
Adopting and Scaling Secure Systems with Distributed
Trust

Vivian Fang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-106
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-106.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Adopting and Scaling Secure Systems with Distributed Trust

by

Vivian Fang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Raluca Ada Popa, Chair
Professor Natacha Crooks

Professor Christopher Fletcher
Professor Aurojit Panda

Spring 2025

Adopting and Scaling Secure Systems with Distributed Trust

Copyright 2025
by

Vivian Fang

1

Abstract

Adopting and Scaling Secure Systems with Distributed Trust

by

Vivian Fang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Raluca Ada Popa, Chair

Distributed trust is an emerging design pattern that enables building secure systems with strong
privacy and integrity guarantees. Yet, adopting these systems in practice poses significant hur-
dles, from requiring specialized cryptographic expertise to scaling performance andmaterializing
independent trust among parties. To this end, we introduce a suite of works aimed at making se-
cure systems with distributed trust more practical, scalable, and ultimately deployable. On usabil-
ity, we develop CostCO, an automatic cost-modeling framework for secure multi-party computa-
tion protocols, and LegoLog, a configurable transparency log system that automatically generates
logs tailored to specific application workloads. We explore scaling oblivious storage in Snoopy, a
system capable of scaling throughput linearly with the number of machines without sacrificing
security. Finally, we present SVR3, a practical solution for secret key recovery that distributes
trust across heterogeneous hardware enclaves in order to protect secrets at scale for hundreds of
millions of users.

i

To my grandparents.

ii

Contents

Contents ii

List of Figures vi

List of Tables x

Acknowledgements xii

Co-authored material xiv

1 Introduction 1
1.1 Existing distributed-trust systems . 1
1.2 Challenges in deploying distributed-trust systems 3
1.3 Contributions and dissertation outline . 3

I Adopting 5

2 CostCO: Automatic cost modeling of MPC protocols 6
2.1 Introduction . 6

2.1.1 Techniques summary . 9
2.2 CostCO overview . 10

2.2.1 CostCO architecture . 10
2.2.2 Usage in a hybrid-protocol compiler . 12
2.2.3 System assumptions . 13
2.2.4 Limitations . 14

2.3 CostCO specification . 14
2.4 Synthesizing cost models . 15

2.4.1 Design of experiments . 17
2.4.2 Generating and running experiments . 18
2.4.3 Deriving cost models . 20

2.5 Implementation . 21
2.6 Evaluation . 21

iii

2.6.1 Ease of use . 22
2.6.2 Microbenchmarks . 23
2.6.3 Application benchmarks . 24

2.7 Related work . 27
2.7.1 MPC compilers . 27
2.7.2 Cost modeling . 28
2.7.3 Statistics . 28

2.8 Conclusion . 29

3 LegoLog: A configurable transparency log 30
3.1 Introduction . 30
3.2 Overview . 33

3.2.1 System architecture . 33
3.2.2 System API . 34
3.2.3 Developer API . 34
3.2.4 Security guarantees . 36

3.3 System design . 38
3.3.1 Building blocks . 38
3.3.2 Sharding chronological trees . 39
3.3.3 Compacting chronological trees . 40
3.3.4 Supporting offline clients . 41
3.3.5 Putting it together: Core data structure . 44
3.3.6 LegoLog protocol . 44

3.4 LegoLog planner . 45
3.4.1 Specifying entities . 45
3.4.2 Determining system parameters . 46

3.5 Evaluation . 48
3.5.1 Implementation . 48
3.5.2 Microbenchmarks . 49
3.5.3 Existing transparency logs . 51
3.5.4 API flexibility . 53

3.6 Discussion . 54
3.7 Related work . 55
3.8 LegoLog protocol specification . 56

3.8.1 Building blocks . 56
3.8.2 Server . 57
3.8.3 Auditor . 59
3.8.4 Client . 60

3.9 Security analysis . 62
3.9.1 Building blocks . 62
3.9.2 Security game . 64
3.9.3 Security proof . 65

iv

3.10 Conclusion . 71

II Scaling 72

4 Snoopy: A scalable oblivious storage 73
4.1 Introduction . 73

4.1.1 Summary of techniques . 74
4.2 Security and correctness guarantees . 76

4.2.1 Formalizing security . 78
4.3 System overview . 79

4.3.1 System architecture . 80
4.3.2 Real-world applications . 81

4.4 Oblivious load balancer . 81
4.4.1 Setting the batch size . 81
4.4.2 Oblivious batch coordination . 84
4.4.3 Scaling the load balancer . 87

4.5 Throughput-optimized subORAM . 87
4.6 Planner . 89
4.7 Implementation . 90
4.8 Evaluation . 90

4.8.1 Baselines . 91
4.8.2 Throughput scaling . 92
4.8.3 Scaling for latency and data size . 94
4.8.4 Microbenchmarks . 95
4.8.5 Planner . 96

4.9 Discussion . 97
4.10 Related work . 98
4.11 Parameter analysis . 100
4.12 Security analysis . 101

4.12.1 Enclave definition . 102
4.12.2 Our model . 102
4.12.3 Oblivious storage definitions . 102
4.12.4 Oblivious building blocks . 105
4.12.5 SubORAM . 106
4.12.6 Snoopy . 109
4.12.7 Discussion of multiple clients . 116

4.13 Linearizability . 117
4.14 Access control . 119
4.15 Conclusion . 120

5 SVR3: Secret key recovery in a global-scale E2EE system 121

v

5.1 Introduction . 121
5.2 System overview . 125

5.2.1 System architecture . 125
5.2.2 System API . 125

5.3 Threat model and guarantees . 126
5.3.1 Security across trust domains . 127
5.3.2 Security within a trust domain . 127
5.3.3 Availability . 129

5.4 Secret key backup and recovery protocols . 129
5.4.1 Establishing enclave sessions . 129
5.4.2 PIN-protected secret sharing . 129

5.5 Building a SVR3 backend . 131
5.5.1 Design decisions . 132
5.5.2 Rollback-resistant consensus protocol . 132
5.5.3 Integrity across the database . 136

5.6 Operations . 137
5.7 Implementation . 139
5.8 Evaluation . 139

5.8.1 Microbenchmarks . 140
5.8.2 End-to-end performance . 143

5.9 Discussion . 144
5.10 Related work . 146
5.11 Properties of different enclaves . 148
5.12 Production deployment . 149
5.13 Atomic regions . 149
5.14 Raft" safety proofs . 150
5.15 TLA+ specification of Raft" . 161
5.16 Conclusion . 176

6 Conclusion 177
6.1 Summary . 177
6.2 Future work . 177

Bibliography 179

vi

List of Figures

2.1 The standard workflow of hybrid-protocol compilers is drawn on the bottom (orange
box). As shown on the top (green box), CostCO generates cost models that the hybrid-
protocol compiler queries during protocol selection. 7

2.2 CostCO’s workflow. CostCO is run on the deployment environment where the secure
computation is planned to be executed. 10

2.3 CCD for three features. Star points (unshaded points) are α away from the center of
the factorial design (shaded points). Note that α can be a different maximum value
for each feature. 18

2.4 Runtime breakdown and comparison of hybrid protocols generated by CostCO and
HyCC [42] for various applications. Each bar is broken up into Setup (shaded) and
Online runtimes. 26

3.1 LegoLog overview. In Phase 1, the developer configures the LegoLog deployment for
their application. The planner then generates a deployment configuration satisfying
the requirements. In Phase 2, LegoLog runs with the configuration from Phase 1.
Clients read, write, and monitor identifier-value pairs by interacting with the server.
Auditors check the server correctly maintains the transparency log. The deployment
configuration configures LegoLog’s core data structure (§3.3.5), and enables different
possible performance characteristics. 33

3.2 An example prefix Merkle tree containing 4 leaf nodes in lexicographic order. H (·) is
a hash function and vali is a node added at time i . An inclusion proof for the identifier-
value pair (00, val2) consists of the nodes shaded in orange, which are sufficient to
reconstruct the root hash h0,3. 38

3.3 An example chronological Merkle tree that contains 3 leaf nodes at time t = 2 and 4
leaf nodes at time t = 3. H (·) is a hash function and vali is a node added at time i .
The leaf nodes are ordered by the time the node was added. The extension proof to
prove that the t = 3 tree extends the t = 2 tree consists of the nodes shaded in blue,
which commit to the same values in the t = 2 tree and are sufficient to calculate the
root hash h0,3 in the t = 3 tree. 38

3.4 Sharding chronological trees. When looking up an id, the client calculates the parti-
tion the id belongs to and looks up id in the corresponding chronological tree. Audi-
tors are responsible for verifying extension proofs for all of the chronological trees.
. 40

vii

3.5 A server partition that compacts chronological trees contains a verified base tree,
the latest base tree, and an update log. A base tree is a prefix tree that routinely
rolls up updates. The update log tracks changes after the verified base tree, and is a
chronological tree of the root hashes of prefix trees for each update epoch. A client
looks up id ➊ in the verified base tree and ➋ in each update epoch’s tree. The client
that owns id verifies that the latest base tree contains the correct value. 42

3.6 A history forest of base trees from 7 verification periods. There are 3 history trees, and
each history tree’s leaves are arranged in chronological order. A monitoring proof for
an update in BT1 consists of the nodes shaded in green. A lookup consists of looking
up a value in each history tree’s root (nodes with dotted outline). The lookup and
monitoring proof both include the root (BT4) of HT1. 43

3.7 Time taken for the server to generate a lookup proof for different settings of update
periods in a single verification period (tv/tu) and number of partitions a 49

3.8 Time taken for the client to validate a lookup proof for varying tv/tu and number of
partitions a . 50

3.9 Lookup proof generation work over multiple verif. periods (tv = tu). 50
3.10 Lookup proof validation time over multiple verif. periods (tv = tu). 50
3.11 Median auditor work between update epochs as partitions a increase. 51
3.12 Client monitoring work as offline time increases. 51
3.13 LegoLog’s throughput for three specialized logs. 52
3.14 Security game for a configurable transparency log. 66
3.15 Hybrid security game, modified from Experiment 3.5. 67
3.16 Security game representing the difference between Experiment 3.5 and Experiment 3.6. 67
3.17 Adversary B that can be constructed from A△ to win the EUF-CMA game. 68

4.1 Different oblivious storage system architectures: (a) ORAM in a hardware enclave is
bottlenecked by the single machine, (b) ORAM with a trusted proxy is bottlenecked
by the proxy machine, and (c) Snoopy can continue scaling as more subORAMs and
load balancers are added to the system. 75

4.2 Secure distribution of requests in Snoopy. ➊The load balancer receives requests from
clients. ➋At the end of the epoch, the load balancer generates a batch of requests for
each subORAM, padding with dummy requests as necessary. 80

4.3 Dummy request overhead. A 50% overhead means for every two real requests there
is one dummy request. 82

4.4 The total real request capacity of our system for an epoch, assuming ≤1K requests
per subORAM per epoch. 82

4.5 Generating batches of requests at the load balancer. 85
4.6 Mapping subORAM responses to client requests at the load balancer. 86
4.7 Processing a batch of requests at a subORAM. 89
4.8 Snoopy achieves higher throughput with more machines. Boxed points denote when

a load balancer is added instead of a subORAM. Oblix and Obladi cannot securely
scale past 1 and 2 machines, respectively. 92

viii

4.9 Throughput of Snoopy using Oblix [217] as a subORAM (2M objects, 160B block size).
We measure throughput with different maximum average latencies. 93

4.10 (a) Adding more subORAMs allows for increasing the data size while keeping the
average response time under 160ms (RTT from US to Europe). (b) Adding more sub-
ORAMs reduces latency. Snoopy is running 1 load balancer and storing 2M objects.
. 95

4.11 Breakdown of time to process one batch for different data sizes (one load balancer
and one subORAM). 95

4.12 (a) Parallelizing bitonic sort acrossmultiple threads. (b) Parallelizing batch processing
at the subORAM across multiple enclave threads (batch size 4K requests). 96

4.13 Optimal system configuration as throughput requirements increase for different data
sizes (max latency 1s). Larger dot sizes represent higher throughput requirements.
We show a subset of configurations from our planner in order to illustrate the overall
trend of how adding machines best improves throughput. 97

4.14 Real experiment for protocol Π running inside the enclave ideal functionality FEnc

where γ is the trace. 103
4.15 Ideal experimentwhere adversary interacts with the ideal functionality (computes the

output for the given input) and the ideal functionality sends the public information to
a simulator program running inside the enclave ideal functionality (FEnc) to generate
the trace γ. 103

4.16 Real and ideal experiments for an oblivious storage scheme. 104
4.17 Ideal functionalities. 105
4.18 Our subORAM construction. 107
4.19 Simulator algorithms SimSubORAM = (Initialize, BatchAccess). 108
4.20 Our Snoopy construction. 110
4.21 Simulator algorithms SimSnoopy = (Initialize, BatchAccess). 110
4.22 Our load balancer initialization construction. Lines 13-16 would in practice be imple-

mented usingOCmpSet, but we write it using an if statement that depends on private
data to improve readability. 111

4.23 Load balancer simulator for SimLoadBalancer.Initialize. Lines 13-16 would in practice
be implemented using OCmpSet, but we write it using an if statement that depends
on private data to improve readability. 112

4.24 Our load balancer construction. 113
4.25 Load balancer simulator for SimLoadBalancer.BatchAccess. 114

5.1 System architecture for n = 3 enclave clusters, with each cluster using a different
type of hardware enclave. 123

5.2 Types of attackers SVR3 protects against. 126
5.3 Integrity across database. In order to achieve global integrity, updates are only applied

when all state on the working page validates under the same Merkle tree root. 136
5.4 Average latency vs. throughput. 140
5.5 Request latency CDF for AWS Nitro, varying client threads, 10M users. 141

ix

5.6 Request latency CDF for Intel SGX, 10M users. 141
5.7 Request latency CDF for AMD SEV-SNP, 10M users. 141
5.8 Request latency for AMD SEV-SNP, 100M users. 141
5.9 SVR3 performance without network latency from Raft". 142
5.10 End-to-end performance. 144

x

List of Tables

2.1 PBD for three features and two levels. After running every experiment in PBD,
CostCO can analyze which features fi to drop before the second phase of more inten-
sive experiments. 17

2.2 Lines of code to generate cost models using CostCO for each MPC protocol, split be-
tween implementing RunCircuit and writing the MPC protocol specification. Using
CostCO requires additional code that is 1-2% of the existing MPC protocol’s imple-
mentation size. 22

2.3 Comparison of each cost modeling framework’s runtime prediction error (%) and√
MSE (ms) on ABY [84]. The percentiles are computed from prediction errors of

a set of 100 randomly generated circuits. 23
2.4 Number of experiments (#) and total time (sec) taken by each cost modeling frame-

work to collect samples. 24
2.5 Benchmark comparisons with HyCC [42] (automatically generated) and ABY [84]

(manually written). HyCC* uses their cost model and protocol selection algorithm,
which did not finish running after 2 weeks for MiniONN. HyCC† uses their heuristic
approach, which selects the best out of 5 default protocol assignments. The “Best
Known” assignment is determined by measuring the runtimes of each assignment
and taking the assignment with the minimum runtime. 25

2.6 MPC protocol support across hybrid-protocol compilers. 27

3.1 Inputs and outputs to the LegoLog configuration algorithm exposed to the developer. 35
3.2 Example developer parameter settings for specialized transparency logs for different

applications. 51
3.3 Asymptotics of lookup, auditing, and monitoring work for transparency logs derived

by LegoLog for applications, compared to existing work. N is the number of entries
in the log, U is the number of updates per verification period, a is the number of
partitions, E is the number of verification periods since the value was last monitored,
and e is the number of update periods in a verification period. 53

4.1 Comparison of baselines based on security guarantees (oblivious), setup (no trusted
proxy), and performance properties (high throughput and throughput scales). 91

xi

5.1 Network usage for a single client request to a 3-replica cluster. S=server, C=client. C
↔ S for SEV-SNP is an estimate. 142

xii

Acknowledgments

Structured chronologically.

Year -20. I am born. Thanksmom and dad! And thanks to Ethan for the company.
Years -3 to 0. Members of the NetSys lab at UC Berkeley take me under their wing. Thanks to
Ethan J. Jackson for introducing me to systems research, Justine Sherry for introducing me to
networking research, and Aurojit Panda for introducing me to everything research.
Year 1. I pivot into security research, despite having never taken a security class. Thank you to
my advisor Raluca Ada Popa for taking a chance on me, for camping out in 465E Soda with me
when I was writing my first security paper, and for instilling within me a duty of thoroughness
in research. I will take these lessons with me far, far beyond graduate school.
Years 1.5 to 2. The world turns upside down. Catherine Han, I am so grateful we became
friends through those (and these!) trying times. From mundanities like café hunting and peace-
fully existing within each others’ presence to dropping everything to go to South Korea on a
48-hour notice, our friendship is one of the dearest and closest to my heart. Hong Jun Jeon,
it was a privilege descending through many rabbit holes together, and I look back fondly on the
times when we would screen-share and collectively stare at anything from balls-into-bins bounds
to the live price of various assets. Emma Dauterman, I am also very glad we started graduate
school together—even if I am a tad late to finish!
Year 3. Emma and I commandeer 719/721 Soda, and convince Raluca to buy a couch for the
office. We are joined by many other office occupants and (Po)pals throughout the years: Chawin
Sitawarin, Darya Kaviani, Deevashwer Rathee, Jean-Luc Watson, Jinhao Zhu, Mayank
Rathee, Norman Mu, Sam Kumar, Samyu Yagati, Sijun Tan, and Zhanhao Hu. Thank you
all for the excellent company, snack hours, Tahoe trips, and memories.
Year 4. I have an existential crisis. In a pivotal Zoom call, Justine tells me that this is what the
literature refers to as “the doldrums” and that what matters is not how bad it gets, but that it will
eventually end. She was right. Over an Aperol spritz at ETH Zurich, Anwar Hithnawi renews
my faith in academia. Michele Orrù introduces me to many wonderful applied cryptographers,
and makes me feel like I am a part of the community. Working with Rolfe Schmidt at Signal
Messenger marks a turning point in my graduate school experience. Thank you for always being
generous with your time, for taking me on as your intern, and for letting me teach a bunch of
middle and high schoolers lambda calculus. I always look forward to our conversations, and I
am so grateful for your mentorship. In the midst of my existential crisis, I also pick up climbing.
Narek Galstyan and Rishabh Iyer, thank you for being my climbing buddies!
Year 5. I undergo the Longest Year Ever. Raluca, Panda, Natacha Crooks, and Christopher
Fletcher agree to be on my committee and start providing feedback that shapes this dissertation.
I would also like to give special shout-outs to Shishir G. Patil for teaching me the ways of “ML”,
Tianjun Zhang for his infinite humor and the cool scar below my right eye, Qijing (Jenny)

xiii

Huang for her excellent company and yummy desserts, and Justin Wong for the delicious din-
ners. I am indebted to Laura Power for teaching me and Jiwon Park how to drive. Julien Piet,
I have so many things to thank you for: teaching me how to ski, picking me up from the emer-
gency room, rescuing me from car troubles, and providing countless adventures. Noelle Davis
and Tess Despres, our sewing circle was a much-needed respite from the grind of grad school.
Year 6. I exist in purgatory, plotting my escape. Thanks to Scott Shenker and Panda for fielding
my yearly crises. I would not know what to do next, had it not been for Amin Tootoonchian. I
also start running to pass the time. Kevin Zhang, thank you for pacing my first half, even when
my race pace is your recovery pace. Hong, thank you for accompanying all of my long runs in
the South Bay, and for all of the late-night calls where we figured out what to do after the PhD.

∗ ∗ ∗

Over the years, I have had the privilege of collaborating with many bright and talented indi-
viduals: Akshay Ravoor, Akshit Dewan, Chawin Sitawarin, Emma Dauterman, Graeme Connell,
Julien Piet, Lloyd Brown, Norman Mu, Shishir G. Patil, Tamás Lévai, Tianjun Zhang, andWilliam
Lin. I have also been fortunate to be advised on research projects by Aisha Mushtaq, Aurojit
Panda, Barath Raghavan, David Wagner, Ethan J. Jackson, Ioannis Demertzis, Ion Stoica, James
(Murphy) McCauley, Justine Sherry, Natacha Crooks, Raluca Ada Popa, Rolfe Schmidt, Sangjin
Han, Scott Shenker, Sylvia Ratnasamy, Wenting Zheng, and Yotam Harchol. Thank you all for
making research more fun.

The students in the Sky Lab (formerly known as the RISE Lab) also made for a vibrant com-
munity: Altan Haan, Alvin Wan, Audrey Cheng, Charles Packer, Chris Douglas, Conor Power,
Dacheng Li, David Chu, Eyal Sela, Frank Luan, Gabe Fierro, Jaewan Hong, Lianmin Zheng, Lisa
Dunlap, Manish Shetty, MicahMurray, Michael Luo, Naman Jain, Neil Giridharan, Peter Schafhal-
ter, Reggie Frank, Rolando Garcia, SarahWooders, Shadaj Laddad, Shangyin Tan, Shreya Shankar,
Shu Liu, Simon Mo, Siyuan (Ryans) Zhuang, Soujanya Ponnapalli, Stephanie Wang, Sukrit Kalra,
Tyler Griggs, Vinamra Benara, Wei-Lin Chiang, Wenshuo Guo, Xiaoxuan (Lily) Liu, Zhuohan Li,
Ziming Mao, and Zongheng Yang. I am also grateful to our lab’s amazing administrative staff:
Boban Zarkovich, Carlyn Chinen, Dave Schonenberg, Ivan Ortega, Jon Kuroda, and Kattt Atch-
ley. Carissa Caloud, Jean Nguyen, Judy Smithson, and Shirley Salanio are the underlying reason
I (and many other graduate students) are actually able to graduate.

This disseration is in part supported by the NSF Graduate Research Fellowship. Support was
also provided by gifts to the RISE/Sky Lab from the Sloan Foundation, Accenture, Alibaba, AMD,
Amazon, Amazon Web Services, Ant Group, Anyscale, Cisco, Ericsson, Facebook, Futurewei,
Google, IBM, Intel, Intesa Sanpaolo, Microsoft, Lambda, MBZUAI, Microsoft, NVIDIA, Samsung
SDS, SAP, Scotiabank, Splunk, Uber, and VMware.

∗ ∗ ∗

Finally, this dissertation would not exist without the unconditional love and support from
Wen Zhang, who is also the best cat parent to Toto and Mini. Without you telling me to “wait
a bit and think about it,” I certainly would have dropped out of graduate school years ago.

xiv

Co-authored material

Parts of this dissertation are based on previously published material co-authored with others:
→ Chapter 2 is based on the following publication:

[98] Vivian Fang, Lloyd Brown, William Lin, Wenting Zheng, Aurojit Panda, and Raluca Ada
Popa. CostCO: An automatic cost modeling framework for secure multi-party compu-
tation. In EuroS&P, 2022.

→ Chapter 3 is based on the following publication:
[99] Vivian Fang, Emma Dauterman, Akshat Ravoor, Akshit Dewan, and Raluca Ada Popa.

LegoLog: A configurable transparency log. In EuroS&P, 2025.
→ Chapter 4 is based on the following publication:

[76] Emma Dauterman*, Vivian Fang*, Ioannis Demertzis, Natacha Crooks, and Raluca Ada
Popa. Snoopy: Surpassing the bottlneck of scalable oblivious storage. In SOSP, 2021.

→ Chapter 5 is based on the following publication:
[64] Graeme Connell*, Vivian Fang*, Rolfe Schmidt*, Emma Dauterman, and Raluca Ada

Popa. Secret key recovery in a global-scale end-to-end encryption system. In OSDI,
2024.

* denotes equal contribution

1

Chapter 1

Introduction

Many systems today distribute trust across multiple parties such that the system provides certain
security properties if a subset of the parties are honest. A distributed-trust system is deployed
across n parties (in this dissertation, we will subsequently refer to these as trust domains) where,
if there are nomore than f independent corruptions, the system provides certain security, privacy,
and/or integrity properties. In recent years, we have seen an explosion of academic and industrial
cryptographic systems built on distributed trust, spanning private search [77,78,249,317], private
analytics [14,32,68,91,153], private media delivery [129], private blocklist lookups [169], private
DNS [289], anonymous messaging [54,69,92,178,179,323], cryptocurrency wallets [100,107,168,
244, 266, 278, 308]), key recovery [173, 303, 316], and private storage [94].

We start by examining existing distributed-trust systems (§1.1), the challenges organizations
face in deploying distributed-trust systems today (§1.2), and then we present our contributions
to address these challenges (§1.3).

1.1 Existing distributed-trust systems

Multi-party computation. Secure multi-party computation (MPC) is now efficient enough for
several real-world use cases [44,89,148,223,224,226,282,307]. However, because there is no MPC
protocol that wins for all workloads, researchers have designed a number of hybrid protocols [31,
106,112,133,160,197,221,265] that combine different MPC protocols to bring orders of magnitude
performance improvement over using just one MPC protocol to run the entire workload. While
promising for performance, designing a hybrid protocol requires deep cryptographic expertise
and is often bespoke to the workload.

Privacy-preserving analytics. Prio [68] splits trust across two servers to compute aggregate
statistics without revealing individual users’ data and has been deployed for Firefox telemetry [91]
and COVID-19 exposure notification analytics [14]. For Firefox telemetry, Firefox runs one server
and the ISRG (the public-benefit corporation behind Let’s Encrypt, which offers free TLS certifi-
cates) runs the other. The COVID-19 exposure notification system computes statistics across iOS

CHAPTER 1. INTRODUCTION 2

and Android users where the ISRG and the National Institute of Health each run a server. To en-
able other organizations to easily run a Prio system, the ISRG has announced Divvi Up, a service
where the ISRG acts as the second trust domain for a Prio deployment (the organization building
the application acts as the “first trust domain”) [1, 153]. The challenges ISRG faced in setting up
Divvi Up illustrate just how hard it is to set up a distributed-trust system correctly [108,109]. For
example, debugging and running integration tests now must take place across organizations that
don’t have a common release process or deployment system.

Financial custody. Users transfer cryptocurrency by signing transactions, and so transaction
signing keys can secure millions of dollars. Many financial custody companies deploy solutions
where the signing key is split across hardware security modules (HSMs), and the HSMs run a
multi-party computation to generate a signature on a transaction [100,107,168,244,266,278,308].
In this way, no HSM ever holds the entire signing key. A limitation of the financial custody
companies that deploy these solutions is that they are themselves centralized and only provide
security if the company is honest at setup time. One company deploys and maintains all of the
secure hardware, and the end-user cannot check that the system is set up and distributes trust in
the way that the company claims. Furthermore, if the company locks itself out of its machines to
defend against post-setup compromise, there is no way to patch bugs or push updates.

Key recovery. In applications like end-to-end encrypted messaging [80, 214, 287], users often
lose access to their secret keys, and the service provider needs a way to recover the secret key
without compromising security of its users. This is a usability-security trade-off, as the service
provider must balance the need to recover keys with the need to protect users’ data. We can
imagine two extremes: one where the user is responsible for their own key recovery (e.g., by
physically storing their secret key somewhere) and one where the service provider directly stores
the user’s secret key. On one hand, users are notoriously bad at storing long-term secrets [262],
and if the user loses their secret key, they may lose access to their data. On the other hand, if
the service provider stores the user’s secret key, the service provider now has access to the user’s
data, thus undermining the security guarantees of end-to-end encryption. Current deployed sys-
tems [13,173,200,303,316,320] prevent brute-force attacks by using secure hardware to limit the
number of PIN guesses and provide strong protection against service provider administrators and
cloud providers. While these systems all represent significant advances in password-based key
recovery, they rely on the security guarantees of a single type of secure hardware.

Private storage. Organizations increasingly outsource sensitive data to the cloud for better con-
venience, cost-efficiency and availability [101,176,279]. While end-to-end encryption (E2EE) can
protect the contents of the data, it does not protect against access patterns from leaking sensitive
information [45, 82, 124, 152, 161, 171]. Oblivious RAM (ORAM) is a cryptographic primitive that
hides a user’s access patterns from untrusted storage providers, and there has been significant
work in building efficient private storage systems based on ORAM [29, 47, 72, 116, 240, 263, 269,
292–294,322]. However, these systems often have poor scalability, with throughput bottlenecked
by centralized components that cannot be efficiently and securely parallelized [72, 269, 322].

CHAPTER 1. INTRODUCTION 3

1.2 Challenges in deploying distributed-trust systems

Below, we summarize the types of challenges that organizations face when adopting and scaling
distributed-trust systems:
→ Cryptographic expertise (C1). Many distributed-trust systems require deep cryptographic

expertise to set up and run. They require an intimate understanding of cryptographic proto-
cols and their security properties, often resulting in a bespoke protocol design.

→ Materializing trust domains (C2). In practice, achieving truly independent trust domains
proves challenging. We find that in many deployed distributed trust systems, the trust do-
mains are either not independent or require a challenging, application-specific setup that
often required cross-organization coordination.

→ Scaling (C3). Due to the security guarantees of distributed-trust systems, they often have
performance limitations that can render them impractical for real-world workloads with
plaintext counterparts.

1.3 Contributions and dissertation outline

This dissertation aims to address these challenges by making secure systems with distributed
trust more practical for adoption, scalable to large workloads, and deployable in real-world en-
vironments. We focus on systems challenges and present solutions that bridge the gap between
theoretical security and practical deployment. This dissertation is organized in two parts: Part I
focuses on addressing usability hurdles in adopting distributed-trust systems, and Part II focuses
on addressing their scalability and deployability challenges in real-world environments. In total,
we present four major contributions.

Part I: Adopting distributed-trust systems

Chapter 2: CostCO (C1). The efficiency of MPC solutions depends significantly on protocol
selection. Different MPC protocols excel in different contexts, but determining which protocol
to use requires deep cryptographic expertise. CostCO addresses this challenge by automatically
generating empirical cost models for different MPC protocols. By profiling performance charac-
teristics of MPC protocols in the deployment environment, CostCO enables non-experts to lever-
age appropriate protocols without manual performance tuning. This automation enables hybrid-
protocol MPC, where different parts of a computation use different protocols based on their char-
acteristics, significantly improving performance compared to single-protocol approaches.
Chapter 3: LegoLog (C1). Transparency logs provide verifiability in many security-critical
applications, from validating web certificates to software distribution. However, selecting or
designing an appropriate transparency log for a specific application is challenging. LegoLog in-
troduces the concept of a configurable transparency log that automatically generates specialized
transparency logs for given workloads. Rather than requiring developers to analyze trade-offs be-

CHAPTER 1. INTRODUCTION 4

tween different transparency log designs, LegoLog takes a workload description and constraints,
then outputs a tailored transparency log implementation. This approach democratizes the use of
transparency logs, enabling non-experts to deploy them effectively.

Part II: Scaling distributed-trust systems

Chapter 4: Snoopy (C3). Oblivious storage systems hide access patterns from untrusted storage
providers but suffer from scalability bottlenecks. Existing systems either rely on a trusted proxy
(which becomes a bottleneck) or run on a singlemachine (limited by hardware resources). Snoopy
introduces a scalable oblivious storage system that distributes both computation and storage
across multiple machines without sacrificing security. Snoopy achieves linear throughput scaling
with additional hardware resources, similar to plaintext storage systems, but with strong security
guarantees.
Chapter 5: SVR3 (C2, C3). End-to-end encrypted systems need a means to recover users’ secret
keys without compromising users’ security. Existing approaches rely on a single type of secure
hardware, creating a single point of security failure. SVR3, developed in collaboration with Signal
Messenger [287], introduces a key recovery system that distributes trust across different types
of secure hardware (TEEs) from different vendors running in different cloud providers. This
approach ensures that a vulnerability in any single hardware platform does not compromise user
secrets. SVR3 demonstrates the practical deployment of distributed trust in a production system
serving tens of millions of users, with careful consideration of the security guarantees that real-
world TEEs provide today.

Finally, in Chapter 6, we conclude with a summary of contributions and discuss future research
directions.

5

Part I

Adopting

6

Chapter 2

CostCO: Automatic cost modeling of
secure multi-party computation protocols

2.1 Introduction

Secure collaborative computation [44,89,148,223,226,282,307], is an increasingly popular paradigm
where multiple organizations with sensitive data run an analysis over their aggregate data, with-
out revealing their individual sensitive data to each other. Computing on multiple parties’ data
is both advantageous and necessary in many cases ranging from finance to healthcare. For ex-
ample, money laundering—where criminals transfer assets across financial institutions to mask
their activities—is illegal in most jurisdictions and banks are required to detect and report such
activity. However, detecting money-laundering is challenging because it requires banks to share
sensitive customer transaction data with each other [276], and they are unwilling to do so because
of business competition.

Over the past three decades, researchers have made impressive progress towards a crypto-
graphic approach to this problem: secure multi-party computation (MPC) [23, 73, 145, 162, 163,
194, 229, 319, 326]. At a high level, MPC allows n parties p1, . . . , pn with corresponding inputs
x1, . . . , xn to learn the output of a public function f (x1, . . . , xn) without revealing each party’s
xi to other parties. Due to these efforts, MPC is now efficient enough for several real-world use
cases [44, 89, 148, 223, 226, 282, 307]. Because there is no single MPC protocol that wins for all
workloads, researchers have begun to design a number of hybrid protocols [31, 106, 112, 133, 160,
197, 221, 265] that combine different MPC protocols to bring orders of magnitude performance
improvement over using just one MPC protocol to run the entire workload.

Consequently, hybrid-protocol compilers [42, 51, 151, 243] emerged in an effort to automate
the manual process of optimally combining different MPC protocols for a given application. Fig-
ure 2.1 depicts the standardworkflow of a hybrid-protocol compiler. In order to construct a hybrid
protocol for a given program, the compiler partitions the program and uses a cost model to select
the MPC protocol to run on each partition. The resulting hybrid protocol can then be executed
by the parties who want to securely compute the program.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 7

CostCO

MPC�Protocols

�

Arithmetic Boolean

Yao AgMPC

SPDZ

FastGC

Hybrid�Protocol�Compiler

Cost�
Modeling�
API

High�Level�
Program

Hybrid�Protocol

Program�
Partitions

Cost�Models

Arithmetic

Boolean

Yao

AgMPCFastGC

SPDZ

Arithmetic

Yao
Protocol�
Selection

Figure 2.1: The standard workflow of hybrid-protocol compilers is drawn on the bottom (orange
box). As shown on the top (green box), CostCO generates cost models that the hybrid-protocol
compiler queries during protocol selection.

A hybrid-protocol compiler crucially depends on its cost model, which it queries to determine
the concrete costs of different options for protocol assignment. The main problem with existing
cost models is the manual effort needed to derive them. Multiple issues arise as a result:
– Burdensome effort. Deriving a cost model for a specific MPC protocol requires a deep un-

derstanding of its runtime complexity. For example, EzPC [51] relies on distilling the prop-
erties of ABY [84] into hard coded heuristics specialized to a deployment and Kerschbaum,
et. al [164, 273] manually derive cost models for every building block in their two supported
MPC protocols. Others [42, 151, 243] set up experiments by hand and fix parameters like the
data size.

– Lack of extensibility. Existing compilers base their cost models on certain assumptions about
the deployment environment and the supported MPC protocols. EzPC [51] relies on rigid

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 8

heuristics while newer compilers [42, 151, 243] use a cost model specific to the set of proto-
cols they initially support. Both approaches make it difficult to integrate new MPC proto-
cols into the compiler; new heuristics need to be manually found and MPC protocols with
cost functions that differ from ABY (e.g., [41, 104, 319]) require nontrivial effort to support.
Furthermore, existing MPC protocols are actively developed on and frequently branch into
different versions, e.g., ABY [84, 222, 242] and SPDZ [73, 162, 163]. Adapting existing cost
models to account for new versions of protocols necessitates human effort, impeding the
wider adoption and availability of MPC.

– Limited decision-making capabilities. In addition to being unable to support more MPC pro-
tocols, existing compilers are limited by their cost models which predict only one type of cost
(runtime). As a result, they cannot make more sophisticated decisions like choosing between
an MPC protocol [146] and its memory-optimized version [135].
In this chapter, we present CostCO, a cost modeling framework for MPC capable of automat-

ically deriving an accurate cost model for a given MPC protocol. At a high level, CostCO takes
as input an MPC protocol with a specification, builds a statistical model indicating which pro-
grams to test on the MPC protocol, measures the protocol running on these samples, and uses
the results to compute a cost model. The computation of cost models in CostCO leverage the
common properties of a class of MPC protocols. Specifically, security requirements of MPC im-
ply that computation time and execution are deterministic and input-data independent, which
in turn means that all branch arms are evaluated during execution (we refer to this property as
non-branching). Additionally, many recent MPC protocols [22, 23, 73, 84, 97, 163, 319, 326] have
quadratic communication, computation and memory complexity. In combination these insights
allow CostCO to efficiently generate cost models without requiring additional user input such as
representative workloads, etc. In contrast to prior cost modeling works [42, 151, 243], CostCO is:
– Automatic. A protocol provider supplies an MPC protocol implementation together with a

short specification, and CostCO automatically infers a cost model, both in terms of a sym-
bolic equation and an empirical cost for each metric. Subsequent versions of MPC protocols
require less effort to generate cost models and integrate into the hybrid protocol compiler.
CostCO can also automatically generate cost models for different deployment settings the
secure computation takes place on, which frees the compiler from deployment assumptions
(e.g., network conditions) imposed by hard-coded heuristics.

– Extensible. CostCO’s API (§2.3) is rich enough to allow it to be used with a range of different
MPC protocols, running in a wide variety of different deployment settings. We have suc-
cessfully used CostCO to generate cost models for 7 different MPC protocols which run the
gamut from ones that use arithmetic and Boolean secret sharing [84] to ones based on gar-
bled circuits [319] and homomorphic encryption [97]. Using CostCO in each of these cases
required less than 200 lines of code, demonstrating CostCO’s expressivity.

– Versatile. In addition to generating cost models that predict an MPC protocol’s runtime,
CostCO also generates cost models that predict network communication and peak mem-
ory consumption, which enables compilers to additionally consider memory-optimized MPC
protocols.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 9

Improving existing compilers. Webuild a compiler that uses cost models generated by CostCO
in order to reduce the effort that is otherwise required for manually developing cost models for an
MPC protocol. At the same time, when compared to existing frameworks and their benchmarks,
our compiler still produces comparable protocol assignments. By considering the different types
of costs CostCO models, our compiler is also able to make more sophisticated decisions, e.g., tak-
ing into account performance degradation from memory pressure. We believe that the research
on hybrid-protocol compilers can now focus on the problem of effectively searching the complex
space of combinations of MPC protocols, without expending effort on cost modeling.

2.1.1 Techniques summary
In order to generate cost models for a variety of MPC protocols, CostCO first needs a way to
interface with each protocol. Such a task is challenging because different MPC protocol imple-
mentations have widely varying APIs. CostCO manages to provide a common interface in a
simple API that is still rich enough to express different MPC protocols (described in §2.3).

Once CostCO is able to interface with a given MPC protocol, the main challenge lies in work-
ing out the relations between the primitives for the total cost. MPC protocols typically publish
their asymptotic complexity, which do not contain lower-order terms. CostCO needs to first re-
cover lower-order terms that influence the real cost to obtain the set of primitive features that
influence performance. Requiring users to derive the correct set of features is both burdensome,
and error prone since feature importance might itself depend on factors such as the deployment
scenario. Instead, CostCO automatically identifies the set of important features by leveraging
techniques from response-surface methodology [138] so the user only need provide the set of
features that potentially influence performance (described in §2.4).

Next, CostCO uses the observation that the performance and resource requirements for MPC
protocols are independent of input data in order to automatically generate an empirical cost
model. Determining the set of important features, and generating an empirical cost model re-
quires empirical experiments, however running an MPC circuit can be expensive in terms of
runtime and resource costs. Therefore, CostCO draws techniques from the experiment design
literature [35, 138, 174] and runs in two stages to reduce the overall number of empirical obser-
vations required.

Evaluation summary. We implement and port 7 MPC protocols to CostCO (§2.5). Each protocol
takes less than 200 LOC to use CostCO (§2.6.1) and CostCO generates cost models with greater
accuracy than prior cost modeling approaches [42, 151, 243] (§2.6.2). In order to demonstrate
the utility of the cost models generated by CostCO, we implement a hybrid-protocol compiler
along with 6 applications and find that our compiler makes comparable, if not better (up to 41%
faster) protocol assignments than the current state-of-the-art hybrid-protocol compiler which
uses manually derived cost models (§2.6.3).

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 10

�����

��������
���

�

��������������	����

�
�

�����������������������

�

���������������
�������

�

�����������������������

Crt =0.004|input| +
0.113|AND|

log |C| + . . .

Figure 2.2: CostCO’s workflow. CostCO is run on the deployment environment where the secure
computation is planned to be executed.

2.2 CostCO overview

CostCO is designed to automatically generate cost models that provide an estimate of the execu-
tion time of running a given computation using a specific MPC protocol.

2.2.1 CostCO architecture
CostCO’s system architecture consists of a pipeline that automatically synthesizes a cost model
from a list of user-provided features for a given MPC protocol executed in a fixed deployment
environment. Figure 2.2 depicts CostCO’s workflow. At a high level, ➀ CostCO receives a proto-
col specification for the MPC protocol and uses it to generate the exact computation experiments
to run. ➁ CostCO then runs the experiments on the MPC protocol’s implementation and ➂ de-
termines the next set of experiments to run. ➃ CostCO uses the experiment results to infer the
lower order asymptotic terms and finally output an empirical cost model.

CostCO is run on the deployment environment which consists of the machine or cluster
at each party where the secure computation will be run and the network environment among
them. For example, some banks who wish to collaborate on anti-money laundering [276] can run
CostCO on their setups. For some, this means their on-premise cloud, while for others, a major
cloud provider. This is the same deployment on which hybrid-protocol compilers [42,151] are de-
signed to run on. CostCO also computes cost models for fixed field sizes and security parameters,
i.e., CostCO should be rerun if the field sizes or the security parameters change.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 11

Similar to existing MPC literature [42, 84, 272, 319], we expect that MPC computations are
expressed as circuits, a directed acyclic graph (DAG) where vertices represent an MPC protocol’s
primitive operations, also known as gates (e.g., AND/XOR in garbled circuits [319] and sum/prod-
uct in arithmetic circuits [84]). The edges of the DAG represent dataflow between the gates.
The depth of a circuit is the path length from the computation’s start to end, where edges are
weighted by the number of communication rounds the edge’s source vertex (corresponding to a
gate) requires. For example, consider a circuit for a round-based arithmetic MPC protocol [84]
that consists of an addition followed by a product. In this case, the addition requires no rounds
while the product requires 1 round and thus the depth of the circuit is 1.

To compute the cost model of a protocol π, CostCO requires the following inputs:
1. Protocol specification Sπ. In order to be able to interface with π, CostCO requires a short

specification for π. At a high level, a specification consists of the units of computation and
parameters of π that CostCO needs in order to derive π’s cost model. We describe the speci-
fication in more detail in §2.3.

2. Protocol implementation. This is a specific implementation of π, which implements the in-
terface described in §2.4.2. CostCO uses this implementation to synthesize empirical cost
models.
Note that, unlike prior work [42, 151, 243], CostCO only requires a list of parameters that

the cost model depends upon. The list may include parameters that do not appear in the final
cost model as CostCO can automatically perform parameter selection and filter out extraneous
parameters. Crucially, CostCO can derive a detailed cost model from shallow parameters, that
is, parameters that can be easily identified without a deep understanding of the protocol. For
example, in order to generate the detailed cost model for AG-MPC [319], a Boolean-circuit MPC
protocol, the user inputs:{

|AND|, |XOR|, |input|, |output|, depth, |C|, 1

log(|C|)

}
,

where |C| = |AND| + |XOR| is the total number of gates in the circuit, and depth is circuit
depth as described earlier. Of these terms {|input|, |XOR|, |AND|, depth, |output|} come from
how computation in AG-MPC is represented (as a Boolean circuit) and the terms {|C|, 1/ log(|C|)}
appear in the asymptotic O(·) complexity reported in Table 1 of the original paper [319]. From
the list of parameters, CostCO automatically generates the following empirical cost model for
execution time in milliseconds:

ĈRT
AGMPC = .004|input|+ .033|AND|+ .113|AND|

log |C| + 56.3 (2.1)

The protocol specification also only needs to be written once for an MPC protocol and can be
reused for different deployment settings. The party who writes this specification can be the
designer of the MPC protocol or the developer who wants to use the protocol in a hybrid-protocol
compiler. We further elaborate on the shallow parameters the protocol specification writer needs
to provide in §2.3.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 12

After the inputs are specified, CostCO can use these inputs to generate the appropriate cost
models. At a high level, CostCO’s cost modeling workflow is as follows:
1. (§2.4.1) CostCO first carefully chooses a set of profiling experiments using experiment design.

The user may optionally provide CostCO with a maximum experiment size (213 operations
by default) if they want to control CostCO’s total execution time.

2. (§2.4.2) Generates computations for the profiling experiments, executes them on the imple-
mentation Iπ, and collects performance measurements.

3. (§2.4.3) Automatically synthesizes and outputs both the abstract and empirical cost models,
denoted as Cπ and Ĉπ, respectively. Cπ and Ĉπ each contain cost models for computation,
memory, and network consumption.
Compared to plaintext cost modeling systems, MPC cost modeling does not require knowl-

edge of the input data. This is because, MPC’s privacy properties mean that a program’s perfor-
mance cannot depend on data content – and generally, the overhead depends only on computation
size and the input data size(s). As a result, executions are deterministic and non-branching, mak-
ing cost modeling CostCO feasible with only a few additional assumptions. We elaborate on the
assumptions CostCO makes and their limitations in §2.2.3 and §2.2.4.

2.2.2 Usage in a hybrid-protocol compiler
As previously explained in §2.1 and Figure 2.1, a hybrid-protocol compiler mixes MPC protocols
π1, . . . , πn . Parties invoke a hybrid-protocol compiler on the same deployment where they plan
to run their secure computation. Since transitioning from a protocol πi to πj needs a special MPC
conversion in order to maintain security, the compiler also needs to support conversion protocols
πi→j , which CostCO can automatically generate cost models for.

At a high level, the hybrid-protocol compiler divides the user program into pieces and tries
to determine the most cost effective way of dividing and assigning pieces of computation to MPC
protocols. The exponential search space makes it impractical to directly run and measure the
cost of every possible protocol assignment. Instead, the compiler infers the runtime, memory,
and network requirements of each assignment by querying each of the cost models returned by
CostCO.

Each empirical cost model Ĉπ = (ĈRT
π , ĈMEM

π , ĈNW
π) takes as input a circuit file represent-

ing a computation to be run (described in §2.4.2), and outputs the inferred execution time, peak
memory usage, or network cost of executing the computation using π on the parties’ deployment
environment. The cost for executing any program can be computed by summing up the cost of
executing each piece as well as the cost of conversions, which is given by plugging the data size to
be converted into the cost model for the relevant conversion Ĉπi→πj . We describe the integration
of CostCO in a compiler in §2.5.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 13

2.2.3 System assumptions
The security properties of MPC lend themselves to appealing computational properties, namely,
the execution is non-branching (all branch arms are evaluated), input-data independent, and de-
terministic. This means CostCO does not require additional inputs that are normally required by
generic cost modelers, e.g., representative workloads to run [117, 315, 325]. CostCO also makes
domain-specific assumptions that let it support automatically cost modeling many MPC proto-
cols.

Quadratic approximation

As mentioned in §2.1, CostCO approximates a cost model as polynomial with monomials of max-
imum degree = 2. For many MPC protocols’ cost models [22, 23, 73, 84, 86, 97, 163, 225, 277, 326],
a quadratic approximation is sufficient. This is due to the computation time and the number
of communication rounds of an MPC circuit normally being bounded by the size of the circuit
(|C|), and in the worst case no gate requires more than a constant number of all-to-all commu-
nication rounds, bounding the number of messages and hence bandwidth requirements to |C|2.
While CostCO can approximate non-polynomial cost terms as second degree polynomials, for
some protocols such as AG-MPC [319] explicitly specifying the asymptotic terms can improve
accuracy, especially when they contain non-polynomial factors (e.g., 1/ log |C|). As a result, for
such protocols, CostCO allows users to provide non-polynomial terms appearing in a protocol’s
asymptotic complexity as input and uses this information to improve cost model accuracy by
including them in the set of features considered when synthesizing cost models.

This assumption also implies that the cost model is smooth (differentiable everywhere). That
is to say, the protocol’s empirical cost model is not piecewise; the constant factors are expected
to not arbitrarily change with respect to computation size. However, CostCO can still enable the
compiler to make decisions on piecewise costs. For example, CostCO can extrapolate the per-
formance degradation from running out of memory by artificially limiting the system’s memory
and measuring the difference in runtime of a circuit. By using the memory model generated
by CostCO in tandem with the performance under memory pressure, our compiler can account
for a protocol assignment’s performance degradation when its peak memory usage exceeds the
available system memory (§2.5).

Fixed parameters

CostCO runs on the deployment that the users plan to run their secure computation on, which
is the same deployment existing hybrid compilers [42, 151] run on. Cost models are created for
fixed field sizes and security parameters, which allows the cost models to be viewed as a function
of computation size and input data size. CostCO should be rerun if the field sizes or security
parameters change.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 14

2.2.4 Limitations

Circuit structure

CostCO only considers the number of gates in the circuit and its depth. For the MPC protocols we
consider, circuit depth corresponds to the number of communication rounds required when eval-
uating the computation. We show in §2.6 that considering these factors is sufficient for producing
relatively accurate cost models, despite not considering round-level parallelism in protocols with
non-constant communication rounds.

Circuit optimization

The cost models generated by CostCO are derived from mapping several unmodified circuits
(§2.4.2) to the costs experienced during their execution. In practice, some protocols [163] can
reorder the evaluation order of the units comprising the circuit to improve performance. Signif-
icant modifications could render analysis on the unmodified circuit useless to extrapolate to the
modified circuit which the protocol actually evaluates. In order to produce accurate models for
these protocols, CostCO would need a way to execute a circuit without optimizations from the
protocol. The protocol would need to implement an interface that takes the computation and
outputs the optimized circuit that can be used as input to the cost model.

Scheduling

MPC protocols may use multiple threads throughout their execution. The runtime of these
threads is at the mercy of the scheduler while CostCO is profiling costs. Scheduling decisions
may influence the overall runtime performance of the protocol, but CostCO makes no attempt to
understand such scheduling decisions.

2.3 CostCO specification

The first challenge that CostCO needs to address is how to interfacewith a givenMPC framework.
MPC frameworks differ significantly from each other both in how computation is expressed and
in how it is executed. CostCO manages to provide a common interface using a simple API. We
observe that manyMPC protocols express computation as a sequence of primitive operations, also
known as gates. A primitive operation is either a computational gate or a data gate. For example,
the primitive operations of AG-MPC are the AND and XOR gates (computational units), and the
input and output gates (data units). CostCO assumes the cost model can be computed as a function
of the MPC protocol’s computational primitive operations. Intuitively, because MPC requires the
execution to be non branching, deterministic, and input-data independent, the cost of an MPC
protocol can be viewed in terms of the computation itself. The specification for an MPC protocol
π captures the primitive operations in π.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 15

Given the specification, CostCOwill automatically generate experiments to evaluate theMPC
framework, collect the results, and derive the abstract and the empirical cost models.

A protocol specification Sπ for protocol π is a file that details the following:
1. A set of gates, each of which is a computational gate or data gate and has the form gn =

(in, on, dn), where n is the name of the gate, in is the number of inputs, on is the number of
outputs, and dn is the depth. Depth here indicates the number of communication rounds
required to run this computational unit. We define G to be the entire set of π’s gates. Inputs
and outputs are assumed to be gates, i.e., Gio = input, output and Gio ⊂ G. For a given
computation, we define S = {sg} to be the counts of every gate g ∈ G in that computation.

2. A set of asymptotic terms, each of which is some function h : R|S| → R that expresses
parameters in the cost model as a function of some subset of S and appears as a term in the
worst-case asymptotic complexity bound O(·) of π. We define H to be the entire set of π’s
asymptotic terms. The counts of gates S and the asymptotic terms H evaluated on S make
up the set of features F = {f1, . . . , f|F|} = S ∪ {h(S)|h ∈ H} that CostCO uses to derive a
cost model. The cost model is expected to have the form:

Cπ(f1, . . . , f|F|) = r⊤

f0
f1
...

f|F|

+ s⊤

f0f0
f0f1
...

f|F|f|F|

 ,

where ri , si ∈ R+.

Example. To make the specification writing process more concrete, we will elaborate on the
specification for AG-MPC [319] introduced in §2.2.1. Boolean MPC requires the computation to
be specified as a Boolean circuit composed of XOR and AND operations. Note that since CostCO
assumes that the deployment is fixed, variables such as the number of parties and network band-
width are also fixed and thus integrated into the empirical constants of the cost model. Both
operations have two inputs and one output. AG-MPC is a constant-round protocol, thus both
operations have a depth of 0. Therefore, AG-MPC has the following gates:

G = {(XOR, 2, 1, 0), (AND, 2, 1, 0)} ∪ Gio.
Table 1 of AG-MPC’s original publication [319] lists an asymptotic complexity of O(|C|/ log |C|).
Because CostCO is capable of automatically inferring quadratic parameters (monomial degree =
2),

H =

{
|C|, 1

log |C|

}
.

2.4 Synthesizing cost models

Given an MPC protocol specification and implementation (§2.3), the goal of CostCO is to com-
pute a cost model for that protocol. When designing CostCO’s cost modeling algorithm (Algo-

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 16

Algorithm 2.1 Cost model synthesis
1: Input: F ,H, d
2: Output: A cost model (F∗, β∗) for π
3: F̃ ← ∅
4: X1 ← PBD(|F|)
5: Y1 ← RunCircuitFiles(X1)
6: β ← LeastSqares(X1,Y1)
7: for fi ∈ F do
8: if 0 /∈ ConfInterval(βi) then
9: F̃ ← F̃ ∪ {fi}
10: end if
11: end for
12: X2 ← CCD(|F̃ |)
13: Y2 ← RunCircuitFiles(X2)
14: G ← F̃ ∪ H
15: G2 ← {gi · gj | gi , gj ∈ G}
16: (F∗, β∗)← FoBa(X2,Y2,G ∪ G2)

rithm 2.1), we initially considered using techniques from optimal experiment design (OED) [151],
which provides a methodology for choosing samples while minimizing some desired metric (e.g.,
metrics related to expected error of the estimator). Existing cost modelers like Ernest [315] lever-
age OED to predict the performance of large-scale data analytics workloads. However, OED re-
quires a known model which, in the case of AG-MPC above, would require knowing the abstract
cost model a priori:

Crt
AGMPC = x0 + x1|input|+ x2|AND|+ x3

|AND|
log |C| (2.2)

Generating such amodel is challenging for a user because it requires a non-trivial understand-
ing of the protocol and in some cases might rely on implicit assumptions about the deployment
(e.g., network latency). While it is hard for the user to specify the exact abstract cost model equa-
tion, it is easier for the user to come up with factors that affect performance. For example, as
previously mentioned in §2.2.1, MPC protocols commonly report their asymptoticO(·) complex-
ity. Thus, CostCO asks the user to only specify such factors (the user can also providemore than is
necessary) and does not require the user to figure out how to combine the factors. CostCO blends
techniques from experiment design and statistics to cull important features (§2.4.1), generate and
run a set of experiments (§2.4.2), and perform regression analysis to construct the abstract and
empirical cost models (§2.4.3).

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 17

Features

Experiment f1 f2 f3
1 1 1 1
2 1 0 0
3 0 1 0
4 0 0 1

Table 2.1: PBD for three features and two levels. After running every experiment in PBD, CostCO
can analyze which features fi to drop before the second phase of more intensive experiments.

2.4.1 Design of experiments
Given a set of potential features, CostCO still needs to figure out which experiments to run.
As mentioned in §2.4, we cannot use OED because we do not know the abstract cost model
(e.g., eq. (2.2)) a priori. Other techniques that predict execution time using random sampling
[144, 284] do not provide a principled rule on the amount of samples to collect and ended up
needing hundreds of samples to train a model. CostCO’s approach is inspired by ideas from
response-surface methodology (RSM) [138], a technique used in several disciplines to explain
how different features influence an observed value. We remain sample efficient by leveraging
two techniques in the experiment design literature used in tandem with RSM.

CostCO initially starts with a set of user-provided potential features F . In our running AG-
MPC example,

F = {|AND|, |XOR|, |input|,
|output|, depth, |C|, 1/ log(|C|)}.

In this subsection, we will be working on FM , the monomial subset of F . That is,

FM = {|AND|, |XOR|, |input|, |output|, depth} .

In order to identify the important features F̃ , CostCO carries out a screening step (Lines 4–11),
that generates a set of experiments used to compute the importance of each potential feature. A
naïve way to find F̃ is via a full factorial experiment [110], which is a design of size 2|FM | that
enumerates all permutations where each feature is either at its highest value or lowest value.
Instead, CostCO uses Placket-Burman design (PBD) [247] for this step because it produces a set
of experiments that is small but still capable of finding features that have a significant effect on
the runtime. PBD is a fractional factorial design requiring only 4⌈(n + 1)/4⌉ ≈ n + 1 measure-
ments for n features, under the assumption that interactions between features (second-order) are
confounded with main (first-order) effects. A PBD for n = 3 is shown in Table 2.1. The samples
collected from PBD are fit and features are filtered according to the confidence intervals computed
with eq. (2.3). After the screening step in our running example,

F̃ = {|AND|, |input|} .

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 18

!
f3

f1

f2

Figure 2.3: CCD for three features. Star points (unshaded points) are α away from the center
of the factorial design (shaded points). Note that α can be a different maximum value for each
feature.

The screening step using PBD indicates that depth does not have a statistically significant im-
pact on performance, and we drop that from the list of features. This is because AG-MPC is a
constant-round protocol, and circuit depth does not impact runtime. |XOR| is dropped because
XOR requires no additional communication to compute and |output| is dropped because its effect
is both small and limited by the circuit size.

CostCO then carries out a more intensive experiment step using the culled set of features
(Lines 12-13). CostCO uses central composite design (CCD) [35], an experiment design method-
ology that is more expensive than PBD but capable of capturing interactions between features in
F̃ (second-order effects). A CCD is composed of a factorial design augmented with star points
that are a distanceα from the center [35]. Figure 2.3 shows a CCD for |F̃ | = 3. The extra sampling
points help build a second-order model for the features without having to carry out a complete
three-level factorial experiment (3|F̃ | samples). CostCO is also able to reuse data from the PBD
experiments (e.g., PBD forms a subset of the cube’s vertices in Figure 2.3) instead of re-running
those experiments. CostCO then runs these experiments (§2.4.2) to obtain data for computing the
abstract and empirical cost models (§2.4.3).

2.4.2 Generating and running experiments
In the previous section, we explained CostCO’s two-phase experiment design procedure. Given
the set of features and their values each experiment, CostCO still needs to use the user-provided
protocol specification (described in §2.3) and the implementation to run one or more profiling
experiment instances. In order to do so, given a profiling experiment CostCO synthesizes and
runs computational circuits with the required features (Lines 4-5 and 12-13).

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 19

Circuits

Similar to many MPC frameworks, CostCO represents computation as a circuit. Each circuit is
a DAG, where the vertices, which we call gates, correspond to the π primitive operations; and
edges represent data flow between gates. An edge gi → gj means that the output from gate gi is
used as an input to gj . In addition, CostCO needs to ensure that generated circuits can capture
properties like network round-trips, etc. Protocols that are not constant-round, e.g., arithmetic
and Boolean ABY [84], have performance that can depend on the sequence of operations that are
run. CostCO models this dependency in the circuit as the depth dn of a primitive operation; this
information is supplied as a part of the protocol specification. If gi represents a gate with depth
di , then all outgoing edges from gi are assigned the weight di . The depth of the entire circuit is
the number of round trips needed to run the computation, which is the equivalent to the length
of the longest path in the circuit.

Generating circuits

CostCO generates representative computation in the form of a circuit. The circuit generation
component needs to take as input the number of each gate (computational gates and input gates)
and the desired circuit depth. Given these parameters, CostCO constructs the circuit by first
putting in input gate according to the input size. While building the circuit, CostCO keeps track
of: (1) gates that still need to be realized on the circuit and (2) gates with available outputs that can
be used as an input to another gate. CostCO selects a gate from the first list and places it on the
circuit. Using the second list, inputs are selected for the new gate. CostCO repeats this process
until all gates have been realized in the circuit. CostCO achieves the desired circuit depth by
keeping track of path lengths and preventing edges that would result in a path length exceeding
the desired depth. Finally, CostCO ensures that the output of every gate is either fed into another
gate as input or is evaluated as an output.

Note that the input to CostCO’s circuit generation component (number of gates and de-
sired circuit depth) are not specified by the user but are automatically generated and varied by
CostCO’s experiment design component (§2.4.1).

Running circuits

CostCO assumes that theMPC framework can accept inputs in the circuit format described above.
CostCO therefore expects that the protocol provider implements the following function:

RunCircuit(CircuitFile cf) Execute the circuit represented by cf with the protocol π
and report the total execution time and network communication.

CostCO generates circuits and calls the protocol’s implementation of RunCircuit to profile its
performance with circuits generated from the methodology described above. Empirically, imple-
menting RunCircuit took less than 200 LOC for every MPC protocol we evaluated.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 20

Types of cost measured

CostCO generates cost models for three types of execution costs: runtime, peak memory us-
age, and network communication. CostCO opts to measure memory in addition to runtime and
network communication because π can experience a significant performance degradation if the
peak memory of an execution exceeds available memory. Recent protocols have started trading
off more communication rounds for using less memory [333].

2.4.3 Deriving cost models
After choosing and running profiling experiments, CostCO selects terms from the monomial
culled features F̃ , asymptotic terms H, and their pairwise products in order to form the final
abstract cost model (Lines 15–16). In our running example,

G = F̃ ∪ H = {|AND|, |input|, |C|, 1/log(|C|)}

G2 =
{
|AND|2, |AND||input|, |AND||C|, |AND|

log(|C|) , . . .
}
.

We make the observation that only a handful of the terms in G and G2 contribute significantly to
the cost. Intuitively, this is because many of the pairwise products do not appear in the asymp-
totic O(·) cost. Thus, the problem becomes one of selecting a sparse polynomial out of G ∪ G2.
CostCO uses ordinary least squares regression and leverages the adaptive forward-backward
(FoBa) greedy algorithm described in [329] to select a sparse polynomial. FoBa first greedily
adds terms to the candidate polynomial in the forward step, halting when the reduction in mean
error of adding a feature is less than ϵ. To correct for incorrect features added in the forward step,
FoBa’s backward step removes a feature if the increase in mean error is less than a factor δ than
the last decrease in mean error.

To test how well the polynomial produced by FoBa generalizes, CostCO runs cross-validation
on the outputted model. Specifically, CostCO uses leave-one-out-cross-validation where one data
point is left out and the leftover data is re-fit to the polynomial. This is repeated for all points in
the data. Since FoBa is parameterized by the stopping threshold ϵ, CostCO uses the mean error
from the cross-validation runs as a metric when binary searching for the optimal ϵ.

In order to further prevent selecting a polynomial that overfits the data, we only consider
a model (polynomial outputted by FoBa) if all of its features have regression coefficients with
a positive 95% confidence interval. Under the least squares assumption that observation errors
are normally distributed, i.e., ε ∼ N (0, σ2), the estimated coefficients β̂i from samples X have a
100(1− α)% confidence interval of:

β̂i ± tα/2,n−(d+1)

√
σ̂2[(X⊤X)−1]i ,i , (2.3)

where σ̂2 is the mean squared error (estimate of σ2), t is the Student’s t-distribution, and n−(d+
1) is the degree of freedom. Note that we make the least squares assumption because MPC pro-
tocols are usually deterministic in their execution—dependence on data content would otherwise
cause privacy leakage—so errors stem from the execution environment.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 21

2.5 Implementation

We implemented a prototype of CostCO and a hybrid-protocol compiler that uses the generated
cost models in ≈5000 lines of code (LOC) of Python. Porting MPC protocols to CostCO took
less than 200 LOC per protocol (§2.6.1). Lines of code were counted with cloc. Similar to the
SPDZ [163] compiler, our compiler takes programs written in a subset of Python. It currently
supports sixMPC protocols: Arithmetic, Boolean, Yao (and their share conversion protocols) [84];
FastGC [146]; AG-MPC [319]; and SPDZ [73].

We use a program decomposition approach and a protocol conversion assignment approach
based on OPA [151]. However, instead of treating the optimal protocol assignment problem as a
linear program, we use a randomized greedy algorithm that reduces the search space by avoid-
ing conversions with some probability p if the cost of converting shares to a different protocol
outweighs the immediate cost reduction from using a different protocol. This allows us to mix
all three protocols (Arithmetic, Boolean, and Yao) whereas the linear program relaxation, though
integral, only allows two protocols to be mixed at a time [151]. We leave finding better search
algorithms for the optimal program assignment problem for future work.

The cost models provided by CostCO also enable our compiler to consider peak memory
consumption when assigning protocols for a program and select between variants of an MPC
protocol like FastGC [146], which is a memory-optimized version of Yao [84].

2.6 Evaluation

We evaluate CostCO on 7 MPC protocols. We first report on the ease of porting MPC protocols
to CostCO (§2.6.1). We then evaluate the accuracy of our generated models (§2.6.2) and how
they compare to current work in cost modeling (§2.6.2). We conclude with results on the cost of
running CostCO (§2.6.2).

We ran all evaluations on AWS c5.4xlarge instances (16 vCPUs and 32GB RAM) in the same
region. All protocols used a deployment with 2 parties except AG-MPC, which used 3 parties. All
protocols, when applicable, had their field sizes set to 32 bits. We set the maximum number of a
feature per experiment to be the default value of 213. This value determines the concrete value
to set for a feature at the “high” point in a factorial design (described in §2.4.1).

Additionally, we implemented our own hybrid-protocol compiler for ABY based off the tech-
niques in [151]. We replace the cost models used by [151] with the cost models automatically
generated by CostCO and find that it arrives at the same hybrid protocol assignments for the
applications we tested (GCD, biometric matching, and non-parallelized k -means). In all cases we
found that the automatic models generated by CostCO allowed the compiler to perform as well
as a compiler that uses hand-tuned, human generated cost models.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 22

Existing Using CostCO

Protocol Implementation RunCircuit Spec
ABY [84] 13722 161 62

A — 141 14
B — 4 14
Y — 4 14

A→Y, B→Y,
B→A, Y→A,
A→B, Y→B — 12 20
FastGC [146] 9905 139 14
AG-MPC [319] 7269 100 14

SPDZ [73] 39511 185 166
BFV [277] 8854 164 14

Table 2.2: Lines of code to generate cost models using CostCO for each MPC protocol, split be-
tween implementing RunCircuit and writing the MPC protocol specification. Using CostCO
requires additional code that is 1-2% of the existing MPC protocol’s implementation size.

2.6.1 Ease of use
We integrated the following MPC protocols to work with CostCO: the three in ABY [84] (Arith-
metic (A), Boolean (B), and Yao (Y)), their conversions (A→Y, B→Y, B→A, Y→A, A→B, Y→B),
FastGC [135], AG-MPC [319], SPDZ [163], and BFV homomorphic encryption [97]. Table 2.2
shows the lines of code needed to implement the required functionality for the protocol using
CostCO (§2.3), as well as the (existing) lines of code in the protocol’s implementation.

Running circuits. In order to interface with CostCO, the MPC protocol needs to implement the
RunCircuit API described in §2.4.2. Implementing RunCircuit took about 1-2% of a protocol’s
implementation size.

Protocol spec. The gates for these protocols were simple to enumerate (Boolean vs. arithmetic
operations), resulting in a compact specification of 20 lines or less. The degree bounds on runtime
and communication complexity were straightforward to compute from the asymptotic complex-
ity results published for each protocol. The only protocol with a non-polynomial asymptotic term
in its cost model was AG-MPC, and its term |C|/ log |C|, which appears in its reported asymptotic
complexity (see Table 1 of [319]), can be input into CostCO in a straightforward manner (|C| and
1/ log |C|). In contrast, we found that manually deriving the cost model to be demanding and
error-prone due to requiring further analysis of the protocol. While the term |C|/ log |C| is read-

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 23

CostCO CheapSMC [243] Opt. Mix [151]

Protocol p5 p50 p95 RMSE p5 p50 p95 RMSE p5 p50 p95 RMSE
A 1.01 15.0 31.1 37.5 224.7 1163.2 1559.6 2952.4 84.3 238.4 408.8 549.8
B 0.6 10.6 33.5 150.6 19.0 387.8 566.7 4771.5 71.1 314.7 612.8 3632.1
Y 1.2 5.3 13.5 172.9 2.1 28.0 62.9 394.4 313.4 495.2 719.7 5732.3

Table 2.3: Comparison of each cost modeling framework’s runtime prediction error (%) and√
MSE (ms) on ABY [84]. The percentiles are computed from prediction errors of a set of 100

randomly generated circuits.

ily available in the reported asymptotic complexity, users cannot uncover additional terms in its
cost model (such as |AND|/ log |C|) without more detailed analysis of the protocol.

2.6.2 Microbenchmarks

Model accuracy

To evaluate how well the models produced by CostCO extrapolate, we generate cost models for
runtime, network usage, and peak memory usage; and determine their accuracy in predicting
each metric on a set of 100 circuits with features of size up to 8× larger (216) than the largest
feature size in the samples used to build the cost model. We sample the test circuits randomly
with a fixed seed.

The Root Mean Squared Error (RMSE) as well as the 5th, 50th, and 95th percentile of the
relative error of the runtime costmodels produced by CostCO for the 3MPC protocols in ABY [84]
are reported in Table 2.3. The relative error as a percent value is calculated as:∣∣∣∣actual− predicted

actual

∣∣∣∣× 100.

Comparison to existing cost models

CheapSMC [243]. CheapSMC computes cost models by constructing a separate circuit with
1000 operations for every operation in ABY. CheapSMC then records the runtime of each circuit
and divides the average over 10 runs by 1000 to get the average per-operation cost. The cost
of running a circuit becomes the sum of its individual operation costs. This approach, while
efficient and easy to reason about, sacrifices model accuracy because the structure of the circuit
is ignored. This can be seen in Table 2.3, where the median accuracy of Yao is 28% because
while the circuits are evaluated in topological order, the depth of the circuit does not affect the
number of communication rounds. In Arithmetic and Boolean, however, themedian relative error
degrades to 388% due to the circuit depth affecting the number of communication rounds.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 24

CostCO CheapSMC [243] Opt. Mix [151] HyCC [42]

Runtime Memory Runtime Runtime Runtime
Protocol (#) (sec) (sec) (#) (sec) (#) (sec) (#) (sec)

A 34 143.1 62.9 2 14.7 20 35.1 1 0.16

B 34 120.2 69.1 2 8.8 20 80.0 1 0.16

Y 27 111.4 51.0 2 7.6 20 82.1 1 0.16

Table 2.4: Number of experiments (#) and total time (sec) taken by each cost modeling framework
to collect samples.

OptimalMixing (OPA) [151]&HyCC [42]. The costmodel used byOPA builds on themethod-
ology of CheapSMC by also considering circuit structure. This is accomplished by running cir-
cuits of each gate with different levels of parallelism (n ∈ {1, 2, 5, 10, 25, 50, 100, 200, 300, 500,
800}). The cost of a circuit is calculated by finding the number of gates running at each level
and taking the appropriate per-gate cost at that level of parallelism. This method suffers from
compounding errors introduced from the overhead of executing an actual circuit, e.g., to run a
circuit with one gate, the circuit also needs two inputs and one output. HyCC uses a similar cost
modeling approach, except with only 4 levels of parallelism. Note that relative accuracy matters
for protocol selection, which we further investigate in §2.6.3.

Cost of model generation

We now characterize the economic cost of generating our cost models. Our average runtime to
generate the cost models (displayed in Table 2.4) for our set of circuits for each of our profiled pro-
tocols was in general less than two and a half minutes with an approximate worst-case addition
of one minute to profile the memory usage. This leads to a total cost (in our r5.xlarge deploy-
ment) of model generation of less than $0.005 for each protocol. Although other hybrid-protocol
compilers are comparatively cheaper, CostCO is able to automatically generate the experiments
to run, saving on manual effort.

2.6.3 Application benchmarks

Comparison to related work

In order to demonstrate the utility of the cost models automatically generated by CostCO, we
compared our compiler to prior benchmarks fromHyCC andABY. Below, we describe and discuss
each application. The assignments made by each compiler are summarized in Table 2.5 and the
runtimes of each application are illustrated in Figure 2.4.

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 25

Benchmark (LAN) Best Known CostCO HyCC* HyCC† ABY (Manual)

Modular exponentiation A+B+Y A+B+Y — — A+B+Y
Biometric matching A+Y A+Y A+B A+Y A+Y

Private set intersection Y Y B Y —
k -means A+Y A+Y A+B A+Y —
DB-Merge A+Y A+Y A+B A+Y —

MiniONN MNIST A+Y A+B+Y * A+Y —

Table 2.5: Benchmark comparisons with HyCC [42] (automatically generated) and ABY [84]
(manually written). HyCC* uses their cost model and protocol selection algorithm, which did
not finish running after 2 weeks for MiniONN. HyCC† uses their heuristic approach, which se-
lects the best out of 5 default protocol assignments. The “Best Known” assignment is determined
by measuring the runtimes of each assignment and taking the assignment with the minimum
runtime.

Modular exponentiation. Two parties want to compute x y mod m , where one party holds x
and the other holds y (all values are 32-bit integers). CostCO computes an assignment similar to
the manual ABY [242] assignment.

Biometric matching. One party holds a list L containing m n-dimensional vectors and the
other holds an n-dimensional query vector q . The two parties come together to compute the
vector l ∈ L with the shortest Euclidean distance from q . For (m = 256, n = 4), CostCO com-
putes an assignment that is in total≈ 40ms slower than HyCC. This difference is due to HyCC’s
implementation of biometric matching, which structures the computation of the minimum as a
tree, minimizing the depth of the computation.

Private set intersection. One party holds a set S1 and the other holds a set S2. The two parties
want to compute the intersection of S1 and S2 using the standard O(n2) algorithm. CostCO
outperforms the automatic protocol selection of HyCC by 84ms but is 595ms slower than the
hand-selected HyCC protocol. This is due to HyCC running a circuit-level minimization tool
which CostCO does not run, which results in a circuit that is 41% smaller.

Database merge. Both parties hold a database with two columns and want to compute the
aggregate mean and variance of their merged databases. CostCO outperforms both the automatic
HyCC assignment (by 1.28 s) and hand-picked HyCC assignment (by 560ms). This is due to
CostCO also assigning the arithmetic MPC protocol when computing the squares of differences
needed to calculate the variance. HyCC only assigns the arithmetic MPC protocol for addition
operations when computing the mean and variance.

k -means. Both parties hold datapoints and want to identify centroids in their data using a
textbook k -means algorithm [198]. CostCO outperforms the automatic HyCC assignment (by

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 26

Biometric
Matching

PSI DB-Merge k -means MiniONN
(buggy)

MiniONN
(debugged)

0

2

4

6

8

Ru
nt
im

e
(s)

D
id

no
tfi

ni
sh

ru
nn

in
g

N
/A

N
/A

CostCO Setup
CostCO Online

HyCC (Chosen) Setup
HyCC (Chosen) Online

HyCC (Best) Setup
HyCC (Best) Online

Figure 2.4: Runtime breakdown and comparison of hybrid protocols generated by CostCO and
HyCC [42] for various applications. Each bar is broken up into Setup (shaded) and Online run-
times.

3.1 s) and hand-picked HyCC assignment (by 2.5 s). Note that the implementation of k -means in
CostCO is more straightforward than HyCC’s implementation, which decomposes into multiple
inner and outer loops.

Secure prediction. The last application is a machine learning (secure prediction) workload
where one party holds the model and the other party holds an input for the model. The two
parties want to compute the input’s corresponding prediction from the model. We implemented
the convolutional neural network described in MiniONN [197] which performs a secure predic-
tion with a neural network trained on the MNIST dataset. HyCC’s performance is affected by a
bug where certain repetitive calls to a function result in empty circuits (i.e., less work and lower
runtime compared to CostCO’s debugged assignment). We accounted for this by removing the
computations that were removed by HyCC. In this context, HyCC’s solver did not finish running
and CostCO was able to produce an assignment that was 41% faster than HyCC’s hand-selected
assignment. The rightmost bar in Figure 2.4 shows the runtime of debugged MiniONN (it does
not lose any work), which has a runtime 40% higher than HyCC’s buggy MiniONN.

Memory

The cost models produced by CostCO enable our compiler to make more sophisticated decisions
by considering each MPC protocol’s peak memory usage. To emulate a resource-constrained de-
vice, we set an artificial memory budget of 200MB using cgroupv2 and informed the compiler
of the memory limit. This caused CostCO to choose the memory-optimized version of FastGC

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 27

MPC Protocol Co
stC

O
Hy

CC
[42

]

OP
A [15

1]

ABY [84] ✓ ✓ ✓

FastGC [146] ✓ ✗ ✗

FastGC-Mem [135] ✓ ✗ ✗

AG-MPC [319] ✓ ✗ ✗

SPDZ 2.0 [163] ✓ ✗ ✗

Table 2.6: MPC protocol support across hybrid-protocol compilers.

for our DB merge application. Note that other compilers like HyCC do not model memory con-
sumption, and hence cannot make the correct decision in choosing between an MPC protocol
implementation [146] and its memory-optimized version [135].

Extensibility

The most recent hybrid-protocol compilers only support the 3 protocols in ABY [242], which
provides MPC for 2 parties and semi-honest security (no party deviates from the protocol). Our
compiler is able to use CostCO’s cost models to incorporate additional MPC frameworks (SPDZ,
AG-MPC, FastGC), which lets it choose MPC protocols for a variety of usage settings, e.g., more
than 2 parties and malicious security. Table 2.6 lists the MPC protocol support across hybrid-
protocol compilers.

2.7 Related work

2.7.1 MPC compilers
MPC compilers originated as a means to enhance the accessibility of secure computation outside
of expert users. Developers often lack the domain-specific knowledge required to employ MPC.
These compilers allow developers to describe secure computation through high-level languages,
obfuscating the underlying details of the protocols. Fairplay [24] represented the first attempt
at compilation, proposing a domain specific language that compiles to a garbled circuit. This
work launched the compiler space leading to a wealth of future work. Subsequent single protocol
compilers have focused on optimizing performance or scalability (e.g. Sepia [40], Sharemind [30],
TinyGarble [291] FastGC [15]), and improvements upon the high-level abstraction (e.g. Picco
[330], CMBC-GC [103], Obliv-c [328], ObliVM [196], Wysteria [260]).

AsMPC protocols began to specialize, performing especially well for a single type of computa-
tion, the need arose for hybrid compilers that leverage each of these categories of protocol. These
hybrid protocol compilers have the additional task of partitioning the program and choosing the

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 28

optimal MPC protocol for each piece of the computation. As a result, each compiler either relies
on hard-coded heuristics or on cost models to guide their decision. Tasty [134] was the first such
hybrid protocol compiler and allowed the generation of secure protocols combining homomor-
phic encryption and garbled circuits. In this framework, the developer hard-codes the protocol
to be used for each operation. After Tasty, there have been a number of different approaches to
protocol selection. Some frameworks, such as EZPC [51] include hard-coded heuristics for their
currently supported protocols and require coming up with new heuristics when integrating new
protocols. Other recent works profile the cost of the gates and model the total circuit cost as a
sum of the gates (HyCC [42], CheapSMC [243], OPA [151]).

2.7.2 Cost modeling
There have been a number of works on cost modeling outside of secure computation that still
hold parallels to the MPC environment. Recently, with the increasing distributed nature of com-
putation, many works have tried to quantify the performance of jobs as a function of a cloud
configuration while minimizing the individual experiments required. Ernest [315] aims to enable
efficient performance prediction based on the assumption that the related jobs have a predictable
structure. The system leverages optimal experiment design [254] to minimize the number of
samples required to develop such a predictor. Generic empirical cost modeling frameworks like
trend-prof [117] receive a representative workload as input from the user and fit to a pre-
determined type of model (linear or powerlaw). CostCO leverages the security properties of
MPC to produce cost models that are independent of data content.

2.7.3 Statistics
Experiment design [174] is a widely applicable statistical tool to determine the features respon-
sible for a value. It allows the user to maximize the understanding gained per-experiment of
the relationship between the response variable and different features. Optimal experiment de-
sign [254] allows a value to be estimated with minimum variance and bias. In a multi-parameter
setting the variance of the parameter estimator is a matrix. Its inverse is denoted as the infor-
mation matrix. There are different categorizations of optimality based upon minimizing different
values related to the information matrix.

There are several instantiations of optimal experiment design. One such category of imple-
mentations is iterative experimentation which concerns the development of sequential exper-
iments. Response-surface methodology [138] is an iterative experimentation used to optimize
the response by exploring the surface of the response curve. First, in order to explore the curve
when far from the optimum, the experimenter uses the method of steepest ascent on a first or-
der model to find the most efficient direction to move. When closer to the optimum, the experi-
menter switches to a second ordermodel that is more expensive to compute (becausemore factors
equates to more runs), but more accurate. In order to minimize the number of runs required to
fit the second-order model, RSM employs the uses of factorial designs such as CCD [35]. A facto-
rial design is a design that enumerates all permutations of feature settings where each feature is

CHAPTER 2. COSTCO: AUTOMATIC COST MODELING OF MPC PROTOCOLS 29

either at its highest value or lowest value. An example of a fractional factorial design is Plackett-
Burman design (PBD) [247], which has been shown to be particularly useful in unconstrained
configuration spaces [284].

Sparse representations in functional relationships prevent overfitting to the dataset. Tradi-
tionally, sparse learning has been performed by using one of three approaches: lasso regular-
ization; forward greedy algorithms, which choose a feature to add to maximize the reduction
in the cost function; and backward greedy algorithms, which choose features to minimize the
increase in the cost function. FoBa [329] employs the uses of both greedy algorithms showing re-
duced training error to the three classic choices making sure backward steps don’t erase the gain
made in forward steps. They ensure that backward steps are only taken when the cost functions
increase is less than or equal to half of the decrease of the cost function in earlier forward steps.

2.8 Conclusion

The recent growth in the development of MPC protocols has significantly improved the perfor-
mance and feasibility of MPC. However, it has led to a zoo of MPC protocols that a prospective
user must reason about when choosing a protocol for their workload. CostCO helps compute ac-
curate cost models for different protocols and does so in an automated way. Accurate cost models
can aid in the synthesis of efficient hybrid MPC protocols, which could enable the realization of
significantly increased employment of practical secure computation.

30

Chapter 3

LegoLog: A configurable transparency log

3.1 Introduction

Transparency logs are a core building block of many security-sensitive applications across do-
mains such as encrypted messaging [11,143,183,202,208], Internet of Things (IoT) [7], encrypted
backups [74], and code binary distribution [4, 142, 219, 230]. For example, incorrectly issued web
certificates undermined the security of TLS traffic for many years because there was no way
to verify if an attacker issued a web certificate for a website they did not control. Certificate
transparency addressed this problem by providing transparency: the certificate transparency in-
frastructure deployed in browsers like Chrome and Safari does not prevent certificates from being
incorrectly issued, but it does provide visibility into and consistency across all issued certificates,
which can be used to detect misbehavior [182]. Key transparency solves a similar problem for
end-to-end encrypted messaging [143, 202, 208]: finding the correct public key for a user before
sending an encrypted message. Key transparency allows clients to check that the server is ad-
vertising the correct key. If the server publishes the wrong key, the transparency log provides
incontrovertible evidence of misbehavior.

A transparency log is, at its core, a verifiable key-value store. If a client writes a value, other
clients querying the server should see the write. If the server is compromised, clients will ei-
ther still read the correct value or obtain a proof of misbehavior. Transparency logs leverage the
common client-server architecture with a single powerful server and many lightweight clients,
and augment it by adding a small number of lightweight auditors to validate that the server cor-
rectly maintains system state. This makes transparency logs a useful tool for building verifiable
key-value stores.

However, choosing a suitable transparency log for an application is not straightforward. Dif-
ferent transparency logs distribute computation and communication differently, leading to di-
verging performance and security properties. This forces a developer to sift through many trans-
parency log designs to find one fitting her application. For example, specialized transparency log
designs exist for web certificates [182], end-to-end encrypted messaging [143, 202, 208], IoT [7],
code binary distribution [4, 142, 230], and encrypted backups [74], assuming different client,

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 31

server, and auditor device profiles. To complicate matters further, the developer might need a
transparency log where no specialized design exists for an application and workload. To achieve
good performance, the developer must design a new log specific to the workload and the com-
putational and communication constraints of different entities in their system. Identifying the
correct transparency log or, worse, designing a new one, for every application is a massive bar-
rier to adoption, especially for developers without expertise in transparency logs.

To address this problem, we introduce the concept of a configurable transparency log, a system
that takes as input a workload description and the computational resources of each party and
automatically outputs a transparency log design that matches the specification. In this chapter,
we present the first configurable transparency log system: LegoLog. Using LegoLog, a developer
can describe her application workload without additional expertise and automatically obtain a
tailored log.

LegoLog’s design is guided by the observation that the vast majority of transparency log
designs are built from the same key ingredients. Many designs are inspired by authenticated data
structures [231, 296] and are built using data structures permitting efficient proofs that an item
was appended to the log or that an item is included in the log. The variation in design then comes
from how these ingredients are combined and how the work of verifying the transparency log
state is distributed across different entities. We show how to combine these ingredients in a single
generalized design that adjusts the underlying algorithm to meet application requirements.

To illustrate its generality, we show how LegoLog derives close approximations of existing,
state-of-the-art transparency logs for several different workloads. For example, LegoLog can
derive certificate transparency [182], binary transparency [28], multiple key transparency logs
depending on application requirements—includingCONIKS [208] andMerkle2 [143]—and a trans-
parency log for IoT [7].

The core challenges in designing LegoLog were threefold: (1) automatically generating a log
design tailored to a workload, (2) creating an API for developers to easily specify workload details,
and (3) exploring new design points representing different performance or security tradeoffs.
When reasoning through a configurable design in LegoLog, we realized that parameters and
tasks unnecessarily tied together in prior designs (e.g. update vs. monitoring intervals) could
be decoupled. This allowed us to efficiently capture more workloads and, in some settings, to
provide stronger security than existing transparency logs (e.g. preventing tampering vs. detecting
misbehavior) as we explain below.

Decoupling the frequency of updates and monitoring (§3.3.3). In most existing trans-
parency log designs, clients must come online to monitor for server misbehavior every time the
server updates the log [208]. However, some applications require writes to propagate quickly
with clients that are not regularly online (e.g., a user whose phone is stolen might want to update
her messaging keys right away). We observe that we can decouple the update frequency and
monitoring frequency. This insight allows us to explore new design points that allow for low
update latency even if clients are not constantly online. In particular, we show how to trade off
the frequency with which clients come online to perform checks for the cost of a lookup in the
transparency log.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 32

Allowing clients to detect misbehavior early (§3.3.3). In many existing transparency log
designs [28, 143, 182, 184, 208], clients monitor for server misbehavior. If the server misbehaves,
then the client obtains proof, but possibly only after an irreversible action has taken place due to
an incorrect value (e.g., for a cryptocurrency directory or end-to-end encrypted messaging). In
LegoLog, we explore a different security tradeoff by allowing clients who monitor regularly to
detect server misbehavior before other clients use the incorrect values. This way, clients can not
only detect server misbehavior, but also protect against its ill effects, provided that clients come
online regularly. LegoLog achieves this while supporting low-latency updates, meeting both the
performance and security requirements of an application.

Supporting offline clients (§3.3.4). In some applications, clients may disconnect for extended
durations. When a client comes back online, it should be able to batch monitoring checks to
perform them more cheaply. We show how to batch checks so that the client only has a small
amount of work to do when it comes back online to detect misbehavior during the period it
was offline. We draw inspiration from prior work on aggregating verification work [143]. We
integrate these ideas in a way that is compatible with the other design parameters in our system
without harming performance.

Designing an expressive developer API (§3.2.3). While LegoLog uses a set of internal system
parameters to derive the correct transparency log construction, the developer has no intuition
for how to set these parameters. We introduce an API that allows developers to specify the
application workload and the computational and communication constraints of the clients and
auditors. From that, the LegoLog’s planner outputs the number of cores and bandwidth required
for the central server along with the internal system parameters for running LegoLog for the
specified application (§3.4).

Evaluation summary (§3.5). To see how LegoLog generalizes to different applications, we em-
pirically evaluate it end-to-end for three specialized transparency logs [28,143,208]. We also show
that LegoLog can express six different applications, and we compare their asymptotic complexi-
ties to existing specialized transparency logs. We find that configurability does not come at the
cost of performance: LegoLog can capture a variety of applications while performing comparably
to existing, special-purpose transparency logs.

Limitations. While LegoLog captures a wide variety of transparency log settings, it does not
capture those based on heavyweight cryptographic primitives, such as SNARKs [58, 305, 306],
bilinear accumulators [299], or vector commitments [191]; these tools improve asymptotic per-
formance, but generally have comparatively high overheads in practice. Also while we output
the amount of server storage required, we do not optimize for it, as in the case of SEEMless [53]
and Parakeet [202]; we leave the problem of optimizing for server storage to future work.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 33

Log config

Developer

Server

Phase 1
Configure LegoLog

Con
figu
re

Partition 0
Server with LegoLog config

Core data structure (§3.5), configured with 3.5 Log config

…

a partitions

Latest
Base Tree

History Forest
(if agghistory)

Update Log
Phase 2

Run LegoLog with Log config

Server

Auditors

Clients

dgs
t Audit

Read
Write
Monitor

Log config

Verified
Base Tree

Figure 3.1: LegoLog overview. In Phase 1, the developer configures the LegoLog deployment for
their application. The planner then generates a deployment configuration satisfying the require-
ments. In Phase 2, LegoLog runs with the configuration from Phase 1. Clients read, write, and
monitor identifier-value pairs by interacting with the server. Auditors check the server correctly
maintains the transparency log. The deployment configuration configures LegoLog’s core data
structure (§3.3.5), and enables different possible performance characteristics.

3.2 Overview

3.2.1 System architecture
In a LegoLog deployment (Figure 3.1), the central server provides an identifier-value store, and
the clients and auditors enforce certain integrity guarantees on this store. We consider two types
of clients: readers and writers. In some deployments (e.g. key transparency), clients are both
readers and writers; in other deployments, clients perform only reads or only writes (e.g. in a
producer-consumer model). Throughout this chapter, we refer to “identifier-value” pairs rather
than “key-value” pairs to avoid confusion with cryptographic keys. We now describe the entities
in a LegoLog deployment.

Readers. Lightweight clients that read identifier-value pairs.

Writers. Writers are clients that write identifier-value pairs. Writers monitor a subset of the
identifiers (the identifiers they can write to) to ensure the server provides the correct value to
readers for any identifier in the writer’s set. Writers should be lightweight and may go offline for
some time.

Auditors. Auditors check that the server maintains the transparency log correctly. Auditors
also service client requests for the log digest, allowing clients to ensure that the server answers
queries relative to the auditors’ view of the log.

Server. The server maintains the transparency log and services read and write requests from
clients. The server also sends data to the auditors that allow the auditors to ensure that the
server is maintaining the log correctly.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 34

3.2.2 System API
We now describe the API that LegoLog provides.
Readers can execute the following API call with the server:
• Read(config, dgst, id, t)→ {val,⊥}: To read the value of id relative to a digest dgst at epoch t
for a deployment with configuration config, the reader queries the central server for the value
val and a proof. If the proof verifies relative to the auditors’ digest, the reader outputs val;
otherwise, it outputs ⊥.

Writers then execute the following API calls with the server, as writers need to write values to
identifiers, and then monitor the value of the identifiers they have write privileges for:
• Write(config, sk, id, val, t)→ {0, 1}: To write an (id, val) pair in epoch t for a deployment with
configuration config, the writer sends a request to the central server. The server updates its
state and the client outputs “1” if (id, val) was correctly included and “0” otherwise. If this is
the first write to id, the server associates idwith the public key corresponding to sk. If this is not
the first write to id, the write is only successful if sk matches the secret key used on previous
successful writes to id. As in prior work [143], this secret key ensures that only the owner of
the secret key can update the value corresponding to id.

• Monitor(config, dgst, id, val, t)→ {0, 1}: To verify that id still maps to val relative to digest dgst
at epoch t in a deployment with configuration config, the writer queries the central server for
a proof. If the proof verifies relative to the auditors’ digest and asserts that idmaps to val, then
the writer outputs “1”; otherwise, it outputs “0”.

Auditors also run the following algorithm periodically:
• Audit(config, dgstold, dgstnew, π) → {0, 1}: The auditor takes in configuration config, an old
digest dgstold, a new digest dgstnew, and a proof π from the central server. The auditor outputs
“1” if π certifies that dgstnew correctly extends dgstold, and “0” otherwise.

3.2.3 Developer API
LegoLog exposes the following API to developers:
• Configure(workload, reader,writer, auditor)→
(server, config): Given a description of the workload, the reader specification reader, the writer
specificationwriter, and the auditor specification auditor, output a server specification server, as
well as the system parameters config that are used by the readers, writers, server, and auditors.

LegoLog allows a developer to set parameters to derive a transparency log suited to her workload
(Table 3.1 lists the parameters). Given a workload specification, LegoLog outputs the necessary
server capacity and the configuration.

If a developer makes a mistake when specifying the workload or there is an unexpected
change in the workload or client connectivity, LegoLog still provides the standard transparency
log security guarantees, but the performance and additional security of active prevention may
be affected. For example, performance could be affected by incorrect server requirements or a
suboptimal update period or number of partitions. Security could be affected if clients cannot

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 35

INPUTS

W
or
kl
oa

d N Number of users
tW Max time for writes to propagate (s)
tR Max time for reads to be processed (s)
burstR Max number of reads that can be

handled immediately in tR (reads/tR)
burstW Max number of writes that can be handled immediately in tW (writes/tW)

R
ea
d bwR Reader bw utilization (bytes/hr)

coresR Reader CPU utilization (% of CPU cycles, averaged over 1 hour)

W
ri
te

bwW Writer BW utilization (bytes/hr)
coresW Writer CPU utilization (% of CPU cycles, averaged over 1 hour)
trefresh Background refresh rate, frequency at which writer queries server (s)
toffline Max writer offline time staying in comm and utilization bounds (s)

A
ud

it bwA Auditor-server BW (bytes/hr)
coresA Number of auditor cores

OUTPUTS

Se
rv
er bwS Server BW utilization (bytes/s)

coresS Number of server cores
storageS Server storage (bytes)

Sy
s
pa

ra
m
s tv Length of verification period (s)

tu Length of update period (s)
a Number of partitions
verifier Party responsible for verification period checks (client or auditor)
agghistory Whether or not to aggregate base trees for efficient delayed verification (T/F)

Table 3.1: Inputs and outputs to the LegoLog configuration algorithm exposed to the developer.

come online every verification period: in this case, they can only detect server misbehavior after
the fact.

Example usage: Key transparency

To build intuition for how a developer would characterize a workload, we take key transparency
as a running example [165, 208]. In this application, the transparency log holds a mapping of
usernames to public keys (e.g. for end-to-end encrypted messaging), and clients monitor the log
to ensure that the mapping of usernames to public keys is maintained correctly.

Say that a developer wants to configure LegoLog for key transparency in Signal. We now
show an example of how the developer can specify the workload to LegoLog. Signal reportedly

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 36

has roughly 40 million active users as of January 2021 [298], with roughly 125 million downloads
in 2021 for an average of 342K downloads a day [288]. Therefore we can set the number of users
N =125M. When a user moves to a new device, it is important for security to update their public
key quickly, and so we can set the maximum time for writes to propagate tW to 15 seconds. Reads
must be processed quickly so that users can message other users right after downloading Signal
or importing a new contact, and so we set tR to 30 seconds (it will take the user some time to
type a message before trying to send). The number of downloads is roughly equivalent to the
number of key updates (i.e. the number of writes). The average number of key updates every 15
seconds is 59, and so we set our application to handle up to a burst of up to 75 writes every 15
seconds by setting burstW = 75. The choice of how large of a burst to accommodate is somewhat
arbitrary and depends on how much the developer wants to minimize the cost of the service vs.
how important write latency is in the event of a burst (if there are more requests than can fit in
the burst, the client can simply try again later).

The average Android user has roughly 5,000 contacts synced to their device [285], and so
we conservatively assume that every contact uses Signal and that users need to query the trans-
parency log for a user’s public key roughly once a year (assuming that users buy new phones
roughly once a year). This results in 200B read requests over a year, or on average 190K read
requests every 30 seconds. If we want to accommodate a burst of 300K read requests every 30
seconds (again, the choice of burst relative to the average number of requests is somewhat arbi-
trary), we set burstR = 300,000.

In key transparency, every client is both a reader and awriter (clients read public keys for their
contacts, and write their own public key). We can then set the reader and writer parameters in the
same way based on the acceptable communication and computation costs for LegoLog in a Signal
deployment. We use these communication and computation constraints to set themax bandwidth
bwR and bwW , CPU utilization coresR and coresW , and background refresh rate trefresh. Based on
how long clients typically go offline, we can set the max offline time toffline. We also provide as
input the computation and communication that the auditors can devote to LegoLog (coresA and
bwA, respectively). Based on these inputs, LegoLog outputs the required server bandwidth (bwS),
number of cores (coresS), and storage (storageS), as well as the internal parameters for running
the system.

3.2.4 Security guarantees
We now describe the security guarantees that LegoLog provides. Like other transparency logs,
LegoLog defends against a malicious attacker that has compromised the server, any number of
clients, and all but one auditor that can communicate with the clients and the server. Against
such an attacker, LegoLog ensures that the client can detect if the attacker tampered with any
(id, val) pairs the client is monitoring.

Furthermore, if the client comes online at regular intervals, the client can prevent this tamper-
ing. Transparency logs traditionally only allow a client to detect when the server has misbehaved.
In LegoLog, if the client comes online periodically, the client can detect if the server will advertise
the wrong value for a given identifier before any clients use this incorrect value. In this event, the

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 37

client can report this misbehavior before the wrong values are used, which is valuable for applica-
tions where clients take irreversible actions based on values in transparency logs (e.g. by sending
cryptocurrency transactions or sending sensitive information via encrypted email or messaging).
Note that the client can only report this misbehavior if it has access at the time to some public
forum of sorts where it can notify other clients of the server’s misbehavior in a timely manner.

Like other transparency logs [53, 143, 208], we do not guarantee availability: the server can
refuse to provide service. Some auditors can refuse to provide service, but as long as clients can
continue contacting at least one honest auditor, they can make requests and have strong integrity
guarantees.

If a client does not monitor its identifier-value pairs, there are no integrity guarantees for
this client’s data. Also, a malicious client (who could collude with the server) cannot affect the
identifier-value pairs of an honest client.

Security game. We define security for LegoLog via a security game (Experiment 3.5 in §3.9.2). At
a high level, the challenger plays the role of honest clients and an honest auditor. The adversary
chooses the identifier-value pairs that the clients can write and monitor each round. At the end
of the game, the challenger monitors and then reads all identifier-value pairs that it has written.
The adversary wins if all auditing and monitoring checks pass while ensuring one of the reads
at the end of the game outputs a value that does not match the client’s latest write. This game
captures log tampering detection and prevention. For detection, the adversary can choose which
identifier-value pairs are not monitored and the challenger must still detect any tampering when
it monitors all identifier-value pairs at the end of the game. For prevention, the client does not
monitor after its last read at the end of the game, so any misbehavior must be caught by prior
monitoring or auditing checks. Note that the game also captures correctness as client writes and
reads values according to a reference dictionary.
Definition 3.1. LetΠ be a configurable transparency log protocol and C be the set of all possible
configurations. Then we say that a configurable transparency log protocol Π is secure if for all
non-uniform PPT adversaries A in Experiment 3.5 with advantage TLogAdv and for all possible
configurations config ∈ C with sufficiently large security parameter λ,

TLogAdv[A,Π](config) ≤ negl(λ)

Theorem 3.1. When instantiated with a signature scheme that provides existential unforgeability
under chosen-message attack (EUF-CMA) and a collision-resistant hash function, LegoLog is secure
according to Definition 3.1.
Proof sketch. We must reduce the advantage of the adversary A in our security game to the
advantage of an adversary against an EUF-CMA signature scheme or of an adversary against the
collision-resistant hash function. We prove this by first constructing a hybrid game where the
adversary wins if the challenger outputs an old identifier-value pair as a result of the reads at
the end of the game, and prove that the difference in adversary advantage A△ between the two
games is negligible when using a secure signature scheme by constructing an adversary B that
usesA△ to win in the EUF-CMA game. We then prove that an adversaryA that wins this hybrid

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 38

h0,3 = H(h0,1, h2,3)

h0,1 = H(h0, h1) h2,3 = H(h2, h3)

h0 =

H(00, val2)

h1 =

H(01, val1)

h2 =

H(10, val3)

h3 =

H(11, val0)

Figure 3.2: An example prefix Merkle tree containing 4 leaf nodes in lexicographic order. H (·)
is a hash function and vali is a node added at time i . An inclusion proof for the identifier-value
pair (00, val2) consists of the nodes shaded in orange, which are sufficient to reconstruct the root
hash h0,3.

h0,3 = H(h0,1, h2)

h0,1 = H(h0, h1)

h0 =

H(11, val0)

h1 =

H(01, val1)

h2 =

H(00, val2)

h0,3 = H(h0,1, h2,3)

h0,1 = H(h0, h1) h2,3 = H(h2, h3)

h0 =

H(11, val0)

h1 =

H(01, val1)

h2 =

H(00, val2)

h3 =

H(10, val3)

t = 2 t = 3

Figure 3.3: An example chronological Merkle tree that contains 3 leaf nodes at time t = 2 and 4
leaf nodes at time t = 3. H (·) is a hash function and vali is a node added at time i . The leaf nodes
are ordered by the time the node was added. The extension proof to prove that the t = 3 tree
extends the t = 2 tree consists of the nodes shaded in blue, which commit to the same values in
the t = 2 tree and are sufficient to calculate the root hash h0,3 in the t = 3 tree.

game can be used to construct an adversary C that can find a collision in the hash function. The
full proof can be found in §3.9.3.

3.3 System design

3.3.1 Building blocks

Merkle trees. LegoLog uses binary Merkle trees [210], which are hash-based data structures
that enable efficient verification of contents in the tree. Each leaf node contains a hash of the
data it holds, and every non-leaf node contains a hash of its children. In transparency logs, it is
common for the leaves of a Merkle tree to be either organized in prefix (lexicographic) order or
chronological (time of append) order.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 39

Prefix Merkle tree. organize their leaves in lexicographic order. This organization enables
efficient lookups because a client knows the exact leaf to request an inclusion proof for when
looking up an identifier-value pair. An example prefix Merkle tree and inclusion proof (shaded
in orange) is depicted in Figure 3.2. A proof of exclusion for some j is a proof of inclusion to the
longest-prefix match of j currently in the tree. That node will either be a leaf node i ̸= j that
matches the first few bits of j or an empty node that is a prefix of j [208]. While prefix Merkle
trees provide efficient lookups, it is inefficient to prove that a newer prefix tree did not remove
any contents of the old one. In existing transparency logs based on prefix Merkle trees, clients
must monitor their identifiers every epoch to check for server equivocation [208].

Chronological Merkle trees. have leaves organized by time the leaf was appended to the tree.
Unlike prefix Merkle trees, chronological Merkle trees have inefficient lookups because a client
may need to search through all the leaves to find a given identifier-value pair. Figure 3.3 shows
a chronological tree at two points in time. It is efficient to prove that a chronological Merkle
tree extends an older tree (i.e., is append-only). In Figure 3.3, the extension proof consists of the
nodes shaded in blue. A detailed algorithm for generating the extension proof is found in §2.1.4.1.
of [182].

3.3.2 Sharding chronological trees
Chronological and prefix Merkle trees have complimentary properties that are both desirable.
Chronological trees have efficient extension proofs that prove the append-only property of the
tree [182], but do not support efficient lookups. On the other hand, prefix trees support efficient
lookups but require users to monitor their identifier-value pairs every epoch to ensure that the
server has not equivocated [208]. Ideally, we would like a system that supports both efficient
lookups and extension proofs so that users do not have to monitor their own identifier-value
pairs every epoch.

Chronological trees already support efficient extension proofs and do not require clients to
monitor their key every epoch. Due to its leaves being ordered by append time, a lookup requires
the client to look through all the leaves in the tree. We observe that we can reduce the cost of
lookups by reducing the size of the chronological tree by sharding identifier-value pairs across
multiple chronological trees (Figure 3.4). A lookup for id would entail hashing id to find its cor-
responding chronological tree and linearly scanning through all of its leaves for relevant updates
to id. Adding another chronological tree shard means that auditors have another extension proof
to check every epoch.

If u is the number of updates to identifier-value pairs in the transparency log, a is the number
of partitions, and l is the number of lookups/epoch, the work done by an auditor is equal to the
work of checking an extension proof times the number of chronological trees of size u/a :

workA = a max (1, log2 (u/a))

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 40

ChronTree 0 ChronTree 1 ChronTree 2

H(id) mod 3 = 2

Read(id)
Client

Auditor
π(CT 0)

Serverπ(CT 1)
π(CT 2)

Figure 3.4: Sharding chronological trees. When looking up an id, the client calculates the partition
the id belongs to and looks up id in the corresponding chronological tree. Auditors are responsible
for verifying extension proofs for all of the chronological trees.

and the work done by clients for lookups is equal to the number of lookups times the work of
checking each leaf node in the chronological tree of a partition (size u/a):

workC = lu/a

The total work is the sum of auditor and lookup work:

workT = a max (1, log2 (u/a)) + lu/a

Sharding chronological trees provides a configurable systemparameter—the number of partitions—
that affects client and auditor work. This parameter can be tuned for different objectives. For
example, the optimal number of shards that minimizes total work can be found by taking the
partial derivative ∂/∂a of workT and solving for its roots. By sharding chronological trees, we
are a step closer to achieving a system where clients do not have to monitor their keys (due to ef-
ficient chronological tree extension proofs) and where lookups are efficient (requiring u/a rather
than u work).

3.3.3 Compacting chronological trees
As time goes on and the number of updates increases, client lookup work continues to increase
because a lookup entails a linear scan through all the leaves in the chronological tree. In order
to reduce lookup time, we can routinely roll up the updates into a prefix tree after some time.
We call this prefix tree the base tree and the chronological tree holding updates the update log. In
each partition, LegoLog keeps a core data structure (CDS) consisting of a base tree and an update
log.

The client must now periodically monitor its own identifier-value pairs and ensure that its
updates are properly incorporated into the latest base tree. Our key insight is decoupling when
a value is updated and when a value should be monitored (verified) by the client. The frequency

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 41

the client needs to monitor its values is controlled by the verification period tv and the update
propagation time is controlled by the update epoch tu . During each verification period t , the client
verifies its values in the latest base tree. The previous base tree, verified during period t − 1, and
the update log containing updates since period t−1 are used to look up values during verification
period t . A verification epoch can contain multiple update epochs: longer verification periods
correspond to more update epochs (↑ lookup work) and less frequent monitoring (↓ monitoring
work).

Update log optimization. To further decrease lookup cost, the server can roll its updates every
update epoch into a prefix tree and append the root hash of the prefix tree to the update log. If the
client made an update, the client should check that its update appears in the prefix tree for that
update epoch. A lookup for idwill consist of 1) looking up id in the base tree and 2) looking up id in
every update epoch’s prefix tree. Figure 3.5 shows a server partition that compacts chronological
trees and optimizes the update log.

Preventing tampering vs. detectingmisbehavior. Clients look up values in the base tree from
the previous verification period and the tree in the current verfication period can be thought of
as being in ‘staging’. If the client comes online periodically, the client can detect if the server will
advertise the wrong value for a given identifier before any clients use this incorrect value. In this
event, the client can report this misbehavior before the wrong values are used. Depending on the
security guarantees and performance properties that the developer desires for her application,
the planner will set tv accordingly (§3.4.2) to achieve the desired configuration.

3.3.4 Supporting offline clients
Ideally, clients come online every verification period and monitor to detect server equivocation.
However, in workloads with clients that are offline for multiple verification periods, clients will
need to check the base tree in every verification period it was offline for. To support efficient
delayed verification for clients that are offline for multiple verification periods, we take inspira-
tion from the ideas of Merkle2 [143] and show how to incorporate them into LegoLog, which is
general-purpose and configurable for different workloads.

History forest. We construct a chronological forest of base trees, which we call a history for-
est. This data structure is related to the chronological forest in Merkle2 [143] where leaves are
identifier-value pairs arranged in historical order and each intermediate node contains a prefix
tree representing the subtree rooted at that node. Our data structure differs in that the leaves are
base trees instead of identifier-value pairs and intermediate nodes contain the most recent base
tree of their child nodes (i.e., the right child node). Nodes are added to the forest in an immutable
manner; once added, a node cannot be changed. As a result, intermediate nodes can only be
created when their subtree is full, so the data structure is a forest of trees rather than a single
tree. Figure 3.6 shows an example history forest with 7 base trees (7 verification periods) and 3
history trees. Adding the next base tree BT8 to this history forest first involves creating a leaf

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 42

Update log (ChronTree)

id … PT0 PT1 PT2 PT3

PrefixTree
@ update epoch 0

id … … …

Verified base tree
(PrefixTree)

Client

 ➊ lookup(id) ➋ loo
kup

(id)
 in each update

epoch’s P
refi

xTree

Server partition

id … … …

 (reading id)

Client
 (owns id)

Latest base tree
(PrefixTree)

Monitor(id)

Figure 3.5: A server partition that compacts chronological trees contains a verified base tree, the
latest base tree, and an update log. A base tree is a prefix tree that routinely rolls up updates.
The update log tracks changes after the verified base tree, and is a chronological tree of the root
hashes of prefix trees for each update epoch. A client looks up id ➊ in the verified base tree and
➋ in each update epoch’s tree. The client that owns id verifies that the latest base tree contains
the correct value.

node representingBT8. Then, an intermediate node can be created as the parent of the leaf nodes
BT7 and BT8. This results in HT3 being a full history tree with 2 leaves. Because HT2 is also a
full history tree with 2 leaves, we can create an intermediate node as the parent of HT2 and HT3,
effectively merging HT2 and HT3 into one full history tree HT ′

2 with 4 leaves. Finally, since HT1

is a full history tree with 4 leaves, we can create an intermediate node as the parent of HT1 and
HT ′

2, resulting in a full history tree with 8 leaves where the root contains BT8. Note that adding
BT8 did not modify any existing nodes.

A monitoring proof in the history forest during verification period tm for update u made
during verification period tu consists of the path from tu to the history tree root containing tu
in the history forest at time tm . For each node in the path, the client looks up the value of
u in the corresponding base tree. Because the history forest is append-only and its nodes do
not change after being added, the client need only verify a given verification period’s base tree
once. Figure 3.6 shows a monitoring proof consisting of nodes (green) for an update made during
verification period 1 (corresponding to BT1) and monitoring during verification period 7. The
client ensures that the update has propagated to BT1, BT2 and BT4.

Themonitoring proof alone is insufficient to detect whether the server has removed an update,
as it does not check every prefix tree. For example, in Figure 3.6, the monitoring proof for an
update made in BT1 does not check the base trees BT3 and BT5−7. Instead, during a lookup,

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 43

Base Tree 4
(BT4)

BT2 BT4

BT7BT1 BT2 BT3 BT4

BT6

BT5 BT6

History Tree 1 (HT1) HT2 HT3

Figure 3.6: A history forest of base trees from 7 verification periods. There are 3 history trees, and
each history tree’s leaves are arranged in chronological order. A monitoring proof for an update
in BT1 consists of the nodes shaded in green. A lookup consists of looking up a value in each
history tree’s root (nodes with dotted outline). The lookup and monitoring proof both include
the root (BT4) of HT1.

our system must ensure that at least one base tree that the client looks up overlaps with a base
tree verified in a monitoring proof. LegoLog achieves this by having the client look up the value
in every history tree’s root base tree. Figure 3.6 shows a lookup during verification period 7
consisting of each history tree’s root (nodes with dotted outline): BT4, BT6, and BT7. Observe
that BT4 overlaps with the monitoring proof (nodes shaded in green), so the client can detect
that the server removed the update if it is present in BT4 but missing in BT6 or BT7.

Our history forest data structure lends itself to an efficient monitoring proof for clients that
are offline for multiple verification periods and trades off a higher lookup cost for this increased
monitoring efficiency. A similar log n (where n is the number of verification periods) checking
scheme is proposed in a design draft of Google’s new KT system [165], but mapping the version
checks to checking a path in the history tree is not stated explicitly in the document.

The optionality of using a history forest allows LegoLog to be configured for different work-
loads. For a workload where clients are offline for long periods of time, LegoLog can be config-
ured to use the history forest, resulting in a lookup cost of O(log2 n) and a monitoring cost of
O(log2 n). However, for a workload where clients are regularly online, LegoLog can be config-
ured to not use the history forest, resulting in a lookup cost of O(log n) and a monitoring cost of
O(log n).

Signing updates. While monitoring proofs prevent the server from omitting values, they do
not prevent it from maliciously inserting values. To prevent this, we use signatures, a solution
inspired by previous work [143]. For a given id, and verification period t , the writer first registers
a verifying key on the log. In order to ensure that this is the first time a verifying key is being
registered for this id, the writer must verify a proof that id is not present in the base tree at
verification period t − 1 (BTt−1). Upon verifying this proof, the writer inserts the verifying key
for id into the log. Then, for each update to id, the writer attaches a signature. When reading id,

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 44

the client can look up the verifying key in the base tree and use it to verify the signature.

3.3.5 Putting it together: Core data structure
LegoLog partitions identifiers and in each partition, uses a configurable core data structure (CDS).
A CDS is comprised of a digest for the previous verification period (forming a hash chain between
verification periods) and three Merkle trees (Figure 3.5): (1) a verified based tree, (2) the latest
base tree (that is being verified), and (3) an update log. Base trees are prefix Merkle trees mapping
identifiers to values. The update log is a chronological Merkle tree tracking updates to the verified
base tree. The leaves of the update log are prefixMerkle trees containing the updates of an update
epoch.

LegoLog’s CDS can be configured to support efficient delayed verification by aggregating
the base trees into the history forest described in §3.3.4. When the agghistory parameter is true,
LegoLog’s CDS contains a history forest of base trees instead of a verified base tree and the latest
base tree.

3.3.6 LegoLog protocol
We now describe the LegoLog protocol. We include a full description of the protocol in §3.8.

Reading. In order to read the value of id relative to a digest dgst obtained from an auditor, ➊ the
client first computes the partition for the queried id: H (id) mod a . ➋ Then, the client retrieves
the root of the verified base tree for that partition from dgst. ➌ If the client does not have the
verifying key for id, it first looks up the verifying key in the verified base tree (via inclusion
proofs). ➍ The client then looks up id in the verified base tree (via inclusion proofs). ➎ For each
update epoch since the start of the verification period, the client receives an inclusion or exclusion
proof for id in the update log from the server. The client can retrieve exclusion proofs from the
most recent update epochs until hit the most recent inclusion proof, or get all of the exclusion
proofs if it wants the full history of changes to id. ➏ The client outputs (id, val) where val is the
latest value with a signature that successfully verifies with the verification key.
History forest case. If agghistory = true, the client follows ➊–➌ as previously described, except
in ➋, instead of retrieving a single base tree root, it gets the base prefix tree corresponding to the
root of each history tree in the history forest. ➍ The client then looks up id in each base prefix
tree (via inclusion proofs). The client follows ➎–➏ as previously described.

Writing. To update a value, the client ➊ signs the update with its signing key and sends the
(id, val) pair and signature to the server. ➋ The server appends to the (id, val) pair to the par-
tition (determined by H (id) mod a). ➌ The client then checks that the update was correctly
incorporated into the update log in the next update epoch (via inclusion proofs).

Monitoring. We describe the cases where the client or the auditor performs monitoring.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 45

Clients performmonitoring. If the client is responsible formonitoring values it haswritten (verifier =
client), ideally the client comes online every verification period, finds the partition corresponding
to the id it wants to monitor by computing H (id) mod a , and queries the latest base tree in that
partition to make sure the value is correct. Clients have until the next verification period—when
the latest base tree becomes the next verified base tree—to check this value.
History forest case. If agghistory = true, then when the client comes online, ➊ it queries the
auditors for the roots of the history forest in the partition corresponding to id. ➋ In each update
period where the client made an update to id, it retrieves an inclusion proof from the LegoLog
server of the base tree root for each node on the path from the update epoch to the root in the
corresponding history tree. An example path is shown in Figure 3.6. ➌ For each base tree root
the client receives that the client has not checked in the past, the client will check the value of id
in that tree by requesting an inclusion proof from the server.
Auditors perform monitoring. If the auditor is responsible for monitoring values on behalf of the
users (verifier = auditor), then in each verification period, the auditors check that the latest base
tree in each partition corresponds to the contents of the update log applied to the previous base
tree.

Auditing. In each update epoch, the auditors check that the update log in each partition is
append-only by requesting extension proofs from the server (a total update logs are checked).
In each verification period tv , the auditors keep track of the digest, check it amongst themselves,
and serve it to clients.
History forest case. If agghistory = true, auditors check the history forest of base trees in each
partition is append-only.

3.4 LegoLog planner

LegoLog’s configurability comes from an automatic planner that generates the transparency log
design for a given application workload description. The planner takes as input a workload
description and specifications of the readers, writers, and auditor and outputs internal system
parameters and a central server specification (Table 3.1). By automatically tuning the internal
system parameters, it can customize the log for the specified performance and security needs.

3.4.1 Specifying entities
Requiring the developer to directly specify device properties (e.g., CPU, target CPU utilization,
network bandwidth) can be difficult or insufficient for determining the optimal configuration.
For example, the developer may not know a mobile client’s exact CPU utilization because battery
life is often the priority [12]. They often want to optimize for an objective more complex than
a single target metric. Sometimes this means minimizing client-side CPU utilization for mobile
clients; sometimes it means reducing total system workload.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 46

Instead, we allow developers to specify the type of device that the readers, writers, and audi-
tors run on. The device type translates to a heuristic about the device’s properties and a corre-
sponding optimization objective. For example, if a developer specifies that readers run on mobile
phones, the planner will minimize client-side work.

The planner must also know the auditor’s compute budget. It determines this by running a
benchmark on a representative auditor device, which measures the device hash rate. This in-
formation and the developer’s target auditor CPU utilization sets a constraint on the maximum
auditor work.

3.4.2 Determining system parameters
We now describe how LegoLog’s planner maps developer-specified parameters to internal system
parameters (Table 3.1).

Update period. The update period tu directly corresponds to tW , the maximum time for writes
to propagate.

Verification period. The verification period tv is lower-bounded by the update period tu and
upper-bounded by trefresh, the background refresh rate of writers trefresh (i.e., the frequency at
which writers query the server). In order to find the optimal tv for a fixed number of partitions
a , we need to consider all possible verification periods tv where tu ≤ tv ≤ trefresh. The cost of a
lookup (workL) without the history forest (agghistory = false) is defined in terms of the number
of hashes the client needs to compute in order to verify the update log (workUL) and the base tree:

workUL(tv , a) := tv/tu (max (1, ⌈log2(burstW /a)⌉))

workL(tv , a) := workUL +max (1, ⌈log2(N /a)⌉)
The cost of a lookup when agghistory = true adds a log2(N) factor because the client looks up id
in multiple base trees:

workL,aghs(tv , a) := workUL + log2(N) (max (1, ⌈log2(N /a)⌉))

The cost of monitoring without the history forest is the cost of doing lookups in the base tree for
every verification period missed while the client was offline:

workM(tv , a) := max (1, ⌈log2(N /a)⌉) · tv
toffline

· N
toffline

When agghistory = true, the cost of monitoring is much lower because of the history forest:

workM,aghs(tv , a) := max (1, ⌈log2(N /a)⌉) · N
toffline

Using the above equations, we can compute the optimal t∗v for a fixed number of partitions a :

workC(tv , a) = workL(tv , a) + workM(tv , a)

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 47

workC,aghs(tv , a) = workL,aghs(tv , a) + workM,aghs(tv , a)

t∗v (a) := argmin
tv ∈ [tu ,trefresh]

= workC(tv , a)

t∗v (a, aghs) := argmin
tv ∈ [tu ,trefresh]

= workC,aghs(tv , a)

Number of partitions. In order to set the number of partitions a , we need to consider all possible
numbers of partitions a where a ≤ N . The auditor work when agghistory = false consists of
verifying the append-only property of the update log and keeping track of the base tree root:

workAoUL(a) := max (1, ⌈log2(t∗v (a)/tu)⌉)

workA(a) := a · (workAoUL(a) + 1)

When agghistory = true, auditors must verify the append-only property of the update log and
the history tree:

workA,aghs(a) := a · (workAoUL(a) + log2(N))

Note that total auditor work monotonically increases with a . The optimal a∗ is one that satisfies
the auditor’s CPU utilization constraint cpuA while minimizing client work:

a∗ := argmin
a ∈ [1,N]

(workC(t∗v (a))) s.t. workA(a) ≤ cpuA

a∗(aghs) := argmin
a ∈ [1,N]

(workC,aghs(t∗v (a, aghs))) s.t. workA(a) ≤ cpuA

Using history forest. After computing the optimal number of partitions and verification period
length for agghistory = true and false, we can determine whether or not to use the history forest
by comparing the client work of both options:

agghistory := workC,aghs(t∗v (a
∗, aghs))

?
< workC(t∗v (a

∗))

Verifier. The planner looks at the leftover auditor CPU cycles after computing the above costs.
If the remaining auditor cycles is enough to monitor on behalf of all writers, then the planner
sets verifier = auditor (otherwise verifier = client).

Option for detecting misbehavior early. LegoLog’s planner can also help decide whether
to detect misbehavior before other clients use incorrect values. This can be achieved by setting
tv = toffline so that users never go offline longer than a verification period. The planner computes
the optimal configuration for this setting. The developer can then compare this to detecting
misbehavior reactively (instead of preventing it) and decide which approach to use for her appli-
cation.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 48

Server requirements. The server requirements returned by the planner are the number of hash-
es/second that the server needs to retrieve and transmit to the clients and auditors. This is com-
puted by computing workC and workA for the optimal a∗ and t∗v , while accounting for burstR.

Network bandwidth. Meeting network bandwidth requirements follows the same logic ofmeet-
ing CPU requirements since network usage bw(·) depends on the number of hash computations
for lookup, monitoring, and auditing. If network bandwidth is the bottleneck, the planner opti-
mizes over bw(workC) and bw(workA), and uses nwA as the constraint.

3.5 Evaluation

In our evaluation, we aim to answer three questions:
1. How do parameter settings affect performance? (§3.5.2)
2. Does LegoLog perform comparably to existing special-purpose logs for different applica-

tions? (§3.5.3)
3. What workloads can LegoLog’s API express, and how does it perform for these? (§3.5.4)

In answering these questions, we show that LegoLog’s configurability does not come at a sub-
stantial loss in performance: LegoLog performs comparably to existing specialized transparency
logs tailored to individual applications.

3.5.1 Implementation

Our LegoLog implementation is a fork of the existingMerkle2 [143] implementation using Go and
Python. We added∼4000 LOC in order to implement additional core data structures, the LegoLog
protocol, and the LegoLog planner. We use gRPC v1.49 for communication and SHAKE-128 as
our hash function.

Memory optimization. To avoid copying the entire base tree every verification period, we use a
combination of fat nodes and path copying from persistent data structures [88]. We maintain the
invariant that child nodes are always at least as old as their parent nodes, which enables constant-
time access to nodes at any verification period. We further optimize by only path copying between
verification periods.

Experiment setup. We ran experiments onGoogle Cloud. For the server, we used an n2-highmem-32
instance (32-core Intel Xeon CPU, 256GB RAM). For the client, we used an n2-standard-8 in-
stance (8-core Intel XeonCPU, 32GBRAM). For the auditor, we used a lightweight n2-standard-2
instance (2-core Intel Xeon CPU, 8GB RAM). For benchmarks, we read and write identifiers uni-
formly at random.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 49

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 200 400 600 800 1000

T
im
e
ta
ke
n
(m
s)

Update periods/verification period

1 partition
8
64

(a) Without history forests.

 0

 1

 2

 3

 0 200 400 600 800 1000

T
im
e
ta
ke
n
(m
s)

Update periods/verification period

1 partition
8
64

(b) With history forests.

Figure 3.7: Time taken for the server to generate a lookup proof for different settings of update
periods in a single verification period (tv/tu) and number of partitions a .

3.5.2 Microbenchmarks
We first investigate how different settings of internal system parameters impact the performance
of LegoLog.

Read cost. Wemeasure the client and server overheads of reading a value (Figures 3.7 and 3.8) for
different numbers of partitions and different ratios of update periods to verification periods. We
generate these plots for varying numbers of update periods in a single verification period (tv/tu)
where each update period has 200 appends. The server is preloaded with 1M entries. Increasing
the number of partitions decreases both client and server work because having more partitions
reduces the amount of data in one partition and so the overhead of proving and verifying is
smaller. Increasing the ratio of update periods to verification periods makes it possible for client
writes to propagate without clients having to run monitoring as frequently. However, increasing
this ratio also increases client and server lookup work. This increase is expected, as a lookup
proof is required for each update period that has elapsed since the end of the last verification
period.

Figures 3.9 and 3.10 measure the time taken by LegoLog configured to use history forests
(agghistory = true) to generate and validate a lookup proof respectively, as the number of verifi-
cation periods elapsed increases. The amount of work increases logarithmically with the number
of verification periods elapsed because a lookup when agghistory = true consists of a lookup for
that value in each history tree’s root and there are at most log(n) history trees in the history
forest, where n is the number of nodes in the history forest (i.e., number of verification periods).

Auditor overhead. Figure 3.11 shows how the number of partitions affects auditing time. For
each partition, the auditor must verify a chronological tree extension proof, and so the auditor
work grows linearly with the number of partitions.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 50

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 200 400 600 800 1000

T
im
e
ta
ke
n
(m
s)

Update periods/verification period

1 partition
8
64

(a) Without history forests.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 200 400 600 800 1000

T
im
e
ta
ke
n
(m
s)

Update periods/verification period

1 partition
8
64

(b) With history forests.

Figure 3.8: Time taken for the client to validate a lookup proof for varying tv/tu and number of
partitions a .

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 4
 12
8
 25
6

 51
2

 10
24

T
im
e
ta
ke
n
(m
s)

Verification periods elapsed

1 partition
8
64

Figure 3.9: Lookup proof generation work
over multiple verif. periods (tv = tu).

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 4
 12
8
 25
6

 51
2

 10
24

T
im
e
ta
ke
n
(m
s)

Verification periods elapsed

1 partition
8
64

Figure 3.10: Lookup proof validation time
over multiple verif. periods (tv = tu).

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 51

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0 100 200 300 400 500 600

T
im
e
ta
ke
n
(m
s)

Partitions

Figure 3.11: Median auditor work between
update epochs as partitions a increase.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 100 200 300 400 500

T
im
e
ta
ke
n
(m
s)

Verification periods offline

No history forest
History forest

Figure 3.12: Client monitoring work as offline
time increases.

Specialized Log N tW burstW tR burstR trefresh toffline deviceR deviceW deviceA

Merkle2 [143] 1M 15s 75 30s 2.4k 30m 24h phone phone server
CONIKS [208] 10M 60m 75 30s 24k 60m 60m phone phone server

Binary transparency (Go) 30M 30s 50 1s 500 24h 24h laptop laptop laptop

Table 3.2: Example developer parameter settings for specialized transparency logs for different
applications.

Monitoring overhead. For client monitoring, we evaluate the case in which the monitor is
offline for some number of verification periods (Figure 3.12). We measure the time taken to verify
that a particular identifier-value pair exists in each verification period. Without the history forest,
this means verifying the existence proof for each base verification tree. With the history forest,
the monitor only has to verify existence for a logarithmic number of trees in the history forest.
We perform 100 appends per verification period.

3.5.3 Existing transparency logs
In this section, we compare the empirical performance of LegoLog and three specialized trans-
parency logs. To set the goal for the empirical performance evaluation, we remind the reader
that LegoLog’ contribution over existing transparency logs is that it is configurable as opposed
to tailored for one specific setting, which is valuable for non-expert developers. As such, the
purpose of the empirical evaluation is to show that the generality of LegoLog does not come at
a substantial performance loss when compared to existing transparency logs, and not to beat the
performance of other transparency logs (even though LegoLog is faster in a variety of settings).
For each type of log, we report the throughput performance of the log server over multiple veri-
fication periods (tv). We note that we report the results over singular runs, though we found the

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 52

0
5 k
10 k
15 k
20 k
25 k
30 k
35 k
40 k
45 k

 0 5 10 15 20 25 30 35 40

T
hr
ou
gh
pu
t (
re
ad
s/
s)

Time (min)

CONIKS
Merkle2

(a) CONIKS and Merkle2 workloads.

0
1 k
2 k
3 k
4 k
5 k
6 k
7 k
8 k
9 k

 0 20 40 60 80 100 120

T
hr
ou
gh
pu
t (
re
ad
s/
s)

Time (min)

(b) Binary transparency workload.

Figure 3.13: LegoLog’s throughput for three specialized logs.

throughput behavior of the LegoLog server to be consistent over multiple runs of each experi-
ment.

Merkle2 [143]. Key transparency (KT) allows clients to check that a server correctly maintains
a mapping of usernames to public keys. We described how to set developer parameters based
on the workload of a hypothetical KT system for Signal in §3.2.3. We first compare LegoLog’s
performance to Merkle2 [143], which was designed for KT and runs on a log size of N = 1M. We
scale the developer parameters (Table 3.2) back accordingly to match the log size of Merkle2. For
these parameters, LegoLog’s planner outputs tu = 15s, tv = 15s, a = 2010, agghistory = true,
verifier = client. We plot the average throughput over time in Figure 3.13a. The blue circles
mark when the history forest merges into one tree and consequently the lookup proof size de-
creases, which increases throughput for that period. LegoLog achieves an average throughput
of 21,688 reads/s, compared to Merkle2’s 28,910 reads/s (LookUpPKVerify, averaged over 5 min).
Our observed throughput measurements fell between 16,075 reads/s (p5) and 31,718 reads/s (p95),
and this variation comes from how many trees are in the history forest at a given point in time.
LegoLog achieves comparable performance to Merkle2 for the workload Merkle2 is designed for.
LegoLog’s configurability comes with a small performance drop but offers a∼5×memory saving
(25GB for Merkle2 vs. 5GB for LegoLog).

CONIKS [208]. CONIKS runs on a log size of 10M, and we set the developer parameters (Ta-
ble 3.2) to match their paper’s evaluation [208]. We compare against the version of CONIKS
enhanced with the persistent data structure implemented in [143]. For these parameters, the
planner outputs tu = 60m, tv = 60m, a = 78210, agghistory = false, verifier = client. We
plot the average throughput over time in Figure 3.13a. CONIKS has an average throughput of
35,141 reads/s (averaged over 5 min), LegoLog has an average throughput of 39,005 reads/s. Our
observed throughput measurements fell between 37,778 reads/s (p5) and 40,014 reads/s (p95).

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 53

Existing work LegoLog

Application Work Lookup Audit Monitor Lookup Audit Monitor
Key transparency (KT) [208] [143] O(log2 N) O(logN) O(log2 N) O(log2 N

a + e log U
ea) O(a(logN + log e + 1)) O(log2 N

a)KT for IOT [280]
Certificate transparency (CT) [182] [208] O(logN) O(1) O(E logN) O(log N

a + e log U
ea) O(a(log e + 1)) O(E log N

a)CT for IOT
CT—deployed today [120] O(N) O(logN) O(N) O(N

a) O(a logN) O(N
a)Binary transparency [81, 141]

Enhanced CT [268] O(logN) O(N) or O(logN) O(1) or O(N) O(log N
a + e log U

ea) O(a(log e + 1) + N) O(1)

IOT authentication [7] O(logN) O(N) O(1) O(log N
a + e log U

ea) O(a(log e + 1) + N) O(1)

Encrypted backups [74] O(logN) O(logN) O(1) O(log N
a + e log U

ea) O(a(log e + 1) + N) O(1)

Table 3.3: Asymptotics of lookup, auditing, and monitoring work for transparency logs derived
by LegoLog for applications, compared to existing work. N is the number of entries in the log, U
is the number of updates per verification period, a is the number of partitions, E is the number
of verification periods since the value was last monitored, and e is the number of update periods
in a verification period.

Binary Transparency. Go’s checksum database enables users to authenticate their downloaded
Go modules by maintaining the modules’ checksums on a transparency log [141]. We set the
developer parameters (Table 3.2, row 2) based on Go’s deployed checksum database, which cur-
rently has 17M entries [113]. Every day∼16k entries are added [114], averaging to 6 writes every
30s. A log size of 30M can support 5 years worth of module checksums. Go has 2.7M users [331],
and a conservative estimate of 10 module downloads/user/day yields an average of 313 reads/s
(we can treat this as the baseline throughput that we wish LegoLog to achieve). The devices used
by the reader, writer, and auditor are set to be laptops. LegoLog’s planner outputs tu = 30s,
tv = 55.5m, a = 7410, agghistory = false, verifier = client. We plot the server’s request through-
put over time in Figure 3.13b and show that LegoLog can achieve on average 5,725 reads/s. Our
observed throughput measurements fell between 4,259 reads/s (p5) and 7,733 reads/s (p95). The
fluctuation in throughput comes from the update periods that have elapsed within a verification
period. When a verification period is over, the throughput suddenly increases because half of the
update log has been cleared andmerged into the verified base tree (circled in blue in Figure 3.13b).

3.5.4 API flexibility
We now evaluate functionality by showing that LegoLog can generate the functionality of 6 trans-
parency logs via its API, and we include a comparison of asymptotic complexity. Table 3.3 shows
how the LegoLog API can express a variety of applications. For each application, we show asymp-
totic costs based on the input developer parameters. Our goal is to show that when tailored to
various applications, LegoLog overheads are comparable to existing work (i.e., configurability
does not come at a significant performance cost).

In key transparency and certificate transparency (Row 1, Table 3.3), setting tW can affect
whether agghistory is turned on or off, and so can produce transparency logs with different
asymptotic behavior. When agghistory is turned on, a lookup consists of looking up a value

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 54

in the base tree of each history tree’s root (O(log2 N
a)). When agghistory is turned off, a lookup

just consists of looking up a value in the base tree of the last verification period (O(log N
a)). In ei-

ther case, the client also needs to look up the proofs of inclusion or exclusion in the update trees
(O(e log U

ea)). When agghistory is turned on, the auditor must verify that the history forest of
base trees in each partition is append-only (O(logN)). In either case, the auditor needs to check
that the update log in each partition is append-only (O(log e + 1)). When agghistory is turned
on, monitoring consists of verifying an inclusion proof from a path of base trees in the history
forest (O(log2 N

a)). When agghistory is turned off, monitoring consists of verifying an inclusion
proof from each verification period since the client last monitored the value (O(E log N

a)).
Certificate transparency [182], as deployed today, and binary transparency [28] (Row 2, Ta-

ble 3.3) use chronological trees, which LegoLog can output by setting tv =∞ (i.e., the chronologi-
cal udpdate tree never gets rolled up into a base tree). Looking up andmonitoring a value consists
of searching through all of the values in a shard (O(N

a)). Auditing consists of an extension proof
in each shard (O(a logU) ⊆ O(a logN)).

In the case of enhanced CT (Row 3, Table 3.3) and IoT authentication (Row 4, Table 3.3),
LegoLog can produce comparable transparency logs when a powerful auditor device is specified
as input (so that verifier is set to auditor) and when tv = tu . A lookup for a value consists of an
inclusion proof in a partition (O(log N

a)) and inclusion/exclusion proofs in the partition’s update
trees (O(e log U

ea)). Auditing consists of validating that the update log in each partition is append-
only (O(a(log e+1)) and that update log entries have been correctly rolled into the next base tree
(O(N)). The client only needs to keep track of the digest when monitoring (O(1)). In encrypted
backups [74] (Row 5, Table 3.3), the threat model differs slightly from LegoLog’s because clients
trust a subset of the hardware security modules, enabling SafetyPin to achieve asymptotically
better auditing costs.

3.6 Discussion

Scalability considerations. LegoLog’s scalability is primarily determined by server and auditor
resources. Our planner automatically calculates and outputs the minimum server requirements
(CPU, bandwidth, and storage) needed for a specific deployment’s performance goals. The system
scales horizontally by increasing the number of partitions (a), which divides the log into indepen-
dent shards. This partitioning allows lookups and verification operations to be parallelized across
shards, significantly improving throughput for large deployments. As shown in our evaluation,
increasing the number of partitions reduces both client and server work per operation, enabling
LegoLog to scale to logs with millions of entries (§3.5.3). The trade-off is increased auditor work,
which grows linearly with the number of partitions, and so this parameter should be optimized
based on the specific workload constraints and available resources.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 55

3.7 Related work

Transparency logs. A rich line of work has examined improving transparency logs. CONIKS
was the first academic work to propose a transparency log for public keys [208] and backs Apple’s
deployment of iMessage key transparency [11]. It relies on the owner to monitor their key every
epoch, which can be impractical for short epochs. LegoLog enables trading off less frequent mon-
itoring for more expensive lookups. ECT [268] and WAVE [7] maintain both a chronological tree
and a prefix tree, but require an auditor to check the correspondence between the two, which is
expensive. Google’s Trillian [120,121] is mainly used for certificate transparency, and it provides
a verifiable log abstraction.

Merkle2 maintains a prefix tree inside each node of a chronological tree [143], enabling ef-
ficient monitoring proofs. Merkle2 clients that go offline for a while can discover that a server
misbehaved but cannot prevent this misbehavior. LegoLog enables the client to prevent misbe-
havior by trading off performance for longer verification periods.

OPTIKS [190], Parakeet [202], and SEEMless [53] build off of CONIKS [208] and use Merkle
Patricia Tries (MPTs) as their core data structure. Ghosh and Chase describe an auditor-free
version of OPTIKS [111]. Parakeet reduces storage space in comparison to SEEMless by storing
the epoch in the leaf node, allowing for any epoch’s MPT to be reconstructed. Similarly, LegoLog
also allows for any verification period’s tree to be efficiently reconstructed (§3.5.1).

Keybase was the first deployment of a publicly auditable public key directory [166]. What-
sApp recently deployed a key transparency system [183] based on SEEMless [53] and Para-
keet [202]. Cloudflare’s validation service audits the WhatsApp deployment [215], and an IETF
working group is examining how to make transparency systems simple to run across organiza-
tions [147]. Elektra [189] builds off of SEEMless and targets the use casewhere users havemultiple
devices, using a form of signature chains similar to how users in LegoLog and Merkle2 [143] sign
updates (§3.3.4).

Binary transparency [4, 142, 230] builds off of certificate transparency [182] and is used for
validating software updates. LegoLog can derive transparency logs for such workloads. Recent
work also showed how to build a verifiable registry for voter registration that is backwards-
compatible with existing systems [95].

Byzantine fault tolerance. In the decentralized system model, transparency logs can be imple-
mented using consensus protocols [8,21,46,90,127,128,172,181,201,228,327]. LegoLog focuses on
the single-server model and does not require heavyweight consensus protocols. Prior work also
uses a public blockchain to publish an auditable directory, an approach constrained by the per-
formance of the underlying blockchain. EthIKS [33] and Catena [300] show how to use the public
blockchain as a public ledger to commit to a CONIKS directory and minimize client bandwidth
for auditing.

Heavyweight cryptographic primitives. Another approach to transparency logs is to use
powerful, but more expensive, cryptographic primitives such as succinct non-interactive argu-
ments of knowledge (SNARKs) [58, 305, 306], accumulators [299] or vector commitments [191]

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 56

that are more expensive to compute, but have better asymptotic performance. LegoLog does not
capture transparency logs based on these cryptographic primitives. While these logs improve
asymptotics, they tend to have high constants and so high overheads in practice.

3.8 LegoLog protocol specification

We now fully specify the implementation of the LegoLog protocol, implementing the API speci-
fied in §3.3.6.

3.8.1 Building blocks
We first define the syntax for existing building blocks.

Chronological Merkle Tree

ChronTree.Append(val): Appends val to the tree.
ChronTree.ProveExtension(rootold, root)→ π: Generate proof that the tree rooted at root is

an extension of the tree rooted at rootold. A detailed algorithm for generating the extension proof
is found in §2.1.4.1. of [182].

ChronTree.VerifyExtension(π, rootold, root))→ {0, 1}: Outputs 1 if the extension proof π is
valid and 0 otherwise.

ChronTree.GetPath(i)→ (val, Path): Outputs the value andMerkle path associatedwith i-th
inserted value.

ChronTree.CheckPath(root, i , val, Path)→ {0, 1}: Outputs 1 if the result of hashing Path,
i , and val matches root and 0 otherwise.

ChronTree[i]∗ → (val, {0, 1}): Outputs the i-th inserted val and whether it has a valid proof
by calling
ChronTree.CheckPath(root, i ,ChronTree.GetPath(i)).

ChronTree[i]→ val: Outputs the i-th inserted val.

Chronological Merkle Forest

ChronForest.Append(val): Appends val to the forest.
ChronForest.ProveExtension(rootsold, roots)→ π: Generate proof that the forest with roots

roots is an extension of the forest with roots rootsold. A detailed algorithm for generating the
extension proof for chronological trees is found in §2.1.4.1. of [182] and a detailed algorithm for
generating the extension proof for chronological forests is found in §V.A of [143].

ChronForest.VerifyExtension(π, rootsold, roots)→ {0, 1}: Outputs 1 if the extension proof π
is valid and 0 otherwise.

ChronForest.GetPath(i)→ (val, Path): Outputs the value and Merkle path associated with
i-th inserted value.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 57

ChronForest.CheckPath(root, i , val, Path)→ {0, 1}: Outputs 1 if the result of hashing Path,
i , and val matches root and 0 otherwise.

ChronForest[i]∗ → (val, {0, 1}): Outputs the i-th inserted val and whether it has a valid proof
by calling
ChronForest.CheckPath(root, i ,ChronForest.GetPath(i)).

ChronForest[i]→ val: Outputs the i-th inserted val.

Prefix Merkle Tree

PrefixTree.BuildPrefixTree(idvals)→ PrefixTree: Constructs a Merkle prefix tree given id-
value pairs idvals.

PrefixTree.GetPath(id)→ (val, Path): Outputs the value and Merkle path associated with id
in a Merkle prefix tree. If id is in the tree, Path consists of the siblings of the nodes in the path
from id to the tree’s root. If id is not in the tree, val← ⊥ and Path is a proof of exclusion which
is the longest-prefix match of id currently in the tree (either a leaf node id′ ̸= id that matches the
first few bits of id or an empty node that is a prefix of id).

PrefixTree.CheckPath(root, id, val, Path)→ {0, 1}: Outputs 1 if the result of hashing Path,
id, and val matches root and 0 otherwise.

PrefixTree.Insert(id, val): Inserts id, val into the tree.

Signatures

Sign(sk, val)→ σ: Signs val with signing key sk.
VerifySig(vk, (val, σ))→ {0, 1}: Verifies signature σ.

3.8.2 Server

config := (tu , tv , a, agghistory, verifier), as described in Table 3.1.

Server[α] := (QueryBT , VerifyBT , UpdateLog ,

HistoryForest , CurrUpdates , t ,
HashChain)

• α is the partition index.
• QueryBT is a PrefixTree.
• VerifyBT is a PrefixTree.
• UpdateLog is a ChronTree of PrefixTrees from each update period.
• HistoryForest is a ChronForest consisting of base trees from each verification period.
• CurrUpdates is a list of updates in the current update period.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 58

• t is the current epoch.
• HashChain is a hash chain of the server’s state.

Notation: Server[α][id] denotes the value of id in partition α.

Server[α].Write(id, (val, σ))

1: Server[α].CurrUpdates ←
((val, σ), Server[α].CurrUpdates)

Server.NextEpoch(config)

1: for α← 1, . . . , config.a do
2: Server[α].NextEpoch(config)
3: end for
Server[α].NextEpoch(config)

1: updateTree← BuildPrefixTree(Server[α].CurrUpdates)
2: Server[α].UpdateLog .Append(updateTree)
3: if Server[α].t + 1 mod config.tv = 0 then
4: if config.agghistory then
5: Server[α].HistoryForest .Append(

Server[α].QueryBT)
6: else
7: Server[α].HashChain ← H (

Server[α].QueryBT .root,
Server[α].VerifyBT .root,
Server[α].t , Server[α].HashChain)

8: end if
9: Server[α].QueryBT ← Server[α].VerifyBT
10: for ut ∈ Server[α].UpdateLog do
11: for (id, val) ∈ ut do
12: v ← Server[α][id]
13: if v = ⊥ then
14: v .vk← val
15: end if
16: v .vals← (val, v .vals)
17: v .last← val
18: Server[α].VerifyBT .Insert(id, v)
19: end for
20: end for
21: Server[α].UpdateLog ← ()
22: end if
23: Server[α].CurrUpdates ← ()
24: Server[α].t ← Server[α].t + 1

Server.GetDigest()→ dgst

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 59

1: dgst← ()
2: for α← 1, . . . , config.a do
3: dgst[α]← Server[α].GetDigest()
4: end for
5: Output dgst
Server[α].GetDigest()→ dgst[α]

1: Output (t , Server[α].QueryBT .root,
Server[α].VerifyBT .root,
Server[α].HistoryForest .roots,
Server[α].UpdateLog .root, Server[α].HashChain)

Server.Prove(config, told, tnew)→ π

1: π ← ()
2: for α← 1, . . . , config.a do
3: π[α]← Server[α].Prove(config, told, tnew)
4: end for
5: Output π
Server[α].Prove(config, told, tnew)→ π[α]

1: Server[α]t := the state of the server’s partition α at epoch t .
2: if config.agghistory then
3: π[α].hf ← ChronForest.ProveExtension(

Server[α]told .HistoryForest .roots,
Server[α]tnew .HistoryForest .roots)

4: else
5: π[α].hc ← ((Server[α]told+1.QueryBT .root,

Server[α]told+1.VerifyBT .root, told + 1),
. . . ,
(Server[α]tnew−1.QueryBT .root),
Server[α]tnew−1.VerifyBT .root, tnew − 1))

6: end if
7: if ⌊told/config.tv⌋ = ⌊tnew/config.tv⌋ then
8: π[α].ul ← ChronTree.ProveExtension(

Server[α]told .UpdateLog .root,
Server[α]tnew .UpdateLog .root)

9: end if
10: Output π

3.8.3 Auditor

dgst[α] := (t , qroot , vroot , hfroots , ulroot , HashChain)

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 60

• t is the current epoch.
• qroot is the root of QueryBT .
• vroot is the root of VerifyBT .
• hfroots are the roots of the HistoryForest .
• ulroot is the root of UpdateLog .
• HashChain is the hash chain of the server’s state.

Auditor.GetDigest(t)→ dgst:
Auditor.Audit(config, dgstold, dgstnew, π)→ {0, 1}:

1: ok← 1
2: for α← 1, . . . , config.a do
3: if config.agghistory then
4: ok← ok

∧
VerifyExtension(π[α].hf ,

dgstold[α].hfroots , dgstnew[α].hfroots)
5: else
6: h ′ ← dgstold[α].HashChain
7: for n ∈ π[α].hc do
8: h ′ ← H (n, h ′)
9: end for
10: ok← ok

∧
h ′ ?

= dgstnew[α].HashChain
11: end if
12: if dgstold[α].t mod config.tv =

dgstnew[α].t mod config.tv then
13: ok← ok

∧
VerifyExtension(π[α].ul ,

dgstold[α].ulroot , dgstnew[α].ulroot)
14: end if
15: end for
16: Output ok

3.8.4 Client

config := (tu , tv , a, agghistory, verifier), as described in Table 3.1.
Client := (LastMonitored , VBTRoots)

• LastMonitored is a map of identifiers id to the latest verification period the client has
monitored for that value.

• VBTRoots is a map of identifiers id to a set of base tree roots that have already been
verified by the client (for that id).

Client.Read(config, dgst, id, t)→ val

1: ok← 1
2: α← H (id) mod config.a

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 61

3: root← dgst[α].qroot
4: vals, Pathid ← Server[α].QueryBT .GetPath(id)
5: ok← ok

∧
CheckPath(root, id, vals, Pathid)

6: if config.agghistory then
7: for rooth ∈ Server[α].HistoryForest .roots do
8: th ← verification period rooth corresponds to
9: valh , Pathid,h ←

Server[α].HistoryForest [th].GetPath(id)
10: ok← ok

∧
CheckPath(rooth , id, valh , Pathid,h)

11: ok← ok
∧

valh .vals
?

⊆ val.vals
12: end for
13: h ← 0
14: r ← ⌊t/tv⌋
15: end if
16: if VerifySig(vals.vk, vals.last) then
17: vallatest ← vals.last
18: end if
19: for u = 0, . . . , ⌊(t − tv · ⌊t/tv⌋)/tu⌋ do
20: (treeu , oku)← dgst[α].UpdateLog [u]∗
21: ok← ok

∧
oku

22: rootu ← treeu .root
23: valu , Pathid,u ,← treeu .GetPath(id)
24: ok← ok

∧
CheckPath(rootu , id, valu , Pathid,u)

25: if valu ̸=⊥
∧

VerifySig(vk, valu) = 1 then
26: vallatest ← valu
27: end if
28: end for
29: if ok then
30: Output vallatest
31: else
32: Output ⊥
33: end if

Client.Write(config, sk, id, val, t)→ {0, 1}
1: σ ← Sign(sk, (id, val))
2: α← H (id) mod config.a
3: Server[α].Write(id, (val, σ))
4: Wait until epoch t + 1
5: dgst← Auditor.GetDigest(t + 1)
6: vallatest ← Client.Read(config, dgst, id, t + 1)

7: Output vallatest
?
= val

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 62

Client.Monitor(config, dgst, id, val, t)→ {0, 1}
1: ok← 1
2: tm ← ⌊t/config.tv⌋
3: α← H (id) mod config.a
4: val′, Path← Server[α].VerifyBT .GetPath(id)
5: ok← ok

∧
CheckPath(dgst[α].vroot , id, val′, Path)

6: ok← ok
∧

val′
?
= val

7: if config.agghistory then
8: t ′ ← verification period id was updated to val
9: for tl ∈ path from t ′ to root in

Server[α].HistoryForest do
10: dgstl ← Auditor.GetDigest(tl)
11: val′, Path← Server[α].HistoryForest [tl]

.GetPath(id)
12: ok← ok

∧
CheckPath(dgstl [α].vroot , id, val

′, Path)

13: ok← ok
∧

val′
?
= val

14: end for
15: else
16: for tl ← Client.LastMonitored [id], . . . , tm do
17: dgstl ← Auditor.GetDigest(tl)
18: val′, Path← Server[α].HistoryForest [tl]

.GetPath(id)
19: ok← ok

∧
CheckPath(dgstl [α].vroot , id, val

′, Path)

20: ok← ok
∧

val′
?
= val

21: end for
22: end if
23: Client.LastMonitored [id]← tm
24: Output ok

3.9 Security analysis

3.9.1 Building blocks
Before we prove the security of LegoLog, we first introduce security definitions for Merkle trees
that are used as building blocks in LegoLog’s core data structure. These definitions and security
proofs for Merkle trees have already been established [143, 182, 210], but we review them here
before moving on to prove the security of LegoLog itself.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 63

Security of prefix Merkle trees

Prefix Merkle trees, as introduced in §3.3.1, have their leaves organized in lexicographic order,
and internal nodes store the range of the child nodes.
Lemma 3.2. Let T be a prefix Merkle tree containing a leaf node L with identifier id and value
val. Let h be the hash function used to construct T . If an adversary is able to generate a proof π
for the leaf (id, val′)where val′ ̸= val that verifies against the root hashR ofT , then the adversary
has found a collision in the hash function h .

Proof. Since T contains the leaf (id, val), there must exist a path P from L to R consisting of
nodes n1, n2, . . . , nk such that:

n1 = h(L)
n2 = h(n1, n ′

1) for some n ′
1

...
nk = R

Similarly, π defines a path P ′ consisting of nodes n ′
1, n ′

2, . . . , n ′
k such that:

n ′
1 = h(L′) where L′ = (id, val′)

n ′
2 = h(n ′

1, n
′′
1) for some n ′′

1

...
n ′

k = R

Since val ̸= val′, we have L ̸= L′. Therefore, n1 = h(L) ̸= h(L′) = n ′
1. However, both paths P

and P ′ lead to the same root hash R. Therefore, there exist distinct values n1 and n ′
1 that hash to

the same value n2 = n ′
2. This means h has a collision.

Security of chronological Merkle trees

Chronological Merkle trees, as introduced in §3.3.1, have leaves organized by time the leaf was
appended to the tree.
Lemma 3.3. Let T be a chronological Merkle tree. Let h be the hash function used to construct
T . Suppose T contains leaves L1,L2, . . . ,Ln that were appended in that order. Let Ln = (val).
Let R be the root hash of T . If an adversary is able to generate a proof π that a leaf L′

n = (val′)
was appended to T after Ln−1, where val′ ̸= val, then the adversary has found a collision in the
hash function h .

Proof. The adversary generates a proof π that T contains L′
n under the same root R. As proved

in Lemma 3.2, this is possible only if the adversary has found a collision in the hash function
h .

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 64

Lemma 3.4. Let Tn be a chronological Merkle tree containing leaves L1, . . . ,Ln appended in
order. Let πj→n be an extension proof showingTn extendsTj , for j < n . If an adversary generates
an extension proof π′

j→n showing tree T ′
n extends Tj , where T ′

n contains a leaf L′
i = (val′i) such

that i < j and val′i ̸= vali , then the adversary has found a collision in h .

Proof. Let Rj be the root of Tj and R′
n be the root of T ′

n . Since π′ shows T ′
n extends Tj , π′

j→n
must contain the hashes needed to compute Rj , and the hashes needed to compute R′

n . Since
Tj contains the leaf Li = (vali), there must exist a path P from L to Rj consisting of nodes
n1, n2, . . . , nk such that:

n1 = h(Li)

n2 = h(n1, n ′
1) for some n ′

1

...
nk = Rj

Similarly, if T ′
n contains a leaf L′

i = (val′i) such that i < j and val′i ̸= vali , then and π′
j→n must

define a path P ′ from L′
i to Rj consisting of nodes n ′

1, n ′
2, . . . , n ′

k such that:

n ′
1 = h(L′

i)

n ′
2 = h(n ′

1, n
′′
1) for some n ′′

1

...
n ′

k = Rj

Since vali ̸= val′i , n1 = h(L) ̸= h(L′) = n ′
1. However, both paths P and P ′ lead to the same root

hash Rj . Therefore, there exist distinct values n1 and n ′
1 that hash to the same value n2 = n ′

2.
Thus, the adversary has found a collision in h .

3.9.2 Security game
We define security for LegoLog via a security game (Figure 3.14, Experiment 3.5). In our security
game, we model the case where honest clients interact with a server controlled by the adversary.
In our model, all honest clients also interact with at least one honest auditor and all have the
same view of the server state. To capture this in the security game, the challenger plays the role
of the honest clients and an auditor. The adversary sends one digest per round to the challenger,
capturing the fact that all honest clients have the same view. The adversary can choose the
identifier-value pairs that the honest clients write and, for each round, choose which identifier-
value pairs are monitored and which are not. Before the game ends, the challenger audits and
reads all identifier-value pairs. The adversary’s goal is to pass all auditing and monitoring checks
while ensuring that a read outputs a value that does not match the latest write from an honest
client.

This security game captures both detection and prevention of log tampering. For detec-
tion, the adversary can choose for each round, which identifier-value pairs are monitored and

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 65

which are not, and the challenger must detect any tampering in the last monitoring check on all
identifier-value pairs inserted by the challenger. For prevention, in the last round, the challenger
reads without doing any monitoring, and so any misbehavior must be caught by the auditing
proof or the monitoring proof in the previous round(s).

3.9.3 Security proof
We now prove Theorem 3.1. At a high level, we must reduce the advantage of the adversary in
Experiment 3.5 to the advantage of an adversary against the signature scheme or the collision-
resistant hash function. We can prove this via a hybrid argument.

Hybrid game. We construct a hybrid security game (Figure 3.15, Experiment 3.6) where we
modify the win conditions of the original security game so that the adversary only wins if the
challenger outputs an old (overwritten) value for a given identifier as a result of a read. The
difference between the original game and this hybrid game is precisely the probability that the
adversary can convince the challenger to accept a new value that was never written with the
original secret key associated with that identifier.

In Figure 3.16, Experiment 3.7, we define A△ to be the adversary that can win the difference
in the games of Experiment 3.5 and Experiment 3.6. That is, A△’s goal is to pass all auditing and
monitoring checks while ensuring that read outputs a value that does not match any previous
write from an honest client.

In Figure 3.17, we use the adversary A△ to construct an adversary B in the EUF-CMA secu-
rity game, where B plays the challenger in our security game and also interfaces between the
challenger in the EUF-CMA game and the adversaryA△, sending identifier-value pairs from the
adversary A△ to the EUF-CMA challenger as messages and using signature responses from the
EUF-CMA challenger to construct messages to send to the adversaryA as a part of write requests.
B fixes the signature scheme for one of the identifiers idpk that A△ sends to be interacting with
the challenger in the EUF-CMA game. For other identifiers, B samples a new signing key (if it
does not yet exist) and uses that when writing values for that identifier to the server. IfA△ wins,
then it has produced a new value that was never written (with a valid signature) with the original
key associated with that identifier. If this identifier is idpk, then B can send this back to the EUF-
CMA challenger to win the game. SinceA△ cannot distinguish between which identifier is using
the EUF-CMA challenger and is using B’s sampled signing keys, B will succeed with probability
1/poly(·). Therefore, the difference between the adversary’s advantage in the original security
game and in the first hybrid game is simply the advantage an EUF-CMA adversary (with some
polynomial factors) which, given a secure signature scheme, is negligible.

We now prove that if the adversary wins in this modified game (Experiment 3.6), then we can
construct an adversary C that can find a collision in the hash function. We prove this for the case
when agghistory = false and agghistory = true separately.

Case 1. We first argue security when agghistory = false. Assume that the challenger reads an
old value val′ for id when the last write to id was val (agghistory = false), and that all monitoring

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 66

Experiment 3.5. The below security game for a configurable transparency log against an adversary
A is parameterized by a configuration config, and the security parameter λ.
The game proceeds as follows:
• The challenger initializes dictionary dict and round number i = 0.
• Each round i proceeds as follows:

– The challenger receives (id1, val1, . . . , idn , valn) from A.
– The challenger sets wi = 1. wi represents whether all of the writes in this round were valid.
– For j ∈ [n], the challenger:

∗ Checks if there exists skidj . If not, the challenger samples a new signing key skidj .
∗ The adversary plays the role of the server to run:

wi ← wi ∧ Client.Write(config, skidj , idj , valj , i)

∗ Sets dict[idj]← valj .
– The challenger gets (dgsti , πi ,M) from A.
– The challenger runs

bi ,id ← Client.Monitor(config, dgsti , id, dict[id], i)

for each id ∈ M with A playing the role of the server. For id ∈ dict, id /∈ M , the challenger
sets bi ,id ← 1.

– The challenger runs
ret

(i)
id ← Client.Read(config, dgsti , i)

for each id ∈ dict with A playing the role of the server.
– Initialize dictionary dicti with the contents of dict.
– The adversary sends “continue” or “finish”. If the challenger receives “finish”, break out of the

loop. Otherwise, i ← i + 1 and continue to the next round.
• The challenger runs

bi ,id ← Client.Monitor(config, dgsti , id, dict[id], i)

for each id ∈ dict with A playing the role of the server.
• The challenger sets i ← i + 1 and gets (dgsti , πi) from A.
• The challenger runs

ret
(i)
id ← Client.Read(config, dgsti , i)

for each id ∈ dict with A playing the role of the server.
Let R ← i − 1 (the number of rounds). The adversary wins if:
1. Auditor.Audit(config, dgsti , dgsti+1, πi+1) = 1 and wi = 1 for i ∈ [R],
2. for all id ∈ dict and i ∈ [R], bi ,id = 1, and
3. there exists i ∈ [R], id ∈ dict such that dicti [id] ̸= ret

(i+1)
id .

Figure 3.14: Security game for a configurable transparency log.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 67

Experiment 3.6. The below security game is modified from Experiment 3.5 so that the adversary
only wins if the challenger outputs an old value for a given identifier as a result of a read.
The game proceeds as in Experiment 3.5 and only the win condition is different.
Let R ← i − 1 (the number of rounds). The adversary wins if:
1. Auditor.Audit(config, dgsti , dgsti+1, πi+1) = 1 and wi = 1 for i ∈ [R],
2. for all id ∈ dict and i ∈ [R], bi ,id = 1, and
3. there exists i , j ∈ [R], id ∈ dict such that dictj [id] = retiid and i > j .

Figure 3.15: Hybrid security game, modified from Experiment 3.5.

Experiment 3.7. LetA△ be the adversary that can win the difference in the games of Experiment 3.5
and Experiment 3.6. The game proceeds as in Experiment 3.5 and only the win condition is different.
Let R ← i − 1 (the number of rounds). The adversary A△ wins if:
1. Auditor.Audit(config, dgsti , dgsti+1, πi+1) = 1 and wi = 1 for i ∈ [R],
2. for all id ∈ dict and i ∈ [R], bi ,id = 1, and
3. there exists i ∈ [R], id ∈ dict such that dicti [id] ̸= ret

(i+1)
id and ∀j < i , dictj [id] ̸= ret

(i+1)
id .

Figure 3.16: Security game representing the difference between Experiment 3.5 and Experi-
ment 3.6.

and auditing checks passed. In Client.Read, Client.Write, Client.Monitor, and Auditor.Audit, there
are a series of checks performed by the client and the auditor that the adversary must clear
before convincing the client to read an old value (stored in the variable ok). This means that the
adversary did one of the following:
(1) Generated a prefix tree proof for the query base tree attesting to (id, val′) but the query base

tree contains (id, val):
Client.Read(config, dgst, id, t)
3: . . .
4: val′, Pathid ← Server[α].QueryBT .GetPath(id)
5: ok← ok

∧
CheckPath(root, id, vals, Pathid)

6: . . .

By Lemma 3.2, the adversary cannot do this without finding a hash collision.
(2) Generated a prefix tree proof for an update tree attesting to (id, val′), but the update tree did

not contain such an update:
Client.Read(config, dgst, id, t)

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 68

B = (A△,ChallengerEUF-CMA)

• ChallengerEUF-CMA is the challenger in the EUF-CMA game.
• B acts as the challenger in the game played with A△ (Experiment 3.7).
• B receives public key pk from ChallengerEUF-CMA.
• B sets idpk to be empty.
• B modifies Sign(sk, val) to be B sending val as the chosen message to ChallengerEUF-CMA and
receiving back σ when sk = pk. For all other values of sk, B runs Sign unmodified to produce a
signature (since it knows the signing key).

• Each round i proceeds as follows:
– B receives (id1, val1, . . . , idn , valn) from A△.
– For each j ∈ [n], B:

∗ If idpk is empty, then set idpk to be idj .
∗ If idj = idpk, B then runs (with A△ playing the role of the server)

wi ← wi ∧ Client.Write(config, pk, idj , valj , i)

∗ Otherwise, B checks if there exists skidj . If not, the B samples a new signing key skidj .
Then the adversary plays the role of the server to run:

wi ← wi ∧ Client.Write(config, skidj , idj , valj , i)

∗ Sets dict[idj]← valj .
– The rest of the round proceeds as defined in Experiment 3.5.

• The rest of the game proceeds as defined in Experiment 3.5.
• If the adversary A△ wins, there exists i ∈ [R], id ∈ dict such that dicti [id] ̸= ret

(i+1)
id and

∀j < i , dictj [id] ̸= ret
(i+1)
id . If id = idpk, B simply sends ret(i+1)

id and its associated signature
to ChallengerEUF-CMA.

With an A△ that can win Experiment 3.7, wins the EUF-CMA game with advantage 1/poly(·) be-
cause the invalid read that A△ forges a signature and one of the ids uses the signatures from
ChallengerEUF-CMA.

Figure 3.17: Adversary B that can be constructed from A△ to win the EUF-CMA game.

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 69

22: . . .
23: valu , Pathid,u ,← treeu .GetPath(id)
24: ok← ok

∧
CheckPath(rootu , id, valu , Pathid,u)

25: . . .

By Lemma 3.2, the adversary cannot do this without finding a hash collision.
(3) Generated a chronological tree proof attesting that the most recent addition to the update

log is a prefix tree containing (id, val′):
Client.Read(config, dgst, id, t)
19: . . .
20: (treeu , oku)← dgst[α].UpdateLog [u]∗
21: ok← ok

∧
oku

22: . . .

By Lemma 3.3, the adversary cannot do this without finding a hash collision.
(4) Generated an extension proof attesting that the update log containing a prefix tree containing

(id, val′) is an extension of an update log containing a prefix tree containing (id, val):
Client.Write(config, sk, id, val, t)→ {0, 1}
2: . . .
3: Server[α].Write(id, (val, σ))
4: Wait until epoch t + 1
5: dgst← Auditor.GetDigest(t + 1)
6: vallatest ← Client.Read(config, dgst, id, t + 1)
7: . . .

Auditor.Audit(config, dgstold, dgstnew, π)→ {0, 1}:
11: . . .
12: if dgstold[α].t mod config.tv =

dgstnew[α].t mod config.tv then
13: ok← ok

∧
VerifyExtension(π[α].ul ,

dgstold[α].ulroot , dgstnew[α].ulroot)
14: end if
15: . . .

By Lemma 3.4, the adversary cannot do this without finding a hash collision.
(5) Created a collision in the hash chain of base prefix trees (so the client did not detect the

equivocation in a later epoch):
Auditor.Audit(config, dgstold, dgstnew, π)→ {0, 1}:
5: . . .
6: h ′ ← dgstold[α].HashChain
7: for n ∈ π[α].hc do
8: h ′ ← H (n, h ′)
9: end for

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 70

10: ok← ok
∧

h ′ ?
= dgstnew[α].HashChain

11: . . .

Thus, if the adversary does win, then we can construct an adversary C that can find a collision in
the hash function.

Case 2. We now argue security for when agghistory = true. Assume that the challenger reads an
old value val′ for id when the last write to id was val (agghistory = true), and that all monitoring
and auditing checks passed. This means that the adversary did one of the following:
* (1) through (4) are the same as in Case 1.

(5) Each read and monitor invocation query a number of prefix trees that have been generated
since the most recent write, and for a given identifier id, if the monitor call happens after the
read call, then the set of prefix trees queried must intersect.
Client.Read(config, dgst, id, t)
6: . . .
7: for rooth ∈ Server[α].HistoryForest .roots do
8: th ← verification period rooth corresponds to
9: valh , Pathid,h ←

Server[α].HistoryForest [th].GetPath(id)
10: ok← ok

∧
CheckPath(rooth , id, valh , Pathid,h)

11: ok← ok
∧

valh .vals
?

⊆ val.vals
12: end for
13: . . .

Client.Monitor(config, dgst, id, val, t)→ {0, 1}
7: . . .
8: t ′ ← verification period id was updated to val
9: for tl ∈ path from t ′ to root in

Server[α].HistoryForest do
10: dgstl ← Auditor.GetDigest(tl)
11: val′, Path← Server[α].HistoryForest [tl]

.GetPath(id)
12: ok← ok

∧
CheckPath(dgstl [α].vroot , id, val

′, Path)

13: ok← ok
∧

val′
?
= val

14: end for
15: . . .

Because the prefix trees are stored in a chronological forest, if the adversary can convince
the challenger that this set of prefix trees does not overlap, then it has found a collision in
the hash function.
Given an overlapping set of prefix trees, the adversary then must produce a prefix tree proof
attesting to (id, val′) when the last write to id was for val ̸= val′. Based on the security

CHAPTER 3. LEGOLOG: A CONFIGURABLE TRANSPARENCY LOG 71

of prefix trees (Lemma 3.2), an adversary that can do this has found a collision in the hash
function.

If the adversary does win in this case (when agghistory = true), then we can construct an adver-
sary C that can find a collision in the hash function. This completes the proof.

3.10 Conclusion

In this chapter, we introduced LegoLog, a configurable transparency log that can automatically
output a suitable log design given a workload description. It enables non-experts to use trans-
parency logs, thus enabling more applications to leverage them. We showed that LegoLog pro-
vides configurability while performing comparably to special-purpose transparency logs.

72

Part II

Scaling

73

Chapter 4

Snoopy: A scalable oblivious storage

4.1 Introduction

Organizations increasingly outsource sensitive data to the cloud for better convenience, cost-
efficiency and availability [101,176,279]. Encryption cannot fully protect this data: how the user
accesses data (the “access pattern”) can leak sensitive information to the cloud [45, 82, 124, 152,
161, 171]. For example, the frequency with which a doctor accesses a medication database might
reveal a patient’s diagnosis.

Oblivious object stores allow clients to outsource data to a storage serverwithout revealing ac-
cess patterns to the storage server. A rich line of work has shown how to build efficient oblivious
RAMs (ORAMs), which can be used to construct oblivious object stores [29,47,72,116,240,263,269,
292–294,322]. In order to be practical for applications, oblivious storagemust providemany of the
same properties as plaintext storage. Prior work has shown how to reduce latency [217,263,294],
scale to large data sizes via data parallelism [199], and improve request throughput [72,269,322].
Despite this progress, leveraging task parallelism to scale for high-throughput workloads remains
an open problem: existing oblivious storage systems do not scale.

Identifying the scalability bottleneck. Scalability bottlenecks are system components that
must perform computation for every request and cannot be parallelized. These bottlenecks limit
the overall system throughput; once their maximum throughput has been reached, adding re-
sources to the system no longer improves performance. To scale, plaintext object stores tradi-
tionally shard objects across servers, and clients can route their queries to the appropriate server.
Unfortunately, this approach is insecure for oblivious object stores because it reveals the mapping
of objects to partitions [45, 124, 152, 161, 171]. For example, if clients query different shards, the
attacker learns that the requests were for different objects.

To understand why scaling oblivious storage is hard, we examine two properties oblivious
storage systems traditionally satisfy. First, systems typically maintain a dynamic mapping (hid-
den from the untrusted server) between the logical layout and physical layout of the outsourced
data. Clients must look up their logical key using the freshest mapping and remap it to a new
location after every access, creating a central point of coordination. Second, for efficient access,

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 74

oblivious systems typically store data in a hierarchical or tree-like structure, creating a bottleneck
at the root [263, 293, 294].

Thus high-throughput oblivious storage systems are all built on hierarchical [293] or tree-
like [263,294] structures and either require a centralized coordination point (e.g., a query log [47,
322] or trusted proxy [29, 72, 269, 292]) or inter-client communication [36]. We ask: How can we
build an oblivious object store that handles high throughput by scaling in the same way as a plaintext
object store?

Removing the scalability bottleneck. In this chapter, we propose Snoopy (scalable nodes for
oblivious object repository), a high-throughput oblivious storage system that scales similarly to
a plaintext storage system. While our system is secure for any workload, we design it for high-
throughput workloads. Specifically, we develop techniques for grouping requests into equal-sized
batches for each partition regardless of the underlying request distribution and with minimal
cover traffic. These techniques enable us to efficiently partition and securely distribute every
system component without prohibitive coordination costs.

Like prior work, Snoopy leverages hardware enclaves for both performance and security [3,
217, 270]. Hardware enclaves makes it possible to (1) deploy the entire system in a public cloud;
(2) reduce network overheads, as private and public state can be located on the same machine;
and (3) support multiple clients without creating a central point of attack. This is in contrast
with the traditional trusted proxy model (Figure 4.1), which can be both a deployment headache
and a scalability concern. Hardware enclaves do not entirely solve the problem of hiding access
patterns for oblivious storage: enclave side channels allow attackers to exploit data-dependent
memory accesses to extract enclave secrets [38,130,186,188,220,275,312,324]. To defend against
these attacks, we must ensure that all algorithms running inside the enclave are oblivious, mean-
ing that memory accesses are data-independent. Existing work targets latency-sensitive deploy-
ments [3,217,270] and is prohibitively expensive for the concurrent, high-throughput deployment
we target. We instead leverage our oblivious partitioning scheme to design new algorithms tai-
lored to our setting.

We experimentally show that Snoopy scales to achieve high throughput. The state-of-the-
art oblivious storage system Obladi [72] reaches a throughput of 6,716 reqs/sec with average
latency under 80ms for two million 160-byte objects and cannot scale beyond a proxy machine
(32 cores) and server machine (16 cores). In contrast, Snoopy uses 18 4-core machines to scale to a
throughput of 92K reqs/sec with average latency under 500ms for the same data size, achieving a
13.7× improvement over Obladi. We report numbers with 18 machines due to cloud quota limits,
not because Snoopy stops scaling. We formally prove the security of the entire Snoopy system,
independent of the request load.

4.1.1 Summary of techniques
Snoopy is comprised of two types of entities: load balancers and subORAMs (Figure 4.1). Load
balancers assemble batches of requests, and subORAMs, which store data partitions, process the
requests. In order to securely achieve horizontal scaling, we must consider how to design both

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 75

Load BalancerLoad Balancer

subORAM

(a) ORAM in hardware enclave

(c) Snoopy

Trusted
Server

Untrusted
Cloud

(b) Trusted Proxy

subORAM subORAM

ORAM

Hardware
Enclave

Scalability
Bottleneck

Proxy

Figure 4.1: Different oblivious storage system architectures: (a) ORAM in a hardware enclave is
bottlenecked by the single machine, (b) ORAM with a trusted proxy is bottlenecked by the proxy
machine, and (c) Snoopy can continue scaling as more subORAMs and load balancers are added
to the system.

the load balancer and subORAM to (1) leverage efficient oblivious algorithms to defend against
memory-based side-channel attacks, and (2) be easy to partition without incurring coordination
costs.

Challenge #1: Building an oblivious load balancer. To protect the contents of the requests,
our load balancer design must guarantee that (1) the batch structure leaks no information about
the requests, and (2) the process of constructing these batches is oblivious and efficient. Further-
more, we need to design our oblivious algorithm such that we can add load balancers without
incurring additional coordination costs.

Approach. We build an efficient, oblivious algorithm that groups requests into batches without
revealing the mapping between requests and subORAMs. We size batches using only public
information, ensuring that the load balancer never drops requests and the batch size does not
leak information. Our load balancer design enables us to run load balancers independently and
in parallel, allowing Snoopy to scale past the capacity of a single load balancer (§4.4).

Challenge #2: Designing a high-throughput subORAM. To ensure that Snoopy can achieve
high throughput, we need a subORAM design that efficiently processes large batches of requests
and defends against enclave side-channel attacks. Existing ORAMs that make use of hardware
enclaves [3,217,270] only process requests sequentially and are a poor fit for the high-throughput
scenario we target.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 76

Approach. Rather than building batching support into an existing ORAM scheme, we design a
new ORAM that only supports batched accesses. We observe that in the case where data is parti-
tioned over many subORAMs, a single scan amortized over a large batch of requests is concretely
cheaper than servicing the batch using ORAMs with polylogarithmic access costs [3, 217, 270],
particularly in the hardware enclave setting. We leverage a specialized data structure to process
batches efficiently and obliviously in a single linear scan (§4.5).

Challenge #3: Choosing the optimal configuration. The design of Snoopy makes it possible
to scale the system by adding both load balancers and subORAMs. An application developer needs
to know how to configure the system to meet certain performance targets while minimizing cost.

Approach. To solve this problem, we design a planner that, given a minimum throughput, max-
imum average latency, and data size, outputs a configuration minimizing cost (§4.6).

Limitations. Snoopy is designed specifically to overcome ORAM’s scalability bottleneck to
support high-throughput workloads, as solutions already exist for low-throughput, low-latency
workloads [263, 294]. In the low-throughput regime, although Snoopy is still secure, its latency
will likely be higher than that of non-batching systems like ConcurORAM [47], TaoStore [269],
or PrivateFS [322]. For large data sizes and low request volume, a system like Shroud [199] will
leverage resourcesmore efficiently. Snoopy can use a different, latency-optimized subORAMwith
a shorter epoch time if latency is a priority. We leave for future work the problem of adaptively
switching between solutions that are optimal under different workloads.

4.2 Security and correctness guarantees

We consider a cloud attacker that can:
• control the entire cloud software stack outside the enclave (including the operating system),
• view (encrypted) network traffic arriving at and within the cloud (including traffic sent by
clients and message timing),

• view or modify (encrypted) memory outside the enclaves in the cloud, and
• observe access patterns between the enclaves and external memory in the cloud.
We design Snoopy on top of an abstract enclave model where the attacker controls the software
stack outside the enclave and can observe memory access patterns but cannot learn the contents
of the data inside the processor. Snoopy can be used with any enclave implementation [34, 71,
187]; we chose to implement Snoopy on Intel SGX as it is publicly available on Microsoft Azure.
Enclaves do not hide memory access patterns, enabling a large class of side-channel attacks,
including but not limited to cache attacks [38, 130, 220, 275], branch prediction [188], paging-
based attacks [312,324], and memory bus snooping [186]. By using oblivious algorithms, Snoopy
defends against this class of attacks. Snoopy does not defend against enclave integrity attacks
such as rollback [241] and transient execution attacks [56, 257, 274, 309, 310, 313, 314], which we
discuss in greater detail below.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 77

We defend against memory access patterns to both data and code by building oblivious algo-
rithms on top of an oblivious “compare-and-set” operator. While our source code defends against
access patterns to code, we do not ensure that the final binary does, as other factors like compiler
optimizations and cache replacement policies may leak information (existing solutions may be
employed here [125, 195]).

Timing attacks. A cloud attacker has access to three types of timing information: (1) when
client requests arrive, (2) when inter-cloud processing messages are sent/received, and (3) when
client responses are sent. Snoopy allows the attacker to learn (1). In theory, these arrival times
can leak data, and so we could hide when clients send requests and how many they send by
requiring clients to send a constant number of requests at predefined time intervals [10]; we do
not take this approach because of the substantial overhead and because, for some applications,
clients may not always be online. Snoopy ensures that (2) and (3) do not leak request contents;
the time to execute a batch depends entirely on public information, as defined in §4.2.1.

Data integrity and protection against rollback attacks. Snoopy guarantees the integrity of
the stored objects in a straightforward way: for memory within the enclave, we use Intel SGX’s
built-in integrity tree, and for memory outside the enclave, we store a digest of each block inside
the enclave. We assume that the attacker cannot roll back the state of the system [241]. We
discuss how Snoopy can integrate with existing rollback-attack solutions in §4.9.

Attacks out of scope. We build on an abstract enclave model where the attacker’s power is lim-
ited to viewing or modifying external memory and observing memory access patterns (we for-
malize this as an ideal functionality in §4.12). Any attack that breaks the abstract enclave model
is out of scope and should be addressed with techniques complementary to Snoopy. For example,
we do not defend against leakage due to power consumption [59, 227, 297] or denial-of-service
attacks due to memory corruptions [126, 154]. We additionally consider transient execution at-
tacks [56,257,274,309,310,313,314] to be out of scope; in many cases, these have been patched by
the enclave vendor or the cloud provider. These attacks break Snoopy’s assumptions (and hence
guarantees) as they allow the attacker to, in many cases, extract enclave secrets. We note that,
Snoopy’s design is not tied to Intel SGX, and also applies to academic enclaves like MI6 [34],
Keystone [187], or Sanctum [71], which avoid many of the drawbacks of Intel SGX.

We also do not defend against denial-of-service attacks; the attacker may refuse queries or
even delete the clients’ data.

Clients. For simplicity, in the rest of this chapter, we describe the case where all clients are
honest. We make this simplification to focus on protecting client requests from the server, a
technical challenge that motivates our techniques. However, in practice, we might not want
to trust every client with read and write access to every object in the system. Adding access-
control lookups to our system is fairly straightforward and requires an oblivious lookup in an
access-control matrix to check a client’s privileges for a given object. We can perform this check
obliviously via a recursive lookup in Snoopy (we describe how this works in §4.14). Supporting
access control in Snoopy ensures that compromised clients cannot read or write data that they do

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 78

not have access to. Furthermore, if compromised clients collude with the cloud, the cloud does
not learn anything beyond the public information that it already learns (specified in §4.2.1) and
the results of read requests revealed by compromised clients.

Linearizability. Because we handle multiple simultaneous requests, we must provide some
ordering guarantee. Snoopy provides linearizability [137]: if one operation happens after another
in real time, then the second will always see the effects of the first (see §4.4.3 for how we achieve
this). We include a linearizability proof in §4.13.

4.2.1 Formalizing security
We formalize our system and prove its security in §4.12. We build our security definition on an
enclave ideal functionality (representing the abstract enclave model), which provides an interface
to load a program onto a network of enclaves and then execute that program on an input. Exe-
cution produces the program output, as well as a trace containing the network communication
and memory access patterns generated as a result of execution (what the adversary has access to
in the abstract enclave model).

The Snoopy protocol allows the attacker to learn public information such as the number of re-
quests sent by each client, request timing, data size (number of objects and object size), and system
configuration (number of load balancers and subORAMs); this public information is standard in
oblivious storage. Snoopy protects private information, including the data content and, for each
request, the identity of the requested object, the request type, and any read or write content. To
prove security, we show how to simulate all accesses based solely on public information (as is
standard for ORAM security [116]). Our construction is secure if an adversary cannot distinguish
whether it is interacting with enclaves running the real Snoopy protocol (the “real” experiment)
or an ideal functionality that interacts with enclaves running a simulator program that only has
access to public information (the “ideal” experiment) from the trace generated by execution. We
now informally define these experiments, delegating the formal details to Figure 4.16.

Real and ideal experiments (informal). In the real experiment, we load the protocolΠ (either
our Snoopy protocol or our subORAM protocol, depending on what we are proving security of)
onto a network of enclaves and execute the initialization procedure (the adversary can view the
resulting trace). Then, the adversary can run the batch access protocol specified by Π on any set
of queries and view the trace. The adversary repeats this process a polynomial number of times
before outputting a bit.

The ideal experiment proceeds in the same way as the real experiment, except that, instead
of interacting with enclaves running Π, the adversary interacts with an ideal functionality that
in turn interacts with the enclaves running the simulator program. The adversary can view the
traces generated by the simulator enclaves. The goal of the adversary is to distinguish between
these experiments. We describe both experiments more formally in Figure 4.16.

Using these experiments, we present our security definition:

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 79

Definition 4.1. The oblivious storage scheme Π is secure if for any non-uniform probabilistic
polynomial-time (PPT) adversary Adv, there exists a PPT Sim such that∣∣Pr [RealOStoreΠ,Adv (λ) = 1

]
− Pr

[
IdealOStoreSim,Adv(λ) = 1

]∣∣≤ negl(λ)

where λ is the security parameter, the real and ideal experiments are defined informally above and
formally in Figure 4.16, and the randomness is taken over the random bits used by the algorithms
of Π, Sim, and Adv.

We prove security in a modular way, which enables future systems to make standalone use of
our subORAM design. We note that our subORAM scheme is secure only if the batch received
contains unique requests (this property is guaranteed by our load balancer). We describe these
requirements formally and prove security in Definition 4.2. We prove the security of Snoopy
using any subORAM scheme that is secure under this modified definition.
Theorem 4.1. Given a two-tiered oblivious hash table [49], an oblivious compare-and-set operator,
and an oblivious compaction algorithm, the subORAM scheme described in §4.5 and formally defined
in Figure 4.18 is secure according to Definition 4.2.
Theorem 4.2. Given a keyed cryptographic hash function, an oblivious compare-and-set operator,
an oblivious sorting algorithm, an oblivious compaction algorithm, and an oblivious storage scheme
(secure according to Definition 4.2), Snoopy, as described in §4.4 and formally defined in Figure 4.20,
is secure according to Definition 4.1.

All of the tools we use in the above theorems can be built from standard cryptographic as-
sumptions. We prove both theorems in §4.12.

4.3 System overview

To motivate the design of our system, we begin by describing several solutions that do not work
for our purposes.

Attempt #1: Scalable but not secure. Sharding is a straightforward way to achieve horizontal
scaling. Each server maintains a separate ORAM for its data shard, and the client queries the
appropriate server. This simple solution is insecure: repeated accesses to the same shard leaks
query information. For example, if two clients query different servers, the attacker learns that
they requested different objects.

Attempt #2: Secure but not scalable. To fix the above problem, we could remap an object to
a different partition after it is accessed, similar to how single-server ORAMs remap objects after
accesses [263, 294]. A central proxy running on a lightweight, trusted machine keeps a mapping
of objects to servers. The client sends its request to the proxy, which then accesses the server
currently storing that object and remaps that object to a new server [29,292]. While this solution
is secure, this single proxy is a scalability bottleneck. Every request must use the most up-to-
date mapping for security; otherwise, requests might fail and re-trying them will leak when the

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 80

Load Balancer

subORAM subORAM

Obj 13
Obj 72

Obj 12
Obj 34

Obj 20 Obj 12
Dummy Obj 46

Obj 72
Dummy

Obj 20
Obj 34

Obj 13

Obj 46
1

2 Obj 13
Obj 34

Figure 4.2: Secure distribution of requests in Snoopy. ➊The load balancer receives requests from
clients. ➋At the end of the epoch, the load balancer generates a batch of requests for each sub-
ORAM, padding with dummy requests as necessary.

requested object was last accessed. Therefore, all requests must be serialized at the proxy, and so
the proxy’s throughput limits the system’s throughput.

Our approach. We achieve the scalability of the first approach and the security of the second
approach. To efficiently scale, we exploit characteristics of the high-throughput regime to develop
new techniques that allow us to provide security without remapping objects across partitions.
These techniques enable us to send equal-sized batches to each partition while both (1) hiding
the mapping between requests and partitions (for security), and (2) ensuring that requests are
distributed somewhat equally across partitions (for scalability).

4.3.1 System architecture
Snoopy’s system architecture (Figure 4.2) consists of clients (running on private machines) and,
in the public cloud, load balancers and subORAMs (running on hardware enclaves). All commu-
nication is encrypted using an authenticated encryption scheme with a nonce to prevent replay
attacks. We establish all communication channels using remote attestation so that clients are
confident that they are interacting with legitimate enclaves running Snoopy [17].

The role of the load balancer is to partition requests received during the last epoch into equally
sized batches while providing security and efficiency (§4.4). In order to horizontally scale the load
balancer, each load balancer must be able to operate independently and without coordination.
The role of the subORAM is to manage a data partition, storing the current version of the data
and executing batches of requests from the load balancers (§4.5). Snoopy can be deployed using

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 81

any oblivious storage scheme for hardware enclaves [3, 217, 270] as a subORAM. However, our
subORAM design is uniquely tailored to our target workload and end-to-end system design.

4.3.2 Real-world applications
Snoopy is valuable for applications that need a high-throughput object store for confidential data,
including outsourced file storage [3], cloud electronic health records, and Signal’s private contact
discovery [204]. Privacy-preserving cryptocurrency light clients can also benefit from Snoopy.
These allow lightweight clients to query full nodes for relevant transactions [206]. Maintaining
many ORAM replicas is not enough to support high-throughput blockchains because each replica
needs to keep up with the system state. As blockchains continue to increase in the through-
put [267, 290], oblivious storage systems like Obladi [72] with a scalability bottleneck simply
cannot keep up.

Snoopy can also enable private queries to a transparency log; for example, Alice could look
up Bob’s public key in a key transparency log [120, 208] without the server learning that she
wants to talk to Bob. A key transparency log should support up to a billion users, making high
throughput critical [119].

4.4 Oblivious load balancer

In this section, we detail the design of the load balancer, focusing on how batching can be used
to hide the mapping between requests and subORAMs at low cost (§4.4.1), designing oblivious
algorithms to efficiently generate batches while protecting the contents of the requests (§4.4.2),
and scaling the load balancer across machines (§4.4.3).

4.4.1 Setting the batch size
To provide security, we need to ensure that constructing batches leaks no information about the
requests. Specifically, we must guarantee that (1) the size of batches leaks no information, and (2)
the process of constructing batches is similarly oblivious. We focus on (1) now and discuss (2) in
§4.4.2. For security, we need to ensure that the batch size B depends only on public information
visible to the attacker: namely, the number of requests R and number of subORAMs S , but not
the contents of these requests. Therefore, we define B as a function B = f (R, S) that outputs
an efficient yet secure batch size for R requests and S subORAMs. Each subORAM will receive
B requests. Because R is not fixed across epochs (requests can be bursty), B can also vary across
epochs.

In choosing how to define this function f , we need to (1) ensure that requests are not dropped,
and (2) minimize the overhead of dummy requests. Ensuring that requests are not dropped is
critical for security: if a request is dropped, the client will retry the request, and an attacker who
sees a client participate in two consecutive epochs may infer that a request was dropped, leaking
information about request contents. Minimizing the overhead of dummy requests is important

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 82

0 5K 10K
Real requests

0

50

100

150

200

%
O
ve
rh
ea
d
(λ

=
1
2
8
)

SubORAMs: 2 10 20

Figure 4.3: Dummy request overhead. A 50%
overhead means for every two real requests
there is one dummy request.

0 10 20

SubORAMs

5K

10K

15K

20K

Re
al
re
qu

es
tc
ap
ac
ity

λ: 0 (no security) 80 128

Figure 4.4: The total real request capacity of
our system for an epoch, assuming ≤1K re-
quests per subORAM per epoch.

for scalability. A simple way to satisfy security would be to set f (R, S) = R; this ensures that
even if all the requests are for the same object, no request was potentially dropped. However,
this approach is not scalable because every subORAM would need to process a request for every
client request. We refine this approach in two steps.

Deduplication to address skew. When assembling a batch of requests, the load balancer can
ensure that all requests in a batch are for distinct objects by aggregating reads and writes for the
same object (for writes, we use a “last write wins” policy) [72]. Deduplication allows us to combat
workload skew. If the load balancer receives many requests for object A and a single request for
object B, the load balancer only needs to send one request for object A and one request for object
B. Deduplication simplifies the problem statement; we now need to distribute a batch of at most
R unique requests across subORAMs. This reframing allows us to achieve security with high
probability for f (R, S) < R if we distribute objects randomly across subORAMs, as we now do
not have to worry about the case where all requests are for the same object.

Choosing a batch size. Given R requests and S subORAMs, we need to find the batch size B
such that the probability that any subORAM receives more than B requests is negligible in our
security parameter λ. Like many systems that shard data, we use a hash function to distribute
objects across subORAMs, allowing us to recast the problem of choosing B as a balls-into-bins
problem [255]: we have R balls (requests) that we randomly toss into S bins (subORAMs), and
we must find a bin size B (batch size) such that the probability that a bin overflows is negligible.
We add balls (dummy requests) to each of the S bins such that each bin contains exactly B balls.

Using the balls-into-bins model, we can start to understand how we expect R and S to affect
B . As we add more balls to the system (R ↑), it becomes more likely for the balls to be distributed
evenly over every bin, and the ratio of dummy balls to original balls decreases. Conversely, as we
add more bins to the system (S ↑), we need to proportionally add more dummy balls. We validate

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 83

this intuition in Figure 4.3 and Figure 4.4. Figure 4.3 shows that as the total number of requests
R increases, the percent overhead due to dummy requests decreases. Thus larger batch sizes are
preferable, as they minimize the overhead introduced by dummy requests. Figure 4.4 illustrates
how adding more subORAMs increases the total request capacity of Snoopy, but at a slower rate
than a plaintext system. Adding subORAMs helps Snoopy scale by breaking data into partitions,
but adding subORAMs is not free, as it increases the dummy overhead.

We prove that the following f for setting batch size B guarantees negligible overflow proba-
bility in §4.11:
Theorem 4.3. For any set of R requests that are distinct and randomly distributed, number of
subORAMs S , and security parameter λ, let µ = R/S , γ = − log(1/(S · 2λ)), and W0(·) be branch
0 of the Lambert W function [67]. Then for the following function f (R, S) that outputs a batch size,
the probability that a request is dropped is negligible in λ:

f (R, S) = min(R, µ · exp
[
W0

(
e−1 (γ/µ− 1)

)
+ 1

]
) .

Proof intuition. For a single subORAM s , let X1, . . . ,XR ∈ {0, 1} be independent random vari-
ables where Xi represents request i mapping to s . Then, Pr[Xi = 1] = 1/S . Next, let the
random variable X =

∑R
i=1 Xi represent the total number of requests that hashed to s . We use

a Chernoff bound to upper-bound the probability that there are more than k requests to a single
subORAM, Pr[X ≥ k]. In order to upper-bound the probability of overflow for all subORAMs,
we use the union bound and solve for the smallest k that results in an upper bound on the proba-
bility of overflow negligible in λ. In order to solve for k , we coerce the inequality into a form that
can be solved with the Lambert W function, which is the inverse relation of f (w) = wew , i.e.,
W (wew) = w [67]. When f (R, S) = R, the overflow probability is zero, and so we can safely
upper-bound f (R, S) by R. We target the high-throughput case where R is large, in which case
our bound is less than R.

We now explain how Theorem 4.3 applies to Snoopy. For security, it is important that an
attacker cannot (except with negligible probability) choose a set of requests that causes a batch
to overflow. Thus Snoopy needs to ensure that requests chosen by the attacker are transformed
to a set of requests that are distinct and randomly distributed across subORAMs. Snoopy ensures
that requests are distinct through deduplication and that requests are randomly distributed by
using a keyed hash function where the attacker does not know the key. Because the keyed hash
function remains the same across epochs, Snoopy must prevent the attacker from learning which
request is assigned to which subORAM during execution (otherwise, the attacker could use this
information to construct requests that will overflow a batch). Snoopy does this by ensuring that
each subORAM receives the same number of requests and by obliviously assigning requests to
the correct subORAM batch (§4.4.2). Theorem 4.3 allows us to choose a batch size that is less
than R in the high-throughput setting (for scalability) while ensuring that the probability that an
attacker can construct a batch that causes overflow is cryptographically negligible. Thus Snoopy
achieves security for all workloads, including skewed ones.

The bound we derive is valuable in applications beyond Snoopy where there are a large num-
ber of balls and it is important that the overflow probability is very small for different numbers of

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 84

balls and bins. Our bound is particularly useful in the case where the overflow probability must
be negligible in the security parameter as opposed to an application parameter (e.g. the number
of bins) [26, 218, 255, 256].

4.4.2 Oblivious batch coordination
As with other components of the system, the load balancer runs inside a hardware enclave, and
so we must ensure that its memory accesses remain independent of request content. The load
balancer runs two algorithms that must be oblivious: generating batches of requests (§4.4.2), and
matching subORAM responses to client requests (§4.4.2).

Practically, designing oblivious algorithms requires ensuring that the memory addresses ac-
cessed do not depend on the data; often this means that the access pattern is fixed and depends
only on public information (alternatively, access patterns might be randomized). The data con-
tents remain encrypted and inaccessible to the attacker, and only the pattern in which memory
is accessed is visible. We build our algorithms on top of an oblivious “compare-and-set” operator
that allows us to copy a value if a condition is true without leaking if the copy happened or not.

Background: oblivious building blocks.

We first provide the necessary background for two oblivious building blocks from existing work
that we will use in our algorithms.

Oblivious sorting. An oblivious sort orders an array of n objects without leaking information
about the relative ordering of objects. We use bitonic sort, which runs in time O(n log2 n) and is
highly parallelizable [20]. Bitonic sort accesses the objects and performs compare-and-swaps in
a fixed, predefined order. Since its access pattern is independent of the final order of the objects,
bitonic sort is oblivious.

Oblivious compaction. Given an array of n objects, each ofwhich is taggedwith a bit b ∈ {0, 1},
oblivious compaction removes all objects with bit b = 0without leaking information about which
objects were kept or removed (except for the the total number of objects kept). We use Goodrich’s
algorithm, which runs in time O(n log n) and is order-preserving, meaning that the relative order
of objects is preserved after compaction [118]. Goodrich’s algorithm accesses array locations in
a fixed order using a log n-deep routing network that shifts each element a fixed number of steps
in every layer.

Generating batches of requests.

Generating fixed-size batches obliviously requires care. It is not enough to simply pad batches
with a variable number of dummy requests, as this can leak the number of real requests in each
batch. Instead, we must pad each batch with the right number of dummy requests without reveal-
ing the exact number of dummy requests added to each batch. To solve this problem, we obliviously

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 85

Obj 34
Obj 22
Obj 75
Obj 51
Obj 34

1
2
1
1
1

Obj 34
Obj 22
Obj 75
Obj 51
Obj 34

1
2
1
1
1

Dummy
Dummy
Dummy
Dummy

1
1
1
2

Obj 34
Obj 34
Obj 51

Dummy
Dummy

1
1
1
1
1

Obj 22

Obj 75

Dummy
Dummy

1

2
2
2

✔

✘

✔

✔

✘

✘

✔

✔

✔

!

Obj 34
Obj 51

1
1
1

Obj 22

Obj 75

Dummy
Dummy

2
2
2

✔

✔

✔

✔

✔

✔

Assign
requests to
subORAMs

Add extra
dummy
requests

OSort to construct
batches with extra
dummy requests

OCompact out
extra dummy

requests

1 2 3 4

Dummy
Dummy

2
2

Dummy 1 ✘

Dummy 2 ✘

Figure 4.5: Generating batches of requests at the load balancer.

generate batches in three steps, which we show in Figure 4.5: ➊we first assign client requests
to subORAMs according to their requested object; ➋we add the maximum number of dummy
requests to each subORAM; ➌we construct batches with those extra dummies; and ➍we filter
out unnecessary dummies.

First (➊), we scan through the list of client requests. For each client request, we compute the
subORAM ID by hashing the object ID, and we store it with the client request. Second (➋), we
append the maximum number of dummy requests for each subORAM, B = f (R, S) to the end
of the list. These dummy requests all have a tag bit b = 1. Third (➌), we group real and dummy
requests into batches by subORAM.We do this by obliviously sorting the lists of requests, setting
the comparison function to order first by subORAM (to group requests into subORAM batches),
then by tag bit b (to push the dummies to the end of the batches), and then by object ID (to place
duplicates next to each other). Finally (➍), to choose which requests to keep andwhich to remove,
we iterate through the sorted request list again. We keep a counter x of the number of distinct
requests seen so far for the current subORAM. We securely update the counter by performing
an oblivious compare-and-set for each request, ensuring that access patterns don’t reveal when
the counter is updated. If x < B and the request is not a duplicate (i.e. it is not preceded by a
request for the same object), we set bit b = 1 (otherwise b = 0). To filter out unnecessary dummy
requests and duplicates, we obliviously compact by bit b, leaving us with aB -sized batch for each
subORAM.

The algorithm is oblivious because it only relies on linear scans and appends (both are data-
independent) and our oblivious building blocks. The runtime is dominated by the cost of oblivious
sorting and compaction.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 86

!

Obj 34
Obj 51

0
0
0

Obj 22

Obj 75

Dummy
Dummy

0
0
0

Su
bO

RA
M

 re
sp

on
se

s

Obj 34
Obj 22
Obj 75
Obj 51
Obj 34

1
1
1
1
1C

lie
nt

 re
qu

es
ts

Obj 34
Obj 51

Obj 22

Obj 75

Dummy
Dummy
Obj 34
Obj 22
Obj 75
Obj 51
Obj 34

0
1
0

1
1
0

1
0
1

Obj 22
Obj 22

Obj 34

Obj 34

Obj 34
Obj 51
Obj 51
Obj 75
Obj 75
Dummy
Dummy

0
1
0

1
1
0

1
0
1

Obj 22
Obj 22

Obj 34

Obj 34

Obj 34
Obj 51
Obj 51
Obj 75
Obj 75
Dummy
Dummy

1
1
1

1
1

Obj 22
Obj 34
Obj 34

Obj 51
Obj 75

Merge subORAM responses
and client requests

OSort by
object ID

Propagate data
from responses

OCompact
out responses

1 2 3 4

0
0

0
0

Figure 4.6: Mapping subORAM responses to client requests at the load balancer.

Mapping responses to client requests.

Once we receive the batches of responses from the subORAMs, we need to send replies to clients.
This requires mapping the data from subORAM responses to the original requests, making sure
that we propagate data correctly to duplicate responses and that we ignore responses to dummy
requests. We accomplish this obliviously in four steps, which we show in Figure 4.6: ➊we merge
together the client requests and the subORAM responses and then sort the list; ➋we sort the
merged list to group requests with responses; ➌we propagate data from the responses to the
original requests; and ➍we filter out the now unnecessary subORAM responses.

The load balancer takes as input two lists: a list of subORAM responses and a list of client
requests. First (➊), we merge the two lists, tagging the subORAM responses with a bit b = 0
and the client requests with b = 1. Second (➋), we sort this combined list by object ID and then,
to break ties, by the tag bit b. Breaking ties by the tag bit b arranges the data so that we can
easily propagate data from subORAM responses to requests. Third (➌), we iterate through the
list, propagating data in objects with the tag bit b = 0 (the subORAM responses) to the following
object(s) with the tag bit b = 1 (the client requests). As we iterate through the list, we keep track
of the last object we have seen with b = 1, prev (i.e. the last subORAM response we’ve scanned
over). Then, for the current object curr, we copy the contents of prev into the curr if b = 0 for
curr (it’s a request). Any requests following a response must be for the same object because every
request has a corresponding response and we sort by object ID. Note that dummy responses will
not have a corresponding client request. Finally (➍), we need to filter down the list to include
only the client requests. We do this using oblivious compaction, removing objects with the tag
bit b = 0 (the subORAM responses). Note that, in order to respond to a request, we need to map
a client request to the original network connection; we can do this by keeping a pointer to the

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 87

connection with the request data.
This procedure is oblivious because it relies only on oblivious building objects as well as

concatenating two lists and a linear scan, both of which are data-independent. As in the algorithm
for generating batches, the runtime is dominated by the cost of oblivious sorting and oblivious
compaction.

4.4.3 Scaling the load balancer
Our load balancer design scales horizontally; it is both correct and secure to add load balancers
without introducing additional coordination costs. Clients randomly choose one load balancer
to contact, and then each load balancer batches requests independently. This is a significant de-
parture from prior work where a centralized proxy receives all client requests and must maintain
dynamic state relevant to all requests [29,72,269,292]. SubORAMs execute load balancer batches
in a fixed order, and within a single load balancer, we aggregate reads and writes using a “last-
write-wins” policy.

Adding load balancers eliminates a potential bottleneck, but is not entirely free. Because (1)
load balancers do not coordinate to deduplicate requests and (2) subORAMs assume that a batch
contains distinct requests, subORAMs cannot combine batches from different load balancers. Our
subORAM must scan over all stored objects to process a single batch (§4.5). As a result, if there
are L load balancers, each subORAM must perform L scans over the data every epoch.

4.5 Throughput-optimized subORAM

Many ORAMs target asymptotic complexity, often at the expense of concrete cost. In contrast,
recent work has explored how to leverage linear scans to build systems that can achieve better
performance for expected workloads than their asymptotically more efficient counterparts [77,
87]. We take a similar approach to design a high-throughput subORAM optimized for hardware
enclaves. We exploit the fact that, due to Snoopy’s design, each subORAM stores a relatively small
data partition and receives a batch of distinct requests. In this setting, using a single linear scan
over the data partition to process a batch is concretely efficient in terms of amortized per-request
cost.

We draw inspiration from Signal’s private contact discovery protocol [204]. There, the client
sends its contacts to an enclave, and the enclave must determine which contacts are Signal users
without leaking the client’s contacts. Their solution employs an oblivious hash table. The core
idea is that the enclave performs some expensive computation to construct a hash table such
that the construction access patterns don’t leak the mapping of contacts to buckets. Once this
hash table is constructed, the enclave can directly access the hash bucket for a contact without
the memory access pattern revealing which contact was looked up. Note that obliviousness only
holds if (1) the enclave performs a lookup for each contact at most once, and (2) the enclave scans
the entire bucket (to avoid revealing the location of the contact accessed inside the bucket). With
this tool, private contact discovery is straightforward: the enclave constructs an oblivious hash

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 88

table for the client’s contacts and then scans over every Signal user, looking up each Signal user
in the contact hash table.

Signal’s setting is similar to ours: instead of a set of contacts, we have a batch of distinct
requests, and instead of needing to find matches with the Signal users, we need to find the stored
objects corresponding to requests. However, Signal’s approach has some serious shortcomings
when applied to our setting. First, their hash table construction takes O(n2) time for n contacts.
While this complexity is acceptable when n is the size of a user’s contacts list (relatively small),
it is prohibitively expensive for batches with thousands of requests. Second, they do not size
their buckets to prevent overflow. Overflows can leak information about bucket contents, and
attempting to recover causes further leakage [49, 177].

Choosing an oblivious hash table. We need to identify an oblivious hash table that is efficient
and secure in our setting. A natural first attempt to solve the overflow problem is to use the
number of requests that hash to each bucket to set the bucket size dynamically. This simple
solution is insecure: the attacker can infer the probability that an object was requested based on
the size of the bucket that object hashes to.

Instead, we need to set the bucket size so that the overflow probability is cryptographically
negligible. This provides the security property wewant, and is exactly the problem that we solved
in the load balancer, where we separated requests into “bins” such that the probability that any
“bin” overflows is negligible. Using our load balancer approach also reduces construction cost
from O(n2) to O(n polylog n). However, while this solution works well at the load balancer, it
becomes expensive when applied to the subORAM. Recall that to perform an oblivious lookup, we
must scan the entire bucket that might contain a request, and so we want buckets to be as small
as possible. Unfortunately, decreasing the bucket size results in substantial dummy overhead.
This overhead was the reason for making our batches as large as possible at the load balancer
(Figure 4.3). In our subORAM, we want to keep the dummy overhead low and have a small bucket
size.

To achieve both these properties, we identify oblivious two-tier hash tables as a particularly
well-suited to our setting [49]. Chan et al. show how to size buckets such that overflow requests
are placed into a second hash table, allowing us to have both low dummy overhead and a small
bucket size: for batches of 4,096 requests, buckets in a two-tier hash table are ∼10× smaller
than their single-tier counterparts. Construction now requires two oblivious sorts, one for each
tier, but is still much faster than Signal’s approach, both asymptotically and concretely for our
expected batch sizes. We refer the reader to Chan et al. for the details of oblivious construction,
oblivious lookups, and the security analysis [49].

Processing a batch of requests. We now describe how to leverage an oblivious two-tier hash
table to obliviously process a batch of requests (Figure 4.7). First (➊), when the batch of requests
arrives, we construct the oblivious two-tier hash table as described above. To avoid leaking the
relationship between requests across batches, for every batch we sample a new key (unknown
to the attacker) for the keyed hash function assigning objects to buckets. Second (➋), we iterate
through the stored objects. For each object obj, we perform an oblivious hash table lookup. A

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 89

Dummy Obj 75

Obj 51

Obj 18

Obj 63 Obj 22

tier 1
0

1

2

3

bkt

Linear scan
over each

stored object

Compare-and-swap
each object with each

request in both buckets.

Construct oblivious
two-tier hash table of

requests.

1 2a 2b

2Obj 75
Obj 36

Obj 98

…

0

2

1

tier 1

1

2

Dummy
Obj 75

Obj 75

=?

=?

Obj 47
Dummy

tier 1 bkt

=?

=?

2

0

tier 2 bkt

tier 2
bkt

Dummy Obj 34

Obj 47

tier 2
DummyDummy

Dummy

Dummy

DummyDummy

Dummy

Figure 4.7: Processing a batch of requests at a subORAM.

lookup requires hashing obj.id in order to find the corresponding bucket in both hash tables and
then scanning the entire bucket; this scan is necessary to hide the specific object being looked
up. For every request req scanned, we perform an oblivious compare-and-set to update either the
req in the hash table or the obj in subORAM storage depending on (1) whether req.id matches
obj.id, and (2) whether req is a read or write. By conditioning the oblivious compare-and-set on
the request type and performing it twice (once on the contents of req and once on the contents
of obj), we hide whether the request is a read or a write.

Finally, we scan through every hash table bucket, marking real requests with tag bit b = 1
and dummies with b = 0. We then use oblivious compaction to filter out the dummies, leaving
us with real entries to send back to the load balancer.

4.6 Planner

Our Snoopy planner takes as input a data size D , minimum throughput XSys, maximum latency
LSys, and outputs a configuration (number of load balancers and subORAMs) that minimizes sys-
tem cost. As the search space is large, we rely on heuristics and make simplifying assumptions
to approximate the optimal configuration. We derive three equations capturing the relation-
ship between our core system parameters: the epoch length T , number of objects N , number of
subORAMs S , and number of load balancers B .

To estimate throughput for some epoch time T , we observe that, on average, we must be able
to process all requests received during the epoch in time ≤ T (otherwise, the set of outstanding
requests continues growing). We can pipeline the subORAM and load balancer processing such
that the upper bound on the requests we can process per epoch is determined by either the load
balancer or subORAM processing time, depending on which is slower. Adding load balancers de-
creases the work done at each load balancer, but each subORAMmust process a batch of requests
from every load balancer. Let LLB(R, S) be the time it takes a load balancer to process R requests
in a system with S subORAMs, and let LS (R, S ,N) be the time it takes a subORAM to process a

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 90

batch of R requests with N stored objects. We then derive:

T ≥ max[LLB(XSys · T/B , S), B · LS (f (XSys · T/B , S),N)] (4.1)

Requests will arrive at different times and have to wait until the end of the current epoch to be
serviced, and so on average, if the timing of requests is uniformly distributed, requests will wait
on average T/2 time to be serviced. The time to process a batch is upper-bounded by T at both
the subORAM and the load balancer, and so:

LSys ≤ 5T/2 (4.2)

Let CLB be the cost of a load balancer and CS be the cost of a subORAM. We then compute the
system cost CSys:

CSys(B , S) = B · CLB + S · CS (4.3)
Our planner uses these equations and experimental data to approximate the cheapest configura-
tionmeeting performance requirements. While our planner is useful for selecting a configuration,
it does not provide strong performance guarantees, as our model makes simplifying assumptions
and ignores subtleties that could affect performance (e.g. our simple model assumes that requests
are uniformly distributed). Our planner is meant to be a starting point for finding a configuration.
Our design could be extended to provide different functionality; for example, given a throughput,
data size, and cost, output a configuration minimizing latency.

4.7 Implementation

We implemented Snoopy in ∼7,000 lines of C++ using the OpenEnclave framework v0.13 [237]
and Intel SGX v2.13. We use gRPC v1.35 for communication and OpenSSL for cryptographic
operations. Our bitonic sort [20] and oblivious compaction [118] implementations set the size of
oblivious memory to the register size. We use Intel’s AVX-512 SIMD instructions for oblivious
compare-and-swaps and compare-and-sets.

Reducing enclave paging overhead. The size of the protected enclave memory (EPC) is limited
and enclave memory pages that do not fit must be paged in when accessed, which imposes high
overheads [238]. The data at a subORAMoften does not fit inside the EPC, so to reduce the latency
to page in from untrusted memory, we rely on a shared buffer between the enclave and the host.
A host loader thread fills the buffer with the next objects that the linear scan will read. This
eliminates the need to exit and re-enter the enclave to fetch data, dramatically reducing linear scan
time. The enclave encrypts objects (for confidentiality) and stores digests of the contents inside
the enclave (for integrity). This approach has been explored in prior enclave systems [248, 250].

4.8 Evaluation

To quantify how Snoopy overcomes the scalability bottleneck in oblivious storage, we ask:

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 91

Re
dis

[2
61
]

Ob
lad

i [
72
]

Ob
lix

[2
17
]

Sn
oo
py

Oblivious ✗ ✓ ✓ ✓
No trusted proxy ✓ ✗ ✓ ✓
High throughput ✓ ✓ ✗ ✓

Throughput scales with machines ✓ ✗ ✗ ✓

Table 4.1: Comparison of baselines based on security guarantees (oblivious), setup (no trusted
proxy), and performance properties (high throughput and throughput scales).

1. How does Snoopy’s throughput scale with more compute, and how does it compare to existing
systems? (§4.8.2)

2. How does adding compute resources help Snoopy reduce latency and scale to larger data sizes?
(§4.8.3)

3. How do Snoopy’s individual components perform? (§4.8.4)
4. Given performance and monetary constraints, what is the optimal way to allocate resources

in Snoopy? (§4.8.5)

Experiment Setup. We run Snoopy on Microsoft Azure, which provides support for Intel SGX
hardware enclaves in the DCsv2 series. For the load balancers and subORAMs, we use DC4s
v2 instances with 4-core Intel Xeon E-2288G processors with Intel SGX support and 16GB of
memory. For clients, we use D16d v4 instances with 16-core Intel Xeon Platinum 8272CL pro-
cessors and 64GB of memory. We choose these instances for their comparatively high network
bandwidth. We evaluate our baselines Redis [261] on D4d v4 instances, Obladi [72] on D32d v4
for the proxy and D16d v4 for the storage server, and Oblix on the same DC4s v2 instances as
our subORAMs. For benchmarking, we use a uniform request distribution. This choice is only
relevant for our Redis baseline; the oblivious security guarantees of Snoopy and other oblivious
storage systems ensure that the request distribution does not impact their performance. Unless
otherwise specified, we set the object size to 160 bytes (same as Oblix [217]).

4.8.1 Baselines
We compare Snoopy to three state-of-the-art baselines: Obladi [72] is a batched, high-throughput
oblivious storage system, Oblix [217] efficiently leverages enclaves for oblivious storage, and
Redis [261] is a widely used plaintext key-value store. Each baseline provides a different set of
security guarantees and performance properties (Table 4.1).

Obladi. Obladi [72] uses batching and parallelizes RingORAM [263] to achieve high throughput.
While Obladi also uses batching to improve throughput, its security model is different, as it uses
a single trusted proxy rather than a hardware enclave. The trusted proxy model has two primary

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 92

Snoopy: [1000ms 500ms 300ms] Obladi (2 machines) Oblix (1 machine)

5 10 15

Machines

50K

100K

Th
ro
ug

hp
ut

(re
qs
/s
ec
)

(a) 2M objects, 160B block size.

5 10 15

Machines

2K

4K

6K

Th
ro
ug

hp
ut

(re
qs
/s
ec
)

(b) Key Transparency with 5M users (10M
objects, 32B block size).

Figure 4.8: Snoopy achieves higher throughput with more machines. Boxed points denote when
a load balancer is added instead of a subORAM. Oblix and Obladi cannot securely scale past 1
and 2 machines, respectively.

drawbacks: (1) the trusted proxy cannot be deployed in the untrusted cloud (desirable for con-
venience and scalability), and (2) the proxy is a central point of attack in the system (an attacker
that compromises the proxy learns the queries of every user in the system). Practically, using a
trusted proxy rather than a hardware enclave means the proxy does not have to use oblivious al-
gorithms. Designing an oblivious algorithm for Obladi’s proxy is not straightforward and would
likely introduce significant overhead. Further, Obladi’s trusted proxy is a compute bottleneck that
cannot be horizontally scaled securely without new techniques, and so we only measure Obladi
with two machines (proxy and storage server). We configure Obladi with a batch size of 500.

Oblix. Oblix [217] uses hardware enclaves and provides security guarantees comparable to ours.
However, Oblix optimizes for latency rather than throughput; requests are sequential, and, unlike
Obladi, Oblix does not employ batching or parallelism. Like Obladi, Oblix cannot securely scale
across machines. We measure performance using Oblix’s DORAM implementation and simulate
the overhead of recursively storing the position map (as in §VI.A of [217]).

Redis. To measure the overhead of security (obliviousness), we compare Snoopy to an insecure
baseline Redis [261], a popular unencrypted key-value store. In Redis, the server can directly
see access patterns and data contents. We benchmark a Redis cluster using its own memtier
benchmark tool [209], enabling client pipelining to trade latency for throughput. We expect it to
achieve a much higher throughput than Snoopy.

4.8.2 Throughput scaling
Figure 4.8a shows that adding more machines to Snoopy improves throughput. We measure
throughput where the average latency is less than 300ms, 500ms, and 1s. We start with 4machines

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 93

5 10 15

Machines

10K

20K

Th
ro
ug

hp
ut

(re
qs
/s
ec
)

Snoopy-Oblix: [1000ms 500ms 300ms]
Baseline Oblix (1 machine)

Figure 4.9: Throughput of Snoopy using Oblix [217] as a subORAM (2M objects, 160B block size).
We measure throughput with different maximum average latencies.

(3 subORAMs and 1 load balancer) and scale to 18 machines (13 subORAMs and 5 load balancers
for 1s latency; 15 subORAMs and 3 load balancers for 500ms/300ms latency). For 2M objects,
Snoopy uses 18 machines to process 68K reqs/sec with 300ms latency, 92K reqs/sec with 500ms
latency, and 130K reqs/sec with 1s latency. Each additional machine improves throughput by
8.6K reqs/sec on average for 1s latency. Relaxing the latency requirement improves throughput
because we can group requests into larger batches, reducing the overhead of dummy requests.

We generate Figure 4.8a by measuring throughput with different system configurations and
plotting the highest throughput configuration for each number of machines. We start with 4
machines rather than 2 because we need to partition the 2M objects to meet our 300ms latency
requirement due to the subORAM linear scan (recall eq. (4.2) would require a subORAM to process
a batch in ≤ 120ms). Both the load balancer and subORAM are memory-bound, as the EPC size
is limited and enclave paging costs are high (§4.7).

Snoopy achieves higher throughput than Oblix (1,153 reqs/sec) and Obladi (6,716 reqs/sec) as
we increase the number of machines. For 300ms, Snoopy outperforms Oblix with ≥5 machines
and Obladi with≥6 machines, and for 500ms and 1s, Snoopy outperforms Oblix and Obladi for all
configurations. Oblix and Obladi beat Snoopy with a small number of machines for low latency
requirements because our subORAM performs a linear scan over subORAM data whereas Oblix
and Obladi only incur polylogarithmic access costs, allowing them to handle larger data sizes on
a single machine. Snoopy can scale to larger data sizes by adding more machines (§4.8.3).

Comparison to Redis. To show the overhead of obliviousness, we also measure the throughput
of Redis for 2M 160-byte objects with an increasing cluster size. For 15 machines, Redis achieves
a throughput of 4.2M reqs/sec, 39.1× higher than Snoopy when configured with 1s latency. Be-
cause we pipeline Redis aggressively in order to maximize throughput, the mean Redis latency is
<800ms.

Application: key transparency. Figure 4.8b shows throughput for parameter settings that

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 94

support key transparency (KT) [120, 208] for 5 million users. Due to the security guarantees of
oblivious storage, an application’s performance does not depend on its workload (i.e. request
distribution), but only on the parameter settings. In KT, to look up Bob’s key, Alice must retrieve
(1) Bob’s key, (2) the signed root of the transparency log, and (3) a proof that Bob’s key is included
in the transparency log (relative to the signed root) [208]. This inclusion proof is simply a Merkle
proof. Thus, for n users, Alice must make log2 n + 1 ORAM accesses (Alice can request the
signed root directly). Figure 4.8b shows that by adding machines, Snoopy scales to support high
throughput for KT. At 18 machines (15 subORAMs and 3 load balancers), Snoopy can process
1.1K reqs/sec with 300ms latency, 3.2K reqs/sec with 500ms latency, and 6.1K reqs/sec with 1s
latency. Note that the throughput in Figure 4.8b is much lower than Figure 4.8a because each KT
operation requires 24 ORAM accesses.

Oblix as a subORAM. In Figure 4.9, we run Oblix [217] as a subORAM instead of Snoopy’s
throughput-optimized subORAM (§4.5). Snoopy’s load balancer design enables us to securely
scale Oblix beyond a single machine, achieving 15.6× higher throughput with Snoopy-Oblix for
17 machines with a max latency of 500ms (18K reqs/sec) than vanilla, single-machine Oblix (1.1K
reqs/sec). The spike in throughput between 8 and 9machines is due to sharding the data such that
two instead of three layers of recursive lookups are required for every ORAM access. Snoopy-
Oblix’s performance also illustrates the value of our subORAM design; using our throughput-
optimized subORAM (Figure 4.8a) improves throughput by 4.85× with 17 machines and 500ms
latency.

4.8.3 Scaling for latency and data size
While Snoopy is designed specifically for throughput scaling (§4.8.2), adding machines to Snoopy
can have other benefits if the load remains constant. We show how scaling can be used to both
reduce latency and tolerate larger data sizes under constant load in Figure 4.10. Figure 4.10a
illustrates how adding more subORAMs enables us to increase the number of objects Snoopy
can store while keeping average response time under 160ms (the round-trip time from the US
to Europe). The number of subORAMs required scales linearly with the data size because of the
linear scan every epoch. Adding a subORAM allows us to store on average 191K more objects,
and with 15 subORAMs, we can store 2.8M objects.

Figure 4.10b shows how adding subORAMs reduces latency when data size and load are fixed:
for 2M objects, the mean latency is 847ms with 1 subORAM and 112ms with 15 subORAMs.
Adding subORAMs parallelizes the linear scan across more machines, but has diminishing re-
turns on latency because the dummy request overhead also increases when we add subORAMs
(Figure 4.3). As expected, Oblix achieves a substantially lower latency (1.1ms) because it uses a
tree-based ORAM and processes requests sequentially. Obladi achieves a latency of 79ms with
batch size 500.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 95

Snoopy Obladi (2 machines) Oblix (1 machine)

5 10 15

SubORAMs

0

1M

2M

3M

N
um

be
ro

fo
bj
ec
ts

(a) SubORAMs vs. data size

5 10 15

SubORAMs

0

250

500

750

Av
er
ag
e
la
te
nc
y
(m

s)

(b) SubORAMs vs. latency

Figure 4.10: (a) Adding more subORAMs allows for increasing the data size while keeping the
average response time under 160ms (RTT from US to Europe). (b) Adding more subORAMs re-
duces latency. Snoopy is running 1 load balancer and storing 2M objects.

Load balancer
(make batch)

SubORAM
(process batch)

Load balancer
(match responses)

26 28 210

Requests

0

20

40

Pr
oc
es
st
im

e
(m

s)

(a) 210 objects

26 28 210

Requests

0

25

50

Pr
oc
es
st
im

e
(m

s)

(b) 215 objects

26 28 210

Requests

0

200

Pr
oc
es
st
im

e
(m

s)

(c) 220 objects

Figure 4.11: Breakdown of time to process one batch for different data sizes (one load balancer
and one subORAM).

4.8.4 Microbenchmarks

Breakdown of batch processing time. Figure 4.11 illustrates how time is spent processing
a batch of requests as batch size increases. As batch size increases, the load balancer time also
increases, as the load balancer must obliviously generate batches. The subORAM time is largely
dependent on the data size, as the processing time is dominated by the linear scan over the data.
The subORAM batch processing time jumps between 215 and 220 objects due to the cost of enclave
paging.

Sorting parallelism. In Figure 4.12a, we show how parallelizing bitonic sort across threads
reduces latency, especially for larger data sizes. For smaller data sizes, the coordination overhead

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 96

1 thread 2 threads 3 threads Adaptive

210 212 214 216

Objects

1

5
10

50
100

So
rt
Ti
m
e
(s)

(a) Bitonic sort

212 215 218 221

Objects

125

250

500

1,000

Pr
oc
es
sB

at
ch

Ti
m
e
(m

s)

(b) SubORAM process batch

Figure 4.12: (a) Parallelizing bitonic sort acrossmultiple threads. (b) Parallelizing batch processing
at the subORAM across multiple enclave threads (batch size 4K requests).

actually makes it cheaper to use a single thread, and so we adaptively switch between a single-
threaded and multi-threaded sort depending on data size. Parallelizing bitonic sort improves load
balancer and subORAM performance.

SubORAM Parallelism. Similarly, in Figure 4.12b, we show how additional cores can be used
to reduce subORAM batch processing time. We rely on a host thread to buffer in the encrypted
data in the linear scan over the all objects in the subORAM (§4.7), and we can use the remaining
cores to parallelize both the hash table construction and linear scan.

4.8.5 Planner
In Figure 4.13, we use our planner to find the optimal resource allocation for different perfor-
mance requirements. Figure 4.13a shows the optimal number of subORAMs and load balancers
to handle an increasing request load for different data sizes with 1s average latency. To sup-
port higher throughput levels, deployments with larger data sizes benefit from a higher ratio of
subORAMs to load balancers, as partitioning across subORAMs parallelizes the linear scan over
stored objects. In Figure 4.13b, we show how increasing throughput requirements affects sys-
tem cost for different data sizes. Increasing data increases system cost: for ∼$4K/month, we can
support 51.6K reqs/sec for 1M objects and 122.9K reqs/sec for 10K objects. To compute these con-
figurations, the planner takes as input microbenchmarks for different batch sizes and data sizes.
Because we cannot benchmark every possible batch and data size, we use the microbenchmarks
for the closest parameter settings. Our planner’s estimates could be sharpened further by running
microbenchmarks at a finer granularity.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 97

10K objects 1M objects

1 2 3 4 5

SubORAMs

1

2

3

Lo
ad

ba
la
nc
er
s

(a) Planner machine allocation

0 40K 80K 120K
Throughput (reqs/sec)

$1K

$2K

$3K

$4K

Co
st
pe
rm

on
th

($
)

(b) Planner cost

Figure 4.13: Optimal system configuration as throughput requirements increase for different data
sizes (max latency 1s). Larger dot sizes represent higher throughput requirements. We show a
subset of configurations from our planner in order to illustrate the overall trend of how adding
machines best improves throughput.

4.9 Discussion

Fault tolerance and rollback protection.
Data loss in Snoopy can arise through node crashes and malicious rollback attacks. Many

modern enclaves are susceptible to rollback attacks where, after shutdown, the attacker replaces
the latest sealed data with an older version without the enclave detecting this change [241]. Prior
work has explored how to defend against such attacks [37, 205]. Fault tolerance and rollback
prevention are not the focus of this work, and so we only briefly describe how Snoopy could be
extended to defend against data loss. All techniques are standard. Load balancers are stateless;
we thus exclusively consider subORAMs. We propose to use a quorum replication scheme to
replicate data to f + r + 1 nodes where f is the maximum number of nodes that can fail by
crashing and r the maximum number of nodes that can be maliciously rolled back. Systems like
ROTE [205] or SGX’s monotonic counter provide a trusted counter abstraction that can be used
to detect which of the received replies corresponds to the most recent epoch. The performance
overhead of rollback protection would depend on the trusted counter mechanism employed, but
Snoopy only invokes the trusted counter once per epoch.

Next-generation SGX enclaves. While current SGX enclaves can only support amaximumEPC
size of 256MB, upcoming third-generation SGX enclaves can support EPC sizes up to 1TB [149].
This new enclave would not affect Snoopy’s core design, but could improve performance by
reducing the time for the per-epoch linear scan in the subORAM. With improved subORAM
performance, Snoopy might need fewer subORAMs for the same amount of data, affecting the
configurations produced by the planner (§4.8.5).

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 98

Private Information Retrieval (PIR). Snoopy’s techniques can also be applied to the problem
of private information retrieval (PIR) [61, 62]. A PIR protocol allows a client to retrieve an object
from a storage server without the server learning the object retrieved. One fundamental limita-
tion of PIR is that, if the object store is stored in its original form, the server must scan the entire
object store for each request.

Snoopy’s techniques can help overcome this limitation. We can replace the subORAMs with
PIR servers, each of which stores a shard of the data. Our load balancer design then makes it pos-
sible to obliviously route requests to the PIR server holding the correct shard of the data. “Batch”
PIR schemes that allow a client to fetch many objects at roughly the server-side cost of fetching a
single object are well-suited tor our setting, as the load balancer is already aggregating batches of
requests [136,150]. Existing systems develop relevant batching [10,129] and preprocessing [169]
techniques.

4.10 Related work

We summarize relevant existingwork, focusing on (1) oblivious algorithms designed for hardware
enclaves, (2) ORAMparallelism, (3) distributing anORAMacrossmachines, and (4) balls-into-bins
bounds for maximum load.

ORAMswith secure hardware. Existing research on oblivious computation using hardware en-
clave primarily targets latency. Oblix [217], ZeroTrace [270], Obliviate [3], Pyramid ORAM [70],
and POSUP [140] do not support concurrency. Snoopy, in contrast, optimizes for throughput and
leverages batching for security and scalability. ObliDB [93] supports SQL queries by integrating
PathORAMwith hardware enclaves, but uses an oblivious memory pool unavailable in Intel SGX.
GhostRider [195] and Tiny ORAM [102] use FPGA prototypes designed specifically for ORAM.
While no general-purpose, enclave-based ORAM supports request parallelism, MOSE [139] and
Shroud [199] leverage data parallelism to improve the latency of a single request on large datasets.
MOSE runs CircuitORAM [50] inside a hardware enclave and distributes the work for a single
request across multiple cores. Shroud instead parallelizes Binary Tree ORAM across many secure
co-processors by accessing different layers of the ORAM tree in parallel. Shroud uses data par-
allelism to optimize for latency and data size; throughput scaling is still limited because requests
are processed sequentially.

Supporting ORAM parallelism. A rich line of work explores executing multiple client re-
quests in parallel at a single ORAM server. Each requires some centralized component(s) that
eventually bottlenecks scalability. PrivateFS [322] and ConcurORAM [47] coordinate concur-
rent requests to shared data using an encrypted query log on top of a hierarchical ORAM or a
tree-based ORAM, respectively. This query log quickly becomes a serialization bottleneck. TaoS-
tore [269] and Obladi [72] similarly rely on a trusted proxy to coordinate accesses to PathORAM
and RingORAM, respectively. Taostore processes requests immediately, maintaining a local sub-
tree to securely handle requests with overlapping paths. Obladi instead processes requests in

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 99

batches, amortizing the cost of reading/writing blocks over multiple requests. Batching also re-
moves any potential timing side-channels; while TaoStore has to time client responses carefully,
Obladi can respond to all client requests at once, just as in Snoopy.

PRO-ORAM [301], a read-only ORAM running inside an enclave, parallelizes the shuffling
of batches of

√
N requests across cores, offering competitive performance for read workloads.

Snoopy, in contrast, supports both reads and writes.
A separate, more theoretical line of work considers the problem of Oblivious Parallel RAMs

(OPRAMs), designed to capture parallelism inmodernCPUs. Initiated by Boyle et al. [36], OPRAMs
have been explored in subsequent work [48–50, 55] and expanded to other models of paral-
lelism [258].

Scaling out ORAMs. Several ORAMs support distributing compute and/or storage across mul-
tiple servers. Oblivistore [292] distributes partitions of SSS-ORAM [293] across machines and
leverages a load balancer to coordinate accesses to these partitions. This load balancer, however,
does not scale and becomes a central point of serialization. CURIOUS [29] is similar, but uses a
simpler design that supports different subORAMs (e.g. PathORAM). CURIOUS distributes stor-
age but not compute; a single proxy maintains the mapping of blocks between subORAMs and
runs the subORAM clients, which bottlenecks scalability. In contrast, Snoopy distributes both
compute and storage and can scale in the number of subORAMs and load-balancers. Moreover,
Snoopy remains secure when an attacker can see client response timing, unlike Oblivistore or
CURIOUS [269].

Pancake [123] leverages a trusted proxy to transform a set of plaintext accesses to a uni-
formly distributed set of encrypted accesses that can be forwarded directly to an encrypted, non-
oblivious storage server. While this approach achieves high throughput, the proxy remains a
bottleneck as it must maintain dynamic state about the request distribution.

Balls-into-bins analysis. Prior work derives bounds for the maximum number of balls in a
bin that hold with varying definitions of high probability, but are poorly suited to our setting be-
cause they are either inefficient to evaluate or do not have a cryptographically negligible overflow
probability under realistic system parameters [26, 218, 255, 256]. Berenbrink et al. [26] assume a
sufficiently large number of bins to derive an overflow probability n−c for n bins and some con-
stant c (Onodera and Shibuya [236] apply this bound in the ORAM setting). Raab and Steger [256]
use the first and second moment method to derive a bound where overflow probability depends
on bucket load. Ramakrishna’s [259] bound can be numerically evaluated but is limited by the
accuracy of floating-point arithmetic, and we were unable to compute bounds with a negligible
overflow probability for λ ≥ 44. Reviriego et al. [264] provide an alternate formulation that can
be evaluated by a symbolic computation tool, but we were unable to efficiently evaluate it with
SymPy.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 100

4.11 Parameter analysis

Theorem 4.3. For any set of R requests that are distinct and randomly distributed, number of
subORAMs S , and security parameter λ, let µ = R/S , γ = − log(1/(S · 2λ)), and W0(·) be branch
0 of the Lambert W function [67]. Then for the following function f (R, S) that outputs a batch size,
the probability that a request is dropped is negligible in λ:

f (R, S) = min(R, µ · exp
[
W0

(
e−1 (γ/µ− 1)

)
+ 1

]
) .

Proof. Let X1,X2, . . . ,XR be independent 0/1 random variables that represent request i hashing
to a specific subORAM where Pr[Xi = 1] = 1/S . Then, X =

∑R
i=1 Xi is a random variable

representing the total amount of requests hashing to a specific subORAM.
We can apply the Chernoff bound here. Let µ = ∃[X], which is

∑R
i=1 1/S = R/S . Then,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(δ + 1)δ+1

)µ

The variable X represents the total number of requests mapping to subORAM S , but we
want to upper bound the number of requests received at any subORAM. We can define a bad
event overflow that occurs when the number of requests received at any subORAM exceeds our
upper bound. We can compute the probability of this bad event by taking a union bound over all
S subORAMs:

Pr[overflow] ≤
S∑

j=1

Pr[X ≥ (1 + δ)µ] = S · Pr[X ≥ (1 + δ)µ]

In order to ensure that we do not drop a request except with negligible probability, we want
Pr[overflow] ≤ 1/2λ, which means we need to find some δ such that:

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(δ + 1)δ+1

)µ

≤ 1

S · 2λ

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 101

From this point, we can solve for δ to find the upper bound:

− log

((
eδ

(δ + 1)δ+1

)µ)
≥ − log

(
1

S · 2λ
)

= γ

−µ(log(eδ)− (δ + 1) log(δ + 1)) ≥ γ

−δ + (δ + 1) log(δ + 1) ≥ γ

µ

(−δ − 1) + (δ + 1) log(δ + 1) ≥ γ

µ
− 1

(δ + 1)(log(δ + 1)− 1) ≥ γ

µ
− 1

e log(δ+1)(log(δ + 1)− 1) ≥ γ

µ
− 1

e log(δ+1)−1(log(δ + 1)− 1) ≥ e−1

(
γ

µ
− 1

)
log(δ + 1)− 1 ≥W0

(
e−1

(
γ

µ
− 1

))
δ ≥ eW0(e−1(γ

µ
−1))+1 − 1

where W0(·) is branch 0 of the Lambert W function [67].
For small R, the above bound is greater than R. For f (R, S) = R, the overflow probability is

zero, and so we can safely upper-bound f by R.

4.12 Security analysis

We adopt the standard security definition for ORAM [293, 294]. Intuitively, this security defi-
nition requires that the server learns nothing about the access pattern. In the enclave setting,
this means that the enclave’s memory access pattern shouldn’t reveal any information about the
requests or data. Because Snoopy uses multiple enclaves, the communication pattern between
enclaves also shouldn’t reveal any information. We refer to the information that the adversary
learns (the memory access patterns and communication patterns) as the “trace”. At a high level,
we must prove security by showing that the adversary cannot distinguish between a real exper-
iment, where enclaves are running the Snoopy protocol on real requests and data, and an ideal
experiment, where enclaves are running a simulator program that only takes as input public
information. We define these experiments in detail below.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 102

4.12.1 Enclave definition
We model a directed acyclic graph (DAG) of enclaves as the ideal functionality FEnc with the
following interface:
• EP ← Load(P): The load function takes a programP and produces an enclave DAG EP loaded
with P (the program specifies the individual programs running on each enclave and the paths
of communication). This is implemented using a remote attestation procedure in Intel SGX.

• (out, γ)← Execute(EP, in): The execute function takes an enclave DAG loaded with P, feeds
in to the enclave DAG and produces the resulting output out as well as a trace of memory
accesses and communication patterns between enclaves γ. Execute supports programs that
communicate across enclaves and access individual enclave memories and simply outputs
the trace of executing such programs.

We treat the enclave DAG as a black box that realizes the above ideal functionalities. We assume
that the server cannot roll back the enclaves during execution and that Execute provides privacy
and integrity for the enclave’s internal memory and communication between enclaves.

Our ideal functionality interface is loosely based on the interface in ZeroTrace [270]. How-
ever, ZeroTrace only considers a single enclave whereas we consider a DAG of enclaves (similar
to Opaque [332]). Also, ZeroTrace outputs proofs of correctness, whereas we use an ideal func-
tionality where the enclave always loads and executes correctly.

4.12.2 Our model
We only model the case where there is a single client controlled by the adversary. We informally
discuss how to extend our security guarantees to the multi-user setting in §4.12.7.

Our ideal enclave DAG functionality hides the details of how enclaves securely communicate;
using authenticated encryption and nonces to avoid replaying messages are standard techniques
and discussed in other works [332]. We assume that the system configuration (the number of load
balancers and subORAMs) is fixed. Also, our ideal functionality protects the contents of memory,
and sowe do notmodel the optimization (§4.7) wherewe place encrypted data in externalmemory
in order to reduce enclave paging overhead. Finally, we do not allow the attacker to perform
rollbacks attacks and we do not model fault tolerance (we do not model the system using the
fault tolerance and rollback protection techniques discussed in §4.9).

4.12.3 Oblivious storage definitions
Anoblivious storage scheme consists of two protocols (OStoreInitialize,OStoreBatchAccess),
where
OStoreInitialize initializes the memory, and OStoreBatchAccess performs a batch of ac-
cesses. We describe the syntax for both protocols below, which we will load and execute on
an enclave DAG:
• OStoreInitialize(1λ, O), takes as input a security parameter λ and an object store O and
runs initialization.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 103

Adv FEnc(Π)

Input

Output, γ

Figure 4.14: Real experiment for protocol Π running inside the enclave ideal functionality FEnc

where γ is the trace.

Adv Fideal FEnc(Sim)

Input

Output, γ

Public input

γ

Figure 4.15: Ideal experimentwhere adversary interactswith the ideal functionality (computes the
output for the given input) and the ideal functionality sends the public information to a simulator
program running inside the enclave ideal functionality (FEnc) to generate the trace γ.

• V ← OStoreBatchAccess(R), a protocol where the client’s input is a batch R of requests
of the form (op, i , vi) where op is the type of operation (read or write), i is an index, vi is
the value to be written (for op = read, vi = ⊥). The output consists of the updated secret
state σ and the requested values V (i.e., v1, . . . , vµ) assigned to the i1, . . . , iµ values of O if
op = read (for op = write, the returned value is the value before the write).

Security. The security of an oblivious storage scheme is defined using two experiments (real,
ideal). In the real experiment (Figure 4.14), the adversary interacts with an enclave DAG loaded
with the real protocol, and in the ideal experiment (Figure 4.15), the adversary interacts with an
ideal functionality. The ideal functionality has the same interface as the real scheme but, rather
than running the real protocol on the enclave DAG, it instead invokes a simulator (executing on
the enclave DAG). Crucially, the simulator does not get access to the set of requests and only
knows the public information, which includes the number of requests, structure of enclave DAG,
and any other protocol-specific public parameters (e.g. number of load balancers and subORAMs).
The adversary can executeOStoreInitialize and a polynomial number ofOStoreBatchAccess
for any set of requests, during which it observes the memory access patterns and communication
patterns in the enclave DAG (represented by the trace produced by the Execute routine). The
goal of the adversary is to distinguish between the real and ideal experiments.

An oblivious storage scheme is secure if no efficient polynomial-time adversary can distin-
guish between these two experiments with more than negligible probability. Our security defini-
tion has a different setup than that of traditional ORAM [293,294] (we use a network of enclaves
rather than the traditional client-server model), but our definition embodies the same security
guarantees (namely, that the trace generated from an access is simulatable from public informa-
tion).

We prove the security of Snoopy modularly: we first prove that our subORAM construction

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 104

bit ← RealOStoreΠ,Adv (λ):
1: (s , O)← Adv(1λ)
2: EP ← FEnc.Load(Π)
3: γ0 ← FEnc.Execute(EP, (OStoreInitialize, 1λ,O)).
4: for k = 1 to q do ▷ q: polynomial #queries
5: (Rk , s)← Adv1(γ0, . . . , γk−1, V1, . . . ,Vk−1, s).
6: (Vk , γk)←FEnc.Execute(EP, (OStoreBatchAccess, Rk)).
7: end for
8: return bit ← Adv(γ0, . . . , γk , V1, . . . ,Vk , s).

bit ← IdealOStoreSim,Adv(λ):
1: (s , O)← Adv(1λ).
2: EP ← FEnc.Load(Sim)
3: γ0 ← IdealOStoreInitialize(EP, 1

λ, O).
4: for k = 1 to q do ▷ q: polynomial #queries
5: (Rk , s)← Adv1(γ0, . . . , γk−1, V1, . . . ,Vk−1, s).
6: (Vk , γk)← IdealOStoreBatchAccess(EP, Rk).
7: end for
8: return bit ← Adv(γ0, . . . , γk , V1, . . . ,Vk , s).

1 Security Definition 4.2 (weaker oblivious storage definition): Adv is not allowed to submit
duplicate requests in batch Rk .

Figure 4.16: Real and ideal experiments for an oblivious storage scheme.

is secure, and then we prove that our Snoopy construction is secure when built on top of a se-
cure subORAM. To do this, we need a slightly different notion of subORAMs. In particular, our
SubORAM construction cannot be proven secure with Definition 4.1, since its security relies on
the assumption that a batch of oblivious accesses contains distinct requests. In order to prove the
security of our SubORAM we introduce a second, weaker security definition below.
Definition 4.2. (Weaker oblivious storage def.) The oblivious storage scheme Π is secure
if for any non-uniform probabilistic polynomial-time (PPT) adversary Adv who does not submit
duplicated requests inside a batch there exists a PPT Sim such that∣∣Pr [RealOStoreΠ,Adv (λ) = 1

]
− Pr

[
IdealOStoreSim,Adv(λ) = 1

]∣∣≤ negl(λ)

where λ is the security parameter, the above experiments are defined in Figure 4.16 (see note 1),
and the randomness is taken over the random bits used by the algorithms of Π, Sim, and Adv.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 105

γ ← IdealOStoreInitialize(EP, 1
λ, O):

1: Initialize a key-value store S with contents fromO.
2: Run γ ← FEnc.Execute(EP, (SimOStoreInitialize, 1λ, |O|))
3: return γ.

(V, γ)← IdealOStoreBatchAccess(EP, R):
1: Run the batch of requests R on the key-value store S to produced requested values V.
2: Run γ ← FEnc.Execute(EP, (SimOStoreBatchAccess, |R|))
3: return (V, γ).

Figure 4.17: Ideal functionalities.

4.12.4 Oblivious building blocks
We use the following oblivious building blocks:
• OCmpSwap(b, x , y): If b = 1, swap x and y .
• OCmpSet(b, x , y): If b = 1, set x ← y .
• L′ ← OSort(L, f): Obliviously sorts the list L by some ordering function f , outputs sorted
list L′.

• L′ ← OCompact(L, B): Obliviously compacts the list L, outputting element Li only if Bi =
1. The order of the original list L is preserved.
Our algorithms require only a simple “oblivious swap” primitive to build oblivious compare-

and-set, oblivious sort, and oblivious compact. In our implementation, we instantiate oblivious
sort using bitonic sort [20] and oblivious compaction using Goodrich’s algorithm [118]. We set
the client’s memory to be constant size in both. OCmpSwap and OCmpSet are standard oblivi-
ous building blocks, as described in Oblix [217]. Thus, we can assume the existence of simula-
tors SimOCmpSwap, SimOCmpSet, SimOSort, and SimOCompact. While simulator algorithms
usually run in their own “address space”, because we need to produce memory traces that are
indistinguishable from those produced by the original algorithm, we need to pass in the address
of some objects, even if the algorithms do not need to know the values of these objects. We define
the following simulator algorithms:
• SimOCmpSwap(addr⟨x ⟩, addr⟨y⟩)): Simulates swapping x and y given a hidden input bit.
• SimOCmpSet(addr⟨x ⟩), addr⟨y⟩)): Simulates setting x to y given a hidden input bit.
• SimOSort(addr⟨L⟩, n, f): Simulates sorting list L of length n by ordering function f .
• SimOCompact(addr⟨L⟩, n, addr⟨B⟩, m): Simulates compacting list L of length n using bits
in list B where the number of bits in B set to 1 is m .
We additionally use OHashTable [49], which is a two-tiered oblivious hash table that consists

of the polynomial-time algorithms (Construct, GetBuckets):

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 106

• T ← OHashTable.Construct(D): Given some data D , output a two-tiered oblivious hash
table T .

• (B1, B2) ← OHashTable.GetBuckets(T , idx): Given an oblivious hash table T and some
index idx, output pointers to the two buckets corresponding to idx. Note that these buckets
may be both read from and written to.

As these algorithms are oblivious [49], we can assume the existence of a simulator SimOHashTable
with algorithms (Construct, GetBuckets):
• T ← SimOHashTable.Construct(addr⟨D⟩, n): Given the address of dataD of size n , simulate
constructing an oblivious hash table.

• (B1, B2) ← SimOHashTable.GetBuckets(T , addr⟨idx⟩): Given a hash table T , simulate
outputting pointers to two buckets corresponding to the private input idx.
Finally, we assume we have access to a keyed cryptographic hash function H .

4.12.5 SubORAM
We define an oblivious storage scheme SubORAM in Figure 4.18 that provides the interface de-
fined in §4.12.3 (we leave some empty lines in the protocol figure and corresponding simulator
figure so that corresponding operations have the same line number).
Theorem 4.1. Given a two-tiered oblivious hash table [49], an oblivious compare-and-set operator,
and an oblivious compaction algorithm, the subORAM scheme described in §4.5 and formally defined
in Figure 4.18 is secure according to Definition 4.2.

Proof. We construct our simulator in Figure 4.19 (we leave some empty lines so that correspond-
ing operations in Figure 4.18 have the same line number). We need to argue that the traces the
adversary receives as a result of executing the Initialize andBatchAccess routines do not allow the
adversary to distinguish between the real and ideal experiments. Communication patterns aren’t
a concern, as SubORAM only uses a DAG with a single enclave. Thus we only need to show that
memory access patterns are indistinguishable. To simplify the proof and our description of the
simulator, we assume that functions with different signatures are indistinguishable; the memory
accesses of simulator functions that take fewer parameters (because they only take public input)
can easily be made indistinguishable from those of the actual functions by passing in dummy
arguments. We show how memory accesses are indistinguishable, first for Initialize and then for
BatchAccess (line numbers correspond to Figure 4.18 and Figure 4.19).

Initialization.
• (Line 1) The subORAM algorithm takes as input an array of size n , whereas the simulator
algorithm generates a random array of the same size with the same size objects. The resulting
arrays are indistinguishable.

• (Line 2) These steps are the same and only involve storing the arrays that we already estab-
lished are indistinguishable.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 107

SubORAM.Initialize(1λ,O)

1: Parse O as (o1, . . . , on) where oi = (idx, content).
2: StoreO.

V← SubORAM.BatchAccess(R)

1: Parse R as (r1, . . . , rN), where ri = (type, idx, content).
2: if R contains duplicates then
3: return ⊥.
4: end if
5: Set T ← OHashTable.Construct(R).
6: for i = 1, . . . , n do
7: Set Bkt1,Bkt2 ← OHashTable.GetBuckets(T , O[i].idx).
8: for j = 1, 2 do
9: for l = 1, . . . , |Bktj | do
10: OCmpSet((Bktj [l].idx

?
= O[i].idx), O[i].content, Bktj [l].content).

11: OCmpSet((Bktj [l].idx
?
= O[i].idx) ∧ (Bktj [l].type

?
=

write), Bktj [l].content, O[i].content).
12: end for
13: end for
14: end for
15: Scan through T , marking each entry i with bit bi = 0 if it is a dummy, setting bi = 1

otherwise.
16: Set B← (b1, . . . , b|T |).
17: Run V← OCompact(T , B).
18: return V.

Figure 4.18: Our subORAM construction.

Batch access.
• (Lines 1-4) The original algorithm doesn’t perform any processing while the simulator algo-
rithm generates an array of the same size and same object size as the array passed as input
to the original algorithm. Even though the objects are randomly chosen in the simulator
algorithm, because the sizes of the same, both have the same memory usage.

• (Line 5) From the security of the two-tier oblivious hash table, the hash table construction
algorithm and the corresponding simulator algorithm produce indistinguishable memory ac-
cess patterns.

• (Lines 6, 8, 9) Both use the same looping structure that depends only on public data (i.e. the
number of objects and the bucket size).

• (Line 7) By the security of the oblivious hash table, the get buckets algorithm and the corre-

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 108

SimSubORAM.Initialize(1λ, |O|)
1: Let (n, κ) = |O| (κ is the object size). Create an arrayO = o1, . . . , on of random entries

of size κ, where oi = (idx, content).
2: StoreO.

SimSubORAM.BatchAccess(N)

1: Let N be a public parameter, which denotes the number of requests that the input batch
contains.

2: Choose N random distinct identifiers idx1, . . . , idxN where for all i ∈ [N], idxi is an idx
value in O.

3: Create R of the form (r1, . . . , rN), where ri = (read, idxi , ⊥).
4:
5: Run T ← SimOHashTable.Construct(addr⟨R⟩,N).
6: for i = 1, . . . , n do
7: Set Bkt1,Bkt2 ← SimOHashTable.GetBuckets(T , addr⟨O[i].idx⟩).
8: for j = 1, 2 do
9: for l = 1, . . . , |Bktj | do
10: SimOCmpSet(addr⟨O[i].content⟩, addr⟨Bktj [l].content⟩).
11: SimOCmpSet(addr⟨Bktj [l].content⟩, addr⟨O[i].content⟩).
12: end for
13: end for
14: end for
15: Scan through T , marking each entry with bit bi = 0.
16: Set B← (b1, . . . , b|T |).
17: Run V← SimOCompact(addr⟨T ⟩, |T |, addr⟨B⟩, N).
18:

Figure 4.19: Simulator algorithms SimSubORAM = (Initialize, BatchAccess).

sponding simulator algorithm produce indistinguishable memory access patterns.
• (Lines 10, 11) By the security of the oblivious compare-and-swap, the original algorithm and
the simulator algorithm produce indistinguishable memory access patterns.

• (Line 15) Both algorithms perform linear scans over an array with a public size and add an
extra bit to each array entry.

• (Line 16) These lines are identical and make a new array where the size is public (same size
and object size as an existing array).

• (Line 17) By the security of oblivious compaction, the original compaction algorithm and the
simulator algorithm produce indistinguishable memory access patterns.
The only task that remains is to show that the responses returned in the real and ideal ex-

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 109

periments are indistinguishable. The correctness of the results follows from Theorem 4.5, where
we prove that our subORAM responds to read requests to an object by returning the last write to
that object.

4.12.6 Snoopy
We now define Snoopy as a protocol for L load balancers and S subORAMs S1, . . . ,SS in Fig-
ure 4.20, as well as a load balancer scheme in Figure 4.22 and Figure 4.24 (we leave some empty
lines in the protocol figures and corresponding simulator figures so that corresponding operations
have the same line number).
Theorem 4.2. Given a keyed cryptographic hash function, an oblivious compare-and-set operator,
an oblivious sorting algorithm, an oblivious compaction algorithm, and an oblivious storage scheme
(secure according to Definition 4.2), Snoopy, as described in §4.4 and formally defined in Figure 4.20,
is secure according to Definition 4.1.

Proof. Our Snoopy construction is presented in Figure 4.20, with the corresponding simulator
in Figure 4.21. We again need to show that the traces that the adversary receives as a result of
executing Initialize and BatchAccess do not allow the adversary to distinguish between the real
and ideal experiments.

The communication patterns in the real and ideal experiments are indistinguishable. Both
experiments perform setup at the first load balancer and then copy state to the remaining load
balancer (communication pattern is deterministic). For BatchAccess, in both experiments, we
choose a random load balancer, which then communicates with every subORAM (the amount of
data sent to each subORAM depends only on public information). Thus there is no difference in
the distribution of communication patterns between the real and ideal experiments.

We now discuss memory access patterns. As in the proof for Theorem 4.2, to simplify the
proof and our description of the simulator, we assume that functions with different signatures
are indistinguishable; the memory accesses of simulator functions that take fewer parameters
(because they only take public input) can easily be made indistinguishable from those of the
actual functions by passing in dummy arguments. As is clear from Figure 4.20 and Figure 4.21,
the Initialize and BatchAccess algorithms are identical except that (1) the simulator algorithm
generates random objects and random requests rather than taking them as input, and (2) the
simulator algorithm calls the SimLoadBalancer algorithms. Thus the only task that remains is
to show that the memory access patterns generated by the LoadBalancer and SimLoadBalancer
algorithms are indistinguishable.

We start with Initialize and then examineBatchAccess (line numbers correspond to Figure 4.22,
Figure 4.23, Figure 4.24, Figure 4.25).

Initialization.
• (Lines 1-2) The load balancer algorithm takes an array O whereas the simulator algorithm
generates a random array of the same size (same number of objects and same object size).
Thus the memory used by these arrays is indistinguishable.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 110

Snoopy.InitializeL,S (1
λ, O)

1: Let L be a public parameter, which denotes the number of load balancers.
2: Let S be a public parameter, which denotes the number of used SubORAMs.
3: k ← LoadBalancer.InitializeS (1

λ, O).
4: Send k to the remaining L− 1 load balancers.

V← Snoopy.BatchAccessL,S (R)

1: Let L be a public parameter, which denotes the number of load balancers.
2: Let S be a public parameter, which denotes the number of used SubORAMs.
3: Wait to receive |R| requests.
4: Pick at random a load balancer i .
5: Run Vi ← LoadBalanceri .BatchAccessS (R).
6: return Vi .

Figure 4.20: Our Snoopy construction.

SimSnoopy.InitializeL,S (1
λ, |O|)

1: Let L be a public parameter, which denotes the number of load balancers.
2: Let S be a public parameter, which denotes the number of used SubORAMs.
3: k ← SimLoadBalancer.InitializeS (1

λ, |O|).
4: Send k to the remaining L− 1 load balancers.

SimSnoopy.BatchAccessL,S (N)

1: Let L be a public parameter, which denotes the number of load balancers.
2: Let S be a public parameter, which denotes the number of used SubORAMs.
3: Let N be the number of requests.
4: Pick at random a load balancer i .
5: Run SimLoadBalanceri .BatchAccessS (N).
6:

Figure 4.21: Simulator algorithms SimSnoopy = (Initialize, BatchAccess).

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 111

k ← LoadBalancer.InitializeS (1
λ, O)

1: Parse O as o1, . . . , on .
2: Let S be a public parameter, which denotes the number of used SubORAMs.
3: Let H be a keyed cryptographic hash function that outputs an element in [S].
4: Sample a secret key k ←R {0, 1}λ.
5: for i = 1, . . . , n do
6: Attach to oi the tag t = Hk(oi .idx).
7: end for
8: Let forder be the ordering function that orders by tag t .
9: O← OSort(O, forder).
10: Let x ← 0.
11: Let prev← ⊥.
12: for i = 1, . . . , |O| do
13: if O[i].t ̸= prev then
14: Let yx ← i .
15: Let x ← x + 1.
16: Let prev← O[i].t .
17: end if
18: end for
19: for i = 1, . . . , S do
20: Run SubORAM.Initialize(1λ, O[yi−1 : yi]).
21: end for
22: Store k .
23: return k .

Figure 4.22: Our load balancer initialization construction. Lines 13-16 would in practice be im-
plemented using OCmpSet, but we write it using an if statement that depends on private data to
improve readability.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 112

k ← SimLoadBalancer.Initialize(1λ, |O|)
1: Let (n, κ) = |O|. ▷ κ is the size of the object
2: Create an array O (1, o1), (2, o2), . . . , (n, on) of the form (idx, content), where oi is a

random entry of size κ.
3: Let H be a keyed cryptographic hash function that outputs an element in [S].
4: Sample a secret key k ←R {0, 1}λ.
5: for i = 1, . . . , n do
6: Attach to oi the tag t = Hk(oi .idx).
7: end for
8: Let forder be the ordering function that orders by tag t .
9: OSort(O, forder).
10: Let x ← 0.
11: Let prev← ⊥.
12: for i = 1, . . . , |O| do
13: if M[i].t ̸= prev then
14: Let yx ← i .
15: Let x ← x + 1.
16: Let prev← O[i].t .
17: end if
18: end for
19: for i = 1, . . . , S do
20: Run SimSubORAMi .Initialize(1

λ, |O[yi−1 : yi]|).
21: end for
22: Store k .
23: return k .

Figure 4.23: Load balancer simulator for SimLoadBalancer.Initialize. Lines 13-16 would in practice
be implemented using OCmpSet, but we write it using an if statement that depends on private
data to improve readability.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 113

V← LoadBalancer.BatchAccessS (R)

1: Let S be a public parameter, which denotes the number of used SubORAMs.
2: LetHk(·) be a cryptographic hash function keyed by stored key k that outputs an element

in [S].
3: Parse R as (r1, . . . , rN), where ri = (type, idx, content).
4:
5: Compute α← f (N , S) and initialize the empty list L of size N + αS .
6: for i = 1, . . . ,N do
7: L[i] = (ri .type, ri .idx, ri .content, Hk(ri .idx)).
8: end for
9: L′ ← Create a copy of L.
10: Append to L′ α dummy requests for each SubORAM of the form (read, idx, ⊥, s), where

idx is Hk(idx) = s .
11: Let forder be the ordering function that orders by SubORAM and then by type (where ⊥

is last and treated as read).
12: Run L′ ← OSort(L, forder).
13: Tag the first α distinct requests per SubORAM with b = 1 and the remaining requests

with b = 0.
14: Set B← (b1, . . . , bN+αS) and run L′ ← OCompact(L′, B).
15: for i = 1, . . . , S do
16: Run Vi ← SubORAMi .BatchAccess(L

′[(i − 1)α + 1 : iα]).
17: end for
18: Set X← (V1, . . . ,VS ,L) tagging all responses with b = 0 and requests with b = 1.
19: Let forder be the ordering function that orders by idx and then by b (i.e., giving priority to

responses over requests).
20: Set X′ ← OSort(X, forder).
21: Set prev← ⊥.
22: for i = 1, . . . , |X ′| do
23: OCmpSet(bi

?
= 0, prev, X′[i].content) and OCmpSet(bi

?
= 1, X′[i].content, prev).

24: end for
25: Set B← (b1, . . . , bN+αS).
26: Run V← OCompact(X′, B).
27: return V.

Figure 4.24: Our load balancer construction.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 114

SimLoadBalancer.BatchAccess(N)

1: LetN be a public parameter, which denotes the number of requests that the queried batch
contains. Let S be a public parameter, which denotes the number of used SubORAMs.

2: LetHk(·) be a cryptographic hash function keyed by stored key k that outputs an element
in [S].

3: Choose N random identifiers idx1, . . . , idxN where for all i ∈ [N], idxi is an idx value in
O.

4: Create R of the form (r1, . . . , rN), where ri = (read, idxi , ⊥).
5: Compute α← f (N , S , λ) and initialize the empty list L of size N + αS .
6: for i = 1, . . . ,N do
7: L[i] = (ri .type, ri .idx, ri .content, Hk(ri .idx)).
8: end for
9: L′ ← Create a copy of L.
10: Append to L′ α dummy requests for each SubORAM of the form (read, idx, ⊥, s), where

idx is Hk(idx) = s .
11: Let forder be the ordering function that orders by SubORAM and then by type (where ⊥

is last and treated as read).
12: Run SimOSort(addr⟨L′⟩, |L′|, forder).
13: Tag the first α requests per SubORAM with b = 1 and the remaining requests with

b = 0.
14: Set B← (b1, . . . , bN+αS) and run SimOCompact(addr⟨L′, ⟩,N + αS , addr⟨B⟩, αS).
15: for i = 1, . . . , S do
16: Run Vi ← SimSubORAMi .BatchAccess(α).
17: end for
18: Let X be an array of N + αS objects the same size as the objects in L with a tag bit.
19: Let forder be the ordering function that orders by idx and then by b (i.e., giving priority to

responses over requests).
20: Run SimOSort(addr⟨X⟩, |X|, forder).
21: Set prev← ⊥.
22: for i = 1, . . . , |X′| do
23: SimOCmpSet(addr⟨prev⟩, addr⟨X′[i].content⟩) and

SimOCmpSet(addr⟨X′[i].content⟩, addr⟨prev⟩).
24: end for
25: Set B← (b1, . . . , bN+αS).
26: Run SimOCompact(addr⟨X′⟩, |X′|, addr⟨B⟩, N).
27:

Figure 4.25: Load balancer simulator for SimLoadBalancer.BatchAccess.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 115

• (Lines 3-8) These lines are identical. We sample a key and then perform a linear scan over an
array where the size of the array and object size is public, attaching a tag to each element.

• (Line 9) By the security of our oblivious sort, the sorting algorithms over different arrays
with the same length, same object size, and same ordering function produce indistinguishable
memory access patterns because of the existence of the simulator function that only takes in
array length, object size, and the ordering function.

• (Lines 10-17) These lines are identical. We iterate over the array where the array size is
public. Wewrite the algorithm as branching based on a comparison to private data in order to
improve readability, but this would in practice be implemented usingOCmpSet in the original
algorithm and SimOCmpSet in the simulator algorithm, which produce indistinguishable
access patterns.

• (Lines 19-21) By the security of the underlying subORAM scheme, the initialize procedure for
the subORAMand the corresponding simulator algorithm produce indistinguishablememory
access patterns.

• (Lines 22-23) These lines are identical and only store a cryptographic key.

Batch access.
• (Lines 1-2) Establishing parameters and hash functions.
• (Lines 3-4) The load balancer receives a list of requests whereas the simulator algorithm
generates a random array of the same size (same number of requests and same format). Thus
the memory used by these arrays is indistinguishable.

• (Lines 5-11) These lines are identical and only compute a function based on public informa-
tion and perform a linear scan over an array (same size and format in both). Thus thememory
access patterns are indistinguishable.

• (Line 12) By the security of the oblivious sorting algorithm, the oblivious sort and the corre-
sponding simulator algorithm produce indistinguishable memory access patterns.

• (Line 13) These lines are identical and require accessing α objects in a fixed location where
α is computed using public information.

• (Line 14) By the security of the oblivious compaction algorithm, the oblivious compaction and
the corresponding simulator algorithm produce indistinguishable memory access patterns.

• (Lines 15-17) By the security of the underlying subORAM scheme, the batch access algo-
rithm and the corresponding simulator algorithm produce indistinguishable memory access
patterns.

• (Line 18) These lines are identical and create an array where the number of objects is based
on public information and the object size is a public parameter.

• (Line 19) These lines set the same function.
• (Line 20) By the security of the underlying sorting algorithm, the oblivious sort and the cor-
responding simulator algorithm produce indistinguishable memory access patterns.

• (Line 21-24) The structure of the loop is the same in both algorithms and depends only on
public information (N +αS), and the compare-swap primitive guarantees that the algorithm

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 116

and the simulator algorithm produce indistinguishable memory access patterns.
• (Line 25) Creates a list where the list size is based on public information (N + αS) and the
object size is public.

• (Line 26) By the security of the underlying compaction algorithm, the oblivious compaction
and the corresponding simulator algorithm produce indistinguishable memory access pat-
terns.
While the memory access patterns generated are indistinguishable in all cases, the adversary

could potentially be able to distinguish between the real and ideal experiments if the adversary
could cause the responses between the real and ideal experiments to differ. The only way that
the adversary could do this is if the number of requests assigned to a subORAM exceeds f (N , S)
for N total requests and S subORAMs. The load balancer algorithm guarantees that requests in a
batch are distinct (we use oblivious compaction to remove duplicates) and randomly distributed
(we use a keyed hash function). Furthermore, the attacker cannot learn information about how
requests are routed to subORAMs because the access patterns do not leak the assignment of
requests to subORAMs (as proven above). Thus we can apply Theorem 4.3, and so the probability
that a batch overflows is negligible in λ. Finally, Theorem 4.4 guarantees that reads always see
the result of the last write, and so, the probability that the adversary can distinguish between the
real experiment and the ideal experiment is negligible in λ.

4.12.7 Discussion of multiple clients
Our proof only considers a single client, and so we briefly (and informally) discuss how to extend
our guarantees to multiple clients. In the case where multiple clients are controlled by a single
adversary, we simply need to modify the adversary to choose requests for each client, and then
the clients forward the requests to the oblivious storage system. The oblivious storage protocol
and the ideal functionality then needs to route the correct response to the correct client (rather
than sorting by object ID on line 19 in Figure 4.24, the load balancer can sort by the client ID,
object ID, bit b tuple).

We now consider the case where there is an honest client submitting read requests and all
other clients are controlled by the adversary. Note that write requests cannot be private in the
case where the adversary can make read requests, as the adversary can always read all objects
to tell what objects was written to by the honest client. We simply want to hide the contents
of the read requests made by the honest client (we do not hide the timing or the number). In
our proof, we show that the trace generated by operating on the batch of requests submitted by
the adversary is indistinguishable from the trace generated by operating on a random batch of
requests, and so the execution trace will not reveal information about the honest client’s accesses.
Using the modification described above, we also ensure that the correct responses are routed to
the correct client, and so the adversary cannot learn information about the honest client’s read
requests from the returned responses.

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 117

4.13 Linearizability

. Snoopy implements a linearizable key-value store. We define the following terms:
• An operation o has both a start time ostart (the time at which the operation was received by
a load balancer), and an end time oend (the time at which the operation was committed by
the load balancer).

• Operation o ′ follows operation o in real-time (o −→
rt

o ′) if oend < o ′
start .

• o ′ and o are said to be concurrent if neither o nor o ′ follow each other.
• Operations can be either reads (read(x), which reads key x), or writes (write(x , v), which
writes value v to key x).

. Linearizability requires that for any set of operations, there exists a total ordered sequence of
these operations (a linearization – we write o −→ o ′ if o’ follows o in the linearization) such that:
• The linearization respects the real-time order of operations in the set: If o −→

rt
o ′ then o −→ o ′

(C1).
• The linearization respects the sequential semantics of the underlying data-structure. Snoopy
follows the semantics of a hashmap: given two operations o and o ′ on the same key, where
o is a write write(x , v), and o ′ is a read read(x), then, if there does not exist an o ′′ such that
o ′′ = write(x , v ′) and o −→

rt
o ′′ −→

rt
o ′, then read(x) = v . In other words, the data structure

always returns the value of the latest write to that key (C2).
As in our security proofs, we prove linearizability separately for our subORAM scheme and

for Snoopy instantiated with any subORAM.
Theorem 4.4. Snoopy is linearizable when the subORAM is instantiated with a oblivious storage
scheme that is secure according to Definition 4.2.

Proof. We prove that there exists a linearization that follows the hashmap’s sequential specifica-
tion: each operation is totally ordered according to the (batch commit time epoch, load balancer
id lb, operation type optype, batch insertion index ind) tuple (sorting first by batch commit time,
next by load balancer id, next giving priority to reads over writes, and finally by arrival order)
. Let o1 −→ o2 −→ ... −→ ..on be the resulting linearization. We prove the aforementioned state-
ment in two steps: (1) the statement holds true for on −→ on+1, and (2) the statement holds true
transitively. Note that we assume load balancers and subORAMs can take a single action per
timestep.
1. on −→ on+1 We prove this by contradiction. Assume that o −→ o ′ violates either condition C1

or condition C2.
• (C1) Assume that condition C1 is violated: oend ≥ o ′

start . Now, consider o −→ o ′: it
follows by assumption that (batcho , lbo) ≤ (batcho′ , lbo′). If lbo == lbo′ , o and o’ are
either in the same epoch or o ′ is in the epoch that follows o at the same load balancer.
In both cases, o ′ cannot have a start time greater or equal than o’s start time: each load

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 118

balancer processes each epoch sequentially and waits for all batches to commit. We have
a contradiction. Consider next the case in which batcho == batcho′ and lbo ≤ lbo′ . We
have ostart < batcho < oend and o ′

start < batcho′ < o ′
end . As batcho == batcho′ , we have

o ′
start < epocho < oend . We once again have a contradiction.

• (C2) Assume that condition C2 is violated: o = write(x , v) and o ′ = read(x), but o ′

returns v ̸= v ′ and there does not exist an o ′ such that o −→
rt

o ′′ −→
rt

o ′. We consider
two cases: (1) o and o ′ are in different batches, and (2) o and o ′ are in the same batch.
First, consider the case in which o and o ′ are in different batches and batcho < batcho′

(if o and o ′ write to the same key x and are in different batches, then batcho ̸= batcho′ as
subORAMs processes batches of requests sequentially). It follows that o ′ executed after
o. There are two cases: (1) o is the write in the batch with the highest index, and (2)
there exists a write o ′′ with a higher index. In the latter case, we have a contradiction:
our linearization order orders writes by index, as such there exists an intermediate write
o ′′ in the linearization order o −→ o ′′ −→ o ′. Instead, consider o to be the write with the
highest index. This write gets persisted to the subORAM as part of the batch. By the
correctness of the underlying oblivious storage scheme, a read from oblivious storage
(instantiated in our system as a subORAM, see Theorem 4.5) returns the latest write to
that key. As such, if o ′ reads x in a batch that follows o’s write to x with no intermediate
writes to that key, o ′ will return the value written by o. We have a contradiction once
again. (2) If o and o ′ are instead in the same batch, then batcho == batch ′

o . By our
linearization order specification, reads are always ordered before writes in a batch, so
o ′ −→ o. We have a contradiction.

2. Transitivity. The proof holds trivially for chains of arbitrary length o1 −→ .. −→ on due
the transitive nature of inequalities and the pairwise nature of operation correctness on a
hashmap.

Theorem 4.5. Our subORAM (Figure 4.18) always returns the value of the latest write to an object,
provided that it is instantiated from a two-tiered oblivious hash table [49], an oblivious compare-
and-set operator, and an oblivious compaction algorithm.

Proof. We prove this by contradiction. Assume that the last write to object o was value v and a
subsequent read of object o in epoch i returns value v ′ where v ̸= v ′. Because reads are ordered
before writes in the same epoch, a write cannot take place between the end of the end of epoch
i − 1 and a read in epoch i . Then, by the correctness of the oblivious hash table (which we
use to retrieve the correct request for an object when scanning through all objects), the oblivious
compare-and-set primitive (which copies the object value correctly to the request’s response data
if the request is a read), and oblivious compaction (which ensures that entries in the hash table
corresponding to real requests are returned) it must be the case that the value for object o in the
subORAM at the end of epoch i−1 is v ′. By the correctness of our oblivious hash table (which we
use to retrieve the correct request for an object when scanning through all objects) and oblivious
compare-and-set primitive (which copies the request value correctly to the object value if the

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 119

request is a write) and because write requests in the same batch are distinct (our load balancer
deduplicates requests in the same epoch), the last write to object o before epoch i must have been
value v ′. Thus we have reached a contradiction (v ̸= v ′), completing the proof.

4.14 Access control

Throughout this work, we assume that all clients are trusted to make any requests for any objects.
However, practical applications may require access control. We now (informally) describe how
to implement access control for Snoopy. A plaintext system can store an access control matrix
and, upon receiving a request, look up the user ID and object ID in the matrix to check if that
user has the privileges to make that request. In an oblivious system, the challenge is that the load
balancer cannot query the access control matrix directly, as the location in the access control
matrix reveals the object ID requested by the client. We instead need to access the access control
matrix obliviously.

We can do this using Snoopy recursively. In addition to the objects themselves, the subORAMs
now need to store the access control matrix, where each object has the tuple (user ID, object ID,
type) as the key (where type is either “read” or “write”) and 1 or 0 as the value depending on
whether or not the user has permission for that operation. The load balancer then needs to
obliviously retrieve the access-control rule pertaining to the requests it received from the clients
and apply the access-control rule when generating responses for the clients. Notably, if a client
does not have permission to perform a read, Snoopy should return a null value instead of the
object value, and if the client does not have permission to perform a write, it should not copy
the value from the request to the object. In order to ensure that a user is querying with the
correct user ID, users should authenticate to the load balancer using a standard authentication
mechanism (e.g. password or digital signature).

Now, upon receiving a request, the load balancer generates a read request to the access control
matrix for the tuple (user ID, object ID, type) corresponding to the original request. The load
balancer generates batches of access-control read requests that it shards across the subORAMs.
This is equivalent to running Snoopy recursively where the load balancer acts as both a client
and load balancer for the batch of access-control read requests. When the load balancer receives
the results of the access-control read requests, it then matches the access-control responses to
the original requests by performing an oblivious sort by (user ID, object ID, type) on both the
access-control responses and the original list of requests. The load balancer scans through the
lists in tandem (examine both lists at index 0, then at index 1, etc.), copying the bit b returned
in the access-control response to the original request. The load balancer then sends the original
requests (including this new bit b) to the subORAMs as in the original design of Snoopy.

When executing the requests, the subORAMs additionally check the value of b in the obliv-
ious compare-and-set operation (lines 10 and 11 in Figure 4.18) to ensure that the operation is
permitted before performing it. Note that it is critical that we hide which operations are permit-
ted and which are not during execution; otherwise, an attacker can submit requests that aren’t
permitted and, by observing execution, see where in the sorted list of requests the failed request

CHAPTER 4. SNOOPY: A SCALABLE OBLIVIOUS STORAGE 120

was (which leaks information about the permitted requests). Executing requests with access con-
trol now requires two epochs of execution (one to query the access control matrix and one to
process the client’s actual request) to return the response to the user.

4.15 Conclusion

In this chapter, we proposed Snoopy, a high-throughput oblivious storage system that scales
like a plaintext storage system. Through techniques that enable every system component to be
distributed and parallelized while maintaining security, Snoopy overcomes the scalability bottle-
neck present in prior work. With 18 machines, Snoopy can scale to a throughput of 92K reqs/sec
with average latency under 500ms for 2M 160-byte objects, achieving a 13.7× improvement over
Obladi [72].

121

Chapter 5

SVR3: Secret key recovery in a
global-scale end-to-end encryption
system

5.1 Introduction

End-to-end encrypted messaging applications like Signal [287], WhatsApp [80], and Messen-
ger [214] are used by hundreds of millions to billions of users. They provide end-to-end en-
cryption: user devices (the “ends”) encrypt user messages so application servers receive only
encrypted messages without decryption keys. Only the users in a conversation can decrypt the
messages locally on their devices. This paradigm protects user messages even if the application
provider or cloud infrastructure is compromised.

To provide this guarantee, end-to-end encryptedmessaging application providersmust ensure
that their users’ secret keys and data are protected against a wide range of attacks by malicious
employees, cloud provider administrators, or other privileged agents. Unfortunately, this creates
a usability problem: if a user loses their device, the user loses access to their account information,
metadata (e.g. address book, social graph), and message history. The application provider cannot
directly store a backup of this information, as this would violate the core principle of end-to-end
encryption. Similarly, if the application provider stores an encrypted backup of this information
it must not have access to the backup’s decryption keys. Users who lose their devices should be
able to recover at least their account settings and metadata without the provider gaining access
to this protected data.

Shortcomings of many existing key recovery systems. A potential strawman is to allow the
user to download their backup encryption key (e.g., print them on a piece of paper) and store
them in a safe place [166, 185, 216], but this places extra burden on the user [262]. A more user-
friendly approach to this problem is to allow a user to use a password or a PIN to encrypt their
key [131]. Unfortunately, these are often vulnerable to brute-force dictionary attacks [281, 283].

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 122

Furthermore, standard safeguards (e.g., forcing the attack to be performed online) can easily be
circumvented by the application provider.

Current deployed systems [13, 173, 200, 303, 316, 320] prevent brute-force attacks by using
secure hardware to limit the number of PIN guesses. This approach provides a strong protection
against service provider administrators and cloud providers. While these systems all represent
significant advances in password-based key recovery, they rely on the security guarantees of a
single type of secure hardware. Although secure hardware is a powerful tool for enhancing the
security of systems, it can eventually be subverted—attackers have extracted user secrets from
secure hardware in the past [56,59,126,154,227,257,274,297,309,310,313,314]. In these systems,
compromising just one type of secure hardware enables an attacker to recover many users’ secret
keys, which is a catastrophic scenario for any popular encrypted system.

Key recoverywithout a single point of security failure. In this chapter, we contribute Secure
ValueRecovery 31, a PIN-based secret key recovery system that prevents any one type of enclave
or cloud provider from becoming a central point of attack. Our security properties are informed
by the observation that many vulnerabilities are quickly patched, and so it is challenging for an
attacker to find vulnerabilities on every one of different enclave architectures within the same time
period between rekeying events. SVR3 proposes a layered architecture, illustrated in Figure 5.1,
consisting of a tailored cryptographic multi-server key recovery protocol that distributes trust
across three different enclaves from three distinct hardware vendors on three major clouds: Intel
SGX in Microsoft Azure, AMD SEV-SNP in Google Cloud, and Nitro in AWS. SVR3 ensures that
even if an attacker compromises two of these enclave types and the respective clouds but not the
third, the attacker cannot reconstruct the user’s secrets due to the cryptographic protocol. The
attacker needs to compromise the security of all of the clouds and all of the enclave types to reach
user secrets.

We implemented SVR3 as a production-ready system embedded in Signal Messenger [287],
an end-to-end encrypted messaging application with tens of millions of users. We have already
deployed an initial version of SVR3’s implementation to millions of users globally, and the fully
featured system is in the process of deployment at the time of publication. A third-party au-
ditor, NCC Group, audited the deployment of Signal’s SVR2, a predecessor system currently in
production and using SVR3’s consensus protocol on a single trust domain. In production, Sig-
nal intends to use SVR3 to improve the protection of data currently protected by Signal’s SVR2
service, including account settings, contact lists, and group membership information. SVR3 is
open source [286] and can be used by any end-to-end encrypted system that needs secret key
recovery (e.g., encrypted messaging [80, 287], email [251, 253], or storage [321]). To the best of
our knowledge, SVR3 is the first deployed cross-enclave, cross-cloud secret key recovery system.
The servers for SVR3 cost only $0.0025/user/year and it takes 365ms for a user to recover their
key, which is a rare operation.

Design decisions. Our design choices were guided by the goal of developing a real-world PIN-
1This is the third generation of Signal’s SVR service and succeeds SVR1 [200], which did not distribute trust

across multiple types of secure hardware. (SVR2 was a transition system consisting of a partial SVR3 design.)

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 123

Intel SGX
SVR3

Nitro
SVR3

AMD SEV-SNP
SVR3

Application
Provider

② StoreSecret / ③ RecoverSecret

Authentication
Server

① Auth

UpdateAttest

UpdateCode

Unauthenticated Channel Authenticated Channel Update Channel

User Clients

!"
#️

Encrypted
Backup

④ Decryp
t

Figure 5.1: System architecture for n = 3 enclave clusters, with each cluster using a different
type of hardware enclave.

based key recovery system that prevents dictionary attacks, is easy and affordable to maintain,
and provides security even if a particular enclave or cloud provider is vulnerable. We summarize
the key decisions below.

A layered security architecture (§5.2–§5.3). We aim to protect users’ secrets against three
major classes of attackers: cloud attackers, an internal application provider attacker, and exter-
nal hackers. To achieve this, one strawman is to distribute trust across multiple organizations.
However, finding reliable and trustworthy such organizations is difficult and expensive [75,193].
Instead, we introduce an architecture that layers cryptographic security on top of hardware se-
curity by using different types of enclaves in different clouds. The hardware enclaves enable
creating three separate trust domains, and the cryptographic tools split secret keys across the
trust domains.

PPSS to distribute trust (§5.4). Password Protected Secret Sharing (PPSS) [18] provides password-

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 124

based key recovery while distributing trust across multiple backends and limiting attackers to on-
line dictionary attacks. Different PPSS schemes have different deployment consequences, and we
select the construction by Jarecki et al. [156] primarily because it requires no cross-trust domain
communication and the server design enables clients to use different secret sharing schemes if
they wish. We use this protocol to construct our one-round key recovery protocol, where the
servers receive no information about whether the PIN guess was correct, and the servers uncon-
ditionally delete key material after a fixed number of PIN guesses (which can be refreshed by
the clients). This is in contrast to existing works [287, 303, 320], which rely on password-based
authentication and require multiple communication rounds.

Rollback protection through enclave memory and consensus (§5.5). Like Signal’s original
SVR1 system [287], SVR3 protects against software rollback attacks by keeping all data (e.g., guess
counts) inside enclave memory. In order to prevent data loss, we replicate data across multiple
enclaves in the same cloud. SVR1 uses the original Raft consensus protocol [235], which is not
safe under physical rollback attacks. In principle, an attacker with physical access (e.g., a DIMM
interposer [304]) to a single server in a vanilla Raft replica group could take control of the group
and roll back log entries. To defend against such attacks, we develop a modified Raft [235] proto-
col, Raft", that provides safety under physical rollback attacks, as specified in §5.3.2. We prove
its safety under a formal TLA+ [180] model in the face of physical rollback attacks.

Secure code updates via auditing (§5.6). To enable code updates while providing strong secu-
rity, we allow clients to audit the deployed code and explicitly disallow sharing of data between
different (server) binary versions. Data migration between binary versions flows through the
client, and clients can determine whether or not to store their secret value on each version of the
binary.

Limitations. SVR3 relies on the underlying security guarantees of the enclaves it employs; sup-
porting a new enclave or a new version of an existing enclave would require carefully reasoning
about how it fits into the threat model. Splitting infrastructure across multiple cloud providers
also incurs higher monetary costs than deploying on a single provider, but offers stronger se-
curity assurances. Furthermore, SVR3 does not support recovering the user PIN that is used in
secret key recovery (i.e., if a user forgets their PIN, they cannot recover their key). We mitigate
this in practice by periodically prompting the user to re-enter their PIN on the messaging client
to prevent permanent lockout. Finally, we remark that the scope of this work is on how Signal
currently implements key recovery, and not the Signal system as a whole (e.g., how the recovered
key is used).

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 125

5.2 System overview

5.2.1 System architecture
Figure 5.1 shows the system architecture for an SVR3 deployment with three cloud providers,
with the following entities:

Enclave clusters. The application owner deploys n enclave clusters (in our deployment, n = 3).
To strengthen security, each enclave cluster should run on a different type of enclave in a different
cloud environment (see §5.3). We will refer to each enclave cluster running on different hardware
in a different cloud as a trust domain. Enclave clusters maintain replicated storage and respond
to messages from clients. Each enclave cluster consists of a load balancer, a discovery service,
and a geographically distributed replica group.

Authentication server. The authentication server establishes authenticated channels between
clients and enclave clusters. The authentication server preventsmalicious clients from exhausting
PIN attempts for honest users because a client needs to authenticate to the authentication server
(e.g., via an SMS code) before interacting with the enclave clusters.

Clients. Clients (e.g., mobile phones or laptops) interact with the authentication server and nodes
in the enclave clusters in order to back up and recover their secret keys.

Application provider. The application provider will update the software and run monitoring
and maintenance to ensure that the system is available and healthy.

5.2.2 System API
As shown in Figure 5.1, SVR3 exposes the following client API:
• Auth(client, client cred) → auth token: Establishes authenticated channel between client and
server.

• StoreSecret(client, auth token, val, pin): Backs up a value val for an authenticated client using
a human-memorable PIN value pin and an authentication token auth token.

• RecoverSecret(client, auth token, pin) → {secret,⊥}: Recovers the value secret for client if
(and only if)
– auth token is valid for client,
– pin matches the PIN provided at StoreSecret time for client, and
– the number of unsuccessful RecoverSecret attempts for client does not exceed a set guess

limit.
Otherwise, outputs ⊥.

The client can use their recovered secret to locate, authorize access to, and decrypt their encrypted
backup.

We describe how the developer updates SVR3 in §5.6.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 126

Type IIType III

Intel SGXNitro AMD SEV-SNP
SVR3 SVR3 SVR3

Intel SGX

Type I

Figure 5.2: Types of attackers SVR3 protects against.

5.3 Threat model and guarantees

SVR3’s goal is to protect users’s secrets. SVR3 provides different security guarantees against three
types of server attackers, shown in Figure 5.2:
• Type I (Internal). This attacker compromises the organization deploying SVR3 (e.g., a mali-
cious employee). This attacker does not have physical access to the cloud deployment and has
not compromised the clouds, but can freely spin up and bring down machines and modify the
software being run.

• Type II (Cloud). This attacker represents an entity with control over the physical infrastruc-
ture SVR3 is deployed on (e.g., a single cloud provider). While this attacker does not have
access to the multi-cloud system deployment, it can leverage physical access and tamper with
the hardware running SVR3.

• Type III (External). This attacker is external to the deployment of SVR3 (e.g., a hacker), and
tries to break-in various parts of an organization’s surface.
We express SVR3’s security guarantees at two levels: (1) at the level of trust domains (§5.3.1),

defining security in terms of which trust domains are not compromised, and (2) at the level of
enclaves inside a trust domain (§5.3.2), specifying the conditions under which a trust domain is
not compromised.

Like other end-to-end encrypted systems [251, 253, 320], if a user’s device is compromised,
SVR3 provides no guarantees to that user. For an uncompromised user device, we rely on the
trustworthiness of client code released by Signal; we enable the community to scrutinize the
client code and build trust in it by making it open-source [211–213].

SVR3 does not hide the identity of clients or the timing of backup and recovery requests.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 127

5.3.1 Security across trust domains
SVR3 protects users’ secret keys if at most t out of n trust domains are compromised. We assume
that the odds of an attacker identifying and exploiting vulnerabilities across > t trust domains
during the same time period between rekeys is low, whichmotivates our threatmodel. The system
enables each user to rekey periodically, and deletes the old secret key.

In our deployment of SVR3, we set t = 2 and n = 3, so we ensure security as long as ≤ 2
trust domains are compromised (i.e., at least 1 trust domain is uncompromised). We limit PIN
guesses by selecting a parameter u , a server usage limit.
Theorem 5.1 (Informal). In an SVR3 deployment configured with n trust domains, threshold t ,
and a usage limit u , assuming a password-protected secret sharing scheme (defined in §5.4.2), if an
attacker compromises tc ≤ t trust domains, then SVR3 ensures that, for each secret key, the attacker
only has

⌊
nu−tcu
t+1−tc

⌋
PIN attempts and, after that, cannot recover the secret key.

We describe how SVR3 achieves Theorem 5.1 in §5.4.2.

5.3.2 Security within a trust domain
We now describe the threat model we consider when instantiating the trust domains assumed in
§5.3.1. Recall that each trust domain consists of an enclave cluster and that each trust domain
should use a different type of enclave.

Enclave threat model

SVR3’s design is not tied to some specific enclave implementations. Different enclaves vary in
design, so we abstract out the security properties that we require from the enclaves employed for
SVR3’s security guarantees (§5.3.2) to hold. An uncompromised enclave must provide:
(E1) Application-level attestation. The enclave can prove that certain code is running before other

systems interact with it, and the attacker cannot alter the code during the enclave’s execu-
tion.

(E2) Access control. Enclave memory is encrypted, and access control is hardware-enforced to
prevent all non-enclave access.

(E3) Page-level rollback granularity. The attacker can replace pages of data in the enclave’s mem-
ory with older pages from the same physical location and can mix and match old and new
pages, thus violating global memory integrity. We assume that an attacker cannot mount
these attacks at a sub-page granularity (e.g., address level) either because the enclave pro-
tects this or other protection mechanisms are used in the enclave (see below).

Deviations from enclave threat model. We describe what enclaves SVR3 uses at the time
of writing this work and how they fit our threat model in §5.11. Some recent enclaves use AES-
XTS, which encrypts in 16B increments [60]. While our design currently targets enclaves that can
only be rolled back at the page-level granularity (E3), we can implement atomic regions (regions

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 128

that are guaranteed to run without interruption by an attacker) by utilizing the interrupt handler
introduced by AEX-Notify [65]. We describe how to do so in §5.5.3. Given the changing landscape
of enclave implementations and the possibility that enclaves may not adhere to (E1)–(E3) in the
future, we assume that alternative mechanisms like AEX-Notify can be developed to address such
discrepancies between real-world enclaves and our enclave threat model.

Attacks on enclaves. Enclaves are susceptible to attacks. We list four categories here and then
in §5.3.2, we discuss when SVR3 hardens a trust domain against them.
(A1) Memory access pattern attacks. Enclaves do not hide memory access patterns, enabling

a large class of side-channel attacks, including but not limited to cache attacks [38, 130,
220,275], branch prediction [188], paging-based attacks [312,324], and memory bus snoop-
ing [186].

(A2) Software rollback attacks. Enclaves are also susceptible to rollback attacks, also referred
to as freshness or replay attacks [241]. Software rollback attacks occur from rolling back
persisted state outside of the enclave’s memory (Type I attacker).

(A3) Hardware rollback attacks. An attacker with physical access to the system bus can roll back
enclave memory at the page level without detection (Type II attacker), for example, using
a DIMM interposer [304].

(A4) Other attacks. Certain physical attacks allow an attacker to break guarantees (E1)–(E3) of
enclaves (e.g., leakage due to power consumption [59, 227, 297] or denial-of-service attacks
due to memory corruptions [126, 154]). Transient execution attacks [56, 257, 274, 309, 310,
313, 314] exploit speculative execution to leak secret data.

Security guarantees

SVR3 hardens a trust domain against a set of attacks, rendering the trust domain uncompromised
despite those attacks. We describe the conditions below:
(H1) SVR3’s memory-access patterns do not depend on user secret content, and hiding which

user is recovering their key is a non-goal for SVR3, so it does not suffer from memory-
access patterns side-channel attacks (A1).

(H2) SVR3 defends against software rollback attacks (A2).
(H3) SVR3 defends against hardware rollback attacks (A3) as long as ≤ s nodes in each cluster

are rolled back, where s is a fault-tolerance (“supermajority”) parameter defined in §5.5.2.
In our production deployment, we set s = 2.

(H4) Within a trust domain, SVR3 does not guarantee protection against other attacks (A4),
which could render the trust domain compromised. In this case, SVR3 still offers the cross-
trust domain security guarantees in §5.3.1.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 129

5.3.3 Availability
Like other end-to-end encrypted systems [251, 320], Signal prioritizes security over availability
of secret key recovery because users’ secret keys are extremely sensitive and crucial to safeguard
in an end-to-end encrypted system. Nevertheless, SVR3 provides availability to clients when at
least t + 1 trust domains are operating correctly. By correct operation, we mean that enclaves
in the trust domain are online and none of the enclaves in the trust domain are under attack.
Therefore, we expect the system to be available under normal operation.

SVR3 also does not defend against denial-of-service (DoS) attacks from a Type I attacker
(since this is the organization that deploys SVR3 itself) or the authentication server.

SVR3 ensures that a malicious client cannot deny availability for an honest user (e.g., by
exhausting the number of PIN attempts allowed) assuming that the attacker did not compromise
the client credentials or the authentication server (used to Auth in Figure 5.1), and it did not
otherwise compromise the servers beyond the availability threshold above.

It is important to consider what users would experience if trust domain(s) were to fail, leading
to secret value loss. While this is a significant event when viewed from the perspective of the
application provider, it will not lead to secret value loss for the majority of clients in practice:
clients cache their SVR3-protected secret locally, and so clients can simply create a backup at the
new deployment. Thus data loss is only a concern for users who lose their devices around when
the old deployment fails and before migration to the new deployment completes.

5.4 Secret key backup and recovery protocols

We now describe the cryptographic protocols in SVR3.

5.4.1 Establishing enclave sessions
To interactwith the SVR3 servers, the clientmust first authenticatewith the authentication server.
If the user has lost their devices, then the authentication server sends the client an SMS code, and
then the user enters the SMS code to receive a token. This process allows the authentication
server to prevent malicious clients from denying service to honest users by exhausting all of
their PIN attempts. Notably though, the authentication server does not have any information
about user PINs. The client then uses this token to establish a secure channel with a replica in
each trust domain. As part of the process of establishing a secure channel, the client runs remote
attestation [63] with the enclaves to ensure that it is communicating with the expected enclaves.

5.4.2 PIN-protected secret sharing
In existing deployed PIN-based backup systems [173,200,316,320], a secure hardware device has
access to users’ secret keys and PINs or PIN-derived information in order to authenticate users.
This design means that an attacker that compromises the secure hardware can, either directly

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 130

or via a brute-force attack, learn user PINs. This property is particularly problematic when we
consider the fact that many users re-use PINs across services.

As a result, when designing our cross-enclave cross-cloud solution, we cannot simply instan-
tiate the above mechanism in each trust domain. Any one compromised trust domain would have
access to the PIN, enabling the attacker to recover the user’s secret key. Instead, we leverage the
class of cryptographic protocols called password-protected secret sharing (PPSS) [18] protocols,
which ensure that:
• An attacker that compromises ≤ t trust domains is still limited to an online dictionary attack.
• If an attacker fully compromises > t trust domains, the attacker does not immediately learn
client secrets. The attacker still must perform an offline dictionary attack on user PINs.

Identifying a suitable PPSS scheme for SVR3. Different PPSS schemes have different trade-
offs [2,18,155–157], so we worked to identify the most suitable scheme for SVR3 and then tailor it
to our setting. Some prior work optimizes for metrics that are not important to our deployment,
but sacrifices properties that are important to us.

For example, many of these works aim to reduce the number of exponentiations to improve
efficiency [2,155–157]. However, the number of exponentiations is not a bottleneck in our setting,
especially because the number of trust domains (3) is small. The scheme with the fewest expo-
nentiations [157] also requires coordinated server initialization and necessitates choosing secret
sharing parameters at deployment time. Coordinated initialization could require us to redeploy
all trust domains every time a single trust domain requires a security upgrade, and cross-trust-
domain communication with security against Type I attackers is difficult. Choosing a secret
sharing scheme at deployment time tightly couples PPSS parameters with clients and servers,
removing the flexibility to modify client PPSS parameters without also changing the servers.

With these priorities in mind, we identified the PPSS from Jarecki et al. [156] as the most suit-
able because it is particularly simple: each backend generates a new secret key for a client when
the client creates a new backup and then uses this key to evaluate an oblivious pseudorandom
function (OPRF) [105] during secret reconstruction. Informally, a pseudorandom function (PRF)
is a keyed function Fk(·) that, for a randomly chosen key k , appears to be random (indistinguish-
able from a function chosen uniformly at random from all functions with the same domain and
range), even though it is deterministic and efficiently computable. An oblivious PRF is a two-party
protocol where the server holds k and the client holds some input x . The protocol enables the
client to learn Fk(x) without the server learning anything about x or Fk(x).

This PPSS scheme has several properties that are appealing for a real-world deployment:
• The protocol is one-round and concretely efficient.
• Different trust domains do not communicate with each other.
• Servers need minimal configuration. In particular they do not need any information about
the threshold scheme being used, and different clients can use the same server with different
threshold schemes.

• The protocol can use a standards-track OPRF with optional verifiability [79].

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 131

We note that the WhatsApp key recovery system uses a password-authenticated key agree-
ment (PAKE) scheme [80, 320], and SVR3 does not. While PAKE protocols are a commonly cited
application for PPSS schemes, we do not need to establish a session between our client and a
server. We only need to recover a secret key, which is a simpler problem. Since branching
while fetching secret shares is not sensitive, we do not need to layer oblivious data retrieval
on top [76, 217].

Augmenting PPSS with usage limiting. Limiting attackers to a fixed number of password
guesses is a core requirement for SVR3. While the application provider can use an authentication
server for access control and rate limiting, this only restricts external users. SVR3 must limit
powerful attackers with full administrative and physical access to the servers to the same finite
number of guesses.

We solve this by leveraging our distributed-trust setting to enforce a usage quota on OPRF
evaluations. A standard OPRF [105] allows a server with a PRF key to evaluate a PRF on a client
input without learning the input. SVR3 allows the client to set a usage limit, u , at registration
time, and each honest trust domain will delete that client’s OPRF key after u OPRF evaluations. In
order to instantiate an honest trust domain, we use enclaves to ensure that the server enforces the
usage limit. Note that the security guarantees provided by PPSS and the heterogeneous enclaves
are tightly coupled: the enclaves are critical for instantiating trust domains, and PPSS enables
splitting a secret value across different trust domains.

In the below proposition, we bound the number of total OPRF evaluations based on the thresh-
old t and trust domains n , providing the protection described in Theorem 5.1.
Proposition 5.2. For a (t , n) instance of PPSS [156] with a usage-limited OPRF configured to
allow u evaluations, an adversary (that has compromised no trust domains) has at most

⌊ nu
t+1

⌋
PIN attempts before the secret cannot be recovered.

Proof. Only nu OPRF evaluations are possible in the system. t + 1 evaluations are needed to
perform one PIN attempt. After

⌊ nu
t+1

⌋
PIN attempts, (t + 1)

⌊ nu
t+1

⌋
OPRF evaluations have been

used. Only (t + 1){nu/(t + 1)} < t + 1 more evaluations are possible, where {} denotes the
fractional part, that is, {x} = x − ⌊x⌋. This is not enough to reconstruct the secret.

When an attacker has compromised tc ≤ t trust domains, we are left with a (n ′, t ′) instance
of a PPSS system described in Proposition 5.2 where n ′ = n − tc and t = t − tc , which results in
the bound described in Theorem 5.1.

5.5 Building a SVR3 backend

We now describe SVR3’s system design within one trust domain. Per our threat model in §5.3,
each uncompromised SVR3 trust domain consists of a cluster of machines, which we assume
behave correctly except for possible physical rollback attacks and crash failures within a specified
bound.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 132

5.5.1 Design decisions
We first provide an overview of the design decisions behind SVR3’s design to ensure fault toler-
ance and the security guarantees in §5.3.2.

Use of enclaves. In order to protect server secrets and allow clients to check the code that is
processing their data, we run the core part of the service in an attested, confidential enclave.

In-memory database to avoid sealing. Data sealing is a mechanism whereby an enclave can
encrypt internal state with a key that is unique to the platform and enclave, persist the encrypted
data to disk, and then recover it if the enclave is torn down and restarted. As noted in prior
work [85,318], applications in commercially available enclaves that use data sealing to store state
externally and recover from crashes are vulnerable to simple, software-based rollback attacks.
Since a core function of SVR3 is to faithfully maintain a per-user OPRF evaluation count, rollback
attacks would undermine the system and could allow an attacker unlimited online password
guesses. To prevent this and achieve (H2), the enclave that stores the database of client secrets
and usage counters is kept entirely in enclave-protected memory; it is never sealed and written to
untrusted memory or disk. We show that the database fits entirely in memory without sharding
users in §5.8.1.

Distributed consensus. Without a data persistence mechanism (e.g., data sealing), the servers
cannot recover from crashes, and data in any failed server will be lost. To ensure that data is not
lost, we build the service as a geographically distributed database. To ensure split-brain or other
attacks do not allow excess PIN guesses, we use a distributed consensus protocol, modified from
Raft [235]. We give a high-level overview of vanilla Raft in §5.5.2. Our modified Raft protocol,
Raft", which we describe in §5.5.2, hardens vanilla Raft against physical rollback attacks and
ensures that client requests and usage count changes are committed before responding to client
queries. We describe in §5.5.3 how we use Raft" to achieve global integrity across the database
when assuming page-level rollback granularity of enclaves (E3), achieving (H3).

5.5.2 Rollback-resistant consensus protocol
SVR3 already protects against the class of rollback attacks that arise from storing state outside
of the enclave by keeping all state in memory. However, as discussed, machines can fail, and so
in order to tolerate failures without losing data, we use Raft", a modified version of vanilla Raft
across enclaves from a cloud provider. A full TLA+ description of Raft" is available in §5.15, and
we provide a proof of safety based on the TLA+ specification in §5.14.

In this chapter, we use n to refer to the number of trust domains andm to refer to the number
of replica machines within a trust domain.

Vanilla Raft background

Raft [235] is a consensus algorithm that manages a replicated log across multiple nodes (repli-
cas). It elects a single leader replica that receives and replicates log entries to the other follower

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 133

replicas. The leader handles all client requests by appending new log entries and sending an
AppendEntriesRequest to each follower for the duration of its term. Follower replicas respond to
requests from the leader to replicate log entries. If the leader fails, a new leader is elected through
a leader election process. Log entries are identified by <index, term>, where index is the log
position and term is the current term number. There is at most one leader in any given term.
A leader forces the followers’ logs to duplicate its own: conflicting entries in follower logs (with
some term t) will be overwritten with entries from the leader’s log if the leader’s term t ′ is ≥ t .
For f crash failures, Vanilla Raft requires m ≥ 2f + 1 replicas in order to provide safety and
liveness.

The physical rollback problem

While keeping the database in memory protects against software rollback attacks, an attacker
with physical access to the system bus could roll back enclave memory at the page level. Since
such an attack is more expensive to perform than software-based rollback attacks, we can sig-
nificantly improve security by requiring an attacker to perform these attacks simultaneously on
multiple enclave replicas. With this context, we note that the vanilla Raft protocol [235], as spec-
ified, will allow an attacker who can roll back a Raft leader to make an unlimited number of PIN
attempts: the Raft protocol does not look at log contents, so if a leader is rolled back and sends
an AppendEntriesRequest for a new <index, term> log entry at an old log index, followers will
accept it and allow the leader to commit.

Prior work [85,318] has addressed a problem close to this one, but with important differences.
First, they are designed for data-sealing rollbacks, which do not affect SVR3 because we do not
use data sealing. Second, Raft" also defends against physical rollback attacks, which prior works
do not consider in their threat model. Physical rollback attacks are more difficult to detect than
data-sealing rollback attacks: after a crash recovery, the new enclave has to execute code that
decrypts the sealed data to rebuild the internal state and every data-sealing rollback needs to
have the enclave go through this code path. The RR protocol [85] takes advantage of this process
to detect data-sealing rollback attacks. Finally, existing protocols aim to ensure liveness in the
face of rollback attacks, and this is an explicit non-goal for SVR3 as mentioned in §5.3.3.

Rollback prevention in Raft"

Together, the following additions to the Raft protocol enable us to prove safety of Raft" in the
presence of an attacker who can simultaneously mount physical rollback attacks against ≤ s
nodes. For m Raft" servers in a trust domain, s must be strictly smaller than m to ensure
safety (§5.5.2). However, to ensure fault tolerance and liveness in the face of crash failures, s
should be even smaller (§5.5.2).

Hash chain. Instead of using <index, term> to identify a log entry, as in Raft, we use

<index, term, hashindex>

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 134

where hashindex = Hash(entrydata, index, term, hashindex-1), entrydata is the contents
of the log entry, and Hash is a cryptographic hash function. When a follower receives an Appen-
dEntriesRequest, it computes the expected hash chain value and verifies that it matches the value
in the request. If the values do not match, the follower rejects the request.

This prevents the simple rollback attack on Raft described in §5.5.2. However, it is still possible
for an attacker who can roll back one server to gain unlimited password guesses by triggering an
election with a quorum of servers that did not see the log entry for the first client request.

Supermajority. To ensure that an attacker capable of rolling back a single server cannot gain
extra password guesses by triggering an election, we require quorums to have a supermajority
of replicas so that the intersection of any two quorums contains more than s replicas, where s
is a configurable parameter that is included in the server’s attestation. This allows clients to be
certain of the value of s used by the service and decide whether to accept it. We prove that an
attacker must be able to roll backmore than s enclaves to roll back a log entry that was committed
by this Raft". This supermajority parameter is comparable to PBFT’s Byzantine nodes value [46].

Promise round. We add a promise round to the protocol. Once a quorum of servers acknowl-
edges seeing a log entry, the leader will “promise" this entry by advancing its promise idx to the
index of this entry. A promised entry is not committed, but no replica will delete an entry that
has been promised. This completes the first round. The leader now sends its promise idx to all
followers in its next AppendEntriesRequest, and followers will update their own promise idx
to match the leader’s when they process the message. From this point, these followers have
promised the log entry and will not delete it. The followers send their current promise idxwith
each AppendEntriesResponse. Once a quorum of replicas has promised an entry, it is committed.

Without the promise round, the attacker could commit a log entry, roll the leader back, send
two log entries, have the leader send AppendEntriesRequests to replicas that did not receive the
earlier request, and then call an election. Replicas in the original quorum cannot validate the
candidate’s hash chain and will vote for the longer log, which contains a different entry than the
one that was committed. With the promise round, the attacker must roll back all servers that
promised the log entry or remove those servers from the group and add new servers in order to
perform subsequent attacks and equivocate on the promised log entry.

Safety

In order to achieve safety, the number of machines in the enclave cluster must be larger than
the number of rollback attacks we want to tolerate (m > s). As liveness under rollback attacks
is a non-goal for SVR3 (an attacker with physical access can easily deny service), we decouple
the constraints on m with respect to rollback attacks (s) and crash failures (fc). We describe how
s impacts liveness under crash failures in §5.5.2. We prove that Raft" is safe under a bounded
number (s) of physical rollback attacks within a trust domain.
Theorem 5.3 (Informal). Let MR be the maximum number of machines in an enclave cluster that
can be rolled back and s be our supermajority configuration parameter. If MR ≤ s , then under

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 135

standard cryptographic assumptions, for every log entry <index, term, hashindex> that has been
applied to the state machine of a server i , server i will never apply a different log entry at this index.

Proof sketch. The argument follows the proof of safety in Ongaro [234] and relies on the obser-
vation that any two quorums will have an intersection that includes at least one server that has
not been rolled back. We must address the fact that in the presence of rollbacks, Lemma 3 in
Ongaro [234] does not hold. This poses a significant challenge, and forces us to introduce a new
concept of live committed entries that is subtly different from the prior notion of committed [234].
With our definition, future leaders may not have a live committed entry in their log, but if they do
not then they will be unable to commit new entries, so we retain safety at the expense of liveness.
The major point where the argument from Ongaro [234] breaks down in our setting is in points
7.c.ii.B and 7.c.iii.B in the proof of their Lemma 8. Our argument uses the hash chain and promise
index to show that there is a voter in the intersection of two quorums that has not been rolled
back and will not replace the log entry. The complete proof of safety is in §5.14.

Liveness

We do not provide liveness for a trust domain under the setting of an attacker mounting phys-
ical rollback attacks, as the attacker could trivially deny client requests by taking the entire en-
clave cluster offline. When assuming no attacks within a trust domain, Raft" requires fc ≤
⌊(m − s)/2⌋ crash failures to be live under normal connectivity conditions, where m denotes the
number of replicas in a trust domain (enclave cluster) and s denotes the supermajority parameter
described in §5.5.2. This is due to the quorum size being ⌊(m + s)/2⌋+1 enclaves. It remains an
open problem to prove liveness of Raft in this setting (e.g., by formal verification [132]). Never-
theless, as discussed in §5.3.3, SVR3 still provides availability to clients when at least t + 1 trust
domains are operating correctly.

Self-healing for simple maintenance

We implement the process for replica groupmembership changes described in the Raft paper [234]
and add a layer of automation. In Raft", a replica group has a configured target number of voting
members. For a healthy configuration, a replica group in our system will have this number of
voting members as well as several non-voting members that stay up to date and service client
requests. If some voting member is not seen by the leader after a configurable timeout, the leader
will initiate a membership change that demotes the missing replica to non-voting status. After
an additional timeout, it will remove the replica from the group entirely.

Furthermore, whenever the number of voting members is below the configured target, the
leader will check to see if a non-voting member is present and initiate a membership change
promoting a non-voting member to voting status.

With these mechanisms in place, administrators simply need to launch new instances and
direct them to the discovery service with group information. The new server will then request

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 136

Working page

Guess
database

Raft⟲ logLog entry ✔

Database row ✔

Log app counter ✔

Merkle root

Merkle tree

Figure 5.3: Integrity across database. In order to achieve global integrity, updates are only applied
when all state on the working page validates under the same Merkle tree root.

to join the group, be brought up to date by a peer, and become a non-voting member. As needed,
the voting members may then promote this new replica to voting status.

5.5.3 Integrity across the database

Raft" provides protection against rollback attacks on the contents of the log. However, our threat
model (§5.3) assumes page-level rollback granularity on memory inside the enclave, which means
that the attacker can replace pages of data in the enclave’s memory with older pages from the
same physical location and can mix and match old and new pages, thus violating global memory
integrity.

In order to protect against rollback attacks on the backing in-memory database, SVR3 keeps
a Merkle tree across the Raft" log, database, and log application counter.

Merkle tree

The log application counter keeps track of the latest log entry that has been applied to the
database. The Merkle tree contains every database row, the hashchain of the most recently com-
mitted log entry, and the log application counter. The hashchain of the last committed log entry,
as described in §5.5.2, can be used to verify this entry and earlier entries in the log. As shown
in Figure 5.3, the Merkle leaves for database rows and log application counter are updated each
time the underlying object changes, and the update only succeeds if the current state of theMerkle
tree is consistent with the previous value of that data.

Applying committed log entries

Wedescribe howwe process committed log entries in Algorithm 5.1. The executing thread holds a
lock on the database, log, and log application counter throughout execution, so no honest process
will have a thread outside this process change the Merkle tree during that execution. When
applying a committed log to the local database, a replica will begin by reading the log application

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 137

counter lac, the log entry at that index entry, and the database row row referenced by that log
entry onto a single memory page, which we will call the working page. When reading each of
these items, it will verify its Merkle proof (Πlac,Πentry,Πrow) and also copy the root of the Merkle
tree for each read onto the working page. After copying this data, we verify that the Merkle
roots associated with each read are equal, determine whether the number of uses of this row has
surpassed the configured maximum, and update the row by incrementing the usage count and
deleting the OPRF secret if the maximum usage count has been exceeded. We then update the
row in the database and increment the log application counter, updating the Merkle tree entries
for both, then proceed with evaluating the OPRF, if the key is present, and finally respond to the
client.

If the attacker rolls back the database row to the contents of a previous timestep, it first has to
roll back every entry from the row to the Merkle tree root. However, the root also covers the log
entries and log application counter, which are modified when a database row is modified (how
SVR3 achieves atomicity of this operation is described above). Thus, the attacker will have to roll
back the log as well; rolling back the log is exactly what Raft" protects against.

Atomic regions. Because all of our working memory fits on a single page, operations are atomic
with respect to the attacker’s ability to rollback memory at the page granularity. In order to sup-
portmoremodern enclaves that only have cache line granularity (e.g., 16B), we need to implement
atomic regions that are guaranteed to run without interruption by an attacker. We describe in
detail how to implement atomic regions on SGX and SEV-SNP in §5.13 by utilizing the interrupt
handler in AEX-Notify [65]. AEX-Notify mitigates SGX-Step, an attack framework that makes it
possible to single-step enclave programs [311]. It does so by introducing an instruction set archi-
tecture extension to support a custom handler on interrupt. The SGX-Step mitigation leverages
this handler to speed up the next instruction so that the attacker is statistically unlikely to ‘hit’
the next instruction’s execution with an APIC timer. This mechanism also allows us to implement
atomic regions, in a similar fashion to restartable sequences [27]. At a high level, we set a flag in
a fixed register when an interrupt occurs, and we check this flag at the end of the atomic region
to determine whether to restart the atomic region. If the flag is set, we restart and retry until
it runs without any interrupt. We leave optimizing this approach in a secure manner to future
work.

5.6 Operations

Production systems need upgrades. This is a challenge for us because we want to defend against
malicious administrators: a secure system can become completely insecure if a malicious admin-
istrator can push arbitrary code to the system. At a high level, we defend against malicious code
updates by ensuring that users can audit the code that is running; the code is open source, and
enclaves attest to the security-relevant server code and configurations running.

Adding new servers. When a new server is launched in a trust domain, it connects to a discovery
service and registers a new group if no replica group is registered. If there is an existing replica

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 138

Algorithm 5.1 Applying a committed log entry. We describe in text how we process committed
log entries in §5.5.3.
1: workspaceR ← (lac,Πlac, entry,Πentry, row,Πrow)

Atomic region.

▷ Abort on any Verify failure.
2: failure← 0
3: Verify(Πlac.root

?
= Πentry.root

?
= Πrow.root)

4: Verify(entry.clientid ?
= row.clientid)

5: Verify(lac,Πlac);Verify(entry,Πentry);
Verify(row,Πrow)

6: if row.guess cnt < max guesses then
7: evaluated← OPRFEval(row.sk, blinded)
8: row.guess cnt← row.guess cnt+ 1
9: else
10: failure← 1
11: row.sk← 0, row.guess cnt← UINT MAX
12: end if
13: workspaceW ← (row,UpdatePrf(row,Πrow))

14: Π′
row ← UpdatePrf(row); Π′

lac ← UpdatePrf(lac)
15: Check that leaves on path in Π′

row,Π
′
lac match Πrow,Πlac.

16: if failure then returnMISSING
17: else return (OK, evaluated)
18: end if

group, the new server will select a peer in that group, validate that its enclave measurements
match, and create an attested connection with that peer. By checking that enclave measurements
match, SVR3 ensures that an administrator cannot add a server running different code. The new
server then requests to join the group, and the existing server transfers all log entries and database
rows to the new server. This is done over a Noise protocol [246] channel with key resetting and
hybrid post-quantum forward secrecy [245] to provide robust forward secrecy. Once the transfer
is complete, the replica group goes through themembership change process to add the new server
(which requires a quorum).

Sometimes security-required microcode updates need to be applied to all servers. Since all
data is kept in volatile enclave memory, there is no way to reboot the machine without losing all
replica data. In this situation, all members of the cluster must be replaced. This can be done by
sequentially adding new servers on patched hardware, then terminating old servers.

Clients. Android, iOS, and desktop clients are deployed through app stores with auditable, open-
source code. Each client contains hard-coded information about which enclave measurements

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 139

(for remote attestation), platform versions, and cluster configurations to accept. If a client at-
tempts to connect to a SVR3 cluster and finds unexpected measurements or configuration, it will
abort the connection.

Service upgrades and datamigration. Since server enclaves can only communicate with peers
that share the same enclave measurements, there is no mechanism to migrate data directly from
an old version of an enclave-backed service to a new one. Instead, data migration flows through
the client. To accomplish this, when a new version of a client is released that contains mea-
surements for the new enclave, this client will recover its secret from the old servers (if it is not
cached in local storage), and then it will back up its secret to the next version of the service. It
takes approximately 90 days for a new client software release to fully reach the user base, so the
new enclave-backed service must run alongside the older version during this 90-day window.

5.7 Implementation

We implemented SVR3 in ∼8,800 lines of C++ for the enclave and ∼5,300 lines of Go for the
untrusted host. For the SGX deploymentwe use the OpenEnclave framework v0.19 [237] and Intel
SGX v2.22. For the Nitro deployment we use the Nitro Security Module library v0.4 [232]. We use
aNoise protocol [246] channel on top of TCP for communication between replicas andwebsockets
for communication with clients. We use protobuf [252] to define formats for all wire messages. In
addition to handling client and peer requests, the host offers a control interface for administration
as well as sophisticated metrics collection that is integrated with our internal monitoring and
reporting systems. Our implementation assumes enclave page-level integrity, and we estimate
overheads for supporting 16B-level rollback granularity in §5.8.1. The implementation is open
source and the consensus system is already in production use. The full system is being deployed
to production at the time of publication. Production deployments use 7 geographically distributed
servers and a supermajority parameter of 2. Full details about the production deployment are
in §5.12.

5.8 Evaluation

We investigate the overheads of running SVR3 (§5.8.1) and the performance perceived by the end
user (§5.8.2).

Evaluation setup. For the purposes of this chapter, we evaluate end-to-end performance on our
organization’s staging system, configured to handle 10 million users. This limit is due to available
enclave memory, not compute. Staging clusters are configured with a supermajority parameter
of 1 and consist of 3 environments (trust domains), each with 5 replicas deployed in the same
region:
• AWSNitro: m5.xlarge instanceswith 2 cores and 10GBRAMper enclave ($142/month/server).

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 140

Figure 5.4: Average latency vs. throughput.

• Intel SGX at Azure: DC2s v3 instances with 2 cores and 8 GB EPC RAM per enclave ($140/mon-
th/server).

• AMD SEV-SNP at GCP: 2 n2d-standard-2 instances per enclave (one “confidential” and one
for the untrusted host) with 2 cores and 8 GB RAM (2 · ($70) = $140/month/server).

In total, the staging cluster costs $2,110/month to run ($0.0025/user/year). For microbenchmark-
ing, we evaluate on a testing cluster with the same machine types as our staging cluster but with
3 replicas per trust domain instead of 5 and a supermajority parameter of 0 instead of 1.

Our production infrastructure has more replicas (with more cores and RAM per replica) and
is set up to handle over 500 million users (more details in §5.12). We provision for 1 req/s/1M
users and ∼256B of RAM/user. Our experience operating this system gives us confidence that
evaluating on the staging infrastructure is meaningful and that SVR3 scales gracefully. To val-
idate this claim, we also evaluate on an AMD SEV-SNP cluster with 100 million users using
n2d-standard-4 instances (4 cores and 16 GB RAM).

5.8.1 Microbenchmarks

Throughput. We plot an average latency vs. throughput curve for write and recovery requests
in Figure 5.4. We generate each point by varying the number of client threads and measuring
the average latency and throughput of requests. Requests are spread out across all 3 servers.
For the 10M-user deployments, the throughput of recovery requests levels off around 1,700 req/s
for Nitro, 1,000 req/s for SGX, and 3,300 req/s for SEV-SNP (for both 10M-user and 100M-user
deployments).

Latency. We plot CDFs of the latency of write and recovery requests in Figure 5.5, Figure 5.6,
and Figure 5.7 for Nitro, SGX, and SEV-SNP, respectively. Within each figure, we plot the latency

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 141

(a) StoreSecret

(b) RecoverSecret

Figure 5.5: Request latency
CDF for AWS Nitro, varying
client threads, 10M users.

(a) StoreSecret

(b) RecoverSecret

Figure 5.6: Request latency
CDF for Intel SGX, 10M users.

(a) StoreSecret

(b) RecoverSecret

Figure 5.7: Request latency
CDF for AMD SEV-SNP, 10M
users.

(a) StoreSecret (b) RecoverSecret

Figure 5.8: Request latency for AMD SEV-SNP, 100M users.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 142

(a) Request latency CDF. (b) Request latency breakdown. HS = Noise
handshake, Serial = serializing/deserializing

protobufs, Apply = applying log entry
(§5.5.3).

Figure 5.9: SVR3 performance without network latency from Raft".

Enclave Network (B/user)
StoreSecret RecoverSecret

C↔ S S↔ S C↔ S S↔ S
SGX 20,717 288–1,276 20,717 224–1,212

SEV-SNP 4,406 288–1,276 4,406 224–1,212
Nitro 4,593 288–1,276 4,593 224–1,212

Table 5.1: Network usage for a single client request to a 3-replica cluster. S=server, C=client. C
↔ S for SEV-SNP is an estimate.

when requests are sent only to the leader, when requests are sent only to followers, and when
requests are sent to all 3 servers. Requests sent to followers are forwarded to the leader, so the
average latency of requests at followers is higher than at the leader. The latency distribution of
requests when sending requests to all 3 servers improves compared to sending requests to only
followers. The latency distribution is better than sending requests to only the leader for Nitro
and SGX, and the tail latency is worse than sending requests to only the leader for SEV-SNP. At
100 client threads, the average latency for requests sent to all servers for key recovery is 56.9ms
for Nitro, 98.3ms for SGX, and 32.3ms for SEV-SNP. We also plot the CDFs of recovery request
latency for the 100M-user SEV-SNP deployment in Figure 5.8. The latency distribution of the
100M-user deployment is very similar to the 10M-user deployment and the average latency of
the requests sent to all 3 servers for key recovery is 30.9ms.

We note that a majority of the latency is due to network latency when appending to the Raft"
log, whichwe validate in Figure 5.9. We run the same experiment as above, butwith 1 client thread
and 1 SGX node (effectively disabling the network requests of Raft"). We plot the CDF of request

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 143

latencies under this regime in Figure 5.9a, and the average latency of these requests is 1.47ms.
We also profile the server and plot the percentage of CPU ticks in Figure 5.9b. On average, the
Noise handshake is about 35%, applying the log entry is about 21%, and 13% is encrypting peer
messages for Raft". The yellow spikes are due to periodic updating of environment statistics,
which also contributes to the long tail request latencies in SGX (Figure 5.6).

Impact of supporting 16B-granularity. Informed by latency measurements, we can upper-
bound the impact of latency from achieving page-level integrity from 16B-granularity using
atomic regions (§5.5.3). Applying the log entry (which we will conservatively make an entire
atomic region) takes 1.47 · 0.21 = 0.3ms. We could be interrupted by the APIC timer, the end
of a thread scheduling quantum, or by a page fault from a memory access, of which there are
5 · log2(100, 000, 000) = 120 (from the Merkle tree accesses in algorithm 5.1). In the worst case,
we would repeat execution of the atomic region 122 times, resulting in a worst-case additional
latency of 36.6ms. Note that this is a (very) loose upper bound and is still below user perceptibil-
ity.

Network usage. We measure the network usage of SVR3 running on each enclave type for a
3-replica cluster in Table 5.1. There is a range of network usage for Server ↔ Server because
it depends on how many requests have been batched into a single Raft" append request. The
network usage between servers also depends on the number of servers in the cluster, growing
proportionally to m − 1 for m servers. From a deployment perspective, we are more concerned
with the Client↔ Server bandwidth, which is under 20KB for all enclave types. This is because
exchanging more data between the client and the server can become a usability issue for users
with limited data plans.

Memory usage. We measured the memory usage of SVR3 on SGX, varying the number of
users in the system. Note that we expect the memory usage to be similar for all enclave types,
since they are storing the same amount of data for each user. We find that memory usage
grows by ∼450B/user until we start truncating the log at 100MB and then settles into a steady
170B/user added. At 100 million users, SVR3 uses 18.5GB of memory on each server, which is
185B/user/server.

5.8.2 End-to-end performance
We measure the end-to-end performance of SVR3 by running a client that stores its secret key
by sending a (sequential) request to a server in each enclave cluster. For a more representative
deployment, we geographically distribute the clusters as follows:
• SGX cluster: centralus, eastus, eastus2, southcentralus, and westus
• SEV-SNP cluster: us-central1, europe-west3, asia-southeast1, europe-west4, and
europe-west3

• Nitro cluster: us-east-1, us-east-2, us-west-1, us-west-2, and eu-north-1

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 144

(a) Request (StoreSecret)
latency CDF.

(b) Client request latency
breakdown.

Figure 5.10: End-to-end performance.

The performance for recovering a key is almost identical to the performance for storing a key, so
we only report the performance for storing a key. We plot the CDF of the latency of these requests
in Figure 5.10a. The average end-to-end latency is 365ms, which is reasonable for a user to wait
for a key recovery or key backup request. We plot the breakdown of the latency in Figure 5.10b.
The majority of the latency is from waiting for servers to respond (69.3%), followed by remote
attestation with the servers (29.9%).

5.9 Discussion

Consensus in the enclave. Nimble [9] is able to maintain a secure log while removing the
consensus mechanism from the TCB, and an important future direction for SVR3 would be to
similarly minimize its TCB. However, it is not entirely straightforward, and there are interesting
design and engineering challenges to address. First, Nimble will need to be hardened against
physical rollback attacks, which seems straightforward to do. More significant is that since this
log—which contains OPRF secrets—will be held in untrusted storage, it must be encrypted. This
has important consequences for our system as we describe below, and addressing themmay result
in significant additional complexity (and thus increase the TCB).

First, we note that we will need enclaves similar to the ones we have today to handle client
requests. These enclaves will now need to share a common encryption key to encrypt and decrypt
these log messages. This shared key becomes a new single point of failure for the system. To
maintain the forward secrecy we have today due to our use of Noise protocol [246] channels
with rekeying between enclaves, it seems the enclaves will need to participate in some sort of
continuous group key agreement (CGKA) [5] to rotate the key periodically and on membership
changes.

Second, if this new system aims to keep the TCB small by maintaining the database state
outside of the enclave, as with Juicebox [303] or WhatsApp [320], then the encryption key for

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 145

the database becomes another single point of failure, but in this case it is not clear how we can
achieve forward secrecy without periodically re-encrypting the entire database. If, on the other
hand, we maintain the database in enclave memory, as we do now, then the use of CGKA to
protect the encrypted log means that new members of a replica group will not be able to read old
log messages to construct the database state. While we have a state transfer mechanism in our
current system to handle truncated logs, we will need to refine it to ensure that new members
are correctly initialized.

Taken together, we see removal of the consensusmechanism from the TCB as a project that re-
quires careful design and analysis and significant engineering work that adds its own complexity.
We note that the consensus protocol is a relatively small (1,541 LOC in C++) and well-understood
part of our current codebase, so we need—and hope to find—clear rationale for its removal.

In-memory vs. disk-based storage. While disk-based storage solutions are cheaper than keep-
ing the entire database of key recovery shares in memory, they are more susceptible to rollback
attacks because the secrets are taken out of the enclave, and even enable rollback attacks that are
software-based and can be performed without physical access.

Data privacy compliance. In general, a multi-cloud deployment may complicate compliance
with data privacy laws. The design of SVR3, however, keeps compliance simple since by pre-
venting any user data from being processed by our servers and blocking our administrators from
accessing sensitive keys.

Malicious clients. SVR3 provides security guarantees for users using our clients, which we
assume are well-behaved. Our client code is open source [211–213], and scrutinized by the com-
munity. If the user’s client is compromised and malicious (e.g., the user has malware), it can affect
the security of that user, but not the security or experience of other users with uncompromised
clients.

Honest cloud providers?. If we could assume that most cloud operators are honest, then that
could change the parameterization of SVR3 (e.g., setting the number of trust domains that can
be compromised t to 1), though this would also require assuming that the enclaves were not
susceptible to any future vulnerabilities that could be exploited remotely. We would still use
enclaves to prevent malicious system administrators from running arbitrary server code.

Future and ongoing work. SVR3 could be modified to support a transparency log so that users
have a means of monitoring key recovery requests (similar to SafetyPin [74]) and changes in
replica group membership. Currently, clients can rekey in SVR3 by reentering the user’s PIN. We
will eliminate the requirement for user interaction and explore an approach closer to proactive
security [43], where keys can be rotated more frequently without client involvement. The OPRFs
that SVR3’s cryptographic protocol relies on are not quantum-safe; hardening SVR3 against an
attacker that will have eventual access to a quantum computer and can harvest now, decrypt later
(HNDL) [302] is also ongoing work.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 146

5.10 Related work

Secret recovery systems. A number of companies have deployed secret recovery systems using
secure hardware: Apple protects user iCloud data using hardware security modules (HSMs) [13,
173], Google protects Android backups using secure microcontrollers [316], and WhatsApp pro-
tects message histories using HSMs [320]. WhatsApp runs vanilla Raft [234] on a geographically
distributed cluster of HSMs and uses OPAQUE [158] for key recovery. WhatsApp’s consensus
only requires one round trip between the leader and the replicas while SVR3 requires an extra
round of communication (to guarantee safety in the face of rollbacks). Davies et al. analyzed the
security of the WhatsApp encrypted backup protocol [80]. Like SVR3, all of these systems use
secure hardware to allow a user to recover a cryptographic secret using a low-entropy secret (e.g.,
a 4-digit PIN). Unlike SVR3, they rely on a single type of secure hardware: the compromise of
one secure hardware device can compromise many users’ secrets.

Juicebox [303] is a key recovery protocol that distributes trust across one type of secure hard-
ware and multiple trust domains in the traditional manner (across organizations). SVR3 has a
simpler protocol that is not a multi-round PAKE as our servers never learn whether the PIN is
guessed correctly or not (keys are deleted unconditionally when guesses run out). Secret shares
are also stored directly on the servers in Juicebox. Thus, to prevent an attacker who compro-
mises a threshold number of trust domains from reconstructing all the secrets without needing
to mount a dictionary attack, they must mix the reconstructed secret with the PIN to create an
encryption key that is then used to encrypt the target secret.

SafetyPin [74] is a PIN-based end-to-end encrypted backup system that defends against an
attacker that can adaptively compromise some percent of HSMs. While SafetyPin protects against
a more powerful attacker model, it requires a comparatively large number of HSMs.

Tutamen [271], Acsesor [52], and CanDID [203] split trust across multiple entities to allow
users to recover their secrets (among other operations). Chen et al. [57] use cloud storage for
secret recovery. These systems do not use secure hardware; the use of enclaves in SVR3 provides
additional security and requires us to design for their limitations (e.g., rollback attacks). CA-
LYPSO [170] also shards user secrets across different entities but, unlike SVR3, uses a blockchain.
PreVeil [251] shards secret keys across other peers in a social or work graph, but requires manual
setup from the user.

Another line of work has taken amore theoretical approach to the problem of secret key back-
ups. Benhamouda et al. [25] use a proof-of-stake blockchain to allow users to store secrets while
protecting against an attacker that can adaptively compromise a percent of the stake. Subsequent
work improves efficiency in this model via batching [122].

Orisini et al. [239] also describe a scheme for end-to-end encrypted backups, but in their
scheme, the user does not need to remember a PIN or something similar. Instead, clients must
refute illegitimate recovery attempts. While this approach is appealing in that it eliminates the
PIN, it does not work for our setting where clients may go offline for extended periods of time.

End-to-end encrypted backups can be vulnerable to injection attacks where changes in the
backup size can allow the attacker to infer information from sensitive metadata [96]. This work

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 147

focuses on backing up cryptographic keys, and these type of injection attacks are important to
consider in the context of the larger system using SVR3.

Multi-party computation and secure hardware. Cryptocurrency wallets protect user secrets
by distributing them across hardware enclaves or HSMs [100, 107, 168, 266, 278]. Cryptocurrency
wallets are designed to avoid materializing the key in a single location rather than to enable users
to recover secrets. Myst provides security by splitting trust across many hardware devices and
operations like signing and decryption [207]. More broadly, prior work has examined composing
multi-party computation and secure hardware for efficiency [19, 83, 175, 233]. Our use of secure
hardware with multi-party computation is tailored to encrypted backups and, while this line of
work uses secure hardware to reduce the costs of multi-party computation, we use it to augment
the security of the system. In prior work [75], we observed that heterogeneous secure hardware
hosted by different clouds can be useful for deploying systems that split user secrets, including
encrypted backups, but we had not yet worked through and built out such a deployment.

Rollback prevention in enclaves. There has been a rich line of work on preventing rollback
attacks in enclaves. Memoir [241] and Ariadne [295] store a small amount of state inside non-
volatile memory (NVRAM) and use that to reconstruct application state during recovery. Both ap-
proaches are scoped to single machines, and do not provide availability in the event of a machine
permanently failing. ROTE [205] uses a broadcast algorithm across enclaves to maintain a dis-
tributed counter, but requires NVRAM to update group membership, whereas we use our Raft"
log to update membership. Additionally, the abstraction that ROTE offers is one of a counter
instead of generic log entries. Engraft [318] examines the safety issues of running off-the-shelf
consensus inside enclaves. They use an underlying broadcast protocol similar to ROTE to main-
tain a distributed counter and introduce additional mechanisms to support node recoverability.
However, in our setting, we can simply start a new node in the event of a node failure, so we do
not need to support node recoverability.

Nimble [9] is a lightweight replication protocol that provides a freshness-guaranteed ledger.
The ledger can be used to keep track of the state of untrusted storage, enabling applications that
run on enclaves to persist their state to external (untrusted) storage and detect potential rollbacks
on that storage. Note that our system is already protected against the class of rollback attacks
on external storage described in §1 of [9] because all data is stored and maintained in memory.
Nimble’s threat model does not include physical rollback attacks on the enclave (both endorser
and application). However, minimizing SVR3’s trusted computing base (TCB) is an interesting
and important future direction, and we discuss potential design decisions and open challenges
in §5.9.

TrInc [192] shows that a secure log can be implemented with a secure counter. However,
realizing a secure counter on enclaves is difficult. We cannot write PCRs to the TPM from inside
an SGX enclave, and additionally, TPMs can limit the speed of counter updates (§6.1.1, [295]).
CPU registers are written to the SSA, which can be rolled back. On SGX there is no CPU register
where only an enclave can write to it. We are unaware of an (efficient) secure counter primitive
on newer enclaves after consulting with Intel.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 148

Consensus protocols. As Dinis et al. [85] point out, rollback behavior can be considered a sub-
set of Byzantine behavior, so the Byzantine fault tolerant (BFT) model is stronger than necessary
for our setting. Consequently, Raft" is lighter weight than BFT flavors of Raft protocols like
Tangoroa [66] which requires O(m2) communication scaling in the number of replicas. The su-
permajority parameter in Raft", which increases the quorum size, is comparable to PBFT’s [46]
Byzantine nodes value. Engraft [318] and RR (TEEMS) [85] address data-sealing (software) roll-
back attacks. SVR3 not only defends against these data-sealing rollback attacks, but also defends
against physical rollback attacks.

5.11 Properties of different enclaves

Intel SGX. Intel Scalable SGX (also known as SGX) attains confidentiality through hardware-
based access control and encryption. The access control is obtained by placing all enclave mem-
ory inside processor reserved memory that cannot be accessed by software outside the enclave,
including the OS and hypervisor. Additionally, enclave data memory is encrypted using Intel
TME, which employs hardware-based AES-XTS encryption to all data pages before they leave
the processor [167]. The access control provides protection for enclave data on-chip and the en-
cryption provides protection from cold-boot and other attacks. SGX guarantees integrity in the
presence of software-based attacks across the entire memory region, but does not provide this
guarantee in the presence of physical attacks [159]. The use of hardware-based AES-XTS encryp-
tion of all memory pages yields ciphertexts at the 16B block level that cannot be moved but can
be replayed by attackers with physical access to the system bus.

SGX provides application-level attestation. When creating an SGX enclave the system loads
a dynamic library into protected memory and measures the layout of this memory, along with
security flags associated with these memory pages. This measurement is provided to clients in a
signed document that allows clients to confirm that the enclave is running the code expected by
the client on an up-to-date platform. Thus the TCB of an SGX application includes the application
library and the platform firmware. As of June 2024, SVR3 is deployed on DCsv3 instances at
Microsoft Azure, which use Intel Icelake processors.

AMD SEV-SNP. AMD SEV-SNP has memory protection that is similar to Intel SGX. All varieties
of AMD SEV use hardware-based AES encryption to protect memory off chip. Additionally, with
SEV-SNP, AMD adds hardware based access control and integrity and freshness guarantees. SEV
uses AES-XEX memory encryption that, like Intel SGX, produces ciphertexts at the block level
that cannot be moved but could be replayed [6].

SEV-SNP provides attestation at the VM level, so to obtain application-level attestation engi-
neers must produce a restricted VM image that can only run the target application code. Thus the
attested code base includes an entire VM image and hence is much larger than the attested code
base for a Scalable SGX enclave running the same application. As of June 2024, SVR3 is deployed
on n2d-highmem-16 at GCP, which use AMD Rome or AMD Milan processors.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 149

AWS Nitro. AWS Nitro enclaves run on dedicated cores and use hardware-based access control
to protect enclave memory. The use of dedicated cores differs from SGX and SEV-SNP, reducing
exposure to some side channel attacks. The memory protection provides integrity in the presence
of software-based attacks across the entire memory region. Nitro enclaves running on Graviton
2 and 3 chips provide memory encryption [39]. While the details of this memory encryption are
not public, it claims to guard against cold-boot attacks but makes no claims about security in the
presence of physical attackers. Thus we expect that the implementation is similar to those of
Scalable SGX and AMD SEV-SNP.

AWS Nitro has a larger TCB (the Nitro cards, security chip, and hypervisor) than Intel SGX
and AMD SEV-SNP. While it is designed for application level attestation and does not present the
engineering challenges that SEV-SNP does, it still requires attestation of an entire Docker image
rather than the single application library attested by SGX. As of June 2024, SVR3 is deployed on
m5 instances at AWS, which use either Intel Skylake-SP or Cascade Lake processors, and we are
evaluating a move to Graviton-based instances.

5.12 Production deployment

Production clusters will use 7 replicaswith at least 128 GB of enclavememory and a supermajority
parameter of 2. We will estimate bandwidth costs assuming 500 requests per second, a reasonable
estimate for 500 million users. To deploy this at published rates will cost:
• AWS Nitro: m5.12xlarge (48 cores, 192 GiB memory) $1,535.62/month:

– Compute: $10,749.34 /month
– Bandwidth: 6150 GB client-server at $0.09/GB = $553/month

• SGX at Azure: DC24sv3 (24 cores, 192 GiB memory) $1,681.92/month
– Compute: $11,773.44/month
– Bandwidth: 27,744 GB at $0.087/GB = $2,414/month

• SEV at GCP: n2d-highmem-16 x 2 (32 cores total, 256 GiB RAM total, 128 for the TEE) $1,528.76
/ month:
– Compute: $10,701.32/month
– Bandwidth: 13,392 GB at $0.11/GB = $1,473/month

• Total cost: $37,663/month. This deployment will comfortably support over 500 million users,
giving an operating cost of $0.0009/user/year.

5.13 Atomic regions

To prevent attackers from exploiting gaps between time-of-check and time-of-use data, we need
a way to guarantee that a segment of code runs without interruption and that certain working
data is non-volatile during its execution. We accomplish this on the SGX and SEV-SNP platforms

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 150

using custom interrupt handlers, but we do not currently have a means to implement atomic
regions for AWS Nitro.

SGX Implementation. The key observation that allows us to implement atomic regions on the
SGX platform is that the AEX-Notify ISA extensions [16] let us implement a custom AEX-Notify
handler that performs the SGX-Step mitigation of [65] and also sets a flag in a fixed register which
wewill denote IR to notify the application that it was interrupted. We can then implement atomic
regions as follows:
1. Enable AEX-Notify and register a custom AEX Notification handler that performs the single-

step mitigations of [65], sets the value of IR to 0x1 in the atomic prefetching phase, and loads
two arrays of workspace data - one for reading and one for writing - into L1 cache.

2. Begin an atomic region by setting IR to 0x0 and setting thememory of the read/writeworkspace
array to zero.

3. Implement the functionality of the atomic region in a way that does not modify IR and that
only reads memory from the workspace arrays, and only writes to registers or to the read-
/write workspace array.

4. At the end of the atomic region, check IR. If it is set, then jump back to step 2, otherwise
leave the atomic block and continue execution.

Thus the atomic block only completes if no interruption occurs during its execution, and the data
in the read-only workspace array will be unchanged throughout an uninterrupted execution.
Note, however, that an attacker could modify the workspace data between execution attempts so
there is no guarantee that the atomic region will process the same input data on each execution
attempt.

With simultaneous multithreading (SMT) disabled, an attacker cannot evict workspace data
from the cache and force a read from the DIMMs without interrupting the process. Thus even if
an attacker attempts to rollback memory in the DIMMs during execution of the atomic region, it
will not be seen in the processing.

An attacker is capable of rolling back registers by interrupting the process, rolling back the
SSA to an earlier version, then resuming the process. Note that the attacker cannot use this to
clear IR since our handler will reset it after every interruption.

SEV-SNP Implementation. The TCB for SEV-SNP includes the operating system (OS), as attes-
tation is at the VM level. To implement a AEX-Notify style handler on SEV-SNP, we can modify
the trusted OS to handle APIC interrupts and carry out the steps described above.

5.14 Raft" safety proofs

Lemma5.4 (Fundamental Lemma). If Len(RollbackServer) ≤ s , where s is the rollback tolerance
parameter, then the intersection of any two quorums contains at least one non-rolled-back server.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 151

Proof. A quorum is comprised of ⌊(m + s)/2⌋+1 servers. Two quorums have a total of> m + s
servers, so theymust overlap inmore than s servers. At most s of these servers can be rolled back,
so the intersection of these two quorums must contain at least one non-rolled-back server.

Lemma 5.5. A server’s currentTerm monotonically increases
:
if

::
it
:::
is

::::
not

:::::::
rolled

:::::
back

:::
in

:::::
this

::::::::::
transition:

∀i ∈ Server :
∀s : ¬ Rollback(i , s) =⇒
currentTerm[i] ≤ currentTerm ′[i]

Proof. This follows from the specification.

Lemma 5.6. There is at most one leader per term:

∀e, f ∈ elections :
e.eterm = f .eterm =⇒ e.eleader = f .eleader

Proof sketch. This follows from Lemma 5.4. It takes votes from a quorum to become leader, voters
may only vote once per term, and any two quorums overlap in a

:::::::::::::::
non-rolled-back

::::::
voter.

Lemma 5.7. A
::::::::::::::::
non-rolled-back leader’s log monotonically grows during its term:

∀e ∈ elections
∧ e.leader /∈ RollbackServer
∧ currentTerm[e.leader] = e.term =⇒
∀index ∈ 1 . . . Len(log [e.leader]) :

log ′[e.leader][index] = log [e.leader][index]

Proof. The proof corresponds exactly to the proof of Lemma 3 in [234].

Lemma 5.8.
::::::::
Assume

:::::
that

::::
the

:::::
hash

:::::::::
function

::::::
used

::
is

::
a
::::::::::::::::::
collision-resistant

::::::
hash

:::::::::
function

:::::::
[115].

::::::
Then,

:::::
there

:::::::
exists

:
a
:::::::::::
negligible

:::::::::
function

::::
ν(·)

:::::
such

:::::
that

::::
the

:::::
hash

::
of

:::
an

:::::::::::::::::::::::::::
⟨index , term, value, hash⟩

:::::
tuple

::::::::::
identifies

:
a
::::
log

::::::
prefix

:::::
with

::::::::::::
probability

:::::::::
1− ν(λ):

∀l ,m ∈ allLogs
⟨index , term, value, hash⟩ ∈ l :
⟨index , term ′, value ′hash⟩ ∈ m :
∀pindex ∈ 1 . . . index :

l [pindex] = m[pindex]

Proof sketch. Only leaders create entries, and they assign the new entries term numbers that will
never be assigned again by other leaders (Lemma 5.6).

When followers accept AppendEntriesRequest from the leader, they check that the values of
hash match. The probability of a collision for some other index ′, term ′, i.e., the follower appends
a different entry with the same hash to its log is ν(λ).

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 152

Proof. We prove this inductively on an upper bound for index . For index ≤ 1 violating the
property requires finding ⟨index , term, value, hash⟩, ⟨index , term ′, value ′hash⟩ such that

Hash(index , term, value, 0) = Hash(index , term ′, value ′, 0)

Since the hash function is collision resistant this implies term = term ′ and value = value ′ with
high probability, proving our base case.

Now assume that for some N the result is true whenever index < N . A server only appends
⟨index , term, value, hash⟩ to its log l if Hash(index , term, value, l [index − 1].hash) = hash .
Hence if ⟨index , term, value, hash⟩ ∈ l and ⟨index , term ′, value ′, hash⟩ ∈ m then Hash(index ,
term, value, l [index − 1].hash) = hash = Hash(index , term ′, value ′,m[index − 1].hash).

This is a negligible probability unless term = term ′, value = value ′, and l [index − 1].hash =
m[index − 1].hash . Thus l [index] = m[index] with high probability. Furthermore, since
l [index − 1].hash = m[index − 1].hash with high probability, the inductive hypothesis implies
∀pindex ∈ 1 . . . index : l [pindex] = m[pindex], completing the induction.

Lemma 5.9. When a follower processes an AppendEntriesRequest and does not reject it, then
after processing, part of its log is a prefix of the leader’s log at the time the leader sent the
AppendEntriesRequest:

∀i , j ∈ Server ,∀m ∈ domain messages :
∧ HandleAppendEntriesRequest(i, j, m)
∧ ∃ rsp ∈ domain messages :
∧ Reply(rsp,m)
∧ rsp.msuccess = true =⇒
∀index ∈ 1 . . .m.mcommitIndex :
∧ log ′[i][index] = m.mlog [index]

Proof sketch. The follower only appends ⟨index , term, value, hash⟩ if its hash chain is consistent
with the follower’s current log. Similarly the leader computed hash in ⟨index , term, value, hash⟩
to be consistent with its own log. We can use Lemma 5.8 to m.mlog and log ′[i] since both are in
allLogs .

Proof. Since rsp.msuccess = true it follows that the intermediate expression logOk in the defi-
nition of HandleAppendEntriesRequest evaluates to true.

If no entries were added by this request then m.mprevLogIndex ≥ m.mcommitIndex . Fur-
ther, logOk = true implies that

m.mlog [m.mprevLogIndex].hash = log [i][m.mprevLogIndex].hash,

thus Lemma 5.8 implies m.mlog matches log [i] up to m.mprevLogIndex > m.mprevIndex ≥
m.mcommitIndex .

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 153

If entries were added to log [i], then logOk = true implies that the hash chain value of
the added log value matches the hash chain value corresponding entry in m.mlog . Applying
Lemma 5.8 now shows that log ′[i] is now a prefix of m.mlog and the result follows.

Lemma 5.10. A server’s currentTerm is at least as large as the terms in its log:

∀i ∈ Server :
⟨index , term, value, hash⟩ ∈ log [i] :

term ≤ currentTerm[i]

Proof sketch. Without rollbacks, prove by induction in Lemma 6 of [234]. A server can only be
rolled back into a state where the inductive hypothesis is true.

Lemma 5.11. Servers never remove promised entries without rollback:

∀i ∈ Server \ RollbackServer :
∧ ⟨index , term, value, hash⟩ ∈ log [i]
∧ step = s0
∧ index ≤ promiseIndex [i] =⇒
∀s1 ≥ s0 :
∧ step = s1
∧ ⟨index , term, value, hash⟩ ∈ logs [i]

Proof. This follows immediately from the specification, since the promise index increases mono-
tonically and promised entries are not removed.

Lemma 5.12. If an entry is not in a leader’s log, then there is an earlier election for this leader
and this term that does not have the entry in the election log.

∧ isLeader(leader)
∧ ⟨i , t , v , h⟩ /∈ logs [leader] =⇒
∃e ∈ elections :
∧ e.estep ≤ step
∧ e.eterm = currentTerm[leader]
∧ ⟨i , t , v , h⟩ /∈ e.elog

Proof.
1. Assume

∧ isLeader(leader)
∧ ⟨idx , t , v , h⟩ /∈ logs [leader]

2. Define

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 154

a) goodSteps ≜ {s : isLeader(leader , s) ∧ ⟨idx , t , v , h⟩ /∈
states [s][leader].log ∧ states [s][leader].term = currentTerm[leader]}

This is the set of all steps (state transitions) within a term where the leader of that term
does not have ⟨idx , t , v , h⟩ in its log.

b) step1 ≜ min(goodSteps). This is well defined since by our assumption step ∈ goodSteps
so goodSteps ̸= ∅. Furthermore step1 ≤ step.

3. It follows that ∨¬ isLeader(leader , step1 − 1) ∨ states [step1 − 1][leader].term <
currentTerm[leader] ∨ ⟨idx , t , v , h⟩ ∈ states [step1 − 1][leader].log

In order for step1 to be the minimal goodStep, one of the above clauses must be true about
step1 − 1 because step1 − 1 /∈ goodSteps .

a) If ⟨idx , t , v , h⟩ ∈ states [step1 − 1][leader].log then the action that led to step1 removed
⟨idx , t , v , h⟩ from the log. Thus it was either a rollback or a HandleAppendEntriesRe-
quest.
i. If leader processed a HandleAppendEntriesRequest at this step then it was not a
leader at step1−1 since leaders do not process these. Furthermore since it processed
a HandleAppendEntriesRequest and not a BecomeLeader or rollback, it could not
become leader at step1 . This is a contradiction.

ii. If the action from step1 − 1 to step1 was a rollback to an earlier state at some step0
then we must have step0 ∈ goodSteps ∧ step0 < step1 . This is a contradiction.

iii. Thus ⟨idx , t , v , h⟩ /∈ states [step1 − 1][leader].log .
b) If states [step1−1][leader].term < currentTerm[leader] then the action that led to step1

was either a rollback to an earlier goodStep, which is impossible since step1 is the earliest
goodStep, or an ElectionTimeout(leader)whichwould imply that¬ isLeader(leader ,
step1). This is a contradiction.

c) Thus it must be ¬ isLeader(leader , step1 − 1).
4. There are two actions that could allow leader to become a leader at step1 :

a) A rollback to an earlier goodStep, but this is impossible because step1 is the earliest
goodStep.

b) BecomeLeader(leader) could occur. This does not change the log and it adds an election
e ′ to elections with:

∧ e ′.estep < step
∧ e ′.eterm = currentTerm[leader]
∧ e ′.log = states [step1 − 1][leader].log

Since ⟨i , t , v , h⟩ /∈ states [step1−1][leader].log it follows that ⟨i , t , v , h⟩ /∈ e ′.elog . This
proves the result.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 155

Definition 5.1. An entry ⟨index , term, value, hash⟩ is immediately committed if it is ac-
knowledged by a quorum (including the leader) during term

::::
and

:::
all

::::::::::
members

:::
of

::::
that

:::::::::
quorum

:::::
have

:::
the

::::::
same

::::::
value

:::
for

::::::
hash .

immediatelyCommitted ≜ {⟨index , term, value, hash⟩ ∈ anyLog :
∧ anyLog ∈ allLogs
∧ ∃leader ∈ Server , subquorum ∈ subset Server :
∧ subquorum ∪ {leader} ∈ Quorum
∧ ∀i ∈ subquorum :
∃m ∈ messages :
∧ m.mtype = AppendEntriesResponse

∧ m.msource = i
∧ m.dest = leader
∧ m.term = term

:::::::::::::::::::::::::::::::
∧ m.mPromiseIndex ≥ index

::
∧ log [leader][m.mMatchIndex].hashChain =

:::::::::::::::::::::::
m.mMatchHashChain

:::
∧ ⟨index , term, value, hash⟩ ∈ log [leader] }

Note that ⟨index , term, value, hash⟩ ∈ log [leader] enforces that ⟨index , term, value, hash⟩ is in-
deed in the log instead of some ⟨index , term, value, hash ′⟩. Our definition of immediately com-
mitted differs from [234]. In particular, we introduce a promise index and a hash chain. We also
prove committed under live terms, which we define next.
Definition 5.2. A live term is a term in which some log entry is immediately committed:

liveTerms ≜ {term :
∃ ⟨index , term, value, hash⟩ ∈ immediatelyCommitted}

Definition 5.3. An entry ⟨index , term, value, hash⟩ is live committed at term term if it is
present in every leader’s log in live terms following term :

liveCommitted(term) ≜ {⟨index , term, value, hash⟩ :
∀election ∈ elections :
∧ election.eterm > term
∧ election.eterm ∈ liveTerms =⇒
⟨index , term, value, hash⟩ ∈ election.elog}

Lemma 5.13. Immediately-committed entries are live committed:

∀⟨index , term, value, hash⟩ ∈ immediatelyCommitted :
⟨index , term, value, hash⟩ ∈ liveCommitted(term)

Proof.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 156

1. Let ⟨index , term, value, hash⟩ be an entry that is immediately committed.
2. Define

BadElections ≜ { election ∈ elections :
∧ election.eterm > term
∧ ⟨index , term, value, hash⟩ /∈ election.log }

3. Let election be an element in BadElections with a minimal eterm field. If there is more than
one election in the same term, choose the election with the minimal estep field.

4.
:::::
WTS

::::::::::::::
BadElections

:::::
does

::::
not

::::::::
contain

::::
any

:::::::::
elections

::
e
:::::
with

:::::::::::::::::::::::
e.eterm ∈ liveTerms .

5. Let voter be any server that both votes in election , contains ⟨index , term, value, hash⟩ in its
log during term ,

:::
and

::::
has

::::
not

::::::
been

::::::
rolled

:::::
back. Such a server must exist since:

a) A quorum of servers voted in election for it to succeed.
b) A quorum contains ⟨index , term, value, hash⟩ in its log during term since it is immedi-

ately committed.
::::::::
Because

:::::::::::::::::::::::
m.mMatchHashChain

:::::
must

:::::::
match

:::::::
across

:::
all

::::::::
servers

::
in

:::::
this

::::::::
quorum,

::::
all

::::::::
quorum

::::::::::
members

::::::
agree

:::::
with

::::
the

:::::::
leader

:::::
(and

::::::
each

::::::
other)

:::::::
w.h.p.

:::
at

:::::::
index

::::::::::::
(Lemma 5.8).

c) Any two quorums overlap in a server that
:::
has

::::
not

:::::
been

::::::
rolled

::::::
back (Lemma 5.4).

6. Let voterLog ≜ election.evoterLog [voter], the voter’s log at the time it cast its vote.
7. WTS ⟨index , term, value, hash⟩ ∈ voterLog :

a) ⟨index , term, value, hash⟩ was in the voter’s log during term .
b) The voter must have stored the entry in term before voting in election.term since:

i. election.eterm > term

ii. The voter rejects requests for index with terms smaller than its current term, and its
current term monotonically increases (Lemma 5.5).

c) The voter couldn’t have removed the entry before voting:
C-1: No AppendEntriesRequest with mterm ≤ term removes the entry from the

voter’s log, since currentTerm[voter] ≥ term upon storing the entry (Lemma 5.10)
and the voter does not remove entries from requestswith terms≤ currentTerm[voter].

C-2: No AppendEntriesRequest with mterm > term removes the entry from the
voter’s log, since:
C-A: mterm > election.eterm : the voter would have been prevented in voting in

election.eterm .
C-B: mterm = election.eterm :

::
In

::::::
order

:::
for

:::
the

:::::::
leader

::
to

:::::
have

:::::
sent

:::
an

::::::::::::
AppendEnt-

::::::::::::::
riesRequest

:::
for

::::::::::::::::::::::::::::
⟨index , term, value, hash ′⟩,

:::
the

:::::::
leader

::::
did

:::
not

::::::
have

::::::::::::::::::::::::::
⟨index , term, value, hash⟩

:::
in

:::
its

::::
log,

::::
so

::::::
there

::::
was

::::
an

:::::::
earlier

:::::::::
election

::::
that

:::
did

::::
not

::::::
have

::::::::::::::::::::::::::
⟨index , term, value, hash⟩

:::
in

:::
its

:::::
elog

:::::::::::::::
(Lemma 5.12),

:::::::
which

::
is

:
a
::::::::::::::
contradiction.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 157

C-C: mterm < election.eterm : The leader of mterm must have the entry, other-
wise by Lemma 5.12 it has an earlier election that does not have the entry
in its log. This contradicts the assumption that e is the minimal elelection in
BadElections .

8. Since voter voted during election :

∨ LastTerm(election.elog) > LastTerm(voterLog)
∨ ∧ LastTerm(election.elog) = LastTerm(voterLog)
∧ Len(election.elog) ≥ Len(voterLog)

9. Case: LastTerm(election.elog) = LastTerm(voterLog) ∧ Len(election.elog) ≥ Len(voterLog):
a) LetQ denote the quorumof servers that immediately committed ⟨index , term, value, hash⟩.
b) Consider a live term t > term with election e , e.eterm = t , and an entry ⟨i , t , v , h⟩ im-

mediately committed by quorumQ ′. We prove that ⟨index , term, value, hash⟩ ∈ e.elog :
i. By Lemma 5.4 there ∃server ∈ Q ∩Q ′ : server /∈ RollbackServer .
ii. Let s0 denote the step at which server created the AppendEntriesResponse in-

volved in the commitment of ⟨index , term, value, hash⟩. Let s1 denote the step at
which server created the AppendEntriesResponse involved in the commitment of
⟨i , t , v , h⟩.

iii. Since t > term Lemma 5.5 implies s1 > s0 .
iv. Since server had promiseIndex [server] ≥ index at some step before s0 and server /∈

RollbackServer , Lemma 5.11 implies that ⟨index , term, value, hash⟩ ∈ log [server]
at all steps after s0 .

v. Thus when server created its message immediately committing ⟨i , t , v , h⟩ at step s1
it had ⟨index , term, value, hash⟩ in its log.

vi. Since every member of quorum Q ′ had ⟨i , t , v , h⟩ in its log in term t , Lemma 5.8
implies that every member of quorumQ ′ had ⟨index , term, value, hash⟩ in its log in
term t .

vii. Since e.eleader ∈ Q ′ we know that ⟨index , term, value, hash⟩was in logs [e.eleader]
during term t .

viii. Since term < t , ⟨index , term, value, hash⟩ could not be added during term t it fol-
lows that ⟨index , term, value, hash⟩ ∈ e.elog .

10. Case: LastTerm(election.elog) > LastTerm(voterLog):
a) LastTerm(voterLog) ≥ term since ⟨index , term, value, hash⟩ ∈ voterLog and terms in

non-rolled-back servers grow monotonically (Lemma 5.5).
b) election.eterm > LastTerm(election.elog) since servers increment their currentTerm

when starting an election and by Lemma 5.10 a server’s current term is at least as large
as the terms in its log.

c) Let prior be the last election with prior .eterm = LastTerm(election.elog). Such an
election must exist since LastTerm(election.elog) > 0 and a server must win an election

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 158

before creating an entry.
d) By transitivity we have term ≤ LastTerm(voterLog) < LastTerm(election.elog) =

prior .eterm < election.eterm .
e) LastTerm(election.elog) = prior .eterm implies ∃ ⟨i0 , prior .eterm, v0 , h0 ⟩ ∈ election.elog .
f) Since ⟨index , term, value, hash⟩ /∈ election.elog , Lemma 5.8 implies that
⟨index , term, value, hash⟩ was not in the log of prior .eleader when it created the
AppendEntriesRequest that added ⟨i0 , prior .eterm, v0 , h0 ⟩.

g) Lemma 5.12 implies that there was an earlier election, badElection , with
badElection.eleader = prior .eleader and badElection.eterm = prior .eterm such that
⟨index , term, value, hash⟩ /∈ badElection.elog .

h) Thus badElection ∈ BadElections and is earlier than election , a contradiction.

Definition 5.4. An entry ⟨index , term, value, hash⟩ is prefix committed at term t if there is
another entry that is live committed at term t following it in some log.

prefixCommitted(term) ≜ {⟨index , term, value, hash⟩ ∈ anyLog :
∧ anyLog ∈ allLogs
∧ ∃ ⟨rindex , rterm, rvalue, rhash⟩ ∈ anyLog :
∧ index < rindex
∧ ⟨rindex , rterm, rvalue, rhash⟩ ∈ liveCommitted(t)}

Lemma 5.14. Prefix committed entries are live committed in the same term.

Proof. The argument is identical to the proof of Lemma 9 in Appendix B [234], mutatis mutandis.

Theorem 5.15. Servers only apply entries that are committed in their current term:

∀i ∈ Server :
∧ commitIndex [i] ≤ Len(log [i])
∧ ∀ ⟨index , term, value, hash⟩ ∈ log [i] :
index ≤ commitIndex [i] =⇒
⟨index, term, value, hash⟩ ∈ liveCommitted(currentTerm[i])

This is a restatement of Theorem 5.3.

Proof. The proof closely follows the proof of the State Machine Safety Property in [234].
:::
We

::::
first

:::::
note

::::
that

::::
for

:::
an

:::::::
infinite

::::::::::
execution

:::::::
which

::::
has

:::
no

:::::::::::
liveTerms

:::::
after

:::::
step,

:::
all

:::::::
entries

::::
are

::::::::
trivially

:::::::::::::::
liveCommitted

::
at

:::::
step

::::::::
making

::::
the

::::::
result

:::::::
trivial.

:::
So

::::
we

:::::
may

:::::::
assume

:::::
that

::::::
there

::::::
exists

::
a

::::
live

:::::
term

:::::
after

:::
the

::::::::
current

:::::
step.

We prove by induction on an execution.
1. Initial state: the property trivially holds for empty logs and commitIndex [i] = 0.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 159

2.
:::::::::
Inductive

:::::
step:

:::
A

::::::::
rollback

::::::::
occurs:

a) Once an entry is live committed at currentTerm[i], all leaders of subsequent live terms
will have the entry in their log.

b) Thus the set of live-committed entries at currentTerm[i] grows monotonically and the
rollback cannot shrink this set.

c) A rollback can only decrease commitIndex [i], thus the inductive hypothesis implies that
the invariant holds.

d) In the remainder of this proof we will now assume that the transition was not due to a
rollback.

3. Inductive step: The set of entries live committed at currentTerm[i] changes:
a) As shown above the set of committed entries at currentTerm[i] grows monotonically.
b) So no entry with index ≤ commitIndex [i] could be removed from

committed(currentTerm[i]) in this step, and the inductive hypothesis remains true.
4. Inductive step: commitIndex [i] changes:

a) If commitIndex [i] decreases, the inductive hypothesis suffices to show the invariant
holds.

b) When commitIndex [i] increases, it covers entries present in i ’s log that are committed:
i. Case: Follower completes accepting AppendEntriesRequest m :

A. Upon processingm the follower’s log is a prefix of a prior version of the leader’s
log m.mlog by Lemma 5.9.

B. Every entry through commitIndex ′[i] in m.mlog is committed by the inductive
hypothesis since they were committed in the leader’s log when it sent the re-
quest.

ii. Case: leader i processes an AppendEntriesResponse:
A. If the leader sets a new commitIndex then the conditions in the specification

ensure that logs [i][commitIndex ′[i]] ∈ immediatelyCommitted .
B. Every entry in the leader’s log up to CommitIndex ′[i] is prefix committed.
C. Lemma 5.13 and Lemma 5.14 imply that all entries in the leader’s log up to

commitIndex ′[i] are live committed.
5. Inductive step: currentTerm[i] changes:

a) Since this is not a rollback, by Lemma 5.5 currentTerm ′[i] ≥ currentTerm[i].
b) liveCommitted(currentTerm[i]) ⊆ liveCommitted(currentTerm ′[i]) by the defini-

tion of liveCommitted.
c) Thus the inductive hypothesis suffices to show that the invariant holds.

6. Inductive step: logs change in one of the following ways:
a) Case: A leader adds one entry due to ClientRequest:

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 160

i. Newly created entries are not marked committed, so the invariant holds.
b) Case: a follower removes one entry due to AppendEntriesRequest m :

i. Assume that ⟨index , term, value, hash⟩ was removed from logs [i].
ii. By Lemma 5.11 and the fact that this transition is not a rollback we conclude that

index > promiseIndex [i].
iii. Since promiseIndex [i] ≥ commitIndex [i] it follows that index > commitIndex [i].
iv. Hence the entry was not committed and the invariant holds.

c) Case: a follower adds one entry due to AppendEntriesRequest m :
i. Case: the new entry is not marked committed on the follower: The inductive hy-
pothesis suffices to show the invariant holds.

ii. Case: the new entry is marked committed on the follower: commitIndex [i] must
increase, which was handled above.

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 161

5.15 TLA+ specification of Raft"

module Raft"

Based on is the formal specification for the Raft consensus algorithm
(Diego Ongaro, 2014) which is licensed under the Creative Commons Attribution-4.0
International License https://creativecommons.org/licenses/by/4.0/

extends Naturals , FiniteSets , Sequences , TLC , Randomization

The set of server IDs
constants Server

The set of IDs of servers that are rolled back
constants RollbackServer

Server states.
constants Follower , Candidate, Leader

A reserved value.
constants Nil

Message types:
constants RequestVoteRequest , RequestVoteResponse,
AppendEntriesRequest , AppendEntriesResponse

Maximum number of client requests
constants MaxClientRequests

constants MaxSteps

constants RollbackTolerance

Global variables

A bag of records representing requests and responses sent from one server
to another. TLAPS doesn’t support the Bags module, so this is a function
mapping Message to Nat.

variable messages

A history variable used in the proof. This would not be present in an
implementation.
Keeps track of successful elections, including the initial logs of the

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 162

leader and voters’ logs. Set of functions containing various things about
successful elections (see BecomeLeader).

variable elections

A history variable used in the proof. This would not be present in an
implementation.
Keeps track of every log ever in the system (set of logs).

variable allLogs

a step counter used to model Rollback
variable step

a map from Server to a sequence of server states - one for each step.
variable serverStates

A hash function used to compute a hash chain
variable hash

The following variables are all per server (functions with domain Server).

The server’s term number.
variable currentTerm
The server’s state (Follower, Candidate, or Leader).

variable state
The candidate the server voted for in its current term, or
Nil if it hasn’t voted for any.

variable votedFor
serverVars ∆

= ⟨currentTerm, state, votedFor⟩
The set of requests that can go into the log

variable clientRequests

A Sequence of log entries. The index into this sequence is the index of the
log entry. Unfortunately, the Sequence module defines Head(s) as the entry
with index 1, so be careful not to use that!

variable log
The latest entry that each follower has promised the leader to commit.
This is used to calculate commitIndex on the leader.

variable promiseIndex
The index of the latest entry in the log the state machine may apply.

variable commitIndex
variable promisedLog
variable promisedLogDecrease
The index that gets committed

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 163

variable committedLog
Does the commited Index decrease

variable committedLogDecrease
logVars ∆

= ⟨log , commitIndex , promiseIndex , clientRequests , committedLog ,
committedLogDecrease, promisedLog , promisedLogDecrease⟩

The following variables are used only on candidates:
The set of servers from which the candidate has received a RequestVote
response in its currentTerm.

variable votesSent
The set of servers from which the candidate has received a vote in its
currentTerm.

variable votesGranted
A history variable used in the proof. This would not be present in an
implementation.
Function from each server that voted for this candidate in its currentTerm
to that voter’s log.

variable voterLog
candidateVars ∆

= ⟨votesSent , votesGranted , voterLog⟩
The following variables are used only on leaders:
The next entry to send to each follower.

variable nextIndex
The latest entry that each follower has acknowledged is the same as the
leader’s. This is used to calculate promiseIndex on the leader.

variable matchIndex
variable ackedPromiseIndex
leaderVars ∆

= ⟨nextIndex , matchIndex , ackedPromiseIndex , elections⟩
End of per server variables.

All variables; used for stuttering (asserting state hasn’t changed).
vars ∆

= ⟨messages , allLogs , serverVars , candidateVars , leaderVars , logVars , hash,
serverStates , step⟩

Hash function setup

BitString256 ∆
= [1 . . 256→ boolean]

Helpers

The set of all quorums. This just calculates simple majorities, but the only
important property is that every quorum overlaps with every other.

Quorum ∆
= {i ∈ subset (Server) : Cardinality(i) ∗ 2 > RollbackTolerance + Cardinality(Server)}

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 164

The term of the last entry in a log, or 0 if the log is empty.
LastTerm(xlog) ∆

= if Len(xlog) = 0 then 0 else xlog [Len(xlog)].term

Helper for Send and Reply. Given a message m and bag of messages, return a
new bag of messages with one more m in it.

WithMessage(m, msgs) ∆
=

if m ∈ domain msgs then
[msgs except ! [m] = if msgs [m] < 2 then msgs [m] + 1 else 2]
else

msgs @@(m :> 1)

Helper for Discard and Reply. Given a message m and bag of messages, return
a new bag of messages with one less m in it.

WithoutMessage(m, msgs) ∆
=

if m ∈ domain msgs then
[msgs except ! [m] = if msgs [m] > 0 then msgs [m]− 1 else 0]
else

msgs

ValidMessage(msgs) ∆
=

{m ∈ domain messages : msgs [m] > 0}
SingleMessage(msgs) ∆

=
{m ∈ domain messages : msgs [m] = 1}

Add a message to the bag of messages.
Send(m)

∆
= messages ′ = WithMessage(m, messages)

Remove a message from the bag of messages. Used when a server is done
processing a message.

Discard(m)
∆
= messages ′ = WithoutMessage(m, messages)

Combination of Send and Discard
Reply(response, request) ∆

=
messages ′ = WithoutMessage(request , WithMessage(response, messages))

Return the minimum value from a set, or undefined if the set is empty.
Min(s) ∆

= choose x ∈ s : Adv y ∈ s : x ≤ y
Return the maximum value from a set, or undefined if the set is empty.

Max (s) ∆
= choose x ∈ s : Adv y ∈ s : x ≥ y

The current state of server i
CurrentFollowerState(i) ∆

= [
sslog 7→ log [i],
sscurrentTerm 7→ currentTerm[i],
ssvotedFor 7→ votedFor [i],

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 165

ssstate 7→ state[i],
sspromiseIndex 7→ promiseIndex [i],
sscommitIndex 7→ commitIndex [i]]
CurrentLeaderState(i) ∆

= [
sslog 7→ log [i],
sscurrentTerm 7→ currentTerm[i],
ssvotedFor 7→ votedFor [i],
ssstate 7→ state[i],
sspromiseIndex 7→ promiseIndex [i],
sscommitIndex 7→ commitIndex [i],
ssnextIndex 7→ nextIndex [i],
ssmatchIndex 7→ matchIndex [i],
ssackedPromiseIndex 7→ ackedPromiseIndex [i]]

CurrentCandidateState(i) ∆
= [

sslog 7→ log [i],
sscurrentTerm 7→ currentTerm[i],
ssvotedFor 7→ votedFor [i],
ssstate 7→ state[i],
sspromiseIndex 7→ promiseIndex [i],
sscommitIndex 7→ commitIndex [i],
ssvotesSent 7→ votesSent [i],
ssvotesGranted 7→ votesGranted [i]]

CurrentState(i) ∆
= if state[i] = Follower then CurrentFollowerState(i)

else if state[i] = Candidate then CurrentCandidateState(i)
else CurrentLeaderState(i)

RecordStates ∆
= let currentState ∆

= [i ∈ Server 7→ CurrentState(i)]
in serverStates ′ = [serverStates except ! [step] = currentState]

Define initial values for all variables

InitHistoryVars ∆
= ∧ elections = {}

∧ allLogs = {}
∧ voterLog = [i ∈ Server 7→ [j ∈ {} 7→ ⟨⟩]]
∧ serverStates = [s ∈ 0 . . MaxSteps 7→ [i ∈ Server 7→ ⟨⟩]]
InitServerVars ∆

= ∧ currentTerm = [i ∈ Server 7→ 1]
∧ state = [i ∈ Server 7→ Follower]
∧ votedFor = [i ∈ Server 7→ Nil]
InitCandidateVars ∆

= ∧ votesSent = [i ∈ Server 7→ false]
∧ votesGranted = [i ∈ Server 7→ {}]
The values nextIndex[i][i] and matchIndex[i][i] are never read, since the

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 166

leader does not send itself messages. It’s still easier to include these
in the functions.

InitLeaderVars ∆
= ∧ nextIndex = [i ∈ Server 7→ [j ∈ Server 7→ 1]]

∧matchIndex = [i ∈ Server 7→ [j ∈ Server 7→ 0]]
∧ ackedPromiseIndex = [i ∈ Server 7→ [j ∈ Server 7→ 0]]

InitLogVars ∆
= ∧ log = [i ∈ Server 7→ ⟨⟩]

∧ commitIndex = [i ∈ Server 7→ 0]
∧ promiseIndex = [i ∈ Server 7→ 0]
∧ clientRequests = 1
∧ committedLog = ⟨⟩
∧ committedLogDecrease = false
∧ promisedLog = ⟨⟩
∧ promisedLogDecrease = false

RollbackServersAreServers ∆
=

∧ IsFiniteSet(RollbackServer)
∧ RollbackServer ⊆ Server

Init ∆
= ∧messages = [m ∈ {} 7→ 0]

∧ InitHistoryVars
∧ InitServerVars
∧ InitCandidateVars
∧ InitLeaderVars
∧ InitLogVars
∧ step = 0
∧ hash = [x ∈ {} 7→ Nil]
∧ RollbackServersAreServers

Define state transitions

Server i times out and starts a new election.
Timeout(i) ∆

= ∧ state[i] ∈ {Follower , Candidate}
∧ state ′ = [state except ! [i] = Candidate]
∧ currentTerm ′ = [currentTerm except ! [i] = currentTerm[i] + 1]
Most implementations would probably just set the local vote
atomically, but messaging localhost for it is weaker.
∧ votedFor ′ = [votedFor except ! [i] = Nil]
∧ votesSent ′ = [votesSent except ! [i] = false]
∧ votesGranted ′ = [votesGranted except ! [i] = {}]
∧ voterLog ′ = [voterLog except ! [i] = [j ∈ {} 7→ ⟨⟩]]
∧ unchanged ⟨messages , leaderVars , logVars , hash⟩

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 167

Rollback server i to its state at step s
Rollback(i , s) ∆

= let restoreState ∆
= serverStates [s][i]

in ∧ i ∈ RollbackServer
∧ log ′ = [log except ! [i] = restoreState.sslog]
∧ currentTerm ′ = [currentTerm except ! [i] = restoreState.sscurrentTerm]
∧ votedFor ′ = [votedFor except ! [i] = restoreState.ssvotedFor]
∧ state ′ = [state except ! [i] = restoreState.ssstate]
∧ promiseIndex ′ = [promiseIndex except ! [i] = restoreState.sspromiseIndex]
∧ commitIndex ′ = [commitIndex except ! [i] = restoreState.sscommitIndex]
∧ ∨ ∧ restoreState.ssstate = Follower
∨ ∧ restoreState.ssstate = Candidate
∧ votesSent ′ = [votesSent except ! [i] = restoreState.ssvotesSent]
∧ votesGranted ′ = [votesGranted except ! [i] = restoreState.ssvotesGranted]
∨ ∧ restoreState.ssstate = Leader
∧ nextIndex ′ = [nextIndex except ! [i] = restoreState.ssnextIndex]
∧matchIndex ′ = [matchIndex except ! [i] = restoreState.ssmatchIndex]
∧ ackedPromiseIndex ′ = [ackedPromiseIndex except ! [i] = restoreState.ssackedPromiseIndex]
∧ unchanged ⟨messages , elections , clientRequests , committedLog , committedLogDecrease,

promisedLog , promisedLogDecrease, ackedPromiseIndex , matchIndex , nextIndex ,
voterLog , votesGranted , votesSent , hash⟩

Candidate i sends j a RequestVote request.
RequestVote(i , j) ∆

=
∧ state[i] = Candidate
∧ Send([mtype 7→ RequestVoteRequest ,
mterm 7→ currentTerm[i],
mlastLogTerm 7→ LastTerm(log [i]),
mlastLogIndex 7→ Len(log [i]),
msource 7→ i ,
mdest 7→ j])
∧ unchanged ⟨serverVars , votesGranted , voterLog , leaderVars , logVars , votesSent , hash⟩

Leader i sends j an AppendEntries request containing up to 1 entry.
While implementations may want to send more than 1 at a time, this spec uses
just 1 because it minimizes atomic regions without loss of generality.

AppendEntries(i , j) ∆
=

∧ i ̸= j
∧ state[i] = Leader
∧ let prevLogIndex ∆

= nextIndex [i][j]− 1
prevLogTerm ∆

= if prevLogIndex > 0 then
log [i][prevLogIndex].term
else

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 168

0
prevLogHash ∆

= if prevLogIndex > 0 then
log [i][prevLogIndex].hashChain
else

0
Send up to 1 entry, constrained by the end of the log.

lastEntry ∆
= Min({Len(log [i]), nextIndex [i][j]})

entries ∆
= SubSeq(log [i], nextIndex [i][j], lastEntry)

in Send([mtype 7→ AppendEntriesRequest ,
mterm 7→ currentTerm[i],
mprevLogIndex 7→ prevLogIndex ,
mprevLogTerm 7→ prevLogTerm,
mprevLogHash 7→ prevLogHash,
mentries 7→ entries ,
mlog is used as a history variable for the proof.
It would not exist in a real implementation.

mlog 7→ log [i],
mcommitIndex 7→ Min({commitIndex [i], lastEntry}),
mpromiseIndex 7→ Min({promiseIndex [i], lastEntry}),
msource 7→ i ,
mdest 7→ j])
∧ unchanged ⟨serverVars , candidateVars , leaderVars , logVars , hash⟩

Candidate i transitions to leader.
BecomeLeader(i) ∆

=
∧ state[i] = Candidate
∧ votesGranted [i] ∈ Quorum
∧ state ′ = [state except ! [i] = Leader]
∧ nextIndex ′ = [nextIndex except ! [i] =

[j ∈ Server 7→ Len(log [i]) + 1]]
∧matchIndex ′ = [matchIndex except ! [i] =

[j ∈ Server 7→ 0]]
∧ ackedPromiseIndex ′ = [ackedPromiseIndex except ! [i] =
[j ∈ Server 7→ 0]]
∧ elections ′ = elections ∪
{[eterm 7→ currentTerm[i],
eleader 7→ i ,
elog 7→ log [i],
evotes 7→ votesGranted [i],
evoterLog 7→ voterLog [i],
estep 7→ step]}

∧ unchanged ⟨messages , currentTerm, votedFor , candidateVars , logVars , hash⟩

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 169

Leader i receives a client request to add v to the log.
ClientRequest(i) ∆

=
∧ state[i] = Leader
∧ clientRequests < MaxClientRequests
∧ let index ∆

= Len(log [i])
hashInput ∆

= [hiindex 7→ index , hiterm 7→ currentTerm[i], hivalue 7→ clientRequests ,
hilastHash 7→ log [i][Len(log [i])]]

hashValue ∆
= if [hiindex 7→ index , hiterm 7→ currentTerm[i], hivalue 7→ clientRequests ,

hilastHash 7→ log [i][Len(log [i])]] ∈ domain hash then
hash[[hiindex 7→ index , hiterm 7→ currentTerm[i], hivalue 7→ clientRequests ,

hilastHash 7→ log [i][Len(log [i])]]]
else

RandomElement(BitString256)
entry ∆

= [term 7→ currentTerm[i],
hashChain 7→ hash[hashInput],
value 7→ clientRequests]
newLog ∆

= Append(log [i], entry)
in ∧ log ′ = [log except ! [i] = newLog]

Make sure that each request is unique, reduce state space to be explored
∧ clientRequests ′ = clientRequests + 1
∧ hash ′ = [hash except ! [hashInput] = hashValue]
∧ unchanged ⟨messages , serverVars , candidateVars , leaderVars , commitIndex ,
promiseIndex , committedLog , committedLogDecrease, promisedLog , promisedLogDecrease⟩

Leader i advances its promiseIndex.
This is done as a separate step from handling AppendEntries responses,
in part to minimize atomic regions, and in part so that leaders of
single-server clusters are able to mark entries committed.

AdvancePromiseIndex (i) ∆
=

∧ state[i] = Leader
∧ let The set of servers that agree up through index.
Agree(index) ∆

= {i} ∪ {k ∈ Server :
matchIndex [i][k] ≥ index}
The maximum indexes for which a quorum agrees

agreeIndexes ∆
= {index ∈ 1 . . Len(log [i]) :

Agree(index) ∈ Quorum}
New value for commitIndex’[i]

newPromiseIndex ∆
=

if ∧ agreeIndexes ̸= {}
∧ log [i][Max (agreeIndexes)].term = currentTerm[i]
then

Max (agreeIndexes ∪ {promiseIndex [i]})

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 170

else
promiseIndex [i]

newPromisedLog ∆
=

if newPromiseIndex > 1 then
[j ∈ 1 . . newPromiseIndex 7→ log [i][j]]
else
⟨⟩

in ∧ promiseIndex ′ = [promiseIndex except ! [i] = newPromiseIndex]
∧ promisedLogDecrease ′ = ∨ (newPromiseIndex < Len(promisedLog))
∨ ∃ j ∈ 1 . . Len(promisedLog) : promisedLog [j] ̸= newPromisedLog [j]
∧ promisedLog ′ = newPromisedLog
∧ unchanged ⟨messages , serverVars , candidateVars , leaderVars , log , clientRequests ,

commitIndex , committedLog , committedLogDecrease, hash⟩

Leader i advances its commitIndex.
This is done as a separate step from handling AppendEntries responses,
in part to minimize atomic regions, and in part so that leaders of
single-server clusters are able to mark entries committed.

AdvanceCommitIndex (i) ∆
=

∧ state[i] = Leader
∧ let The set of servers that agree up through index.
Agree(index) ∆

= {i} ∪ {k ∈ Server :
ackedPromiseIndex [i][k] ≥ index}
The maximum indexes for which a quorum agrees

agreeIndexes ∆
= {index ∈ 1 . . Len(log [i]) :

Agree(index) ∈ Quorum}
New value for commitIndex’[i]

newCommitIndex ∆
=

if ∧ agreeIndexes ̸= {}
∧ log [i][Max (agreeIndexes)].term = currentTerm[i]
then

Max (agreeIndexes)
else

commitIndex [i]
newCommittedLog ∆

=
if newCommitIndex > 1 then
[j ∈ 1 . . newCommitIndex 7→ log [i][j]]
else
⟨⟩

in ∧ commitIndex ′ = [commitIndex except ! [i] = newCommitIndex]
∧ committedLogDecrease ′ = ∨ (newCommitIndex < Len(committedLog))

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 171

∨ ∃ j ∈ 1 . . Len(committedLog) : committedLog [j] ̸= newCommittedLog [j]
∧ committedLog ′ = newCommittedLog
∧ unchanged ⟨messages , serverVars , candidateVars , leaderVars , log , clientRequests⟩
∧ unchanged ⟨promiseIndex , promisedLog , promisedLogDecrease, hash⟩

Message handlers
i = recipient, j = sender, m = message

Server i receives a RequestVote request from server j with
m.mterm <= currentTerm[i].

HandleRequestVoteRequest(i , j , m)
∆
=

let logOk ∆
= ∨m.mlastLogTerm > LastTerm(log [i])

∨ ∧m.mlastLogTerm = LastTerm(log [i])
∧m.mlastLogIndex ≥ Len(log [i])
grant ∆

= ∧m.mterm = currentTerm[i]
∧ logOk
∧ votedFor [i] ∈ {Nil , j}
in ∧m.mterm ≤ currentTerm[i]
∧ ∨ grant ∧ votedFor ′ = [votedFor except ! [i] = j]
∨ ¬grant ∧ unchanged votedFor
∧ Reply([mtype 7→ RequestVoteResponse,
mterm 7→ currentTerm[i],
mvoteGranted 7→ grant ,
mlog is used just for the ‘elections’ history variable for
the proof. It would not exist in a real implementation.

mlog 7→ log [i],
msource 7→ i ,
mdest 7→ j],
m)
∧ unchanged ⟨state, currentTerm, candidateVars , leaderVars , logVars , hash⟩

Server i receives a RequestVote response from server j with
m.mterm = currentTerm[i].

HandleRequestVoteResponse(i , j , m)
∆
=

This tallies votes even when the current state is not Candidate, but
they won’t be looked at, so it doesn’t matter.
∧m.mterm = currentTerm[i]
∧ ∨ ∧m.mvoteGranted
∧ votesGranted ′ = [votesGranted except ! [i] =

votesGranted [i] ∪ {j}]
∧ voterLog ′ = [voterLog except ! [i] =

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 172

voterLog [i] @@ (j :> m.mlog)]
∧ unchanged ⟨votesSent⟩
∨ ∧ ¬m.mvoteGranted
∧ unchanged ⟨votesSent , votesGranted , voterLog⟩
∧ Discard(m)
∧ unchanged ⟨serverVars , votedFor , leaderVars , logVars , hash⟩

Server i receives an AppendEntries request from server j with
m.mterm <= currentTerm[i]. This just handles m.entries of length 0 or 1, but
implementations could safely accept more by treating them the same as
multiple independent requests of 1 entry.

HandleAppendEntriesRequest(i , j , m)
∆
=

let hashInput ∆
= [hiindex 7→ m.mprevLogIndex + 1,

hiterm 7→ m.mentries [1].term,
hivalue 7→ m.mentries [1].value,
hilastHash 7→ log [i][m.mprevLogIndex].hashChain]
hashValue ∆

= if hashInput ∈ domain hash then
hash[hashInput]
else

RandomElement(BitString256)
logOk ∆

= ∨m.mprevLogIndex = 0
∨ ∧m.mprevLogIndex > 0
∧m.mprevLogIndex ≤ Len(log [i])
∧m.mprevLogTerm = log [i][m.mprevLogIndex].term
∧m.mprevLogHash = log [i][m.mprevLogIndex].hashChain
∧ ∨ ∧ Len(m.mentries) = 0
∧ unchanged hash
∨ ∧m.mprevLogIndex < Len(log [i])
∧ unchanged hash
∧ ∨m.mentries [1].hashChain = log [i][m.mprevLogIndex + 1].hashChain
∨ there’s a conflict on a promised entry
∧ Len(m.mentries) > 0
∧ log [i][m.mprevLogIndex + 1].term ̸= m.mentries [1].term
∧ promiseIndex [i] = Len(log [i])
∨ ∧m.mprevLogIndex = Len(log [i])
∧m.mentries [1].hashChain = hashValue
∧ hash ′ = [hash except ! [hashInput] = hashValue]

in ∧m.mterm ≤ currentTerm[i]
∧ ∨ ∧ reject request
∨m.mterm < currentTerm[i]
∨ ∧m.mterm = currentTerm[i]
∧ state[i] = Follower

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 173

∧ ¬logOk
∧ Reply([mtype 7→ AppendEntriesResponse,
mterm 7→ currentTerm[i],
msuccess 7→ false,
mackedPromiseIndex 7→ 0,
mmatchIndex 7→ 0,
msource 7→ i ,
mdest 7→ j],
m)
∧ unchanged ⟨serverVars , logVars⟩
∨ return to follower state
∧m.mterm = currentTerm[i]
∧ state[i] = Candidate
∧ state ′ = [state except ! [i] = Follower]
∧ unchanged ⟨currentTerm, votedFor , logVars , messages⟩
∨ accept request
∧m.mterm = currentTerm[i]
∧ state[i] = Follower
∧ logOk
∧ let index ∆

= m.mprevLogIndex + 1
in ∨ already done with request
∧ ∨m.mentries = ⟨⟩
∨ ∧m.mentries ̸= ⟨⟩
∧ Len(log [i]) ≥ index
∧ log [i][index].term = m.mentries [1].term
This could make our commitIndex decrease (for
example if we process an old, duplicated request),
but that doesn’t really affect anything.
∧ commitIndex ′ = [commitIndex except ! [i] =

m.mcommitIndex]
∧ promiseIndex ′ = [promiseIndex except ! [i] =

Max ({m.mpromiseIndex , promiseIndex [i]})]
∧ Reply([mtype 7→ AppendEntriesResponse,
mterm 7→ currentTerm[i],
msuccess 7→ true,
mmatchIndex 7→ m.mprevLogIndex +

Len(m.mentries),
mmatchHash 7→ log [i][m.mprevLogIndex + Len(m.mentries)].hashChain,
mpromiseIndex 7→ m.mpromiseIndex ,
msource 7→ i ,
mdest 7→ j],
m)

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 174

∧ unchanged ⟨serverVars , log , clientRequests , committedLog , promisedLog ,
committedLogDecrease, promisedLogDecrease⟩

∨ conflict: remove 1 entry
∧m.mentries ̸= ⟨⟩
∧ Len(log [i]) ≥ index
∧ log [i][index].term ̸= m.mentries [1].term
∧ promiseIndex [i] < Len(log [i])
∧ let new ∆

= [index2 ∈ 1 . . (Len(log [i])− 1) 7→
log [i][index2]]

in log ′ = [log except ! [i] = new]
∧ unchanged ⟨serverVars , commitIndex , promiseIndex , messages , clientRequests ,

commitedLog , committedLogDecrease⟩
∧ unchanged ⟨promisedLog , promisedLogDecrease⟩
∨ no conflict: append entry
∧m.mentries ̸= ⟨⟩
∧ Len(log [i]) = m.mprevLogIndex
∧ log ′ = [log except ! [i] =
Append(log [i], m.mentries [1])]
∧ unchanged ⟨serverVars , commitIndex , promiseIndex , messages , clientRequests ,

committedLog , committedLogDecrease⟩
∧ unchanged ⟨promisedLog , promisedLogDecrease⟩
∧ unchanged ⟨candidateVars , leaderVars⟩

Server i receives an AppendEntries response from server j with
m.mterm = currentTerm[i].

HandleAppendEntriesResponse(i , j , m)
∆
=

∧m.mterm = currentTerm[i]
∧ ∨ ∧m.msuccess successful
∧m.mmatchHash = log [i][m.mmatchIndex].hashChain
∧ nextIndex ′ = [nextIndex except ! [i][j] = m.mmatchIndex + 1]
∧matchIndex ′ = [matchIndex except ! [i][j] = m.mmatchIndex]
∧ ackedPromiseIndex ′ = [ackedPromiseIndex except ! [i][j] = Max ({m.mpromiseIndex , @})]
∨ ∧ ¬m.msuccess not successful
∧ nextIndex ′ = [nextIndex except ! [i][j] =

Max ({nextIndex [i][j]− 1, 1})]
∧ unchanged ⟨matchIndex ⟩
∧ Discard(m)
∧ unchanged ⟨serverVars , candidateVars , logVars , elections , hash⟩

Any RPC with a newer term causes the recipient to advance its term first.
UpdateTerm(i , j , m)

∆
=

∧m.mterm > currentTerm[i]

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 175

∧ currentTerm ′ = [currentTerm except ! [i] = m.mterm]
∧ state ′ = [state except ! [i] = Follower]
∧ votedFor ′ = [votedFor except ! [i] = Nil]
messages is unchanged so m can be processed further.
∧ unchanged ⟨messages , candidateVars , leaderVars , logVars , hash⟩

Responses with stale terms are ignored.
DropStaleResponse(i , j , m)

∆
=

∧m.mterm < currentTerm[i]
∧ Discard(m)
∧ unchanged ⟨serverVars , candidateVars , leaderVars , logVars , hash⟩

Receive a message.
Receive(m)

∆
=

let i ∆
= m.mdest

j ∆
= m.msource

in Any RPC with a newer term causes the recipient to advance
its term first. Responses with stale terms are ignored.
∨ UpdateTerm(i , j , m)
∨ ∧m.mtype = RequestVoteRequest
∧ HandleRequestVoteRequest(i , j , m)
∨ ∧m.mtype = RequestVoteResponse
∧ ∨ DropStaleResponse(i , j , m)
∨ HandleRequestVoteResponse(i , j , m)
∨ ∧m.mtype = AppendEntriesRequest
∧ HandleAppendEntriesRequest(i , j , m)
∨ ∧m.mtype = AppendEntriesResponse
∧ ∨ DropStaleResponse(i , j , m)
∨ HandleAppendEntriesResponse(i , j , m)

End of message handlers.

Network state transitions

The network duplicates a message
DuplicateMessage(m)

∆
=

∧ Send(m)
∧ unchanged ⟨serverVars , candidateVars , leaderVars , logVars , hash⟩

The network drops a message
DropMessage(m)

∆
=

∧ Discard(m)
∧ unchanged ⟨serverVars , candidateVars , leaderVars , logVars , hash⟩

CHAPTER 5. SVR3: SECRET KEY RECOVERY IN A GLOBAL-SCALE E2EE SYSTEM 176

Defines how the variables may transition.
Next ∆

= ∧ ∨ ∃ i ∈ Server : Timeout(i)
∨ ∃ i , j ∈ Server : RequestVote(i , j)
∨ ∃ i ∈ Server : BecomeLeader(i)
∨ ∃ i ∈ Server : ClientRequest(i)
∨ ∃ i ∈ Server : AdvancePromiseIndex (i)
∨ ∃ i ∈ Server : AdvanceCommitIndex (i)
∨ ∃ i , j ∈ Server : AppendEntries(i , j)
∨ ∃ i ∈ Server : ∃ s ∈ 1 . . (step − 1) : Rollback(i , s)
∨ ∃m ∈ ValidMessage(messages) : Receive(m)
∨ ∃m ∈ SingleMessage(messages) : DuplicateMessage(m)
∨ ∃m ∈ ValidMessage(messages) : DropMessage(m)
History variable that tracks every log ever:
∧ allLogs ′ = allLogs ∪ {log [i] : i ∈ Server}
∧ RecordStates
∧ step ′ = step + 1

The specification must start with the initial state and transition according
to Next.

Spec ∆
= Init ∧2[Next]vars

5.16 Conclusion

SVR3 demonstrates the potential of systems that provide security through a combination of cryp-
tography and a diverse set of hardware enclaves and clouds, without putting trust in any single
hardware component. Using different types of enclaves leads to an array of deployment chal-
lenges stemming from heterogeneous attacker models. SVR3 is a powerful defense against the
evolving landscape of enclave security: by distributing trust across enclaves and clouds through
a cryptographic protocol, even if a new threat arises in one type of enclave, user secrets are still
secure. SVR3 costs $0.0025/user/year and takes 365ms for a user to recover their key, which is a
rare operation.

177

Chapter 6

Conclusion

6.1 Summary

In this dissertation, we explored addressing the challenges of deploying distributed-trust systems.
We focused on two main themes: adopting and scaling distributed-trust systems. On improv-
ing the adoption of distributed-trust systems, we proposed CostCO, a cost modeling tool that
helps developers understand the cost of secure multi-party computation (MPC) protocols, and
LegoLog, a configurable transparency log that allows developers to choose the right trade-offs
for their applications. On improving the scalability of distributed-trust systems, we introduced
Snoopy, an oblivious storage system that scales like plaintext storage systems and allows users
to store and retrieve data without revealing the data or its access patterns, and SVR3, a secret key
recovery system for end-to-end encrypted messaging applications that allows users to securely
recover their secret keys.

6.2 Future work

There are many open questions and future work directions still left to explore in improving the
adoption and scalability of distributed-trust systems. Here are a few for the interested reader:
→ Concrete bounds for the k -choice case in balls-into-bins. In Snoopy (Chapter 4), we

were able to securely and efficiently distribute requests across subORAMs by deriving a con-
crete bound for the 1-choice case in the balls-into-bins problem. However, we were not able
to derive a concrete bound for the k -choice case, where the ball selects the least loaded bin
out of k randomly selected bins. Asymptotically, the k -choice case is exponentially more
efficient than the 1-choice case. If this is also true in practice, it would be a significant im-
provement for the overhead of securely distributing requests, and could lead to systems that
leverage this bound, that also have to account for the item being stored in any of the k bins.

→ Bridging the gap between theoretical security guarantees of TEEs and what we have
today. In SVR3 (Chapter 5), we proposed a system that leverages TEEs to provide strong se-

CHAPTER 6. CONCLUSION 178

curity guarantees for key recovery in end-to-end encrypted messaging applications. When
using these TEEs, we found that there are varying security guarantees depending on the TEE
implementation and vendor. While we unify a threat model for TEEs in SVR3, and show how
three such TEEs fit in our model, this required a lot of work to understand the security guar-
antees of each TEE implementation and vendor. In the cases where the TEE implementation
did not provide the security guarantees we needed, we had to rely on other techniques to pro-
vide the necessary security guarantees. Continuing to bridge the gap between the theoretical
security guarantees of TEEs and what we have today is important future work.

→ Post-quantum cryptography. As quantum computers become more powerful, they will
be able to break many of the cryptographic primitives used in distributed-trust systems. A
particularly relevant threat model is the harvest now, decrypt later model, where an adversary
collects encrypted data now and waits until they have a quantum computer powerful enough
to decrypt it. Developing and deploying distributed-trust systems that rely on cryptographic
primitives that can withstand attacks in this model is necessary for long-term security.

179

Bibliography

[1] John Aas. Project update and new name for ISRG Prio services: Introducing Divvi Up,
2021. https://divviup.org/blog/prio-services-update/.

[2] Michel Abdalla, Mario Cornejo, Anca Nitulescu, and David Pointcheval. Robust password-
protected secret sharing. In ESORICS, 2016.

[3] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung Lee.
OBLIVIATE: A data oblivious filesystem for Intel SGX. In NDSS, 2018.

[4] Mustafa Al-Bassam and Sarah Meiklejohn. Contour: A practical system for binary trans-
parency. In DPM/CBT@ESORICS, 2018.

[5] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk. Continuous group key
agreement with active security. In TCC, 2020.

[6] AMD SEV-SNP: Strengthening VM isolation with integrity protection and more,
2020. https://www.amd.com/content/dam/amd/en/documents/epyc-business-
docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-
protection-and-more.pdf.

[7] Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John Kolb, Hyung-
Sin Kim, David E Culler, and Raluca Ada Popa. WAVE: A decentralized authorization
framework with transitive delegation. In USENIX Security, 2019.

[8] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo DeCaro, David Enyeart, Christopher Ferris, Gennady Laventman, YacovManevich,
et al. Hyperledger Fabric: a distributed operating system for permissioned blockchains. In
EuroSys, 2018.

[9] Sebastian Angel, Aditya Basu, Weidong Cui, Trent Jaeger, Stella Lau, Srinath Setty, and
Sudheesh Singanamalla. Nimble: Rollback protection for confidential cloud services. In
OSDI, 2023.

[10] Sebastian Angel and Srinath Setty. Unobservable communication over fully untrusted in-
frastructure. In OSDI, 2016.

https://divviup.org/blog/prio-services-update/
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

BIBLIOGRAPHY 180

[11] Apple. Advancing iMessage security: iMessage contact key verification. https://
security.apple.com/blog/imessage-contact-key-verification/.

[12] Apple. Energy efficiency guide for iOS apps. https://developer.apple.com/
library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/
index.html.

[13] Apple. iCloud Keychain security overview, 2021. https://support.apple.com/guide/
security/icloud-keychain-security-overview-sec1c89c6f3b/.

[14] Apple and Google. Exposure notification privacy-preserving analytics (ENPA)white paper,
2021. https://covid19-static.cdn-apple.com/applications/covid19/current/
static/contact-tracing/pdf/ENPA_White_Paper.pdf.

[15] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer and extensions for faster secure computation. In CCS, 2013.

[16] Asynchronous Enclave Exit Notify and the EDECCSSA user leaf function.
https://www.intel.com/content/www/us/en/content-details/736463/white-
paper-asynchronous-enclave-exit-notify-and-the-edeccssa-user-leaf-
function.html.

[17] Attestation Service for Intel SGX. https://api.trustedservices.intel.com/
documents/sgx-attestation-api-spec.pdf.

[18] Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu. Password-protected
secret sharing. In CCS, 2011.

[19] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo Portela, Ahmad-Reza
Sadeghi, Guillaume Scerri, and Bogdan Warinschi. Secure multiparty computation from
SGX. In FC, 2017.

[20] Kenneth E Batcher. Sorting networks and their applications. In AFIPS, 1968.

[21] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, François Garillot, Zekun
Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. State machine repli-
cation in the Libra blockchain. The Libra Assn., Tech. Rep, 2019.

[22] Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO,
1991.

[23] Donald Beaver, Shafi Micali, and Phillip Rogaway. The round complexity of secure proto-
cols. In STOC, 1990.

[24] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: A system for secure multi-
party computation. In CCS, 2008.

https://security.apple.com/blog/imessage-contact-key-verification/
https://security.apple.com/blog/imessage-contact-key-verification/
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/index.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/index.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/EnergyGuide-iOS/index.html
https://support.apple.com/guide/security/icloud-keychain-security-overview-sec1c89c6f3b/
https://support.apple.com/guide/security/icloud-keychain-security-overview-sec1c89c6f3b/
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://www.intel.com/content/www/us/en/content-details/736463/white-paper-asynchronous-enclave-exit-notify-and-the-edeccssa-user-leaf-function.html
https://www.intel.com/content/www/us/en/content-details/736463/white-paper-asynchronous-enclave-exit-notify-and-the-edeccssa-user-leaf-function.html
https://www.intel.com/content/www/us/en/content-details/736463/white-paper-asynchronous-enclave-exit-notify-and-the-edeccssa-user-leaf-function.html
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf
https://api.trustedservices.intel.com/documents/sgx-attestation-api-spec.pdf

BIBLIOGRAPHY 181

[25] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk,
Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain keep a secret? In
TCC, 2020.

[26] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced alloca-
tions: The heavily loaded case. In STOC, 2000.

[27] Brian N Bershad, David D Redell, and John R Ellis. Fast mutual exclusion for uniprocessors.
In ASPLOS, 1992.

[28] Binary Transparency. Building trust in the software supply chain. https://binary.
transparency.dev.

[29] Vincent Bindschaedler, MuhammadNaveed, Xiaorui Pan, XiaoFengWang, and YanHuang.
Practicing oblivious access on cloud storage: the gap, the fallacy, and the newway forward.
In CCS. ACM, 2015.

[30] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-
preserving computations. In ESORICS, 2008.

[31] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. BrendanMcMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In CCS, 2017.

[32] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Lightweight
techniques for private heavy hitters. In IEEE S&P, 2021.

[33] Joseph Bonneau. EthIKS: Using Ethereum to audit a CONIKS key transparency log. In FC,
2016.

[34] Thomas Bourgeat, Ilia Lebedev, AndrewWright, Sizhuo Zhang, and Srinivas Devadas. MI6:
Secure enclaves in a speculative out-of-order processor. In MICRO, 2019.

[35] George EP Box and Kenneth B Wilson. On the experimental attainment of optimum con-
ditions. Journal of the Royal wtatistical Society: Series B (Methodological), 1951.

[36] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM and applications.
In TCC, 2016.

[37] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Rüdiger Kapitza. Roll-
back and forking detection for trusted execution environments using lightweight collective
memory. In DSN, 2017.

[38] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun,
and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks are practical. In
WOOT. USENIX, 2017.

https://binary.transparency.dev
https://binary.transparency.dev

BIBLIOGRAPHY 182

[39] David Brown. Confidential computing: an AWS perspective, 2021. https://aws.amazon.
com/blogs/security/confidential-computing-an-aws-perspective/.

[40] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropoulos. Sepia:
Privacy-preserving aggregation of multi-domain network events and statistics. In USENIX
Security, 2010.

[41] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian Nordholt, Clau-
dio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P. Smart. High performance
multi-party computation for binary circuits based on oblivious transfer. Cryptology ePrint
Archive, Report 2015/472, 2015. https://ia.cr/2015/472.

[42] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and Thomas
Schneider. HyCC: Compilation of hybrid protocols for practical secure computation. In
CCS, 2018.

[43] Ran Canetti, Rosario Gennaro, Amir Herzberg, and Dalit Naor. Proactive security: Long-
term protection against break-ins. RSA Laboratories’ CryptoBytes, 1997.

[44] Cape privacy: Privacy & trust management for machine learning. https://
capeprivacy.com/.

[45] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks
against searchable encryption. In CCS, 2015.

[46] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In OSDI, 1999.

[47] Anrin Chakraborti and Radu Sion. ConcurORAM: High-throughput stateless parallel
multi-client ORAM. In NDSS, 2019.

[48] T-H Hubert Chan, Kai-Min Chung, and Elaine Shi. On the depth of oblivious parallel ram.
In ASIACRYPT. IACR, 2017.

[49] T-H Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Oblivious hashing revisited, and
applications to asymptotically efficient oram and opram. In Asiacrypt, 2017.

[50] T-H Hubert Chan and Elaine Shi. Circuit OPRAM: Unifying statistically and computation-
ally secure ORAMs and OPRAMs. In TCC, 2017.

[51] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul Tripathi.
EzPC: programmable, efficient, and scalable secure two-party computation for machine
learning. In EuroS&P, 2019.

[52] Melissa Chase, Hannah Davis, Esha Ghosh, and Kim Laine. Acsesor: A new framework for
auditable custodial secret storage and recovery. Cryptology ePrint Archive 2022/1729, 2022.

https://aws.amazon.com/blogs/security/confidential-computing-an-aws-perspective/
https://aws.amazon.com/blogs/security/confidential-computing-an-aws-perspective/
https://ia.cr/2015/472
https://capeprivacy.com/
https://capeprivacy.com/

BIBLIOGRAPHY 183

[53] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. SEEMless: Se-
cure end-to-end encrypted messaging with less trust. In CCS, 2019.

[54] David Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of cryptology, 1(1):65–75, 1988.

[55] Binyi Chen, Huijia Lin, and Stefano Tessaro. Oblivious parallel ram: improved efficiency
and generic constructions. In TCC, 2016.

[56] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H Lai.
SGXPECTRE: Stealing intel secrets from SGX enclaves via speculative execution. In Eu-
roS&P, 2019.

[57] Long Chen, Ya-Nan Li, Qiang Tang, and Moti Yung. End-to-same-end encryption: Mod-
ularly augmenting an app with an efficient, portable, and blind cloud storage. In USENIX
Security, 2022.

[58] Weikeng Chen, Alessandro Chiesa, EmmaDauterman, andNicholas PWard. Reducing par-
ticipation costs via incremental verification for ledger systems. Cryptology ePrint Archive,
2020.

[59] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and Flavio D
Garcia. VoltPillager: Hardware-based fault injection attacks against intel SGX enclaves
using the SVID voltage scaling interface. In USENIX Security, 2021.

[60] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu Gu, Hani
Jamjoom, Hubertus Franke, and James Bottomley. Intel TDX demystified: A top-down
approach. arXiv preprint arXiv:2303.15540, 2023.

[61] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. In FOCS, 1995.

[62] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information
retrieval. Journal of the ACM, 45(6), 1998.

[63] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan Millen, Brian
O’Hanlon, John Ramsdell, Ariel Segall, Justin Sheehy, and Brian Sniffen. Principles of
remote attestation. In ISeCure, 2011.

[64] Graeme Connell*, Vivian Fang*, Rolfe Schmidt*, Emma Dauterman, and Raluca Ada Popa.
Secret key recovery in a global-scale end-to-end encryption system. In OSDI, 2024.

[65] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao, Cedric Xing, Ilya Alexandrovich,
Taesoo Kim, Frank Piessens, Mona Vij, and Mark Silberstein. AEX-Notify: Thwarting
precise single-stepping attacks through interrupt awareness for Intel SGX enclaves. In
USENIX Security, 2023.

BIBLIOGRAPHY 184

[66] Christopher Copeland and Hongxia Zhong. Tangaroa: a Byzantine fault tolerant Raft,
2016. https://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_
zhong.pdf.

[67] Robert M Corless, Gaston H Gonnet, David EG Hare, David J Jeffrey, and Donald E Knuth.
On the Lambert W function. Advances in Computational mathematics, 1996.

[68] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable computation of
aggregate statistics. In NSDI, 2017.

[69] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. Riposte: An anonymous messag-
ing system handling millions of users. In IEEE S&P, 2015.

[70] Manuel Costa, Lawrence Esswood, OlgaOhrimenko, Felix Schuster, and SameerWagh. The
pyramid scheme: Oblivious RAM for trusted processors. arXiv preprint arXiv:1712.07882,
2017.

[71] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware extensions
for strong software isolation. In USENIX Security, 2016.

[72] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit Agarwal, and
Lorenzo Alvisi. Obladi: Oblivious serializable transactions in the cloud. In OSDI, 2018.

[73] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In CRYPTO, 2012.

[74] Emma Dauterman, Henry Corrigan-Gibbs, and David Mazières. SafetyPin: Encrypted
backups with human-memorable secrets. In OSDI, 2020.

[75] Emma Dauterman, Vivian Fang, Natacha Crooks, and Raluca Ada Popa. Reflections on
trusting distributed trust. In HotNets, 2022.

[76] Emma Dauterman*, Vivian Fang*, Ioannis Demertzis, Natacha Crooks, and Raluca Ada
Popa. Snoopy: Surpassing the bottlneck of scalable oblivious storage. In SOSP, 2021.

[77] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa, and Ion Stoica. DORY: An
encrypted search system with distributed trust. In OSDI, 2020.

[78] Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica. Waldo: A private
time-series database from function secret sharing. In IEEE S&P, 2022.

[79] Alex Davidson, Armando Faz-Hernandez, Nick Sullivan, and Christopher A. Wood. Obliv-
ious pseudorandom functions (OPRFs) using prime-order groups. https://www.ietf.
org/id/draft-irtf-cfrg-voprf-21.html.

https://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf
https://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf
https://www.ietf.org/id/draft-irtf-cfrg-voprf-21.html
https://www.ietf.org/id/draft-irtf-cfrg-voprf-21.html

BIBLIOGRAPHY 185

[80] Gareth T. Davies, Sebastian Faller, Kai Gellert, Tobias Handirk, Julia Hesse, Máté Horvárth,
and Tibor Jager. Security analysis of theWhatsApp end-to-end encrypted backup protocol.
Cryptology ePrint Archive 2023/843, 2023.

[81] Antoine Delignat-Lavaud, Cédric Fournet, Kapil Vaswani, Sylvan Clebsch, Maik Riechert,
Manuel Costa, and Mark Russinovich. Why should I trust your code? Confidential com-
puting enables users to authenticate code running in TEEs, but users also need evidence
this code is trustworthy. ACM Queue, 2023.

[82] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and Saurabh
Shintre. {SEAL}: Attack mitigation for encrypted databases via adjustable leakage. In
USENIX Security, 2020.

[83] Daniel Demmler, Thomas Schneider, and Michael Zohner. Ad-hoc secure two-party com-
putation on mobile devices using hardware tokens. In USENIX Security, 2014.

[84] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - a framework for efficient
mixed-protocol secure two-party computation. In NDSS, 2015.

[85] Baltasar Dinis, Peter Druschel, and Rodrigo Rodrigues. RR: A fault model for efficient TEE
replication. In NDSS, 2023.

[86] Yevgeniy Dodis, Shai Halevi, Ron D Rothblum, and Daniel Wichs. Spooky encryption and
its applications. In CRYPTO, 2016.

[87] Jack Doerner and Abhi Shelat. Scaling oram for secure computation. In CCS, 2017.

[88] James R Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making
data structures persistent. In STOC, 1986.

[89] DualityTechnologies: Data encryption technology and secure collaboration. https://
dualitytech.com/.

[90] Sisi Duan, Sean Peisert, and Karl N Levitt. hBFT: speculative Byzantine fault tolerance
with minimum cost. TDSC, 2014.

[91] Steven Englehardt. Next steps in privacy-preserving telemetry with Prio, 2019.
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-
preserving-telemetry-with-prio/.

[92] Saba Eskandarian, Henry Corrigan-Gibbs, Matei Zaharia, and Dan Boneh. Express: Low-
ering the cost of metadata-hiding communication with cryptographic privacy. In USENIX
Security, 2021.

[93] Saba Eskandarian and Matei Zaharia. ObliDB: oblivious query processing for secure
databases. VLDB, 2019.

https://dualitytech.com/
https://dualitytech.com/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/

BIBLIOGRAPHY 186

[94] Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and Boyang Wei. Three-party oram for
secure computation. In ASIACRYPT. IACR, 2015.

[95] Andrés Fábrega, Jack Cable, Michael A Specter, and Sunoo Park. Cryptographic verifiabil-
ity for voter registration systems. arXiv preprint arXiv:2503.03974, 2025.

[96] Andrés Fábrega, Carolina Ortega Pérez, Armin Namavari, Ben Nassi, Rachit Agarwal, and
Thomas Ristenpart. Injection attacks against end-to-end encrypted applications. In IEEE
S&P, 2023.

[97] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
Cryptology ePrint Archive, Report 2012/144, 2012. https://ia.cr/2012/144.

[98] Vivian Fang, Lloyd Brown, William Lin, Wenting Zheng, Aurojit Panda, and Raluca Ada
Popa. CostCO: An automatic cost modeling framework for secure multi-party computa-
tion. In EuroS&P, 2022.

[99] Vivian Fang, Emma Dauterman, Akshat Ravoor, Akshit Dewan, and Raluca Ada Popa.
LegoLog: A configurable transparency log. In EuroS&P, 2025.

[100] Fireblocks. https://www.fireblocks.com/platforms/mpc-wallet/.

[101] 5 advantages of a cloud-based EHR. https://www.carecloud.com/continuum/5-
advantages-of-a-cloud-based-ehr-for-large-practices/.

[102] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten Van Dijk, Emil Stefanov, Dim-
itrios Serpanos, and Srinivas Devadas. A low-latency, low-area hardware oblivious RAM
controller. In FCCM, 2015.

[103] Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian Schallhart, and Helmut
Veith. CBMC-GC: An ANSI C compiler for secure two-party computations. In CC, 2014.

[104] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified
approach to MPC with preprocessing using OT. In Asiacrypt, 2015.

[105] Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and
oblivious pseudorandom functions. In TCC, 2005.

[106] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner, Samee
Zahur, and David Evans. Privacy-preserving distributed linear regression on high-
dimensional data. Proceedings on Privacy Enhancing Technologies (PETS), 2017.

[107] Gemini. Cold storage, keys & crypto: How Gemini keeps assets safe. https://www.
gemini.com/blog/cold-storage-keys-crypto-how-gemini-keeps-assets-safe.

https://ia.cr/2012/144
https://www.fireblocks.com/platforms/mpc-wallet/
https://www.carecloud.com/continuum/5-advantages-of-a-cloud-based-ehr-for-large-practices/
https://www.carecloud.com/continuum/5-advantages-of-a-cloud-based-ehr-for-large-practices/
https://www.gemini.com/blog/cold-storage-keys-crypto-how-gemini-keeps-assets-safe
https://www.gemini.com/blog/cold-storage-keys-crypto-how-gemini-keeps-assets-safe

BIBLIOGRAPHY 187

[108] Tim Geoghegan. Exposure notifications private analytics: Lessons learned from running
secureMPC at scale, 2022. https://divviup.org/blog/lessons-from-running-mpc-
at-scale/.

[109] Tim Geoghegan, Mariana Raykova, and Frederic Jacobs. Exposure notifications private
analytics. In Real World Crypto, 2022.

[110] EP George, J Stuart Hunter, William Gordon Hunter, Roma Bins, Kay Kirlin IV, and Destiny
Carroll. Statistics for experimenters: design, innovation, and discovery. Wiley New York, NY,
USA:, 2005.

[111] Esha Ghosh and Melissa Chase. Weak consistency mode in key transparency: Optiks.
Cryptology ePrint Archive, 2024.

[112] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In ICML, 2016.

[113] Golang. go.sum database tree. https://sum.golang.org/latest.

[114] Golang. index.golang.org. https://index.golang.org/index?since=2022-03-
03T19:08:52.997264Z.

[115] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University
Press, 2006.

[116] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM (JACM), 1996.

[117] Simon F Goldsmith, Alex S Aiken, and Daniel S Wilkerson. Measuring empirical compu-
tational complexity. In ESEC/FSE, 2007.

[118] Michael T Goodrich. Data-oblivious external-memory algorithms for the compaction, se-
lection, and sorting of outsourced data. In SPAA, 2011.

[119] Google. Key transparency design doc. https://github.com/google/
keytransparency/blob/master/docs/design_new.md.

[120] Google. Trillian. https://github.com/google/trillian.

[121] Google. Trillian. https://github.com/google/trillian.

[122] Vipul Goyal, AbhiramKothapalli, ElisawetaMasserova, Bryan Parno, and Yifan Song. Stor-
ing and retrieving secrets on a blockchain. In PKC, 2022.

[123] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd Brown, Lucy Li, Rachit
Agarwal, and Thomas Ristenpart. Pancake: Frequency smoothing for encrypted data
stores. In USENIX Security, 2020.

https://divviup.org/blog/lessons-from-running-mpc-at-scale/
https://divviup.org/blog/lessons-from-running-mpc-at-scale/
https://sum.golang.org/latest
https://index.golang.org/index?since=2022-03-03T19:08:52.997264Z
https://index.golang.org/index?since=2022-03-03T19:08:52.997264Z
https://github.com/google/keytransparency/blob/master/docs/design_new.md
https://github.com/google/keytransparency/blob/master/docs/design_new.md
https://github.com/google/trillian
https://github.com/google/trillian

BIBLIOGRAPHY 188

[124] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Learning to
reconstruct: Statistical learning theory and encrypted database attacks. In IEEE S&P, 2019.

[125] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and Manuel
Costa. Strong and efficient cache side-channel protection using hardware transactional
memory. In USENIX Security, 2017.

[126] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas Juffinger, Sioli
O’Connell, Wolfgang Schoechl, and Yuval Yarom. Another flip in the wall of rowham-
mer defenses. In IEEE S&P, 2018.

[127] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700 BFT
protocols. In EuroSys, 2010.

[128] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael
Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: a scalable and
decentralized trust infrastructure. In IEEE DSN, 2019.

[129] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi, and
Michael Walfish. Scalable and private media consumption with popcorn. In NSDI, 2016.

[130] Marcus Hähnel, Weidong Cui, and Marcus Peinado. High-resolution side channels for
untrusted operating systems. In USENIX ATC, 2017.

[131] Feng Hao and Paul C van Oorschot. SoK: Password-authenticated key exchange–theory,
practice, standardization and real-world lessons. In AsiaCCS, 2022.

[132] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan Parno, Michael L
Roberts, Srinath Setty, and Brian Zill. IronFleet: Proving practical distributed systems
correct. In SOSP, 2015.

[133] Carmit Hazay andMuthuramakrishnan Venkitasubramaniam. Scalable multi-party private
set-intersection. In PKC, 2017.

[134] WilkoHenecka, Stefan K ögl, Ahmad-Reza Sadeghi, Thomas Schneider, and ImmoWehren-
berg. Tasty: tool for automating secure two-party computations. In CCS, 2010.

[135] Wilko Henecka and Thomas Schneider. Faster secure two-party computation with less
memory. In CCS, 2013.

[136] Ryan Henry. Polynomial batch codes for efficient it-pir. PETS Symposium, 2016.

[137] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for
concurrent objects. TOPLAS, 1990.

[138] William J Hill and William G Hunter. A review of response surface methodology: a liter-
ature survey. Technometrics, 1966.

BIBLIOGRAPHY 189

[139] Thang Hoang, Rouzbeh Behnia, Yeongjin Jang, and Attila A Yavuz. Mose: Practical multi-
user oblivious storage via secure enclaves. In CODASPY, 2020.

[140] Thang Hoang, Muslum Ozgur Ozmen, Yeongjin Jang, and Attila A Yavuz. Hardware-
supported ORAM in effect: Practical oblivious search and update on very large dataset.
PETS, 2019.

[141] Katie Hockman. Module mirror and checksum database launched. https://go.dev/
blog/module-mirror-launch.

[142] Benjamin Hof and Georg Carle. Software distribution transparency and auditability. arXiv
preprint arXiv:1711.07278, 2017.

[143] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, and Raluca Ada Popa.
Merkle2: A low-latency transparency log system. In IEEE S&P, 2021.

[144] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and Mayur Naik. Pre-
dicting execution time of computer programs using sparse polynomial regression. In Ad-
vances in Neural Information Processing Systems (NeurIPS), 2010.

[145] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party compu-
tation using garbled circuits. In USENIX Security, 2011.

[146] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party compu-
tation using garbled circuits. In USENIX Security, 2011.

[147] IETF. Key transparency (keytrans). https://datatracker.ietf.org/wg/keytrans/
about/.

[148] Inpher: Secret computing and privacy-preserving analytics. https://www.inpher.io/.

[149] Intel. Intel xeon scalable platform built for most sensitive workloads. https:
//www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-
platform-built-sensitive-workloads.html.

[150] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their
applications. In STOC, 2004.

[151] Muhammad Ishaq, Ana Milanova, and Vassilis Zikas. Efficient mpc via program analysis:
A framework for efficient optimal mixing. In CCS, 2019.

[152] Mohammad Saiful Islam, Mehmet Kuzu, andMurat Kantarcioglu. Access pattern disclosure
on searchable encryption: ramification, attack and mitigation. In NDSS, 2012.

[153] ISRG. Introducing ISRG Prio services for privacy respecting metrics. https://www.
abetterinternet.org/post/introducing-prio-services/.

https://go.dev/blog/module-mirror-launch
https://go.dev/blog/module-mirror-launch
https://datatracker.ietf.org/wg/keytrans/about/
https://datatracker.ietf.org/wg/keytrans/about/
https://www.inpher.io/
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html
https://www.abetterinternet.org/post/introducing-prio-services/
https://www.abetterinternet.org/post/introducing-prio-services/

BIBLIOGRAPHY 190

[154] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-Bomb: Locking down the
processor via Rowhammer attack. In SysTEX@EuroSys, 2017.

[155] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-
protected secret sharing and T-PAKE in the password-only model. In ASIACRYPT, 2014.

[156] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-efficient and
composable password-protected secret sharing (or: How to protect your bitcoin wallet
online). In EuroS&P, 2016.

[157] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS: Cost-minimal
password-protected secret sharing based on threshold OPRF. In ACNS, 2017.

[158] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: an asymmetric PAKE protocol
secure against pre-computation attacks. In EUROCRYPT, 2018.

[159] Simon Johnson, Raghunandan Makaram, Amy Santoni, and Vinnie Scarlata. Supporting
Intel SGX on multi-socket platforms. https://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-
socket-platforms.pdf.

[160] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. Gazelle: A low la-
tency framework for secure neural network inference. In USENIX Security, 2018.

[161] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. Generic attacks on
secure outsourced databases. In CCS, 2016.

[162] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious arithmetic
secure computation with oblivious transfer. In CCS, 2016.

[163] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: making spdz great again. In
Eurocrypt, 2018.

[164] Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer. Automatic protocol selection
in secure two-party computations. In ACNS, 2014.

[165] Key transparency new design. github.com/google/keytransparency/blob/master/
docs/design_new.md.

[166] Keybase. https://keybase.io/.

[167] Hormuzd Khosravi. Runtime encryption of memory with Intel Total Memory En-
cryption - Multi-Key, 2022. https://www.intel.com/content/dam/www/central-
libraries/us/en/documents/2022-10/intel-total-memory-encryption-multi-
key-whitepaper.pdf.

[168] Knox. Knox custody. https://www.knoxcustody.com/security.

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
github.com/google/ keytransparency/blob/master/docs/design_new.md
github.com/google/ keytransparency/blob/master/docs/design_new.md
https://keybase.io/
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-10/intel-total-memory-encryption-multi-key-whitepaper.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-10/intel-total-memory-encryption-multi-key-whitepaper.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-10/intel-total-memory-encryption-multi-key-whitepaper.pdf
https://www.knoxcustody.com/security

BIBLIOGRAPHY 191

[169] Dmitry Kogan and Henry Corrigan-Gibbs. Private blocklist lookups with checklist. In
USENIX Security, 2021.

[170] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa Syta,
and Bryan Ford. Calypso: Private data management for decentralized ledgers. Cryptology
ePrint Archive 2018/209, 2018.

[171] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia. Data re-
covery on encrypted databases with k-nearest neighbor query leakage. In IEEE S&P, 2019.

[172] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: Speculative Byzantine fault tolerance. TOCS, 2010.

[173] Ivan Krstic. Behind the scenes with iOS security, 2016. https://www.blackhat.com/
docs/us-16/materials/us-16-Krstic.pdf.

[174] Robert O Kuehl and RO Kuehl. Design of experiments: statistical principles of research
design and analysis. 2000.

[175] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Rastogi, and
Rahul Sharma. CrypTFlow: Secure TensorFlow inference. In IEEE S&P, 2020.

[176] Mu-Hsing Kuo. Opportunities and challenges of cloud computing to improve health care
services. Journal of medical Internet research, 2011.

[177] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in) security of hash-based obliv-
ious ram and a new balancing scheme. In SODA, 2012.

[178] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. Atom: Horizon-
tally scaling strong anonymity. In SOSP, 2017.

[179] Albert Hyukjae Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle: An efficient
communication system with strong anonymity. In PoPETs, 2016.

[180] Leslie Lamport. Specifying systems: The TLA+ language and tools for hardware and soft-
ware engineers. 2002.

[181] Leslie Lamport. Byzantizing Paxos by refinement. In DISC, 2011.

[182] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate transparency. RFC 6962.

[183] Sean Lawlor and Kevin Lewi. Deploying key transparency at WhatsApp. https://
engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/.

[184] Sean Lawlor and Kevin Lewi. Deploying key transparency at whatsapp. https://
engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/.

https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/

BIBLIOGRAPHY 192

[185] Ledger. How Ledger device generates 24-word recovery phrase. https:
//support.ledger.com/hc/en-us/articles/4415198323089-How-Ledger-
device-generates-24-word-recovery-phrase, November 2023.

[186] Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and Raluca Ada Popa. An off-chip
attack on hardware enclaves via the memory bus. In USENIX Security, 2020.

[187] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song. Key-
stone: An open framework for architecting trusted execution environments. In EuroSys,
2020.

[188] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, andMarcus Peinado.
Inferring fine-grained control flow inside SGX enclaves with branch shadowing. InUSENIX
Security, 2017.

[189] Julia Len, Melissa Chase, Esha Ghosh, Daniel Jost, Balachandar Kesavan, and Antonio
Marcedone. ELEKTRA: Efficient lightweight multi-device key transparency. In CCS, 2023.

[190] Julia Len, Melissa Chase, Esha Ghosh, Kim Laine, and Radames Cruz Moreno. OPTIKS: An
optimized key transparency system. Cryptology ePrint Archive, Paper 2023/1515, 2023.
https://eprint.iacr.org/2023/1515.

[191] Derek Leung, Yossi Gilad, Sergey Gorbunov, Leonid Reyzin, and Nickolai Zeldovich. Aard-
vark: A concurrent authenticated dictionary with short proofs. IACR Cryptol. ePrint Arch.,
2020:975, 2020.

[192] Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda. TrInc: Small trusted
hardware for large distributed systems. In NSDI, 2009.

[193] Yehuda Lindell, David Cook, Tim Geoghegan, Sarah Gran, Rolfe Schmidt, Ehren Kret,
Darya Kaviani, and Raluca Ada Popa. The deployment dilemma: Merits & challenges of
deploying MPC, 2023. https://mpc.cs.berkeley.edu/blog/deployment-dilemma.
html.

[194] Yehuda Lindell, Benny Pinkas, Nigel P Smart, and Avishay Yanai. Efficient constant-round
multi-party computation combining BMR and SPDZ. Journal of Cryptology, 2019.

[195] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine Shi.
GhostRider: A hardware-software system for memory trace oblivious computation. ASP-
LOS, 2015.

[196] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM: A pro-
gramming framework for secure computation. In IEEE S&P, 2015.

[197] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions
via minionn transformations. In CCS, 2017.

https://support.ledger.com/hc/en-us/articles/4415198323089-How-Ledger-device-generates-24-word-recovery-phrase
https://support.ledger.com/hc/en-us/articles/4415198323089-How-Ledger-device-generates-24-word-recovery-phrase
https://support.ledger.com/hc/en-us/articles/4415198323089-How-Ledger-device-generates-24-word-recovery-phrase
https://eprint.iacr.org/2023/1515
https://mpc.cs.berkeley.edu/blog/deployment-dilemma.html
https://mpc.cs.berkeley.edu/blog/deployment-dilemma.html

BIBLIOGRAPHY 193

[198] Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory,
1982.

[199] Jacob R Lorch, Bryan Parno, James Mickens, Mariana Raykova, and Joshua Schiffman.
Shroud: Ensuring private access to large-scale data in the data center. In FAST, 2013.

[200] Joshua Lund. Technology preview for secure value recovery, 2019. https://signal.
org/blog/secure-value-recovery/.

[201] Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible Byzantine fault tolerance. In SIGSAC,
2019.

[202] Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha Ghosh, Ercan Oztürk,
Kevin Lewi, and Sean Lawlor. Parakeet: Practical key transparency for end-to-end en-
crypted messaging. 2023. https://eprint.iacr.org/2023/081.

[203] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander Frolov, Tyler
Kell, Tyrone Lobban, Christine Moy, Ari Juels, and Andrew Miller. Candid: Can-do de-
centralized identity with legacy compatibility, Sybil-resistance, and accountability. In IEEE
S&P, 2021.

[204] Moxie Marlinspike. The difficulty of private contact discovery, 2014. https://signal.
org/blog/contact-discovery/.

[205] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer, Arthur Ger-
vais, Ari Juels, and Srdjan Capkun. ROTE: Rollback protection for trusted execution. In
USENIX Security, 2017.

[206] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kostiainen, Ghassan Karame, and Srdjan
Capkun. BITE: Bitcoin lightweight client privacy using trusted execution. In USENIX
Security, 2019.

[207] Vasilios Mavroudis, Andrea Cerulli, Petr Svenda, Dan Cvrcek, Dusan Klinec, and George
Danezis. A touch of evil: High-assurance cryptographic hardware from untrusted compo-
nents. In CCS, 2017.

[208] Marcela SMelara, Joseph Blankstein, Aaron aind Bonneau, EdwardWFelten, andMichael J
Freedman. CONIKS: Bringing key transparency to end users. In USENIX Security, 2015.

[209] Memtier benchmark. https://github.com/RedisLabs/memtier_benchmark.

[210] Ralph Merkle. Method of providing digital signatures, 1979.

[211] Signal Messenger. Signal Android client. https://github.com/signalapp/Signal-
Android.

https://signal.org/blog/secure-value-recovery/
https://signal.org/blog/secure-value-recovery/
https://eprint.iacr.org/2023/081
https://signal.org/blog/contact-discovery/
https://signal.org/blog/contact-discovery/
https://github.com/RedisLabs/memtier_benchmark
https://github.com/signalapp/Signal-Android
https://github.com/signalapp/Signal-Android

BIBLIOGRAPHY 194

[212] Signal Messenger. Signal desktop client. https://github.com/signalapp/Signal-
Desktop.

[213] Signal Messenger. Signal iOS client. https://github.com/signalapp/Signal-iOS.

[214] Meta. End-to-end encryption on Messenger explained, 2024. https://about.fb.com/
news/2024/03/end-to-end-encryption-on-messenger-explained/.

[215] Thibault Meunier and Mari Galicer. Cloudflare helps verify the security of end-to-
end encrypted messages by auditing key transparency for WhatsApp. https://blog.
cloudflare.com/key-transparency/.

[216] Microsoft. Bitlocker whitepaper Windows 10. https://scdn.rohde-schwarz.com/ur/
pws/dl_downloads/dl_firmware/pdf_3/Bitlocker_White_Paper_Windows_10.
pdf, 2018.

[217] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada Popa.
Oblix: An efficient oblivious search index. In IEEE S&P, 2018.

[218] Michael Mitzenmacher. The power of two choices in randomized load balancing. IEEE
TPDS, 2001.

[219] Model transparency. https://github.com/google/model-transparency.

[220] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom: How SGX ampli-
fies the power of cache attacks. In CHES, 2017.

[221] P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-preserving machine
learning. In IEEE S&P, 2017.

[222] PaymanMohassel and Peter Rindal. ABY3: a mixed protocol framework for machine learn-
ing. In CCS, 2018.

[223] MPC alliance. https://www.mpcalliance.org/.

[224] Graham Mudd. Privacy-enhancing technologies and building for the future, 2022. https:
//www.facebook.com/business/news/building-for-the-future.

[225] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key
FHE. In Eurocrypt, 2016.

[226] Multi-party computation ceremonies in Zcash. https://z.cash/technology/
paramgen/.

[227] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and Frank
Piessens. Plundervolt: Software-based fault injection attacks against Intel SGX. In IEEE
S&P, 2020.

https://github.com/signalapp/Signal-Desktop
https://github.com/signalapp/Signal-Desktop
https://github.com/signalapp/Signal-iOS
https://about.fb.com/news/2024/03/end-to-end-encryption-on-messenger-explained/
https://about.fb.com/news/2024/03/end-to-end-encryption-on-messenger-explained/
https://blog.cloudflare.com/key-transparency/
https://blog.cloudflare.com/key-transparency/
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_firmware/pdf_3/Bitlocker_White_Paper_Windows_10.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_firmware/pdf_3/Bitlocker_White_Paper_Windows_10.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_firmware/pdf_3/Bitlocker_White_Paper_Windows_10.pdf
https://github.com/google/model-transparency
https://www.mpcalliance.org/
https://www.facebook.com/business/news/building-for-the-future
https://www.facebook.com/business/news/building-for-the-future
https://z.cash/technology/paramgen/
https://z.cash/technology/paramgen/

BIBLIOGRAPHY 195

[228] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized business
review, 2008.

[229] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra.
A new approach to practical active-secure two-party computation. In CRYPTO, 2012.

[230] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus Gasser,
Ismail Khoffi, Justin Cappos, and Bryan Ford. CHAINIAC: Proactive Software-Update
transparency via collectively signed skipchains and verified builds. In USENIX Security,
2017.

[231] Kobbi Nissim and Moni Naor. Certificate revocation and certificate update. In USENIX
Security, 1998.

[232] Nitro secure module. https://github.com/aws/aws-nitro-enclaves-nsm-api/
tree/v0.4.0.

[233] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil
Vaswani, andManuel Costa. Obliviousmulti-partymachine learning on trusted processors.
In USENIX Security, 2016.

[234] Diego Ongaro. Consensus: Bridging theory and practice. Stanford University, 2014.

[235] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm.
In USENIX ATC, 2014.

[236] TakuOnodera and Tetsuo Shibuya. Succinct oblivious ram. arXiv preprint arXiv:1804.08285,
2018.

[237] OpenEnclave. https://github.com/openenclave/openenclave.

[238] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. Eleos: Exitless os
services for SGX enclaves. In EuroSys, 2017.

[239] Chris Orsini, Alessandra Scafuro, and Tanner Verber. How to recover a cryptographic
secret from the cloud. Cryptology ePrint Archive 2023/1308, 2023.

[240] Rafail Ostrovsky. Efficient computation on oblivious RAMs. In STOC, 1990.

[241] Bryan Parno, Jacob R Lorch, John R Douceur, James Mickens, and Jonathan M McCune.
Memoir: Practical state continuity for protected modules. In IEEE S&P, 2011.

[242] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. ABY2.0: Im-
proved mixed-protocol secure two-party computation. Cryptology ePrint Archive, Report
2020/1225, 2020. https://eprint.iacr.org/2020/1225.

https://github.com/aws/aws-nitro-enclaves-nsm-api/tree/v0.4.0
https://github.com/aws/aws-nitro-enclaves-nsm-api/tree/v0.4.0
https://github.com/openenclave/openenclave
https://eprint.iacr.org/2020/1225

BIBLIOGRAPHY 196

[243] Erman Pattuk, Murat Kantarcioglu, Huseyin Ulusoy, and Bradley Malin. Cheapsmc: A
framework to minimize secure multiparty computation cost in the cloud. In DBSec, 2016.

[244] Paxos. https://paxos.com/crypto-brokerage/.

[245] Trevor Perrin. KEM-based hybrid forward secrecy for Noise. 2018. https://github.
com/noiseprotocol/noise_hfs_spec/blob/master/output/noise_hfs.pdf.

[246] Trevor Perrin. The Noise protocol framework. 2018.

[247] Robin L Plackett and J Peter Burman. The design of optimum multifactorial experiments.
Biometrika, 1946.

[248] Rishabh Poddar, Ganesh Ananthanarayanan, Srinath Setty, Stavros Volos, and Raluca Ada
Popa. Visor: Privacy-preserving video analytics as a cloud service. In USENIX Security,
2020.

[249] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada Popa, and Joseph M
Hellerstein. Senate: A maliciously-secure MPC platform for collaborative analytics. In
USENIX Security, 2021.

[250] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Safebricks: Shielding
network functions in the cloud. In NSDI, 2018.

[251] Preveil. https://www.preveil.com/.

[252] Protocol buffers - Google’s data interchange format. https://github.com/
protocolbuffers/protobuf.

[253] Proton Mail. https://proton.me/mail.

[254] Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006.

[255] Martin Raab and Angelika Steger. Balls into bins–a simple and tight analysis. In RANDOM,
1998.

[256] Martin Raab and Angelika Steger. “balls into bins”—a simple and tight analysis. In RAN-
DOM, 1998.

[257] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Crosstalk: Speculative data leaks across cores are real. In IEEE S&P, 2021.

[258] Vijaya Ramachandran and Elaine Shi. Data oblivious algorithms for multicores. arXiv
preprint arXiv:2008.00332, 2020.

[259] MV Ramakrishna. Computing the probability of hash table/urn overflow. Communications
in Statistics-Theory and Methods, 16(11):3343–3353, 1987.

https://paxos.com/crypto-brokerage/
https://github.com/noiseprotocol/noise_hfs_spec/blob/master/output/noise_hfs.pdf
https://github.com/noiseprotocol/noise_hfs_spec/blob/master/output/noise_hfs.pdf
https://www.preveil.com/
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://proton.me/mail

BIBLIOGRAPHY 197

[260] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Knowledge inference for opti-
mizing secure multi-party computation. In IEEE S&P, 2014.

[261] Redis. https://redis.io/.

[262] Ken Reese, Trevor Smith, JonathanDutson, JonathanArmknecht, Jacob Cameron, and Kent
Seamons. A usability study of five two-factor authentication methods. In SOUPS, 2019.

[263] Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten Van Dijk,
and Srinivas Devadas. Constants count: Practical improvements to oblivious RAM. In
USENIX Security, 2015.

[264] Pedro Reviriego, Lars Holst, and Juan Antonio Maestro. On the expected longest length
probe sequence for hashing with separate chaining. Journal of Discrete Algorithms,
9(3):307–312, 2011.

[265] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori, Thomas
Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework
for machine learning applications. In AsiaCCS, 2018.

[266] Riddle and code. https://www.riddleandcode.com/blog-posts/hardware-
security-modules-vs-secure-multi-party-computation-in-digital-asset-
custody.

[267] Ripple. https://ripple.com/xrp/.

[268] Mark Dermot Ryan. Enhanced certificate transparency and end-to-end encrypted mail. In
NDSS, 2014.

[269] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro. TaoStore:
Overcoming asynchronicity in oblivious data storage. In IEEE S&P, 2016.

[270] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. ZeroTrace: Oblivious memory
primitives from Intel SGX. In NDSS, 2018.

[271] Andy Sayler, Taylor Andrews, Matt Monaco, and Dirk Grunwald. Tutamen: A next-
generation secret-storage platform. In SoCC, 2016.

[272] SCALE-MAMBA. https://github.com/KULeuven-COSIC/SCALE-MAMBA.

[273] Axel Schroepfer and Florian Kerschbaum. Forecasting run-times of secure two-party com-
putation. In QEST, 2011.

[274] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas
Prescher, and Daniel Gruss. ZombieLoad: Cross-privilege-boundary data sampling. In
CCS, 2019.

https://redis.io/
https://www.riddleandcode.com/blog-posts/hardware-security-modules-vs-secure-multi-party-computation-in-digital-asset-custody
https://www.riddleandcode.com/blog-posts/hardware-security-modules-vs-secure-multi-party-computation-in-digital-asset-custody
https://www.riddleandcode.com/blog-posts/hardware-security-modules-vs-secure-multi-party-computation-in-digital-asset-custody
https://ripple.com/xrp/
https://github.com/KULeuven-COSIC/SCALE-MAMBA

BIBLIOGRAPHY 198

[275] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Malware guard extension: Using SGX to conceal cache attacks. In DIMVA, 2017.

[276] Scotiabank’s chief risk officer on the state of anti–money laundering. https://mck.co/
2ATh2IU, October 2019.

[277] Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL, 2019.

[278] Sepior. https://sepior.com/products/advanced-mpc-wallet.

[279] Mary Shacklett. Financial services companies are starting to use the cloud for big
data and ai processing. https://www.techrepublic.com/article/financial-
services-companies-are-starting-to-use-the-cloud-for-big-data-and-ai-
processing/, 2020.

[280] Hossein Shafagh, Lukas Burkhalter, Sylvia Ratnasamy, and Anwar Hithnawi. Droplet:
Decentralized authorization and access control for encrypted data streams. In USENIX
Security, 2020.

[281] Pavitra Shankdhar. Popular tools for brute-force attacks. https://resources.
infosecinstitute.com/topics/hacking/popular-tools-for-brute-force-
attacks/, 2020.

[282] Shared machine learning: Ant financial’s solution for data privacy. https://link.
medium.com/CgDVD0mtbab.

[283] Rob Shirley. Internet security glossary, version 2. https://datatracker.ietf.org/
doc/html/rfc4949.

[284] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. Performance-
influence models for highly configurable systems. In ESEC/FSE, 2015.

[285] Signal. The difficulty of private contact discovery, 2014. https://signal.org/blog/
contact-discovery/.

[286] Signal Messenger. Secure Value Recovery Service v2/3. https://github.com/
signalapp/SecureValueRecovery2.

[287] Signal Messenger. https://signal.org/.

[288] Signal revenue & usage statistics. https://www.businessofapps.com/data/signal-
statistics/.

[289] Sudheesh Singanamalla, Suphanat Chunhapanya, Marek Vavruša, Tanya Verma, PeterWu,
Marwan Fayed, Kurtis Heimerl, Nick Sullivan, and ChristopherWood. Oblivious DNS over
HTTPS (ODoH): A practical privacy enhancement to DNS. PoPETs, 2021.

https://mck.co/2ATh2IU
https://mck.co/2ATh2IU
https://github.com/Microsoft/SEAL
https://sepior.com/products/advanced-mpc-wallet
https://www.techrepublic.com/article/financial-services-companies-are-starting-to-use-the-cloud-for-big-data-and-ai-processing/
https://www.techrepublic.com/article/financial-services-companies-are-starting-to-use-the-cloud-for-big-data-and-ai-processing/
https://www.techrepublic.com/article/financial-services-companies-are-starting-to-use-the-cloud-for-big-data-and-ai-processing/
https://resources.infosecinstitute.com/topics/hacking/popular-tools-for-brute-force-attacks/
https://resources.infosecinstitute.com/topics/hacking/popular-tools-for-brute-force-attacks/
https://resources.infosecinstitute.com/topics/hacking/popular-tools-for-brute-force-attacks/
https://link.medium.com/CgDVD0mtbab
https://link.medium.com/CgDVD0mtbab
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://signal.org/blog/contact-discovery/
https://signal.org/blog/contact-discovery/
https://github.com/signalapp/SecureValueRecovery2
https://github.com/signalapp/SecureValueRecovery2
https://signal.org/
https://www.businessofapps.com/data/signal-statistics/
https://www.businessofapps.com/data/signal-statistics/

BIBLIOGRAPHY 199

[290] Solana. Solana decentralized exchange. https://soldex.ai/wp-content/uploads/
2021/07/Soldex.ai-whitepaper-.pdf.

[291] E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and F. Koushanfar. TinyGarble:
Highly compressed and scalable sequential garbled circuits. In IEEE S&P, 2015.

[292] Emil Stefanov and Elaine Shi. ObliviStore: High performance oblivious cloud storage. In
IEEE S&P, 2013.

[293] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious ram. InNDSS, 2012.

[294] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path ORAM: an extremely simple oblivious RAM protocol. In CCS,
2013.

[295] Raoul Strackx and Frank Piessens. Ariadne: A minimal approach to state continuity. In
USENIX Security, 2016.

[296] Roberto Tamassia. Authenticated data structures. In ESA, 2003.

[297] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. CLKSCREW: exposing the per-
ils of security-oblivious energy management. In USENIX Security, 2017.

[298] The battle inside Signal. https://www.theverge.com/22249391/signal-app-abuse-
messaging-employees-violence-misinformation.

[299] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos Papamanthou,
Nikos Triandopoulos, and Srinivas Devadas. Transparency logs via append-only authen-
ticated dictionaries. In CCS, 2019.

[300] Alin Tomescu and Srinivas Devadas. Catena: Efficient non-equivocation via Bitcoin. In
IEEE S&P, 2017.

[301] Shruti Tople, Yaoqi Jia, and Prateek Saxena. PRO-ORAM: Practical read-only oblivious
RAM. In RAID, 2019.

[302] Kevin Townsend. Solving the quantum decryption ‘harvest now, decrypt later’ problem.
2022. https://www.securityweek.com/solving-quantum-decryption-harvest-
now-decrypt-later-problem/.

[303] Nora Trapp. Key to simplicity: Squeezing the hassle out of encryption key recov-
ery, 2024. https://www.juicebox.xyz/blog/key-to-simplicity-squeezing-the-
hassle-out-of-encryption-key-recovery.

[304] Anna Trikalinou and Dan Lake. Taking DMA attacks to the next level. 2017.

https://soldex.ai/wp-content/uploads/2021/07/Soldex.ai-whitepaper-.pdf
https://soldex.ai/wp-content/uploads/2021/07/Soldex.ai-whitepaper-.pdf
https://www.theverge.com/22249391/signal-app-abuse-messaging-employees-violence-misinformation
https://www.theverge.com/22249391/signal-app-abuse-messaging-employees-violence-misinformation
https://www.securityweek.com/solving-quantum-decryption-harvest-now-decrypt-later-problem/
https://www.securityweek.com/solving-quantum-decryption-harvest-now-decrypt-later-problem/
https://www.juicebox.xyz/blog/key-to-simplicity-squeezing-the-hassle-out-of-encryption-key-recovery
https://www.juicebox.xyz/blog/key-to-simplicity-squeezing-the-hassle-out-of-encryption-key-recovery

BIBLIOGRAPHY 200

[305] Nirvan Tyagi, Ben Fisch, Andrew Zitek, Joseph Bonneau, and Stefano Tessaro. VeRSA:
Verifiable registries with efficient client audits from RSA authenticated dictionaries. In
CCS, 2022.

[306] Ioanna Tzialla, Abhiram Kothapalli, Bryan Parno, and Srinath Setty. Transparency dictio-
naries with succinct proofs of correct operation. In NDSS, 2022.

[307] Unbound tech. https://www.unboundtech.com/.

[308] Unbound Security. The Unbound CORE MPC key vault.

[309] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-
tracting the keys to the Intel SGX kingdom with transient out-of-order execution. In
USENIX Security, 2018.

[310] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking Tran-
sient Execution through Microarchitectural Load Value Injection. In IEEE S&P, 2020.

[311] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A practical attack framework
for precise enclave execution control. In SysTEX, 2017.

[312] Jo Van Bulck, NicoWeichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. Telling
your secrets without page faults: Stealthy page table-based attacks on enclaved execution.
In USENIX Security, 2017.

[313] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi Maisuradze,
Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue in-flight data load. In
IEEE S&P, 2019.

[314] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval Yarom.
CacheOut: Leaking data on Intel CPUs via cache evictions. arXiv preprint arXiv:2006.13353,
2020.

[315] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht, and Ion Sto-
ica. Ernest: Efficient performance prediction for large-scale advanced analytics. In NSDI,
2016.

[316] Shabsi Walfish. Google Cloud Key Vault Service. Google, 2018. https://developer.
android.com/about/versions/pie/security/ckv-whitepaper.

[317] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan, and Matei Zaharia.
Splinter: Practical private queries on public data. In NSDI, 2017.

[318] Weili Wang, Sen Deng, Jianyu Niu, Michael K Reiter, and Yinqian Zhang. Engraft: Enclave-
guarded Raft on Byzantine faulty nodes. In CCS, 2022.

https://www.unboundtech.com/
https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://developer.android.com/about/versions/pie/security/ckv-whitepaper

BIBLIOGRAPHY 201

[319] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty compu-
tation. In CCS, 2017.

[320] WhatsApp. Security of end-to-end encrypted backups, 2021. https://www.whatsapp.
com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf.

[321] Kyle Wiggers. Apple launches end-to-end encryption for iCloud data. TechCrunch, 2022.

[322] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel oblivious file system.
In CCS, 2012.

[323] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. Dissent in
numbers: Making strong anonymity scale. In OSDI, 2012.

[324] Yuanzhong Xu, Weidong Cui, andMarcus Peinado. Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems. In IEEE S&P, 2015.

[325] Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gonzalez, Burton Smith, and Randy H
Katz. Selecting the best vm across multiple public clouds: A data-driven performance
modeling approach. In SoCC, 2017.

[326] Andrew Chi-Chih Yao. How to generate and exchange secrets. In SFCS, 1986.

[327] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hot-
stuff: BFT consensus with linearity and responsiveness. In ACM PODC, 2019.

[328] Samee Zahur and David Evans. Obliv-C: A language for extensible data-oblivious compu-
tation. Cryptology ePrint Archive, Report 2015/1153, 2015. https://ia.cr/2015/1153.

[329] Tong Zhang. Adaptive forward-backward greedy algorithm for learning sparse represen-
tations. IEEE Transactions on Information Theory, 2011.

[330] Yihua Zhang, Aaron Steele, and Marina Blanton. Picco: A general-purpose compiler for
private distributed computation. In CCS, 2013.

[331] Ekaterina Zharova. The state of Go. https://blog.jetbrains.com/go/2021/02/03/
the-state-of-go/.

[332] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E Gonzalez, and
Ion Stoica. Opaque: An oblivious and encrypted distributed analytics platform. In NSDI,
2017.

[333] Ruiyu Zhu, Darion Cassel, Amr Sabry, and Yan Huang. Nanopi: extreme-scale actively-
secure multi-party computation. In CCS, 2018.

https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://ia.cr/2015/1153
https://blog.jetbrains.com/go/2021/02/03/the-state-of-go/
https://blog.jetbrains.com/go/2021/02/03/the-state-of-go/

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Co-authored material
	Introduction
	Existing distributed-trust systems
	Challenges in deploying distributed-trust systems
	Contributions and dissertation outline

	Adopting
	CostCO: Automatic cost modeling of MPC protocols
	Introduction
	Techniques summary

	CostCO overview
	CostCO architecture
	Usage in a hybrid-protocol compiler
	System assumptions
	Limitations

	CostCO specification
	Synthesizing cost models
	Design of experiments
	Generating and running experiments
	Deriving cost models

	Implementation
	Evaluation
	Ease of use
	Microbenchmarks
	Application benchmarks

	Related work
	MPC compilers
	Cost modeling
	Statistics

	Conclusion

	LegoLog: A configurable transparency log
	Introduction
	Overview
	System architecture
	System API
	Developer API
	Security guarantees

	System design
	Building blocks
	Sharding chronological trees
	Compacting chronological trees
	Supporting offline clients
	Putting it together: Core data structure
	LegoLog protocol

	LegoLog planner
	Specifying entities
	Determining system parameters

	Evaluation
	Implementation
	Microbenchmarks
	Existing transparency logs
	API flexibility

	Discussion
	Related work
	LegoLog protocol specification
	Building blocks
	Server
	Auditor
	Client

	Security analysis
	Building blocks
	Security game
	Security proof

	Conclusion

	Scaling
	Snoopy: A scalable oblivious storage
	Introduction
	Summary of techniques

	Security and correctness guarantees
	Formalizing security

	System overview
	System architecture
	Real-world applications

	Oblivious load balancer
	Setting the batch size
	Oblivious batch coordination
	Scaling the load balancer

	Throughput-optimized subORAM
	Planner
	Implementation
	Evaluation
	Baselines
	Throughput scaling
	Scaling for latency and data size
	Microbenchmarks
	Planner

	Discussion
	Related work
	Parameter analysis
	Security analysis
	Enclave definition
	Our model
	Oblivious storage definitions
	Oblivious building blocks
	SubORAM
	Snoopy
	Discussion of multiple clients

	Linearizability
	Access control
	Conclusion

	SVR3: Secret key recovery in a global-scale E2EE system
	Introduction
	System overview
	System architecture
	System API

	Threat model and guarantees
	Security across trust domains
	Security within a trust domain
	Availability

	Secret key backup and recovery protocols
	Establishing enclave sessions
	PIN-protected secret sharing

	Building a SVR3 backend
	Design decisions
	Rollback-resistant consensus protocol
	Integrity across the database

	Operations
	Implementation
	Evaluation
	Microbenchmarks
	End-to-end performance

	Discussion
	Related work
	Properties of different enclaves
	Production deployment
	Atomic regions
	Raft34 safety proofs
	TLA+ specification of Raft34
	Conclusion

	Conclusion
	Summary
	Future work

	Bibliography

