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Abstract

Monocular Depth Estimation for 3D Scene Completion in Autonomous Racing

by

Wei Xun Lai

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Professor Allen Y. Yang, Co-chair

This thesis presents an approach to 3D scene completion for high-speed autonomous racing
through monocular depth estimation. The research addresses a 22-degree LiDAR blindspot
in the Indy Autonomous Challenge (IAC) racing platform, where vehicles operate at speeds
exceeding 180 mph (290 km/h). At such speeds, comprehensive 360 degree environmental
perception is paramount for safety and competitive performance, yet, due to engineering chal-
lenges, sensor configurations present significant gaps in coverage. To bridge this perceptual
gap, we develop a transformer-based monocular depth estimation pipeline capable of cross-
view generalization from front-facing to rear-facing perspectives without direct rear-view
training data. Our approach extends reliable depth estimation from the conventional 40-60
meter range to 100 meters—providing an 80% increase in reaction time for tactical decision-
making at racing speeds. Extensive evaluation on the Las Vegas Road Course demonstrates
robust cross-track generalization with a 28% reduction in error variance compared to baseline
approaches. The implementation is capable of achieving 42Hz inference throughput on the
compute-constrained racing platform through TensorRT optimization and FP16 quantiza-
tion. This work establishes monocular depth estimation as a viable complement to existing
perception systems in autonomous racing, addressing sensor blindspots while maintaining
the computational efficiency essential for real-time operation in competitive racing environ-
ments.
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Chapter 1

Introduction

1.1 Indy Autonomous Challenge

Competition Overview

As part of the AI Racing Tech (ART) consortium, our team develop a comprehensive software
stack for the Dallara AV-24, a purpose-built autonomous racecar based on the Dallara IL-15
chassis and engineered for operation at speeds exceeding 180 mph (290 km/h). The primary
objective of this research initiative is to create a fully autonomous racing system capable of
executing complex maneuvers, implementing strategic overtaking, and maintaining vehicle
stability at these speeds during competitive racing scenarios. This thesis focuses specifically

Figure 1.1: Left: Autonomous Dallara AV-24 vehicles competing at high speeds during an IAC racing event,
demonstrating the extreme conditions under which our perception systems operate. Right: Team members
of AI Racing Tech (ART) in the basestation monitoring real-time telemetry data from the racing vehicle,
illustrating the collaborative human-AI partnership essential for autonomous racing competition.
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on the unique perception challenges encountered in such extreme environments, detailing
our approach to perception, and ultimately, a monocular depth estimation and evaluating
its efficacy in the detection of opponent vehicles. In this racing context, ”opponent cars” or
”opponent vehicles” refer to other autonomous racing vehicles that share the same track with
the ego vehicle, operating either as ”defenders” positioned ahead of the ego car or ”attackers”
trailing behind. These opponent vehicles operate independently, without collaboration with
the ego car, and do not share live vehicle data during competition—creating a true adversarial
racing environment that closely mirrors traditional human motorsport competitions.

1.2 Problem Statement and Research Context

Monocular depth estimation has emerged as an important technology in autonomous driv-
ing systems, offering a cost-effective alternative to active sensing modalities. LiDAR and
radar systems require specialized hardware with high power consumption and cost impli-
cations. On the other hand, camera sensors consume minimal power compared to active
sensors. By utilizing well-established monocular depth estimation pipelines with cameras,
these affordable sensors can extract three-dimensional environmental information and pro-
vide rich semantic information beyond pure geometric measurements. These advantages
have driven significant research investment and widespread adoption of monocular depth
estimation across industries such as autonomous vehicles, with manufacturers increasingly
relying on vision-based perception to reduce system complexity and hardware costs while
maintaining robust environmental understanding.

Autonomous racing at extreme speeds introduces unique perception challenges that push
the boundaries of existing monocular depth estimation methods:

• Extended Range Requirements: While conventional autonomous driving typically
operates with perception ranges of 40-60 meters, racing applications could demand reli-
able, real-time, depth estimation for distances exceeding 100 meters. At speeds of 60-80
meters per second (135-180 mph), this extended range becomes crucial for maintaining
safe operation and competitive performance. Algorithms must achieve real-time per-
formance (minimum 40Hz) while consuming minimal computational resources within
this isolated computing environment.

• Compute-Constrained Environment: Racing platforms impose limitations on
computational resources, with processing power shared across perception, control, plan-
ning, and vehicle dynamics systems. Unlike conventional autonomous driving systems
that can leverage cloud computing or distributed processing, racing applications require
all computation to be performed entirely onboard due to latency, reliability constraints,
and competition fairness requirements.

• Limited Training Data: The specialized nature of racing environments constrains
data acquisition, with track testing opportunities occurring infrequently and proper
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sensor calibration requiring substantial setup time. Additionally, the significant ex-
pense of deploying racing vehicles for data collection sessions—including transport,
crew, and operational costs—further limits data gathering opportunities. This scarcity
of domain-specific training data necessitates robust zero-shot approaches.

Research Objective

Our research goal is to develop a monocular depth estimation system optimized for high-
speed autonomous racing. This thesis establishes several specific research objectives to ad-
dress the identified challenges:

1. Development of a Cross-View Depth Estimation pipeline:

• Create a monocular depth estimation model capable of generalizing effectively
from front/side camera perspectives to the rear-view perspective without direct
rear-view training

• Establish methodologies for evaluating the transferability of depth features across
significantly different viewpoints

• Monocular Dense Depth Model Checkpoint: A trained depth estimation pipeline
optimized for autonomous racing environments, capable of cross-view generaliza-
tion and extended range estimation.

2. Extension of Effective Depth Range:

• Investigate techniques to extend reliable monocular depth estimation beyond the
conventional 40-60m range for regular autonomous driving to at least 100 meters

• Analyze the accuracy degradation curve as a function of distance to establish
confidence thresholds for safety-critical applications

3. Optimization for Computational Efficiency:

• Develop a lightweight implementation capable of operating within the strict com-
putational constraints of the racing platform

• Achieve real-time performance (minimum 20Hz) on the NVIDIA A5000 GPU
while maintaining necessary accuracy thresholds

4. Creation of a Specialized Racing Dataset:

• Leading student engineers to efficiently leverage limited track testing opportuni-
ties to collect training datasets with accurate ground truths of at least 100 meters

• Develop techniques for generating synthetic training data to supplement limited
real-world collection opportunities

• Implement data augmentation strategies to simulate unseen racing environments
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5. Validation Framework for Zero-Shot Deployment:

• Design a robust validation methodology leveraging complementary sensor data,
such as opponent GPS positioning data from transmitters on opposing vehicles
or active radar sensors as ground truth for distance estimation accuracy

The contributions resulting from these research objectives advance monocular depth es-
timation for high-speed autonomous racing applications. This work delivers a method for
training depth estimation models, demonstrating robust cross-view generalization and ex-
tending reliable depth estimation from the conventional 40-60 meter range to 100 meters
while maintaining real-time performance on resource-constrained platforms.

Alongside the model, this work presents a specialized racing dataset that combines lim-
ited real-world track data with synthetic augmentations, accompanied by an optimized ROS2
inference pipeline achieving 40Hz performance through quantization and acceleration tech-
niques. To report the model’s robustness, a multi-modal evaluation framework that leverages
GPS data validates depth estimation accuracy in sensor blindspot regions without requir-
ing additional hardware or extensive track testing. Through these integrated contributions,
this thesis bridges the gap in autonomous racing perception by enabling depth estimation
from monocular cameras for 3D scene completion, establishing it as a viable complement
to existing perception systems while maintaining the computational efficiency essential for
competitive racing.
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Chapter 2

The Autonomous Driving System in
Indy Autonomous Challenge (IAC)

The Indy Autonomous Challenge (IAC) represents a collaborative engineering endeavor that
brings together expertise from engineering, perception, strategic planning, controls and lo-
calization to push the boundaries of autonomous racing technology. The autonomous driving
system is implemented based on a Dallara IL-15 racing vehicle. The overall autonomous driv-
ing hardware system, is the product of extensive collaboration between the IAC mechanical
and electrical engineering teams, with significant input from academic research groups such
as UC Berkeley on sensor placement optimization and configuration. This iterative design
process allows for strategic hardware refinements, resulting in a comprehensive sensor suite
that effectively balances coverage, redundancy, and computational constraints.

In accordance with autonomous vehicle design principles, the driver compartment has
been reconfigured to house the computational and sensing infrastructure. The central pro-
cessing unit consists of a dSPACE AUTERA AutoBox featuring a 12-core processor coupled
with an NVIDIA A5000 GPU—an industrial-grade computing platform designed to with-
stand the extreme vibration and acceleration forces experienced during high-speed racing.
Additional hardware components include an enterprise-class Cisco network switch for high-
bandwidth sensor data routing, a sophisticated drive-by-wire system for actuation control,
and an array of perception sensors. While the complete autonomous system encompasses
perception, planning, control, and actuation subsystems, we would focus primarily on the
perception architecture given its relevance to the relevant works in the upcoming chapters.

2.1 Hardware Architecture and Sensor Suite

The IAC establishes strategic partnerships with industry-leading sensor manufacturers, re-
freshing these collaborations periodically to incorporate technological advancements onto the
Dallara Autonomous Vehicle (AV24, for the 2024 edition). The work presented in this thesis
utilize sensory data components from these manufacturers including Luminar, Continental,
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Delphi, Novatel, ZF, and Allied Vision, each contributing specialized sensing technology
to the autonomous platform. Of particular significance to our perception system were the
Luminar Hydra and Iris LiDAR units, Continental’s high-resolution ARS548 radar array,
and Allied Vision’s Mako G-319 cameras, which provides the primary visual data for our
monocular depth estimation algorithms.

Figure 2.1: Sensor configuration of the Dallara AV21 autonomous racing platform. Left: Top-down layout
showing the strategic placement and coverage areas of LiDAR, camera, and radar sensors to achieve 360°
environmental perception. Right: All sensor field of view covering 360°, visualized.

Figure 2.1 illustrates the sensor configuration implemented on the AV24 platform, high-
lighting the strategic placement of LiDAR units, cameras, and radar sensors. This configura-
tion is designed to replicate and enhance the situational awareness capabilities of professional
racing drivers while providing redundant coverage through multiple sensing modalities for ro-
bust perception in high-speed racing environments. The spatial arrangement of these sensors
is meticulously designed to optimize several factors:

1. Field-of-View Coverage: Ensuring comprehensive environmental perception with
minimal sensing gaps

2. Multi-Modal Redundancy: Facilitating sensor fusion by providing overlapping cov-
erage between different modalities

3. Structural Rigidity: Minimizing vibration-induced noise by securing sensors to rigid
mounting points

4. Thermal Management: Ensuring reliable operation under extreme conditions
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The implemented configuration features three Luminar LiDAR units, each providing a 120°
field of view, strategically positioned to deliver full 360° environmental coverage with minimal
gaps, apart from a 20° blind spot in the rear. The camera system comprises four wide-angled
pinhole cameras for peripheral awareness and two forward-facing cameras mounted with
precise inter-ocular distance to enable stereo depth calculation when required. Additionally,
a forward-facing radar unit provides complementary long-range detection capabilities. This
multi-modal approach creates redundancy for safe operation at racing speeds exceeding 180
mph (290 km/h).

2.2 AV24 Sensor Modalities: Capabilities and

Limitations

Each sensing modality deployed on the autonomous racing platform offers distinct advantages
and presents unique challenges that influenced our perception system architecture. Table
2.1 provides a comprehensive comparison of the technical specifications for each sensor type,
including detection range, angular coverage, measurement tolerance, and spatial resolution.

Range(m) Azimuth(°) Elevation(°) Tolerance(m) Resolution

Radars
Delphi ESR 1.0 - 175 ± 10 ± 0 ±0.5 Low
ARS 548 0.2 - 301 ± 60 ± 14 ±0.15 Low
ZF-AC1000T 0.2 - 200 ± 35 ± 0 N/A Low

Lidars
Hydra 2 - 250 ± 60 ± 15 0.01 Medium
Iris 2 - 250 ± 60 ± 13 0.01 Medium

Camera

Mako G319
Theoretically
Unbounded ± 55* ± 38* N/A High

Table 2.1: Technical Specifications of the Multi-Modal Sensor Suite Deployed on the IAC Autonomous
Racing Platform. Data are derived from manufacturer-provided technical datasheets available in the public
domain, with values marked with an asterisk (*) representing estimated parameters based on calibration /
practical testing in racing conditions.
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Figure 2.2: Comparison of theoretical and practical sensing ranges we utilize for the AV24 multi-modal
sensor suite. Left: Theoretical detection ranges as specified in manufacturer datasheets, showing LiDAR
(green, 250m), radar (blue, up to 300m), and camera (red, unlimited). Right: Practical operational ranges
for our software stack, illustrating a reduction in effective LiDAR range (80m) and radar reliability (150m)
due to point cloud sparsity, signal degradation, and target object characteristics. Camera range remains
theoretically unlimited but depends on object size, contrast, and environmental conditions.

LiDAR Sensor

LiDAR sensors represent the primary source of high-fidelity environmental data, providing
accurate three-dimensional point clouds that serve as ground truth for many perception
algorithms. The Luminar Hydra (AV21) and Iris units deployed on the AV24 platform,
deliver exceptional precision with measurement tolerances rated ±1 cm throughout their
operational range. This accuracy makes LiDAR data invaluable for training and validating
camera-based depth estimation algorithms.

However, LiDAR technology exhibits diminishing point cloud density as a function of
distance, creating challenges for long-range perception. Through empirical testing, we de-
termine that beyond approximately 80-100 meters, the point density decreases to a level
where reliable detection of a standard Dallara AV vehicle (with dimensions of 5m × 2m ×
1.5m) becomes problematic for conventional lidar clustering algorithms. At this threshold
distance, our Luminar units operating at 20 Hz with concentrated elevation scanning pat-
terns (±3-5°) typically generate only 20-30 points on a target vehicle—sufficient for detection
but approaching the lower limits of reliable tracking and classification.
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Radar Systems

Radar technology is capable of complementing LiDAR by extending the perception horizon
significantly, with demonstrated detection capabilities exceeding 80 meters for moving vehi-
cles. From our experiments, we find that the Continental ARS548 unit is capable of providing
long-range awareness up to 200m, visualized in Figure 2.2 for strategic decision-making at
IAC racing speeds as the vehicles cover substantial distances in fractions of a second.

Figure 2.3: Left: Raw radar returns (colored by signal-to-noise ratio) overlaid on LiDAR point cloud data,
demonstrating the limited number of true positive detections. The track walls appear as regions of higher
point density, while spurious reflections create false positives throughout the scene. Right: SNR-filtered
radar detections showing the persistence of multipath reflections from track walls

Despite these advantages, radar systems present several challenges that limit their effec-
tiveness as a primary perception source. Operating at approximately 15 Hz, radar sensors
have lower temporal resolution than other modalities. Additionally, the propagation charac-
teristics of radio waves lead to multipath reflections from track surfaces and barriers shown
in Figure 2.3, introducing false positive detections that must be filtered algorithmically. The
spatial resolution of radar is also substantially lower than LiDAR or camera systems, with
typical detections of a racing vehicle at 20 meters consisting of only 1-3 distinct reflection
points. Each of these points would also have higher rated errors as shown in Table 2.1.

A phenomenon of particular concern in racing applications is the generation of anoma-
lous speed readings caused by the highly reflective rotating wheel spokes of racing vehicles.
These components can produce radar returns suggesting speeds significantly higher than the
vehicle’s actual speed, creating potential detection challenges. Consequently, our perception
architecture relies primarily on LiDAR and camera data for safety-critical maneuvers within
a 40-meter radius, reserving radar data for long-range awareness and speed estimation.

Camera Systems

The Allied Vision Mako G-319 cameras represent the most semantically-rich perception
modality in our sensor suite, providing high-resolution visual information that captures tex-
ture, color, and structural features unavailable to other sensors. These cameras offer the-
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oretically unlimited detection range for sufficiently large or distinctive objects, constrained
only by optical factors such as lens quality, atmospheric conditions, and image resolution.

Camera data serves as the primary input for our monocular depth estimation research,
leveraging recent advances in computer vision and neural network architectures to extract
three-dimensional information from two-dimensional images. This approach provides a com-
putationally efficient alternative to more resource-intensive sensor fusion techniques, partic-
ularly valuable given the processing constraints of our onboard computing platform.

Figure 2.4: Composite view of the four primary camera perspectives from the Dallara AV-24 autonomous
racing vehicle. Images are arranged clockwise starting from top-left: left-side camera view showing adjacent
track area; front camera view capturing the forward racing line; right-side camera view monitoring peripheral
activity; and rear camera view displaying following vehicles.

2.3 Real-time Computational Constraints

The extreme operating environment of high-speed autonomous racing in the IAC imposes
stringent computational limitations that significantly influence algorithm design and imple-
mentation strategies. To address these challenges, our system implements optimized software
frameworks tailored to the hardware coupled with efficient data processing practices and al-
gorithms on the racing platform.

Software Architecture and Middleware

Our autonomous racing platform implements the Robot Operating System 2 (ROS2) mid-
dleware framework, selected for its robust message-passing architecture, standardized com-
munication protocols, and modular design principles. ROS2 provides significant advantages
over conventional monolithic software architectures, including:

• Standardized interfaces facilitate the integration of heterogeneous software components

• Isolating faults within individual modules to enhance system resilience

• Supporting concurrent development modularity by multiple research teams

• Providing comprehensive monitoring and debugging capabilities via open-source tools
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• Enabling zero-copy image processing through shared memory and intra-process com-
munication.

Within this framework, dedicated sensor driver nodes we implement in C++ interface di-
rectly with hardware-specific APIs, publishing standardized message types to the ROS2
communication infrastructure. Subscriber nodes, including our perception algorithms, con-
sume these messages and perform specialized processing tasks such as object detection,
tracking, and depth estimation. This loose coupling between system components enhances
maintainability and facilitates the experimental deployment of novel algorithms without
compromising core functionality.

To optimize performance-critical perception pipelines, we leverage ROS2’s Composable
Nodes architecture, which allows multiple nodes to run within a single process. This ap-
proach eliminates the inter-process communication overhead traditionally associated with
distributed systems. For image processing specifically, we implement zero-copy communica-
tion using shared memory and intra-process messaging. By maintaining perception data in
shared memory regions accessible by multiple nodes, we avoid costly serialization, copying,
and deserialization operations typically required when transferring high-bandwidth visual
data between conventional ROS2 nodes.

Hardware Constraints and Optimization Strategies

The DSpace AUTERA AutoBox represents the primary computational platform for the
autonomous racing system, featuring 12 physical CPU cores (expandable to 24 virtual cores
through Intel Xeon hyperthreading) and 32GB of system memory. While substantial for
embedded applications, these resources must simultaneously support the entire autonomous
stack including perception, localization, planning, control, and system monitoring processes.

These hardware limitations necessitate careful optimization of our perception algorithms,
particularly for computationally intensive tasks such as monocular depth estimation. Our
implementation strategy prioritizes:

1. Algorithmic Efficiency: Selecting approaches that balance accuracy with computa-
tional complexity

2. Real-time Operating Requirements: At racing speeds approaching 180 mph (80
m/s), the perception system must maintain sub-50ms or 20Hz end-to-end latency from
sensor acquisition to control output to ensure stable vehicle dynamics. For perception
systems, models must be fully optimized to reduce throughput and reduce latency.

3. Selective Processing: With multiple high-bandwidth sensors generating data con-
currently, careful resource allocation is essential to prevent processing bottlenecks. The
Mako G-319 cameras alone produce approximately 1.2 GB/minute of raw image data
at racing frame rates. We apply full-resolution analysis only to regions of interest.
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4. Memory Bandwidth Constraints: Data transfer between ROS2 Node processes,
system memory and the NVIDIA A5000 GPU introduces latency that must be mini-
mized through efficient buffer management and in-place processing where possible.

These constraints necessitates several optimization strategies in our monocular depth esti-
mation implementation. Rather than applying computationally intensive algorithms to full-
resolution images, we employ a selective processing of regions of interest identified through
lightweight segmentation techniques. Our neural network architectures were specifically de-
signed for efficient inference on the NVIDIA A5000 GPU, utilizing TensorRT optimization
and INT8/FP16 quantization to maximize throughput while maintaining acceptable accu-
racy.

We strictly manage memory, using zero-copy coding practices wherever possible to reduce
system bus contention. This approach minimizes redundant data transfers between CPU
and GPU memory spaces, significantly reducing processing latency for image-based depth
estimation. Additionally, we implement adaptive processing rates for different perception
components based on their relative importance to immediate vehicle safety, allocating greater
computational resources to near-field perception versus long-range awareness.

These computational constraints directly informed our research focus on lightweight
monocular depth estimation techniques as an alternative to more resource-intensive stereo
vision or sensor fusion approaches. By deriving depth information directly from monocular
camera inputs, our system reduces both the sensor hardware requirements and the compu-
tational overhead associated with multi-sensor calibration and synchronization.
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Chapter 3

Monocular Depth Estimation

3.1 Motivation

Sensor Coverage Blindspots: A Safety Vulnerability

Achieving comprehensive 360-degree sensor coverage with active sensors represents a signifi-
cant financial and technical challenge for autonomous vehicle manufacturers. The high cost of
individual LiDAR units—ranging from $10,000 to $100,000 per sensor, combined with their
substantial power requirements and integration complexity, often necessitates compromises
in coverage design. While some high-end autonomous platforms deploy multiple overlapping
LiDAR systems to eliminate blindspots, the cost implications of such redundancy can be
prohibitive, particularly for competitive racing applications where weight and aerodynamic
considerations further constrain sensor placement.

In the sensor configuration of the IAC AV-24 racing platform, these practical constraints
manifest as a significant perception challenge due to the non-overlapping fields of view be-
tween the left and right Luminar Iris LiDAR units. This configuration creates a substantial
22-degree blindspot directly behind the vehicle, as illustrated in Figure 3.1. This blindspot
represents a safety vulnerability, particularly in racing scenarios where competitors may
rapidly approach from the rear during or after overtaking maneuvers.

At racing speeds exceeding 160 mph (72 m/s), a vehicle in this blindspot can close the gap
from a safe following distance to a collision scenario in less than one second. Conventional
perception pipelines based on LiDAR-camera fusion, including our previous work utilizing
YOLO-based detection with depth projection, cannot address this fundamental limitation
as they rely on LiDAR data that is simply unavailable in this region. The implementa-
tion of a monocular depth estimation approach offers a promising solution to this blindspot
problem by leveraging the rear-facing camera to provide depth information without corre-
sponding LiDAR points. However, this approach presents unique challenges in cross-view
generalization, as the model must effectively transfer knowledge from primarily front-facing
perspective, where training data is semantically similar and available, to the rear-facing view
without direct supervision.
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Figure 3.1: Visualization of the 22-degree LiDAR blindspot in the AV-24 racing platform. Top: Elevated
45-degree perspective showing the rearward view from the vehicle with an opponent car visible in the cam-
era feed (bottom-right inset) but absent from the LiDAR point cloud. Bottom: Bird’s-eye view (BEV)
representation of the scenario

Calibration Challenges in High-Performance Racing

The maintenance of precise sensor calibration represents a significant operational challenge in
racing environments. Based on our prior research experience, the extrinsic calibration process
for each camera-LiDAR pair requires approximately 20 minutes with a two-person crew.
To achieve comprehensive 360-degree environmental perception, eight separate calibrations
must be performed, resulting in a three-hour procedure that is impractical to execute during
limited track testing windows. Racing conditions introduce additional complications through
extreme vibrations and mechanical stresses that progressively degrade calibration accuracy.
Ideally, recalibration would be performed prior to each competitive session involving multiple
vehicles to ensure maximum perception reliability. However, this approach is operationally
unfeasible given the limited trackside access time and the rapid turnaround requirements
between racing sessions.
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3.2 Related Works

Monocular Image Depth Estimation

The field of monocular depth estimation has evolved from early learning-based approaches
to large foundation models. Eigen et al. [13] pioneered learning-based methods using mul-
tiscale convolutional neural networks with scale-invariant loss functions. The field has since
diverged into regression-based approaches such as [13, 27, 39] that predict continuous depth
values and classification-based methods [17, 30] that estimate discrete depth bins. Recent
works have combined these approaches, with AdaBins and LocalBins [1, 15] implementing
classification-regression frameworks that first compute depth bins and then perform pixel-
wise classification. ZoeDepth [2] further refines this approach by using relative depth mod-
els as input and applying metric bin modules to generate final depth estimates. These
methods have demonstrated improved performance on standard benchmarks like KITTI and
BDD100K [20,60].

Semi-Supervised and Foundation Models

Recent advances have leveraged large-scale semi-supervised training paradigms inspired by
language models. Depth Anything and Depth Anything V2 [53, 54] employ pseudo-labeling
on unlabeled datasets combined with extensive augmentations. DepthPro [4] estimates focal
lengths on top of their relative depth estimation to produce metric depth estimations. MiDaS
[3] introduced robust relative depth estimation through training on diverse datasets. These
foundation models have shown significant improvements in generalization and robustness
across different domains, though their application to extreme environments like high-speed
racing remains largely unexplored.

Geometry-Based Depth Estimation

Self-supervised monocular depth estimation leverages geometric consistency between video
frames. SfMLearner [70] established the joint training framework of depth nets and PoseNet
[29] using photometric loss. Subsequent works have enhanced this approach through feature-
level reconstruction losses [45,62]. However, these methods depend on geometric consistency,
in which in racing situations where we would require high accuracy estimations of opponent
vehicles, these methods fall out of favor. Some authors have also proposed the handling
of dynamic objects [41, 69], and additional geometric constraints [33, 55, 57], while works
like [46,57] incorporate motion segmentation.

Depth Range Extensions

Most existing depth estimation datasets and models are limited to ranges suitable for con-
ventional autonomous driving. KITTI [22] and BDD100K datasets typically constrain depth
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estimation to 80 meters, which provides only a one-second reaction window at racing speeds.
Recent works have attempted to extend effective depth ranges: HR-Depth [47] focuses on
high-resolution depth estimation, while works like [40] explore normal-distance assisted ap-
proaches. However, extending reliable depth estimation beyond 100 meters while maintaining
accuracy remains an open challenge, particularly for monocular methods.

3.3 Problem Setup & Challenges

Given that the on-track racing team is capable of performing accurate camera intrinsic cali-
brations quickly, the primary challenge in three-dimensional perception becomes estimating
the scale of each point—the depth of each pixel, perpendicular to the optical axis. Monocular
depth estimation presents a compelling alternative by eliminating the need for continuous
cross-sensor calibration. By deriving depth information directly from the camera’s frame
of reference, this approach also significantly reduces operational complexity for downstream
processing, such as 3D to 2D projection.

Challenges

The principal challenges with monocular estimation in our application include:

1. Zero-shot learning, as we must leverage data where LiDAR-camera overlap is sufficient
(e.g., front, left, right views) but deploy in the rear blindspot.

2. The model must generalize to previously unseen race tracks.

3. Extended range accuracy, particularly up to 100 meters, the critical distance required
for adequate reaction time at racing speeds exceeding 180 mph (290 km/h).

3.4 Dense Prediction Transformers (DPT) as a

Zero-Shot Range Estimator

We employ Depth Prediction Transformers (DPT) [39] for monocular depth estimation as
a fundamental architectural component to overcome the inherent limitations of traditional
convolution-based networks (CNNs) in dense prediction tasks. The DPT architecture offers
several significant advantages over CNNs, enabling superior performance in tasks requiring
fine-grained, globally consistent depth predictions:

1. Global Receptive Field: Vision transformers maintain a global receptive field at
every stage, which allows long-range dependencies and capturing global image context
to resolve ambiguities in depth estimation. This contrasts CNNs, which progressively
expand their receptive field through stacked layers.
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Figure 3.2: Architecture overview of the Dense Prediction Transformer. [39]. The input image is transformed
into tokens (orange) using one of two methods: by extracting non-overlapping patches followed by a linear
projection of their flattened representations (as in DPT-Base and DPT-Large), or by applying a ResNet-50
feature extractor (as in DPT-Hybrid). The resulting image embedding is then augmented with a positional
embedding, and a patch-independent readout token (red) is added. These tokens are passed through multiple
transformer stages. Tokens from different stages are reassembled into image-like representations at multiple
resolutions (pink). Fusion modules (purple) progressively fuse and upsample these representations to produce
a fine-grained prediction.

2. Preservation of Fine-Grained Features: CNNs rely on aggressive downsampling to
reduce memory and computational requirements, often losing spatial granularity in the
process. However, DPT operates at a constant resolution in the transformer encoder,
preserving the fine-grained image features essential for dense prediction tasks.

3. Strong Results Across Tasks: DPT demonstrates state-of-the-art performance
across dense prediction tasks, including monocular depth estimation and semantic seg-
mentation. Experiments show a 28% improvement in relative performance [53]
compared to leading CNNs on large-scale depth datasets.

Based on these substantial advantages, we adopted the DPT architecture to achieve accu-
rate, robust monocular depth predictions as a sensor completion method, supplementing the
existing lidar pipeline.

Among the DPT models, we utilized the Depth Anything checkpoint [53]which incorpo-
rates a DINOV2 encoder [37] with the DPT decoder. Depth Anything model’s comprehensive
open-source support, including optimized TensorRT implementations, facilitated seamless
integration with our perception stack. The Depth Anything DPT has also been trained
on an extensive dataset comprising over 62 million images, ensuring strong generalization
capabilities, and distilled to smaller versions of the architecture.
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Depth Anything

The authors of Depth Anything [53] introduced a powerful framework, involving a dataset
construction and augmentation process for the monocular, in-the-wild, relative depth esti-
mation problem. Starting with a limited labeled dataset Dl = {(xi, di)}i∈[M ] of high-quality

images , the authors trained a teacher model T to generate pseudo-labels d̂i = T (xi,Dl) for
a second, diverse unlabeled dataset Du. These pseudo-labeled samples were then combined
into D̂u = {(xi, d̂i)}i∈[M ′], improving the model’s generalization [53]. To further enhance

robustness, the authors created an augmented dataset D̃u with techniques such as :

1. Color Distortions: Including color jittering and Gaussian blurring to simulate vary-
ing lighting conditions and sensor noise

2. Spatial Transformations: Implementing techniques such as CutMix [54] to enhance
the model’s invariance to occlusions and partial views

This comprehensive data augmentation strategy resulted in a training regime that system-
atically exposed the model to a wide spectrum of visual challenges, significantly improving
its generalization capabilities. Following this data preparation process, a student model S
was trained on the augmented dataset, strategically retaining the teacher’s encoder weights
while fine-tuning only the decoder components for relative depth estimation.

Metric Depth Estimation The authors of Depth Anything utilized Zoedepth [2], a post-
processing pipeline that converts relative depth estimates to absolute metric values through
adaptive bin calculation. In our initial investigations, we attempted to fine-tune their pre-
trained large-scale metric depth model using conservative learning rates(1.0×10−8)–a process
we term ”model calibration,” drawing inspiration from parameter-efficient fine-tuning tech-
niques commonly employed in large language models (LLMs). However, our experiments
revealed performance limitations in this approach when applied to our highly specialized
racing dataset.

Instead, we develop a streamlined calibration methodology that directly transforms the
relative depth outputs from the DPT model into accurate metric measurements using a
computationally efficient linear transformation. This approach provides several crucial ad-
vantages over more complex post-processing pipelines: (1) significantly reduced inference
latency critical for high-speed racing scenarios where reaction windows are measured in mil-
liseconds; (2) lower computational overhead, enabling deployment on resource-constrained
embedded platforms; and (3) robust performance across diverse racing environments through
our distance-normalized calibration procedure.
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Chapter 4

Implementation: Gathering Data,
Training, and Deployment

We demonstrate that with appropriate domain-specific fine-tuning, the Dense Prediction
Transformer (DPT) architecture can directly produce accurate metric depth estimations
without requiring computationally expensive real-time deployment post-processing methods
such as ZoeDepth.

Our implementation framework consists of four integrated components: (1) a Ground
Truth Acquisition Pipeline for collecting and processing training data, (2) a Model Training
Pipeline with specialized loss functions for transferrable camera intrinsics and viewpoints, (3)
a comprehensive Dataset Preprocessing System addressing normalization, augmentation, and
cross-dataset alignment challenges, and (4) a Real-time Inference Pipeline, integrated with
YOLOv8 and optimized for deployment on autonomous racing platforms. This integrated
approach enables high-performance depth estimation while maintaining computational effi-
ciency.

4.1 Ground Truth Collection Pipeline

To fine-tune the model for the racecar, we collect race data from test runs on the track
in addition to using the KITTI dataset [19] for pretraining. We then extract camera and
LiDAR data from recorded ROS2 data bags of runs with opponent cars. We also utilize the
LiDAR-camera calibration data for the car to transform the LiDAR data into the camera
frame and project it into black and white images with the camera intrinsics. The white
intensity of each pixel corresponds to the depth of the LiDAR points in the z direction. The
pairs of the camera images and the LiDAR-projected images are then used to evaluate the
model on real racing images and further finetuning with the LiDAR data as the ground truth
along with the KITTI dataset (which is already in the same format).
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Figure 4.1: Real-time finalized Depth Estimation pipeline deployed on rear cameras at Kentucky Speedway,
visualized in RVIZ2. Visualization showing: (top row, left to right) rear camera feed with YOLO ob-
ject detection overlays, YOLOv8 segmentation binary mask, depth estimation heatmap, and original rear
camera image. The bottom 3D visualization displays raw, uncalibrated dense white point clouds that we
generate using our depth estimation model (trained exclusively on Indianapolis Motor Speedway data), ma-
genta points representing radar detections, and fluorescent magenta/red points showing the final perception
pipeline output combining YOLOv8 detection with depth estimation. The alignment of the camera and radar
points demonstrate successful cross-track generalization from training on IMS to deployment on Kentucky
Speedway.

4.2 Model Training Pipeline

We employ a composite loss function that integrates multiple optimization objectives to
address the specific challenges of depth estimation in high-speed racing environments. The
loss function incorporates both global accuracy metrics and specialized components that
prioritize precise depth estimation for safety-critical objects such as opponent vehicles.

The foundation of our training approach combines the Mean Absolute Error (MAE) and
Scale-Invariant Logarithm Loss (SIlog) [13], with additional regularization on regions of in-
terest extracted from segmentation models, such as opponent cars on-track. The SILog is an
important component of our loss, enabling high-accuracy cross-view adaptations. Formally,
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the Scale-Invariant Logarithmic Error is defined as shown:

Scale Invariant Log Loss =
1

N

N∑
i=1

(
log(d̂i)− log(di)

)2
− 1

N2

(
N∑
i=1

(
log(d̂i)− log(di)

))2

This formulation comprises two principal components: the first term quantifies the vari-
ance of logarithmic errors, while the second term compensates for global scale inconsistencies.
This mathematical structure enables the model to focus on preserving relative depth rela-
tionships rather than absolute values, which is essential when generalizing across diverse
racing environments with varying lighting conditions and track geometries.

Building upon this foundation, our loss function incorporates additional regularization
focused on regions of interest identified through semantic segmentation. The complete for-
mulation is expressed as:

L(d, d̂) = α1

n
||d− d̂||1

+
α2

n
|| ln d̂− ln d||22 −

α2λ

n2
||1T (ln d̂− ln d)||22

+ α3L(dseg, d̂seg)

Where:

• d, d̂ ∈ Rn represent the ground truth and predicted depth values, respectively. The
depth is defined to be the distance along the optical axis to the point.

• α1, α2, α3 are hyperparameters that control the relative contribution of each loss com-
ponent.

• λ is a balancing coefficient for the scale-invariant term

• 1T denotes a vector of ones, implementing the summation operation

• dseg, d̂seg represent depth values specifically within segmented regions of interest

The third component, L(dseg, d̂seg), applies heightened optimization pressure on areas
identified as opponent vehicles through our segmentation pipeline. This targeted regular-
ization improves depth estimation accuracy for safety-critical objects. We optimize this
composite loss function using stochastic gradient descent with momentum, implementing an
adaptive learning rate schedule that begins with an initial rate of 2.8× 10−7 and decays by
a factor of 0.1 every epoch.
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Hyperparameter Tuning With tuning, we find α1 = 0.25, α2 = 0.75, α3 = 0.3 gives us
the lowest absolute error on important regions of our validation dataset. For each hyperpa-
rameter configuration, we evaluated the models using:

Safety Penalty =
∑
b∈bins

wb · AbsRel(θ, b)

Where θ represents the hyperparameters, wb is the weight for distance bin b, and AbsRel(θ, b)
is the absolute relative error in that bin. Our method for tuning is as follows: For the first
stage, we evaluate combinations of α1 and α2 (the MAE and SIlog weights) in increments of
0.05, where α1 ∈ [0, 1] and α2 = 1− α1. After establishing optimal values for α1 and α2, we
conduct an extensive sweep of the segmentation weight parameter α3. This tuning technique
aims to first have the model attain the best absolute and relative loss ratio that would result
in the best estimation of safety-critical objects, and then find the optimal weight that would
emphasize the penalties on those regions.

4.3 Training Dataset Preprocessing

To maximize our limited dataset’s richness, model performance and generalization capabili-
ties, we implement several preprocessing techniques addressing normalization, augmentation,
cross-dataset alignment challenges, and finding the most suitable Region of Interest for the
problem.

Camera Region of Interest Selection

A consideration in our preprocessing pipeline involves determining the optimal camera field of
view (FOV) for depth estimation. Our extensive experimental analysis, detailed in Appendix
A, demonstrates that strategically cropping the input frames yields substantial improvements
in depth estimation consistency and accuracy on a pretrained relative depth foundation
model, namely the Depth Anything dense prediction transformer.

To test out different crops, namely the original image, partial crop, and full crop, de-
tailed in Figure A.3, we obtain the depth maps to explore whether it is possible to find a
generalizable transformation to convert relative depth to metrically accurate depth maps.
We do so first by looking for simple linear transformation parameters to match the depth
maps with respective metric depth slices of a lidar scan taken during the same moment.
With regards to the pixel intensity values of the depth maps depthrelative, the transformation
can be described with a scale factor s and bias offset b as follows:

depthmetric = s · depthrelative + b (4.1)

Through Through our analysis of the pinhole camera model across 71 frames spanning a
complete racing lap as detailed in table 4.1, we identify that the car’s nose and sky regions
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Crop Mean s Std s CV (%) Mean b Std b CV (%)
None -477.55 115.4 25.17 68.59 12.05 17.57
Partial -308.81 92.25 29.87 75.56 8.37 11.08
Full -123.65 19.13 15.47 78.75 8.63 10.96

Table 4.1: Transformation Parameters for different cropping approaches

introduce significant depth estimation inconsistencies. Fully documented in Appendix A, the
original image depth estimation results in transformation parameter coefficients of variation
(CV) of 25.17% for scale factors and 17.57% for bias offsets—indicating substantial frame-to-
frame instability. By implementing an aggressive cropping strategy that completely removes
the car’s nose from the frame while retaining the track and racing environment, we reduce
the CV to 15.47% for scale factors and 10.96% for bias offsets. This improvement in scale
factor and bias offset stability translates directly to more reliable depth estimations across
varying conditions.

Normalization

A fundamental preprocessing step in our methodology involves the normalization of depth
values derived from LiDAR point clouds. The input data is initially stored in a projected
format corresponding to the camera’s field of view (FOV), ensuring spatial alignment between
depth measurements and image pixels. Then, for each ground truth point cloud referenced
in Section 4.1, we perform a two-stage normalization process:

1. Range Clipping: Point cloud depth values are constrained to the practical operating
range of 0.1m to 120m. This boundary establishment serves multiple purposes:

• Eliminating physiologically implausible near-field values that may result from
sensor noise

• Establishing a maximum effective range aligned with the racing environment’s
perceptual requirements

• Reducing the dynamic range that must be learned by the model, thereby improv-
ing training stability

2. Inverse Mapping Transformation: Following range clipping, we apply an inverse
mapping function where:

• Distances of 120m are transformed to 0.0

• Distances of 0.1m are transformed to 1.0

• Intermediate values are linearly interpolated between these extremes
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This transformation encodes a crucial semantic constraint wherein a depth value of 0
serves as a specialized token representing infinity or regions with invalid measurements.
This encoding approach substantially enhances the model’s capacity to differentiate between
actual depth measurements and unmeasurable regions such as the sky, distant background,
or areas outside the sensor’s effective range.

Data Augmentation

To enhance the model’s robustness and generalization capabilities across varied racing con-
ditions, we implement image augmentations on our training dataset. These augmentations,
visualized in 4.2, are to simulate the range of cross-track variations, including differences in
track surface coloration, background infrastructure (grandstands, barriers, etc.) and ambient
outdoor environmental conditions.

Original

Augmented

Table 4.2: Comparison between original and augmented training images from the Indianapolis Motor Speed-
way dataset.

Photometrically, we implement random brightness adjustments (±0.2), contrast varia-
tions (0.8-1.2), hue modifications (±0.05), and saturation alterations (0.8-1.2) to simulate
variable lighting conditions encountered across different tracks and weather conditions. Ge-
ometrically, we apply horizontal flips with corresponding camera parameter adjustments.
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Cross-Dataset Alignment

We pretrain our model with a Kitti dataset we align. When deploying depth estimation
models across different data distributions involves managing the variation in camera intrinsics
between training and deployment settings. This is particularly relevant when combining the
KITTI dataset with our ROAR racing dataset, as these datasets are captured using cameras
with different intrinsic parameters.

The depth estimation problem is fundamentally linked to focal length. Specifically, for a
given pixel size δ, variations in δ should not affect metric depth information when properly
accounted for in the model. More importantly, images captured with different focal lengths
but proportionally scaled distances appear visually identical. For instance, if f̂1 = 2f̂2
and correspondingly d1 = 2d2, the resulting images will be indistinguishable despite the
actual depth doubling, because the focal length scales by the same factor. Building on this
insight, we align the KITTI and ROAR datasets by applying focal length normalization.
This technique involves:

1. Extracting camera intrinsics from both datasets

2. Computing the focal length ratio between source dataset and target dataset domains

3. Applying appropriate scaling transforms to depth ground truth values

This preprocessing approach ensures that our model learns approximately consistent depth
estimation patterns regardless of the source dataset’s camera parameters, enabling effective
knowledge transfer between domains.

Segmentation of Dynamic Objects

The segmentation of dynamic objects is used in our training objective as binary masks indi-
cating importance regions for the model. To find the best zero-shot instance segmentation
model that works well with our training datasets, we conduct a thorough sweep of exist-
ing state-of-the-art segmentation models and checkpoints, detailed in Appendix B. The
summarized findings in Table 4.3 demonstrate that transformer-based architectures show
exceptional generalization capabilities, particularly in the task of segmentation in unseen
environments, such as our racing dataset. Among the models we evaluate, Mask2Former [8]
and SegFormer [52] consistently outperforms traditional CNN-based approaches. All models
in our evaluation is done on models pre-trained on the Cityscapes dataset [10, 11], achieves
remarkable zero-shot segmentation results on our racing dataset, significantly surpassing
conventional CNN architectures such as MobileNetV3 [24] and ResNet [22].

Mask2Former emerges as the most effective architecture for our application, with its
ability to maintain precise instance boundaries and semantic consistency across diverse rac-
ing environments. However, implementing this model presents technical challenges due to
dimensional constraints—while Mask2Former is optimized for a native resolution of 756 ×
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Kentucky Speedway Indianapolis Motor Speedway

Original

MobileNet

ResNet

Mask2Former

Table 4.3: This table shows the performances of zero shot both CNN-based Segmentation models vs Trans-
former based segmentation models. The labels, colored, blue is ”car”, light pink is ”road”.

756, our racing platform requires an input resolution of 156 × 1008 to balance computa-
tional efficiency with real-time performance requirements. To address this, we implement a
straightforward yet effective solution: padding the dataset images where they fall short and
then running the model across the modified images. Notably, despite the introduction of non-
semantic border regions created by padding, the model maintains exceptional segmentation
quality, as evidenced in Table 4.3. The robust performance demonstrated by Mask2Former
even under these suboptimal input conditions highlights its strong generalization capabilities.

For integration into our training pipeline, we develop a workflow. Segmentation masks
are pre-computed for the entire dataset alongside the corresponding images and dynam-
ically loaded during training. During model training, these segmentation masks enabled
targeted loss weighting for crucial objects (For example, opponent vehicles labeled as ”car”,
or ”road”), allowing the depth estimation network to prioritize accuracy in high-importance
regions. Similarly, during evaluation, these masks facilitated focused performance analysis
on dynamic objects, providing insight into model reliability.
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This segmentation-aware approach provides two key benefits: (1) it enhances depth es-
timation accuracy for dynamic objects—for collision avoidance in racing scenarios—and (2)
it establishes a streamlined mechanism for evaluating perception performance specifically on
these safety-critical elements rather than on less relevant background features.

4.4 Inference Pipeline

Our inference framework implements a hybrid architecture that integrates YOLOv8 [28]
segmentation with our fine-tuned monocular depth estimation model. The pipeline operates
through selective depth inference within semantically meaningful regions.

Real-Time Object Detection and Optimization Considerations

We deploy a YOLOv8 instance segmentation model to identify opponent vehicles, followed
by targeted depth estimation within these regions. For each detected instance, statistical ag-
gregation (primarily median filtering for robustness) derives a representative depth value. To
meet the stringent requirements of the DSpace Autera AutoBox with NVIDIA A5000 GPU,
we implement platform-specific optimizations using TensorRT with 16-bit quantization. This
approach achieves 50Hz inference speeds—a latency sufficient for strategic decision-making.

Model Calibration process

The calibration process is essential for adapting our depth estimation model trained on frontal
camera perspective to the rear camera perspective, while maintaining metric accuracy. This
procedure establishes the relationship between the model’s normalized depth predictions and
absolute metric distances through a linear transformation.

For any given camera installation, we collect a calibration dataset consisting of paired
samples (di, d̂i), where di represents the ground truth depth value for sample i and d̂i repre-
sents the corresponding model prediction after normalization. We collect these sample pairs
specifically for crucial objects such as opponent vehicles. Ground truth depth values are
obtained using GPS positioning data, track mapping from Structure from Motion pipelines
such as COLMAP [44], or lidar euclidean clustering to establish an estimate of the spatial
relationships between the ego vehicle and detected objects.

Distance-Balanced Calibration An important consideration in the calibration process
is the inherent distance distribution imbalance in real-world datasets. In racing scenarios,
nearby objects (around 40m) are typically overrepresented compared to distant objects,
potentially biasing the calibration parameters toward short-range accuracy at the expense
of long-range performance. To mitigate this imbalance, we implement a distance-normalized
calibration approach. The distance normalization procedure operates as follows:
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1. The complete range of operational depths (0.1, 120) meters is divided into discrete one
meter sized bins B = {b1, b2, ..., bk}

2. For each bin bj, we collect all calibration pairs (di, d̂i) where di ∈ bj

3. If a bin contains more than three samples, we compute the representative value for
that bin as:

drep,j = median({di|di ∈ bj})

d̂rep,j = median({d̂i|di ∈ bj})

4. The final calibration dataset consists of these representative bin values: {(drep,j, d̂rep,j)}kj=1

This binning and aggregation strategy ensures that each distance range contributes
equally to the calibration process, preventing the dominance of frequently observed distances.
The use of median values within each bin further enhances robustness against outliers.

Calibration Parameter Estimation The calibration parameters α and β are determined
by minimizing the following objective function using the distance-normalized dataset:

min
α,β

k∑
j=1

∥drep,j − (α · d̂rep,j + β)∥2

This ordinary least squares (OLS) regression problem can be solved through various
methods. In our implementation, we employ Singular Value Decomposition (SVD) for its
numerical stability and computational efficiency. The closed-form solution using the SVD
approach can be expressed as: [

α
β

]
= (XTX)−1XTY

Where X is the design matrix containing the normalized depth predictions augmented
with a column of ones and Y is the vector of ground truth depth values. For increased
robustness, particularly when dealing with potential outliers in the calibration dataset, an
iteratively reweighted least squares (IRLS) or RANSAC [16] variant that progressively down-
weights the influence of samples with high residual errors:

min
α,β

k∑
j=1

wj · ∥drep,j − (α · d̂rep,j + β)∥2

Where weights wj are iteratively updated based on residual errors using Huber or Tukey
bisquare weighting functions. This approach proves to be particularly valuable in scenarios
with occasional sensor fusion errors in the ground truth data.
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Depth Normalization and Post-Processing

The model output undergoes an inverse transformation to convert normalized values back
to metric depth measurements within the operational range of up to 120 meters. This
transformation is mathematically represented as:

dmetric = α · (120.0− dnormalized) + β

Where dnormalized is constrained to the range (0.1, 120), dmetric represents the final metric
depth value in meters, and α and β are calibration parameters derived through the calibration
process

This transformation effectively reverses the preprocessing normalization applied during
training, where distances of 120m were mapped to 0, and distances of 0.1m were mapped
to 1.0. The inverse mapping reestablishes the metric scale while the calibration parameters
preserving the semantic relationship between pixel intensities and physical distances.

Temporal Aggregation

To enhance estimation stability, we implement temporal aggregation across sequential frames.
This approach introduces a trade-off between latency and accuracy that must be carefully
balanced in high-speed racing scenarios. Given that our camera feed is 20Hz and our pipeline
is capable of 50Hz depth estimation inference outputs, our analysis indicates that tempo-
ral windows of t=3 or t=5 frames provide optimal performance, with the following latency
characteristics:

• t=3 frames : Initial latency of 0.17s, followed by average processing latency of 0.095s

• t=5 frames : Initial latency of 0.27s, followed by average processing latency of 0.145s

Given our model’s primary application for gap-closing during overtakes, the perception
problem starts out with long-range perception (80+ meters). These latency values are an ac-
ceptable compromise for enhanced accuracy. We implement a median temporal aggregation
for robustness.
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Chapter 5

Experiments and Results

Our experimental evaluation focuses on assessing the efficacy of our monocular depth esti-
mation approach across multiple dimensions: Bridging the gap: cross-view transfer learning
capabilities, model training performance, model calibration effectiveness, cross-track gener-
alization, and temporal aggregation benifits. These experiments provide a comprehensive
analysis of the system’s deployment readiness for high-speed autonomous racing scenarios.

5.1 Experimental Setup and Datasets

The primary foundation for our experiments is a Dense Prediction Transformer (DPT) model
trained on the ROAR Indianapolis Motor Speedway (IMS) dataset after pre-training with
an aligned KITTI dataset as described in Section 4.3. Model selection was performed using
performance on a held-out ROAR Kentucky Speedway (KS) validation set.

For comprehensive evaluation, we employ the Las Vegas Road Course (LVRC) dataset
Figure 5.2, which presents substantially greater challenges than the training environment.
Unlike the relatively uniform oval track at IMS with consistent banking angles and pre-
dictable visual characteristics, LVRC features complex track variations including chicanes,
U-turns, flat sections, and multiple elevation changes as shown in Figure 5.2. These fea-
tures introduces significant perspective shifts during cornering maneuvers. On top of that,
the dataset introduces complex background variations including infrastructure and terrain
changes, including ill defined road lanes Figure 5.1. These factors collectively create a rig-
orous evaluation environment that presents a substantial domain shift from training data,
serving as an ideal testbed for assessing generalization capabilities across dramatically dif-
ferent visual domains.

The size of this LVRC evaluation dataset contains 450 frontal opponent vehicle ground
truths over distances up to 100 meters, and 1800 rear ground truths, where we intend to
deploy the models. The ground truths are extracted using opposing vehicle GPS data,
providing precise 4D (spatial and yaw) positioning information to evaluate the accuracy of
the depth estimation across varying distances.



CHAPTER 5. EXPERIMENTS AND RESULTS 31

Training

IMS

Validation

KS

Evaluation

LVRC

Figure 5.1: Dataset comparisons across different racing environments: Training on Indianapolis Motor Speed-
way (IMS Oval Track, top), validation on Kentucky Speedway (KS Oval Track, middle), and evaluation on
Las Vegas Road Course (LVRC, bottom). Each dataset presents increasing visual complexity and domain
shift challenges.

Baseline and Comparative Evaluation Framework

Our evaluation compares our proposed method against a baseline model that is trained using
only Mean Absolute Error (MAE) loss without dynamic object segmentation, pretrained on
the standard KITTI dataset without alignment techniques, and finetuned on the IMS training
dataset. In contrast, our proposed pipeline incorporates the tuned objective (described in
Section 4.2), pretraining on an aligned KITTI dataset, dynamic object segmentation-aware
loss functions, and cross-view adaptation with calibration due to the scale invariant loss
component used. We then evaluate the performance of both models before and after model
calibration to demonstrate the effectiveness of our proposed cross-domain and cross-view
adaptation techniques.

For quantitative assessment, we use the Relative Error Metric on selected dynamic ob-
jects, binned by distance in 10-meter intervals (e.g., [0, 10), [10, 20), etc.). For each depth
measurement pair, we calculate the difference between the predicted and actual depths, then
divide by the actual depth and average this metric over all pairs:

Relative Error(%) =
1

N

N∑
i=1

d̂i − di
di

This metric choice provides an intuitive understanding of whether depths are being un-
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(a) Las Vegas Superspeedway) (b) Las Vegas Road Course (LVRC)

Figure 5.2: Las Vegas Motor Speedway configurations to scale: (a) oval track similar to Indianapolis Motor
Speedway (IMS) and Kentucky Speedway (KS), used for IMS training and KS validation datasets; (b) com-
plex road course used for evaluation, demonstrating the significant domain shift between training, validation,
and evaluation environments.

derestimated or overestimated, allowing us to assess overall model safety and reliability in
autonomous racing contexts.

5.2 Bridging the Gap: Cross-View Transfer Gap

Analysis

One of the fundamental challenges mentioned in the problem statement is to achieve consis-
tent depth estimation across camera viewpoints by only training on a single viewpoint. Our
analysis quantifies the performance gap when transferring a model trained on frontal camera
views to rear-facing perspectives without overly expensive adaptations.

In the baseline model trained with absolute objectives only, we observed a mean absolute
relative error of 15.7% per opponent vehicle detection for frontal views on the LVRC evalu-
ation dataset. However, this error increases significantly to 23% per detection when applied
to rear-view data, representing a substantial degradation in estimation accuracy.
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Figure 5.3: Comparison of per-meter-bin median values of GPS ground truth depth versus estimated depth
evaluated on the LVRC dataset. Top: The Baseline method shows weaker correlation with ground truth
and restricted effective range (< 80m). Bottom: Proposed method demonstrating stronger correlation with
ground truth and extended detection capabilities up to 100m. Both methods exhibit systematic deviation
in rear-view estimations, indicating the cross-view transfer challenge that necessitates calibration.
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Our proposed model trained on the IMS Oval dataset demonstrates marked improvement
with a mean absolute relative error of 8.6% per opponent vehicle detection for frontal views
on the LVRC evaluation dataset. Despite this improvement, the error still increases signifi-
cantly to 20% per detection when applied to rear-view data—representing a greater than 2×
performance degradation. When normalized across meter-binned detections, the disparity
becomes even more pronounced: 7% per aggregated bin for frontal views versus 26% for rear
views.

This substantial performance differential confirms the existence of a non-trivial front-to-
rear deployment gap. Figure 5.3 visually demonstrates this phenomenon through a compara-
tive plot of ground truth versus estimated depth values across different camera perspectives.
For frontal cameras, the median predictions (orange) closely approximate the ground truth
values (blue), indicating strong generalization across tracks within the same camera per-
spective. Conversely, the results for both methods’ rear camera estimate exhibits systematic
deviation from ground truth, clearly demonstrating the need for targeted calibration tech-
niques to bridge this cross-view adaptation gap. In the next section, we focus on the accuracy
and stability of the post-calibration depth estimations.

Calibration Effectiveness Across Viewpoints

The application of our distance-balanced calibration methodology Section 4.4 demonstrates
remarkable effectiveness in bridging the cross-view adaptation gap. Figure 5.4 presents
a comprehensive error analysis through box plots comparing uncalibrated and calibrated
performance across both front and rear camera perspectives. Several key insights emerge
from this analysis:

1. Frontal Camera Robustness: The top row of Figure 5.4 shows a slight performance
degradation when needlessly performing calibration on a model applied to tracks within
the training camera perspective, as evidenced by increased variance after frontal view
calibration. This showcases the model’s robust cross-track performance for perspectives
similar to training viewpoints. This robustness is particularly noteworthy given the
substantial domain shift between the IMS oval and LVRC road course environments.
The consistency of the model’s performance post-calibration indicates the model has
successfully maintained near-identity parameters when applied to new tracks while
using the same camera perspective.

2. Systematic Underestimation Bias: Uncalibrated estimations across both perspec-
tives exhibit a consistent negative error trend, indicating systematic distance under-
estimation. Apart from the camera perspective shift, one might argue that the DPT
model’s global context integration mechanism may associate visually complex back-
grounds with closer depth planes—a potential limitation of global-image depth esti-
mation when generalizing to visually diverse environments. However, we hypothesize
that calibration parameters should remain consistent for a given model within each
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Figure 5.4: Comparison of depth estimation error distributions for the model trained on Indianapolis Motor
Speedway Oval (IMS) and evaluated on the Las Vegas Road Course (LVRC) dataset, across different camera
viewpoints with and without model-viewpoint calibrations applied. Error distribution comparison between
uncalibrated (left) and calibrated (right) models for front (top) and rear (bottom) camera perspectives across
different distance ranges. Note the dramatic error reduction in rear camera estimation following calibration.
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perspective, as evidenced by the model’s robust calibration parameters in the frontal
view.

3. Rear-View Correction: The bottom row of Figure 5.4 demonstrates remarkable
correction results in rear camera estimation following calibration. The calibration
process substantially reduces the median error across all distance ranges, confirming
the effectiveness of our distance-balanced calibration methodology.

The successful calibration of rear camera estimations using parameters provides strong ev-
idence that our approach effectively captures and compensates for the fundamental geometric
differences between camera perspectives, rather than merely overfitting to track-specific vi-
sual characteristics. These findings collectively validate that while transformer-based depth
estimation models excel at capturing generalizable depth relationships, view-specific calibra-
tion remains essential for deploying these models across multiple camera perspectives.

5.3 Model Performance Results

This section examines the impact of our design choices on model performance, with par-
ticular focus on their effectiveness in extending the reliable depth estimation range. We
analyze how our training objective formulation and segmentation-aware learning contribute
to performance improvements across diverse camera perspectives and distance ranges.

Table 5.1 presents a visual comparison between our baseline and proposed methods across
both front and rear camera perspectives. The box plots illustrate error distributions across
different distance ranges, providing comprehensive visualization of estimation accuracy and
consistency. Our analysis reveals that the baseline model training approach fails to transfer
effectively across tracks, exhibiting large variance swings particularly for objects at distances
exceeding 30 meters. In contrast, our proposed method demonstrates a 28% reduction in
error variance across all distance ranges, indicating significantly improved estimation consis-
tency. This improvement is evident in both front and rear camera perspectives, confirming
the effectiveness of our cross-view adaptation approach. The performance enhancement can
be attributed primarily to our modified depth estimation objective. By incorporating seg-
mentation awareness, our model maintains focus on relevant objects regardless of distance,
extending reliable estimation capability up to 100 meters, a suitable threshold for high-speed
racing applications.

It is noteworthy that for near-field estimations (distances under 30 meters) in non-cross-
view scenarios (frontal perspective), the baseline model outperforms our proposed method.
This observation suggests potential benefits from implementing objective-switching training
strategies that could optimize performance across different distance ranges by dynamically
adjusting loss function weights.

Real-Time Performance and Deployment Considerations With software engineer-
ing efforts, this pipeline achieves excellent computational efficiency with an average inference
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Baseline Proposed Method

Table 5.1: Comparison of baseline and proposed method performance for front and rear camera views.

throughput of 42.3Hz when integrated with YOLOv8 instance segmentation model. This
performance is achieved through post-training quantization techniques and running models
in the Nvidia TensorRT framework, ensuring the system meets the real-time requirements
mentioned in previous sections.

While our current implementation demonstrates robust generalization capabilities, fur-
ther cross-track fine-tuning could potentially enhance performance. This remains an area for
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future investigation, particularly for racing environments with extreme visual characteristic
variations beyond those represented in our training data.

5.4 Temporal Aggregation Results

To enhance estimation stability and reduce prediction variance, we proposed to apply a
temporal aggregation approach that combines predictions across sequential frames. This
methodology employs a median-based aggregation over a detection buffer window, theoret-
ically improving accuracy for objects in consistent motion patterns. Figure 5.5 presents
a comparative analysis of different temporal buffer sizes (T=1, T=3, and T=5) and their
impact on depth estimation performance.

(a) Performance with buffer size 1 (b) Performance with buffer size 3 (c) Performance with buffer size 5

Figure 5.5: Comparison of depth estimation error distributions across different temporal buffer sizes for the
model trained on Indianapolis Motor Speedway Oval (IMS) and evaluated on the Las Vegas Road Course
(LVRC) dataset. From left to right: Performance metrics for single-frame estimation (T=1), three-frame
buffer aggregation (T=3), and five-frame buffer aggregation (T=5).

Our experiments show that temporal aggregation consistently reduces error variance
across all distance ranges, with particularly notable improvements in minimum and maxi-
mum error bounds. This variance reduction is essential for ensuring stable control inputs to
the autonomous racing system. However, the results also reveal several important limita-
tions:

1. Proximity-Dependent Benefits: The performance improvements from temporal
aggregation are primarily concentrated in the nearest distance bin (0-30m). At T=3,
we observe optimal performance for close-range depth estimation, while T=5 introduces
increasing drift in mean error values.
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2. Diminishing Returns for Distant Objects: For objects beyond the immediate
proximity range, temporal aggregation benefits diminish and eventually become coun-
terproductive at larger buffer sizes. This pattern aligns with our expectation that for
dynamic racing scenarios with significant relative motion, historical detections quickly
become irrelevant for distant objects.

These findings inform our final implementation, which employs distance-adaptive temporal
aggregation—applying longer buffer windows to close-range detections while maintaining
minimal or no aggregation for distant objects. This approach optimizes the trade-off between
estimation stability and responsiveness to rapid environmental changes in high-speed racing
scenarios.

5.5 Discussion and Implications

Our comprehensive experimental evaluation demonstrates the viability of transformer-based
monocular depth estimation for autonomous racing applications, while highlighting several
key considerations for practical deployment:

1. Cross-Track Generalization: The robust performance across dramatically differ-
ent track environments confirms generalization capabilities of our model choice and
training methods, even in the absence of track-specific fine-tuning. This generalization
is particularly valuable for racing applications where comprehensive data collection
across all potential venues may be impractical.

2. View-Specific Calibration: While the base model demonstrates strong generaliza-
tion across tracks for the same camera perspective, the significant performance gap
between calibrated and uncalibrated cross-view estimations emphasizes the necessity
of view-specific calibration processes. Fortunately, our distance-balanced calibration
methodology effectively bridges this gap with minimal data requirements. Although
we currently lack a dataset to perform a cross-track validation of the calibration pa-
rameters, there is evidence showing that the derived parameters should demonstrate
consistency across different tracks for the same camera perspective. The calibration
process’ goal is to capture fundamental projection properties rather than scene-specific
characteristics, enabling reliable cross-track generalization.

3. Temporal Aggregation Trade-offs: The performance improvements from temporal
aggregation must be carefully balanced against increased latency in dynamic racing
scenarios. Our findings suggest that moderate buffer sizes (T=3) offer an optimal
compromise for close-range perception, while minimal aggregation is preferable for
distant objects.

These findings collectively establish a foundation for deploying monocular depth esti-
mation in autonomous racing, particularly addressing the challenge 3D Scene Gaps. The
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demonstrated cross-track generalization, calibration methodology, and temporal stability
optimizations enable reliable depth perception in challenging racing environments without
requiring extensive recalibration or track-specific fine-tuning adaptations. Ultimately, this
work bridges the gap in autonomous racing perception through depth estimation from monoc-
ular cameras for 3D scene completion. However, it is important to note that the safety im-
plications of integrating this model with planning modules remain to be thoroughly tested
in future work, a next step before full deployment in competitive racing scenarios.
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Chapter 6

Future Directions

The advancements in monocular depth estimation presented in this thesis open several av-
enues for future research. In this chapter, we outline promising directions that could further
enhance the reliability, accuracy, and applicability of our approach in high-speed autonomous
racing environments and beyond.

6.1 Advanced 3D Point Cloud Estimation

Recent developments in 3D point cloud estimation offer compelling approaches to mitigate
common limitations in monocular depth prediction, particularly the ”hedging artifacts” that
occur when models predict intermediate depth values at object boundaries due to uncertainty.
The Monocular Geometry Estimation (MoGe) framework proposed by Wang et al. [47] repre-
sents a significant advancement in this domain, directly predicting affine-invariant 3D point
maps rather than 2D depth maps.

Unlike traditional approaches that infer depth and then back-project to 3D coordinates,
MoGe’s architecture directly maps image pixels to 3D spatial coordinates, preserving ge-
ometric consistency without requiring precise camera intrinsic knowledge. This approach
offers several advantages relevant to our autonomous racing application:

1. Enhanced Boundary Precision: By operating in the 3D coordinate space rather
than depth space, MoGe significantly reduces the boundary bleeding artifacts that
plague traditional monocular depth estimation methods, potentially improving the
precision of opponent vehicle localization.

2. Affine-Invariant Representation: Similar to our calibration approach, MoGe em-
ploys an affine-invariant representation that eliminates scale and shift ambiguities,
offering a more mathematically principled foundation for cross-view adaptation.

3. Multi-scale Local Geometry Supervision: The implementation of spherical region
supervision at multiple scales closely aligns with our finding that segmentation-aware
depth estimation improves safety-critical object detection accuracy.
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Integrating these advancements with our racing-specific implementations could yield sub-
stantial improvements in depth estimation accuracy, particularly at object boundaries where
precise perception and localization is essential for safe high-speed maneuvering.

6.2 Groundtruth-Independent Calibration Techniques

While our current calibration approach has demonstrated impressive results in bridging
the front-to-rear viewpoint gap, it remains dependent on ground truth data for parameter
estimation. Future work could explore more flexible calibration methods that reduce or
eliminate this dependency.

6.2.1 Structure from Motion with COLMAP

COLMAP (Schönberger et al., [44]) represents a mature Structure from Motion (SfM)
pipeline capable of reconstructing sparse 3D scene geometry and camera parameters from
image collections without requiring pre-calibrated sensors. This approach could be partic-
ularly valuable for deploying our system on new tracks where extensive ground truth data
may be unavailable.

By collecting multi-view image sequences during preliminary track testing runs, COLMAP
could generate sparse 3D reconstructions sufficient for:

1. Camera Intrinsic Estimation: Recovering consistent focal length and principal
point parameters for all onboard cameras without requiring controlled calibration pro-
cedures.

2. Cross-View Extrinsic Calibration: Establishing precise geometric relationships
between different camera viewpoints, potentially improving the consistency of depth
estimates across the vehicle’s full sensing envelope.

3. Sparse Depth Supervision: Generating sparse but highly accurate depth points
that could serve as calibration anchors for our monocular estimation system.

The primary challenge in this approach involves ensuring sufficient feature correspondence
in racing environments, where high speeds and motion blur can degrade feature matching
quality. Future research could explore specialized feature extraction and matching techniques
optimized for these challenging conditions.

6.2.2 Sim-to-Real Dataset Calibration

Building on the work of previous ART team [9], sim-to-real adaptation techniques offer
another promising pathway for groundtruth-independent calibration. The approach ad-
dresses the fundamental ”reality gap” challenge in autonomous racing, where simulation
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data—though plentiful—exhibits visual and physical discrepancies compared to real-world
racing scenarios.

A potential implementation could involve:

1. Domain-Adaptive Depth Estimation: Training depth estimation models on abun-
dant simulation data where perfect ground truth is available, then employing domain
adaptation techniques to transfer this knowledge to real-world camera images.

2. Few-Shot Calibration: Leveraging limited real-world depth measurements to learn
transformation functions that map simulation-trained models to real-world depth dis-
tributions.

3. Cycle-Consistent Adaptation: Implementing cycle-consistency constraints between
simulation and real domains to ensure geometric consistency without requiring paired
examples.

This approach is particularly relevant for multi-car racing scenarios, where collecting real-
world training data with opponent vehicles presents logistical and safety challenges. By
generating unlimited simulated multi-car racing scenarios and developing robust sim-to-
real adaptation techniques, we could train models capable of accurate depth estimation in
complex racing scenarios without requiring extensive real-world data collection.
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Appendix A

Finding the Best Transferrable
Region of Interest

When applying monocular depth estimation models across different viewpoints and condi-
tions, identifying the most transferrable region of interest (ROI) within camera frames is
important for achieving consistent and reliable depth predictions. We investigate which por-
tions of the camera view provide the most stable and generalizable depth estimation results
when using pre-trained models like DPT-Large [39].

Our objective is to determine the optimal ROI that minimizes transformation parameter
variance across frames, thereby enhancing the transferability of depth estimation models to
new viewpoints—particularly important for zero-shot deployment scenarios in autonomous
racing where training data from all camera perspectives may not be available. Figure A.1
shows the initial depth map results generated by the DPT-Large model.

Initial experiments with a pretrained DPT-Large on full camera frames revealed that cer-
tain regions consistently produced less reliable depth estimates. Specifically, areas containing
the vehicle’s nose and sky regions exhibited higher depth prediction variance, suggesting these
regions negatively impact the model’s transferability across different frames and potentially
across different viewpoints. To quantify the transferability of different ROIs, we would use
the coefficient of variation (CV) of these transformation parameters across frames serves
as our transferability metric—lower CV values indicate more consistent and transferrable
depth estimation performance. Surprisingly, the depth maps generated by the DPT-Large
model already provided a good approximation of the actual depth of the objects in the scene
without having it having seen any images from the race car’s point of view before.

Occasionally, the depth maps generated by the DPT-Large model were not as accurate
as desired, especially in areas of the car’s nose or in frames where the sky was taking up a
large portion of the image, providing little detail for depth inference. Since the overall depth
map quality was still usable, we decided that this approach is worth further investigation
and evaluation.

One inherent downside of in-the-wild monocular depth estimation is that the depth maps
generated by the model are not metrically accurate, meaning that the depth values are only
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Figure A.1: Depth maps generated by DPT-Large model

relative to each other and not to the real world. Since our goal is to obtain metrically
accurate depth maps, we decided to apply a post-processing step to the obtained depth
maps to explore, whether it is possible to find a generalizable transformation to convert
relative depth to metrically accurate depth maps. We did so first by looking for simple
linear transformation parameters to match the depth maps with respective metric depth
slices of a lidar scan taken during the same moment. With regards to the pixel intensity
values of the depth maps depthrelative, the transformation can be described with a scale factor
s and bias offset b as follows:

depthmetric = s · depthrelative + b (A.1)

Figure A.2 shows the exemplary matching accuracy for a few depth map frames when ap-
plying the linear transformation to our DPT-Large obtained depth maps.

The linear transformation approach showed promising results, however, we found that
the transformation parameters were not consistent across different frames and that applying
the aggregated transformation to the entire dataset resulted in a significant loss of accuracy
for many depth maps. Over a set of 71 images that represent a full racing lap, we get a mean
scale factor s of -477.55 and mean bias offset b of 68.59, however most importantly also a
standard deviation of 115.4 for the scale factor and 12.05 for the bias offset, indicating that
the required transformation parameters fluctuate in between frames.
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Figure A.2: Depth map transformation from DPT-Large inference (left) to metric depth (right) using lidar
ground truth (middle).

Crop Mean s Std s CV (%) Mean b Std b CV (%)
None -477.55 115.4 25.17 68.59 12.05 17.57
Partial -308.81 92.25 29.87 75.56 8.37 11.08
Full -123.65 19.13 15.47 78.75 8.63 10.96

Table A.1: Transformation Parameters for different cropping approaches

In order to curb this issue, we decide to limit the camera frame to a cutout of the
track that removes the majority of the sky and the car’s nose, as these areas are the most
problematic for the depth estimation model. The resulting DPT-Large depth maps and
transformation results can be seen in figure A.3.

We distinguish in between two cropped versions: a) One in which we leave a little bit of
the car’s front wing and nose in the frame and b) an even more aggressive crop in which we
eliminate the car’s nose from the frame entirely in hopes to reduce the depth variance even
further. Table A.1 shows the obtained required transformation parameters, their standard
deviations as well as the coefficient of variation (CV) for the different cropping approaches.

When comparing the transformation parameters with varying camera frame crops, the
coefficient of variation (CV) for the scale factor and bias offset is most important to gauge
fluctuation in the transformation parameters. While the partially cropped frames actually
have an increased variance in the scale factors s with a CV of 29.87%, the frames in which
the car’s nose is fully cropped out have a CV of 15.47%, indicating that the transformation
parameters are far more consistent across frames when the car’s nose is removed from the
frame. The bias b is consistently better and stable across all cropping approaches, with a CV
of 17.57% for the full frame, 11.08% for the partial crop, and 10.96% for the full crop. Figure
A.4 shows the exemplary transformation of a fully cropped depth map to metric depth.

Removing the car’s nose from the frame seems to be the most promising approach to
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Figure A.3: Image crop variations: Original (top), partial nose crop (middle) and full (bottom).
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Figure A.4: Depth map transformation from DPT-Large inference (left) to metric depth (right) using lidar
ground truth (middle) on fully cropped input image.

obtain metrically accurate depth maps, as the transformation parameters are most stable
across frames and the depth maps are most accurate.

Using above approaches has yielded a quick and effective method to leverage large state-
of-the-art depth estimation models to obtain metric ground truth depth with mostly accept-
able accuracy. Depending on the required ground truth data accuracy and quality, however,
more sophisticated transformation methods such as RANSAC are required, which can be
examined in the remaining project runtime.
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Appendix B

Comparative Analysis of
Segmentation Models

B.1 Evaluation Protocol

To determine the most suitable segmentation model for cross-track generalization, we con-
ducted a comprehensive evaluation of state-of-the-art segmentation architectures using the
MMSegmentation framework [10]. The evaluation specifically focused on zero-shot perfor-
mance, testing models trained exclusively on the Cityscapes dataset [11] without any fine-
tuning on racing track data. This experimental design was chosen to assess the models’
ability to generalize to previously unseen racing environments.

B.2 Model Selection and Methodology

Our comparative analysis encompassed both convolutional neural network (CNN) based
[5–7,14,18,21,23–26,31,32,34,36,38,42,43,48–51,56,58,59,61,63–67,71], and architectures
and transformer-based architectures [8, 35,40,52,53,68].

Two representative scenes from the Indianapolis Motor Speedway dataset were selected
to demonstrate the qualitative performance differences between architectural paradigms.
These scenes were chosen to capture the diversity of visual challenges present in racing
environments, including varying lighting conditions, track surface textures, and background
complexity.

B.3 Results and Analysis

The experimental results revealed a marked performance advantage for transformer-based
architectures in zero-shot racing track segmentation. Figures B.1 and B.2 illustrate the
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segmentation outputs from CNN-based models, while Figures B.3 and B.4 present the cor-
responding results from transformer architectures.

B.4 Key Findings

The superior performance of transformer-based models in this zero-shot evaluation can be
attributed to several factors:

1. Global Context Modeling: Transformer architectures’ self-attention mechanisms
enable superior modeling of long-range dependencies, crucial for understanding the
spatial relationships in racing track environments [12].

2. Robust Feature Representations: The hierarchical feature representations learned
by transformers appear to generalize more effectively to previously unseen domains,
particularly in scenarios with significant domain shift from urban scenes to racing
tracks.

3. Scale Invariance: Transformer models demonstrated better handling of scale varia-
tions, particularly important for detecting vehicles at varying distances on the track.

B.5 Implications for Racing Applications

These findings support our decision to employ Mask2Former as the primary segmentation
backbone in our perception pipeline. The model’s robust zero-shot performance eliminates
the need for extensive track-specific data collection and annotation, significantly reducing
deployment costs and enabling rapid adaptation to new racing venues.

B.6 Limitations and Future Work

While our evaluation focused on qualitative assessment, future work should incorporate
quantitative metrics such as intersection over union (IoU) and pixel accuracy. Additionally,
evaluating performance under varying weather conditions and times of day would provide a
more comprehensive understanding of model robustness in racing applications.
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Figure B.1: Segmentation results from CNN-based models on Scene 1 from the Indianapolis Motor Speedway
dataset. Models shown (left to right, top to bottom): MobileNetV3, ResNet-50, ResNet-101, and PSPNet.
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Figure B.2: Segmentation results from CNN-based models on Scene 2 from the Indianapolis Motor Speedway
dataset, demonstrating performance under different lighting and track conditions.
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Figure B.3: Segmentation results from transformer-based models on Scene 1 from the Indianapolis Motor
Speedway dataset. Models shown (left to right, top to bottom): SegFormer, Mask2Former, and Swin
Transformer variants.

Figure B.4: Segmentation results from transformer-based models on Scene 2 from the Indianapolis Motor
Speedway dataset, illustrating superior generalization capabilities compared to CNN-based approaches.


