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Abstract

AI-Assisted Dataset Discovery with DataScout

by

Rachel Lin

Master of Science, Plan II in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Aditya G. Parameswaran, Chair

Dataset Search—the process of finding appropriate datasets for a given task—remains a criti-
cal yet under-explored challenge in data science workflows. Assessing dataset suitability for a
task (e.g., training a classification model) is a multi-pronged affair that involves understand-
ing: data characteristics (e.g., granularity, attributes, size), semantics (e.g., dataset topic and
creation goals), and relevance to the task at hand. Present-day dataset search interfaces are
restrictive—users struggle to convey implicit preferences and lack visibility into the search
space and result inclusion criteria—making query iteration and reformulation challenging.
To bridge these gaps, we introduce DataScout, a tool that proactively steers users through
the process of dataset discovery via—(i) AI-assisted query reformulations informed by the
underlying search space, (ii) semantic search and filtering based on dataset content, includ-
ing attributes (columns) and granularity (rows), and (iii) dataset relevance indicators that
are dynamically generated based on the user-specified task. A within-subjects study with 12
participants comparing DataScout to keyword and semantic dataset search tools reveals
that users uniquely employ DataScout’s features not only for structured dataset explo-
rations, but also as a means to glean feedback on their search queries and build conceptual
models of the dataset search space.
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Chapter 1

Introduction

1.1 Dataset Discovery: Background and Motivation

Finding the right dataset, given a data analysis or machine learning task, is one of the most
challenging problems for data scientists and analysts today [7]. This problem of dataset
search is only growing more urgent: estimates suggest the amount of data on the internet
will reach 180 zettabytes by the end of 2025 [49]—with organizations often accumulating
tens of thousands of tables in their data lakes [20]. Dataset search is difficult for a couple
of reasons. First, real-world data is inherently messy: tables vary widely in quality and
metadata completeness, with many lacking proper descriptions, having ambiguous column
names, or containing outdated information [48]. Second, users rarely know exactly what they
are looking for [18]. They might have a general task in mind, like training a machine learning
model to predict some phenomenon, but do not know which datasets would be compatible
with their task.

Recent advances in Large Language Models (LLMs) have demonstrated the potential to
address some of the aforementioned challenges. Embedding models enable us to transform
unstructured text into numerical representations (i.e., embeddings) that capture semantics,
allowing systems to perform a semantic search to find relevant datasets, even when the exact
terminology differs [57]. For example, the Olio system [44] can interpret a natural language
(NL) question like “how has unemployment changed since 2020” and find relevant datasets—
even if the metadata does not have a perfect keyword match with the question. However,
semantic search of this form is often opaque to users, making it difficult to understand
why a particular dataset appears in the search results, or how it relates to their query.
Additionally, users are unable to adaptively explore the content within datasets, including
the columns/attributes, and temporal/spatial granularity. Overall, despite these advances in
interpreting NL queries, present-day dataset search interfaces—be it semantic or keyword-
based—provide limited support for search expressiveness, illustrating a wide gap between
what technology can enable, and what interfaces currently facilitate.
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Moreover, users typically lack awareness of available datasets, and must learn about
the dataset landscape through the search results themselves, which subsequently inform re-
finements of their queries. This makes dataset search an inherently exploratory, iterative,
and often tedious process requiring multiple query reformulations and result assessments [18].
Users have to rely on the assistance of colleagues for starting points, or even direct identifica-
tion of the relevant datasets—indicating just how poor present-day dataset search interfaces
are in supporting iterative exploration.

In this thesis, we explore the design of dataset search systems that can proactively
support users’ iterative discovery process. In a recent research survey of data profes-
sionals (n=89), Hulsebos et al. [18] revealed that characteristics such as data granularity
and freshness significantly impact search relevance judgments. While their study identifies
key requirements for future dataset search systems—such as progressive refinement, hybrid
querying that combines keyword and semantic approaches, task-driven search, and result
diversity—several questions remain about the strategies and workarounds users employ to
overcome barriers in dataset search workflows. Building on related work and the findings
of Hulsebos et al. [18], we further investigate these underexplored areas in Chapter 2.

To do so, we conducted a formative study (n=8) to identify aspects of users’ dataset
search workflows that could be amenable to automated assistance (Section 2.2). Based on
our findings, we derived the following design considerations (DCs) to guide the development
of our dataset search system (Section 2.3); these are described in detail in Chapter 2.

1. (DC1) Expression of Free-Form Intent Enable users to express varied facets of
their analytical and dataset search intents in as much detail as desired, without signif-
icantly constraining the volume of dataset search results.

2. (DC2) Semantic Dataset Content-based Filtering Provide users the agency to
identify and place fine-grained attribute (column) and granularity (row) semantic filters
at the dataset content level, rather than just the dataset description.

3. (DC3) Dataset Suitability Assessment Facilitate sensemaking of dataset relevance
and result inclusion criteria in context of the user-specified search query and filters.

4. (DC4) Guide Query Reformulation Bridge the gap between user’s search queries
and underlying dataset landscape to overcome overly selective or irrelevant results.

1.2 Research Goals and Contributions

We aim to address users’ need for dataset search interfaces that proactively provide feedback
and assistance to support iterative query reformulation, result interpretation, and navigation
of the dataset search space. To this end, we introduce DataScout, a dataset search system
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that leverages LLMs to actively support users throughout the dataset discovery process. By
accounting for both the user’s task and the dataset search space, DataScout helps surface
relevant datasets and facilitates more effective exploration. An overview of the interface and
an illustrative walkthrough are provided in Chapter 3.

To enable these interactions, we split DataScout’s workflow across offline and online
components—balancing a trade-off between semantic expressiveness and latency. We pre-
computed embeddings, indexes, and inferred metadata where possible (e.g., for semantic
dataset and attribute searches), while relying on LLM-in-the-loop workflows for dynamic
features requiring search context (i.e., generating query reformulations, semantic filtering
suggestions, and task-specific relevance indicators). A more detailed outline of DataS-
cout’s architecture is provided in Chapter 4. This hybrid architecture allows DataScout
to deliver rich, personalized assistance without incurring prohibitive latency, and reflects a
broader systems-level challenge of designing intelligent interfaces that combine responsive-
ness with semantic assistance.

Finally, to evaluate DataScout, we conducted a within-subjects study with 12 par-
ticipants; comparing DataScout’s novel features with traditional keyword search as well
as semantic search interfaces, described in Chapter 5. Our findings show that users lever-
aged DataScout’s features not only for more structured and intentional navigation of the
dataset search space, but also as implicit feedback mechanisms—helping them reflect on
their queries, make sense of individual datasets, and better understand the overall search
landscape. We additioinally evaluate the latency of various components of DataScout in
Chapter 6. In summary, we make the following contributions:

1. Design considerations for semantic dataset discovery interfaces, derived from prior work
and a formative study we conduct with 8 participants;

2. The design and implementation of DataScout, a dataset discovery interface to proac-
tively steer users towards desirable dataset search results; and

3. Empirical findings from a within-subjects user study (n = 12) demonstrating how users
uniquely leverage DataScout’s suggestions and assistance for sensemaking.

This work was led by Rachel Lin and Bhavya Chopra. Other authors include Wenjing
Lin, Shreya Shankar, Madelon Hulsebos, and Aditya G. Parameswaran.
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Chapter 2

Related Work and Formative Study

In this chapter, we present an overview of related work. We begin by discussing models of
information seeking and search interfaces, including those in the context of web search and
information retrieval. Next, we summarize key challenges and recommendations from prior
work on dataset search. We then review existing dataset search mechanisms and objectives,
highlighting their strengths and limitations and the ways in which they informed our design.
Finally, we present our formative user study—motivated by gaps in the literature—which
led to four design considerations that guided the development of DataScout.

2.1 Related Work

2.1.1 Information Seeking Models and Interfaces

Information seeking has a long history of theories and successful interfaces [15]. Traditional
information seeking theories can be broken down into the steps of query specification, ex-
amination of the results, and then reformulation, with the cycle repeating until the need is
satisfied [32, 45]. Other classical models, such as that by Pirolli and Card [39], frame infor-
mation seeking as a process of foraging, where information seekers move from one promising
“patch” of information to another, based on “information scents.” This framework has also
been extended to encompass a subsequent stage of sensemaking where the information col-
lected is synthesized and extended [40]—sensemaking helps users understand what they are
finding along the way and contextualize it with their own objectives [43]. Other models, such
as the berry-picking model [1], explicitly capture the benefits of information seeking as a se-
ries of learnings along the way, as opposed to just eventually meeting a desired information
seeking target. In our context of dataset discovery, the notions of information foraging and
sensemaking as intertwined processes, with progressive discovery of dataset characteristics
and goals “along the way,” play a key role. Ideal dataset discovery systems need to guide
users to: (i) formulate their query to narrow down to the correct subset of the search space,
and (ii) contextualize the surfaced search results with their analytical intents and assess
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their relevance.

These information seeking models have been applied in various search contexts, most
notably in web search. Modern web search interfaces routinely support keyword search.
They also provide users feedback via query auto-suggestions and related queries—to aid
rapid query reformulation—and empower users to filter results based on attributes such
as time and file type, among others. Web search in other contexts, such as e-commerce
or travel search, additionally support filtering based on faceted metadata [52], which are
multiple orthogonal categories (or facets) predefined by the search interface designer. For
example, a flight search interface might include facets such as airline, travel start time, and
number of stops. Faceting has been studied in various search contexts [27, 47, 52, 28].
For dataset search, Koesten et al. [23] uncover characteristics that users commonly look
for when assessing dataset suitability. These include assumptions about data distributions,
granularity, quality, possible questions the data can answer, and creation details. We leverage
these insights to surface LLM-generated semantic relevance indicators for each dataset, with
added focus on these dimensions of dataset sensemaking.

Recent work on web search and information retrieval continues to build on the aforemen-
tioned theories. For example, Palani et al. [38] posit how users’ objectives can be influenced
by the search results, and their search directions evolve as they gather more information
about a problem area, especially when they are exploring a new space with ill-defined infor-
mation seeking goals. This finding is relevant in dataset search, since in the early stages users
may still be learning domain-specific vocabulary and assessing possibilities—as opposed to
knowing the precise dataset of interest upfront. Query reformulation and semantic sugges-
tions grounded in space of surfaced search results are especially important, enabling us to
bridge the gap between the user’s query and available datasets. Tools like Sensecape and
CoNotate also provide suggestions for web search queries grounded in the user’s context to
close information gaps [50, 37], while other recent work explores how to best support the
sensemaking process in a lightweight in-context manner [26, 25, 34]. Additionally, Liu et al.
[30] show how users of online search interfaces benefit from LLM-generated relevance indica-
tors based on criteria they previously found helpful and referred to for decision-making. We
leverage this insight to surface dynamic dataset relevance indicators adaptive to the user’s
query.

In recent years, conversational search has emerged as a new search paradigm, leveraging
clarifying questions as promising approaches to help users refine their search intents through
mixed-initiative interactions, potentially addressing the iterative nature of search tasks [54,
41, 56, 42, 33]. This approach has also been adopted by some dataset search tools like
Olio [44] and MetaM [13]. However, these methods still rely on users to identify and formulate
their dataset requirements as queries or questions, providing limited proactive guidance to
them.
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2.1.2 Dataset Search Challenges and Recommendations

Dataset search presents a number of unique challenges relative to traditional web search.
Users span a range of expertise and goals, where in many cases the goals (e.g., training a
machine learning model) are far removed from the datasets. The datasets themselves are of-
ten hard to peruse manually. Despite rapid advancements in understanding natural language
intents, challenges persist in dataset search workflows. Various user-centered studies show
how users continue to struggle with: incomplete and inconsistent metadata [11, 48], express-
ing information seeking needs as structured search constraints [24], and assessing dataset
relevance to their task [22, 48]. When engaging in dataset search workflows, users are faced
with the gulfs of execution (difficulty in translating their intentions to the dataset search
interface) and evaluation (difficulty in interpreting if the system perceived their search task
correctly, and if their intent is reflected by the surfaced dataset search results) [35].

More recently, Hulsebos et al. [18] conducted a survey with data practitioners and posit
that in addition to the above-mentioned challenges, users employ trial-and-error search re-
finements to overcome barriers in search workflows. They suggest that future dataset search
interfaces must more explicitly support iterative refinement, as well as focus on helping users
meet analytical goals. Recent work also emphasizes the need for better query assistance, dy-
namic metadata filtering, and clearer descriptions to aid sensemaking [57]. We extend the
research in this area by conducting a formative study (Section 2.2) by actually observing
users’ search workflows using modern dataset search interfaces to identify points of friction
and guide the implementation of DataScout.

2.1.3 Dataset Search Mechanisms and Objectives

Popular dataset search and discovery tools employ various approaches for finding the most
relevant datasets, in terms of the space of input datasets, as well as the underlying search
mechanisms. Dataset repositories such as Kaggle and HuggingFace support dataset search
based on matching keywords to dataset descriptions. Other tools opt for semantic ap-
proaches. For example, Google Dataset Search, which indexes datasets from repositories
and individual dataset pages [5, 48] employs a semantic search approach based on dataset
descriptions. Tools like Databricks Search and Snowflake Universal Search incorporate se-
mantic search abilities in addition to supporting keyword search [51, 55]. None of these
approaches go beyond a few fixed metadata filters (e.g., based on date), support iterative
exploration by helping users reformulate questions, or provide hints for why a particular
dataset was relevant to a query.

From the standpoint of objectives, recent work [7] argues that dataset search needs to
cover two separate steps: task-based dataset search—identifying an initial dataset for a given
task; and join and union dataset search—enriching an already-identified dataset via dataset
joins or unions. For the former, the input query is a keyword search expression, while for
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the latter, the input query is a table targeted for enrichment.

Recent papers have focused on various aspects of task-based dataset search [16, 2, 6,
12], such as efficiency, privacy, and scalability. Similarly, on the problem of join and union
dataset search, various approaches have been proposed that identify semantically equivalent
attributes for “join” operations, or aligned schemas for “union” operations to enrich the
previously identified dataset [21, 9, 10, 29, 2, 17]. As a concrete example, Metam [13]
employs heuristics to identify join and union datasets that maximize utility for user-specified
analytical goals (such as improving prediction accuracy) to reduce manual effort needed to
shortlist relevant datasets. However, they do not focus on interface elements. Overall,
qualitative findings from multiple studies suggest that needs for the former step of task-
based dataset search are still largely unsupported [18, 24]. With DataScout, we aim to
explore the role of proactive dataset search interfaces for task-based search.

Perhaps most closely related to our work is the semantic question-answering interface,
Olio [44]. Olio combines dynamically generated visualizations with a library of pre-authored
data visualizations to support question-answering over dataset collections—enhancing ex-
ploratory search and enabling users to glance over visualizations to assess dataset relevance.
While Olio interprets users’ natural language queries to surface datasets, we aim to build on
the semantic dataset search approach adopted by Olio and redirect our focus on iterative—
and proactive—query refinement: guiding users to progressively explore the search space
as they learn about the underlying data. Olio assumes a predefined question for which a
visualization answer exists in the data, while we support the iterative process of discovery of
task requirements and the search space. Olio, for example, does not consider filtering based
on dataset content, such as the space of columns in a dataset.

2.2 Formative User Study

To identify users’ dataset discovery workflows amenable to automated assistance in the
context of challenges discussed by prior work (Section 2.1), we conducted a formative study
with 8 participants (F1–F8), and identified four design considerations (DC1–DC4) to inform
the design of DataScout.

Participants were recruited via: (i) contacting a mailing list of data science professionals
maintained by our research group, (ii) messaging on Slack and Discord channels with data
science, ML, and AI graduate students, and (iii) posting to X (formerly Twitter), inviting
participants who have searched for a dataset or a benchmark in recent past. All participants
voluntarily consented to participate in the study and agreed to have their screen-sharing
sessions recorded for transcription and analysis. Table 2.1 reports participant background
and formative study tasks.

Each participant took part in a 40-minute contextual inquiry session via video-conferencing.
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Table 2.1: Formative study of participants’ backgrounds, tasks, and choice of platforms.

ID Background Task Platform(s)

F1 HCI, AI Research Collections of web-service URLs Perplexity, Google Dataset Search
F2 ML Engineer Game actions data for emulations HuggingFace
F3 Data Analyst Pharmaceutical drug marketing Kaggle, Google Dataset Search
F4 Art & technology Art History and Provenance data Kaggle, Artsy Genome
F5 ML Engineering Populating a data lake Kaggle
F6 Bioinformatics RNA Sequences for Epilepsy GEO, Google Dataset Search
F7 AI Code-Gen Code performance benchmarks Papers with Code
F8 Marine Science Land use for Clean Energy Census Data

1Platforms spanned semantic-based (Perplexity, Google Dataset Search), keyword-based (Kaggle,
GEO, Census Data, HuggingFace, Artsy Genome), and hybrid (Papers with Code) dataset search
mechanisms.

We began with a round of introductions, and observed participants perform a dataset search
task of their own choice with any preferred tool(s) (Table 2.1), as they thought-out-loud
about their actions for the remainder of the session. We concluded by asking clarifying ques-
tions and gathering open-ended feedback on their dataset search experiences. This study
received approval from our Institutional Review Board (IRB).

We analyzed transcripts supplemented with detailed notes documenting participant ac-
tions. Two authors performed reflexive thematic analysis through open coding of the tran-
scripts, notes, and screen recordings, followed by identifying broader themes through axial
coding [4, 3]. The authors subsequently performed a second iteration of axial coding to
further refine the themes and motivate design considerations for DataScout.

2.3 Design Considerations for DataScout

Here, we present our findings, identifying challenges in how users express and reformulate
their dataset search intents, while attempting to assess dataset suitability and the underlying
dataset landscape. We further highlight design considerations (DCs) stemming from these
insights in-situ.

2.3.1 Users do not express search criteria due to the fear of
missing out on potentially-relevant datasets

Participants had several implicit relevance criteria which were not explicitly specified to
dataset search platforms. For instance, when looking for datasets to train a classifier on
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misinformation, F4 wanted their dataset to have as many features (columns) as possible,
and while looking for a collection of URLs of web-services belonging to varied economic
sectors, F1 wanted the dataset to have at-least 1000 rows. On the other hand, when F1
switched from using Google Dataset Search to Perplexity, they explicitly mentioned their
preference for “1000+ rows” in their prompt. While these implicit criteria could have been
specified as metadata filters, participants preferred to keep their search results open-ended
to avoid filtering out potentially useful datasets.

(DC1) Expression of Free-Form Intent

Enable users to express varied facets of their analytical and dataset search intents in as
much detail as desired, without significantly constraining the volume of dataset search
results.

2.3.2 Users desire dataset content-based filtering after initial
rounds of sensemaking

Several participants wanted to filter datasets based on their content (F1, F4–F6, F8), that
“simply cannot be specified to the interface” (F2). Filtering based on content such as at-
tributes (columns) and data granularity (rows) is not supported by present-day dataset
search interfaces, as also identified by Hulsebos et al. [18]. F5 mentioned that even if the
system did support searching or filtering by column names, they would run into a “schema
misalignment” problem, defining it as “datasets using different vocabulary to refer to the
same concepts,” and elaborated using an example from movie datasets—“ datasets can have
different column names for the movie title, such as ‘title’, ‘movie name’, or ‘movie title,’
making it impossible to apply filters.” F3 and F8 wanted to filter datasets based on data
granularity, e.g., drug-specific sales records, as opposed to pharmaceutical brand-level sales
for F3; and latitude/longitude-level spatial resolution, as opposed to region names for F8.

Further, participants incrementally developed an understanding for desirable attributes
they wanted to be present in their data as they inspected dataset search results, echoing
the findings of Palani et al. [38]. For instance, after looking through top search results for
LLM-code generation benchmark datasets, F7 realized that most datasets do not contain the
prompt provided to the LLM to generate code, and expressed the need have the “prompt”
column in all dataset results. F4 articulated this as an instance of “recognition over recall,”
i.e., having to recognize the need for specific attributes or data granularity after initial
sensemaking of search results—as opposed to consciously acknowledging them from the get-
go.
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(DC2) Semantic Dataset Content-based Filtering

Provide users the agency to identify and place fine-grained attribute (column) and gran-
ularity (row) semantic filters at the dataset content level, rather than just the dataset
description.

2.3.3 Lack of query-specific dataset relevance indicators
slows-down dataset discovery

Traditional dataset search tools failed to offer indications of relevance to the query beyond
the dataset title and preview, number of downloads, and column distribution histograms to
users. Some participants vocalized challenges with having to read long data descriptions
to identify any caveats, and oftentimes realized critical limitations of the data after having
downloaded it and spent significant amounts of time to perform exploratory data analysis
(EDA) (F1, F2, F5–F8). In contrast, we observed F1 using Perplexity,1 an AI-powered
search engine and chatbot, to enlist dataset sources along with contextualized explanations
for how a given dataset might fit their needs—helping them assess dataset suitability.

Additionally, multiple participants frequently questioned why the surfaced datasets in
the search results were relevant to their search query, especially for semantic search engines
like Google Dataset Search (F1, F3, F4, F6, F8). F8 brought up feedback mechanisms
provided by Google’s traditional web search, such as the bold-font highlighting of matched
terms—helping them infer how the search result is relevant to their query—and pointed out
their absence in dataset search tools.

(DC3) Dataset Suitability Assessment

Facilitate sensemaking of dataset relevance and result inclusion criteria in context of the
user-specified search query and filters.

2.3.4 Irrelevant or overly selective dataset search results halt
query iteration

As users of semantic dataset search systems lacked transparency on dataset inclusion criteria,
they were frequently confused by irrelevant search results, blocking them from iterating over
or reformulating their query (F1, F3, F6, F7). On the other hand, users of keyword-search
platforms expressed frustration with overly selective search results (F2, F3, F4, F8). For
instance, F4’s search query to look for “historical artworks with images” yielded only 4 search
results, none of which were related to art history. In such cases, participants engaged in the
well documented trial-and-error query reformulation workflows to widen their scope [32]—

1https://www.perplexity.ai/

https://www.perplexity.ai/
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while still failing to identify relevant datasets. Prior work has also identified how gauging
the dataset search space is overwhelming for users [18].

(DC4) Guide Query Reformulation

Bridge the gap between user’s search queries and underlying dataset landscape to overcome
overly selective or irrelevant results.
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Chapter 3

DataScout Interface and Walkthrough

A

B

D

F

C

E

G

H

I

Figure 3.1: DataScout—a proactive dataset discovery interface. (A) Users begin by specifying
their dataset discovery query as keywords, phrases, or complete sentences. (B) DataScout pro-
vides proactive query reformulation suggestions to bridge the gap between the user’s query and
datasets available in the search space. (C) Users may add exact matching-based or semantic filters,
(D) search by attribute, apply (E) suggested attribute filters, or (F) suggested temporal and spa-
tial granularity filters. (G) Users can explore ranked dataset search results in a consolidated view.
(H) Selecting a dataset reveals its metadata, tags, description, preview, collection details, and (I)
task-specific relevance indicators generated on-the-fly, highlighting the benefits and limitations of
the dataset.



CHAPTER 3. DATASCOUT INTERFACE AND WALKTHROUGH 13

3.1 Interface

We present DataScout, a dataset search tool that proactively steers users through the pro-
cess of dataset discovery (Figure 3.1). DataScout assists users in finding target datasets
by being cognizant of both the user-specified task as well as the underlying space of dataset
search results. DataScout offers three key semantic assistance features that all lever-
age LLMs: (i) proactive query reformulation (Figure 3.1B) to bridge the gap between
users’ search queries and the underlying search space, (ii) semantic search (Figure 3.1D)
and filtering based on dataset content, including attributes (Figure 3.1E) and granu-
larity (Figure 3.1F) to help users appropriately narrow down the search space, and (iii)
semantic relevance indicators (Figure 3.1I) that are generated on-the-fly based on the
user-specified task to help them assess dataset relevance rapidly.

3.2 Walkthrough of DataScout

Here, we provide a walkthrough of DataScout with Dana, a journalist, who has been
inspecting the world happiness reports spanning 2015–2025.1 She wishes to observe the
impact of fine-grained lifestyle changes on the reported aggregate happiness scores. To do
so, Dana decides to focus on datasets overlapping with the COVID-19 pandemic—in an
attempt to observe the impact of stark differences in lifestyles (e.g., confinement, reduced
physical activity, and remote work and education) on happiness scores.

Dana now turns to DataScout to search for datasets. Since this is a new area of
exploration for her, she begins by using the Getting Started card (Figure 3.2A), where
she specifies her intent as a regression analysis task, while expressing her query in natural
language as “datasets indicating quality of life before, during, and after the COVID-19 pan-
demic” (supporting DC1). In response, DataScout surfaces search results and proactively
inspects them to identify pertinent themes. For Dana’s query, DataScout learns that
the search results spanned shifts in inflation, social media trends, and employment patterns.
DataScout then uses these insights to propose three query reformulation suggestions
(Figure 3.2B) centered around Dana’s task, in an attempt to bridge the gap between her
query and the underlying dataset search space (supporting DC4). The suggestions help
Dana by providing her inspiration for analytical directions she can pick. She hovers over
each suggestion to inspect explanations for the suggested queries, and the number of datasets
matching the theme. She selects the suggestion: “analyze the impact of the pandemic on
remote work and work-life balance,” since it is an evident indicator of happiness owing to
sudden transformations in work patterns during the pandemic. DataScout refreshes the
search results.

1The World Happiness Report is an annual publication that ranks countries based on how happy their
citizens perceive themselves to be. URL: https://worldhappiness.report/

https://worldhappiness.report/
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Figure 3.2: Walkthrough of DataScout. Dana expresses her dataset search intent using the (A)
getting started card. DataScout retrieves results. Dana reviews (B) query reformulation sugges-
tions and hovers over them to view explanations. She clicks on the third suggestion—refreshing
the search results. Dana uses the semantic (C) attribute and (D) granularity filter suggestions to
narrow down her search to datasets that contain logged employee hours and country-level data
resolution. She inspects dataset relevance using the (E) dynamic task-specific relevance indicators,
and (F) dataset description summaries.
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As Dana inspects the datasets, she realizes the need for three additional requirements.
First, since Dana mentioned the pandemic in her query, DataScout’s task-specific rel-
evance indicators (Figure 3.2E) surface the data collection time-period for each dataset
she explores. This reminds her to look for datasets where the time-range of data collection
overlaps with the 2015–2025 year bracket. DataScout’s semantic relevance indicators allow
her to quickly glean this information, helping her efficiently identify data sources that align
with her intent (supporting DC3).

Second, DataScout inspects all search results and identifies attributes most relevant
to Dana’s query—surfacing them as semantic column concept filters (Figure 3.2C).
Observing suggestions for ‘hours,’ ‘vacations,’ and ‘stress’ help Dana realize that she wants
to have these attributes in her target dataset. To only focus on datasets with quantitative
measures like logged work hours, Dana applies the semantic column concept filter to narrow
down the results (supporting DC2). Third, as she continues to inspect datasets, she real-
izes that to make meaningful comparisons with the world happiness reports, she needs the
geographical granularity of her data to be country-level. To do so, she uses DataScout’s
semantic geo-granularity filter (Figure 3.2D), setting “country” as the data granular-
ity level (supporting DC2). Dana applies these filters and continues to iteratively evaluate
dataset suitability.

Having walked through how Dana interacts with DataScout to iteratively refine her
dataset search, we describe the implementation of DataScout in the next chapter.
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Chapter 4

DataScout System Implementation

DataScout is implemented as a web-based application using React and TypeScript for the
frontend, with a backend powered by Python, Flask, and a PostgreSQL database of datasets
fetched from Kaggle, detailed in the next section. In addition to DataScout’s features
that proactively support and aid semantic dataset search, it also includes a few standard
features found in Kaggle and Google Dataset Search, including: ranking of datasets based on
semantic relevance; dataset pages with metadata, description, and a preview; and metadata
filters over dataset size, shape, title, description, and tags/keywords.

DataScout is designed and implemented such that it distributes the workload across
offline and online stages of interaction. Offline, we precompute embedding collections (i.e.,
compressed semantic representations) and build indexes for dataset and attribute (or col-
umn) search (Figure 4.1). Then, online, to enable contextualized assistance grounded in the
user’s search query and surfaced dataset search results, DataScout relies on LLM-in-the-
loop workflows (Figure 4.2)—generating: (i) query reformulation suggestions; (ii) semantic
data content-based attribute and granularity filter suggestions; and (iii) dataset relevance
indicators on-the-fly. This hybrid architecture enables DataScout to overcome prohibitive
latencies and still provide in-situ and personalized assistance. In the following subsections,

Enrich Metadata

using an LLM (GPT-4o) 

Data Collection and Metadata Augmentation

Generate Embeddings 

using an embedding model  

(text-embedding-3 small)
(description summary, 

dataset purposes)

Attribute Embeddings
(column name and values) 

Extract Kaggle Datasets

with metadata (n=6500)

Dataset Purpose 
Embeddings

Dataset Embeddings
(title, schema, 3 rows)

Generating  Embedding Collections  and Indexing

Dataset Index

DATASCOUT 
Search Index

Attribute Index

Figure 4.1: Offline dataset collection, augmentation, embedding generation and indexing for
DataScout.
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Table 4.1: Collected and precomputed metadata and embeddings, along with their downstream
uses.

Collected Metadata Used For

• Title + filename + tags Dataset Cards (Fig. 3.1H)
• Dataset Size Dataset Cards (Fig. 3.1H)
• Number of downloads Dataset Cards (Fig. 3.1H)

• Dataset Description Dataset Embeddings , Dataset Cards (Fig. 3.1H)

• Dataset Sample (10 rows) Dataset Embeddings , Attribute Embeddings , Dataset Cards
(Fig. 3.1H)

Generated Metadata Used For

• Description summaries Purpose Embeddings , Dataset Cards (Fig. 3.1H)

• Attribute descriptions Attribute Embeddings , Dataset Cards (Fig. 3.1H)

• Data source/collection Dataset Cards (Fig. 3.1H)
• Granularity tags Granularity Filters (Fig. 3.1F), Dataset Cards (Fig. 3.1H)

• Dataset purposes Purpose Embeddings

Precomputed Values Used For

• Dataset Embeddings Dataset Index for semantic dataset search (Fig. 3.1A)

• Attribute Embeddings Attribute Index for search & filtering (Fig. 3.1D, E)

• Purpose Embeddings Query reformulation suggestions (Fig. 3.1B)

we detail our offline data collection and indexing stages, and online feature-specific imple-
mentation details.

4.1 Offline Data Collection and Indexing

Figure 4.1 and Table 4.1 provide an overview of our data collection, preprocessing and in-
dexing pipeline. We collected datasets from Kaggle using the Kaggle API, obtaining over
6,500 unique tables (belonging to over 3150 Kaggle datasets—where each dataset contained
one or more tables within). For each table, we extracted metadata, including: title, file-
name, description, tags, dataset size, number of rows and columns, usability score, number
of downloads, and a sample of 10 rows with headers, formatted as a markdown table. To
standardize and enrich the available metadata, we used OpenAI’s gpt-4o-mini model to
generate: (i) concise one-line dataset summaries using descriptions extracted from Kaggle
(DC3), (ii) column descriptions and inferred data types (DC3), (iii) data source and col-
lection methods (DC3), (iv) temporal and spatial granularity by looking at example rows
(DC2), and (v) the set of purposes or use-cases the dataset might support (e.g., regression,
classification, visualization, temporal analysis, etc.) (DC3, DC4). The prompts used to
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generate these additional dataset metadata are detailed below.

Dataset Metadata Augmentation Prompt

Given following dataset details, you must extract information about this dataset.
Dataset Details:

• Title: {title}

• Description: {description}

• Dataset Preview: {example rows}

Directly answer each question, be brief and to the point:
1. Description Summary: In 1–3 sentences, provide a brief and summarized descrip-
tion of the dataset.
2. Purposes: Provide a list of analytical, data science, visualization, or machine
learning tasks that can be performed with this dataset. e.g., [‘‘training a regression

model’’, ‘‘temporal analysis’’]

3. Dataset Source and Collection Methods: Gather the source(s) of this dataset,
which could include names and/or affiliations of persons, website URLs, web-APIs,
synthetic sources, human annotations, and so on. If no information is available about the
source of the data, output ‘N/A’.
4. Column Descriptions: For each column in the dataset, provide a brief description
for the column with its data type.
Output Schema:
{‘‘description summary’’: string,

‘‘dataset purposes’’: list[string],

‘‘dataset sources’’: string,

‘‘column descriptions’’: list[{‘‘column name’’: string, ‘‘type’’: string,

‘‘description’’: string}] }

Then, to support previously identified design considerations, we generated three different
sets of embeddings1 using OpenAI’s pre-trained text-embedding-3-small model.

• Dataset Embeddings: Using the dataset title, header, and three example rows as
embedding inputs, to support semantic dataset search (DC1).

• Attribute Embeddings: Using the column name and the first 10 non-null values as
embedding inputs, to support attribute-level filtering (DC2).

1Embeddings are compressed vector representations of the data; with similarity of two embedding vectors
being a proxy for semantic similarity.
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• Dataset Purpose Embeddings: Using the previously generated dataset descrip-
tion summary and list of purposes as embedding inputs, to support proactive query
reformulations (DC4).

Lastly, we stored the augmented and pre-processed dataset collection with all generated
embeddings in a PostgreSQL database. We created two HNSW indexes [31]: (i) a Dataset
Index using the dataset embeddings (DC1); and (ii) an Attribute Index using the at-
tribute embeddings (DC2), using the open-source library hnswlib.2 Here, given a dataset
schema (or an attribute name), the dataset (or attribute) HNSW index returns k most
semantically similar datasets (or attributes).

4.2 Semantic Dataset Search Engine

DataScout leverages the search indexes (Section 4.1 & Figure 4.1) to support semantic
dataset search (DC1). Figure 4.2 details the search framework and actions triggered by
DataScout to proactively assist users. The search process begins with users specifying a
search query—which may be as brief as a set of keywords, or as detailed as 2–3 sentences.
DataScout uses this query to prompt GPT-4o-mini to generate three diverse hypothetical
schemas for a target dataset that would help with the user’s query (prompt detailed below).
The generated outputs include the dataset name, projected column names and types, and
an example row. These hypothetical schemas capture different ways in which the user’s
intent might align with datasets in our collection. Each of the three generated schemas is
then embedded using the text-embedding-3-small model, ensuring consistency with previ-
ously computed dataset embeddings (Section 4.1). To determine relevance, we compute the
cosine similarity between each hypothetical dataset embedding and precomputed dataset
embedding pair. Since each of the hypothetical schemas may highlight different aspects of
the user’s search query, we average the similarity scores obtained for each dataset in our
collection for an aggregate similarity score. The datasets are then ranked based on this
aggregate score to present the most semantically relevant results. Increasing the number of
hypothetical schemas would increase the chances of retrieving highly relevant matches by
covering a broader semantic space, but also increase computational costs and query latency
at the same time. We generate three hypothetical schemas to balance retrieval effectiveness
and response time.

2https://github.com/nmslib/hnswlib (with m=16 and ef construction=64)

https://github.com/nmslib/hnswlib
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Hypothetical Schema Generation Prompt

Given the task of {query}, generate three dataset schemas to implement the task. Only
generate three table schemas, excluding any introductory phrases and focusing exclusively
on the tasks themselves. Generate the table names and corresponding column names, data
types, and example rows. For example:
Example Task: Datasets to train a machine learning model to predict housing prices
Example Output: (Parts omitted for brevity)
[ { "table name": "Properties",

"column names": ["id", "num bedrooms", "num bathrooms", "sqft", "year built",

"location", "price"],

"data types": ["INT", "INT", "INT", "FLOAT", "INT", "TEXT", "FLOAT"],

"example row": [101, 3, 2, 1450.5, 2005, "Seattle, WA", 675000.0] },
{ ‘‘table name’’: ‘‘NeighborhoodStats’’,

‘‘column names’’: [...],

‘‘data types’’: [...],

‘‘example row’’: [...] },
{ ‘‘table name’’: ‘‘PropertySalesHistory’’,

‘‘column names’’: [...],

‘‘data types’’: [...],

‘‘example row’’: [...] } ]

Output Schema:
list[ {"table name": string,

"column names": list[string],

"data types": list[string],

"example row": list[string]} ]

4.3 Supporting Dynamic and Contextualized

Assistance

DataScout aims to leverage the semantic abilities of LLMs to facilitate contextualized
dataset discovery. Figure 4.2 highlights DataScout’s online assistance features, and the
following sections provide corresponding implementation details.
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Figure 4.2: DataScout’s online dataset search assistance. User’s search query is used to generate
hypothetical schemas projecting a target dataset. Search results are displayed through retrieval
from the Dataset Index (Section 4.1). DataScout proactively generates query reformulation
suggestions, semantic attribute and granularity filter suggestions, and dataset relevance indicators—
all grounded in the dataset search results and the user’s search query. Users may choose to accept a
query reformulation suggestion, apply filters, search by attributes, and inspect relevance indicators.
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4.3.1 Proactive Query Reformulation Suggestions

To support DC4, DataScout surfaces query reformulation suggestions in an attempt to
bridge the gap between user specified dataset search queries and the search space of avail-
able datasets (Figure 3.2B). To do so, DataScout proactively analyzes all initial dataset
search results—performing k-means clustering (k = 15) over the dataset purpose embed-
dings (described in Section 4.1) belonging to the surfaced results—semantically grouping
together datasets that cover similar topics or have similar intended purposes. DataScout
then picks three clusters that are most relevant to the user’s original search query, and uses
an LLM to surface three corresponding query reformulation suggestions (prompt detailed
below), e.g., Figure 3.2B shows the query reformulation suggestion “analyze the impact of
the pandemic on remote work and work-life balance.” Users may select a query reformulation
suggestion to narrow the search scope, or to increase alignment with underlying datasets.
Selecting a suggestion leads DataScout to refresh dataset search results.

Generate Query Reformulations Prompt

Generate a dataset search query matching a collection of given dataset names, such that
it

• Incorporates the common theme of these dataset names: {cluster}

• Relates to the original task: {query}

• Is specific enough to include both a topic, as well as a clear objective.

Also provide a brief reason (under 10 words) why this query improves upon {query}.
Example Output:
{ "query": "Analyze voter demographics in presidential elections", "reason":

"adds demographic focus" }
Output Schema:
{"query": string, "reason": string}

4.3.2 Semantic Attribute Search and Filter Suggestions

DataScout introduces two unique affordances—enabling users to search and filter dataset
results based on attribute semantics, instead of exact or fuzzy string matching with at-
tribute names (DC2). First, DataScout gives users the agency to search by attributes
(Figure 3.1D)—by retrieving relevant datasets based on the HNSW attribute index. That
is, given an attribute name, k related attributes from the index are retrieved, and their cor-
responding datasets are returned, e.g., searching for “movie name” will return all datasets
containing attributes semantically equivalent to movie titles. Second, DataScout proac-
tively suggests five “column concepts” as filters—informed by both the dataset search results,
as well as the user’s search query—to narrow down the search space. To do so, DataScout
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performs k-means clustering (k = 15) over the attribute embeddings (described in Sec-
tion 4.1) belonging to the datasets in surfaced results and grouping together semantically
equivalent attributes. DataScout then computes a mean vector for each embedding clus-
ter, and computes its cosine similarity with the user’s search query. Finally, DataScout
leverages LLM assistance to assign a concept name to the five most relevant attribute clus-
ters, and surface these as filter suggestions (prompt detailed below), e.g., [stress, hours,

vacations, employment, remote] (shown in Figure 3.2C).

With these approaches, users may effectively isolate datasets matching attribute-level
specifications even if their search terms do not exactly match with column names in a given
dataset (DC2).

Generate Column Name Concepts Prompt

You are an assistant that returns a flat list of words. The input will be a list with nested
elements. For each nested element, return 1 to 2 representative words that best represent
the topic of the nested group. The representative word should also make sense in context
with the {query}. The words should be lower case single words without special characters
(like hyphens or underscores). The output must be a valid JSON array with no additional
formatting, symbols, or repetitions.
Output Schema:
list[string]

4.3.3 Semantic Granularity Filter Suggestions

As detailed in Section 4.1, we augmented our collection of datasets with LLM annotations
on temporal (e.g. second, minute, hour, ..., year) and spatial (e.g. latitude/longitude, street
address, zipcode, ..., country) granularity of datasets (DC2). DataScout also proactively
inspects search results to recommend the three most frequently seen temporal and spatial
granularity tags as filters to users (Figure 3.2D). Users may select a filter to view datasets
at the required resolution and level of detail.
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Temporal & Spatial Granularity Annotation Prompt

Given a dataset with the following details, determine the most likely temporal and/or
spatial granularity reflected in the dataset.
Dataset Details:

• Title: {title}

• Description: {description}

• Dataset Preview: {example rows}

Select the temporal granularity from the following options:
Year, Quarter, Month, Week, Day, Hour, Minute, or Second.
Select the spatial granularity from the following options:
Continent, Country, State/Province, County/District, City, Neighborhood/Region, Zip
Code/Postal Code, Street Address, Residential Address, or Latitude/Longitude.
Identify the temporal and/or spatial granularity only if reflected in the dataset. Leave
the respective field(s) empty if the granularity cannot be inferred from the table.
Output Schema:
{"temporal granularity": string, "spatial granularity": string}

4.3.4 Dynamic Dataset Relevance Indicators

To assist users in assessing dataset suitability, DataScout uses LLM assistance to provide
in-situ relevance feedback by generating dynamic explanations for dataset utilities and lim-
itations on-the-fly (Figure 3.2E). To do so, DataScout considers the user’s search query
and applied filters, and leverages LLM assistance to generate utility and limitation indicators
for the top-5 search results (prompt detailed below); while relying on lazy-evaluation for the
remaining search results, i.e., generating the relevance feedback only if the user clicks on
the dataset search result for further inspection. Once generated, all relevance indicators are
persisted for future visits to a dataset, unless the user modifies their search query or applied
filters.
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Generate Relevance Indicators Prompt

You are an assistant that explains what makes the following dataset search result relevant
or irrelevant, given my task and applied search filters.
Dataset Details:

• Description: {description}

• Example Rows: {schema}

• Purpose of dataset: {purpose}

• Dataset Collection Method: {source}

Dataset Search Specifications:

• Dataset search query: {query}

• Applied filters: {filters}

Instructions:
1. Utilities: Identify the strongest factors that make this dataset useful. Look for the
presence of relevant attributes, high data quality, and matching intent. If there are no
strong advantages, return "No significant utilities."

2. Limitations: Identify limitations such as missing relevant attributes, specific geographi-
cal locations (e.g., “dataset only contains records of location X”), specific temporal ranges
(e.g., “data belongs to X and Y time range”), poor data quality and missing or incomplete
data. If no major issues exist, return "No significant limitations."

Guidelines:

• Stay factual: Base responses strictly on the provided dataset details. Do not assume
information that isn’t explicitly stated.

• Be concise: Limit each response to 1–2 sentences.

• Avoid hallucination: If no strong reason exists for relevance or irrelevance, default
to "No significant utilities" or "No significant limitations".

Output Schema:
{"utilities": string, "limitations": string}
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Chapter 5

User Evaluation

To understand how users might leverage DataScout’s semantic search, filtering, and rele-
vance assessment features, we conducted a within-subjects repeated-measures study with 12
participants. Our study was guided by the following research questions:

(RQ1) How do DataScout’s features guide users to discover their target datasets?
(Section 5.4.1)

(RQ2) How do DataScout’s capabilities support users’ data discovery and sensemak-
ing workflows? (Section 5.4.2)

5.1 Participants

We recruited 12 participants by emailing formative study participants for a follow-up study,
and through a mailing list of data science professionals maintained by our research group.
Four formative study participants (F2 as P8, F4 as P2, F5 as P10, and F8 as P7) took part in
the evaluation study. Once again, all participants had expertise in data science and analytics.
All participants voluntarily consented to taking part in the study, and agreed to have the
sessions recorded for transcription and analysis. Participants were asked to provide details
on a search task they would like to perform during the study in the sign-up form. Table 5.1
reports participants’ backgrounds and their self-chosen study tasks.

5.2 Procedure

We conducted a within-subjects repeated-measurements study with three conditions:

(A) Kaggle Dataset Search: Baseline supporting keyword search (Figure 5.1)—chosen
for being representative of traditional keyword dataset search tools, as well as for pro-
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Table 5.1: Participant background and study tasks.

ID Order Background Tasks

P1 B-C-A Data Provenance Neighborhood Migrations in the US
P2 B-A-C (F4) Art & AI Art History and Provenance Data
P3 A-C-B Databases Researcher Fraud Detection via ITR
P4 C-B-A Data Scientist Question-Answering for LLM-Eval
P5 A-C-B Data Analyst Smart-location Sensor Streams
P6 A-B-C Data Science Graduate Entity Resolution for Categoricals
P7 C-B-A (F8) Marine Scientist Land use for Clean Energy
P8 C-A-B (F2) AI/ML Engineering Game Actions Data for Emulations
P9 C-A-B Business Analyst Business News Pre-training Data
P10 B-C-A (F5) ML Engineering Populating data lake w/ restaurants
P11 B-A-C Software Developer Top rated movies and TV Shows
P12 A-B-C Finance Data Analyst Financial Inclusion Indicators

viding a relatively direct comparison standpoint—as DataScout’s dataset collection
is derived from Kaggle;

(B) Semantic Baseline: A stripped-down version of DataScout supporting only se-
mantic search and fixed metadata filters (Figure 5.2), chosen for an experience rep-
resentative of semantic search tools like Google Dataset Search and Olio’s semantic
dataset retrieval [44]; and

(C) DataScout: Complete version with semantic search, query reformulation, filtering,
and assessment features (Figure 3.1).

Participants completed their dataset search task using all three conditions in a random-
ized order to take experiential learning effects into consideration. We recorded two obser-
vations for each ordering. The study began with a round of introductions and demographic
questions. Each session was 60 minutes long, with participants spending 15–18 minutes per
condition. They were encouraged to think-out-loud. We asked them follow-up questions
about their satisfaction with search results and ease of use of the interface upon the com-
pletion of each study condition. We marked a dataset search to be successful when the
participants expressed a given dataset to pass their initial round of inspections, or expressed
interest in downloading a dataset for further exploration.

Since we built our search engine by indexing a subset of 6,500 datasets from over 50,000
public datasets on Kaggle, we wanted to ensure that participants are not severely restricted
by our subset of most popular datasets. To ensure that the semantic baseline and DataS-
cout had access to relevant datasets, we augmented our initial dataset collection by indexing
300 additional datasets, containing top 25 Kaggle dataset search results for each participant’s



CHAPTER 5. USER EVALUATION 28

Figure 5.1: (A) Kaggle: Keyword dataset search condition
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Figure 5.2: (B) Semantic Baseline: A stripped-down version of DataScout supporting only se-
mantic dataset search.

task. All participants were made aware of this limitation, and we purposely did not provide
participants with any interface or system walkthrough to glean their raw impressions. This
study was approved by our Institutional Review Board (IRB).

5.3 Analysis

We used Zoom’s automatic transcription feature to capture session dialogues, which we
supplemented with detailed notes documenting participant actions throughout the sessions.
Two authors performed thematic analysis through reflexive open coding of the transcripts,
notes, and screen recordings, followed by identifying broader themes through axial coding.
The authors subsequently performed a second iteration of axial coding to further refine the
themes, and achieve high inter-rater agreement. We identified 22 open-codes, and derived
9 axial-codes. Additionally, we discussed the effects of experiential learning across study
conditions, and analyzed emergent patterns due to the underlying order in which participants
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Table 5.2: Task Completion and Ratings on 5-point Likert Scale for Ease-of-use and relevance of
dataset search results for each study condition.

Condition Ease-of-use Relevance # Successes

(A) Kaggle µ=3.08; σ=0.51 µ=3.25; σ=1.05 7 of 12
(B) Semantic Baseline µ=3.75; σ=0.45 µ=3.25; σ=0.86 6 of 12
(C) DataScout µ=4.75; σ=0.45 µ=3.67; σ=0.78 10 of 12

were exposed to the conditions.

5.4 User Study Findings

All participants (n=12) found DataScout’s interface to be more “expressive” and “flexi-
ble”, giving them a “greater sense of control” over their search task. They appreciated the
description summaries and consolidated single-page view—reducing context-switching and
scrolling. Participants rated DataScout highly on the ease of use of the interface
on a 5-point Likert scale (µ=4.75, σ=0.45), and were mostly satisfied with the
relevance of search results (µ=3.67, σ=0.78). On the other hand, while using Kaggle,
participants echoed sentiments in-line with our formative study findings—being unable to
freely express their dataset search intents, finding Kaggle’s interface to be restrictive (P2–P4,
P6, P10). On a 5-point Likert scale, participants expressed neutral-to-mild liking for the
baseline interfaces and their search result relevance. Participants had varied success across
conditions (Table 5.2).

We also observed differences in the perceived usefulness of DataScout’s features to
be dependent on the order in which participants were exposed to the conditions. When
exposed to DataScout before either of the baselines, participants missed the presence of
semantic attribute filters the most (P3, P4, P7, P8, P10)—which is the most used feature
across sessions (30 invocations); and when exposed to DataScout after the baselines, they
appreciated the presence of task-specific relevance indicators the most (P2, P6, P11, P12)—
which significantly expedited participants’ sensemaking and relevance judgments.

We observed key differences in dataset search workflows across conditions. First, partic-
ipants wrote longer and more expressive queries with both DataScout and the semantic
baseline compared to Kaggle. For example, P2 searched for “images that are artworks with
the names of the artists” on DataScout, versus a shorter “art history” on Kaggle. How-
ever, participants like P6 and P9 noted a higher start-up cost involved in writing elaborate
queries. Second, Kaggle often returned overly selective results (5–20 results), while the
semantic baseline returned too many loosely relevant ones (50–100 results). In contrast,
DataScout helped participants start broad with 50+ dataset results, and narrow down to
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10–12 datasets effectively using semantic filters, supporting both exploratory and targeted
dataset search workflows. Lastly, participants frequently downloaded datasets in the base-
line conditions for deeper inspection. With DataScout, this need diminished due to in-situ
feedback from relevance indicators.

In what follows, we present qualitative findings from the user study, organizing them
around two key capabilities DataScout unlocked for users: first, their ability to steer and
refine their search through interactive features (addressing RQ1); and second, their ability
to adapt to search results and learn during exploration (addressing RQ2).

5.4.1 Finding 1: DataScout Unlocked Users’ Ability to Steer and
Adapt Their Dataset Search

DataScout enabled participants to adopt more deliberate and informed dataset search
strategies (P1, P4, P5, P7, P8, P10, P12). Compared to the baselines, users learned to
steer system feedback to their advantage (P2, P3, P6, P8, P10), and encountered learning
moments that enhanced their sensemaking and search behavior—even beyondDataScout’s
immediate environment (P4, P6, P8, P9). We describe these distinctive strategies below.

5.4.1.1 Users learned to “prompt-engineer” queries to control DataScout’s
relevance indicators

Participants learned through interaction that the dimensions of feedback highlighted by the
relevance indicators was dependent on their query and filters (P1–P3, P6, P8–P12). As
they gained increased familiarity with DataScout, some participants began treating their
queries as “knobs” they could use to manipulate the dataset relevance indicators (P2, P3, P6,
P8–P10)—adjusting their task descriptions to elicit more targeted and informative feedback
from the system. For instance, P2 needed information about image use rights for datasets
containing links to artwork images. They hypothesized that modifying the query with this
request would affect the relevance indicators, and added—“I need to know what the image
rights are (e.g. if it is public domain, CC0, if attribution is required, etc.).” Thereafter, the
relevance indicators began surfacing image licensing details for each dataset.

Similarly, P3 mentioned their preference for “non-synthetic” datasets in their query—with
the objective of having relevance indicators pin-point dataset sources upfront. This contrasts
with our formative study findings, where participants held unspoken dataset relevance cri-
teria and felt restricted by the dataset search interfaces. By making relevance indicators
visible and responsive, DataScout successfully elicited hidden preferences—promoting a
reflective search process for other participants as well (P6, P8–P10).
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5.4.1.2 DataScout empowered users by enabling fine-grained queries over
dataset attributes and granularity levels

Participants used DataScout’s features (query reformulation suggestions, and semantic
attribute and granularity filters) to systematically and deliberately broaden or refine their
search (P1, P4, P5, P7, P8, P10, P12). For instance, P7 began with the query: “land use
in USA,” which returned mostly irrelevant results. They then used DataScout’s query
reformulation suggestion—“land distribution across countries”— to consciously broaden the
scope. This surfaced more relevant, but geographically non-localized datasets. With this
broader scope, DataScout also suggested the country-level granularity filter, enabling P7
to narrow results back down to the desired resolution, albeit requiring some pre-processing
to filter out all non-U.S. records. This tandem-use of query reformulation suggestions and
semantic granularity filters exemplifies how DataScout supports exploration followed by
targeted narrowing. We observed similar workflows with DataScout supporting concerted
refinement efforts for P1, P5, P7, P10, and P12. Notably, each of these participants had
embarked on discovering geographical data with varied levels of granularity.

Through using DataScout’s semantic attribute search, participants were able to not
only narrow down the search space, but also stumble across previously latent datasets (P1,
P2, P12). For instance, P2 had been deeply invested in their search for art history datasets
prior to our evaluation study, and described extensively using Kaggle for this task. P2 used
the semantic attribute search—a new dataset search modality surfaced by DataScout—
to intentionally look for datasets with the "artist bio" column, leading them to discover a
previously unknown dataset (Carnegie Museum Collections) that was highly relevant to their
work. They appreciated the system’s semantic matching, noting, “it’s great that it is not only
exact matching the column name but it gets the vibes.” We observe how DataScout can
surface useful datasets even for other experienced participants working in familiar domains
(P1, P12).

5.4.2 Finding 2: DataScout Helped Users Make Sense of Dataset
Availability

Participants frequently repurposed DataScout’s features to gain feedback on their queries
(P1, P3, P4, P7, P8, P10, P12), build conceptual models of the search space (P4, P9,
P10, P12), and sanity-check their progress (P2, P5, P7, P8, P12). Users actively interpreted
DataScout’s proactive reformulation and semantic filtering suggestions—turning them into
implicit system feedback to reason about dataset availability, recalibrate expectations, and
steer their search strategy.
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5.4.2.1 Relevance indicators triggered “aha” moments that changed how users
judged datasets

Beyond immediate task success, DataScout prompted meaningful learning moments that
shaped users’ dataset suitability assessment strategies. For some participants, learning mo-
ments emerged as a byproduct of expediting sensemaking through dataset relevance indica-
tors, making connections or limitations apparent upfront. For example, P6 initially dismissed
a dataset surfaced by the semantic baseline as irrelevant. However, when the same dataset
appeared in DataScout, they reviewed the system’s utility explanation and reconsidered
its fit. The system had highlighted ‘joinable’ columns relevant to P6’s knowledge graph
task, helping them realize the applicability of the dataset. P6 noted, “it provides reasoning
and is quite responsive... it [utility indicators] helped me understand what to expect from the
dataset.” This illustrates how transparent, in-context explanations can change user percep-
tions. P6 then continued looking for datasets with a renewed lens for dataset applicability.
We observed similar patterns with P4 and P9. Notably, each of these participants’ tasks
were geared towards finding datasets that would serve as inputs to algorithms they have
authored themselves—offering some flexibility in how the dataset or their algorithm can be
adapted to each other.

Interestingly, for one participant (P8), the LLM generated relevance indicators enabled
a learning moment by filling an information retrieval need. P8 began with a clear objec-
tive: “predicting NBA game outcomes based on LaMello Ball’s three-point shots.” While
reviewing a dataset from 2008–2014, DataScout’s relevance indicators surfaced a limi-
tation: ‘‘LaMelo started playing for Charlotte Hornets in 2020, while the time-span

of this dataset predates LaMelo’s NBA career.’’ This insight helped P8 quickly rule out
the dataset and refine their assessment criteria for the remainder of the study—while car-
rying this learning over to Kaggle, where they began checking dataset upload dates more
deliberately.

5.4.2.2 Users adapted their queries when query reformulation suggestions
hinted at unavailable data

Participants learned early on that the query reformulation suggestions were dependent on
the search results yielded by DataScout (P1, P3, P4, P6–P8, P10, P11). Some used these
suggestions to verify whether their queries contained enough detail (P1, P7), while others
used them to make bets on the presence of relevant datasets, probe the search space, and
adapt their expectations (P3, P4, P8).

For instance, P3 originally searched for non-synthetic money transfer datasets on Kaggle.
However, DataScout and baseline did not have any real-world money transfer datasets as
part of their dataset collection, leading to irrelevant results based on synthetic sources. This
mismatch led them to question the reliability of the results: “I started to lose faith in the
results and their ranking”. However, the reformulation suggestion \Analyze anomalies in



CHAPTER 5. USER EVALUATION 34

real-world income tax datasets" hinted at not only the absence of money transfer datasets,
but the abundance of real-world income tax anomaly datasets; helping P3 pivot their task
to income tax datasets—realigning their goals to match the available search space. Other
participants refined their geographic or demographic focus without changing their broader
goals. For example, P12 used reformulation suggestions to scope financial inclusion data
down to agricultural workers in Rwanda.

Relevance indicators also played a role in helping participants evaluate the viability of
their queries (P4, P9, P10, P12). When one or more top-ranked datasets indicated "No

significant utilities" (highly ranked datasets showing poor task adherence)—prompted
participants to reformulate their queries.1 On facing this conflict, P10 said, “No significant
utilities higher up in the search results means that I should change my query, seems like there
is not a lot in the search space to begin with.”

5.4.2.3 Seeing the “right” semantic filter suggestions gave users confidence
they were on track

Participants also experientially learned that the suggested semantic attribute and granular-
ity filters depended on the search results (P2, P5, P7, P8, P12). Over time, these filter
suggestions became feedback signals or sanity checks that participants used to validate their
current direction. Seeing the “right” filter suggestions reassured participants that they were
on the right track, and within their intended space of dataset search results. For instance,
P12 noted, “Seeing [agriculture, income, credit] is affirmative of my intent—it tells me
I am still in the right space.” In contrast, when filter suggestions seemed off, participants in-
terpreted that as a sign to revise their query. P5, searching for “intergenerational facilities,”
initially saw unrelated filters like [emissions, source, insurance, url], prompting them
to rethink their query phrasing. After revising the query, more aligned filters appeared, such
as [daycare, address, age, cost], reinforcing their revised direction.

Similarly, P7 said, “I see emissions, energy, land, population, and water, along with a
year-level filter suggestion. This is giving me confidence that your system is understanding
my prompt correctly.” P8 also supported our observation, mentioning how these acted as
early cues: “even before I look at the search results, the smart column filters are giving
me some clue about the kind of data in the search results.” DataScout’s semantic filters
suggestions served as both, conceptual scaffolds, and lightweight progress markers during
open-ended search tasks.

1While participants in our formative study also encountered irrelevant top-ranked results in using se-
mantic dataset search engines (like Google Dataset Search), they typically skipped to the next entry without
reflecting on the mismatch between ranking and task relevance. We believe that DataScout’s relevance
indicators prompted users to re-express intent, enabling more iterative and reflective searching. We hypoth-
esize that the presence of relevance indicators not only facilitate meta-cognition—helping users reason not
only about what they see, but also about their next steps, as discussed in the Cognitive Fit theory by Vessey
[53].
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Chapter 6

Performance Analysis and Future
Work

To evaluate the scalability and efficiency of DataScout, we developed two benchmarks
aimed at measuring system performance under varying datasize and retrieval conditions:

1. Dataset Retrieval Benchmark: Retrieve a fixed number of datasets from databases
(i.e., a dataset collection) of increasing sizes to measure how search latency scales with
respect to the total number of datasets in the system.

2. Semantic Filtering Benchmark: Vary the number of retrieved search results from
a fixed-size database to evaluate how the latency of semantic components—such as
query reformulation suggestions, column filter suggestions, and HNSW column concept
extraction—scales with result size.

6.1 Dataset Retrieval Benchmark

First, we investigated how retrieval latency is affected by database size to evaluate the
scalability of the system and determine whether it can maintain efficient performance over
larger corpora. To set up this benchmark, we created several databases of varying sizes—100,
200, 500, 1000, 2000, 4000, and 6500 entries—by sampling datasets from the full corpus. For
each database size, we retrieved a fixed number of 100 datasets and recorded the retrieval
time in seconds. Retrieval time is defined as the time taken to generate hypothetical schemas
given the query, perform a cosine similarity search, and render the resulting datasets in
DataScout’s interface, as described in Section 4.2. We also define a Subsequent Processing
category, which comprises the processing time of downstream semantic components and
additional system-level computations involved in dynamically presenting results.
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Figure 6.1: Retrieval time (in seconds) for a fixed query size of 100 datasets across databases of
increasing size.

Figure 6.2: Relative breakdown of component
latency across varying database sizes.

Figure 6.3: Total retrieval time of components
across varying database sizes.

Figure 6.1 illustrates the retrieval time across database sizes, with the x-axis plotted
on a logarithmic scale. Despite a 65× increase in database size from 100 to 6500 entries,
retrieval time remains relatively stable, ranging from approximately 6.5 to 9.9 seconds, with
an average of 8.3 seconds across all tested database sizes. This indicates that DataScout’s
retrieval process scales efficiently with database size, likely due to the HNSW dataset index
on the dataset embedding. Minor fluctuations in timing are likely attributable to system-level
factors such as runtime load, rather than fundamental limitations of the retrieval mechanism.

To contextualize retrieval within the overall search pipeline, we break down total latency
by functional components, as shown in Figure 6.2 and Figure 6.3. As seen in Figure 6.2,
retrieval consistently accounts for approximately 20-28% of total processing time across all
database sizes. Figure 6.2 reveals that the total processing time remains relatively stable
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Figure 6.4: Processing time (in seconds) for semantic components as number of datasets retrieved
varies, with database size held constant at 6500 entries.

between 30-35 seconds regardless of database size, with semantic components accounting
for the majority of execution time. These results suggest that retrieval is not the primary
performance bottleneck in DataScout. Instead, semantic components and downstream
processing account for most of the runtime. Therefore, future optimization efforts should
focus on improving the efficiency of semantic operations to meaningfully reduce overall com-
putation time. Moreover, the stability of retrieval times across increasing database sizes
suggests that the HNSW indexing approach on dataset embeddings will likely remain ef-
fective for DataScout’s task-driven search, even as the system scales beyond the tested
range.

6.2 Semantic Filtering Benchmark

We next conducted a deeper analysis of the latency associated with semantic components—
specifically, query reformulation suggestions, column filter suggestions, and HNSW column
concept extraction. Our goal was to analyze how latency scales as we increase the number of
retrieved datasets—10, 20, 50, 100, 200, 300, and 500—while keeping the database size fixed
at 6500 entries. Figure 6.4 depicts how the processing time for each semantic component
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Figure 6.5: Relative breakdown of latency across semantic components with varying numbers of
retrieved datasets.

changes with the number of retrieved datasets, with the x-axis plotted on a logarithmic scale.

The results reveal distinct scaling behaviors across the semantic components. The HNSW
column concept component exhibits the most dramatic increase in latency, following an al-
most quadratic growth pattern, as shown in Figure 6.4. This suggests that the underlying
semantic vector search becomes increasingly expensive as the number of retrieved results
grows, making it the most significant bottleneck in DataScout’s search pipeline. Optimiz-
ing this component is therefore critical to balancing system responsiveness with high-quality
semantic results for users.

In contrast, query reformulation suggestions and column suggested attribute filters show
more moderate scaling behavior as shown in Figure 6.5. Here, Other refers to the retrieval
time of datasets, along with additional system-level computations involved in dynamically
presenting the results. As described in Sections 4.3.2 and 4.3.1, both components use KNN
clustering to group similar items, followed by an LLM to generate representative names
for each group. Their latency generally increases proportionally to the number of retrieved
datasets. However, at 500 retrieved datasets, the query reformulation component shows a
sharp spike in latency. This spike is likely due to processing a larger number of dataset titles,
which results in significantly more tokens compared to processing column names. Figure 6.6
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Figure 6.6: Total runtime of semantic components with varying numbers of retrieved datasets.

further provides a complementary view of this scaling behavior, where the sudden increase
in computation time for query reformulation suggestions is particularly evident.

6.3 Future Work

The performance analysis across the two benchmarks highlights several opportunities for
future optimization and system improvement. While dataset retrieval performance is rela-
tively stable as database size increases, processing time for semantic components becomes a
limiting factor in DataScout’s performance as the number of datasets retrieved increases.
To address the latency introduced by HNSW-based column concept extraction, we plan to
explore several optimizations, such as tuning HNSW parameters and parallelizing the se-
mantic search process. These efforts aim to maintain semantic quality while significantly
reducing latency for larger result sets.

To reduce the growing runtime of query reformulation suggestions—as clustering and
LLM summarization over 500+ dataset titles becomes expensive—we can reduce our reliance
on LLMs through lightweight precomputation strategies. For example, we can average the
embeddings within each cluster and identify the dataset titles closest to the cluster centroid
as representative samples. Then, instead of sending the entire set of titles to the LLM,
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summarization can be performed on just the top-k most representative titles per cluster. This
approach preserves the diversity of dataset titles while significantly lowering computational
costs and improving responsiveness.

Furthermore, based on our user study presented in Section 5.4, we propose several direc-
tions for extending DataScout and improving the design of dataset search interfaces. First,
users desired a “birds-eye view” (P7) summarizing patterns across all search results—such as
covered time periods or geographic regions—to expedite sensemaking and offer feedback on
their queries (Section 5.4.2). Aggregated overviews, as explored by Ouellette et al. [36], could
support this need by presenting bottom-up hierarchical summaries of result sets. Second,
users often wanted to combine data from multiple sources to construct their intended dataset
(F2, F5, F7, F8)—either via union or joins. While prior work has addressed union/join-based
dataset search, future interfaces could better support this with tailored sensemaking tools
and visual cues for navigating multi-dataset compositions. Finally, participants wanted vis-
ibility into the quality of key dataset attributes (P4, P10, P12). Building on existing efforts
in data quality detection and wrangling [19, 14, 8, 46], future systems could surface these
cues as part of relevance indicators to better inform user decisions.
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Chapter 7

Limitations and Conclusion

7.1 Limitations

Our evaluation of DataScout has several limitations. First, the precision of search results
in our system was constrained by the availability and curation quality of underlying data
sources. We relied on a limited dataset collection sourced from Kaggle. This occasionally
led to irrelevant or mismatched results, even after augmenting our dataset corpus with ∼300
datasets for participant tasks—many of which were still not surfaced in response to relevant
queries. Second, our prototype lacked basic search functionalities such as result sorting
and support for varied relevance criteria (e.g. upload date, downloads, and size), which
may have limited participants’ ability to explore results systematically. Third, we recorded
only two observations per ordering of conditions, which may have limited our findings on
experiential effects of DataScout. Finally, we compared our system only against Kaggle’s
search interface as a keyword-search baseline, owing to our shared reliance on Kaggle datasets
and the lack of access to other deployed dataset search systems with similar data. This choice
allowed for more direct comparisons, but narrowed the scope of our evaluation.

7.2 Conclusion

In this thesis, we introducedDataScout—a system that rethinks dataset discovery through
proactive AI-assistance, offering query reformulation suggestions, semantic search and filter-
ing based on attributes and data granularity, and task-specific dataset relevance indicators—
supporting users in navigating and understanding opaque dataset landscapes. Our study
with 12 participants revealed how these features expedited sensemaking and conceptual
model building; while eliciting latent search specifications from users. Our findings also un-
derscore the need for dataset search systems to be designed to support both, exploratory
wandering and targeted retrieval—meeting users where they are in their evolving dataset
search workflows.
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