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Abstract

Dynamical Modeling and Control of the Flying Capacitor Multilevel Converter

by

Rahul Krishnan Iyer

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Robert Pilawa-Podgurski, Chair

High-performance power conversion is increasingly critical for innovation in almost every
modern technology. In anticipation of future applications, the datacenter and electric trans-
portation sectors both continue to demand power converters that are more efficient and com-
pact, but simultaneously capable of supporting far greater power consumption. In recent
works, solutions from the family of hybrid-switched-capacitor converters have been shown
to meet the efficiency and power-density requirements of next-generation systems. Among
these, the Flying Capacitor Multilevel (FCML) converter is promising for electric drives and
dc-dc converters alike, as it incorporates smaller filter magnetics, uses high-figure-of-merit
low-voltage switches, and is capable of faster dynamic response. The widespread adoption
of this converter and related topologies, however, has been limited due to uncertainty about
the behavior of the flying capacitor voltages under transient conditions.

This thesis studies the dynamic behavior of the capacitor voltages and presents solutions for
regulating the capacitor voltages through “active balancing” control. Standard averaging
methods are shown to be inadequate in accurately capturing the capacitor voltage dynamics
under certain operating conditions, motivating new converter models developed from higher-
order averaging techniques. The refined models obtained are capable of accurately describing
the capacitor voltage behavior, and predict small-signal instabilities in standard active bal-
ancing control approaches. Subsequently, new modeling techniques and active balancing
controllers that do not exhibit small-signal instabilities are developed, and future directions
for incorporating these controllers in physical systems are highlighted.
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Chapter 1

Introduction

Power electronic systems play an increasingly critical role in modern technology. As a re-
sult, advancements in the performance of power electronics directly enable innovations in
almost every technology sector. In consumer electronics, improvements in power conversion
have enabled efficient power delivery in increasingly small form factors and at low costs.
Developments in this space that have received widespread attention in industry include
integrated dc-dc converters [1–7] and methods for wireless power transfer [8, 9]. In data
centers, rapid increases in processor power consumption have motivated recent investigation
of power distribution and converter architectures that can deliver greater currents with im-
proved dynamic performance [10–17]. In the broader industry of grid-scale systems, efficient
and cost-effective power semiconductor devices and advances in digital control have enabled
the adoption of high voltage dc (HVDC) transmission architectures [18–20] and increased
integration of renewable energy systems [21, 22].

1.1 Improving Power Converter Performance

Engineers assess power converter performance via different criteria depending on the end-
application requirements. Common metrics such as power conversion efficiency and volu-
metric power density are practical for quantitatively comparing the nominal steady-state
performance of converters or systems. Other metrics such as settling time, overshoot, and
bandwidth can be used for comparing the dynamic characteristics of converters and their
accompanying controllers under application-defined transient conditions.

Innovations in power conversion technology to improve performance along one or more of
these metrics occurs at different levels of the design. Component-level innovation, driven by
advancements in materials and packaging, enables power electronics designers to select from
higher performance switches, inductors, capacitors, and transformers comprising switching
power converters. At this scale, research and development often seeks the reduction of par-
asitic resistances, inductances, and capacitances which contribute to losses in the converter
and limit the speeds at which converters can be switched. Advancements in integrated cir-
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cuits used in power converters such as gate drivers, isolation devices, and microprocessors
facilitate smaller converter footprints, more efficient designs, and advanced control tech-
niques. Despite improvements in components, the performance of a given power converter
can be fundamentally limited by the circuit configurations that it can form during operation.
For example, the inductor voltages and capacitor currents that appear in each switching state
determine the volume of the passive components in the converter. These currents and volt-
ages can also limit the maximum rate at which the converter can respond to line and load
transients. In response to limitations at the topology level, engineers seek alternative power
conversion circuits that meet the application demands while offering improved performance
compared to conventional solutions. Innovations in circuit topology typically comprise re-
ductions in the volume of passive components, reductions in cost through the use of fewer
components or more widely available products, improvements in efficiency through the use of
higher-performance devices, or improvements in transient performance. For widely used and
newly introduced topologies alike, innovation can also occur in the domain of converter con-
trol. The scope of control in power electronics is broad—it may be at a low level, for example
to position switching signals to achieve efficient soft-switching operation, or at a higher level
to achieve application-specific functions such as power factor correction in grid-connected
converters or dynamic voltage scaling in CPUs and GPUs. In certain applications, engineers
explore innovations at a higher architecture level. For example, the number of power con-
version stages in the system and the operating voltages and currents of these stages may be
re-evaluated to address bottlenecks limiting efficiency, miniaturization, or lifetime.

The categories of innovation that have just been described are typically not considered
in isolation. Power converter designers often target improved performance all of these areas.
In many cases, innovations at one level enable cascaded improvements at higher levels of
the design. As an example, the commercialization of wide-bandgap semiconductor devices
has enabled practical demonstrations of power converters in medium-voltage applications
replacing conventional transformer solutions. At the same time, demonstrations of new
converter topologies and system architectures are enabled by advancements in the capabilities
of commercially available microcontrollers and custom digital controllers.

This dissertation focuses on the interaction between control and circuit topology. The
following chapters develop methods of digital control to enable high-performance demon-
strations of one particularly promising topology: the Flying Capacitor Multilevel (FCML)
converter. This introductory chapter first presents fundamental scaling laws and commercial
trends motivating the broader class of multilevel converters. After highlighting the advan-
tages of the FCML converter and the operating principles characterizing state-of-the-art
demonstrations, the penultimate section of this chapter introduces the key challenges limit-
ing widespread adoption of the topology and motivates the topics of research presented in
the subsequent chapters.
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Figure 1.1: Two multilevels converters ((a) Flying Capacitor Multilevel (FCML) Converter;
(b) Cascaded H-Bridge (CHB) Converter) exhibiting the properties studied in this introduc-
tory section.

1.2 The Case for Multilevel Converters

The investigation of “multilevel” switching converters spanning the past four decades has
broadly been motivated by two fundamental goals: a reduction in the filtering burden of
magnetic elements connected to the switching node of the converter, and a reduction in
the blocking voltage burden of power semiconductor devices comprising the switching net-
work. These two goals, combined with the proliferation of applications demanding high-
performance power conversion, have inspired research and development of numerous multi-
level topologies [23–32]. This introductory section considers the subset of topologies featuring
the following favorable properties:

� Equal blocking voltages across all power semiconductor devices, to allow for the use of
common parts, simplifying device cost, layout, and thermal design

� Equal switching activity for all power semiconductor devices, to simplify the control
signals provided to the converter and facilitate selection of power devices

� Evenly separated switching node voltage levels between 0V and vin, to reduce the
instantaneous voltage applied to filter magnetics while simplifying analysis of switching
ripple
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Figure 1.2: Carriers wk and switching signals sk (k ∈ {1, 2, . . . , N − 1}) corresponding to
symmetric Phase-Shifted Pulse Width Modulation (PS-PWM).

� A higher effective frequency of the switching node voltage waveform compared to the
switching frequency, to enable further reduction in magnetics size via reduction of the
applied volt-seconds

In practice, multilevel converters do not need to satisfy all of these requirements. The
superset of multilevel converters satisfying only some of these properties contains converters
exhibiting various tradeoffs in switching device count, passive component volume, losses,
and layout challenges. A comprehensive review of all topologies is outside the scope of
this work due to the large variation in application requirements and motivations behind
each topology. Furthermore, fair comparison of the broader class of multilevel converters
is difficult as the advantages and disadvantages of a given topology may only be apparent
under certain operating conditions. Nevertheless, the aforementioned constraints assist in
motivating the topology studied in this work by providing a foundation for discussing the
scaling laws enabling several performance improvements.

Fig. 1.1 shows two converters that exhibit all of the required characteristics: the Fly-
ing Capacitor Multilevel (FCML) [25] and Cascaded H-Bridge (CHB) [27] converters. For
switching frequency fs = 1/Ts, both converters are able to generate a switching node
voltage waveform with a fundamental frequency fe = 1/Te = (N − 1) fs when operated
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with Phase-Shifted Pulse Width Modulation (PS-PWM) [33]. Carrier waveforms wk , k ∈
{1, 2, . . . , N − 1} and switching signals sk resulting from a constant modulating waveform
with value D for an N -level converter are shown in Fig. 1.2. The generated switching signals
are circularly separated in phase by 2π/(N −1) radians through a set of N −1 equally phase
shifted carriers. In nominal operation, the modulating waveforms compared against each
phase-shifted carrier are identical, yielding circularly symmetric switching signals.

The analysis that follows assumes dc modulation for a dc-dc conversion application,
however the scaling laws presented are equally applicable to the case of dc-ac converters
with appropriate modifications to the definitions of modulating waveforms and the location
of the circuit ground node. Multilevel converters featuring the properties highlighted above
are shown to: increase system power density by reducing the volume of the filter inductor,
increase converter efficiency through the use of high-figure-of-merit low-voltage switches, and
enable faster dynamic response through a higher slew rate of the inductor current and higher
effective frequency of the inductor current ripple.

Filter Inductor Size

The generated switching node voltage and inductor current waveforms for the multilevel
converters under dc modulation are compared in Fig. 1.3 to the equivalent waveforms in a
standard step-down (“buck”) converter. Assuming a constant supply voltage vin and load
voltage vo = Mvin, where M ∈ [0, 1] is the conversion ratio, the steady-state behavior of the
standard buck converter is illustrated in Fig. 1.3a. The fundamental frequency fe = 1/Te

of the switching node voltage waveform is equal to the switching frequency fs = 1/Ts at
which the devices in the converter are operated. Similarly, the effective duty ratio De of the
switching node voltage waveform, defined as the proportion of the total switching period for
which vsw = vin, is equal to the duty ratio D of the steady-state switching signal applied to
the converter. Therefore, the peak-to-peak inductor current ripple in steady-state operation
can be expressed as

∆iL,pp,2L =
vin − vout

Lfe
De =

vin
Lfs

M (1−M) (1.1)

It is also instructive to calculate the net volt-seconds applied to the inductor in each sub-
interval of the switching period, which defines the peak magnetic flux in the inductor and
constrains its core area. The net volt-second product for the buck converter is given by

Λ2L = L∆iL,pp,2L =
vin
fs

M (1−M) (1.2)

Inspecting the switching node voltage waveform in Fig. 1.3a, the buck converter can be
categorized as a “two-level” converter, as the switching node voltage only takes one of two
instantaneous values: 0V or vin. By contrast, multilevel topologies generate intermediate
voltages between 0V and vin at the switching node. In this work, a multilevel converter
that generates N total voltages at its switching node is referred to as an N -level converter.
The converters differ in the mechanisms by which the multilevel switching node voltage is
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Figure 1.3: Steady-state switching node voltage vsw and inductor current waveform iL for
(a) standard two-level buck converter; (b) N -level multilevel converter.

generated, but can generally be represented by the circuit abstracting the switching network
shown in Fig. 1.3b.

In the case of multilevel converters, the switching node voltage alternates between two
fractions of the input voltage, k/vin and (k + 1) /vin, where k is given by a floor function as

k = ⌊(N − 1)M⌋ , k ∈ {0, 1, 2, . . . , N − 2} (1.3)

The effective frequency fe of the switching node voltage waveform is N−1 times greater than
the frequency fs at which the devices in the converter are operated. As a consequence, the
peak-to-peak inductor current ripple in steady-state operation for the multilevel converter is
given by

∆iL,pp,ML =
k+1
N−1

Vin −MVin

Lfe
De =

Vin

Lfs

De (1−De)

(N − 1)2
(1.4)

and the volt-second product for the multilevel converter is given by

ΛML =
Vin

fs

De (1−De)

(N − 1)2
(1.5)

Here, the effective duty ratio in the multilevel case is given by

De = M (N − 1)− k (1.6)
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Figure 1.4: Parameter α given by (1.8) plotted as a function of conversion ratio M for
different level counts N = 2, . . . , 6.

Figure 1.5: Normalized current ripple given by (1.9) plotted as a function of conversion ratio
M for different level counts N = 3, . . . , 6.

where k is given in (1.3). The expression in (1.5) can be compactly expressed as

ΛML =
Vin

fs
α (1.7)

α :=
De (1−De)

(N − 1)2
(1.8)

where α is a unitless parameter incorporating the level count and effective duty ratio of the
multilevel converter. Figure 1.4 depicts parameter α as a function of the conversion ratio
M . The maximum value of α occurs when De = 0.5, and for a given De, α scales inversely
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with level count as 1
(N−1)2

. Maintaining a constant inductance and switching frequency, the

current ripple in the multilevel converter for any conversion ratio is smaller than that of
a two-level converter. To emphasize this reduction, Fig. 1.5 plots the normalized current
ripple defined as

∆îL,pp :=
∆iL,pp,ML

∆iL,pp,2L
=

De (1−De)

(N − 1)2 (M (1−M))
(1.9)

as a function of the conversion ratio M . Alternatively, for a fixed current ripple specifica-
tion and switching frequency, multilevel converters can always be designed with a smaller
inductance L compared to a two-level converter.

In the general case, converters may be expected to operate over a range of conversion
ratios due to variations in the supply voltage or, in the case of inverters, variations in the
load voltage. Given an identical specification for the average inductor current and expected
conversion ratio range Mmin ≤ M ≤ Mmax, the normalized volt-seconds

Λ̂ :=
maxMmin≤M≤Mmax {ΛML}
maxMmin≤M≤Mmax {Λ2L}

(1.10)

can be used to compare the advantage of using an N -level converter compared to a two-
level converter from the perspective of reduction in the inductor volume [34]. For converters
operating over wide conversion ratio ranges where (Mmax −Mmin) >

1
(N−1)

, the normalized
volt-seconds are given by

Λ̂ =
1

(N − 1)2
· fs,2L
fs,ML

(1.11)

where fs,2L is the switching frequency of the two-level converter and fs,ML is the switching
frequency of the multilevel converter. The expression in (1.11) suggests that the switching
frequency in a multilevel design can be reduced while still maintaining lower normalized volt-
seconds and consequently smaller magnetics. The benefits of this property will be highlighted
in the following section.

Switching Devices

In medium- and high-voltage applications, often only a limited selection of commercially
available power semiconductor devices rated for the converter port voltage is available. Power
converter designers in these applications frequently seek system architectures and power
converter topologies that allow for the use of switches rated only for a fraction of the full
port voltage. However, even in applications where devices rated for the full voltage are
widely available, low-voltage devices can be compelling as they enable the design to be more
efficient. The advantages of using power semiconductor devices rated for lower blocking
voltages are highlighted by studying the losses in the device, following the analysis of [34,
35].

Consider the simplified vertical device structure in Fig. 1.6a [34, 35] and its equivalent
electrical circuit in the context of the switching converter as shown in Fig. 1.6b. Assuming
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Figure 1.6: (a) Canonical vertical power semiconductor model used in [34, 35] to derive the
voltage scaling characteristic of (1.14); (b) Equivalent circuit model of power semiconductor
device, modeling parasitic per-unit-area on-state resistance R̂on and per-unit-area drain-to-
source capacitance Ĉds.

the device blocks a voltage vin and is rated for a blocking voltage VB ≥ vin, the total
hard-switching loss in the device (ignoring overlap losses for simplicity) is the sum of the
conduction and switching losses Pcond and Psw, and is given by

Ploss = Pcond + Psw = I2RMS ·
R̂on (VB)

Adie

+ Ĉds (VB) · Adie · v2in · fs (1.12)

where IRMS is the root-mean-square (RMS) current through the switch; R̂on (VB) and Ĉds (VB)
are the per-unit-area parasitic on-state resistance and drain-to-source capacitance respec-
tively, parameterized in terms of the blocking voltage VB; and fs is the switching frequency.
The loss mechanisms scale inversely as the switch die area Adie shown in Fig. 1.6a is
modified—the conduction losses decrease with increasing area, whereas the switching losses
increase with increasing area. Therefore, to evaluate losses across devices rated for different
blocking voltages, it is useful to compare the best device possible for a given blocking voltage.
The loss expression in (1.12) can be bounded using the mean inequality of [36] as

Ploss ≥ 2IRMSvin
√

fs ·
√

R̂on (VB) · Ĉds (VB) (1.13)

Therefore, for an application specifying the RMS switch current, switch blocking voltage,

and switching frequency, the quantity

√
R̂on (VB) · Ĉds (VB) dictates the optimal loss in a
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Figure 1.7: Normalized volt-seconds Λ̂ given by (1.11) and normalized semiconductor loss
P̂ given by (1.17) plotted as a function of the normalized switching frequency f̂s defined
in (1.18). An N -level converter performs better than a two-level converter in the range

1
(N−1)2

< f̂s < 1.

switch rated for blocking voltage VB, and can be used to compare devices with different
blocking voltages. Following the standard analysis of the structure in Fig. 1.6 given in [34,

35] for silicon devices, the quantity

√
R̂on (VB) · Ĉds (VB) can be approximated as√

R̂on (VB) · Ĉds (VB) ≈
√

kRkC ·
√
VB (1.14)

where kR and kC are material parameters. This analysis highlights that the losses in the
power semiconductor device increase as its rated blocking voltage is increased. Therefore,
the minimum possible semiconductor loss for a hard-switching device in a two-level converter
is achieved when the device is rated for blocking voltage VB = Vin, and is given by

Pmin,2L = 2IRMSv
3
2
in

√
fs
√

kRkC (1.15)

Suppose the multilevel converter replaces the single power device with N−1 series-connected
devices, as is the case in the FCML converter shown in Fig. 1.1a. As each device must only
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be rated to block Vin

(N−1)
in its off-state, the minimum total hard-switching loss in the N − 1

devices is

Pmin,N−1 =
1√

N − 1
· 2IRMSv

3
2
in

√
fs
√
kRkC (1.16)

For identical switching frequency, the total loss in the N −1 lower voltage devices is reduced
by a factor of

√
N − 1 compared to the total loss in the single device rated for Vin. Observing

from (1.11) that the multilevel converter retains favorable volt-second characteristics at lower
switching frequencies, it is not necessary to switch both the multilevel design and the two-
level design at the same frequency. Allowing the switching frequency to be different, a
normalized semiconductor loss term comparing the minimum hard switching losses in both
converters can be defined as

P̂ :=
Pmin,ML

Pmin,2L

=
1√

N − 1
·

√
fs,ML

fs,2L
(1.17)

Fig. 1.7 plots both the normalized volt-seconds Λ̂ given in (1.11) and the normalized semi-
conductor loss P̂ given in (1.17) on common axes as a function of the normalized switching
frequency

f̂s :=
fs,ML

fs,2L
(1.18)

For each level count N , the normalized volt-seconds and the normalized semiconductor loss
are both simultaneously lower than unity when the two-level and multilevel converter are
operated with the same switching frequency (f̂s = 1). As the switching frequency is reduced,
the multilevel converter can perform better than the two-level converter with respect to both
power density and efficiency in the range 1

(N−1)2
< f̂s < 1. The simultaneous improvement of

volt-seconds and semiconductor losses is only possible due to the higher effective frequency
of the switching node voltage, motivating the study of multilevel converters such as those
shown in Fig. 1.1 compared to others that do not exhibit this property.

A few nuances of the discussion above are worth highlighting before concluding this
section. First, the approximation given in (1.14) is only valid for the simple vertical de-
vice structure studied. The characterization of commercially available silicon-carbide and

gallium-nitride devices in [34] reveals that the quantity

√
R̂on (VB) · Ĉds (VB) generally scales

as √
R̂on (VB) · Ĉds (VB) =

√
kRkC · V α

B , 0 < α < 0.5 (1.19)

This variation changes the relationship between normalized switching frequency and normal-
ized semiconductor loss visualized in Fig. 1.7, but does not affect the principle of exchanging
semiconductor losses and inductor volt-seconds by modifying the switching frequency. Sec-
ond, the analysis has assumed that power semiconductor devices are available with arbitrarily
granular blocking voltage ratings. In practice, economies of scale in semiconductor manufac-
turing result in device availability only at a few discrete blocking voltages (eg: 100V, 200V,
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Figure 1.8: Illustration of the inductor current iL, output capacitor current iCo and output
voltage vo during a transient in the inductor current reference iref . This scenario corresponds
to the minimum output voltage deviation ∆vo during the load step-up transient.

650V, 1.2 kV) for a given technology. Thus, higher figure-of-merit devices rated for lower
blocking voltages may not necessarily be available for higher level-count designs. Finally,
the analysis of converter performance has conspicuously neglected practical considerations
such as overlap losses in the semiconductor devices, losses in the inductor, and the volume of
the semiconductor devices and associated gate drive hardware. For more complete analysis
of scaling laws relevant to the design of multilevel converters, the reader is referred to the
examples in [37–41].

Dynamic Response

The reduced inductance requirement and higher effective frequency of the inductor cur-
rent ripple in multilevel converters have favorable implications for the converter dynamics
from several perspectives. The improved load-transient response of multilevel converters
has received recent attention for dc-dc applications in [5, 42–51]. For dc-ac applications,
recent work in [52, 53] has highlighted opportunities for multi-sampled control at the effec-
tive switching frequency, reducing modulator delays and enabling higher-bandwidth current
control loops.

The reduced inductance in the output filter of multilevel converters corresponds to a
higher maximum slew rate of the inductor current in response to load transients. For step-
down converters with a filter inductor at the load side, the theoretical maximum inductor
current slew-up and slew-down rates corresponding to application of vin or 0V at the switch-
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ing node respectively are given by

SRup =
vin
L

(1−M) (1.20)

SRdown =
vin
L

(−M) (1.21)

Fig. 1.8 illustrates the inductor current and output voltage waveforms corresponding to
minimum output voltage deviation in a peak current-controlled step-down converter. The
inductor current reference iref is stepped by a value of ∆iref in response to a load transient.
Assuming negligible parasitic resistance in the output capacitor and that the peak-to-peak
inductor current ripple is negligible relative to its average value, the minimum possible output
voltage deviation ∆vo is approximated by

∆vo ≈
1

C
· (∆iref)

2

2 SRup

(1.22)

for the step-up load transient and

∆vo ≈
1

C
· (∆iref)

2

2 |SRdown|
(1.23)

for the step-down load transient. For two-level converters, several works have investigated
techniques to regulate the inductor current and output voltage in the converter to achieve
near-minimum output voltage deviation or time-optimal recovery of the converter output
voltage under load transients [54–60]. As the inductance required to meet a fixed current
ripple specification is (N − 1)2 times lower in the multilevel converter, the magnitudes of
SRup and SRdown are (N − 1)2 times greater, implying (N − 1)2 times smaller output volt-
age deviation for the same output capacitance. Alternatively, multilevel converters achieve
identical deviation in the output voltage with a smaller output capacitance compared to a
two-level converter, though practical considerations such as the effects of parasitic resistances
in the output capacitor may limit this reduction.

In applications incorporating average current control loops, the higher effective frequency
of the inductor current waveform in multilevel converters allows for higher sampling rates for
a given switching frequency, corresponding to shorter controller and modulator delays. To
control the average current, the digital controller must sample the inductor current waveform
without introducing artifacts of the current ripple into the measurements. This is typically
accomplished by restricting the sampling frequency to a maximum of two times the funda-
mental frequency of the current ripple, which intentionally aliases the ripple content to dc
and prevents it from appearing in the sampled data [61–64]. In multilevel converters, the
higher effective fundamental frequency of the inductor current ripple allows for the digital
controller to sample the average inductor current up to 2 (N − 1) times per switching period.
Consequently, multi-sampled average current control loops for multilevel converters can also
achieve higher bandwidths compared to their two level counterparts, assuming the current
controller can appropriately compensate the small-signal characteristics of the multi-sampled
modulator [52].
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Figure 1.9: Digital PWM sampling and update modes for a two-level converter implementing
average current control, considering a one-step computation delay: (a) single-sampling single-
update at carrier valley; (b) double-sampling double-update at carrier peaks and valleys.

Figure 1.10: Digital PWM sampling and update modes for an N -level converter implement-
ing average current control, considering a one-step computation delay: (a) single-sampling
single-update at carrier w1 valley; (b) multi-sampling, multi-update at peaks, valleys, and
intersections of all carriers [52]. For multilevel converters, double-update schemes are also
possible, but are not shown in this figure for clarity.
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Typically average current control is implemented by synchronizing the sampling instants
with either or both of the carrier peaks and valleys [62]. Fig. 1.9 illustrates the possible
sampling synchronization schemes for a two-level converter. Sampling the inductor current
once or twice per period as shown in Fig. 1.9a and Fig. 1.9b respectively corresponds to the
standard single- and double-sampled implementations of regularly sampled PWM [52]. Like
two-level converter, multilevel converters can be controlled through single-sampled schemes
as shown in Fig. 1.10a, but can also incorporate multi-sampled schemes where the inductor
current is sampled at the peaks, valleys, and intersections of carriers as shown in Fig. 1.10b.
This is of particular interest in grid-tied converters, where the modulator delays can impact
the stability characteristics of the converter and connected system [52, 64]. A detailed
discussion of multi-sampling and its application to multilevel converters operated with PS-
PWM can be found in [52, 53].

Several recent works [42, 46–48, 50, 51, 65] have investigated controllers for multilevel
converters to make effective use of the faster slew rates and opportunities for multi-sampling.
The works of [42, 47] investigate peak and valley current control for 3-level Flying Capacitor
Multilevel (FCML) converters in point-of-load voltage regulator applications. The voltage-
mode controller presented in [46] aims for minimum deviation of the output voltage under
load transients. The work of [65] develops a controller that can respond to load transients
in optimal time. The predictive digital controllers presented in [50] for peak, valley, and
average current control aim for dead-beat (single-cycle) control of the inductor current. The
work in [50] also investigates multi-sampled predictive control where the predictive control
law is evaluated at the effective frequency of the inductor current ripple as opposed to the
switching frequency. The analysis in [52] develops analytical models for the modulator delay
in single- and multi-sampled digital PS-PWM implementations. The works highlighted above
study different methods for control of the inductor current and output voltage in multilevel
converters. The controllers presented are generally more complex than those developed for
two-level converters, however, as they are required to implement additional functions to
maintain nominal “balanced” operation. In implementation, the need for balancing can
prevent multilevel converters from achieving the true optimal response shown in Fig. 1.8.
The nature of this issue is described in greater detail at the end of this chapter and motivates
the research presented in the remainder of this work.

Summary

Multilevel converters featuring reduced voltages across power semiconductor devices and a
higher fundamental frequency of the voltage applied across filter magnetic components enable
simultaneous improvements in passive component volume and power semiconductor losses
compared to standard two-level solutions. For the class of converters studied, the reduced
filter inductance required to meet a current ripple specification and the higher fundamental
frequency of the inductor current ripple also enable improved dynamic response through
higher inductor current slew rates and compatibility with multi-sampled control. Among
the class of converters that demonstrate the properties highlighted in the beginning of this
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Figure 1.11: Switching signals under PS-PWM for a 4-level FCML converter, highlighting
the circuit states in two switching phases. In each switching phase, a maximum of two flying
capacitors are connected in series with the inductor.

chapter, the Flying Capacitor Multilevel (FCML) converter is particularly attractive as it is
also practical for dc modulation and can therefore be used in dc-dc conversion applications
[25, 32, 66]. By contrast, the Cascaded H-Bridge (CHB) converter shown in Fig. 1.1 requires
multiple isolated voltage domains for nonzero average power delivery in dc-dc applications,
which can have a significant impact on the system’s volume and efficiency. Furthermore, the
FCML converter features a lower number of power semiconductor devices for a given level
count compared to the CHB converter. The following section provides an overview of the
principles and challenges of standard “naturally balanced” operation of the FCML converter.

1.3 Naturally Balanced FCML Converter Operation

The discussion so far has implicitly assumed that the capacitor voltages vc,k with k ∈
{1, 2, . . . ,M} follow the nominal “balanced” distribution shown in Fig. 1.1, expressed as

vc,k =
k

N − 1
vin , k ∈ {1, 2, . . . ,M} (1.24)

A few additional characteristics of typical designs enable the linear-ripple inductor current
characteristic described in Section 1.2 where the effective fundamental frequency of the cur-
rent ripple is fe = (N − 1) fs under balanced conditions. First, the input and output voltage
ripples and flying capacitor voltage ripples are assumed negligible such that the inductor
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current ripple is only a function of the dc input voltage and dc flying capacitor voltages.
Second, the output capacitor Co is assumed to be significantly larger in value than the fly-
ing capacitors such that in each switching phase, the inductor current and flying capacitor
voltages are well-approximated by a second-order LC response corresponding to only the
series connection of the inductor and flying capacitors. Third, the effective frequency fe
is assumed to be much greater than the LC-resonant frequency of this equivalent circuit.
When the converter is operated with PS-PWM, the switching phases occurring within a
switching period consist of either zero, one, or two capacitors connected in series with the
inductor. To illustrate this property, Fig. 1.11 highlights two switching phases occurring
under PS-PWM for a 4-level converter. In the first switching phase shown, the flying capac-
itors are both connected in series with the inductor; in the second switching phase shown,
only capacitor C1 is connected. If the values of all flying capacitors are assumed to be iden-
tical (C1 = C2 = · · · = CM = C) the switching frequency requirement given above can be
summarized as

fe >>
1

2π
√
LC

(1.25)

A fourth standard assumption which allows for straightforward computation of the flying
capacitor voltage ripples is that the peak-to-peak inductor current ripple is negligible com-
pared to its average value, however this assumption is not strictly necessary for sizing the
flying capacitors.

Under the assumptions of small voltage ripples and sufficiently high switching frequency
described above, the output states of the converter—the inductor current and output voltage—
can be controlled via the typical techniques developed for two-level converters. Treating the
flying capacitor voltages as balanced, the works in [67–70] design control loops for the con-
verter output based on its averaged model [71] given by

˙vc,k = 0 (1.26)

˙iL =
1

L
(vin ·D − vo) (1.27)

v̇o =
1

Co

(
iL − vo

R

)
(1.28)

where the overline notation x indicates the quantity x averaged over one switching period Ts.
The averaged model is derived in detail in subsequent chapters, however an immediate ob-
servation from (1.26) is that the standard averaging methods of [71] predict zero dynamics
for the capacitor voltages. This motivates a critical underlying question—are the capaci-
tor voltages truly static as the averaged model suggests, or is there some other balancing
mechanism not captured by averaging?

The issue of whether and under what conditions the capacitor voltages are maintained
at the nominal values given in (1.24) is of great practical significance. If the capacitor
voltages are not balanced, the fundamental frequency fe of the switching node voltage vsw
is not N − 1 times greater than the switching frequency fs, and the RMS current in the
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filter inductor is greater, resulting in increased losses in the switching devices, inductor,
and output capacitor. In addition, a deviation of the capacitor voltages away from the
balanced distribution subjects some of the switching devices to off-state voltages exceeding
the nominal value of vin

(N−1)
, which can be catastrophic in high-voltage applications using

low-voltage semiconductor devices.
Following the initial presentation of the FCML conveter in [25], the works of [72–78] have

investigated the dynamic behavior of the capacitor voltages under operation with symmetric
PS-PWM. These works reveal mechanisms through which the capacitor voltages reach their
nominal balanced values—collectively referred to as the “natural balancing” property—that
are not described by the standard averaged model of the converter in (1.26). Fig. 1.12 shows
this natural balancing property in measured capacitor voltages from a 5-level FCML con-
verter prototype. The converter is subjected to a step in the input voltage from 7V to 30V,
and the capacitor voltages settle to the new balanced distribution after approximately 30ms.
The models presented in [72–74, 78] primarily find that the natural balancing of capacitor
voltages arises from the coupling between the capacitor voltages and the inductor current
ripple, which will be studied in greater detail in subsequent chapters. Parasitic elements
such as the drain-source capacitances of the switching devices have also been demonstrated
to contribute to natural balancing in [76, 77, 79, 80]. The steady-state capacitor voltages
may differ from the values given in (1.24) due to phenomena present in physical converters
that are typically omitted in standard converter models. In particular, the analysis in [81]

Figure 1.12: Measured voltage response in a 5-level FCML converter for a step in the input
voltage vin from 7V to 30V. The converter is configured with C = 8.8µF, L = 10µH,
fs = 75 kHz, and R = 8Ω. Over a timescale of approximately 30ms, the capacitor voltages
balance to their respective nominal fractions of the input voltage.
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(a) (b)

Figure 1.13: (a) Measured waveforms of Fig. 1.12, showing the underdamped capacitor
voltage behavior in a timescale of 4ms after the input voltage step; (b) Off-state switch
drain-source voltages vds, highlighting the excessive voltage observed across switch pair s4.

finds that switching frequency ripple present at the input of the converter and variations in
the duty ratios and phase shifts of switching signals arising from asymmetric propagation
delays in gate drive circuitry contribute to steady-state capacitor voltage imbalance. As
these nonidealities typically only result in small steady-state deviations of capacitor voltages
on the order of 5% of the nominal values [81], they are neglected in this work in favor of
studying the far greater imbalance that occurs during the natural balancing transient.

The instantaneous imbalance that occurs as capacitor voltages settle to their balanced
values can be significant, and is a practical consideration limiting broader adoption of FCML
converters. Natural balancing under PS-PWM is typically characterized by underdamped
dynamics. The waveforms shown in Fig. 1.13a for the 5-level converter in a timescale of 4ms
after the input voltage step highlight that the capacitor voltage responses can be highly oscil-
latory immediately after the line transient has occurred. These oscillations result in excessive
voltages across the switching devices. Fig. 1.13b highlights the off-state switch drain-source
voltages during the balancing transient shown in Fig. 1.13a. A peak stress of 20V volts is
observed across switch s4, corresponding to 267% of the nominal value or 7.5V. Several tech-
niques have been proposed in the literature to achieve faster natural dynamics. The works
of [72, 73, 82–85] propose the addition of a resonant “balance booster” circuit between the
switching node and ground to improve the natural balancing speed. In [72, 73] the speed of
the natural balancing response is found to be inversely related to the amplitude of ripple in
the inductor current, motivating slower switching frequencies for improved flying capacitor
voltage dynamics. While enabling some improvements in the natural balancing response,
these techniques also present practical challenges. The addition of balance booster circuits
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negatively impacts the converter volume through the large passive components added to the
output filter network. Reductions in switching frequency to improve balancing response re-
sult in increased inductor current ripple, which can have a detrimental impact on converter
efficiency and output current quality. Furthermore, the techniques proposed in [72, 73, 82–
85] often still yield capacitor voltage dynamics that are too slow to track fast line voltage
variations such as those associated with converter start-up and shut-down scenarios. As a
consequence, to ensure that the flying capacitor voltages remain approximately balanced,
most practical demonstrations of FCML converters assume that the converter input voltage
is only ramped slowly during start-up and shut-down through pre-charge circuits [86, 87].
Alternatively, designs such as [88] replace the low-voltage high-figure-of-merit power semi-
conductor devices in the converter with devices that can tolerate the full supply voltage,
to enable faster start-up and guarantee robust converter operation at the cost of increased
losses in the switches. These techniques have undesirable consequences for system power
density and efficiency, and introduce additional thermal management challenges that may
ultimately make the FCML converter an unattractive alternative to conventional solutions.

1.4 Research Outline

This work presents solutions for regulating the flying capacitor voltages through closed-loop
“active balancing” control. Compared to the natural balancing dynamics under converter
operation with PS-PWM, the closed-loop design aims for faster capacitor voltage response
to line transients. A key feature of active balancing control, as will be highlighted in sub-
sequent chapters, is the ability to specify the closed-loop dynamics as part of the controller
design process. In contrast to the natural balancing mechanism, where the capacitor voltage
behavior is complex function of the converter design and operating point, this quality of
active balancing control is highly valuable.

The remainder of this thesis is organized as follows:

Chapter 2: Active Balancing Based on the Standard Averaged
Model

An active balancing controller is derived using the standard averaging procedure of [71].
First, the principles of standard averaged modeling are reviewed. Next, an averaged plant
model for the FCML converter is derived, and its linearization is shown to have a paral-
lel structure. A “parallel controller” is designed to regulate flying capacitor voltages and
the inductor current simultaneously. The parallel controller is shown to enable significantly
improved capacitor voltage balancing during line transients, and the performance improve-
ments obtained through active balancing control are quantified through frequency response
characterizations. Small-signal instabilities are shown to arise in light-load conditions and
are experimentally characterized. Finally, the proposed active balancing controller derived
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from the averaged model of the converter is compared to state-of-the-art techniques in the
literature.

Chapter 3: Generalized Averaged Modeling

The dynamics of the FCML converter are studied more rigorously through the procedure
of generalized averaged modeling [89] to analyze the impact of the inductor current ripple
on the average capacitor voltages. First, the method of generalized averaged modeling is
reviewed. Next, a model for the FCML converter is derived without making a small-ripple
approximation for the inductor current. The inductor current ripple is characterized through
the inclusion of its harmonic content at multiples of the switching frequency. A reduced-order
model for the generalized averaged system is obtained through the application of singular
perturbation theory [90–92], where it is shown that the switching period is a small parameter
characterizing the separation of timescales between the dynamics of the inductor current
ripple and those of the average capacitor voltages. The reduced-order model is employed
to study the minimum number of harmonics modeling the inductor current ripple that are
required to accurately capture the capacitor voltage dynamics. The reduced-order model
is subsequently linearized to study the closed-loop dynamics with active balancing control,
and is shown to accurately capture small-signal instabilities at light-load conditions. The
model is verified through experimental characterization of a hardware prototype in natural
balancing and active balancing scenarios.

Chapter 4: Charge Models for Averaging Effects of Ripple

The contribution of the inductor current ripple to the dynamics of the average capacitor
voltages is characterized by studying the net change in charge stored on the flying capacitors
over a switching period. First, an expression for the charge flow into and out of the flying
capacitors in a 4-level FCML converter is obtained by approximating the inductor current
ripple as piecewise-linear in each switching phase. The small-signal impacts of perturbations
in the switching node voltage pulse position on the capacitor voltages are studied to obtain a
plant model for active balancing controller design. The plant model is verified against small-
signal analysis of circuit simulation. Next, a state-feedback controller is designed to damp
the oscillatory capacitor voltage dynamics. The small-signal plant model and closed-loop
system with active balancing control are experimentally verified on a hardware prototype.
In particular, the proposed controller is shown to be stable at light loads as it incorporates the
impacts of the inductor current ripple. Finally, the charge model is shown to be equivalent
the order-1 averaged model resulting from application of KBM averaging theory [93–95].

Chapter 5: Conclusions and Directions for Future Study

The main contributions of this thesis are summarized, and relevant areas for continued
research in dynamical modeling and control of the FCML converter are highlighted.
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Chapter 2

Active Balancing Based on the
Standard Averaged Model

Portions of this chapter are adapted in whole or in part from [96].

Under symmetric PS-PWM, where the duty ratios of all switching signals are equal and
neighboring switching signals are equally phase-shifted, the averaged converter model pre-
dicts zero capacitor voltage dynamics. However, when the duty ratios are allowed to vary
independently, the averaged converter model predicts that differences in the duty ratios of
neighboring switching signals yield nonzero average current into the flying capacitors. Treat-
ing perturbations in duty ratios away from the nominal value under symmetric PS-PWM as
control inputs, the averaged converter dynamics can serve as a plant model for active balanc-
ing control. An implicit assumption is that the capacitor voltage dynamics predicted by the
averaged model dominate over the natural balancing dynamics not captured by averaging.
This section first details the design of an active balancing controller that can be implemented
in parallel with controllers regulating the converter output current. The proposed controller
is shown to enable significant improvements in capacitor voltage balancing compared to nat-
ural balancing demonstrations under the same operating conditions. The controller is also
shown to achieve higher-bandwidth closed-loop performance compared to prior work, as it
maintains decoupled closed-loop flying capacitor voltage dynamics and compensates interac-
tions between the active balancing and current controllers. Subsequently, the validity of the
averaged model is studied as a function of the converter operating point, and small-signal
instabilities are shown to arise in conditions where the small-ripple approximation of the
inductor current inherent to averaged modeling is not valid.
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Figure 2.1: (a) General representation of feedback control and the pulse width modulator
in a two-level converter; (b) Frequency domain representation of the open-loop small-signal
system response to the pulse width modulated switching signal with modulation frequency
fm << fs. Assuming the plant has a low-pass characteristic, the dominant components of
the plant output v(t) occur at dc and the modulation frequency fm.

2.1 A Review of Standard Averaged Modeling of

Power Converters

In the most general sense, averaging seeks to approximate an original system consisting of
time-periodic dynamics with a time-invariant system that can be studied and controlled in a
more straightforward manner. In the study of switching circuits, averaging finds application
when the goal of modeling is to capture the “local average” behavior of voltages and currents
while neglecting or simplifying the impacts of ripple in the state variables. Averaged models
take various forms depending on how the ripple in state variables is treated. In many pulse-
width-modulated converters operating in the continuous conduction mode (CCM), ripples
in inductor currents and capacitor voltages are small by design and their impact on the local
average converter behavior can be ignored with negligible impact on the accuracy of the
resulting model. This is the standard notion of averaging in power electronics, presented
in [71, 94, 97, 98] and studied in detail in [99, 100]. In some topologies such as resonant
converters, the ripple in state variables has significant impact on the average behavior of
the converter output voltage. For these topologies, refined methods of averaging are re-
quired. These averaging methods will be detailed in the following chapters in the context of
developing more accurate models for the FCML converter.



CHAPTER 2. ACTIVE BALANCING BASED ON THE STANDARD AVERAGED
MODEL 24

Figure 2.2: Magnitude response of averaging operator (2.4). Assuming the modulation
frequency is significantly lower than the switching frequency (fm << fs) the averaging
operator captures the baseband content shown in Fig. 2.1.

The standard theory of averaging [71, 94] considers N -dimensional systems with state
vector x ∈ RN and exogenous inputs w ∈ RNu described via Ts-periodic dynamics

ẋ = f (x,w, t) (2.1)

f ( · , · , t+ kTs) = f ( · , · , t) , k ∈ Z (2.2)

The state variables consist of capacitor voltages and inductor currents in the converter,
and the exogenous inputs consist of independent voltage and current sources connected to
the converter ports. The averaging procedure approximates the system in (2.1) by a time-
invariant (but generally nonlinear) system given by

ẋ = favg (x,w,d) (2.3)

where

favg (·) =
1

Ts

∫ Ts

0

f (·, τ) dτ (2.4)

and d is a vector containing the average values of the switching signals applied to the
converter (in other words, the duty ratios of the switching signals). The new state and
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exogenous input vectors x and w approximate the local average quantities

x =
1

Ts

∫ t

t−Ts

x (τ) dτ (2.5)

w =
1

Ts

∫ t

t−Ts

w (τ) dτ (2.6)

under the conditions that: (a) the ripple in the state variables is small and has negligible
impact on the behavior of the local average quantities; and (b) the local averages of switching
signals and state variables vary sufficiently slowly with respect to the averaging interval Ts.
For standard converters operating in CCM in particular, the local average values of state
variables are much larger than the peak-to-peak ripples, and the first of these conditions
is easily justified. The second condition is justified by the structure of the control loop in
pulse-width modulated systems, namely the modulator that generates switching signals for
the converter based on the controller output. Figure 2.1 illustrates the canonical structure
of a PWM control loop with feedback of converter currents and voltages to a generic con-
troller. The controller output is the modulating waveform m(t) that is compared against
carrier waveform w(t) to produce the pulse-width modulated switching signal s1(t). The
characteristics of the pulse-width modulator have been characterized in several works [33,
62, 63]. General small-signal characteristics of the pulse-width modulator are illustrated in
Fig. 2.1 and summarized as follows: application of a small-signal perturbation at modula-
tion frequency fm to a dc modulating waveform results in a modulator output consisting of
content at the modulation frequency and side-bands of the switching frequency fs. If the
modulation frequency is sufficiently low relative to the switching frequency, the frequency
contents of the state variables are dominantly represented by baseband components as shown
in Fig. 2.1. These baseband components are accurately captured by the averaging operator
of (2.4) which has the frequency response characteristic shown in Fig. 2.2 [99].

Averaged modeling generally yields a nonlinear structure for favg. A final step of lin-
earization is typically performed to obtain an equivalent model that approximates the con-
verter behavior in a small-signal sense. Such analysis simplifies controller design through the
use of well-established techniques developed for linear systems, and is valuable for evaluating
controller performance, as it yields analytical expressions for closed-loop transient responses.
Finally, linearization is an important tool used to evaluate the stability of the equilibrium
operating point of the closed-loop system, particularly as a function of the controller design
and converter operating point. The linearized model is obtained by evaluating the Jacobian
matrices of favg with respect to small-signal variations in the state variables and control
inputs (duty ratios) at a quiescent state vector xe and input vector de. It can be represented
generally as

˙̃x = F · x̃+G · d̃ (2.7)

F = ∇xfavg|x=xe , d=de
(2.8)

G = ∇dfavg|x=xe , d=de
(2.9)
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Figure 2.3: Schematic drawing of anN -level FCML converter with nc = N−1 complementary
switch pairs and M = N − 2 flying capacitors.

where the notation ∇xfavg represents the Jacobian matrix of favg evaluated with respect
to vector x. In the following section, the principles of averaged modeling highlighted in this
section will be applied to characterize an average plant model for active balancing control.

2.2 Averaged Plant Model for the FCML Converter

In the remainder of this work, for brevity of notation, an N -level FCML converter will be
defined to have nc = N − 1 complementary switch pairs and M = N − 2 flying capacitors
as shown in Fig. 2.3. An N -level FCML converter with state variables labeled as shown in
Fig. 2.3 is represented by the following dynamical equations

Ckv̇c,k = iL · (sk+1 − sk) k ∈ 1, . . . ,M (2.10)

Li̇L = vinsnc − vo +
M∑
k=1

vc,k · (sk − sk+1) (2.11)

Cov̇o = iL − vo
R

(2.12)

The impact of switching on the state dynamics is captured by switching functions s1, . . . , snc

which will be treated as control inputs to the system. The capacitor voltages vc,1,. . . ,vc,M ,
inductor current iL, and output voltage vo are the N state variables to be controlled. This
section derives an averaged model for the FCML converter that can be used for active
balancing control.

Applying the averaging operator of (2.4) to the dynamical equations in (2.10)–(2.12)
describing the N -level FCML converter yields the system

Ck
˙vc,k = iL · (dk+1 − dk) k ∈ 1, . . . ,M (2.13)

L ˙iL = vin · dnc − vo +
M∑
k=1

vc,k · (dk − dk+1) (2.14)

Cov̇o = iL − vo
R

(2.15)
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Note that as the expressions in (2.10)–(2.12) are bilinear with respect to the state variables
and switching functions, the averaged model only captures the impact of the duty ratios
dk of the switching signals. As a consequence, active balancing controllers based on the
averaged model can only act on the switch duty ratios. The averaged equation given in
(2.13) predicts that when dk+1 = dk for all k ∈ {1, 2, . . . , nc}, the average current into
every flying capacitor vc,k is zero. Recalling that this condition corresponds to symmetric
PS-PWM, the averaged model does not predict the natural balancing behavior highlighted
in Section 1.3 and detailed in [72–78]. However, when duty ratios are allowed to vary
independently (i.e., dk+1 ̸= dk) the averaged model of (2.13) predicts nonzero average current
into the capacitor. This motivates the investigation of active balancing controllers that
adjust duty ratios independently depending on a negative feedback principle. To achieve the
steady-state inductor current ripple characteristics described in Section 1.2, the balancing
controller should generate equal duty ratios when capacitor voltages are balanced. When a
capacitor voltage deviates from its nominal balanced value, the balancing controller should
adjust duty ratios such that the average current into the capacitor corrects the error. The
aforementioned assumptions underlie the subsequent analysis—state variables are assumed
to have small ripple with respect to their average values and averaged quantities are assumed
to vary slowly with respect to the averaging interval Ts =

1
fs
.

The model of (2.13)-(2.15) fits the general form of (2.3) with the state vector defined as

x :=
[
vc,1 vc,2 · · · vc,M iL vo

]T ∈ RN (2.16)

and the vector of duty ratios defined as

d :=
[
d1 d2 · · · dnc

]T ∈ Rnc (2.17)

where [ · ]T denotes the matrix transpose. As a starting point for controller design, the
nonlinear model in (2.13)–(2.15) is linearized at a quiescent dc operating point to study the
small-signal dynamics of the averaged system. The quiescent state is vectorized as

xe :=
[
Vc,1 Vc,2 · · · Vc,M IL Vo

]T ∈ RN (2.18)

where

Vc,k :=
k

nc

vin (2.19)

and IL and Vo represent the quiescent inductor current and output voltage respectively. The
quiescent input consists of equal duty ratios D and is expressed as

de :=
[
D D · · · D

]T ∈ Rnc (2.20)

This choice of xe and de corresponds to the desired steady-state operating condition under
symmetric PS-PWM with balanced capacitor voltages. The small-signal dynamics are given
by

˙̃x = F · x̃+G · d̃ (2.21)
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where

F =



0 · · · 0 0 0

0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0

0 · · · 0 0 − 1
L

0 · · · 0 1
Co

− 1
RCo


∈ RN×N (2.22)

G =



−IL
C1

IL
C1

0 · · · 0 0

0 −IL
C2

IL
C2

· · · 0 0

...
. . . . . . . . .

...
...

0 0 0 · · · −IL
CM

IL
CM

Vc,1

L

Vc,2−Vc,1

L

Vc,3−Vc,2

L
· · · · · · vin−Vc,M

L

0 0 0 · · · · · · 0



∈ RN×nc (2.23)

The structure of the small-signal model reveals properties of the plant that may be used
to derive the controller structure. From (2.22) it follows that the small-signal capacitor
voltages, vectorized as ṽc := [ ṽc,1 · · · ṽc,M ]T, and the small-signal inductor current ĩL are
naturally decoupled, as the cross-coupling elements in F are zero. Thus ṽc and ĩL can
be realized as the outputs of two separate sub-plants modeled as decoupled integrators, as
shown in Fig. 2.4. Furthermore, the small-signal capacitor voltages are decoupled from each
other, as the terms in the top-left block of F are all zero. Thus, the capacitor sub-plant
can also be modeled internally as a system of decoupled integrators, shown in the expanded
view in Fig. 2.4. It is emphasized that the block diagram in Fig. 2.4 is only valid in the
averaged sense—the averaged analysis assumes that the ripple content of state variables do
not significantly affect the dynamics of the averaged components. Section 2.5 examines the
extent to which this assumption is true, and consequently, presents the limitations of active
balancing controllers designed from averaged models.

Linear manipulation of (2.21) reveals the capacitor sub-plant is modeled by the dynamical
matrix equation

˙̃vc = Gp,vc ·∆d̃ (2.24)



CHAPTER 2. ACTIVE BALANCING BASED ON THE STANDARD AVERAGED
MODEL 29

Figure 2.4: Block diagram of the small-signal averaged plant given in (2.21), highlighting
the parallel inductor and capacitor sub-plants.

where

Gp,vc =


IL
C1

0 · · · 0

0 IL
C2

. . . 0
...

...
. . .

...

0 0 · · · IL
CM

 ∈ RM×M (2.25)

and ∆d̃ denotes a vector of difference variables ∆dk defined as

∆d̃ =


∆d̃1
∆d̃2
...

∆d̃M

 :=


d̃2 − d̃1
d̃3 − d̃2

...

d̃nc − d̃M

 ∈ RM (2.26)

The inductor sub-plant is modeled by

˙̃iL = Gp,iL · d̃− ṽo
L

(2.27)

where
Gp,iL =

[
Vc,1

L

Vc,2−Vc,1

L
· · · vin−Vc,M

L

]
(2.28)
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Each sub-plant responds to a different characteristic of the system inputs. The flying ca-
pacitor voltage dynamics are dependent on the differences of neighboring duty ratios ∆dk,
shown in Fig. 2.4 as the output of a difference operator ∆. The inductor current responds
to a weighted sum of duty ratios.

A key observation motivates the controller presented in this work: a common offset
applied to all duty ratios does not affect the capacitor voltage dynamics. This common
offset—henceforth referred to as the common mode duty ratio—is always rejected by the
capacitor sub-plant, as it is eliminated by the differences of duty ratios in (2.24). The
following decomposition illustrates this point. Let

d̃1 = d̃CM + d̃DM,1

d̃2 = d̃CM + d̃DM,2

...

d̃nc = d̃CM + d̃DM,nc (2.29)

where dCM is the common mode (offset) variable, and dDM,k indicates a differential mode
variation added to it. Clearly,

∆̃d1 = d̃2 − d̃1 = d̃DM,2 − d̃DM,1

∆̃d2 = d̃3 − d̃2 = d̃DM,3 − d̃DM,2

...

˜∆dM = d̃nc − d̃nc−1 = d̃DM,nc − d̃DM,nc−1 (2.30)

Thus the controller in this work uses the common mode duty ratio to control current and
the differential mode duty ratios to regulate the capacitor voltages. The common mode duty
ratio is a sensible choice for controlling the inductor current as it does not affect the capacitor
voltages. At the same time, the balancing controller determines the differences of duty ratios
∆dk that should be applied to steer capacitor voltages. The differential mode duty ratios
can be constructed from these difference variables recursively, as will be discussed in Section
2.3. In this approach, both the capacitor balancing and output regulation objectives can be
achieved independently.

One aspect of the control structure demands further study—from the perspective of the
current controller, the difference variables set by the balancing controller add to the current
control action as a disturbance. This disturbance will be studied and compensated in the
design of the current controller.

Controllability of the Small-Signal System

The preceding discussion presents an intuitive argument that the parallel internal structure
of the small-signal plant derived from the averaged model allows for simultaneous control of
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both the capacitor voltages ṽc and the converter output states (̃iL and ṽo). The ability to
completely specify the closed-loop dynamics of the N state variables using the nc = N − 1
duty ratio inputs can be shown more rigorously by evaluating the controllability of the small-
signal system (2.21) using the techniques described in [101–103]. To demonstrate that (2.21)
is completely controllable, consider an invertible transformation of the input vector given by

δ̃ =


d̃2 − d̃1
d̃3 − d̃2

...

d̃nc − d̃M
d̃nc

 = T · d̃ (2.31)

where

T :=


−1 1 0 · · · 0 0

0 −1 1
. . .

...
...

...
. . . . . . . . . . . .

...
0 0 0 · · · −1 1
0 0 0 · · · 0 1

 (2.32)

The small-signal system (2.21) expressed with respect to the new vector δ̃ is

˙̃x = F · x̃+ Ĝ · δ̃ (2.33)

where
Ĝ = T−1 ·G (2.34)

The system (2.33) and consequently (2.21) are completely controllable if the accompanying
controllability matrix C, given by

C :=
[
Ĝ F · Ĝ F 2 · Ĝ · · · FN−1 · Ĝ

]
(2.35)

has rank N . From (2.23), Ĝ is given by

Ĝ =



IL
C1

0 0 · · · 0 0

0 IL
C2

0 · · · 0 0

...
. . . . . . . . . . . .

...

0 0 0 · · · IL
CM

0

−Vc,1

L

−Vc,2

L

−Vc,3

L
· · · −Vc,M

L
vin
L

0 0 0 · · · 0 0



(2.36)
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and has nc = N − 1 linearly independent rows. Matrix F · Ĝ is

F · Ĝ =



0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

. . . . . . . . . . . .
...

0 0 0 · · · 0 0

0 0 0 · · · 0 0

− Vc,1

LCo
− Vc,2

LCo
− Vc,3

LCo
· · · −Vc,M

LCo

vin
LCo


(2.37)

From (2.36) and (2.37) it is clear that C has rank N , therefore the small-signal system is
completely controllable. An immediate result of complete controllability is that averaged
capacitor voltage dynamics, which are predicted by the open-loop model to be zero, can
be specified by the design of the closed-loop controller. The following section outlines a
controller structure that allows for the independent specification of the closed-loop behavior
of the capacitor voltages and output states. In particular, it will be shown that the capacitor
voltages can be decoupled from the inductor current through the appropriate controller
structure.

2.3 Parallel Controller Structure

The following section introduces a control structure where a separate balancing and current
controller operate in parallel and their outputs are summed. The balancing controller com-
prises an internal model controller (IMC) that sets differences of duty ratios ∆dk to balance
each flying capacitor voltage with a designed closed-loop bandwidth while decoupling the
capacitor voltage dynamics. Differences of neighboring duty ratios are summed to obtain a
vector of the balancing contributions to each duty ratio, dbal = [dbal,1 · · · dbal,nc ]

T. The
current controller sets a scalar value dcurr applied equally to every duty ratio. Thus, the
current controller computes the common mode duty ratio dCM = dcurr and the balancing
controller computes the differential mode duty ratios dbal = [dDM,1 · · · dDM,nc ] = dDM.

Using the notation 1 = [1 · · · 1]T, the net control action is expressed as

d = dbal + dcurr · 1

=


dbal,1 + dcurr
dbal,2 + dcurr

...
dbal,nc + dcurr

 (2.38)

The proposed parallel controller is shown in Fig. 2.5. The Σ block in the balancing
controller and the ∆ block in the capacitor voltage path of the plant represent sum and
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Figure 2.5: Parallel control structure and an equivalent model of the controller. The flying
capacitor plant naturally rejects the common duty ratio term dcurr applied to all switches,
as shown in the equivalent model.

difference operations on neighboring duty ratios respectively, and will be detailed in the
following analysis. The common mode duty ratio computed for current control, dCM =
dcurr, is rejected by the capacitor sub-plant, so the closed-loop system can be represented
by an equivalent model, also shown in Fig. 2.5. By contrast, the differential mode duty
ratios computed for balancing, dDM = dbal, are not rejected by the inductor sub-plant,
so the current controller must be designed to reject disturbances injected by the balancing
controller.

Balancing Controller

Recalling that the small-signal capacitor sub-plant is a MIMO system that is already rep-
resented by decoupled integrators, the balancing controller should be designed such that
the capacitor dynamics remain decoupled in the closed-loop system. This ensures that the
control action taken to steer one flying capacitor voltage does not disturb the others. The
principle of internal model control [104] is used to ensure this decoupling.

In general, if the matrix input-output description of a linear system is square and in-
vertible, an internal model controller (IMC) is designed by multiplying the inverse of the
plant model by a diagonal system consisting of integrators. As the matrix Gp,vc in (2.25) is
diagonal, the capacitor sub-plant in (2.24) can be expressed through the Laplace transform



CHAPTER 2. ACTIVE BALANCING BASED ON THE STANDARD AVERAGED
MODEL 34

as

vc (s) =
1

s
·Gp,vc ·∆d (s) (2.39)

The IMC design procedure detailed in [104] aims to design a controller matrix for this
system such that the loop transfer matrix of the system is diagonal and consists of integrator
elements. In this sense, internal model control seeks to decouple the closed-loop responses of
capacitor voltages. Such an approach is particularly interesting in the system studied as the
plant model of (2.39) already consists of decoupled capacitor voltages. Thus, application of
the IMC design procedure to the capacitor sub-plant in (2.39) results in a diagonal-matrix
proportional controller where the bandwidths of the channels can be set independently via
each channel’s proportional gain. This controller is given by

GIMC =


ω1

C1

IL
0 · · · 0

0 ω2
C2

IL

. . . 0
...

...
. . .

...
0 0 · · · ωM

CM

IL

 (2.40)

where ωk is the designed bandwidth for capacitor k. The corresponding loop transfer matrix,
obtained via the Laplace transform, is diagonal with integrator elements and given by

Lvc =


ω1

s
0 · · · 0

0 ω2

s

. . . 0
...

...
. . .

...
0 0 · · · ωM

s

 (2.41)

The difference variables ∆d computed by the IMC must somehow be applied to the nc

differential mode duty ratios dDM such that the balancing actions for flying capacitors do not
interfere with each other. Since there is one more control variable compared to the number
of capacitors (i.e., M = nc−1), dbal,1 = 0 is chosen, as it does not disturb the current control
action. With the value for dbal,1 fixed, the balancing controller action dbal may be computed
via back-substitution, which is computationally efficient and readily implemented in digital
signal processors (DSPs). The small-signal balancing controller Gc,vc in Fig. 2.5 is given by

d̃bal,1

d̃bal,2
...

d̃bal,nc−1

d̃bal,nc


=



0 0 0 · · · 0

ω1C1

IL
0 0 · · · 0

ω1C1

IL

ω2C2

IL
0 · · · 0

...
...

. . . . . .
...

ω1C1

IL

ω2C2

IL

ω3C3

IL
· · · ωMCM

IL


·



ẽvc,1

ẽvc,2
...
...

ẽvc,M


(2.42)
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Figure 2.6: Block diagram representation of the balancing controller given in (2.42).

where the small-signal feedback error for capacitor voltages is vectorized as

ẽvc :=


ẽvc,1
ẽvc,2
...

ẽvc,M

 =


ṽc,1ref − ṽc,1

ṽc,2ref − ṽc,2
...

ṽc,Mref
− ṽc,M

 (2.43)

The balancing controller of (2.42) is visualized as a block diagram in Fig. 2.6. The
propagation from ∆dk to dbal,1 is straightforward to implement as a recursive computation
in a modern digital controller. To illustrate the active balancing control action as time-
domain waveforms, a scenario with imbalanced capacitor voltages is shown in Fig. 2.7
over the timescale of a switching period Ts. Note the underlying assumptions in this work:
the average flying capacitor voltages vary slowly relative to the switching period, and the
capacitor voltage ripples are small with respect to their average values. The errors associated
with each flying capacitor voltage are indicated by arrows, where the reference values are
the nominal fractions of the supply voltage vin, indicated by the red lines. Figure 2.8 shows
the corresponding control action to steer these example capacitor voltage errors to zero.
The difference variables ∆dk are applied recursively to each switching signal beginning with
d1 = dcurr.
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Figure 2.7: Example imbalanced capacitor voltages, shown in a timescale of one switching
period. The reference capacitor voltages are respective nominal fractions of the input voltage,
k
nc
Vin, shown as red lines. The signed errors associated with imbalanced voltages are indicated

by arrows.

Figure 2.8: Example duty ratios applied to each switch resulting from simultaneous current
control and active balancing actions. The balancing actions appear as difference duty ratios
∆dk, applied recursively to each switch beginning with d1 = dcurr. The pulse width corre-
sponding to the common-mode duty ratio dcurr is shown via dashed lines.
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In implementation, the balancing controller in (2.42) may be adapted to remove the
quiescent-point dependence on IL. In the prototype implemented in this work and demon-
strated in Section 2.4, the denominator terms IL are replaced with the current reference
iL,ref to eliminate the dependence of the active balancing closed-loop bandwidth on the load
current. Further adaptive measures may be considered to remove the controller’s dependence
on converter parameters. For example, in converters incorporating Class II dielectrics for
the flying capacitors, the capacitance values will change dramatically as a nonlinear function
of the supply voltage. If the supply voltage is expected to have large-signal variations, the
capacitance terms in (2.42) may be updated dynamically with a modeled voltage-controlled
capacitance characteristic.

Current Controller

From inspection of (2.27), the inductor current clearly responds to a linear combination of
the duty ratios. Using the control input decomposition of (2.38), the dynamics in (2.27) can
be re-expressed as

˙̃iL = Gp,iL ·
(
d̃bal + d̃curr · 1

)
− ṽo

L
(2.44)

Recalling that the small-signal model is derived with respect to the equilibrium point (2.18)
consisting of balanced capacitor voltages, (2.44) can be simplified as

˙̃iL =
1

L

(
vin · d̃curr − ṽo +

vin
nc

· 1T · d̃bal

)
(2.45)

The first two terms in small-signal dynamics (2.45) are identical to the small-signal current
dynamics in the standard two-level buck converter. The final term arises from the balancing
controller action dbal and acts as a disturbance to the current control loop. This disturbance
term, however, is not exogenous to the system—it arises from the balancing controller im-
plemented in parallel with the current controller. Assuming that the current controller can
measure the balancing control action dbal (a reasonable assumption if both controllers are
implemented on the same processor) the current control action can compensate the balancing
control disturbance. The linear control law

d̃curr =
1

vin

(
ũ+ ṽo −

vin
nc

1T · d̃bal

)
(2.46)

compensates the balancing control disturbance, the disturbance impact of the small-signal
output voltage, and the contribution of the input voltage, yielding the net small-signal
dynamics

˙̃iL =
1

L
ũ (2.47)

Note that with the control law of (2.46), the equivalent small-signal plant for current controls
is a first-order system with respect to a new input ũ. Standard linear control techniques
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Figure 2.9: Equivalent closed-loop system after feedback linearization of the current dy-
namics. To ensure the balancing disturbance is rejected in practice, the current controller
bandwidth should be chosen to be significantly higher than the balancing control bandwidth.

can be employed to compensate this new plant, which now remains fixed as the converter
operating point varies. A typical choice in average current control is to employ a proportional-
integral (PI) compensator [62] for the current controller, yielding the final linear control law

u = KpeiL +Ki

∫ t

−∞
eiLdτ (2.48)

eiL = iL,ref − iL (2.49)

The procedure outlined above to compensate the disturbance impact of the balancing
control action on the average inductor current dynamics follows the principles of feedback
linearization as outlined in [97, 105, 106]. From the perspective of the inductor current
dynamics, the disturbance impacts of other state variables are easy to negate assuming
those states are sensed. The current control law can also be obtained via direct application
of the feedback linearization concept to the nonlinear average current dynamics in (2.14).
Compared to a controller derived from the small-signal model, the resulting nonlinear current
controller can compensate the balancing disturbance effectively for large-signal variations in
the capacitor voltages.

With the substitution dk = dbal,k + dcurr, the dynamical system given by (2.14) can be
re-expressed as

L ˙iL = vindcurr + α− vo (2.50)

where
α = vc,1dbal,1 + (vc,2 − vc,1) dbal,2 + · · ·+ (vin − vc,M) dbal,nc (2.51)
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The corresponding state feedback control law

dcurr =
1

vin
u− α− vo

vin
(2.52)

linearizes the response of iL with respect to a new input u. This input can then set by a
feedback control law such as (2.49).

To ensure that the disturbance impacts of the balancing actions on the inductor current
are rejected effectively in practice considering delays and errors in sampling the capacitor
voltages, the closed-loop bandwidth of the current controller should be greater than that of
the balancing controller. In this section, a PI compensator is used to eliminate steady-state
error for dc load current references, but other structures for the current loop feedback com-
pensator can also be considered. Depending on the converter application and the expected
forms of current references, the feedback compensator can easily be replaced by other designs
that offer improved performance.
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Figure 2.10: 12-Level FCML converter prototype with L = 10µH, Ck = 8.8µF, fs = 100 kHz.
The parallel controller is implemented on a Texas Instruments TMS320F28379D DSP. The
hardware is reconfigured as a 6-level FCML converter by shorting input-side switch pairs.

Table 2.1: Component Details

Component Description Part Name

S1−5A, S1−5B 100V, 1.8mΩ GaN-FET EPC2302
C1−4 4 × 2.2µF, X6S, 450V C5750X6S2W225K250KA
Co 20 × 2.2µF, X6S, 450V C5750X6S2W225K250KA
L 10µH IHLP5050CEER100M01
Gate Driver 5V, 7.6A / 1.3A LM5114
Isolator Power and Signal ADUM5240
Cap. Voltage Sensor Instrumentation Amplifier AD8429ARZ-R7
Current Sensor Current Sense Amplifier LT1999IMS8-20
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2.4 Experimental Verification of Active Balancing

Controller

A 12-level FCML converter hardware prototype, shown in Fig. 2.10 is constructed to verify
the proposed parallel controller. Key component details and part numbers are given in Table
2.1. The hardware is configured as a 6-level FCML converter by bypassing switch pairs on the
input side. The flying capacitor voltages are measured directly using M on-board differential
voltage sensors, however a capacitor voltage estimator such as the one presented in [64]
could be considered to simplify the hardware design and reduce cost. The inductor current
is measured through a shunt resistor and amplifier circuit. To validate its practical utility,
the parallel controller is implemented on a Texas Instruments TMS320F28379D DSP. The
proposed implementation is similar in cost and complexity to the work of [107], which relies
on direct capacitor voltage sensing and TMS320x DSP implementation. The work in [108]
presents an implementation with a single sensor reducing component count, but the controller
is implemented on expensive DSPACE FPGA hardware and its structure does not offer a
decoupled response. The method presented in [50] is only developed for 3-level converters,
and is not cost-effective for DSP implementation as it requires high-speed computation and
positioning of switching edges. The controller proposed in this chapter is implemented on
a single core of the DSP with single-sampled single-update PS-PWM [52]. The control
law calculation for both the current controller and active balancing controller is timed in
experiments and runs in approximately 7.5µs. Thus, the proposed parallel controller can be
executed once per switching period with fs = 100 kHz.

Three experiments—a supply transient measurement, a measurement of the converter re-
sponse to periodic perturbation of the supply voltage, and a load transient measurement—are
conducted to compare the performance of an FCML converter relying on natural balancing
to one implementing the proposed parallel controller. The experiments verify that capacitor
voltage tracking is significantly improved with active balancing for fast variations in the line
voltage. A stiff output voltage generated by a large bulk output capacitance is used to sim-
plify the current controller design, as the output voltage dynamics are not of interest. This
setup is representative of an FCML converter feeding a stiff bus, as in the case of a rectifier
in an electric vehicle onboard charger or first-stage dc-dc converter in a datacenter setting.

Supply Voltage Transient Response

The first experiment compares balancing responses for a damped-step transient in the supply
voltage. The desired capacitor voltages—corresponding to nominal fractions of the input
voltage—are overlaid as reference values alongside the measured results. A current controller
designed for 10 kHz control bandwidth regulates the output current to 3A during an input
voltage transient from 50V to 90V. As seen in Fig. 2.11a, when the controller relies on
natural balancing, the flying capacitor voltages exhibit oscillations which introduce unequal
voltage stress across the switches in the converter. Capacitor voltage oscillations also couple
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(a) (b)

Figure 2.11: (a) Measured capacitor voltage and inductor current response of a current-
controlled converter relying on natural balancing when supply voltage is changed from 50V
to 90V. The capacitor voltages exhibit underdamped dynamics, resulting in unequal switch
voltage stress. (b) Measured response of a converter implementing the proposed parallel
active balancing controller. The capacitor voltages track the reference values with negligible
error compared to the natural balancing case. In both cases, the current control bandwidth is
set to 10 kHz, and the current reference iL,ref = 3A. The active balancing control bandwidth
is set to 600Hz for each flying capacitor.

into the current response in the form of increased harmonic content and peak-to-peak ripple.
In contrast, active balancing designed for 600Hz control bandwidth significantly improves
voltage tracking, as seen in Fig. 2.11b, and the inductor current is significantly less disturbed,
exhibiting approximately 50% lower peak deviation during the balancing transient.
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Periodic Supply Voltage Perturbation

The second experiment shows the improved voltage tracking with active balancing when
the converter is subjected to large-signal periodic input voltage perturbations similar to the
twice-line-frequency variations present in converters fed by a rectified single-phase ac supply
[109]. A current controller with 10 kHz control bandwidth regulates the output current to 2A
during the periodic perturbation. Figure 2.12a illustrates that the capacitor voltage tracking
is poor when the system relies entirely on natural balancing, as the natural dynamics are
too slow for capacitor voltages to track fast variations in the input voltage. This finding
is consistent with open-loop audiosusceptibility characterizations in [77]. Active balancing
once again significantly improves voltage tracking, shown in Fig. 2.12b. Here the specified
balancing bandwidth is 300Hz for all capacitors.

With active balancing, the maximum observed device voltage stress Vds over the pertur-
bation period decreases as a consequence of better capacitor voltage tracking. The maximum
stress observed in the natural and active balancing cases is measured and characterized in Fig.
2.13 as a function of the supply perturbation frequency. The maximum measured voltage
stress is normalized to the maximum stress expected at the peaks of the input perturbations
to obtain a normalized stress metric defined as

maxVds,norm :=
maxVds

max vin
nc

(2.53)

Actively balanced systems featuring two different designed balancing bandwidths are stud-
ied and compared to the natural balancing case. For both active balancing designs, with
perturbation frequencies within the controller bandwidths, the maximum observed device
voltage stress is consistently smaller compared to the design relying on natural balancing. In
the frequency ranges studied, the higher bandwidth active balancing design enables higher
fidelity tracking of capacitor voltages, yielding the lowest normalized stress. The lower nor-
malized stress with active balancing control indicates that in general, switching devices in
FCML converters employing active balancing do not need to be significantly over-rated rela-
tive to the nominal blocking voltage stress. The proposed active balancing strategy therefore
ensures safe operation of FCML converters designed with low-voltage switches.
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(a) (b)

Figure 2.12: (a) Measured response of a current-controlled converter relying on natural bal-
ancing when a 50Hz, 10VRMS ac perturbation is applied to the supply voltage. The capacitor
voltages do not track their respective reference values as the natural balancing dynamics are
not sufficiently fast. (b) Measured response of a converter implementing the proposed paral-
lel active balancing controller. The capacitor voltage tracking is significantly improved and
the disturbance to the inductor current is reduced. In both cases, the current control band-
width is set to 10 kHz, and the current reference iL,ref = 2A. The active balancing control
bandwidth is set to 300Hz for each flying capacitor.
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Comparing the time-domain responses in Fig. 2.12a and 2.12b, the inductor current
response also improves with active balancing, as the input perturbation and capacitor voltage
variations are noticeably decoupled from the current ripple. The coupling between the
line voltage variation and the inductor current waveform can be analyzed via a harmonic
distortion metric defined as

kdist :=
RMS (iL − IL,ref)

IL,DC

(2.54)

This metric quantifies the power of the disturbed inductor current waveform relative to
its dc value. This current distortion number is plotted in Fig. 2.14 as a function of the supply
perturbation frequency. As the perturbation frequencies increase, the capacitor voltage
tracking degrades, and the harmonic content in the inductor current generally increases
due to nonidealities in the implemented feedback linearized current controller. In general,
the current distortion is lower with the proposed active balancing controller compared to
the current-controlled converter relying on natural balancing, indicating better decoupling
in the actively balanced system compared to the naturally balanced one. For converters
interfaced to dc buses with low-frequency voltage ripple such as those in single-phase inverter
or rectifier systems, lower value of the distortion metric kdist enables more efficient converter
operation owing to lower RMS inductor current and consequently lower conduction loss. In ac
applications, the reduced harmonic distortion in the inductor current improves power quality
compared to the converter relying on natural balancing. This motivates active balancing
control even when capacitor voltage deviations do not cause excessive switch voltages.
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Figure 2.13: Maximum normalized device voltage stress Vds given by (2.53), plotted against
the supply perturbation frequency for a current-controlled converter relying on natural versus
active balancing. A 10VRMS perturbation is applied on top of a nominal 50V dc supply
voltage. The current control bandwidth is set to 5 kHz and two different active balancing
control bandwidths are studied, 300Hz and 500Hz. The device voltage stress is consistently
lower under active balancing.
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Figure 2.14: Measured current distortion given by (2.54), plotted against the supply per-
turbation for a current-controlled converter relying on natural versus active balancing. A
10VRMS perturbation is applied on top of a nominal 50V dc supply voltage. The current
control bandwidth is set to 5 kHz. Under active balancing, the current distortion is con-
sistently lower, indicating better decoupling of the capacitor voltages and inductor current
with active balancing.
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Load Transient Response

The third experiment investigates the load disturbance rejection of the proposed active bal-
ancing controller. Figure 2.15 illustrates results corresponding to 1 kW peak power operation
at 250V input, with a current control bandwidth of 10 kHz. The common-mode duty ratio
varies in response to the changing current reference, but does not visibly disturb the flying
capacitor voltages. This experiment illustrates an operating point where the ripple in both
the capacitor voltages and inductor current are low relative to their average values. Under
these conditions, the averaged model given in (2.13)-(2.15) accurately predicts that varia-
tions in the common-mode duty ratio do not affect the capacitor voltages. This yields a
similar load-transient response under natural balancing.

Experimentally measured converter responses to a large step in the current reference from
2A to 15A are shown in Fig. 2.16a and Fig. 2.16b for the converter relying on natural bal-
ancing and active balancing respectively. In the high-current operating condition where the
small-ripple approximation of capacitor voltages used to derive the averaged model is less ac-
curate, the load transient disturbs the capacitor voltages due to nonlinear coupling between
the capacitor voltage ripples and the average load current. Large-signal nonlinearities that
are not captured by averaging such as clamping between neighboring capacitor voltages are
also observed. The load transient response is improved with the active balancing controller
as demonstrated in Fig. 2.16b, however the average capacitor voltages are still disturbed
due to coupling between the capacitor voltage ripples and the average load current. Addi-
tionally, measurement errors arise from sampling the peaks and valleys of capacitor voltage
ripples, which are significant relative to the average capacitor voltages. This measurement
error also disturbs capacitor voltage regulation during the transient, further confirming that
the accuracy of the proposed averaged converter model decreases as capacitor voltage rip-
ples increase. The limitations of the averaged model are further studied in the following
section, where the impact of current ripple on the closed-loop dynamics is experimentally
characterized.
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Figure 2.15: Measured capacitor voltage and current response during a step change in the
current reference iref from 7A to 10A at vin = 250V. The current control bandwidth is set
to 10 kHz. The flying capacitor voltages are undisturbed during the load current transient,
verifying that the capacitor voltages naturally reject the common-mode duty ratio used to
control current.
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Figure 2.16: (a) Measured capacitor voltage response in the current-controlled converter
relying on natural balancing during a large step change in the current reference from iref
from 2A to 15A. (b) Measured capacitor voltage response in the current-controlled converter
implementing the proposed active balancing controller. In both cases, the load transient is
tested with vin = 40V and L = 4.7µH.
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2.5 Characterization of Small-Signal Instability

As shown in the experimental results in Section 2.4, the proposed controller enables improved
capacitor voltage balancing in current-controlled FCML converters subjected to large-signal
variation in the supply voltage. In the averaged sense (considering the model presented in
Section 2.3), the proposed control structure ideally realizes a stable decoupled system for
arbitrary selections of capacitor balancing bandwidths and inductor current control band-
width. However, in practice, delays in the control loop and the ripple content of the inductor
current have significant impact on the small-signal stability of the closed-loop system. Fur-
thermore, these practical considerations result in residual coupling between the balancing
control action and the inductor current due to imperfect cancellation by the feedback lin-
earizing control law. This section presents experimental results characterizing the closed-loop
small-signal stability with the proposed controller as a function of the converter design and
operating point. In subsequent chapters, refined models are derived and shown to agree with
the findings presented in this section.

The performance limits of the active balancing controller may be characterized by the
maximum designed balancing bandwidth ωbal that can be chosen before the closed-loop
system becomes unstable in the small-signal sense. In the following discussion, small-signal
instability corresponds to the deviation of capacitor voltages away from dc reference values
once the balancing controller is enabled. For small-signal-unstable designs, nonlinearities
in the closed-loop system eventually result in the capacitor voltages exhibiting steady-state
limit cycle oscillations or saturating to either the supply voltage or 0V. The exact nature
of the steady-state capacitor voltage behavior depends on the operating point and controller
parameters and is not the focus of study in this section. For the purposes of evaluating the
closed-loop performance of the active balancing controller, any of these large-signal behaviors
are regarded as unstable, since large deviations of capacitor voltages away from the nominal
balanced values result in excessive switch voltage stress.

Figure 2.17a shows the experimentally measured maximum stable balancing bandwidth
as a function of the load current for the 6-level converter with 10 µH filter inductance. For
each load current condition, the balancing bandwidth is incremented in 100Hz steps until
the capacitor response becomes unstable. The stability boundary, indicated by the blue
markers in Fig. 2.17a, is defined as the designed balancing bandwidth for which measured
oscillation amplitudes of any capacitor voltage grow to greater than one fourth the nominal
switch blocking voltage Vin

nc
. The error bars in Fig. 2.17a indicate the 100Hz resolution

of the stability boundary characterization arising from the fixed step size. Note that the
curve shown characterizes the system stability boundary and should not be interpreted as a
reference design.

At low currents, the maximum stable balancing bandwidth is significantly reduced com-
pared to its value at greater loads. This suggests that a fixed balancing bandwidth that
yields stable closed-loop operation at a given load current may not necessarily do so at
lighter loads. Figure 2.17b illustrates light-load measurements of the capacitor voltages over
time for stable and unstable designs indicated by the green and red plots respectively. The
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(a) (b)

Figure 2.17: (a) Measured closed-loop stability boundary with 10µH filter inductance,
100 kHz switching frequency, 5 kHz designed current control bandwidth, and 80V dc supply
voltage. The maximum designed balancing bandwidth resulting in a stable system is plotted
in blue as a function of the load current. Two points shown in green and red indicate exam-
ples of stable and unstable designs respectively. (b) Time domain responses corresponding
to the stable and unstable designs indicated in Fig. 2.17a.

time-axis is adjusted such that time t = 0 corresponds to the instant when the active balanc-
ing controller is enabled. For balancing bandwidths above the stability boundary, capacitor
voltages are characterized by an oscillatory response with a growing amplitude that even-
tually saturate due to limits on the duty cycle applied and body-diode-induced clamping
between neighboring capacitor voltages.

The load-dependence of the stability of the closed-loop system is not predicted by the
averaged models used in this work. It is the result of the dynamics not modeled by the
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(a) (b)

Figure 2.18: (a) Measured closed-loop stability boundary with 3.3µH filter inductance,
100 kHz switching frequency, 5 kHz designed current control bandwidth, and 80V dc supply
voltage. The maximum designed balancing bandwidth resulting in a stable system is plotted
in blue as a function of the load current. Two points shown in green and red indicate exam-
ples of stable and unstable designs respectively. (b) Time domain responses corresponding
to the stable and unstable designs indicated in Fig. 2.18a.

averaging procedure, namely the ripple content of the state variables [72, 73, 89, 94, 110].
To verify that the inductor current ripple is a primary contributor to the stability of the
system for a designed balancing bandwidth, the stability boundary is re-characterized for a
6-level converter with a smaller inductance and consequently larger current ripple. Figure
2.18a shows this maximum stable bandwidth as a function of the load current for the 6-level
converter with 3.3 µH filter inductance, and Fig. 2.18b shows corresponding time domain
measurements at light load. For a converter designed to have higher current ripple, the
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Figure 2.19: Representation of averaged dynamics used as the plant model in this chapter
and faster unmodeled dynamics. The unmodeled ripple contribution is insignificant at mod-
erate to heavy loads, but becomes more relevant at light loads, contributing to closed-loop
instability depending on the choice of active balancing controller gains.

maximum stable balancing bandwidth for a given load current is consistently lower. This
verifies that the inductor current ripple, unmodeled in the design process for the controller
proposed in this chapter, impacts the stability of the closed-loop system.

The block diagram in Fig. 2.19 depicts how the plant modeling error generally affects the
plant dynamics. Noting the high performance of the active balancing controller compared
to the naturally balanced approach in the experimental results of Section 2.4, it is evident
the unmodeled dynamics can be disregarded at heavy-load conditions, but are non-negligible
at lighter loads. According to the natural balancing studies in [72],[73], and [74], the ripple
content in the inductor current has significant impact on the natural balancing dynamics.
Since the ripple is purposefully ignored in the averaged modeling approach, its impact is
captured in Fig. 2.19 as a part of the unmodeled dynamics. The small-signal instabilities
studied in this section motivate the refined models of Chapter 3 that explain the impacts
of the inductor current ripple on the closed-loop stability of the capacitor voltages. Light-
load instabilities of active balancing controllers based on averaged models also motivate the
design of controllers that predict and complement the natural balancing action, as presented
in Chapter 4.

2.6 Survey of Active Balancing Literature Based on

Averaged Models

Several published works have investigated active balancing controller design based on the
averaged model of the FCML converter operating with PS-PWM, however the presented
closed-loop systems exhibit limitations arising from their structure and implementation.
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Figure 2.20: Structure of the active balancing controller proposed in [108, 111–113]. As
shown in (2.56), this balancing controller results in coupled capacitor voltage dynamics and
forces low-bandwidth operation in practice.

This section summarizes a few approaches in the literature and highlights key challenges in
each that are addressed in the balancing controller presented in this chapter.

The works in [108, 111–113] present balancing controllers which act on switch duty ratios
to regulate the average flying capacitor currents. However, the controllers in these works
follow from qualitative arguments about charging and discharging flying capacitors in re-
sponse to measured imbalance rather than analysis of the plant model. As a consequence,
the resulting closed-loop systems exhibit coupling between different flying capacitors. Due to
this coupling and uncompensated interactions between the balancing control actions and the
inductor current, these works only verify closed-loop performance through low-bandwidth
demonstrations. While such designs ensure steady-state balancing, they are not suitable
for responding to line transients such as those studied in Section 2.4. Furthermore, as the
closed-loop capacitor voltage dynamics are not extensively characterized, it is not clear how
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the balancing performance of these systems compares to the natural balancing response.
The structure of the controllers proposed in [108, 111–113] is shown in Fig. 2.20. The

controller output variables dbal,k represent the contributions of the balancing controller to
the duty ratios, which are subsequently summed with the current control action dcurr. Note
that the quantity regulated in this scheme is the “cell voltage”, defined as the difference of
neighboring capacitor voltages. In the structure shown in Fig. 2.20, the balancing controller
outputs are given by

dbal,k = ∆dk = P ·
(
evc,k−1

− evc,k
)

(2.55)

where P is a parameter representing the controller gain. The corresponding capacitor voltage
dynamics, obtained from (2.13) are given by

v̇c,k =
iL
C

· P ·
(
2evc,k − evc,k+1

− evc,k−1

)
(2.56)

Each capacitor voltage in this control scheme is clearly coupled to the neighboring capacitor
voltages. This coupling and its impact on the inductor current dynamics are not addressed in
[108, 111–113], and it is not immediately clear how to choose P to get a stable and satisfactory
closed-loop design. By comparison, in the decoupled closed-loop system designed in Section
2.3 (shown in Fig. 2.9) the closed-loop bandwidth of each capacitor voltage control loop is
precisely the balancing gain ωk.

The works in [107, 114] both present controllers for active balancing derived from the
principle of “inverting” the dynamics of the averaged model. In both approaches, state-
feedback control laws are derived to obtain a linear plant that has decoupled input-output
behavior with respect to a new set of inputs. In [114], the transformation is calculated
on the small-signal plant model of an FCML converter without an output capacitor Co

(i.e., a converter with a purely inductive output filter). The approach is easily applied to
the converter with an output capacitor shown in Fig. 2.3 by representing the small-signal
dynamics of (2.21) in a cascade form

z̃ :=
[
ṽc,1 · · · ṽc,M ĩL

]T ∈ Rnc (2.57)

˙̃z = F̂ · z̃ +W · ṽo + Ĝ · δ̃ (2.58)

˙̃vo =
1

Co

(
iL − vo

R

)
(2.59)
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Figure 2.21: (a) Block diagram representation of the small-signal system in (2.21) in cascade
form. (b) System resulting from the state feedback decoupling control law derived following
the principles of [114]. This control law is identical to that presented in Section 2.3, but does
not explicitly show the parallel control structure.

where δ̃ is given in (2.31), and

F̂ = 0nc×nc (2.60)

Ĝ =



IL
C1

0 0 · · · 0 0

0 IL
C2

0 · · · 0 0

...
. . . . . . . . . . . .

...

0 0 0 · · · IL
CM

0

−Vc,1

L
−Vc,2

L
−Vc,3

L
· · · −Vc,M

L
vin
L


∈ Rnc×nc (2.61)

W =
[
0 · · · 0 − 1

L

]T ∈ Rnc (2.62)

(2.63)
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Fig. 2.21a shows a block diagram representation of the small-signal system in cascade form.

Application of the state feedback control law δ̃ = Ĝ−1 ·
(
−F̂ · z̃ −W · ṽo + ũ

)
yields a new

plant consisting of decoupled integrators connecting each of the new inputs ũk to each of the
states z̃k. Given (2.60), the net decoupling control law is δ̃ = Ĝ−1 · (−W · ṽo + ũ), where

Ĝ−1 =



C1

IL
0 0 · · · 0 0

0 C1

IL
0 · · · 0 0

...
. . . . . . . . . . . .

...

0 0 0 · · · CM

IL
0

Vc,1

vin
· C1

IL

Vc,2

vin
· C2

IL

Vc,3

vin
· C3

IL
· · · Vc,M

vin
· CM

IL

L
vin


(2.64)

As shown in Fig. 2.21b, the new decoupled system can be controlled via linear state feedback
to control the capacitor voltages and inductor current. Similar to the representation in Fig.
2.9, ṽo can be controlled through an outer regulation loop setting the current reference for
the inner loop as shown in Fig. 2.21b. It can be shown that the control law of (2.64)
expresses exactly the same actions to decouple the balancing and current control loops as
the control laws presented in Section 2.3. This confirms that the parallel controller derived in
this chapter achieves the same performance as a controller derived directly from the matrix
description of the small-signal system. Details of how to convert the transformed input
vector δ̃ back into the vector of duty ratios d̃bal are missing from the discussion in [114]. By
contrast, the control law analysis in Section 2.3 highlights how to calculate the balancing
contributes to the duty ratios dbal,k from the duty ratio differences ∆dk. The structure of
the parallel controller demonstrates that active balancing control does not require significant
computational effort, as the balancing control actions and the compensation actions in the
current controller to reject the balancing disturbances can be recursively computed.

In [107], the inversion approach is applied directly the nonlinear averaged model of (2.13)–
(2.15). The final controller structure is similar to that presented in Section 2.3 and [114]—
differences of duty ratios are adjusted based on measured capacitor voltage error and are
appropriately propagated to eliminate coupling between capacitor voltages in closed-loop.
A benefit of applying inversion principles on the nonlinear averaged model is that the con-
troller achieves model inversion even when the state variables deviate significantly from the
quiescent point. This difference is illustrated in the experimental results of [107]. Section 2.3
highlights how the balancing controller gains and decoupling terms in the current control law
can be updated using measured state information to achieve similar closed-loop behavior.
Similar to [114], the work of [107] presents the decoupling control law as a matrix controller.
Direct evaluation of the matrix rows to determine the controller outputs can be difficult
to implement in digital controllers with constrained computational resources. However, the
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triangular structure of the control law is compatible with substitution algorithms such as
that presented for the balancing controller in Section 2.3. One drawback of the approach
in [107] is that the resulting closed-loop system does not offer a means to directly control
the inductor current, a consequence of the system having N state variables but only N − 1
control inputs. In [107], the outputs of the transformed plant are defined to be only the
N − 2 flying capacitors vc,k and output voltage vo to decouple the input-output behavior
without uncontrolled dynamics. The lack of direct control of the inductor current limits the
practical utility of this approach, as control of the inductor current can be highly desirable
in applications such as motor drives and power factor correction (PFC) converters.

Importantly, the works of [107, 114] do not characterize the choice of controller gains
and achievable closed-loop active balancing bandwidths, and imply that the dynamics of
capacitor voltages can be assigned arbitrarily (with standard limitations of digital control
such as controller and modulator delays). The stability characterization in Section 2.5 il-
lustrates a fundamental limitation of balancing controllers based on averaging that is not
discussed in [107, 114]: the inductor current ripple is not considered in the model of the
capacitor voltage dynamics. This modeling error can be considered negligible for designs
and operating points where the contribution of the inductor current ripple to the average
capacitor voltage dynamics is small compared to the contribution of the average inductor
current. At light loads, small-signal instability arises from the modeling error and can only
be suppressed through significant de-rating of the balancing controller gains. The following
chapter develops refined averaged models that capture the coupling between the current rip-
ple and the average capacitor voltage dynamics. The models are subsequently used to verify
the experimental findings in this chapter.
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Chapter 3

Generalized Averaged Modeling

Portions of this chapter are adapted in whole or in part from [115].

Experimental characterization in the previous chapter highlighted that active balancing
controllers derived from the averaged converter model are generally only useful in operating
conditions where the small-ripple approximation of the inductor current is valid. In light-
load conditions where the current ripple is comparable to the average current, the standard
averaged model does not accurately capture the capacitor voltage dynamics. This modeling
error results in unstable operation without significant de-rating of the balancing controller
gains to the point where the balancing action may no longer be effective. Moreover, at zero-
load operation, the balancing controllers derived from averaging assume there is no balancing
mechanism in the converter. These findings motivate the investigation of converter models
that capture the coupling between the inductor current ripple and the capacitor voltages.

The notion of coupling between the ripple content of some state variables and the average
dynamics of others is familiar in the field of power converter modeling. In resonant converters,
for example, tank inductor currents are assumed to be nominally sinusoidal at the tank
resonant frequency with zero average value, but result in nonzero average current into the

Figure 3.1: Block diagram representation of averaged plant model, showing the unmodeled
impacts of the inductor current ripple.
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load network. For FCML converters, investigations of the natural balancing of capacitor
voltages under PS-PWM in [72–78] have highlighted that the contribution of inductor current
ripple to the average capacitor currents is the reason for capacitor voltage balancing. As
shown in Section 1.3 and from the averaged model in (2.13), the average inductor current
does not act to balance the flying capacitors in symmetric PS-PWM, as all the duty ratios
are equal. This chapter aims to study the exact nature of the coupling between the inductor
current ripple and average capacitor voltage dynamics. A model for the contribution of
the inductor current ripple, shown generally in Fig. 3.1, is derived through the method
of generalized averaging [89] yielding a refined plant description. The new plant model
incorporating the impact of the current ripple is shown to accurately capture the small-
signal instabilities that arise in actively balanced systems.

Before proceeding, the averaging nomenclature appearing in the literature must be clari-
fied to avoid misinterpretation of the methods. Historically, two techniques of “higher-order
averaging” have been applied to study the dynamic impacts of ripple in power converters.
In both approaches, the contributions of the ripple to the average dynamics appear as terms
added to the standard averaged model. The standard averaged model is always recovered
as an “order-0” approximation of the higher-order averaged model. The first method of
higher-order averaging, presented in [89] as “generalized averaging”, is based on a Fourier
decomposition approach. Ripples in state variables are decomposed into sinusoidal com-
ponents at different harmonics of the switching frequency, and their contributions to the
averaged dynamics are considered in a per-harmonic manner. This is the method that will
be investigated in this chapter due to its simplicity and connection to previously developed
models of the FCML converter. The second method, proposed in [94], is based on formulat-
ing the averaged model as the solution to a perturbation problem, and will be discussed in
the next chapter.

3.1 A Review of Generalized Averaged Modeling of

Power Converters

The method of generalized averaging presented in [89] represents the time-domain behavior
of state variables over a sliding window of length Ts = 1/fs with the complex exponential
Fourier series representation given by

x(t− Ts + s) =
∞∑

m=−∞

⟨x⟩m(t) ejmωs(t−Ts+s) (3.1)

where ωs = 2πfs and s is a variable indexing time in the interval [t− Ts, t). The integral
definition for the complex-valued Fourier series coefficients ⟨x⟩m,

⟨x⟩m(t) =
1

Ts

∫ Ts

0

x(t− Ts + s) e−jmωs(t−Ts+s) ds (3.2)
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is referred to as the “generalized averaging operator.” As in the case of standard averaging,
applying the generalized averaging operator to the state variables and inputs of the time-
varying system yields a new time-invariant system representing the averaged behavior. In
the generalized averaged model, the the Fourier coefficients ⟨x⟩m(t) are the new (complex)
state variables. The index-0 states ⟨x⟩0(t) describe the time-averaged components of state
variables. The key contribution of the generalized averaging procedure over standard av-
eraging is its description of the coupling between the zero- and nonzero-index coefficients.
These nonzero-index coefficients correspond to the mth-harmonic content of ripple in state
variables, inputs, and switching signals. As the Fourier coefficients ⟨x⟩m(t) are paired in (3.1)
with vectors in the complex plane rotating at angular frequency mωs, generalized averaged
models have also been referred to as “dynamic phasor” models in the literature [116, 117].

Two mathematical properties reported in [89] are useful when applying generalized av-
eraging in the context of the FCML converter. For generic signals x(t) and y(t),

⟨xy⟩m =
∞∑

w=−∞

⟨x⟩m−w⟨y⟩w (3.3)

d

dt
⟨x⟩m =

〈
d

dt
x

〉
m

− jmωs⟨x⟩m (3.4)

Both properties can be derived from the definition of the generalized averaging operator
in (3.2). Additionally, because the signals x(t) and y(t) are real-valued in power converter
analysis, the positive- and negative-index coefficients can be related as

⟨x⟩−m = ⟨x⟩∗m (3.5)

⟨x⟩m⟨y⟩−m + ⟨x⟩−m⟨y⟩m = 2Re {⟨x⟩m⟨y⟩∗m} (3.6)

where ⟨x⟩∗m indicates the complex conjugate of ⟨x⟩m.
A methodical procedure is now highlighted to derive the generalized averaged model from

the switched differential equations describing the converter dynamics. Consider the general
representation of the switched system in (2.1), repeated as

ẋ = f (x,w, t) (3.7)

Assuming the state vector is represented as x =
[
x1 · · · xN

]T
, (3.7) can be expanded as ẋ1

...
ẋN

 =

f1 (x,w, t)
...

fN (x,w, t)

 (3.8)

First, each state variable xk is decomposed into into the positive and negative coefficients
corresponding to nk harmonics. In other words,

xk (t− Ts + s) =

nk∑
m=−nk

⟨xk⟩m (t) ejmωs(t−Ts+s) (3.9)
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Note that as the dimension of the extended state-space resulting from generalized averaging
is
∑N

k=1 2nk, care should be taken to not include more harmonics for each state variable than
necessary. For many state variables, a small-ripple approximation is valid and the effects
of ripple can be neglected with small error. For these variables, nk = 0 is sufficient. The
question of how many harmonics to model for state variables is central to the discussion in
subsequent sections of this chapter.

Next, for each coefficient ⟨xk⟩m, where m ∈ {0 , . . . , nk}, the mth harmonic of the right-
hand side in (3.8) is evaluated, i.e.

⟨fk (x,w, t)⟩m (3.10)

In evaluating these expressions, the convolution property of (3.3) is typically employed, as
will be demonstrated in the next section.

Finally, the dynamics of the mth-harmonic coefficient of the kth state variable is given by

d

dt
⟨xk⟩m = ⟨fk (x,w, t)⟩m − jmωs⟨xk⟩m (3.11)

The process is repeated for all state variables to obtain the complete generalized averaged
model.

3.2 Application of Generalized Averaging to the

FCML Converter

The generalized averaging procedure is described with respect to the N -level converter
schematic shown in Fig. 3.2. In this schematic, a parasitic resistance Rs is explicitly modeled
in series with the inductor to capture losses in the converter. This resistor represents the
lumped effects of losses in the switches, inductor, and capacitors, and will be shown in the
subsequent analysis to contribute to the damping of the flying capacitor voltage dynamics.
This damping is observed in experimental measurements, and has been reported in prior
literature modeling the FCML converter [72–77].

Figure 3.2: Schematic drawing of an N -level FCML converter, explicitly modeling a parasitic
resistance Rs.
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Application of the generalized averaging procedure to the dynamics of the FCML con-
verter results in an extended state space with a greater number of dimensions than the
original system. In applying the generalized averaging operator to the FCML converter dy-
namics, a few assumptions are useful for restricting the dimensions and complexity of the
resultant model. The following analysis assumes that the ripple content of the capacitor
voltages vc,k, supply voltage vin, and load voltage vo are negligible, yielding the approxima-
tions

vc,k(t) ≈ ⟨vc,k⟩0(t) (3.12)

vin(t) ≈ ⟨vin⟩0(t) (3.13)

vo(t) ≈ ⟨vo⟩0(t) (3.14)

These approximations are consistent with those reported in the models of [72–76, 78, 118],
and are physically justified for practical FCML converter designs. In particular, this work
assumes that the flying capacitances are sufficiently large such that the capacitor voltage
ripple can be neglected at all load conditions.

A small-ripple approximation is not made for the inductor current. Considering n har-
monics, the inductor current can be expanded as

iL(t− Ts + s) ≈
n∑

m=−n

⟨iL⟩m(t) ejmωs(t−Ts+s) (3.15)

Following the notation of [89], ⟨iL⟩m denotes the complex state variable corresponding to the
mth harmonic of the inductor current, and is decomposed as ⟨iL⟩m = ⟨iL⟩Rm + j⟨iL⟩Im.

The dc components of the switching signals sk are given by ⟨sk⟩0 = dk. For phase shift ϕk

(in radians) associated with switching signal sk, the mth-harmonic of the switching signals
is a complex variable ⟨sk⟩m = ⟨sk⟩Rm + j⟨sk⟩Im defined as

⟨sk⟩m =
sin(mπdk)

mπ
ejmϕk ,m ∈ N (3.16)

In this definition, sk is centered at t = 0 when ϕk = 0. Without loss of generality, this work
assumes a “leading” arrangement of ϕk = 2π (k − 1) /nc.

The switched equations in (2.10)–(2.12) all contain difference terms sk+1−sk. To simplify
notation, a switching function difference variable is defined as ∆sk := sk+1 − sk. Note that
because the generalized averaging operator (3.2) is linear, the following holds true for the
switching function difference variable

⟨∆sk⟩m = ⟨sk+1⟩m − ⟨sk⟩m (3.17)

where ⟨∆sk⟩m is a complex state variable decomposed as ⟨∆sk⟩m = ⟨∆sk⟩Rm + j⟨∆sk⟩Im.
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The converter model resulting from generalized averaging is given by

˙⟨vc,k⟩0 =
1

Ck

⟨∆skiL⟩0 =
1

Ck

n∑
m=−n

⟨∆sk⟩−m⟨iL⟩m

=
1

Ck

(
⟨∆sk⟩0⟨iL⟩0 + 2Re

{
n∑

m=1

⟨∆sk⟩∗m⟨iL⟩m

})
(3.18)

˙⟨iL⟩0 =
1

L

(
⟨vsw⟩0 − ⟨vo⟩0 −Rs⟨iL⟩0

)
(3.19)

˙⟨iL⟩m =

(
−jmωs −

Rs

L

)
⟨iL⟩m +

1

L
⟨vsw⟩m (3.20)

˙⟨vo⟩0 =
1

Co

(
⟨iL⟩0 −

⟨vo⟩0
R

)
(3.21)

where

vsw = vinsnc −
M∑
k=1

vc,k ·∆sk (3.22)

⟨vsw⟩0 = ⟨vin⟩0⟨snc⟩0 −
M∑
k=1

⟨vc,k⟩0⟨∆sk⟩0 (3.23)

⟨vsw⟩m = ⟨vin⟩0⟨snc⟩m −
M∑
k=1

⟨vc,k⟩0⟨∆sk⟩m (3.24)

The extended state space of the generalized averaged system is represented by the state
vector

x :=



⟨vc,1⟩0
...

⟨vc,M⟩0
⟨iL⟩0
⟨vo⟩0
⟨iL⟩R1
⟨iL⟩I1
...

⟨iL⟩Rn
⟨iL⟩In


∈ RN+2n (3.25)

If the duty ratios and phase shifts of switching signals are considered constants, the balancing
dynamics obtained from (3.18)–(3.20) can be compactly represented in matrix form

ẋ = A · x+B · ⟨vin⟩0 (3.26)
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where

A =


A00 A01 · · · A0n

A10 A11 0 0
... 0 . . . 0

An0 0 0 Ann

 (3.27)

B =
[
BT

0 BT
1 · · · BT

n

]T
(3.28)

with

A00 =


0 · · · 0 ⟨∆s1⟩0

C1
0

...
. . .

...
...

...

0 · · · 0 ⟨∆sM ⟩0
CM

0

− ⟨∆s1⟩0
L

· · · − ⟨∆sM ⟩0
L

−Rs

L
− 1

L

0 · · · 0 1
Co

− 1
RCo

 (3.29)

A0m =



2⟨∆s1⟩Rm
C1

2⟨∆s1⟩Im
C1

...
...

2⟨∆sM ⟩Rm
CM

2⟨∆sM ⟩Im
CM

0 0
0 0

 (3.30)

Am0 =

[
− ⟨∆s1⟩Rm

L
· · · − ⟨∆sM ⟩Rm

L
0 0

− ⟨∆s1⟩Im
L

· · · − ⟨∆sM ⟩Im
L

0 0

]
(3.31)

Amm =

[
−Rs

L
mωs

−mωs −Rs

L

]
(3.32)

BT
0 =

[
0 · · · 0 ⟨snc ⟩0

L
0
]

(3.33)

BT
m =

[
⟨snc ⟩Rm

L
⟨snc ⟩Im

L

]
(3.34)

Fig. 3.3 shows a block diagram representation of the model of (3.26), highlighting the
additional dynamics captured compared to the standard averaged model. In particular,
the block diagram reveals the feedback structure of the natural balancing mechanism. The
average capacitor voltages influence the inductor current ripple, decomposed in the gener-
alized averaged model into different harmonic terms. Each inductor current harmonic may
subsequently drive average current into or out of the capacitor.

The natural balancing dynamics predicted by the generalized averaged model are ex-
amined in a case study of a 6-level FCML converter operated with D = 0.35. Fig. 3.4
demonstrates the capacitor voltage responses when a step-transient in the supply voltage is
applied. The result of a circuit simulation is compared to the generalized averaged model of
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Figure 3.3: Block diagram of the full generalized averaged model given in (3.26). Contri-
butions of the generalized averaged model compared to the standard averaged model are
highlighted and appear as feedback dynamics.

(3.26) evaluated for different numbers of modeled inductor current harmonics n. For n = 0,
where no harmonics are modeled, the model predicts that the capacitors have no dynamics.
When the first harmonic is included, the model predicts nonzero but incorrect dynamics for
the capacitor voltages. Including the second harmonic yields a model that predicts the dom-
inant oscillatory modes and damping of the capacitor dynamics accurately as evidenced by
the excellent agreement between the transient responses. The model with n = 2 captures the
dominant second order response with a relative error of 21% for the damping time constant
and 3% for the oscillation frequency, corresponding to a (vector) relative error of 3% in the
dominant pole location. Including additional harmonics has minor impact on the transient
response.

In Fig. 3.5, the verification is performed with the duty ratio modified toD = 0.5. Notably
at this operating point, the second harmonic of the inductor current does not contribute to
the capacitor voltage dynamics, and n = 3 is required to capture the correct steady-state
solution. The fourth, fifth, and sixth harmonics also do not contribute to the capacitor
voltage dynamics, and n = 7 is required to obtain a similar result as the circuit simulation
with a relative error of 1.4% in the dominant pole location.

The waveforms of Fig. 3.4 and Fig. 3.5 highlight two important characteristics of gener-
alized averaged models of FCML converters. First, the single-frequency describing function
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Figure 3.4: Simulated and modeled capacitor voltage responses for a 6-level FCML converter
operating at D = 0.35, varying the total numbers of harmonics modeled n. The model with
n = 2 accurately captures the step-transient response. In the circuit simulation and model,
L = 10µH, C = 8.8µF, R = 3.5Ω, Rs = 0.3Ω, and fs = 100 kHz. The line voltage is
stepped from 100V to 125V.
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Figure 3.5: Simulated and modeled capacitor voltage responses for a 6-level FCML converter
operating at D = 0.50. At this conversion ratio, n = 3 is required to predict the correct
steady-state behavior. A small error of 5.8Hz is observed between the predicted and observed
dominant oscillation frequency. In the circuit simulation and model, L = 10µH, C = 8.8µF,
R = 5Ω, Rs = 0.3Ω, and fs = 100 kHz. The line voltage is stepped from 100V to 125V.
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approach typical of resonant converter analysis [89, 119–122] where only the first harmonic
component of state variables is modeled, is not generally applicable. In the 6-level converter
example, the model considering only the first harmonic does not capture the dominant ca-
pacitor voltage dynamics. Second, the total number of harmonics required to model a given
converter appears to depend on the operating point. This raises a natural question of how
many inductor current harmonics one must include before the generalized averaged model
converges to some predicted behavior. The following section studies this topic, first by pre-
senting a simplified model and subsequently by examining its dependence on the number of
harmonics considered.

3.3 Model Reduction and Analysis of Minimum

Harmonics Required

This section studies the contribution of the different inductor current harmonics to the
natural balancing dynamics under PS-PWM, where all duty ratios are equal to a common
value D and the phase shift in radians between neighboring switching signals is 2π/nc. The
following substitutions are made

⟨∆sk⟩0 = 0 (3.35)

⟨∆sk⟩m =
sin (mπD)

mπ
exp (jmϕk)

[
exp

(
jm2π

nc

)
− 1

]
(3.36)

The average capacitor voltage dynamics typically vary slowly relative to the switching
period [72–74, 76, 78], motivating the investigation of techniques that reduce the model
dimensions while preserving the slow behavior. This work presents a technique for model
order reduction based on the theory of singular perturbations [90–92].

Model Order Reduction

The equation of (3.20) can be re-expressed as

1

jmωs

˙⟨iL⟩m =
jmωsL+Rs

jmωsL

(
−⟨iL⟩m +

⟨vsw⟩m
jmωsL+Rs

)
(3.37)

For typical switching frequencies, ωs ≫ 1, so the coefficient on the left-hand side of (3.37)
can be approximated as 1/ωs ≈ 0. Using this approximation, (3.37) becomes an algebraic
expression in ⟨iL⟩m and ⟨vsw⟩m that can be simplified to

⟨iL⟩m ≈ ⟨vsw⟩m
jmωsL+Rs

=:
⟨vsw⟩m
Zm

(3.38)

The approximation of (3.37) by (3.38) is characteristic of a singular perturbation approach
[90–92]. A small parameter (in this case, the switching period) quantifies a separation of
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time-scales. As a result, the state vector resulting from generalized averaging is recognized to
consist of slow state variables (the 0th order coefficients in (3.25) corresponding to the average
component of the state variables) and fast state variables (the higher order coefficients in
(3.25) modeling the inductor current ripple). The approximation of (3.38) yields a reduced-
order model of dimension N that approximates the behavior of the full-order generalized
averaged model. Note that the approach for model order reduction does not simply ignore
the contributions of the nonzero-order coefficients to the averaged dynamics. Instead, the
procedure ignores the dynamics of these coefficients, treating the inductor current ripple
as a quasi-static quantity that can be calculated from the average capacitor voltages and
switching functions. Appendix A provides mathematical background justifying the singular
perturbation approach in this context.

Applying (3.38), each of the capacitor voltage dynamics can be expressed as

˙⟨vc,k⟩0 =
1

Ck

(
2Re

{
n∑

m=1

⟨∆sk⟩∗m
⟨vsw⟩m
Zm

})
(3.39)

Using (3.24), the right-hand side of (3.39) is expanded as

2Re




−⟨∆sk⟩∗1
Ck
...

−⟨∆sk⟩∗n
Ck


T

⟨∆s1⟩1
Z1

· · · ⟨∆sM ⟩1
Z1

...
. . .

...
⟨∆s1⟩n

Zn
· · · ⟨∆sM ⟩M

Zn



 ⟨vc,1⟩0

...
⟨vc,M⟩0



+ 2Re




⟨∆sk⟩∗1
Ck
...

⟨∆sk⟩∗n
Ck


T

⟨snc ⟩1
Z1
...

⟨snc ⟩n
Zn


 ⟨vin⟩0 (3.40)

Recalling that (3.40) yields a scalar value of ⟨ ˙vc,k⟩0, the reduced-order dynamics for all flying
capacitors Ck can be expressed as a vector concatenation of (3.40) for each capacitor Ck.
The reduced-order model describing the capacitor voltage dynamics is given by ⟨ ˙vc,1⟩0

...
⟨ ˙vc,M⟩0

 = Ac ·

 ⟨vc,1⟩0
...

⟨vc,M⟩0

+Bc · ⟨vin⟩0 (3.41)

where the matrix Ac can be expressed as the product of two component matrices Ac,α and
Ac,β as

Ac = 2Re {Ac,α ·Ac,β} (3.42)
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Figure 3.6: Block diagram representation of reduced-order model, showing the decoupled
capacitor voltage and output filter dynamics.

with

Ac,α =


⟨∆s1⟩∗1
C1

· · · ⟨∆s1⟩∗n
C1

...
. . .

...
⟨∆sM ⟩∗1
CM

· · · ⟨∆sM ⟩∗n
CM

 (3.43)

Ac,β =


−⟨∆s1⟩1

Z1
· · · −⟨∆sM ⟩1

Z1
...

. . .
...

−⟨∆s1⟩n
Zn

· · · −⟨∆sM ⟩n
Zn

 (3.44)

The matrix Bc is similarly decomposed as

Bc = 2Re {Bc,α ·Bc,β} (3.45)

Bc,α =


⟨∆s1⟩∗1
C1

· · · ⟨∆s1⟩∗n
C1

...
. . .

...
⟨∆sM ⟩∗1
CM

· · · ⟨∆sM ⟩∗n
CM

 (3.46)

Bc,β =
[

⟨snc ⟩1
Z1

· · · ⟨snc ⟩n
Zn

]T
(3.47)

From (3.19) and (3.21), the average capacitor voltages do not couple into the average
inductor current and output voltage dynamics under the assumption that ⟨∆sk⟩0 = 0. The
complete reduced-order model including the averaged inductor current and output voltage
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dynamics is therefore 
⟨ ˙vc,1⟩0

...
⟨ ˙vc,M⟩0
⟨ ˙iL⟩0
⟨v̇o⟩0

 = Â ·


⟨vc,1⟩0

...
⟨vc,M⟩0
⟨iL⟩0
⟨vo⟩0

+ B̂ · ⟨vin⟩0 (3.48)

where

Â =


Ac 0

0 Ao

 , B̂ =

[
Bc

Bo

]
(3.49)

In the reduced-order system, the sub-matrices Ac and Bc are given by (3.42) and (3.45)
respectively. Fig. 3.6 illustrates the reduced-order system as a block diagram, showing the
decoupling between the average capacitor voltage dynamics and the dynamics of the inductor
current and output voltage. Sub-matrices Ao and Bo describe the dynamics of these output
filter states with

Ao =

[
−Rs

L
− 1

L
1
Co

− 1
RCo

]
, Bo =

[
⟨snc⟩0
0

]
(3.50)

The reduced-order model in this work recovers the quasi-steady-state harmonic model ob-
tained in [72], where the assumption of time-scale separation between the capacitor voltage
and inductor current ripple dynamics is made without rigorous justification. By comparison,
this work identifies the switching frequency as the converter design parameter that quantifies
this separation.

To illustrate the validity of the reduced-order model, Fig. 3.7 compares the eigenvalues of
the matrices A (corresponding to the full generalized averaged model) and Â (corresponding
to the reduced-order model) for a 4-level FCML converter operating at D = 0.5 with three
inductor current harmonics modeled (n = 3). The reduced-order model captures the slowest
eigenvalues accurately, and predicts the dominant complex-conjugate pole pair with a relative
error of 2%. Using the theory of eigenvalue participations [123, 124], it can be shown
that this pair of eigenvalues participates solely in the capacitor voltages. The reduced-
order model also captures both real eigenvalues participating in the output filter states.
Observing Fig. 3.7, the full generalized averaged model only additionally models the three
eigenvalue pairs participating in the inductor current harmonics. These decay quickly relative
to the dominant eigenvalue participating in the capacitor voltages, justifying the singular
perturbation approach.
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Figure 3.7: Eigenvalues characterizing the natural balancing dynamics of a 4-level FCML
converter operating at D = 0.5 as predicted by the full generalized averaged model (3.26)
and the reduced-order model of (3.48). The reduced-order model accurately captures the
dominant eigenvalues which participate entirely in the capacitor voltage dynamics. In the
full and reduced-order model, L = 10µH, C = 8.8µF, R = 8Ω, Rs = 0.3Ω, Vin = 80V, and
fs = 100 kHz.

The coupling between the kth and lth capacitor voltages via the mth harmonic of the
inductor current is given by

Ac,klm =

− ω0

mΩs

sin2(mπD)

(mπ)2
· 2 sin

(
mπ

nc

)
· cos

(
m (l − k)

2π

)
(3.51)

where ω0 and Ωs are defined as

ω0 =
1√
LC

, Ωs =
ωs

ω0

(3.52)

The expression of (3.51) represents the mth harmonic contribution to the corresponding
element of Ac in (3.42). For the 4-level FCML converter, the expression in (3.51) normalized
to− ω0

mΩs
is plotted in Fig. 3.8 for different values ofm, and gives insight into the contributions
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Figure 3.8: Plots of Ac,klm as given by (3.51) normalized to − ω0

mΩs
for a 4-level converter.

The curves depict the contribution of different inductor current harmonics to the capacitor
dynamics. For a small range of duty ratios centered at D = 0.5, the contributions of the
second and third harmonics are negligible.

of different inductor current harmonics for a given design. First, it is clear from the term
sin (mπ/nc) in (3.51) that for an N -level converter, inductor current harmonics that are
multiples of nc = N − 1 (i.e., m = knc, k ∈ N) never contribute to the capacitor voltage
dynamics. Second, from the term sin2 (mπD), the mth harmonic of the inductor current does
not contribute to the capacitor voltage dynamics when the duty ratio satisfies mD ∈ N.
These findings answer why the second, fourth, fifth, and sixth harmonics of the inductor
current have no impact on the capacitor dynamics for the 6-level converter operating at
D = 0.5, as shown in Fig. 3.5. For the 4-level converters, Fig. 3.8 can be used to qualitatively
identify ranges of duty ratios where the contributions of particular harmonics may be ignored.
For a small range of duty ratios centered at D = 0.5, the contributions to Ac from the second
and third harmonics are minor compared to that of the first harmonic.

Direct inspection of the elements ofAc given by (3.51) can only reliably yield conservative
estimates of which harmonics can be ignored, because the contributions of different harmonics
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Figure 3.9: Block-diagram representation of the capacitor voltage dynamics after model-
order reduction. The feedback elements model the coupling between capacitors due to each
inductor current harmonic as given by (3.53).

occur via a parallel form shown in Fig. 3.9. This structure is revealed by re-expressing the
matrix Ac as

Ac =
n∑

m=1

Ac,m =:

n∑
m=1

2Re




⟨∆s1⟩∗m
C1
...

⟨∆sM ⟩∗m
CM

[ −⟨∆s1⟩m
Zm

· · · −⟨∆sM ⟩m
Zm

] (3.53)

In this representation, the different inductor current harmonics contribute to the average
capacitor voltage dynamics via constituent matrices Ac,m that are summed. The poles as-
sociated with the capacitor voltages are not directly predicted by the relative magnitudes of
elements of these constituent matrices, but additionally depend on the effect of the summa-
tion on the characteristic polynomial of Ac, a more complex matter.

The following section presents a mathematical framework for quantitatively evaluating
the contributions of different inductor current harmonics to the poles associated with capac-
itor voltages. This framework is subsequently used to identify the number of harmonics that
must be modeled in several case studies where the converter design and operating point are
varied.
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Impact of Number of Harmonic Terms Included in Model

The contributions of different inductor current harmonics to the matrix Ac can be studied
from a modal perspective—i.e., how the dominant eigenvalues participating in the capacitor
voltage dynamics change as the number of modeled harmonics increases. The minimum
model complexity is the harmonic order past which the change in the predicted eigenvalues
converges to within a predefined tolerance (defined here as 5% relative error).

As the matrix Â characterizing the reduced-order system in (3.48) is block-diagonal,
its eigenvalues are the collective eigenvalues of its individual blocks. Each eigenvalue of Â
only participates in the state variables associated with its corresponding block. Thus, in
the reduced-order model for an N -level FCML converter, there are M = N − 2 eigenvalues
that participate only in the capacitor voltage states. Of these eigenvalues, the dominant (or
slowest) eigenvalues are of the greatest interest as they quantify the speed of the natural
capacitor voltage balancing. These are also the eigenvalues that closed-loop controllers such
as those discussed in Section 3.4 seek to move to achieve a desired time-domain balancing
characteristic. Thus, considering that all eigenvalues of the open-loop system have negative
real parts [125], one can optionally study a subset of the p ≤ M eigenvalues with real parts
of smallest magnitude. Generally, for FCML converters with N ≥ 4, capacitor voltages
exhibit a dominant second-order characteristic [77] and p = 2 suffices. In special cases, the
system may be better characterized by a dominant third-order characteristic, such as in the
5-level converter case studied in [77]. As an ansatz, the case studies appearing in this section
consider p = 2 for even-level converters and p = 3 for odd-level converters.

To start the analysis, the matrix Ac corresponding to the 0th-order generalized averaged
model (n = 0) is studied. Notated as Ac,0, this matrix is given simply as Ac,0 = 0M×M ,
because the standard averaged model predicts zero capacitor voltage dynamics. As a next
step, the eigenvalues of Ac,1 (the capacitor voltage dynamics when one inductor current
harmonic is modeled) can be studied. Generally, there are no longer M eigenvalues at the
origin, and some eigenvalues near the imaginary axis have nonzero participation in one or
more capacitor states. Ordering the eigenvalues from 1 to M by increasing magnitude of
their real parts, the first p eigenvalues are collected as a vector

Λ1 :=
[
λ1(Ac,1) · · · λp(Ac,1)

]T
(3.54)

Likewise the p dominant eigenvalues of Ac,2 (the model including the second harmonic) can
be collected as

Λ2 :=
[
λ1(Ac,2) · · · λp(Ac,2)

]T
(3.55)

The maximum relative error in the prediction of the dominant p eigenvalues between Ac,2

and Ac,1 can be expressed via the ℓ∞-norm as

e1 = ∥(Λ2 −Λ1)⊘Λ1∥∞ (3.56)

where ⊘ denotes element-wise division. Note that if Ac,1 has any eigenvalues at the origin,
e1 = ∞.
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Figure 3.10: Flowchart depicting the procedure proposed in this section to determine the
minimum number of inductor current harmonics required to capture the capacitor voltage
dynamics.

The steps outlined above can be repeated for Ac,3, Ac,4, and so on. In each step, if
Ac,k −Ac,k−1 ̸= 0M×M , the relative error is evaluated as

ek = ∥(Λk −Λk−1)⊘Λk−1∥∞ (3.57)

or set to ek = ∞ if Ac,k−1 has any eigenvalues at the origin. Otherwise, if Ac,k −Ac,k−1 =
0M×M , the procedure assigns Λk = Λk−1. In this manner, the procedure also does not
evaluate relative error for inductor current harmonics that do not contribute to the capacitor
voltage dynamics as discussed in Section 3.3. The iterative procedure is continued until the
relative error ek falls within a predefined tolerance σ (defined here as σ = 5%). At this
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Figure 3.11: A Selective Modal Analysis (SMA) [123, 124, 126, 127] perspective on the n-
term approximation of the generalized averaged model. The contribution of harmonics of
order n+ 1, n+ 2, . . . ,∞ to the p dominant modes studied are assumed to be zero.

point, the minimum number of required harmonics n is the previous value of k for which
Ac,k ̸= 0M×M .

The procedure described thus far to determine the minimum number of required harmonic
terms is summarized in Fig. 3.10. This section presents one possible method for analyzing the
incremental behavior of the eigenvalues as the number of harmonics terms is increased, using
the same relative eigenvalue error metric as [126]. Modifications of the proposed procedure,
such as weighting the changes in different eigenvalues depending on their locations or using
a different norm in (3.57), can be easily incorporated in future studies.

The approach described above can be examined from the perspective of selective modal
analysis [123, 124, 126, 127] by showing the n-term approximation of the reduced-order
model in the context of the full generalized averaged model. As illustrated in Fig. 3.11, by
assuming that the eigenvalues of model converge within n harmonics, the procedure described
above claims that the harmonics of order n + 1, n + 2, . . . ,∞ do not have any impact on
the p dominant modes being analyzed. The extent to which this claim is true depends
on the behavior of the feedback dynamics corresponding to these higher order harmonics
at the frequencies λ1, . . . , λp. In the framework of selective modal analysis, the procedure
described in this section claims that the neglected feedback elements have approximately
zero gain at the frequencies of interest and can therefore be regarded as decoupled from the
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Figure 3.12: Minimum number of inductor current harmonics required to model capacitor
voltage dynamics in a 4-level converter, determined from the procedure outlined in Section
3.3. For the 4-level converter, the results obtained from the procedure confirms the qual-
itative conclusions obtained by visual examination of Fig. 3.8. The converter parameters
used in this example are L = 10µH, C = 8.8µF, Rs = 0.3Ω, Vin = 80V, Iout = 5A,
R = VinD/Iout, and fs = 100 kHz.

capacitor voltage dynamics at these frequencies. In reality, the remaining harmonics do have
some small impact on the capacitor voltage dynamics as the neglected feedback dynamics do
not truly have zero gains as assumed. In particular, the eigenvectors corresponding to the
dominant modes being studied may continue to vary as additional harmonics are included.
As will be demonstrated next, the results of the procedure described in this section can be
verified through comparison to circuit simulation and experimental hardware. Therefore,
further analysis of the impacts of ignoring the higher-order harmonics is deferred for future
work.

The obtained minimum number of harmonics required to model a 4-level FCML con-
verter as a function of the duty ratio is shown in Fig. 3.12. The results obtained from the
quantitative procedure match the qualitative conclusions obtained by visual examination of
Fig. 3.8. As predicted, the second harmonic of the inductor current has negligible contribu-
tion to the capacitor dynamics at duty ratios between D = 0.4 and D = 0.6. Outside this
range, the second harmonic cannot be ignored. Step-response simulations for the converter
operating at D = 0.25 in Fig. 3.13 and D = 0.50 in Fig. 3.14 confirm the conclusions of the
study. For the converter operating at D = 0.25, including the second harmonic allows the
model to match the result of circuit simulation with 0.3% relative error in the dominant pole
location. By comparison, for operation at D = 0.50, the dominant pole location is predicted
with 0.5% relative error using only the first harmonic, as shown in Fig. 3.14.

Fig. 3.15 plots the minimum number of harmonics required to model the 6-level FCML
converter as a function of the converter duty ratio. The analysis confirms the time domain
verifications of Fig. 3.4 and Fig. 3.5, where n = 2 and n = 7 are required to accurately
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Figure 3.13: Simulated and modeled capacitor voltage responses for a 4-level FCML converter
operating at D = 0.25, varying the total numbers of harmonics modeled n. The model with
n = 2 accurately captures the step-transient response. In the circuit simulation and model,
L = 10µH, C = 8.8µF, R = 2.5Ω, Rs = 0.3Ω, and fs = 100 kHz. The line voltage is
stepped from 100V to 125V.

capture the dominant capacitor voltage behavior for D = 0.35 and D = 0.5 respectively.
When the duty ratio approaches D = 0 and D = 1, the minimum required n increases, as

the contributions of all harmonics become smaller and of comparable magnitude. To restrict
the total number of harmonics modeled to finite values and avoid distortion of the vertical
axis in plots such as Fig. 3.12 and Fig. 3.15, n is restricted in this section to a maximum
value of n = 2(N − 1). In the sense of this restriction, plots such as Fig. 3.12 and Fig. 3.15
are only meaningful in the range of D ∈ (0.1, 0.9).
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Figure 3.14: Simulated and modeled capacitor voltage responses for a 4-level FCML converter
operating at D = 0.50, varying the total numbers of harmonics modeled n. The model with
n = 1 accurately captures the step-transient response. In the circuit simulation and model,
L = 10µH, C = 8.8µF, R = 5Ω, Rs = 0.3Ω, and fs = 100 kHz. The line voltage is stepped
from 100V to 125V.
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Figure 3.15: Minimum number of inductor current harmonics required to model capacitor
voltage dynamics in a 6-level converter, determined from the procedure outlined in Section
3.3. The converter parameters used in this example are L = 10µH, C = 8.8µF, Rs = 0.3Ω,
Vin = 80V, Iout = 5A, R = VinD/Iout, and fs = 100 kHz.
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Figure 3.16: Parallel active balancing control structure detailed in Chapter 2.

3.4 Analysis of Closed-Loop Active Balancing

Dynamics

The original motivation for studying the generalized averaged converter model was to char-
acterize the conditions under which small-signal instabilities occur in actively balanced sys-
tems. The parallel controller introduced in Section 2.3 is redrawn in Fig. 3.16, assuming the
designed closed-loop balancing bandwidth for all flying capacitor voltages is ωbal.

A small-signal model derived from the generalized averaged converter model can be used
to predict the impact of ωbal and the converter operating point on the stability of the con-
trol loop. The model is derived by linearizing the model in (3.26) about the steady-state
operating point of symmetric PS-PWM with balanced capacitor voltages. The state vector
is decomposed as ⟨x⟩0 = ⟨x⟩0 + ˜⟨x⟩0 where the notation ⟨x⟩0 represents the quiescent

operating point and the notation ˜⟨x⟩0 represents the small-signal variation.
The small-signal model, derived in detail in Appendix B, is given generally as

˙̃⟨x⟩0 = F · ˜⟨x⟩0 +G · d̃ (3.58)

= (F0 + F1 + · · ·+ Fn) · ˜⟨x⟩0 + (G0 +G1 + · · ·+Gn) · d̃ (3.59)

=:
(
F0 · ˜⟨x⟩0 +G0 · d̃

)
+
(
Fr · ˜⟨x⟩0 +Gr · d̃

)
(3.60)

where d indicates a vector of switch duty ratios. The matrix indices of (3.59) denote the
individual contributions of the different current harmonics. As shown in (3.60), the small-
signal dynamics can be grouped into two terms. The first term is the 0th-order small-signal
contribution which is identical to the model derived from standard averaging in [96, 114]. The
second term is the net ripple contribution from the nmodeled inductor current harmonics. In
a closed-loop system designed around the standard averaged model, the contribution of the
inductor current ripple appears as a plant disturbance. Fig. 3.17 depicts this disturbance
within the closed-loop system, where K denotes the small-signal equivalent model of the
controller. Note that as the ripple contribution appears as matrix addition in (3.60), its role
on the eigenvalues of the closed-loop system is non-trivial. Therefore, in the remainder of
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Figure 3.17: Block diagram representation of the closed-loop small-signal system. The ad-
ditional plant dynamics captured in the generalized averaged model are highlighted and can
destabilize active-balanced systems designed around the standard averaged model in light-
load conditions.

this chapter, the stability of the closed-loop system is characterized via eigenloci methods,
where a single parameter is swept and the trajectories of the closed-loop system’s eigenvalues
are observed.

In addition to the plant disturbance, computation and modulator delays in the digital
control loop and filters in the measurement path can further degrade the stability margins of
the closed-loop system. To incorporate these impacts, the state-space depicted in Fig. 3.17
is extended following standard realization methods described in [62, 128] and summarized
in Appendix C.

Fig. 3.18 shows simulated capacitor voltages for a 6-level FCML converter implementing
the active balancing controller of Chapter 2 with a designed active balancing loop bandwidth
of 600Hz under two different average load current conditions. The converter switching
frequency is 100 kHz and capacitor voltage measurements are filtered with a 5 kHz-bandwidth
first-order IIR filter. Time t = 0 corresponds to the instant at which the closed-loop active
balancing control is enabled. For the converter operating at the 3A load condition, the
capacitor voltages exhibit small-signal instability with a characteristic oscillation frequency
of 1.92 kHz. At the 5A load condition, the capacitor voltages are small-signal stable. The
stability dependence on the average load current can be verified by studying the eigenloci
of the closed-loop system derived from the generalized averaged model. Fig. 3.19 shows the
eigenloci of the closed-loop system as the average current is swept from 3A to 5A. For the
6-level converter, the modeled closed-loop system has 15 total eigenvalues. Nine eigenvalues
occurring in the left half-plane with Re {λ} < −104 are introduced by the integrator in the
PI current controller, digital filters associated with capacitor voltages, and controller delays.
The right-most complex-conjugate pair of eigenvalues participates in the capacitor voltages,
and moves towards the right half-plane as the load current is decreased. The operating point
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Figure 3.18: Simulated capacitor voltages for a 6-level FCML converter implementing the
parallel active balancing controller of [96] at two different average load current conditions.
The closed-loop system is destabilized at light-loads by the contribution of the current ripple.
In this experiment, vin = 250V, D = 0.25, L = 10µH, C = 8.8µF, Rs = 0.3Ω, and
fs = 100 kHz.

corresponding to 3A average current is verified as unstable, confirming the results in Fig.
3.18.

3.5 Experimental Results

The models presented in this chapter are verified against experimental characterization of
the same 12-level FCML converter prototype shown in Fig. 2.10. The hardware is recon-
figured in different experiments for lower level counts by bypassing an appropriate number
of consecutive switch pairs starting at the input side. Table 2.1 lists the key components
comprising the hardware prototype.

Characterization of Natural Balancing Dynamics

To verify the reduced-order model derived in Section 3.3, the dominant modes associated
with natural capacitor voltage balancing in a 4-level FCML converter are compared against
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Figure 3.19: Eigenloci of the closed-loop small-signal model derived from generalized averag-
ing as the average load current is varied. The model predicts the same instability observed
in the simulation result of Fig. 3.18, with a relative error of 8% in the predicted oscillation
frequency. The model is evaluated with vin = 250V, D = 0.25, L = 10µH, C = 8.8µF,
Rs = 0.3Ω, and fs = 100 kHz.

experimental measurement. The converter is configured with L = 4.7µH, C = 8.8µF,
R = 8Ω, and fs = 100 kHz, and the dominant modes are measured from the response to a
step-transient in the input voltage as shown in Fig. 3.20. For each duty ratio, the measured
data for vc,1 after the time instant where the step occurs is fit to the general second-order
form

x(t) = a1e
− t

τd cos (2πfdt+ a2) + a3 (3.61)

using MATLAB’s fmincon nonlinear optimization solver. The parameters τd and fd represent
the time constant and oscillation frequency of the dominant mode respectively. The time
constant and oscillation frequency obtained from the measured data are compared in Fig.
3.21 to the results from the reduced-order model with n = 2. The model accurately predicts
both quantities over the range of duty ratios examined, confirming its application in modeling
the natural capacitor voltage dynamics.

The dominant modes associated with natural balancing in a 5-level FCML converter with
L = 10µH, C = 8.8µF, and fs = 75 kHz are characterized in Fig. 3.22. The dominant time
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Figure 3.20: Measured response of capacitor voltages in a 4-level FCML converter operating
at D = 0.5 to a step in the input voltage from 7V to 30V. The measured responses are
curve-fit to the general form of an exponential response to determine the time constant τd
and oscillation frequency fd of the dominant mode. The converter tested has L = 4.7µH,
C = 8.8µF, fs = 100 kHz.

constants predicted by the model match the experimental results for D < 0.4 and D >
0.6. For converter operation at D = 0.5, the generalized averaged model predicts that the
dominant time constant approaches infinity, as one of the dominant eigenvalues approaches
the origin. This prediction matches the claims of [72, 73, 129, 130] that D = 0.5 in the 5-level
FCML converter corresponds to a “nominal conversion ratio” where the capacitor voltages
exhibit steady-state imbalance. In practice, as observed in the measured data, the balancing
time constant remains finite as it additionally depends on unmodeled parasitic converter
elements such as the switch drain-source capacitances [80]. In this sense, the conclusions of
the generalized averaged model and the models of [72, 73, 129] give conservative predictions
of the natural balancing dynamics. For high-performance designs featuring switching devices
with reduced parasitic capacitances, these models reveal operating points where the natural
balancing dynamics are expected to be too slow for practical use.
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Figure 3.21: Comparison of measured and modeled time constant τd and oscillation frequency
fd of the dominant mode characterizing a 4-level FCML converter. The parameters of the
dominant mode are extracted from step-response measurements such as those shown in Fig.
3.20, and match the generalized averaged model with n = 2. The converter tested has
L = 4.7µH, C = 8.8µF, R = 8.5Ω, fs = 100 kHz. The generalized averaged model uses
Rs = 0.3Ω considering experimental inductor characterizations in [77].
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Figure 3.22: Comparison of measured and modeled time constant τd and oscillation frequency
fd of the dominant modes characterizing a 5-level FCML converter. The generalized averaged
model predicts fd well, but conservatively estimates that the converter will not balance at
the “nominal” conversion ratio of D = 0.5 as τd → ∞. Unmodeled parasitic elements present
in the hardware such as switch drain-source capacitances re-introduce a finite balancing time
constant at this conversion ratio [80]. The converter tested has L = 4.7µH, C = 8.8µF,
R = 8.5Ω, fs = 100 kHz. The generalized averaged model uses Rs = 0.3Ω considering
experimental inductor characterizations in [77].
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Characterization of Active Balancing Systems

Predictions of small-signal instability in closed-loop active balancing systems using the model
derived in Section 3.4 are compared to experimental characterization of a 6-level FCML
converter with L = 10µH, C = 8.8µF, and fs = 100 kHz. Fig. 3.23 shows measured small-
signal instability in the hardware prototype when the designed active balancing bandwidth
is ωbal = 2π ·3255 rad/s. By comparison, when ωbal = 2π ·1809 rad/s, the closed-loop system
is small-signal stable. Fig. 3.24 shows the closed-loop eigenloci predicted by the small-signal
model as the active balancing parameter ωbal is swept over the same range under the same
operating conditions. The dominant eigenvalue participating in the capacitor voltages moves
towards the imaginary axis as the parameter ωbal is increased, and lies in the right half-plane
for ωbal = 2π · 3255 rad/s.

The block diagram of the closed-loop system shown in Fig. 3.17 and the experimental
measurement of small-signal instability motivate a study investigating the limits of active
balancing controller design as the load is varied. At light-load conditions, the relative contri-

Figure 3.23: Measured capacitor voltage responses in a 6-level FCML converter implementing
the active balancing controller of [96] for two different designed balancing loop bandwidths
ωbal. The balancing control is enabled at time t = 0. For the design with ωbal = 2π ·
3255 rad/s, the capacitor voltages exhibit small-signal instability. The converter is designed
with L = 10µH, C = 8.8µF, R = 6.9Ω, and fs = 100 kHz, and operated with vin = 80V
and D = 0.25.
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Figure 3.24: Eigenloci of the closed-loop small-signal generalized averaged model for a 6-level
converter as the designed balancing loop bandwidth ωbal is varied. The model is derived with
n = 5 for the same design and operating conditions as the experimental measurement of Fig.
3.23, and verifies that ωbal = 2π · 3255 rad/s corresponds to an unstable design.

bution of the inductor current ripple increases compared to the contribution of the average
current, and the system is expected to exhibit small-signal instability at lower values ωbal.
To confirm this claim quantitatively, the eigenloci of the small-signal model varying ωbal are
evaluated for different values of the average load current. The balancing stability boundary
is defined as the maximum value of ωbal that can be designed for a given load current before
the system exhibits small-signal instability [96]. Fig. 3.25 shows the theoretical stability
boundary determined from the eigenloci of the closed-loop small-signal model and the sta-
bility boundary characterized experimentally in [96]. The trend of the predicted stability
boundary with respect to the average load current follows the experimental results with a
maximum relative error of 20% at 5A and a minimum relative error of 3% at 10.5A. Errors
in the experimental characterization of the stability boundary in [96] can be attributed to
the visual inspection procedure used to identify small-stability, and contribute to the dis-
crepancy observed in Fig. 3.25. The agreement between the trends of the experimental and
theoretical stability boundaries confirms that the generalized averaged model predicts the
dominant modes that introduce instability as ωbal is varied. Furthermore, for a fixed design
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Figure 3.25: Measured and modeled stability boundaries as a function of the average load
current for a 6-level FCML converter designed with L = 10µH, C = 8.8µF, and fs =
100 kHz, and operated with vin = 80V and D = 0.25. The stability boundary indicates the
maximum balancing designed balancing control bandwidth ωbal that yields a stable closed-
loop response. The generalized averaged model accurately predicts instabilities arising from
the impact of the current ripple on the capacitor voltage dynamics.

of ωbal, the modeled stability boundary defines the minimum load current required for stable
operation. This confirms that active balancing controllers designed from averaging cannot
maintain balancing bandwidths to arbitrarily light loads [96].
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3.6 Summary of Generalized Averaged Modeling of

FCML Converters

This chapter has illustrated how generalized averaged modeling clearly captures the inter-
actions between the inductor current ripple and the dynamics of the average capacitor volt-
ages. Due to the simplifying assumption that the capacitor voltages have negligible ripple,
the approach proves to be practical for modeling the FCML converter, as this interaction
is decomposed into the interaction between different harmonic components of the inductor
current ripple and the average capacitor voltages. A key area of focus in the analysis in
Section 3.3 was the further simplification of these interactions into a reduced-order form
to enable analysis in the dimensions of the original state space. When applied to study
the natural balancing dynamics with symmetric PS-PWM, the reduced-order model has the
same structure as prior frequency domain models of the FCML converter. Subsequently,
the reduced-order models are shown to be useful in characterizing designs and operating
conditions where small-signal instabilities arise in actively balanced designs.

A key benefit of the generalized averaging approach compared to the alternative method
of higher-order averaging studied in the next chapter is its compatibility with a large range
of ripple waveforms. In the generalized averaging procedure, no assumption is made about
the shape of the inductor current ripple, and non-sinusoidal ripple shapes are accommodated
by including a greater number of harmonics in modeling the ripple. This makes generalized
averaging a natural choice for systems where two state variables resonate with each other—
the resulting model captures the interactions between the average components of the state
variables and between the ripple components. A natural extension of the analysis presented
in this chapter is to study FCML converter designs where the capacitor voltages also have
significant ripple. In such converters, the inductor current ripple shape is piecewise-parabolic
[131] as the harmonic components of both the capacitor voltage and inductor current ripple
interact.

In Section 3.4, the generalized averaged model was employed to characterize the closed-
loop behavior of an active balancing controller designed from the standard averaged model.
Naturally, one is interested in how the additional plant information contributed by the gener-
alized averaged model can be used to design the active balancing controller. It is immediately
clear inspecting the reduced-order models derived in this chapter that the averaged converter
dynamics are highly nonlinear. The structure of the small-signal plant derived from gener-
alized averaging varies as a function of the conversion ratio D at which the linearization is
evaluated. Therefore, it is cannot be expected in general that a controller designed from the
small-signal plant model evaluated at one operating point would be stable or achieve similar
performance when the operating point is varied.

The methods for active balancing controller design presented in Chapter 2 emphasize two
properties of the closed-loop dynamics. First, the active balancing controller aims for im-
proved tracking of the capacitor voltages compared to the naturally balanced behavior. This
is straightforward to accomplish when the controller is designed from the small-signal aver-
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Figure 3.26: Rank of the controllability matrix C associated with the small-signal system of
(3.58) as a function of the quiescent duty ratio D for a 3-level, 4-level, 5-level, and 6-level
converter.

aged plant model, as the capacitor voltages appear to be internally decoupled and respond
to different control inputs (the differences of neighboring duty ratios). From the structure
of the small-signal dynamics of the generalized averaged model given in (3.58) and detailed
in (B.13), the capacitor voltages are internally coupled (via nonzero entries in Fc,m) and
respond to weighted sums of the duty ratios due to the inductor current ripple (via nonzero
entries in Gc,m). Therefore, it is unclear how the structure of the active balancing control
law based on the averaged model should be modified to compensate the impact of the induc-
tor current ripple. Second, the active balancing controller aims to decouple the dynamics
of the capacitor voltages and the inductor current. Studying the small-signal dynamics of
(3.58), this once again proves difficult, as both the capacitor voltages and inductor current
respond to weighted sums of the duty ratios. State-feedback methods such as those dis-
cussed in Section 2.6 may yield control laws for converters expected to operate over a narrow
range of conversion ratios. However, considering effects of computation delays, modulator
delays, and saturations on the controller outputs, it is unclear if these controllers will yield
satisfactory closed-loop performance in general.

Finally, the small-signal converter model in (3.58) reveals that the active balancing plant



CHAPTER 3. GENERALIZED AVERAGED MODELING 96

obtained by treating duty ratios as control inputs is not always completely controllable.
Fig. 3.26 illustrates the rank of the controllability matrix C associated with the small-signal
system of (3.58) for a 3-level, 4-level, 5-level, and 6-level converter as a function of the
duty ratio. In all cases, the small-signal model is evaluated with C = 8.8µF, L = 10µH,
Rs = 0.3Ω, fs = 100 kHz, and n = 10 · (N − 1) harmonics of the inductor current, where N
is the converter level count. The 5-level converter exhibits a rank deficiency of 1 in the range
0.44 < D < 0.56. The 6-level converter exhibits a rank deficiency of 1 in the approximate
ranges 0.4235 < D < 0.424 and 0.576 < D < 0.5765 and a rank deficiency of 2 in the
approximate ranges 0.424 < D < 0.43 and 0.57 < D < 0.576. The presence of uncontrollable
modes of the system may be acceptable if these modes are stable, however uncontrollable
modes are generally undesirable for active balancing control as the balancing performance for
all flying capacitors cannot be completely specified in the controller design. The presence of
uncontrollable modes for higher level-count converters and the aforementioned uncertainties
about closed-loop performance in the presence of practical non-idealities motivates the study
of other control inputs to to balance the capacitor voltages.

To summarize, generalized averaged modeling captures the natural converter dynamics
and small-signal converter behavior accurately, but results in plant dynamics that are difficult
to employ for controller design. The following chapter presents an alternative to generalized
averaged modeling that yields less accurate descriptions of the coupling between capacitor
voltages, but is simpler and can be used to design more robust active balancing controllers.
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Chapter 4

Charge Models for Averaging Effects
of Ripple

Portions of this chapter are adapted in whole or in part from [132].

In the FCML converter designs studied throughout this work, the current ripple shape
is piecewise-linear, and the steady-state inductor current waveform has a triangular shape.
Neglecting the effects of parasitic elements in the converter, the inductor current values at
the start and end of each switching phase within the switching period can be related through
simple linear expressions. Thus, instead of capturing the current ripple through a Fourier
series decomposition, a refined averaged model could track the trajectory of the inductor
current over a switching period and average its impacts on the capacitor voltages. It will be
shown for the FCML converter that this approach yields simple expressions for the capacitor
voltage dynamics. The resulting model approximates the capacitor voltage dynamics less
accurately than the generalized averaged model, but can act as an accurate plant for the
design of active balancing controllers.

4.1 Introduction to Charge Modeling for the FCML

Converter

This section introduces methods of modeling flying capacitor voltage dynamics by analyzing
changes in charge over a switching period. The method, first studied in [78], characterizes
the inductor current waveform over a switching period and subsequently determines its net
impact on the charge stored on the flying capacitors.

Before proceeding, some terminology characterizing the converter operation is introduced.
For an N -level FCML converter, the converter can be said to operate in one of N−1 operating
modes. Given the conversion ratio M = vo/vin, the index mop used to identify the operating
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Figure 4.1: Switching signals sk and switching node voltage vsw for a 4-level FCML converter
resulting from phase-shifted pulse-width modulation (PS-PWM) with duty ratio D for (a)
Mode 1, 0 < D < 1/3, (b) Mode 2, 1/3 < D < 2/3, (c) Mode 3, 2/3 < D < 1. In all three
operating modes, the average value of the switching node voltage and the output voltage are
equal to D vin.
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Figure 4.2: Switching signals sk, switching node voltage vsw, and inductor current iL for a
4-level FCML converter operating in mode 2. The switching phases occurring in each sub-
period and the value of the inductor current at the end of each switching phase are annotated
with roman numerals.

mode is defined as

mop :=


1 , 0 ≤ M < 1

N−1

2 , 1
N−1

≤ M < 2
N−1

...

N − 1, N−2
N−1

≤ M < 1

(4.1)

Under operation with symmetric PS-PWM, the operating mode determines the extent of
overlap between the switching signals. For a given mop, the switching node voltage alternates
between a low level of mop−1

N−1
·vin and a high level of mop

N−1
·vin. For an N -level FCML converter,

the switching period can be divided into N − 1 sub-period of length Te =
Ts

N−1
. These sub-

periods correspond to the fundamental period of the steady-state inductor current ripple.
The following analysis assumes that all flying capacitors are identical (i.e. C1 = C2 = C), and
that the flying capacitance is sufficiently large to approximate the average flying capacitor
voltages as constant over a time window of length Ts. Furthermore, the output capacitance
Co is assumed sufficiently large to approximate the output voltage vo = Mvin as constant.
Section 4.5 justifies the separation of timescales between the inductor current ripple and
the capacitor voltage dynamics by showing that the charge model can be obtained from a
standard perturbation approach for averaging.

Consider the waveforms for operating mode 2 highlighted in Fig. 4.2. Assuming that the
average capacitor voltages and output voltage are approximately constant over the switching
period, the inductor current in the time window of length Ts is piecewise-linear and can be
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expressed generally as

iL(t) = i0 +
1

L

∫ t

0

s3vin + (s2 − s3) vc,2 + (s1 − s2) vc,1 − vo dτ (4.2)

where i0 denotes the steady-state average current. The impact of the different switch states
over the switching period is captured via the switching function terms sk , k ∈ {1, 2, 3}
appearing inside the integral in (4.2).

From (4.2), the value of the inductor current at the end of each switching phase can be
defined recursively as

iI := i0 +
vin − vc,2 − vo

L
tI

iII := iI +
vin − vc,1 − vo

L
tII

iIII := iII +
vc,2 − vc,1 − vo

L
tIII

... (4.3)

The switching phase durations for operation in mode 2 are given by

tk =

{(
M − 1

3

)
Ts, if k ∈ {II,V,VIII}

1
2

(
2
3
−M

)
Ts, otherwise

(4.4)

The net charge flowing into the flying capacitors can be subsequently expressed as an
integral of the inductor current. Once again, the impact of the switch states on the capacitor
current is captured via switching function terms sk.

∆Q1 =

∫ Ts

0

(s2 − s1) iL(t) dt

∆Q2 =

∫ Ts

0

(s3 − s2) iL(t) dt (4.5)

For operation in mode 2, the expressions of (4.5) are expanded as

∆Q1 =
iI + iII

2
tII +

iII + iIII
2

tIII +
iIII + iIV

2
tIV − iV + iVI

2
tVI −

iVI + iVII

2
tVII −

iVII + iVIII

2
tVIII

(4.6)

∆Q2 =
i0 + iI

2
tI +

iVII + iVIII

2
tVIII +

iVIII + iIX
2

tIX − iII + iIII
2

tIII −
iIII + iIV

2
tIV − iIV + iV

2
tV

(4.7)
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Figure 4.3: Simulated capacitor voltage responses to a step in the supply voltage from 48V
to 54V for a 4-level FCML converter operating in mode 2. Results are shown for a controller
regulating the average output voltage to 24V and not implementing any active balancing
feature. The underdamped capacitor voltage dynamics induce excessive blocking voltage
stresses on the converter’s switches. The converter is simulated with L = 10µH, C = 8.8µF,
fs = 100 kHz.

Following the method presented in [78], the average capacitor voltage dynamics are obtained
from the capacitor charge flow in (4.5) via an average current relation given by

v̇c,1 ≈
∆Q1

CTs

v̇c,2 ≈
∆Q2

CTs

(4.8)

Collecting the two state variables into a state vector vc := [vc,1 vc,2]
T, where T denotes the

transpose operator, (4.8) yields linear time-invariant capacitor voltage dynamics for open-
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loop operation without active balancing control, summarized as

v̇c =

 0
(1−6M+6M2)Ts

6LC

−(1−6M+6M2)Ts

6LC
0

 (vc − vc) (4.9)

where
vc =

[
1
3
vin

2
3
vin
]T

(4.10)

The small-signal impact of imbalance in the capacitor voltages is characterized by linearizing
the expression of (4.8) with respect to variations in vc,1 and vc,2. The small-signal character-
istics are obtained at the quiescent point corresponding to balanced capacitor voltages and
a constant output voltage vo = Mvin. Collecting the two state variables into a state vector
vc := [vc,1 vc,2]

T, the linearization of (4.8) is expressed concisely as

˙̃vc :=
1

CTs

∇vc

[
∆Q1

∆Q2

]
vc=vc

ṽc (4.11)

=

 0
(1−6M+6M2)Ts

6LC

−(1−6M+6M2)Ts

6LC
0

 ṽc (4.12)

where ṽc represents the small-signal state variation and ∇vc indicates the Jacobian matrix
evaluated with respect to the vector vc.

As the model of (4.8) is linear in the capacitor voltages, the small-signal model presented
in (4.12) is identical to the result given in [78] characterizing the natural capacitor voltage
balancing dynamics under PS-PWM. For the ideal converter with zero parasitic elements and
a stiff output voltage, the model of (4.12) predicts that the open-loop capacitor voltages un-
der symmetric PS-PWM are characterized by a persistent oscillation. The simulation result
in Fig. 4.3 confirms the presence of this oscillatory mode. Modest parasitic resistances in
the circuit in the form of switch channel resistances and inductor equivalent series resistance
act to damp the oscillation. In the simulation, these effects are lumped as a 100mΩ resistor
in series with the inductor. Therefore, the ideal model developed in this section corresponds
to a worst-case plant that can be used for controller design.

To control the capacitor voltages, the switching node voltage pulse position is modulated
as a control input. Fig. 4.4 illustrates the inductor current and capacitor current responses
to a perturbation within sub-period 2 for a converter operating in mode 2. The position
of the switching node voltage pulse is advanced by a time increment ∆T2 by shifting the
rising edge of s1 and the falling edge of s2. Note that this control action is different from
modulating the duty ratios or phase shifts of switching signals as proposed in previous works.
The small-signal impact of the perturbation ∆T2 is identified by linearizing the expression
of (4.5) with respect to variations in ∆T2. The linearization is performed at the quiescent
point of balanced capacitor voltages, a constant output voltage given by vo = Mvin, and a
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Figure 4.4: Converter waveforms illustrating the small-signal capacitor current response in
operating mode 2 to a perturbation in the switching node voltage pulse position in sub-
period 2. The differences in the quantity of charge flowing into each flying capacitor as a
result of the perturbation are shown as shaded areas, and impact the capacitor voltages via
the relations given in (4.8). The small-signal impact of all perturbations is summarized in
(4.19).

quiescent value of ∆T2 = 0. The small-signal response to perturbations in ∆T2 is summarized
as [

˜∆Q1,2

˜∆Q2,2

]
=

[ −2i0
i0 +

(1−3M)M
6

· vin
Lfs

]
∆̃T2 (4.13)

Similarly, the small-signal response to a perturbation ∆T1 in sub-period 1 is given by[
˜∆Q1,1

˜∆Q2,1

]
=

[
i0 − (1−3M)M

6
· vin
Lfs

−2i0

]
∆̃T1 (4.14)

and the response to perturbation ∆T3 in sub-period 3 is given by[
˜∆Q1,3

˜∆Q2,3

]
=

[
i0 +

(1−3M)M
6

· vin
Lfs

i0 − (1−3M)M
6

· vin
Lfs

]
∆̃T3 (4.15)
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Defining a normalized control input

ũ :=
1

Ts

[
∆̃T1 ∆̃T2 ∆̃T3

]T
(4.16)

and considering the natural coupling between flying capacitor voltages given in (4.12), the
complete small-signal plant model for the 4-level converter operating in mode 2 is given by

˙̃vc = A2 · ṽc +B2 · ũ (4.17)

where

A2 :=

 0
(1−6M+6M2)Ts

6LC

−(1−6M+6M2)Ts

6LC
0

 (4.18)

B2 :=
1

C

[
i0 − α2 −2i0 i0 + α2

−2i0 i0 + α2 i0 − α2

]
(4.19)

α2 :=
(1− 3M)M

6
· vin
Lfs

(4.20)

Note that as the capacitor charge flow derived in (4.2)–(4.8) considers the inductor current
ripple, the small-signal plant model in (4.17) depends on the inductor current ripple via the
term α2 given in (4.20). Thus, compared to the averaged plant models used in [96, 107,
108], the plant representation obtained in (4.17) is valid even at operating points where the
inductor current ripple is not negligible. Section 4.3 will show how this plant model can be
used to design a balancing control loop that is stable across all load conditions.

Operating Modes 1 and 3

The small-signal characteristics for the other two operating modes can be derived following a
similar methodology as that presented above for operating mode 2. Switching node voltage
perturbations for the converter operating in modes 1 and 3 are shown in Fig. 4.6 and Fig.
4.7 respectively. For both operating modes, the inductor current and capacitor charge flow
can be derived from (4.2) and (4.5), and the small-signal capacitor voltage dynamics can
be obtained from a linearization of (4.8). In all three operating modes, the small-signal
dynamics are given by the general system representation

˙̃vc = Ak · ṽc +Bk · ũ , k ∈ {1, 2, 3} (4.21)

For operating mode 1, the plant model consists of

A1 :=

[
0 −M2Ts

2LC
M2Ts

2LC
0

]
(4.22)

B1 :=
1

C

[
i0 − α1 −2i0 i0 + α1

−2i0 i0 + α1 i0 − α1

]
(4.23)

α1 :=
(1− 3M)M

6
· vin
Lfs

(4.24)
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Figure 4.5: Normalized characteristic oscillation frequency ω̂osc defined in (4.32) as a function
of the conversion ratio M .

The model for operating mode 3 is given by

A3 :=

[
0 −(M−1)2Ts

2LC
(M−1)2Ts

2LC
0

]
(4.25)

B3 :=
1

C

[
−α3 0 α3

0 α3 −α3

]
(4.26)

α3 := (M − 1)2 · vin
Lfs

(4.27)

For the 4-level converter, the matrix Ak is anti-diagonal in all three operating modes,
indicating that the open-loop small-signal dynamics in the absence of control inputs is always
purely oscillatory. The characteristic oscillation frequency is given by the off-diagonal entries
of Ak, and is summarized as

Ak =

[
0 −ωosc

ωosc 0

]
(4.28)

ωosc = 2π
ω0

Ωs

·


M2

2
, 0 < M < 1

3
−1+6M−6M2

6
, 1

3
< M < 2

3
(M−1)2

2
, 2

3
< M < 1

(4.29)

where

ω0 :=
1√
LC

(4.30)

Ωs :=
2πfs
ω0

(4.31)
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Figure 4.6: Converter waveforms illustrating the small-signal capacitor current response in
operating mode 1 to a perturbation in the switching node voltage pulse position in sub-
period 2. The small-signal impact of all perturbations is summarized in (4.23).

The current ripple model adapted from [78] and employed in (4.2), (4.5), and (4.8) enables
analytical expressions in (4.29) for the oscillatory open-loop capacitor voltage dynamics. By
comparison, prior work in [72, 73, 76] has only been able to characterize the dependence of
the natural oscillatory behavior on the converter design and operating point via parametric
sweeps. Fig. 4.5 plots a normalized characteristic oscillation frequency ω̂osc defined as

ω̂osc :=
ωosc(
2π ω0

Ωs

) (4.32)

versus the conversion ratio M . It can be shown from (4.29) that the expression for ωosc

continuous and differentiable across the boundaries between modes, highlighting that the
open-loop poles of the small-signal plant derived for the different operating modes move
smoothly on the imaginary axis of the complex plane as a function of the conversion ratio
M .
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Figure 4.7: Converter waveforms illustrating the small-signal capacitor current response in
operating mode 3 to a perturbation in the switching node voltage pulse position in sub-
period 2. The small-signal impact of all perturbations is summarized in (4.26).
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Figure 4.8: Carriers, modulating waveforms, and key converter waveforms for a 4-level FCML
converter operating in mode 1 with a perturbation applied in sub-period 2. In the proposed
implementation, two modulating waveformsmk,a andmk,b are associated with each triangular
carrier wk, and are used for up-count and down-count comparisons respectively.

The switching edge perturbations acting as balancing control inputs can be implemented
in a single-sampled digital PWM system by using phase-shifted triangular carriers with two
modulating waveforms. In this scheme, switching signal sk is generated through a comparison
of a carrier waveform wk against two different modulating waveforms mk,a and mk,b as

sk =


1, (wk > mk,a) and wk counting up

1, (wk > mk,b) and wk counting down

0, otherwise

(4.33)
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Table 4.1: Modulating Waveform Generation

Mode 1 Mode 2 Mode 3

m3,a = M − ∆T1

Ts

M − ∆T1

Ts

M − ∆T2

Ts

m3,b = M +
∆T3

Ts

M +
∆T3

Ts

M +
∆T2

Ts

m2,a = M − ∆T2

Ts

M − ∆T2

Ts

M − ∆T3

Ts

m2,b = M +
∆T1

Ts

M +
∆T1

Ts

M +
∆T3

Ts

m1,a = M − ∆T3

Ts

M − ∆T3

Ts

M − ∆T1

Ts

m1,b = M +
∆T2

Ts

M +
∆T2

Ts

M +
∆T1

Ts

Thus, modulating waveform mk,a controls the falling edge of switching signal sk and mod-
ulating waveform mk,b controls the rising edge. Fig. 4.8 illustrates carriers, modulating
waveforms, and relevant converter waveforms for a 4-level FCML converter operating in
mode 1 with a perturbation applied in sub-period 2. The nominal values of the modulating
waveforms is indicated as M and corresponds to the value applied to all mk,a and mk,b to
obtain symmetric phase-shifted switching signals. To achieve a perturbation in sub-period 2,
modulating waveforms m2,a and m1,b are offset by ∆M = ∆T2/Ts. The proposed implemen-
tation is compatible with digital single-update PWM implementation on microcontrollers
that offer digital PWM modules with two modulating waveforms such as those in the Texas
Instruments C28x family [133]. Based on the desired control action, the offsets ∆M can be
applied once per period (for example, at the valley of carrier w3). For each operating mode,
the values of all modulating waveforms can be defined with respect to a nominal value M
and the offsets resulting from switching edge perturbations ∆Tk. The values assigned to
modulating waveforms in each operating mode are summarized in Table 4.1.
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Figure 4.9: Simulated capacitor voltage responses for a 4-level FCML converter when apply-
ing a 1 kHz perturbation in control input ∆T1. The converter is operated with vin = 48V,
fs = 100 kHz, L = 10µH, and C = 8.8µF. The capacitor voltage responses are post-
processed via Fast Fourier Transforms (FFTs) to determine the magnitude and phase re-
sponse at the perturbation frequency.

4.2 Simulation Verification of Plant Model

For each operating mode k ∈ {1, 2, 3}, a control-to-output transfer matrix Hk(s) is obtained
from a Laplace transform of (4.21) by evaluating

Hk(s) = (sI2×2 −Ak)
−1Bk (4.34)

where s is the complex frequency variable and I2×2 denotes the 2-dimensional identity
matrix. The elements of Hk(s) represent transfer functions from individual normalized
control inputs to each of the flying capacitor voltages. From the structure of Ak in (4.28),
(4.34) can be simplified to

Hk(s) =
1

s2 + ω2
osc

[
s ωosc

−ωosc s

]
Bk (4.35)

It is evident that all plant transfer functions consist of a purely imaginary pole pair at
frequency ωosc. The zeros of the individual transfer functions are determined by the columns
of matrix Bk.

To verify the transfer functions obtained from evaluation of (4.34) for each operating
mode, a circuit simulation of a 4-level FCML converter implementing the modulation scheme
defined in (4.33) is constructed. As the models presented in this section assume an ideal
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lossless converter, the simulation does not include parasitic elements and is configured with
L = 10µH and C = 8.8µF, vin = 48V, and fs = 100 kHz. To establish a quiescent point for
small-signal analysis, the simulation regulates the average converter output voltage through
a feedback loop adjusting the nominal value M of the modulating waveforms as described in
Fig. 4.8 and Table 4.1. Sinusoidal perturbations are applied to the control inputs ∆Tk, and
the responses of vc,1 and vc,2 are measured and post-processed using Fast Fourier Transforms
(FFTs) to determine the magnitude and phase response at the perturbation frequency. An
example of a 1 kHz perturbation in control input ∆T1 and corresponding capacitor voltage
responses is shown in Fig. 4.9. The frequency response characterization is repeated for a
sweep in frequencies within a 5 kHz bandwidth. There are six total transfer functions for
the 4-level converter from each of three control inputs to each of two capacitor voltages—for
brevity, only the frequency responses from normalized perturbations in ∆T1 to vc,1 and vc,2
(i.e. Hk,11(jω) and Hk,21(jω)) are presented in this section. Fig. 4.10 and Fig. 4.11 show
frequency response characterizations of Hk,11(jω) and Hk,21(jω) respectively for operating
modes 1, 2, and 3. For operating mode 1, the frequency response is evaluated at M = 1/6;
for operating mode 2, M = 3/6; for operating mode 3, M = 5/6. In each case, the frequency
response characterized in simulation shows strong agreement with the transfer functions
obtained in (4.34). The undamped pole pair is evident in all three transfer functions, and
its location varies as a function of the conversion ratio M . Due to the symmetry of the
expression for ωosc in (4.29) about the point M = 0.5, the pole location for the transfer
functions corresponding to M = 1/6 and M = 5/6 are identical.
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Figure 4.10: Comparison of simulated frequency response of capacitor voltage vc,1 to per-
turbations in ∆T1 to the theoretical response Hk,11 obtained from (4.34). The simulation
results agree with the theoretical frequency response in all operating modes up to a tested
bandwidth of 5 kHz.

Figure 4.11: Comparison of simulated frequency response of capacitor voltage vc,2 to per-
turbations in ∆T1 to the theoretical response Hk,21 obtained from (4.34). The simulation
results agree with the theoretical frequency response in all operating modes up to a tested
bandwidth of 5 kHz.
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Figure 4.12: Block-diagram representation of the small-signal active balancing control loop.
The controller K is designed in this work to damp the natural capacitor voltage oscillations.

4.3 Design of a State-Feedback Balancing Controller

For the 4-level FCML converter, the rank of matrices B1, B2, and B3 in (4.23), (4.19), and
(4.26) respectively is always 2 (i.e., matrix Bk always has full row rank). Thus, the rank of
the controllability matrix [101–103]

C =
[
Bk Ak ·Bk A2

k ·Bk

]
(4.36)

is always 2, indicating that the small-signal plant in every operating mode is always com-
pletely controllable. This finding is significant as it implies that perturbations in the switch-
ing node voltage pulse position can be used to stabilize the marginally stable plant identified
for all operating modes in Section 4.1. Depending on the design criteria specifying the
locations of the closed-loop poles, different state-feedback controller structures can be con-
sidered. This section considers one possible approach which specifies the decay time constant
associated with the capacitor voltage oscillations.

As the matrix Bk has three columns but only two rows, one of the control inputs must be
redundant. In all three operating modes, the first two columns of Bk are linearly indepen-
dent. Therefore, the balancing controller can always set ∆T3 = 0 and completely control the
capacitor voltages with ∆T1 and ∆T2. Alternative choices for which control input is set to
zero may be considered without impact to the design procedure highlighted in this section.

With the choice of ∆T3 = 0, an equivalent small-signal system can be derived with respect
to the remaining two inputs ∆T1 and ∆T2, and is summarized as

˙̃vc = Ak · ṽc + B̂k · w̃ , k ∈ {1, 2, 3} (4.37)

w̃ :=
1

Ts

[
∆̃T1 ∆̃T2

]T
(4.38)

Here, matrix B̂k is the square matrix consisting of the first two columns of Bk. With
the system representation of (4.37), a full-state-feedback control law represented by square
matrix K ∈ R2×2 can be designed. Fig. 4.12 shows the structure of the small-signal closed-
loop system with the state-feedback control law. As the small-signal plant model is derived
with respect to an equilibrium consisting of balanced capacitor voltages, the small-signal
reference inputs are always 0, i.e.

ṽc,1ref ≡ 0 (4.39)

ṽc,1ref ≡ 0 (4.40)
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For the control loop shown in Fig. 4.12, the closed-loop capacitor voltage dynamics are given
by

˙̃vc =
(
Ak − B̂k ·K

)
· ṽc =: ACL · ṽc (4.41)

Given the structure of Ak in (4.28), this work considers a damping strategy that designs K
such that

ACL =

[
−σ −ωosc

ωosc −σ

]
(4.42)

In this approach, the controller design consists of specifying the damping time constant
τd = 1/σ. With the closed-loop dynamics specified, the controller matrix K is given by

K = −B̂−1
k (ACL −Ak) = σ · B̂−1

k (4.43)

Following from the complete controllability of the system, other designs for the state-
feedback controller may be considered depending on the closed-loop regulation objectives.
For example, one may design the matrix K such that it fully decouples the capacitor voltage
dynamics, yielding a diagonal structure for the closed-loop dynamics ACL. Alternatively,
the damping design may be specified in terms of the quality factor or damping ratio instead
of the damping time constant, resulting in an oscillation frequency for the closed-loop system
that is different from that of the open-loop system.

Evaluating (4.43) in operating mode 1, the damping controller is given by

K = C · σ

3i20 + α2
1

·
[
−i0 − α1 −2i0
−2i0 α1 − i0

]
(4.44)

For operating mode 2, the controller is

K = C · σ

3i20 + α2
2

·
[
−i0 − α2 −2i0
−2i0 α2 − i0

]
(4.45)

Finally, for operating mode 3, the controller is

K = C · σ ·
[
− 1

α3
0

0 1
α3

]
(4.46)

Note that in the case of operating modes 1 and 2, the average inductor current i0 appears
in the controller gains. In systems employing an average current control loop for regulating
the load voltage, the reference inductor current can be substituted for i0 in (4.44), (4.45),
and (4.46).

In the small-signal sense, the switching edge perturbations applied to balance capacitor
voltages do not disturb the average inductor current and output voltage dynamics. There-
fore, the active balancing controller can be implemented in parallel with other control loops
regulating the output voltage and inductor current. Fig. 4.13 illustrates a complete digi-
tal control system where the balancing control is implemented in parallel with a standard
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Figure 4.13: Block diagram representation of a single-sampled digital control architecture
where the state-feedback balancing controller is implemented in parallel with a dual-loop
output voltage controller.

dual-loop output voltage controller. The diagram presents a single-sampled implementa-
tion, where the capacitor voltages, inductor current, and output voltage are sampled once
per switching period at the valley of carrier w3. The average inductor current and output
voltage are regulated by controlling the nominal value of the modulating waveforms, M .
The balancing controller computes the time shifts ∆T1 and ∆T2, and the modulating wave-
forms are subsequently calculated using the update equations in Table 4.1 depending on the
operating mode.

4.4 Experimental Verification of Active Balancing

Controller

The models presented in this chapter are verified against experimental characterization of the
same 12-level FCML converter prototype shown in Fig. 2.10. The hardware is reconfigured
as a 4-level converter by bypassing eight consecutive switch pairs starting at the input side.
Table 2.1 lists the key components comprising the hardware prototype. The parallel control
architecture highlighted in Fig. 4.13 is implemented on a single core of a Texas Instruments
TMS320F28379D microcontroller. Each PWMmodule in the microcontroller is configured to
generate switching signals following the scheme presented in Table 4.1. The active balancing
and output voltage controllers are run in an interrupt service routine triggered at the valley
of carrier w3 as shown in Fig. 4.13.

Characterization of Plant Model

To verify the plant models derived for all operating modes in the experimental hardware, the
plant frequency response is measured through the same characterization procedure detailed
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Figure 4.14: Oscilloscope waveform capture showing an example perturbation in ∆T1 and
measured capacitor voltages for the 4-level FCML converter prototype operating in mode 2.
The data is post-processed using FFTs in MATLAB to determine the plant magnitude and
phase response.

in Section 4.2. In all experiments, the converter is operated with an input voltage of 48V.
In each experiment, the quiescent point is first established by configuring the output voltage
control loop to regulate the converter output at a predetermined set-point (8V, 24V, and
40V for operating modes 1, 2, and 3 respectively). The microcontroller applies a small-
signal sinusoidal perturbation to one of the control inputs ∆T1 or ∆T2, and the capacitor
voltage responses are measured using an oscilloscope. A scaled version of the perturbation
signal is also output to the oscilloscope using the digital-to-analog converter avaiable in
the TMS320F28379D microcontroller. Fig. 4.14 shows an example of a 3 kHz perturbation
in ∆T1 for the prototype operating in mode 2, and the corresponding capacitor voltage
measurements alongside other converter waveforms. The measured raw data is subsequently
saved and post-processed through FFTs in MATLAB to obtain the magnitudes and relative
phase shifts of the perturbation signal and capacitor voltages. The experiment is repeated
at several different perturbation frequencies within a 5 kHz bandwidth.
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Figure 4.15: Comparison of measured frequency response of capacitor voltage vc,1 to pertur-
bations in ∆T1 to the theoretical response Hk,11 obtained from (4.34). The experimental
measurements confirm the theoretical plant behavior in all operating modes, and exhibit
nonzero damping arising from unmodeled parasitic elements in the converter.

Figure 4.16: Comparison of measured frequency response of capacitor voltage vc,2 to pertur-
bations in ∆T1 to the theoretical response Hk,21 obtained from (4.34). The experimental
measurements confirm the theoretical plant behavior, and exhibit nonzero damping arising
from unmodeled parasitic elements in the converter.
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Measured responses of vc,1 to normalized perturbations in ∆T1 are given in Fig. 4.15 for
all three operating modes. Similarly, measured responses of vc,2 to normalized perturbations
in ∆T1 are given in Fig. 4.16 for all operating modes. Analytical frequency responses
obtained from (4.34) are shown as solid lines. The low- and high-frequency asymptotes
and the resonant pole location predicted by the analytical frequency response functions
are confirmed by the measured frequency response data. As discussed in Section 4.2, the
measured data shows additional damping of the resonant poles arising from the unmodeled
impacts of parasitic elements in the hardware prototype. These include parasitic series
resistances and switch drain-source capacitances, which have been shown in [72] and [80] to
affect the natural flying capacitor voltage balancing dynamics.

Characterization of Closed-Loop Dynamics

To compare the closed-loop capacitor voltage dynamics to the intended behavior specified
in the design of the control law K, the closed-loop frequency response is experimentally
characterized. A small-signal perturbation is applied at each of the capacitor voltage refer-
ence inputs, and the capacitor voltage responses at the same frequency are measured. The
analytical response between the applied perturbation and the measured capacitor voltages
is given by the the transfer matrix

HCL(s) =
[
sI2×2 −

(
Ak − B̂k ·K

)]−1

· B̂k ·K (4.47)

Fig. 4.17 compares the analytical frequency response in operating mode 2 of HCL,11, the
closed-loop transfer function from perturbations in vc,1ref to vc,1, to measured data for three
different designs of the damping term σ. For each design, the equivalent Q of the closed-loop
poles resulting from the damping design is also shown. The measured frequency response
data confirms that the digital implementation of the active balancing controller achieves the
intended closed-loop performance within the 5 kHz bandwidth measured. The proposed con-
troller provides a parameter σ that can tuned by the designer depending on the application
requirements. The transfer functions of (4.47) are not physically meaningful beyond their
application in characterizing the closed-loop dynamics. As described in Section 4.3, the plant
model in this work is derived with respect to an equilibrium point consisting of balanced
capacitor voltages. Therefore the small-signal capacitor voltage references must always be
identically 0.

To illustrate the improvement in capacitor voltage dynamics through a time-domain
example, the 4-level converter prototype operating in mode 2 is subjected to a step-transient
in the supply voltage. Fig. 4.18a shows the measured capacitor voltage, inductor current,
and output voltage responses to a step in the supply voltage from 45V to 50V when the
output voltage controller is active but the balancing controller is not enabled. The converter
operates with an average load current of 5A and the output voltage set-point is 24V. The
nominal values of the capacitor voltages under perfectly balanced operation are shown as
reference traces. The capacitor voltages exhibit an underdamped transient response with a
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Figure 4.17: Comparison of measured frequency response in operating mode 2 of capacitor
voltage vc,1 to perturbations in vc,1ref to the theoretical responseHCL,11 obtained from (4.47).

12% overshoot in capacitor voltage vc,2 and a ±5% settling time of approximately 1.5ms. By
comparison, Fig. 4.18b shows the measured responses when the active balancing controller
designed for σ = 4000 is enabled. The overshoot in capacitor voltage vc,2 is reduced to 6%,
and the settling time is approximately 0.5ms, representing a 50% and 66% improvement
respectively. The plant models developed in this work contain information about the impact
of the inductor current ripple on the capacitor voltage dynamics. Consequently, unlike
balancing controllers derived from averaged models of the converter such as [96, 107, 108],
the controller derived in this work is stable at light-load and zero-load conditions. Fig. 4.19a
illustrates the capacitor voltage responses for the converter operating in mode 2 without
active balancing control and subjected to the same input voltage transient when the load is
reduced to an average value of 0.25A. At this operating point, a small-ripple approximation
for the inductor current is no longer valid. Without active balancing control, the capacitor
voltage responses are once again oscillatory. Fig. 4.19b shows the improved capacitor voltage
responses measured once the active balancing controller is enabled. Notably, the small-signal
instability of [96] is not observed at this light-load condition.
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(a) (b)

Figure 4.18: Measured responses of the capacitor voltages and inductor current in the 4-
level FCML converter to a step in the supply voltage from 45V to 50V when (a) the output
voltage controller is active but the balancing controller is not enabled, and (b) both the
output voltage and active balancing controllers are enabled. The converter operates with an
average load current of 5A and an output voltage set-point of 24V. The proposed active
balancing controller damps the natural capacitor voltage oscillations, enabling improved
capacitor voltage tracking during the line transient.
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(a) (b)

Figure 4.19: Measured responses of the capacitor voltages and inductor current in the 4-
level FCML converter to a step in the supply voltage from 45V to 50V when (a) the output
voltage controller is active but the balancing controller is not enabled, and (b) both the
output voltage and active balancing controllers are enabled. In this experiment, the converter
operates at a light-load condition corresponding to 0.25A average load current. The proposed
active balancing controller damps the natural capacitor voltage oscillations, and does not
exhibit the small-signal instability inherent to controller derived from averaged models such
as [96, 107, 108].
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4.5 Justification of the Averaging Method Via

Perturbation Theory

In the preceding sections of this chapter, the capacitor voltage dynamics were characterized
by analyzing the average change in the charge stored on the flying capacitors. The models
derived have been verified through open-loop and closed-loop studies in circuit simulations
and in measurements of a hardware prototype. This section mathematically justifies the
charge modeling approach by using the well-established KBM averaging method [93–95,
134]. In particular, it is shown that analyzing the charge flow in the flying capacitors is
equivalent to studying the order-1 KBM averaged model.

Review of Krylov-Bogoliubov-Mitropolsky (KBM) Averaging

Consider a general description of a time-varying periodic dynamical system given by

ẋ = ϵF (x, t) (4.48)

The KBM averaging approach [93–95, 134] approximates the solution of this system with
the solution to a time-invariant system

ẏ = ϵG1 (y) + ϵ2G2 (y) + ϵ3G3 (y) + . . . (4.49)

The dynamics Gk represent the average behavior of the system refined with the kth-order
approximation of the ripple and are obtained recursively through the methods described
in [94, 95] and reviewed in this section. The key insight of the KBM approach is the
decomposition

x = y + ϵΨ1 (y, t) + ϵ2Ψ2 (y, t) + . . . (4.50)

where Ψk are defined to be zero-average functions of time, i.e.

1

Ts

∫ t

t−Ts

x (τ) dτ =
1

Ts

∫ t

t−Ts

y (τ) dτ (4.51)

The dynamics of x and y can be equated as

ẋ = ẏ + ϵ

(
∂Ψ1

∂y
ẏ +

∂Ψ1

∂t

)
+ ϵ2

(
∂Ψ2

∂y
ẏ +

∂Ψ2

∂t

)
+ . . . (4.52)

The dynamics ẏ can be re-expressed as

ẏ = ϵf
(
y + ϵΨ1 (y, t) + ϵ2Ψ2 (y, t) + . . . , t

)
− (4.53)[

ϵ

(
∂Ψ1

∂y
ẏ +

∂Ψ1

∂t

)
+ ϵ2

(
∂Ψ2

∂y
ẏ +

∂Ψ2

∂t

)
+ . . .

]
(4.54)
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In many power converters, including the FCML converter, f takes the form

F (x, t) = F1 (t) · x+ F2 (t) · u (4.55)

where u is a constant consisting of voltage and current sources connected to the converter.
Therefore (4.54) can be rewritten as

ẏ = ϵ
[
F1 (t) ·

(
y + ϵΨ1 (y, t) + ϵ2Ψ2 (y, t) + . . .

)
+ F2 (t) · u

]
− (4.56)[

ϵ

(
∂Ψ1

∂y
ẏ +

∂Ψ1

∂t

)
+ ϵ2

(
∂Ψ2

∂y
ẏ +

∂Ψ2

∂t

)
+ . . .

]
(4.57)

Grouping the terms on the right-side of (4.57) by powers of ϵ,

ϵ1 : F1 (t) · y + F2 (t) · u− ∂Ψ1

∂t
=: G1 (4.58)

ϵ2 : F1 (t) ·Ψ1 (y, t)−
[
∂Ψ1

∂y
G1 +

∂Ψ2

∂t

]
=: G2 (4.59)

ϵ3 : F1 (t) ·Ψ2 (y, t)−
[
∂Ψ1

∂y
G2 +

∂Ψ2

∂y
G1 +

∂Ψ3

∂t

]
=: G3 (4.60)

...

Recalling that Ψk are zero-average functions, defining

G1 =
1

Ts

∫ t

t−Ts

(F1 (τ) · y + F2 (τ) · u) dτ (4.61)

∂Ψ1

∂t
= F1 (t) · y + F2 (t) · u−G1 (4.62)

G2 =
1

Ts

∫ t

t−Ts

(
F1 (τ) ·Ψ1 (y, τ)−

∂Ψ1

∂y
G1

)
dτ (4.63)

∂Ψ2

∂t
= F1 (t) ·Ψ1 (y, t)−

∂Ψ1

∂y
G1 −G2 (4.64)

...

results in the time-invariant averaged dynamics ẏ given by (4.49). The terms Gk in the
averaged model represent the contribution of ripple function Ψk−1 to the averaged model.
From the procedure highlighted above, the contributions Gk can be calculated recursively to
obtain improved approximations of the averaged dynamics. In most converters, calculating
the contribution of Ψ1 is sufficient to accurately describe the averaged dynamics. The
following analysis shows that the charge model described in this chapter is equivalent to this
order-1 evaluation of the KBM-averaged model.
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Application of KBM Averaging to the FCML Converter

Consider the original switched dynamics of the FCML converter, given as

v̇c,k =
1

C
(sk+1 − sk) iL (4.65)

i̇L =
1

L

[
vinsnc − vo +

M∑
k=1

(sk − sk+1) vc,k

]
(4.66)

v̇o =
1

Co

(
iL − vo

R

)
(4.67)

Defining the state vector as x :=
[
vc,1 · · · vc,M iL vo

]T
, the vector fields representing

the switched dynamics can be compactly represented as

v̇c,k = fvc,k (x, t) (4.68)

i̇L = fiL (x, t) (4.69)

v̇o = fvo (x, t) (4.70)

The switched dynamics can be put into the standard form of (4.48) by considering the
timescale change

t′ :=
t

Ts

(4.71)

yielding

d

dt′
vc,k = Ts · fvc,k (x, Ts · t′) (4.72)

d

dt′
iL = Ts · fiL (x, Ts · t′) (4.73)

d

dt′
vo = Ts · fvo (x, Ts · t′) (4.74)

given in matrix form as

d

dt′
x = Ts · F (x, Ts · t′) (4.75)

F (x, Ts · t′) :=


fvc,1 (x, Ts · t′)

...
fvc,M (x, Ts · t′)
fiL (x, Ts · t′)
fvo (x, Ts · t′)

 (4.76)
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Under the timescale change, the vector fields on the right side of (4.72)–(4.74) are periodic
in t′ = 1. The average of a vector field f (·, Ts · t′) is represented as a new field g (·) given by

g (·) :=
∫ t

Ts

t
Ts

−1

f (·, s) ds (4.77)

=
1

Ts

∫ t

t−Ts

f (·, τ) dτ (4.78)

The order-0 model obtained by averaging (4.75) is the standard averaged model given by

d

dt′
vc,k = Ts · g1,vc,k (y) = 0 (4.79)

d

dt′
iL = Ts · g1,iL (y) = Ts ·

1

L
(vinD − vo) (4.80)

d

dt′
vo = Ts · g1,vo (y) = Ts ·

1

Co

(
iL − vo

R

)
(4.81)

where
y :=

[
vc,1 · · · vc,M iL vo

]T
(4.82)

The order-0 averaged model is represented in matrix form in timescale t′ as

d

dt′
y = Ts ·G1 (y) (4.83)

G1 (y) :=


g1,vc,1 (y)

...
g1,vc,M (y)
g1,iL (y)
g1,vo (y)

 (4.84)

Next, a first-order estimate of the ripple is computed by integrating the difference between
the switched and averaged dynamics as defined in (4.62). For the capacitor voltages, the
ripple Ψ1,vc,k is obtained as

Ψ1,vc,k (t
′ − 1 + s) =

1

C

∫ t′−1+s

t′−1

[sk+1 (τ)− sk (τ)] iLdτ (4.85)

where s ∈ [0, 1). For the inductor current, the ripple Ψ1,iL is obtained as

Ψ1,iL (t
′ − 1 + s) =

1

L

∫ t′−1+s

t′−1

(
vinsnc (τ)− vo +

M∑
k=1

[sk (τ)− sk+1 (τ)] vc,k

)
dτ

− 1

L
(vinD − vo) (4.86)
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For the output voltage, the ripple Ψ1,vo is given by

Ψ1,vo = 0 (4.87)

as the output voltage dynamics do not contain any time-dependent terms. The order-1 ripple
estimate can be vectorized into the form of (4.62) as

Ψ1 =
[
Ψ1,vc,1 · · · Ψ1,vc,M Ψ1,iL Ψ1,vo

]T
(4.88)

For the capacitor voltages, the quantity
∂Ψ1,vc,k

∂iL
can be shown to satisfy∫ t′

t′−1

∂Ψ1,vc,k

∂iL
· g1,iL (y) dτ = 0 (4.89)

for operation with symmetric PS-PWM. Therefore, the order-1 contribution to the average
capacitor voltage dynamics is obtained from (4.63) as

g2,vc,k (y) =
1

C

∫ t′

t′−1

[sk+1 (τ)− sk (τ)] Ψ1,iL (τ) dτ (4.90)

Thus the order-1 KBM averaged capacitor voltage dynamics are expressed as

d

dt′
vc,k = T 2

s · g2,vc,k (y) (4.91)

= T 2
s · 1

C

∫ t′

t′−1

[sk+1 (τ)− sk (τ)] Ψ1,iL (τ) dτ (4.92)

Substituting (4.86) and applying the change of variables t = t′ · Ts to the right-hand side
yields

d

dt′
vc,k =

1

C

∫ t

t−Ts

[sk+1 (σ)− sk (σ)] Ψ1,iL (σ) dσ (4.93)

In the original timescale, the capacitor voltage dynamics are given by

d

dt
vc,k =

1

CTs

∫ t

t−Ts

[sk+1 (σ)− sk (σ)] Ψ1,iL (σ) dσ (4.94)

This expression is identical to (4.5), confirming the charge modeling approach studied in this
chapter.

Through the KBM approach, higher-order coupling between the ripple and averaged dy-
namics can be studied by continuing the recursive procedure highlighted in (4.61)–(4.64)
for G3, Ψ3, and so on. For most pulse width-modulated converters this is unnecessary, as
the first-order calculation of ripple (where the ripple is modeled as piecewise-linear) cap-
tures the real trajectories of state variables accurately. In the FCML converter, higher-order
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descriptions of the ripple can prove useful for designs and operating conditions where the
trajectories of the capacitor voltages and inductor current are piecewise-sinusoidal. In par-
ticular, converter operation near “nominal” conversion ratios results in inductor currents
with very small ripple amplitudes that are not accurately described by piecewise-linear ex-
pressions [131]. These cases are not studied in this thesis, but represent opportunities for
including second-order (piecewise-parabolic) inductor current models.



128

Chapter 5

Conclusions and Directions for Future
Study

5.1 Summary of Contributions and Conclusions

This dissertation represents the state of the art in dynamical modeling of the FCML con-
verter for active balancing control. An active balancing controller is first developed from
standard averaging methods used in power converter analysis. The resulting closed-loop sys-
tem is shown to enable better capacitor voltage tracking during line transients compared to
naturally balanced operation, but exhibits instabilities at light loads due to the unmodeled
impact of the inductor current ripple on the capacitor voltage dynamics. A refined model of
the converter is subsequently developed from the theory of generalized averaging, and shown
to accurately capture both the natural balancing dynamics and the instabilities that arise in
closed-loop operation with controllers developed from averaging. Finally, a modeling tech-
nique based on charge flow analysis is presented, and is shown to yield simple approximate
expressions for the converter dynamics that are compatible with straightforward implemen-
tation of state-feedback controllers. The resulting closed-loop systems are stable at light
loads as the impact of inductor current ripple on the capacitor voltages is considered.

The research presented in this work is relevant for applications where FCML converters
represent an attractive alternative to conventional solutions, but have not been adopted due
to concerns about robustness and reliability, especially under transient conditions. These
include converters for medium- and high-voltage grid-connected applications, front-end dc/ac
and dc-dc systems in next-generation datacenters, and on-chip integrated converters. The
presented methods for active balancing control enable accurate capacitor voltage tracking
and closed-loop dynamics that can be defined through selection of controller gains. More
importantly, the control techniques do not sacrifice the dynamic capability of the converter
output and can be implemented in parallel with typical control loops for regulating the
inductor current and output voltage. All controllers presented are compatible with low-
cost industry-standard microcontroller hardware, and enable improved balancing without
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the addition of large passive components or the use of high-voltage power semiconductor
devices.

The following sections survey areas for continued research in modeling and control for
FCML converters. Extensions of the methods proposed in Chapters 3 and 4 and areas for
more detailed study are summarized.

5.2 Future Studies of Generalized Averaged Modeling

Switching Signal Phase Shifts as Control Inputs

The reduced-order model obtained in Section 3.3 is expressed generally as

˙⟨x⟩0 = Â (d,ϕ) · ⟨x⟩0 + B̂ (d,ϕ) · ⟨vin⟩0 (5.1)

Here, the component matrices Â and B̂ are parameterized with d, a vector collecting the
duty ratios of the nc switching signals as

d :=
[
d1 d2 · · · dnc

]T
(5.2)

and ϕ, a vector collecting the phase shifts of the nc switching signals as

ϕ :=
[
ϕ1 ϕ2 · · · ϕnc

]T
(5.3)

Linearizing (5.1) yields
˙̃⟨x⟩0 = F · ˜⟨x⟩0 +G1 · d̃+G2 · ϕ̃ (5.4)

where

F = Â
(
d,ϕ

)
(5.5)

G1 =

(
∇d

[
Â (d,ϕ) · ⟨x⟩0

]
+∇d

[
B̂ (d,ϕ) · ⟨vin⟩0

])
⟨x⟩0, d, ϕ

(5.6)

G2 =

(
∇ϕ

[
Â (d,ϕ) · ⟨x⟩0

]
+∇ϕ

[
B̂ (d,ϕ) · ⟨vin⟩0

])
⟨x⟩0, d, ϕ

(5.7)

(5.8)

Here, the notation ∇d indicates the Jacobian with respect to the vector of duty ratios d
and ∇ϕ indicates the Jacobian with respect to the vector of phase shifts ϕ. Allowing the
phase shifts to vary independently offers a new degree of freedom for controlling the capac-
itor voltages. Future work can identify whether the new control input vector ϕ allows for
simpler balancing control laws compared to control with only the duty ratios. Additionally,
future studies can investigate whether allowing the phase shifts to vary independently yields
controllable small-signal dynamics at all conversion ratios and operating points.
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Extension of Methods to Other Hybrid Switched-Capacitor
Converter Topologies

As highlighted in Section 3.6, a key advantage of generalized averaged modeling is its com-
patibility with a wide range of operating waveforms. Once the vector fields corresponding to
the switched converter dynamics are expressed as nonlinear expressions of the state variables
and switching signals, the methods of [89] highlighted in Chapter 3 can be methodically ap-
plied to analyze the averaged converter dynamics. As a straightforward extension of the
analysis in this work, the generalized averaging procedure could be applied to study the
capacitor voltage dynamics in resonant or quasi-resonant operation of the FCML converter,
which offer improved efficiencies in applications where only a narrow range of conversion
ratios is expected [135–138]. A key difference between resonant operation of the FCML con-
verter and the pulse width modulated operation studied in the previous chapters is the shape
of the inductor current waveform. In resonant operation, particularly when the converter is
controlled to achieve zero current switching (ZCS) such as the demonstration in [139], the
inductor current takes a rectified sinusoidal shape at the resonant frequency. The capacitor
voltage resonates with the inductor and exhibits non-negligble ripple at the fundamental
component of the switching frequency. The generalized averaging method can be applied
to characterize the capacitor voltage dynamics during line and load transients and can in-
form design practices for robust operation. Following from the discussion in Chapter 3, the
question of how many inductor current harmonics one must model to accurately capture the
capacitor voltage dynamics is also relevant for resonant operation of the converter.

A less straightforward, but valuable extension of the generalized averaged modeling in this
work is its application to analysis of the broader class of regulating hybrid switched-capacitor
topologies such as those presented in [15, 140–143]. In these converters, the sequence of
switching states and the connections formed between flying capacitors and inductors differ
from the FCML converter, however the capacitor voltage dynamics are coupled to inductor
current ripples and standard averaging methods cannot accurately model the capacitor volt-
age behavior. The method of generalized averaging can be applied to accurately study the
capacitor voltage dynamics in these converters during line and load transients, and can also
offer insight into control loop design for high-bandwidth regulation of the output voltage.

5.3 Future Studies of Charge Models for Capacitor

Dynamics

Balancing at Nominal Conversion Ratios and Operating Mode
Transitions

Chapter 4 presents methods for studying the capacitor voltage dynamics in a 4-level FCML
converter through the perspective of net charge flow. Plant models are derived for all three
operating modes of the converter. Future work can extend the models to ensure capacitor
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Figure 5.1: Converter waveforms illustrating the small-signal capacitor current response
when M = 1/3 to a perturbation in the switching signal edges occurring in sub-period 2.

voltage balancing at the nominal conversion ratios M = 1/3 and M = 2/3 representing the
boundaries between the operating modes. At nominal conversion ratios, a total number of 3
switching states occur over the interval of a switching period. Approximating the inductor
current ripple as linear yields a nominally constant inductor current over the entire switching
period. Fig. 5.1 illustrates the impact of perturbing the edges of switching signals s2 and s1
occurring in sub-period 2.

Following the methods of Chapter 4 the small-signal impact of perturbations in the
switching edges on the capacitor voltages can be studied by quantifying the net change in
capacitor charge. One aspect of nominal conversion ratio operation that demands further
study is that the linear ripple approximation of the inductor current is inaccurate when the
switching frequency is not significantly greater than the LC resonant frequency corresponding
to the series connection of flying capacitors and the inductor. While this is also true for
operation at other conversion ratios, higher-order effects influencing the capacitor voltage
balancing such as the impacts of the capacitor voltage ripple can have pronounced impacts
at nominal conversion ratios [131]. As discussed in Section 4.5, one possible method to
mitigate the modeling error is to consider a higher-order KBM averaged model, such as one
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that considers piecewise-parabolic inductor current ripple.
The transition between operating modes is a detail of controller implementation that

remains to be addressed. In Chapter 4, three different control laws are presented, as the
open-loop poles and the impacts of switching edge perturbations vary between the operating
modes. Smooth transitions between operating modes are necessary when the input voltage is
subjected to large-signal transients, such as those typical of start-up and shut-down scenarios.
As the state-feedback control laws shown in Chapter 4 are straightforward to implement
in standard microcontroller hardware, the control laws for all three operating modes can
be pre-programmed as sub-routines called by the primary control loop interrupt that runs
once per switching period. This primary interrupt can decide to transition between the
control laws based on measurements of the input and output voltages and calculations of
the conversion ratio M = vo/vin. Some implementation details that need to be considered
include appropriate filtering of the input and output voltage and de-rating of the balancing
controller gains to prevent the control loop from cycling between control laws for different
operating modes when the conversion ratio is near an operating mode boundary.

Generalization for the N-Level Case

An obvious extension of the work in Chapter 4 is the study of the N -level case. To sys-
tematically treat charge flow in higher-level converters, a general description of the charge
flow for each operating mode mop of an N -level converter must be developed. Subsequently,
the impact of perturbations in the switching node voltage pulse position in each sub-period
must be analyzed. The capacitor connection matrix, a key contribution in the works of [76,
144], can assist in this methodical treatment. The capacitor connection matrix identifies the
sequence and polarity in which capacitors are connected to the inductor in each switching
phase of the converter. A general expression for the integrated inductor current in each
switching phase can first be derived representing the slopes of the inductor current symbol-
ically with independent variables. Using the capacitor connection matrix, these expressions
can be aggregated into components of net charge flow into the flying capacitors. Naturally,
the treatment of higher-level converters requires more careful study of the controllability of
capacitor voltages as the conversion ratio is varied, particularly at nominal conversion ratios.

Other Topics in Modeling and Control of FCML Converters

A large body of current research topics in modeling and control of FCML converters can
be developed and re-examined using the charge models presented in Chapter 4. First, the
natural balancing dynamics considering the effects of the resistor Rs can be examined by
modifying the charge model using the KBM averaging theory highlighted in Section 4.5. The
parasitic resistor typically introduces a weak damping action that acts to naturally balance
the capacitor voltages. Modeling the effects of this damping element can provide an estimate
of the minimum damping action that the active balancing controller must provide to balance
the capacitor voltages faster than the natural balancing case.
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The KBM averaging approach of Section 4.5, which generalizes the charge modeling
approach presented for operation with PS-PWM, can be applied to study the capacitor volt-
age behavior in alternative modulation schemes. Current programmed modulation (CPM),
where the switching actions are determined by the comparison of the inductor current to a
reference waveform, has been applied to FCML converters in [42, 47, 49], as it promises faster
inductor current dynamics and faster natural balancing capability compared to the natural
dynamics under symmetric PS-PWM. As highlighted in [47], however, instabilities arise for
some CPM schemes depending on the conversion ratio and design parameters such as the
peak-to-peak steady-state inductor current ripple. Averaged models using charge models
obtained from KBM averaging can provide analytical insight into the balancing capabili-
ties under CPM, operating conditions resulting in unstable capacitor voltages, and possible
active balancing techniques for stabilizing capacitor voltages under CPM.

A final area of interest is the observation of capacitor voltages using a reduced number
of sensors. The active balancing demonstrations highlighted in this work measure capaci-
tor voltages directly using differential sensing circuits for each flying capacitor. In practice,
these circuits can be costly and detract from the system power density. In [129] and [144],
estimation schemes are proposed to calculate the capacitor voltages from single-ended mea-
surements of the switching node voltage vsw. The experimental results in [144] illustrate
that this single-sensor approach is capable of reconstructing the capacitor voltages over a
wide operating range. In particular, [144] focuses on real-time implementation compatible
with active balancing controllers—continued research in this area such as the work of [145]
aims to improve the robustness of this single-sensor approach and integrate it with active
balancing controllers. One drawback of the estimation approaches of [129, 144] is sensitiv-
ity to noise on the switching node voltage measurement, and the propagation of this noise
into all of the calculated flying capacitor voltages. While advanced filtering methods such
as those proposed in [146] can mitigate the impacts of this noise, their implementation is
limited by the computation capability of the digital controller. State observers, which inter-
nally incorporate a dynamic model of the plant to calculate the system state variables, can
offer improved performance in this context. The charge models of Chapter 4 yield simple
expressions for the plant behavior that are straightforward to incorporate in standard micro-
controller hardware. In one possible approach, a single capacitor voltage can be measured
differentially and the remaining can be computed as the output of the observer. Naturally,
research in this area must address the required separation between the observer and active
balancing controller dynamics to obtain satisfactory closed-loop performance.

All of the topics listed in this final section are addressed to differing extents in the
literature, but can benefit from simple models of the capacitor voltage dynamics. The latter
two are of particular interest as they can enable lower-cost FCML converter implementations
including fully integrated solutions. Continued studies in all of these areas can enable robust
and high-performance implementations of FCML converters in the broader industry.
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ing Systems. New York, NY: Springer, 2024, pp. 13–60.

[118] A. Ruderman and B. Reznikov. “Simple time domain averaging methodology for
flying capacitor converter voltage balancing dynamics analysis”. In: 2010 IEEE In-
ternational Symposium on Industrial Electronics. 2010, pp. 1064–1069. doi: 10.1109/
ISIE.2010.5636907.



BIBLIOGRAPHY 144

[119] R.L. Steigerwald. “A comparison of half-bridge resonant converter topologies”. In:
IEEE Transactions on Power Electronics 3.2 (1988), pp. 174–182. doi: 10.1109/63.
4347.

[120] C.T. Rim and G.H. Cho. “Phasor transformation and its application to the DC/AC
analyses of frequency phase-controlled series resonant converters (SRC)”. In: IEEE
Transactions on Power Electronics 5.2 (1990), pp. 201–211. doi: 10.1109/63.53157.

[121] E.X. Yang, F.C. Lee, and M.M. Jovanovic. “Small-signal modeling of series and par-
allel resonant converters”. In: [Proceedings] APEC ’92 Seventh Annual Applied Power
Electronics Conference and Exposition. 1992, pp. 785–792. doi: 10.1109/APEC.1992.
228333.

[122] Arthur Gelb and Wallace E. Vander Velde. Multiple-Input Describing Functions and
Nonlinear System Design. McGraw-Hill, 1968, pp. 1–38.

[123] F.L. Pagola, I.J. Perez-Arriaga, and G.C. Verghese. “On sensitivities, residues and
participations: applications to oscillatory stability analysis and control”. In: IEEE
Transactions on Power Systems 4.1 (1989), pp. 278–285. doi: 10.1109/59.32489.
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Appendix A

Application of Singular Perturbation
Theory for Model Order Reduction

The singular perturbation approach [90–92] seeks to simplify dynamical systems consisting
of variables that evolve at different characteristic time-scales. The original system is approx-
imated with a new one of lower dimension that captures the relevant “slow” behavior. The
theory typically assumes that systems are partitioned into the standard form

ẋ = f (x, z, ϵ)

ϵż = g (x, z, ϵ) (A.1)

where x is a vector containing all of the “slow” state variables, and z is a vector containing
all of the “fast” state variables. In the case of the FCML converter, the time-scale separation
of interest is that between the slow flying capacitor voltage dynamics and the fast dynamics
of the inductor current ripple. The scalar parameter ϵ quantifies the extent to which the
dynamics of x are slow with respect to those of z. In this work ϵ is 1/ωs.

The standard form of (A.1) can be expressed in a fast time-scale t′ = t/ϵ as

d

dt′
x = ϵf(x, z, ϵ)

d

dt′
z = g(x, z, ϵ) (A.2)

The approximation of the original system in (A.1) obtained by setting ϵ → 0 is premised
on the existence of a stable equilibrium manifold z = h(x) obtained from (A.2) with ϵ → 0
satisfying

g(x, h(x), 0) = 0 (A.3)

The fast time-scale dynamics of the inductor current harmonics in (3.37) are equivalently
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Figure A.1: Block diagram representation of the feedback dynamics corresponding to the
mth harmonic coefficient of the inductor current.

expressed via the error dynamics

d

dt′
η = −jm

(
jmωsL+Rs

jmωsL

)
η (A.4)

η =

(
⟨iL⟩m − ⟨vsw⟩m

Rs + jmωsL

)
(A.5)

The characteristic decay rate of the error η in the fast time-scale is

αt′ = Re

{
−jm

(
jmωsL+Rs

jmωsL

)}
= − Rs

ωsL
(A.6)

Since αt′ < 0 always holds for nonzero Rs, the equilibrium manifold is attractive. In the slow
time-scale, this characteristic rate corresponds to a time constant τ = L/Rs associated with
convergence of the inductor current harmonics to the manifold. For singular perturbation
theory to be valid in this work, τ must be significantly smaller than the time constants of
all modes participating in the capacitor voltage dynamics.

This claim also follows from the feedback representation of the fast and slow subsystems
depicted in the block diagram of the full generalized averaged model in Fig. 3.3. Fig.
A.1 highlights the dynamics of the mth harmonic coefficient of the inductor current. Its
contribution to the 0th order state variables (i.e. the output of the feedback dynamics) is
denoted ⟨y⟩0. The dynamics of ⟨y⟩0 is given in the Laplace domain as

s⟨iL⟩m = Amm · ⟨iL⟩m +Am0 · ⟨x⟩0 +Bm · ⟨vin⟩0 (A.7)

⟨y⟩0 = A0m · ⟨iL⟩m (A.8)

If the inductor current harmonics settle to the equilibrium manifold quickly, the ⟨iL⟩m quickly
settles to a steady-state values that only depends on the inputs (the slow state variables).
Thus, with the assumption that τ is small relative to the timescales of interest for the slow
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Figure A.2: Block diagram depiction of equivalent system when the feedback dynamic blocks
in the full generalized averaged model represented in Fig. 3.3 are substituted with their dc
gains. This structure is identical to the parallel feedback form shown in Fig. 3.9.

dynamics, ⟨y⟩0 can be approximated as the result of ⟨x⟩0 multiplied by the dc gain of the
feedback dynamics obtained by setting s → 0

⟨y⟩0 = lim
s→0

[
A0m · (sI2×2 −Amm)−1 · (Am0 · ⟨x⟩0 +Bm · ⟨vin⟩0)

]
(A.9)

Noting that Amm is invertible, the approximated feedback dynamics are given by

⟨y⟩0 = Ac,m · ⟨x⟩0 +Bc,m · ⟨vin⟩0 (A.10)

Ac,m = A0m ·A−1
mm ·Am0 (A.11)

Bc,m = A0m ·A−1
mm ·Bm (A.12)

The singular perturbation approach obtains the reduced model by replacing each of the
feedback dynamics shown in Fig. 3.3 with its dc-equivalent gain resulting in the model shown
in Fig. A.2 [124, 127]. This model can be further simplified into the parallel feedback form
presented in Fig. 3.9.



150

Appendix B

Linearization of Generalized Averaged
Model

Following the procedure described in Section 3.3, the reduced-order model is expressed gen-
erally as

˙⟨x⟩0 = Â (d) · ⟨x⟩0 + B̂ (d) · ⟨vin⟩0 (B.1)

For clarity, matrices Â and B̂ are parameterized with d, a vector collecting the duty ratios
of the nc switching signals defined as

d :=
[
d1 d2 · · · dnc

]T
(B.2)

Using the summation representation of Ac in (3.53), the expression of (B.1) can be expanded
as

˙⟨x⟩0 = (A0 (d)+ · · ·+An (d)) · ⟨x⟩0 + (B0 (d)+ · · ·+Bn (d)) · ⟨vin⟩0 (B.3)

where

A0 (d) =


0 · · · 0 d2−d1

C
0

...
. . .

...
...

...

0 · · · 0 dnc−dM
C

0
d1−d2

L
· · · dM−dnc

L
−Rs

L
− 1

L

0 · · · 0 1
Co

− 1
RCo

 (B.4)

Am (d) =


Ac,m 0

0 0

 (B.5)

B0 (d) =
[

0 · · · 0 dnc 0
]T

(B.6)

Bm (d) =
[

0 0BT
c,m

]T
(B.7)
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Here BT
c,m indicates the mth column of Bc in (3.45).

Note that as the duty ratios are allowed to vary independently in active balancing sce-
narios, A0 is first expressed generally without the assumption dk = dk+1. The small-signal
model is obtained via Jacobian linearization of matrices Â and B̂ at the quiescent point of
symmetric PS-PWM characterized by

d =
[
D D · · · D

]T
(B.8)

⟨x⟩0 =
[
⟨vin⟩0
nc

2⟨vin⟩0
nc

· · · M⟨vin⟩0
nc

⟨iL⟩0 ⟨vo⟩0
]T

(B.9)

For compact representation, the evaluation of switching functions (3.16) at the quiescent
point is expressed as

⟨sk⟩m := ⟨sk⟩m
∣∣∣∣
d=d

(B.10)

The model takes the general form of (3.58) with

F = Â
(
d
)

(B.11)

G =

(
∇d

[
Â (d) · ⟨x⟩0

]
+∇d

[
B̂ (d) · ⟨vin⟩0

])
⟨x⟩0, d

(B.12)

Here, the notation ∇d indicates the Jacobian with respect to the vector of control inputs d.
Evaluating (B.12) on (B.3) allows for an expanded representation of (3.58) given by

˙̃x = (F0 + F1 + · · ·+ Fn) · x̃+ (G0 +G1 + · · ·+Gn) · d̃ (B.13)

where the matrices F0 and Fm are given by

F0 =


0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0
0 · · · 0 −Rs

L
− 1

L

0 · · · 0 1
Co

− 1
RCo

 (B.14)

Fm =


Fc,m 0

0 0

 (B.15)

Fc,m =

2Re


1

Zm


−⟨∆s1⟩

∗
m⟨∆s1⟩m
C1

· · · −⟨∆s1⟩
∗
m⟨∆sM ⟩m
C1

...
. . .

...
−⟨∆sM ⟩∗m⟨∆s1⟩m

CM
· · · −⟨∆sM ⟩∗m⟨∆sM ⟩m

CM


 (B.16)
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and the matrices G0 and Gm are given by

G0 =

−⟨iL⟩0
C1

⟨iL⟩0
C1

0 · · · 0 0

0
−⟨iL⟩0
C2

⟨iL⟩0
C2

. . . 0 0
...

. . . . . . . . .
...

...

0 0 0 · · · −⟨iL⟩0
CM

⟨iL⟩0
CM

⟨vin⟩0
ncL

⟨vin⟩0
ncL

⟨vin⟩0
ncL

· · · ⟨vin⟩0
ncL

⟨vin⟩0
ncL

0 0 0 · · · 0 0


(B.17)

Gm =
[

0 0GT
c,m

]T
(B.18)

Gc,m =

2Re

⟨iL⟩m


−ζ∗1
C1

ζ∗2
C1

0 · · · 0 0

0
−ζ∗2
C2

ζ∗3
C2

. . . 0 0
...

. . . . . . . . .
...

...

0 0 0 · · · −ζ∗M
CM

ζ∗nc

CM

+
⟨vin⟩0
ncZm


⟨∆s1⟩

∗
0ζ1

C1
· · · ⟨∆s1⟩

∗
0ζnc

C1
...

. . .
...

⟨∆sM ⟩∗0ζ1
CM

· · · ⟨∆sM ⟩∗0ζnc

CM




(B.19)

⟨iL⟩m :=
1

Zm

(
⟨vin⟩0⟨snc⟩m +

M∑
k=1

⟨vin⟩0
nc

⟨−∆sk⟩m

)
(B.20)

ζk :=
∂

∂dk
⟨sk⟩m

∣∣∣∣
dk=D

= cos (mπD) ejmϕk (B.21)

The small-signal model of [96, 114] obtained from standard averaging is recovered in
(B.13) via the 0th-order terms F0 and G0. In (B.19), the model additionally captures the
small-signal coupling between duty ratio variations and capacitor voltages via the inductor
current harmonics.
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Appendix C

Incorporating Integrators, Filters, and
Delays in the State-Space Model

This section studies the state-space description of the closed-loop system incorporating the
effects of integrators in the controller, measurement filters, and actuator delays. The dy-
namics of (3.58) are represented as

ẋ = F · x+G · d (C.1)

where
x :=

[
vc,1 · · · vc,M iL vo

]T
(C.2)

is the small-signal state vector and

d :=
[
d1 · · · dnc

]T
(C.3)

is the small-signal vector of control inputs. Tildes and angle brackets are dropped for ease
of notation but small-signal analysis of index-0 state variables is implied.

Integrators

The integrator in the PI current controller introduces an additional state to the system. The
resulting extended state space is given by

v̇c,1
...

v̇c,M
i̇L
v̇o
ż


= Faug ·



vc,1
...

vc,M
iL
vo
z


+Gaug ·

 d1
...

dnc

 (C.4)
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where

Faug =



0
...
0
0
0

0 · · · 0 1 0 0

F


(C.5)

Gaug =

[
G
0

]
(C.6)

Here the appended state variable z is taken to be

z =

∫ t

−∞
iL (τ) dτ (C.7)

Measurement Filters

Consider a single state in the system, xk. A first-order filtered version of xk can be represented
as a new state variable yk with dynamics given by

ẏk = −ωfiltyk + ωfiltxk (C.8)

The transfer function representing this first-order filter can be verified by taking the Laplace
transform of both sides of this differential equation, yielding

Yk (s) =
ωfilt

s+ ωfilt

Xk (s) (C.9)

Incorporating a first order filter for measurement of each flying capacitor voltage results in
a new extended state-space representation

v̇c,1
...

v̇c,M
i̇L
v̇o
ż

v̇c,1,filt
...

v̇c,M,filt


= Ffilt ·



vc,1
...

vc,M
iL
vo
z

vc,1,filt
...

vc,M,filt


+Gfilt ·

 d1
...

dnc

 (C.10)
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where

Ffilt =


Faug 0(N+1)×M

ωfilt · IM×M −ωfilt · IM×M

 (C.11)

Gfilt =

[
Gaug

0M×1

]
(C.12)

Delays

To model a delay in the feedback loop due to the control action, an input delay is introduced
to the state-space system. First, the Pade approximation for the delay is considered. The
second-order Pade approximant for ex (also referred to as [2/2] approximant) is given by

ex ≈ x2 + 6x+ 12

x2 − 6x+ 12
(C.13)

Thus the second-order Pade approximant for a time delay of td is given by

e−std ≈
s2 − 6

td
s+ 12

t2d

s2 + 6
td
s+ 12

t2d

(C.14)

The Pade approximation of the delay is realized as a state-space system via the “direct
programming technique” [128] which creates a system in controller canonical form. In the
realization theory, a general SISO transfer function of the form

H(s) =
Y (s)

U(s)
=

bns
n + bn−1s

n−1 + · · ·+ b0
sn + an−1sn−1 + · · ·+ a0

(C.15)

is converted in to state-space equivalent

ẇ = A ·w +B · u (C.16)

y = C ·w +D · u (C.17)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . . . . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 B =


0
0
...
0
1

 (C.18)

(C.19)

C =
[
b0 − a0bn b1 − a1bn · · · bn−1 − an−1bn

]
D = bn (C.20)
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For the second-order delay applied to the kth plant input, the corresponding state-space
model is

ẇk = Adelay,k ·wk +Bdelay,k · uk (C.21)

udelay,k = Cdelay,k ·wk +Ddelay,k · uk (C.22)

where

Adelay =

[
0 1

−12
t2d

− 6
td

]
Bdelay =

[
0
1

]
(C.23)

Cdelay =
[
0 −12

td

]
Ddelay = 1 (C.24)

Since there are nc inputs to the plant, the delayed realization corresponds to an addition
of 2nc states to the system to represent the delays. Adding delays to the model of (C.10)
results in the extended state space

v̇c,1
...

v̇c,M
i̇L
v̇o
ż

v̇c,1,filt
...

v̇c,M,filt

ẇ1,1

ẇ1,2
...

ẇnc,1

ẇnc,2



= Fdelay ·



vc,1
...

vc,M
iL
vo
z

vc,1,filt
...

vc,M,filt

w1,1

w1,2
...

wnc,1

wnc,2



+Gdelay


d1
d2
...

dnc

 (C.25)

where

Fdelay =

[
Ffilt Gfilt ·Cdelay

02nc×(N+1+2M) Adelay

]
(C.26)

Gdelay =

[
Gfilt ·Ddelay

Bdelay

]
(C.27)

Adelay = diag (Adelay,1, . . . ,Adelay,nc) (C.28)

Bdelay = diag (Bdelay,1, . . . ,Bdelay,nc) (C.29)

Cdelay = diag (Cdelay,1, . . . ,Cdelay,nc) (C.30)

Ddelay = diag (Ddelay,1, . . . ,Ddelay,nc) (C.31)


