
Auxiliary States for Decentralized Optimization in
Probabilistic Communication Networks

Noah Adhikari
Joshua Hug, Ed.
Lisa Yan, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-114
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-114.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Auxiliary States for Decentralized Optimization in Probabilistic
Communication Networks

by Noah Adhikari

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, in partial satisfaction of the requirements for the degree of
Master of Science, Plan II.
Approval for the Report and Comprehensive Examination:

Committee:

Professor Joshua Hug
Research Advisor

Date

Professor Lisa Yan
Second Reader

Date

5/16/2025

,

Lisa Yan
5/16/2025

Auxiliary States for Decentralized Optimization in Probabilistic Communication Networks

by

Noah Adhikari

A thesis submitted in partial satisfaction of the requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joshua Hug, Chair
Professor Lisa Yan, Second Reader

Spring 2025

Abstract

Auxiliary States for Decentralized Optimization in Probabilistic Communication Networks

by

Noah Adhikari

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Joshua Hug, Chair

Large optimization problems often require distribution and communication across several nodes.
One class of such problems is consensus optimization, where agents must agree upon an optimal
solution to these problems in a decentralized manner. Distributed primal-dual methods such as
the consensus alternating direction method of multipliers (C-ADMM) are applicable when the
communication network is static. However, dynamic communication is less well-studied; prior
work has adapted C-ADMM to only a small class of dynamic networks. We generalize C-ADMM
further by introducing auxiliary states, which capture information that may affect communication
and model communication probabilities as a function of both endogenous and exogenous factors.
In addition, we propose a novel, generalized C-ADMM variant, called ASV-ADMM, designed
for dynamic communication graphs with auxiliary state-dependent edge transition probabilities.
We evaluate ASV-ADMM on several scenarios with state-dependent network topologies wherein
agents distributively optimize a global objective.

1

Acknowledgments

Huge thanks and credit to Katherine (Katie) How for helping run experiments and drafting some
initial results as part of an ME292B Fall 2024 final project.

An immeasurable thank you to the following lovely people:

Josh Hug, for advising me throughout this whole journey and supporting my pivot to a topic
that was well outside your expertise (sorry about that!)—your eagerness to understand, learn, and
mentor has been immensely helpful;

Lisa Yan, for graciously agreeing to be my second reader on such unfamiliar material, and for
providing wonderful guidance on a moment’s notice;

Negar Mehr, Jingqi Li, and Kartik Nagpal, for their guidance on multi-agent control and games;

Junsang Yoon, for giving surprisingly constructive feedback after I treated him to Popeyes;

Mommy, Daddy, and Maya, for their unconditional love and support since my literal day one—I
would not have graduated without you;

Kaitlyn, for making every day a little less lonely, and for paying impeccably close attention in
your feedback;

and finally, to all my friends, colleagues, peers, and everyone else: you have brightened my days,
shaped who I am, and made my life profoundly better—thank you! I could not have done this
without you.

ii

Contents
1. Introduction . 1
2. Background . 4

2.1. Notation . 4
2.2. Constrained Minimization . 4
2.3. Single-Agent Methods . 5
2.4. Multi-Agent Methods . 6

3. Auxiliary State-Varying ADMM (ASV-ADMM) . 12
3.1. Auxiliary States . 12
3.2. Communication Probability Functions . 13
3.3. Auxiliary State-Varying ADMM (ASV-ADMM) . 19

4. Methodology . 21
4.1. Experimental Setup . 21
4.2. Experimental Details . 22

5. Results . 24
5.1. Distance-Based Falloff Rate . 24
5.2. Distance-Based Falloff Rate with Domain-Restricted Agents . 26
5.3. Dead Zones . 28

6. Discussion . 30
7. Future Work and Conclusion . 32

7.1. Conclusion . 33
A. Appendix: Derivations . 34

A.1. Derivation of Weak Duality . 34
A.2. Derivation of Dual Concavity . 34
A.3. Derivation of C-ADMM Updates . 35

B. Appendix: Supplemental Figures . 40
B.1. Two-Agent 1D Probability Function Visualizations . 40

Epilogue . 43
References . 44

i

1. Introduction
In recent years, dataset volumes have grown substantially across several sectors [1], [2], making
computational space and time constraints increasingly prohibitive and necessitating the division
of workloads across multiple computing nodes.

Proper division of workloads depends on the problem domain. In particular, there are two distinct
computational contexts to consider (pictorial examples are shown in Figure 1.1):

Centralized settings, where central nodes distribute data to worker nodes and reduce workers’
intermediate computations into a final result. The final result need only be available on the
central nodes; intermediate worker computations may be discarded or transformed.

Decentralized settings, where no nodes are strictly designated for distribution, collection, and/
or coordination. In contrast with centralized settings, final computational results must be
accessible to all nodes, rather than only a central subset of the nodes.

Distributor

Worker Worker … Worker Worker

Collector Agent Agent

AgentAgent

Coordinator

WorkerWorker

Worker Worker Agent Agent

AgentAgent

Figure 1.1: Examples of centralized (left column) and decentralized (right column) computation
schemes. Workers in the centralized setting are not necessarily prohibited from communicating

with one another and a decentralized graph need not be dense.

Though methods such as MapReduce [3] are suitable for centralized domains, they are not
applicable in every scenario. For example, on a colossal dataset, where no one node can store all

1

data centrally, data must already be distributed across the computation nodes, rendering single-
node distribution/collection impossible.

Another case, known as federated learning, is when individual agents may not wish to share
sensitive data, but still wish to collectively fit a model using their data [4].¹ Moreover, agents may
only have the capability to communicate with a small subset of other agents, so communication and
data sharing become nontrivial. Moreover, agents may have differing abilities, beliefs, or desires,
which makes central coordination more challenging. The additional considerations in decentralized
settings make them more complex than their centralized counterparts.

Both centralized and decentralized settings often give rise to optimization problems with the
goal of finding the best set of parameters to optimize some objective. This is often formulated
as minimizing cost with respect to a vector-valued variable. There are many ways to solve such
problems, including direct, gradient-based, adaptive, primal-dual, and metaheuristic methods [5],
[6], [7].

A popular method for decentralized optimization is C-ADMM, the consensus alternating direction
method of multipliers [8]. This method assumes a static communication network, where agents
are able to communicate with the same set of agents at all time. This is a strong assumption
—in many real-world applications, a dynamic communication graph is necessary to accurately
represent a problem, as communication often is imperfect and can fail [9]. Communication failure
is often tied to some auxiliary factors that may be related (endogenous) or unrelated (exogenous)
to the optimization variable [10]. For example, suppose agents are collectively covering some area;
then an endogenous factor is spatial position, and an exogenous factor is battery life. Though
prior work has explored the endogenous case [10], the general case has not yet been formalized,
to the best of our knowledge.

Prior work in decentralized optimization in dynamic networks includes Time-Varying ADMM
(TV-ADMM) [11], a variant of C-ADMM allowing for failures in communication links. TV-ADMM
considers only a small class of dynamic networks where communication links fail with some known,
unchanging probabilities. A natural extension of TV-ADMM is to allow these probabilities to vary.

With this motivation, we mathematically formulate auxiliary states, which intuitively influence
communication probabilities. This extends TV-ADMM to the case where communication proba-
bilities may no longer be unchanging and instead are assumed to be a function of auxiliary states.
This generalization of TV-ADMM is called Auxiliary State-Varying ADMM (ASV-ADMM). We
evaluate ASV-ADMM against C-ADMM in a synthetic environmental experiment, the motivation
of which is given in Section 4.

Our results indicate that ASV-ADMM is a suitable choice for decentralized optimization in
dynamic networks where communication failure probabilities are difficult or impossible to capture
with a single scalar value, but instead vary with respect to auxiliary factors. The experiment

¹The term agent is used to denote a single computing machine, often with some associated physical state, as is
assumed to be in a robotics context (similar to “node,” “worker,” or “instance”). The term “agent” is chosen as in
multiagent settings, there is often no clear central machine, and agents may have differing opinions or desires.

2

and auxiliary state formulation motivates several avenues for future research in decentralized
optimization, detailed in Section 7.

In this report, single- and multi-agent optimization methods are reviewed in order to provide a
comprehensive motivation and introduction for ASV-ADMM, then ASV-ADMM is evaluated in
comparison to the baseline C-ADMM in a resource availability scenario. A summary of ADMM
variants discussed is given in the table below.

Method Description Origination

ADMM Decomposable method of multipliers with al-
ternating optimization blocks [12]

C-ADMM

Suitable for distributed optimization subject to
consensus constraints. Removes sequential de-
pendencies in block updates by incorporating
neighboring updates in communication graph.

[5]

TV-ADMM

Generalizes C-ADMM to probabilistic commu-
nication graphs with fixed failure probabilities
by incorporating importance weights to pri-

mal-dual updates

[11]

ASV-ADMM
Generalizes TV-ADMM to a broader class of
graph dynamics by modeling communication

as a function of auxiliary states

Main contribution of this
report

Table 1: A summary of ADMM variants discussed in this report.

3

2. Background
2.1. Notation
A subscript 𝑖 denotes the variables associated with agent 𝑖 (similarly for 𝑗 or 𝑖𝑗). A parenthesized
superscript, e.g. (𝑡), denotes a time-dependent quantity. In this work, this is usually discrete-time
(so 𝑡 ∈ ℕ).²

Unless otherwise stated, ‖𝑣‖ refers to the Euclidean or ℓ2-norm ‖𝑣‖2 =
√

𝑣𝑇 𝑣.

⪯ or ⪰ refer to elementwise comparison on vectors.

𝒟(𝑆) denotes a (computable) probability distribution over the set 𝑆.

2.2. Constrained Minimization
A classical optimization problem is the constrained minimization problem

min
𝜃

𝐽(𝜃)

subject to 𝑔(𝜃) = 0
(1)

where 𝜃 ∈ ℝ𝑚 is the main optimization variable, 𝐽 : ℝ𝑚 → ℝ is a real-valued loss or cost function,
and 𝑔 : ℝ𝑚 → ℝ𝑘 is a vector-valued function of 𝑘 real-valued constraints concatenated into a
vector-valued constraint.

Many real-world problems may be expressed as a constrained optimization problem, including
problems in healthcare [13], power allocation [14], and economics [15].

Inequality constraints (ℎ(𝜃) ⪯ 0) are notably omitted in this formulation, as they can be repre-
sented by introducing nonnegative slack variables of the form 𝑠 ⪰ 0 and reformulating them as
ℎ(𝜃) + 𝑠 = 0, an equality constraint that can be included in 𝑔. The non-negativity constraint on 𝑠
is also an inequality, but it may be enforced as an equality using the elementwise square of some
other vector, i.e., 𝑠 = 𝑠′ ⊙ 𝑠′ (where ⊙ refers to the Hadamard, or elementwise, product of two
vectors).

Lagrangian duality broadens the optimization problem in Equation 1 by introducing Lagrange
multipliers 𝜆 ∈ ℝ𝑘. The Lagrangian ℒ : ℝ𝑚 × ℝ𝑘 → ℝ of Equation 1 is

ℒ(𝜃, 𝜆) = 𝐽(𝜃) + 𝜆𝑇 𝑔(𝜃) (2)

and Equation 1 may be rewritten as the primal problem³

min
𝜃

(max
𝜆

ℒ(𝜃, 𝜆)) (3a)

with the dual problem being

²It is sometimes more convenient to let 𝑡 range continuously (so 𝑡 ∈ ℝ≥0), e.g. in Section 3.1. In this case, discrete-
time update rules would have to be reformulated under a continuous-time paradigm, e.g. differential equations.

³This is often stated using infimum and supremum instead of minimum and maximum. In this work they are
assumed to be equivalent, i.e., sets are assumed to contain maxima and minima.

4

max
𝜆

(min
𝜃

ℒ(𝜃, 𝜆)) (3b)

At a primal optimum 𝑝∗, the primal problem is equivalent to Equation 1 as if the equality
constraints are unsatisfied, then the cost will be arbitrarily large, as there are no restrictions on
the Lagrange multipliers 𝜆 ∈ ℝ𝑘. When the constraints are satisfied, 𝑔(𝜃) = 0, so no value of 𝜆
affects the cost, and the expression reduces to 𝐽(𝜃).

The dual optimum 𝑑∗ is always such that 𝑝∗ − 𝑑∗ ≥ 0 (a proof is provided in Section A.1), and this
is known as the duality gap. When the duality gap is not 0 (weak duality), the dual optimum is
still useful as it provides a lower bound on the primal optimum. In addition, even when the primal
is nonconvex, the dual is guaranteed to be a concave optimization problem (a proof is provided
in Section A.2), which often makes it much more tractable than the primal.

2.3. Single-Agent Methods
The tractability advantage of the dual problem gives rise to several methods for solving Equation 1.
These form the foundation of centralized constrained optimization upon which decentralized
optimization and ASV-ADMM further build.

Many of the following methods (and those in Section 2.4) are summarized from the optimization
courses [7], [16].

2.3.1. Dual Ascent
Dual ascent is a method for solving Equation 1 which keeps iterates for both the primal and dual
variables and updates them in an alternating manner:

𝜃(𝑡+1) = arg min
𝜃

ℒ(𝜃, 𝜆(𝑡))

𝜆(𝑡+1) = 𝜆(𝑡) + 𝛼(𝑡)∇𝜆ℒ(𝜃(𝑡+1), 𝜆(𝑡)) = 𝜆(𝑡) + 𝛼(𝑡)𝑔(𝜃(𝑡+1))
(4)

where 𝛼(𝑡) is the learning rate or step size at time 𝑡. The minimization in the 𝜃 update is not
circular since it minimizes ℒ before the Lagrange multipliers 𝜆 can take an effect (hence solving the
dual, not the primal). Since the dual is guaranteed to be concave, the repeated arg minimization
of 𝜃 is rather easily solved in comparison to the primal problem [7].

2.3.2. Augmented Lagrangian and Method of Multipliers
Dual ascent tends to exhibit poor convergence without stringent assumptions on 𝐽 [7]. It can be
made more numerically robust by adding a quadratic penalty term to the Lagrangian to form the
augmented Lagrangian [16]

ℒ𝑎(𝜃, 𝜆) = 𝐽(𝜃) + 𝜆𝑇 𝑔(𝜃) + 𝜌
2
‖𝑔(𝜃)‖2 (5)

and performing similar primal/dual updates to dual ascent using minimization and gradients of the
augmented Lagrangian ℒ𝑎 instead of ℒ. When 𝛼(𝑡) = 𝜌, this is called the method of multipliers [16].

5

2.3.3. Alternating Direction Method of Multipliers (ADMM)
The alternating direction method of multipliers (ADMM) [5], [12] further builds upon the method
of multipliers by splitting the optimization variable 𝜃 into blocks and updating them similarly to
the method of multipliers in an “alternating” manner.4 This is also known as the “decomposable”
method of multipliers.

Assuming that Equation 1 is decomposable, 𝜃 may be split into two blocks [𝜃𝐴
𝜃𝐵

] such that 𝐽(𝜃) =
𝐽𝐴(𝜃𝐴) + 𝐽𝐵(𝜃𝐵).

The updates for ADMM are then similar to the method of multipliers, except that only one block
is optimized at once:

𝜃(𝑡+1)
𝐴 = arg min

𝜃𝐴

ℒ𝑎(𝜃𝐴, 𝜃(𝑡)
𝐵 , 𝜆(𝑡))

𝜃(𝑡+1)
𝐵 = arg min

𝜃𝐵

ℒ𝑎(𝜃(𝑘+1)
𝐴 , 𝜃𝐵, 𝜆(𝑡))

𝜆(𝑡+1) = 𝜆(𝑡) + 𝜌∇𝜆ℒ𝑎(𝜃(𝑡+1)
𝐴 , 𝜃(𝑡+1)

𝐵 , 𝜆(𝑡))

(6)

This generalizes to the case where 𝐽 is decomposable into more than two blocks by repeatedly
decomposing 𝐽𝐴(𝜃𝐴) or 𝐽𝐵(𝜃𝐵) further using the same technique.

2.4. Multi-Agent Methods
The methods covered in the preceding section all assume a single agent computing the optimal
solution. There are several reasons for parallelization. The most common is performance; further,
sometimes it is impossible to formulate certain settings as a centralized single-agent problem
(Section 1). For example, agents may differ in abilities, beliefs, or desires. Amalgamating agents
together into one single agent is possible, but is not ideal and often loses the nuance of imperfect
information between agents. This section covers some multi-agent adaptations of the aforemen-
tioned single-agent methods.

Static Communication Graph
Parallelization necessitates a means of communication between agents. Suppose each agent is
represented as a node in a graph (or network), with edges representing whether two agents are able
to communicate. In the most general case, this graph may be undirected (bidirectional communi-
cation) or directed (explicit senders/receivers). For simplicity, we focus on the undirected case.

For now, the graph is connected. This formalizes the assumption that given enough time, infor-
mation from any agent can propagate to any other agent, as there is a path of communication edges
between any given pair of agents. Additionally, the network is static (unchanging). Both these
restrictions will later be relaxed in accordance with the formulation in Section 2.4.2. In particular,
𝑁 agents are represented as integral vertices in an undirected, connected, static communication
graph 𝒢 = (𝒱, ℰ) where

4The “alternating” does not refer to a change in sign but rather the axis upon which the optimization is performed.

6

𝒱 = {1, …, 𝑁}
ℰ = {(𝑖, 𝑗) : 𝑖 can communicate with 𝑗}

(7)

and 𝒩𝑖 ≜ {𝑗 : (𝑖, 𝑗) ∈ ℰ} denotes the set of neighbors of agent 𝑖 in 𝒢.

1 2 3

4 5

Figure 2.1: An example of a communication graph 𝒢 with 𝑁 = 5 agents.

2.4.1. Consensus ADMM (C-ADMM)
Now that multiagent communication has been formalized, consider solving an optimization
problem in a distributed manner. In particular, consider a multiagent system where agents must
come to a consensus on a solution 𝜃 to a problem similar to Equation 1. In contrast to the single-
agent methods, each agent keeps its own opinion of the solution as a local variable 𝜃𝑖 and evaluates
𝜃𝑖 using an agent-specific cost function 𝐽𝑖. Notably, 𝜃𝑖 is local to agent 𝑖 (it can be communicated
to other agents, but only agent 𝑖 is responsible for storing and controlling it), and 𝐽𝑖 is private
(known only to agent 𝑖).

A natural setting for this is a learning problem where a dataset is distributed across several agents
in a decentralized manner. Each agent’s cost function then depends on its own subset of data, and
since agent datasets differ, they each will (very likely) have differing opinions on the optimal 𝜃.
However, they still wish to use their collective knowledge to come to a consensus for the optimal
value of 𝜃 in the learned model.

With this motivation, suppose that Equation 1 is of the form

min
𝜃

∑
𝑁

𝑖=1
𝐽𝑖(𝜃) (8)

and to formalize agent opinions 𝜃𝑖, we introduce the slack variable 𝑧 ∈ ℝ𝑚 and reformulate
Equation 8 as

min
𝑧; 𝜃1,…,𝜃𝑁

∑
𝑁

𝑖=1
𝐽𝑖(𝜃𝑖)

subject to 𝜃𝑖 = 𝑧 for all agents 𝑖
(9)

where the constraints 𝜃𝑖 = 𝑧 are called the consensus constraints. Each cost function 𝐽𝑖 is private
to agent 𝑖. Since each agent stores its own 𝜃𝑖 and 𝜃𝑖 is not private, 𝜃𝑖 may be communicated to

7

other agents.5

One may approach this with traditional ADMM, but there are sequential dependencies in the
updates that prevent the method from reaping the benefits of parallelization. In particular, the
consensus optimization problem is a formulation of ADMM with the constraints

𝑔
(
((
(

[
[
[𝜃1

⋮
𝜃𝑁]

]
]

)
))
) =

[
[
[𝜃1

⋮
𝜃𝑁]

]
] −

[
[
[𝑧

⋮
𝑧]
]
] = 0 (10)

Applying the traditional ADMM updates to Equation 9 means that at each iteration, agents
depend on many others in order to perform one update. The alternating nature of ADMM means
that 𝜃2’s update depends on the updated 𝜃1, 𝜃3’s update depends on the updated 𝜃2 and 𝜃1, and
so on. 𝜃𝑁 in particular is quite problematic since it depends on every other agent’s update. In
other words, the 𝜃𝑖 updates have a serial dependence, which means that traditional ADMM is not
parallelizable. Moreover, if 𝒢 is sparse (e.g. Figure 2.2), then it can take a long time (worst case
linear in |𝒱| = 𝑁) for agent 𝑁 to collect all the information necessary to perform its update.

···

Figure 2.2: A linked-list communication graph topology, which is sparse and lends itself to the
worst-case serial dependence in the traditional ADMM updates for consensus optimization.

Consensus ADMM (C-ADMM) remedies the problems traditional ADMM has with parallelization
by restricting update dependencies to only neighbors in 𝒢, where the neighbors of 𝑖 in 𝒢 are {𝑗 :
(𝑖, 𝑗) ∈ ℰ}. This removes the serial dependence as agents only need to incorporate neighboring
opinions at each timestep so only one timestep is required to propagate required opinions (the
aforementioned problematic agent 𝑁 no longer depends on agents 1, …, 𝑁 − 1).

One concern is that faraway opinions are no longer propagated properly, since agents only
communicate with their neighbors. Suppose agent 𝑖 and 𝑗 are far apart in the network, and agent
𝑖’s update is of concern. Since (at least one of) 𝑖’s neighbors will receive 𝑗’s information eventually,
𝑗’s opinion is not attenuated; it is simply included in a delayed neighbor update. Moreover, with
traditional ADMM, 𝑗’s update would need to propagate across the network regardless in order to
update 𝑖 (while earlier agents remain idle), so continuing to update neighboring opinions while 𝑖
waits for 𝑗’s opinion reduces idling across the system.

With this, Equation 9 can be reformulated as

5Agents must communicate their opinions 𝜃𝑖 in order to come to a consensus. Though there are indeed
communication constraints in the decentralized/federated learning setting, it is assumed that the dataset is much
more memory-intensive than 𝜃 and that 𝜃 is not sensitive (agents must come to a consensus on a solution 𝜃), so
communicating 𝜃𝑖 is not problematic.

8

min
𝜃1,…,𝜃𝑁

∑
𝑁

𝑖=1
𝐽𝑖(𝜃𝑖)

subject to 𝜃𝑖 = 𝜃𝑗 for all (𝑖, 𝑗) ∈ ℰ
(11)

The updates for agent 𝑖 are given by

initialize 𝜃(0)
𝑖 arbitrarily

initialize 𝜆(0)
𝑖 = 0

𝜃(𝑡+1)
𝑖 = arg min

𝜃𝑖
{{
{
{{

𝐽𝑖(𝜃𝑖) + (𝜃𝑖)
𝑇 𝜆(𝑡)

𝑖 + 𝜌 ∑
𝑗∈𝒩𝑖

‖𝜃𝑖 −
𝜃(𝑡)

𝑖 + 𝜃(𝑡)
𝑗

2
‖

2

}}
}
}}

𝜆(𝑡+1)
𝑖 = 𝜆(𝑡)

𝑖 + 𝜌 ∑
𝑗∈𝒩𝑖

(𝜃(𝑡+1)
𝑖 − 𝜃(𝑡+1)

𝑗)

(12)

(For a complete derivation, see Section A.3.) These updates are derived from analyzing the
Lagrangian of Equation 9 with slack variables and eliminating several intermediate variables by
exploiting the symmetry of the communication graph.

Dynamic Communication Graph
The C-ADMM algorithm assumes that 𝒢 is static. Unfortunately, in real-world multi-agent
systems, communication may vary across timesteps as agents may move in and out of proximity,
etc. [9]. Capturing this nuance in the communication graph formulation does not require much
modification, and this gives rise to the dynamic communication graph 𝒢(𝑡), where

𝒱 = {1, …, 𝑁}

ℰ(𝑡) = {(𝑖, 𝑗) : 𝑖 can communicate with 𝑗 at time 𝑡}

𝒢(𝑡) = (𝒱, ℰ(𝑡))

𝒩(𝑡)
𝑖 = {𝑗 : (𝑖, 𝑗) ∈ ℰ(𝑡)}

(13)

Note that in this formulation, vertices are static but edges are dynamic (i.e., agents cannot be
introduced nor removed but communication may vary with time).

Unfortunately, removing the static constraint on 𝒢 invalidates many of the theoretical convergence
guarantees known for C-ADMM, since the system loses a lot of its symmetry.

2.4.2. Time-Varying ADMM (TV-ADMM)
TV-ADMM [11] attempts to generalize C-ADMM to a very specific class of dynamic communica-
tion graphs.6 In particular, TV-ADMM assumes each edge (𝑖, 𝑗) ∈ ℰ𝑡 is present with some known,
constant probability 𝑝𝑖𝑗.

6Note that in this report, the abbreviation “TV” means Time-Varying, not Total Variation, as may be the case
in other literature.

9

Before, in Section 2.4.1, 𝒢 was assumed to be connected. Now, since the edges are allowed to vary,
this may no longer be the case. Often there are some connectedness assumptions made on dynamic
communication networks using the union of communication edges over time to allow information
to propagate through the network [9]. However, since the TV-ADMM formulation varies edges
probabilistically, it is possible to not have union-connectedness given enough time. For this reason,
in this report, we do not assume that 𝐺 is connected given enough time. This will allow for more
natural auxiliary states when defined in Section 3.1.

A natural application of this is a network in which links may be faulty with some known, constant
probability. Different links may have different communication probabilities. For example, if two
agents 𝑖 and 𝑗 fail to communicate 1% of the time, then 𝑝𝑖𝑗 = 0.99. If agents 𝑖 and 𝑗 are not able
to communicate at all (in the static model), then 𝑝𝑖𝑗 = 0.

Whereas C-ADMM views neighboring opinion contributions equally since neighbors remain
constant at all timesteps, TV-ADMM introduces an importance weight which weights unlikely
neighbor contributions more highly than likely ones. The motivation is to make the updates more
uniform to try and bring it closer to the C-ADMM updates.

In order to achieve this, neighboring connectivity probabilities are first normalized via a softmax
operation

𝑤(𝑡)
𝑖𝑗 =

exp(𝑝𝑖𝑗)
∑

𝑘∈𝒩(𝑡)
𝑖

exp(𝑝𝑖𝑘)
(14)

and the importance weight for the 𝑖𝑗-link is denoted

𝛼(𝑡)
𝑖𝑗 = 1

|𝑁 (𝑡)
𝑖 | 𝑤(𝑡)

𝑖𝑗

(15)

where intuitively, the inverse relationship more greatly weights contributions from unlikely connec-
tions. TV-ADMM modifies the C-ADMM updates accordingly:7

𝜃(𝑡+1)
𝑖 = arg min

𝜃𝑖
{{
{
{{

𝐽𝑖(𝜃𝑖) + (𝜃𝑖)
𝑇 𝜆(𝑡)

𝑖 + 𝜌 ∑
𝑗∈𝒩𝑖

𝛼(𝑡)
𝑖𝑗 ‖𝜃𝑖 −

𝜃(𝑡)
𝑖 + 𝜃(𝑡)

𝑗

2
‖

2

}}
}
}}

𝜆(𝑡+1)
𝑖 = 𝜆(𝑡)

𝑖 + 𝜌 ∑
𝑗∈𝒩𝑖

𝛼(𝑡)
𝑖𝑗 (𝜃(𝑡+1)

𝑖 − 𝜃(𝑡+1)
𝑗)

(16)

Inspired by [17], TV-ADMM replaces the last term 𝜌 ∑(…) (call it ℎ(𝑡+1)
𝑖) in the arg min with a

first-order Taylor approximation around the previous iterate 𝜃(𝑡)
𝑖 :

7The original TV-ADMM paper assumes a regularized cost function 𝐽(𝜃) + 𝜇𝑟(𝜃), where 𝜇 is a regularization
strength parameter and 𝑟(𝜃) is the ℓ1 or ℓ2 norm. However, since this can be viewed as another cost function 𝐽 ′(𝜃),
the regularization term 𝜇𝑟(𝜃) is omitted here.

10

ℎ(𝑡+1)
𝑖 (𝜃𝑖) ≈ ℎ(𝑡+1)

𝑖 (𝜃(𝑡)
𝑖) + (∇ℎ(𝑡+1)

𝑖 (𝜃(𝑡)
𝑖))

𝑇
(𝜃𝑖 − 𝜃(𝑡)

𝑖)

= ℎ(𝑡+1)
𝑖 (𝜃(𝑡)

𝑖) + (∇ℎ(𝑡+1)
𝑖 (𝜃(𝑡)

𝑖))
𝑇
𝜃𝑖 − (∇ℎ(𝑡+1)

𝑖 (𝜃(𝑡)
𝑖))

𝑇
𝜃(𝑡)

𝑖

(17)

Here, ∇ℎ(𝑡+1)
𝑖 refers to an arbitrary (sub-)gradient of ℎ(𝑡+1)

𝑖 , and since ℎ(𝑡+1)
𝑖 is in an arg min, the

constant terms ℎ(𝑡+1)
𝑖 (𝜃(𝑡)

𝑖) and −(∇ℎ(𝑡+1)
𝑖 (𝜃(𝑡)

𝑖))
𝑇
(𝜃(𝑡)

𝑖) may be dropped as they do not affect
the minimization over 𝜃𝑖.

Additionally, TV-ADMM includes a Bregman divergence term ‖𝜃𝑖 − 𝜃(𝑡)
𝑖 ‖

2
 with weight 𝛽(𝑡) =

𝛽0
√

2𝑡 (where 𝛽0 is tuned experimentally as in TV-ADMM) in order to reduce variance caused
by the randomness of the network. This term, intuitively, makes agents firmer in their opinions
as time elapses. Together with the first-order approximation of ℎ(𝑡+1)

𝑖 , this yields the 𝜃𝑖 update
provided in TV-ADMM:

𝜃(𝑡+1)
𝑖 = arg min

𝜃𝑖

{𝐽𝑖(𝜃𝑖) + (𝜃𝑖)
𝑇 𝜆(𝑡)

𝑖 + (∇ℎ(𝑡+1)
𝑖 (𝜃(𝑡)

𝑖))
𝑇
𝜃𝑖 + 𝛽(𝑡)‖𝜃𝑖 − 𝜃(𝑡)

𝑖 ‖
2
} (18)

TV-ADMM is applicable when the communication probabilities 𝑝𝑖𝑗 are easily calculable, but
even simple scenarios require thorough analysis and heuristics to determine appropriate values
of 𝑝𝑖𝑗 [11]. In some cases, 𝑝𝑖𝑗 may even vary over time, which violates the assumptions made
in TV-ADMM (fixed communication probabilities), so the method cannot be applied directly.
This motivates modeling communication probabilities as a function of some other factors, so the
importance weight 𝛼𝑖𝑗 can be determined more easily, making TV-ADMM more widely applicable.
This is the basis for ASV-ADMM (Auxiliary State-Varying ADMM), an extension of TV-ADMM
and the original contribution of this report, further discussed in the next section.

11

3. Auxiliary State-Varying ADMM (ASV-ADMM)
TV-ADMM assumes unreliable communication links with a fixed, known probability 𝑝𝑖𝑗, and this
assumption is quite restrictive, as agent communication in reality is often nonstatic. Communi-
cation may depend on many factors, including spatial factors such as proximity, obstacles, or dead
zones, or temporal factors such as battery drainage. As such, it is beneficial to define something
which allows us to capture the communication effectiveness as a function of these factors. This
will allow for the extension of TV-ADMM to more complex communication failure models. We
dub this extension Auxiliary State-Varying ADMM (ASV-ADMM), and introduce and motivate
it in this section.

3.1. Auxiliary States
To avoid confusion with the “state” of an agent 𝑖 typically referring to the optimization variable
𝜃𝑖, it is helpful to define its auxiliary state, which intuitively represents the factors upon which an
agent’s communication depends.

The set of all possible auxiliary states that agent 𝑖 can attain is called agent 𝑖’s auxiliary domain,
denoted via 𝑋𝑖. Each 𝑋𝑖 is a subset of the global auxiliary domain 𝑋 ≜ ⋃𝑁

𝑖=1 𝑋𝑖, and 𝑥(𝑡)
𝑖 ∈ 𝑋𝑖

denotes the auxiliary state of agent 𝑖 at iteration 𝑡.

Allowing 𝑋𝑖 to vary for each 𝑖 (as opposed to just having all 𝑋𝑖 = 𝑋) allows for agent-specific
constraints on agents’ auxiliary states. For example, consider a scenario where agents can only
roam a particular part of the environment, but must stay within a certain distance of a “home
base.” In this case, agents’ “home bases” need not be identical, so their auxiliary domains should
not be identical. This example is shown in Figure 3.1.

ℝ²

𝑋1 𝑋2

𝑋3

Figure 3.1: An example where agent auxiliary domains differ. In this case, agents can only roam
a region within a particular distance of a point. In this example, 𝑋 = 𝑋1 ∪ 𝑋2 ∪ 𝑋3 ⊂ ℝ2.

Auxiliary states evolve according to some auxiliary update rule

12

𝑥(𝑡+1)
𝑖 = update(𝑥(𝑡)

𝑖 , 𝜀(𝑡)
𝑖) (19)

where 𝜀(𝑡)
𝑖 ∼ 𝒟(𝑋) represents noise and may be agent-specific.

The concept of auxiliary states is similar to exogeneity (externality) in the literature [10]; however,
auxiliary states may incorporate endogenous information in addition to exogenous information:
𝑋 may (but need not) be entirely unrelated to the 𝜃-optimization domain ℝ𝑚. In other words,
agent communication may depend on (endogenous) factors related to their optimization variable,
external (exogenous) factors, or a combination of both.

As an example, coverage agents seek to optimize their positions, which certainly affects proximity
(endogenous), but may not consider battery life (exogenous). However, both of these factors may
affect communication, and may be included in the global auxiliary domain 𝑋. As a result, the
auxiliary state formulation is quite general in order to allow various communication models to fit
this formulation.

3.2. Communication Probability Functions
The graph dynamics in TV-ADMM can be adapted to auxiliary states by allowing the communi-
cation graph edges each to vary with some time-dependent probability 𝑝(𝑡)

𝑖𝑗 . That is, (𝑖, 𝑗) ∈ ℰ(𝑡)

with probability 𝑝(𝑡)
𝑖𝑗 .

In particular, assume that 𝑝(𝑡)
𝑖𝑗 is determined by some known, static function

𝑝 : 𝑋2 → [0, 1] (20)

of the auxiliary states 𝑥(𝑡)
𝑖 and 𝑥(𝑡)

𝑗 such that 𝑝(𝑡)
𝑖𝑗 = 𝑝(𝑥(𝑡)

𝑖 , 𝑥(𝑡)
𝑗). Since 𝒢 is undirected, additionally

impose the symmetry constraint 𝑝(𝑡)
𝑖𝑗 = 𝑝(𝑡)

𝑗𝑖 .

Note that even though we assume 𝑝 is static, this model can still capture time-dependent graph
transitions by simply adjoining 𝑡 to 𝑥𝑖 and treating the quantity (𝑥(𝑡)

𝑖 , 𝑡) ∈ 𝑋 ∪ ℕ as the new
auxiliary state.

This is a generalization of the previous models. In the static communication model, 𝑝 is

𝑝(𝑥(𝑡)
𝑖 , 𝑥(𝑡)

𝑗) = {1 if (𝑖, 𝑗) ∈ ℰ
0 if (𝑖, 𝑗) ∉ ℰ (21)

where 𝑋 = 𝒱.

In TV-ADMM, 𝑝 is simply 𝑝(𝑥(𝑡)
𝑖 , 𝑥(𝑡)

𝑗) = 𝑝𝑖𝑗, where if (𝑖, 𝑗) ∉ ℰ, then 𝑝𝑖𝑗 = 0, and again 𝑋 = 𝒱.
This represents a case where the communication link between agents 𝑖 and 𝑗 is faulty and fails
with some (known or estimated) probability 1 − 𝑝𝑖𝑗.

Some natural examples of 𝑋 and 𝑝 are given below. As mentioned in Section 2.4.2, the connect-
edness assumption on 𝒢(𝑡) is relaxed since probabilistic graphs are not necessarily connected.

13

3.2.1. Distance Thresholding
One possibility for 𝑋 is position, say, ℝ2, for agents on a flat surface. The following are examples
of some communication functions with these auxiliary states.

One proximity-based 𝑝-function is a threshold distance function, where 𝑑(𝑡)
𝑖𝑗 ≜ ‖𝑥(𝑡)

𝑖 − 𝑥(𝑡)
𝑗 ‖, is

𝑝(𝑥(𝑡)
𝑖 , 𝑥(𝑡)

𝑗) =
{{
{
{{1 if 𝑑(𝑡)

𝑖𝑗 ≤ 𝑅
0 if 𝑑(𝑡)

𝑖𝑗 > 𝑅
(22)

for some distance threshold 𝑅.

An example is given in Figure 3.2. This communication graph has the same vertices as in Figure 2.1
(assuming they were originally 1 unit away from their nearest neighbor). Now, though, the edges
are assumed to be determined from the auxiliary domain ℝ2 with a hard cutoff communication
distance of 𝑅 = 1 in Figure 3.2, leading to a much different set of edges. Vertex positions have been
slightly jittered to indicate that agents are now moving in space. Note the discrepancy between
the two edge sets when auxiliary states are introduced.

1 2 3

4 5
ℝ²

1 2 3

4 5

Figure 3.2: Left: Figure 2.1 copied for convenience. Right: The same communication graph with
𝑋 = ℝ2 under a hard distance thresholding 𝑝-function with 𝑅 = 1 and agents slightly jittered. Red
dashed edges indicate removed connections. Bolded green edges indicate newly formed connections.

A smoothed version of distance thresholding is also possible (with quadratic falloff rate 𝜅):

𝑝(𝑥(𝑡)
𝑖 , 𝑥(𝑡)

𝑗) =

{
{
{
{
{1 if 𝑑(𝑡)

𝑖𝑗 ≤ 𝑅
1

1+𝜅(𝑑(𝑡)
𝑖𝑗 −𝑅)

2 if 𝑑(𝑡)
𝑖𝑗 > 𝑅 (23)

This is equivalent to

𝑝(𝑥(𝑡)
𝑖 , 𝑥(𝑡)

𝑗) = 1

1 + 𝜅 (max{0, 𝑑(𝑡)
𝑖𝑗 − 𝑅})

2 (24)

14

When 𝜅 = ∞, the unsmoothed version is equivalent to the smoothed version.8

In general, it is difficult to visualize 𝑝 as a function of two positions when 𝑋 = ℝ𝑛, as there
would be 2𝑛 inputs and a single real-valued output, requiring 2𝑛 + 1 dimensions for visualization.
However, since 𝑑𝑖𝑗 is always a scalar regardless of 𝑛 and this 𝑝-function only depends on 𝑑𝑖𝑗, one
can plot 𝑝 against 𝑑𝑖𝑗 instead. Figure 3.3 is generated with 𝑅 = 1 and 𝜅 = 1.

Figure 3.3: A smoothed distance thresholding 𝑝-function with distance on the horizontal axis.
The red dashed line indicates the boundary at which communication begins to falter, i.e., 𝑝 drops

below 1.

One can see that when 𝑑𝑖𝑗 < 𝑅, communication is guaranteed (𝑝 = 1), and when 𝑑𝑖𝑗 ≫ 𝑅, 𝑝 ≈ 0,
as is natural for when agents are close or far apart.

Another workaround to have some visual intuition for agent communication is to restrict the
auxiliary domain 𝑋 to only have one dimension so 𝑋 = ℝ. The communication interaction between
two agents can then be visualized using only 3 dimensions since there are two inputs and a single
output. These visualizations are provided in Section B.1.

As another workaround for visualization, consider 𝑋 = ℝ2 and fix one of the agents at a specific
position, say, (0, 0). Then, the other agent moves around freely in ℝ2. We can then plot the
probability 𝑝𝑖𝑗 as a function of ℝ2 using only 3 dimensions. The contour plots in this section will
take this form.

8Technically, at the boundary 𝑑(𝑡)
𝑖𝑗 = 𝑅, the smoothed version is undefined when 𝜅 = ∞ due to the ∞ ⋅ 0 indeter-

minate form in the denominator. We define the boundary probability to be 1 in accordance with the equalities in
Equation 22. If strict inequalities are desired, then the boundary probability should be 0.

15

Figure 3.4 provides an example of a smoothed distance thresholding 𝑝-function with 𝜅 = 1 and
𝑅 = 1. Agent 1 is fixed at the origin (0, 0) and agent 2 is able to freely roam the space, with
𝑝(𝑥1, 𝑥2) plotted on the colorbar from 0 to 1 as a function of agent 2′s position. Note that concentric
circles in Figure 3.4 represent 𝑑𝑖𝑗 so that the positive half of a cross-section through the origin of
Figure 3.4 is identical to Figure 3.3.

Figure 3.4: A smoothed distance-thresholding 𝑝-function with 𝑋 = ℝ2 and 𝑥1 fixed at the origin
(0, 0). Red dashed lines indicate the boundary at which communication begins to falter, i.e., 𝑝

drops below 1.

3.2.2. Dead Zones
“Dead zones,” which limit communication, may also be incorporated with auxiliary states. One
such 𝑝-function incorporating dead zones 𝐷 ⊂ 𝑋 is

𝑝(𝑥(𝑡)
𝑖 , 𝑥(𝑡)

𝑗) = {0 if 𝑥(𝑡)
𝑖 ∈ 𝐷 or 𝑥(𝑡)

𝑗 ∈ 𝐷
1 otherwise

(25)

When dead zone communication is not impossible, but less likely, one may use a nonzero proba-
bility if either agent is in a dead zone.

Figure 3.5 provides an example of how dead zones can affect communication. The same smoothed
distance thresholding 𝑝-function in Figure 3.4 now has dead zones applied where communication
is impossible. In particular, 𝐷 consists of three circles with centers at (−1, −1), (1, 1), (−1, 2), and
radii of 1

2 , 1
2 , 1, respectively.

16

Figure 3.5: A smoothed distance-thresholding 𝑝-function with 𝑋 = ℝ2 and 𝑥1 fixed at the origin
with dead zones applied. Red dashed lines indicate the boundary at which communication begins

to falter, i.e., 𝑝 drops below 1.

3.2.3. Obstacles
Obstacles can also be included in a similar fashion to dead zones, though this may be more
difficult to explicitly formulate mathematically. This 𝑝-function intuitively captures line-of-sight for
impermeable obstacles. If one has a set of obstacles 𝑂 ⊂ 𝑋, an impermeable obstacle formulation is

𝑝(𝑥(𝑡)
𝑖 , 𝑥(𝑡)

𝑗) = {0 if the line between 𝑥(𝑡)
𝑖 and 𝑥(𝑡)

𝑗 passes through any point in 𝑂
1 otherwise

(26)

Similarly to dead zones partially inhibiting communication rather than making it outright
impossible, permeable obstacles may be permissible as well (simply increase the communication
probability representing permeability when communicating through obstacles to a nonzero value).

Figure 3.6 illustrates how line-of-sight can affect communication when obstacles are impermeable.
This also uses the same smoothed distance thresholding 𝑝-function in Figure 3.4 and Figure 8,
but now enforces line-of-sight between agents 1 and 2. 𝑂 is the same as 𝐷 in Figure 3.5: three
circles with centers at (−1, −1), (1, 1), (−1, 2), and radii of 1

2 , 1
2 , 1, respectively.

17

Figure 3.6: A smoothed distance-thresholding 𝑝-function with 𝑋 = ℝ2 and 𝑥1 fixed at the origin
with obstacles and line-of-sight applied. Red dashed lines indicate the boundary at which commu-

nication begins to falter, i.e., 𝑝 drops below 1.

3.2.4. Temporal Factors
There may be auxiliary state information other than position that is helpful for capturing
communication probabilities. For example, agents may have limited battery life. In this case, 𝑝
should decrease with time, and 𝑋 may simply be ℕ (or ℝ≥0 in a continuous-time setting).

One such 𝑝-function, simply characterizing whether agents are dead or alive, is

𝑝(𝑥(𝑡)
𝑖 , 𝑥(𝑡)

𝑗) = {1 if 𝑡 ≤ 𝐵𝑖 and 𝑡 ≤ 𝐵𝑗
0 otherwise (27)

where 𝐵𝑖 ∈ ℕ (or ℝ≥0) is the amount of time agent 𝑖 can stay alive (battery capacity), and we
implicitly include 𝑖 in the auxiliary state to determine 𝐵𝑖, so 𝑋 = ℕ ∪ 𝒱 (or ℝ≥0 ∪ 𝒱). This can
be smoothed in a similar manner to distance thresholding with 𝐵𝑖 and 𝐵𝑗 instead of 𝑅, with the
interpretation of agents being more likely to have communication faults as their batteries deplete
after a certain point. The communication falloff rate 𝜅𝑖 now allowed to be agent-specific as it
depends on their individual battery capabilities which may be different.

𝑝(𝑥(𝑡)
𝑖 , 𝑥(𝑡)

𝑗) = 𝑝(𝑡𝑖, 𝑡𝑗) = 1
1 + 𝜅𝑖(max{0, 𝑡𝑖 − 𝐵𝑖})2 + 𝜅𝑗(max{0, 𝑡𝑗 − 𝐵𝑗})2 (28)

Note the unsmoothed formulation is the smoothed version with 𝜅𝑖 = 𝜅𝑗 = ∞.9

9Again, with a technicality at the boundaries 𝑡𝑖 = 𝐵𝑖 or 𝑡𝑗 = 𝐵𝑗, similarly to the previous footnote.

18

An example is given in Figure 3.7. Even though 𝑋 = ℝ≥0 ⊂ ℝ in this case, 𝑥𝑖 does not represent
spatial position, but a point in time, so this visualization does not represent the same concept as
in the previous figures. This example is generated with 𝜅𝑖 = 𝜅𝑗 = 1, 𝐵𝑖 = 1, and 𝐵𝑗 = 2.

Figure 3.7: A plot of a smoothed distance-thresholding 𝑝-function of two agents’ times 𝑡𝑖, 𝑡𝑗 ∈
ℝ with battery thresholds 𝐵𝑖 = 1 and 𝐵𝑗 = 2. Red dashed lines indicate the boundary at which

communication begins to falter, i.e., 𝑝 drops below 1.

These examples may also be combined such that the auxiliary domain captures multiple external
factors and so does 𝑝. For example, perhaps battery charging could be incorporated into 𝑝 so that if
agents visit some recharge station, their batteries are refreshed. This would require auxiliary states
to capture both spatial and temporal factors, and an additional component in 𝑋 representing
recent recharges.10

3.3. Auxiliary State-Varying ADMM (ASV-ADMM)
With auxiliary states, time-dependent probabilities 𝑝𝑖𝑗 can be represented via 𝑝(𝑥(𝑡)

𝑖 , 𝑥(𝑡)
𝑗).

Replacing the fixed 𝑝𝑖𝑗 terms in TV-ADMM with the time-dependent terms yields the novel (to
the best of our knowledge) auxiliary state-varying ADMM (ASV-ADMM). The softmaxed weights
𝑤(𝑡)

𝑖𝑗 now incorporate the time-dependent probabilities 𝑝(𝑡)
𝑖𝑗 :

𝑤(𝑡)
𝑖𝑗 =

exp(𝑝(𝑡)
𝑖𝑗)

∑
𝑘∈𝒩(𝑡)

𝑖

exp(𝑝(𝑡)
𝑖𝑘)

(29)

10Instead of including the recharges in 𝑋, 𝑝 could theoretically incorporate some more complicated internal state
to remember if agents have recharged recently, but the auxiliary state formulation imposes the restriction that 𝑝 is
static, so 𝑝 cannot have internal state.

19

and the importance weights 𝛼(𝑡)
𝑖𝑗 and corresponding updates to 𝜃𝑖 and 𝜆𝑖 use the new formulation

of 𝑤(𝑡)
𝑖𝑗 . The updates are otherwise identical to those in Section 2.4.2.

20

4. Methodology
Suppose that mobile agents are trying to collectively learn some spatial field (e.g. temperature,
resource availability, crowd density). In this scenario, agents roam the environment and collect
data, then fit a model to that data. The single-agent case is conventional: the agent simply learns
the model parameter 𝜃 using its local data. In the multi-agent case, however, each agent may
have differing samples, so agents will likely have differing opinions on what model parameter 𝜃
is optimal (i.e., it is likely that 𝜃𝑖 ≠ 𝜃𝑗 ∀𝑖 ≠ 𝑗). They then need to communicate to come to a
consensus on the globally optimal model parameter 𝜃. Agents’ local sample data might be difficult
to communicate (for reasons discussed in Section 2.4.1), so C-ADMM is necessary to alleviate the
struggles of traditional ADMM.

We would like to explore the convergence of ASV-ADMM under limited communication when
compared with C-ADMM. With the above motivation, one way to formulate this scenario is to
first allow agents to privately collect samples, then have them learn 𝜃. After agents have collected
sufficient samples, they communicate to come to a consensus on 𝜃 such that 𝜃𝑖 = 𝜃. However, if the
data collection process is expensive, this may not be ideal, and they may wish to collaboratively
refine their global estimates whilst collecting data (rather than collecting everything in advance
and then learning 𝜃), to have an initial global estimate available more quickly.

In this case, agents must communicate whilst collecting samples, and hence communication
naturally may depend on an auxiliary state (for example, in spatial field estimation, communi-
cation probability may decrease with distance). This case is more suited for ASV-ADMM than
C-ADMM.¹¹

4.1. Experimental Setup
Consider a distributed regression setting with the following properties:

• Agents repeatedly sample noisy data 𝑦(𝑡)
𝑖 ∈ ℝ that depends on the auxiliary state 𝑥(𝑡)

𝑖 .
• There is some unknown global function 𝑓 : 𝑋 → ℝ (representing some quantity, e.g., temper-

ature, as a function of position) which agents collectively attempt to approximate via 𝑓 : 𝑋 →
ℝ, where 𝑓 is some learned model with parameter 𝜃.

• Agents seek to minimize the expected regression error 𝐽 which captures the loss between 𝑓 and
𝑓 when aggregating over all samples.

• Agents repeatedly take samples 𝑦(𝑡)
𝑖 by roaming their local environment 𝑋𝑖 ⊆ 𝑋.

• Agents update their auxiliary states by taking a step towards a random point in 𝑋𝑖 with some
step size 𝛿 using a convex update.¹²

• Assume 𝑦(𝑡)
𝑖 = 𝑓(𝑥(𝑡)

𝑖) + 𝜂(𝑡)
𝑖 , where 𝜂(𝑡)

𝑖 denotes zero-mean noise and is sampled i.i.d. from
Gaussian(0, 𝜎).

• Agents only know their own sample data and can only communicate 𝜃(𝑡)
𝑖 and 𝑥(𝑡)

𝑖 to other agents
(no samples 𝑦(𝑡)

𝑖 are communicated).

¹¹TV-ADMM cannot be applied here, assuming the communication probabilities 𝑝𝑖𝑗 are nonconstant.
¹²Here it is assumed that 𝑋𝑖 is convex so that an agent can never “escape” 𝑋𝑖, that is, 𝑥(𝑡)

𝑖 ∈ 𝑋𝑖 for all time.
However, one may modify the update so that it samples a random positional update and simply resamples if that
would cause the auxiliary state to escape 𝑋𝑖.

21

• The global cost evaluates 𝑓 on the collective local data {(𝑥(𝑡)
𝑖 , 𝑦(𝑡)

𝑖)} across all agents and all
𝑡.

This is formulated mathematically below, where 𝑥𝑖′(𝑡) ∼ 𝑋𝑖 independently and uniformly and 𝑇
is the final timestep of evaluation:

𝑥(𝑡+1)
𝑖 = (1 − 𝛿)𝑥(𝑡)

𝑖 + 𝛿𝑥𝑖′(𝑡)

𝐽 (𝑡)
𝑖 (𝜃𝑖) = 1

𝑡
∑

𝑡

𝑡′=1
‖𝑓𝑖(𝑥(𝑡′)

𝑖) − 𝑦(𝑡′)
𝑖 ‖

2

Find arg min
𝜃1,…,𝜃𝑁; 𝑧

1
𝑁

∑
𝑁

𝑖=1
𝐽 (𝑇)

𝑖 (𝜃𝑖)

subject to 𝜃𝑖 = 𝑧 ∀𝑖 ∈ 𝒱

(30)

One may notice that the function 𝐽𝑖 is time-dependent due to the newly acquired samples at each
timestep, and ADMM variants assume the cost function to be only dependent on the optimization
variable 𝜃. However, since the horizon length (𝑇) is fixed in advance and the cost is only minimized
at 𝑡 = 𝑇 , it is still in accordance with the ADMM formulation. In our experiment, though, for
visual purposes, the mean squared error is evaluated at regular intervals.¹³

4.2. Experimental Details
Since the primary focus is on exploring the convergence under limited communication, and not so
much on the sophistication of the model 𝑓 given 𝜃, we limit the class of 𝑓 to be rather unexpressive.
A simple but natural choice for 𝑓∗ in the context of resource availability is a sum of Gaussians:

𝑓∗(𝑥𝑖) = ∑
𝑀

𝑚=1
𝑎𝑚 exp(−‖𝑥𝑖 − 𝑐𝑚‖2

2𝜎2
𝑚

) (31)

where 𝑀 is the total number of resource clusters with 𝑎𝑚, 𝑐𝑚, and 𝜎𝑚 representing the amplitude,
center, and spread of the 𝑚th resource cluster, respectively. The goal is for agents to come to
a consensus on the globally optimal 𝑎𝑚, 𝑐𝑚, and 𝜎𝑚, representing the prevalence, location, and
spread of resources, respectively.

We choose 𝑋 to be the square [−1, 1]2 so that 𝑥𝑖 represents position in the 2D plane. We initialize
agents uniformly at random in 𝑋.

Our goal is to measure several types of losses. Local losses refer to agent losses on their own private
dataset at a specific timestep, i.e., 𝐽 (𝑡)

𝑖 (𝜃(𝑡)
𝑖). Global loss refers to the loss when aggregating over

all private datasets using the average agent estimate:

¹³The motivation here is allowing agents to refine their opinions of 𝜃 as they collect more samples, rather than
having to collect all the samples first and then come to a consensus on 𝜃, and allowing the visualization of the
opinions over time. This is not in accordance with the required ADMM formulation, which requires 𝐽 to be time-
independent.

22

1
𝑁

∑
𝑁

𝑖=1
𝐽 (𝑡)

𝑖 (𝜃(𝑡)) (32)

where 𝜃(𝑡) is the mean of agent opinions 1
𝑁 ∑𝑁

𝑖=1 𝜃(𝑡)
𝑖 . Consensus loss refers to the mean squared

error between agent opinions

1
𝑁

∑
𝑁

𝑖=1
‖𝜃(𝑡)

𝑖 − 𝜃(𝑡)‖
2

(33)

As is done in the TV-ADMM paper [11], C-ADMM and ASV-ADMM are evaluated using the
global objective loss as well as the consensus loss (how much agents vary in their opinions). The
local objective losses are also evaluated.

For hyperparameters, we use 𝜌 = 0.001 and 𝛽0 = 0.001 (for the Bregman divergence term).

For experimental parameters, we use 𝑀 = 1 and set 𝑁 to be between 3 and 10. This is to ease
computation time, but also because convergence was more difficult to achieve at greater values of
𝑀, 𝑁 . We set 𝛿 = 1 so auxiliary states are updated fully uniformly randomly within 𝑋𝑖, and since
𝑋 = [−1, 1]2 is convex, the convex update rule suffices. 𝜎 varies depending on the experiment.
𝑇 is chosen experimentally but depends on the amount necessary to illustrate convergence or
divergence to a significant degree.

Probability Functions

In this experiment, we evaluate the performance of ASV-ADMM on several choices for 𝑝 inspired
by real-world scenarios. For our first experiment, we use the proximity-based model described in
Equation 24 and vary 𝜅, the rate of communication falloff, in the experiment.

In another experiment (Section 5.3), we introduce dead zones into the environment, where agents
are unable to communicate as described in Section 3.2.2.

Simulation

To evaluate our algorithm, we implemented ASV-ADMM in Python with C-ADMM as a bench-
mark. For a fair comparison, since the Bregman divergence term 𝛽(𝑡)‖𝜃𝑖 − 𝜃(𝑡)

𝑖 ‖
2
 is not the main

insight in ASV-ADMM, the presented results also incorporate it into the baseline C-ADMM
update.

Note that though it may technically be possible due to the uniform randomness of our experiments,
TV-ADMM is not evaluated here due to the difficulty of explicitly calculating 𝑝𝑖𝑗 in many of the
experiments. This demonstrates one advantage of ASV-ADMM over TV-ADMM in its ease of use.

We use the SciPy optimization package [18] to solve the arg min in the primal-dual updates.

23

5. Results
5.1. Distance-Based Falloff Rate
For this experiment, all simulation parameters except the falloff rate 𝜅 are held constant to compare
the performance of ASV-ADMM and C-ADMM as 𝑝 varies. The following simulations are run
with 𝑁 = 5 agents, 𝑀 = 1, 𝜎 = 0.1 over 200 timesteps.

The below plots show the local, global, and consensus losses (as defined in Section 4.1) as the
falloff rate 𝜅 is gradually increased. The results of ASV-ADMM are shown in blue and C-ADMM
in red (as is the case for all of our experiments). These plots represent a single run; in ensemble
simulations, a single divergent run could significantly skew the results.

Figure 5.1: Falloff Rate of 0

Figure 5.2: Falloff Rate of 12

24

Figure 5.3: Falloff Rate of 25

Figure 5.4: Falloff Rate of 50

Figure 5.5: Falloff Rate of 100

25

Figure 5.6: Final agent estimates with 𝜅 = 6. Color represents resource availability, with brighter
colors indicating higher amounts of resources.

At lower falloff rates, the better performer is arbitrary. This is likely due to the communication
graph still being static and connected enough for C-ADMM to perform well. However, as 𝜅
increases to 25 and above, ASV-ADMM becomes the better performer in global loss. We expect
this is because as the communication graph switches more frequently, ASV-ADMM more equally
weights agent contributions than C-ADMM, allowing agents to more easily incorporate information
from unlikely neighbors.The consensus loss is often quite oscillatory; this is likely due to different
agent opinions across the network that sway back and forth as information is propagated. However,
it does generally decrease as time goes on, indicating agents are refining their opinions in a
consensus manner.

5.2. Distance-Based Falloff Rate with Domain-Restricted Agents
In the previous experiment, every agent’s data is drawn from the same distribution, which
may allow C-ADMM to perform better than in real-world cases as agent-specific overfitting will
generalize well to the global data. To investigate this in a more systematic manner, we run a
simulation with the same objective and distance-based communication falloff but with 𝑁 = 4
agents each restricted to their respective quadrants, i.e., 𝑋1 = (+, +), 𝑋2 = (−, +), 𝑋3 = (−, −),
𝑋4 = (+, −). This makes agent communication essential as they must share their local data since
they are the only ones that can access it (without proper communication, agents will overfit to
their local data). This experiment used 𝑀 = 1 and 𝜎 = 0.0 over 200 timesteps. We chose no noise
to highlight the communication conditions more easily in our results.

Figure 5.7 serves as a baseline comparison for this experiment with 𝜅 = 0, i.e., perfect communi-
cation.

26

Figure 5.7: Quadrant Falloff Rate 0

The plots below illustrate when 𝜅 is increased to more severely limit communication:

Figure 5.8: Quadrant Falloff Rate 50

Figure 5.9: Quadrant Falloff Rate 100

27

Figure 5.10: Quadrant Falloff Rate 203

Figure 5.11: Quadrant Falloff Rate 225

Both ASV-ADMM and C-ADMM perform similarly from 𝜅 = 1 to 𝜅 = 50. However, at 𝜅 = 100,
the behavior changes drastically where C-ADMM initially converges faster than ASV-ADMM,
but near the end of the simulation, ASV-ADMM converges to a more optimal solution. As 𝜅
continues to increase to around 200 as shown in the last image, we can see that ASV-ADMM
converges near the end while C-ADMM does not converge within the time frame. From the local
losses, there appears to be an agent that has a vastly different opinion from everyone else, and
C-ADMM is not able to reconcile this, but ASV-ADMM is near the end of the simulation. As
𝜅 continues to increase, both ASV-ADMM and C-ADMM diverge. Global and consensus losses
are comparable for the cases where they both converge, and similar oscillatory behaviors as the
previous experiment are observed but to a lesser extent.

5.3. Dead Zones
In this experiment, random circular regions are created in the environment where agents are unable
to communicate with one another as seen below and in accordance with Equation 25. We see
divergence in C-ADMM similar to communication falloff with a high value of 𝜅 and attribute this
to the switching communication network and possibly “isolated” agents for some timesteps in this
formulation throwing off agent updates.

28

The consensus losses corroborate this; one can see that C-ADMM agents struggle to come to similar
parameters whereas ASV-ADMM is still able to come to a consensus. The local losses indicate that
agents are willing to compromise some of their local opinion to form a better consensus, since it
converges to their average (otherwise every local loss would mostly decrease). There may be some
numerical instability at this scale in C-ADMM as the consensus loss does seem unreasonably large.

The following plots were generated with 𝑁 = 3 agents and 𝜎 = 0.1 with 𝑇 = 50.

Figure 5.12: Dead zones loss curve

Figure 5.13: Dead zones final contour plot. Red areas represent dead zones. Final agent estimates
with 𝜅 = 6. Color represents resource availability, with brighter colors indicating higher amounts

of resources.

29

6. Discussion
Our loss curves use a logarithmic scale. Since our losses operate over many orders of magnitude,
we felt this was necessary to accurately compare, though it does disproportionately highlight
differences at lower orders of magnitudes.

From our experiments, it appears as though ASV-ADMM often performs similarly to C-ADMM
and our results are inconclusive. Sometimes, though, the stochasticity of the environment and
dynamics makes it difficult for agents to reach consensus, and eventually the frequent communi-
cation switching causes C-ADMM to diverge. ASV-ADMM often handles this better, keeping
agents in agreement despite the erratic nature of the environment, until 𝑝 becomes too harsh
and both algorithms diverge. Though we ran many experiments with many parameters and
hyperparameters, there was never a case where C-ADMM converged but ASV-ADMM diverged.

Though obstacle and temporal formulations were not explicitly tested, our intuition from these
experiments suggests that obstacles would behave similarly to dead zones (as they are quite often
mobile dead zones). With a battery drainage formulation, we expect that since agent communi-
cation falters over time, that the performance of the algorithms will initially be similar to the other
experiments and cause divergence after agent batteries start to become problematic. Hence, we
expect ASV-ADMM to be a good choice of decentralized optimization algorithm when convergence
is difficult for C-ADMM even when its solution error is comparable to C-ADMM.

Though these results are promising, there are many caveats. In particular, the choice of hyperpa-
rameters (such as the consensus weight parameter 𝜌) substantially affects the performance of both
algorithms, though this is the case for many algorithms in general.

Our results with convergence suggest that our algorithm requires some constraints on 𝑝 as the
communication graph may certainly evolve over time but still needs to allow information to flow
from one side of the network to the other. We expect that with 𝑝 that allows agents to communicate
often, ASV-ADMM will perform similarly to C-ADMM. If 𝑝 is too restrictive, both algorithms fail
to converge. In some cases, where 𝑝 falls in a happy medium between these two extremes, ASV-
ADMM will outperform C-ADMM.

The importance weights of ASV-ADMM help agents come to consensus by weighting unlikely
neighbor messages more significantly than likely ones. Since the weighting is inversely proportional
to the likelihood, we expect that on average the updates will be more similar to that of a static
communication graph. Moreover, assuming agent updates are roughly coupled with their auxiliary
state as in our experiments, this helps prevent agents from overfitting to their local data, as C-
ADMM will largely discard information from faraway agents.

However, if the environment is so stochastic or irregular that agent experiences are completely
unrelated, it will be difficult to incorporate all of the conflicting updates. This is what we think
causes both C-ADMM and ASV-ADMM to diverge in our experiment—neighboring updates
become too dissimilar—and we expect similar pitfalls with highly irregular 𝑝 even with ASV-
ADMM.

30

Though the results indicate that ASV-ADMM only works better than C-ADMM in a handful of
cases, it is almost always as performant as C-ADMM in highly switching communication networks.
Still, we are surprised that the difference is so minor. We did evaluate the case where ASV-
ADMM reduces to TV-ADMM on constant 𝑝-functions, but were not able to replicate the results
of TV-ADMM [11] and did not notice significant differences between TV-ADMM and C-ADMM.
We expect that C-ADMM, TV-ADMM, and ASV-ADMM are sensitive to hyperparameters and
perhaps our chosen scenario does not differentiate between the two methods as clearly as possible.
It also may be the case that differences only show on more complex scenarios or with 𝑁 much
larger than our small experiments.

Unfortunately, these simulations were run on a single node emulating independent multiagent
behaviors. Since the probabilistic communication graph needs to check every (𝑖, 𝑗) agent pair,
the graph is quadratic in complexity and quickly becomes infeasible to solve without more
compute. Moreover, consensus between agents becomes increasingly difficult to achieve as 𝑁
changes or the complexity of the environment increases. For this reason, we limited 𝑀 and 𝑁
to be relatively small. Obstacles were not included in this experiment for similar computational
complexity concerns—the line-of-sight calculation was rather costly especially when included in
the quadratically many pairwise comparisons for communication failures.

31

7. Future Work and Conclusion

Communication-Exploration Tradeoff

A particularly interesting area of possible study, inspired by the spatial field estimation experiment,
is balancing exploration with communication: How can agents explore uncharted territory (perhaps
hindering communication) while efficiently propagating that information to other agents?

For example, suppose that we are using a distance-based formulation for 𝑝. There are two extremes
for collecting samples as described in Section 4.1. They can all stick together and move around
the space as one unit, in which case communication is not an issue, but this results in inefficient
exploration. Alternatively, they could spread out as much as possible, perhaps according to Voronoi
coverage control [19], but that may hinder communication, resulting in poorer global estimates.
This is the communication-exploration tradeoff.

This question is not confined to the spatial field experiment and its sample collection procedure.
When searching over possible optimization values 𝜃 in an efficient manner while balancing commu-
nication, and those values may affect communication, as though communication is endogenous,
the same tradeoff applies.

This tradeoff has been explored often in the context of multi-agent coverage control [20], [21],
[22], [23] but remains relatively unexplored in decentralized ADMM methods where the objective
differs from coverage.

Game-Theoretic Formulation

One may apply game theory to the limited-communication decentralized setting. In addition to
being a positive-sum game, where players seek to collectively minimize 𝐽(𝜃), there is an additional
player. This player is perhaps adversarial and seeks to limit the communication of the other players
to maximize 𝐽(𝜃).

Agents may also have surrogate objectives in addition to 𝐽(𝜃). For example, in the case of
battery life, while they do want to minimize 𝐽(𝜃), they also have to stay alive enough to continue
participating in the game and return to recharge. Perhaps communicating decreases 𝐽 at the
cost of battery life. Allowing agents to choose what “actions” to take (exploring, recharging,
communicating, etc.) formulates a multi-player game, and game theory may be able to shed some
light on optimal strategies.

Partial Communication Failures

Under ASV-ADMM’s formulation, communication links at a given timestep are wholly present or
absent. However, a more nuanced formulation would allow for partial failures in the communication
links. For example, if there is some maximum bandwidth to communication links, the current
formulation replaces that bandwidth with 0 upon communication failure; alternatively, one may
only partially decrease the bandwidth to represent different levels of failure severity. The partial

32

communication failure formulation along with the possible game-theoretic formulation brings the
ASV-ADMM formulation closer to that of congestion games in networks [24], [25].

Unknown 𝑝

A major drawback of ASV-ADMM is requiring 𝑝 to be known a priori. This is a strong and often
unrealistic assumption, as it is often impossible to capture everything that may influence the
communication graph in 𝑝 (or even 𝑋). Though one can certainly use ASV-ADMM with a simple
model for 𝑝, including temporal or spatial factors, it is always assumed that 𝑝 is known. Future
research may handle the case where 𝑝 is unknown and needs to be estimated in an online fashion,
or an initial estimate is refined as agents experience more of the environment. This brings the
formulation closer to reinforcement learning, where agents use their past experiences to determine
what to do in the future.

Convergence Analysis

Though there is some empirical intuition about when and why ASV-ADMM is a good choice,
more theoretical analysis is needed, particularly on convergence. There is no convergence analysis
for TV-ADMM, so it is difficult to provide convergence analysis for ASV-ADMM. Many of the
convergence analyses for C-ADMM break down due to the lack of temporal symmetry in the
system when allowing for a dynamic communication network.

Reducing Network Traffic

When communication bandwidth is limited, compression techniques are often used to reduce
network traffic. This has been applied to decentralized ADMM in [26], and could also be adapted
to ASV-ADMM. Similar to the event triggers in [26], perhaps one could incorporate the commu-
nication probabilities into whether or not the updates are communicated.

7.1. Conclusion
Several primal-dual methods were derived in both the single- and multi-agent setting. The
motivation to adapt C-ADMM to more dynamic communication networks inspired the definition
of auxiliary states to capture state-dependent communication information. With this in mind,
TV-ADMM was generalized to a novel algorithm, ASV-ADMM, designed for switching commu-
nication networks influenced by auxiliary states. ASV-ADMM was evaluated using a spatial field
experiment that compared it to the baseline C-ADMM.

We found that the results of our experiments indicate that ASV-ADMM does exhibit marginally
better empirical convergence properties than the baseline C-ADMM, even when the Bregman
divergence term was incorporated into the C-ADMM update for a fairer comparison. However, we
were surprised that it only outperformed C-ADMM in a small minority of cases. We suspected
this to be due to hyperparameter tuning, but the cases where it did outperform C-ADMM are
still promising. In particular, in highly dynamic networks that can be modeled as a function of
an auxiliary state, ASV-ADMM appears to be a good alternative to C-ADMM, exhibiting better
empirical convergence in some scenarios.

33

A. Appendix: Derivations
A.1. Derivation of Weak Duality
Consider the optimization problem

min
𝜃 s.t. 𝑔(𝜃)=0

𝐽(𝜃)

The Lagrangian is

ℒ(𝜃, 𝜆) = 𝐽(𝜃) + 𝜆𝑇 𝑔(𝜃)

The primal problem is given by

min
𝜃

max
𝜆

ℒ(𝜃, 𝜆)

and the dual problem is given by

max
𝜆

min
𝜃

ℒ(𝜃, 𝜆)

Any feasible 𝜃 must satisfy the constraints 𝑔(𝜃) = 0, so assuming 𝜃 is feasible, we have

ℒ(𝜃, 𝜆) = 𝐽(𝜃) + 𝜆𝑇 𝑔(𝜃) = 𝐽(𝜃)

For any 𝜆 and feasible 𝜃, we then have

min
𝜃′

ℒ(𝜃′, 𝜆) ≤ ℒ(𝜃, 𝜆) = 𝐽(𝜃)

Since this holds for any 𝜆 and feasible 𝜃, consider the dual optimum 𝜆∗ and the primal optimum
𝜃∗, where 𝜃∗ is assumed to be feasible, i.e., 𝑔(𝜃∗) = 0. Then

max
𝜆

min
𝜃

ℒ(𝜃, 𝜆) = min
𝜃

ℒ(𝜃, 𝜆∗) ≤ 𝐽(𝜃∗) = min
𝜃 s.t. 𝑔(𝜃)=0

𝐽(𝜃)

In other words, the dual optimum is always less than or equal to the primal optimum.

A.2. Derivation of Dual Concavity
The dual problem is given by

max
𝜆

min
𝜃

ℒ(𝜃, 𝜆)

Define

𝑓(𝜆) ≜ min
𝜃

ℒ(𝜃, 𝜆)

so the dual problem is

max
𝜆

𝑓(𝜆)

34

Fix 𝛼 ∈ [0, 1] and 𝜆, 𝜇 in the dual space.

Since 𝑓(𝜆) = min
𝜃

ℒ(𝜃, 𝜆), for any 𝜆, we have 𝑓(𝜆) ≤ ℒ(𝜃, 𝜆), so for any 𝜃 ∈ ℝ𝑚,

ℒ(𝜃, 𝛼𝜆 + (1 − 𝛼)𝜇) = 𝛼ℒ(𝜃, 𝜆) + (1 − 𝛼)ℒ(𝜃, 𝜇)
≥ 𝛼𝑓(𝜆) + (1 − 𝛼)𝑓(𝜇)

Since this applies for any choice of 𝜃, we have that

𝑓(𝛼𝜆 + (1 − 𝛼)𝜇) ≥ 𝛼𝑓(𝜆) + (1 − 𝛼)𝑓(𝜇)

i.e., 𝑓 is concave. Then the dual problem max
𝜆

𝑓(𝜆) is a concave optimization problem.

A.3. Derivation of C-ADMM Updates
The following derivation is inspired by [16].

The C-ADMM problem formulation is as follows:

min
𝜃1,…,𝜃𝑁

∑
𝑁

𝑖=1
𝐽𝑖(𝜃𝑖)

subject to 𝜃𝑖 = 𝜃𝑗 for all (𝑖, 𝑗) ∈ ℰ

In order to make the augmented Lagrangian easier to analyze, introduce the slack variables 𝑟𝑖𝑗 ∈
ℝ𝑚, and let

𝑟𝑖 ≜
[
[
[⋮

𝑟𝑖𝑗
⋮]

]
]

𝑗∈𝒩𝑖

so that the original problem may be reformulated as follows:

min
𝑟1,…,𝑟𝑁
𝜃1,…,𝜃𝑁

∑
𝑁

𝑖=1
𝐽𝑖(𝜃𝑖)

subject to 𝜃𝑖 = 𝑟𝑖𝑗 and 𝜃𝑗 = 𝑟𝑖𝑗 for all (𝑖, 𝑗) ∈ ℰ

Forming the augmented Lagrangian (where 𝜆𝑖𝑗 are the dual variables for 𝜃𝑖 = 𝑟𝑖𝑗)

ℒ𝑎 = ∑
𝑁

𝑖=1
(𝐽𝑖(𝜃𝑖) + ∑

𝑗∈𝒩𝑖

(𝜆𝑇
𝑖𝑗(𝜃𝑖 − 𝑟𝑖𝑗) + 𝜇𝑇

𝑖𝑗(𝜃𝑗 − 𝑟𝑖𝑗))

+𝜌
2

∑
𝑗∈𝒩𝑖

(‖𝜃𝑖 − 𝑟𝑖𝑗‖
2 + ‖𝜃𝑗 − 𝑟𝑖𝑗‖

2))

35

Doing this allows the splitting of the optimization variable into two blocks 𝑟 ≜ (𝑟1, …, 𝑟𝑁) and
𝜃 ≜ (𝜃1, …, 𝜃𝑁). The ADMM updates as described in Equation 6 are then (where 𝑒 represents the
dual iterates)

𝑟(𝑡+1) = arg min
𝑟

ℒ𝑎(𝜃(𝑡), 𝑟, 𝑒(𝑡))

𝜃(𝑡+1) = arg min
𝜃

ℒ𝑎(𝜃, 𝑟(𝑡+1), 𝑒(𝑡))

𝑒(𝑡+1) = 𝑒(𝑡) + 𝜌∇𝑒ℒ𝑎(𝑟(𝑡+1), 𝜃(𝑡+1), 𝑒(𝑡))

Consider how the arg min may be derived in the updates for 𝑟 and 𝜃. Taking the gradient of
ℒ𝑎 with respect to each variable and setting it to zero yields the minimum with respect to each
variable.

∇𝑟𝑖𝑗
ℒ𝑎 = −(𝜆𝑖𝑗 + 𝜇𝑖𝑗) − 𝜌(𝜃𝑖 − 𝑟𝑖𝑗) − 𝜌(𝜃𝑗 − 𝑟𝑖𝑗) =set 0

−(𝜆𝑖𝑗 + 𝜇𝑖𝑗) − 𝜌(𝜃𝑖 + 𝜃𝑗) + 2𝜌𝑟𝑖𝑗 = 0

𝑟𝑖𝑗 =
𝜃𝑖 + 𝜃𝑗

2
+

𝜆𝑖𝑗 + 𝜇𝑖𝑗

2𝜌

𝑟𝑗𝑖 =
𝜃𝑗 + 𝜃𝑖

2
+

𝜆𝑗𝑖 + 𝜇𝑗𝑖

2𝜌

∇𝜆𝑖𝑗
ℒ𝑎 = 𝜃𝑖 − 𝑟𝑖𝑗

= 𝜃𝑖 −
𝜃𝑖 + 𝜃𝑗

2
+

𝜆𝑖𝑗 + 𝜇𝑖𝑗

2𝜌

=
𝜃𝑖 − 𝜃𝑗

2
+

𝜆𝑖𝑗 + 𝜇𝑖𝑗

2𝜌

∇𝜇𝑖𝑗
ℒ𝑎 = 𝜃𝑗 − 𝑟𝑖𝑗

= 𝜃𝑗 −
𝜃𝑖 + 𝜃𝑗

2
+

𝜆𝑖𝑗 + 𝜇𝑖𝑗

2𝜌

=
𝜃𝑗 − 𝜃𝑖

2
+

𝜆𝑖𝑗 + 𝜇𝑖𝑗

2𝜌

Now suppose at a single timestep 𝑡, 𝜆(𝑡)
𝑖𝑗 = −𝜇(𝑡)

𝑖𝑗 . Then 𝜆(𝑡)
𝑖𝑗 + 𝜇(𝑡)

𝑖𝑗 = 0, so

𝜃𝑖 − 𝜃𝑗

2
= ∇𝜆𝑖𝑗

ℒ𝑎 = −∇𝜇𝑖𝑗
ℒ𝑎

By the dual ascent update,

36

𝜆(𝑡+1)
𝑖𝑗 = 𝜆(𝑡)

𝑖𝑗 + 𝜌∇𝜆𝑖𝑗
ℒ𝑎

and

𝜇(𝑡+1)
𝑖𝑗 = 𝜇(𝑡)

𝑖𝑗 + 𝜌∇𝜇𝑖𝑗
ℒ𝑎

= −𝜆(𝑡)
𝑖𝑗 − 𝜌∇𝜆𝑖𝑗

ℒ𝑎

= −𝜆(𝑡+1)
𝑖𝑗

So if 𝜆𝑖𝑗 + 𝜇𝑖𝑗 = 0 at initialization (e.g. 𝜆(0)
𝑖𝑗 = 0 = −𝜇(0)

𝑖𝑗), then 𝜆(𝑡)
𝑖𝑗 + 𝜇(𝑡)

𝑖𝑗 = 0 for all time 𝑡.

The 𝑟𝑖𝑗 and 𝑟𝑗𝑖 updates via the arg min then become

𝑟(𝑡+1)
𝑖𝑗 =

𝜃(𝑡)
𝑖 + 𝜃(𝑡)

𝑗

2
= 𝑟(𝑡+1)

𝑗𝑖

Now define the agent-specific augmented Lagrangian ℒ𝑎;𝑖 so that each agent only optimizes over
the optimization variable 𝜃𝑖 and its respective constraints such that

ℒ𝑎 = ∑
𝑁

𝑖=1
ℒ𝑎;𝑖

ℒ𝑎;𝑖 = 𝐽𝑖(𝜃𝑖) + ∑
𝑗∈𝒩𝑖

(𝜆𝑇
𝑖𝑗(𝜃𝑖 − 𝑟𝑖𝑗) + 𝜇𝑇

𝑖𝑗(𝜃𝑗 − 𝑟𝑖𝑗)) + 𝜌
2

∑
𝑗∈𝒩𝑖

(‖𝜃𝑖 − 𝑟𝑖𝑗‖2 + ‖𝜃𝑗 − 𝑟𝑖𝑗‖2)

In the 𝜃 update, since 𝜃 is decomposable into (𝜃1, …, 𝜃𝑁), there will be an
arg min

𝜃𝑖

ℒ𝑎(𝜃𝑖, 𝑟
(𝑡+1)
𝑖 , 𝑒(𝑡)), so consider

arg min
𝜃𝑖

ℒ𝑎 = arg min
𝜃𝑖

(∑
𝑁

𝑗=1
ℒ𝑎;𝑗)

If 𝑗 ≠ 𝑖 and 𝑗 ∉ 𝒩𝑖, then ℒ𝑎;𝑗 will not affect the minimization over 𝜃𝑖, so this reduces to

= arg min
𝜃𝑖

(ℒ𝑎;𝑖 + ∑
𝑗∈𝒩𝑖

ℒ𝑎;𝑗)

Dropping the terms that are constant with respect to 𝜃𝑖,

37

= arg min
𝜃𝑖

(
((
((
((
((

𝐽𝑖(𝜃𝑖) + ∑
𝑗∈𝒩𝑖

((𝜆(𝑡)
𝑖𝑗)

𝑇
𝜃𝑖 + 𝜌

2
‖𝜃𝑖 − 𝑟(𝑡)

𝑖𝑗 ‖
2
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
from ℒ𝑎;𝑖

+ ∑
𝑗∈𝒩𝑖

((𝜇(𝑡)
𝑗𝑖)

𝑇
𝜃𝑖 + 𝜌

2
‖𝜃𝑖 − 𝑟(𝑡)

𝑗𝑖 ‖
2
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
from ℒ𝑎;𝑗)

))
))
))
))

= arg min
𝜃𝑖

(𝐽𝑖(𝜃𝑖) + ∑
𝑗∈𝒩𝑖

((𝜆(𝑡)
𝑖𝑗)

𝑇
𝜃𝑖 + 𝜌

2
‖𝜃𝑖 − 𝑟(𝑡)

𝑖𝑗 ‖
2

+ (𝜇(𝑡)
𝑗𝑖)

𝑇
𝜃𝑖 + 𝜌

2
‖𝜃𝑖 − 𝑟(𝑡)

𝑗𝑖 ‖
2
))

= arg min
𝜃𝑖

(𝐽𝑖(𝜃𝑖) + ∑
𝑗∈𝒩𝑖

((𝜆(𝑡)
𝑖𝑗 + 𝜇(𝑡)

𝑗𝑖)
𝑇
𝜃𝑖 + 𝜌

2
(‖𝜃𝑖 − 𝑟(𝑡)

𝑖𝑗 ‖
2

+ ‖𝜃𝑖 − 𝑟(𝑡)
𝑗𝑖 ‖

2
))

Since 𝑟(𝑡)
𝑖𝑗 = 𝑟(𝑡)

𝑗𝑖 = 1
2(𝜃(𝑡)

𝑖 + 𝜃(𝑡)
𝑗) for all 𝑡,

= arg min
𝜃𝑖

(
((
((𝐽𝑖(𝜃𝑖) + ∑

𝑗∈𝒩𝑖(
((
(((𝜆(𝑡)

𝑖𝑗 + 𝜇(𝑡)
𝑗𝑖)

𝑇
𝜃𝑖 + 𝜌‖𝜃𝑖 −

𝜃(𝑡)
𝑖 + 𝜃(𝑡)

𝑗

2
‖

2

)
))
))

)
))
))

= arg min
𝜃𝑖

(
((
((𝐽𝑖(𝜃𝑖) + (∑

𝑗∈𝒩𝑖

(𝜆(𝑡)
𝑖𝑗 + 𝜇(𝑡)

𝑗𝑖))
𝑇

𝜃𝑖 + 𝜌 ∑
𝑗∈𝒩𝑖

‖𝜃𝑖 −
𝜃(𝑡)

𝑖 + 𝜃(𝑡)
𝑗

2
‖

2

)
))
))

and define the aggregate dual variable

𝑒(𝑡)
𝑖 ≜ ∑

𝑗∈𝒩𝑖

(𝜆(𝑡)
𝑖𝑗 + 𝜇(𝑡)

𝑗𝑖)

so the 𝜃𝑖 update is

𝜃(𝑡+1)
𝑖 = arg min

𝜃𝑖
(
((
((𝐽𝑖(𝜃𝑖) + (𝑒(𝑡)

𝑖)
𝑇
𝜃𝑖 + 𝜌 ∑

𝑗∈𝒩𝑖

‖𝜃𝑖 −
𝜃(𝑡)

𝑖 + 𝜃(𝑡)
𝑗

2
‖

2

)
))
))

and since the inner product is commutative, this is equivalent to

𝜃(𝑡+1)
𝑖 = arg min

𝜃𝑖
(
((
((𝐽𝑖(𝜃𝑖) + (𝜃𝑖)

𝑇 𝑒(𝑡)
𝑖 + 𝜌 ∑

𝑗∈𝒩𝑖

‖𝜃𝑖 −
𝜃(𝑡)

𝑖 + 𝜃(𝑡)
𝑗

2
‖

2

)
))
))

For the dual (𝑒𝑖) update:

38

𝜆(𝑡+1)
𝑖𝑗 = 𝜆(𝑡)

𝑖𝑗 + 𝜌∇𝜆𝑖𝑗
ℒ𝑎 = 𝜆(𝑡)

𝑖𝑗 + 𝜌
2
(𝜃(𝑡+1)

𝑖 − 𝜃(𝑡+1)
𝑗)

𝜇(𝑡+1)
𝑗𝑖 = 𝜇(𝑡)

𝑗𝑖 + 𝜌∇𝜇𝑗𝑖
ℒ𝑎 = 𝜇(𝑡)

𝑗𝑖 + 𝜌
2
(𝜃(𝑡+1)

𝑖 − 𝜃(𝑡+1)
𝑗)

𝑒(𝑡+1)
𝑖 = ∑

𝑗∈𝒩𝑖

(𝜆(𝑡+1)
𝑖𝑗 + 𝜇(𝑡+1)

𝑗𝑖)

= ∑
𝑗∈𝒩𝑖

(𝜆(𝑡)
𝑖𝑗 + 𝜌

2
(𝜃(𝑡+1)

𝑖 − 𝜃(𝑡+1)
𝑗) + 𝜇(𝑡)

𝑗𝑖 + 𝜌
2
(𝜃(𝑡+1)

𝑖 − 𝜃(𝑡+1)
𝑗))

= ∑
𝑗∈𝒩𝑖

(𝜆(𝑡)
𝑖𝑗 + 𝜇(𝑡)

𝑗𝑖) + 𝜌 ∑
𝑗∈𝒩𝑖

(𝜃(𝑡+1)
𝑖 − 𝜃(𝑡+1)

𝑗)

= 𝑒(𝑡)
𝑖 + 𝜌 ∑

𝑗∈𝒩𝑖

(𝜃(𝑡+1)
𝑖 − 𝜃(𝑡+1)

𝑗)

Since many of the slack variables introduced are no longer needed in the explicit update, 𝑒
is renamed to the more conventional 𝜆 for dual variables (distinct from the 𝜆𝑖𝑗 used in this
derivation), yielding the C-ADMM updates given in Section 2.4.1.

39

B. Appendix: Supplemental Figures
B.1. Two-Agent 1D Probability Function Visualizations
In the special case where 𝑋 = ℝ (so 𝑛 = 1), only 2𝑛 + 1 = 3 dimensions are required and 𝑝 can
be more easily visualized.

Note that these visualizations do not represent two-dimensional position (𝑥𝑖 ∈ ℝ2)! It is simply a
way to visualize the communication probability between two 1D agents as it is difficult to visualize
agent communication in higher dimensions when neither agent is fixed.

B.1.1. Distance Thresholding
The first example is in Figure B.1, which illustrates communication probabilities given two agents
with respective auxiliary states 𝑥1, 𝑥2 ∈ ℝ. In this case, diagonal lines parallel to 𝑥1 = 𝑥2 represent
differing values for 𝑑𝑖𝑗 (so the nonnegative half of any cross-section using a line perpendicular to
𝑥1 = 𝑥2 is identical to Figure 3.3). The red dashed lines indicate the communication boundary
when 𝑑𝑖𝑗 = 𝑅 = 1.

Figure B.1: A plot of a smoothed distance-thresholding 𝑝-function of two agents 𝑥1, 𝑥2 ∈ ℝ. Red
dashed lines indicate the boundary at which communication begins to falter, i.e., 𝑝 drops below 1.

B.1.2. Dead Zones
Once again, this is difficult to visualize when 𝑋 = ℝ𝑛 and 𝑛 ≥ 2, though it can be done when 𝑛 =
1. An example is shown in Figure B.2 where 𝑋 = ℝ (so 𝑛 = 1) and 𝐷 = [−2, −1] ∪ [0, 1] ⊂ 𝑋. In
this visualization, the distance falloff from Figure B.1 is still present, only dead zones can now
completely block communication.

40

Figure B.2: A plot of a smoothed distance-thresholding 𝑝-function of two agents 𝑥1, 𝑥2 ∈ ℝ with
dead zones 𝐷 = [−2, −1] ∪ [0, 1] ⊂ 𝑋. Red dashed lines indicate the boundary at which commu-

nication begins to falter, i.e., 𝑝 drops below 1.

B.1.3. Obstacles
Though the distinction from dead zones would be more interesting in higher dimensions, as
mentioned earlier, it is difficult to visualize when 𝑛 ≥ 2. Still, similarly to before, when 𝑋 = ℝ,
it is possible to visualize the 𝑛 = 1 case. In this case, both agents must lie in the same interval
(unimpeded by the obstacle intervals in 𝑂 ⊂ ℝ). Figure B.3 illustrates this using 𝑂 = [−2, −1] ∪
[0, 1]. The visualization again reuses the distance falloff from Figure B.1.

41

Figure B.3: A plot of a smoothed distance-thresholding 𝑝-function of two agents 𝑥1, 𝑥2 ∈ ℝ with
obstacles 𝑂 = [−2, −1] ∪ [0, 1] ⊂ 𝑋. Red dashed lines indicate the boundary at which communi-

cation begins to falter, i.e., 𝑝 drops below 1.

42

Epilogue
All code used to run experiments and generate plots is available at https://github.com/
noahadhikari/ME292B-proj.

This document was created using Typst. Unless you’re extremely attached to *TeX, I highly
recommend Typst due to its compactness, incremental compilation, more intuitive formatting,
and general ease of use (and because its widespread adoption will only come with more users).
The Typst source for this document is located at https://typst.app/project/rHNkBkgeLjibP8wcL
36xE9.

43

https://github.com/noahadhikari/ME292B-proj
https://github.com/noahadhikari/ME292B-proj
https://typst.app/project/rHNkBkgeLjibP8wcL36xE9
https://typst.app/project/rHNkBkgeLjibP8wcL36xE9

References
[1] K. Rahul, R. Banyal, and N. Arora, “A systematic review on big data applications and scope

for industrial processing and healthcare sectors,” Journal of Big Data, vol. 10, p. , 2023, doi:
10.1186/s40537-023-00808-2.

[2] N. Elgendy and A. Elragal, “Big Data Analytics: A Literature Review Paper,” 2014, pp.
214–227. doi: 10.1007/978-3-319-08976-8_16.

[3] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Com-
munications of the ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008, doi: 10.1145/1327452.1327492.

[4] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on federated learning,”
Knowledge-Based Systems, vol. 216, p. 106775, 2021, doi: https://doi.org/10.1016/j.knosys.
2021.106775.

[5] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[6] E.-G. Talbi, Metaheuristics: From Design to Implementation, vol. 74. 2009, p. . doi:
10.1002/9780470496916.

[7] R. Tibshirani, “Convex Optimization 10-725 Lecture Slides,” Carnegie Mellon University,
2019. [Online]. Available: https://www.stat.cmu.edu/~ryantibs/convexopt

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Optimization and
Statistical Learning via the Alternating Direction Method of Multipliers,” Foundations and
Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011, doi: 10.1561/2200000016.

[9] F. Kuhn and R. Oshman, “Dynamic networks: models and algorithms,” SIGACT News, vol.
42, no. 1, pp. 82–96, Mar. 2011, doi: 10.1145/1959045.1959064.

[10] I. Lobel, A. Ozdaglar, and D. Feijer, “Distributed multi-agent optimization with state-
dependent communication,” Mathematical Programming, vol. 129, no. 2, pp. 255–284, Jun.
2011, doi: 10.1007/s10107-011-0467-x.

[11] Z. Tian, Z. Zhang, and R. Jin, “Distributed ADMM for Time-Varying Communication
Networks,” in 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), 2022, pp.
1–5. doi: 10.1109/VTC2022-Fall57202.2022.10012807.

[12] Z.-Y. Chen and Z.-P. Fan, “Distributed customer behavior prediction using multiplex data:
A collaborative MK-SVM approach,” Know.-Based Syst., vol. 35, pp. 111–119, Nov. 2012,
doi: 10.1016/j.knosys.2012.04.023.

[13] W. Crown et al., “Application of Constrained Optimization Methods in Health Services
Research: Report 2 of the ISPOR Optimization Methods Emerging Good Practices Task
Force,” Value in Health, vol. 21, no. 9, pp. 1019–1028, 2018, doi: https://doi.org/10.1016/j.
jval.2018.05.003.

44

https://doi.org/10.1186/s40537-023-00808-2
https://doi.org/10.1007/978-3-319-08976-8_16
https://doi.org/10.1145/1327452.1327492
https://doi.org/https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/10.1002/9780470496916
https://www.stat.cmu.edu/~ryantibs/convexopt
https://doi.org/10.1561/2200000016
https://doi.org/10.1145/1959045.1959064
https://doi.org/10.1007/s10107-011-0467-x
https://doi.org/10.1109/VTC2022-Fall57202.2022.10012807
https://doi.org/10.1016/j.knosys.2012.04.023
https://doi.org/https://doi.org/10.1016/j.jval.2018.05.003
https://doi.org/https://doi.org/10.1016/j.jval.2018.05.003

[14] Y. Su, W. Fan, L. Gao, L. Qiao, Y. Liu, and F. Wu, “Joint DNN Partition and Resource
Allocation Optimization for Energy-Constrained Hierarchical Edge-Cloud Systems,” IEEE
Transactions on Vehicular Technology, vol. 72, no. 3, pp. 3930–3944, 2023, doi: 10.1109/
TVT.2022.3219058.

[15] P. T. Hultberg and D. S. Calonge, “Effective teaching of economics: A constrained optimiza-
tion problem?,” The Journal of Economic Education, vol. 48, no. 4, pp. 265–275, 2017,
doi: 10.1080/00220485.2017.1353458.

[16] N. Mehr, “ME292B (Multi-Agent Control) Fall 2024 Lecture Notes,” University of California,
Berkeley, 2024. [Online]. Available: https://classes.berkeley.edu/content/2024-fall-meceng-
292b-001-lec-001

[17] P. Zhao and T. Zhang, “Stochastic Optimization with Importance Sampling,” 2015, [Online].
Available: https://arxiv.org/abs/1401.2753

[18] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,”
Nature Methods, vol. 17, pp. 261–272, 2020, doi: 10.1038/s41592-019-0686-2.

[19] M. Zhou, J. Li, C. Wang, J. Wang, and L. Wang, “Applications of Voronoi Diagrams in
Multi-Robot Coverage: A Review,” Journal of Marine Science and Engineering, vol. 12, no.
6, 2024, doi: 10.3390/jmse12061022.

[20] W. Luo and K. Sycara, “Voronoi-based Coverage Control with Connectivity Maintenance
for Robotic Sensor Networks,” in 2019 International Symposium on Multi-Robot and Multi-
Agent Systems (MRS), 2019, pp. 148–154. doi: 10.1109/MRS.2019.8901078.

[21] C. Song and Y. Fan, “Coverage control for mobile sensor networks with limited communi-
cation ranges on a circle,” Automatica, vol. 92, pp. 155–161, 2018, doi: https://doi.org/10.
1016/j.automatica.2018.03.014.

[22] F. Pratissoli, B. Capelli, and L. Sabattini, “On Coverage Control for Limited Range Multi-
Robot Systems,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022, pp. 9957–9963. doi: 10.1109/IROS47612.2022.9982002.

[23] K. Nakamura, M. Santos, and N. E. Leonard, “Decentralized Learning With Limited
Communications for Multi-robot Coverage of Unknown Spatial Fields.” [Online]. Available:
https://arxiv.org/abs/2208.01800

[24] M. Voorneveld, P. Borm, F. van Megen, S. Tijs, and G. Facchini, “Congestion Games and
Potentials Reconsidered,” International Game Theory Review, vol. 1, no. 3–4, pp. 283–299,
1999, doi: 10.1142/S0219198999000219.

[25] N. Bertrand, N. Markey, S. Sadhukhan, and O. Sankur, “Dynamic Network Congestion
Games,” in 40th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2020), in Leibniz International Proceedings in
Informatics (LIPIcs), vol. 182. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp.
1–23. doi: 10.4230/LIPIcs.FSTTCS.2020.40.

45

https://doi.org/10.1109/TVT.2022.3219058
https://doi.org/10.1109/TVT.2022.3219058
https://doi.org/10.1080/00220485.2017.1353458
https://classes.berkeley.edu/content/2024-fall-meceng-292b-001-lec-001
https://classes.berkeley.edu/content/2024-fall-meceng-292b-001-lec-001
https://arxiv.org/abs/1401.2753
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3390/jmse12061022
https://doi.org/10.1109/MRS.2019.8901078
https://doi.org/https://doi.org/10.1016/j.automatica.2018.03.014
https://doi.org/https://doi.org/10.1016/j.automatica.2018.03.014
https://doi.org/10.1109/IROS47612.2022.9982002
https://arxiv.org/abs/2208.01800
https://doi.org/10.1142/S0219198999000219
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.40

[26] Z. Zhang, S. Yang, and W. Xu, “Decentralized ADMM with compressed and event-triggered
communication,” Neural Networks, vol. 165, pp. 472–482, 2023, doi: https://doi.org/10.1016/
j.neunet.2023.06.001.

[27] M. O. Jackson and Y. Zenou, “Games on Networks,” Handbook of Game Theory with
Economic Applications, vol. 4. Elsevier Science, pp. 95–163, Jul. 2014. [Online]. Available:
https://ssrn.com/abstract=2148692

[28] G. Carnevale, N. Mimmo, and G. Notarstefano, “A Unifying System Theory Framework for
Distributed Optimization and Games.” [Online]. Available: https://arxiv.org/abs/2401.12623

[29] J. Li et al., “Scenario-Game ADMM: A Parallelized Scenario-Based Solver for Stochastic
Noncooperative Games.” [Online]. Available: https://arxiv.org/abs/2304.01945

[30] N. S. Aybat and E. Y. Hamedani, “A distributed ADMM-like method for resource sharing
over time-varying networks.” [Online]. Available: https://arxiv.org/abs/1611.07393

[31] N. Bastianello, A. Simonetto, and R. Carli, “Distributed Prediction-Correction ADMM for
Time-Varying Convex Optimization,” in 2020 54th Asilomar Conference on Signals, Systems,
and Computers, 2020, pp. 47–52. doi: 10.1109/IEEECONF51394.2020.9443280.

[32] T.-H. Chang, “A Proximal Dual Consensus ADMM Method for Multi-Agent Constrained
Optimization,” IEEE Transactions on Signal Processing, vol. 64, no. 14, pp. 3719–3734, 2016,
doi: 10.1109/TSP.2016.2544743.

[33] L. Cao, Y. Zheng, and Q. Zhou, “Consensus of Dynamical Agents in Time-Varying Networks,”
IFAC Proceedings Volumes, vol. 41, no. 2, pp. 10770–10775, 2008, doi: https://doi.org/10.
3182/20080706-5-KR-1001.01826.

[34] S. Padakandla, “A Survey of Reinforcement Learning Algorithms for Dynamically Varying
Environments,” ACM Computing Surveys, vol. 54, no. 6, pp. 1–25, Jul. 2021, doi:
10.1145/3459991.

46

https://doi.org/https://doi.org/10.1016/j.neunet.2023.06.001
https://doi.org/https://doi.org/10.1016/j.neunet.2023.06.001
https://ssrn.com/abstract=2148692
https://arxiv.org/abs/2401.12623
https://arxiv.org/abs/2304.01945
https://arxiv.org/abs/1611.07393
https://doi.org/10.1109/IEEECONF51394.2020.9443280
https://doi.org/10.1109/TSP.2016.2544743
https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.01826
https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.01826
https://doi.org/10.1145/3459991

	Introduction
	Background
	Notation
	Constrained Minimization
	Single-Agent Methods
	Dual Ascent
	Augmented Lagrangian and Method of Multipliers
	Alternating Direction Method of Multipliers (ADMM)

	Multi-Agent Methods
	Consensus ADMM (C-ADMM)
	Time-Varying ADMM (TV-ADMM)

	Auxiliary State-Varying ADMM (ASV-ADMM)
	Auxiliary States
	Communication Probability Functions
	Distance Thresholding
	Dead Zones
	Obstacles
	Temporal Factors

	Auxiliary State-Varying ADMM (ASV-ADMM)

	Methodology
	Experimental Setup
	Experimental Details

	Results
	Distance-Based Falloff Rate
	Distance-Based Falloff Rate with Domain-Restricted Agents
	Dead Zones

	Discussion
	Future Work and Conclusion
	Conclusion

	Appendix: Derivations
	Derivation of Weak Duality
	Derivation of Dual Concavity
	Derivation of C-ADMM Updates

	Appendix: Supplemental Figures
	Two-Agent 1D Probability Function Visualizations
	Distance Thresholding
	Dead Zones
	Obstacles

	Epilogue
	References

