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Abstract
Predicting Degradation of Fuel Cell Membrane Electrode Assemblies from Buses
by
Harsh Srivastav
Masters of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Alexandre Bayen, Chair

The Alameda Contra Costa Transit District (AC Transit) has provided lifetime data for a
limited fleet of their buses that were run on hydrogen fuel cells. Opportunities to study such
longitudinal data in clean energy transportation systems are uncommon, particularly over
the complete operational lifespan of vehicles. This thesis leverages that dataset to investigate
whether early-life performance indicators can be used to accurately predict long-term degra-
dation behavior of fuel cell systems. We have run machine learning models on the predictions
of the data to study whether later life degradation behavior can be accurately estimated from
earlier time performance. To do so, we have explored using recurrent neural network type
models, with variations in both the loss function and the data being trained upon. Long
term predictions (over the course of years) are also presented for multiple buses with trends
analyzed. These findings have implications for predictive maintenance, fleet management,
and the broader deployment of hydrogen-powered transportation systems. Additionally, we
discuss the limitations of the modeling approach and suggest future directions for improving
predictive accuracy with hybrid modeling strategies and additional contextual data.
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Chapter 1

Introduction

Neural networks have revolutionized predictive modeling capabilities for machine learning,
offering unparalleled methods of mimicking complex relationships contained in data. Their
power includes the ability to match large ranges of functions accurately based on inputs
through layers of abstraction to make accurate predictions for new targets. Indeed, suffi-
ciently dense multilayer neural networks can capture any Borel measurable function to any
desired degree of accuracy, making them universal function approximators.[1] This theoret-
ical guarantee has been a cornerstone in justifying the application of neural networks to
a wide variety of predictive tasks, from time-series forecasting to classification and regres-
sion problems. The back-propagation algorithm paved the way for making the training of
such networks more efficient and feasible.[2] Although the underlying function being used
for training can be resembled closely, this does not mean the overall function captures the
real world trend as intended. This effect is usefully captured by the Bias-Variance Tradeoff,
which details limitations in the predictiveness of the model due to simplifying assumptions
(bias) and inaccuracies due to the data trained upon (variance).[3] Many techniques were
invented to reduce the difference between the predicted function and reality, such as Lasso,
Ridge Regression, Batch Renormalization, and more.[4, 5, 6, 7]

In practice, deep neural networks, which allow the approximation of complex behavior
arising from large datasets, yield incredible performance in predictive analytics. Residual
neural networks (ResNets) became especially helpful for image processing/recognition and
denoising where the output looked similar to the input.[8] Convolutional Neural Networks
(CNNs) became a standard for predicting features obtained from image processing.[9] Moving
beyond simple predictions, modeling time implicitly was introduced through the development
of Recurrent Neural Networks (RNNs), which demonstrated how recurrent connections can
capture temporal structures in sequential data.[10] RNNs were trained using the same gradi-
ent descent/back-propagation algorithm for original fully-connected (dense) neural networks,
which led to their own set of problems in certain applications. Exploding gradients still posed
an issue (somewhat alleviated by normalization), but dying gradients were largely prevented
using Long-Short Term Memory Networks (LSTMs) which introduced forget gates to de-
termine the extent of remembering long-term dependencies. In this way, LSTMs combined
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ideas incorporated by both RNNs and ResNets. In the world of natural language processing
(NLP), models using transformer ideas (based on principles of deep neural networks) have
set new records for machine translation, image generation, classification, summarization, and
more.[11, 12, 13, 14, 15, 16]

Neural networks have also exceled in domains where traditional statistical modeling has
struggled, particularly because of their robustness to noisy and unreliable subsets of data
using the techniques mentioned above. In particular, sequential data (where the output
depends on a past series of inputs) is often particularly noisy and requires careful handling.
In stock forecasting, RNNs and LSTMs have been demonstrated to have improved accuracy
over memory-free models, including random forests and logistic regression.[17] Taking in
extensive weather and storm data, neural network models are increasingly used for weather
predictions and mapping storm trajectories, providing accurate 10-day forecasts rapidly.[18,
19] Researchers have also developed models for predicting clinical events and mortality risk
via RNNs, outperforming several baselines.[20, 21]

Hydrogen-based conversion and utilization hold promise for mitigating and severely re-
ducing significant issues that arise from traditional non-renewable energy sources, including
harmful emissions.[22] Hydrogen-based conversion technologies (including fuel cells and elec-
trolyzers) offer numerous benefits, such as high energy efficiency, environmental sustainabil-
ity, operational flexibility, energy security, high energy density, and grid independence.[23,
24] To promote advances in the hydrogen economy, the Department of Energy has developed
consortia related to specific efforts involved, from hydrogen fuel cells (Million Miles Fuel Cell
Truck (M2FCT)), hydrogen production (HydroGen and H2NEW), and efficient larger-scale
manufacturing processes (Roll-to-Roll (R2R)).[25, 26, 27, 28] This multi-faceted approach
is considered essential due to the significant challenges hydrogen faces in becoming a viable
alternative energy source.

In this dissertation, we focus on the efforts of the M2FCT consortium, which in part
focuses on the lifetime durability of Proton-Exchange Membrane Fuel Cells (PEMFCs). The
M2FCT consortium has set a target of achieving a hydrogen fuel cell system durability
equivalent to powering a heavy-duty vehicle for one million miles. A simple schematic of the
cross section of a hydrogen fuel cell is depicted in Figure 1.1.

This ambitious goal aims to significantly enhance the commercial viability of hydrogen
fuel cells in long-haul trucking applications. Obtaining this target would represent a five-fold
increase in the longevity of current combustion-engine driven trucks, making hydrogen fuel
cells a more practical and cost-effective alternative that would take over the trucking indus-
try. Additionally, while heavy duty vehicles such as trucks and buses make up less than 10%
of overall vehicles present on roads, they comprise up to 25% of overall emissions and fuel
consumption, delineating an important mitigation target.[29] With almost all of the major
automakers investing in FCV development as well Toyota, Hyundai, and Honda as offer-
ing commercial FCV automobiles, along with governments worldwide promoting hydrogen
energy through subsidies and initiatives, the industry is at a pivotal moment.[30, 31, 32]

In addition to partnerships with trucking manufacturing companies, M2FCT also main-
tains a tie to the Alameda Contra Costa Transit District (AC Transit) with its fuel cell
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Figure 1.1: A simple schematic of a proton-exchange hydrogen fuel cell (not drawn to scale).
The gas diffusion layers (GDLs) represent porous components where the reacting gases enter
while the catalyst layers constitute electrodes where the gases react. The membrane is
constructed of a special material that forces only positively charged groups through, forcing
the electrons through the external circuit drawn overhead.

buses. AC Transit operates a fleet of 626 buses to transport residents in the Alameda and
Contra Costa counties of California. Under the Legacy Fuel Cell Bus Study, 13 of these
buses (labeled FC4 — FC16, “FC” for fuel cell) were hybrid models, running on both battery
technology and hydrogen fuel cell stacks.[33, 34] This included an initial deployment of three
Van Hool A330 fuel cell buses in 2006, followed by the addition of 10 more Van Hool fuel
cell buses between 2010 and 2011.[35] The average operational lifespan of the Legacy fleet
was 25,763 hours, with three buses exceeding 30,000 hours of operation without the need for
major maintenance. Performance metrics for these buses were recorded during operational
maintenance visits over the courses of their lifetimes (until the buses were decommissioned).
A visual of a hydrogen fuel cell stack is present in Figure 1.2.

Hydrogen-fueled FCVs offer a pathway toward a zero-emission future, but their success
will depend on overcoming key technical and economic barriers including the lack of data
and understanding of the durability of the cells and components over time in real-world
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Figure 1.2: The layout of a hydrogen fuel cell stack (layers not drawn to scale). The fuel cells
present are (with minor modifications) the same as in Figure 1-1 while the water transport
plates (WTPs) build up voltage through providing conductive pathways while also allowing
for removal of water generated within the cells. The inset cuts out of the WTPs represent
channels for water to exit the system and reactant species to enter.

operation. This work aims to bridge the gap in mastery over the comprehension of predicting
the performance of fuel cell systems over their lifetimes. The dataset is quite unique and
has not been studied in this context prior. Multiple neural network architectures, including
LSTMs and transformer-based networks, have been utilized for comparison in this task.
These networks forecast the state of the fuel cell stacks after a certain period of time, not
necessarily limited by the training data. Various enhancements are introduced to improve
prediction accuracy, and their impacts are systematically assessed. The findings of this work
have the potential to inform the design, operation, and maintenance strategies for the next
generation of zero-emission vehicles.



Chapter 2

Background

The performance of fuel cell systems is often characterized in terms of polarization curves,
which provide a graphical representation of the applied voltage and output current of a
fuel cell under its operation conditions. These curves are invaluable in identifying key power
metrics and delineating potential losses associated with various electrochemical phenomenon
within the cells. An example of a polarization curve with the different loss regimes is depicted
in Figure 2.1.In a typical polarization curve, the cell voltage, in volts (typically normalized
by the number of cells present in the system), is plotted on the y-axis against the current
density [A/cm?], where the relevant area is the cross-sectional area of the fuel cells or stack
(assumed constant). The curve displays three prominent features, indicative of the different
dominant potential loss mechanism.

At low current densities, the curve drops steeply due to activation losses. These activation
losses arise largely from two different sources: hydrogen crossover from the anode through
the membrane to the cathode and Butler-Volmer activation kinetics. Hydrogen crossover
occurs due to slow reaction kinetics in the anode, resulting in an excess in the reactant
gas, that permeates through the membrane and reacts on the cathode instead. Over the
course of the lifetime of a fuel cell, this permeation eventually leads to further degradation
of the membrane.[36] The Butler-Volmer equation details how the current density through
a reaction at an electrode is impacted by the voltage bias in the solid phase:

i:iolexp (%) —exp(— %)] (2.1)

where iy is the exchange current density, a,,c. are the anodic and cathodic transfer co-
efficients (respectively), U, is the equilibrium cell voltage (1.23 V for ORR), R = 8.314
J/(mol-K) is the ideal gas constant, F' = 96,485 C/mol e~ is Faraday’s constant, and T is
the temperature. Thus, for current to flow as a result of the HOR and ORR, logarithmic
drop in the voltage must occur.
At intermediate current densities instead, the voltage decline becomes linear, given by
Ohm’s fundamental relation,
V =iAr (2.2)
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Figure 2.1: The polarization curve shows the average voltage of a fuel cell, component,

or associated system, V', against the current density of the cross-sectional area, 1.

activation, ohmic, and transport loss regimes all dominate in the respective bars depicted in
the colors shown, though all three are present in all operating conditions. The ideal voltage
represents the thermodynamic limit at 25°C while the limiting current, i, is the maximum

producible current.
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where A is the cross-sectional area and r is the resistance of the component. This regime
is dominated by the resistance to ionic conduction through the membrane and electronic
resistance through the catalyst layers (usually minor). The slope of the ohmic region thus
directly relates to the internal resistance of the cell.

Higher current densities include a further rapid potential drop due to mass transport
limitations in the cathode. These losses occur when the oxygen supplied through the cathode
GDL cannot diffuse to the catalyst sites at a sufficient rate or become impeded through
water generation from the ORR, restricting access. Although this failure manifests in the
cathode, this region represents failures in the GDL architecture in removing product water
and supplying the needed oxygen to the reaction sites.

The physical stacks from two different buses (named FC4 and FC12) were provided by
AC Transit for further experimental testing. Each bus contained two stacks of 290 proton-
exchange-membrane fuel cells (PEMFCs). Each PEMFC has an active area of 420 cm? and
is comprised of a Gore 18 pm membrane [37] with symmetric anode and cathode catalyst
layers with a nominal loadings of 0.4 mgPt/cm? and 12 mm thickness. The stacks employed
WTPs at ambient pressure with hydrogen and air, as have been described elsewhere. [38,
39] Figure 2.2 shows a picture of a stack on a pallet for scale.

The stacks are then integrated into the hardware of the bus through streams for the inlet
gas streams and electrical lines connecting the stacks to the motor. The stacks built up
voltage in series to supply power for the bus, with fresh hydrogen and air feeds entering into
each stack. The cooling water entered cross-current into the stacks, mixing with the outlet
water product stream. A simple visualization of the system is present in Figure 2.3.

The voltage data provided by AC Transit covers a narrow range of the degradation mech-
anisms covered here, in most cases only documenting ohmic regime information. Readings
often captured only fragments of polarization curves, or in many cases, only a single point
along the polarization curve. In many cases, although other aspects of the fuel cell were
tested, either the voltage or the current were not measured, resulting in a timepoint that
cannot be utilized in this study. Still further difficulties arose from artifacts in the mea-
surements due to either the devices used or the bus system surrounding the fuel cell stacks.
Additionally, operating conditions when recording the data varied and were not held consis-
tent, sometimes even during the same timepoint. Further, the routes of the buses were not
recorded, hinting that past performance may not be fully representative of future outcomes.
Examples of polarization curves provided by AC Transit along with ones taken by in-house
fuel cell test stands are depicted in Figure 2.4.

Despite the irregularities and gaps in the dataset, the presence of a full lifetime time-
series of even partial polarization data offers the opportunity to explore the capabilities of
deep neural networks without using traditional physics-based techniques. The hope through
this modelling is the data-driven approach of using deep neural networks, we can capture
degradation trends found not simply in the fuel cells themselves, but also in the surrounding
system used to integrate them into the bus’ hardware.
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Figure 2.2: A photograph of a stack as extracted from the system of bus FC4. The horizontal
lines through the stack represent the individual fuel cells while the pipe visible in the front
of the stack shows the hydrogen input line. Pallet dimensions were approximately 5'x5’.
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Figure 2.3: A diagram of the bus system, given by AC Transit. Each stack receives a
fresh supply of hydrogen which is recycled on the opposite end of the stack after a single
pass through the cells. The recycled streams are passed through the same cells, divided
by indents on the WTPs. The air is similarly supplied to each cell while the cooling water
undergoes a single pass and is mixed with the product water on outlet.
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Figure 2.4: (Left) Stack-averaged polarization data given by AC Transit with mileages of
the bus recorded. (Right) Data taken from individual cells from the decommissioned stack
A from FC4, except for a beginning-of-life (BOL) cell, which was included for reference
(courtesy of Arthur Dizon at Lawrence Berkeley National Laboratory).
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Chapter 3

Design of Predictive Models

We begin by preprocessing the data for anticipated irregularities and gaps. First, the ranges
of current densities over which the voltages were recorded were varied and limited to the
ohmic regime. Due to the noisy nature of the data, the physical data was passed through a
convolution filter that averages over every 10 points. The physical data in the subsequent
plots are all from post-processing through this filter. Thus, we have fit each polarization
curve to a linear relationship that the model tries to predict, characterized by its slope and
intercept. An example fit line is given in Figure 3.1.

—— Physical Data

1
0897 l\/q,f\\.w Fit Line: V=-0.57-i + 0.84

i \/‘mw
0.70 U\

0.65

0.60 ﬂ

0.55 A

Voltage [V]

T T T
0.1 0.2 0.3 0.4 0.5
Current Density [A/fcm?]

Figure 3.1: The fit line for the polarization data for FC4 on February 24, 2022 with 253,242
miles.

In many cases, the polarization data was not tested for the second stack, stack B. How-
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ever, as demonstrated in Figure 3.2, stack B rarely yielded differences from stack A, especially
as both stacks were arranged in series. Therefore, the data for stack A was uniformly as-
sumed to be representative of stack B as well. In feature extraction, however, the role of
missing stack B data was left as a form of dropout on the training data and passed through
without modification.

ﬂ.g'ﬂ 1] T L T Li L
— - 73,028 Miles
0.85F == B - 73,028 Miles .
—_— A - 115,865 Miles
0.80F == H-115% 865 Miles -
—_—h - 221,604 Miles
=~ 0.75} - B -221,604 Miles -
E — - 246,275 Miles
'g 0.70F == B-246,275 Miles 4
2
£ 0.65} |
0.60F 4
0.55}¢ J
0.50

0.1 02 03 04 05 06
Current Density [Ajcm?]

Figure 3.2: The polarization curves taken for four different time points over the lifetime of
FC4. The performance is very similar for both stacks (solid and dotted lines), coinciding
indistinguishably in all except the 115k miles case at higher current densities.

As the slope and intercept of the fit line of the target date and mileage were the targets of
the neural networks, the target shape was simply a vector of 2 components. In contrast, when
performing feature extraction, the operating conditions when performing the polarization
curve, along with the previous 4 dates of data were compressed as a single feature vector.
These operating conditions included the ambient air temperature of the inlet streams, the
air mass flow rate, the fuel (hydrogen) mass flow rate, the air exhaust temperatures for
both stacks, the recycled hydrogen pressure, the anode inlet pressures, and the ambient air
pressure. In addition to these conditions which can be directly controlled, the date and
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[}

mileage of the bus was passed as an input. The mileage is already a floating number while
the date was taken as a difference of the number of days since January 1st, 2010. The
mileage directly captures a measure of age for the fuel cell stacks and although the materials
involved in the fuel cell stacks themselves are unlikely to degrade over the course of 10 years,
they may create significantly more degradation for the external system.

A sequence of four such feature vectors was then passed into the LSTM with the hope of
performing few shot prompting. When predicting forward into the future, the polarization
data for every 10 cells was also passed in as inputs for the previous 4 days. A summary of
the data being broken into features and targets is present in Figure 3.3.

Feature Space

Data values — date — 4
Data values — date — 3

Each Date Data values Data values — date — 2
Date Data values — date — 1

Miles Date
Operating Conditions (T, P, Miles
ete) Operating Conditions (T,
Slope/Intercept of every 10 P, etc.)
cells
Slope
Intercept
Slope
Intercept

Figure 3.3: The data for each timepoint consists of the date, mileage, operating conditions
(such as ambient temperature and pressure), and the polarization data for every 10 cells.
The slope and intercept of the average polarization curve for stack A is maintained as a
separate variable. Several dates worth of data make up the feature space while the target
remains simply the overall slope and intecept.

Using the PyTorch library for Python 3.13.2, the LSTM is implemented with a hidden
size of 32. The default zeros vector was utilized as the initial hidden state. To match the
size of the outputs of the model (two for the slope and intercept of the overall fuel cell
stack polarization curve), a fully connected layer is added after the LSTM layer. A simple
mean squared error loss function, implemented using PyTorch’s MSELoss, is initially used



CHAPTER 3. DESIGN OF PREDICTIVE MODELS 13

for minimization and compared against the case when either the slope or the intercept target
loss is weighted more heavily. More concretely, the unmodified loss function is

l(mpreda bp'reda Miarget, btarget) = (mpred - mtarget>2 + (bpred - btarget)2 (31)

where m and b stand for polarization slope and intercept, respectively. The optimizer utilized
was Adam [40] with a learning rate of 0.001 and otherwise default parameters.

After arranging the data in sequences of four datapoints for the feature set and one for
target, the sequences were divided into an 80:20 split between training data and validation
data. As the most common usage for the model would be to predict towards the end of
the lifetime of the bus using earlier time behavior, this split was not randomized such that
the training data consisted of the first 80% of sequences for the bus and validation for the
last 20%. A choice can be made in this case to train the models only on the particular bus
being used to predict forward in time for or to train on multiple buses at a time and validate
using the bus desired for prediction. This comparison is made explicit with a few examples
depicting how close each case comes for representation the polarization data.
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Chapter 4

Results

Initially, using only a single bus (FC4) to train upon, the LSTM-based model created using
the above approach was trained on the first 80% of sequences and validated on the last
20% of sequences. The training was performed for 100 epochs, resulting in the following
training and validation loss curves present in Figure 4.1. In future trainings of the models
with different characteristics, the training and loss curves look similar and thus have not
been replotted. To maintain a fair comparison, the loss has been normalized by the size of
each dataset. For reproducible results, a seed of 1 has been passed into the PyTorch random
number generator.

Just using the base model, predicting out forward towards the next datapoint, we obtain
the following results for the two different days and mileages of the predictions, as displayed
in Figure 4.2. Overall, the difference between predictions and targets is visually small,
validating the assumptions and architecture of the model. Somewhat importantly, although
the slope and intercept from the left figure have a higher error than the right, visually the
left prediction line intersects the right, seemingly providing more accurate results for certain
current densities where the bus might be more likely to operate.

As we can see, even using the unmodified loss function (PyTorch’s MSELoss), we still
yield fairly accurate predictions. We can demonstrate the affect of changing the importance
of both the slope and intercept though on the predictions by increasing the weighting in the
loss function:

l(mp'redu pr€d7 mta'rgeta btarget) = Wy (mpred - mtarget>2 + w2<bpred — btarget)Q (41)

Previously, w; = wy = 1, but here, we raise each independently to 10. First, starting with
the intercept, we have the results in Figure 4.3. Although the predicted curve for FC4, which
was already more accurate, did not change significantly, the outputted predictions for FC7
improved somewhat in the region where the data was taken (again, despite only knowing the
slope and intercept, so the model has no intuition about which current density range was in
fact utilized).

For the slope predictions, we have (remarkably similar) the results in Figure 4.4. The
results are better for FC7, but slightly worse for FC4. Requiring accuracy in general, either
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Training and Validation Losses
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Figure 4.1: The training and validation losses for training the base model on only the FC4
data. Each loss is normalized by the size of its respective dataset.
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Figure 4.2: The predicted lines against the fit lines (and physical data that they represent)
for training the base model on only each respective bus’s data.
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FC4 - Date: 2022-03-15, Miles: 254,619 FC7 - Date: 2018-01-02, Miles: 145,737
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Figure 4.3: The predicted lines against the fit lines (and physical data that they represent)
for training the base model on only each respective bus’s data when weighting the intercept
as 10x.

approach seems advantageous over unmodified MSELoss however.
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Figure 4.4: The predicted lines against the fit lines (and physical data that they represent)
for training the base model on only each respective bus’s data when weighting the slope as
10x.

From this point on, we modify the loss function to be the one where the intercept is
weighted by 10x. We can additionally test the utilization of the model as being fixed when
encountering new buses; essentially considered a portion of the buses as training data and
fixing the parameters of the model for the future. This is less necessary with our smaller
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dataset, but may become more helpful as we accumulate more data. In Figure 4.5, we predict
the polarization data for FC15, only training on the information given from 8 other buses
(FC4 - FC11). Despite having no further information about FC15 beyond the 4 previous
dates of data, the model performs remarkably well, leading to the notion that the degradation
mechanism of the buses is likely similar. Additionally, FC15 employs a much healthier fit line
than the other buses above (FC4 and FC7) with a more gradual downslope and the model
captures this trend, with an expected voltage at 0.5 A/cm? of 0.63 V, matching similar
voltages present for 115k miles in Figure 3.2.

FC15 - Date: 2017-08-16, Miles: 131,899

Q —— Physical Data
—— Predicted Line
Fit Line: V=-0.37'i + 0.84

0.85 -

0.80

0751

0.70

Voltage [V

0.65 -

0.60 -

0.55

T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Current Density [A/cm?]

Figure 4.5: An example of a predicted polarization curve for FC15 using the version of the
model that was trained only on buses FC4-FC11.

Finally, another utilization of the model is to predict out towards the end of a bus’s
lifetime to visualize when power output might become an issue. We can accomplish this by
maintaining the same sequence prediction model designed above, but changing the date and
mileage of the final sequence to be that of the last timepoint for each bus. Plotting the loss
functions in Figure 4.6, we find that no obvious trend appears except the loss does move
towards being minimized at the end of life. However, only based on the current dataset, we
cannot recommend guidelines after which forecasting become accurate.

For visualization, we can additionally map the predictions given for a few of these dates
for both buses as in Figure 4.7.
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FC8 Losses vs. Dates
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Figure 4.6: (Intercept-weighted) loss functions when predicting out towards the last time-
point for each bus. For FCS8, the two points towards the right with highest loss are due
to outlier physical data, but has been included here as such data might be encountered in
practice.
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FC8 Predictions vs. Actual Fit Lines
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Figure 4.7: Predictions from the model training on each bus utilizing the (Intercept weighted)
loss functions from the text. For FC8, the orange line coincides indistinguishably with the
green line.



20

Conclusion

In this work, we have explored LSTM-based models of predicting fuel cell stack behavior given
lifetime behavior of hydrogen fuel cell buses, with data supplied from AC Transit. These
models utilize sequences of timepoints when the buses were brought in for maintenance for
polarization curve predictions. We find the models to be remarkably accurate in many cases,
often predicting forward towards the next timepoint when polarization data taken with ease.
Long-term predictions suffer greater error here, however, and several mitigation strategies
such as reducing noise in experimental measurements, polarizing the stacks to both the
kinetic and mass transport limited regime, and operating said stacks at universal conditions
during testing may generally improve not just the model reliability, but replicability. Future
work on model architecture as well as more reliable and larger datasets will improve the
robustness of these networks, allowing for empirical optimization of the performance of such
technologies.
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