
Learning to Race Full-Scale Autonomous Racecars

Eric Berndt

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-120
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-120.html

May 16, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Learning to Race Full-Scale Autonomous Racecars

by

Eric Berndt

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Shankar Sastry, Chair
Allen Yang

Spring 2025

Learning to Race Full-Scale Autonomous Racecars

Copyright 2025

by

Eric Berndt

1

Abstract

Learning to Race Full-Scale Autonomous Racecars

by

Eric Berndt

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Shankar Sastry, Chair

We present a causal transformer, trained via behavior cloning to emulate a model–predictive
controller, and demonstrate its zero-shot deployment on a full-scale racecar capable of driving
up to 200 mp/h (320 km/h). First, we generate realistic circuits in simulation from online
GPS maps, obtaining noisily-measured center-lines and track boundaries that reflect the
variability of real venues. Second, we compute time-optimal race lines on every circuit
with a spline-based minimum-curvature optimizer. Third, an MPC tracks each race line
in simulation while action noise broadens the state distribution; the resulting state–action
corpus is tokenized and a transformer is trained to predict future steering angles and drive
forces. In simulation, the learned policy closely matches the expert up to 120 mp/h. The
model is then deployed zero-shot on the real Las Vegas Road Course, where the network
drives the autonomous racecar at 40 mp/h without crashes, with the only degradation being
latency-induced oscillations that multi-step prediction alleviates. To our knowledge, this is
the first demonstration of transformer-based behavior cloning for a full-scale autonomous
racecar and provides the first step towards achieving a superhuman level racer.

i

To my father

Who gave me the opportunity he could not have

To my mother

Who championed me when I could not

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Learning in Robotics . 1
1.2 Indy Autonomous Challenge . 2
1.3 AV-24 Specifications . 4
1.4 Challenges of Autonomous Racing . 4
1.5 Learning to Race . 5

2 Related Work 7
2.1 Autonomous Car Control . 7
2.2 Transformers in Control . 7
2.3 Behavior Cloning and Reinforcement Learning 8

3 Methodology 9
3.1 Racetrack Generalization and Representation 9
3.2 Offline Trajectory Optimization . 10
3.3 Expert (MPC) Data Generation . 11
3.4 Expert MPC Formulation . 13

4 Experiments 19
4.1 Simulation Environment . 19
4.2 Baseline . 20
4.3 Zero-Shot Simulation . 20
4.4 Zero-Shot Simulation to Real . 22

5 Discussions 26
5.1 Latency Improvements . 26
5.2 Sim and Real Data Mixture . 27

iii

6 Conclusion 28

Bibliography 29

iv

List of Figures

1.1 AV-24 Chassis . 2
1.2 Team Photo at January CES 2025 - 1st place in the adversarial autonomous head-

to-head competition. C.K. Wolfe Team Manager and Simulation Lead, Adith
Sundram Controls Lead and Eric Berndt Machine Learning Lead pictured center
right . 3

3.1 Extracted nodes from OpenStreetMap data for sample tracks (Texas Motor Speed-
way, Mugello Circuit, Jeddah Corniche Circuit, Spa-Francorchamps shown). . . 10

3.2 Processed track segments derived from the extracted OSM nodes, showing the
interpolation, segment identification, and random walk for main track isolation
processing steps. 11

3.3 Double Track Model from [23] . 12
3.4 Trajectory optimization process (left, middle) from [16] and the vehicle dynamics

model (right) . 12

4.1 LGSVL Simulator . 19
4.2 LGSVL Simulator Map View . 20
4.3 Las Vegas Road Course . 22
4.4 AV-24 Driving on Las Vegas Road Coarse . 23
4.5 Steering: Learned Model vs MPC vs Steering Bias Applied for Real Experiment 24
4.6 Drive Force: Learned Model vs MPC for Real Experiment 24
4.7 Lateral Error for Real Experiment . 25
4.8 Joystick Break Override for Real Experiment 25

5.1 Steering: Learned Model vs MPC vs Steering Bias Applied for Real Experiment 27

v

List of Tables

4.1 Lateral-tracking error (meters) on the unseen LVRC track in simulation. Com-
paring transformer (MODEL) vs expert (MPC). 21

4.2 Imitation-loss metrics (MSE) comparing transformer output to MPC targets on
unseen LVRC in simulation . 21

vi

Acknowledgments

I would like to thank the mentors and advisors of this project who made this work possible.
Shankar Sastry, my advisor, whose leadership formed the foundation of this team. Allen
Yang for guiding me with his technical expertise during the formative stages of this project
and for his steady guidance within our research team. Gary Passon who made track-side
testing days possible through his experience in motor sports and racing operations.

I would like to thank my collaborators on this project who, without their help, this work
would not be possible. C.K. Wolfe for her contributions to machine learning and knowledge
in simulation. C.K., without you, this race car team would not exist, and your leadership has
created an environment for all of us to learn and benefit from. Truly, without your technical
contributions, dedication to building team culture, and perseverance through tremendous
setbacks, none of this would have been possible. Adith Sundram for his contributions to
behavior cloning and for his expertise in controls. Your persistence and friendship throughout
the toughest days and challenges kept me on course. Ilija Radosavovic for his guidance on the
theory and practical problems in learning-based robotics. Your mentorship formed the basis
of this work, and your guidance prevented us from succumbing to many potential missteps.

I would like to thank the AIRacingTech team who worked day and night to make the au-
tonomous race car a reality. Siddarath Saha for the work that built the basis of the race
car software. Moises Lopez for your consistent dedication to keeping the race car stable.
Edward Lee who went out of his way to provide support. Kevin Chow whose contributions
spring boarded me into the team and whose friendship has kept me sane.

I would also like to acknowledge the Indy Autonomous Challenge (IAC) organization, espe-
cially Andy Keats.

I would also like to acknowledge the community of fellow course staff members and students
of EECS/ME c106A who helped me enter the world of robotics and continue to build the
future generations. Thank you to Tarun Amarnath, whose teachings shaped the basis of
many future roboticists and taught me how to be a better teacher myself. Your positive
attitude shone through even on some of the toughest days our lab has faced.

1

Chapter 1

Introduction

1.1 Learning in Robotics

The trajectory of robotics research has been significantly reshaped by concurrent break-
throughs in large-scale machine learning. The success of large language models (LLMs) in
demonstrating few-shot learning capabilities from vast textual datasets [7] has particularly
catalyzed efforts to imbue robotic systems with comparable levels of general-purpose intelli-
gence and adaptability for operation in complex, unstructured environments. This paradigm
shift is fostering a new generation of autonomous systems.

A prominent vector in this evolution is the development of embodied foundation models
that integrate diverse modalities such as vision, language, and action. These models aim
to transfer broad knowledge, often captured from web-scale data, into actionable robotic
control. Seminal examples include architectures like PaLM-E, which grounds LLMs in sen-
sorimotor experience [11], and the robotics transformer series (RT-1, RT-2), which have
advanced real-world robotic control at scale by learning from extensive, multimodal datasets
[6, 5]. More recent innovations such as π0 [4] and π0.5 [19] further this trend, focusing
on vision-language-action for general robot control and robust open-world generalization,
thereby expanding the repertoire of tasks robots can perform with enhanced adaptability.

Simultaneously, reinforcement learning (RL) remains a vital pillar of modern robotics. Foun-
dational algorithms like Proximal Policy Optimization (PPO) [29] and Soft Actor-Critic
(SAC) [15] continue to empower robots to acquire intricate skills through direct interaction
and feedback. Bridging the persistent sim-to-real gap is a critical challenge, actively ad-
dressed by techniques such as domain randomization, which enhances policy robustness by
exposing the learning agent to a wide array of simulated environmental variations [31].

These collective advancements are enabling learning-based robotic systems to achieve perfor-
mance levels that approach or, in specific demanding tasks, even surpass human capabilities.

CHAPTER 1. INTRODUCTION 2

Figure 1.1: AV-24 Chassis

For instance, deep RL has propelled autonomous drones to outperform human world cham-
pions in high-speed racing [13] and has allowed autonomous systems to master high-speed
flight in unpredictable natural environments [1]. In the realm of legged locomotion, sophis-
ticated learning strategies have endowed quadrupedal [21] and humanoid robots [18, 17, 27]
with remarkable agility and resilience, enabling them to navigate challenging, unstructured
terrains. These achievements underscore the transformative impact of data-driven learn-
ing methodologies in advancing robotic frontiers and provide a compelling context for the
research herein, which applies such techniques to the distinct challenges of high-speed au-
tonomous racing.

1.2 Indy Autonomous Challenge

A unique example of extreme robotics performance is the Indy Autonomous Challenge (IAC).
The IAC is a global competition in which university teams develop fully autonomous race-
cars to compete at speeds exceeding 270 km/h (170 mph) on professional racetracks. Unlike
traditional autonomous driving benchmarks focused on urban or highway scenarios, the IAC
presents a fundamentally different problem: high-speed racing with aggressive maneuvers,
sub-second decision-making, multi-agent adversarial interaction, and zero human interven-
tion. The vehicles, called AV-24s, are modified Dallara IL-15 chassis equipped with a stan-
dardized suite of sensors and compute, creating a level playing field that emphasizes software
innovations over hardware customization.

This multi-agent adversarial component is a crucial differentiator and significantly elevates

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Team Photo at January CES 2025 - 1st place in the adversarial autonomous
head-to-head competition. C.K. Wolfe Team Manager and Simulation Lead, Adith Sundram
Controls Lead and Eric Berndt Machine Learning Lead pictured center right

the challenge’s complexity. The competition extends beyond single-vehicle time trials to en-
compass direct, high-speed on-track engagements with other autonomous opponents. These
interactions have evolved from structured head-to-head overtaking scenarios, where vehicles
must autonomously execute roles as both a lead (defending) car and a following (attacking)
car, attempting passes at progressively increasing speeds, to full multi-car races. In these
events, several autonomous vehicles compete simultaneously, necessitating real-time naviga-
tion of complex traffic situations and dynamic race strategy execution [3]. Such scenarios
demand sophisticated learning capabilities far exceeding basic path planning and control.
Vehicles must robustly perceive and predict the behavior of other fast-moving autonomous
agents, dynamically plan and execute intricate overtaking or defensive maneuvers while ad-
hering to stringent racing rules, and make high-level strategic decisions regarding pace and
positioning. All entirely autonomously and often within fractions of a second. This empha-
sis on direct, high-speed adversarial engagement within a standardized hardware platform
establishes the IAC as a critical proving ground for advanced machine learning in physical,
safety-critical systems.

AIRacingTech is an IAC university team led by the University of California, Berkeley in
collaboration with the University of California, San Diego; Carnegie Mellon University; and
the University of Hawai’i, Maui.

CHAPTER 1. INTRODUCTION 4

1.3 AV-24 Specifications

The technical specifications of the AV-24 are as follows [20]:

Lidar x4: Luminar Iris, max range 275 m, range precision within 2 cm, FoV 120° (H) / 26°
(V)

Radar x2: Continental ARS 548 RDI, max range 300–1,500 m, FoV 120°

Camera x6: Allied Vision Mako G-319C, max resolution 2,064 (H) × 1,544 (V), spectral
range 300–1,100 nm, max frame rate at full res: 37.6 fps

GNSS (GPS) antenna x4: VectorNav VN-310, position accuracy 1 cm + 1 ppm RMS,
heading accuracy 0.1°, position data rate 400 Hz, IMU data rate 800 Hz. PointOne Navigation
Polaris RTK Network

Networking/Comms: Cisco IE3300, ports 2×10G, switching bandwidth 128 Gbps. Marelli
SA130 telemetry, AVI LTE 9111 modem

Onboard Edge Computing: dSpace Autera AutoBox, Intel Xeon D-2166NT CPU 3 GHz,
Nvidia RTX A5000 GPU, 14 TB storage

Drive-by-wire: New Eagle Raptor, IAC custom drive/steer/brake-by-wire systems, MoTeC
ECU

1.4 Challenges of Autonomous Racing

High-speed autonomous racing, particularly within benchmark competitions like the Indy
Autonomous Challenge [20, 3], represents an exceptionally demanding frontier for robotic
control, necessitating navigation of extreme operational requirements distinct from conven-
tional autonomous driving. Core challenges intrinsic to this domain include:

• Operation at Non-Linear Dynamic Limits: Vehicles are consistently piloted at
the precipice of tire adhesion, entailing highly non-linear vehicle dynamics, significant
aerodynamic interactions, and complex tire thermal and wear phenomena. Achieving
competitive performance demands precise, aggressive control inputs to exploit these
near-limit states without inducing instability.

• Stringent Spatiotemporal Constraints: The extreme velocities, often exceed-
ing 270 km/h, impose intense real-time demands on the entire perception-planning-
actuation cycle. Millisecond decision latencies and high-frequency control are critical,
as minimal deviations or delays can precipitate catastrophic failures or substantial
performance degradation.

CHAPTER 1. INTRODUCTION 5

• Robust Generalization to Novel Environments: Autonomous racecars must ex-
hibit robust, often zero-shot or few-shot, generalization to unseen track geometries,
diverse surface characteristics, and varying ambient conditions. The pronounced sim-
to-real gap in accurately modeling extreme vehicle dynamics further complicates the
development of universally effective controllers without extensive, track-specific recal-
ibration, a challenge that techniques like domain randomization [31] aim to mitigate.

These inherent complexities, extreme dynamics, relentless real-time pressures, and the criti-
cal demand for high adaptability highlight the profound difficulty in engineering controllers
that are simultaneously performant, reliable, and generalizable for this specialized and high-
stakes application.

1.5 Learning to Race

This work introduces a learning-based imitation framework designed to harness the strengths
of expert controllers while transcending their inherent limitations, particularly within the
demanding context of high-speed autonomous racing. Our core strategy involves behav-
ior cloning (BC) [26] to distill the control policies of a high-performance Model Predictive
Controller (MPC) into an efficient and powerful transformer policy [2]. While MPC demon-
strates proficiency in deriving dynamically feasible trajectories through online constrained
optimization based on an explicit dynamics model [23, 3], its practical application confronts
several hurdles. Beyond the significant computational overhead, which can be prohibitive
for low-latency control loops, MPC performance is fundamentally contingent upon the fi-
delity of its internal model and the meticulous, often intricate, tuning of its cost function.
These factors can circumscribe its adaptability to unmodeled dynamics or rapidly evolving
environmental conditions.

Our objective is thus multi-faceted: we aim to transfer the MPC’s control capabilities into
a lightweight, real-time differentiable neural network that not only executes swiftly on em-
bedded hardware but also offers broader operational advantages. The cloning of the MPC is
intended to create a policy exhibiting robust generalization across diverse, previously unen-
countered racetracks with minimal performance degradation: a critical capability amplified
by learning from the vast and varied datasets generated by our methodology. Furthermore,
the transformer architecture, with its inherent capacity for sequence modeling [12, 24], can
learn to implicitly capture complex temporal dependencies and nuanced vehicle-environment
interactions that may be arduous or computationally expensive to encode explicitly within
an MPC’s mathematical formulation.

While supervised behavior cloning forms the foundational learning stage, our resultant policy
offers a potent initialization framework for downstream reinforcement learning (RL) [15, 29].
It is here that the full power of the learned representation can potentially be unlocked. A

CHAPTER 1. INTRODUCTION 6

transformer policy pre-trained via BC provides a crucial baseline, addressing RL’s notorious
sample inefficiency and often unsafe exploration challenges, particularly in safety-critical do-
mains [30]. More importantly, it equips the RL agent to explore beyond the expert MPC’s
locally optimal solutions, which frequently arise from its reliance on a fixed model and pre-
defined cost structure. The RL agent, leveraging the transformer’s ability to integrate global
track context and make decisions over extended horizons, can learn policies that are not
merely reactive but strategically proactive. Through direct interaction, even in simulation,
the RL fine-tuning process can refine the policy to adeptly handle situations and dynamics
implicitly understood by the neural network but not explicitly managed or optimally ad-
dressed by the original MPC’s constrained optimization problem. This synergistic approach
aims to produce control strategies that are more adaptive, robust, and ultimately capable of
superhuman capabilities, surpassing even the performance of human experts.

7

Chapter 2

Related Work

2.1 Autonomous Car Control

The challenge of controlling high-performance vehicles at their handling limits has been tack-
led using various approaches. Classical methods such as PID controllers and pure pursuit [10]
provide foundational control but often struggle with optimality near physical limits. Optimal
control methods, particularly MPC [3], have proven highly effective by incorporating vehicle
dynamics and constraints directly into the control optimization, enabling high-performance
trajectory tracking in cars like the AV-24. However, the accuracy of the dynamics online is
a significant bottleneck, especially as parameters can be time-varying. MPC thus requires
reparameterization and cost function tuning for new environments, tracks, and conditions
to reach optimal performance. This is especially apparent when considering the relationship
between slip angle and lateral forces when subjected to changing tire temperatures that af-
fect the grip of the car to the ground. As more dynamics constraints are layered into the
MPC, like bank, grade, lateral loading, longitudinal loading, slip angle, and tire temperature,
more approximation is required in order to run the controller online in real time. The large
parameter space required to properly model these dynamics is also impractical to accurately
model, especially as the relationship between these parameters is highly nonlinear. This is
only further complicated as properties like wind speed, tire degradation, tire alignment, and
outdoor temperatures can drastically change the relationship between them.

2.2 Transformers in Control

Originally revolutionizing natural language processing [2], transformer architectures have in-
creasingly been adapted for sequential decision-making tasks, including reinforcement learn-
ing and control. Their self-attention mechanism allows them to effectively weigh the im-
portance of different elements in long input sequences, making them suitable for capturing
temporal dependencies in system states and actions. Works like [12, 24] have shown the

CHAPTER 2. RELATED WORK 8

potential of transformers to model behavior and act as policies in various domains. More re-
cently, we’ve seen transformers successfully control high degree of freedom humanoids in the
real world in [27]. Our work applies this architecture specifically to the domain of continuous
control for high-speed autonomous racing, leveraging its sequence modeling capabilities to
behavior clone an expert MPC policy.

2.3 Behavior Cloning and Reinforcement Learning

Imitation learning, typically framed as behavior cloning (BC), trains a policy to regress ex-
pert actions given observed states. For on-road driving, this dates back to ALVINN [26], but
modern work on regular day-to-day cars uses deep networks to clone richly labeled expert
trajectories [9]. BC enjoys stability and sample efficiency, yet is bounded by the demon-
strator’s performance and suffers from covariate shift: at test time, the learner encounters
states it has never seen. DAgger addresses this by iteratively querying the expert on the
learner’s states and adding those samples to the training set [30]. BC approaches like this
have enabled real-time neural-network control when the available compute isn’t sufficient to
run MPC at the required speed, such as in high-speed drone navigation.

[1]. BC also enables mimicry of human-experts as in the previously mentioned [27] where
human pose estimation is used to train a humanoid to walk.

Reinforcement learning (RL) can, in principle, exceed the expert, but is notoriously sample
inefficient on real systems. A common recipe, therefore, initializes the policy with BC and
fine-tunes with RL. In [17, 18], we’ve seen how RL training in simulation, combined with
pretrained behavior cloned models, can create policies that exceed available expert policies.

Recently, another paradigm of learning has arisen, RL in simulation and zero or few-
shot transfer to real. The strategy has enabled champion-level quadrotor racing [13] and
quadruped locomotion in zero-shot sim to real environments.

9

Chapter 3

Methodology

Our methodology consists of three stages:

• Generating diverse and realistic racetracks in simulation generated by GPS data from
real race tracks internationally.

• Computing a set of optimal reference race lines for each track and collecting data of
an expert MPC controller formulated for the AV-24 driving these race lines.

• Training a transformer with a supervised objective to behavior clone the trajectories
executed by the expert MPC.

3.1 Racetrack Generalization and Representation

A major concern of this work was minimizing domain shifts from racetrack to racetrack. Since
autonomous races are commonly hosted on racetracks that the car has never encountered
before, and preparation time before races may only consist of a couple of practice sessions, it
is critical that the car performs zero-shot on unseen tracks. Another concern with training
on a single track in simulation is the effects of compounding inaccuracies present in the
simulated version of the racetrack. This may cause a racetrack in simulation to effectively
act as a separate track as compared to its real counterpart.

To address this, we instead develop a procedural pipeline to generate over 100 unique race
tracks in simulation from OpenStreetMap data. To acquire this dataset, we:

• Track GPS Point Identification: We identified real-world racetracks globally us-
ing OSM queries based on GPS coordinates or relevant tags (e.g., highway=track,
sport=racing). This gave us sparse GPS points defined both the main track and
irrelevant side roads and access roads surrounding the racetracks as seen in Figure 3.1

CHAPTER 3. METHODOLOGY 10

• Track Isolation and Extraction: The raw track waypoints were then interpolated
to increase resolution to create complete paths. They were then segmented to identify
distinct track sections as many tracks offer several different track configurations to offer
different race formats. Finally a random walk algorithm was used extract the largest
primary closed racing loop from potentially several possible racetrack configurations.
This multi-step processing pipeline can be seen in 3.2.

• Track Representation: For each track, we used the interpolated GPS points to
compute a smooth centerline representation along with corresponding inner and outer
track boundaries, defining the drivable area.

Figure 3.1: Extracted nodes from OpenStreetMap data for sample tracks (Texas Motor
Speedway, Mugello Circuit, Jeddah Corniche Circuit, Spa-Francorchamps shown).

3.2 Offline Trajectory Optimization

For each generated track, an optimal racing line is computed to serve as the reference tra-
jectory for the MPC controller. We employ a spline-based minimum-curvature trajectory
optimization technique presented in [16]. This method optimizes the control points of a spline
representing the vehicle’s path to minimize overall curvature, which correlates strongly with
minimum lap time, while adhering to vehicle dynamics and track boundary constraints.

Vehicle Model: The optimization utilizes a standard double-track vehicle model as seen
in 3.3, capturing dynamics including lateral and longitudinal forces at each tire.

CHAPTER 3. METHODOLOGY 11

Figure 3.2: Processed track segments derived from the extracted OSM nodes, showing the
interpolation, segment identification, and random walk for main track isolation processing
steps.

Optimization Formulation: The non-linear programming problem aims to minimize the
total traversal time (min

∑
ti) subject to:

• Decision Variables: Vehicle state xi = [px, py, ψ, ω, v, β]T ∈ R6 (including position,
orientation, velocity, slip angle), control inputs ui = [Fd, Fb, δ]

T ∈ R3 (drive/brake
forces, steering angle), and segment time ti.

• Dynamics Constraints: xi+1 = f(xi, ui, ti), enforcing that state transitions respect
the vehicle’s dynamic model f .

• Path and Input Constraints: State constraints xi ∈ X ensure the vehicle remains
within track boundaries (dright ≤ py,i ≤ dleft), while input constraints ui ∈ U respect
actuator limits (steering range, max acceleration/braking) and physical limits (tire
friction ellipse, engine power).

3.3 Expert (MPC) Data Generation

An online model predictive controller (MPC) acts as our expert to behavior clone. We use
this MPC to track the set of race lines generated in 3.2.

Observation Space

During MPC data collection and at test time, state observations are generated by an Ex-
tended Kalman Filter (EKF) [25]. This EKF takes observations from two GPS units and

CHAPTER 3. METHODOLOGY 12

Figure 3.3: Double Track Model from [23]

Figure 3.4: Trajectory optimization process (left, middle) from [16] and the vehicle dynamics
model (right)

CHAPTER 3. METHODOLOGY 13

two IMUs to provide state estimation at 200 Hz. The MPC uses the most recent state es-
timation from the EKF when starting the solve. Since the MPC runs at 30 Hz it outputs
control actions every 33 ms. Since MPC takes 33 ms to solve, the state x⃗0 received at t0 is
dead reckoned using a bicycle model [28] one state forward in time using fourth-order Runge
Kutta integration to estimate ˜⃗x1. MPC then uses ˜⃗x1 to schedule a solve for the action a1
which is applied at t0.

MPC Formulation

3.4 Expert MPC Formulation

The expert controller we behavior clone from is a Model Predictive Controller (MPC) that
optimizes steering, drive, and brake forces over a finite horizon while respecting a vehicle
model and tire friction limits. This MPC is parameterized about the centerline of the
racetrack in the Frenet-Serret frame.

Optimization Problem

At each control step, the MPC solves

min
u0:N−1

N∑
k=1

∥∥∥∥[xk,x − xref,k
xk,y − yref,k

]∥∥∥∥2

Q

+
N−1∑
k=1

∥∥∥∥dk − dk−1

∆δk

∥∥∥∥2

R

(3.1)

s.t. xk+1 = fdyn(xk,uk), k = 0, . . . , N − 1, (3.2)

x0 = x(t), (3.3)

δmin ≤ δk ≤ δmax, (3.4)

∆δmin ≤ ∆δk ≤ ∆δmax, (3.5)

Here xk =
[
px py ψ vx vy ω δ

]⊤
is the state, uk =

[
∆δ Fdrive Fbrake

]⊤
the control

input, dk the current steering command, and Q,R ≻ 0 weighting matrices. The horizon
length is N with sample time Ts = 33 ms.

CHAPTER 3. METHODOLOGY 14

Tire Dynamics

The dynamics fdyn in 3.2 are represented using the Pacejka non-linear tire model in the body
frame [8]. The tire forces in the x direction are computed as:

Fx,fj = 1
2
kdrive Fdrive + 1

2
kbrake Fbrake − 1

2
frmg

lr
l
, (3.6)

Fx,rj = 1
2

(1 − kdrive)Fdrive + 1
2

(1 − kbrake)Fbrake − 1
2
frmg

lf
l
. (3.7)

while the tire forces in the y direction are computed as:

Fz,fl/fr = 1
2
mg

lr
lf + lr

− 1
2

hcog
lf + lr

max ± krollΓy + 1
4
cl,f ρAv

2, (3.8)

Fz,rl/rr = 1
2
mg

lf
lf + lr

+ 1
2

hcog
lf + lr

max ± (1 − kroll)Γy + 1
4
cl,r ρAv

2, (3.9)

Γy =
hcog

1
2

(
twf

+ twr

)[(Fy,rl + Fy,rr
)

+
(
Fx,fl + Fx,fr

)
sin δ +

(
Fy,fl + Fy,fr

)
cos δ

]
. (3.10)

where Γy is zero when solving the MPC online due to the use of a single-track model. The
tire forces in the z direction are computed as:

Fy,fl = µFz,fl sin
(
Cf arctan

(
Bf αfl

))
, (3.11)

Fy,rl = µFz,rl sin
(
Cr arctan

(
Br αrl

))
, (3.12)

αfl/fr = δ − arctan
(

lf ωz+v sinβ

v cosβ ± 1
2
twf ωz

)
, (3.13)

αrl/rr = arctan
(

lr ωz−v sinβ
v cosβ ± 1

2
twr ωz

)
. (3.14)

Finally, the overall tire friction at each wheel is constrained:

(
Fx,ij
µijFz,ij

)2

+

(
Fy,ij
µijFz,ij

)2

≤ 1, ∀wheel ij. (3.15)

CHAPTER 3. METHODOLOGY 15

Vehicle Dynamics

Using the tire model, we generate the nonlinear vehicle dynamics for the MPC [8]:

v̇ =
1

m

(
(Fx,rl + Fx,rr) cos β + (Fx,fl + Fx,fr) cos(δ − β) + (Fy,rl + Fy,rr) sin β

− (Fy,fl + Fy,fr) sin(δ − β) − 1
2
cd ρA v

2 cos β
)
, (3.16)

ω̇z =
1

Jzz

[
(Fx,rr − Fx,rl)

tw,r
2

− (Fy,rl + Fy,rr) lr

+ (Fx,fr − Fx,fl) cos(δ)
twf
2

+ (Fy,fl − Fy,fr) sin(δ)
twf
2

+ (Fy,fl + Fy,fr) cos(δ) lf + (Fx,fl + Fx,fr) sin(δ) lf

]
. (3.17)

We then discretize these dynamics with Runge Kutta fourth-order integration and linearize
about the trajectory every time step. This defines our state evolution constraint in the MPC.

Actuator Mapping

The optimizer returns the sequence u⃗ =
[
∆δ⋆, F ⋆

drive, F
⋆
brake

]⊤
for the first sample, which is

converted to physical commands using three output modules:

1. Steering: the desired wheel angle δ⋆ = δk−1 + ∆δ⋆ is sent to a Raptor embedded PID
that closes the inner steering-motor torque loop and outputs motor torque τsteer [N m].

2. Drive: the required longitudinal drive force F ⋆
drive [kN] is fed into a look-up engine

torque map τeng = map(F ⋆
drive, vx), which is normalized to a throttle percentage uthrot ∈

[0, 1].

3. Brake: the commanded brake force F ⋆
brake passes through a static brake model pbrake =

map(F ⋆
brake) that produces hydraulic pressure in kPa.

The complete MPC therefore delivers τsteer, uthrot and pbrake at 30 Hz, which are applied
by the drive-by-wire system one sample later after latency compensation. Note for our BC
training data, we clone u⃗ directly instead of τsteer, uthrot and pbrake.

State Randomization

One of the core challenges in behavior cloning is the distributional shift between the expert
data and the learner’s rollouts. During training, the learner only sees the optimal states

CHAPTER 3. METHODOLOGY 16

the expert generated. However, at test time, the learner’s own actions influence the state
distribution it encounters. Small prediction errors the learner makes compound over time,
causing the model to drift into states not seen during training. Since the model is now
out of distribution it often takes increasingly poor actions, leading to trajectory divergence
or, in this case, a crash. Out of distribution sampling is especially problematic in high-
speed and safety-critical domains like autonomous racing, where small deviations can lead
to catastrophic crashes in less than a second.

To address this, we apply a technique similar to DAgger [30]. After saving the current state
action pair into the dataset, we inject Gaussian noise into the control action before executing
it in the simulator. This forces the expert to recover from perturbed states that it would not
normally enter otherwise. By including these recovery trajectories in the training dataset,
we broaden the distribution of states the learner is exposed to, improving the learner’s
robustness to error.

Velocity Randomization

During racing and testing, the car is constantly accelerating and decelerating through turns.
To prepare the policy for all these scenarios, during data collection, we randomly vary the
maximum desired velocity from 30 mp/h to 170 mp/h (∼40 km/h to 270 km/h). We note
that at speeds lower than 30 mp/h, the AV-24 uses pure pursuit rather than MPC, so the
policy is not trained at these speeds to prevent two separate modes from occurring in the
dataset.

Behavior Cloning

The core of our approach is training a transformer model to behavior clone the actions
generated by the expert MPC.

Tokens

In our formulation, each time step i is represented by a single token. To create this token,
we take as input both the state s⃗i and r⃗i, a look-ahead of the next M steps, where:

s⃗i =
[
ey, eψ, vx, vy, ψ̇

]T ∈ R5 (3.18)

r⃗i =
[
vx, vy, ψ

]T ∈ R3M (3.19)

Here, s⃗i and r⃗i are in the Frenet-Serret frame of the race line. Note that s⃗i is a subset of
the state xi MPC solves with. Specifically, ey is lateral error relative to the race line, eψ is

CHAPTER 3. METHODOLOGY 17

yaw error relative to the race line, vx is longitudinal velocity, vy is lateral velocity, and ψ̇ is
yaw rate. We note that to match MPC, s⃗i is dead-reckoned one state forward in time using
fourth-order Runge Kutta integration to acquire ˜⃗si+1 as we are solving for the action in the
next time step. We then learn a linear projection for ˜⃗si+1 and r⃗i separately and concatenate
them:

hsi = Ws
˜⃗si+1 ∈ Rds (3.20)

hri = Wrr⃗i ∈ Rdr (3.21)

ti = concat(hsi , h
r
i) ∈ Rd (3.22)

where Ws is the learned projection for ˜⃗si+1, Wr is the learned projection for r⃗i, ti represents
the token at time i, and d = ds + dr. Ws and Wr are shared across time steps. Note this
state-only version of the transformer is only conditioned on the state and reference line from
3.20 and 3.21.

A state-action version of the transformer is also implemented where tokens from previous
time steps have their respective actions appended to them:

hsi−1 = Ws
˜⃗si+1 ∈ Rds (3.23)

hri−1 = Wr ⃗ri−1 ∈ Rdr (3.24)

hai−1 = Wa ⃗ai−1 ∈ Rda (3.25)

ti−1 = concat(hsi−1, h
r
i−1, h

a
i−1) ∈ Rd (3.26)

where d = ds+dr+ds. Since we have not yet taken the action we are predicting at the current
time step, we fill the current action with 0⃗ to keep the dimension of the token uniform.

ti = concat(hsi , h
r
i , 0⃗) ∈ Rd (3.27)

At test time, we replace the 0⃗ with ai−1 after applying the action as described in 3.26. The
transformer keeps a context window of the last N tokens, allowing the attention mechanism
to see the state evolution over time.

Architecture

The transformer uses a standard decoder-only architecture with L layers, each comprising a
multi-head self-attention mechanism with causal masking over the tokens, residual connec-
tions, a position-wise feedforward MLP, and layer normalization as follows:

CHAPTER 3. METHODOLOGY 18

H̃l = LayerNorm(Hl) (3.28)

H̃l = H̃l + MHSA(H̃l) (3.29)

Hl+1 = H̃l + MLP(LayerNorm(H̃l)) (3.30)

where Hl is the input to layer l and Hl+1 is the output to the next layer. Note here we use
pre-layer normalization as described in [32]. Finally, at the output of the last layer L of the
transformer, we take the last token in the sequence and feed it into a feedforward MLP to
predict the action at time i:

ai =
[
f, δ

]T ∈ R2 (3.31)

where f represents longitudinal drive force and δ represents steering.

Multi-Time Step Prediction

An alternate formulation of the model predicts k + 1 time steps into the future. So instead
of predicting ai+1 from si where k here is zero, the model can instead predict ai+1+k from si.
This becomes relevant when dealing with inference latency as discussed in 4.4 and 5.1.

Test Time Pipeline

At test time in simulation and on the real on-board hardware, several steps compose the
inference process. First, just like how MPC dead-reckons the state in 3.3, the state is dead-
reckoned from si to ˜⃗si+1. This state is then communicated over the robotic middleware
[22] from the dead reckoning process to the model inference process. Finally, the inference
process makes a prediction for the next time step, a1, and communicates the action to the
hardware to execute. Note that this entire process must occur in 33 ms in order to make the
execution window to apply the action in time for the next time step.

19

Chapter 4

Experiments

We design our experiments to test the performance of the trained model in both unseen
simulation environments and zero-shot in the real world. The evaluations in both simulation
and the real world are conducted on Las Vegas Road Course (LVRC).

4.1 Simulation Environment

Simulations are conducted using LGSVL simulator [14], an open-source platform for au-
tonomous vehicle simulation. The environment utilizes a high-fidelity dynamics model for
the racecar tuned specifically for the autonomous platform. This model captures key vehicle
dynamics, including tire forces and suspension behavior, providing a realistic testbed.

Figure 4.1: LGSVL Simulator

CHAPTER 4. EXPERIMENTS 20

Figure 4.2: LGSVL Simulator Map View

4.2 Baseline

The primary performance baseline is the expert MPC controller used for generating the
training data. Its performance represents the target behavior for the behavior cloned policy.
We also include a pure pursuit controller [10], which is used as a safety controller in case the
transformer and MPC both fail.

4.3 Zero-Shot Simulation

Race Line Tracking Performance Quantitative results are summarized in Table 4.1.
At speeds up to 120 mp/h, the transformer policy achieves average lateral tracking errors
that resemble the expert MPC baseline. This demonstrates successful behavior cloning.

Imitation Quality The mean squared error metrics reported in Table 4.2 quantify how
closely the transformer mimics the MPC actions during simulation runs time step by time
step, given states the transformer drives the car into. While average losses are generally low
across speeds, reflecting good overall imitation, the peak losses, particularly for longitudinal
force, tend to increase at speeds exceeding 100 mp/h. This suggests the policy struggles
to replicate the expert’s precise and aggressive actions during challenging, high-speed ma-
neuvers, correlating with the observed increase in tracking errors. We note that these high
lateral errors are seen mainly in hairpin turns, where the learned model tends to oversmooth
the steering commands compared to the abrupt steering command of the MPC.

CHAPTER 4. EXPERIMENTS 21

Table 4.1: Lateral-tracking error (meters) on the unseen LVRC track in simulation. Com-
paring transformer (MODEL) vs expert (MPC).

Speed Run
MODEL (m) MPC (m)

Avg Peak Avg Peak

60 mp/h 1 0.1738 0.3210 0.1040 0.4160
2 0.1553 0.4667 0.3224 1.2890

80 mp/h 1 0.1480 0.5927 0.1285 0.5141
2 0.1343 0.5376 0.1380 0.5521

100 mp/h 1 0.2105 1.0533 0.1378 0.5513
2 0.2105 1.0538 0.3838 1.1522

120 mp/h 1 0.2258 1.3278 0.1459 0.5979
2 0.2295 1.3250 0.1456 1.4193

Table 4.2: Imitation-loss metrics (MSE) comparing transformer output to MPC targets on
unseen LVRC in simulation

Speed Metric Run 1 Run 2

60 mp/h
Avg f 1.0294 1.060
Peak f 5.9347 6.112
Avg δ 0.0040 0.0042
Peak δ 0.0252 0.0260

80 mp/h
Avg f 0.3007 0.309
Peak f 1.7968 1.850
Avg δ 0.0025 0.0026
Peak δ 0.0152 0.0157

100 mp/h
Avg f 0.7761 0.799
Peak f 7.0871 7.300
Avg δ 0.0030 0.0031
Peak δ 0.0331 0.0341

120 mp/h
Avg f 0.8178 0.842
Peak f 4.2437 4.371
Avg δ 0.0035 0.0037
Peak δ 0.0414 0.0427

CHAPTER 4. EXPERIMENTS 22

4.4 Zero-Shot Simulation to Real

We tested the learned policy on the real-world LVRC pictured in 4.3b. The turns and map
of the track are depicted in 4.3a. Note the policy deployed in real was trained on LVRC
in simulation, unlike the model in the sim-to-sim experiment in 4.3. Due to the prohibitive
cost of professional race tracks, typically measured in tens of thousands of dollars per day,
we were only able to conduct limited experiments in real, which, as we will outline here and
in 5.1 greatly limited results.

We note in the real experiment plots that the learned model is in control of the car and
therefore dictating the state evolution. The MPC actions are a point-by-point reaction to
the state evolution being created by the learned model. Another point to note is that on
the AV-24, there is a constant steering offset that reflects the misalignment of the wheels
relative to the steering column. To handle this mismatch, all control outputs, regardless of
the controller, have a constant steering bias applied to them before being actuated on the
hardware as reflected in 4.5.

In 4.6, we note the learned model allows the car to drive +/- 2 mp/h around the target
speed compared to the MPC that prefers to narrowly drive a band exactly at the target
speed. This causes the desired longitudinal acceleration to seem drastically different when
compared. This emulates the oversmoothing seen in the sim to sim experiment in 4.3.

(a) Track Turns (b) Aerial Photo

Figure 4.3: Las Vegas Road Course

Predicting The Current Action

For our on track test, we set the max speed to 40 mp/h and speed scale factor to 0.6 while
the model predicted the next action, where k = 0, as explained in 3.4.

CHAPTER 4. EXPERIMENTS 23

Figure 4.4: AV-24 Driving on Las Vegas Road Coarse

For this experiment, we engage the learned model soon after turn 5, as seen in 4.3a, and
disable the model shortly after the chicane that can be seen in 4.3a after turn 7. We note that
the learned model clearly emulates a critically underdamped control system as oscillations
slowly build up over time in the system while driving on a straight-away. We realized in a
later track testing session that this was due to a greater than 3x increase in latency. We
did not experience this latency in simulation testing, as our benchmarking computers were
much more powerful compared to the AV-24 embedded computer.

These oscillations only continued to grow larger in magnitude as the experiment continued.
The chicane on LVRC is an S-shaped pair of alternating corners inserted into a straight
section of a circuit to force a sharp speed reduction. This chicane, placed after turn 7 in
4.3a forces a quick right turn followed by a left turn. Due to the large magnitude of the
oscillations combined with a late application of the brakes on the exit of the chicane, the
magnitude of lateral error exceeded 1.5 meters as the car attempted to correct from the late
braking on the exit of the chicane. As a safety precaution, the joystick operator observing
the racecar applied brakes to bring the car to a stop, as can be seen in 4.8.

CHAPTER 4. EXPERIMENTS 24

Figure 4.5: Steering: Learned Model vs MPC vs Steering Bias Applied for Real Experiment

Figure 4.6: Drive Force: Learned Model vs MPC for Real Experiment

CHAPTER 4. EXPERIMENTS 25

Figure 4.7: Lateral Error for Real Experiment

Figure 4.8: Joystick Break Override for Real Experiment

26

Chapter 5

Discussions

Impact of the Latency

In deployment, we observed a fixed 90 ms command-delivery latency, three times the design
budget of one sample (Ts = 33 ms).

Even with perfect dead-reckoning, a three-step prediction horizon means the applied control
ak+3 is computed from a state estimate ˜⃗sk+1 that is already two integration steps old by
the time it reaches the actuators. Any model mismatch is therefore integrated over three
samples before feedback can correct it, amplifying process noise and modeling error.

We note that in a later experiment, the model was changed to use the future time step
prediction ak+1, and oscillations were reduced enough to take the tight hairpin turn through
turn 4.

5.1 Latency Improvements

As previously mentioned, the main limiting factor in our sim-to-real experiments was the
latency introduced. This created a phase shift that created oscillations. Latency in the
inference pipeline was concentrated in state dead reckoning, middleware communication
time, and model inference time. We note that the majority of the latency was due to
slow communication in the robotic middleware. To address this, we optimized the pipeline
to reduce unnecessary communication, used multiple threads efficiently, and simplified the
overall communication structure. We also implemented additional quantization and GPU
memory optimization via DMA engine loading.

CHAPTER 5. DISCUSSIONS 27

Figure 5.1: Steering: Learned Model vs MPC vs Steering Bias Applied for Real Experiment

5.2 Sim and Real Data Mixture

This work leaves room for improvement in terms of training on not just simulation data, but
real-world data collected by the expert MPC. In this work, we avoided utilizing real-world
data as our real data from previous track days all use different versions of the MPC controller,
which is constantly being updated, tweaked, and improved upon during testing. We were
concerned that this would effectively cause the model to learn several different controllers,
all representing different modes in the dataset, which may make it hard to identify behavior
cloning quality against the single version of the MPC we benchmarked against.

28

Chapter 6

Conclusion

We built a learned model for zero-shot autonomous racing control and evaluated it on a
full-scale autonomous IndyCar. Starting from online GPS data, we generated more than a
hundred realistic circuits, computed time-optimal race lines with a physics-based optimizer,
and generated expert demonstrations from an expert MPC. A causal transformer was then
behavior cloned on this corpus of data and assessed on both held-out simulated tracks and the
real Las Vegas Road Course. Across speeds up to 120 mp/h, the policy mimicked the expert’s
control in simulation and overcame large system delay on the physical car despite perception
noise and model mismatch. Detailed ablations highlighted the importance of track diversity,
recovery noise, and multi-step prediction for latency compensation. These results position
large-scale sequence-model pre-training as a practical alternative to online optimization for
high-speed, safety-critical control, and open several avenues: reinforcement learning, domain
randomization, self-supervised fine-tuning, and multimodal inputs for closing the remaining
gap to expert performance.

29

Bibliography

[1] René Ranftl Matthias Müller Vladlen Koltun David Scaramuzza Antonio Loquercio1,
Elia Kaufmann1. Learning high-speed flight in the wild. Science Robotics, 2021.

[2] Niki Parmar Jakob Uszkoreit Llion Jones Aidan N. Gomez Lukasz Kaiser Illia Polo-
sukhin Ashish Vaswani, Noam Shazeer. Attention is all you need. NeurIPS, 2017.

[3] Johannes Betz, Tobias Betz, Felix Fent, Maximilian Geisslinger, Alexander Heilmeier,
Leonhard Hermansdorfer, Thomas Herrmann, Sebastian Huch, Phillip Karle, Markus
Lienkamp, Boris Lohmann, Felix Nobis, Levent Ögretmen, Matthias Rowold, Florian
Sauerbeck, Tim Stahl, Rainer Trauth, Frederik Werner, and Alexander Wischnewski.
Tum autonomous motorsport: An autonomous racing software for the indy autonomous
challenge. Journal of Field Robotics, 40(4):783–809, 2023. doi: https://doi.org/10.1002/
rob.22153. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22153.

[4] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn,
Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim
Jones, Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair,
Karl Pertsch, Lucy Xiaoyang Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan
Wang, and Ury Zhilinsky. π0: A vision-language-action flow model for general robot
control, 2024. URL https://arxiv.org/abs/2410.24164.

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof
Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Flo-
rence, Chuyuan Fu, Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han,
Karol Hausman, Alexander Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil
Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-
Wei Edward Lee, Sergey Levine, Yao Lu, Henryk Michalewski, Igor Mordatch, Karl
Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo, Grecia Salazar, Pannag San-
keti, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut, Huong Tran, Vin-
cent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Jialin
Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-2:
Vision-language-action models transfer web knowledge to robotic control, 2023. URL
https://arxiv.org/abs/2307.15818.

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22153
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2307.15818

BIBLIOGRAPHY 30

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis,
Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu,
Julian Ibarz, Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi,
Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey
Levine, Yao Lu, Utsav Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Car-
olina Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jornell Quiambao, Kan-
ishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin Sayed, Jaspiar Singh,
Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Vanhoucke, Steve
Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Bri-
anna Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2023. URL
https://arxiv.org/abs/2212.06817.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. Advances in neural information processing sys-
tems, 33:1877–1901, 2020.

[8] Fabian Christ, Alexander Wischnewski, Alexander Heilmeier, and Boris Lohmann and.
Time-optimal trajectory planning for a race car considering variable tyre-road friction
coefficients. Vehicle System Dynamics, 59(4):588–612, 2021. doi: 10.1080/00423114.
2019.1704804. URL https://doi.org/10.1080/00423114.2019.1704804.

[9] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, and Alexey Dosovit-
skiy. End-to-end driving via conditional imitation learning. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 4693–4700. IEEE, 2018.

[10] R. Craig Coulter. Implementation of the pure pursuit path tracking algorithm. Technical
report, Robotics Institute, Carnegie Mellon University, 1992.

[11] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery,
Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong
Huang, Yevgen Chebotar, Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent
Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch,
and Pete Florence. Palm-e: An embodied multimodal language model, 2023. URL
https://arxiv.org/abs/2303.03378.

[12] Antonio Loquercio Matthias Müller Vladlen Koltun Davide Scaramuzza Elia Kaufmann,
Leonard Bauersfeld. Decision transformer: Reinforcement learning via sequence mod-
eling. NeurIPS, 2021.

[13] Antonio Loquercio Matthias Müller Vladlen Koltun Davide Scaramuzza Elia Kauf-
mann1, Leonard Bauersfeld. Champion-level drone racing using deep reinforcement
learning. Nature, 2023.

https://arxiv.org/abs/2212.06817
https://doi.org/10.1080/00423114.2019.1704804
https://arxiv.org/abs/2303.03378

BIBLIOGRAPHY 31

[14] Hadi Tabatabaee Qiang Lu Steve Lemke Martins Mozeiko Eric Boise Geehoon Uhm
Mark Gerow Shalin Mehta Eugene Agafonov Tae Hyung Kim Eric Sterner Keunhae
Ushiroda Michael Reyes Dmitry Zelenkovsky Seonman Kim Guodong Rong, Byung
Hyun Shin1. Lgsvl simulator: A high fidelity simulator for autonomous driving. IEEE
International Conference on Intelligent Transportation, 2020.

[15] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic
algorithms and applications. arXiv preprint arXiv:1812.05905, 2018.

[16] John M. Dolan Haoru Xue, Tianwei Yue. Spline-based minimum-curvature trajectory
optimization for autonomous racing, 2023.

[17] Bike Zhang Trevor Darrell Jitendra Malik Koushil Sreenath Ilija Radosavovic, Tete Xiao.
Real-world humanoid locomotion with reinforcement learning. Science Robotics, 2024.

[18] Trevor Darrell Jitendra Malik Ilija Radosavovic, Sarthak Kamat. Learning humanoid
locomotion over challenging terrain, 2024.

[19] Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dha-
balia, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Manuel Y. Galliker, Dibya Ghosh, Lachy Groom, Karol Hausman, Brian Ichter, Szy-
mon Jakubczak, Tim Jones, Liyiming Ke, Devin LeBlanc, Sergey Levine, Adrian
Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z. Ren, Lucy Xiaoyang
Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tanner, Quan
Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury Zhilinsky.
π0.5: a vision-language-action model with open-world generalization, 2025. URL
https://arxiv.org/abs/2504.16054.

[20] ADAS & Autonomous Vehicle International. Indy autonomous chal-
lenge, 2024. URL https://adas.mydigitalpublication.com/articles/

cover-story-indy-autonomous-challenge?m=71150&i=820187&p=1&article_

id=4761453&ver=html5.

[21] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter.
Learning quadrupedal locomotion over challenging terrain. Science Robotics, 5(47):
eabc5986, 2020. doi: 10.1126/scirobotics.abc5986. URL https://www.science.org/

doi/abs/10.1126/scirobotics.abc5986.

[22] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall.
Robot operating system 2: Design, architecture, and uses in the wild. Science Robotics,
7(66):eabm6074, 2022. doi: 10.1126/scirobotics.abm6074. URL https://www.science.

org/doi/abs/10.1126/scirobotics.abm6074.

https://arxiv.org/abs/2504.16054
https://adas.mydigitalpublication.com/articles/cover-story-indy-autonomous-challenge?m=71150&i=820187&p=1&article_id=4761453&ver=html5
https://adas.mydigitalpublication.com/articles/cover-story-indy-autonomous-challenge?m=71150&i=820187&p=1&article_id=4761453&ver=html5
https://adas.mydigitalpublication.com/articles/cover-story-indy-autonomous-challenge?m=71150&i=820187&p=1&article_id=4761453&ver=html5
https://www.science.org/doi/abs/10.1126/scirobotics.abc5986
https://www.science.org/doi/abs/10.1126/scirobotics.abc5986
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

BIBLIOGRAPHY 32

[23] Milan Vukov Sebastian Sager Mario Zanon, Janick V. Frasch and Moritz Diehl. Model
predictive control of autonomous vehicles. In Lecture Notes in Control and Information
Sciences, volume 455, pages 58–74. Springer, 2014. URL https://doi.org/10.1007/

978-3-319-05371-4_3.

[24] Sergey Levine Michael Janner, Qiyang Li. Offline reinforcement learning as one big
sequence modeling problem. NeurIPS, 2021.

[25] T. Moore and D. Stouch. A generalized extended kalman filter implementation for
the robot operating system. In Proceedings of the 13th International Conference on
Intelligent Autonomous Systems (IAS-13). Springer, July 2014.

[26] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances
in neural information processing systems, 1, 1988.

[27] Ilija Radosavovic, Bike Zhang, Baifeng Shi, Jathushan Rajasegaran, Sarthak Kamat,
Trevor Darrell, Koushil Sreenath, and Jitendra Malik. Humanoid locomotion as next
token prediction. In The Thirty-eighth Annual Conference on Neural Information Pro-
cessing Systems, 2024.

[28] Rajesh Rajamani. Vehicle dynamics and control. Springer Science Business Media,
2011.

[29] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[30] Drew Bagnell Stephane Ross, Geoffrey Gordon. A reduction of imitation learning and
structured prediction to no-regret online learning. Proceedings of Machine Learning
Research, 2011.

[31] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from simulation
to the real world. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 23–30, 2017. doi: 10.1109/IROS.2017.8202133.

[32] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai
Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the
transformer architecture, 2020. URL https://arxiv.org/abs/2002.04745.

https://doi.org/10.1007/978-3-319-05371-4_3
https://doi.org/10.1007/978-3-319-05371-4_3
https://arxiv.org/abs/2002.04745

	Contents
	List of Figures
	List of Tables
	Introduction
	Learning in Robotics
	Indy Autonomous Challenge
	AV-24 Specifications
	Challenges of Autonomous Racing
	Learning to Race

	Related Work
	Autonomous Car Control
	Transformers in Control
	Behavior Cloning and Reinforcement Learning

	Methodology
	Racetrack Generalization and Representation
	Offline Trajectory Optimization
	Expert (MPC) Data Generation
	Expert MPC Formulation

	Experiments
	Simulation Environment
	Baseline
	Zero-Shot Simulation
	Zero-Shot Simulation to Real

	Discussions
	Latency Improvements
	Sim and Real Data Mixture

	Conclusion
	Bibliography

