
Improving Auto-Formalization to UCLID5 with LLMs and
Formal Methods

Anirudh Chaudhary

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-115
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-115.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

First and foremost, I would like to thank my advisor, Professor Sanjit Seshia,
for his incredible vision, patience, wisdom, and help on my projects
throughout these past two years. Next, I would like to thank my mentor
Federico Mora for sticking with me through countless meetings and helping
me shape this work. I also thank Dr. Elizabeth Polgreen for her invaluable
insights, ideas, and perspectives when considering the complexities of this
project and helping with the evaluation. Finally, I would like to thank
everyone else involved in helping me with the evaluation of this work: Kai-
Chun Chang, Kevin Cheang, Pei-Wei Chen, Karim Elmaaroufi, Adwait
Godbole, Aniruddha Joshi, Shaokai Lin, Alex Sanchez, Amar Shah, Victoria
Tuck, Justin Wong, Beyazit Yalcinkaya, and Leiqi Ye.

Improving Auto-Formalization to UCLID5 with LLMs and Formal Methods

by

Anirudh Chaudhary

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Masters

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sanjit Seshia, Chair
Professor Matei Zaharia

Spring 2025

Improving Auto-Formalization to UCLID5 with LLMs and Formal Methods

Copyright 2025
by

Anirudh Chaudhary

1

Abstract

Improving Auto-Formalization to UCLID5 with LLMs and Formal Methods

by

Anirudh Chaudhary

Masters in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Sanjit Seshia, Chair

One of the uses for large language models (LLMs) is code generation, and a growing number
of tools aim to reduce developer effort by automating routine programming tasks. However,
LLMs frequently generate code that appears correct but fails to meet functional require-
ments. This thesis addresses the problem of automating the generation of formal verification
models from natural language, with a particular focus on the UCLID5 formal modeling and
verification language. We propose a new pipeline to improve the semantic correctness of gen-
erated code by incorporating formal verification through variable- and line-coverage–based
specifications. For each natural language task in our dataset, we generate four versions of
code: a baseline from previous work, specification-guided generation with bounded model
checking (BMC), generation with smoke testing, and a combination of both. We evaluate
these variants through a user study in which UCLID5 users and developers assess output
quality.

In this work, we implement two additional techniques–specification generation and auto-
mated repair–to assist in the code generation process. We find that while the use of the
additional techniques, namely specification generation and automated repair, did not sig-
nificantly increase user preference compared to the baseline, our results reveal important
nuances. Our feedback-driven repair process led to either improvement or no regression in
93% of cases, highlighting its promise as a low-risk refinement layer. However, we find no
clear correlation between a model’s assertion pass rate and user preference, suggesting that
current specification strategies may not yet align with human-centered notions of code qual-
ity. These findings suggest that while formal methods may not yet enhance perceived output
quality, they offer a principled foundation for improving semantic alignment in code gener-
ation. Future work should focus on creating and using structural specifications to better
capture user intent.

i

To my family and friends

Thank you for your support throughout this entire journey.

ii

Contents

Contents ii

List of Figures iii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Contributions . 3
1.3 Related Work . 3
1.4 Background . 5
1.5 Contributions to the Thesis . 6

2 Eudoxus 2.0 8
2.1 Approach . 8
2.2 Implementation . 15

3 Evaluation 16
3.1 Experiment Setup . 17
3.2 Results . 19

4 Conclusion 27
4.1 Conclusion . 27
4.2 Future Work . 28

Bibliography 29

5 Appendix 32
5.1 Initial User Study . 32
5.2 BMC Failure Cases . 32
5.3 Prompts . 33
5.4 Additional Research Questions . 34

iii

List of Figures

1.1 Partial task description from Lee and Seshia [11] (a) and partial output of Eu-
doxus 1.0 in UCLID5 (b). We interpret L1, L2, L3, L4 to represent traffic
lights. The init and next blocks do not capture the required complexity speci-
fied in the problem description. 2

2.1 Eudoxus Pipeline Overview . 9
2.2 Partial module stencils from Eudoxus 1.0 (a) and Eudoxus 2.0 (b). The main

difference to note are in the ‘specification‘ block. Eudoxus 2.0 makes this block
required, instructs the LLM to not return variable types, and has a raise NotIm-
plementedError line. 10

2.3 Specification Block Creation . 11
2.4 Example fix with TODO and ?? for Eudoxus 1.0 ”Complete” Step 14

3.1 Final aggregate winners and finalists split by each version 19
3.2 User ratings of code desirability across versions, grouped into three categories:

All (fully desirable), Some (partially desirable), and Little (largely undesirable). 20
3.3 Aggregated Assertion Pass Percentage vs User Rating for ”bmc” and ”all” pipeline

outputs. This graph contains pass percentages for any pipeline that incorporates
a bounded model checking step. 21

3.4 Fix Count by Function Block . 22
3.5 Graph of counter LLM-identified faulty sections 23
3.6 Histogram showcasing the delta between iterations in number of failures per as-

sertion. 24
3.7 Warnings vs User Rating . 25

5.1 Graph showing the relationship between lines changed from initial code comple-
tion and repair to final output. 34

5.2 A box plot showing the variability in the number of lines between two different
pipeline runs with the exact same parameters 35

5.3 Histogram showcasing the variability in the user rating 35
5.4 Histogram of user variability between two different pipeline runs with the exact

same parameters . 36
5.5 Iterations vs User Rating . 37

iv

5.6 Tokens vs User Rating . 38
5.7 Assertion Pass Percentage vs User Rating . 39
5.8 Assertion Pass Percentage vs User Rating for models generated by the pipeline

with both specification generation with bmc and smoke testing. 40

v

Acknowledgments

First and foremost, I would like to thank my advisor, Professor Sanjit Seshia, for his in-
credible vision, patience, wisdom, and help on my projects throughout these past two years.
Next, I would like to thank my mentor Federico Mora for sticking with me through count-
less meetings and helping me shape this work. I also thank Dr. Elizabeth Polgreen for her
invaluable insights, ideas, and perspectives when considering the complexities of this project
and helping with the evaluation. Finally, I would like to thank everyone else involved in help-
ing me with the evaluation of this work: Kai-Chun Chang, Kevin Cheang, Pei-Wei Chen,
Karim Elmaaroufi, Adwait Godbole, Aniruddha Joshi, Shaokai Lin, Alex Sanchez, Amar
Shah, Victoria Tuck, Justin Wong, Beyazit Yalcinkaya, and Leiqi Ye.

1

Chapter 1

Introduction

Large language models (LLMs) have shown impressive capabilities in code synthesis across
a range of programming languages and domains [8]. However, ensuring the correctness
and reliability of LLM-generated code remains a significant challenge, particularly in formal
verification contexts where even small errors can render a system unsafe or unusable. This
work investigates the integration of formal methods—specifically bounded model checking,
smoke testing, and specification generation—into the LLM-driven code generation process.
We discuss these formal methods more in depth in section 1.4. Using UCLID5 [20, 17, 18], a
modeling and verification tool for transition systems, we develop and evaluate four variations
of a code generation pipeline: a baseline from previous work, pipelines with smoke testing or
bounded model checking, and a combined version that incorporates both. We assess these
pipelines through user studies, specifically measuring the effectiveness of these methods
by analyzing assertion pass rates and unreachable code. Our goal is to understand how
these formal techniques impact code correctness, user preference, and the overall stability
of the generation process. Through this evaluation, we provide insight into the limitations
of current specification-generation strategies and offer guidance for building more reliable
formal-method–aware code synthesis pipelines.

1.1 Motivation

Eudoxus [16] is a system that generates code in a very low-resource verification language
(UCLID5) by leveraging an SMT-based repair loop. Eudoxus uses a methodology called
Synthetic Programming Elicitation and Compilation (SPEAC) to produce syntactically cor-
rect code. While Eudoxus 1.0 excels at generating syntactically correct code, our analysis
reveals that it struggles with semantic correctness across numerous tasks. This discrepancy
becomes evident when examining the UCLID5 output for specific problem specifications. As
shown in Figure 1.1, we analyze code generated by Eudoxus 1.0 for an example from our
training set. The problem describes a traffic control system with four roads, each having a
traffic light that can display four distinct states: green, yellow, red, and amber. Addition-

CHAPTER 1. INTRODUCTION 2

Consider a street junction with 4
incoming roads. Each of the 4 roads
has a traffic light, which are L1, L2,
L3, L4.
The traffic light has 4 states: green,
yellow, red, and amber which happen
in that order.

Write a model of this junction with 4
traffic lights, showing a reasonable
controller C that switches the green
traffic lights in the following order: L1
and L3 together, then L2, then L4.

Use the variable names L1, L2, L3, L4,
green, yellow, red, amber

(a)

1module TrafficLights {
2...
3init {
4L1 = false; L2 = false; L3 = false; L4 = false;
5green = true; yellow = false; red = false; amber = false;
6}
7next {
8if (L1 || L3) {
9green’ = true; yellow’ = false;
10red’ = false; amber’ = false;
11if (L1) {
12L1’ = false; L3’ = true;
13} else {
14L3’ = false; L2’ = true;
15}} ...}}
16...

(b)

Figure 1.1: Partial task description from Lee and Seshia [11] (a) and partial output of
Eudoxus 1.0 in UCLID5 (b). We interpret L1, L2, L3, L4 to represent traffic lights. The
init and next blocks do not capture the required complexity specified in the problem
description.

ally, the problem specifies a particular transition sequence where L1 and L3 change states
together, followed by L2, and then L4. The Eudoxus 1.0 generated model fails to capture
these requirements in two critical ways: First, the implementation represents each traffic
light as a Boolean variable, limiting them to only two states instead of the four specified
in the problem. This simplification fundamentally misrepresents the problem description.
Second, the transition dynamics coded in the next block show a misunderstanding of the
required behavior. The code checks if L1 or L3 are true, then makes changes to incorrectly
defined variables labeled as green, yellow, red, and amber. This implementation completely
misses the pattern specified in the original problem. We believe that developing formal
specifications based on the problem description would allow us to verify the generated code
against the actual requirements. This approach would clearly identify semantic inconsisten-
cies that currently go undetected, potentially leading to more reliable code generation in
future iterations of the system.

CHAPTER 1. INTRODUCTION 3

1.2 Thesis Contributions

This thesis makes the following contributions to the study of improving semantic correctness
in LLM-based code generation through formal methods:

• A formal methods–augmented generation pipeline: We design and implement a
code generation pipeline that incorporates formal verification into the LLM workflow.
The pipeline supports multiple verification-backed configurations, enabling compara-
tive evaluation of their impact on code quality.

• Coverage-based specification generation and feedback integration: We de-
velop methods for automatically synthesizing two types of coverage-based specifica-
tions—variable coverage and line coverage—which are used to validate candidate pro-
grams using bounded model checking (BMC). Verification feedback is then used to
guide iterative repair.

• Empirical analysis of repair efficacy: We demonstrate that LLMs are often capable
of addressing verification failures when provided with feedback from formal methods.
However, we also show that high assertion pass rates do not necessarily correlate with
user preference, suggesting a mismatch between machine-verifiable specifications and
human-perceived correctness.

• A user study evaluating formal verification in practice: We conduct a user
study involving 12 participants and 33 natural language programming tasks. Partici-
pants evaluate multiple versions of code outputs across different configurations of the
formal method–enhanced pipeline.

• Quantitative and qualitative assessment of user preference: We analyze user
ratings to assess the impact of formal methods on perceived output quality. The results
show that while specification-driven verification alone does not improve preference,
feedback-guided repair yields net improvement or no degradation in 93% of evaluated
cases.

• A framework for isolating the role of specifications vs repair: Through our
controlled pipeline and multi-version generation strategy, we isolate the effects of spec-
ification quality and feedback repair. This enables a deeper understanding of where
the bottlenecks lie in aligning verification techniques with user-centric code evaluation.

1.3 Related Work

Large Language Models for Code Generation

The emergence of large language models (LLMs) has significantly advanced automated code
generation by enabling models to synthesize code from natural language specifications. Re-

CHAPTER 1. INTRODUCTION 4

cent surveys, such as Jiang et al. [10], provide a comprehensive overview of the capabilities
and limitations of LLMs in this domain. These models have demonstrated strong perfor-
mance in tasks such as function synthesis, bug fixing, and docstring generation. State-
of-the-art code generation models have evolved rapidly in recent years. CodeLlama [19],
a code-specialized variant of the Llama architecture, demonstrates exceptional reasoning
capabilities across multiple programming languages. Similarly, StarCoder [12] and its suc-
cessor StarCoder2 [14] were trained on permissively licensed code repositories to produce
high-quality code completions. Codex [6], the foundation for GitHub Copilot, revolutionized
code assistance by generating contextually relevant code segments based on natural lan-
guage prompts or partial implementations. More recent models like CodeT5+ [22] extend
the T5 architecture with code-specific pre-training objectives to enhance generative perfor-
mance. Despite these advances, LLM-generated code faces persistent challenges. Systematic
studies by Chen et al. [7] and Liu et al. [13] document common failure modes, including
hallucinated API calls, incorrect algorithm implementations, failure to handle edge cases,
and security vulnerabilities. These limitations, coupled with concerns about hallucinated
outputs, lack of semantic alignment, and brittleness in edge cases, motivate the need for
integrating correctness guarantees into the generation process.

Integrating Formal Methods into LLM-Based Code Generation

To improve the reliability and trustworthiness of generated code, recent work has focused on
coupling LLMs with formal methods. LLMLift [4] introduces formally-verified code transpi-
lation using LLMs. They use verification oracles to guaranteee correctness of the generated
code. We use this approach during the compilation step of our pipeline. VeCoGen [21]
is a prominent example that leverages formal verification in the code generation loop. It
accepts an ACSL (ANSI/ISO C Specification Language) specification, a natural language
task description, and a suite of test cases, then iteratively produces and verifies candidate C
programs until they meet both the functional and formal correctness constraints. Similarly,
AlphaVerus [1] introduces a self-improving framework for verified code generation without
requiring fine-tuning or human supervision. It does so by leveraging higher-resource lan-
guage models and verification feedback to bootstrap more accurate and verifiable program
synthesis. These approaches highlight the growing interest in aligning LLM outputs with
formal guarantees through verification-aware feedback loops.

Another line of research integrates LLMs with symbolic reasoning and formal verification
to infer and validate program specifications. Lue et al. [23] propose an iterative pipeline
wherein candidate invariants generated by LLMs are filtered and refined using bounded
model checking (BMC) and SMT-based validation. Their system feeds verification results
back into the model, improving its ability to synthesize correct invariants over time. Addi-
tionally, tools like ESBMC [15], an SMT-based context-bounded model checker, have been
used to automatically verify safety properties in LLM-generated code. ESBMC supports
multiple languages and can verify both pre-specified and user-defined assertions, making it

CHAPTER 1. INTRODUCTION 5

a practical tool for detecting runtime errors and verifying compliance with critical proper-
ties. The challenge of translating natural language requirements into formal specifications
remains significant.

1.4 Background

Eudoxus 1.0

Eudoxus [16] is a system that generates code in a very low-resource verification language
(UCLID5) by leveraging an SMT-based repair loop. Eudoxus first has a large language model
(LLM) produce code in a Python-derived pseudo-language, then uses a MaxSMT solver (Z3)
to automatically fix any violations of the target language’s rules. If the solver cannot fully
repair the program, Eudoxus inserts holes and asks the LLM to fill in the missing pieces,
repeating as needed. The combination of deduction repair and LLM synthesis dramatically
improved syntactic correctness, with Eudoxus producing parsable UCLID5 code 84.8% of
the time, versus only around 12% for GPT-4 with naive prompting. For the rest of this
paper, the original Eudoxus pipeline will be referenced as Eudoxus 1.0.

Bounded Model Checking

Bounded Model Checking (BMC) is a formal verification technique that systematically ex-
plores the behavior of a system over a finite number of steps. It works by unrolling the
transition relation of a program or model up to a given bound k, checking whether any prop-
erty violations occur within those k steps. These properties—such as safety assertions—are
encoded into a logical formula, which is then checked for satisfiability using an SMT solver.

One of the key strengths of BMC is its ability to produce concrete counterexamples
when properties are violated, making it particularly useful for debugging. However, BMC
is inherently incomplete for unbounded systems, as it cannot guarantee correctness beyond
the specified bound.

In this work, we use BMC within the code generation pipeline to evaluate whether LLM-
generated UCLID5 modules satisfy their associated specifications. When violations are de-
tected, we collect counterexamples and use them to guide feedback-driven repairs to the
model.

Smoke Testing

Smoke testing is a lightweight verification technique used to quickly identify obvious failures
in a system. In the context of program synthesis and code generation, smoke tests typically
validate basic execution behaviors—such as variable initialization, type consistency, and
termination—without requiring formal specifications or deep semantic understanding.

CHAPTER 1. INTRODUCTION 6

In our work, we explore smoke testing as both the primary verification technique and
final check on the LLM-generated UCLID5 modules.

Specification Generation

Specifications define the expected behavior of a system and form the foundation of any
formal verification effort. In this work, we focus on generating assertion-based invariants,
which are logical conditions that should hold during the execution of the system. These
specifications are necessary for both bounded model checking and feedback-based repair to
function effectively.

Our approach to specification generation is coverage-based: for every variable declared in
a UCLID5 module, we generate at least one corresponding assertion. The primary goal is to
ensure that all declared program variables are constrained by at least one logical condition,
thereby promoting coverage of the model’s state space.

UCLID5

UCLID5 is a tool for the multi-modal formal modeling, verification, and synthesis of sys-
tems [20, 17, 18]. UCLID5 is an evolution of the earlier UCLID verification system [5]. It
supports a variety of data types and logical constructs, including bit-vectors, booleans, and
reals. UCLID5 allows users to define modules with state variables, transition relations, and
assertions, and then verify the correctness of these models through bounded model checking
or symbolic simulation. In this work, UCLID5 serves as the target language for our LLM-
generated code, and acts as the verification backend for evaluating specification satisfaction
and program correctness.

SMT-Based Techniques

Satisfiability Modulo Theories (SMT) refers to the problem of determining whether a logical
formula is satisfiable with respect to a background theory, such as arithmetic, bit-vectors,
or arrays [3]. SMT solvers extend propositional SAT solving by incorporating these richer
theories, enabling reasoning about real-world program properties. In formal verification,
SMT-based techniques are commonly used to encode transition systems, properties, and
counterexamples, allowing tools like UCLID5 to check complex correctness conditions effi-
ciently. Our pipeline leverages SMT solvers to perform bounded model checking.

1.5 Contributions to the Thesis

The work reported in this thesis is joint with Federico Mora’s work on Eudoxus [16]. The
work used for specification generation came from many discussions in the Learn and Verify
Group, specifically with Elizabeth Polgreen and Federico Mora. The smoke testing feature

CHAPTER 1. INTRODUCTION 7

that we used as part of our pipeline is thanks to work done by Alex Sanchez. The evaluation
section was iterated and finalized after discussions with Elizabeth Polgreen, Adwait Godbole,
Pei-Wei Chen, and Alex Sanchez. Finally, this work was advised by Professor Sanjit Seshia.

8

Chapter 2

Eudoxus 2.0

2.1 Approach

Our work builds upon the foundation established by Eudoxus 1.0 [16], which primarily fo-
cused on ensuring syntactic correctness of generated UCLID5 modules. While the original
implementation demonstrated some awareness of semantic correctness, we identified oppor-
tunities to enhance the quality of generated models by integrating formal verification tech-
niques into the development pipeline. The motivation for this enhancement stemmed from
our observation that syntactically correct code often fails to capture the intended behavior
specified in problem statements. By incorporating formal methods, we could systematically
identify and address semantic inconsistencies that previously went undetected. To improve
the semantic accuracy of the generated UCLID5 modules, we added a comprehensive seman-
tic pipeline consisting of four key stages (also pictured in Figure 2.1):

• Specification generation: automatically deriving formal specifications from problem
descriptions.

• Formal Method Invocation: verifying the generated code using bmc and/or smoke
testing to find unreachable lines.

• Error Parsing: parsing and simplifying verification results concisely for feedback
generation.

• Feedback generation + Integration: translating verification results into actionable
feedback and integrating it for repair.

This pipeline creates a verification loop that allows us to identify semantic errors in the
generated code and use this information to guide improvements in future iterations.

CHAPTER 2. EUDOXUS 2.0 9

Figure 2.1: Eudoxus Pipeline Overview

Independent Specification Generation

In the original Eudoxus 1.0 pipeline, the large language model (LLM) is prompted to com-
plete a predefined Module class (see Figure 2.2) and contains a specification block. In con-
trast, Eudoxus 2.0 decouples the specification synthesis process from code generation. During
the initial prototype synthesis, there are two LLM calls, one responsible for generating code
aligning to the task, and the other generating a list of specifications for the input task.
Since the specification generation is decoupled from the code generation, the Module class in
the initial synthesis does not have a specification block defined. All future code completion
prompts use an augmented Module class definition, like the one pictured in Figure 2.2.

This work focuses on generating coverage-based specifications with the primary goal of
ensuring that all defined variables in a module are being semantically checked. Specifically,
for each iteration of the synthesis-repair pipeline, we ensure that invariants are generated
for every variable declared in that version of the module. If, after the repair stage, the
model removes or modifies the specification block in a way that omits these invariants, we
regenerate them by re-invoking the LLM with targeted prompts. The resulting invariants
are inserted into the specification block using a designated placeholder (i.e. a “hole”).

Invariant generation is performed using constrained decoding techniques [24], ensuring
that the output adheres to a structured schema. Given the most recent version of the module,
current code implementation, and the task description, the LLM is instructed to generate
invariants for each defined variable. We define an InvPair object as a tuple consisting of
a variable name and its corresponding invariant. The model returns an InvPairList ob-
ject containing invariant expressions for all relevant variables. While each invariant must
reference its associated variable, the LLM is allowed to incorporate dependencies on other
variables within the module, enabling the specification of relational constraints when appro-
priate.

The generated InvPairList is parsed and injected into the module’s specification block
during each iteration of the pipeline. Figure 2.3 illustrates a representative example of a
completed specification block following this process.

CHAPTER 2. EUDOXUS 2.0 10

class Module:
”””An abstract class to
represent a UCLID5 module.”””

def types(self):
”””(Optional)
Defines the type declarations.
For example, the following implementation
defines a 8−bit type called T:
‘‘‘
def types(self):

self.T = BitVector(8)
‘‘‘
”””
pass

...
def specification(self):

”””(Optional) Defines the specification in
terms of invariant properties.

Returns:
bool: True if the specification is satisfied,
False otherwise.

For example, the following implementation
defines two invariants:
‘‘‘
def specification(self):

return self.x < 10 and self.y > 0
‘‘‘
”””
pass

(a) Eudoxus 1.0

class Module:
”””An abstract class to
represent a UCLID5 module.”””

def types(self):
”””(Optional) Defines the type declarations.
For example, the following implementation
defines a 8−bit type called T:
‘‘‘
def types(self):

self.T = BitVector(8)
‘‘‘
”””
pass

...
def specification(self):

”””(Required) Defines the specification
in terms of invariant properties.

Returns:
bool: True if the specification is satisfied,
False otherwise.

For example, the following implementation
defines two invariants:
‘‘‘
def specification(self):

return self.x < 10 and self.y > 0

DO NOT JUST RETURN THE VARIABLE TYPES!
”””
raise NotImplementedError

(b) Eudoxus 2.0

Figure 2.2: Partial module stencils from Eudoxus 1.0 (a) and Eudoxus 2.0 (b). The main
difference to note are in the ‘specification‘ block. Eudoxus 2.0 makes this block required,
instructs the LLM to not return variable types, and has a raise NotImplementedError line.

Preliminary experiments revealed that this approach significantly increased the likelihood
that the LLM produced well-formed specifications in the desired location. As a result, this
structure was adopted as the default strategy throughout the pipeline.

CHAPTER 2. EUDOXUS 2.0 11

def specification(self):

#L1 == green -> L3 == green in prop logic looks like:

self.L1_inv = ??

#(L1 == red && L3 == red) -> L2 == amber in prop logic looks like:

self.L2_inv = ??

#L3 == green -> L1 == green in prop logic looks like:

self.L3_inv = ??

#(L2 == red) -> L4 != green in prop logic looks like:

self.L4_inv = ??

return expression should combine all previous invariants together

return ??

Figure 2.3: Specification Block Creation

Bounded Model Checking

With generated specifications that represent the semantic requirements of a correct imple-
mentation, we employ a formal verification technique called bounded model checking (BMC)
to identify property violations.
Our verification process implements a three-tiered approach: First, we verify the initializa-
tion conditions by running BMC with 0 iterations, effectively checking that the initial state
satisfies all invariants and assertions. This step catches immediate violations in the setup of
the system before examining any transitions. Next, we extend the verification to 3 iterations
to evaluate how the state evolves through the next block. This intermediate check identifies
common patterns of transition relation errors while maintaining computational efficiency.
Finally, we leverage the LLM’s understanding of the problem domain by prompting it to
suggest an appropriate bound that will adequately test the system dynamics. This adaptive
approach ensures we allocate sufficient verification resources to complex behavioral properties
while avoiding unnecessary computation for simpler systems. This progressive verification
strategy enables us to identify semantic errors at different levels of system behavior, from
initialization to complex dynamic properties, providing targeted feedback for improvement.

Error Parsing / Feedback

Following the bounded model checking phase, we encounter one of two possible outcomes.
In the first scenario, the generated UCLID5 module successfully passes all three verification
checks, indicating that the implementation satisfies the specified properties. When this oc-
curs, we proceed to the smoke testing stage.
In the second scenario, where verification fails, UCLID5 produces counterexamples that
demonstrate specific violations of the specified properties. These counterexamples are valu-
able but require interpretation to be useful for improving the generated code. Our system

CHAPTER 2. EUDOXUS 2.0 12

transforms these raw counterexamples into actionable feedback that can guide corrections in
subsequent iterations.
A significant challenge in this process is managing the complexity of counterexample traces,
particularly for failed assertions at larger bound values where traces can become prohibitively
lengthy. To address this issue, we implement a filtering mechanism that captures the most
relevant information by tracking the final three steps for each unique failed invariant.
This focused approach to error processing serves two key purposes: it simplifies the number
of semantic failures, and it provides targeted guidance for corrective actions. By distilling
complex verification results into clear, actionable feedback, we create a more efficient itera-
tive improvement cycle for the code generation system. We generate feedback in the form
of function-specific fixes. We query our LLM for these fixes, providing the original task de-
scription, current Python model, and counterexample message. The feedback generated in
this stage directly informs the next round of code generation, creating a verification-guided
improvement loop that progressively enhances the semantic correctness of the generated
UCLID5 modules.

Smoke Testing

Successful verification through bounded model checking does not guarantee correctness of
the generated model, as this outcome may result from insufficiently rigorous specifications.
To address this limitation, we incorporate smoke testing as an additional validation measure,
specifically targeting unreachable code sections that may indicate semantic deficiencies.
While UCLID5 provides built-in smoke testing capabilities, we extended this functionality to
better serve our specific requirements. Our implementation addresses a critical challenge in
the verification pipeline: maintaining traceability between the UCLID5 representation and
its Python counterpart.
Given our observation that LLMs demonstrate superior performance with Python, we aim
to perform as much processing as possible within the Python version of the model. However,
when smoke testing identifies unreachable code sections in UCLID5, we need a reliable
mechanism to map these findings back to the corresponding elements in the Python module.
Our solution leverages the abstract syntax tree (AST) representation that underlies both
the Python and UCLID5 versions of the model. During the code generation process, we
assign unique identifiers to each AST node—whether representing statements, conditionals,
or variables. When rendering the code in either language, we include these identifiers as
comments alongside the corresponding lines.
This approach creates a bidirectional mapping between the two representations. When smoke
testing identifies unreachable sections in the UCLID5 model, we collect the identifiers for
all affected lines. These identifiers then serve as precise targets for the fix synthesis step,
enabling focused corrections without disrupting functioning components of the model.

CHAPTER 2. EUDOXUS 2.0 13

Best Model Distinction

Establishing an objective evaluation framework for determining the optimal model in what
is inherently a subjective domain presents significant challenges. We acknowledge that ul-
timate model quality assessment depends on user-specific requirements. Nevertheless, we
developed a structured heuristic approach with clearly defined evaluation criteria to guide
model selection throughout the iterative process.
Our evaluation framework begins with a straightforward initialization: if no best model has
been previously identified, the first generated model automatically assumes this designation,
providing a baseline for subsequent comparisons. For all subsequent iterations, we evaluate
new models against the current best model using three key metrics, applied hierarchically:

1. Compilation Status: Our primary requirement is that the UCLID5 program suc-
cessfully compiles. A model that compiles is inherently preferable to one that fails
this basic criterion, as compilation represents the minimum threshold for potential
correctness.

2. Failed assertions: When bounded model checking is enabled, we track the number
of failed assertions. Our empirical observations indicate that the quantity of generated
specifications typically remains consistent across iterations, making the number of
satisfied assertions a reliable comparative metric for semantic correctness.

3. Unreachable code: When smoke testing is active, we consider the number of warn-
ings generated due to unreachable code sections. Models with fewer unreachable sec-
tions are preferred, as this typically indicates more coherent logic and better alignment
with the intended functionality.

When both bounded model checking and smoke testing are active, we prioritize asser-
tion failures over unreachable code warnings. This prioritization stems from our finding
that dynamic analysis with concrete counterexamples identifies more critical semantic issues
compared to static detection of unreachable code. Failed assertions directly highlight vio-
lations of specified behavioral properties, while unreachable code may sometimes represent
redundancy rather than functional errors. This multi-tiered evaluation approach provides
a systematic method for tracking improvement across iterations while maintaining focus on
the most critical aspects of model correctness.

Constrained Decoding for Fixes

Since initial models rarely pass verification checks, we developed a systematic approach for
iterative model refinement based on execution feedback. This mechanism translates verifi-
cation results into targeted fixes that address specific deficiencies identified during bounded
model checking or smoke testing. We leverage an LLM with constrained decoding to syn-
thesize precise fixes for the model. The LLM receives a carefully crafted input comprising of

CHAPTER 2. EUDOXUS 2.0 14

1 class TrafficLights(Module):

2 def locals(self):

3 #TODO: Declare the light states before using them in the ’locals’

function. It seems there is a missing declaration for the type ’Light,

which should be defined as a set of states (green, yellow, red, amber).

4 ??

...

Figure 2.4: Example fix with TODO and ?? for Eudoxus 1.0 ”Complete” Step

the original task description, current Python implementation, and identifiers for unreachable
code sections. Our prompt directs the model to produce a structured SuggestionList where
each suggestion maps to a specific function block and includes a detailed description of the
required fix. After parsing this structured output, we insert the fix descriptions into their
corresponding blocks within the Python version of the model. This annotated model then re-
enters the syntax repair loop for implementation of the suggested changes. To optimize the
effectiveness of the syntax repair process, we implemented two key enhancements based on
empirical observations. First, we prepend each fix description with a ”TODO” marker, which
significantly improves the LLM’s attention to these specific sections requiring modification.
Second, we append a syntactic ”hole” (represented as ??) to each fix description, lever-
aging the syntax repair loop’s built-in mechanism for identifying and resolving incomplete
code segments. Figure 2.4 illustrates one such fix structure, demonstrating how verification
feedback translates into structured fix suggestions and ultimately into code modifications.
This approach creates a closed-loop system where verification results directly inform targeted
improvements to the model.

Four Methodologys

This section is for the reader’s convenience to clearly see the difference between the four
versions that were tested.

• Plain: The ‘plain‘ methodology refers to the pipeline that was used in the original
Eudoxus paper- without any formal verification integration.

• All: The ‘all‘ methodology refers to the pipeline that generates specifications, invokes
bounded model checking, and runs smoke testing.

• BMC: The ‘bmc‘ methodology refers to the pipeline that generates specifications and
invokes bounded model checking.

• Smoke: The ‘smoke‘ methodology refers to the pipeline that only runs smoke testing.

CHAPTER 2. EUDOXUS 2.0 15

2.2 Implementation

Much of the experimental setup for Eudoxus 2.0 remained the same as Eudoxus 1.0. We use
tree-sitter to parse partial programs, Z3 to solve MAX-SMT queries, and make LLM calls
through the OpenAI Python API. We use two models in our pipeline for code generation
and model feedback. Code generation is done with gpt-3.5-turbo-0125 while feedback and
specifications are generated with gpt-4-turbo-2024-04-09. Our MAX-SMT queries are solved
locally on a 2.6 GHz 6-Core Intel Core i7 processor with 16 GB of RAM. We allow the
syntactic repair pipeline to run for at max 5 iterations like in Eudoxus 1.0, and allow the
feedback loop to run for at max 5 iterations.

16

Chapter 3

Evaluation

In this section, we discuss the experimental setup and results for Eudoxus 2.0, the formal
method backed version of the SPEAC prototype for UCLID5. We seek to evaluate the per-
formance of Eudoxus 2.0 across the following research questions:

• RQ1: Which verification-guided code generation approach demonstrates highest user
preference across the four implemented methodologies?

• RQ2: To what extent do participants desire code generated from each implementation
variant?

• RQ3: What relationship exists between the number of satisfied formal assertions and
user-assigned quality ratings?

• RQ4: Which structural components are most frequently identified as semantically
deficient in LLM-generated UCLID5 modules?

• RQ5: How effectively does BMC or smoke testing improve model quality, as measured
by assertions passed?

• RQ6: What relationship exists between the prevalence of unreachable code segments
and user-assigned quality ratings?

Benchmarks

Our dataset consists of 33 natural language task descriptions. These natural language de-
scriptions are pulled from three textbooks. We pull 21 examples from ”Principles of Model
Checking” by C. Briar and J.P. Katoen [2], 3 examples from ”Logic in Computer Science:
Modelling and Reasoning about Systems” by M. Ruth and M. Ryan [9], and 9 examples
from ”Introduction to Embedded Systems 2ND ED” by E Lee and S. Seshia [11].
For each example in our dataset and each version with toggled features, we run the described

CHAPTER 3. EVALUATION 17

pipeline. While iterating through the pipeline, we keep track of three pieces of information:
a log of the outputs, meta-data csv, and final output. The folders with all of this information
are in the Github.

3.1 Experiment Setup

We evaluated the desirability of code generated from our pipelines by conducting a user study
of UCLID5 users and developers ranging from different levels of familiarity with UCLID5.

User Study

In our experimental evaluation, we sought to quantify user preferences regarding various
verification-guided code generation features. We implemented a tournament-style compari-
son framework in which participants selected preferred outputs and indicated their relative
desire for the generated code. While this methodology was used in our final experimental
design, we conducted a preliminary user study that was subsequently revised based on par-
ticipant feedback. A comprehensive discussion of the initial experiment is provided in the
Appendix for reference.

Tournament Structure

To implement the comparative evaluation, we anonymized the output from each system
variant by assigning unique identifiers, maintaining the mapping between these identifiers
and their corresponding implementation versions. We then constructed tournament brack-
ets for systematic comparison. As an illustrative example, for a given task with four out-
puts—baseline (A), comprehensive (B), bounded model checking (C), and smoke testing
(D)—the first round might pair A versus B and C versus D. Participants viewed only the
anonymized identifiers rather than implementation details. For each pairing, participants in-
dicated their preference, with an option to select neither if they found both implementations
equally satisfactory or unsatisfactory. Winners from the first round advanced to a final com-
parison, where participants selected their ultimate preference, determining the tournament
winner. To mitigate potential bias from specific pairings, we implemented three distinct
bracket variations: (1) A versus B and C versus D, (2) A versus C and B versus D, and
(3) A versus D and B versus C. The 33 example tasks were distributed equally across these
variations, with 11 examples per configuration. For statistical robustness, we conducted each
example evaluation twice, resulting in 66 total evaluations.

Code Desirability

Beyond simply comparing two output files, we ask participants to evaluate the desirability
of the generated code itself. Specifically, for each of the two UCLID5 files presented, the

CHAPTER 3. EVALUATION 18

user is prompted to indicate how much of the code they would choose to retain. The options
provided are: ”I would keep very little or none of this code”, ”I would keep some of this
code”, and ”I would keep all of this code”. This question aims to capture a more nuanced,
user-centered assessment of the generated code’s perceived quality and utility.

User Rating Score Calculations

For many of the subsequent graphs and results, we explore the relationships between various
variables and user ratings in an effort to identify potential correlations. However, computing
the user rating scores for each output is not entirely straightforward. While each user was
shown a distinct set of outputs in their respective Google Forms, some forms were shared
across multiple participants. As a result, certain output files received multiple responses to
the question, ”How much of this code would you want to keep?”. Naturally, these participants
expressed differing preferences and expectations regarding the code they were shown.

To aggregate these varying responses, we assign a numerical value to each response cat-
egory: ”little/none” is assigned a score of 1, ”some” receives a score of 3, and ”all” is given
a score of 5. The final score for each output file is then computed as the average of all its
corresponding response values. For example, if 25.ucl received one response of ”some” and
another of ”all,” the resulting score for that output would be 4.

CHAPTER 3. EVALUATION 19

Figure 3.1: Final aggregate winners and finalists split by each version

3.2 Results

In this section, we will look at answer at the data collected for each of the research questions.

RQ1: Method Preference

This graph illustrates user preferences for each of the output versions, aggregated across
all bracket comparisons. A few notable trends emerge from this data, particularly when
comparing the ”all” method to the ”plain” method. Interestingly, both versions won an equal
number of brackets, suggesting that there may be no substantial difference in user preference
between the original Eudoxus output and the versions enhanced with bmc/smoke testing.
Although the ”all” version reached the final round more frequently than any other, it did so
by a narrow margin. Another noteworthy observation is the underperformance of
the ”bmc” variant, which suggests that there may be underlying issues in the
specification generation process used in this particular pipeline.

CHAPTER 3. EVALUATION 20

Figure 3.2: User ratings of code desirability across versions, grouped into three categories:
All (fully desirable), Some (partially desirable), and Little (largely undesirable).

RQ2: Code Desirability

The graph above presents the aggregate distribution of code desirability ratings for each
output version. Overall, the ”plain” version performed the best, with participants indicating
a stronger inclination to retain more of its generated code. The ”bmc” version, however,
offers a particularly interesting case. Despite being the lowest performer in the preference-
based bracket evaluations, participants still expressed a notable willingness to keep code
from its outputs. This suggests that relying solely on comparative preference data may
overlook important nuances in the quality of individual outputs. In fact, the ”bmc” version
received the highest number of ”I would keep all of this code” ratings, while also receiving
nearly the highest number of ”I would keep very little or none of this code” responses. This
polarization indicates that the outputs from the ”bmc” pipeline tend to be either
highly effective or notably subpar, with little in between.

CHAPTER 3. EVALUATION 21

Figure 3.3: Aggregated Assertion Pass Percentage vs User Rating for ”bmc” and ”all”
pipeline outputs. This graph contains pass percentages for any pipeline that incorporates a
bounded model checking step.

RQ3: Passed Assertions vs User Rating

For all outputs that underwent bounded model checking (BMC), we selected the best model
generated and ran BMC for 100 iterations, recording the number of assertions that passed
and failed. The graph above plots the pass percentage of these assertions—defined as the
proportion of passed checks out of total checks—against the corresponding user rating for
each output. The resulting Pearson correlation coefficient is 0.05, with a p-value of 0.6050.
Contrary to our expectations, we did not observe a statistically significant positive
correlation between specification pass percentage and user rating. This result sug-
gests that our current approach to generating coverage-based specifications may
not align with user priorities or preferences, and highlights the need for further
refinement.

CHAPTER 3. EVALUATION 22

Figure 3.4: Fix Count by Function Block

RQ4A: Semantically Deficient Sections

In the formal-method–backed pipeline, the LLM interprets feedback produced by the formal
method and generates a corresponding fix in the form of a (block, description) pair. Here,
the block refers to the function or code region targeted for modification, while the description
outlines the nature of the proposed change. As part of our analysis, we tracked the frequency
of fixes applied to each block throughout the pipeline.

The graph above shows the distribution of fix counts by block. As expected, the next
block received the highest number of fixes. This is consistent with intuition, as the next block
defines the program’s transition relations and core operational logic—areas that are particu-
larly sensitive to formal verification feedback. Notably, the specification block exhibited the
second-highest number of fixes. This suggests that a significant portion of the issues
detected by the formal method stem from the way specifications are generated,
pointing to specification synthesis as a potential area for improvement.

CHAPTER 3. EVALUATION 23

Figure 3.5: Graph of counter LLM-identified faulty sections

RQ4B: Semantically Deficient Sections - Breakdown

To better understand the source of the identified issues, we further dissected the faulty sec-
tion graph described previously, categorizing the feedback by output version. It becomes
immediately apparent that the bmc version is responsible for the majority of the generated
feedback. Both the ”all” and ”bmc” versions exhibit the highest counts across all feedback
categories. This trend reinforces the conclusion that the bmc pipeline is the primary con-
tributor to these issues. Given that the ”all” version also relies on bounded model checking,
its elevated feedback count further supports the claim that BMC is the key source of
error detections and subsequent fix suggestions in the formal-method–backed
pipelines.

CHAPTER 3. EVALUATION 24

Figure 3.6: Histogram showcasing the delta between iterations in number of failures per
assertion.

RQ5: Effectiveness of Feedback

The formal-method–backed pipeline integrates a feedback mechanism designed to modify the
program logic in response to failed assertions, with the goal of improving overall correctness.
Our evaluation indicates that this feedback component is generally stable and reliable. In
93% of cases, its application resulted in either an improvement or no change in the number
of failed assertions. Notably, only 7% of cases exhibited a regression, wherein the number
of errors increased after feedback was applied. These results suggest that the inte-
gration of formal-method feedback into the code generation process can be done
safely in the vast majority of scenarios, making it a viable component for further
development and refinement.

CHAPTER 3. EVALUATION 25

Figure 3.7: Warnings vs User Rating

RQ6: Unreachable Lines vs Rating

We hypothesized that there would be a strong negative correlation between the number of
unreachable lines in the generated code and its overall desirability, as rated by participants.
Intuitively, the presence of unreachable code might suggest lower quality or lack of coher-
ence, potentially making the output less appealing. However, upon analyzing the data, we
observed only a marginal negative correlation. The computed Pearson correlation co-
efficient was -0.02, with a p-value of 0.84—indicating no statistically significant
relationship between these two variables.

CHAPTER 3. EVALUATION 26

Threats to Validity

Our experiment gave us valuable insights into the features that were important and effective.
Answering each of the research questions provided a new insight into understanding how our
new pipeline was perceived by UCLID5 users and developers.
RQ1: We note that there is no substantial difference in user preference between outputs
generated with formal methods and no formal methods.
RQ2: On further investigation we see that ‘bmc‘ output preferences are quite polarized. We
recognize that these preferences are subjective and running this evaluation on a new set of
participants can cause different outcomes.
RQ3: We analyze the assertion pass percentage versus the user preference ratings and find
that there is no correlation between the assertion pass percentage for an output file and a
participant’s preference.
It is worth noting that not all BMC invocations produced counterexamples; a subset failed
during execution due to toolchain or model-specific issues. Nevertheless, the majority of runs
did yield counterexamples. A detailed breakdown of these cases is provided in the Appendix.
Additionally, we include supplementary analyses that explore the relationship between pass
percentage and user rating, disaggregated by pipeline type—specifically, the ”all” and ”bmc”
versions (see Figures 5.7 and 5.8 in the Appendix).
RQ4: The error message parsing and feedback generation was a critical component of our
work, and we sought to understand what blocks the LLM thoughts the errors were coming
from. We noted that most of these errors were identified when running BMC, specifically in
the ‘next‘ and ‘specification‘ blocks.
RQ5: With the error parsed and feedback generated, we wanted to understand how effective
our repair step is. We found that the feedback component is stable, with only 93% of cases
having either an improvement or no change in the number of failed assertions.
However, Figure 3.6 only reflects the situations where BMC executes without failure for two
consecutive invocations. There are some scenarios where bounded model checking encounters
an error, whether that is a syntax or parser error, which causes bounded model checking to
crash. We could not pinpoint the exact cause of those failures, so they are not considered
in the ”worsened” category. In addition, between iterations of the pipeline, it is possible for
the name of the specification to change. We only count assertions that persist with the same
name from the previous iteration. These invariant names are created from the variables
defined in the model, which generally meant that invariants would not change as long as the
variable were named the same. Unfortunately, with coverage-based specifications, we did
not have a way to map ”similar” types of specifications, only exact name duplicates.
RQ6: Our smoke testing results showed that unreachable lines are not a strong indicator of
user preference. Rather, smoke testing should be implemented as a lightweight sanity check
on the generated models.

27

Chapter 4

Conclusion

4.1 Conclusion

This work explored the use of formal methods to improve the quality of code generated by
large language models (LLMs), specifically within the Eudoxus pipeline targeting UCLID5
modules. We implemented and evaluated four pipeline variants: a baseline version without
formal methods (plain), specification generation with bounded model checking (bmc), smoke
testing (smoke), and a combination of specification generation with both bounded model
checking and smoke testing (all). The goal was to understand how formal-method–backed
components affect user preferences, code desirability, and overall model performance.

Our bracket-style comparison revealed no significant preference for the formal method
augmented versions over the baseline. Both the plain and all versions won an equal number
of brackets, with the all version reaching the final round slightly more often, suggesting
only marginal improvement when integrating formal techniques. Interestingly, while the
bmc version performed the worst in overall preference, it showed a polarized desirability
pattern—receiving both the highest number of “I would keep all of this code” and one of
the highest counts of “I would keep very little or none of this code.” This suggests the bmc
outputs were either quite strong or significantly flawed.

When we examined formal metrics, we found no meaningful correlation between user pref-
erence and model correctness indicators. The percentage of passed assertions from bounded
model checking had a Pearson correlation of 0.05 (p = 0.6050) with user ratings, while the
number of unreachable lines in the code showed a Pearson correlation of -0.02 (p = 0.84),
indicating no statistically significant relationship. These results suggest that conventional
verification metrics alone do not reliably predict user satisfaction or perceived code quality.

Our analysis of repair feedback further highlighted that most fixes were concentrated in
the next block, as expected given its role in defining system behavior. The specification
block, however, received the second-highest number of repairs, underscoring issues with the
specification generation process. The ’bmc’ and ’all’ versions were responsible for the bulk of
these fixes, confirming that bounded model checking, while powerful, introduces instability

CHAPTER 4. CONCLUSION 28

if not paired with high-quality specifications.
Nevertheless, the repair process proved to be relatively stable. In 93% of cases, feedback-

driven fixes either improved or maintained assertion outcomes, while only 7% resulted in
regression. This suggests that formal-method–based feedback mechanisms can be safely
integrated into generation pipelines in most cases, making them a reliable foundation for
iterative improvement.

Ultimately, this study demonstrates that while formal methods can contribute valuable
insights and structural rigor to LLM-based code generation, their effectiveness hinges on
the quality of the specifications they are guided by. Simply achieving coverage is not suffi-
cient—semantics matter. This insight motivates several directions for future work.

4.2 Future Work

Evaluation

This study primarily focused on user preferences as a proxy for evaluating the quality of
generated code. While this provides valuable insight into subjective usability and readability,
future iterations of this work should incorporate more rigorous, objective evaluation metrics.
These might include expert annotation of correctness, formal validation against intended
behavior, or comparison against known gold-standard outputs. Such an approach would
offer a deeper understanding of how each pipeline version performs in practice, though it
would require a significantly more involved evaluation process.

Specification Generation

Our current approach to specification generation was rooted in coverage-based methods,
ensuring that each variable had a corresponding assertion. However, our findings suggest
that this approach is insufficient. Many generated specifications failed to produce meaningful
verification constraints or improve user-rated outcomes. To address this, we propose shifting
toward more semantically rich specifications—such as those based in Linear Temporal Logic
(LTL)—which can express how variables evolve over time and how system states interact.
This would allow us to better align specifications with real behavioral expectations and
reduce the generation of spurious counterexamples.

29

Bibliography

[1] Pranjal Aggarwal, Bryan Parno, and Sean Welleck. AlphaVerus: Bootstrapping For-
mally Verified Code Generation through Self-Improving Translation and Treefinement.
2024. arXiv: 2412.06176 [cs.LG]. url: https://arxiv.org/abs/2412.06176.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008. isbn: 026202649X.

[3] Clark Barrett et al. “Satisfiability Modulo Theories”. In: Handbook of Satisfiability.
Ed. by Armin Biere et al. Second. IOS Press, 2021. Chap. 33, pp. 1267–1329.

[4] Sahil Bhatia et al. “Verified Code Transpilation with LLMs”. In: Advances in Neural
Information Processing Systems. Ed. by A. Globerson et al. Vol. 37. Curran Associates,
Inc., 2024, pp. 41394–41424. url: https://proceedings.neurips.cc/paper_files/
paper/2024/file/48bb60a0c0aebb4142bf314bd1a5c6a0-Paper-Conference.pdf.

[5] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. “Modeling and Verifying
Systems using a Logic of Counter Arithmetic with Lambda Expressions and Uninter-
preted Functions”. In: CAV02. Ed. by E. Brinksma and K. G. Larsen. LNCS 2404.
July 2002, pp. 78–92.

[6] Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021. arXiv:
2107.03374 [cs.LG]. url: https://arxiv.org/abs/2107.03374.

[7] QiHong Chen et al. A Deep Dive Into Large Language Model Code Generation Mis-
takes: What and Why? 2025. arXiv: 2411.01414 [cs.SE]. url: https://arxiv.org/
abs/2411.01414.

[8] Tristan Coignion, Clément Quinton, and Romain Rouvoy. “A Performance Study of
LLM-Generated Code on Leetcode”. In: Proceedings of the 28th International Confer-
ence on Evaluation and Assessment in Software Engineering. EASE 2024. ACM, June
2024, pp. 79–89. doi: 10.1145/3661167.3661221. url: http://dx.doi.org/10.
1145/3661167.3661221.

[9] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. USA: Cambridge University Press, 2004. isbn: 052154310X.

[10] Juyong Jiang et al. A Survey on Large Language Models for Code Generation. 2024.
arXiv: 2406.00515 [cs.CL]. url: https://arxiv.org/abs/2406.00515.

BIBLIOGRAPHY 30

[11] Edward A. Lee and Sanjit A. Seshia. “An introductory textbook on cyber-physical
systems”. In: WESE. ACM, 2010, p. 1.

[12] Raymond Li et al. StarCoder: may the source be with you! 2023. arXiv: 2305.06161
[cs.CL]. url: https://arxiv.org/abs/2305.06161.

[13] Fang Liu et al. Exploring and Evaluating Hallucinations in LLM-Powered Code Gener-
ation. 2024. arXiv: 2404.00971 [cs.SE]. url: https://arxiv.org/abs/2404.00971.

[14] Anton Lozhkov et al. StarCoder 2 and The Stack v2: The Next Generation. 2024. arXiv:
2402.19173 [cs.SE]. url: https://arxiv.org/abs/2402.19173.

[15] Rafael Menezes et al. “ESBMC 7.4: Harnessing the Power of Intervals”. In: 30th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’24). Vol. 14572. Lecture Notes in Computer Science. Springer, 2024,
pp. 376–380. doi: https://doi.org/10.1007/978-3-031-57256-2_24.

[16] Federico Mora et al. Synthetic Programming Elicitation for Text-to-Code in Very Low-
Resource Programming and Formal Languages. 2024. arXiv: 2406.03636 [cs.PL].
url: https://arxiv.org/abs/2406.03636.

[17] Elizabeth Polgreen et al. UCLID5: Multi-Modal Formal Modeling, Verification, and
Synthesis. 2022. arXiv: 2208.03699 [cs.LO]. url: https://arxiv.org/abs/2208.
03699.

[18] Elizabeth Polgreen et al. “UCLID5: Multi-modal Formal Modeling, Verification, and
Synthesis”. In: CAV (1). Vol. 13371. Lecture Notes in Computer Science. Springer,
2022, pp. 538–551.

[19] Baptiste Rozière et al. Code Llama: Open Foundation Models for Code. 2024. arXiv:
2308.12950 [cs.CL]. url: https://arxiv.org/abs/2308.12950.

[20] Sanjit A. Seshia and Pramod Subramanyan. “UCLID5: Integrating Modeling, Verifi-
cation, Synthesis and Learning”. In: 2018 16th ACM/IEEE International Conference
on Formal Methods and Models for System Design (MEMOCODE). 2018, pp. 1–10.
doi: 10.1109/MEMCOD.2018.8556946.

[21] Merlijn Sevenhuijsen, Khashayar Etemadi, and Mattias Nyberg. VeCoGen: Automating
Generation of Formally Verified C Code with Large Language Models. 2025. arXiv:
2411.19275 [cs.SE]. url: https://arxiv.org/abs/2411.19275.

[22] Yue Wang et al. CodeT5+: Open Code Large Language Models for Code Understanding
and Generation. 2023. arXiv: 2305.07922 [cs.CL]. url: https://arxiv.org/abs/
2305.07922.

[23] Guangyuan Wu et al. “LLM Meets Bounded Model Checking: Neuro-symbolic Loop
Invariant Inference”. In: Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering. ASE ’24. Sacramento, CA, USA: Association
for Computing Machinery, 2024, pp. 406–417. isbn: 9798400712487. doi: 10.1145/
3691620.3695014. url: https://doi.org/10.1145/3691620.3695014.

BIBLIOGRAPHY 31

[24] Yanxuan Zhang et al. “Language (Model) is Not Enough: Aligning LMs with Con-
strained Decoding”. In: International Conference on Learning Representations (ICLR).
2023.

32

Chapter 5

Appendix

5.1 Initial User Study

Experiment Setup

To conduct the experiment, we first anonymized the model outputs by assigning each output
a unique identifier, maintaining a mapping between these identifiers and their corresponding
versions.

In our initial user study, participants were asked to rank their top three choices from
among five available outputs. However, user feedback indicated that this approach posed
significant challenges. Specifically, participants found it difficult to evaluate outputs accu-
rately without a clear rubric, making it hard to distinguish and qualify differences between
them.

In response to this feedback, we revised the study design by reducing the number of
outputs from five to four and implementing a more structured comparison system. This
modification aimed to alleviate cognitive load and enable participants to make more informed
and precise comparisons between outputs.

5.2 BMC Failure Cases

In every invocation of bounded model checking, our goal is to generate counterexamples if the
logic is incorrect. The counterexamples are parsed and used to generate feedback. Sometimes
in the invocation of bounded model checking, we found syntax and parsing errors. The graph
below shows the breakdown of the errors that we encountered during this experiment. Fixing
these issues is also part of the next study.

CHAPTER 5. APPENDIX 33

5.3 Prompts

Generate Specifications:
To generate specifications, we used a combination of prompt engineering and constrained

decoding. We provide both the task semantics and current code and ask for an invariant for
each variable.

Generate BMC Error / Smoke Testing Fixes:
To generate the fixes from the BMC counter examples, we provide our LLM the original

task description, generated python model, and counterexample message. We query the LLM,
asking for it to generate a fix for the problematic function in our current model. We add a
section guiding the LLM towards either the ’next’ block or ’init’ block based on where most
of the errors occurred.

LLM Generated BMC bound: We query an LLM to generate a bmc bound. We
provide the LLM the natural language task description and the current python model. We
ask the LLM to return the number of iterations we should run the ’next’ block to best ensure
the correctness of the code.

CHAPTER 5. APPENDIX 34

Figure 5.1: Graph showing the relationship between lines changed from initial code comple-
tion and repair to final output.

5.4 Additional Research Questions

RQ: Changed Lines vs User Rating

Is there a correlation between the number of changed lines and user rating?
We found that an increase in changed lines generally lead to a lower participant preference
score. This implies that the code generated in the first few iterations is probably
more aligned to the user’s interests.
Pearson correlation: -0.07, p-value: 0.2960

CHAPTER 5. APPENDIX 35

Figure 5.2: A box plot showing the variability in the number of lines between two different
pipeline runs with the exact same parameters

Figure 5.3: Histogram showcasing the variability in the user rating

RQ: Output Variabilty (Lines)

How much variation (# lines) is there between outputs created with the same
parameters?
It is clear and evident that large language model outputs will not be consistent. We con-
strained that variability through constrained decoding; however, there were only a few cases
where the model outputs were the same. The two graphs above depict the absolute value
difference in lines from the output of the first and second run of the model with the same
parameters.
We list the specific stats here: Mean: 11.85, Median: 7, Standard Deviation: 9.77, Min: 0,
Max: 33.

CHAPTER 5. APPENDIX 36

Figure 5.4: Histogram of user variability between two different pipeline runs with the exact
same parameters

RQ: Output Variabilty (User Rating)

How much variation (user rating) is there between outputs created with the
same parameters?
We knew that running the same command would yield different outputs and wanted to see
what the difference in user ratings for these outputs across the two runs was. We see that for
the most part the ratings are concentrated on the left hand side, implying that the ratings
generally stay in the same category. However, there are a considerable amount of
differences between files that fall in the 2-2.99 category. A difference of 2 is an
entire category difference which is notable.

CHAPTER 5. APPENDIX 37

Figure 5.5: Iterations vs User Rating

RQ: Iterations vs Rating

Is there a correlation between number of iterations run and user rating?
In this section, we plotted to see if there was a correlation between the number of itera-
tions the feedback loop ran for and user preference for the code. We calculated a Pearson
correlation score of 0.13 with p-value 0.31. We find a slight positive, but not statistically
significant, correlation.

CHAPTER 5. APPENDIX 38

Figure 5.6: Tokens vs User Rating

RQ: Tokens vs Rating

Is there a correlation between number of tokens used and user rating?
In this section, we plotted to see if there was a correlation between the number of tokens
used and user preference for the code. We calculated a Pearson correlation score of 0.01 with
a p-value of 0.93. So, there is no correlation and it is not statistically significant.

CHAPTER 5. APPENDIX 39

Figure 5.7: Assertion Pass Percentage vs User Rating

RQ: Passed Assertions vs User Rating (bmc)

On all of the final ”bmc” outputs, we took the best model generated and ran bounded model
checking on it for 100 iterations, noting how many passed and failed. The graph above shows
the ”pass-percentage” of the models vs user rating. Our Pearson correlation value is 0.02
with p-value of 0.86. The results imply that there is almost no correlation between
the number of assertions passed and user preference. This means that there are
persistent problems in the specification or logic.

CHAPTER 5. APPENDIX 40

Figure 5.8: Assertion Pass Percentage vs User Rating for models generated by the pipeline
with both specification generation with bmc and smoke testing.

RQ: Passed Assertions vs User Rating (combined)

On all of the final ”all” outputs, we took the best model generated and ran bounded model
checking on it for 100 iterations, noting how many passed and failed. The graph above
shows the ”pass-percentage” of the models vs user rating. Our Pearson correlation value
is 0.07 with p-value of 0.568. We find the correlation to be higher in this version
versus just the bmc version-implying that the addition of smoke testing might
be helping with the model logic.

