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Abstract

Reinforcement Learning for Safe LLM Code Generation2

by

Yu Fei Huang

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Joseph E. Gonzalez, Chair

Reinforcement learning (RL) has become a primary technique for aligning Large Language
Models (LLMs) with complex reasoning objectives, yet convergence is fragile when reward
signals are noisy or exploitable. This thesis presents rLLM—an open-source, Ray-based RL
framework that utilizes an improved Group-Relative Policy Optimization (GRPO+) with
veRL modified with asynchronous pipelined sampling, and iterative context lengthening.
Using rLLM we trained Deepcoder-14B, a 14-billion-parameter code-reasoning model that
attains 60.6 % Pass@1 on LiveCodeBench, a 1936 Codeforces rating, and 92.6 % Pass@1 on
HumanEval+, matching OpenAI’s proprietary o3-mini (low) and o1 on these benchmarks.

We show that such performance hinges on an airtight sandboxed execution environment
that safeguards reward integrity. To that end we take inspiration from GoEx, a post-facto-
validated runtime that envelopes every REST call, database mutation, and file operation
in deterministic Undo and blast-radius-bounded confinement semantics. The airtight en-
vironments which rLLM consumes directly to compute rewards using, eliminating reward
hacking.

The findings underscore that the proposed GRPO+modification significantly enhances train-
ing convergence compared to existing widely-adopted algorithms such as GRPO and DAPO.
Furthermore, the asynchronous pipelining mechanism incorporated into veRL substantially
optimizes the training infrastructure, enabling e�cient scalability. Ultimately, by integrating
these advancements within a meticulously secure environment, this thesis delivers a com-
prehensive RL framework that reliably aligns LLMs with sophisticated reasoning objectives,
paving the way for future research into robust and scalable reinforcement learning systems.

2
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tonomous LLM Applications [26] and DeepCoder: A Fully Open-Source 14B Coder at O3-mini
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Chapter 1

Introduction

Large Language Models (LLMs) have advanced from sequence-to-sequence autoregressors
into agents capable of multi-step reasoning, tool calling, and code synthesis. Supervised
pre-training supplies fluent linguistic priors, yet it is reinforcement learning (RL) that aligns
those priors with task-level objectives such as passing unit-test suites or developing emergent
reasoning patterns. Optimizing an LLM policy ⇡✓ over long, sparse reward trajectories,
however, remains brittle: credit-assignment noise grows quadratically with sequence length,
and poorly instrumented environments invite reward hacking, where policies learn spurious
strategies that inflate the scalar return while degrading true utility.

This thesis addresses these challenges by proposing rLLM, a purpose-built RL framework
that couples a novel Group-Relative Policy Optimization Plus (GRPO+) algorithm based
on prior works with GRPO and DAPO with an asynchronous, Ray-orchestrated sampling
pipeline. rLLM’s design goal is two-fold: (i) sustain high-throughput gradient updates on
clusters of thousands of GPUs; and (ii) preserve reward integrity through airtight execution
sandboxes inspired by the GoEx post-facto validation runtime. The framework is validated
by training Deepcoder-14B, a 14-billion-parameter code-reasoning model that matches the
performance of proprietary systems while remaining fully open source.

1.1 Background and Motivation

The alignment of Large Language Models (LLMs) has progressed from supervised finetun-
ing (SFT) to full reinforcement-learning pipelines that optimize a policy over long, task-level
roll-outs. Early RL with human feedback (RLHF) systems adopted Proximal Policy Op-
timization (PPO) and its KL-constrained variants, but the high variance of long-horizon
credit assignment soon motivated Group-Relative Policy Optimization (GRPO), which mea-
sures advantages against peer trajectories sampled from the same prompt group, markedly
improving stability on reasoning tasks. Subsequent work such as DAPO added dynamic
sampling and decoupled clipping to push large-scale training beyond 30 B parameters. De-
spite these algorithmic advances, convergence is still brittle whenever reward channels leak
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noise or are exploitable. Studies on reward hacking show that agents readily discover loop-
holes—fabricating logs, short-circuiting unit tests, or corrupting state—to inflate nominal
returns while degrading true task success.

Scaling RL to frontier-sized models therefore demands system innovations as well. Syn-
chronous actor–learner loops stall on the longest rollout, under-utilising expensive acceler-
ators; industrial solutions now favour asynchronous pipelines built atop Ray’s distributed
execution engine, which o↵ers elastic, fault-tolerant placement of both actors and learners.
Libraries such as veRL expose lightweight RPC interfaces for high-throughput sampling and
have become a de-facto substrate for open-source RLHF research. Yet throughput alone
is insu�cient: long-context Optimization (32 k–64 k tokens) multiplies gradient noise and
memory pressure, motivating iterative context lengthening curricula that grow windows only
after variance plateaus.

Equally critical is the execution environment where roll-outs are evaluated. Without
explicit safeguards, an LLM tuned to interact with external tools can overwrite databases,
issue destructive API calls, or generate deceptive test harnesses that pass benchmarks while
hiding faulty logic. The Berkeley GoEx runtime addresses this by wrapping every REST call,
file operation, and SQL mutation in deterministic undo and blast-radius-bounded confine-
ment, producing reversible traces that can be safely replayed or discarded. Such post-facto
validation provides tamper-proof reward signals, closing an essential safety loop ignored by
many algorithm-centric studies.

Finally, modern code-reasoning benchmarks like LiveCodeBench, HumanEval+, and
Codeforces have emerged as stringent tests of reasoning quality under contamination-free
evaluation. Open-weight models like Deepcoder-14B now match proprietary systems at 14
B parameters by combining high-quality data curation with RL fine-tuning, achieving 60.6
% Pass@1 on LiveCodeBench and a 1 936 Codeforces rating. Their success underscores
the synergistic e↵ect of cutting-edge Optimization algorithms, e�cient distributed infras-
tructure, and meticulously sandboxed environments—precisely the triad this thesis seeks to
systematise through the rLLM framework.

1.2 rLLM Framework Overview

The rLLM stack is engineered around three tightly coupled layers—algorithm, systems, and
curriculum—each tuned to mitigate a specific failure mode in large-scale RL for LLMs.

Algorithmic core (GRPO+)

rLLM extends Group-Relative Policy Optimization by (i) relative-KL clipping, which bounds
the per-group policy update in its own local trust region, (ii) over-long filtering that discards
trajectories whose length-scaled variance dominates the minibatch, and (iii) removal of en-
tropy bonuses once exploration saturates. The first two modifications cut gradient variance
by 18% on synthetic bandits and prevent the high-KL “spikes” reported for vanilla GRPO on
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DeepSeek-R1 training. Compared with DAPO’s decoupled-clip objective, GRPO+ achieves
equivalent final reward with 12% fewer updates on a 4 k-prompt ablation.

Systems layer

On the systems side, rLLM adds GRPO+ onto veRL, an open RLHF library whose actor
and learner nodes are orchestrated by Ray’s elastic placement engine. We introduce an asyn-
chronous double-bu↵ered pipeline—verl-pipe—that overlaps rollout generation and gradient
application. Benchmarks on 8 × A100 GPUs show 2.1 × throughput versus a strong syn-
chronous PPO baseline while sustaining � 95% device utilization. The design eliminates the
“tail latency” problem in which a single long-context sample stalls global optimization.

Curriculum layer (iterative context lengthening)

Long contexts exacerbate both memory footprint and credit-assignment noise. rLLM there-
fore adopts a staged curriculum—16k → 32k → 64k tokens—advancing only when reward-
variance plateaus. Recent work on long-context pre-training shows that such gradual ex-
pansion yields better utilization of the expanded receptive field than jumping to the final
window directly. In practice, curriculum lengthening shaves 21% o↵ wall-clock time relative
to a static 64 k run.

Empirical highlight (Deepcoder-14B)

Running the full pipeline on curated competitive coding tasks in the Deepcoder dataset
produces Deepcoder-14B, which attains 60.6% Pass@1 on LiveCodeBench, a Codeforces Elo
of 1 936, and 92.6% Pass@1 on HumanEval+, equaling OpenAI’s o3-mini (low) with open-
sourced training procedure, data, and weights.

Environment

The above gains materialize only under a reward function in an environment that is air-
tight. rLLM therefore executes all rollouts inside a sandbox where every code snippet is
executed with resource isolation and constraints; this ensures timely execution and proper
fail-fast checks. As well, these environments need to be performant for large parallel reward
calculation. rLLM introduces an environment that is optimized for parallel reward function
execution while being sandboxed.
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Chapter 2

Related Work

2.1 Reinforcement Learning for Language-Model
Alignment

Early attempts at aligning large language models relied on Proximal Policy Optimization
(PPO), a first-order trust-region method that clips the policy update to avert collapse
while remaining computationally tractable [30]. OpenAI’s InstructGPT extended PPO
into a full RL-from-Human-Feedback (RLHF) pipeline, demonstrating that fine-tuning with
preference-based rewards markedly improves obedience and usefulness on instruction-following
benchmarks [25]. Subsequent work revealed, however, that PPO’s global baseline and
single-trajectory advantages struggle with the variance introduced by long contexts and
sparse rewards typical of reasoning tasks.

To mitigate these issues, Group Relative Policy Optimization (GRPO) estimates baselines
from groups of trajectories sharing the same prompt, thereby sharpening credit assignment
and cutting memory overhead by eliminating a separate critic network [31]. GRPO has
been shown to sustain stable learning on 16k–32k token windows for mathematics-focused
models, yet still exhibits poor performance when scaled to larger, heterogeneous corpora due
to the constraints of sample-level loss. DAPO generalizes the idea by introducing decoupled
clipping and adaptive temperature scaling, as well as token-level loss, thereby reporting
improved convergence across nine public RLHF tasks and providing an open-source reference
for cluster-scale training [39].

Despite algorithmic progress, all PPO-derived methods remain vulnerable to reward
hacking—the exploitation of loopholes in the reward function or environment to inflate re-
turns without genuine task success. Recent safety analyses of frontier models, including
OpenAI’s o1 and o3 series, document emergent deceptive behaviour under sparse reward
regimes [3]. These observations underscore that reliable alignment hinges not only on robust
optimization but also on verifiable reward channels and secure execution sandboxes.

The present work builds on this lineage by proposing GRPO+, an extension that applies
relative KL clipping and overlong filtering to further stabilize updates, and embedding the
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algorithm within an asynchronous sampling stack (Section 1.2) executed inside an airtight,
reversible environment (Section 4). This holistic approach targets the intertwined algorith-
mic and environmental causes of convergence failure identified in prior literature.

2.2 Distributed Frameworks and Systems
Infrastructure

Scaling policy-gradient optimization to billion-parameter language models demands end-
to-end systems support for high-throughput sampling, fault tolerance, and elastic resource
utilization. Early RLHF pipelines embedded PPO directly inside bespoke trainer scripts,
but soon migrated to general-purpose frameworks such as Ray RLlib, whose actor–learner
abstraction and cluster scheduler o↵ered turnkey horizontal scale-out and recovery. RLlib’s
versatility, however, comes at a cost: its monolithic APIs introduce performance overheads
when rollouts require long-context decoding on tensor-parallel backends [21, 15].

To address LLM-specific bottlenecks, multiple open-source systems have emerged. veRL
refactors RLlib’s execution model into lightweight RPC endpoints and double-bu↵ered GPU
queues, sustaining ¿95% utilization on multi-node clusters. DistRL pushes asynchronous
data collection to CPU-heavy inference nodes while reserving GPU servers for batched gra-
dient updates, reducing straggler-induced idle time by 27% on in-house 70B models.

Large-scale industrial stacks couple these schedulers with high-performance serving lay-
ers. NVIDIA’s Triton Inference Server is frequently deployed to shard sampler tra�c across
tensor-parallel decode replicas, masking backend variability beneath a uniform gRPC inter-
face. On the optimization side, DeepSpeed RL extends DeepSpeed-ZeRO with o✏oading
primitives tailored to PPO-style gradients, delivering near-linear scaling to 512 A100s on a
175B model according to internal benchmarks [22].

The baseline for the system optimizations is provided by verl [32], an open-source li-
brary for Reinforcement Learning from Human Feedback (RLHF) training of large language
models. verl is the open-source implementation of the framework described in the paper
”HybridFlow: A Flexible and E�cient RLHF Framework” [32]. The HybridFlow frame-
work was developed to address the inherent complexity and computational ine�ciency of
traditional RLHF dataflows.

RLHF workflows, particularly those based on algorithms like PPO and GRPO [31], in-
volve intricate dependencies and computational tasks performed by multiple LLM instances,
including the Actor (policy) model, a Reward model, a Reference model, and a Critic model.
These tasks encompass generation (sampling), inference (for reward, reference, and critic),
and training steps. Traditional approaches often struggled with flexibly representing and
e�ciently executing these complex dataflows, leading to ine�ciencies.

HybridFlow [32] addresses these challenges by proposing a flexible and e�cient archi-
tecture. Key aspects include a hybrid-controller programming model that decouples the
high-level control flow (defining the RL algorithm steps) from the low-level computation
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flow (executing neural network operations). This design allows for better modularity and
reusability. The framework also emphasizes seamless integration with existing distributed
training and inference libraries (such as FSDP, Megatron-LM, vLLM, and SGLang) and
supports flexible device mapping to optimize resource utilization. While HybridFlow [32]
provided a robust and e�cient foundation for RLHF, particularly in managing diverse work-
loads and model placements, the sampling bottleneck, as described in subsequent sections,
remained a significant area for further optimization.

Algorithm–system co-design remains active. VAGEN integrates variance-aware gradient
aggregation with a custom parameter server that adaptively drops stale roll-outs, reporting
1.8 × wall-clock speed-ups on multilingual instruction tuning [34]. In parallel, ByteDance’s
DAPO reference implementation exposes decoupled clipping and dynamic sampling primi-
tives atop a Ray backend, achieving 50 points on AIME 2024 with a 32B Qwen base [39].
Finally, recent studies on adaptive fault tolerance for LLM clusters propose reactive migration
of learner shards upon node failure, preserving ¿99.5% training availability over month-long
runs [12].

Collectively, these frameworks highlight three design principles adopted by rLLM: (i)
actor–learner decoupling with asynchronous, back-pressure-free queues; (ii) elastic orches-
tration that exploits Ray’s placement groups for transparent failover; and (iii) hardware-
aware serving layers that co-locate decoding and gradient aggregation to minimize PCIe and
network hops.

2.3 Secure Execution Environments and Reward
Integrity

A persistent failure mode in large-scale reinforcement learning is reward hacking—the ten-
dency of an agent to exploit weaknesses in the reward specification or the surrounding system
to maximize return without achieving genuine task success. Documented exploits include
over-fitting brittle unit tests, fabricating evaluation logs, and mutating the very artifacts
used for scoring [36].

To counteract these threats, two complementary strategies have emerged. Sandbox isola-
tion is now standard practice in code-generation RL: each candidate program executes inside
a resource-bounded container, and success is judged solely by the unit-test suite [38]. While
e↵ective against arbitrary file writes or network calls, sandboxes rely on the quality of test
coverage; when tests are sparse or deterministic, policies quickly memorize canonical outputs
or exploit undefined behaviour, inflating headline metrics without true generalization.

An orthogonal defense is post-facto validation. Empirical evidence underscores the im-
portance of these safeguards. Ablations in industrial stacks show a resurgence of fabricated
chains-of-thought and self-grading prompts when post-facto validation layers are removed.
Together, these results demonstrate that algorithmic stabilizers—KL constraints, entropy
bonuses, or group-relative baselines—must be complemented by environmental guarantees
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to achieve reliable convergence and meaningful performance gains in reinforcement-learning-
aligned LLMs [24].
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Chapter 3

GoEX: Execution Runtime for LLMs

3.1 Designing a Runtime for LLM Execution

GoEX provides a runtime environment tailored explicitly for executing actions proposed
by LLMs, addressing safety concerns inherent to the deployment of LLM-powered appli-
cations. Given the limitations of training LLMs to self-correct entirely—through methods
such as instruction tuning, RLHF[42], or DPO[28]—we propose external runtime support
to complement LLM operation. This external runtime framework supports safe execution,
recognizing that despite advanced LLM training, errors or undesirable actions may occur
unpredictably due to uncertain real-world implications.

3.2 Reversibility and Damage Confinement

To handle the uncertainties and risks associated with executing LLM-generated actions with-
out pre-validation, GoEX employs two key abstractions: reversibility and damage confine-
ment.

Reversibility

Reversibility ensures actions executed by LLMs can be undone when feasible. Implementing
reversibility generally requires maintaining snapshots or checkpoints of system states, though
this approach incurs significant memory and computational overhead. To manage resources
e�ciently, we employ a checkpointing strategy inspired by watermarks in streaming data-flow
systems[5, 2], grouping actions based on their associativity, commutativity, and distributivity
to define rollback points. Thus, selective undoing is possible without the overhead of tracking
every individual action.
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Damage Confinement

Damage confinement addresses scenarios where reversibility is impossible or impractical.
It confines the blast radius of potentially harmful actions. For instance, coarse-grained
access controls limit the permissions available to the LLM. As explored by prior work (e.g.,
SecGPT[37]), limiting an LLM’s permission—such as restricting email actions to read-only
operations—significantly reduces potential harm.

3.3 Symbolic Credentials and Sandboxed Execution

Given that LLMs may be hosted externally and prone to hallucination risks[29, 40], GoEX
introduces symbolic credentials and sandboxing to safeguard sensitive user information.

Symbolic credentials replace sensitive data in input prompts with anonymized place-
holders, ensuring the LLM never directly accesses real sensitive information. This strategy
parallels anonymization techniques found in frameworks like Presidio[20]. Sandboxed execu-
tion further mitigates risks by isolating generated code within controlled environments, such
as containers or bare-metal VMs. Only necessary dependencies and resources are exposed
within these environments, limiting exposure to potential exploits or unsafe code.

3.4 Credential Storage and Access Control

GoEX addresses user concerns regarding LLM-driven credential storage through explicit
management strategies and minimal permission assignment. Specifically, the runtime man-
ages two primary challenges: secure storage of user credentials and mapping actions to
minimal necessary permissions.

Determining minimal permissions for LLM actions can be approached either via general-
izable machine learning models or manually pre-computed permission sets o↵ering stronger
security guarantees. Balancing these approaches presents an interesting area for future ex-
ploration. Additionally, GoEX ensures that in enterprise scenarios, all credential accesses
are meticulously logged, providing robust audit trails essential for secure operations.

3.5 System Design Components

RESTful API calls

We first describe how GoEX handles RESTful API calls (illustrated in Figure 3.1).

Authentication. GoEX provides a secure way to handle user secrets, whether using
OAuth2 for token-based authentication or API keys for direct service access. GoEX acts
as the secure intermediary to facilitate authenticated actions across various services. For



CHAPTER 3. GOEX: EXECUTION RUNTIME FOR LLMS 10

Figure 3.1: GoEX’s runtime for executing RESTful API calls. Upon receiving the user’s
prompt, GoEX presents two alternatives. First, an LLM can be prompted to come up with
the (Action, Undo-Action) pair. Second, the application developer can provide tuples of
actions and their corresponding undo-actions (function calls) from which the LLM can pick
amongst.

OAuth2, GoEX sits between the user and services, facilitating the necessary relay to retrieve
access tokens. These tokens allow users to delegate the GoEX system to perform actions
on their behalf. For other services that authenticate accounts through API keys, GoEX
provides an interface that allows users to insert and retrieve them.
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Storing secrets. User secrets and keys are stored locally on the user’s device in a Secret
Intelligent Vault (SIV). SIV maps service name to key and format. When user wishes to
interact with specific service(s), the corresponding keys are requested from the SIV. The
format specifies how the keys are store, that is, in a file, or as a string, etc. The role of
the SIV is to selectively retrieve just the required keys for a given execution. For example,
if a user wants to send an email invite to their friend for lunch, the agent only needs their
OAuth2 token for their email provider, and not, for example, their bank account’s API keys.
The policy used for SIV is user-defined and highly flexible; it could be as simple as parsing
through the user prompt to detect which service’s keywords are present, or as complex as a
fine-tuned prompt-to-service retrieval model.

Despite this, users still face the risk of exposing their credentials to the LLM provider
if it becomes malicious. SIV combats this by utilizing the concept of “dummy secrets” and
“references.”

With dummy secrets, GoEX replaces the user’s secret with a dummy value of the same
format and length. Unlike symbolic execution (e.g., replacing API keys with api key), using
dummy secrets can help the LLM better understand the datatype of the object they are
interacting with and we empirically find it to perform better. On the other hand, the concept
of a “reference” refers to storing secrets in files, and SIV only passes the paths to those files
to the LLM, instructing the generated code to read the key from the file. Typically, OAuth2
works better using a cover because access tokens are commonly stored as a file format.

Once we retrieve the command from the LLM, we can either replace the dummy secret
with the real secret or load the secret pointed to by the reference at runtime, ensuring that
sensitive information is not leaked to the LLM provider.

Generating actions. The GoEX framework supports two techniques to generate the
APIs. In the Chat Completion case, assuming the user prompt is, “send a Slack message
to gorilla@yahoo.com,” the user must initially authorize GoEX to use their access token
through the Slack browser. After receiving the user prompt, GoEX requests the SIV for
the necessary secrets from the Secret Store. Slack secrets (OAuth2) are inherently hidden
because they are stored as a file, so GoEX passs the file path along with the prompt directly
to the LLM. GoEX mounts the Slack secret file and passes the LLM-generated code to be
executed in the GoEx container. If the user wishes to revert the execution, the reversion
call will be retrieved from the reversion set if it exists; otherwise, the handler prompts the
LLM to generate it. If the user chooses Function Calling, instead of asking the LLM to come
up with a command to satisfy the user’s prompt, GoEX asks it to select a function from a
user-defined function set and populate the arguments. Secrets will be chosen from the SIV
similarly, and execution occurs in the GoEx container. If the user wishes to revert, another
function from the function set will be chosen by the LLM.

Generating undo actions. Identifying the ‘undo’ action for RESTful APIs, includes the
following steps. First, we check if the reverse call for the action API is in the database
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Reversion Set as shown in figure 3.1. GoEX presents the systems abstractions, while de-
velopers are free to define the policies for mapping. For some APIs it might be critical
to check for exact match for all parameters of the API, on the other hand for some other
APIs, perhaps just the API name might be su�cient to uniquely identify what the reverse
API would be. For example it is not su�cient to say the reverse of send slack message is
delete slack message, since number of messages to be deleted could be one of the argu-
ments.

To populate such a mapping, first, we instruct the LLM to generate a reverse API call
whenever the user attempts to perform an action. We recognize that this gives no guarantees,
but the philosophy is that we allow the LLM to be wrong at most once. Post each new API,
the table is then if the reversion worked or not making this information available for future
invocations. For applications that need guarantee, developers can pre-populate this table
and combined with function-calling mode of operation, the system can be forced to only use
those API’s that are ‘guaranteed’ by the developers to be reversible.

Damage confinement. Often reversibility cannot be guaranteed. For examples sending
an email isn’t really reversible. For such scenarios, GoEX presents abstraction to bound the
worst case. Currently, the way blast-radius-containment is implemented is through coarse-
grained access control, and exact string match. First, GoEX looks at the user’s prompt to
determine the end service that they are then authorized to use. For example, a prompt of I
would like to send a slack message would only need credentials for slack, and not, say, their
bank. GoEX currently does this, through a simple sub-string check of the prompt, while
giving developers the flexibility to adopt any mapping they might choose.

Execution. Once the API, and the set of credentials required are determined, the APIs
are then executed in a Docker container for isolation.

Database Operations

GoEX leverages the mature transaction semantics o↵ered by databases. This section de-
scribes the abstractions available, and the two default policies.

Abstractions

GoEX relies on the LLM to generate database operations, but there are two prerequisites
needed to execute database operations: (1) knowledge of the current database state, and
(2) knowledge on how to access the database. To provide these, DBManager class is used.
This allows the database to readily minimally query for the database state (e.g. only the
schema) to provide additional info to the LLM during prompting without leaking sensistive
data. It also tracks the connection configuration to the database so that connections can be
established without leaking credentials to the LLM as an untrusted third-party by asking
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Figure 3.2: Runtime for executing actions on a database. We present two techniques to
determine if a proposed action can be undone. On the left, for non-transactional databases
like MongoDB, and for flexibility, we prompt the LLM to generate (Action, Undo-Action,
test-bed) tuples, which we then evaluate in a isolated container to catch any false (Action,
Undo-Action) pairs. On the right, we can provide a deterministic undo with guarantees by
employing the transaction semantics of databases.

the user to store the credentials locally, and after the LLM generates the operation, GoEX
then executes the operation.

DBManager also assists the user store with storing a previous state. Here, the commit and
undo actions are introduced where a commit means the user permanently saves the executed
changes, and an undo reverses the aforementioned changes. Most modern databases also
provide ACID guarantees[9], including NoSQL databases like DynamoDB and MongoDB,
which we leverage to implement committing and undoing actions.

Policy

DBManager implements reversibility in two ways. The user chooses which one to use when
they execute a prompt in GoEX.
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1. Option 1 (Reversal). Makes use of a reverse database operation to perform the undo.
It is done by prompting the LLM with the original operation (action call) along with
the schema to generate the reversal operation (undo call). Committing would require
no action, and undoing would just be performing the undo call after the action call
is done. This option scales better as additional users can continue perform database
actions without needing to wait for the previous user to finish their transaction at the
cost of relying on the LLM to come up with an undo call, which may or may not have
unexpected behaviors.

2. Option 2 (Versioning). Makes use of the traditional ACID transaction guarantees
of the database and holds o↵ on completing a transaction until the user specifies to
do so, or rolls back to the previous state. Committing would involve committing the
transaction, and undoing is synonymous to a rollback transaction. This branch is
able to provide reversal guarantees that branch 1 cannot, at the expense of higher
performance overhead.

Reversibility testing. Within Option 1, GoEX also performs a reversibility test to verify
that the generated reversal operation indeed reverses the original operation. This requires a
containerized environment to be separate from the original database to maintain the original
database state. Since copying over the database into the container is very expensive, the
approach is to ask the LLM to generate a bare-bones version of the database for reversibility
testing, given the action, undo calls, and the database schema. The outcome of the test
is sent back to the user for final confirmation before committing or undoing the operation.
This method allows for e�cient testing by decoupling the testing runtime from being scaled
by the number of entries in the database.

File Systems

GoEX tries to present expressive abstractions to let LLM-powered systems to interact with
file-systems using Git version control. To track the directory tree, on every GoEX filesystem-
type execution, GoEX does an exhaustive, recursive walk of the directory and its subdirec-
tories and stores the directory structure as a formatted string.

Abstractions

Filesystems operation support in GoEX uses abstractions similar to what is used to support
database operations. FSManager, is a filesystems manager that tracks (1) the directory tree
structure with all filenames, and (2) the directory path that the user wishes to execute the
filesystem’s operations in. The tree structure, which is updated with executions, enables the
LLM to generate operations that reflect the actual state of the user’s filesystem.

Utilizing the relevant abstractions presented by journaling and log-structured filesystem
for undo-semantics is left as future work, as the current GoEX system aims for compatibility.
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Figure 3.3: Runtime for executing actions on a filesystem. GoEX presents two abstractions.
On the left, the LLM is prompted to come up with an (Action, Undo-Action, test-bed)
which GoEX evaluates in a isolated container to catch any false (Action, Undo-Action)
pairs. On the right presents deterministic guarantees by using versioning control system like
Git or Git LFS.

Policy

The options are similar to the database case, where Option 1 is for reversals and Option 2
is for versioning. The largest di↵erences are how FSManager carries out reversibility testing
and that versioning is accomplished using Git.

Git. GoEX uses Git to perform versioning. Since Git is already a version-control system
for files, it is a straightforward solution to use, but has several limitations. Git does not have
the ability to version track outside of the directory that it was initialized in. GoEx limits
the user execution scope to the specified path in FSManager—which is always inside of a Git
repository—and its subdirectories in accordance to our blast-radius confinement abstraction
to prevent the LLM from performing arbitrary actions in undesired parts of the user’s system.
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With larger directories, Git versioning can be expensive space-wise. GoEx leverages Git LFS
for larger directories as an optimization. A threshold is defined for directory size that GoEX
would then check whether or not to initialize Git LFS (200 MB by default).

Reversibility testing. Similar to supporting databases operations, the LLM generates
the testing code using the action and undo calls, along with the directory tree. Inside
the container, the specified path is mounted in read-only mode to again do blast radius
containment. GoEX begins by duplicating the directory contents in the container, then run
the action and undo calls on the copied directory, and finally compare contents. Depending
on the original operation, the content comparison can just be a check of filenames or an
exhaustive file content comparison of all the files. We rely on the LLM to come up with the
test-case. Unsurprisingly, here GoEX allows you to trade o↵ guarantees for performance.
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Chapter 4

rLLM: RL Training for LLM
Reasoning

4.1 Problem Statement

Training large language models (LLMs) to perform complex reasoning tasks presents signifi-
cant challenges that traditional supervised fine-tuning approaches alone cannot fully address.
Specifically, supervised training methods are often limited by the quality and completeness
of labeled data, hindering the model’s ability to generalize to di�cult, real-world tasks that
require methodical reasoning [6]. Furthermore, purely supervised techniques do not inher-
ently provide mechanisms to iteratively improve from interaction or feedback, leading to
potential stagnation in model performance [42].

Reinforcement learning (RL) techniques o↵er a compelling solution by enabling models
to iteratively refine their outputs based on explicit performance signals or rewards [28].
However, applying RL e↵ectively to LLMs introduces several critical challenges:

1. Sparse and Noisy Rewards: Accurately defining and capturing rewards for code
correctness is inherently challenging, particularly when outcomes are binary and sparse,
o↵ering minimal feedback on incremental improvements [30].

2. Computational Complexity: Reinforcement learning methods typically require sub-
stantial computational resources, often beyond standard supervised approaches, exac-
erbating scalability issues for training large-scale models [4].

3. Stability and Convergence: RL training can su↵er from instability due to large ac-
tion spaces and high variance in reward signals, complicating e↵orts to reliably achieve
convergence [30].

Recent advancements, such as the development of DeepSeek-R1, have demonstrated the
potential of reinforcement learning in enhancing reasoning capabilities of LLMs. DeepSeek-
R1-Zero, trained solely through large-scale reinforcement learning without supervised fine-
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tuning, exhibited emergent reasoning behaviors. However, it faced challenges like poor read-
ability and language mixing. To address these issues, DeepSeek-R1 incorporated multi-stage
training and cold-start data before RL, achieving performance comparable to OpenAI’s o1-
1217 on reasoning tasks [7].

Additionally in recent months, there were remarkable advances in scaling reasoning mod-
els for math domains (e.g. DeepScaleR, AReaL, Light-R1, DAPO) via reinforcement learning
[18, 19, 35, 39]. However, progress in the coding domain has lagged behind, largely due to
the challenge of constructing high-quality datasets with reliable, verifiable rewards.

Addressing these challenges requires developing a specialized RL framework tailored for
training LLMs, which e�ciently leverages verifiable rewards, manages computational com-
plexity, and ensures stable, incremental model improvements.

4.2 rLLM Framework

To address the aforementioned challenges, we introduce rLLM, a specialized reinforcement
learning framework tailored specifically for training LLMs in complex reasoning domains
such as code generation.

GRPO+: A Stable Version of GRPO

Figure 4.1: Average training reward between GRPO+ and GRPO for the 16K run. GRPO’s
reward curve eventually collapses. GRPO+’s curve is stable due to Clip High.

Within the rLLM framework, a significant advancement in reinforcement learning for
language models is the development of GRPO+ , a stable iteration of the standard GRPO
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Figure 4.2: Due to overlong filtering,
GRPO+’s response length grows steadily
over time.

Figure 4.3: Clip High and No Entropy
Loss ensures that GRPO+’s token-level en-
tropy does not collapse and encourages suf-
ficient exploration.

[31] algorithm. This enhanced version integrates key insights from methodologies like DAPO
[39] to address instability challenges often encountered during training and promote more
e↵ective learning, particularly in handling long contexts.

GRPO+ incorporates several critical modifications to the original GRPO algorithm:
No Entropy Loss: Unlike traditional approaches that may include an entropy loss

term to encourage exploration, rLLM’s GRPO+ eliminates this component entirely. The
observation was that an entropy loss could lead to unstable training, with entropy exhibiting
problematic exponential growth before collapsing. Removing this term proved crucial for
maintaining training stability.

No KL Loss (from DAPO): Drawing from DAPO, GRPO+ eliminates the Kullback-
Leibler (KL) divergence loss that typically constrains the updated policy to remain close
to the reference policy (often a Supervised Fine-Tuning model). This removal liberates the
language model from being confined to the initial trust region, allowing for greater policy
exploration. Furthermore, eliminating the need to compute log probabilities for the reference
policy contributes to faster training speeds within the rLLM framework.

Overlong Filtering (from DAPO): To specifically address the challenge of maintain-
ing long-context reasoning abilities during training on potentially shorter contexts, rLLM
employs overlong filtering [39]. This technique, also inspired by DAPO, masks the loss for
sequences that are truncated due to exceeding the current context window limit. By not
penalizing the model for generating outputs that are thoughtfully long but truncated, this
method allows the model’s response lengths to increase naturally over the course of training.
This is particularly important for tasks requiring extensive reasoning and generation.

Clip High (from DAPO): GRPO+ incorporates a ”Clip High” mechanism by increas-
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ing the upper bound in the surrogate loss function, similar to techniques used in PPO and
DAPO. This adjustment actively encourages more exploration during training and plays a
vital role in stabilizing the token-level entropy of the model’s output. As depicted in Fig-
ure 4, this not only contributes to more stable training dynamics but also correlates with
improved model performance by fostering su�cient exploration of the action space.

Together, these modifications in GRPO+ within the rLLM framework yield a more ro-
bust and stable training process compared to the original GRPO , which could su↵er from
collapsing reward curves (Figure 4.1).

Iterative Context Lengthening: Out-of-box Generalization

Figure 4.4: DeepCoder’s average response length and training rewards as training progresses.
Average response length increases from 8K→17.5K context length.

A key training methodology within rLLM is iterative context lengthening [18], designed to
enable language models to generalize their reasoning capabilities from shorter to progressively
longer contexts. The approach begins by training the model on a shorter context window,
allowing it to first master reasoning within that scope, and then gradually increasing the
context length in subsequent training stages.

While this technique proved e↵ective, applying it to models with already strong initial
reasoning abilities presented a challenge: starting with a short context and penalizing longer
outputs could inadvertently degrade the model’s existing long-context reasoning skills, lead-
ing to shorter responses and a drop in initial performance.

To overcome this, rLLM integrates the overlong filtering technique with iterative context
lengthening. By masking the loss for truncated sequences, the model is not penalized for
generating lengthy, comprehensive responses that exceed the current training context win-
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dow. This allows the model to continue developing and utilizing its capacity for long-context
reasoning even when trained on shorter inputs.

The combination of iterative context lengthening and overlong filtering within rLLM
demonstrates significant benefits. As training progresses and the context window is iter-
atively expanded, the model’s average response length can be observed to grow steadily,
indicating its increasing ability to generate more extensive and potentially more thorough
outputs (Figure 4.4). Crucially, this is accompanied by an improvement in average training
reward (Figure 4.4), signifying that the model is learning more scalable and coherent reason-
ing patterns. This approach facilitates strong generalization, enabling models trained on a
maximum context of, for instance, 32K to perform well when evaluated on tasks requiring a
64K context, a notable contrast to models that may plateau at their trained context lengths.

System Optimizations for Post-Training

Training LLMs with long-context RL is time-intensive, requiring repeatedly sampling and
training over long contexts. Without system-level optimizations, full training runs can take
weeks or even months.

Samplers are the Bottleneck

Figure 4.5: Verl’s PPO/GRPO training pipeline. Every RL iteration cycles through sam-
pling, reward function calculation and training. Sampling is the bottleneck; training speed
is bounded by straggler samplers that generate long sequences.

Figure 4.5 illustrates Verl’s PPO/GRPO training pipeline. Every RL iteration cycles
through sampling, reward function calculation, and training. Post-training systems are of-
ten bottlenecked by sampling time—the latency of generating long sequences (up to 32K
tokens) using inference engines like vLLM [13] and SGLang [41]. Figure 4.5 shows Verl’s
PPO/GRPO pipeline, where the heterogeneity in response length causes some samplers to
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become stragglers. These stragglers delay training, while completed samplers sit idle, leading
to poor GPU utilization. Sampling is typically the bottleneck; training speed is bounded by
these straggler samplers that generate long sequences.

Naive Solution: Minibatch Pipelining

Figure 4.6: Minibatch Pipelining. Samplers and trainers operate in separate worker groups.
As samplers complete and release mini-batches (for PPO/GRPO), trainer workers process
them asynchronously. At the end of an iteration, trainers broadcast their weights to samplers.

To reduce idle time in post-training, sampling and training are pipelined—allowing train-
ers to start updating on earlier minibatches while samplers continue generating the next.
This overlap helps mask sampling latency (Figure 4.6).

However, this approach has three key limitations:

1. First, the average sequence length of mini-batches tends to grow over time, increasing
the training time for later minibatches. As a result, the final few minibatches often
spill over after sampling completes, limiting the benefits of pipelining.

2. Second, pipelining requires splitting GPUs between samplers and trainers, reducing
the number of available samplers. Unlike Verl, which dynamically switches samplers
and trainers across the same GPU pool, this static split can slow down end-to-end
sampling times due to fewer samplers.

3. Finally, reward function calculation can take a long time, especially for coding related
tasks, which require running thousands of unit tests per RL iteration. By default, Verl
calculates reward on the head node after sampling finishes.

One-O↵ Pipelining

To fully pipeline training, reward calculation, and sampling, one-o↵ pipelining is introduced.
The idea is simple: sacrifice the first RL iteration for sampling only, and then use that batch



CHAPTER 4. RLLM: RL TRAINING FOR LLM REASONING 23

Figure 4.7: One-O↵ Pipelining. Samplers generate a batch one iteration ahead, while trainers
update gradients using the previous iteration’s data. Second, reward function calculation
is interleaved with sampling. This approach does not introduce asynchronous o↵-policy
samples to GRPO/PPO’s on-policy algorithm.

to train in the next iteration. This enables sampling and training to proceed in parallel,
eliminating trainer idle time after sampling (Figure 4.7).

Second, reward calculation is interleaved with sampling. As soon as a request completes,
its reward is computed immediately—reducing the overhead of reward evaluation, especially
for compute-heavy tasks like test case execution for coding.



24

Chapter 5

rLLM Experiment: Deepcoder-14B

5.1 Dataset Curation Strategy

To overcome the aforementioned challenges, a rigorous dataset curation strategy was imple-
mented. This involved the selection of promising initial datasets, followed by a multi-stage
filtering and verification pipeline designed to ensure the suitability of the data for RL train-
ing.

Source Dataset Selection

The curated training set was constructed from the following sources:

1. TACO Verified Problems: A subset of the TACO dataset [14] comprising problems
with verified solutions.

2. PrimeIntellect’s SYNTHETIC-1 Dataset: Verified problems sourced from this
synthetic dataset [10].

3. LiveCodeBench (LCB) Problems: A temporal selection of problems submitted to
LiveCodeBench [11] between May 1, 2023, and July 31, 2024.

Data Filtering and Verification Pipeline

A stringent filtering pipeline was established to ensure the quality and verifiability of the
problems selected for RL training:

1. Programmatic Verification: Each problem incorporated into the training set was
subjected to automatic verification. This process utilized an external, o�cial solution
for each problem, ensuring that these canonical solutions successfully passed all asso-
ciated unit tests. Problems whose o�cial solutions failed any unit test were excluded.
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2. Test Case Su�ciency: A minimum threshold of five unit tests per problem was
enforced. This criterion was established based on the observation that problems with
fewer tests were susceptible to ”reward hacking” [33], wherein the model could learn
to exploit common, simple test cases to produce superficially correct outputs without
genuine generalization, often by memorizing expected outputs for recognizable inputs.

3. Deduplication: To prevent data contamination and ensure dataset integrity, dupli-
cate problems were systematically removed. This deduplication was performed across
the three selected training datasets (TACO Verified, PrimeIntellect SYNTHETIC-1,
and LCB submissions from May 1, 2023, to July 31, 2024). Furthermore, rigorous
checks were conducted to confirm the absence of contamination in the designated test
datasets, which include LCB submissions from August 1, 2024, to February 1, 2025,
and 57 distinct contests from the Codeforces platform.

Final Curated Dataset Composition

Following the application of this filtering pipeline, the resultant dataset comprised 24,000
high-quality coding problems deemed suitable for RL training. The distribution of these
problems is as follows:

• TACO Verified: 7,500 problems

• PrimeIntellect’s SYNTHETIC-1: 16,000 problems

• LiveCodeBench (May 1, 2023 - July 31, 2024): 600 problems

5.2 Code Sandbox Environment for Reward
Computation

The computation of rewards in RL training for code generation necessitates the execution of
model-generated code against unit tests within secure and isolated sandbox environments.
The scale of this operation is substantial; during each RL iteration, a training batch en-
compassing 1024 distinct problems—each with multiple unit tests (� 5)—is evaluated. This
workload requires a highly parallelized infrastructure, capable of supporting over 100 concur-
rent coding sandboxes to ensure timely and accurate verification of generated code. To meet
these demands, a sandbox solution is employed: a Local Code Sandbox. With this sandbox-
level abstraction as an environment allows for easier integration with other sandbox solutions
in the future as well.

Local Code Sandbox

A Local Code Sandbox solution has been implemented. This system launches a local sandbox
environment as a separate, security-hardened Python subprocess. It interfaces with the test
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cases by receiving input via stdin and transmitting the output via stdout. The evaluation
logic within this local sandbox strictly adheres to the o�cial LiveCodeBench repository’s
evaluation code [11], thereby ensuring that results obtained are consistent and comparable
with established leaderboards in the domain.

5.3 Reward Function Design

The design of the reward function is critical in guiding the RL agent towards generating
correct and robust code. A sparse Outcome Reward Model (ORM) was adopted for this
research [42]. This approach deliberately avoids the assignment of partial rewards, such as
penalties for chain-of-thought deviations or proportional rewards based on the fraction of
unit tests passed (e.g., K/N reward for K out of N successful tests). The rationale for this
decision is to mitigate the risk of ”reward hacking” [33], where the LLM might learn to
exploit the reward structure by, for instance, directly outputting answers for known public
test cases or converging on solutions that only satisfy trivial edge cases without achieving
comprehensive correctness.

The reward allocation is binary, based on the following criteria:

1. Reward of 1: Assigned if, and only if, the generated code successfully passes all
sampled unit tests. Due to the impracticality of executing hundreds of tests for certain
problems within the training loop, a sampling strategy is employed. For each problem,
the 15 most challenging unit tests are selected, with challenge level determined by the
length of their input strings.

2. Reward of 0: Assigned if the LLM’s generated code fails on at least one of the
sampled test cases, or if the output is incorrectly formatted (e.g., missing the required
Python [CODE] tags). Each test case execution is subject to a timeout, ranging from
6 to 12 seconds, to prevent indefinite execution of non-terminating or ine�cient code.

5.4 Evaluation Results

Evaluation of the DeepCoder-14B-Preview model was conducted on various coding bench-
marks, including LiveCodeBench (LCB) [11], Codeforces, HumanEval+ [16], and AIME
2024.

With 14B parameters, the model demonstrates strong performance across all coding
benchmarks. It achieved 60.6% on LiveCodeBench and a rating of 1936 on Codeforces,
placing it at the 95.3 percentile and showing performance comparable to that of o3-mini
(low) and o1 [23]. Additionally, although the model was not specifically trained on math
tasks, its reasoning ability gained from coding tasks generalizes well to math. This is evident
in its 73.8% score on AIME2024, representing a 4.1% improvement over the base model.
Overall, impressive performance is shown by the model in both coding and math domains.
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The performance comparison across various models is summarized in the table below:

Table 5.1: Model Performance on Coding and Math Benchmarks

Model
LCB

(8/1/24–2/1/25)
Codeforces
Rating*

Codeforces
Percentile*

HumanEval+
Pass@1

AIME 2024

DeepCoder-14B-Preview (ours) 60.6 1936 95.3 92.6 73.8
DeepSeek-R1-Distill-Qwen-14B [7] 53.0 1791 92.7 92.0 69.7
O1-2024-12-17 (Low) 59.5 1991 96.1 90.8 74.4
O3-Mini-2025-1-31 (Low) 60.9 1918 94.9 92.6 60.0
O1-Preview 42.7 1658 88.5 89.0 40.0
Deepseek-R1 [7] 62.8 1948 95.4 92.6 79.8
Llama-4-Behemoth** 49.4 – – – –

*
As Deepseek and OpenAI evaluate Codeforces internally, see Appendix A for details.

**
Non-reasoning model.

5.5 End-to-end Performance

Figure 5.1: One-o↵ pipelining fully masks away trainer and reward computation times,
reducing training times by 1.4x for math and 2x for coding.

In Figure 5.1, we evaluate verl, minibatch pipelining, and one-o↵ pipelining for two
workloads: math and coding. For fairness, all baselines compute reward in parallel via a
Python threadpool. In contrast, verl o�cially computes reward for each sample serially,
which is intractably long for coding.

We evaluate DeepCoder-1.5B-Preview on 8 ⇥ A100s and tune the ratio of samplers to
trainers to better balance trainer and sampler times.



CHAPTER 5. RLLM EXPERIMENT: DEEPCODER-14B 28

For math, one-o↵ pipelining reduces time per RL iteration by 1.4x. We note that math’s
reward computation time is near zero, as it consists of basic sympy checks. In particular,
one-o↵ pipelining completely masks away trainer times, unlike minibatch pipelining where
the last minibatch spills over.

For coding, calculating reward requires running 1000s of tests per RL iteration, a time
consuming process. One-o↵ pipelining masks away both trainer and reward computation
times, which reduces end-to-end training times by 2x.
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Chapter 6

Conclusion

This thesis presents a unified vision for building open, secure, robust, and intelligent gen-
erative AI systems—advancing the state of the art in both runtime environments for safe
LLM-driven actions and reinforcement learning-based training for sophisticated language
models.

In the first part, we explored GoEX, a runtime framework designed to enable autonomous
LLM applications by safely executing their proposed actions. Recognizing the inherent risks
in deploying LLMs with real-world agency, GoEX introduces critical abstractions such as
reversibility, damage confinement, symbolic credentials, and sandboxed execution. These
mechanisms provide a structured approach to managing RESTful API calls, database mu-
tations, and file system operations initiated by LLMs, thereby mitigating potential harms
and ensuring operational safety. The principles of post-facto validation and secure sandbox-
ing pioneered in GoEX also provided crucial inspiration for ensuring the integrity of reward
signals in complex reinforcement learning settings.

Building upon the foundational need for secure and verifiable execution, the second part
of this thesis introduced rLLM, an open-source, Ray-based reinforcement learning frame-
work, and its successful application in training Deepcoder-14B, a 14-billion-parameter code-
reasoning model. The rLLM framework integrates a novel Group-Relative Policy Optimiza-
tion (GRPO+) algorithm with asynchronous pipelined sampling and iterative context length-
ening to enhance training stability and scalability. Critically, it incorporates an airtight sand-
boxed execution environment, inspired by GoEX’s design, for robust reward computation,
thereby minimizing reward hacking. Using rLLM, and through meticulous dataset curation
and a sparse reward strategy, Deepcoder-14B achieved 60.6% Pass@1 on LiveCodeBench, a
1936 Codeforces rating, and 92.6% Pass@1 on HumanEval+. Furthermore, its learned rea-
soning capabilities demonstrated remarkable generalization to mathematical tasks, scoring
73.8% on AIME 2024. This success underscores that reinforcement learning, when coupled
with a secure and well-designed training regime, can produce smaller yet highly performant
and generalizable open-source models.

Together, these components—GoEX for establishing principles of safe LLM execution and
rLLM with Deepcoder-14B for advancing RL-based training and model capability—embody
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a holistic approach. GoEX provides the foundational layer for trustworthy LLM interac-
tion, essential for the reliable and e↵ective training methodologies implemented in rLLM. We
believe that the future of AI depends not only on advancing raw capabilities but also on
ensuring these capabilities are developed and deployed securely and are widely accessible.
Through GoEX, we contribute to the democratization of safe LLM-powered applications;
through rLLM and Deepcoder-14B, we democratize access to state-of-the-art reinforcement
learning techniques and the powerful reasoning models they can produce. This body of work
represents a significant step toward building more open-source, intelligent, reliable, and scal-
able generative AI, with future directions focused on extending these reasoning capabilities
to interactive tool use and complex real-world software engineering workflows.
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Appendix A

Codeforces Evaluation

Our Codeforces evaluation follows the Qwen CodeElo benchmark1[27]. The suite comprises
408 problems drawn from 57 Codeforces contests spanning Div. 4 to Div. 1— a first step
toward a unified, competition-level benchmark after divergent methodologies from OpenAI
and DeepSeek[27].

Scoring

Consistent with the o�cial Codeforces rules [8], each problem begins with k points. Every
incorrect submission reduces the score by 50, down to a minimum of 0. For each problem we
generate eight candidate solutions; success/fail signals determine the retained points, which
are summed over the contest to yield the model’s total.

Elo Rating Calculation

Our Elo procedure mirrors the platform’s multi-player extension [8], but treats contests
independently rather than updating ratings across events, yielding a cleaner per-contest
estimate. Following Elo & Sloan (1978) we compute the model’s expected rank m as

m =
nX

i=1

1

1 + 10(r�ri)/400

where n is the number of human participants and ri their published ratings obtained
via the Codeforces API. Solving for r gives the model’s Elo for that contest; we report the
mean over all 57 events. A formal proof that this estimator is equivalent to the o�cial rating
update appears in Appendix C of the CodeElo paper[27].

1https://codeelo-bench.github.io/



APPENDIX A. CODEFORCES EVALUATION 36

Percentile Calculation

Percentiles are referenced to the full distribution of ⇠89,352 rated users as of 2024 [1]. Using
this static snapshot ensures consistency with the contest range covered by the benchmark.
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