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Abstract

In large-scale marketplaces, recommender systems are traditionally optimized from the
platform’s perspective, aiming to maximize revenue or user purchase-rates. In this setting, due
to the computational asymmetry, users are price-takers who must rely on recommender
systems to suggest goods. We outline and study recommendation agents: systems designed to
model and maximize an individual buyer’s utility. We apply candidate retrieval, sequential
recommendation, and discrete choice modeling to capture contextual user desires and price
sensitivities. Our system is evaluated on a semi-synthetic dataset based on e-commerce
purchase behavior. We conclude with a discussion on the construction of markets over many
recommendation agents, allowing for synchronous price negotiation, effectively simulating a
logit-demand price competition setting, which opens opportunities for more efficient
marketplace dynamics.
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Chapter 1

Introduction

1.1 Motivation
Large-scale markets, such as e-commerce platforms, commonly apply recommender systems to
suggest items to potential buyers. Typically, these recommender systems are designed to
maximize platform-centric objectives, such as user retention or revenue. However, these goals
do not necessarily align with the welfare of consumers, or the total welfare of the market
participants.

For example, Ferreira et al. [1] conducted a randomized experiment studying recommender
systems in a video-on-demand market. They found that profit-maximizing recommender
systems, by exploiting consumer price-insensitivity toward recommended products, can lower
consumer surplus and total market welfare from their maximum achievable values.

Such outcomes highlight a deeper issue: large-scale markets often fail to reach efficient market
equilibria—idealized states where demand meets supply in a way that maximizes overall
market welfare [2], [3]. These equilibria have been a central object of study in economics for
their desirable efficiency properties, such as Pareto optimality, or their guaranteed existence
under certain conditions [4].

However, traditional microeconomic theory often relies on assumptions that rarely hold in
practice, such as perfect rationality (consumers always make utility-maximizing decisions),
complete information (full knowledge of all available goods and prices), and frictionless
transactions (no cost or delays in collecting information or making exchanges). In large-scale
markets, individual buyers face challenges in meeting these assumptions, since they cannot
feasibly explore vast item spaces to make fully rational choices.

Consequently, consumers rely on recommender systems. This creates a computational
asymmetry between the platform and consumers, and potentially undermines the market’s
ability to converge toward efficient equilibria.

Recent research has explored algorithmic approaches as a way to relax common assumptions
in microeconomics. For instance, Liu et al. [5] analyzed matching markets where participants
iteratively learn their preferences, modeling the probabilistic uncertainty present in real-world
settings. Their application of multi-armed bandits extends Gale and Shapley’s seminal work on
matching markets to settings where participants don’t have perfect information about their
preferences.

Buyer-side recommendation agents emerge as a natural solution for large-scale markets.
Suppose each buyer is represented in the marketplace by an agent that effectively
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1 Introduction

approximates a utility function measuring the goods and prices the buyer is interested in.
Furthermore, suppose each agent’s sole objective is to maximize the utility of the buyer. Then,
we can envision a more balanced market where both buyers and sellers interact through
computational proxies. This could help markets achieve more efficient outcomes, even across
large item spaces and complex preference landscapes.

Figure 1:  A depiction of a two-sided market where both buyers and sellers interact through
agents who are able to negotiate prices over a large item space.

In this work, we investigate how buyer-side recommendation agent systems can be
implemented using standard recommender system techniques. Our approach offers practical
pathways toward efficient algorithmically-mediated marketplaces.

1.2 Recommendation Agent Proposal
Our goal is to build a recommendation agent that has learned its user’s preference function and
can subsequently search for goods and negotiate prices on the user’s behalf. To achieve this,
we propose that the recommendation agent should satisfy the following criteria:

• Domain Agnosticism: The agent should be able to handle cross-domain usage in order to
have frequent use by a given user.

• Price Sensitivity: The agent’s model of the user’s utility should vary continuously with
price—that is, distinguish between prices 𝑝 and 𝑝 + 𝜀—so that the agent can negotiate prices
over a continuous spectrum.

• Sequential Updating: The agent should incrementally adapt towards the user’s
idiosyncratic preferences over time, updating its model with each interaction.

• Query Awareness: The agent should consider the user’s current query as context for the
recommendation, because a user’s contextual desire determines how price-sensitive the user
is, and which items are reasonable to negotiate for.

To satisfy these requirements, we propose RecAgent, a multi-stage recommendation agent
system which learns from sequences of queries and purchases. The first stage is a search
model, which identifies semantically similar candidate items to the user’s query. The second is
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1 Introduction

a sequential recommendation step, which narrows down the candidate items to a small set of
items with greater substitutability. The third is a discrete choice model, which re-ranks the
items according to their prices, adjusting price sensitivity to the query. The fourth is a feedback
stage, which adjusts a learnable idiosyncratic price sensitivity parameter based on the user’s
final choice.

We particularly highlight the choice of incorporating price sensitivity over only a small set of
items. The rationale behind this approach can be demonstrated by the following thought
experiment: suppose the user wants to buy a toy boat, and a real boat is on a large discount. If
the agent has learned non-trivial price sensitivity, the real boat may now have high positive
utility due to the large discount in price-space. But because of the user’s contextual desire, the
recommendation agent shouldn’t suggest buying the real boat. Therefore, identifying a set of
substitute goods to compare prices over is key to our problem.

1.3 Relevant Literature
The following is a survey of relevant literature to our proposed framework.

1.3.1 Sequential Recommendation
Sequential recommendation has become a popular setting for modern recommender systems,
often addressed with sequential neural networks. The objective is typically to predict a user’s
next purchase or click based on their prior behavior. Therefore, recommendation tasks can be
framed as a “next-item” prediction given a user’s purchase history or browsing history,
analogous to next-token prediction in language modeling.

SASRec [6] applied the autoregressive transformer architecture [7] to sequential user histories
of purchases, treating each item in the sequence as a token. Query-SeqRec [8] extended this to
incorporate a user’s query in searching for their next product. Specifically, they modify the
transformer’s input sequence to also contain natural language queries, whose embeddings are
given by a pooling over a word embedding model.

Other sequential neural network architectures have been applied and studied in the sequential
recommendation setting. For example, the BERT [9] and Mamba [10] sequential architectures
have been applied by BERT4Rec [11] and Mamba4Rec [12], respectively. In this work, we
choose to focus on autoregressive transformer architectures for simplicity.

1.3.2 Consumer Price Sensitivity
Several recent works have studied recommender systems that incorporate price.

Wang et al. [13] propose recommender systems that consider the user’s utility, modeling
diminishing returns and price sensitivity, applying their techniques with singular value
decomposition (SVD). SHOPPER [14] is a sequential model over shopping trips which
considers price through a discrete choice modeling lens, and can also identify substitute and
complement goods. Price-aware Recommendation with Graph Convolutional Networks [15]
incorporates price sensitivity to predict future item interactions for a given user by discretizing
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and embedding price levels. Wan et al. [16] study the problem of modeling preferences based
on shopping data, incorporating price sensitivity in their matrix factorization model in a linear
fashion.

Our work differs in learning substitutes and price sensitivity based on a user’s contextual
semantic interest, studying cross-domain data, and our goal of adjusting our system to its user
in an online fashion.

1.3.3 Two-sided Agent Markets
Previous work has studied settings related to our plan for two-sided agent-mediated markets.
For instance, Greenwald and Kephart [17] hypothesize that “pricebots” (revenue-maximizing
pricing agents) may arise in response to “shopbots” (agents that help buyers navigate large
product spaces and their prices), and study the dynamics that arise out of their interactions.

Such revenue-maximizing pricing agents have also been studied recently, such as analysis
given by Erginbas et al. [18]. There, sellers are modeled revenue-maximizers who are given the
task of serving a set of recommended items and prices to users given contextual desires.
Buyers, on the other hand, are modeled as following a multinomial logistic model (MNL) [19].
Then, the sellers must learn optimal (in the sense of regret) recommendations and pricing from
the feedback given by purchases, or lack thereof, over the recommended set. This problem
setting is similar to ours—we also want to learn optimal recommendations given purchase
feedback over small recommendation sets, assuming an MNL model. However, we focus on the
buyer side, and work towards creating a practical and empirically verifiable implementation.

1.4 Outline
In this thesis, we first construct a dataset that can simulate an environment with the
information needed for RecAgent. Then, we outline our model and experiments. We conclude
with a discussion on two-sided agent-mediated markets.
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Chapter 2

Dataset Construction
Since our setting requires queries, varying prices, and cross-domain purchases, we curated a
custom dataset. Specifically, we constructed a semi-synthetic Amazon purchase dataset
enriched with queries and prices.

2.1 Data Curation
We began with Amazon review data from Ni et al. [20], which contains reviews for Amazon
products. It has metadata for each review and purchased item, such as the time of each review,
and item descriptions. We use reviews from the Instruments, Movies and TV, and Video Games
categories. These categories were selected to represent product types with different purchase
frequencies and price ranges.

For our sequential modeling component, we needed sequential purchase sequences. Therefore,
we constructed cross-domain purchase histories by temporally ordering a user’s reviews, using
the time of review data as proxies for purchase times. Following prior work [6], we applied a 5-
core filtering criterion: each user in our dataset must have at least 5 purchases, and each item
must have been purchased at least 5 times. This mitigates scenarios where we are evaluating
our model’s ability to predict a purchase for an item it hasn’t seen during training, for instance.

2.1.1 Queries
Search queries are essential for our problem setting, as detailed in Section 1.2. Real-world
queries for Amazon items are available from the Shopping Queries Dataset [21], which
contains queries that real consumers have used, along with relevant products. However, the
overlap between that dataset’s item space and the review dataset’s item space is low.

In addition to those real-world queries, we therefore chose to synthetically generate 10 queries
for each item, reserving one at random for validation. We used Llama-3.1-8B-Instruct with a
prompt based on the item details such as its title, description, and brand; more details can be
found in Section 6.0.1.

We reserve the real-world queries for each item where possible to construct a test set.

2.1.2 Prices
For each purchase, in order to capture price sensitivity, we needed prices at the time of
purchase for a set of counterfactual item purchases. We used the Keepa API [22], which offers
access to their historical price data for Amazon products.

Since we had the time at which each review was left, but not the exact time of purchase, we
had to approximate the time of purchase and match it with our historical prices. To do this, we
first extracted the lowest prices over each week over a large time period for each item in our
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dataset. This is done to smooth prices, since they can vary largely over a short timeframe.
Then, we aligned review times to the immediately preceding week period, using the previously
computed lowest prices for items. When the review timestamp is out of the range of our
historical prices, we instead used the average lowest weekly price.

During model training and inference, we clip prices to be between the 1% and 99% percentiles
of review prices to account for outliers. For instance, around 0.87% of review prices are $0.01,
which might be indicative of a pricing error, or that those purchased prices did not keep in
track other costs like shipping.

2.2 Dataset Statistics
The resulting dataset encompasses 2,888,322 reviews across three product categories, with
significant differences in review count, item count, and average prices as shown in Table 1.

Amazon Category Users Items Avg # Reviews / Item Avg Purchased Price
Movies and TV 212,282 43,657 53.74 $19.21

Video Games 42,490 12,147 30.11 $39.34
Musical Instruments 21,794 8,074 21.84 $49.32

Combined 261,957 63,878 45.22 $23.60

Table 1: Overall dataset statistics.

Substantial variation exists across the categories. For instance, Movies and TV has the lowest
average purchased price and the most users, while Musical Instruments has the highest average
purchased price and the least users.

# Movies and TV & Video
Games

# Movies and TV &
Musical Instruments

# Musical Instruments &
Video Games

# All three

10,959 2,873 1,208 431

Table 2: Number of users who have purchases in multiple categories.

Our dataset also captures users who purchase across multiple categories, with significant
overlap between the Movies and TV and Video Games categories, as detailed in Table 2.

2.2.1 Test-set Statistics
We chose to train our model with synthetic queries and evaluate using real-world queries. To
construct the test set, we selected a subset of users whose sequence contains an item which has
an associated real-world query (details on this selection process is included in Section 4.1.1).
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2 Dataset Construction

Amazon Category Users Items Avg # Reviews / Item Avg Purchased Price
Movies and TV 7,407 575 12.88 $16.85

Video Games 9,104 809 11.25 $51.77
Musical Instruments 4,182 599 6.98 $50.23

Combined 20,693 1,983 10.44 $38.95

Table 3: Test-set statistics. Here, all statistics refer to review-item pairs which are used as evaluatory
purchases for our test-set.

# Movies and TV & Video
Games

# Movies and TV &
Musical Instruments

# Musical Instruments &
Video Games

# All three

1,782 426 300 79

Table 4: Number of test-set users who have purchases in multiple categories.

Despite being a subset of our item space, we observe a healthy spread across categories in our
test-set, both in overall statistics (Table 3), and in cross-domain users (Table 4).

2.3 Limitations
Our dataset allows for the evaluation of buyer-side recommendation agents with varying
prices and contextual user desires. However, several limitations should be acknowledged.

• Query accuracy: Both our synthetic and real-world queries may not exactly match what
users used when searching for these items. For example, we might assign the real-world
query “fruit” to a purchase of apples, based on previous data with that query-item pair. But,
the user for the specific purchase we are predicting may have actually searched specifically
for apples. This may affect the quality of price sensitivity estimation.

• Timestamp accuracy: Using review timestamps as a proxy for purchase times introduces
noise. Some users may review a product significantly after a purchase, or may not be
strategic or successfully forecast short-term price movements, misaligning the true price
with our assigned price data.

• Selection bias: The dataset only contains purchases, lacking instances where users searched
for an item, and chose not to purchase anything. This absence could cause our price
sensitivity estimates to be too low.

• Platform effect: It is reasonable to expect consumers to purchase items within the first few
pages of their search. Therefore, the purchases in our dataset are potentially biased towards
Amazon’s recommender system suggestions, where the ideal item may not have appeared.
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Chapter 3

Model

Figure 2:  Our Recommendation Agent architecture.

Our recommendation agent architecture consists of several modules. They iteratively narrow
the item space to a small set of substitutable items suitable for the consumer’s contextual
interest, providing personalization in price sensitivity and items during the process. We detail
our choices for each module.

3.1 Candidate Retrieval
Our system begins with a retrieval step, which takes a query 𝑞𝑡 as input, and retrieves a large
candidate set of semantically relevant items 𝒞𝑡.

We use nomic-embed-text-v2-moe [23], a text embedding model, to generate embeddings for
both the query and items. Item embeddings are constructed using metadata, such as titles and
descriptions. We then use cosine similarity to rank the items, and retrieve the top 100 items for
our candidate set. Specific details can be found in Section 6.0.2.

Using a natural language model (as opposed to learning embeddings from scratch over query-
input pairs) allows for arbitrary query input. This is necessary for both real-world use, as well
as the evaluation of our model on unseen real-world queries.

This component can also be substituted by other retrieval models, which is an area that has
previously been well-studied [24], [25], [26].

3.2 Sequential Recommendation
Next, we apply a sequential recommendation model to filter 𝒞𝑡 down to a recommendation set
ℛ𝑡, providing personalization based on previous purchases.

We adopt the transformer architecture used in Query-SeqRec [8], which takes as input a
sequence of item-interactions and queries, and tries to predict the next item.
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3 Model

We test both including and excluding queries from the input sequence to the transformer
(excluding reduces the model to SASRec [6]). We fix query embeddings to be the text
embeddings from candidate retrieval. Because test-time queries are unseen during training, we
do not directly fine-tune the query embeddings. Instead, we learn a projection on the query
text embeddings. For item embeddings, we follow Harte et al. [27] in using the text
embeddings from Section 3.1 as initialization, allowing the model to update them during
training. We take the top 20 items ranked by the sequential model for the next step.

Other sequential recommendation models can be substituted in this stage.

3.3 Discrete Choice Modeling
After receiving a small set of substitute items ℛ𝑡 from the previous step, we now implement
price sensitivity through a discrete choice model, which re-ranks the items.

Discrete choice models [19], a popular framework that has seen use in areas such as
transportation [28], are an attractive choice for their connection to random utility theory,
which allows us to model user utility functions under noise.

We assume that consumer purchase behavior follows the multinomial logit (MNL) model. For
some individual consumer, under the MNL model, the utility 𝑈𝑖,𝑡 of a product 𝑖 at time 𝑡 is
comprised of two parts: a deterministic component 𝑢𝑖,𝑡(𝑝𝑖,𝑡), and a random component 𝜉𝑖,𝑡
drawn from a zero-mean Gumbel distribution:

𝑈𝑖,𝑡 = 𝑢𝑖,𝑡(𝑝𝑖,𝑡) + 𝜉𝑖,𝑡.

If the user chooses the highest utility item from a set of recommended items ℛ𝑡 for query 𝑞𝑡,
their choice of item is probabilistic, and follows a softmax over the deterministic utilities:

Pr(𝑈𝑖,𝑡 ≥ max{𝑈𝑗,𝑡 : 𝑗 ∈ ℛ𝑡}) = 𝑒𝑢𝑖,𝑡(𝑝𝑖,𝑡)

∑𝑗∈ℛ𝑡
𝑒𝑢𝑗,𝑡(𝑝𝑗,𝑡)

.

As a function of each item’s current price 𝑝𝑖,𝑡 and the user’s query 𝑞𝑡, we assume the
deterministic utility is given by the following model:

𝑢𝑖,𝑡(𝑝𝑖,𝑡) = ⟨𝑥𝑡, 𝑦𝑖⟩ + 𝑏1,𝑖⏟⏟⏟⏟⏟
sequential recommendation

−(𝛼𝑞𝑡
+ 𝛼𝑢)𝑓(𝑝𝑖,𝑡) + 𝑏2,𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

choice model price sensitivity

,

where 𝑥𝑡 is the final hidden-state output of the transformer based on the consumer’s sequence
history, vector 𝑦𝑖 is the learned embedding of item 𝑖, biases 𝑏1, 𝑏2 are learned per-item values
which can account for hidden factors such as item popularity, and 𝛼𝑞𝑡

, 𝛼𝑢 are parameters
measuring price sensitivity. We argue it is necessary to learn another bias term after sequential
recommendation because 𝑏1 may have implicitly captured average item prices, so after
pretraining (see Section 4.1.4), another bias 𝑏2 may be necessary to offset 𝑏1’s implicit price
component to encourage the model to use the real price feature.
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This model assumes that utilities vary some transformation of price. We test both log and Box-
Cox transformation [29] of price, which sets

𝑓(𝑝𝑖,𝑡) =
𝑝𝜆𝑞𝑡

𝑖,𝑡 − 1
𝜆𝑞𝑡

for some learned parameter 𝜆𝑞𝑡
. The parameter controls the concavity of 𝑓(𝑝𝑖,𝑡): for instance,

𝜆𝑞𝑡
= 1 causes 𝑓(𝑝𝑖,𝑡) to be linear, while 𝜆𝑞𝑡

= 0 lets 𝑓(𝑝𝑖,𝑡) = log(𝑝𝑖,𝑡). Using this transform
allows us to test whether the model learns different concavities for different contextual desires.

In order to capture varying price sensitivity across product categories, we compute 𝛼𝑞𝑡
 and 𝜆𝑞𝑡

as the outputs of multi-layer perceptrons whose input is the query 𝑞𝑡, and with final activation
functions softplus and tanh, respectively, to restrict values to a reasonable range.

In this step, 𝛼𝑢 is set to 0.

3.4 Incorporating Relative Feedback
After the model is trained on user sequences, we can then adjust price sensitivity for each user
based on the user’s choice between the recommended items, allowing the model to capture
idiosyncratic price sensitivity. In this step we freeze all other parameters besides 𝛼𝑢 and 𝜀.

After discrete choice modeling, we have a recommendation set ℛ𝑡. The optimization problem
based on past user purchases over each set is

min
𝛼𝑢

∑
𝑡∈[𝑇 ]

ℒ(𝛼𝑢) = max
𝛼𝑢

∑
𝑡∈[𝑇 ]

log
exp(⟨𝑥𝑡, 𝑦𝑖⟩ + 𝑏1,𝑖 − (𝛼𝑞𝑡

+ 𝛼𝑢)𝑓(𝑝𝑖,𝑡) + 𝑏2,𝑖)

∑𝑗∈ℛ𝑡
exp(⟨𝑥𝑡, 𝑦𝑗⟩ + 𝑏1,𝑗 − (𝛼𝑞𝑡

+ 𝛼𝑢)𝑓(𝑝𝑗,𝑡) + 𝑏2,𝑗)
,

where ℒ is the negative log-likelihood of the user’s past choices over ℛ𝑡. This is convex in
general, so the minima can be straightforwardly computed. However, because user sequences
are often short, we can take gradient descents for each purchase to mitigate overfitting:

𝛼𝑢,𝑡 ← 𝛼𝑢,𝑡−1 − 𝜀∇𝛼𝑢
ℒ(𝛼𝑢,𝑡−1),

for tunable step size 𝜀.

3.5 Privacy
Although this architecture is trained over global purchase history data, unlike recommender
systems, our recommendation agent can be hosted locally for each user, sending requests to a
market server in a synchronous way. After having been trained, our recommendation agent
can therefore keep the user’s purchase history and feedback private while still updating
through relative feedback (it should be noted that this is not perfect privacy — information
about a user’s past purchases is reflected in which items the agent negotiates for, which is
revealed to sellers, for example).
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Chapter 4

Experiments
First, we describe our experiment formulation. Then, we conduct ablation experiments to test
the necessity of each component in our RecAgent architecture. Next, we examine our specific
modules by comparing the performance between different choices. Lastly, we discuss
qualitative properties of what our model learned.

4.1 Problem Setting

4.1.1 Input Sequence Construction
For each user 𝑢𝑛, we construct temporally ordered input sequences

𝑆𝑛 = [𝑞1, 𝑖1, 𝑞2, 𝑖2, …, 𝑞𝑇 , 𝑖𝑇 ],

where 𝑞𝑡 are queries, and 𝑖𝑡 are items purchased. We truncate inputs to have 𝑇 ≤ 24 items to
fit in our transformer’s context window. Queries can either be real-world (if it exists for the
corresponding item), a validation query, or chosen randomly from 9 training queries.

We follow the popular practice of applying leave-one-out train-validation-test split (as in [6]):
supposing a sequence contains 𝑇  purchases, we use the first 𝑇 − 2 purchases for training, the
(𝑇 − 1)st item for validation, and the last for test.

We train and validate only over synthetic queries and test over the real-world queries.
Therefore, we truncate sequences to the last purchased item who has a real-world query, if
such an item exists after the first 4 purchased items. We then use these sequences for our test
set. We lastly truncate purchase histories to be of length ≤ 24 + 3.

During training, we assign queries randomly from the training synthetic set. For validation, we
fix training queries for each of the first 𝑇 − 2 purchases, and use the validation synthetic query
for the validation purchase. Similarly for test, we only use sequences whose last purchase has a
real-world query, and fix training queries for all other purchases.

4.1.2 Target
For subsequences [𝑞1, 𝑖1, 𝑞2, 𝑖2, …, 𝑞𝑘], we are interested in predicting 𝑖𝑘 over a candidate set
𝒞𝑘, which consists of the label 𝑖𝑘 and some negative samples. During training, we draw
negative samples uniformly at random from both the entire item set, as well as from the search
candidate set for query 𝑞𝑘. We adopt the cross-entropy loss.

11



4 Experiments

4.1.3 Metrics
We evaluate top-k metrics for Hit Ratio (HR@K), the fraction of times the correct item was
listed in the top-k, and Normalized Discounted Cumulative Gain (NDCG@K), which further
weights each time the correct item is in the top-k by the rank of the item.

During evaluation, for negative samples, we use the full 100 negative samples from candidate
retrieval and include the correct item as positive sample, regardless of whether candidate
retrieval failed to retrieve it. We use the top 20 items given by sequential recommendation as
our recommendation set for discrete choice modeling.

4.1.4 Training Details
We conduct training in three phases. This is because each component of our architecture relies
on the previous component, as alluded to in Section 1.2: discrete choice modeling with prices
requires sequential recommendation to identify items that the user would have genuinely
considered purchasing, and relative feedback requires discrete choice modeling to have already
learned some reasonable base price sensitivity.

Pretraining: First, we remove the price-sensitive term in Section 3.3, and only train the
sequential model. We use Adam [30] with learning rate 1e-3, 𝛽1 = 0.9, 𝛽2 = 0.98, and apply
weight decay 1e-4. Our transformer model is trained with dropout 0.5 and has 4 transformer
blocks and 4 attention heads. We train with batch-size 256, and for each positive sample, we
use 4 negative samples for training: 2 drawn randomly over the item space, and 2 drawn
randomly from the candidate retrieval step (Section 3.1). We found that the exact ratio between
the negative samples appears to not make much of a difference.

Post-training: Next, we freeze the sequential recommender, and learn the price-sensitive
parameters in Section 3.3, using the same optimizer. Over 20 negative samples drawn from the
search candidates, we sample the top 5 from sequential recommendation and add the label for
our set of positive and negative samples.

Relative feedback: Lastly, using the same recommendation set sampling procedure as in post-
training, we learn idiosyncratic 𝛼𝑢 as detailed in Section 3.4, searching the learning rate over
validation performance, and with the same sampling procedure as in post-training.

We log validation and test performance every 3 epochs in pretraining and every 5 epochs in
post-training. For both, if the validation target fails to beat the previous best validation target
twice in HR@5, we end the training run. In relative feedback, we search step size 𝜀 over a fixed
set, also choosing based on validation HR@5.

4.2 Results

4.2.1 Candidate Retrieval Evaluation
Our setup assumes the candidate retrieval is perfect in retrieving the correct item, since we
always include the correct item as a candidate, regardless of whether it’s returned by the
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search model. We present data on evaluating this assumption by computing the Hit Ratio and
NDCG over query-item pairs, using the rest of the entire item set as negative samples.

Query Set HR@10 HR@100 HR@500 NDCG@10 NDCG@100 NDCG@500
Synthetic 0.3108 0.5207 0.6695 0.2124 0.2551 0.2743

Real-World 0.2235 0.4750 0.6438 0.1349 0.1854 0.2072

Table 5: Candidate retrieval step evaluation. Training and validation queries are synthetically generated,
and test queries are real-world.

The results in Table 5 show that real-world queries are more difficult for our retrieval than
synthetically generated queries. This is likely due to the fact that the authors of the Shopping
Queries Dataset specifically sampled queries with interesting properties.

4.2.2 Recommendation Agent Evaluation
We now evaluate our recommendation agent architecture with an ablation study.

Models HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20

Cand Ret
Only

0.19316 0.23617 0.29976 0.14365 0.15742 0.17325

TextEmbed
+ Bias

0.70035 ±
0.00307

0.80030 ±
0.00230

0.88023 ±
0.00142

0.55291 ±
0.00383

0.58540 ±
0.00365

0.60572 ±
0.00343

SASRec 0.74147 ±
0.00109

0.83970 ±
0.00219

0.91100 ±
0.00148

0.59154 ±
0.00222

0.62349 ±
0.00213

0.64168 ±
0.00210

SASRec +
MNL

0.74791 ±
0.00086

0.84378 ±
0.00136

0.91100 ±
0.00148

0.59962 ±
0.00155

0.63082 ±
0.00127

0.64797 ±
0.00128

SASRec +
MNL +

Feedback

0.74786 ±
0.00095

0.84367 ±
0.00147

0.91100 ±
0.00148

0.59945 ±
0.00170

0.63064 ±
0.00140

0.64781 ±
0.00127

Table 6: Ablation study of the RecAgent components over the test set. Where applicable, the 95% confidence
interval is included.

In Table 6, we use the candidate retrieval step for all models and average over 5 random seeds
where applicable, using a Student’s t-distribution for computing error bars.

• Cand Ret: Cosine similarity between query and items embeddings in Section 3.1.
• TextEmbed + Bias: Similar to [27]‘s LLMSeqSim, we use cosine similarity between the last-

purchased item (instead of query) and the candidate items. However, we also add a learned
bias onto the logits.

• SASRec: SASRec [6] with learned biases and initialized pre-trained text embeddings.
• SASRec + MNL: The same as above, but with the discrete choice modeling step.
• SASRec + MNL + Feedback: Same as above, but with relative feedback. We chose to

compute gradients of the idiosyncratic price sensitivity parameter 𝛼𝑢 with respect to the
entire sequence instead of updating temporally, since the latter approach failed to elicit good
results.
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We observe that TextEmbed + Bias is able to achieve strong performance, despite being a
simple method. We hypothesize that this is due to our item space having large right-tails in
popularity, which the bias term is able to incorporate as a prior, as plotted in Figure 3.

Figure 3: Distribution of item popularity. The right-tail items may allow for good evaluated
predictive power from learned biases per-item, which can capture popularity priors.

We find that the relative feedback step appears to make essentially statistically insignificant
changes to performance—discussion on this result can be found in Section 4.3. Nonetheless, we
observe that the MNL stage, by incorporating price information, is able to make improvements
on the sequential recommendation stage, validating the significance of its learned price
sensitivities.

4.2.3 Sequential Recommendation Evaluation
We now measure the effect of different sequential modules, ignoring price information.

Model HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20

Query-
SeqRec

0.73740 ±
0.01358

0.83407 ±
0.02022

0.90406 ±
0.01759

0.58215 ±
0.00760

0.61360 ±
0.00816

0.63139 ±
0.00531

Random
Embed Init

0.73134 ±
0.00120

0.83205 ±
0.00329

0.90808 ±
0.00094

0.58560 ±
0.00191

0.61838 ±
0.00116

0.63772 ±
0.00150

SASRec 0.74147 ±
0.00109

0.83970 ±
0.00219

0.91100 ±
0.00148

0.59154 ±
0.00222

0.62349 ±
0.00213

0.64168 ±
0.00210

Table 7: Comparison between different sequential modules without price sensitivity. For the first two rows, 3
random seeds are used.

In Table 7, for Query-SeqRec, we initialize both embeddings using pre-trained text embeddings,
but freeze query embeddings, since we use a pre-trained text embedding model. To allow for
modification of query embeddings, we add a linear layer after query embeddings.

We note high variance in Query-SeqRec’s performance. Under our setting, because our queries
are synthetically generated and we use a pre-trained embedding model unlike the authors’
original work [8], this is possibly due to overfitting to the synthetic distribution.
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We are able to replicate Harte et al.‘s [27]’s result in our setting: initializing SASRec with pre-
trained text embeddings is able to outperform learning embeddings from scratch, whose results
are listed under Random Embed Init.

4.2.4 Discrete Choice Modeling Evaluation

Transform HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20

log Price 0.74833 ±
0.00085

0.84442 ±
0.00087

0.91100 ±
0.00148

0.59968 ±
0.00170

0.63093 ±
0.00151

0.64791 ±
0.00153

Box-Cox
Price

0.74791 ±
0.00086

0.84378 ±
0.00136

0.91100 ±
0.00148

0.59962 ±
0.00155

0.63082 ±
0.00127

0.64797 ±
0.00128

Table 8: Comparison between different price sensitivity functions without relative feedback. 95% confidence
intervals are shown.

For the models in Table 6, we choose the Box-Cox transform of price. We now evaluate it
against using log transform in Table 8. Here, we are testing it over SASRec + MNL models
without relative feedback. We notice little difference in performance between the two. It is
possible that this is because 𝑎 log 𝑏 terms may resemble scaled Box-Cox transforms over the
values we are analyzing.

4.3 Qualitative Results and Discussion
We now investigate some properties of the trained models.

4.3.1 Price Sensitivity Parameters

Figure 4: Distribution (in density form) of learned price-relevant parameters, plotted per
product category, and over the full query dataset. Differing characteristics between the

categories can be observed.

In Figure 4, we plot the price-relevant parameters learned per-category. We observe that
Movies and TV is the most price-sensitive category, while Video Games is the least.

On the other hand, the concavity distribution (given by 𝜆𝑞) is relatively similar across
categories, mostly similar or more concave than log. In particular, Musical Instruments tends to
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have more queries with heavier concavity—this might be explained by the presence of
expensive equipment in the category, for which consumers may be more price-indifferent.

4.3.2 Relative Feedback
We observed that the relative feedback step did not make significant performance gains.

Figure 5: Percentage improvement for each metric of relative feedback over SASRec + MNL,
plotted over datapoints of purchase sequence length ≥ 𝑘, and over one pair of trained models.

Note that improvement of HR@20 is constant at 0, because both models rely on the same
SASRec model to identify the top 20 recommended items.

Here, we investigate where improvements, and lack thereof, come from. We might expect that
if relative feedback was properly capturing predictive trends, that it would make larger
improvements over the SASRec + MNL model when user purchase sequences are longer, since
that gives more data to learn idiosyncratic price sensitivity.

In Figure 5, we observe that for one training run where relative feedback did improve the
model, HR@10 follows this trend, steadily improving as a user’s sequence length increases.
However, improvements in all other metrics peak somewhere in the middle, then decreases,
hinting at some issue with our gradient updating method.

Relative feedback may not have worked because our gradient approximation method is simply
too inaccurate for our setting, in which the data of a few user price purchases is too noisy. It is
also possible that our dataset’s products are not very substitutable, causing later steps in our
architecture, which are finer-grained and rely on substitutability, to face challenges in
capturing significant trends. We leave the investigation of the application of more robust
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learning methods and the exploration of other product categories with more substitutable
goods for future work—more discussion can be found in Section 5.2.
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Chapter 5

Conclusion and Future Work
We outlined the implementation of recommendation agent systems, which are systems that
approximate the utility function of a single buyer, and that therefore can negotiate on the
buyer’s behalf. Using a semi-synthetic dataset, we evaluated our RecAgent architecture’s
ability to capture predictive user preference and price sensitivity.

5.1 Market Dynamics
Our agents model consumer decisions as probabilistic. Under this assumption, for some fixed
price vector, purchase probabilities for each consumer is computable—therefore, a seller’s
revenue is also probabilistic, whose distribution may be calculated.

5.1.1 Price Learning
Under this setting, because the feedback from consumer demand is noisy, seller pricing
algorithms must balance exploration (setting lower prices to get feedback on consumer
demand) and exploitation (setting higher prices which may give higher revenue, but provides
less signal). We therefore propose that work such as Erginbas et al.‘s [18], which studies the
joint problem of recommendation and pricing from a seller’s perspective when users follow the
MNL model, or Weed et al.‘s [31], which applies bandit learning in sequential auctions, may
serve as a seller-side counterpart to RecAgent, allowing for a real-world approximation of a
setting similar to Greenwald and Kephart’s shopbots and pricebots [17].

5.1.2 Price Competition
The equilibria of our market setting may be analyzed with past work such as Morrow and
Skerlos’s analysis of the existence of Bertrand-Nash equilibrium prices under logit demand
[32]. Since sellers can consider their revenue distributionally, our market setting might also
relate to Li and Webster’s study of logit demand markets with risk-sensitive sellers [33].

5.2 Future Work
Dataset: We chose three Amazon categories to construct our dataset. Other categories and
platforms may be interesting to study. For instance, food items are likely to be more
substitutable than movies. Also, platforms like Uber may have more price variability, which
could allow our RecAgent architecture to see greater improvements over non-price-sensitive
baselines.

Discrete choice modeling: Other terms may be explicitly incorporated in a linear fashion
into the discrete choice modeling in Section 3.3. For instance, users may have different
sensitivities to the average rating of a product, whose information is available in Ni et al.‘s
dataset [20].
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5 Conclusion and Future Work

Relative feedback: The rating of the user, in addition to the sentiment given by their review,
may be used as more fine-grained feedback. A user might also rank the recommended items
provided to them, as depicted in Figure 2. Furthermore, we found the optimization of
parameter 𝛼𝑢 to be tricky over our sequence sizes (≤ 27)—it would be interesting to study the
application of more robust optimization methods for this step.

Two-sided market dynamics: It also remains to see how our buyer recommendation agents
and price-learning seller systems interact. It could be interesting to study empirically how
efficient the prices they converge to are, as well as theoretically how fast, if at all, their
interactions converge towards equilibria.
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Chapter 6

Appendix

6.0.1 Synthetic Query Generation
To generate synthetic queries, we use the sampling parameters temperature=1.0,
top_p=0.95, and the following prompt for Llama-3.1-8B-Instruct:

"""You are a search query generator for an online marketplace. Your task is to create realistic search
queries that potential customers would use when looking for specific products.

INPUT FORMAT:
You will receive product information in the following fields:
- TITLE: The full product title
- DESCRIPTION: Detailed product description
- BRAND: Product brand name (may be missing)
- CATEGORY: Product category (may be missing)
- OTHER CATEGORIES: Other relevant categories (may be missing)

OUTPUT REQUIREMENTS:
- Generate exactly 10 different search queries separated by commas
- Each query should be less than 5 words long
- Include a mix of specific and general search terms
- Output ONLY the comma-separated queries with no additional text

QUERY GUIDELINES:
- Create queries that real users would type when searching for this product
- Include important product features, functionality, and use cases
- Vary between specific (with brand names) and generic queries (across the class of products)
- Use common marketplace search terminology and patterns
- Avoid overly technical specifications unless they're search-relevant
- Don't mention inconsistencies in the provided information

EXAMPLES:

Example:
TITLE: Yamaha CGS103A 3/4-Size Classical Guitar Bundle with Gig Bag, Tuner, Strings, String Winder, Austin
Bazaar Instructional DVD, and Polishing Cloth
DESCRIPTION: Adding value to your purchase, Austin Bazaar bundles your instrument with necessary
accessories. Everything you need to start playing immediately comes in one box. Save yourself the hassle
and save some money while you're at it. A gig bag is included so you can keep your instrument safely packed
away
BRAND: Yamaha
CATEGORY: Musical Instruments
OTHER CATEGORIES: Musical Instruments, Guitars, Classical & Nylon-String Guitars

Output:
yamaha classical guitar bundle, 3/4 size classical guitar, yamaha cgs103a beginner guitar, classical guitar
starter kit, classical guitar yamaha, 3/4 guitar with accessories, yamaha guitar with gig bag, classical
guitar tuner bundle, yamaha guitar starter pack, beginner nylon string guitar
"""

6.0.2 Candidate Retrieval
We use nomic-embed-text-v2-moe, embed queries using the “query” option, and items using
the “passage” option, using the title, description, brand, major category, and minor categories
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6 Appendix

as text. Specifically, we format item inputs as "TITLE DESCRIPTION Brand: BRAND |
Category: MAJOR_CATEGORY | Tags: MINOR_CATEGORIES".

We truncate the embeddings to dimension 64, utilizing the text embedding model’s
Matryoshka Embedding property [34].
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