALM in two directions. The first is to consider a different proof

goal. The work on CALM is fundamentally about a soundness property called coordination-free
eventual consistency: in the absence of coordination, what properties of a program ensure that

each node in a distributed systemwill emit only correct program outputs over time? Herewe pose

a complementary completeness question, free termination: in the absence of coordination, what

properties of a program ensure that each node in a distributed system can unilaterally terminate

after producing all its (correct) results, even if updates may arrive from other nodes in the future?

From a practical perspective, free termination is critical to any user or client that requires a

complete answer before proceeding.

The second ambition of this paper is to generalize the theory in this domain from its roots

in relational transducers as explored in the CALM papers, and extend it to the context of the

algebraic frameworks that are native to CRDTs, and of increasing interest in database research [3,

24, 61, 64, 66]. To that end, we introduce a general model that can capture what guarantees can be

offered without coordination in both settings. Our model is based on queries over semiautomata
and the guarantees to users are captured as properties of those semiautomata.

The main contributions of the paper are as follows:

1. Using semiautomata, we introduce the notion of free termination (Section 3.3) in a state

transition system, and show how it can be used to model different types of applications,

including incremental view maintenance [24] and the pre-semiring data model used to

extend Datalog [3].

2. We then explore how the algebraic properties of the system and the query affect free termi-

nation (Section 3.4.1). Among our results, we show that under acyclic state modifications

(commonly found in CRDTs), the only queries with free termination are a particular class of

threshold queries over the natural partial order of states. We also show that if updates form

a group or ring (e.g., in incremental view maintenance models), free termination cannot be

achieved.

3. We study how to model coordination-free query computation in a distributed setting via

the lens of free termination (Section 3.5). Interestingly, we show that by using the notion of

free termination we can achieve a stronger and more fine-grained notion of coordination-

freeness that applies to a pair of a query and an input. We show how coordination-freeness

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 17

for network transducers as defined in [10] is a specific case of our more general notion of

coordination-freeness. This allows us to characterize other queries as coordination-free,

for example, antitone queries.

4. Finally, we look into free termination when the state space is finite (Section 3.6). We give

a linear-time algorithm for deciding all free termination states in a transition system and

also study how to perform state minimization.

3.1.1 Motivating Examples
Before we proceed, we provide some motivating examples from the literature. We start with the

domain of CRDTs, which have become quite popular with software engineers and shed light on

both of our goals.

Grow-Only Set CRDT: A common CRDT is the “grow-only set” CRDT: this is a replicated

distributed set where eachmachine propagates its local set to other machines in the system. Upon

receiving a message containing the local set at another machine, the local machine will apply its

“merge” operation, modifying its local state to be the union of its current state and the incoming

set. This process of propagation over an asynchronous network introduces non-determinism as

messages might be delivered in a different order than they are sent and messages may arrive

multiple times. The fact that set union forms a semi-lattice ensures that, regardless of these

sources of network nondeterminism, the state at each machine will eventually converge to the

same value. That eventual value is the union of all of the initial states at each machine and the

time at which it is reached is called the quiescence point.
Grow-only sets illustrate the point that CRDTs provide coordination-free consistency, but

do not support free termination. In the absence of coordination, we do not have a mechanism

for determining locally whether we have received all the elements in the network—i.e. whether

we have reached a quiescence point. Without a guarantee of quiescence, what should we do to

answer a query from a user? CRDTs allow arbitrary queries at any time and make no guarantee

on the relationship between the query result at time 𝑡 and the query result at the quiescence

point. For example, consider the query𝑄 (𝑥) = 𝑅(𝑥) −𝑇 (𝑥). A value (𝑎) may be returned at time

𝑡 , but eventually be excluded from the final output via subsequent “merges” into𝑇 (𝑎). This is not
a particularly satisfactory contract between the system and the user: what good is distributed

state if you do not know when you can query it reliably?

Threshold Queries: Threshold queries characterize a class of queries over CRDTs in which

a machine is able to unilaterally detect that the output will never change regardless of future

applications of the merge operation (set union in our example). For example, consider the query

𝑄 () = |𝑅(𝑥) | > 10. This boolean query is monotone with respect to the partial order of our

semilattice (which is ordered by subset containment). Since themerge operation can only increase

the position in the partial order, once the local state contains more than ten tuples in 𝑅, the result

of the query is guaranteed to be the same at the quiescence time. By contrast, if the quiescence-

time answer to this query is false—i.e. ¬(|𝑅(𝑥) | > 10)—then no machine will ever return an

answer to this query. From a local perspective, a machine cannot know if there is some additional

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 18

element out there that it has not heard about and will someday need to union into its local state.

Threshold queries, while useful, only offer free termination for database instances where the

answer is true!

CALM and Relational Transducers: The CALM Theorem [10] uses relational transducer

networks [2] to prove the relationship between queries expressed inmonotonic logic and coordination-

freeness. This formalism allows for the expression of distributed programs in terms of logical

formulas that are evaluated iteratively on each machine and communicate state between ma-

chines. Similar models have been used by developers to implement distributed programs (e.g.,

Webdamlog [2], Bloom [7]). While both the CALM theorem and CRDTs use proofs based on

notions of monotonicity, there remains a gap between the logic formalism of the CALM theo-

rem and the state-based formalisms of other work on coordination-freeness. In this paper, we

are not interested in the programmability differences between these approaches but exclusively

in reasoning about guarantees on query results without coordination. In departing from the

realm of logic programming, we want to reason naturally about programs beyond the boolean

or relational setting. For example, consider a system that takes on integer values and supports

the multiplication operation by a user-specified input integer. Now consider the query “is the

running product divisible by two?”. This query is not monotone with respect to the traditional

ordering of the integers, but it can be computed coordination-free on input instances that con-

tain any even number under the free-termination framework we introduce throughout this paper.

Once we have multiplied by an even number, all possible future states will return True on this

query.

As mentioned above, transducers were used to prove coordination-free consistency guaran-

tees, but they do not directly address termination. As an example, consider a network of transduc-

ers supporting the Datalog language, and a simple program like transitive closure. Transducers

accumulate knowledge about the set of paths in the global input, and once they learn about a

path they can output it with certainty, but they will never conclude that they have finished find-

ing new paths. Indeed, this depends on the database instance! We will return to this point in

Section 3.5.

3.2 Related Work
The theory of what is computable without coordination in a distributed setting has been studied

across different research communities and different theoretical models. In database theory, this

has been studied in terms of the CALM Theorem (“Consistency as Logical Monotonicity”) [9, 10,

14, 49, 118] using the relational transducer model of computation [2].

In related work in the programming languages community, conflict-free replicated data types

(CRDTs) [103] achieve coordination-free programs via the algebraic properties of functions that

can modify the state of data. CRDTs have found popularity amongst practicing software develop-

ers and are used in a variety of production software systems including Redis, Riak, ElectricSQL,

SQLSync, Ditto, JupyterLab, and SoundCloud.

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 19

CRDTs have been criticized for the guarantees that they offer [69]. To resolve this gap, several

systems have combined semilattice state convergence with monotonic queries or functions over

that state, including Bloom
𝐿
[31], Lasp [28, 81], Datafun [12] and Hydro [50].

For coordination-free termination detection, LVars [68] was early in proposing the use of

monotone threshold functions from any semilattice 𝐿 to a smaller lattice like the booleans (B,∨).
If a computation exceeds a threshold in 𝐿, the threshold function evaluates to true. Since true is
the top (supremum) of (B,∨), nothing can change the result, so computation can safely terminate.

This idea can be used in the languages mentioned above.

Efforts at adding non-monotonic functions or queries to these languages have typically fallen

back to the use of coordination. Languages like Gallifrey [83] and Bloom
𝐿
only guarantee con-

sistency when non-monotone constructs are preceded by a round of coordination.

Beyond semilattices, recent research has explored alternative algebraic structures for data

systems that each offer their own potential optimizations. Pre-semirings have been shown to

offer semi-naive fixpoint evaluation in Datalog
𝑜
[3, 61]. Abelian groups [24] and rings [64, 66]

have been shown to enable efficient incremental computation of materialized views. While each

of these algebraic structures has shown promise in database contexts, one cannot always make

use of them simultaneously (Section 3.4.3).

In this work, we formalize the free termination property for certainty of query answers, gen-

eralize it beyond the case of monotonic state with threshold queries, and show directly how this

property manifests in non-CRDT settings like Datalog, relational transducer networks, and alge-

braic models of incremental view maintenance.

3.3 Definitions of Free Termination
We will capture different scenarios in distributed computation using the general computational

model of a semiautomaton [43]. We assume that each node keeps a state that is represented by

an element 𝑠 in a (finite or infinite) state space 𝐷 . Computation at each node is modeled by a

modification of the state 𝑠 ∈ 𝐷 : the transition (or update) function 𝑈 : 𝐷 × 𝐿 → 𝐷 takes a state 𝑠 ,

a parameter ℓ ∈ 𝐿 from some domain 𝐿 and outputs a state that 𝑠 can transition to. We will often

write 𝑠
ℓ−→ 𝑠′ to denote that𝑈 (𝑠, ℓ) = 𝑠′ (we will often omit ℓ if it is not of importance).

Definition 1 (Semiautomaton). A semiautomaton is a triple S = (𝐷, 𝐿,𝑈), where 𝐷 is a set called
the state space, 𝐿 is a set called the parameter space, and 𝑈 : 𝐷 × 𝐿 → 𝐷 is a total function called
the update function.

The update function𝑈 can take different forms. A common scenario is when 𝐿 = 𝐷 , and then

𝑈 : 𝐷 × 𝐷 → 𝐷 is a binary function. Another interesting case is when the update is parameter-
independent , meaning the state transition is independent of the parameter ℓ ∈ 𝐿. When the state

space 𝐷 is finite, then S can be thought of as a deterministic finite automaton (DFA), but without

the initial state or accept states.

A computation trace in a semiautomaton with initial state 𝑠0 is a (possibly infinite) sequence

of states 𝑠0 −→ 𝑠1 −→ 𝑠2 −→ We say that 𝑠 ∈ 𝐷 reaches a state 𝑠′ ∈ 𝐷 if there is a finite sequence

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 20

𝑠 → · · · → 𝑠′; we will use the shorthand notation 𝑠 ↠ 𝑠′ for this and often say that 𝑠 reaches 𝑠′.
We define 𝑈 𝑘 (𝑠) to be the set of states reachable from 𝑠 via a sequence of at most length 𝑘 . We

also define the closure of 𝑠 ,𝑈∞(𝑠) =⋃
𝑘≥0

𝑈 𝑘 (𝑠) to be the set of states reachable from 𝑠 .

Definition 2 (Transition Graph). Given a semiautomaton S = (𝐷, 𝐿,𝑈), its transition graph𝐺 [S]
is a labelled directed graph with vertex set 𝐷 and edge set {(𝑠, 𝑠′) : ℓ | 𝑠′ =𝑈 (𝑠, ℓ)}.

The output of a computation in a semiautomaton model is captured by a query 𝑄 , which is a

total function 𝑄 : 𝐷 → 𝑅 that maps each state to an element of a (finite or infinite) query range

𝑅. We can now define the main notion in this paper.

Definition 3 (Free Termination State). Given a semiautomaton S = (𝐷, 𝐿,𝑈) and a query𝑄 : 𝐷 →
𝑅, we say that a state 𝑠 ∈ 𝐷 is a free termination state if for all states 𝑠′ ∈ 𝑈∞(𝑠) : 𝑄 (𝑠) =𝑄 (𝑠′).

In other words, if 𝑠 is a free termination state, any computation trace with initial state 𝑠 will

leave the query result unchanged. This means that the distributed system can output the value

of 𝑄 without the need to continue the computation.

This model is inspired by algebraic models of data systems such as CRDTs and the group

and ring models of incremental view maintenance [24, 64]. It is also inspired by application-

level consistency [6, 33] which considers only the observable state to users (our query result) as

important for application guarantees rather than the internal system state.

The behavior of free termination states can vary significantly. In the example below, we will

present some common scenarios of free termination using DFAs; we will see some of these cases

throughout the paper.

Example 4. To map a DFA into the model of queries over semiautomatons, the transitions are

the same in both models, but the query 𝑄 for the semiautomaton returns true if the DFA state is

accepting, otherwise false. Figure 3.1 shows four different scenarios of free termination:

1. A free termination state is reachable from each state and all free termination states return

the same query result (see Figure 3.1a).

2. All paths lead to a free termination state but different free termination states return different

query results (see Figure 3.1b).

3. There are no free termination states (see Figure 3.1c).

4. Some paths lead to free termination states and others do not (see Figure 3.1d).

We will see that certain algebraic properties of the semiautomaton and the query imply that

we have to fall in one of these cases. For example, if the query is commutative (Appendix 3.4.2),

then free termination falls in the first scenario, while if the semiautomaton forms a group struc-

ture this means that no free termination state exists (Section 3.4.3).

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 21

start

★

𝑎

𝑏, 𝑐

𝑎, 𝑏, 𝑐

(a) Contains an 𝑎.

start

★ ★

𝑐

𝑎

𝑏
𝑐

𝑎
𝑏

𝑎, 𝑏, 𝑐 𝑎, 𝑏, 𝑐

𝑐

𝑎 𝑏

𝑐

𝑎

𝑏

(b) Two 𝑎’s occur and if there are two 𝑏’s then the two 𝑎’s

occur before the second 𝑏.

start

𝑏 𝑏

𝑎, 𝑐

𝑎, 𝑐

(c) Contains an odd number of 𝑏’s.

start

★

𝑐

𝑎

𝑏
𝑎, 𝑐

𝑏 𝑏

𝑎, 𝑐

𝑏, 𝑐

𝑎

𝑏, 𝑐

𝑎

𝑎, 𝑏, 𝑐

(d) Starts with a 𝑏 and has an odd number of 𝑏’s or doesn’t

start with a 𝑏 and contains two 𝑎’s.

Figure 3.1: Four DFAs with labels {𝑎, 𝑏, 𝑐} showing four different categories of free termination.

The doubly-lined states represent the accepting states of the DFA (query is true).

The stars represent free terminating states.

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 22

3.3.1 Applications of Free Termination
We will next describe a few concrete instantiations of our computational model, which will be

used throughout this paper.

Incremental Query Computation. In the first instantiation, we consider 𝐷 to be the set of all

instances over a fixed relational schema R. The update function 𝑈 allows modification only by

inserting a tuple to the instance; in other words, the set 𝐿 is the set of all tuples over R and

𝑈 (𝐼 , 𝑡) = 𝐼 ∪ {𝑡}. We will refer to this semiautomaton as S∪. A trace in S∪ is a sequence of single-
tuple insertions to the initial database. Let us consider a query 𝑄 that is a Boolean Conjunctive

Query, hence it maps the state of the database (i.e. the “database instance”) to its range 𝑅 = {T, F}.
The characterization of free termination states for 𝑄 is fairly straightforward. Indeed, take

any instance 𝐼 in the state space such that𝑄 (𝐼) is true; then, because𝑄 is a monotone query and

the updates are only tuple insertions, any 𝐼 ′ reachable from 𝐼 will also have 𝑄 (𝐼 ′) = T. Thus,
such an 𝐼 will be a free termination state. On the other hand, if 𝑄 (𝐼) = F, free termination is not

possible since we can always insert a sequence of tuples to make 𝑄 true. As we will see later on,

this is a special case of a more general characterization of free termination.

State-based CRDTs. Recall that a state-based CRDT defines three functions over its state 𝐷 : an

update operation that allows state to be mutated from outside the system (update : 𝐷 × 𝐿 → 𝐷),

amerge operation that determines how the states of two replicas can combine to converge to the

same state (merge : 𝐷 × 𝐷 → 𝐷), and a query operation that defines what is visible to the user

from the internal state (𝑄 : 𝐷 → 𝑅).

To capture a state-based CRDT in our model, we define it as a semiautomaton S□ = (𝐷, 𝐿,𝑈),
where 𝐷 is the set of states, and the update 𝑈 captures both the update and merge operation

of the CRDT. Specifically, 𝑈 (𝑠, ⟨u, ℓ⟩) = update(𝑠, ℓ) and 𝑈 (𝑠, ⟨m, 𝑠′⟩) = merge(𝑠, 𝑠′). A crucial

property of a state-based CRDT is that the partial order induced by the merge operation forms a

join-semilattice. Observe that because of this, the state transition system for a state-based CRDT

will always be acyclic - a property that we will explore in detail in Section 3.4.1.

In Section 3.7, we discuss how the four popular CRDT examples from the thesis background

section relate to free termination.

Fixpoint Computation. Consider a partial order ⊑ over a domain 𝐷 , and take 𝑓 : 𝐷 → 𝐷 to be

a monotone function w.r.t. ⊑. Further consider a (parameter-independent) semiautomaton and

assume that it captures a fixpoint computation from a starting state 𝑠0 → 𝑓 (𝑠0) → 𝑓 (𝑓 (𝑠0)) →
. . . that eventually reaches a state 𝑠 with 𝑓 (𝑠) = 𝑠 after finitely many steps. For any query𝑄 over

𝐷 , the fixpoint state 𝑠 is a free termination state (no other state is reachable from it). However,

the structure of𝑄 may allow us to find an earlier free termination state before we even reach the

fixpoint.

As an example, consider the case where the fixpoint computation is an iterative (naive or

semi-naive) evaluation of a Datalog program 𝑃 on an instance 𝐼 . Here, the starting state is the

set of EDB facts and each iteration during evaluation is an update that adds to the current state

the newly produced IDB facts via the rules of the program. Our query 𝑄 is a view over the IDB
facts of the program 𝑃 , which can be thought of as the “target” of 𝑃 . Concretely, consider the

following Datalog program that determines whether there exists a path between vertices 𝑠 and 𝑡

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 23

in a graph.

𝑃 (𝑥,𝑦) ← 𝐸𝑑𝑔𝑒 (𝑥,𝑦)
𝑃 (𝑥,𝑦) ← 𝑃 (𝑥, 𝑧), 𝐸𝑑𝑔𝑒 (𝑧,𝑦)

𝑄 () ← 𝑃 (𝑠, 𝑡)

For this program, we can freely terminate as long as the state contains the IDB fact 𝑃 (𝑠, 𝑡),
even before we have reached a fixpoint. This is because the fixpoint computation is monotone

w.r.t. set containment (so the update 𝑈 is inflationary) and 𝑄 is a monotone query as well w.r.t.

the partial order F ⊑ T. If we replaced 𝑄 with another query 𝑄′() ← 𝑃 (𝑥, 𝑥) which detects the

presence of a cycle in the graph, we also can freely terminate earlier as long as the state contains a

cycle. As we will see in the next section, both of these are examples of Boolean threshold queries.

Datalog
𝑜
[3] is an extension of Datalog to support recursive queries over partially ordered

pre-semirings (POPS). This can also be viewed as a parameter-independent fixpoint computation.

Datalog
𝑜
requires that both semiring operations be monotone w.r.t. the partial order of the POPS.

This tells us that the update transition for any Datalog
𝑜
graph is inflationary, which we show

in Proposition 13 implies any Boolean monotone query will have a free termination state. For

instance, the query 𝑄 below that computes whether the distance between vertices 𝑠, 𝑡 in a graph

is at most 10.

𝑃 (𝑥,𝑦) ←𝑚𝑖𝑛(𝐸𝑑𝑔𝑒 (𝑥,𝑦),𝑚𝑖𝑛{(𝑃 (𝑥, 𝑧) + 𝐸𝑑𝑔𝑒 (𝑧,𝑦)))
𝑄 () ← 𝑃 (𝑠, 𝑡) ≤ 10

3.4 Algebraic Properties and Free Termination
In this section, we explore how the algebraic structures of the semiautomaton and the query affect

free termination.

3.4.1 Partial Orders
Consider the example in Figure 3.2 of a semiautomaton in which update labels are singleton

sets ({𝑎}, {𝑏}, or {𝑐}) and the update applies set union of the incoming singleton to the current

state. Labels on edges depict the incoming singleton that transitions from the source state to the

destination state. We can think of this system as inputs from ({{𝑎}, {𝑏}, or {𝑐}}) streaming in

over time and we wish to compute some query over this stream of inputs without ever knowing

if the stream has ended. The figure depicts the query “contains an 𝑎” over this semiautomaton,

illustrated by the dotted green line that is the “threshold” after which states in the partial order

return True in the query. Observe that the same graphwith the edge labels and self-loops removed

is the Hasse diagram [19] of the set/subset partial ordering over atoms {𝑎, 𝑏, 𝑐}.
We will utilize properties of this example to reason about its free termination states. In this

particular case, the update function is inflationary. If we view the ordering of B as F ⊑ T then

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 24

{ }

{b}{a} {c}

{a,b} {a,c} {b,c}

{a,b,c}

𝑏
𝑎

𝑐

𝑏

𝑐 𝑐

𝑎 𝑎
𝑏

𝑏
𝑐

𝑎

𝑎 𝑏 𝑐

𝑎, 𝑏 𝑏, 𝑐
𝑎, 𝑐

𝑎, 𝑏, 𝑐

Figure 3.2: A state transition system for the set union state transition over the universe {𝑎, 𝑏, 𝑐}.
The green dotted line across the states indicates the threshold line for the query “the set contains

an 𝑎”. The doubly-lined states return True and single-lined states return False in the query.

we can see that 𝑄 is monotone. Formally, to define what it means for 𝑄 to be monotone we must

have some partial order on the sets 𝐷 and 𝑅. Recall that a binary relation ⊑ is a partial order if it

is reflexive, transitive and antisymmetric.

Definition 5 (Inflationary). Let S = (𝐷, 𝐿,𝑈) be a semiautomaton equipped with a partial order
⊑𝐷 on 𝐷 . S is inflationary (resp. deflationary) w.r.t ⊑𝐷 if whenever 𝑠 −→ 𝑠′ then 𝑠 ⊑𝐷 𝑠′ (resp.
𝑠 ⊒𝐷 𝑠′).

In an inflationary semiautomaton, any update of a state will always follow the underlying

partial order of the state space. A deflationary system will follow the partial order in reverse.

In many cases, we can define a “natural” partial order on 𝐷 via the update function𝑈 . We say

that 𝑈 is acyclic in S if the transition graph G[S] is acyclic (excluding self-loops). The following

proposition follows from the fact that the transitive closure of a directed acyclic graph is a partial

order.

Proposition 6. Let S = (𝐷, 𝐿,𝑈) and𝑈 be acyclic. Then, the relation 𝑠 ⊑𝑈 𝑠′⇔ 𝑠 ↠ 𝑠′ is a partial
order for 𝐷 . Moreover, S is inflationary w.r.t. ⊑𝑈 .

Whenever 𝑈 is acyclic, we will refer to the partial order ⊑𝑈 as the natural partial order of S.
This is akin to the notion of natural orders for algebraic structures such as pre-semirings [3]. If

the update transition is a binary operation𝑈 : 𝐷 × 𝐷 → 𝐷 forming a monoid (is associative and

has an identity) then the natural ordering would be the standard 𝑥 ⊑𝑈 𝑦 iff ∃𝑧 : 𝑥
𝑧−→ 𝑦.

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 25

Example 7. Consider again the incremental query computation semiautomaton S∪. The update
operation is acyclic (since an update only adds tuples to the instance), and the natural partial

order is set containment of the states.

Definition 8 (Monotone Query). Let S be a semiautomaton equipped with a partial order ⊑𝐷 on
𝐷 . Let 𝑅 be a set with partial order ⊑𝑅 . A query 𝑄 : 𝐷 → 𝑅 is monotone (resp. antitone) w.r.t. S if
𝑠 ⊑𝐷 𝑠′ implies 𝑄 (𝑠) ⊑𝑅 𝑄 (𝑠′) (resp. 𝑄 (𝑠) ⊒𝑅 𝑄 (𝑠′)).

Free TerminationConditions. Intuitively, if the input state will only increase in the partial order
because𝑈 is inflationary, and𝑄 is monotone, then over time the output of𝑄 will always stay the

same or increase. However, free termination is concerned specifically with when the output of

𝑄 will stay the same. We identify two general conditions that guarantee free termination in this

case.

Proposition 9. Let S = (𝐷, 𝐿,𝑈) be a semiautomaton equipped with a partial order ⊑𝐷 . If S is
inflationary (resp. deflationary) and 𝑠 ∈ 𝐷 is a maximal (resp. minimal) element of ⊑𝐷 , then 𝑠 is a
free termination state.

Proof. Consider any state 𝑠′ ∈ 𝐷 such that 𝑠′ ∈ 𝑈∞(𝑠). Then, because S is inflationary and ⊑𝐷
is transitive, we must have that 𝑠 ⊑𝐷 𝑠′. But 𝑠 is a maximal element of ⊑𝐷 , hence 𝑠 = 𝑠′. Thus,
𝑄 (𝑠) =𝑄 (𝑠′). The proof for when𝑈 is deflationary and 𝑠 a minimal element is symmetrical. □

In some cases, we will consider partial orders ⊑𝐷 with a bottom element ⊥ or a top element

⊤: then, we have that for every 𝑠 ∈ 𝐷 , ⊥ ⊑𝐷 𝑠 or 𝑠 ⊑𝐷 ⊤ respectively. Note that if a top element

exists, then ⊤ is a free termination state by the above proposition.

Proposition 10. Let S = (𝐷, 𝐿,𝑈) be a semiautomaton with a partial order ⊑𝐷 . Let 𝑄 : 𝐷 → 𝑅 be
a query, with 𝑅 equipped with a partial order ⊑𝑅 . If S is inflationary,𝑄 is monotone (resp. antitone),
and 𝑄 (𝑠) is a maximal (resp. minimal) element of ⊑𝑅 , then 𝑠 ∈ 𝐷 is a free termination state.

Proof. Consider any state 𝑠′ ∈ 𝐷 such that 𝑠′ ∈ 𝑈∞(𝑠). Then, because S is inflationary and ⊑𝐷 is

transitive, wemust have that 𝑠 ⊑𝐷 𝑠′. From themonotonicity of𝑄 , this implies that𝑄 (𝑠) ⊑𝑅 𝑄 (𝑠′).
But because𝑄 (𝑠) is maximal, we must have that𝑄 (𝑠′) =𝑄 (𝑠). The case where𝑄 is antitone and

𝑄 (𝑠) is a minimal element is symmetric. □

Example 11. A classic example of an antitone query over B is the use of a universal quantifier ∀.
Consider the natural inverse of the existential quantifier ∃ used in our first example. If we let 𝑄

be “every element of the input stream is an {𝑎}” then we can freely terminate when the answer

becomes F (as soon as any non-“a” streams in).

Threshold Queries. In this part, we ask the following question: what classes of queries have

free termination states? We will restrict our attention to settings where the behavior of S is

inflationary as threshold queries are naturally valuable in this setting. Further, all state-based

CRDTs are examples of S that are inflationary. We define first an important class of queries,

inspired by the LVars [68] work on coordination-free programming languages, called Threshold

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 26

Queries. Recall that an antichain in a partial order ⊑ with domain 𝐷 is a subset 𝐶 ⊆ 𝐷 such that

no two distinct elements of 𝐶 are comparable under ⊑.

Definition 12 (Boolean Threshold Query). Let ⊑ be a partial order with domain 𝐷 , and 𝐶 ⊆ 𝐷

be an antichain. We will refer to an antichain 𝐶 as a threshold line. A Boolean threshold query
𝑄𝐶 : 𝐷 → B with threshold line𝐶 is the Boolean query that returns the value𝑄𝐶 (𝑠) =

∨
𝑐∈𝐶 (𝑠 ⊒ 𝑐).

Boolean threshold queries are monotone and this allows us to obtain the free termination

states in this case.

Proposition 13. Let S = (𝐷, 𝐿,𝑈) be an inflationary semiautomaton equipped with a partial order
⊑𝐷 . Let 𝑄𝐶 be a Boolean threshold query. Then, the free termination states are exactly the elements
of 𝐷 that are at or above 𝐶 .

Proof. We first show that 𝑄𝐶 must be monotone. Indeed, let 𝑠 ⊑𝐷 𝑠′ and assume 𝑄𝐶 (𝑠) is true.
Then, there exists 𝑐 ∈ 𝐶 such that 𝑠 ⊒𝐷 𝑐 . But since 𝑠 ⊑𝐷 𝑠′, 𝑠′ ⊒𝐷 𝑐 and 𝑄𝐶 (𝑠′) must also be

true. Since T is the maximal element of B, all states 𝑠 such that𝑄𝐶 (𝑠) is true are free termination

states. Note that any element of 𝐷 that is at or above the threshold line 𝐶 has this property. □

We should note here that any monotone Boolean query must be a Boolean threshold query

(excluding the trivial query that is always false). In this work, we do not wish to limit ourselves

to threshold queries that return only true, or even to thresholds where each 𝑐 returns the same

value𝑄 (𝑐). For example, queries that freely terminate to True on some inputs but freely terminate

to False on other inputs. We can generalize the concept of Boolean threshold queries with the

following result.

Proposition 14. Let 𝑄 be a query with at least one free termination state for a semiautomaton
S = (𝐷, 𝐿,𝑈) where 𝑈 is acyclic. Then, there exists an antichain 𝐶 ⊆ 𝐷 w.r.t. the natural partial
order ⊑𝑈 such that whenever 𝑐 ⊑𝑈 𝑠 for some 𝑐 ∈ 𝐶 , 𝑄 (𝑠) =𝑄 (𝑐).

Proof. Let 𝐹 ⊆ 𝐷 be the set of free termination states. 𝐹 cannot be empty. Let 𝐹𝜏 be the minimal

states in 𝐹 w.r.t. ⊑𝑈 . By construction, 𝐹𝜏 forms an antichain and will be our set 𝐶 . Take now any

state 𝑠 ∈ 𝐷 such that 𝑐 ⊑𝑈 𝑠 for some 𝑐 ∈ 𝐶 . Since 𝑐 is a free termination state and 𝑐 reaches 𝑠 , it

must be that 𝑄 (𝑐) =𝑄 (𝑠). □

In other words, there exists a threshold (formed by the antichain𝐶) such that at or above the

threshold the behavior of 𝑄 is governed completely by the threshold states. However, the be-

havior of 𝑄 outside of this threshold space has no restriction. This is unlike the case of Boolean

monotone queries where the behavior outside of the threshold space must also respect mono-

tonicity.

Join Semilattices. When the partial order has further algebraic structure, we can characterize

the behavior of free termination states more precisely. Here, we consider the case where S has a

natural partial order ⊑𝑈 and this order is a join-semilattice (this means that there is a least upper

bound for any nonempty finite subset of 𝐷).

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 27

Proposition 15. Let S = (𝐷, 𝐿,𝑈) be a semiautomaton where ⊑𝑈 forms a join-semilattice. Then,
for any query 𝑄 , all free termination states return the same value.

Proof. Indeed, take any two free termination states 𝑠1, 𝑠2. Since ⊑𝑈 is a join-semilattice, there

exists a least upper bound 𝑠 such that 𝑠1 ⊑𝑈 𝑠 and 𝑠2 ⊑𝑈 𝑠 . Since ⊑𝑈 is the natural partial order,

𝑠1 ↠ 𝑠 and 𝑠2 ↠ 𝑠 . But 𝑠1, 𝑠2 are free termination states, so it must be that 𝑄 (𝑠1) = 𝑄 (𝑠) and
𝑄 (𝑠2) =𝑄 (𝑠). Thus, 𝑄 (𝑠1) =𝑄 (𝑠2). □

As a corollary of the above proposition, any free termination state in a state-based CRDT

must have the same value. A special case is when the natural partial order has a top element ⊤;
in this case, all free termination states must take the value of 𝑄 (⊤).

Proposition 16. Let S = (𝐷, 𝐿,𝑈) be a semiautomaton where ⊑𝑈 forms a join-semilattice. If a
query 𝑄 has a free termination state in S, then any state can reach a free termination state.

In other words, if there exists a free termination state, it is possible to reach a free termination

state from whichever state we currently are in (with an appropriate set of updates).

Proof. Let 𝑠 be the current state and 𝑠𝑡 be a free termination state. Since ⊑𝑈 is a join-semilattice,

there exists a least upper bound 𝑠′ such that 𝑠 ⊑𝑈 𝑠′ and 𝑠𝑡 ⊑𝑈 𝑠′. Since ⊑𝑈 is the natural partial

order, 𝑠 → 𝑠′ and 𝑠𝑡 → 𝑠′. But then 𝑠′ must also be a free termination state. □

One would be tempted to think that monotone (or antitone) queries are the only ones that

have free termination states in a join-semilattice, but this is not true even for Boolean queries.

Take for example the semiautomaton S∪ with the Boolean query 𝑄 () = 𝑅(𝑐) ∧ ¬𝑆 (𝑐) for some

constant 𝑐 . This query is neither monotone nor antitone, since, for example, it returns false on

{𝑅(𝑎)}, true on {𝑅(𝑎), 𝑅(𝑐)}, and false on {𝑅(𝑎), 𝑅(𝑐), 𝑆 (𝑐)}. However, it has free termination

states: these are the states in which the tuple 𝑆 (𝑐) is in the instance.

3.4.2 Commutativity
Another algebraic property that many distributed systems satisfy is that of commutativity. It will

be convenient to switch from polish prefix notation to infix notation for our update transitions.

We use · for the application of an update transition so 𝑈 (𝑠, 𝑎) becomes 𝑠 · 𝑎 and 𝑈 (𝑈 (𝑠, 𝑎), 𝑏)
becomes 𝑠 · 𝑎 · 𝑏. Given an ordered sequence of labels a = 𝑎1, 𝑎2, ..., 𝑎𝑘 we will also use the

shorthand 𝑠 · a to mean 𝑆 · 𝑎1 · 𝑎2 · ... · 𝑎𝑘 .

Definition 17 (Commutativity). Let S = (𝐷, 𝐿,𝑈) be a semiautomaton, and𝑄 : 𝐷 → 𝑅 be a query.
We say that𝑈 is commutative (resp. 𝑄 is commutative) if for any state 𝑠 ∈ 𝐷 and any sequences of
labels a, b from 𝐿, we have 𝑠 · a · b = 𝑠 · b · a (resp. 𝑄 (𝑠 · a · b) =𝑄 (𝑠 · b · a)).

Commutative update implies commutative query, but the converse does not hold. A query

may be indifferent to the order of updates but the state itself may be order-sensitive. For in-

stance, the query counting the number of “a”s in a string with string concatenation as the update

operation.

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 28

Insertion of tuples into a database instance is a commutative update. An update that allows

insertion or deletion of tuples over a set-semantics database is not commutative; however inser-

tion or deletion of tuples over a Z-set semantics database is commutative (and forms an abelian

group) [24].

Proposition 18. Let S = (𝐷, 𝐿,𝑈) be a semiautomaton with a bottom state ⊥, and𝑄 be a commu-
tative query. Then, all free termination states return the same value for 𝑄 .

Proof. Take any two free termination states 𝑠1, 𝑠2 ∈ 𝐷 . Let a1 be a sequence of updates such that

⊥ · a1 = 𝑠1 and let a2 be a sequence of updates such that ⊥ · a2 = 𝑠2. Because 𝑄 is commutative,

we have𝑄 (⊥ · a2 · a1) =𝑄 (⊥ · a1 · a2) = 𝑟 . Since 𝑠1 is a free termination state and 𝑠1 → ⊥ · a1 · a2,

we have𝑄 (𝑠1) =𝑄 (⊥ · a1 · a2) = 𝑟 . Similarly, 𝑠2 is a free termination state and 𝑠2 → ⊥ · a2 · a1, so

𝑄 (𝑠2) = 𝑟 . Thus, 𝑄 (𝑠1) =𝑄 (𝑠2). □

Proposition 19. Let S = (𝐷, 𝐿,𝑈) be a semiautomaton with a bottom state ⊥, and 𝑈 be commu-
tative. If a query is freely terminating, then any state can reach a free termination state.

Proof. Let 𝑠 be the current state. Since 𝑄 is freely terminating, there exists a free termination

state 𝑠𝑡 . Let a𝑡 be an update sequence such that ⊥ · a𝑡 = 𝑠𝑡 , and a an update sequence such that

⊥ · a = 𝑠 . From the commutativity of 𝑈 , we have that ⊥ · a𝑡 · a = ⊥ · a · a𝑡 = 𝑠′. Since 𝑠𝑡 → 𝑠′, 𝑠′

must be a free termination state. But then we also have that 𝑠 → 𝑠′. □

3.4.3 Group-Like Structures
If 𝑈 is not acyclic, then we can construct examples where free termination is not possible. We

will use the notions of inverses and identity values from groups, but to generalize beyond binary

update operations 𝑈 : 𝐷 × 𝐷 → 𝐷 we must define these terms for the general case of transition

graphs.

Definition 20. Let S = (𝐷, 𝐿,𝑈) be a semiautomaton. A state id ∈ 𝐷 is called an identity state if
id ↠ 𝑠 for every 𝑠 ∈ 𝐷 . A state 𝑠 ∈ 𝐷 is called invertible if it can reach an identity state.

We call the following theorem “the inverse curse theorem”.

Theorem 21. Let S = (𝐷, 𝐿,𝑈) be a semiautomaton, and 𝑄 : 𝐷 → 𝑅 be a non-constant query. If
every state of 𝐷 is invertible, then 𝑄 has no free termination states in S.

Proof. Suppose that some state 𝑠 ∈ 𝐷 freely terminates. Since 𝑄 is not constant, there exists

some state 𝑠′ ∈ 𝐷 such that 𝑄 (𝑠) ≠ 𝑄 (𝑠′). Since 𝑠 is invertible, we have that 𝑠 ↠ id, where id
is an identity element. By the definition of an identity element, id ↠ 𝑠′. Hence, 𝑠 ↠ 𝑠′, which
contradicts the fact that 𝑠 is a free termination state. □

Example 22. As an example, consider the case where𝐷 = Z, and let𝑈 (𝑖,+) = 𝑖+1 and𝑈 (𝑖,−) =
𝑖 − 1, i.e., we have a counter that can be incremented or decremented. Then, any state in 𝐷 is an

identity state and invertible, so any query 𝑄 has no free termination states unless it is constant.

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 29

When 𝑈 : 𝐷 × 𝐷 → 𝐷 and (𝐷,𝑈) forms a group (𝑈 has identity element and every element

has an inverse), then we obtain the following corollary:

Corollary 23. Let S = (𝐷, 𝐿,𝑈) be a semiautomaton such that (𝐷,𝑈) forms a group. If 𝑄 is not a
constant query, then 𝑄 has no free termination states.

This corollary tells us that an update function that forms a group precludes the possibility

of free termination. It also tells us that in view maintenance, which often studies rings rather

than semirings, free termination is impossible. This is consistent with the monotonicity lens

on threshold queries from CRDTs [69] where an inverse corresponds to moving backward in the

partial order, which prevents the possibility of threshold queries with free termination states. The

practical benefits of having inverses in CRDTs to allow “undo” operations have been discussed in

[39] and [93]. This is an interesting dichotomy. Two parallel lines of work have shown the value

of invertibility in data systems (DBSP [24], DBToaster [66]) and the value of coordination-free

monotone queries (CALM theorem, CRDTs), but the benefits of these properties appear mutually

exclusive. We will discuss these topics further in Chapter III.

3.5 Free Termination in Distributed Systems
In this section, we will study the problem of distributively computing a query in a coordination-

free manner via the lens of free termination. Both transducer networks [10] and CRDTs offer

coordination-free models of eventual convergence, i.e., the existence of a time (called the qui-

escence point) where the query result converges. However, without the ability of a machine to

determine whether it has already reached such a quiescence point, the applicability of this notion

in practical systems is limited [69]. If a user wants to read the (complete) output of a transducer

network, eventual consistency cannot provide a certain answer.

By definition, free termination can determine when a complete answer can be given with

certainty and hence aligns with the need for distributed systems to promptly respond to user re-

quests. However, this stronger guaranteewarrants amore fine-grained definition of coordination-

freeness. In particular, we will need to talk about coordination-freeness as a property of a query

and its input. This is because if a query were to freely terminate on every input, it would mean

that the inputs do not affect the query result. This is in contrast to the CALMTheorem [10], which

talks about coordination-freeness as a property of an entire query but offers a weaker guarantee

than Free Termination.

3.5.1 Distributed Model
Our task is to compute a query 𝑄 over a relational instance 𝐼 defined over a schema R over a

networkN . A networkN is defined as a finite, connected, undirected graph over a set of vertices

𝑉 . Initially, the instance 𝐼 is horizontally partitioned across the nodes in the network.

The distributed computational model we consider here is a simplified version of the relational

transducer network model used by Ameloot et al. In particular, we leverage the equivalence

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 30

between oblivious transducers and coordination-freeness proven in [10] to focus on oblivious

networks and specifically a type of communication protocol used by many constructions in [10]

called network flooding . In this construction, nodes attempt to achieve eventual consistency by

broadcasting all their local information to their neighbors and sending no other messages. More

precisely, the computation in each node will be captured by the semiautomaton S∪, where each
state is an instance over R and each transition adds a new tuple in the instance. This roughly

corresponds to an oblivious, inflationary, and monotone relational transducer, with the critical

difference that there is no output generated – only the state is modified. Nodes can communicate

by sending a tuple from their local state to be added to the instance of any neighboring node.

For now, we will focus on Boolean queries. Formally, a configuration of the network is a triple
of mappings 𝛾 = (𝑠𝑡𝑎𝑡𝑒, 𝑏𝑢𝑓 , 𝑟𝑒𝑎𝑑𝑦), where 𝑠𝑡𝑎𝑡𝑒 maps each node in𝑉 to a state in S∪, 𝑏𝑢𝑓 maps

each node in 𝑉 to a finite multiset of facts from R called a buffer, and 𝑟𝑒𝑎𝑑𝑦 maps each node to

{F, T}. Initially, each state contains only the tuples in 𝐼 from the local partition, the buffers are

empty, and 𝑟𝑒𝑎𝑑𝑦 (𝑣) = F. There are three types of transitions between two configurations:

Produce Transition: A node can move any tuple in its local state to the buffers of its neighbor-

ing nodes;

Consume Transition: A node can update its state by removing a tuple from its local buffer and

adding it to its local instance.

Ready Transition: A node can set 𝑟𝑒𝑎𝑑𝑦 (𝑣) ← T.

Importantly, once 𝑟𝑒𝑎𝑑𝑦 is set to true, it cannot be further modified. Setting 𝑟𝑒𝑎𝑑𝑦 to true

denotes that the query result will not change. An algorithm for 𝑄 in this model determines two

things: (𝑖) when to send each tuple to its neighbors, and (𝑖𝑖) if and when to perform a ready

transition.

A run 𝜌 is an infinite sequence of transitions starting from an initial configuration. A run is

fair if every fact in every buffer is eventually taken out, and it is complete if every fact in a state

is eventually sent to its neighbors. Finally, we say that an algorithm computes the correct output

of𝑄 if for all inputs 𝐼 and all horizontal partitionings of 𝐼 , whenever 𝑟𝑒𝑎𝑑𝑦 (𝑣) = T,𝑄 (𝑠𝑡𝑎𝑡𝑒 (𝑣)) =
𝑄 (𝐼). In every infinite run, there is a natural number 𝑛 > 0 such that none of the states change

after the 𝑛-th transition: we call this the quiescence point. In a fair and complete run, each local

state eventually converges to 𝐼 , and hence at the quiescence point 𝑠𝑡𝑎𝑡𝑒 (𝑣) = 𝐼 for every node

𝑣 ∈ 𝑉 . However, without coordination, it is not possible to know when a node has received the

entire input.

Definition 24 (Coordination-Free Correctness). We say that the pair (𝑄, 𝐼) is coordination-free
correct if there exists an algorithm such that in every fair and complete run the correct output of 𝑄
is computed and 𝑟𝑒𝑎𝑑𝑦 is set to true at all nodes.

In other words, no matter how computation proceeds and how messages are exchanged, at

some point, the algorithm will perform the ready transition and hence know (without coordina-

tion) that it has computed the correct result and thus can give it to the user. The next proposition

relates the above notion of fine-grained coordination-freeness to free termination.

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 31

Theorem 25. (𝑄, 𝐼) is coordination-free correct if and only if 𝐼 is a free termination state for 𝑄 in
the semiautomaton S∪.

Proof. Suppose 𝐼 is a free termination state. Consider the following algorithm: it will set 𝑟𝑒𝑎𝑑𝑦 (𝑣)
to true exactly when 𝑠𝑡𝑎𝑡𝑒 (𝑣) is a free termination state for 𝑄 in S∪. This algorithm is correct,

since at the instance 𝐼 ′ where 𝑟𝑒𝑎𝑑𝑦 becomes true, all reachable states maintain the result of 𝑄 .

Since 𝐼 is reachable from 𝐼 ′ (from the network flooding construction),𝑄 (𝐼) =𝑄 (𝐼 ′). Further, every
fair and complete run reaches the quiescence point, when 𝑠𝑡𝑎𝑡𝑒 (𝑣) = 𝐼 , and thus the algorithm

will set 𝑟𝑒𝑎𝑑𝑦 to true.

In the other direction, suppose (𝑄, 𝐼) is coordination-free correct and consider an algorithm

that computes the output correctly. At the quiescence point, when 𝑠𝑡𝑎𝑡𝑒 (𝑣) = 𝐼 , this algorithm

must set 𝑟𝑒𝑎𝑑𝑦 to true (since the state will remain unchanged from that point on). But now

consider a fair and complete run for another input 𝐼 ′ ⊇ 𝐼 (which is a reachable state in S∪) such
that some node 𝑣 receives first all of 𝐼 . At this point, the algorithm would need to do the ready

transition. But because of correctness, it must be that𝑄 (𝐼) =𝑄 (𝐼 ′). Hence, 𝐼 is a free termination

state. □

If the input is not a free termination state, the system will often need to perform some co-

ordination to get the user a concrete answer. We thus avoid coordination for a given query on
some inputs, but not all inputs! In practice, the distribution of inputs to a given system is what

determines how helpful free termination is.

We next discuss how we could define a notion of coordination-free correctness for the en-

tire query 𝑄 . As a first attempt, we could define 𝑄 to be coordination-free correct if (𝑄, 𝐼) is
coordination-free correct for every input 𝐼 . From Theorem 25, this is equivalent to saying that

every input is free terminating, which happens only when𝑄 is a constant query. Hence, we need

to slightly relax this notion, by requiring that (𝑄, 𝐼) is coordination-free correct for some inputs.

Definition 26. We say that a Boolean query 𝑄 is positively (resp. negatively) coordination-free

if (𝑄, 𝐼) is coordination-free correct for every input 𝐼 such that 𝑄 (𝐼) = T (resp. 𝑄 (𝐼) = F).

The notion of positive coordination-freeness is exactly the notion of query coordination-

freeness used for transducer networks in [10]. Indeed, a transducer can only write true in its

output tape, so if nothing is written, we assume a false output.

Theorem 27. A Boolean query 𝑄 is positively (resp. negatively) coordination-free if and only if 𝑄
is monotone (resp. antitone).

Proof. From Theorem 25,𝑄 is positively coordination-free if and only if every state 𝐼 with𝑄 (𝐼) =
T is a free termination state. Say 𝐼 ⊆ 𝐼 ′ and suppose 𝑄 (𝐼) is true. Then, 𝐼 is a free termination

state and thus 𝐼 ′ is as well, which implies 𝑄 (𝐼 ′) =𝑄 (𝐼) = T. Hence, 𝑄 is monotone. The antitone

case is symmetric. □

For instance, consider the Boolean query ∀𝑥 : 𝑅(𝑥) > 0. This query freely terminates on

all false instances, and hence it can be considered negatively coordination-free. Observe that

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 32

Ameloot et al. [10] categorizes antitone Boolean queries as not being computable by oblivious

transducer networks. This is because of the definition of the output of a transducer network being

the union of outputs and the encoding of the boolean values True and False being the presence

of an empty tuple and the absence of a tuple respectively. In addition to antitone queries, some

queries are neither monotone nor antitone, but still have coordination-free correct inputs such

as our example from Section 3.4.1, 𝑄 () = 𝑅(𝑐) ∧ ¬𝑆 (𝑐).
Non-Boolean Queries. Consider now a non-Boolean query 𝑄 that outputs a set. In this case,

we will introduce a ready variable 𝑟𝑒𝑎𝑑𝑦 (𝑣, 𝑡) for every node 𝑣 and every potential tuple 𝑡 . Note

that this introduces another layer of granularity since we can now compute some tuples in a

coordination-free correct manner, while others we cannot. We can similarly lift coordination-free

correctness to the entire query 𝑄 by saying that 𝑄 is positively (resp. negatively) coordination-

free if every Boolean query (𝑡 ∈ 𝑄 (𝐼)) is positively (resp. negatively) coordination-free. Positive

coordination-freeness captures exactly how oblivious relational transducers work: they can write

only correct facts to the output tape, which they can never retract. The following result is imme-

diate.

Theorem 28. A non-Boolean query 𝑄 is positively (resp. negatively) coordination-free if and only
if 𝑄 is monotone (resp. antitone).

Wecomplete this section by an example that shows the benefits of a fine-grained coordination-

free definition. Consider the following query𝑄 , which is neither monotone nor antitone: 𝑄 (𝑥) =
(𝑅(𝑥) ∧ 𝑥 > 10) ∨ (𝑆 (𝑥) ∧ ¬𝑇 (𝑥)). In this case, any instance that contains a tuple 𝑅(20) freely
terminates (with true) for the output tuple (20). Also, any instance that contains (𝑇 (5)) freely
terminates (with false) for the output tuple (5). Thus, we can correctly output the existence/non-

existence of the two tuples in a coordination-free manner.

3.5.2 Distributed Computation with Metadata
Many distributed systems depend on some form of metadata to infer facts about what state tran-

sitions may be possible in the future. The essential such example from [10] is the all() relation
which returns the IDs of all transducers in a network. all() is used to compute non-monotone

queries and can also be modeled with free termination.

To encode the all() relation, we extend the schemaR to include a nullary relation𝐴𝑙𝑙 () that will
be set to true if we know that all machines have sent all their local data. Formally, we will extend

S∪ such that the update transitions of any state with 𝐴𝑙𝑙 = F will be as before, but all outgoing

transitions of a state with 𝐴𝑙𝑙 = T will be self-loops. This makes every state with 𝐴𝑙𝑙 = T be a

free termination state. Since in every fair and complete run a node will receive all input data,

we are always guaranteed that we will reach a free termination state and hence can do the ready

transition correctly. Using the all() relation, machines are able to determine that they have heard

from each other machine in the network and make this transition.

Another common form of metadata in tranducer networks is partitioning policy metadata [9,

118]. We now show how this form of metadata can be modeled with free termination as well.

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 33

In the policy-aware setting, we are equipped with a distribution policy 𝑃 that maps each fact

𝑡 to a subset of the network nodes (which are the nodes that hold 𝑡). Each node can locally apply

𝑃 to any (possible) fact that uses constants from the current local active domain of the node.

To do this, we will define a new semiautomaton S±∪. Each state of the semiautomaton consists

of a tuple of instances (𝐼+, 𝐼−) with the property that 𝐼+ ∩ 𝐼− = ∅, i.e., the two instances have

no tuples in common. Intuitively, 𝐼+ tracks the presence of tuples, and 𝐼− tracks the absence of
tuples. A transition in S±∪ simply adds a tuple in either 𝐼+ or 𝐼−. The query result is computed by

running the query on the positive instance, 𝑞(𝐼+).
The distributed computational model is similar to the one presented in Section 3.5 with the

following modifications. First, in a configuration 𝛾 the buffer 𝑏𝑢𝑓 is a tuple (𝑏𝑢𝑓 +, 𝑏𝑢𝑓 −) which
tracks tuples that are to be “added” and tuples that are to be “removed”. Second, the transitions

are modified as follows:

Produce Transition: A node canmove any tuple in its local state to the buffer𝑏𝑢𝑓 + of its neigh-
boring node; it can also check whether for a potential tuple 𝑡 (from the current local active

domain) 𝑃 (𝑡) contains that neighboring node and if not it can add 𝑡 to the buffer 𝑏𝑢𝑓 − of
its neighboring node.

Consume Transition: A node can update its state by removing a tuple from 𝑏𝑢𝑓 + and adding

it to 𝐼+, or removing a tuple from 𝑏𝑢𝑓 − and adding it to 𝐼−.

Ready Transition: A node can set 𝑟𝑒𝑎𝑑𝑦 (𝑣) ← T.

A run is fair if every fact in every buffer is eventually taken out, and it is complete if every
tuple in a state is eventually sent to its neighbors (and also every negative fact in a local policy is

also sent to its neighbors). Correctness is defined in the same way as before.

For an instance 𝐼 , we define 𝐼 to be the set of tuples with values in the active domain, adom(𝐼),
that are not in 𝐼 .

Theorem 29. (𝑄, 𝐼) is coordination-free correct if and only if (𝐼 , 𝐼) is a free termination state for𝑄
in the semiautomaton S±∪.

Proof. Consider the following algorithm: it will set 𝑟𝑒𝑎𝑑𝑦 (𝑣) to true exactly when (𝐼+, 𝐼−) is a free
termination state for𝑄 in S±∪. This algorithm is correct, since at the instance (𝐽+, 𝐽−) where 𝑟𝑒𝑎𝑑𝑦
becomes true, all reachable states maintain the result of 𝑄 . Note that from the network flooding

construction, 𝐽+ ⊆ 𝐼 and 𝐽− ⊆ 𝐼 . Hence, (𝐼 , 𝐼) is reachable from (𝐽+, 𝐽−) and 𝑄 (𝐽+) = 𝑄 (𝐼).
Further, every fair and complete run reaches the quiescence point, when 𝑠𝑡𝑎𝑡𝑒 (𝑣) = (𝐼 , 𝐼), and
thus the algorithm will set 𝑟𝑒𝑎𝑑𝑦 to true.

In the other direction, suppose (𝑄, 𝐼) is coordination-free correct and consider an algorithm

that computes the output correctly. At the quiescence point, when 𝑠𝑡𝑎𝑡𝑒 (𝑣) = (𝐼 , 𝐼), this algorithm
must set 𝑟𝑒𝑎𝑑𝑦 to true (since the state will remain unchanged from that point on). But now

consider a fair and complete run for another input 𝐼 ′ ⊇ 𝐼 such that 𝐼 ′ does not contain any tuples

from 𝐼 , and assume that some node 𝑣 receives first all of 𝐼 , 𝐼 . Note that (𝐼 ′, 𝐼 ′) is a reachable state in

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 34

S±∪. At this point, the algorithmwould need to do the ready transition. But because of correctness,

it must be that 𝑄 (𝐼) =𝑄 (𝐼 ′). Hence, 𝐼 is a free termination state. □

We say that a query𝑄 is domain-distinct-monotone if𝑄 (𝐼) ⊆ 𝑄 (𝐼 ∪ 𝐽) for all instances 𝐼 , 𝐽 for
which 𝐽 is domain distinct from 𝐼 (meaning every fact in 𝐽 has some constant that does not appear

in 𝐼). We can now show the following analogous theorem, which captures the characterization

of policy-aware transducers in [9].

Theorem 30. A Boolean query 𝑄 is positively (resp. negatively) coordination-free in the policy-
aware setting if and only if 𝑄 is domain-distinct-monotone (resp. domain-distinct-monotone).

Proof. From Theorem 29, 𝑄 is positively coordination-free if and only if every state (𝐼 , 𝐼) with
𝑄 (𝐼) = T is a free termination state. Take 𝐽 domain distinct from 𝐼 and suppose 𝑄 (𝐼) is true.
Then, 𝐼 is a free termination state. Since (𝐼 ∪ 𝐽 , ¯𝐼 ∪ 𝐽) is reachable from (𝐼 , 𝐼),𝑄 (𝐼 ∪ 𝐽) =𝑄 (𝐼) = T.
Hence, 𝑄 is domain-distinct-monotone. The antitone case is symmetric. □

3.6 Free Termination with Finite States
For practical applications, we are interested in computing free termination states both statically

at compile time and dynamically at runtime. Thus far, we have identified algebraic properties of

programs that allow us to detect free termination states. In this section, we study free termination

when the semiautomaton has a finite state space.

3.6.1 Detecting Free Termination
At runtime, it is desirable to determine whether the current state is a free termination state. This

can be done by computing the reachable states from the current state in the transition graph𝐺 [S]
and verifying that they all return the same query result. Hence, this computation is linear to the

size of the transition graph. However, it turns out that we can compute all free terminating states

in linear time as well.

Proposition 31. Let S = (𝐷, 𝐿,𝑈) be a semiautomaton with a finite state space, and 𝑄 be a query.
We can determine all free terminating states in time linear to the size of the transition graph (assum-
ing computing 𝑄 takes constant time).

Proof. To achieve this result, we first need the following observation on the behavior of free

terminating states: if 𝑠 is a free terminating state, then all states in the Strongly Connected Com-

ponent (SCC) of 𝑠 in 𝐺 [S] are also free terminating. Thus if two states 𝑠, 𝑠′ are in the same SCC

and 𝑄 (𝑠) ≠ 𝑄 (𝑠′), then none of the states in the SCC are free terminating.

The first step of the algorithm is to convert𝐺 [S] to a Directed Acyclic Graph (DAG)𝐺′, where
each node represents an SCC. This is standard and can be done in linear time. As a second step,

we iterate over all SCCs and label them as a candidate if 𝑄 is the same across all states in that

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 35

SCC; otherwise, we remove from 𝐺′ the SCC and all other nodes that can reach it. This step can

also be implemented in linear time.

We are now left with a DAG 𝐺′′ where each SCC has the same value for 𝑄 . In our final step,

we perform a traversal of the SCCs in reverse topological order. Any SCC with no outgoing edge

in 𝐺′′ is free terminating (meaning all the states in the SCC are free terminating). At any step,

if an SCC 𝐶 has outgoing edges only to free terminating SCCs and 𝑄 is the same for 𝐶 and its

outgoing SCCs, we mark 𝐶 as free terminating; otherwise, it is not free terminating. This final

step also requires linear time. □

Recall that a finite semiautomaton S is a DFA without a start or accept states. If we denote

a state of S to be the start state, and take 𝑄 to be a Boolean query that returns true for accept

states and false for the other states, we have exactly a DFA. In this case, free termination of a

state means essentially that we can stop the computation of the DFA without the need to read

any more symbols from the input. From Proposition 31, we obtain as a corollary:

Corollary 32. The free termination states of a deterministic finite automata (DFA) can be computed
in linear time in the size of the DFA.

DFAs are an interesting example of converting an infinite state space (all strings over the

alphabet) to a finite state space. We now explore connections between free termination and this

notion of equivalent state representations.

3.6.2 State Minimization
In this section, we ask whether given a semiautomaton S and a query𝑄 we can construct another

“simpler” semiautomaton S′ that has the same behavior as S for the given query. Formally:

Definition 33 (Equivalence). Let S, S′ be two semiautomata that both contain a start state ⊥ that
reaches all states and have the same label set 𝐿. Let 𝑄,𝑄′ be two queries on S, S′ respectively. We
say that (S, 𝑄) is equivalent to (S′, 𝑄′) if given the same sequence of transitions starting from ⊥,
the query result will be identical.

If (S, 𝑄) corresponds to a DFA, the above definition captures exactly DFA equivalence. In this

case, one can simply perform state minimization in DFAs [104] to obtain a minimal DFA. The

following property holds for free termination states in DFAs.

Proposition 34. A free termination state cannot be part of a cycle in a minimal DFA.

Proof. Assume for the sake of contradiction that we have a minimal DFA and a free termination

state 𝑠 that participates in a cycle in that DFA. Each state in the cycle is reachable from 𝑠 , so they

must all return the same query result as 𝑠 (accept/reject) and also be free-termination states. The

DFA in which each state in the cycle is collapsed into a single state is equivalent and has strictly

fewer states, thus the original DFA cannot have been minimal. □

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 36

For a general pair (S, 𝑄), we can follow the same idea as state minimization in DFAs. We

define the collapsing of a set of states 𝑆 ⊆ 𝐷 that take the same value for𝑄 as the modification of

the semiautomaton that (𝑖) replaces 𝐷 with (𝐷 \ 𝑆) ∪ {𝑠0}, where 𝑠0 is a new state, and (𝑖𝑖) any
update that transitions to a state in 𝑆 goes to 𝑠0, and any update that transitions from a state in 𝑆

starts in 𝑠0. We also set 𝑄 (𝑠0) to be the value of a state in 𝑆 .

Proposition 35. Let S = (𝐷, 𝐿,𝑈) be a semiautomaton and 𝑄 be a query. Let 𝑠 ∈ 𝐷 be a free
terminating state. Then, the pair (S′, 𝑄′) resulting from collapsing𝑈∞(𝑠) is equivalent to (S, 𝑄).

Proof. Because 𝑠 is a free termination state, we know every state in 𝑈∞(𝑠) returns the same

query result as𝑄 (𝑠). We can collapse all states in𝑈∞(𝑠) with all transitions being self-loops. The

collapsed state 𝑠0 is a free termination state and cannot be part of a cycle. Any sequence of updates

that ends up in𝑈∞(𝑠) in S will end up in 𝑠0 in S, and hence we have the desired equivalence. □

Given (S, 𝑄) with finite state space, consider now the equivalent pair (S□, 𝑄□) obtained by re-
peatedly applying the above proposition to free termination states until there is no more change;

we call (S□, 𝑄□) collapsed. This is analogous to a minimal state representation. Note that we

need finiteness to guarantee that the process of collapsing states will terminate at some point.

We can now show the following characterization of free termination in this case.

Proposition 36. Let S be a semiautomaton with an initial state ⊥ and finite state space, and 𝑄 be
a query. Then, for the equivalent collapsed pair (S□, 𝑄□), a state is a free termination state if and
only if all outgoing transitions are self-loops (i.e. the state is a fixpoint).

Proof. From Proposition 35, we know that a free termination state that has any reachable states

other than itself can be collapsed into a single state in which there are no outgoing edges except

self-loops. The other direction is also clear as a state 𝑠 that has no outgoing transitions satisfies

the definition of a free termination state as𝑈∞(𝑠) = {𝑠}. □

State minimization offers an interesting perspective on distributed systems techniques like

CRDTs. While CRDTs appear to only describe inflationary state mutations, it is common to

convert non-inflationary updates into inflationary ones using metadata. We see this in both

the two-phase set CRDT and the positive-negative counter CRDT (appendix 3.7). While the

state transition graphs for these CRDTs are acyclic, they have equivalent representations that

are cyclic. By looking at these structures from the perspective of user-visible state (query-layer

equivalence), the separation between free termination of query results and eventual consistency

of state becomes clear.

3.7 Free Termination in CRDTs
An append-only database is an example of a grow-only set. All results about free termination,

threshold queries, and free termination of monotone and antitone queries apply to grow-only set

CRDTs.

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 37

The two-phase set models something close to a database instance with insertions and dele-

tions, but the semantics of deletion are slightly altered. The set of deletions is grow-only, so when

an element is deleted once it is forever in the deletion set. This means that𝑚 ∈ DELETES→𝑚 ∉

INSERTS−DELETES. In other words, we can negatively partially freely terminate on any value in

DELETES. On the other hand, we can never positively partially free terminate as any element in

the {𝐼𝑁𝑆𝐸𝑅𝑇𝑆} set could always be added to the DELETES set by some future update. In the pa-

per Keep CALM and CRDT On [69] this example was pointed out as a CRDT that has eventually

consistent state, but a non-monotone user-observable query over that state. The paper stated the

intuition that this CRDT offers weaker guarantees than a threshold-query over a CRDT would

offer. We now see that intuition of weaker guarantees formalized by our definition of free termi-

nation. The grow-only set CRDT offers freely terminating threshold and dual-threshold queries.

While the state of the two-phase set grows monotonically over time, its non-monotone query can

only offer negative partial free termination.

Observe that the state transition graph of the Two-Phase Set CRDT is inflationarywith respect

to the set subset partial ordering, but if we look at an equivalent state transition graphwith respect

to the query, the graph contains cycles. The graph however is not fully invertible, which is what

allows for negative partial free termination.

The grow-only counter allows for eventually consistent counters for things like tallying

votes or counting likes in a distributed setting. It is not sufficient to have the states be just a

natural number that gets incremented because there is not an idempotent way to merge these

states together, which may result in double-counting increments. To resolve this, each replica

is assigned a unique ID and the only that replica will be able to apply updates that increment

that unique ID’s value. Effectively, the state of every node in the system is tracked in a map

at each node and the merge operation overwrites this map with the more up-to-date values for

any elements of the map your replica has out-of-date information on. max : N × N → N is an

associative, commutative, and idempotent operation so it forms a valid merge operation for a

state-based CRDT. The update operation is monotone w.r.t. the ordering of max, which means

that it can act as a proxy for determining which states are newer and which are outdated.

The positive-negative-counter extends the grow-only counter to support decrementing

counters in addition to incrementing them. The challenge beyond the lack of idempotence from

the grow-only counter is that the obvious update operation is no longer inflationary. To circum-

vent this, states are represented as monotonically growing pairs of natural numbers, with one

representing the number of increments at that replica and the other representing the number of

decrements at that replica. Observe that the range of the query is Z and all integer query results

are reachable from all states in the semiautomaton. This means there is a fully invertible equiva-

lent semiautomaton to the default CRDT representation, but the additional metadata kept around

in the local states of the CRDT make the original semiautomaton fully acyclic and inflationary.

CHAPTER 3. THE FREE TERMINATION PROPERTY OF QUERIES OVER TIME 38

3.8 Conclusion
We have presented a general state transition framework for reasoning about coordination-free

computation in distributed systems. Our central notion, free termination, allows the relational

transducer approach for declarative networking and the algebraic lattices approach of conflict-

free replicated data types to be modeled in a single framework.

39

Part II

Algebraic Upgrades

40

Chapter 4

Once Upon a Tree: Distributed
Idempotence in O(1) Space

A critical challenge in modern geodistributed systems is to allow multiple readers and writers

to share replicated state in a coordination-free fashion. Data structures like CRDTs offer solu-

tions for types with naturally idempotent operations, such as sets. But many applications rely on

non-idempotent types, including fundamental types like counters and multisets. For these types,

additional coordination-free mechanisms are needed to enforce idempotence. Prior schemes re-

quire space linear in the number of replicas, which is impractical for widespread use cases like

social networks and recommender systems.

In this chapter, we present OnceTree, a replication protocol that enables coordination-free

idempotence enforcement in constant memory. OnceTree combines semi-lattice merges with

distributed aggregation trees and controlled network flooding to enable the replication of any

data type with an associative and commutative aggregation function. We evaluate OnceTree

against existing replicated data types on cloud infrastructure and validate scalability trends for

memory usage and propagation latency.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 41

4.1 Introduction
In the past twenty years, the web has driven requirements for geo-distributed applications and

always-on availability. We have seen developers bend over backwards to work around the speed-

of-light limitations of geo-distributed latency and the fundamental impossibility of simultaneous

availability and consistency a la the CAP Theorem [21]. Eventual consistency has emerged as an

answer for a wide range of applications.

Many distributed systems techniques achieve replica consistency via monotonic or inflation-

ary constructs, which guarantee coordination-free availability and consistency. This includes

data type libraries (CRDTs [103]) and language features [7, 8, 31, 68, 81, 83]. Consistency in these

contexts derives from the ability to merge updates from multiple nodes in a manner that is “ACI”:

Associative (insensitive to message batching), Commutative (insensitive to message ordering)

and Idempotent (insensitive to repeated message arrival) ie a semi-lattice.

The requirement for idempotence is both a bit surprising and burdensome. Many operations

we want to perform on our data are insensitive to batching and ordering (AC), but are not idem-
potent (I). A standard example is a “counter” or “tally”. If we try to sum up tallies in a distributed

fashion and we are not careful about duplicates, we can easily count things more than once and

get incorrect results.

As we discuss in Section 4.2, there are various mechanisms in the literature to ensure exactly-

once delivery that can be adapted to this context. Classical solutions require overly-strong con-

sistency, while more recent solutions based on CRDTs still have space requirements that are𝑂 (𝑛)
for a system of 𝑛 nodes. For many large systems, this 𝑂 (𝑛) overhead results in storage and op-

erational maintenance costs that get in the way of many lightweight features like “thumbs up”

counters, which can enrich online experiences and drive statistical algorithms for content deliv-

ery.

In this Chapter, we introduce OnceTree, a protocol for replicating data types with non-

idempotent operations that reduces this memory cost to constant space. Our key observation

is that idempotence can be enforced hierarchically and therefore the metadata overhead can be

reduced from tracking every node in the system to just tracking your neighbors in the network

topology.

Given this, we turn to distributed data aggregation topologies. We observe that spanning

trees—as used in distributed aggregation protocols like TAG [79]—provide a space-optimal topol-

ogy for idempotence enforcement. Where aggregation techniques like TAG focus on returning

results to a single root node, we are interested in replicating results to all nodes, such that every

node provides strong eventual consistency. We address this challenge by combining a network

flooding algorithm with the aggregation tree architecture and a hierarchical semi-lattice oper-

ation. The OnceTree protocol offers strong eventual consistency of state at every node in the

system and robustness to duplicate or reordered messages over the network.

To evaluate the performance of the OnceTree protocol, we benchmark our implementation

of a social media counter against the PN-counter from CRDT literature. To see the trends of

our performance in a data center setting, we run OnceTree and the PN-Counter baseline on a

public cloud cluster. Our experimental results focus on the scaling behavior of our protocol as

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 42

Figure 4.1: Instead of randomized broadcasts (left), we apply a tree topology (right), which enables

constant memory usage.

we vary the cluster size. We demonstrate that OnceTree uses constant memory per-node as the

cluster size increases by orders of magnitude, and that the propagation latency of updates scales

according to the log of the number of replicas. These results validate our theoretical claims that

OnceTree is effective as a constant-memory alternative to CRDTs.

In summary, we make the following contributions:

• We introduce the concept of hierarchical idempotence for constant space idempotence en-

forcement in distributed systems.

• We give a full protocol called OnceTree for combining hierarchical idempotence and strong

eventual consistency and we prove the correctness of the protocol.

• We identify connections between three apparently disparate areas of data systems: coordi-

nation free update processing, aggregation queries, and network flooding.

• We give a localized tree reorganization protocol allowing nodes to join and leave the tree

over time.

• We evaluate the memory usage, propagation latency, and operation throughput compared

to existing CRDT solutions in cloud deployments atop the Hydro dataflow engine.

4.2 Background
The idempotence of requests has been a concern in databases and business processing for decades,

though more typically discussed in industry than in academia. Both Gray and Reuter [45] and

Bernstein and Newcomer [18] cover the issue in their transaction textbooks, often as part of real-

world consequences outside of transaction commit—e.g., “drill hole” (idempotent) vs “dispense

money from ATM” (non-idempotent) [45, p. 544]. In the 20th Century, at-most-once execution

of non-idempotent actions was the purview of industrial products like Transaction Processing

Monitors and Reliable Message Queues, which ran either as standalone servers or on top of trans-

actional database backends.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 43

The advent of e-commerce on the web brought these issues to the attention of a wider range

of developers (e.g. [84]). As financial applications grew popular, even consumers became con-

cerned about real-world consequences of non-idempotence. What happens if you reload the web

page right after pressing the button to buy 100 shares of stock in Pets.com? In the 21st cen-

tury, the majority of developers need to understand that code in general is neither idempotent

nor irrelevant to real-world concerns. A general mechanism is required to enforce at-most-once

execution—i.e. developers need reusable techniques to “upgrade” non-idempotent operations to

idempotent ones.

The standard solution for at-most-once execution requires persistent state, and falls squarely

in the tradition of database transactions mentioned above. Some agent (say, a server) must be able

to identify and remember every request it receives, so that it can later identify identical requests

that are to be ignored. Networking protocols like TCP will do this at a “network session” level,

but they abdicate on end-to-end application guarantees: TCP sessions can fail for many reasons

and erase accumulated state. Instead, developers typically store some “session state” in server

infrastructure—either a transactional database, or a middleware service that acts as or uses a

database. In a contemporary setting, that middleware might be a Kafka broker, or more typically

a fault-tolerant cluster of such brokers managed by a Zookeeper consensus service.

4.2.1 Uncoordinated “Like” Gossip
Let’s work with the example of implementing status variables for social media posts, with 𝑛

servers placed around the world. The traditional solutions above are unpleasantly heavyweight:

all button-presses would need to round-trip through a strongly-consistent storage system. This

has obvious overheads in resource consumption and cost. Worse, strongly consistent systems are

subject to unavailability—victims of the CAP Theorem [21]—and are generally to be avoided in

high-scale, eventually-consistent settings like social media.

To bypass CAP without sacrificing correctness, the Generalized CALM Agenda [52] suggests

we look for a monotonic or inflationary implementation of idempotence that is eventually con-

sistent in the face of failure and recovery. The CRDT literature provides solutions [94, 103] that

we discuss next, but as we will see they still have substantial storage overheads.

To illustrate, let’s focus on a generic status variable for one particular social media post. Each

of our 𝑛 servers can respond to requests to update the variable or display it. Each can also re-

ceive “gossip” updates from the other servers, and merge them into the current status. Servers

periodically gossip their status, either to randomly-chosen servers or exhaustively via broadcast.

Suppose the status variable is a Boolean, e.g., “flagged for inappropriate content”, and the gos-

sipmerge function is logical OR: if anybody flags the post, it remains flagged. OR is an idempotent

function, so the merge process is eventually consistent under any pattern of gossip including re-

tries.

By contrast, let’s return to our counter of “likes”. It is tempting use integer addition (+) as
our merge function, but of course then gossip can cause us to over-count: we do not know if the

count coming in already incorporated our local count that we gossiped earlier! This is likely to

cause us to mis-report the count, and lead to long-term replica divergence.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 44

How can we avoid this? One trick that is used (in places ranging from TCP to CRDTs) is to

include a sequence number with each message. Each node maintains a monotonically increasing

sequence number or “clock” that it timestamps on its messages. Nodes also keep track of the

clock values they’ve heard from each other node to form a vector clock of size 𝑛. To enforce

at-most-once delivery, any duplicated messages from 𝑖 can be detected via their timestamp and

dropped
1
. We call this the Vector Clock Idempotence Trick. But this is not a perfect solution either.

Each vector clock requires𝑂 (𝑛) storage per node. The memory overhead is𝑂 (𝑛2) in total across

the 𝑛 nodes in the system.

There is another trick used for enabling idempotence; it is “state-based” rather than “operation-

based”, to use the language of CRDTs. This trick we will call the Node ID Map Trick. Instead of

gossiping operation requests (like “increment”), we maintain and gossip a hash table of the status

variable values for each server. The tablemaps from a key to a value pair: serverId => (clock, value).
Upon sending gossip, a server increments its clock, copies its entry myID => (clock, value)
into the map, and gossips the entire map. Upon receiving gossip, a server merges the gossip into

its local map on key-by-key basis, replacing the current entry for a key if the gossiped entry has

a higher clock. It should be clear that this merge function is idempotent: if we receive the same

map entry more than once, the pair of serverID and clock entry allow us to recognize and ig-

nore duplicates. To display the overall count, we sum all the counter values in the map. Because

each value in this map has only a single writer, this replication scheme is eventually consistent.

The memory cost? Still 𝑂 (𝑛) per node, resulting in 𝑂 (𝑛2) across the entire system.

4.2.2 Once Upon a Tree
In this paper, we present theOnceTree protocol, which aims for consistency, coordination-freeness

and space efficiency. Like the CRDT approach, our solution is both strongly eventually consis-

tent and coordination-free. Unlike the CRDT approach, our goal is constant storage overhead per
node – 𝑂 (𝑛) across the the network of 𝑛 servers. OnceTree solves this challenge by building on

two key bodies of work: spanning tree flooding from the networking literature, and distributed

aggregation queries from the database literature.

Although our counter example is not idempotent, it is associative and commutative. The
OnceTree protocol takes advantage of these properties to enforce idempotence in constant space.

Under the hood, OnceTree works by organizing replicas into a tree topology, such as the one on

the right of Figure 4.1, rather than the all-to-all topologies used by replication protocols like CRDT

gossip. Many core modern systems are designed with architectures that satisfy these constraints,

and therefore can use OnceTree to replicate a wider range of data types while preserving low

memory usage.

For example, much academic work uses the set rather than multiset (“bag”) semantics of

databases, but in practice SQL databases require duplicate semantics to be preserved. In the

multiset setting, we cannot depend on the idempotence of tuple insertion. For a decentralized

1
In addition, messages from a node 𝑖 that arrive out-of-order by 𝑖’s timestamp can be buffered by the receiver to

emulate in-order delivery, as is done in TCP, and duplicates can be suppressed in the buffer as well.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 45

eventually consistent database such as the Anna KVS [110, 111], supporting multiset semantics

via existing CRDT or semi-lattice solutions would bottleneck the scalability of an “any scale”

system on the linear memory usage. With OnceTree, it is possible to preserve the scalability of

systems like Anna while supporting the bag semantics needed to implement a SQL database.

OnceTree also has many uses outside classic database systems. Distributed training for ma-

chine learning is a popular research topic [74, 89, 108] motivated by data privacy as well as hori-

zontal scalability. Many solutions update models by combining their weights with other models

or with gradients via summing or averaging. Both operations are associative and commutative,

but not idempotent. OnceTree offers an idempotent and coordination-free solution for these ap-

plications like federated learning [57].

As a final example, consider weighted graphs. When representing distances between nodes

such as a network graph or a graph of physical distances like world maps, updates to the weights

of these graphs are not idempotent. But adjusting weights is associative and commutative. Fur-

thermore, many applications on top of weighted graphs are naturally decentralized such as net-

work routers updating their distance estimates. In such applications, OnceTreemakes coordination-

free replication practical. With OnceTree, the “any scale” promise of coordination-free systems

can be extended to applications that only satisfy the A and C of ACI.

4.3 The OnceTree Protocol
In this section, we describe the OnceTree protocol we use to achieve constant space idempotence

enforcement and strong eventual consistency. We will prove its correctness in Section 4.4.

4.3.1 The High Level
We assume the following system model: We have a distributed system made up of nodes that

each have unique IDs. The nodes have mailboxes at which they receive messages and they are

able to pull messages out of the mailboxes to process them. The nodes can send messages to each

other’s mailboxes over a network, which is best-effort with retries: messages can be delivered out

of order or multiple times but all messages will eventually be delivered to the correct destination

if it is live. Messages will not be corrupted or partially delivered. We assume the nodes have

been organized into a logical tree overlay which can be accomplished with a standard network

spanning tree algorithm [92].

Our system is uniform meaning each node runs the exact same code which is the code in

Algorithm 1. The flow of communication follows a standard controlled flooding protocol for

spanning trees in computer networking. The algorithm in simple English is “when I receive a

message frommy neighbor, I forward it to all of my neighbors except the sender.” This guarantees

messages eventually reach every node and that messages follow exactly one path between any

(source, destination) pair.

On top of this controlled flooding, we combine two other tricks in our protocol. The first

is the NodeID Map Trick in which we track the largest clock value we have ever heard from

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 46

each neighbor in a [neighborID => (clock, value)] map. This is where our robustness to out-of-

order and duplicate deliveries comes from: it is guaranteed by the idempotent and commutative

properties of the max() computation implemented in Algorithm 1. However, this introduces a

new challenge: because we are only storing entries for each neighbor rather than every node

in the cluster, an implementation with just this trick would not have sufficient information to

compute queries representing operations from across the cluster.

The second trick is the use of distributed data aggregation. Instead of receiving amessage from

neighbor 𝑖 and forwarding it to every other neighbor as in a standard network, we aggregate the

new message along with all our local values and forward the aggregation result to each of our

neighbors. This keeps the size of state being passed around bounded by the size of the aggregate

results, which are constant.

Observe that doing this naively would result in the last message from a neighbor 𝑗 being sent

back to 𝑗 as part of this combined aggregation, breaking the exactly-one-path property we want

from our tree with controlled flooding. To solve this cyclic problem, we must send each neighbor

𝑗 the aggregation of all our neighbors except the state we have heard from 𝑗 . Achieving this

requires each node to maintain aggregation state for each of its neighbors.

In summary, we receive a message from a neighbor 𝑖 in the form of an aggregation of their

state. We “merge” it into our map of neighbor IDs to neighbor aggregates using the max() semi-

lattice merge operation. If the merge changes a value in our neighborID map then for each neigh-

bor 𝑗 in our neighborID map except the sender 𝑖 , we will send 𝑗 the aggregation of all values in

the map where neighborID 𝑘 ≠ 𝑗 , i.e. the aggregation result with node 𝑗 excluded.

4.3.2 State and Gossip
Figure 4.2 depicts the local state of a OnceTree node that has three neighbors (N1, N2, and N3).

Each node can be written to by clients, modifying its local counter value. Local updates are in
the form of an “update” operation which in our like counter example could be +1 for like or -1

for dislike. Each node also tracks one aggregated counter for each of its neighbors. Together this

local state constitutes a {NodeID:(clock,value)} map of a node’s local update state as well as the

state of each of its direct neighbors.

When any value in our local map is modified, we compute the aggregate of our local state to

send along to each of our neighbors, excluding our map element for the node we are sending the

aggregate to. In the figure, this is shown for a message arriving from neighbor 3. The red arrows

show the aggregates which are computed to send to the other two neighbors upon receiving this

message, but no aggregate is sent back to neighbor 3. Note that the aggregates sent to neighbors

1 and 2 do not reflect the local state from their own mailboxes.

The aggregate function in this example, for the purposes of simple explanation, is the same

function used to compute updates. In our running example, this function is SUM as the update is

an increment or decrement and the aggregate is the SUM of these counts. Some applications may

use different functions for update and aggregate, or may want to materialize multiple aggregates.

As long as the update and the aggregate operations are both associative and commutative, all of

our correctness guarantees still hold.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 47

Figure 4.2: The dataflow of a OnceTree node: blue arrows contribute to query results, green

arrows are messages from peers, and red arrows contribute to peer aggregates.

Figure 4.3 depicts the flow of data through our tree for the example of a single increment

to a single node. We see that the update first propagates to the node’s neighbors, then to the

neighbors’ neighbors, and so on. The values being sent are not “+1” in our protocol, but the

full sum of local states. We use a local logical clock that increments whenever a local variable

is changed in order to ensure our merge operation (max(incomingTime, currentTime)) ignores

duplicate or out of order messages. One way to think of this clock is as a monotonicity enforcer

for our potentially non-monotone update operation.

4.3.3 Aggregating Queries
The goal of the system is for each node to accept writes and to serve query results to clients

without coordination. The strong eventual consistency guarantee (formalized in the next section)

says that any update that a node receives locally from a client or that it hears about from another

node in the tree should be immediately reflected in any query to that node. This implies that

a client will read its own writes and that the query result from a single node will never “go

backwards” in time.

We compute the query by simply aggregating each of the states we track locally for our Neigh-

borID Map. Any local update is incorporated into the map immediately and any message deliv-

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 48

Figure 4.3: The flow of communication when an update occurs at a node; t=k denotes the kth

propagation step.

ered to our mailboxes will be incorporated into the map immediately if it has not already been

processed (because it is a duplicate or came out of order).

Altogether, the OnceTree protocol can be summarized in the relatively simple pseudocode of

Algorithm 1. The simplicity of the protocol makes it easy to implement (indeed, our benchmark

implementation is < 400 lines of idiomatic Rust), and perhaps more importantly, easy to reason
about from the perspective of both proofs and end-user applications. We omit some optimizations

from the full implementation, such as reactively gossiping aggregated values when they change

rather than restricting ourselves to periodic gossip, but these can be layered on top of the existing

protocol with minimal effort.

4.3.4 Constant Space
There are two core ideas at the heart of why we are able to achieve constant space. The first is

the observation that to enforce idempotence without a giant log of past message IDs, you appear

to need to track the state of every node in the system. Our hierarchical idempotence idea leans

on the observation that if your updates only arrive at another node via a single network path

then you only need to track the state of your neighbors to enforce idempotence. This reduces the

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 49

crdt OnceTree-Replica
statelocal, statei∈(0..|neighbors |) ← (0,⊥aggregation)
timestamp← 0

merge mergei (𝑣)
if statei,clock < 𝑣clock then

statei ← 𝑣
gossip

timestamp← timestamp + 1

for 𝑖 ← (0..|neighbors |) do
agg ← statelocal,value
for 𝑗 ← (0..|neighbors |) do

if 𝑖 ≠ 𝑗 then
agg ← agg + statej,value

send 𝑖 ← agg

operation localUpdate(update)
statelocal ← statelocal + update

query
agg ← statelocal,value
for 𝑖 ← (0..|neighbors |) do

agg ← agg + statei,value
return agg

Algorithm 1: Pseudocode for the OnceTree protocol.

number of states tracked from linear (the number of nodes) to constant (the number of neighbors).

However, there is still the question of how large the states you are tracking are. Are you

going from storing O(n) integers to storing O(1) integers, or from O(n) integers to O(1) lists of

integers that are O(n) long? This is where restricting our data to “aggregation” functions comes

in. Any associative and commutative query would still achieve strong eventual consistency in

our protocol, but the space usage will only be constant if the size of the query output is constant.

Our requirement that the query be an “aggregate” function does not mean it needs to be a SQL

aggregate, but simply match the formal definition of aggregate that the input domain is a set,

multiset, or list and the output domain is a single element [55].

4.4 Convergence Guarantees
In this section, we prove the idempotence enforcement and eventual consistency guarantees that

our design offers. In these proofs we assume no node failures. In section 4.6.2 we consider faults.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 50

4.4.1 Assumptions
In our proofs, wemaking the following assumptions about the system and user-defined functions:

• We assume the nodes in our system are in a tree formed by a spanning tree protocol such

as the canonical algorithm by Perlman [92]

• We assume our update/aggregate operation is associative and commutative.

• We assume the networking layer is best-effort with retries: messages can be delivered out

of order or multiple times but all messages will eventually be delivered to the correct des-

tination if it is live. Messages will not be corrupted or partially delivered.

• We assume all nodes do not exhibit byzantine behavior.

4.4.2 Preliminary Definitions and Proof Outline
We use the definitions from the original CRDT paper [103] for eventual consistency and strong

eventual consistency. An object is (4) eventually consistent if

1. An update delivered at some correct replica is eventually delivered to all correct replicas

2. Correct replicas that have delivered the same updates eventually reach equivalent state

3. All method executions terminate

An object is strongly eventually consistent (SEC) if it is Eventually Consistent and “correct

replicas that have delivered the same updates have equivalent state”.

Consider the set of updates in the system. Our goal is to show that eventually all updates are

delivered to all nodes and that the query result at each node returns exactly the aggregate of each

update that was delivered to that node exactly once. We will prove this in six steps.

1. We will show that because of the tree topology, each update in the system is eventually

delivered to each node. This satisfies condition (1) of SEC.

2. We will show that because of the tree topology each update delivered to a node will be

delivered to exactly one of its mailboxes, and therefore the intersection of updates between

any two mailboxes on a given node is empty. We show this by the property of the tree

topology that there is at most one path from any update source to any destination node.

3. We will show that all updates eventually terminate by showing that there are no loops in

our communication topology. This satisfies condition (3) of SEC.

With these guarantees we know that messages are not being duplicated by arriving along
multiple paths. We still need to show that our local merge operation which may receive retried
or out of order messages from the same sender is robustly handling these sources of nondeter-
minism.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 51

4. We will show that the local variable computed based on each respective mailbox represents

exactly one occurrence of each update that has been delivered to that mailbox. We show

this via the inflationary and idempotent properties of the MAX operation used to merge in

messages received in the mailboxes.

5. We will show that no local variables contain duplicate updates by showing that none of the

three data modifying operations in the design can introduce duplicates.

6. Lastly we will put the above results together to prove that the QueryResult returned to the

user is exactly the aggregate of all updates delivered to all mailboxes of the node and each

update delivered is represented exactly once in the query result. With this we will have

proven conditions (2) and (4) of SEC as well as exactly once delivery in our protocol.

Terminology: All messages sent between nodes in this protocol are the result of computing

an aggregation function. We say that a message “contains” an update if that update was one of

the inputs to that aggregation function. The messages are often the result of many rounds of

composition of aggregates, so this containment refers to all the leaf updates in the full aggrega-

tion tree that results in this message. Given this, for a message or a local variable to “contain

duplicates” means that the aggregation tree it was computed by has more than one of the same

update in its leaves.

We will refer to our aggregation function as + throughout this section. Recall that for sim-

plicity of exposition we are also saying the update and aggregate functions are the same, so they

are both referred to as +. Of course, they do not need to be the same and neither of them needs

to be addition, they can be any associative and commutative aggregation functions.

4.4.3 Proofs
Proofs of Steps 1 through 3 all follow from the same key property of a tree that makes it useful

in our protocol: trees have exactly one path between any pair of nodes.

Step 1 is true by the fact that there exists a path between each pair of nodes.

Step 2 is true by the fact that there is at most one path between any two nodes. For an update

to arrive at a destination via two different neighbors would mean there are two paths from the

update source to that destination, violating the exactly-one-path property of trees.

Step 3 is true by the fact that trees contain no loops and that we never send an update back

along the path it arrived on so it only travels “out” along the tree from where it originated.

Step 4: The local variables do not drop or duplicate any updates that are delivered via their

respective mailboxes.

For intuition of why this is true, observe that our local state of a OnceTree node is a map

of a fixed size computed via element-wise max operations. This is exactly the same semi-lattice

used in the NodeID Map Trick except that our map has elements for each neighbor instead of n

elements. Aside from the number of elements, the two semi-lattices are identical. Intuitively, we

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 52

use themax operation the sameway in the OnceTree as it is used in standard counter semi-lattices

like Grow-Only and PN-Counters. Max deduplicates and enforces monotonically growing values.

Without loss of generality we will show this for the var1 variable. Each message arriving at

the mailbox of var1 grows monotonically with time (by the local inflationary logical clock). The

result of our merge operation max() can only take on values of messages that arrive, so under

the assumption that the arriving message does not contain duplicates, var1 will also not contain

duplicates. Themax() operation also guarantees that the value of var1 will be the latest value from

the source that ever arrives at its destination (by themonotonicity of the logical clock once again).

The source node simply accumulates updates over time, so the most recent in time includes every

update that has ever been included in a message received by the mailbox of var1. QED.

Step 5: The local variables contain no duplicates at all.

There are three operations that modify the values of local variables: (1) Local update, (2)

merging incoming messages via max(), and (3) aggregating local variables via +. We will show

that none of these introduce duplicates and therefore local variables cannot contain duplicates.

(1) Local updates are unique and by definition are non-duplicate.

(2) max() does not introduce duplicates (in Step 4)

(3) + is composing some subset of the local variables. Assuming none of the composed values

already contain a duplicate, + could only introduce a duplicate by an update being represented

in more than one of the local variables being composed. Assume for the purpose of contradiction

that there exists an update u that occurs in two of the local variables. There are two cases: (1)

an update occurs in a local and a mailbox-based local variable or (2) an update occurs in two

mailbox-based local variables.

Case (1): Let u be a local update at node D and let var1 be the mailbox-based variable at node

D also containing u. Per the proof of Step 4, var1 can only take on values delivered to it via its

mailbox. The origin of u is node D and the existence of u in var1 means there is a loop from D to

D in our communication topology. This violates Step 3 that there are no loops.

Case (2): Let u be an update represented in var1 and var2 of a nodeDwithout loss of generality.

By the proof of Step 4 we know that var1 and var2 can only take on values that are delivered to

their respective mailboxes. This violates Step 2 that an update cannot be delivered to more than

one mailbox of D because it again breaks the exactly-one-path guarantee of the tree topology

with controlled flooding broadcast. QED.

Step 6: query() = +(all delivered updates) and contains no duplicate updates. i.e. is “correct”,

strongly eventually consistent, and all updates are successfully deduplicated.

We already know from Step 4 and Step 5 that each of the local variables contains no duplicates

and contains all updates delivered to its respective mailbox. Recall the definition of the OnceTree

query from our pseudocode:

query() = +(local, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟1: value, ..., 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑘 : value)

All updates represented in each of these local variables are represented in the query output

which is all updates delivered to the node. It only remains to show that no duplicates are intro-

duced by combining the respective local variables into the query result. This is true by part (3)

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 53

R

F

𝐒𝟐𝐒𝟏

C

T

R

T F

𝐒𝟐𝐒𝟏F

F

𝐒𝟐𝐒𝟏

T

R

R

R

F 𝐒𝟏 𝐒𝟐

T

𝐒𝟏𝐒𝟐

R

F 𝐒𝟏 𝐒𝟐

T

𝐒𝟏𝐒𝟐

R

F

𝐒𝟐𝐒𝟏

T

Original Tree Move Up F Move Down R

Node C Joining Node F Leaving Temporarily Node F Leaving Permanently

1 2 3

4 5 6

Figure 4.4: The fivemove operations described in Section 5.2. Each node post-move tracks its local

state as well as the aggregates of each neighbor post-move. Aggregates of pre-move neighbors

are forgotten.

of Step 5 that aggregation will not introduce duplicates if the local variables input contain no

duplicates. QED.

4.5 Initialization and Reorganization
Thus far we have described a protocol that achieves constant space usage, idempotence, and

strong eventual consistency by organizing nodes into a static tree topology. In this section, we

show how OnceTree preserves these properties during reconfiguration of dynamic trees. A static

topology implies a static membership, which is too restrictive for most deployments. We describe

how to maintain our invariants in settings where nodes join and leave gracefully, deferring fault

tolerance to Section 4.6.

We also consider how to safely modify the topology for a fixed membership. Tree topolo-

gies lack redundancy; this provides efficiency in a stable network, but makes the topology very

sensitive to the performance and availiability of individual nodes. Particularly as nodes join and

leave, a system may need to adjust the topology to ensure the tree remains connected and its

performance objectives are met. We extend the protocol with a move operator that preserves all
the invariants of OnceTree as nodes change their position in the tree.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 54

4.5.1 Tree Initialization
There are a lot of scenarios that could use a OnceTree. These include a fixed set of machines in a

datacenter, elastic clusters that grow and shrink with the workload, or even peer-to-peer settings

that are common in CRDT literature like local-first software [63]. OnceTree is a general protocol,

so we do not take an opinionated stance on the kinds of systems people may want to run on

top of it. Instead, we outline different ways the tree should be initialized for different types of

applications.

For a fixed-size backend cluster within one geographic region, we initialize a OnceTree by

passing a list of all participating node addresses to a setup node (or nodes) that will organize them

into a balanced tree of configurable fanout. For highly geo-distributed applications where nodes

may have quite different distances between them, we can instead pass in the distance matrix and

the setup node can compute a minimal spanning tree (MST) for the set of nodes using a classical

algorithm [37, 47, 56]. After choosing a balanced tree or MST, the setup node will notify each

actual OnceTree node of the addresses of its neighbors in the tree, and they can immediately start

propagating any updates from their clients throughout the tree. Note that computation of the

spanning tree can be scaled up over a larger set of setup nodes if the address list is prohibitively

long [36].

For an auto-scaling backend cluster, if the workload spikes then individual nodes can add new

nodes to the tree by spawning a child node to hand off part of its state or some of its clients to.

This is a common technique in actor systems utilized, for example, in the coordination-free Anna

key value store [111]. Similarly, a node can remove itself from the tree when the load decreases.

For a peer-to-peer style setup, nodes joining may correspond to being invited to participate by

a node already in the system, in which case the invited node can join as a child of the inviter

in the tree. If a peer plans to leave the system cleanly, it notifies its neighbors who will run our

node-leaving protocol described in the next section.

4.5.2 Planned Modifications to the Topology
We give five movement operations for OnceTree. They are depicted visually in Figure 4.4 and

described in text below. Each preserves the strong eventual consistency guarantee of our protocol,

which gives valuable guarantees to sticky clients as nodes move around in the tree without clients

noticing. Each of our move operations preserves strong eventual consistency and exactly once

delivery of updates as well as allowing clients to continue reading and writing throughout the

move operation.

Nodes Joining: The simplest case of changing the tree topology is allowing a node to join

the system. Nodes always join as new leaves in the tree. We assume the new node is in contact

with some existing node in the tree [111]. Panel 4 of Figure 4 shows a node C joining a tree at

parent T. To complete the join protocol, C initializes its clock to 0, adds the latest state of T to

its neighbor list, and is up and running. T adds C to its neighbor list and immediately begins

receiving updates from C and propagating them through the tree.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 55

Moving a Node One Level in the Tree The protocol in Algorithm 2 shows the steps to

move a node S (either S1 or S2) from being a neighbor of node F to becoming a neighbor of a

new destination node T. This can be used to move a node one level up the tree or one level down

the tree. The results of move-up and move-down are depicted in panels 2 and 3 of Figure 4. For

simplicity of exposition, we will describe the scenario as a child node Cmoving up from its parent

node P to become a child of its grandparent node G.

At node C: atomic
{

ignore new messages from P

send state to G

}
At node G: atomic
{

insert C← (state𝐶 .time, +(state𝐶 .neighbors - state𝐶 .P))
merge P← (state𝐶 .P.time, state𝐶 .P.val)
send state to C, P (if alive)

}

At node C: atomic
{

neighbors← (neighbors \ {P}) ∪ {G}

insert G← (state𝐺 .time, +(state𝐺 \ {state𝐺 .C}))
}

At node P (if alive): atomic
{

neighbors← neighbors \ {C}
merge G← (state𝐺 .time, +(state𝐺 \ {state𝐺 .P}))

}
Algorithm 2: Pseudocode a node C moving to be a child of a node G through a node P.

In English, the protocol 1) has the moving node, C, add itself to the neighbor list of destination

node G, 2) sets 𝑠𝑡𝑎𝑡𝑒𝐺 .𝑃 to𝑚𝑎𝑥𝑡𝑖𝑚𝑒 (𝑠𝑡𝑎𝑡𝑒𝑐 .𝑃, 𝑠𝑡𝑎𝑡𝑒𝐺 .𝑃) (to ensure neither go backward in time and

violate SEC), and then has C add G to its neighbor list, replacing P in its list. The value of P is now

included in G’s aggregated state sent to C, so C should not track P anymore itself. If the protocol

is run as the result of P failing then we’re done. If P is still alive then the last step is to have G tell

P that its newest aggregated state includes C, so P should forget about the state of C. Panels 2 and

3 of Figure 4.4 depict the tree state after a “move-up” operation and a “move-down” operation

respectively. Throughout the move operation C will ignore messages from P. The essence of this

protocol is the preservation of strong eventual consistency at each step by only updating values

via a max() operation (our standard lattice merge). The nodes are fast-forwarding their views of

P (𝑠𝑡𝑎𝑡𝑒𝐺 .𝑃 and 𝑠𝑡𝑎𝑡𝑒𝐶 .𝑃) to whichever of them has the most recent view of P. C and G will both

set their views of each others’ values to the max of their two values, and G will become the owner

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 56

of the value of P. Note that G’s view of G is always the most up to date, and the same is true for

C’s view of C, so 𝑠𝑡𝑎𝑡𝑒𝐺 .C is set to 𝑠𝑡𝑎𝑡𝑒𝐶 .local and 𝑠𝑡𝑎𝑡𝑒𝐶 .G is set to 𝑠𝑡𝑎𝑡𝑒𝐺 .local.

Nodes Intentionally Leaving the Tree Temporarily: This protocol is for when a node

wishes to go offline but will come back online later (e.g. to keep using an app while on a flight

without internet). The concern in a node going offline is that it could be on the path of com-

munication between two other nodes in the tree. If the node is already a leaf of the tree, not

an internal node, we don’t need to do anything because no propagation path goes through it. If

it is an internal node, we simply convert it into a leaf of the tree. We do this with the “move”

operation, described above and shown in Algorithm 2. As illustrated in Panel 5 of Figure 4.4, we

“move up” each child of the leaving node F, and now F is a leaf. We continue to track its clock

and state at its parent just like any other leaf node, and it being offline just means its state at its

parent will be stale. For the parent T to also gracefully leave the tree, an implementation must

not only preserve F’s state, but also sufficient routing information for F to rejoin the tree. This

could be stored within the tree in peer-to-peer settings [99, 114] or in disaggregated storage in

datacenter settings.

Nodes Intentionally Leaving The Tree Permanently: In the event that a node C plans to

leave the tree permanently, we initiate the “Nodes Intentionally Leaving The Tree Temporarily”

protocol for C, after which the parent P of (now-leaf) C will absorb the local state of C into its own

local state and forget the state and clock of C. Specifically, P will set its local state to +(𝑠𝑡𝑎𝑡𝑒𝑃 .local,

𝑠𝑡𝑎𝑡𝑒𝐶 .local) and delete its aggregated value and clock for C. This movement is depicted in Panel

6 of Figure 4.4.

4.6 Fault Tolerance
If OnceTree nodes fail or are disconnected, the tree cannot propagate all updates. Note however

that such faults do not break any node’s ability to continue processing reads and writes from

clients or offer SEC! Our concern is specifically with the failure of internal tree nodes, which

partition the tree and prevent update propagation between live nodes.

Many “off-the-shelf” approaches to fault tolerance can be cleanly integrated with the On-

ceTree design. In this section, we provide three complementary points in this design space: a

pessimistic approach using coordinated node replicas, an optimistic approach requiring full tree

restarts, and a more nuanced coordination-free single-fault solution based on our move protocol

from Section 4.5.2.

4.6.1 Simple Process Groups
A straightforward point in the fault tolerance design space is to “harden” each logical node in

our tree so that it takes 𝑓 + 1 physical machine failures for a tree node to fail. This can be done

by implementing each OnceTree internal node using a process group of replicas: e.g. to tolerate

one physical node failure we require two physical nodes per internal logical node of the tree.

This design has the benefit that one can configure how many faults to tolerate independently at

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 57

each node, incurring a multiplicative factor of k * internalNodeCount space usage (still O(1) in

the number of nodes). This design is relatively simple to debug and can be easily bolted on to the

OnceTree protocol.

Replica consistency raises a key design tradeoff. One option is to propagate updates through

replicas asynchronously. In this case we must settle for eventual consistency rather than strong
eventual consistency. As a result, if a client switches from one node replica to a backup, the

backup’s data may be older than what the client previously saw. In the worst case a replica may

fail permanently before all its updates are replicated, resulting in unbounded staleness.

Alternatively, to maintain SEC we can require updates across the process group to be syn-

chronous: all nodes must incorporate the update before any makes it visible. Doing so, of course,

departs from the fully coordination-free, asynchronous assumptions that motivated the design

of OnceTree. On the other hand this may be a pragmatic hybrid in many settings: e.g. a geo-

replicated system may efficiently support synchronous operations for fault tolerance within a

small physical radius, while still favoring asynchronous propagation over long distances (across

cloud regions).

4.6.2 Resetting The Tree
A second point in the design space is to reset the tree topology when faults cause the tree to

become disconnected. Given the addresses of each node in a OnceTree, it is rather simple to

initialize a reset of the tree topology that preserves strong eventual consistency. Simply put, each

nodes maintains their local state but drops the aggregated views of its old neighbors; then a new

spanning tree is constructed, and the OnceTree is allowed to run until a full round of flooding is

complete. Once the flooding round has completed, the nodes can now begin reporting their new

aggregated state as query results. This guarantees that the query result moves forward in time

from where they were before the tree reset.

This reset approach leaves two challenges. The first is how to decide when to hit the reset

button. This is application-specific and depends on what kind of tree-healing defenses are in

place before resorting to this reset button.The second challenge is where to keep this list of each

node in the tree. This again depends a lot on the setting. A simple approach is to maintain the set

of live nodes in a document in cloud storage. The tree initialization code initiates this document.

Nodes must add themselves to the list successfully before joining, and parents whose children

time out must mark them dead in the list.

4.7 Evaluation
We have implemented OnceTree on top of the recently released open-source DFIR [50, 101]

dataflow engine written in Rust, which makes it easy to define distributed dataflow through the

composition of functional operators. The relative simplicity of the OnceTree protocol makes it

easy to implement, totalling less than 300 lines of idiomatic Rust. PN-Counters, although ineffi-

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 58

cient memory-wise, benefit from the simplicity of the CRDT approach with an implementation

in just 200 lines.

In our evaluation, we are primarily focused on evaluating thememory utilization and prop-
agation latency when using the OnceTree protocol. Our benchmark is based on the motivating

use case from the beginning of the paper: a like counter on a social media platform. This repli-

cated state supports operations that increment or decrement the counter value, and a query that

returns the current total like count. Because OnceTree is focused on scenarios involving many

pieces of replicated state, we have each node in our cluster track a mapping from uint64 post IDs
to int64 counters. By benchmarking the protocol with many counters, we can more effectively

evaluate the memory efficiency of our approach.

We compare OnceTree to the PN-Counter from CRDT literature, the standard replicated data

type for integers with increment and decrement operations. Our PN-Counter implementation,

also written in DFIR, stores a pair of vectors which separately track the increments and decre-

ments from each node in the cluster. When performing a query, these vectors are individually

summed up and the difference is returned to the user. CRDTs use an all-to-all network topology,

so we implement a broadcast approach where nodes send gossip to all their peers whenever their

replica changes. Compared to approaches like randomized gossip, this gives the PN-Counter the

best chance for low-latency propagation, which is its main difference over the OnceTree protocol.

In some more advanced implementations that involve additional book keeping, the band-

width utilization of CRDTs can be reduced by passing around deltas rather than an entire copy

of the state. Although this requires significantly more engineering effort, it can reduce propa-

gation latency in scenarios with many replicas. To evaluate how OnceTree would compare to

such protocols, we benchmark against a “PN-Delta” protocol that simulates the properties of an

optimized CRDT by having nodes only gossiping the vector elements that correspond to their

contribution to the state. Note that this mock protocol requires an all-to-all topology to satisfy

eventual convergence, but for our latency-focused analysis this is sufficient.

We demonstrate that with OnceTree, the memory utilization at each node is constant regard-

less of the size of the cluster and the propagation latency scales according to log(𝑛), where 𝑛 is

the number of replicas in the system. This makes our protocol very practical for use in large-

scale systems, where OnceTree enables the creation of many replicas with minimal impact to the

staleness of queries.

4.7.1 Experimental Setup
We run all of our experiments on Google Cloud using n2-standard-4 VMs with 4 vCPUs, 16GB

of memory, and 10Gbps egress bandwidth running Debian-11. All experiments are run in the

us-west1 region. Although these machines have significantly more resources than necessary for

the OnceTree, using larger machines reduces variability and allows us to compare against more

expensive alternatives.

We run our experiments in a matrix style varying three properties: the replication protocol

being used, the number of nodes in the cluster, and the number of concurrent increment requests.

In our experiments with the OnceTree protocol, we launch a static tree topology that is a full

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 59

binary tree with a configurable depth. The number of nodes in the tree is 2
depth − 1. When

comparing against the PN-Counter, we instead create a cluster with the same number of nodes.

We use the same set of virtual machines across each matrix configuration, to avoid variability

due to node placement.

Both protocols are configured to immediately gossip their state whenever it changes to min-

imize latency. Nodes within our cluster use TCP channels to pass messages, which are serialized

using the bincode library [90]. These channels have TCP_NODELAY set to further minimize com-

munication latency.

DFIR comes with a built in deployment toolkit, which we use to programmatically config-

ure network topologies and deploy our implementation to the cloud. Our benchmarking toolkit

automatically provisions the appropriate machines, copies statically linked binaries to them, and

performs a simple service discovery to establish the tree topololgy. In fact, a reader can reproduce

our full set of results by installing the Hydro CLI and running a single Python script!

4.7.2 Memory Consumption
The key feature of the OnceTree protocol is its constant memory consumption with respect to

the number of replicas. Memory consumption is measured using rss Unix counters at the process

level of each process (each node). A separate process iteratively issues increment requests to a

random element of a set of 2
14
counters, which emphasizes the memory impact due to the number

of counters on each node.

To pinpoint the effect of each protocol on the memory usage, we measure the change in mem-

ory utilization fromwhen each node is initialized to the utilization after 60 seconds of randomized

operations. We plot the median memory usage (as well as the 25th and 75th percentiles) across

the cluster as we increase the number of nodes by powers of 2 in Figure 4.5.

Note the log x-axis, showing that the memory utilization of the classic CRDT counters is at

least linear with respect to the number of replicas. On the other hand, OnceTree is unaffected

by the number of replicas and holds at a constant, low memory usage (with any variation due to

network buffers). Even with just 2
14
counters, a relatively low number considering applications

such as social media, the CRDT implementations use 10s or 100s of megabytes of memory at 2
8

replicas, while OnceTree averages around 0.5 megabytes.

4.7.3 Propagation Latency
The key difference between OnceTree and classic CRDT replication protocols is how updates are

propagated from a single replica to the rest of the cluster. Rather than using broadcasts to directly

gossip updates to the rest of the cluster, OnceTree requires updates to follow a path through the

tree to other nodes. These additional hops have the potential to impact the staleness of data,

which is an important property for real-time applications where users expect to see live results.

To collect latency metrics, we deploy an additional node in the same zone as the rest of the

cluster. This node iteratively sends a randomized increment request to a source node and mea-

sures the time until a pre-selected destination node sends a notification for the updated query

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 60

22 23 24 25 26 27 28

of nodes (log scale)
0

100

200

300

400

M
em

or
y

(M
B)

PN-Counter
"Delta-PN"
OnceTree

Figure 4.5: The median memory consumed by each node as the number of replicas is scaled.

result. Because we wait for a response before initiating a new increment, the latency metrics

correspond to an unloaded system. We discuss the behavior of our protocol under the load of

concurrent requests later in this section.

In our experiments, we compare the worst-case scenario for OnceTree against the best-case
for PN-Counters. In our binary-tree topology, the longest path is between a pair of leaves on

opposite sides of the root, so we pick the leftmost leaves as the sources (which receives increment

requests) and the rightmost leaves as the destinations (which emit query updates). Because our

CRDT implementation broadcasts gossip to the rest of the cluster, there is a direct link between

any source and destination so we pick an arbitrary pair. A randomized gossip algorithm would

have strictly worse latency, since the best case is still a direct link.

As in the memory utilization experiments, we average the latencies of increment operations

executed across a 60-second period. We plot the results of our latency experiments in Figure 4.6.

Note the logarithmic x-axis; each power of two corresponds to a tree topology that is one layer

deeper or a cluster of CRDTs that is doubled in size.

Our empirical measurements line up exactly with the theoretical properties of our protocol. In

particular, the propagation latency for OnceTree is proportional to the logarithm of the number of

nodes. The propagation latency of the CRDT protocols is quite low for a small number of replicas,

owing to the direct links between the source and destination nodes, but increases rapidly as the

number of replicas grows due to the large amount of communication in the all-to-all topology.

We do not claim that OnceTree can achieve lower latency than CRDT replication protocols in

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 61

22 23 24 25 26 27 28

of nodes (log scale)

0

2

4

6

La
te

nc
y

(m
s)

PN-Counter
"Delta-PN"
OnceTree

Figure 4.6: Propagation latency across a cluster for each replication protocol as the number of

replicas is scaled.

general, since tuning can reduce the latency penalty for large clusters by gossiping to random-

ized subsets of nodes instead. But our experiments demonstrate that the additional latency from

propagating through the tree remains low even as the number of replicas is scaled.

4.7.4 Operation Throughput
Finally, we explore the effects of concurrent request load on the OnceTree protocol and the CRDTs

we compare it to. Rather than issuing increments sequentially, we allow a configurable number

(powers of 2) of concurrent increments to be issued to the source replicas. This lets us analyze

both the throughput of requests that can be achieved with each protocol and how the propagation

latency changes as the load is increased. We plot the latency as the throughput of increments

varies in Figure 4.7.

Once again, note the log x-axis for operation throughput. Because OnceTree can aggregate

the query result at each node rather than having each node communicate its contribution directly

to the rest of the cluster, it can scale very well as the number of concurrent operations increases

with little latency penalty. On the other hand, the PN-Counter approach quickly saturates asmore

concurrent operations are issued. The mock “Delta-PN” protocol is able to match the throughput-

latency curve of the OnceTree, because it sends far smaller packets when gossiping so avoids

saturating.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 62

1000 10000 100000
Throughput (ops / second)

0

5

10

15

20

25

M
ed

ia
n

La
te

nc
y

(m
s)

PN-Counter
"Delta-PN"
OnceTree

Figure 4.7: Latency versus throughput when varying the number of clients (# of nodes = 63).

These results demonstrate that the OnceTree protocol achieves its theoretical goals in a prac-

tical environment. Tasked with a common distributed systems task of maintaining a counter,

OnceTree is able to dramatically reduce the amount of memory consumed by each node as the

number of replicas increase. Furthermore, we demonstrate that the latency penalty of updates

propagating across a tree rather than directly is low, and only increases proportional to the log

of the number of replicas.

4.8 Future Work
There are many directions for future work. They fall broadly into three categories: (1) Supporting

stronger consistency levels via tree toplogies (2) extensions to the algebraic connections between

eventual consistency and query processing and (3) applying online optimization techniques to

coordination-free tree reorganization.

4.8.1 Consistency and Recency Guarantees
One area of future work is pushing beyond strong eventual consistency to causal consistency,

which CRDTs achieve via vector clocks [110]. It is not clear how to adapt our protocol to achieve

causality in constant space. The constant space guarantee of the OnceTree protocol depends on

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 63

the ability to compose together all updates from a node into a single value which breaks the

ability to interleave updates in causal order across nodes. We are currently exploring protocols

that could achieve causal consistency in constant space per node under various assumptions. We

hope to connect this exploration to the rich literature on vector clock optimizations for causal

consistency in the distributed systems community. Of course, it is known that it is impossible to

do better than O(n) space for causal consistency in the worst case [25].

4.8.2 Algebraic Formalizations
OnceTree offers what we call an “algebraic upgrade” from abelian semigroups to semilattices—

that is, it automatically adds the “I” in “ACI” to arbitrary code that is already “AC”. This raises

two natural open questions: can one also develop “upgrades” to add associativity and/or commu-

tativity to arbitrary code? If so, we suspect the solutions are unlikely to resemble the techniques

in this paper.

The ability to upgrade structureswith idempotence fits neatlywith recentwork in the database

theory community. The seminal paper on provenance semi-rings by Green, et al. [46] demon-

strated that many aspects of query processing and hence data provenance can be captured neatly

in semi-rings—the familiar algebraic structure of elementary-school arithmetic with two opera-

tors (+, ×) that are individually associative and commutative, and that follow the distributive law

of × through +.
This work was recently extended in a best paper at PODS 2022 [3] to address fixed-point con-

vergence, with a wide range of applicability to data provenance, multiset queries (SQL), recursive

query processing, incremental maintenance of materialized views, and more. OnceTree can en-

sure that a semiring-based language continues to behave correctly in a distributed environment,

enforcing idempotence “under the covers”, and ensuring that the non-idempotent operators of the

semi-ring are applied exactly once in a distributed setting, just as they would be in a centralized

setting. We explore this question further in Chapter III.

4.8.3 Dynamics
Given our move operations in OnceTree, we are interested in dynamically modifying the tree

online via these move operations to optimize a wide range of global objective functions. We

can associate some cost with reconfiguring the tree and use online optimization algorithms to

decide when to reconfigure. The biggest challenge is that we want to do this in a decentral-

ized, coordination-free way using only local decisions of individual nodes and potentially stale

information about the global state of the tree.

This is a challenging but fascinating topic. We have started to explore this for simple objec-

tive functions such as maintaining a balanced tree or a minimal spanning tree. We hope that in

future work we are able to show coordination-free ways to achieve provable bounds on online

approximations of such global objectives.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 64

4.9 Related Work
OnceTree brings together several areas of distributed systems research: Idempotence enforce-

ment, minimal CRDT representations, and computing distributed aggregates.

4.9.1 Idempotence Enforcement
We discussed in Section 4.2 the early database work on idempotence enforcement for business

transactions and e-commerce. The early work on using queueing systems [17] is still the core

way that many applications on the internet enforce idempotence. Applications use databases

directly or they use services like Kafka [67].

Building on Quicksand [48] brought attention to the importance of ACI and the role of idem-

potence in that by introducing the ACID 2.0 terminology. In CRDTs, idempotence is often cre-

ated by wrapping update operations into heavyweight structures like causal trees [30, 87, 109] or

NodeIDMaps [102, 103].

4.9.2 CRDT Memory Efficiency
The challenge of memory overhead has been a long-time pain point for CRDTs not just for idem-

potence enforcement, but for many aspects of attempting to represent applications in this re-

stricted programming model [80]. Bawens et al look at when it is safe to garbage collect state

from CRDTs [16], which reasons about the history of operations which is automatically erased by

our aggregation approach. A popular technique for smaller vector clocks in CRDT applications

is Dotted Version Vectors [95] which limit the size of vector clocks for a given data item to just

the nodes that modify the data item rather than every node in the system. We do not claim to

solve the vector clock problem as the OnceTree protocol does not support full causal consistency.

In fact, there is a strict lower bound for vector clock size that tells us that for the general case we

actually can’t do any better than O(n) sized vector clocks [25]!

HandoffCounter CRDTs [5] are another approach to reducing thememory overhead of CRDTs

that also rely on restricting which nodes communicate with each other. They organize nodes

into hierarchies without distinguishing between clients and servers. Instead of a fixed tree topol-

ogy, nodes within a tier exchange data with each other (admitting multiple roots) and can send

updates to multiple parents within lower-numbered tiers. To avoid duplicate updates, nodes re-

quest tokens that reserve an update slot in the parent tier. Similar to OnceTree, Handoff Counters

maintain a monotone lower bound of lower tiers (parent) in a separate field 𝑏𝑒𝑙𝑜𝑤 to calculate

the safest, maximum value to report in queries.

4.9.3 Distributed Aggregates
Along with TAG [79], there has been a lot of work on robust aggregation in sensor networks

[55]. For structured trees, one approach, offered by Chitnis et al [27], is to construct a “hybrid”

topology with a mix of all-to-all gossip and structure.

CHAPTER 4. ONCE UPON A TREE: DISTRIBUTED IDEMPOTENCE IN O(1) SPACE 65

In manyways the Synopsis Diffusion [86] line of work is the most directly related work to On-

ceTree. While their problem statement is to send data along multiple paths to reduce the error of

sensor aggregation, the solution they end up at is all about ensuring idempotence so that the data

arriving on multiple paths doesn’t get counted more than once. Their solution is semi-lattices, all

the way back in 2004! Their idea is to take aggregation functions that aren’t intrinsically idem-

potent (like SUM) and to convert them to an idempotent representation. The catch that renders

them distinct from our setting is that they accomplish this via duplicate-insensitive sketches that

represent the true aggregate result approximately.

4.10 Conclusion
We have presented OnceTree, a solution to the memory consumption problem for coordination-

free idempotence enforcement. Our work draws on connections between three disparate areas of

data systems: distributed data aggregation, algebraic eventual consistency, and network commu-

nication protocols. We observe that idempotence can be enforced hierarchically, and therefore

structured tree communication topologies are optimal for memory consumption. By combining

static aggregation trees with single-path flooding we are able to guarantee deduplication and

strong eventual consistency with constant space overhead and logarithmic latency.

66

Part III

Co-Habitation of Algebraic Structures in
Distributed Data Systems

67

Chapter 5

Wrapping Rings in Lattices: An Algebraic
Symbiosis of Incremental View
Maintenance and Eventual Consistency

We reconcile the use of semi-lattices in CRDTs and the use of groups and rings in incremental

view maintenance to construct systems with strong eventual consistency, incremental computa-

tion, and database query optimization.

CHAPTER 5. WRAPPING RINGS IN LATTICES: AN ALGEBRAIC SYMBIOSIS OF INCREMENTAL
VIEW MAINTENANCE AND EVENTUAL CONSISTENCY 68

5.1 Introduction
Algebraic models have been growing in popularity recently in both distributed systems and

databases. In distributed systems, the semi-lattice model popularized as conflict-free replicated

data types (CRDTs) offers an algebraic perspective on strong eventual consistency. In the database

community, a generalization of relational algebra to semi-rings was promoted in the study of

database provenance and a similar view in terms of full rings has been used to study database

incremental view maintenance (IVM) [24, 66]. Both the distributed model of semi-lattices and

the incremental view-maintenance model of rings have seen significant attention in building

prototype systems such as the Anna distributed key-value store [110, 111] and the DBToaster

Incremental view maintenance system [66].

In the interest of bringing declarative programming and automatic program optimization to

distributed systems, we are concerned with incorporating the learnings from both of these lines

of work into a single system. Initially, these two different approaches seemed mutually exclusive.

Lattices growmonotonically while groups and rings require an inverse operation that is provably

non-inflationary. This paper is about how to fit these two puzzle pieces together.

Our solution is not to try to get them to work together in one structure, but to separate them

out into different layers that operate independently and only interact through a translation layer.

This layered approach lines up with the separation of concerns that each structure is meant to

deal with in a distributed system. The role of CRDTs and lattices is to ensure robustness to

nondeterminism on our asynchronous network. The group and ring approaches were designed

for single-node systems and play no role in the network layer of our system. By separating these,

we get the benefits of the lattice at the network layer and the benefits of the groups and rings at

the query processing layer.

The remainder of this paper is organized as follows: In Section 2, we give background on semi-

lattices (CRDTs) for strong eventual consistency and on the use of abelian groups in incremental

view maintenance. In Section 3, we show why the strawman of combining groups and lattices

into one structure fails and then give two constructions for the co-habitation of semi-lattices and

abelian groups. In Section 4, we give background on rings in IVM. In Section 5, we discuss the

different deletion semantics used in IVM and CRDTs. In Section 6, we discuss future work on

algebra-aware data systems. In Section 7, we discuss related work, particularly op-based CRDTs

and 𝛿-CRDTs.

5.2 Background
In this section, we give necessary background on abelian groups for incremental view mainte-

nance. Definitions of mathematical terms from abstract algebra are provided in the background

section of this thesis. Feel free to skip this section if you are already familiar with this topic.

CHAPTER 5. WRAPPING RINGS IN LATTICES: AN ALGEBRAIC SYMBIOSIS OF INCREMENTAL
VIEW MAINTENANCE AND EVENTUAL CONSISTENCY 69

5.2.1 Groups and Incremental View Maintenance
Incremental view maintenance (IVM) is the study of how to efficiently maintain query answers

over a database as the contents of the database gets updated over time. It has been studied in

academia for decades and the techniques have been commercialized in a number of database

systems including Materialize [72], Feldera [23], Azure Synapse [105], Amazon Redshift [13],

and Databricks [34]. They continue to be a popular topic of academic research in the database

community [40, 58, 66, 88] and were the topic of the 2023 VLDB best paper award [24]. For an

excellent survey of incremental view maintenance see [26].

For simplicity of explanation, we start with the group-theoretic model of incremental view

maintenance used in DBSP [24]. In Section 5.4, we extend our exploration to the ring-theoretic

model which simply adds a second operator to the group to express more complex queries.

There are two common semantics for databases, the “set semantics” in which every tuple

occurs at most once and the “bag semantics” in which tuples can occur multiple times [1]. The

former gives us a data model in which the database is a set of tables and each table is a set of

tuples. The latter gives us a data model in which the database is a set of tables but each table

is a multi-set of tuples. Each tuple is “tagged” with a counter indicating its multiplicity. DBSP

utilizes a generalization of these two models to enable positive or negative multiplicities of tuples

which is called a “Z-set” [24, 46] because each tuple has a multiplicity from the integers (Z). The
benefit of allowing negative multiplicities is that we can now talk about insertions of tuples and

deletions of tuples from the database in a unified way. A deletion of a tuple is simply its insertion

with a multiplicity of negative one. A modification of a tuple is the deletion of that tuple followed

by the insertion of the modified value.

Considering our state to be Z-sets and our incoming updates to be Z-sets as well (batches of

tuples being inserted or deleted), we see that the update operation forms an abelian group. That is,

our update is associative, commutative, and every incoming Z-set update, 𝑢, has a corresponding

“inverse” Z-set, 𝑢−1
, such that update(𝑢,𝑢−1

) = (𝑇, 0).
With this model of state and updates to state, we can define operators over these Z-sets and

queries composed out of operators. Given certain properties on the operators, we are able to

guarantee the “incremental” computation of query results: that is, work done to compute the

result after a new update can be proportional to the size of that update rather than to the size of

the entire database.

The essential property of an operator that makes it efficiently incrementalizable is that it is

linear which is defined as 𝑓 (𝑎+𝑏) = 𝑓 (𝑎)+ 𝑓 (𝑏) where + is the group operator. This is equivalent
to saying that operator 𝑓 is a homomorphism over our group. We can see that if an operator is

linear then we can compute this operator incrementally (we already have 𝑓 (𝑜𝑙𝑑_𝑑𝑏_𝑠𝑡𝑎𝑡𝑒) and
when a new update comes in we just do 𝑓 (𝑛𝑒𝑤_𝑢𝑝𝑑𝑎𝑡𝑒) + 𝑓 (𝑜𝑙𝑑_𝑑𝑏_𝑠𝑡𝑎𝑡𝑒)).

It turns out many useful operators are linear with respect to this Z-set abelian group such as

selection and projection in database queries. Linearity is also composable, so any query we can

construct as a composition of linear operators will be efficiently incrementalizable.

Another key category of operators is bilinear operators which are binary operators 𝑓 (𝑎, 𝑏)
that satisfy distributivity over +. The classic example of a bilinear operator in database queries

CHAPTER 5. WRAPPING RINGS IN LATTICES: AN ALGEBRAIC SYMBIOSIS OF INCREMENTAL
VIEW MAINTENANCE AND EVENTUAL CONSISTENCY 70

is a join. We can think of bilinear operators as functions that would normally cost N
2
time in the

database instance size to compute, but in the incremental setting we can compute them in time

(update_size ×N). Intuitively, when a new tuple arrives on one input to the join we need to check

it against each existing tuple received on the other input once to compute the join.

It turns out that quite expressive query languages from databases are entirely incrementaliz-

able in this model including relational algebra, Datalog, grouping, and aggregation– i.e. much of

SQL and beyond. [24].

This DBSP model offers us considerable power, but is it compatible with eventual consis-

tency? In the next section, we give a construction for combining group-theoretic incremental

view maintenance and lattice-theoretic eventual consistency.

5.3 Co-habitation of Abelian Groups and Semi-lattices
When we first wanted to combine these two structures, we asked the seemingly obvious question

“Can the CRDT update or CRDT merge operation be the abelian group update operation?” First

we will show why these two strawman approaches cannot work and then dive into our multi-

layer solution.

Strawman 1: CRDTUpdate as GroupUpdate: The update operation of a CRDTmust grow

monotonically with respect to some partial order ie be inflationary. An abelian group update

operation must have an inverse update operation. For both of these to be true, the group can

only have one element (rendering it useless for expressing application semantics):

Proof: Assume + is inflationary (∀𝑥,𝑦 : 𝑥 +𝑦 ≥ 𝑥 . Then 𝑥 + −𝑥 ≥ 𝑥 and −𝑥 + 𝑥 ≥ 𝑥 . Adding x

and -x to the respective sides we get 𝑥 ≥ 0 and −𝑥 ≥ 0. We know 𝑥 +−𝑥 = 0 so 0 ≥ 𝑥 and 0 ≥ −𝑥 .
So 𝑥 = −𝑥 = 0 for every x in the group.

Strawman 2: CRDT Merge as Group Update: Recall that a CRDT merge operation must

be idempotent. We show that if an abelian group operation is idempotent, then the group must

also be the one element group ({0},+).
Proof: For any idempotent element 𝑥 in the group 𝐺 , we have that 𝑥 + 𝑥 = 𝑥 . Due to invert-

ibility of +, 𝑥 must also have an additive inverse, (−𝑥). Adding this to both sides yields 𝑥 = 0,

meaning all elements must be the additive identity. Thus, with an idempotent + operation, 𝐺

must be the one element group ({0},+).

Powering through the disappointment of these failed strawmen, we find that there is still a

way for CRDTs and IVM groups to co-habitate! The trick is in separating the CRDT from the

group and adding a translation layer that allows these two structures to co-exist. We first give a

working construction for this using a simple set CRDT that is inefficient but demonstrates how

the group and semi-lattice combine. In the next section, we provide a variant with a performance-

optimized CRDT based on delta-CRDTs [75].

The key observation to see how group and semi-lattice structures can be combined is to think

about how these two structures are really being used in our data system. We have some state of

our data. Wewant tomodify that state in an incremental way. For that, we need a + operation that

CHAPTER 5. WRAPPING RINGS IN LATTICES: AN ALGEBRAIC SYMBIOSIS OF INCREMENTAL
VIEW MAINTENANCE AND EVENTUAL CONSISTENCY 71

forms an abelian group. We can then express dataflow queries with linear and bilinear operators

over that + operation.

Then what are lattices for in our data-intensive systems? The role of the lattice is to allow
us to replicate state while being protected against nondeterminism of computer net-
works. The network plays no role in our data modification (+) or query evaluation. The network

is a different layer of the system. Much like we write our application semantics without concern

for how TCP is being used for delivery, we can write our group-based or ring-based application

without concern for how our lattice is handling network nondeterminism. Much like with TCP,

we leave our application alone with its + operation, and then at a lower layer we propagate up-

dates around the system wrapped up in a nice robust semi-lattice. We call this construction a

“lattice-wrapper” and depict this idea visually in Figure 5.1.

5.3.1 The Very Simple Construction
The pseudocode for this construction is given in Listing 5.1. At a high level, input updates

arrive of type Z-set to apply to the local group structure at a replica. We pass the Z-set value

into the group to modify the group state and update the materialized views at that replica. We

also convert this incoming Z-set value into a semi-lattice value by pairing it with a randomly

generated unique ID. The (updateID, Z-set) pair is propagated to other replicas which process

this update by keeping track of the set of updateIDs they have seen and ignoring any repeated

updateIDs. When the receiver hasn’t seen the incoming updateID before, it adds it to its list of

seen updates and passes the Z-set payload into its local group to be processed. Our lattice state

is a set of updateIDs which we modify (merge) via set union - an associative, commutative, and

idempotent operation.

Note that in the design that we have described, we do not enforce that updates arrive in FIFO

order or causal order. It is only a couple extra lines of code in our merge function to do this (we

wait until we see the updates in-order from the sender before passing them into the group), but

because our update operation is an abelian group it is commutative, so we don’t need to bother

with any extra metadata or logic for enforcing update ordering. This commutativity of the group

frees us from the worry of ordering; eventual consistency and linearizability give the same results

at the application level for abelian group-based and ring-based applications.

5.3.2 The Performant Construction
The simple construction above requires each node to keep track of the list of every updateID they

have ever seen. To improve on this metadata overhead, we give a construction in this section

that reduces this metadata to be proportional to the number of replicas on average rather than

the number of updates in the system.

The lattice wrapper we use is similar to the delta-CRDT lattice wrapper [75] and familiar in

networking literature as a part of the TCP protocol. In English, each replica has a uniqueID and a

local logical clock that it increments each time it receives a local update to the group. It uses this

(uniqueID, localLogicalClock) pair as the updateID key to the Z-set update payload. It sends the

CHAPTER 5. WRAPPING RINGS IN LATTICES: AN ALGEBRAIC SYMBIOSIS OF INCREMENTAL
VIEW MAINTENANCE AND EVENTUAL CONSISTENCY 72

Figure 5.1: We depict three replicas of our lattice-wrapped view groups. Blue solid arrows are

the incoming updates to the database instance of type Z-set. Red dotted arrows are CRDT merge

operations being broadcast to each replica. The green diamonds represent the lattice wrappers

and we see the solid blue updates are converted into dotted red merges via the lattice wrapper.

The conversion is depicted by a purple semi-dotted arrow. We see that the updates are passed

through to the black group (circle) inside the lattice wrapper. The red dot in the center is the

materialized view that users can observe and where the dataflow pours into. We see that merge

operations are received by the lattice wrappers and converted into update operations that are

then passed through to the inner group structure.

element of the map resulting from each update along to the other nodes in the system. A replica

receiving one of these map elements processes it using the merge operation, which like before

simply checks whether that (uniqueID, localLogicalClock) is already in the set of updates the re-

ceiving node has processed. To reduce metadata overheads, the sequence of clock times per node

can be stored in heavily compressed representations as they are long runs of contiguous integer

values. The receiving nodes will also acknowledge received updates to the sender so the sender

can garbage collect its map of update payloads once each other replica has acknowledged hearing

about that update payload. The sender will re-send updates to nodes that haven’t acknowledged

CHAPTER 5. WRAPPING RINGS IN LATTICES: AN ALGEBRAIC SYMBIOSIS OF INCREMENTAL
VIEW MAINTENANCE AND EVENTUAL CONSISTENCY 73

Listing 5.1: Pseudocode for Z-set lattice wrapper construction

1 let mut my_group = Group::Zset::new();
2 let mut my_inbox = Lattice::Set::new();
3

4 fn processUpdate(&mut self, update_payload: &Zset) {
5 self.my_group.apply(update_payload);
6 let update_id = Uuid::new_v4();
7 let update_wrapper = (update_id, update_payload);
8

9 my_outbox.insert(update_wrapper);
10 neighbors.send(my_outbox);
11 }
12

13 fn receiveUpdate(&mut self, (incoming_uuid, incoming_zset): (Uuid, &Zset)) {
14 if (!my_inbox.contains(incoming_uuid)) {
15 self.my_group.apply(incoming_zset);
16 my_inbox.insert(incoming_uuid);
17 }
18 }

their receipt after a fixed time interval. For more details on delta-CRDT constructions, see [75].

5.4 Rings in Incremental View Maintenance
One of the major successes of databases is the power of query optimizers which take a logical

query plan (similar to an abstract syntax tree) and search the space of equivalent dataflow graphs

(physical query plans) for the one that will have the best performance. The space of equivalent

dataflow graphs is defined in terms of different rewrite rules that can be applied to the logical

query plan without changing the result of the query. These rewrite rules can be seen as algebraic

axioms on the operators in the query language.

Common optimization techniques include choosing what order to execute joins in (associa-

tivity of join), choosing what order to apply filters in (commutativity of selection), and choosing

whether to push filters before joins in the query plan (distributivity of filters over join). One

observation is that the standard axioms that optimizers leverage for relational algebra form a

semi-ring. A semi-ring at a high-level is a structure with two operators where one is associative

and commutative, the other is just associative, and the second operator distributes over the first

operator (see 2.1 for full definition). With this observation, database researchers have general-

ized the applicability of database techniques beyond relational algebra to any pair of operators

that satisfy the algebraic axioms of a semi-ring. This semi-ring perspective has been popular

recently in databases for studying data provenance [46], recursive queries [3], and incremental

view maintenance [66].

CHAPTER 5. WRAPPING RINGS IN LATTICES: AN ALGEBRAIC SYMBIOSIS OF INCREMENTAL
VIEW MAINTENANCE AND EVENTUAL CONSISTENCY 74

The reason that we focus on rings instead of semi-rings in incremental view maintenance is

because rings have inverses on +, and + corresponds to the update operation on the data. Thus,

the + in a ring forms an abelian group and gives us the nice properties we discussed in Section

5.2. The × operator in the ring is analogous to join in relational algebra.

How does this picture of incremental viewmaintenance as a ring instead of as a group change

our picture and lattice wrapper construction? The answer is that it doesn’t need to change our

lattice wrapper at all as the group and lattice structures already operate independently. The ring

just means that the queries we express over the state of the group can be optimized with rewrite

rules and get more performant dataflow graphs for the computation of views inside our group.

5.5 Inverses, Two-Phase Sets, and the Semantics of
Deletion

In this section, we take a brief detour to discuss the interesting differences in deletion semantics

found in Z-sets compared to CRDTs. We do not conclude that one semantics is better or worse

than another; we simply highlight the differences and observe that some applications would pre-

fer one and some would prefer the other.

Deletion semantics in CRDTs have been a long-standing challenge. In order to satisfy the

inflationary update requirement, complex lattice structures have been introduced offering differ-

ent tradeoffs for deletion semantics. The two-phase set design [94], for example, circumvents

inflationary updates, but runs into two other problems with deletion; the “natural” single-node

semantics of deletion are neither commutative nor idempotent. Commutativity means the order

of operations in a sequence doesn’t change the outcome, but if we think about “insert A; delete

A” vs “delete A; insert A” the common meaning of this on a single node interface would be that

the result of the first operation sequence is the empty set and the result of the second sequence

is the set {𝐴}. This non-commutativity leads the two-phase set design to treat all deletions as

if they occur after all insertions - a decision that is quite unsatisfactory in the simulation of a

single-node user experience.

Another problem with this two-phase set design is that in a common interface it should be

possible to insert something, remove it, and then insert it again. Under the idempotent interpre-

tation of deletion used in the two-phase set this is not possible; the item can be inserted at most

once and deleted at most once. This deletion with at most once semantics is often referred to as

“tombstoning”.

To resolve these awkward semantics, the observe-remove set (OR-set) [96] additionally tracks

the causality of updates to fix the idempotent deletions. The causality also fixes the single-node

experience of “delete A; insert A”, but for concurrent writes ambiguity in semantics remains, so

a user must pick whether to default to deletes first or inserts first.

Incremental view maintenance literature has focused on the single-node setting and in

that setting they are able to take a very simple and clean view of deletions. We treat the database

instance as a Z-set under the hood. An insertion or deletion from the database increments or

CHAPTER 5. WRAPPING RINGS IN LATTICES: AN ALGEBRAIC SYMBIOSIS OF INCREMENTAL
VIEW MAINTENANCE AND EVENTUAL CONSISTENCY 75

decrements the multiplicity of the specified tuple. For user-facing multiset semantics we may

display all negative multiplicities as 0. For a CRDT-view of this we can think of each tuple as

having a pn-counter as one of its columns representing the multiplicity of the tuple.

The Z-set semantics itself is not a valid semantics for a state-based CRDT as the update oper-

ation is not inflationary and the state changes in non-idempotent ways, but we know that those

concerns can be handled in our lattice wrapper layer, so what about the deletion semantics them-

selves? For Z-sets, insertions and deletions are fully commutative, so if a user issues a delete and

expects the count to go from 0 to 0 then this will be broken. Fully commutative updates also

lead to the (insert A; delete A) vs (delete A; insert A) anomaly from two-phase sets. However,

prevention of both of these scenarios can be handled at the client by ignoring deletions when the

observable count at the client is 0. The “observable count at the client” is exactly the updates that

occur causally before the new update at that client.

One anomaly that can still occur is if two people see there is a count of one and simultaneously

decide to delete it. In Z-set semantics this would result in a count of -1 if the deletions both

occur within the gossip time window (“concurrently”). The best semantics for such a case is

application specific, but the Z-set construction with client-side guards avoids tombstoning and

achieves something that could reasonably be called “causal multiset semantics”.

5.6 Discussion and Future Work
Exploring these two algebraic lenses allows us to get the best of both worlds in our systems. This

is a step towards enabling algebra-aware systems in which the algebraic properties of application

logic are known and can be utilized by the system asmuch as possible. In this paper, we began this

journey by connecting just two of the many algebraic optimizations known in computer science.

In future work, we plan to draw connections to the semi-ring approaches to provenance [46]

and fixed point computation [3] from databases as well as to areas of computer science beyond

databases. Algebra has played a central role in modern cryptography including the use of group

and rings for public key cryptography [98] and the use of ideal lattices for fully homomorphic

encryption [42].
1
Algebra also shows up in program analysis [22] as well as high-performance

computing [60, 117]. Once we have a system that understands algebraic properties, we hope to

apply the learnings from these other fields to it as well.

5.7 Related Work
Our study of the co-habitation of semi-lattices and rings is inspired by recent work in incremen-
tal viewmaintenance such as DBSP [24], DBToaster [66], and Differential Dataflow [85]. DBSP

takes a group-theoretic view of updates and focuses on single-node updates without query opti-

mizations. DBToaster was another single-node system based on rings and supporting traditional

1
Different type of lattice than the semi-lattice used in CRDTs.

CHAPTER 5. WRAPPING RINGS IN LATTICES: AN ALGEBRAIC SYMBIOSIS OF INCREMENTAL
VIEW MAINTENANCE AND EVENTUAL CONSISTENCY 76

relational query workloads with optimized and incremental updates and queries. Differential

Dataflow is an incremental computation framework that considers the distributed case, although

not specifically in the context of eventual consistency.

To our knowledge, we are the first work to explicitly connect the algebraic view of incremental

view maintenance from the databases literature and the algebraic view of eventual consistency

from the distributed systems literature. Other works have explored distributed IVM in the context

of transactions [54] and data warehousing [4, 115, 116].

We have focused our attention in this paper on state-based CRDTs rather than op-based

CRDTs. The reason for this is that state-based CRDTs are modeled naturally as algebraic semi-

lattices and their relationship to rings is interesting. Op-based CRDTs can be thought of as del-

egating the semi-lattice properties to a networking layer and dealing only with the application

layer properties. In a sense, this makes the op-based CRDT perspective and the co-habitating

rings and semi-lattices perspective similar - the mechanisms for ensuring exactly once deliv-

ery over the network can be treated separately from the mechanisms for managing changes to

application-visible data.

Op-basedCRDTs require that the update operation be associative and commutative, forming

a commutative monoid. This is much like an abelian group except it drops the requirement that

updates have inverses. Some existing op-based CRDTs like counters [96] already have an inverse

operation, forming an abelian group and being amenable to DBSP-style incrementalization. Other

op-based CRDTs like set CRDTs do not support inverses, but they raise the interesting question

of what classes of operators and queries over commutative monoids are automatically incremen-

talizable. The definitions of linearity and bilinearity are the same for commutative monoids as

for abelian groups. We leave a formal treatment of this connection to future work.

𝛿-CRDTs [75] are a design that minimizes the network overheads of state-based CRDT com-

munication. Much like IVM, they make the network utilization proportional to the size of an

update batch rather than proportional to the size of the state.

5.8 Conclusion
We have presented a way to utilize two different algebraic views of data systems, CRDTs and

incremental view maintenance, in the same holistic system. The seemingly incompatible semi-

lattice and ring structures can be made to co-habitate by using ring structures at the “application

layer” and semi-lattices at the “network layer”. With this, we are able to perform incremental

computation of complex query plans while guaranteeing coordination-free strong eventual con-

sistency.

77

Part IV

Simplifying the Developer Experience

78

Chapter 6

Emmy: Peering Into the UDF Black Box
Using Formal Verification of Algebraic
Properties

We introduce Emmy, a library that helps developers reason about algebraic properties of Rust

code.

CHAPTER 6. EMMY: PEERING INTO THE UDF BLACK BOX USING FORMAL VERIFICATION OF
ALGEBRAIC PROPERTIES 79

6.1 Introduction
Throughout this thesis we have explored the question of how algebraic properties can be used to

reason about correctness and optimization in distributed data systems. This leaves the obvious

question: how does the system extract algebraic properties from the code? Our approach in

Hydro follows the same pattern that SQL systems have followed for decades. We first describe this

paradigm for SQL systems and then describe how we leverage features of the Rust programming

language and formal verification tooling to improve on the SQL approach in the Hydro stack.

The SQL language is designed as a programming interface based on the domain-specific lan-

guage of relational algebra. Relational algebra contains just five operators which can be combined

together to express a wide range of complex programs. Those five operators are select, project,
join, union and set difference. SQL programs are compiled into logical query plans - dataflow

graphs made up of these five relational algebra operators.

This creates a tractable surface area for program analysis in database systems. By encoding

the algebraic properties satisfied by each of the five operators, the optimizers is able to reason

about what optimizations to the dataflow graph are safe.

This approach has been enormously successful for data systems. However, there is one essen-

tial pain point for users: expressing arbitrary programs in relational algebra is often burdensome

and sometimes completely impossible. Relational algebra is not Turing-complete, so there are

many programs that are simply impossible to express in this language. Additionally, many pro-

grams are possible to express in the language but it is prohibitively awkward to do so. Data

systems approach this expressivity problem from two directions. The first is to extend relational

algebra to support a wider range of programs while still having full optimizer knowledge of the

properties that they satisfy. The other direction is to support the insertion of arbitrary code into

the dataflow graph via user-defined functions (UDFs).
UDFs can be written in Turing-complete languages, solving the expressivity problem. This

solution comes at great cost though as optimizers don’t have information about the properties of

UDFs, and thus struggle to optimize programs that include UDFs. In the Hydro stack, we have

this same dichotomy of built-in operators we can reason about, and Rust user-defined functions

that we cannot. The role of Emmy is to bridge this gap, allowing the optimizer to reason about

these Rust UDFs.

One approach that many SQL systems support to help optimize UDFs is to allow developers

to tag the UDFs with properties. For advanced users, this is a plausible approach because the

developer has deep knowledge of the UDF they have implemented and can simply label it with

the relevant properties that it satisfies. However, this is not the common case in SQL systems.

Studies show that developers label their UDFs incorrectly 50% of the time [76]. Emmy approaches

this problem from two angles. For the advanced users, Emmy provides tooling to ease the burden

of labeling UDFs with algebraic properties. On the other hand, exposing these details of how the

optimizer works to the developer breaks the promise of a declarative experience for the user. In

the interest of allowing developers to truly express their goals declaratively and leave the rest of

the work up to the system, Emmy also supports a zero-touch experience for determining algebraic

properties of UDFs.

CHAPTER 6. EMMY: PEERING INTO THE UDF BLACK BOX USING FORMAL VERIFICATION OF
ALGEBRAIC PROPERTIES 80

Recent advancements in formal verification allow Emmy to walk a fine line of leveraging

powerful verification tools while hiding them from the developer experience. The reason this is

difficult is same reason why we think it is necessary: verification tools are hard to use. Despite

rapid improvements in the effectiveness of these tools, they still see little adoption in industrial

systems. There are a few key challenges in the usability of verification tools. The first is that they

typically require the developer to re-implement their code in a spec language of some kind. The

second is that the programming paradigmof expressing the goals for the tool and guiding the tools

towards those goals are unlike any coding paradigms found in mainstream software engineering.

To address these challenges, Emmy leverages recent verification tools that can run directly against

Rust code - no spec implementation necessary. Further, Emmy encodes the algebraic properties

of interest directly in the verification languages, so no developer interaction is required.

In this Chapter, we introduce Emmy: A system for zero-touch proofs of algebraic properties

of Rust programs. We validate the effectiveness of the zero-touch proofs approach on a dataset

of Rust programs scraped from Github.

6.2 Emmy Verification Tools Background
Fuzz Testing is the process of programmatically testing huge numbers of random inputs to a

piece of code. While fuzz testers cannot brute force all possible inputs for most data types, they

can attempt thousands of inputs within seconds. This makes them effective for quickly finding

examples where a test case fails. Because they are not exhaustive, a fuzz tester cannot prove

that a property is true on all inputs. Fuzz testers can however prove that a property is false (by

providing a counter-example). Fuzz testers typically have no limitations on the data types or

kinds of code they can support.

BoundedModel Checking is a popular formalmethods tool for verifying properties of hard-

ware and software designs. Model checkers explore the space of possible states of the system for

any states that violate the desired properties. For systems with a small number of states, this ex-

ploration can be exhaustive. When the goal is a complete proof, this typically constrains bounded

model checkers to operating over bounded data types.

Most model checkers operate against a spec implementation in a spec language rather than

real production code. This is the case for TLA+ for example, and rewriting code into a spec

language is a major source of friction for developers adopting model checking in practice. The

challenge is not just the duplicate work of implementing things once in a spec language and then

again in a production language. The big problem is that any mismatch between the production

implementation and the spec implementation renders the model checker results invalid. This

means that as the code inevitably changes over time, if the spec is not accurately maintained

then the benefits of model checkers are lost.

Recent tooling addresses this challenge in the Rust ecosystem by supporting bounded model

checking directly on Rust code. The tool for this, Kani, is the tool we use in the Emmy library to

ensure a zero-touch verification experience for developers building with Emmy.

CHAPTER 6. EMMY: PEERING INTO THE UDF BLACK BOX USING FORMAL VERIFICATION OF
ALGEBRAIC PROPERTIES 81

6.3 Emmy Architecture
In this section, we describe the architecture of Emmy. First, we discuss our disiderata for what

guarantees and experience we want to offer users of Emmy. The primary requirements that drive

the design of Emmy are two simple goals.

1. Developers don’t have to read or write verification code.

2. We must have 0% false positives on determining that an algebraic property is satisfied.

Each of these requirements has numerous implications for our design. The first design goal is

motivated by the fact the custom languages and paradigms of thinking used by formal verifica-

tion tools are what has been holding back their adoption in production software environments.

Most software developers have no training in these languages like TLA+, Coq, or Lean and the

programming paradigm is quite foreign. While these tools are highly valuable in what they can

guarantee about a system, any design that relies on developers reading or writing these languages

is unlikely to be adopted in practice.

Our second goal stems from the relative consequences of a false positive vs. a false negative

in our setting. Falsely determining that an algebraic property is satisfied when it is not would

mean the optimizer may transform the dataflow graph in ways that give incorrect behavior or

outcomes. With the zero-touch experience of Emmy, this entire process would be hidden from

the user and they would simply see incorrect results with no indication of why. This is, of course,

an unacceptable user experience. On the other hand, a false negative simply means that we were

given a UDF that satisfies some property, but we weren’t able to prove the property and have to

treat the UDF as if it did not satisfy it. The result is that certain optimization opportunities may

be lost, but this is a performance concern not a correctness concern. Further, the UDF performs

the same as if Emmy didn’t exist in this situation. In a sense, the 0% false positives means Emmy

is “all upside” relative to not using it.

In combination, these two requirements eliminate a large set of verification tools from our op-

tions. Most verification tools require expressing the code developers want to prove their property

of in a custom verification language, and with our goal of 0% false positives, we cannot afford an

error-prone code translation process from the developer language to the verification language.

Even if a translation tool can have very high translation accuracy, we cannot assume the human

in the loop is going to read the output verification code and determine it matches the input Rust

code.

This leaves us with verification tools that can run directly against the user-written Rust code.

The ecosystem of such tools is small, but stronger for Rust than for most other programming

languages. In Emmy, we choose two tools in particular that can be run directly against Rust code,

a fuzz tester called called cargo fuzz [100] and a bounded model checker called Kani [107]. These
tools offer an interface where users can define invariants they want to prove about code and then

pass in Rust code directly to test these invariants. In the case of Emmy, the invariants we are

interested in are algebraic properties (e.g. associativity and commutativity) which we are able to

hardcode into Emmy, so users of Emmy don’t need to write invariant code at all. We are then

CHAPTER 6. EMMY: PEERING INTO THE UDF BLACK BOX USING FORMAL VERIFICATION OF
ALGEBRAIC PROPERTIES 82

able to run the relevant tool with each algebraic property check we are interested in against the

user’s Rust code.

Figure 6.1 depicts the expression of the associativity property in the Kani verification lan-

guage. Defining the properties for the fuzz tester follows a similar format. Today, Emmy supports

the three algebraic properties of CRDTs (associativity, commutativity, and idempotence) for ver-

ification with Kani. Emmy supports every property described in the Algebra Background section

of this thesis for fuzz testing. Defining each of these properties in Rust and supporting them in

the fuzz tester adds up to roughly 2000 lines of Rust code.

Recall that boundedmodel checkers can only prove propertieswith 100% certainty for bounded

data types, e.g. integers, booleans, or floating points. For a truly zero-touch experience, Kani is

the tool Emmy uses to prove properties. For bounded data types, we support this zero-touch

verification experience in Emmy today. Kani is able to prove truth or falseness for each algebraic

property of interest a high percentage of the time as we will see in Section 6.4.

For unbounded data types, such as sets or vectors, we instead offer the user a co-pilot experi-

ence through our fuzz tester. Recall that fuzz testers cannot prove that a property is true for large
input spaces, they can only find counter-examples that prove it is false. We set a time limit of one

second for the fuzz tester to run. If it finds a counter example, we know that property is false. If

it does not, we will not assume the property to be true in the system, as this would break our 0%

false positives assumption. However, we instead can surface this information to a user that can

use it as a form of co-pilot in reasoning about the properties of their UDFs. If they choose to, they

may optimistically tag properties as true with the help of the fuzz testing results, but we can no

longer guarantee correct code generation.

fn t e s t _ a s s o c i a t i v i t y <T : Clone + P a r t i a l E q + kan i : : A r b i t r a r y +

s t d : : marker : : Copy >(i n p u t _ f u n c t i o n : fn (T , T) −> T) {

l e t a : T = kan i : : any () ; / / Genera te any va lue f o r a

l e t b : T = kan i : : any () ; / / Genera te any va lue f o r b

l e t c : T = kan i : : any () ; / / Genera te any va lue f o r c

l e t r e s u l t 1 = i n p u t _ f u n c t i o n (a , i n p u t _ f u n c t i o n (b , c)) ;

l e t r e s u l t 2 = i n p u t _ f u n c t i o n (i n p u t _ f u n c t i o n (a , b) , c) ;

a s s e r t ! (r e s u l t 1 == r e s u l t 2 , " { : # ? } i s not a s s o c i a t i v e " ,

i n p u t _ f u n c t i o n) ;

}

Figure 6.1: The code for encoding the three CRDT semi-lattice properties in the Kani verification

language.

CHAPTER 6. EMMY: PEERING INTO THE UDF BLACK BOX USING FORMAL VERIFICATION OF
ALGEBRAIC PROPERTIES 83

6.4 Evaluation
In this section, we explore the efficacy of the zero-touch verification experience in Emmy. Specif-

ically, we evaluate the succes rate of the Kani bounded model checker in proving algebraic prop-

erties of UDFs. The goal of Emmy is to determine algebraic properties of UDFs for users of the

Hydro language. There is no existing Rust UDF dataset, so to evaluate Emmy we scraped Github

for examples of potential Rust UDFs. In particular, we scraped all Rust closures passed into .re-
duce() and .fold() operations. .reduce() and .fold() are the two standard ways we allow users to

pass in UDFs in Hydro, so we determined that uses of Rust closures within these operations on

Github form a decent proxy for what UDFs developers may write in Hydro.

In scraping Github, we downloaded roughly 131,000 uses of .fold() and 22,000 uses of .reduce()
in Rust. In our evaluation of the Kani bounded model checker, we filtered this dataset down to

functions over bounded data types that are entirely self-contained Rust closures. That is, the

selected Rust closures do not call external libraries or functions that are defined elsewhere in the

repository. We then deduplicated the syntactically identical closures such as themany occurences

of |a, b| a + b.
For the case of .folds, we found 4,913 valid and syntactically unique such Rust closures. The

result of Kani for each property is shown in Figure 6.2. We see that Kani performs quite well for

all three properties with a successful proof rate of 86% for associativity, 86% for commutativity,

and 99% for idempotence across the dataset of syntactically unique closures.

Our evaluation of Kani on the syntactically unique .reduce() dataset is depicted in Figure 6.3.

We see a 83% success rate for proving associativity, 83% for commutativity, and 99% for idempo-

tence across the dataset of syntactically unique closures.

Figure 6.2: Results of running Kani against the Github .fold() dataset of Rust closures.

For the smaller .reduce() dataset, we were able to manually examine each UDF to determine

the set of semantically unique functions out of the 1058 syntactically unique UDFs. We found 61

semantically unique UDFs satisfying our bounded data type and self-contained closure restric-

tions. As expected, simple arithmetic functions like addition andmultiplication occur many times

in the dataset.

CHAPTER 6. EMMY: PEERING INTO THE UDF BLACK BOX USING FORMAL VERIFICATION OF
ALGEBRAIC PROPERTIES 84

Figure 6.3: Results of running Kani against the Github .reduce() dataset of Rust closures.

6.5 Examples of Verification with Emmy
In this section, we look at the use of Emmy on examples relevant to the OnceTree protocol and

algebraic idempotence upgrades as described in Chapter II. In order for an aggregation func-

tion to be amenable to the OnceTree idempotence upgrade, we require that it be associative and

commutative. If the function is already idempotent, then the system doesn’t need to bother in-

troducing an idempotence upgrade. Some examples from our Github dataset that satisfy all three

properties are logical OR, logical AND, integer minimum, and integer maximum. Kani was able

to prove all three properties are true in each of these cases. In our dataset, we saw a variety of

different implementations of these and Kani had no trouble with this variability. For example,

Figure 6.4 depicts four different implementations of the minimum function in our dataset. One

via the standard library, one via an if statement, and one via amatch expression, and one via a min

function. One idempotent UDF that Kani was not able to prove is least common multiple. This is a
more complex function involving a loop and Kani timed out on this in our experiments running

the tool for up to one minute. The code for this example from the dataset is available in Figure

6.5.

In our dataset, we also observed a variety of functions on bounded data types that are asso-

ciative and commutative, but not idempotent. These include addition, multiplication, and XOR.

Kani times out when attempting to prove these properties for multiplication which is a known

weakness in bounded model checking. However, it is able to prove that the other two functions

are associative and commutative and that they are not idempotent. We see that for the purposes

of OnceTree, Emmy is an effective tool for exploring the relevant UDF properties. All properties

of interest to OnceTree are supported and OnceTree’s requirement that functions be aggregate

functions (mapping collections to singletons) means that there will often be a pairwise operation

on the elements of the input collection that operates only on bounded data types. While an array

data type isn’t supported by our bounded model checker, most aggregates (e.g. addition, multi-

plication, averaging, or standard deviation) can be defined as a function over two bounded data

type inputs which are applied as a left-fold over the input collection.

CHAPTER 6. EMMY: PEERING INTO THE UDF BLACK BOX USING FORMAL VERIFICATION OF
ALGEBRAIC PROPERTIES 85

/ / Cond i t i o n a l e x p r e s s i o n

| a , b | { i f a < b { a } e l s e { b } }

/ / Using s t anda rd l i b r a r y f u n c t i o n

| a , b | s t d : : cmp : : min (a , b)

/ / Match e xp r e s s i o n

| a , b | match a < b { t r u e => a , f a l s e => b , }

/ / Method c a l l

| a , a cc | a . min (acc)

Figure 6.4: Four different approaches to finding minimum values in Rust closures from the Github

.reduce() dataset.

| a , b | {

l e t mut gcd = a ;

l e t mut remainder = b ;

whi l e remainder != 0 {

(gcd , rema inder) = (remainder , gcd % remainder) ;

}

(a ∗ b) / gcd

}

Figure 6.5: A Rust closure implementing least commonmultiple from the Github .reduce() dataset.

6.6 Related Work
UserDefined Functions (UDFs) and their performance are the topic of extensive research [11,

41, 97]. Many databases allow users to tag properties that are satisfied by their UDFs, but none

support formal verification that those tags are correct. The role of algebraic properties in query

optimization has been explored in [3, 29, 62, 65, 66, 93] and it has been demonstrated that re-

ordering of operations, incrementalization, predicate pushdown, recursive execution, and even-

tual consistency can all be performed safely under different combinations of algebraic properties.

The only research work to explore formally proving properties of database UDFs is by [77] which

leverages dataflow analysis to determine whether UDFs satisfy simple properties like never re-

turning a NULL value.

CHAPTER 6. EMMY: PEERING INTO THE UDF BLACK BOX USING FORMAL VERIFICATION OF
ALGEBRAIC PROPERTIES 86

Formal Verification of Algebraic Properties has been studied primarily in relation to the

verification of conflict-free replicated data types (CRDTs). This was the goal of [53] which utilized

SMT solvers to verify commutativity of CRDTs. Propel [113] explores verification of algebraic

properties for CRDTs using a custom type-system and [112] extends on Propel by developing a

custom verification tool that can prove associativity, commutativity, and idempotence of Propel

code written in a purely functional style.

6.7 Future Work
We are interested in generalizing Emmy in three dimensions: supporting positive proofs for un-

bounded data types, generalizing to other UDF programming languages, and generalizing to prop-

erties beyond algebraic ones.

Positive Proofs for Unbounded Data Types: The two tools supported by Emmy, Cargo

Fuzz and Kani, limit the data types for which Emmy can prove properties. In particular, un-

bounded data types like sets, lists, or strings are not supported today. There are verification

tools that can prove properties of unbounded data types, such as Dafny [73] or Verus [71]. The

challenge with these tools is that the way they achieve proofs for unbounded data types is via

extensive guidance (annotations) by the developer in how to prove the property for the specific

input code. This takes the form of things like pre-conditions and post-conditions on parts of the

code.

Given our requirements for Emmy that developers never read or write verification code, the

ways in which these tools could be used in Emmy are highly restricted. We experimented with

the Verus tool for proving the algebraic properties we are interested in with Emmy, but without

significant annotation it was not able to prove these properties for our unbounded data type

examples. As code generation techniques improve, we hope that these stronger tools can be

integrated into Emmy while preserving our 0% false positives and zero-touch verification tooling

requirements.

BeyondRust: While the Hydro stack only supports Rust UDFs today, many database systems

support UDFs in a wide range of languages. For example, Snowflake supports Python, Java,

Javascript, and Scala UDFs [38]. The verification system we have built uses rust-specific libraries,

but the methodology is in no way only applicable to Rust. In future work, we want to extend

our verification pipeline to be as language-agnostic as possible and support other popular UDF

languages such as Python and Java. With moderate engineering effort, our approach could be

replicated for another language by applying the relevant fuzz testing and model checking tools

for that specific language. In Java, for example, fuzz testing, model checking, and SMT solvers

are supported by JQF [91], JBMC [32], and JavaSMT [59] respectively.

Beyond Algebraic Properties: From early query optimizers, properties have been used for

optimization that theorists would not call “algebraic” properties. One such example is determin-
ism of UDFs [51, 82] (the property that the function given the same input will always return

the same output). We chose algebraic properties as the focus of Emmy because they are broadly

relevant across domains and we found the goal of unifying these overlapping properties from

CHAPTER 6. EMMY: PEERING INTO THE UDF BLACK BOX USING FORMAL VERIFICATION OF
ALGEBRAIC PROPERTIES 87

different domains compelling. Emmy’s design does not however restrict its use to only verifying

algebraic properties. If a property can be expressed as an assert statement in Rust, then it is a

single line of code change to support its verification in Emmy. Different properties may be easier

or harder for the tools to prove, but we think this generalization is very promising for covering

other properties for optimizations of UDFs.

6.8 Conclusion
We have introduced Emmy, a library that helps developers reason about algebraic properties in

declarative distributed programming. Emmy accomplishes this through the application of verifi-

cation tools directly on Rust code. The use of verification tools is zero-touch from the perspective

of the users, bringing the power of modern verification tools to developers without the usual bag-

gage.

88

Chapter 7

Conclusion

In this dissertation, we have explored the role of algebraic properties in making distributed data

systems correct and efficient. In Chapter I, we introduced a new formalism for reasoning about

coordination-freeness that bridges the gap between the study of CRDTs in algebra and the study

of the CALM Theorem in logic programming. Using this formalism, we are able to talk about the

exact guarantees offered by CRDTs and the CALM Theorem. We then extend those guarantees

to the natural requirement that query responses to users will remain unchanged regardless of

whether a CRDT state has already converged with the property we dub Free Termination.
In Chapter II, we introduced an alternative perspective on CRDTs and the semi-lattice data

model. In the interest of simplifying the developer experience ofworkingwith CRDTs, we observe

that the algebraic properties required for CRDT correctness can often be added programatically

on the system side, reducing the burden on the developer to design data structures satisfying

each property. We explore this programmatic application of idempotence and introduce a new

protocol called OnceTree that reduces the space overhead of idempotence upgrades from linear in

the number of replicas to constant.

In Chapter III, we explored the relationship between two major algebraic data models, the

semi-lattice model of CRDTs used for eventual consistency and the group and ring data models of

incremental view maintenance. We show that despite the algebraic properties of these structures

being mathematically incompatible, these data models can co-exist by utilizing semi-lattices at

the network layer and groups or rings at the query processing layer, programatically converting

the data payloads between the two kinds of structures. This work demonstrates that systems can

benefit from both coordination-free consistency and incremental processing of updates all within

the framing of algebraic properties of user code.

In Chapter IV, we introduced Emmy, a Rust library for helping developers work with alge-

braic properties. Emmy utilizes fuzz testing and bounded model checking to prove that algebraic

properties are satisfied by the user’s Rust code. Emmy is able to do this for bounded data types

without any need for developers to translate their code to a spec language or interact with veri-

fication tooling in any way.

In each of these explorations, we see how algebra can improve the correctness and efficiency

of distributed data systems. We then see how we can ease the burden on developers of building

CHAPTER 7. CONCLUSION 89

systems that leverage these algebraic properties. In the spirit of decades of database research and

development, we are able to push the knowledge of these properties into the system itself, rather

than expose these details to the application programmer.

90

Bibliography

[1] Serge Abiteboul, RichardHull, and Victor Vianu. Foundations of databases. Vol. 8. Addison-
Wesley Reading, 1995.

[2] Serge Abiteboul, Victor Vianu, Brad Fordham, and Yelena Yesha. “Relational transduc-

ers for electronic commerce.” In: Proceedings of the seventeenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems. 1998, pp. 179–187.

[3] Mahmoud Abo Khamis, Hung Q Ngo, Reinhard Pichler, Dan Suciu, and Yisu RemyWang.

“Convergence of datalog over (pre-) semirings.” In: Proceedings of the 41st ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. 2022, pp. 105–117.

[4] Divyakant Agrawal, Amr El Abbadi, Achour Mostéfaoui, Michel Raynal, and Matthieu

Roy. “The lord of the rings: Efficient maintenance of views at data warehouses.” In: Dis-
tributed Computing: 16th International Conference, DISC 2002 Toulouse, France, October 28–
30, 2002 Proceedings 16. Springer. 2002, pp. 33–47.

[5] Paulo Sérgio Almeida and Carlos Baquero. “Scalable eventually consistent counters over

unreliable networks.” In: Distributed Computing 32.1 (2019), pp. 69–89.

[6] Peter Alvaro, Peter Bailis, Neil Conway, and Joseph M Hellerstein. “Consistency without

borders.” In: Proceedings of the 4th annual Symposium on Cloud Computing. 2013, pp. 1–10.

[7] Peter Alvaro, Neil Conway, Joseph M Hellerstein, and William R Marczak. “Consistency

Analysis in Bloom: a CALM and Collected Approach.” In: CIDR. Citeseer. 2011, pp. 249–
260.

[8] Peter Alvaro, William R Marczak, Neil Conway, Joseph M Hellerstein, David Maier, and

Russell Sears. “Dedalus: Datalog in time and space.” In: Datalog Reloaded: First Interna-
tional Workshop, Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers.
Springer. 2011, pp. 262–281.

[9] Tom J Ameloot, Bas Ketsman, Frank Neven, and Daniel Zinn. “Weaker forms of mono-

tonicity for declarative networking: Amore fine-grained answer to the CALM-conjecture.”

In: ACM Transactions on Database Systems (TODS) 40.4 (2015), pp. 1–45.

[10] Tom JAmeloot, FrankNeven, and Jan Van den Bussche. “Relational transducers for declar-

ative networking.” In: Journal of the ACM (JACM) 60.2 (2013), pp. 1–38.

[11] Samuel Arch, Yuchen Liu, Todd C Mowry, Jignesh M Patel, and Andrew Pavlo. “The Key

to Effective UDF Optimization: Before Inlining, First Perform Outlining.” In: (2023).

BIBLIOGRAPHY 91

[12] Michael Arntzenius andNeelakantan RKrishnaswami. “Datafun: a functional Datalog.” In:

Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming.
2016, pp. 214–227.

[13] AWS. Refreshing a Materialized View. https://docs.aws.amazon.com/redshift/latest/dg/
materialized-view-refresh.html. June 2021.

[14] Tim Baccaert and Bas Ketsman. “Distributed Consistency BeyondQueries.” In: Proceedings
of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
2023, pp. 47–58.

[15] Carlos Baquero and Francisco Moura. “Using structural characteristics for autonomous

operation.” In: ACM SIGOPS Operating Systems Review 33.4 (1999), pp. 90–96.

[16] Jim Bauwens and Elisa Gonzalez Boix. “Memory efficient crdts in dynamic environments.”

In: Proceedings of the 11th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages. 2019, pp. 48–57.

[17] Philip A Bernstein, Meichun Hsu, and Bruce Mann. “Implementing recoverable requests

using queues.” In: Proceedings of the 1990 ACM SIGMOD international conference on Man-
agement of data. 1990, pp. 112–122.

[18] Philip A Bernstein and Eric Newcomer. Principles of transaction processing. Morgan Kauf-

mann, 2009.

[19] Garrett Birkhoff. Lattice Theory. 2nd ed. Vol. 25. American Mathematical Society, 1948.

[20] Bourbaki–Witt theorem. Wikipedia. Available at https://en.wikipedia.org/wiki/Bourbaki%
E2%80%93Witt_theorem. url: https://en.wikipedia.org/wiki/Bourbaki%5C%E2%5C%80%
5C%93Witt_theorem (visited on Apr. 27, 2025).

[21] Eric Brewer. “CAP twelve years later: How the" rules" have changed.” In: Computer 45.2
(2012), pp. 23–29.

[22] Manfred Broy, MartinWirsing, and Peter Pepper. “On the algebraic definition of program-

ming languages.” In:ACM Transactions on Programming Languages and Systems (TOPLAS)
9.1 (1987), pp. 54–99.

[23] Mihai Budiu. Incremental Database Computations. https://www.feldera.com/blog/incremental-
database-computations/. Jan. 2024.

[24] Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, and Val Tannen. “DBSP: Au-

tomatic Incremental View Maintenance for Rich Query Languages.” In: Proceedings of the
VLDB Endowment 16.7 (2023), pp. 1601–1614.

[25] Bernadette Charron-Bost. “Concerning the size of logical clocks in distributed systems.”

In: Information Processing Letters 39.1 (1991), pp. 11–16.

[26] RadaChirkova, Jun Yang, et al. “Materialized views.” In: Foundations and Trends® in Databases
4.4 (2012), pp. 295–405.

https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh.html
https://en.wikipedia.org/wiki/Bourbaki%E2%80%93Witt_theorem
https://en.wikipedia.org/wiki/Bourbaki%E2%80%93Witt_theorem
https://en.wikipedia.org/wiki/Bourbaki%5C%E2%5C%80%5C%93Witt_theorem
https://en.wikipedia.org/wiki/Bourbaki%5C%E2%5C%80%5C%93Witt_theorem
https://www.feldera.com/blog/incremental-database-computations/
https://www.feldera.com/blog/incremental-database-computations/

BIBLIOGRAPHY 92

[27] Laukik Chitnis, Alin Dobra, and Sanjay Ranka. “Aggregation methods for large-scale sen-

sor networks.” In: ACM Transactions on Sensor Networks (TOSN) 4.2 (2008), pp. 1–36.

[28] Kevin Clancy and Heather Miller. “Monotonicity types for distributed dataflow.” In: Pro-
ceedings of the ProgrammingModels and Languages for Distributed Computing. 2017, pp. 1–
10.

[29] Sara Cohen. “User-defined aggregate functions: bridging theory and practice.” In: Pro-
ceedings of the 2006 ACM SIGMOD international conference on Management of data. 2006,
pp. 49–60.

[30] Automerge contributors. automerge/automerge. https://github.com/automerge/automerge.
Apr. 2023.

[31] Neil Conway, William R Marczak, Peter Alvaro, Joseph M Hellerstein, and David Maier.

“Logic and lattices for distributed programming.” In: Proceedings of the Third ACM Sym-
posium on Cloud Computing. 2012, pp. 1–14.

[32] Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, andMarek Trtik. “JBMC:

A bounded model checking tool for verifying Java bytecode.” In: International Conference
on Computer Aided Verification. Springer. 2018, pp. 183–190.

[33] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. “Seeing is believing: A

client-centric specification of database isolation.” In: Proceedings of the ACM Symposium
on Principles of Distributed Computing. 2017, pp. 73–82.

[34] Databricks. Introducing Materialized Views and Streaming Tables for Databricks SQL. https:
//www.databricks.com/blog/introducing-materialized- views-and- streaming- tables-
databricks-sql. June 2023.

[35] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large

clusters.” In: Communications of the ACM 51.1 (2008), pp. 107–113.

[36] Frank Dehne and Silvia Gotz. “Practical parallel algorithms for minimum spanning trees.”

In: Proceedings Seventeenth IEEE Symposium on Reliable Distributed Systems (Cat. No. 98CB36281).
IEEE. 1998, pp. 366–371.

[37] Edsger W Dijkstra. “A note on two problems in connexion with graphs.” In: Numerische
mathematik 1.1 (1959), pp. 269–271.

[38] Snowflake Documentation. User-defined functions overview. https://docs.snowflake.com/
en/developer-guide/udf/udf-overview. 2024.

[39] Stephen Dolan. “Brief announcement: The only undoable crdts are counters.” In: Proceed-
ings of the 39th Symposium on Principles of Distributed Computing. 2020, pp. 57–58.

[40] Iman Elghandour, Ahmet Kara, Dan Olteanu, and Stijn Vansummeren. “Incremental tech-

niques for large-scale dynamic query processing.” In: Proceedings of the 27th ACM Inter-
national Conference on Information and Knowledge Management. 2018, pp. 2297–2298.

https://github.com/automerge/automerge
https://www.databricks.com/blog/introducing-materialized-views-and-streaming-tables-databricks-sql
https://www.databricks.com/blog/introducing-materialized-views-and-streaming-tables-databricks-sql
https://www.databricks.com/blog/introducing-materialized-views-and-streaming-tables-databricks-sql
https://docs.snowflake.com/en/developer-guide/udf/udf-overview
https://docs.snowflake.com/en/developer-guide/udf/udf-overview

BIBLIOGRAPHY 93

[41] Kai Franz et al. “Dear User-Defined Functions, Inlining isn’t working out so great for us.

Let’s try batching to make our relationship work. Sincerely, SQL.” In: CIDR. Vol. 16. The
49th Annual International Symposium on Computer Architecture, New York . . . 2024,

pp. 617–630.

[42] Craig Gentry. “Fully homomorphic encryption using ideal lattices.” In: Proceedings of the
forty-first annual ACM symposium on Theory of computing. 2009, pp. 169–178.

[43] Abraham Ginzburg. Algebraic Theory of Automata. Academic Press, 1968.

[44] Goetz Graefe. “The cascades framework for query optimization.” In: IEEE Data Eng. Bull.
18.3 (1995), pp. 19–29.

[45] Jim Gray and Andreas Reuter. Transaction processing: concepts and techniques. Elsevier,
1992.

[46] Todd J Green, Grigoris Karvounarakis, and Val Tannen. “Provenance semirings.” In: Pro-
ceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. 2007, pp. 31–40.

[47] Peter Hart, Nils Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic Determi-

nation of Minimum Cost Paths.” In: IEEE Transactions on Systems Science and Cybernetics
4.2 (1968), pp. 100–107. doi: 10.1109/tssc.1968.300136.

[48] Pat Helland and Dave Campbell. “Building on Quicksand.” In: (2009).

[49] Joseph M Hellerstein. “The declarative imperative: experiences and conjectures in dis-

tributed logic.” In: ACM SIGMOD Record 39.1 (2010), pp. 5–19.

[50] Joseph M Hellerstein, Shadaj Laddad, Mae Milano, Conor Power, and Mingwei Samuel.

“Initial Steps Toward a Compiler for Distributed Programs.” In: Proceedings of the 5th work-
shop on Advanced tools, programming languages, and PLatforms for Implementing and Eval-
uating algorithms for Distributed systems. 2023, pp. 1–10.

[51] Joseph M Hellerstein and Michael Stonebraker. “Predicate migration: Optimizing queries

with expensive predicates.” In: Proceedings of the 1993 ACM SIGMOD international confer-
ence on Management of data. 1993, pp. 267–276.

[52] Joseph M. Hellerstein and Peter Alvaro. “Keeping CALM.” In: Communications of the ACM
63.9 (Aug. 2020), pp. 72–81. doi: 10.1145/3369736.

[53] Farzin Houshmand and Mohsen Lesani. “Hamsaz: Replication Coordination Analysis and

Synthesis.” In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019). doi: 10.1145/3290387.

[54] Richard Hull and Gang Zhou. “A framework for supporting data integration using thema-

terialized and virtual approaches.” In: Proceedings of the 1996 ACM SIGMOD international
conference on Management of data. 1996, pp. 481–492.

[55] Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. “A survey of distributed data

aggregation algorithms.” In: IEEE Communications Surveys & Tutorials 17.1 (2014), pp. 381–
404.

https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1145/3369736
https://doi.org/10.1145/3290387

BIBLIOGRAPHY 94

[56] Jr Joseph B. Kruskal. “On the Shortest Spanning Subtree of a Graph and the Travel-

ing Salesman Problem.” In: Proceedings of the American Mathematical Society 7.1 (1956),

pp. 48–50.

[57] Peter Kairouz et al. “Advances and open problems in federated learning.” In: Foundations
and Trends® in Machine Learning 14.1–2 (2021), pp. 1–210.

[58] Ahmet Kara, Hung Q Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. “Maintaining

triangle queries under updates.” In: ACM Transactions on Database Systems (TODS) 45.3
(2020), pp. 1–46.

[59] Egor George Karpenkov, Karlheinz Friedberger, and Dirk Beyer. “JavaSMT: A unified in-

terface for SMT solvers in Java.” In: Verified Software. Theories, Tools, and Experiments:
8th International Conference, VSTTE 2016, Toronto, ON, Canada, July 17–18, 2016, Revised
Selected Papers 8. Springer. 2016, pp. 139–148.

[60] Jeremy Kepner et al. “Mathematical foundations of the GraphBLAS.” In: 2016 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE. 2016, pp. 1–9.

[61] Mahmoud Abo Khamis, Hung Q Ngo, Reinhard Pichler, Dan Suciu, and Yisu RemyWang.

“Datalog in wonderland.” In: ACM SIGMOD Record 51.2 (2022), pp. 6–17.

[62] Mahmoud Abo Khamis, Hung Q Ngo, Reinhard Pichler, Dan Suciu, and Yisu RemyWang.

“Datalog in wonderland.” In: ACM SIGMOD Record 51.2 (2022), pp. 6–17.

[63] Martin Kleppmann, AdamWiggins, Peter VanHardenberg, andMarkMcGranaghan. “Local-

first software: you own your data, in spite of the cloud.” In: Proceedings of the 2019 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software. 2019, pp. 154–178.

[64] Christoph Koch. “Incremental query evaluation in a ring of databases.” In: Proceedings
of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 2010, pp. 87–98.

[65] Christoph Koch. “Incremental query evaluation in a ring of databases.” In: Proceedings
of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 2010, pp. 87–98.

[66] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres Nötzli, Daniel Lu-

pei, andAmir Shaikhha. “DBToaster: higher-order delta processing for dynamic, frequently

fresh views.” In: The VLDB Journal 23 (2014), pp. 253–278.

[67] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A distributed messaging system for log

processing.” In: Proceedings of the NetDB. Vol. 11. 2011. Athens, Greece. 2011, pp. 1–7.

[68] Lindsey Kuper and Ryan R Newton. “LVars: lattice-based data structures for determin-

istic parallelism.” In: Proceedings of the 2nd ACM SIGPLAN workshop on Functional high-
performance computing. 2013, pp. 71–84.

BIBLIOGRAPHY 95

[69] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks, and Joseph

M Hellerstein. “Keep CALM and CRDT On.” In: Proceedings of the VLDB Endowment 16.4
(2022), pp. 856–863.

[70] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and Joseph M. Hellerstein.

Katara: Synthesizing CRDTs with Verified Lifting. 2022. doi: 10.48550/ARXIV.2205.12425.

[71] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou,

Jon Howell, Bryan Parno, and Chris Hawblitzel. “Verus: Verifying rust programs using

linear ghost types.” In: Proceedings of the ACM on Programming Languages 7.OOPSLA1
(2023), pp. 286–315.

[72] Jessica Laughlin. Why use a Materialized View? https://materialize.com/blog/why-use-a-
materialized-view/. Aug. 2020.

[73] K Rustan M Leino. “Dafny: An automatic program verifier for functional correctness.”

In: International conference on logic for programming artificial intelligence and reasoning.
Springer. 2010, pp. 348–370.

[74] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josi-

fovski, James Long, Eugene J Shekita, and Bor-Yiing Su. “Scaling distributed machine

learning with the parameter server.” In: 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14). 2014, pp. 583–598.

[75] Albert van der Linde, João Leitão, and Nuno Preguiça. “𝛿-crdts: Making 𝛿-crdts delta-

based.” In: Proceedings of the 2nd Workshop on the Principles and Practice of Consistency for
Distributed Data. 2016, pp. 1–4.

[76] Xinyu Liu, Joy Arulraj, and Alessandro Orso. “A Framework for Inferring Properties of

User-Defined Functions.” In: Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. 2024, pp. 1–11.

[77] Xinyu Liu, Joy Arulraj, and Alessandro Orso. “A Framework for Inferring Properties of

User-Defined Functions.” In: Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. 2024, pp. 1–11.

[78] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E Gay, Joseph M Hellerstein,

Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica. “Declarative net-

working.” In: Communications of the ACM 52.11 (2009), pp. 87–95.

[79] Samuel Madden, Michael J Franklin, JosephMHellerstein, andWei Hong. “{TAG}: A Tiny

{AGgregation} Service for {Ad-Hoc} Sensor Networks.” In: 5th Symposium on Operating
Systems Design and Implementation (OSDI 02). 2002.

[80] Christopher Meiklejohn. Applied Monotonicity: A Brief History of CRDTs in Riak. https :
//christophermeiklejohn.com/erlang/lasp/2019/03/08/monotonicity.html. Mar. 2019.

[81] ChristopherMeiklejohn and Peter Van Roy. “Lasp: A language for distributed, coordination-

free programming.” In: Proceedings of the 17th International Symposium on Principles and
Practice of Declarative Programming. 2015, pp. 184–195.

https://doi.org/10.48550/ARXIV.2205.12425
https://materialize.com/blog/why-use-a-materialized-view/
https://materialize.com/blog/why-use-a-materialized-view/
https://christophermeiklejohn.com/erlang/lasp/2019/03/08/monotonicity.html
https://christophermeiklejohn.com/erlang/lasp/2019/03/08/monotonicity.html

BIBLIOGRAPHY 96

[82] Microsoft.Deterministic and Nondeterministic Functions. SQL Server 2022. Microsoft. 2023.

url: https://learn.microsoft.com/en-us/sql/relational-databases/user-defined-functions/
deterministic-and-nondeterministic-functions?view=sql-server-ver16 (visited on May 6,

2025).

[83] Mae Milano, Rolph Recto, Tom Magrino, and Andrew C Myers. “A tour of gallifrey, a

language for geodistributed programming.” In: 3rd Summit on Advances in Programming
Languages (SNAPL 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2019.

[84] Jeffery C Mogul. “Clarifying the fundamentals of HTTP.” In: Proceedings of the 11th inter-
national conference on World Wide Web. 2002, pp. 25–36.

[85] DerekGMurray, FrankMcSherry,Michael Isard, Rebecca Isaacs, Paul Barham, andMartin

Abadi. “Incremental, iterative data processing with timely dataflow.” In: Communications
of the ACM 59.10 (2016), pp. 75–83.

[86] Suman Nath, Phillip B Gibbons, Srinivasan Seshan, and Zachary Anderson. “Synopsis

diffusion for robust aggregation in sensor networks.” In: ACM Transactions on Sensor Net-
works (TOSN) 4.2 (2008), pp. 1–40.

[87] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. “Yjs: A Framework for

Near Real-Time P2P Shared Editing on Arbitrary Data Types.” In: Proceedings of the 15th
International Conference on Engineering the Web in the Big Data Era - Volume 9114. ICWE

2015. Rotterdam, The Netherlands: Springer-Verlag, 2015, pp. 675–678. doi: 10.1007/978-
3-319-19890-3_55.

[88] Milos Nikolic, Haozhe Zhang, Ahmet Kara, and Dan Olteanu. “F-IVM: learning over fast-

evolving relational data.” In: Proceedings of the 2020 ACMSIGMOD International Conference
on Management of Data. 2020, pp. 2773–2776.

[89] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. “HOGWILD! A Lock-

Free Approach to Parallelizing Stochastic Gradient Descent.” In: Proceedings of the 24th In-
ternational Conference on Neural Information Processing Systems. NIPS’11. Granada, Spain:
Curran Associates Inc., 2011, pp. 693–701.

[90] Ty Overby. bincode-org/bincode. https://github.com/bincode-org/bincode. Apr. 2023.

[91] Rohan Padhye, Caroline Lemieux, and Koushik Sen. “Jqf: Coverage-guided property-based

testing in java.” In: Proceedings of the 28th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis. 2019, pp. 398–401.

[92] Radia Perlman. “An algorithm for distributed computation of a spanningtree in an ex-

tended lan.” In: ACM SIGCOMM computer communication review 15.4 (1985), pp. 44–53.

[93] Conor Power, SaikrishnaAchalla, RyanCottone, NathanielMacasaet, and JosephMHeller-

stein. “Wrapping Rings in Lattices: An Algebraic Symbiosis of Incremental View Mainte-

nance and Eventual Consistency.” In: Proceedings of the 11th Workshop on Principles and
Practice of Consistency for Distributed Data. 2024, pp. 15–22.

https://learn.microsoft.com/en-us/sql/relational-databases/user-defined-functions/deterministic-and-nondeterministic-functions?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/user-defined-functions/deterministic-and-nondeterministic-functions?view=sql-server-ver16
https://doi.org/10.1007/978-3-319-19890-3_55
https://doi.org/10.1007/978-3-319-19890-3_55
https://github.com/bincode-org/bincode

BIBLIOGRAPHY 97

[94] Nuno Preguiça. “Conflict-free Replicated Data Types: An Overview.” In: arXiv e-prints
(2018), arXiv–1806.

[95] Nuno Preguiça, Carlos Baquero, Paulo SérgioAlmeida, Victor Fonte, and RicardoGonçalves.

“Dotted version vectors: Logical clocks for optimistic replication.” In: arXiv preprint arXiv:1011.5808
(2010).

[96] Nuno Preguiça, Carlos Baquero, and Marc Shapiro. “Conflict-free replicated data types

(CRDTs).” In: arXiv preprint arXiv:1805.06358 (2018).

[97] Karthik Ramachandra, Kwanghyun Park, KVenkatesh Emani, AlanHalverson, César Galindo-

Legaria, and Conor Cunningham. “Froid: Optimization of imperative programs in a rela-

tional database.” In: Proceedings of the VLDB Endowment 11.4 (2017), pp. 432–444.

[98] Ronald L Rivest, Adi Shamir, and LeonardAdleman. “Amethod for obtaining digital signa-

tures and public-key cryptosystems.” In: Communications of the ACM 21.2 (1978), pp. 120–

126.

[99] Antony Rowstron and Peter Druschel. “Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems.” In:Middleware 2001: IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, Germany, November 12–16, 2001
Proceedings 2. Springer. 2001, pp. 329–350.

[100] Rust Fuzz Team. Fuzzing with cargo-fuzz. https://rust- fuzz.github.io/book/cargo-fuzz.
html. Accessed: 2025-05-13. 2025. url: https://rust-fuzz.github.io/book/cargo-fuzz.html.

[101] Mingwei Samuel, Joseph M Hellerstein, and Alvin Cheung. “Hydroflow: A Model and

Runtime for Distributed Systems Programming.” In: (2021).

[102] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. “A comprehensive

study of convergent and commutative replicated data types.” In: Technical Report, Inria–
Centre Paris-Rocquencourt; INRIA. 2011.

[103] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. “Conflict-free repli-

cated data types.” In: Symposium on Self-Stabilizing Systems. Springer. 2011, pp. 386–400.

[104] Michael Sipser. “Introduction to the Theory of Computation.” In: ACM Sigact News 27.1
(1996), pp. 27–29.

[105] Sindhu Subhas. Hive - Materialized Views. https : / / techcommunity.microsoft . com/ t5 /
analytics-on-azure-blog/hive-materialized-views/ba-p/2502785. June 2021.

[106] Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J Demers, Mike J Spreitzer,

and Carl H Hauser. “Managing update conflicts in Bayou, a weakly connected replicated

storage system.” In: ACM SIGOPS Operating Systems Review 29.5 (1995), pp. 172–182.

[107] Alexa VanHattum,Daniel Schwartz-Narbonne, NathanChong, andAdrian Sampson. “Ver-

ifying dynamic trait objects in Rust.” In: Proceedings of the 44th International Conference
on Software Engineering: Software Engineering in Practice. 2022, pp. 321–330.

https://rust-fuzz.github.io/book/cargo-fuzz.html
https://rust-fuzz.github.io/book/cargo-fuzz.html
https://rust-fuzz.github.io/book/cargo-fuzz.html
https://techcommunity.microsoft.com/t5/analytics-on-azure-blog/hive-materialized-views/ba-p/2502785
https://techcommunity.microsoft.com/t5/analytics-on-azure-blog/hive-materialized-views/ba-p/2502785

BIBLIOGRAPHY 98

[108] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen,

and Jan S Rellermeyer. “A survey on distributed machine learning.” In: Acm computing
surveys (csur) 53.2 (2020), pp. 1–33.

[109] StephaneWeiss, Pascal Urso, and Pascal Molli. “Logoot: A Scalable Optimistic Replication

Algorithm for Collaborative Editing on P2P Networks.” In: 2009 29th IEEE International
Conference on Distributed Computing Systems. 2009, pp. 404–412.

[110] ChenggangWu, JoseM Faleiro, Yihan Lin, and JosephMHellerstein. “Anna: A kvs for any

scale.” In: IEEE Transactions on Knowledge and Data Engineering 33.2 (2019), pp. 344–358.

[111] Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein. “Autoscaling tiered cloud

storage in Anna.” In: Proceedings of the VLDB Endowment 12.6 (2019), pp. 624–638.

[112] George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. “Automated Verification

of Fundamental Algebraic Laws.” In: Proceedings of the ACM on Programming Languages
8.PLDI (2024), pp. 766–789.

[113] George Zakhour, Pascal Weisenburger, and Guido Salvaneschi. “Automated verification

of fundamental algebraic laws.” In: Proceedings of the ACM on Programming Languages
8.PLDI (2024), pp. 766–789.

[114] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph, and John D

Kubiatowicz. “Tapestry: A resilient global-scale overlay for service deployment.” In: IEEE
Journal on selected areas in communications 22.1 (2004), pp. 41–53.

[115] Yue Zhuge, Hector Garcia-Molina, Joachim Hammer, and Jennifer Widom. “View main-

tenance in a warehousing environment.” In: Proceedings of the 1995 ACM SIGMOD inter-
national conference on Management of data. 1995, pp. 316–327.

[116] Yue Zhuge, Hector Garcia-Molina, and Janet L Wiener. “The strobe algorithms for multi-

source warehouse consistency.” In: Fourth International Conference on Parallel and Dis-
tributed Information Systems. IEEE. 1996, pp. 146–157.

[117] Ling Zhuo and Viktor K Prasanna. “High performance linear algebra operations on re-

configurable systems.” In: SC’05: Proceedings of the 2005 ACM/IEEE conference on Super-
computing. IEEE. 2005, pp. 2–2.

[118] Daniel Zinn, Todd J Green, and BertramLudäscher. “Win-move is coordination-free (some-

times).” In: Proceedings of the 15th International Conference on Database Theory. 2012,
pp. 99–113.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.0.1 Motivation
	1.0.2 State of the Art

	1.1 Thesis Overview

	2 Background
	2.1 Algebra Background
	2.1.1 Commutativity
	2.1.2 Associativity
	2.1.3 Idempotence
	2.1.4 Invertibility
	2.1.5 Monotonicity and Inflationary Behavior
	2.1.6 Algebraic Structure Definitions

	2.2 CRDT Background
	2.2.1 Semi-Lattices and Conflict-Free Replicated Data Types

	2.3 CALM History Background

	I Bridging Approaches to Coordination Avoidance
	3 The Free Termination Property of Queries Over Time
	3.1 Introduction
	3.1.1 Motivating Examples

	3.2 Related Work
	3.3 Definitions of Free Termination
	3.3.1 Applications of Free Termination

	3.4 Algebraic Properties and Free Termination
	3.4.1 Partial Orders
	3.4.2 Commutativity
	3.4.3 Group-Like Structures

	3.5 Free Termination in Distributed Systems
	3.5.1 Distributed Model
	3.5.2 Distributed Computation with Metadata

	3.6 Free Termination with Finite States
	3.6.1 Detecting Free Termination
	3.6.2 State Minimization

	3.7 Free Termination in CRDTs
	3.8 Conclusion

	II Algebraic Upgrades
	4 Once Upon a Tree: Distributed Idempotence in O(1) Space
	4.1 Introduction
	4.2 Background
	4.2.1 Uncoordinated ``Like'' Gossip
	4.2.2 Once Upon a Tree

	4.3 The OnceTree Protocol
	4.3.1 The High Level
	4.3.2 State and Gossip
	4.3.3 Aggregating Queries
	4.3.4 Constant Space

	4.4 Convergence Guarantees
	4.4.1 Assumptions
	4.4.2 Preliminary Definitions and Proof Outline
	4.4.3 Proofs

	4.5 Initialization and Reorganization
	4.5.1 Tree Initialization
	4.5.2 Planned Modifications to the Topology

	4.6 Fault Tolerance
	4.6.1 Simple Process Groups
	4.6.2 Resetting The Tree

	4.7 Evaluation
	4.7.1 Experimental Setup
	4.7.2 Memory Consumption
	4.7.3 Propagation Latency
	4.7.4 Operation Throughput

	4.8 Future Work
	4.8.1 Consistency and Recency Guarantees
	4.8.2 Algebraic Formalizations
	4.8.3 Dynamics

	4.9 Related Work
	4.9.1 Idempotence Enforcement
	4.9.2 CRDT Memory Efficiency
	4.9.3 Distributed Aggregates

	4.10 Conclusion

	III Co-Habitation of Algebraic Structures in Distributed Data Systems
	5 Wrapping Rings in Lattices: An Algebraic Symbiosis of Incremental View Maintenance and Eventual Consistency
	5.1 Introduction
	5.2 Background
	5.2.1 Groups and Incremental View Maintenance

	5.3 Co-habitation of Abelian Groups and Semi-lattices
	5.3.1 The Very Simple Construction
	5.3.2 The Performant Construction

	5.4 Rings in Incremental View Maintenance
	5.5 Inverses, Two-Phase Sets, and the Semantics of Deletion
	5.6 Discussion and Future Work
	5.7 Related Work
	5.8 Conclusion

	IV Simplifying the Developer Experience
	6 Emmy: Peering Into the UDF Black Box Using Formal Verification of Algebraic Properties
	6.1 Introduction
	6.2 Emmy Verification Tools Background
	6.3 Emmy Architecture
	6.4 Evaluation
	6.5 Examples of Verification with Emmy
	6.6 Related Work
	6.7 Future Work
	6.8 Conclusion

	7 Conclusion
	Bibliography

