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Abstract 

A wide variety of graph algorithms expressed as linear algebra operations, i.e., 
triangle counting, k-truss analysis, breath first search, betweenness centrality, 
depend on the masked sparse matrix time sparse matrix multiplication (masked-
SpGEMM) kernel. SuiteSparse:GraphBLAS, the de-facto sparse linear algebra 
library for graph analytics, offers support for this specific computation. Under a 
simple API, the library offers multiple masked-SpGEMM implementations. While 
attempting to provide a flexible solution that adapts to the input graphs/data, the 
system uses heuristics to choose between implementations. It hides the 
mechanisms behind layers of complex code, making it hard for users to reason 
about performance. In this work, we provide an in-depth analysis of the design 
choices that affect the performance of the masked-SpGEMM, using triangle 
counting as the benchmark. We look at 1) techniques for load balancing the sparse 
computation across multiple threads, 2) the iteration space for traversing the 
matrix multiplication and masking operation, and 3) the implementation of the 
accumulator used to store the intermediate results. We discuss the trade-offs and 
show a detailed performance analysis of the implementations on shared memory 
systems for a wide variety of input graphs, comparing SuiteSparse:GraphBLAS 
and a highly optimized masked-SpGEMM implementation, and discuss future 
research directions given our observations.
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Abstract—A wide variety of graph algorithms expressed as
linear algebra operations, i.e., triangle counting, k-truss anal-
ysis, breath first search, betweenness centrality, depend on the
masked sparse matrix time sparse matrix multiplication (masked-
SpGEMM) kernel. SuiteSparse:GraphBLAS, the de-facto sparse
linear algebra library for graph analytics, offers support for
this specific computation. Under a simple API, the library offers
multiple masked-SpGEMM implementations. While attempting
to provide a flexible solution that adapts to the input graphs/data,
the system uses heuristics to choose between implementations. It
hides the mechanisms behind layers of complex code, making it
hard for users to reason about performance. In this work, we
provide an in-depth analysis of the design choices that affect the
performance of the masked-SpGEMM, using triangle counting as
the benchmark. We look at 1) techniques for load balancing the
sparse computation across multiple threads, 2) the iteration space
for traversing the matrix multiplication and masking operation,
and 3) the implementation of the accumulator used to store
the intermediate results. We discuss the trade-offs and show a
detailed performance analysis of the implementations on shared
memory systems for a wide variety of input graphs, compar-
ing SuiteSparse:GraphBLAS and a highly optimized masked-
SpGEMM implementation, and discuss future research directions
given our observations.

Index Terms—Graph Analytics, Load Balancing, Sparse Ac-
cumulators, Predictable Performance

I. INTRODUCTION

The development of efficient graph analytics frameworks
and algorithms is crucial due to the ever increasing size of data
produced in scientific fields like social networks, recommender
systems and bio-informatics. Over the past years, there have
been a multitude of projects [1]–[6] focused on fast processing
of sparse data represented as graphs. One such project is
GraphBLAS [7] and SuiteSparse:GraphBLAS [8], an API and
framework focused on expressing graph algorithms as sparse
linear algebra operations respectively, analogous to the (dense)
Basic Linear Algebra Subroutines (BLAS). Typically, graphs
are represented using adjacency matrices, where the elements
of the matrix indicate whether pairs of vertices are adjacent
or not in the graph. GraphBLAS proposes graph algorithms to
be expressed as operations applied on the adjacency matrix,
with steps that can be composed to form larger algorithms
such as triangle counting [9]–[11], k-truss calculation [12]–
[14], breath first search [15], and betweenness centrality [16].

The masked sparse-matrix-times-sparse-matrix multiplica-
tion (masked-SpGEMM) operation is one such operation that
is central to multiple graph algorithms. For example, to count
the number of triangles (i.e., three interconnected nodes), one
can multiply the adjacency matrix with itself to determine
the paths of length two between all nodes, and then filter
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Fig. 1: Log scale execution times for the masked-SpGEMM
using SuiteSparse:GraphBLAS [8], GrB [17], and our tuned
implementation for a number of input graphs. All runs use a
hash-based accumulator and are parallelized on an AMD CPU
using 64 threads. While for some graphs the implementations
are similar, there are outliers where SuiteSparse:GraphBLAS
under-performs compared GrB, and vice-versa. Our tuned
implementation eliminates most extreme outliers from GrB
but still occasionally underperforms.

the result by requiring an extra path of length one between
the corresponding nodes. The filtering step is performed by
masking the intermediate result with the original adjacency
matrix. In practice, this set of operations is performed in
one step. In addition SuiteSparse:GraphBLAS chooses heuris-
tically the implementation that best suits the input graph.
The library attempts to offer a solution that can adapt to
the diverse set of graph data structures and inputs. Figure 1
shows the execution time for the masked-SpGEMM for dif-
ferent input graphs, using GraphBLAS (or more specifically
SuiteSparse:GraphBLAS) and GrB [17]. The execution time
of the two implementations vary for the different input graphs.
However, given the complexity of the SuiteSparse:GraphBLAS
library, it can be hard to reason about its performance.

In this work, we perform an in-depth analysis on the
trade-offs needed to achieve efficient implementations for the
masked-SpGEMM kernel. We investigate three aspects of the
computation. First, we look at tiling the computation and
distributing the tiles across the threads to achieve a balanced
execution. The work among threads needs to be balanced, but
also the amount of data read from main memory needs to be
reduced. Second, we focus on the iteration space for traversing
the matrix multiplication and masking operation in one single
step. We outline that there are multiple approaches to apply
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Fig. 2: The masked-SpGEMM C = M→(A↑B), where → is the element-wise multiplication and ↑ is the usual matrix-matrix
multiplication. The algorithm depicts the saxpy-based masked-SpGEMM, where each row of the C matrix is computed by first
scaling the non-zero values of the corresponding row of A with the appropriate rows of B, and then filtering the intermediate
result with the non-zero values from the corresponding row of M .

the computation. Lastly, we analyze the sparse accumulator
used to store the intermediate results of the computation.
Moreover, we extend the work by Milakovic et. al [17] by
exploring the properties of the masking matrix and modifying
the sparse accumulation. We believe that this study can offer
important insights for library developers and sparse code gen-
erators alike, providing a recipe one needs to obtain efficient
implementations for the masked-SpGEMM.

Contributions. We make the following contributions:
• We provide an in-depth analysis of the trade-offs

for different iteration spaces, sparse accumulators, and
tiling/thread scheduling schemes.

• We perform a performance study for a wide range of
input graphs on a shared memory CPU system.

• We compare the performance against different se-
tups and discuss our observations based on SuiteS-
parse:GraphBLAS and GrB.

The remainder of paper is structured as follows. Section II
briefly describes the masked-SpGEMM kernel. Section III fo-
cuses on the three hypotheses that may influence performance.
Section IV provides the experimental results and the discus-
sion. Section VI we present related work. Finally, Section V
summarizes the findings and outlines future directions.

II. BACKGROUND

In this section, we briefly present the masked sparse-
matrix-time-sparse-matrix (masked-SpGEMM) kernel. We
then outline the current implementations both in the SuiteS-
parse:GraphBLAS library, but also in the GrB library, an
implementation tailored for masked-SpGEMM.

A. Row-wise saxpy Masked SpGEMM
In this paper, we focus our analysis on the row-wise saxpy-

based masked-SpGEMM algorithms, where all operands are
stored in the CSR format.1 By symmetry, our analysis also
applies to column-wise saxpy over CSC operands. In the
remainder of this paper, we refer to the row-wise saxpy simply
as saxpy.

1We write saxpy in the BLAS ax+ y sense.

1 # for each row of C

2 for i in 1 to m:

3 # init accumulator

4 acc = empty()

5 # traverse all non-zero elements of A[i, :]
6 for non-zero column k in A[i,:]:

7 a = A[i,k]

8 # fetch non-zero elements of B[k, :]
9 for nonzero column j in B[k,:]:

10 x = B[k,j]

11 y = acc[i,j]

12 acc[i,j] = a * x + y

13 # intersect with mask

14 for non-zero column j in acc[i,:]:

15 if M[i,j] is zero:

16 acc[i,j] = 0

17 # store result to C

18 C[i,:] = acc.gather()

Fig. 3: The saxpy-based masked-SpGEMM. The algorithm
computes each row of the output matrix C in two steps. First,
it scales the non-zero elements in the corresponding row of
A with the appropriate rows of B. Second, the values of the
results are element-wise multiplied with the non-zero elements
of the row of M , via an intersection operation.

Let A ↓ Rm→K , B ↓ RK→n, M ↓ Rm→n be the input
matrices stored using the CSR format. The masked-SpGEMM
can be written as

C = M → (A↑B) (1)

where C ↓ Rm→n represents the sparse output matrix stored
as well in the CSR format, → represents the element-wise
computation, and ↑ represents the typical matrix-matrix mul-
tiplication. We use R here for simplicity, but GraphBLAS
permits the use of any semiring instead.

Pictorially, the saxpy-based masked-SPGEMM is depicted
in Figure 2, where A is a square matrix of size m↑m and B

and M are identical to A. Figure 3 outlines the pseudo-code
for the vanilla masked-SpGEMM. The algorithm iterates over
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Fig. 4: The implementation of the masked-SpGEMM using
a sparse accumulator. For each row of output matrix, the
corresponding row from the mask is loaded into the accu-
mulator. Each row loaded from the second matrix operand
is intersected with the values stored in the accumulator. The
non-zero elements of each row are filtered by the non-zero
elements of the mask.

the m rows of output matrix C (line 1). For each row C[i, :],
the computation initializes a sparse accumulator as empty (line
4). For each non-zero element A[i, k] of the corresponding row
A[i, :], the column index k is used to access the k-th row in
matrix B (line 9). The non-zero values in B[k, :] are scaled by
A[i, k] and added to the sparse accumulator (lines 10-12). Note
that both the accumulator and M [i, :] are sparse. Therefore, the
output is obtained as an intersection between the two: masked
elements are cleared from the accumulator. Finally, the result is
packed and stored in C. In the following sections, we present
the recent improved implementations and outline some key
challenges in coming up with such implementations.

B. GraphBLAS and SuiteSparse:GraphBLAS
GraphBLAS is an API specification that defines the standard

building blocks for graph algorithms in the language of linear
algebra. For example, the definition

1 GrB_mxm(GrB_Matrix C,

2 const GrB_Matrix M,

3 const GrB_BinaryOp accum,

4 const GrB_Semiring op,

5 const GrB_Matrix A,

6 const GrB_Matrix B,

7 const GrB_Descriptor desc);

describes the function call and its arguments for computing
a SpGEMM (M is set as GrB_NULL) or a masked-SpGEMM
(M points to an actual GrB_Matrix). GraphBLAS works with
opaque objects GrB_Matrix for the input M, A, B and output
C matrices. Moreover, the function call requires the specifica-
tions of the semiring to outline the concrete operations. More
details about the API can be found in [7], [8].

GraphBLAS specifies the API, SuiteSparse:GraphBLAS
provides the highly optimized implementations for each API

1 # for each row of C

2 for i in 1 to m:

3 # init accumulator

4 acc = empty()

5 # load the mask into the accumulator

6 acc.setMask(M[i,:])

7 # traverse all non-zero elements of A[i, :]
8 for non-zero column k in A[i,:]:

9 a = A[i, k]

10 # fetch non-zero elements of B[k, :]
11 for nonzero column j in B[k,:]:

12 # accumulate if M [i, j] ↔= 0
13 if acc[i,j] is not masked:

14 x = B[k,j]

15 y = acc[i,j]

16 acc[i,j] = a * x + y

17 # store result to C

18 C[i,:] = acc.gather()

Fig. 5: The modified masked-SpGEMM algorithm used by
the GrB library. The algorithm first loads the mask in the
accumulator. Then as each row from the B matrix is loaded,
the non-zero values are checked in the accumulator to verify
the mask is also non-zero. If there is a hit, the corresponding
location is updated, if the mask has a zero element then the
value is discarded.

function. SuiteSparse:GraphBLAS offers multiple implemen-
tations for the masked-SpGEMM computation. The library
chooses between the different implementations using a handful
of heuristics. While SuiteSparse:GraphBLAS attempts to offer
a flexible solution to tackle different input graphs with differ-
ent properties, the process of choosing between the implemen-
tations is automatic and hidden within the complexities of the
library. Therefore, understanding how performance is obtained
becomes a cumbersome task. In this paper, we attempt to offer
insights that may shed some light on this.

C. GrB: an Optimized masked-SpGEMM Implementation

GrB [17] is a standalone library tailored for the masked-
SpGEMM kernel, with a focus on the data structures used
to store the intermediate results. GrB modifies the original
implementation of the algorithm presented in Figure 3, by
making the observation that before computing each row of
C, the corresponding row of M, the mask, is loaded into
the accumulator. Subsequent updates to the accumulator first
verify that the non-zero values loaded from the second matrix
hit within the mask as outlined in Figure 5. If the non-zero
value has a corresponding non-zero in the loaded mask row,
then the location is updated accordingly. If the non-zero value
does not hit in the mask, then the value is discarded. In other
words, this implementation intersects the each B row with
the mask, and only updates the corresponding match in the
accumulator as outlined in Figure 4. This approach is now
used in SuiteSparse:GraphBLAS as well [18].
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Fig. 6: The different tiling strategies for the saxpy-based masked-SpGEMM. Sub-figure (1), tiles the computation in the row
dimension using homogeneous tiles. Each tile roughly has the same number of rows. Sub-figure (2), computes the total number
of operations performed by the masked-SpGEMM. The tiles are then created based on the average number of operations. The
goal of this approach is to load balance the computation.

GrB uses multiple data structures for storing the interme-
diate results. The most effective accumulators are either a
Hash-based or Dense-based accumulators. For more details on
their implementation, we recommend the reader to follow the
paper [17]. The library offers some flexibility in choosing the
different accumulators. However, the current implementation
does not allow to choose different parallelization schemes.
Given p threads, the implementation creates p tiles for the
output C, the mask M and first operand matrices A. The
second operand B is never tiled. The tiles are created by
computing an average on the number of operations for each
input matrix. The goal is to split the computation in tiles that
balance the overall computation. The tiling and parallelization
scheme is hence fixed.

III. THREE DIMENSIONS FOR PERFORMANCE

In this section, we focus on the three main dimensions we
identify as key in achieving efficient implementations for the
masked-SpGEMM kernel. First, we outline techniques to tile
the computation to achieve balanced execution across multiple
threads. Second, we focus on the iteration space used to
traverse the computation. Finally, we talk about the sparse
accumulators used to store the intermediate results.

A. Tiling and Scheduling the Computation

As the regular SpGEMM is already a highly irregular and
data-dependent computation, introducing masking further ex-
acerbates the problem. When computing in parallel, achieving
load balance between threads is critical to ensure effective
hardware utilization. There are two main approaches to load
balancing: (1) dynamic, and (2) static.

In the first case, a runtime system (e.g. OpenMP) schedules
threads to remaining tasks as soon as they complete their
current task. Load balance can be achieved in this case
even when tasks are highly imbalanced, as long as there are
sufficient independent tasks to assign to threads. However, the
runtime system may incur additional overhead. In the second
case, the tasks are scheduled offline and no runtime load
balancing is used. This is common when tasks are balanced.

Ignoring the mask M for the moment, it is possible to com-
pute the number of operations required to compute C = A↑B

in O(nnz(A)) time. Specifically, for each nonzero A[i, k],
we require O(nnz(B[k, :])) operations. Since B is stored in

1 # for each row of C

2 for i in 1 to m:

3 # init accumulator

4 acc = empty()

5 # traverse all non-zero elements of A[i, :]
6 for non-zero column k in A[i,:]:

7 a = A[i, k]

8 # co-iterate M [i, :] with B[k, :]
9 for nonzero column j in M[i,:]:

10 # look up j in B[k, :]
11 found = binary_search(B[k,:], j)

12 if found:

13 x = B[k, j]

14 y = acc[i, j]

15 acc[i,j] = a * x + y

16 # store result to C

17 C[i,:] = acc.gather()

Fig. 7: The masked-SpGEMM algorithm that co-iterates M [i, :
] with every row B[k, :]. Instead of looking the non-zero ele-
ments in B[k, :], the algorithm looks at the non-zero elements
in M [i, :]. It then uses a binary search to find the column index
j in B[k, :]. If found it performs the computation.

CSR, nnz(B[k, :]) is available in constant time. Following the
algorithm in Figure 5, we can estimate the work for a row as

W [i] = nnz(M [i, :]) +
∑

A[i,k] ↑=0

nnz(B[k, :]). (2)

Using this, we can partition C into “FLOP-balanced” tiles.
GrB uses this approach to create p tiles.

A simple alternative approach is to simply cut up C into
uniformly sized tiles without regards to work, and let dynamic
runtime scheduling do the balancing. It is also possible to
combine both approaches, by producing T > p balanced
tiles and using dynamic scheduling. Based on our experience,
SuiteSparse:GraphBLAS uses T = 2p balanced tiles this way.

B. Traversing the Computation

The masked-SpGEMM is never implemented as a two step
operation, where the SpGEMM is done first, followed by the
masking operation. Typically, the computation is performed
in one step as outlined in Figure 3 and Figure 5. In the plain
vanilla implementation, the masking operation is performed
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Fig. 8: The implementation of the masked-SpGEMM using
the mask to co-iterate the rows of the A matrix. Only the
common elements between the mask and each row are loaded
and pushed into the accumulator. This approach is preferred,
if the number of non-zeros in the mask is small compared to
the number of non-zero elements in the loaded rows from A.

after all the rows B[k, :] are merged and stored in the accu-
mulator. The masking operation, represented by M [i, :], filters
out the values in the accumulator and outputs the final result
to the C matrix. This approach requires a large buffer to store
all the possible non-zero values obtained from merging the
scaled B[k, :] rows, and incurs many wasted computations.

The second implementation solves this problem by loading
the mask M [i, :] into the accumulator before computation is
started. As the rows B[k, :] are loaded from memory, the
non-zero values from B[k, :] are searched within the mask.
If there is a hit, then the values in the accumulator are update
accordingly, otherwise the non-zero value is discarded. The
approach reads all the non-zero values from each B[k, :],
which may be problematic if nnz(M [i, :]) is significantly
smaller than nnz(B[k, :]).

Using the mask M [i, :] to co-iterate across the B[k, :] rows
as depicted in Figure 8, may reduce the amount of data loaded
from main memory. The algorithm presented in Figure 7
outlines the approach. First, the mask is searched within
the B[k, :] row. If the mask is found within the row, then
only the corresponding values are loaded from main memory.
Unfortunately, this approach is not universally applicable.
Co-iterating the mask M [i, :] with the B[k, :] rows works
for masks with a small nnz(M [i, :]). If the nnz(M [i, :]) is
high then the overhead of searching the mask every time
within each B[k, :] row may introduce a large overhead. More
precisely, the cost to co-iterate M [i, :] with B[k, :] is given by

Wco[i, k] = nnz(M [i, :]) · log nnz(B[k, :]). (3)

In order to intelligently switch between the two approaches,
one can simply compare the cost Wco[i, k] with nnz(B[k, :])
when fetching data from B. This motivates the algorithm
shown in Figure 9. SuiteSparse:GraphBLAS internally uses
this approach, and refers to it as a form of push-pull op-
timization [18]. Note that any co-iteration requires the B

1 # for each row of C

2 for i in 1 to m:

3 # init accumulator

4 acc = empty()

5 # load the mask into the accumulator

6 acc.setMask(M[i,:])

7 # traverse all non-zero elements of A[i, :]
8 for non-zero column k in A[i,:]:

9 a = A[i, k]

10 if Wco[i, k] < ω · nnz(B[k, :]):
11 # co-iterate M [i, :] with B[k, :]
12 for nonzero column j in M[i,:]:

13 # look up j in B[k, :]
14 found = binary_search(B[k,:], j)

15 if found:

16 x = B[k, j]

17 y = acc[i, j]

18 acc[i,j] = a * x + y

19 else:
20 # fetch non-zero elements of B[k, :]
21 for nonzero column j in B[k,:]:

22 # accumulate if M [i, j] ↔= 0
23 if acc[i,j] is not masked:

24 x = B[k,j]

25 y = acc[i,j]

26 acc[i,j] = a * x + y

27 # store result to C

28 C[i,:] = acc.gather()

Fig. 9: Hybrid linear scan and co-iteration. ω is the co-iteration
factor, which trades off more or less co-iteration.

matrix columns to be sorted, which may not be the case in
SuiteSparse:GraphBLAS.

C. Sparse Accumulators
The sparse accumulator stores the partial sums during

the computation of C[i, :], and encodes the mask M [i, :] to
enable linear scanning of the B rows. The most important
requirement of the accumulator is fast random access to
all possible output column indices. There are two popular
approaches to implement this: (1) a dense vector of size
m, and (2) a sufficiently large hash table. Existing im-
plementations, including GrB and SuiteSparse:GraphBLAS,
use the operation count maxi

∑
A[i,k] ↑=0 nnz(B[k, :]), but we

simply use maxi nnz(M [i, :]) in our implementation. This
is due to the fact that, with masking, we can have at most
maxi nnz(M [i, :]) output nonzeros. Furthermore, we need to
set at least maxi nnz(M [i, :]) elements in the beginning for
the mask. Note that the max can be taken over the subset
of rows owned by the thread, if using static scheduling. The
dense accumulator may be preferred when the dimension of
the matrix is small, or when there is significant spatial locality
in the writes. On the other hand, the hash accumulator is often
more space efficient when the dimensions are large, which can
increase cache locality.
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Name Kind n nnz
arabic-2005 W 22,744,080 639,999,458
as-Skitter W 1,696,415 22,190,596
circuit5M C 5,558,326 59,524,291

com-LiveJournal S 3,997,962 69,362,378
com-Orkut S 3,072,441 234,370,166

europe_osm R 50,912,018 108,109,320
GAP-road R 23,947,347 57,708,624

hollywood-2009 S 1,139,905 113,891,327
stokes C 11,449,533 349,321,980

uk-2002 W 18,520,486 298,113,762

TABLE I: Matrices used from the SuiteSparse Matrix Collec-
tion. The kinds are: (W) web graph, (C) circuit simulation, (S)
social graph, (R) road graph.

A secondary requirement of the accumulator is fast state
resetting between rows. In GrB, all M [i, j] ↔= 0 slots of
the accumulator are reset explicitly after each row. With
SuiteSparse:GraphBLAS, a 64-bit marker is used for the dense
accumulator to indicate which values are valid or invalid. After
each row, the marker is incremented accordingly to implicitly
reset the accumulator state. It is assumed that the marker does
not overflow. Our modification of GrB uses the marker-based
approach from SuiteSparse:GraphBLAS, except we relax the
marker to be less than 64 bits. This may lead to overflow
during marker increment, so overflow is detected and the state
is fully reset when it occurs. This trades off the size of the
state vector with the time taken to reset the vector. A smaller
marker type can result in better locality of the state array, but
also results in more time spent resetting the full array.

IV. EXPERIMENTAL RESULTS

In this section, we describe our experimental setup. We
briefly present the matrices used in our experiments. We then
summarize the results for the three dimensions tat influence
performance as described earlier.

A. Experimental Setup

Our evaluation focuses on masked-SpGEMM, where the
input matrices M and B are identical to A. A is a sparse
square matrix of size m↑m, where m represents the number
of vertices in the input graph. For all the experiments, we fix
the matrix A (the input graph) and compute C = A→(A↑A),
the main kernel used in triangle counting, k-truss. Following
the GraphBLAS API, the mask is treated as Boolean (i.e., its
values are not used).

All of our experiments are executed on a single node of
the CPU partition on the NERSC Perlmutter supercomputer.
Each node has 2 AMD EPYC 7763 CPUs, with 64 cores
per socket partitioned into 4 NUMA domains (so 8 total),
as well as 512GB of DRAM. In order to reduce NUMA
effects, we restrict our experiments to run on a single socket,
using 64 threads pinned to cores via OpenMP environment
variables. Lastly, we use numactl to interleave all memory
allocations across the 4 NUMA domains. We experimented
with different configurations of allocating the memory using
numactl, however all the experiments produced worse results

Fig. 10: Relative performance of different tiling and scheduling
strategies, relative to the best. For each matrix, each configura-
tion (split by accumulator) is compared to the lowest runtime
for that matrix. The percentage corresponds how often each
configuration was within 10% of the best configuration, across
all matrices. Higher percentage is better.

compared to the interleaved case. As such, we do not report
the results for the other configurations.

We have tested the masked-SpGEMM kernel with three dif-
ferent implementations. First, we compile GraphBLAS version
7.3 using the provided configuration file. Second, we use the
GrB library to perform some of the benchmarks. Similar to the
GraphBLAS variant, we compile the code using the predefined
configuration file. Finally, we modify the GrB library and
create our own version of the code. We parameterize this
implementation to change the threads and tiles, and implement
the dynamic approach that chooses between co-iterating the
mask with the rows or loading the mask in the accumulator.
For each experiment, we run the masked-SpGEMM kernel
once for warm-up, then for 5 seconds or 10000 iterations,
whichever comes first. The output is freed after each run.

B. Matrices
The matrices used in our experiments are summarized in Ta-

ble I. We tried to select matrices with different characteristics.
First, we looked at matrices from different domains. Our se-
lection focuses primarily on various network graphs, including
web hyperlink networks and social networks. We also include
graphs from circuit simulation, as well as road graphs which
are known to have unique performance characteristics. Second,
we looked at large matrices that cannot easily fit within the
last level cache of the AMD CPU (128 MB of L3 cache).
Unlike many prior works including [17], we opt for relatively
large matrices with tens to hundreds of millions of non-zeros.
Performance in this regime is increasingly important as data
and graph sizes continue to grow.

C. Tiling and Scheduling
We briefly present the results obtained when tiling the

computation using the two techniques (flop-balanced vs ho-
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(a) europe-osm (b) GAP-road (c) arabic-2005

(d) com-Orkut (e) com-Livejournal (f) hollywood-2009

(g) Stokes (h) uk-2002 (i) as-Skitter

Fig. 11: Results outlining the execution time in milliseconds for the masked-SpGEMM computation on the AMD EPYC CPU
using 64 threads. The output, mask and first operand matrices are tiled. The second operand matrix is left as is. Each plot
represents the execution time for one input graph. For each input graph, we use the hash and dense accumulators and the
flop-balancing and homogeneous tiling. For each case, we increase the number of tiles from 64 to 32768. Moreover, we also
report the different scheduling schemes when using OpenMP, namely static or dynamic. Lower execution time is better.

mogeneous tiling) outlined in Section III. For the masked-
SpGEMM using both hash-based and dense accumulators, we
report execution time in milliseconds. For these experiments,
we did not include the co-iteration approach and focused on
the algorithm presented in Figure 5. For each experiment, we
perform a sweep on the number of tiles, ranging from 64 tiles
to 32768 tiles. In addition, because we are using OpenMP, we
experiment with STATIC and DYNAMIC scheduling of the tasks
on the threads (each tile is assigned to one thread).

The results are shown in Figure 11. Note that some
of the matrices exhibit similar behaviors. For example, the
results for europe-osm and GAP-road are both road net-
works. As expected the experimental results outline that the
two matrices exhibit the same trends. Similarly, com-Orkut,

com-Livejournal and hollywood-2009 are social network
graphs and once again experience the similar behaviors. The
other three matrices are outliers. Stokes is a circuit simulation,
whole arabic-2005 and uk-2002 are directed graphs. For the
circuit5m matrix we do no report tiling results, because the
algorithm takes a significant amount of time and it times out
on Perlmutter. In the following section, we will provide a
discussion about our findings.

D. Hybrid Approach for Masking the Computation

For this set of experiments, we aim at investigating whether
the adaptive algorithm described in Figure 9 provides better
results compared to running the algorithm that does not co-
iterate the mask. Similar to the previous set of experiments,
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Determine best combination 
of tiling and scheduling 

Tune co-iteration factor

Tune accumulator

Fig. 12: Performance sweep and tuning flow. We sweep over
the tiling and scheduling schemes without co-iteration. We
determine the co-iteration factor ω and then tune the internal
state representation of the accumulators.

we report execution time in milliseconds for both types of
accumulators. We fix the number of tiles, the tiling strategy
and the scheduling strategy. Based on the previous results
we choose the configuration that provides the best execution
time. We vary the co-iteration factor defined in Section III.
We sweep across a range of co-iteration factors for both
accumulators.

The results are shown in Figure 14. In this figure,
we pick four representative matrices. For example, we
choose GAP-road from the road network group of matrices.
europe-osm exhibits the same behaviour. Note that in this set
of experiments, we report execution time for the circuit5M.
Recall that simply tiling the computation and using either
of the accumulators, the algorithm in Figure 5 timed out.
However, using the hybrid algorithm the execution time is
reduced to 0.5 seconds using 64 threads and the co-iteration
factor equal to 0.1. In the following section, we will provide
more details about the results.

E. Accumulator State Tuning

For this experiment, we fix co-iteration factor ω = 1, and
then we sweep over the marker size from 8 to 64 bits. The
goal of this experiment is to try to reduce the size of the
spare accumulators. The results are summarized as a relative
performance plot in Figure 13.

V. DISCUSSION

In this section, we discuss the key takeaways from the
experimental results. Our experimental process follows the
flow shown in Figure 12. We first sweep over the tiling and
scheduling scheme without co-iteration to establish a safe
choice for the remaining parameters. Then, we determine the
ideal co-iteration factor ω. Finally, we tune the internal state
representation for the accumulators, and discuss trade-offs
between hash and dense.

A. Tiling the Computation

Based on Figure 11, we make the following observations:
1) Balanced tiling performs no worse than uniform tiling.

Fig. 13: Relative performance of different accumulator state
bit-widths. The same methodology is used as in Figure 10.

2) Uniform tiling performs poorly with lower tile counts,
and can only match balanced tiling at higher tile counts.

3) Both tiling approaches can suffer at high tile counts.
4) Balanced tiling with an intermediate tile count and

dynamic scheduling works generally well.
This suggests that the work calculation from Equation 2 is in-
deed a good estimate of load. However, there are occasionally
imbalances that necessitate finer tiling, which is then exploited
by dynamic scheduling. Figure 10 summarizes this nicely:
depending on the accumulator, between 80-90% of matrices
run with 2048 tiles, balanced tiling, and dynamic scheduling
are within 10% of the best configuration.

For these experiments, we only focused on tiling the
computation in the row dimension. The matrices are stored
as CSR, therefore no pre-processing steps are needed to
perform expensive tiling operations. In addition, we did not
perform any pre-processing of the data like partitioning the
graphs, or reorganizing the data. For future work, we will
investigate other data formats than CSR and possibly extend
the experimentation to two dimensional tiling.

B. Iterating through the Data
Having fixed the tile count, tiling, and scheduling, we now

turn to tuning the co-iteration factor ω. As seen in Figure 14,
co-iteration has a minimal effect on the GAP-road network,
while both positive and negative effects are present away from
ω ↗ 1 in the other networks. The circuit5M matrix is of
particular interest, as the baseline without co-iteration did not
complete within a reasonable time. The com-Orkut matrix
exhibits a nearly 2↑ reduction in runtime with the dense
accumulator, matching the hash accumulator. This is likely
due to less cache evictions caused by reading large chunks
of the dense accumulator and B rows. Generally, the results
indicate that the estimate from Equation 3 is accurate relative
to the linear estimate from Equation 2, and that no significant
scaling factor is needed.

C. Accumulator
Finally, we tune the marker bit-width. As Figure 13 shows,

the hash accumulator is somewhat robust to the bit-width,
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(a) GAP-road (b) hollywood-2009

(c) com-Orkut (d) circuit5M

Fig. 14: Results outlining the execution time in milliseconds for the masked-SpGEMM computation with varying the co-
iteration factor. We fix the number of tiles to 2048 tiles, we fix the OpenMP scheduling policy to DYNAMIC, and we use
the FLOP-balanced tiling scheme. We show results for four representative matrices. The thick lines represent the algorithm
that utilized the co-iteration, while the dotted lines represents the execution of the non co-iterate algorithm. For this set of
experiments we report the execution time for circuit5M which timed out for the non co-iteration algorithm.

maintaining similar performance until 8 bits where it degrades.
On the other hand, the dense accumulator suffers at both 8
and 64 bits, with a sweet spot at 32 bits. This reaffirms the
importance of tuning for memory efficiency.

VI. RELATED WORK

A. GraphBLAS API and Implementations

The GraphBLAS project [7] aims to provide a set of
linear-algebraic (i.e. matrix, vector, and scalar) primitives for
expressing graph analytics workloads, in the spirit of the
dense BLAS specification. SuiteSparse:GraphBLAS provides
the canonical implementation of the GraphBLAS API [8],
[18]. GraphBLAST provides a performant implementation of
GraphBLAS on GPUs [19].

B. Masked-SpGEMM

Azad et al. [20] was the first to define the masked-SpGEMM
primitive operation in the context of linear algebraic graph
analytics. As with our analysis, they focused on triangle
counting as the workload. Milaković et al. [17] explore a
large space of sparse accumulators and higher-level algorithms
beyond row-wise saxpy. We use their codebase as our starting

point for exploring additional tiling strategies and the effect
of co-iteration.

C. Database Query Planning and Execution
The masked-SpGEMM kernel can be viewed as a specific

variant of the well-known triangle query in the databases
community. More precisely, if matrices are viewed as binary
relations, then the masked-SpGEMM kernel is equivalent to

C(i, j) =
∏

i,j

M(i, j) εϑ A(i, k) εϑ B(k, j),

where joins and projections are interpreted in the framework
of K-relations over semirings [21].

The triangle query is notorious for being inefficient to
compute using binary joins, taking O(m2) time when the
result is of size O(m3/2) where m = nnz(A). Analogously,
post hoc masking an unmasked-SpGEMM (which is really
a binary join) suffers from the same issue. Under this lens,
efficient implementations of masked-SpGEMM are actually
instances of worst-case optimal join [22]. In fact, the dynamic
co-iteration strategy described here is exactly the mechanism
Generic Join [23] uses to achieve worst-case optimality: it-
erate over the smaller of two relations for every intersection
computed (ignoring logarithmic access costs).
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VII. CONCLUSION

In this work, we focused on providing insights into how to
obtain performance for the masked-SpGEMM, a widely used
sparse linear algebra kernel. We started with three dimensions,
namely 1) tiling the computation and distributing the tiles
across threads, 2) deciding on how to iterate through the
data to reduce the amount of data moved from memory and
3) choosing the right accumulator to store the intermediate
results. Based on the experimental results, we can state that for
the saxpy-based implementation tiling the computation using
a good load balancing estimator and using the DYNAMIC
policy for the OpenMP scheduling are important. In addition,
co-iterating across the mask may provide significant improve-
ments for certain input graphs. Finally, designing and tuning
the accumulator can reduce the temporary buffers and improve
execution time.

Stepping back, we have taken a staged approach to ana-
lyzing and tuning the three performance dimensions. These
dimensions are inevitably correlated, and likely in complex
ways. With the data we have gathered, we intend to perform
a more precise analysis of the effects matrix structure and
features have on the different parameters. Ideally, this data
will enable us to build models which can intelligently tune
the parameters at execution time, rather than offline for the
average case.
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