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Abstract

Improving LLM Performance in Generating Verilog by Fine Tuning with a Translated Code

Dataset

by Brendan Kyle Roberts

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Yakun Sophia Shao, Advisor

Large language models (LLMs) are playing an increasingly large role in domains such as code

generation, including hardware code generation, where Verilog is the key language. However, the

amount of publicly available Verilog code pales in comparison to the amount of code available

for software language like Python. In this work, we present hdl2v (”HDL-to-Verilog”), a dataset

which seeks to increase the amount of available human-written Verilog data by translating or

compiling three other hardware description languages—VHDL, Chisel, and PyMTL3—to Verilog.

Furthermore, we demonstrate the value of hdl2v in enhancing LLM Verilog generation by improving

performance of a 32 billion-parameter open-weight model by up to 23% (pass@10) in VerilogEvalV2,

without utilizing any data augmentation or knowledge distillation from larger models. We also

characterize and analyze our dataset to better understand which characteristics of HDL-to-Verilog

datasets can be expanded upon in future work for even better performance.
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Chapter 1

Introduction

In recent years, Large Language Models (LLMs) have become nearly ubiquitous through the adop-

tion of consumer facing LLMs such as OpenAI’s ChatGPT and Google’s Gemini. LLMs have

demonstrated impressive performance in a wide range of tasks, ranging from general reasoning

ability and instruction-following [1, 2] to code generation [3–6].

LLMs have potential to automate a wide range of tasks in hardware design, ranging from design

to verification to optimization [7–9]. A number of studies have attempted to evaluate and improve

LLMs’ potential in generating Verilog code [10–12]. Compared to popular software programming

languages such as Python or C, there is not as much publicly available Verilog. As of April 2025,

there are 132,264 GitHub repositories with Python as the primary language, compared to just 848

for Verilog or SystemVerilog [13]. There is much less publicly available Verilog data, limiting our

ability to effectively train LLMs in writing the language.

There are a variety of possibilities as to why there is less open-source Verilog data. Hardware

development is much more niche compared to software, and companies that design hardware using

Verilog keep their codebases private. This limits our ability to pretrain an LLM in writing Verilog,

so alternative solutions such as fine tuning are necessary.

As a result, a number of prior works have attempted to fine-tune LLMs on novel Verilog datasets,

and successfully improved Verilog generation performance. These works utilize techniques such as

data augmentation [14–17] and synthetic Verilog generation [18].

However, Verilog is not the only hardware description language (HDL). VHDL is another popular

HDL with its own ecosystem of supported hardware. While tehse languages are often used as the

common interface between hardware code and tools such as RTL simulators or synthesis software,
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design can be done in higher-level languages such as Chisel. Nevertheless, Verilog is the most

important HDL to generate using LLMs as it is the most commonly supported and written.

In this work, we investigate how datasets of alternative HDLs can be used to improve an LLMs

ability to write Verilog. Specifically, we present hdl2v, a dataset consisting of 46,549 pairs of VHDL,

Chisel, and PyMTL3 translated/compiled to Verilog. We use this data to supervise fine-tune LLMs,

and the results of these experiments are as follows:

• Fine-tuning with this data yields significant improvements in Verilog generation performance.

We find that VerilogEvalV2 performance of a state-of-the-art open-weight LLM improves by

up to 13% for pass@1 and 23% for pass@10 after being fine-tuned on a combination of our

datasets.

• Language matters; fine-tuning with VHDL-Verilog pairs yields better results than C-Verilog

pairs when the Verilog remains constant.

• Our fine-tuned models learn from the code in prompt-response pairs, not just natural lan-

guage. However, utilizing meaningful module and variable names is important in helping

LLMs learn from the data.

hdl2v is fully open-source and available for others to expand on this research. 1 2 3

1VHDL dataset: https://huggingface.co/datasets/rtl-llm/vhdl_github_deduplicated
2Chisel dataset: https://huggingface.co/datasets/rtl-llm/chisel-verilog-pairs
3PyMTL dataset: https://huggingface.co/datasets/rtl-llm/PyMTL_Verilog_pairs

2
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Chapter 2

Background

2.1 Verilog Code Generation

Prior work has seeked to improve LLMs’ ability to generate correct Verilog code, using techniques

such as fine tuning on textbooks and Verilog from Github [10]. Other prior works augment existing

Verilog datasets [14–17] or generate novel synthetic Verilog [18]. Multi-agent systems utilize feed-

back from RTL simulation tools and modify test code in order to debug generated code [11, 12].

Benchmarks such as VerilogEval [19] and RTLLM [20] have been developed to standardize evalua-

tion of LLM Verilog generation performance.

This work does not supercede such prior work. Instead, we seek to provide new data that can

complement other approaches, such as data augmentation and agentic systems, to further improve

LLM Verilog generation.

2.2 Verilog Translation

BetterV [15] introduces the idea of translating Verilog to C in order to improve correctness of

generated Verilog. However, we demonstrate in Section 4.4 that when training with a Verilog

dataset and the corresponding data translated to C, the benefit from training with C is minimal

compared to training with only Verilog. Furthermore, the Verilog in the dataset is also likely to be

present in LLMs’ pre-training data, as it originates from open-source Github repositories.

To our knowledge, this work is the first to translate other HDLs to Verilog to generate novel Verilog

data for fine-tuning.

3



Chapter 3

Dataset Construction

3.1 Datasets From Prior Work

As a baseline, we fine-tune with datasets from prior work that are based on existing Verilog from

public sources.

Verilog

V2C
✓❌✓✓❌

VHDL

Verilog

vhd2vl
✓❌✓✓❌

Prompt:
module logic_1 (output A);

Response:
module logic_1 (output A); 
assign A = 1; endmodule 

Prompt:
void logic_1 (bool *A) {
  *A = 1; 
}

Response:
module logic_1 (output A); 
assign A = 1; endmodule

C 

Dataset

Prompt:
entity logic_0 is

port (
    A : out std_logic

);
end logic_0;

architecture Behavioral of 
logic_0 is
begin

A <= '0';
end Behavioral;

Response:
module logic_0 (output A);
assign A = 0; endmodule

VHDL 
Dataset

Verilo
g 

Completio
n 

Dataset

Figure 3.1: How the Verilog Completion, C, and VHDL datasets are collected. Note that Verilog
is translated to C and VHDL is translated to Verilog, but during fine-tuning Verilog is always used

as the response.

3.1.1 Verilog Completion

As in BetterV [15], this dataset consists of a filtered set of Verilog modules from public sources. In

this case, the prompt for fine-tuning is the header of the Verilog module, and the response is the
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rest of the module. Figure 3.1 shows an example of what an entry in this dataset might look like.

This dataset contains 147,138 entries with total size 84.4 MB.

3.1.2 C

As in BetterV [15] and as depicted in Figure 3.1, we use v2c [21] to translate the above Verilog

to C. In this case, the prompt for fine-tuning is actually the translated C code, and the original

Verilog is the response. The intent is to improve the model’s understanding of the Verilog code by

attempting to correlate it with C code, which has greater presence in pretraining data. As not all

Verilog modules in our dataset can be successfully translated to C, this results in 26,803 entries

with size 36.5 MB.

3.2 hdl2v Datasets

Each hdl2v dataset is fully open-source and available on HuggingFace, as described in Section 1.

3.2.1 VHDL

As shown in Figure 3.1, we use Google BigQuery to collect VHDL files from Github. We filter

by grabbing every file with a .vhd or .vhdl extension. This results in 53,698 VHDL entities. We

attempt to translate each VHDL entity to Verilog using the open-source tool vhd2vl [22]. We are

able to successfully translate 8974 of these entities to Verilog, with a total size of 51.5 MB.
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3.2.2 Chisel

CONFIG = 
"SmallBoomV3Config"

ALU
.scala

Chisel 

Dataset

, , , …
Chisel

Verilog

Collect

Compile

DCache
.scala

HellaCache
.scala

TLB
.scala

ALU
.v

DCache
.v

TLB
.v

TLB
.scala

TLB
.scala

Figure 3.2: How the Chisel dataset is collected. One pair is collected for each generated Verilog
module. Note that in cases where multiple Verilog modules are generated from the same Chisel file,

that Chisel file will be included in multiple pairs in the dataset.

Chisel is a high-level HDL embedded in Scala that can be compiled into Verilog or SystemVerilog.

Therefore, it intrinsically provides matching pairs between itself and Verilog. To gather this data,

we used the Chipyard framework [23], which contains a variety of generators that can be combined

to easily create top-level configurations for SoCs.

We compile a large number of Chipyard SoC configurations to Verilog, aiming to collect Verilog files

pointing to every single Chisel source file in the default Chipyard repository. Our dataset includes

55% of the .scala files in Chipyard and its subrepositories; of those not covered, most do not contain

synthesizable Chisel. The generated Verilog contains annotations that indicate which Chisel file

and line each Verilog line is generated from, allowing us to collect a set of relevant Chisel files for

each generated Verilog file. Each Verilog file contains one module. We show an example of how
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Chisel-Verilog pairs are collected for one SoC configuration in Figure 3.2. Duplicates are removed,

but for cases where the same Chisel file with different parameters generates differing Verilog output,

all the data is kept.

This results in 18,939 Chisel/Verilog pairs (with a total size of 1.69 GB).

In our prompt/response pairs for LLM fine-tuning, the response consists of one generated Verilog

file, which contain a single Verilog module. The prompt contains one or multiple Chisel source

files (including one primary class and all of its dependencies), and a request to translate the code

into Verilog. While the Chisel source code provided in the prompt does not directly compile to

the response Verilog, we seek to improve the LLM’s ability to correlate high-level HDL code in the

Scala-embedded Chisel, which may contain more information about design semantics, to lower-level

compiled Verilog.

3.2.3 PyMTL

PyMTL3

VerilogTranslation
Pass

✓❌✓✓❌

Verilog

PyHDL-Eval

Prompt:
class AlwaysOne( Component ):

def construct( s ):
    s.o = OutPort()

    @update
    def logic_block():
        s.o @= b1(1)

Response:
module always_one (output o); 
assign o = 1; endmodule

PyMTL
Dataset

Figure 3.3: How the PyMTL dataset is collected.

PyHDL-Eval [24] evaluates the ability of LLMs to correctly generate the Python-embedded HDLs

PyMTL3, PyRTL, MyHDL, Migen, and Amaranth. The authors provide as an artifact the PyHDL

code generated by LLMs during these experiments.

As shown in Figure 3.3, we use LLM-generated PyMTL3 code from PyHDL-Eval to construct a

dataset similar to the Chisel dataset above. Like Chisel, PyMTL3 is a high-level HDL which can be

compiled to Verilog. We compiled each PyMTL3 example from PyHDL-Eval’s artifact, numbering

about 50,000, to Verilog using PyMTL3’s VerilogTranslationPass. 18,636 examples (with a total size
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of 28 MB) compiled to Verilog successfully, as many LLM-generated PyMTL3 examples contained

syntax errors.
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Chapter 4

Experiment Setup

4.1 LLM Fine-Tuning Setup

We use Qwen2.5-Coder-32B-Instruct [25] as our base model. To train the model, we use DeepSpeed-

Chat’s Supervised Fine-Tuning pipeline [26] and enable ZeRO Stage 3 [27] and LoRA [28] for

efficient training. We maintain consistent hyperparameter settings across all experiments, including

the use of FusedAdam optimizer, cosine learning decay, a learning rate of 1e-5, a single training

epoch, and a batch size of 8. All experiments are conducted on a server with four NVIDIA L40S

GPUs. A summary of the training hyperparameters is provided in the following table:

Hyperparameter Value

ZeRO Stage 3

LoRA Dimension 32

Data Type bfloat16

Batch Size 8

Learning Rate 1e-5

Number of Epochs 1

Table 4.1: Hyperparameters used for Fine-Tuning

4.2 Evaluation Setup

We use VerilogEvalV2 [29] to evaluate our model, with the following settings:

9



Parameter Value

Samples 20

Temperature 0.85

top p 0.95

ICL examples 0

ICL rules no

Table 4.2: Parameters used for evaluation with VerilogEvalV2

4.3 Experiments

Base
Model

Verilog
Completion

C VHDL Chisel PyMTL
0

20

40

60

80

100

Ve
ril

og
Ev

al
V2

 P
as

s R
at

e 
(%

)

44.6 42.1 39.5

48.6
44.3

49.4

58.8
64.6 64.1

69.3
62.7

69.3

pass@1
pass@10

Figure 4.1: VerilogEvalV2 performance for Qwen2.5-Coder-32B-Instruct, after being fine-tuned
with each individual dataset.

4.4 Fine-Tuning with Individual Datasets

As shown in Figure 4.2, our datasets have varying effectiveness in improving our models’ perfor-

mance in VerilogEvalV2. Of the five datasets tested, PyMTL and VHDL perform the best, both
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Base Model C, Verilog
("BetterV-base")

Chisel,
VHDL

Chisel,
VHDL,
Verilog

Chisel,
VHDL,

Verilog,
PyMTL

0

20

40

60

80

100
Ve

ril
og

Ev
al

V2
 P

as
s R

at
e 

(%
)

44.6
42.2

50.2
47.6 45.4

58.8

65.5
68.7

72.2
66.4

pass@1
pass@10

Figure 4.2: VerilogEvalV2 performance for Qwen2.5-Coder-32B-Instruct, after being fine-tuned
with combined datasets.

providing about 18% increase in pass@10 over the base Qwen2.5-Coder-32B-Instruct model.

As discussed in Section 4.6, the VHDL dataset has the highest perplexity in the dataset and

provides a diverse dataset that has not been seen (as Verilog) during pretraining. On the other

hand, while the PyMTL dataset is relatively less diverse, the set of designs it targets is highly

relevant to VerilogEval, as PyHDL-Eval also generated code for a benchmark set of designs similar

to VerilogEval.

The Verilog, C, and Chisel datasets provide relatively smaller improvements. In fact, the C and
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Verilog Completion datasets decrease pass@1, but increase pass@10, which indicates that fine-

tuning on these datasets has increased the diversity of generated code.

4.5 Combining Datasets

We also explore the effects of fine-tuning with multiple datasets combined.

First, we fine-tune with our equivalent of BetterV’s fine-tuning dataset. This includes the C dataset

with both directions (C in the prompt and Verilog in the response, and vice versa), as well as our

Verilog Completion dataset. Note that this data is not exactly the same as the dataset used in

BetterV, and we do not include the discriminative guidance component.

Combining the C and Verilog datasets did not yield a significant improvement (within about one

percentage point) compared to just Verilog. This is likely because these datasets originate from the

same Verilog data, and as we show in Section 4.8, there are other languages that might perform

better than C when translated to.

Next, we fine-tune data with other combinations of datasets. Specifically, we interleave datasets

one entry at a time such that the distribution in the beginning of fine-tuning (when learning rate

is highest) is equal for each dataset used. Combining datasets seems to yield limited but positive

results. In particular combining Chisel and VHDL datasets yields our highest pass@1 of 50.2%, and

combining Chisel, VHDL, and Verilog yields our highest pass@10 of 72.2%. However, combining

Chisel, VHDL, Verilog, PyMTL reduces both pass@1 and pass@10.

In future work, we would like to explore other methods of composing these datasets in order to

harness the strengths of all the datasets in a single trained model.

4.6 Analysis

Metric Verilog Completion C VHDL Chisel PyMTL
Total Tokens 27,818,433 5,274,385 7,039,588 128,662,957 6,607,407

Vocabulary Size 23,247 15,075 22,279 4,441 1,731
Type-Token Ratio (TTR) 0.0008 0.0029 0.0032 0.0000 0.0003

N-gram Diversity
2-gram 0.0195 0.0393 0.0407 0.0003 0.0017
3-gram 0.0767 0.1217 0.1032 0.0010 0.0046

Average Entry Length (no. tokens) 188.06 195.78 783.71 7394.64 353.55
Standard Deviation of Entry Length 279.89 438.75 1796.34 10804.84 284.06

Perplexity 1.81 2.15 2.34 1.55 1.84

Table 4.3: Statistics for individual datasets
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Our datasets differ along several axes. In addition to language, they also vary in factors such

as distribution of designs and human readability. In this section, we characterize our datasets

and perform two ablation studies to better understand what makes a dataset helpful in improving

Verilog generation.

4.7 Dataset Statistics

We characterize the Verilog code of each dataset to eliminate effects of language syntax. We use

Qwen2Tokenizer to compute token counts and diversity. Table 4.3 includes statistics such as:

• Type-Token Ratio (TTR), the ratio of unique tokens to total tokens.

• N-gram diversity, the ratio of unique token sequences of length N to the total number of

such sequences. Higher values indicate greater token variety for both metrics.

• Perplexity, which measures how well a model makes predictions on a dataset, with lower

values indicating better performance. The model’s prediction accuracy can be estimated using

the formula: 1
perplexity × 100. For example, a perplexity of 1.81 corresponds to a prediction

accuracy of about 55.2%. In our case, we use Qwen2.5-Coder-7B as our model and randomly

sample 1000 entries from each dataset to compute perplexity.

We do not notice a significant correlation between any of these metrics and usefulness for Verilog

fine-tuning.

4.8 C vs VHDL

In Section 3.1.2, we created our C-Verilog fine-tuning dataset by translating Verilog to C. In order to

isolate the effects of using different languages from other variables, we create a dataset of Verilog to

VHDL translations using this same dataset. We translate Verilog to VHDL using Icarus Verilog [30].

Both C and VHDL datasets are machine-translated, and they sample the same distribution of

designs.

We train models using the subset of 12,612 pairs that were able to be translated to both C and

VHDL. Due to the high computational and runtime costs of fine-tuning, we use Qwen2.5-Coder-

7B-Instruct (the 7B variant rather than 32B) as our base model. Figure 4.3 shows that the VHDL-

translated dataset performs noticeably better than the C dataset. This indicates that the syntactic
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Figure 4.3: VerilogEvalV2 performance for Qwen2.5-Coder-7B-Instruct, after being fine-tuned
with a subset of the Verilog dataset translated to C and VHDL, respectively.

closeness of VHDL to Verilog, and the fact that VHDL is an HDL (as opposed to C, which is a

software language) plays some role in our VHDL dataset outperforming our C dataset.

4.9 Modifying the VHDL Dataset

In this section, we explore another axis of difference between datasets: human-readability. As

a first step, we remove any comments from the VHDL dataset, then fine-tune Qwen2.5-Coder-

7B-Instruct with this modified dataset. Next, in addition to removing comments, we obfuscate

variable names across both VHDL and Verilog by replacing variable names with generic placehold-

ers. VHDL/Verilog keywords are preserved and common variable names across a VHDL-Verilog

pair remain identical, but obfuscated.

As shown in Figure 4.4, we find that removing comments has only a small effect, whereas obfuscating

variable names significantly degrades model performance. This shows that our model learns mostly

from code, and the effect of natural language descriptions in the code (in the form of comments) is

minimal.

14



Original VHDL Comments Removed Obfuscated
Variable Names

0

20

40

60

80

100
Ve

ril
og

Ev
al

V2
 P

as
s R

at
e 

(%
)

34.5 33.1

21.0

59.8 57.0

39.1

pass@1
pass@10

Figure 4.4: VerilogEvalV2 performance for Qwen2.5-Coder-7B-Instruct, after being fine-tuned
with modified versions of our VHDL dataset.

4.10 Conclusion

In this work, we present hdl2v, which contains three new datasets for LLM Verilog generation fine-

tuning. We utilize existing VHDL, Chisel, and PyMTL3 code to construct these datasets, and show

that fine-tuning on these datasets yields up to 13% improvement in pass@1 and 23% improvement

in pass@10 on VerilogEvalV2. Furthermore, we find that some languages are inherently better than

others for this process; specifically we find that VHDL-Verilog pairs perform better than C-Verilog

pairs for the same set of designs. We also find that the model does indeed learn from code rather

than from the natural language comments in the code.

In future work, we would like to combine our dataset with other data augmentation methods and

agentic flows to demonstrate that our methods can be composed with others and yield even greater

improvement in Verilog generation performance.
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