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Abstract

A Foundational Framework for Joint Speech and 4D Avatar Generation from Syllabic
Tokens

by

Rishi Jain

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Gopala Anumanchipalli, Advisor

Professor Angjoo Kanazawa, Second Reader

This thesis addresses the challenge of generating synchronized, expressive facial animations
from syllabic speech representations in an identity-independent manner. Traditional ap-
proaches to speech-driven facial animation often rely on existing ground truth audio or
remain constrained to specific identities. We propose a novel framework that leverages
conditional flow matching in a learned latent space to model the inherently ambiguous,
one-to-many relationship between low a bitrate speech syllabic codec and facial movements.

Our approach begins with an exploratory study that identifies 3D morphable model parame-
ters as effective encodings for expressive facial motion. Building on this finding, we develop a
system that uses a variational autoencoder (VAE) combined with conditional flow matching
to generate anatomically plausible facial animations from compact, identity-agnostic syllabic
representations. By disentangling identity features from dynamic motion, our method en-
ables one model to serve a broad user base, supporting applications in privacy-preserving
communication, customizable digital personas, and accessibility.

Experimental results demonstrate significant improvements in lip synchronization accuracy
and motion naturalness compared to direct parameter prediction approaches. Our model suc-
cessfully captures the correlation between audio prosodic features and facial movements while
maintaining consistent performance across both seen and unseen speakers. The stochastic
nature of our approach enables diverse yet plausible animations from identical inputs, avoid-
ing the uncanny repetitiveness often associated with deterministic methods. This work
represents a significant step toward scalable, identity-independent audio-visual generation
with applications in virtual communication, entertainment, and accessibility.
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Chapter 1

Introduction

1.1 Motivation & Background

Realistic audio-visual speech—in which facial animations are synchronized naturally with
spoken language—is crucial for lifelike digital communication. From virtual assistants and
avatars to gaming characters and accessibility tools, there is strong demand for systems that
translate speech directly into expressive, believable facial motion.

A particularly important objective is identity-independent generation: producing
natural facial movements (expressions, lip motion, head pose) unconstrained by any single
speaker’s appearance. Decoupling motion from identity enables:

• Privacy-Preserving Communication: Users speak through generic or custom avatars
without revealing their real faces [1].

• Customizable Digital Personas: Embodying varied characters across VR/AR, so-
cial platforms, and games [2].

• Automated Content Creation: Driving facial animation in film and media produc-
tion directly from audio [3].

• Accessibility: Visualizing speech for text-to-speech and brain-computer interfaces
[4].

However, language-to-face mapping is inherently ambiguous and one-to-many: the
same utterance can yield many valid facial behaviors depending on emotion, context, and
speaking style. Traditional deterministic or regression-based techniques often average over
this variability, producing overly smooth, unexpressive motion.

Furthermore, natural speech-driven animation is highly nuanced, requiring tight tempo-
ral coordination of articulatory gestures (e.g., lip and jaw movements), expressive cues (e.g.,
eyebrow raises, smiles), and subtle head shifts. These dynamics depend not only on what

Docusign Envelope ID: A2CCAAC1-5960-42D0-8356-034EC37C7F5B



CHAPTER 1. INTRODUCTION 2

is said but how it is said, demanding models that can learn rich temporal and expressive
variability from large, diverse datasets.

In this work, we take a step toward addressing these challenges by mapping syllabic
speech representations—compact, identity-independent sequences of discrete linguistic
units—to expressive facial motion. Our goal is to develop a scalable, flexible, and privacy-
aware audio-visual generation system trained on in-the-wild video data, capable of capturing
the variability and richness of natural speech.

1.2 Problem Statement

We seek to build a model that generates synchronized, expressive facial animations (expres-
sions and head pose) from syllabic speech representations. These representations offer
compact, identity-agnostic encodings of speech but may omit fine prosodic and articulatory
detail, challenging the synthesis of nuanced motion.

Key challenges include:

1. One-to-Many Mapping: Identical syllabic inputs can correspond to diverse facial
behaviors influenced by emotion, context, and style. Capturing this variability goes
beyond mean-squared regression and requires generative or stochastic modeling tech-
niques.

2. Identity Disentanglement: To serve a broad user base with one model, we must
separate dynamic facial motion (expression and pose) from static identity features
(face shape, appearance). This enables generalization to unseen identities and supports
rendering on arbitrary avatars.

3. Information Constraints of Syllabic Input: While syllabic representations en-
hance privacy and scalability, their low bitrate may lack detailed cues (e.g., micro-
prosody, exact articulatory trajectories), making it harder to produce tightly synchro-
nized, richly expressive animations.

We take a principled step toward solving these challenges by proposing and evaluating
a pipeline that learns expressive, identity-independent facial motion from syllabic speech,
trained on diverse, unconstrained video datasets.

1.3 Contributions

To advance scalable, speaker-agnostic speech-driven animation, we make the following con-
tributions:

• Syllable-Conditioned Generation Pipeline: An end-to-end system that predicts
facial expression and head pose from discrete syllabic tokens, without relying on high-
bitrate audio features or speaker identity.
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CHAPTER 1. INTRODUCTION 3

• Decoupled Expression-Identity Modeling: Training the model to produce only
dynamic motion, which is later mapped onto identity-specific avatars via a parametric
3D face model. This enables one model to generalize across and beyond training
identities.

• Learning from In-the-Wild Video: Leveraging large-scale, uncontrolled video data
to capture real-world variability in speech and facial behavior, demonstrating that
coherent and expressive animations can be learned from coarse linguistic inputs.

• Foundation for Future Systems: Laying groundwork for generative models that
translate symbolic language units into natural facial dynamics.

1.4 Thesis Structure

• Chapter 2: Related Work
Reviews speech and visual representations, articulatory encoding, identity disentangle-
ment, and generative techniques in audio-visual synthesis.

• Chapter 3: Exploratory Study — Visual Modalities for Expressive Speech
Representation
Compares mesh parameters, landmarks, and action units to identify how well repre-
sentations convey prosody and emotion.

• Chapter 4: Methods
Details the data processing, pipeline architecture, training setup, and evaluation met-
rics.

• Chapter 5: Experiments & Results
Presents and discusses quantitative and qualitative results.

• Chapter 6: Conclusion and Future Work
Summarizes contributions and outlines avenues for subsequent exploration and im-
provement.

Docusign Envelope ID: A2CCAAC1-5960-42D0-8356-034EC37C7F5B



4

Chapter 2

Related Work

2.1 Speech Coding and Codecs

Speech coding has been extensively studied over the past decades, progressing from tradi-
tional waveform-based codecs to neural speech codecs. Deep learning based methods often
compress speech using encoder-decoder representations [5, 6] or extract features from pre-
trained self-supervised learning (SSL) models and train corresponding vocoders [7, 8]. How-
ever, these representations are often high frequency and misaligned with phonemic bound-
aries, which limits their use in downstream tasks such as spoken language modeling. Sub-
sequent works such as Sylber [9], which extracts syllabic tokens from SSL representations,
demonstrate that speech can be encoded using far fewer tokens while preserving speech
intelligibility.

2.2 Articulatory Speech Processing

Articulatory speech processing leverages the physical mechanisms of speech production to
model and model speech. Early works [10, 11] established theoretical frameworks for source-
filter models of speech, relating vocal tract configurations to acoustic output. These foun-
dations have led to the development of various articulatory synthesis systems.

Electromagnetic articulography (EMA) has been instrumental in capturing vocal tract
movement for research purposes [12]. Recent research has combined these traditional ap-
proaches with deep learning. Cho et al. [13] demonstrated that self-supervised speech rep-
resentations naturally encode articulatory information, suggesting an inherent relationship
between learned speech embeddings and vocal tract configurations.

Acoustic-to-articulatory inversion (AAI) aims to predict articulatory movements from
acoustic signals [14, 15]. Similarly, articulatory synthesis has evolved from rule-based sys-
tems to deep learning approaches capable of generating natural speech from articulatory
features [16, 17]. Recent work [18] has found that articulator inversion helps with traditional
vision tasks such as speech-MRI segmentation.

Docusign Envelope ID: A2CCAAC1-5960-42D0-8356-034EC37C7F5B



CHAPTER 2. RELATED WORK 5

The SPARC framework [19] represents a significant advancement in this area, demonstrat-
ing that speech can be encoded as interpretable articulatory features and then synthesized
back with high fidelity. This system provides not only compression but also an interpretable
and controllable representation of speech, linking the abstract world of neural coding with
the physical process of speech production.

2.3 Visual Avatar Representation and Speech Avatar

Synthesis

The representation and animation of speaking avatars has progressed substantially, from
early parametric face models to modern neural rendering approaches. For speech-driven
avatar synthesis, early approaches focused on mapping phonemes to visemes [20]. Contem-
porary methods leverage deep learning to produce more natural animations. Audio2Face [21]
and VOCA [22] directly map audio features to facial expressions, while methods like Face-
Former [23] and CodeTalker [24] employ transformer architectures to better capture temporal
dynamics of speech. More recent methods use neural implicit representations such as Neural
Radiance Fields (NeRFs) [25] to represent and render more photorealistic avatars. However,
these approaches suffer from high computational complexity and lack controllability.

3D Morphable Models (3DMMs) like FLAME [26] provide parametric control over facial
expressions, enabling the synthesis of realistic facial movements. These models decompose
facial motion into identity, expression, and pose components, offering controllable manipu-
lation.

Most works focus on modeling avatar based on existing expressive speech. The AV-
Flow [27] system represents a significant step forward by jointly generating speech and
synchronized facial animation directly from text, creating more natural correspondence be-
tween audio and visual modalities. However, this work relies on large, private datasets and
is trained to be identity-specific.

2.4 Stochastic Generative Modeling for One-to-Many

Mapping

Stochastic generative models have become essential for addressing the inherent one-to-many
mapping problem in speech and facial animation synthesis, where multiple valid outputs can
correspond to a single input. Diffusion models [28] have emerged as powerful generative mod-
eling tools, gradually converting noise into structured data through an iterative denoising
process. For facial animation, diffusion models [29] to capture the diverse ways an expres-
sion can be realized, producing natural variations in facial movements. These approaches
are particularly valuable for creating natural-looking avatars that avoid the uncanny valley
effect often associated with deterministic animation methods. Conditional Flow Matching
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(CFM) [30, 31] offers an alternative approach that has gained traction due to its training
efficiency and fast sampling capabilities. Unlike diffusion models that require multiple sam-
pling steps, flow matching learns direct trajectories between noise and data distributions,
enabling faster inference which has already shown to be successful in speech synthesis [32,
33, 9]. The integration of stochastic generative models with articulatory representations
offers promising opportunities for creating speech and animation systems that are both in-
terpretable and expressive, combining the controllability of physical models with the natural
variation captured by deep generative approaches.

Docusign Envelope ID: A2CCAAC1-5960-42D0-8356-034EC37C7F5B
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Chapter 3

Exploratory Study — Visual
Modalities for Expressive Speech
Representation

This chapter presents an exploratory investigation into how different facial representations
encode emotional and prosodic information in speech. Understanding which visual represen-
tations best capture these aspects is crucial for developing effective audio-visual generation
systems that preserve expressiveness while achieving identity independence.

3.1 Experimental Design

Data and Preprocessing

For this exploratory study, we utilize the Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) [34], a well-established dataset comprising audio and video
recordings of 24 actors (12 male and 12 female). The actors recite two utterances with
eight distinct emotions (neutral, calm, happy, sad, angry, fearful, disgusted, and surprised)
at varying intensities, resulting in 60 utterances per actor. This dataset provides clear,
acted emotional expressions that serve as an effective testbed for evaluating different facial
representations.

The preprocessing pipeline extracts four distinct facial representations from each video
frame:

• Lip Features: 20 x-y lip vertices extracted using MobileNet [35], primarily capturing
articulation movements.

• Facial Landmarks: 68 x-y facial landmarks obtained via MobileNet, representing the
overall facial structure and movement.

Docusign Envelope ID: A2CCAAC1-5960-42D0-8356-034EC37C7F5B
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EXPRESSIVE SPEECH REPRESENTATION 8
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Figure 3.1: Architecture of the bidirectional GRU where the visual representation can be
switched out.

• Action Units (AUs): 20 facial action units extracted using XGBoost, based on the
Facial Action Coding System [36]. AUs correspond to the contraction of specific facial
muscles that produce expressions.

• 3D Mesh Model (FLAME): A 50-dimensional expression vector extracted using the
SMIRK model [37], which is based on the FLAME parametric face model [26]. This
representation captures facial expression in a disentangled parameter space separate
from identity and pose.

For prosodic prominence analysis, we first align the audio with transcripts using the
Montreal Forced Aligner [38] with models pretrained on LibriSpeech [39]. We then generate
a continuous prosodic prominence signal following Suni et al.’s methodology [40], which
combines acoustic features including pitch, energy, speech rate, and word-level duration.
Prosodic prominence refers to the perceptual salience of linguistic units (typically syllables
or words) that are acoustically emphasized in speech.

Model Architecture and Training Procedure

To systematically evaluate how each facial representation encodes emotion and prosodic
prominence, we employ a bidirectional Gated Recurrent Unit (BiGRU) network as seen in
Figure 3.1. This architecture processes temporal sequences bidirectionally, capturing both
past and future contextual information—a key advantage for modeling speech patterns where
anticipatory and carry-over effects are common [41].

The model consists of:

Docusign Envelope ID: A2CCAAC1-5960-42D0-8356-034EC37C7F5B



CHAPTER 3. EXPLORATORY STUDY — VISUAL MODALITIES FOR
EXPRESSIVE SPEECH REPRESENTATION 9

• An input projection layer that maps each facial representation to a consistent 128-
dimensional space

• A two-layer bidirectional GRU with hidden size 128

• Three task-specific output heads:

– An emotion classification head (8-way classification)

– An emotion intensity prediction head (binary classification)

– A prosodic prominence regression head (frame-level regression)

The model is trained using a combined loss function:

L = Lemotion + Lintensity · 1emotion ̸=neutral + 5 · Lprosody (3.1)

This multitask approach allows us to simultaneously assess each representation’s capabil-
ity to encode different aspects of expressive speech. The weighting factor of 5 applied to the
prosody loss component compensates for its smaller magnitude relative to the classification
losses.

To evaluate generalization capabilities, we test each model in two scenarios:

• Seen Speakers: Performance on held-out utterances from speakers included in train-
ing

• Unseen Speakers: Performance on unseen speakers completely excluded from train-
ing

This distinction is particularly important for evaluating the identity independence of the
representations, as strong performance on unseen speakers would indicate that the represen-
tation captures generalizable patterns rather than speaker-specific idiosyncrasies.

3.2 Results and Analysis

Emotion Recognition Performance

The emotion classification results (Table 3.1) reveal several key findings about the different
facial representations. Most notably, the FLAME 3D morphable model parameters achieve
the highest accuracy (86.4%) for seen speakers, substantially outperforming other represen-
tations. This superior performance demonstrates that the FLAME expression parameters
effectively capture the subtle facial movements that convey emotional states, confirming their
suitability as a target representation for expressive avatar synthesis.

However, when applied to unseen speakers, the FLAME parameters experience a dra-
matic performance drop to 50.0%, revealing a critical limitation: the expression parameters,

Docusign Envelope ID: A2CCAAC1-5960-42D0-8356-034EC37C7F5B
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EXPRESSIVE SPEECH REPRESENTATION 10

Representation Seen Speakers Unseen Speakers
Lip Features 56.1% 38.3%
Facial Landmarks 68.2% 46.7%
Action Units 72.0% 50.8%
FLAME (3DMM) 86.4% 50.0%

Table 3.1: Emotion Classification Accuracy for Different Facial Representations

(a) Seen speaker, unseen utterance (b) Unseen speaker

Figure 3.2: Emotion prediction confusion matrix for the 3DMM representation-based model
evaluated on both unseen and seen speakers.

while designed to be disentangled from identity, still retain significant speaker-specific infor-
mation when analyzed across time. This suggests that emotional expressions may be realized
differently across individuals, making generalization challenging. The confusion matrices in
Figure 3.2 reveals that emotions like “surprise” were particularly affected by this speaker
variability.

Lip features perform the poorest (56.1% for seen speakers, 38.3% for unseen speakers),
confirming that emotion recognition requires information from the entire face rather than
just the mouth region. This finding has important implications for audio-visual models
that focus primarily on lip movements [42], suggesting they may fail to capture significant
emotional content.
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EXPRESSIVE SPEECH REPRESENTATION 11

Representation Seen Speakers Unseen Speakers
Lip Features 68.42% 66.96%
Facial Landmarks 72.87% 73.21%
Action Units 65.59% 66.07%
FLAME (3DMM) 71.66% 58.04%

Table 3.2: Emotion Intensity Accuracy for Different Facial Representations

Emotion Intensity Prediction

The emotion intensity prediction results (Table 3.2) further illuminate the trade-offs be-
tween representations. Again, the FLAME parameters show strong performance for seen
speakers (71.66%) but struggle significantly with unseen speakers (58.04%), reinforcing our
observation that they capture highly detailed but speaker-specific emotional expressions.
This substantial performance gap highlights a key challenge for identity-independent gen-
eration: the need to disentangle the universally recognized aspects of emotional expression
from idiosyncratic realization patterns.

Prosodic Prominence Prediction

Representation Seen Speakers Unseen Speakers
Lip Features 0.6148± 0.2830 0.6470 ± 0.1996
Facial Landmarks 0.6265 ± 0.2766 0.6302± 0.1848
Action Units 0.6073± 0.2863 0.5749± 0.2038
FLAME (3DMM) 0.6155± 0.2631 0.5296± 0.2073

Table 3.3: Prosodic Prominence Prediction (Pearson Correlation Coefficients)

The prosodic prominence results (Table 3.3) reveal a different pattern. All representations
achieve moderate correlation with audio-derived prominence signals (Pearson coefficients
around 0.6 for seen speakers), with facial landmarks performing slightly better. Notably, lip
features and landmarks maintain consistent performance for unseen speakers, while Action
Units and FLAME parameters again show degradation.

These results suggest that prosodic prominence is primarily conveyed through localized
movements of the lips and jaw, with these movements being more consistent across speakers
than emotional expressions. The overall moderate correlation values indicate that visual cues
alone cannot fully predict audio-based prosodic prominence, highlighting the complementary
nature of audio and visual information in speech. This finding supports the premise that
multimodal models are necessary for fully capturing the richness of natural speech.
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3.3 Implications for Audio-Visual Generation

Our exploratory study yields several key insights that directly inform the design of identity-
independent audio-visual generation systems.

First, the FLAME 3D morphable model parameters emerge as an excellent representa-
tion for expressive facial animation when applied to seen speakers, achieving near-optimal
emotion classification performance (86.4%). This confirms that FLAME’s disentangled rep-
resentation—separating expression from identity and pose—provides a rich encoding of facial
dynamics suitable for expressive synthesis. The 50-dimensional expression parameter space
captures subtle emotional nuances more effectively than other representations, making it an
ideal target for generative models.

However, the significant performance degradation on unseen speakers reveals a critical
challenge: even these supposedly identity-agnostic expression parameters retain substan-
tial speaker-specific information. This finding underscores the inherent variability in how
emotions are facially expressed across individuals, challenging the assumption of a universal
mapping from emotional states to facial configurations.

For our audio-visual generation objective, this means that simply training on a small
dataset of actors (as in RAVDESS) is insufficient for achieving true identity independence.
Instead, we need a more sophisticated approach that:

1. 1. Learns from a much larger and more diverse set of speakers to capture the full
variability of facial expressions.

2. 2. Employs generative modeling techniques that can represent the one-to-many map-
ping from emotional states to possible facial configurations.

3. 3. Utilizes in-the-wild data rather than acted emotions to capture more naturalistic
expressions as they occur in everyday conversation.
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Chapter 4

Methods

This chapter outlines the methodological framework employed in this research to achieve
identity-independent audio-visual generation. The chapter begins with a description of the
datasets used, followed by the data preprocessing pipeline. Then, we detail the system ar-
chitecture, including the proposed conditional flow matching approach. Finally, we describe
the evaluation protocols used to assess the performance of the model.

4.1 Topologies

FLAME

We use the FLAME topology for 3DMM representation because it disentangles identity-
specific parameters (face shape) from the parameters we want to model (expression, pose,
eyelid, and jaw). To generate FLAME parameters from videos, we use the SMIRK encoder
which exhibits improved performance on modeling expressive facial representations.

SPARC

As our speech coding, we use SPARC. The source-filter representation allows for identity-
independent modeling, and aligns well with the avatar synthesis task. This consists of:

• Articulatory information: Pseudo-EMA (Electromagnetic Articulography) articu-
lators (6 x-y coordinate pairs) extracted from the 6th layer of WavLM.

• Source information: Pitch-normalized source parameters and loudness parameters
representing the source-filter model of human speech.

• All intermediate representations operate at 50 Hz.
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Sylber

By leveraging a novel self-segmentation distillation approach from a SSL model, Sylber iden-
tifies syllabic segments and produces embeddings that align closely with linguistic syllables.
This results in efficient tokenization—averaging 4.27 tokens per second—and enables high-
quality speech reconstruction from these tokens.

4.2 Datasets

VoxCeleb2

For this research, we utilize a subset of the VoxCeleb2 dataset, which consists of celebrity
videos extracted from YouTube. This dataset was chosen for its diversity in speakers, facial
expressions, and speaking styles. Our training set comprises 252,928 unique utterances from
1,517 different identities. For evaluation purposes, we construct two test sets:

1. Seen Speaker Test Set: 2,412 utterances from 980 identities that were observed
during training

2. Unseen Speaker Test Set: 332 utterances all from different identities, all of whom
were not seen during training

During dataset curation, we filter out utterances where any part of the face was occluded
or where the face was turned too far away from the camera, to ensure high-quality facial
data for both training and evaluation.

4.3 Data Processing Pipeline

Visual Data Processing

For the visual component, we process each frame of video using the following steps:

1. Face Detection and Cropping: Each frame is processed to locate the face and crop
it to 224× 224 pixels centered on the face region.

2. Facial Landmark Extraction: Facial landmarks are extracted from each cropped
frame.

3. SMIRK Feature Encoding: The landmarks are passed to the SMIRK feature en-
coder, which produces:

• A 300-dimensional vector for face shape

• A 50-dimensional vector for facial expression
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• A 3-dimensional vector for camera parameters

• A 3-dimensional vector for head pose

• A 2-dimensional vector for eyelid position

• A 3-dimensional vector for jaw position

4. Identity Extraction: The shape parameters are averaged across all frames of an
utterance to create a consistent “identity” representation for avatar synthesis.

5. Expression Parameters: The expression, eyelid, pose, and jaw parameters are con-
catenated to form the target for prediction. These are upsampled from 25 FPS (video
frame rate) to 50 FPS to match the SPARC parameters.

Audio Data Processing

The audio processing pipeline consists of the following steps:

1. Speech Enhancement: The speech in each video is processed using the pre-trained
MossFormer2 model to clean and enhance the audio.

2. Syllable Token Extraction: We utilize the Sylber model to extract syllabic tokens
and their durations from the cleaned audio.

3. SPARC Parameter Extraction: Pitch-normalized source and articulator parame-
ters are extracted at 50 Hz, along with pitch information and speaker embeddings for
each utterance.

4.4 System Architecture

The proposed system follows a conditional flow matching approach to generate audio-visual
content from low-bitrate speech codec inputs. The architecture consists of the following
components:

Input Representation

The input to the system is Sylber tokens. Each token is repeated for its corresponding
duration, resulting in 50 Hz token sequences. Following the approach in the Sylber paper’s
CFM module, we incorporate an additional encoding representing the position within each
expanded syllable token as conditioning information.
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Figure 4.1: Architecture diagram of the audio-visual CFM pipeline. The Sylber segmenter,
vocoder, and renderer are pretrained and remain frozen, while the VAE is trained indepen-
dent of the other modules and frozen during CFM sampling.

Visual Representation

For the visual component, we trained a Variational Autoencoder (VAE) with the following
characteristics:

• Architecture: 3-layer MLP for both encoder and decoder.

• Input/Output: Frame-wise avatar parameters (expression, eyelid, pose, jaw).

• Weighted Reconstruction: The jaw parameters are weighted 1.5x in the reconstruc-
tion loss due to their relatively low dimensionality but increased importance for visual
speech perception.

Core Generation Model

The core of the system is a latent Conditional Flow Matching model for generating avatar
parameters, seen in Figure 4.1. The model architecture includes:

1. Transformer Architecture: The model uses a transformer with rotary positional
embeddings as the backbone with a sequence length of 250 tokens (5 seconds).

2. Flow Regressors:

• An articulator flow regressor conditioned on Sylber features (with progress en-
coding)

• A source flow regressor conditioned on articulator information and Sylber features
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• An avatar flow regressor conditioned on Sylber features, articulator information,
and source information

3. Latent Space: The flow matching occurs in the latent space of the avatar VAE for
the facial animation component.

4.5 Training Procedure

Training Strategy

We employed a multi-stage training approach:

1. VAE Training: First, we train the VAE on frame-wise avatar parameters to learn a
robust latent space. The VAE remains frozen for subsequent steps.

2. Flow Training: Next, we train the conditional flow matching model with the following
objectives:

• Articulator prediction based on Sylber features

• Source prediction based on articulatory information and Sylber features

• Latent avatar parameter prediction based on the combination of Sylber, articula-
tory, and source information

Implementation Details

The avatar CFM transformer model has the following hyperparameters:

• Input Dimension: 64

• Hidden Dimension: 512

• Layers: 8

• Number of attention heads: 6

4.6 Output Generation and Synthesis

The trained model generates the following outputs:

1. Expressive Avatar Animation: The latent avatar CFM inference sampling (50
steps) generates expression, eyelid, jaw and pose sequences that are decoded through
the frozen VAE.
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2. Post-processing:

• The generated avatar parameters are downsampled from 50 FPS to 25 FPS.

• A Savitzky–Golay filter is applied to smooth the outputs.

3. Rendering:

• The average shape and camera parameters, combined with the generated expres-
sion and pose parameters, are passed to the frozen FLAME regressor.

• This creates a 2D video of the 3D avatar.

4. Speech Synthesis:

• The predicted articulatory and source parameters, along with the identity-specific
speaker embedding and pitch statistics, are passed to the pre-trained HiFi-Flow
vocoder from the SPARC paper.

• This reconstructs the speech audio that corresponds to the visual animation.

4.7 Evaluation Metrics

To evaluate the performance of the proposed approach, we employ the following metrics:

Objective Metrics

• Lip Vertex Error: Measures the L2 distance between predicted and ground truth
avatar vertices corresponding to lip points

• Audio-visual Temporal Consistency: Evaluates the correlation between audio
prosodic prominence and avatar parameter L2 norm (energy)

Subjective Metrics

We perceptually evaluate:

• Naturalness: The naturalness of the generated facial animation, including smooth-
ness

• Audio-visual Synchrony: How well the facial movements align with the speech

• Expressiveness: The accuracy in conveying emotion and prosody

• Identity Independence: The ability to drive different identities and the perceived
neutrality of the base animation
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Ablation Studies

We conduct ablation studies to assess the impact of the VAE component on the overall
performance of the system.
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Chapter 5

Results and Discussion

This chapter presents the experimental results of the proposed approach for identity-independent
audio-visual generation. We first conduct ablation studies to evaluate the impact of the la-
tent VAE representation compared to direct parameter prediction. Then, we analyze the
performance of our best model across various aspects including lip synchronization, head
motion, expressiveness, and identity independence. Finally, we discuss the implications of
these results and contextualize our work within the field of audio-visual synthesis.

5.1 VAE Ablation Evaluation

To evaluate the effectiveness of the latent Conditional Flow Matching (CFM) approach with
the Variational Autoencoder (VAE), we compare it against a direct parameter prediction
baseline that uses regular CFM without the VAE latent space. The comparison focuses on
the accuracy of facial animation, particularly lip movements which are crucial for perceived
speech synchronization.

Objective Metrics

Table 5.1 presents the lip vertex error results for both models across seen and unseen speaker
test sets.

Table 5.1: Lip Vertex Error Comparison Between Regular CFM and Latent CFM

Model Seen Speaker Test Set Unseen Speaker Test Set
Regular CFM 0.672 0.634
Latent CFM 0.281 0.273

The results demonstrate that the latent CFM approach significantly outperforms the
regular CFM model, with error reductions of 58.2% and 56.9% for seen and unseen speakers,
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(a) Sample from Regular CFM (b) Sample from Latent CFM

Figure 5.1: Comparison of the generated avatars for the /m/ bilabial between regular and
latent CFM.

respectively. Notably, the latent CFM maintains consistent performance across both test
sets, indicating strong generalization to unseen identities—a critical requirement for identity-
independent generation.

Qualitative Analysis

Figure 5.1 shows representative frames from both models compared to ground truth data,
focusing on lip closure events during bilabial consonant /m/ from the same utterance.

The qualitative comparison reveals that while both models attempt to produce appropri-
ate lip closures, the regular CFM occasionally generates anatomically implausible configura-
tions where lips appear to intersect unnaturally. In contrast, the latent CFM produces more
natural lip shapes, with closures that better approximate the ground truth. This suggests
that the VAE has learned an effective manifold of valid facial expressions that constrains the
generation process to anatomically plausible configurations.

While the latent CFM still does not achieve the precision of ground truth lip closures,
its improvements over the regular CFM are substantial and perceptually significant. The
constraint provided by the learned latent space appears to regularize the generation process,
preventing extreme parameter values that lead to unrealistic facial configurations.
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Figure 5.2: Prosodic prominence and Avatar L2 norm correlation plotted across a five-second
utterance from an unseen speaker during training.

5.2 Evaluation of Best Model (Latent CFM)

Building on the superior performance of the latent CFM approach, we conduct a compre-
hensive evaluation of our best model across multiple dimensions.

Audio-Visual Correlation

Figure 5.2 illustrates the normalized L2 norms between generated avatar parameters and
generated audio prosodic prosody over time for an unseen speaker. Our analysis reveals
strong temporal synchronization between audio and visual elements, with avatar animation
energy closely tracking the speech energy profile.

This correlation is particularly evident during stressed syllables and emphasized words,
where both facial movement magnitude and speech prosodic prominence show coordinated
peaks. This indicates that the model has successfully learned the relationship between speech
dynamics and corresponding facial movements, generalizing to new speakers.

Head Motion Analysis

Our evaluation of head motion reveals both strengths and limitations of the current model.
As shown in Figure 5.3, the generated head movements demonstrate clear correlation with
prosodic boundaries in speech, with noticeable shifts at phrase boundaries and stressed
syllables.

However, the model produces head movements that, while smooth, are often more rapid
and of higher amplitude than those observed in the ground truth data. This results in
animation that, while synchronized with speech, appears somewhat more active than natural
human movement. The average velocity of head rotation in the model outputs exceeds that of
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Figure 5.3: Frames across (before, during, and after) a stressed part of an utterance for an
unseen speaker.

ground truth by approximately 72%, suggesting room for improvement in motion dynamics
modeling.

Expressiveness

Despite focusing primarily on speech synchronization, our model demonstrates the ability
to generate expressive facial animations beyond mere articulation. Figure 5.3 also shows
examples of emotional expressivity emerging during emphasized speech segments, including
eyebrow furrowing during stressed phonemes. The model captures not only the mechanical
aspects of speech but also aspects of the emotional subtext, contributing to more natural
and engaging animations. We hypothesize that this is the result of source information (pitch
and loudness) present in the SPARC conditioning.

Identity Independence

A key objective of our work was to achieve identity independence—the ability to apply gener-
ated animations to different face shapes. Figure 5.4 demonstrates this capability, showing the
same animation sequence applied to multiple identity models with different facial structures.

The results confirm strong identity independence, with animations maintaining their tim-
ing and expressiveness across different face shapes. This validates our approach of separating
identity-specific shape parameters from dynamic expression parameters during both training
and inference.

Stochastic Generation

To evaluate the model’s capability for one-to-many mapping, we generate multiple animation
sequences from the same syllabic input. Figure 5.5 illustrates the diversity of expressions
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Figure 5.4: Three representative frames from the same avatar CFM sample rendered using
three different speaker face shapes.

and poses produced across different sampling runs while maintaining consistent articulation
patterns.

This diversity confirms that our conditional flow matching approach successfully models
the probabilistic relationship between speech and facial animation rather than learning a
deterministic mapping. Such stochastic generation is crucial for creating varied, natural-
looking animations that avoid the uncanny repetitiveness often associated with deterministic
approaches.

5.3 Discussion

Our method demonstrates promising results in identity-independent modeling for natural
speech animation. Despite utilizing a significantly smaller dataset than comparable works in
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Figure 5.5: Example of diversity produced by the stochastic CFM sampling process. All
three frames represent the same phoneme across three different samples using the same
conditioning.

the field, the model performs well in joint audio-visual generation, particularly in maintaining
synchronization between speech and facial movement.

The latent CFM approach represents a significant improvement over direct parameter pre-
diction, confirming our hypothesis that learning in a structured latent space helps constrain
the model to produce more realistic facial configurations. The VAE effectively regularizes
the output space, preventing anatomically implausible facial expressions while still allowing
for expressive variation.

A key limitation in our evaluation is the scarcity of directly comparable works, particu-
larly those with open implementations or standardized evaluation metrics. Many state-of-
the-art audio-visual synthesis systems are closed-source commercial projects, making direct
quantitative comparison challenging. This highlights the need for more standardized evalu-
ation protocols in the field of speech-driven animation.

While our system shows strong performance in terms of lip synchronization and expressive
capability, there are clear areas for improvement. The speech articulation, while synchronized
with audio, does not yet achieve the naturalness of ground truth recordings. Head poses,
while correctly correlated with speech energy and prosodic boundaries, exhibit more active
movement than typical human speech, which may reduce perceived naturalness in extended
viewing.

Nevertheless, the strong correlation between expression and pose energies and speech
energy demonstrates that the model has successfully learned the fundamental relationship
between audio and visual modalities in speech. The ability to maintain this relationship
across seen and unseen speakers confirms the effectiveness of our identity-independent ap-
proach.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Research and Contributions

We address the challenge of generating synchronized, expressive facial animations from syl-
labic speech representations in an identity-independent manner. Building on the exploratory
finding that 3D morphable model parameters effectively capture emotional and prosodic in-
formation, we develop a system that uses conditional flow matching in a learned latent space
to model the one-to-many relationship between speech and facial animation.

Our key contributions include:

1. Latent Conditional Flow Matching for Facial Animation: We demonstrate that
combining VAE-based latent representations with conditional flow matching signifi-
cantly improves the realism and anatomical plausibility of generated facial animations.

2. Identity-Independent Animation Framework: By separating static identity pa-
rameters from dynamic expression parameters, we create a system capable of generat-
ing animations that can be applied to arbitrary face models while maintaining natural
speech synchronization.

3. Joint Audio-Visual Synthesis Pipeline: Our integrated approach generates both
facial animation and reconstructed speech from syllabic representations, enabling com-
plete audio-visual content creation from compact, privacy-preserving inputs.

4. Learned One-to-Many Mapping: Rather than learning a deterministic relation-
ship between speech and facial movement, our stochastic model captures the natural
variation in how speech can be visually expressed.

These contributions advance the state of the art in speech-driven animation, particularly
for applications requiring identity independence and privacy preservation.
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6.2 Conclusion

The research presented in this thesis represents a significant step toward scalable, identity-
independent audio-visual generation. By leveraging a conditional flow matching approach in
a learned latent space, we successfully address the inherent one-to-many nature of the speech-
to-face relationship while maintaining anatomical plausibility and expressive capability.

Our findings confirm that syllabic speech representations, while compact and privacy-
preserving, contain sufficient information to drive expressive facial animations when paired
with appropriate generative modeling techniques. The consistent performance across seen
and unseen identities validates our approach to identity independence, suggesting applica-
tions beyond the training distribution.

The integration of articulatory speech representations with facial animation parameters
establishes a bridge between speech processing and computer graphics that opens new possi-
bilities for multimodal content creation. This connection leverages the complementary nature
of audio and visual information in speech, resulting in coherent, synchronized outputs.

While the current implementation has limitations in head motion dynamics and fine
articulation details, the overall framework demonstrates promising results that highlight the
potential of generative approaches for audio-visual synthesis. The ability to produce diverse
yet plausible animations from the same input addresses a key challenge in creating natural,
engaging digital communications.

6.3 Future Work

Based on our findings, we identify several promising directions for future research:

Hybrid Deterministic-Stochastic Modeling

Concurrent work has proposed a hybrid modeling approach where jaw articulator parame-
ters are modeled deterministically while pose and expression remain stochastic [43]. This
approach recognizes that certain aspects of facial animation—particularly those directly re-
lated to phoneme articulation—follow more predictable patterns than others. Implementing
such a hybrid system could improve jaw prediction accuracy while maintaining the desirable
variation in expressive elements.

Temporal Latent Representations

The current frame-wise VAE could be extended to a temporal VAE that learns latent embed-
dings corresponding to motion across several frames rather than static configurations. This
approach would more explicitly model the dynamics of facial movement, potentially resulting
in smoother and more natural pose transitions, particularly for rapid head movements which
currently appear somewhat exaggerated.
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Enhanced Model Architectures

Exploring alternative conditioning strategies or model architectures that jointly model speech
and avatar parameters via cross-attention or cross-layer fusion highways could strengthen
the connection between modalities. These approaches might better capture the nuanced
relationship between prosodic features in speech and corresponding facial movements, leading
to more naturally synchronized animations.

Dyadic Interaction Modeling

Extending the framework to model dyadic interactions could enable responsive avatar an-
imations that react appropriately to emotional speech from a conversation partner. This
would require modeling not only the relationship between an individual’s speech and facial
movements but also how these elements respond to external emotional and conversational
cues.

Deep Rasterization with Articulatory Conditioning

The current pipeline outputs parameters for a 3D avatar but does not model all aspects
of realistic speech visualization. Training a deep rasterizer that maps the 3D avatar back
to RGB pixel space with articulatory conditioning could address limitations in the current
approach. Notably, such a system could model the tongue, which is important for producing
natural-looking articulation of sounds such as labiodentals.

Expanded Evaluation Protocols

Developing more comprehensive and standardized evaluation protocols for speech-driven an-
imation would facilitate better comparison across different approaches. This might include
perceptual studies focused specifically on articulation accuracy, emotional expressivity, and
perceived naturalness, as well as objective metrics that better correlate with human judg-
ments of animation quality.

By pursuing these directions, future work can build on the foundation established in this
thesis to create even more realistic, expressive, and versatile systems for identity-independent
audio-visual generation.
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