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Abstract

Incentive-Compatible Vertiport Reservation in Advanced Air
Mobility: An Auction-Based Approach

by

Pan-Yang Su

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Shankar Sastry, Chair

The rise of advanced air mobility (AAM) is expected to become a multibillion-dollar indus-
try in the near future. Market-based mechanisms are touted to be an integral part of AAM
operations, which comprise heterogeneous operators with private valuations. In this work1,
we study the problem of designing a mechanism to coordinate the movement of electric
vertical take-off and landing (eVTOL) aircraft, operated by multiple operators each hav-
ing heterogeneous valuations associated with their fleet, between vertiports, while enforcing
the arrival, departure, and parking constraints at vertiports. Particularly, we propose an
incentive-compatible and individually rational vertiport reservation mechanism that max-
imizes a social welfare metric, which encapsulates the objective of maximizing the overall
valuations of all operators while minimizing the congestion at vertiports. Additionally, we
improve the computational tractability of designing the reservation mechanism by proposing
a mixed binary linear programming approach that leverages the network flow structure.

1This work is based on Su et al. (2024). A follow-up work adopts a non-monetary mechanism based on
a similar auxiliary graph structure proposed in this research Maheshwari et al. (2025).
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Chapter 1

Introduction

Advanced air mobility (AAM) encompasses the utilization of unmanned aerial vehicles
(UAVs), air taxis, and various cargo and passenger transport solutions. This innovative
approach taps into previously unexplored airspace, poised to revolutionize urban airspace.
A recent report forecasts the air mobility market alone to exceed US$50 billion by 2035,
underlining this area’s immense growth potential Cohen et al. (2021).

Despite the widespread optimism surrounding AAM, the design of regulatory policies
remains an open problem. While ideas from conventional air traffic management (e.g. Bert-
simas and Patterson (1998, 2000); Bertsimas et al. (2011); Odoni (1987); Roy and Tomlin
(2007)) could be leveraged, they often fall short in accommodating the dynamic and adapt-
able nature of AAM operations Bichler et al. (2023), resulting from on-demand requests
from operators with heterogeneous private valuations Seuken et al. (2022); Skorup (2019).
Indeed, the administrative management methods prevalent in traditional air traffic man-
agement, such as grand-fathering rights, flow management, and first-come-first-serve, prove
ineffective for AAM operations Evans et al.; Guerreiro et al. as these approaches fail to elicit
the heterogeneous private valuations (arising from different aircraft specifications, demand
realization, etc.) different operators have on using AAM resources. Furthermore, they risk
fostering inefficient and anti-competitive outcomes, as evidenced in traditional airspace oper-
ations Dixit et al. (2023). Recognizing the need for tailored regulation, the Federal Aviation
Administration (FAA) is actively developing a clean-slate congestion management framework
for AAM operations to ensure efficiency, fairness, and safety Administration (2023).

Market-based congestion management mechanisms have been proposed as potential so-
lutions for AAM operations Chin et al. (2023b); Evans et al.; Qin and Balakrishnan (2022);
Seuken et al. (2022); Skorup (2019); Wang et al. (2023). Even in conventional airspace
management, market-based mechanisms are extensively studied such as Ball et al. (2018);
Basso and Zhang (2010); Carlin and Park (1970); Mehta and Vazirani (2020), where both
theoretical and empirical evidence show their precedence over administrative approaches
Dixit et al. (2023). However, the design of market-based mechanisms that guarantee safety,
efficiency, and fairness under the heterogeneous and on-demand nature of AAM operations
has remained elusive as the existing approaches concentrate heavily on tactical deconfliction
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Figure 1.1: Schematic representation of the air traffic network with a service provider tasked
with coordinating the movement of aircraft of various fleet operators between vertiports in
its domain. Each vertiport has a constraint on the number of arriving aircraft, departing
aircraft, and parked aircraft.

Bertram and Wei; Kleinbekman et al. (2018), while not accounting for efficiency, fairness
and the economic incentives of operators Chin et al. (2021, 2023a,b); Evans et al.; Guerreiro
et al.; Qin and Balakrishnan (2022); Sun et al. (2023); Wang et al. (2023).

In this paper, we introduce an auction-based mechanism for a prominent AAM scenario
of vertiport reservation, where electric vertical take-off and landing (eVTOL) operators with
heterogeneous private valuations need to be coordinated to use vertiports based on their
realized demands. This problem is challenging for three main reasons. First, the resulting
reservation must ensure efficient, fair, and safe allocation of resources. Second, the opera-
tors may misreport their private valuations and demands to gain access to more valuable
airspace resources (i.e. ensuring incentive compatibility). Third, the computation of these
auction mechanisms is combinatorial, as evidenced by existing air traffic flow management
frameworks Bertsimas and Patterson (1998, 2000); Bertsimas et al. (2011) (i.e. ensuring fast
computability). Thus, the main question we set out for this work is:

How to design an efficient, fair, and safe vertiport reservation mechanism for
heterogeneous and on-demand nature of eVTOL operators, while ensuring incen-
tive compatibility and faster computation?

We consider an air transportation network (ATN) managed by a service provider (SP).
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The SP is responsible for ensuring the efficient, safe, and fair movement of aircraft operated
by various fleet operators (FOs) between vertiports (as depicted in Figure 1.1). The goal of
the SP is to maximize a metric of social welfare that is comprised of two objectives: (i) max-
imize the overall (weighted) valuations1 of all FOs, and (ii) minimize excessive congestion at
vertiports2. Additionally, the SP must (iii) enforce arrival, departure, and parking capacity
constraints at vertiports, and (iv) elicit truthful valuations from heterogeneous FOs in the
form of bids.

We propose an auction mechanism, to be used by the SP, that satisfies (i) − (iv). In this
mechanism, using the bids submitted by FOs, the SP allocates the resources by maximizing
social welfare, subject to capacity constraints. Next, the SP charges each FO a payment
based on the externality imposed by them, which is assessed by the difference in the optimal
social welfare of remaining FOs when this FO is included versus when it is excluded from
the auction environment. Note that this payment mechanism is inspired by the general-
ized Vickrey–Clarke–Groves (VCG) mechanism Nisan et al. (2007). We theoretically study
the properties of the proposed mechanism in terms of incentive compatibility, individual
rationality, and social welfare maximization (cf. Theorem 3.2.1).

There are two computational challenges associated with designing this mechanism. First,
naively optimizing social welfare over the set of feasible allocations could be computationally
challenging. Therefore, we frame the problem as a mixed binary linear program by construct-
ing a network-flow graph to reduce the number of binary variables. Second, the computation
of externality in the payment mechanism, which requires maximizing social welfare over the
set of feasible allocations, requires characterizing the set of feasible allocations when an FO
is excluded from the auction environment, which is non-trivial as the underlying resource
allocation problem is an exchange problem. Therefore, we introduce the idea of pseudo-bids,
where we simply set a bid of 0 to an FO while computing the optimal allocation when this
FO is excluded from the auction environment.

We note two important features of the problem we study in this work. First, we focus only
on strategic deconfliction where the safety is encoded in the form of minimizing congestion
and ensuring capacity constraints, and not on tactical deconfliction. However, our approach
can be integrated into the airborne automation workflow proposed in Wei et al. (2023) to
also account for tactical deconfliction. Second, this problem is an “exchange problem”,
where some of the resources desired by any FO could be occupied by aircraft of other FOs,
and a feasible allocation in this setting needs to exchange the resources between FOs while
respecting capacity constraints. In constrast, the standard slot allocation problems studied
in conventional air traffic literature (cf. Ball et al. (2018, 2020); Bichler et al. (2023); Dixit
et al. (2023); Mehta and Vazirani (2020); Pertuiset and Santos (2014); Rassenti et al. (1982))
are “assignment problems” where the slots need to be assigned to airlines and not exchanged
between airlines.

1We allow the SP to weigh FOs differently in order to encourage new-comers in this emerging market.
2Note that we only consider congestion at the vertiports in this work. An extension to airborne congestion

is discussed in Chapter 5.2.
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Notation: We denote the set of real numbers by R, non-negative real numbers by R+,
integers by Z, non-negative integers by Z+, and natural numbers by N. For N ∈ N, we define
[N ] := {1, 2, ..., N}. The indicator function is denoted as 1(·), which is 1 when (·) is true and
0 otherwise. When indexing a set b = {b1, b2, ..., bN}, we follow the standard game-theoretic
notation: b−i := {b1, ..., bi−1, bi+1, ..., bN}.
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Chapter 2

Problem Setup

2.1 System Model
We consider an air transportation network (ATN), comprised of multiple vertiports, which
are used by electric vertical take-off and landing (eVTOL) aircraft. We focus on a strategic
deconfliction mechanism that complements the tactical deconfliction algorithms proposed
in Bertram and Wei; Kleinbekman et al. (2018); Shao et al. (2021); Wu et al. (2022). The
scheduling mechanism proceeds over non-overlapping time slots with a receding time horizon.
At the beginning of each time slot, all fleet operators (FOs) submit a menu of desired origin-
destination pairs and the corresponding bids specifying how much they are willing to pay
for getting scheduled. Then, the service provider (SP) will compute a feasible allocation and
payment and execute them in the next time slot. The granted aircraft can now go to their
desired locations. In most congested vertiports, when the parking capacity is fully utilized,
any additional arrival would necessitate a simultaneous departure of an aicraft from that
vertiport. Thus, this is an “exchange problem” as opposed to the “assignment problem”
studied in other air traffic allocation problems Ball et al. (2018, 2020); Bichler et al. (2023);
Dixit et al. (2023); Mehta and Vazirani (2020); Pertuiset and Santos (2014); Rassenti et al.
(1982).

We denote the set of vertiports by R, the set of FOs by F , and the set of eVTOL aircraft
by A. We consider the problem for H time slots.

Vertiports At any time t ∈ [H], each vertiport r ∈ R has three kinds of capacity con-
straints 1: (i) arrival capacity constraints, denoted by arr(r, t) ∈ Z+, that restrict the number
of eVTOLs that can land at vertiport r at time t; (ii) departure capacity constraints, denoted
by dep(r, t) ∈ Z+, that restrict the number of eVTOLs that can depart from vertiport r at

1The arrival, departure and parking capacity constraints in our model are exogeneously determined at
every time step and are un-correlated between two consecutive time steps. Extending our model to account
for correlations is an interesting direction of future research.
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time t; (iii) parking capacity constraints, denoted by park(r, t) ∈ Z+, that restrict the number
of eVTOLs that can park at vertiport r at time t.

Fleet Operators Let Ai be the fleet of aircraft operated by FO i ∈ F , and A := {ai,j|i ∈
F, j ∈ Ai} be the set of all aircraft using the ATN. Each aircraft ai,j is identified by a tuple(
rorig

i,j , mi,j, {tdep
i,j,k, tarr

i,j,k, vi,j,k, bi,j,k, rdest
i,j,k}k∈mi,j

)
where (i) rorig

i,j ∈ R is the origin vertiport of
aircraft ai,j, (ii) mi,j is the menu of available routes to aircraft ai,j; (iii) any route k ∈ mi,j

implies that aircraft ai,j departs from rorig
i,j ∈ R at time tdep

i,j,k to arrive at rdest
i,j,k ∈ R at time

tarr
i,j,k; (iv) vi,j,k denotes the private valuation of aircraft ai,j to choose the route k ∈ mi,j; and

(v) bi,j,k ∈ R+ is the bid submitted by FO i to schedule aircraft ai,j on route k ∈ mi,j. Note
that we include the option to stay parked at the same vertiport in mi,j, denoted by ∅, and
set its departure time to 0.

Additionally, we denote the joint bid profile of all aircraft operated by FO i ∈ F by
Bi := (bi,j,k)j∈Ai,k∈mi,j

and joint valuation profile of its fleet by Vi := (vi,j,k)j∈Ai,k∈mi,j
. For

succinct notation, we denote the joint bid and valuation profile of all FOs as B := (Bi)i∈F

and V := (Vi)i∈F , respectively.

2.2 Problem Formulation
We consider an SP tasked with coordinating2 the movement of aircraft by allocating them
to their desired vertiports while ensuring that the capacity constraints are met. Formally,
the SP needs to decide on a feasible allocation x = (xi,j,k ∈ {0, 1}|i ∈ F, j ∈ Ai, k ∈ mi,j),
where

xi,j,k =
1, if aircraft ai,j is allocated route k ∈ mi,j,

0, otherwise.

Given an allocation x, let S(r, t, x) ∈ Z+ denote the number of aircraft occupying the
parking spots at vertiport r ∈ R at time t ∈ [H]. For every r ∈ R, the initial occupation
S(r, 1, x) is

S(r, 1, x) =
∑
i∈F

∑
j∈Ai

1(rorig
i,j = r).

2We do not impose the information sharing constraints in Chin et al. (2023a); Qin and Balakrishnan
(2022), where different sectors have different operators, and an SP only provides the identities, but not the
positions, of aircraft to neighboring sectors. We follow the architecture in the current ATFM framework
Bertsimas and Patterson (1998, 2000); Bertsimas et al. (2011); Odoni (1987); Roy and Tomlin (2007), where
a central SP can aggregate information from all the sectors and make decisions.
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For concise notation, we shall denote S(r, 1, x) by S̄(r) for every r ∈ R since it does not
depend on x. Naturally, it must hold that, for every r ∈ R, t ∈ {2, . . . , H},

S(r, t, x) = S(r, t − 1, x) +
∑
i∈F

∑
j∈Ai

∑
k∈mi,j

xi,j,k1(rdest
i,j,k = r, tarr

i,j,k = t)

−
∑
i∈F

∑
j∈Ai

∑
k∈mi,j

xi,j,k1(rorig
i,j = r, tdep

i,j,k = t),
(2.1)

where the second (resp. third) term on the RHS in the above equation denotes the set of
incoming (resp. departing) aircraft in vertiport r at time t. The residual capacity at vertiport
r ∈ R at time t ∈ [H] is Z(r, t, x) := park(r, t)−S(r, t, x). To ensure the existence of a feasible
allocation as defined later in (2.2), we assume that park(r, t) − S̄(r) ≥ 0, ∀r ∈ R, t ∈ [H].

An allocation x is called feasible if it satisfies the following constraints:

(C1) Each aircraft is allocated at most one route. That is, for every i ∈ F, j ∈ Ai,∑
k∈mi,j

xi,j,k ≤ 1.

(C2) Arrival and departure capacity constraints must be satisfied at every vertiport r at
all times. That is, for every r ∈ R, t ∈ [H],∑

i∈F

∑
j∈Ai

∑
k∈mi,j

xi,j,k1(rdest
i,j,k = r, tarr

i,j,k = t) ≤ arr(r, t),
∑
i∈F

∑
j∈Ai

∑
k∈mi,j

xi,j,k1(rorig
i,j = r, tdep

i,j,k = t) ≤ dep(r, t).

(C3) Parking capacity constraints must be satisfied. That is, for every vertiport r ∈ R at
any time t ∈ [H], Z(r, t, x) ≥ 0.

Consequently, we define

X :=
{

x ∈ {0, 1}
∑

i∈F

∑
j∈Ai

|mi,j |
∣∣∣∣ x satisfies (C1)-(C3)

}
(2.2)

to be the set of feasible allocations.

Definition 2.2.1 (Social Welfare). Given x ∈ X, social welfare is defined as follows.

SW(x; V ):=
∑
i∈F

ρi

∑
j∈Ai

∑
k∈mi,j

vi,j,k · xi,j,k − λ
∑
r∈R

∑
t∈[H]

Cr,t(S(r, t, x)), (2.3)

where (i) ρi ∈ R+ is the weight factor specifying the relative importance of different FOs3,
(ii) Cr,t : Z+ → R+ with Cr,t(0) = 0 is discrete convex4 to capture increasing marginal cost

3Similar weight factors, termed as remote city opportunity factor, are used in Dixit et al. (2023).
4Based on Murota (2015), a function f : Z → R is discrete convex if f(x+1)−f(x) ≥ f(x)−f(x−1), ∀x ∈

Z.
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of congestion5, and (iii) λ ∈ R+ is the ratio between the congestion cost and the cumulative
weighted valuations of FOs. Furthermore, we define an optimal allocation as

x∗(V ) ∈ arg max
x∈X

SW(x; V ), (2.4)

where ties are resolved arbitrarily.

Remark 2.2.2. The social welfare objective (2.3) captures three main desiderata: efficiency,
fairness, and safety. The objective (2.3) incorporates efficiency through additive valuations of
FOs. Additionally, it incorporates the proportional fairness criterion6 by assigning different
weights to the valuations of different FOs, denoted by (ρi)i∈F . Well-constructed weights can
prevent larger FOs from monopolizing the resources; for example, using the logarithm of the
number of aircraft as an FO’s weight. Finally, it encompasses safety considerations in two
ways: first, through capacity constraints; and second, by introducing a congestion-dependent
term in (2.3) that penalizes vertiports when the number of aircraft increases. With these three
considerations, the definition of social welfare aligns closely with that presented in Dixit et al.
(2023).

We assume the SP does not have access to the true valuations V , as it is private infor-
mation. Instead, the SP must use bids B reported by the FOs to allocate the aircraft to
vertiports through an auction mechanism. More formally, given a bid profile B, the SP uses
a mechanism M̄ = (x̄, (p̄i)i∈F ), where for a given bid profile B, (i) x̄(B) ∈ X is the allocation
proposed by the mechanism; and (ii) p̄i(B) ∈ R denotes the payment charged to FO i ∈ F .
Under the mechanism M̄ , the utility derived by any FO i ∈ F is

Ui(B; M̄) =
∑

j∈Ai

∑
k∈mi,j

vi,j,k1(x̄i,j,k(B)) − p̄i(B). (2.5)

Given any arbitrary valuation profile V , the goal is to design a vertiport reservation mecha-
nism M̄ = (x̄, p̄) with the following desiderata.

(D1) Incentive Compatibility (IC): Bidding truthfully is each FO’s (weakly) dominant
strategy, i.e., for every i ∈ F , B−i ∈ R

∑
ℓ∈F \{i}

∑
j∈Aℓ

|mℓ,j |
+ ,

Vi ∈ arg max
Bi∈R

∑
j∈Ai

|mi,j |

+

Ui(Bi, B−i; M̄).

(D2) Individual Rationality (IR): Bidding truthfully results in non-negative utility, i.e.,
for every i ∈ F ,

Ui(Vi, B−i; M̄) ≥ 0, ∀ B−i ∈ R
∑

ℓ∈F \{i}

∑
j∈Aℓ

|mℓ,j |
+ .

5While we only consider the congestion resulting from parked aircraft, it is straightforward to extend
our formulation to arriving and departing aircraft; see Chapter 5.2.

6We emphasize that the fairness is at the FO-level.
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(D3) Social Welfare Maximization (SWM): The resulting allocation maximizes social
welfare, i.e.,

x̄(B) ∈ arg max
x∈X

SW(x; V ).
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Chapter 3

Mechanism Design

In this chapter, we present an auction mechanism that satisfies (D1)-(D3) in Chapter 3.1
and prove its theoretical properties in Chapter 3.2. We defer the optimization algorithm to
Chapter 4.

3.1 Mechanism
Inspired by Myerson’s lemma Myerson (1981), our approach is to separate the allocation
and payment functions so that the latter can ensure IC and IR as long as the former ensures
maximization of total welfare in terms of bids submitted.
Allocation Function: Given a bid profile B ∈ R

∑
i∈F

∑
j∈Ai

|mi,j |
+ , the allocation is obtained

by

x̄(B) ∈ arg max
x∈X

SW(x; B). (3.1)

Payment Function: We first define a function θ : F ×R
∑

i∈F

∑
j∈Ai

|mi,j |
+ → R

∑
i∈F

∑
j∈Ai

|mi,j |
+

such that for any ℓ ∈ F and bid B ∈ R
∑

i∈F

∑
j∈Ai

|mi,j |
+ ,

θi,j,k(ℓ, B) =
bi,j,k, if i ̸= ℓ,

0, if i = ℓ,
∀ i ∈ F, j ∈ Ai, k ∈ mi,j. (3.2)

The payment function, given a bid profile B, is

p̄i(B)= 1
ρi

(
max
x′∈X

SW−i(x′; θ(i, B))−SW−i(x̄; B)
)

, (3.3)

where for every i ∈ F , x ∈ X, and B ∈ R
∑

i∈F

∑
j∈Ai

|mi,j |
+ ,

SW−i(x; B) :=
∑

ℓ∈F−i

ρℓ

∑
j∈Aℓ

∑
k∈mℓ,j

bℓ,j,k · xℓ,j,k − λ
∑
r∈R

∑
t∈[H]

Cr,t(S(r, t, x)). (3.4)
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Remark 3.1.1. The payment rule is inspired by the VCG mechanism, where each FO is
charged a payment based on the externality created by them. Particularly, the typical VCG
payment for any player is determined by assessing the difference in the optimal social welfare
of players when they are present, versus when they are excluded from the auction environ-
ment.

Remark 3.1.2. There are some notable differences between the VCG payment and (3.3).
First, since our problem is an “exchange problem” and not the typical “assignment problem”,
we need to be cognizant of the physical resources occupied by the aircraft of that operator.
However, this would require us to enumerate all the feasible combinations if we were to
directly implement VCG mechanisms. To overcome the problem of enumerating all feasible
solutions while computing payments, we adopt a novel approach of “pseudo-bids”, where while
computing the payments, each non-participating aircraft is considered to be using a bid of 0,
as formally described in (3.2).

Second, since the objective function (2.3) is not the summation of the participants’ val-
uations, the typical VCG auction is not directly applicable. Instead, we follow Dixit et al.
(2023); Nisan et al. (2007) to devise the payment rule for any i ∈ F and b ∈ R

∑
j∈Ai

|mi,j |
+ .

3.2 Theoretical Analysis
Theorem 3.2.1. The proposed mechanism M̄ := (x̄, p̄), defined by (3.1) and (3.3) is IC,
IR, and SWM.

Proof. Observe from (2.3) that SW(x; V ) is a weighted summation of FOs’ valuations and the
congestion cost. Since the congestion cost is independent of valuations, x̄(V ) ∈ arg maxx∈X SW(x; V )
is an affine maximizer with respect to FOs’ valuations, as defined in (Nisan et al., 2007, Def-
inition 9.30). Thus, the allocation function (3.1) and the payment function (3.3) form a
generalized VCG mechanism, and IC directly follows from (Nisan et al., 2007, Proposition
9.31). Finally, IR follows from (Nisan et al., 2007, Lemma 9.20) since the bids are non-
negative, and the allocation is an affine maximizer, as formally proved below.

For any B−i ∈ R
∑

ℓ∈F \{i},j∈Aℓ
|mℓ,j |

+ ,

Ui(Vi, B−i; M̄)=
∑

j∈[Ai]

∑
k∈[mi,j ]

vi,j,k1(x̄i,j,k(Vi, B−i)) − p̄i(Vi, B−i)

= 1
ρi

(
ρi

∑
j∈[Ai]

∑
k∈[mi,j ]

vi,j,k1(x̄i,j,k(Vi, B−i)) +SW−i(x̄; Vi, B−i)

− max
x′∈X

SW−i(x′; θ(i, Vi, B−i))
)

= 1
ρi

(
SW(x̄; Vi, B−i) − max

x′∈X
SW−i(x′; θ(i, Vi, B−i))

)
. (3.5)
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Since x̄ ∈ arg maxx∈X SW(x̄; Vi, B−i), it holds that SW(x̄; Vi, B−i) ≥ SW(x†; Vi, B−i),
where x† ∈ arg maxx′∈XSW−i(x′; θ(i, Vi, B−i)). Thus, we obtain

Ui(Vi, B−i; M̄)≥ 1
ρi

(
SW(x†; Vi, B−i)−SW−i(x†; θ(i, Vi, B−i))

)

= 1
ρi

∑
j∈[Ai]

∑
k∈[mi,j ]

vi,j,k1(x†
i,j,k(Vi, B−i)) ≥ 0.

Figure 3.1: Auxiliary graph Ḡ constructed from an ATN with two vertiports and one aircraft
over three time slots.
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Chapter 4

Optimization Algorithm

In this chapter, we formulate (3.1) as a mixed binary linear program (MBLP), as shown in
(4.6). We derive this in three steps. First, in Chapter 4.1, we construct a time-extended
flow network, where vertices are vertiport-time and aircraft-time pairs with edges capturing
capacity constraints and route allocation. Then, using binary variables (δi,j,τ as formally
defined later in (4.2d) and (4.2e)) to ensure that each aircraft is allocated one route, we
formulate a mixed integer linear program (MILP (4.2)) in Chapter 4.2. This MILP has fewer
binary variables than (3.1) when the number of unique departure times for any aircraft is
less than the size of its menu. Finally, in Chapter 4.3, we show that the total unimodularity
of the constraint matrix (Ī⋆ in (4.2b)) guarantees that all flows are integral for each binary
variable assignment, so we can drop the integrality constraint (4.2f) and get the final MBLP
formulation (4.6).

4.1 Auxiliary Graph
We construct an auxiliary graph Ḡ = (V̄ , Ē) as detailed below. Figure 3.1 shows a pictorial
depiction.

(i) Set of vertices V̄ = ∪3
ℓ=1V̄ℓ. We define these sets below:

– V̄1 := {(ν̄(r, t), ν̄arr(r, t), ν̄dep(r, t))|r ∈ R, t ∈ [H]}:
We consider three replica for each vertiport r ∈ R at time t ∈ [H], denoted as
ν̄(r, t), ν̄arr(r, t), and ν̄dep(r, t). These vertices, along with Ē1, Ē2, Ē3, and Ē8
defined later, embed capacity constraints and congestion costs into the graph
structure.

– V̄2 := {ν̄(i, j, τ)|i ∈ F, j ∈ Ai, τ ∈ T dep
i,j }:

For each i ∈ F, j ∈ Ai, we consider one vertex corresponding to all routes that
have the same departure time. More formally, for every i ∈ F, j ∈ Ai, define
T dep

i,j := ∪k∈mi,j

{
tdep
i,j,k

}
, to be the set of unique departure times amongst all routes.
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We consider one vertex corresponding to each i ∈ F, j ∈ Ai, and τ ∈ T dep
i,j , denoted

as ν̄(i, j, τ), which, along with Ē4, Ē5, Ē7, and Ē9 defined later, embeds the route
choice of the aircraft.

– V̄3 := {ν̄source, ν̄sink}:
ν̄source and ν̄sink denote the source and sink in the flow network (to be described
shortly). These vertices, along with Ē6, Ē7, and Ē8, ensure flow conservation of
the parking aircraft.

(ii) Set of edges Ē = ∪9
ℓ=1Ēℓ ⊆ V̄ × V̄ ×Z+ ×Z+ ×R, where each edge is identified with a

tuple (r, r′, c, c, w̄) such that (i) r, r′ ∈ R are the upstream and downstream vertiport
on an edge, respectively, (ii) c, c ∈ Z+ are the upper and lower bound on the capacity
of the edge, respectively, and (iii) w̄ ∈ R is the edge weight.

– Ē1 := {(ν̄arr(r, t), ν̄(r, t), c = arr(r, t), c = 0, w̄ = 0)|r ∈ R, t ∈ [H]}.
– Ē2 := {(ν̄(r, t), ν̄dep(r, t), c = dep(r, t), c = 0, w̄ = 0)|r ∈ R, t ∈ [H]}.
– Ē3 := ∪r∈R,t∈[H−1]Ē3,r,t:

For every r ∈ R, t ∈ [H − 1], we consider park(r, t) edges connecting ν̄(r, t) and
ν̄(r, t + 1). We denote this set by Ē3,r,t. For any q ∈ [park(r, t)], we denote the
weight of the q−th edge in Ē3,r,t by w̄q,r,t, and upper and lower capacity by cq,r,t

and cq,r,t, respectively. For any r ∈ R, q ∈ [park(r, t)], w̄q,r,t = −λ(Cr,t(q)−Cr,t(q−
1)), cq,r,t = 1, and cq,r,t = 0.

– Ē4 := {(ν̄dep(rorig
i,j , τ), ν̄(i, j, τ), c = c = δi,j,τ , w̄ = 0)|i ∈ F, j ∈ Ai, τ ∈ T dep

i,j \{0}}:
δi,j,τ ∈ {0, 1} is a variable defined later.

– Ē5 := {(ν̄(i, j, tdep
i,j,k), ν̄arr(rdest

i,j,k, tarr
i,j,k), c = 1, c = 0, w̄ = ρibi,j,k)|i ∈ F, j ∈ Ai, k ∈

mi,j\{∅}}.
– Ē6 := {(ν̄source, ν̄(r, 1), c = c = S̄(r) − ∑

i∈F

∑
j∈Ai

δi,j,01(rorig
i,j = r), w̄ = 0)|r ∈

R}1.
– Ē7 := {(ν̄source, ν̄(i, j, 0), c = c = δi,j,0, w̄ = ρibi,j,∅)|i ∈ F, j ∈ Ai}:

δi,j,0 ∈ {0, 1} is a variable which would be defined shortly, and bi,j,∅ is the bid
placed by aircraft ai,j on staying parked at the same location.

– Ē8 := ∪r∈RĒ8,r:
For every r ∈ R, we consider park(r, H) edges connecting ν̄(r, H) and ν̄sink. We
denote these edges by Ē8,r. For any q ∈ [park(r, H)], we denote the weight of the
q−th edge in Ē8,r by w̄q,r,H , and upper and lower capacity by cq,r,H and cq,r,H

respectively. For any r ∈ R, q ∈ [park(r, H)], w̄q,r,H = −λ(Cr,H(q) − Cr,H(q −
1)), cq,r,H = 1, and cq,r,H = 0.

– Ē9 := {(ν̄(i, j, 0), ν̄(rorig
i,j , 1), c = c = δi,j,0, w̄ = 0)|i ∈ F, j ∈ Ai}.

1Recall that S̄(r) is the state of occupancy of vertiport r at t = 1.
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Remark 4.1.1. In the preceding construction, the capacity of any outgoing edge (resp. in-
coming edge) from a node which does not have an incoming edge (resp. outgoing edge), other
than ν̄source and ν̄sink, is set to 0.

4.2 Mixed Binary Linear Program Formulation
We concatenate the weight, upper capacity bound, and lower capacity bound of each edge
as W ∈ R|Ē|, C ∈ Z|Ē|

+ , and C ∈ Z|Ē|
+ , respectively. Define an incidence matrix of the graph

Ḡ as Ī ∈ {−1, 0, 1}|V̄ |×|Ē|, where

Īij =


1, if edge j ends at vertex i,
−1, if edge j starts from vertex i,
0, otherwise.

(4.1)

Defining a truncated incidence matrix Ī⋆ obtained from Ī by removing rows corresponding
to ν̄source and ν̄sink, we have the following optimization problem.

max
A,δ

W⊤A (4.2a)

s.t. Ī⋆A = 0 (4.2b)
C(δ) ≤ A ≤ C(δ) (4.2c)∑
τ∈T dep

i,j

δi,j,τ = 1, ∀ i ∈ F, j ∈ Ai (4.2d)

δi,j,τ ∈ {0, 1}, ∀ i ∈ F, j ∈ Ai, τ ∈ T dep
i,j (4.2e)

A ∈ Z|Ē|
+ (4.2f)

Aq+1,r,t ≤Aq,r,t, ∀r ∈ R, t ∈ [H], q ∈ [park(r, t) − 1]. (4.2g)

Here, (4.2b) denotes the “flow balance” constraint at every node in V̄ \V̄3; (4.2c) denotes
the capacity constraints where we have explicitly denoted the dependence of constraints on
δ (cf. definitions of Ē4 and Ē7); (4.2d) and (4.2e) denote the constraint that each aircraft
must be allocated exactly one route; (4.2f) denotes the integrality constriants; (4.2g) denotes
additional constraints which require that edges in Ē3,r,t and Ē8,r are allocated in an increasing
order.

Next, we highlight the connection between the optimization problems (3.1) and (4.2).

Lemma 4.2.1. Given the values of Ae for e ∈ Ē3 ∪ Ē5 ∪ Ē8 that satisfy the capacity
constraints (4.2c), there exists a unique feasible solution (A, δ) that satisfies (4.2b)-(4.2g).

Proof. See Appendix A.
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Proposition 4.2.2. Suppose (A†, δ†) is an optimal solution to (4.2). Then W⊤A† =
maxx∈X SW(x; B). Additionally, using A† we can uniquely determine x† ∈ X such that
x† ∈ arg max

x∈X
SW(x; B).

Proof. First, we show that, for every x ∈ X, there exists a unique (A(x), δ(x)) satisfying
(4.2b)-(4.2g) and W⊤A(x) = SW(x; B). Indeed, we construct (A(x), δ(x)) such that

(i) for every e∈ Ē5, where (ν̄(i, j, tdep
i,j,k), ν̄arr(rdest

i,j,k, tarr
i,j,k)) ∈ e for some i ∈ F, j ∈ Ai, k ∈ mi,j,

it holds that Ae(x) = xi,j,k;

(ii) for every r ∈ R, t ∈ [H], and q ∈ [park(r, t)], it holds that Ae(x) = 1(q ≤ S(r, t, x)),
where e is the q−th edge in Ē3,r,t ∪ Ē8,r.

The above construction specifies the values of Ae(x) for e ∈ Ē3 ∪ Ē5 ∪ Ē8. Additionally, by
Lemma 4.2.1, there exists a unique feasible solution (A(x), δ(x)), and we get

W⊤A(x) =
∑
e∈Ē

w̄eAe(x) =
∑

e∈Ē3∪Ē5∪Ē7∪Ē8

w̄eAe(x),

where the last equality holds because w̄e = 0 for e ∈ Ē1 ∪ Ē2 ∪ Ē4 ∪ Ē6 ∪ Ē9.
Then, we examine each term. First, observe the following.∑

e∈Ē5

w̄eAe(x) =
∑
i∈F

∑
j∈Ai

∑
k∈mi,j

ρibi,j,kxi,j,k.

∑
e∈Ē7

w̄eAe(x) =
∑
i∈F

∑
j∈Ai

ρibi,j,ϕxi,j,0.

Next, we use the definition of weights in Ē3,r,t.

∑
e∈Ē3

w̄eAe(x) =
∑
r∈R

H−1∑
t=1

∑
e∈Ē3,r,t

w̄eAe(x)

=
∑
r∈R

H−1∑
t=1

park(r,t)∑
q=1

w̄q,r,tAq,r,t(x)

= −λ
∑
r∈R

H−1∑
t=1

S(r,t,x)∑
q=1

(Cr(q) − Cr(q − 1))

= −λ
∑
r∈R

H−1∑
t=1

Cr(S(r, t, x)).

Similarly, we get ∑e∈Ē8 w̄eAe(x) = −λ
∑

r∈R Cr(S(r, H, x)).
To summarize, we obtain

W⊤A(x) = SW(x; B). (4.3)
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Using this, we conclude that

max
x∈X

SW(x; B) = max
x∈X

W⊤A(x)

≤ max
(A,δ) s.t. (4.2b)−(4.2g)

W⊤A = W⊤A†.
(4.4)

Next, we show that for every (A, δ) satisfying (4.2b)-(4.2g), there exists x(A, δ) ∈ X

such that SW(x(A, δ)) = W⊤A. Indeed, we construct x(A, δ) such that for every i ∈ F, j ∈
Ai, k ∈ mi,j it holds that xi,j,k = Ae for e ∈ Ē5 such that (ν̄(i, j, tdep

i,j,k), ν̄arr(rdest
i,j,k, tarr

i,j,k)) ∈ e or
e ∈ Ē9 such that (ν̄(i, j, 0), ν̄(rdest

i,j,k, 1)) ∈ e. Note that due to capacity constraints on these
edges, xi,j,k ∈ {0, 1}. Additionally, the flow balance at the nodes of the form ν̄(i, j, τ), for
some i ∈ F, j ∈ Ai, τ ∈ T dep

i,j , ensures that

δi,j,τ =
∑

k∈mi,j

∑
e∈Ē9

Ae1((ν̄(i, j, 0), ν̄(rdest
i,j,k, 1))∈e, τ = 0)

+
∑

k∈mi,j

∑
e∈Ē5

Ae1((ν̄(i, j, tdep
i,j,k), ν̄arr(rdest

i,j,k, tarr
i,j,k))∈e, τ =tdep

i,j,k).

Summing over τ , we get∑
τ∈T dep

i,j

δi,j,τ =
∑

k∈mi,j

∑
e∈Ē9

Ae1((ν̄(i, j, 0), ν̄(rdest
i,j,k, 1)) ∈ e)

+
∑

k∈mi,j

∑
e∈Ē5

Ae1((ν̄(i, j, tdep
i,j,k), ν̄arr(rdest

i,j,k, tarr
i,j,k)) ∈ e)

=
∑

k∈mi,j

xi,j,k(A, δ).

Using (4.2d), we conclude that ∑k∈mi,j
xi,j,k(A, δ) = 1.

Next, we use the flow balance at nodes of the form ν̄arr(r, t), for every r ∈ R, t ∈ [H], to
ensure that ∑

i∈F,j∈Ai,
k∈mi,j ,e∈Ē5

Ae1((ν̄(i, j, tdep
i,j,k), ν̄arr(rdest

i,j,k, tarr
i,j,k))∈e, rdest

i,j,k =r, tarr
i,j,k = t) ≤ arr(r, t).

By∑e∈Ē5 Ae1((ν̄(i, j, tdep
i,j,k), ν̄arr(rdest

i,j,k, tarr
i,j,k))∈e)=xi,j,k(A, δ), we get∑i∈F

∑
j∈Ai

∑
k∈mi,j

xi,j,k1(rdest
i,j,k =

r, tarr
i,j,k = t)≤arr(r, t)2. Analogously, the flow balance equations at the nodes of the form

ν̄dep(r, t), for some r ∈ R, t ∈ [H], ensure that ∑i∈F

∑
j∈Ai

∑
k∈mi,j

xi,j,k1(rorig
i,j = r, tdep

i,j,k =
t) ≤ dep(r, t). Finally, we can establish S(r, t, x(A, δ)) = ∑park(r,t)

q=1 Aq,r,t through the flow
balance equation at ν̄(r, t) and (2.1). Since ∑park(r,t)

q=1 Aq,r,t ≤ park(r, t), due to the capacity
constraints on the edge Ē3,r,t, it holds that S(r, t, x(A, δ)) ≤ park(r, t). Thus, we conclude
that x(A, δ) ∈ X.

2When t = 1, the arrival capacity constraints are trivially satisfied since there is no incoming aircraft.
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Additionally, using the analysis to show (4.3) in the backward direction and the con-
struction of x(A, δ), we can establish that SW(x(A, δ)) = W

⊤A. Thus, we conclude that

W⊤A† = max
(A,δ) s.t. (4.2b)−(4.2g)

W⊤A

= max
(A,δ) s.t. (4.2b)−(4.2g)

SW(x(A, δ)) ≤ max
x∈X

SW(x).
(4.5)

By (4.4) and (4.5), we get W⊤A† = maxx∈X SW(x).

4.3 Reduction to Mixed Binary Linear Program
Instead of solving (4.2), we can obtain (A†, δ†) by solving the following MBLP. We establish
this fact in Proposition 4.3.1.

max
A,δ

W⊤A (4.6a)

s.t. (4.2b) − (4.2e) (4.6b)

A ∈ R|Ē|
+ . (4.6c)

Proposition 4.3.1. The optimal values of (4.2) and (4.6) are equal.

Proof. First, we prove that we can drop (4.2g) when solving (4.2). Suppose there exists
r ∈ R, t ∈ [H], q ∈ [park(r, t) − 1] such that A†

q,r,t < A†
q+1,r,t. By swapping the value of

A†
q+1,r,t with that of A†

q,r,t, we get a new feasible allocation with a weakly higher objective
value. This is because w̄q+1,r,t ≤ w̄q,r,t as λ ≥ 0 and Cr,t(·) is discrete convex. Then, for
any feasible value of δ, the optimization problem (4.2) is an integer linear program where
the constraint matrix Ī⋆ satisfies total unimodularity, so it is guaranteed to have an integral
solution (Schrijver, 1998, Chapter 19).

For any fixed values of binary variables (δi,j,τ )i∈F,j∈Ai,τ∈T dep
i,j

, the optimization problem
(4.2) is a maximum-weight flow problem. Thus, one can enumerate all the departure time
combinations, and solve each maximum-weight flow problem with the number of scenarios
being ∏i∈F,j∈Ai

|{tdep
i,j,k|k ∈ mi,j}|. The complete problem can be solved efficiency using the

above MBLP approach, which will provide speed-up due to some techniques implemented in
commercial solvers such as branch and bound, cutting-plane methods, etc.
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Chapter 5

Discussions

We show how the proposed mechanism generalizes existing works in Chapter 5.1 and present
some extensions in Chapter 5.2.

5.1 Connections to Existing Mechanisms
We consider H = 1, arr(r, 1) = ∞, dep(r, 1) = ∞, ∀r ∈ R, and |Ai| = 1, ∀i ∈ F .

(i) Air Traffic Protocol: When we treat each vertiport r ∈ R as a sector with park(r, 1)
being the sector capacity, our model generalizes the problem studied in Qin and Bal-
akrishnan (2022), where the authors did not consider arrival and departure capacities
and assumed single-aircraft FOs.

(ii) Airport Time Slot Auction: When we treat each vertiport r ∈ R as a time slot with
park(r, 1) being the slot capacity, our model subsumes the framework in Dixit et al.
(2023). Therefore, our formulation becomes a two-sided matching problem as detailed
in Dixit et al. (2023) and is subject to a faster strongly polynomial-time algorithm.

5.2 Extensions of the Proposed Mechanism
(i) Arrival, Departure, and Airborne Congestion: To consider congestion due to

arriving and departing aircraft, we can apply the same technique in Ē3 to Ē1 and
Ē2 by constructing corresponding edge weights. To consider airborne congestion, we
treat waypoints in the airspace as vertiports and setting corresponding capacities and
congestion costs.

(ii) External Demand: Aircraft that are not available in the service area of the SP at
t = 0 can be incorporated in our framework by setting rorig

i,j = O and tdep
i,j,k = 0, ∀k ∈

mi,j
1.

1In this case, rorig
i,j and tdep

i,j,k do not affect our analysis, so we can set them arbitrarily.
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(iii) Entire Trajectory: We can extend each route to an entire trajectory with multiple
vertiport-time pairs. By setting a binary variable for each route and combining those
variables when two routes only differ in one time slot, we can apply the same MBLP
approach.

(iv) Cancellation Policy: It is possible to cancel or re-allocate some of the previously
scheduled flights due to changing vertiport capacities or newly emerging aircraft. While
there is no single re-allocation policy, it is typical to consider three aspects: congestion,
efficiency, and fairness, where we cancel flights from congested vertiports, with low
valuations, or at random, respectively.
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Chapter 6

Conclusion

In this work, we propose an auction mechanism to incentivize fleet operators to report their
valuations truthfully and consequently perform a socially optimal allocation of vertiport
access. This approach adapts the popular Vickrey–Clarke–Groves mechanism while con-
sidering the egalitarian, congestion-aware, and computational issues. The proposed frame-
work could be of interest beyond air traffic management, such as multi-robot coordination.
Code associated with this paper can be found at https://github.com/victoria-tuck/
IC-vertiport-reservation; in a follow-up paper, we shall provide a numerical analysis of
the mechanism’s performance. Several intriguing avenues exist for future research. First, we
would like to extend the auction mechanism to include waypoints in airspace, thus moving
toward a more complete air traffic flow management formulation. Second, a careful analysis
of the effect of flight operator weights in our proportional fairness metric is needed. Also,
different fairness notions have been considered in airspace and other areas, such as rever-
sals, takeovers, and priority guarantees Bertsimas and Gupta (2016); Su et al. (2023). It is
interesting to compare different formulations, both theoretically and empirically.

https://github.com/victoria-tuck/IC-vertiport-reservation
https://github.com/victoria-tuck/IC-vertiport-reservation
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Appendix A

Proof of Lemma 4.2.1

Proof. First, note that any feasible solution to (4.2b)-(4.2g) has the same value of Ae(x)
for e ∈ Ē6 ∪ Ē7 ∪ Ē9 since the lower and upper bound on capacity are the same on these
edges by construction. Thus, it is sufficient to show that the values of Ae for e ∈ Ē3 ∪ Ē5 ∪
Ē6 ∪ Ē7 ∪ Ē8 ∪ Ē9 uniquely determine a feasible solution (A, δ) that satisfies (4.2b)-(4.2g).
Particularly, we will show that we can uniquely recover the values of Ae for e ∈ Ē1 ∪ Ē2 ∪ Ē4.

To show this claim, we leverage the flow balance constraint (4.2b) at every node. Below,
we state the incoming and outgoing edges from every type of node in the network.

Vertex Incoming Edges Outgoing Edges
ν̄arr(r, t) Ē5 Ē1
ν̄(i, j, τ) Ē4 Ē5
ν̄dep(r, t) Ē2 Ē4
ν̄(i, j, 0) Ē7 Ē9
ν̄(r, t) Ē1, Ē3, Ē6, Ē9 Ē2, Ē3, Ē8

Note that flow balance at nodes of the form ν̄arr(r, t) will determine the values Ae on edge
Ē1, as we know these values for edges Ē5. Next, flow balance at nodes of the form ν̄(i, j, τ)
will determine the values Ae on edge Ē4, as we know these values for edges Ē5. This and the
capacity constraints on Ē4, ensure that we know the value of δ. Next, flow balance at nodes
of the form ν̄dep(r, t) will determine the values Ae on edge Ē2, as we can uniquely determine
these values on Ē4. Finally, flow balance at nodes of the form ν̄(r, t) will determine the
values Ae on edge Ē2, as we can uniquely determine these values on Ē1 ∪ Ē3 ∪ Ē6 ∪ Ē8 ∪ Ē9.
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Appendix B

Table of Notations
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Table B.1: Table of Notations.

Notation Description
R Set of vertiports
F Set of fleet operators
Ai Set of eVTOL aircraft in the fleet of operator i ∈ F
H Scheduling horizon
ai,j The identification of the j−th aircraft in Ai

rorig
i,j Origin vertiport of aircraft ai,j

mi,j Set of available routes of aircraft ai,j

tdep
i,j,k Departure time for aircraft ai,j if it chooses the k−th route in mi,j

rdest
i,j,k Destination vertiport of aircraft ai,j if it chooses the k−th route in mi,j

tarr
i,j,k Arrival time of aircraft ai,j at rdest

i,j,k if it chooses the k−th route in mi,j

vi,j,k Valuation derived by aircraft ai,j if it is allocated the k−th route in mi,j

bi,j,k Bid for aircraft ai,j to be allocated the the k−th route in mi,j

xi,j,k
Binary variable denoting whether aircraft ai,j is allocated the k−th route
in mi,j

S(r, t, x) Number of aircraft at vertiport r ∈ R at time t ∈ [H] under allocation x
arr(r, t) Arrival capacity of vertiport r ∈ R at time t ∈ [H]
dep(r, t) Departure capacity of vertiport r ∈ R at time t ∈ [H]
park(r, t) Parking capacity of vertiport r ∈ R at time t ∈ [H]

SW(x; V ) Social welfare under allocation x if the valuation of aircraft is
V = (vi,j,k)i∈F,j∈Ai,k∈mi,j

θ Pseudo-bids
Cr,t(·) Congestion function of vertiport r ∈ R at time t ∈ [H]

Ḡ Auxiliary graph for the optimization algorithm
V̄ Set of vertices of the auxiliary graph
Ē Set of edges of the auxiliary graph
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