
Toward Pedagogically Effective AI for Introductory
Computer Science

Michael Wu
Prabal Dutta, Ed.
Emma Pierson, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-119
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-119.html

May 16, 2025



Copyright © 2025, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 

 
 

Toward Pedagogically Effective AI for Introductory Computer Science 
 

by Michael Wu 
 
 
 
 

Research Project 
 

Submitted to the Department of Electrical Engineering and Computer Sciences, 
University of California at Berkeley, in partial satisfaction of the requirements for the 
degree of Master of Science, Plan II. 
 
 
Approval for the Report and Comprehensive Examination: 
 
 
 

Committee: 
 
 
 

Professor Prabal Dutta 
Research Advisor 

 
May 16, 2025 

(Date) 
 

 
* * * * * * * 

 
 

Professor Emma Pierson 
Second Reader 

 
May 16, 2025 

(Date) 

 



Toward Pedagogically E↵ective AI for Introductory Computer Science

by

Michael Wu

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Prabal Dutta, Research Advisor
Professor Emma Pierson, Second Reader

Spring 2025



Toward Pedagogically E↵ective AI for Introductory Computer Science

Copyright 2025
by

Michael Wu



1

Abstract

Toward Pedagogically E↵ective AI for Introductory Computer Science

by

Michael Wu

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Prabal Dutta, Research Advisor

Professor Emma Pierson, Second Reader

The rise of large language models (LLMs) like ChatGPT has begun to revolutionize the
educational landscape. Specifically in computer science, this has led to the emergence of
LLM-based tutors intended to guide students through the learning process, much like how a
human instructor would. However, these systems still face major challenges: hallucination
and inaccuracy can mislead students, and over-helping can stifle independent learning. In
this thesis, we investigate di↵erent design strategies for building more accurate and peda-
gogically e↵ective LLM-based tutoring systems. We begin by outlining key design principles
aimed at balancing assistance with promoting student learning. We then explore di↵erent
designs and architectures to improve performance measured against these standards. We ul-
timately find that the best results come from a dual-agent model combined with structured
chunking retrieval-augmented generation (RAG), few-shot prompting, and fine-tuning. We
hypothesize that this architecture improves performance by combining the generation agent’s
reasoning with a verification agent that can catch inaccuracies or pedagogical oversteps be-
fore they reach the student. Experimental results demonstrate that these techniques improve
accuracy and adherence to pedagogical guidelines, particularly in iterative, multi-turn learn-
ing scenarios. However, these gains come at the cost of increased computational overhead,
requiring more tokens and two model calls per interaction, which negatively impacts inference
time and operational cost. Our findings o↵er a framework for building tutoring agents that
better support student learning and describe the trade-o↵s inherent in LLM deployment.
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Chapter 1

Introduction

With the advent of ChatGPT, many students have started turning to large language models
(LLMs) to complete assignments, bypassing the actual learning process [24]. In response,
some institutions have restricted or even banned the use of LLMs, citing concerns over
declining educational outcomes [1].

However, LLMs also o↵er powerful opportunities to enhance education. In 1984, ed-
ucational psychologist Benjamin Bloom published the now seminal paper, The 2 Sigma
Problem, which detailed his findings that students who received one-on-one tutoring outper-
formed their peers learning in traditional classrooms by two standard deviations [5]. Private
tutoring, while highly e↵ective, remains out of reach of the vast majority of students. LLMs
possess the opportunity to change this. LLMs are adept coders [4, 8, 6], capable of under-
standing student code [12] and providing feedback [25].

Given the recent rise in interest in computer science, many institutions struggle to meet
the growing demand for individualized support [16]– LLMs could help bridge this gap. For
students learning through MOOCs, LLMs could provide personalized, instructor-like feed-
back that is otherwise missing. Indeed, some have chosen to embrace this technology and
develop LLM-based tutors to o✏oad instructional workload and deliver fast, individualized
help [20, 15, 11]. However, this solution still leaves much to be desired. Many existing
applications of LLMs for this purpose still rely on some degree of instructor intervention or
limit the nature or scope of questions students can ask.

In this thesis, we implement several versions of AI-powered personal tutors for an in-
troductory computer science course. We document the key design challenges and decisions
involved in building e↵ective LLM tutors, focusing on addressing common pitfalls such as
over-teaching and inaccuracy. We also briefly apply our design to a university-level account-
ing course to demonstrate potential for broader applicability. Through this work, we aim
to contribute to the growing body of research on best practices for building e↵ective LLM
tutors.
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Chapter 2

Design Principles

Before creating our tutor bot, we first established a set of principles to guide our design
choices.

2.1 Accuracy

First, we want the tutor bot to be as accurate as possible. We define an accurate response
as one that does not produce any incorrect or irrelevant information. When an LLM guides
students down the wrong path, it can cause significant frustration and lead to hours of
unnecessary struggle. Some studies have shown that the reliability of AI feedback on pro-
gramming assignments can be as low as 50% [7]. Although we expect higher performance
given improvements in model quality over the last couple of years, and our focus on more
introductory CS topics, the risk remains. Human teachers make mistakes too, but they typ-
ically qualify their answers and express uncertainty when appropriate. In contrast, LLMs
often state incorrect information with unwarranted confidence, making mistakes harder for
students to detect.

2.2 Pedagogical Soundness

Second, we want the tutor bot to be pedagogically sound. This means not directly solving
problems for students or violating academic integrity guidelines. Educational research over
the years has found that the “struggle” and process of self-discovery are critical for long-term
information retention and future problem-solving [23]. If the bot over-explains, it could rob
students of that valuable learning opportunity. Ideally, the bot would provide the minimal
degree of help necessary for students to make progress. While it is impossible to know that
exact amount, a natural heuristic would be to start by giving less information and increasing
the depth of assistance with subsequent queries. Furthermore, to help avoid the pitfall of
over-explaining, we plan to instruct our bot to avoid direct code generation altogether.
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However, even this is not a complete solution. Harvard’s CS50 “Duck Debugger”1—despite
explicit instructions not to perform code generation—was found to generate code solutions
in 20% of messages and about 50% of conversations overall [14].

In addition to balancing the depth of queries, a tutor bot must use an appropriate
tone, which is critical for learning. Research shows that students learn better in a friendly
environment with lots of positive reinforcement [10]. Unfortunately, previous works have
found that students often perceive AI feedback as unfriendly and di�cult to understand
[17]. It will be important to ensure the bot consistently maintains a friendly and clear tone.

2.3 Flexibility

Finally, we want the tutor bot to be flexible enough to handle a wide range of student input.
Students should be able to ask conceptual questions, seek help with specific problems, or
request clarification on any part of the curriculum. Students have already been able to derive
value from various forms of LLM assistance. Tools like SPHERE help instructors rapidly give
personalized feedback [21], but cannot provide value in the absence of an instructor. Human-
AI approaches like Tutor CoPilot have already been shown to improve student outcomes in
K-12 math [22], but again rely on a degree of instructor oversight. Purely student-facing
tools like CS 61A bot2 help students debug homework assignments, but do not support chat-
based interaction for non-debugging related questions [20]. Our goal is to create an all-in-one
tutoring system that can function independently of an instructor.

2.4 Other Considerations

In addition to the three primary design goals, other factors such as operational cost and
response latency can significantly influence the overall e↵ectiveness of the model. Both
considerations are important: high costs may restrict access to this type of technology,
undermining one of our core motivations, which was to provide personal tutoring to those
who might not otherwise a↵ord it. Similarly, excessive latency may frustrate users and
deter them from using the tool entirely. However, for the purposes of this study, these
factors will come second. In cases where trade-o↵s arise, we will favor design decisions that
enhance accuracy, pedagogical soundness, and flexibility, even at the expense of increased
cost or slower response times. We will only make choices to keep costs low and latency down
if there is no measurable di↵erence in the primary performance metrics. The ordering of
our priorities from most important to least important is as follows: accuracy, pedagogical
soundness, flexibility, cost, and latency.

1https://cs50.ai/
2https://cs61a.org/articles/61a-bot
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Chapter 3

Methodology

To maximize the performance of our AI tutor, we considered several design choices, detailed
below. First, we needed to choose a class on which to base the bot. We chose UC Berkeley’s
CS 61A, Berkeley’s introductory Computer Science (CS1) course, because it had a large
amount of available data, and was familiar. Next, we needed to choose an interface to expose
our tool to the user. We chose a chatbot interface because it allows for the most flexible
interactions: students can ask conceptual questions or paste code snippets for debugging
assistance. Figure 3.1 below shows the user interface.

Figure 3.1: UI of the tutoring bot. The student can ask questions or paste code in the text
box. Since the bot is instructed to only answer questions about CS 61A or related topics, it
refuses the student’s question.
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Each student query, along with the relevant context retrieved via retrieval-augmented
generation, is sent to a GPT-4.1 model. This model is tasked with answering the query to
the best of its ability without directly providing solutions. The model’s output, along with
the original query, is then passed to a second, smaller model (GPT-4o Mini) responsible
for verifying the response’s correctness and adherence to pedagogical principles. Only the
output of the second model is returned to the student. The full system architecture is shown
in Figure 3.2 below.

Figure 3.2: The system architecture of the final version of our tutoring bot. The workflow
involves two calls to di↵erent OpenAI models. In our testing, this architecture produced the
most accurate and pedagogically e↵ective results.

3.1 Retrieval-Augmented Generation (RAG)

RAG is a technique known to improve LLM accuracy by grounding responses in external
knowledge. When a user asks a question, the system first converts the query into numerical
representations called embeddings using an embedding model. It then consults an external
database full of relevant information that is split into chunks and also stored as embeddings.
The system then attempts to find the most relevant chunks of information based on cosine
similarity to the query. This retrieved context is then appended to the user’s query and
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passed to the LLM, guiding it to generate more accurate responses and reducing the chance
of hallucination.

For our implementation, we considered several candidates for inclusion in the RAG
database, including lecture slides, lecture transcripts, and textbook notes. Ultimately, we
selected textbook notes as the notes o↵ered the most organized, structured, and compre-
hensive source material, qualities that enhance LLM performance. We used OpenAI’s text-
embedding-3-small for our embedding model, and Chroma for our vector database. For
chunking, rather than a naive method of splitting the material by a fixed number of words
(e.g., every 100 words), we adopted a more structure-aware strategy by chunking at the level
of subsections. This approach leverages the natural organization of the notes into chap-
ters, sections, and subsections (shown in Figure 3.3), and should support more informative
retrieval.

Figure 3.3: CS 61A’s textbook, Composing Programs. The textbook comes in HTML struc-
ture, which we can leverage for our chunking strategy. This helps our RAG retrieve more
coherent and complete chunks of information.

Before storing each chunk, we also tag it with its corresponding chapter. That way, when
RAG content is used to support an answer, the bot has knowledge of exactly which chapter
the content comes from. This has the added benefit of enabling the bot to cite its source so
that students can easily locate and review the relevant material, as seen in Figure 3.4.
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Figure 3.4: Example of the bot citing a source for more information using RAG. Based on
their question, the bot suggests the student review Chapter 2.2. This saves the student the
trouble of finding the section of the textbook themself, and enables them to easily double-
check the bot’s answer.

3.2 Dual-Agent System

We also experimented with adding a second LLM agent to the system. Previous LLM
tutoring implementations have struggled with two key issues: inaccurate outputs and overly
detailed answers that undermine the learning process. Research has shown that introducing
a secondary verification agent can dramatically improve overall output quality [13].

In our system, we use GPT-4.1 as the generation agent to create an appropriate response
to the user’s query. We poll every half-second to check if the first agent is finished generating
its output. Once the output is fully generated, we pipe that output into the verification agent
(GPT-4o Mini).

The verification agent asks two primary questions: (1) Is the answer correct and consistent
with the provided course materials? (2) Does the response avoid giving away the solution?
If the previous agent’s output satisfies both criteria, the verifier forwards it unchanged;
otherwise, the verification agent edits the response before sending it back to the student.
Because verification is a simpler task than generation, we found that a smaller model su�ced,
which helped to slightly reduce operational costs and improve system latency.
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3.3 Prompting

Prompting had one of the largest impacts on the tutor’s performance. We experimented
with various prompting strategies, informed by OpenAI’s guidelines [18]. One of the most
consistent challenges we faced in prompt development was balancing the volume of questions
the model would ask. While targeted, relevant questions could guide students in the right
direction and encourage them to think critically, too many could be annoying to students
who were just seeking an answer. Even worse, the model would sometimes answer conceptual
questions with its own not-so-relevant question, depicted in Figure 3.7. Though we should
not completely answer code-related questions, there is no argument for withholding any
information when answering conceptual questions.

Figure 3.5: Example of an unsuccessful interaction. Early system prompt versions have
the bot asking irrelevant questions when responding to conceptual questions. This can be
distracting and confusing to a student.

On the other side of the spectrum, if the prompt did not su�ciently emphasize limiting
how much help to provide, the model would answer whole problem set questions. It would
get around the “no code” restriction by e↵ectively describing the entire code solution in text.
In the end, we found that the following prompts provided the best guidance without giving
too much away (Figures 3.6 and 3.7).
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Figure 3.6: The generation agent’s system prompt. The prompt leverages generally accepted
strategies of prompt engineering, such as repeating phrases, adding delimiters, and limiting
output. This helps guide the bot towards producing a succinct and relevant answer to the
student’s questions.
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Figure 3.7: The verification agent’s system prompt. This prompt checks for the most com-
mon mistake by the generation agent, which is over-explaining and providing code. This
helps maintain the pedagogical e↵ectiveness of the tutoring system.

In addition to trying to find an optimal prompt wording, we also explored few-shot
prompting, in which a few example question–response pairs are included to guide the model’s
behavior. This technique helps give the model a concrete idea of what tone and style of
responses best align with our goals. However, adding too many examples increases prompt
length, which inflates both token costs and inference time. Due to the diminishing returns
of more examples, we ultimately chose to add two representative question-response pairs to
the generation agent’s system prompt.

3.4 Fine-tuning

Finally, we applied fine-tuning to further tailor the model to the tutoring use case. Fine-
tuning allows small, targeted adjustments to the base model’s behavior through additional
training on curated examples. We sourced training data from past student–instructor inter-
actions on CS 61A’s Ed platform, a centralized forum for class discussions1. An example
conversation can be seen in Figure 3.8 and Figure 3.9. These interactions closely mirror the
modality we wanted for our tutor: text-based student queries (often with code) and detailed
instructor responses.

1https://edstem.org
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Figure 3.8: Example question on Ed. Students can ask their questions and provide code,
just as they can with the tutoring bot. Questions usually follow a template to make it easier
for sta↵.



CHAPTER 3. METHODOLOGY 12

Figure 3.9: Example answer on Ed. A sta↵ member answers in a Socratic manner and
without giving away the answer. As a result, the student can think independently, make
progress, and then come back if necessary.

In total, we curated a set of 44 high-quality interactions. We mostly copied these in-
teractions from Ed verbatim, but we made minor edits to standardize formatting, correct
grammar, and improve conciseness. Figure 3.10 shows the same conversation, converted into
a JSON format.
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Figure 3.10: Example JSON conversion of a multi-turn conversation on Ed for fine-tuning.
The student and teacher texts are separated and given labels “user” and “assistant”, respec-
tively. This enables the LLM to learn from good tutoring examples and model its responses
after the human tutor’s.

This dataset included 12 single-turn conceptual questions, 20 single-turn code-related
questions, and 12 multi-turn code-related conversations. These ratios were chosen to roughly
mirror the distributions observed in the CS 61A’s Ed platform question types, as well as the
frequency of each type of question commonly asked towards LLMs [11]. However, some
research suggests that the proportion of multi-turn interactions may increase with the bot
compared to human TAs, as students may feel more comfortable asking follow-up questions
to an AI tutor [19].

For fine-tuning, we only used 1/4 of the dataset, or 11 samples (3 single-turn conceptual,
5 single-turn code-related, and 12 multi-turn code-related sampled randomly from the total
dataset), as we wanted to reserve 3/4 of the dataset for testing.
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Chapter 4

Results

To evaluate the impact of each of the techniques on the bots’ accuracy and pedagogical
soundness, we created three di↵erent versions of the tutor bot: V1, a single-agent model
with RAG, V2, a dual-agent model with RAG, and V3, a dual-agent model with RAG,
few-shot prompting, and fine-tuning. We then tested on the 33 samples distinct from those
used in fine-tuning (9 single-turn conceptual, 15 single-turn code-related, and 9 multi-turn
code-related questions). Each bot produced responses for all samples, resulting in a total
of 99 responses. Then, two human evaluators with teaching experience in CS 61A both
independently rated each response for accuracy and pedagogical soundness.

4.1 Accuracy

We defined an accurate response as one that does not provide any false or irrelevant infor-
mation. Table 4.1 details the evaluators’ initial ratings of each version.

Model Version Evaluator 1 Accuracy (%) Evaluator 2 Accuracy (%)

V1 79 82

V2 73 76

V3 76 82

Table 4.1: Evaluation accuracy of model versions V1–V3 by two human evaluators. All of
the model responses were shu✏ed and shown to the evaluators blindly and in random order.
This way, we avoid potential bias.

Inter-evaluation agreement measured by Cohen’s Kappa was 0.92, indicating almost per-
fect agreement. The main reasons for discrepancies were di↵erences in strictness for a re-
sponse to be deemed accurate, and occasional misunderstandings of the student’s question.
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After resolving these discrepancies through discussion, we obtained the final accuracy scores
shown in Table 4.2.

Model Version Accuracy (%)

V1 79

V2 76

V3 79

Table 4.2: Final agreed upon percentage of accurate responses of versions V1–V3. The worst
performing version only provided 1 more inaccurate answer than the rest out of 33 samples.
There appears to be no significant di↵erence in accuracy between the models.

4.2 Pedagogical Soundness

We performed a similar process to evaluate the bots’ pedagogical soundness. Evaluators
judged whether each response met the aforementioned standards for guiding students without
directly providing answers. Evaluators only judged pedagogical soundness on responses they
deemed accurate. The results are shown in Table 4.3.

Model Version Evaluator 1 Soundness (%) Evaluator 2 Soundness (%)

V1 75 79

V2 82 88

V3 88 90

Table 4.3: Evaluation pedagogical soundness of model versions V1–V3 by two human evalu-
ators. As with before, all of the model responses were shu✏ed and shown to the evaluators
blindly and in random order. This way, we avoid potential bias.

Cohen’s Kappa for pedagogical assessments was lower, at 0.70, possibly due to the in-
herent subjectivity in determining “satisfactory” guidance. After resolving discrepancies, we
obtained the final ratings shown in Table 4.4.
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Model Version Pedagogical Soundness (%)

V1 79

V2 85

V3 90

Table 4.4: Final agreed upon percentage of pedagogically sound responses of model versions
V1–V3. Only the samples where both evaluators rated the response as accurate were counted.
This was to make sure both evaluators independently came up with a decision for pedagogical
soundness before discussing.

It’s important to note that because only the samples that were evaluated to be accurate
were counted in this statistic, the 90% pedagogical soundness from V3 does not mean that
90% of its responses were indeed pedagogically sound. In reality, only 90% of 79%, or 71%
of its responses in the test set, were sound. When also counting for the inaccurate responses,
65% of V2’s responses were sound, and only 62% of V1’s responses were sound. Unlike with
accuracy, however, there appeared to be a significant di↵erence in pedagogical soundness
between the models, most notably between V1 and V3.

These numbers reflect an absolute threshold (satisfactory vs. unsatisfactory) but do not
necessarily capture relative performance nuances among the versions. Unlike with accuracy,
where the information is either correct or incorrect, teaching ability is based on a spectrum.
Thus, we also conducted a separate head-to-head evaluation, the results of which can be
seen in Figure 4.1. Each evaluator compared the outputs of the three models side-by-side
for each data point, ranking them from most to least pedagogically e↵ective. The models’
outputs were presented to the evaluators in randomized order, and evaluators were blind
to the source of each output in order to avoid bias. Evaluators could assign equal ranks to
multiple models if performance was indistinguishable.
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Figure 4.1: Fraction of Model A Wins for All Non-tied A vs. B Battles. Version 3 showed a
significant improvement over Version 1, with evaluators preferring its output 63% of the time.
This suggests the improvements of Version 3 were e↵ective in generating more pedagogically
e↵ective answers.

The results revealed improvements from V1 to V2 and from V2 to V3. Interestingly,
the enhanced pedagogical performance observed in V2 and V3 primarily stemmed from
improvements in multi-turn interactions. Specifically, the single-agent model (V1) frequently
provided overly detailed solutions upon repeated prompts, diminishing its e↵ectiveness in
multi-turn contexts. This is possibly due to context drift and an LLM’s inherently limited
attention capacity. In long interactions, earlier instructions get pushed further back in the
input sequence, reducing their influence relative to recent dialogue. The presence of the
verification agent in V2 and V3, along with the further enhancements through prompting
and fine-tuning, seemingly helped mitigate this issue by acting as a persistent second-stage
filter that enforced consistency with the system’s instructional goals.

Notably, these improvements in pedagogy were not mirrored in the accuracy ratings. This
may indicate that the inaccuracies from the generation model were largely undetectable by
the verification model.
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4.3 Latency

An important consideration in evaluating these models is the time each one takes to produce
a response. Figure 4.2 shows the response times of each model on the 33-sample test set.

Figure 4.2: Response times of each version across 33 samples. There is a significant di↵erence
between V1 and the rest at a 95% confidence interval. There appears to be no measurable
di↵erence between V2 and V3, however.

On average, V1 responded in approximately 7 seconds, while V2 and V3 each took
around 23 and 22 seconds, respectively. The significant increase in response time from V1
to V2/V3 appears to be due to the introduction of a second verification agent. In our
implementation, the verification agent only began processing after the generation agent had
completed its entire output, with polling occurring every 0.5 seconds to check for completion.
This sequential structure added a substantial delay. In future iterations, we want to explore
streaming the generation agent’s output to the verification agent, a technique that has been
shown to significantly reduce delay [3].

Interestingly, there was little di↵erence in latency between V2 and V3, suggesting that
adding two additional few-shot examples to the generation agent’s system prompt had min-
imal impact on response speed.
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The e↵ect of this latency on user experience remains uncertain. Drawing from studies
on user behavior with web page load times, delays of over 20 seconds may deter users from
engaging with the system altogether [2]. On the other hand, in a resource-constrained
environment where there is no other teacher, a motivated student may be willing to accept
the slow response time. Furthermore, a slow response time could serve as an implicit rate
limiter, restricting use and encouraging students to spend time reflecting before submitting
further questions.



20

Chapter 5

Discussion

5.1 Positive vs. Negative Student-Tutor Bot

Interactions

Beyond the quantitative metrics, a closer examination of individual student-bot exchanges
revealed some broader patterns. Overall, the bot demonstrated strong performance on con-
ceptual questions. This is likely due to the rich set of notes fed into the RAG pipeline, along
with the absence of strict constraints on how much assistance the bot could provide in these
cases.

For problem-solving questions, successful interactions, like the one shown in Figure 5.1,
typically involve the bot o↵ering targeted guidance through well-posed questions, succinct
explanations, and constructive hints. In the absence of a human instructor, version 3 of the
bot may be able to serve as a reasonable stand-in, especially in resource-limited situations.

The most challenging interactions tended to occur in extended, multi-turn conversations.
In particular, when a student already had a specific solution path in mind, the bot would
sometimes diverge from that path, proposing a di↵erent, albeit technically correct, method.
For example, finding the nth number of the Fibonacci sequence is a classic exercise for
students learning recursion. During testing, we found that the bot gave helpful advice when
students were lost or were working through a standard solution. However, if you fed it a
unique, suboptimal solution, such as keeping a list of previous numbers in the sequence
through each recursive call, the bot would struggle to advise students. Usually, it would
ignore the student’s progress and start hinting towards the recommended solution. If forced
to continue the student’s solution with repeated prompting, the bot would frequently advise
incorrect changes. While this is a common pitfall even for novice human tutors, it’s an area
for improvement in future versions of the bot.
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Figure 5.1: Example of a positive interaction. The bot gives positive a�rmation to the
student’s idea, provides hints without code, and asks the student a question about what to
do next. This bears similarities to what a good human tutor would do.

5.2 Applicability to Other Courses

Looking forward, we envision that tools like this could support learning in disciplines beyond
computer science. To test this, we developed a prototype bot for UC Berkeley’s UGBA 102B
Managerial Accounting, using the same architecture. We ingested the course slides into the
vector database and adjusted the prompts to reflect the new subject matter.

This version, e↵ectively a V2 bot due to the lack of few-shot prompting or fine-tuning,
was tested on a few basic queries. The results were mixed. While the bot was able to handle
conceptual questions and interpret student intent well (see Figure 5.2), it struggled with
problems that required multi-step reasoning or calculations.
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Figure 5.2: Example conversation from a bot designed for an introductory accounting course.
Based on the class notes and system prompting, it can interpret what “FOH” means in this
context. It answers the student’s questions with an example and maintains a friendly tone,
facilitating student learning.

We suspect this decline in problem-solving performance stems from two factors. First,
the accounting course materials lacked structured, comprehensive notes, making it harder
for the LLM to extract relevant information. Second, foundational models themselves likely
have less available accounting content in their training data compared to computer science,
reducing their baseline competence in the domain.
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Chapter 6

Limitations & Future Work

While initial evaluations conducted with teaching assistants indicate promising results, we
have yet to conduct any testing directly with students. Future research should involve formal
student evaluations to better understand how learners interact with the tool, as well as to
systematically identify its strengths, weaknesses, and areas for improvement. Collaborating
with an academic course, for instance, could provide a robust dataset to evaluate the tool’s
e↵ectiveness, usability, and impact on student learning outcomes. Conducting such a study
would require obtaining Institutional Review Board (IRB) approval and finding a willing
and appropriate class to partner with. Partnering with a course and university could have
the additional benefit of potential for longer-term studies that could examine the sustained
e↵ects of AI tutoring on student performance and retention of material, which is critical to
understanding the lasting educational impacts of these tools.

Also, to broaden accessibility and adoption, we plan to simplify the deployment process.
Currently, the codebase is publicly available via GitHub1, and anyone can clone it, acquire an
OpenAI API key, and tailor it for their specific course or use case. However, doing so would
require some baseline degree of computer science background and understanding. To address
this, we aim to develop a hosted web interface that simplifies the setup. We envision a basic
form-like page that allows people to submit their course or topic of interest and upload any
course materials. Upon submitting all of the necessary information, they will have access
to a simplified version of the tutoring bot for their own use case. We will provide options
for data collection—allowing users to choose between anonymized data tracking or complete
privacy—which would encourage broader adoption while respecting user preferences.

Moreover, future research should investigate the e↵ectiveness of this framework for sub-
jects beyond introductory computer science. While we believe the tool could be adapted
for other domains, and see some promising data with introductory accounting, e↵ectiveness
might vary, particularly in fields that emphasize creativity or subjective interpretation rather
than structured problem-solving. Earlier findings highlighted instances where the bot strug-
gled with building on top of creative, unconventional student approaches, underscoring the

1https://github.com/mykolwu/llm-tutoring-bot
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need to explore these limitations further.
Lastly, more comprehensive studies are needed to explore the potential social and psycho-

logical impacts associated with substituting human interaction with AI support. Would 24/7
access to a tutor discourage the necessary independent work and struggle needed for e↵ective
learning? Furthermore, past research indicates that women in computer science programs
are more likely to utilize o�ce hours and LLM resources [9, 11]. This is possibly due to
there being fewer women in the field, limiting access to peer networks. If this holds true,
widespread adoption of accessible, AI-based educational resources could help promote eq-
uity within computer science education. Further targeted investigation into these dynamics
is necessary to fully understand.
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Chapter 7

Conclusion

In this work, we have demonstrated that carefully designed LLM-based tutoring bots can pro-
vide relatively accurate and pedagogically e↵ective help for introductory computer science.
We found that employing a dual-agent validation system, structured retrieval-augmented
generation (RAG), and fine-tuning with targeted few-shot prompting can improve a model’s
ability to guide students e↵ectively. Specifically, we found that the additional validation
agent was especially e↵ective in prolonged, multi-turn conversations, albeit at the cost of a
slower and more expensive querying process. Nonetheless, the significant improvement in
output suggests that future attempts towards creating an LLM-based tutoring bot should
strongly consider using multiple agents, as well as the standard techniques of RAG, fine-
tuning, and few-shot prompting.

However, as LLM technology continues to advance, we anticipate that costs and infer-
ence time will decrease, while the e↵ectiveness and reliability of AI tutors will increase,
making personalized tutoring more accessible and scalable than ever before. LLMs represent
a promising solution for addressing educational inequities by providing high-quality, person-
alized feedback and instruction to students regardless of their geographic or socioeconomic
status. At schools and universities, it may also help alleviate the burden of overloaded teach-
ing sta↵. However, it is critical to emphasize that these benefits can only be fully realized
if LLMs are responsibly used as learning tools rather than shortcuts to bypass the learning
process.

Ultimately, we envision a future in which quality education becomes universally accessible
through the thoughtful integration of AI technologies. With these findings and methodolo-
gies, we aim to contribute to the growing body of best practices that can guide us to that
future.
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