
Improving Energy Efficiency of Machine Learning Software
with an Instruction-Level Dynamic Energy Model for DNN

Accelerators

Jonathan Wang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-124
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-124.html

May 19, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Improving Energy Efficiency of Machine Learning Software with an
Instruction-Level Dynamic Energy Model for DNN Accelerators

by Jonathan Wang

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Yakun Sophia Shao
Research Advisor

(Date)

* * * * * * *

Professor Borivoje Nikolic
Second Reader

(Date)

5/19/2025

Improving Energy Efficiency of Machine Learning Software with an

Instruction-Level Dynamic Energy Model for DNN Accelerators

by

Jonathan Franklin Wang

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in Charge:

Professor Yakun Sophia Shao, Chair

Professor Borivoje Nikolic

Spring 2025

Abstract

Improving Energy Efficiency of Machine Learning Software with an Instruction-Level Dynamic

Energy Model for DNN Accelerators

by Jonathan Franklin Wang

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Yakun Sophia Shao, Chair

Energy-efficient software development on domain-specific processors necessitates a high-level model

to quickly and accurately estimate software workload energy consumption. However, previous work

in energy characterization has mostly focused on architectural design space exploration for domain-

specific processors or ISA-based energy models for CPUs. Currently, no work has been done to

create ISA-based energy models targeting DNN accelerators.

In this thesis, we present a methodology for creating instruction-level energy models specific to

DNN accelerators, focusing on architectures that use systolic arrays for computation. For energy

characterization, we determine the DNN accelerator’s energy consumption for both its systolic array

and private SRAMs for each accelerator instruction. Based on this characterization, we estimate

the energy cost per accelerator instruction, which is used to predict the overall energy consumption

of DNN accelerator workloads. By using this methodology, our energy models make predictions

that are 90% accurate to the actual energy consumption of real-world benchmarks.

1

Contents

List of Figures iii

List of Tables iv

Acknowledgements v

1 Introduction 1

2 Background 3

2.1 Domain-Specific Processors . 3

2.1.1 Deep Neural Network Accelerators . 3

2.1.2 Gemmini . 5

2.2 Chip-Level Power and Energy . 7

2.2.1 Static Energy . 8

2.2.2 Dynamic Energy . 8

2.3 Prior Work . 8

2.3.1 DNN Accelerator Energy Models . 9

2.3.2 CPU Instruction-Level Energy Models . 9

2.3.3 Power Estimation Tools . 10

3 Energy Model Overview 12

3.1 Hardware Configuration . 12

3.2 Model Construction . 14

3.2.1 Microbenchmarks . 14

3.2.1.1 Mvin Microbenchmark . 16

3.2.1.2 Mvout Microbenchmark . 16

3.2.1.3 Preload and Compute Microbenchmark 17

3.2.1.4 Compute Accumulated Microbenchmark 17

3.2.2 Target Workloads . 17

3.2.3 ISA-based Energy Model . 18

3.2.4 Dimension-Aware Instruction-Level (DAIL) Energy Model 19

4 Instruction-Level Energy Model for Gemmini 21

4.1 Toolflow . 21

4.1.1 Dynamic Energy Computation . 22

4.2 Model Evaluation . 24

i

Contents

4.2.1 ISA-based Energy Model . 24

4.2.2 DAIL Energy Model . 25

4.3 Model Usability . 26

5 Conclusion 27

Bibliography 28

ii

List of Figures

2.1 Data movement involves sending data between main memory and the accelerator.
Between data entering and leaving the accelerator, computation occurs inside the
accelerator. 4

2.2 Architectural block diagram of Gemmini [1]. 5

2.3 Gemmini private memory internals with example config. 6

2.4 VLSI design stages and their available power estimation tools [2–5]. 10

3.1 Gemmini operations on our SoC with the WS dataflow. 13

3.2 Average dynamic energy contribution per Gemmini module for target workloads. . . 15

3.3 Gemmini instruction count and ground-truth dynamic energy per target workload. . 17

3.4 Regression for mvin instructions used to predict EPI for various matrix column sizes. 19

4.1 An architecture diagram of instruction-level energy modeling for Gemmini, utilizing
Chipyard [6], Hammer [7], Spike [8], and Joules [3] 21

4.2 Power plot visualization for microbenchmarks. 23

4.3 ISA-based energy model Mean Percentage Error (MPE) per module and Gemmini
instruction counts for target workloads. 25

4.4 DAIL energy model Mean Percentage Error (MPE) per module and Gemmini in-
struction counts for target workloads. 26

iii

List of Tables

2.1 Gemmini’s ISA with descriptions of each instruction in the WS dataflow. 6

3.1 Matrix dimension impact on Gemmini’s dynamic power for data movement. 14

3.2 Matrix dimension impact on Gemmini’s dynamic power for computation. 14

3.3 Instructions used for microbenchmarks and their instruction arguments. 16

3.4 Arguments used for each instruction type for ISA-based microbenchmarks. 18

3.5 Matrix dimensions, from instruction arguments, and their associated EPI, derived
from microbenchmarks, are used to train a linear regression model to predict EPI
for any matrix size. 19

4.1 Gemmini aggregated baseline power consumption by module. 23

4.2 ISA-based energy model Mean Absolute Percentage Error (MAPE) and 95% confi-
dence interval of validation workload dynamic energy predictions per module. 24

4.3 DAIL energy model Mean Absolute Percentage Error (MAPE) and 95% confidence
interval of validation workload dynamic energy predictions per module. 24

4.4 ISA-based energy model’s EPI for each instruction type per module. 25

4.5 Times associated with data generation, training, and prediction. 26

iv

Acknowledgements

First, I want to thank my advisor, Professor Sophia Shao, for showing me the fascinating world

that is hardware for machine learning and for guiding me when I explored different paths for my

research projects. I also want to thank Professor Borivoje “Bora” Nikolic for reviewing this thesis

and guiding me through the tape-out and bring-up processes throughout my studies.

Furthermore, I owe a deep gratitude to Charles Hong and Nayiri Krzysztofowicz, both of whom

helped me understand and set up the infrastructure for Timeloop, Chipyard, and the power/energy

prediction flow. Without the guidance of either, I would not have been able to write this thesis.

Lastly, I would like to thank all the undergraduate and graduate students from the SLICE and

BWRC labs for making the research experience that much more enjoyable.

v

Chapter 1

Introduction

Artificial intelligence has seen a significant surge of interest in the past decade, resulting in many

breakthroughs [9–13] that introduced fundamental paradigm shifts in the way machine learning

software is written. With the slowdown of technology scaling, modern system-on-chip (SoC) designs

have increasingly relied on incorporating deep neural network (DNN) accelerators [14–17] in order

to improve the energy efficiency of machine learning training and inference.

DNN accelerators improve energy efficiency by maximizing data parallelism and data reuse for

computationally heavy machine learning software. DNN accelerators differ from general-purpose

processors because they have spatial architectures as opposed to temporal architectures. Conse-

quently, the programming interface and instruction set architecture (ISA) for DNN accelerators

can be quite different compared to CPUs.

Significant focus has been put towards maximizing theoretical power, performance, and area (PPA)

of DNN accelerator hardware. However, real software workloads are often unable to achieve the

highest theoretical energy efficiency due to lower utilization and denser matrices. Although achiev-

ing a DNN accelerator’s maximum theoretical energy efficiency is not possible for every work-

load, there remain opportunities to optimize. For a given workload, software strategies for tiling,

dataflow, and spatio-temporal mapping can greatly impact its energy consumption. These software

strategies do not change what the workload outputs, but rather how it is executed on the hardware.

To solve problems in this space, Design Space Exploration (DSE) algorithms are created to optimize

software strategies for specific DNN accelerator hardware, though they are more suited to aid

architects than developers. Much less work exists to help developers optimize the energy efficiency

of hand-designed code built to run on this hardware. From a developer’s perspective, energy

efficiency is most interpretable when their compiled, executable code is given a numerical energy

1

consumption value. In this environment, developers can constantly iterate through their code in

order to maximize energy efficiency without being required to understand every microarchitectural

detail behind their host DNN accelerator.

To improve software development for DNN accelerators, this work contributes a methodology to

create a developer-friendly model for energy evaluations of DNN accelerator workloads. Specifically:

• We determine the energy per instruction (EPI) for each unique instruction in a DNN accel-

erator’s ISA using RTL-level energy estimations from commercial tools.

• We integrate the EPI estimates into a functional simulator to construct an instruction-level

model that utilizes EPI to determine the overall energy consumption for software workloads.

• We evaluate our methodology using the Gemmini accelerator, creating a model that predicts

workload energy consumption with an accuracy of 90% in a fraction of the time compared to

commercial tools for energy estimation.

2

Chapter 2

Background

DNN accelerators have unique architectures that differ from general-purpose processors, resulting

in new challenges that must be faced when designing microarchitectures for them. Thus, DNN

accelerator energy models must be able to capture microarchitectural impacts among designs to

become more accurate and useful to architects and software developers alike. To meet this need,

an instruction-level energy model for DNN accelerators is necessary to guide energy efficiency

improvements to software workloads.

2.1 Domain-Specific Processors

The end of Moore’s Law has prompted both industry and academia to recognize that improved

SoC performance year after year is no longer possible by solely increasing the clock frequency in

general-purpose CPUs. Instead, architects have designed hardware accelerators to continue perfor-

mance gains across specialized domains, including, but not limited to, graphics, robotics, digital

signal processing, and deep learning. These domain-specific accelerators have significantly higher

energy efficiency than general-purpose CPUs, yet continued optimizations to these architectures

are necessary to continue yielding higher performance year after year.

2.1.1 Deep Neural Network Accelerators

DNN accelerators are domain-specific accelerators that focus on improving the performance and

energy efficiency of machine learning workloads. Since machine learning software is comprised of a

significant amount of matrix and vector operations, DNN accelerators utilize spatial architectures

3

Main
Memory Data Movement

Compute

DNN Accelerator

Figure 2.1: Data movement involves sending data between main memory and the accelerator.
Between data entering and leaving the accelerator, computation occurs inside the accelerator.

to reduce the compute bottleneck that plagues temporal architectures. However, DNN accelerators

face new challenges in the areas of data movement and computation.

Data movement involves sending data from the SoC main memory to the accelerator and vice

versa. Data movement is a challenging problem because machine learning model parameters—

input activations, weights, and output activations—take up a significant memory footprint and

cannot all be stored in accelerator memory simultaneously. Instead, only portions of the model

parameters can be stored and processed by the accelerator at a given time. Thus, reducing memory

transaction requests and their associated latency becomes important to maximizing performance.

Once data is loaded into the accelerator, it performs arithmetic-heavy computations. Since DNN

accelerators use spatial architectures, multiply-accumulate (MAC) operations can be heavily par-

allelized to improve throughput and reduce overall workload latency. Computation is a challenging

problem because large matrix operations must be split into tiles in order to be processed by the

accelerator, where the tile size depends on the number of hardware MAC units provided by the

accelerator. Full matrix operations are completed over multiple DNN accelerator instructions, de-

pending on the tile size. As a result, data reuse and MAC utilization strategies serve as crucial

design points for DNN accelerators.

Although there are many different DNN accelerator architectures, some hardware blocks are shared

between designs because of their effectiveness in handling data movement and computation chal-

lenges. Many DNN accelerators have their own private memory, comprised of SRAM or DRAM

blocks, to speed up data access time compared to the SoC’s main memory. For processing matrix

operations, systolic arrays are popular for matrix multiplication and convolution operations because

they can use their high MAC parallelization and utilization to speed up machine learning software.

4

Figure 2.2: Architectural block diagram of Gemmini [1].

2.1.2 Gemmini

Gemmini [1] is a platform for DNN accelerator systems, comprised of a Chisel-based [18] DNN

accelerator generator and a mature software stack. Gemmini produces synthesizable RTL for

DNN accelerators that can be integrated into a larger SoC. Gemmini is configurable, enabling the

generation of DNN accelerators with different datatypes, in-accelerator memory sizes, and systolic

array dimensions. The software stack can run on any created Gemmini hardware configuration.

Gemmini is part of the larger Chipyard [6] ecosystem that provides a comprehensive platform

for generating and simulating complete SoC designs. Gemmini can be integrated into Chipyard

SoCs as a tightly-coupled accelerator to a host RISC-V CPU. Gemmini’s programming interface

includes custom instructions that serve as an extension to the RISC-V ISA, with instructions for

configuration, data movement, and computation (see Table 2.1 for a list of instructions).

Gemmini’s private memory system, which includes the scratchpad and accumulator SRAMs, is

row-addressed with 32-bit addresses. Each row contains DIM elements, where DIM is a parameter

for Gemmini’s hardware generator that is used to determine the systolic array’s dimensions. Both

the scratchpad and the accumulator have DIM elements per row, but the number of rows and

the element’s datatype can differ between these modules. Figure 2.3 shows how individual rows

of memory can be accessed with the row-addressing system. For this work, we characterize the

dynamic energy of Gemmini with a 16×16 systolic array, int8 scratchpad, and an int32 accumulator.

5

Figure 2.3: Gemmini private memory internals with example config.

Table 2.1: Gemmini’s ISA with descriptions of each instruction in the WS dataflow.

Instruction Instruction Type Description

config ld Configuration Set stride and scaling factor for mvin instructions

config st Configuration Set stride for mvout instructions

config ex Configuration Set dataflow, stride, scaling factor, and activation

function for compute instructions

mvin Data Movement Move up to DIM rows and 4 × DIM columns of matrix

data from main memory → accelerator memory

mvout Data Movement Move up to DIM rows and 4 × DIM columns of matrix

data from accelerator memory → main memory

preload Compute Set C’s output address in accelerator memory and load

B into the systolic array

compute preloaded Compute Load A into the systolic array then compute a matrix

multiplication with the new B

compute accumulated Compute Load A into the systolic array then compute a matrix

multiplication with the previous B

Gemmini accelerates general matrix multiply (GEMM) operations, with its ISA enabling substantial

configuration for how they are executed. For machine learning workloads, GEMM represents A as

input activations, B as weights, D as biases, and C as output activations. Mathematically, GEMM

is defined as:

C = A×B + D

6

There are many ways to compute GEMM operations, but dataflow stands out as an important

factor because it is one of Gemmini’s programmable features. Dataflow drives the arithmetic op-

eration order, affecting which matrix values are reused, when they are reused, and how often they

are reused. For Gemmini, specifically, configuring the dataflow modifies the way instructions are

executed on its hardware. There are multiple GEMM dataflows, but Gemmini only supports two:

Output-stationary (OS) and weight-stationary (WS). For this work, our energy model only consid-

ers the WS dataflow for energy characterization of Gemmini instructions.

1 i n t 8 t A[DIM I] [DIM K] ;

2 i n t 8 t B[DIM K] [DIM J] ;

3 i n t 3 2 t C[DIM I] [DIM J] ;

4

5 f o r (s i z e t k = 0 ; k < DIM K; k++) {
6 f o r (s i z e t j = 0 ; j < DIM J ; j++) {
7 f o r (s i z e t i = 0 ; i < DIM I ; i++) {
8 C[i] [j] += A[i] [k] ∗ B[k] [j] ;

9 }
10 }
11 }

Listing 2.1: Weight-stationary matrix multiplication.

When using the WS dataflow, B data reuse is prioritized over D data reuse. Gemmini configured

to the WS dataflow specifies that the preload instructions load B into the systolic array while the

compute instructions feed A and D into the systolic array to compute C, which is then stored in

the accumulator. A and B are stored in the scratchpad, while D is stored in the accumulator.

2.2 Chip-Level Power and Energy

Chip-level power consumption can be analyzed through the numerous CMOS transistors that make

up the standard cells and memory block macros of a SoC. All power consumption on an SoC is

considered to be static or dynamic power.

Static power, also known as leakage power, is caused by the leakage current flowing through standard

cell transistors because transistor gates are non-ideal and possess additional capacitance. Regardless

of whether the transistors are off, the leakage current can still flow. As a result, static power is

highly dependent on process node technology, CMOS transistor count, and clock frequency. Static

power remains even when logic gates are not being used, so memory blocks—dense in transistor

count and usually not fully utilized—tend to contribute more static than dynamic power.

7

Dynamic power comes from two different sources, switching power and short-circuit power. Switch-

ing power increases the more times a logic gate switches its output, either from 1 → 0 or 0 → 1,

due to the charging or discharging of the load capacitance for every switch. Short-circuit power

occurs because there is a brief moment when the pFET and nFET transistors are on during switch-

ing, which causes a short-circuit current to flow through the logic gate. Dynamic power is heavily

dependent on the software workload, especially with respect to instruction counts and data sparsity.

2.2.1 Static Energy

Static power remains constant, regardless of the workload running on the hardware. Thus, the static

energy scales linearly with the workload latency. Since hardware has a greater impact on static

energy than software, this work does not consider static energy for energy efficiency. Instead, this

work focuses on the energy impact of different software workloads running on identical hardware.

2.2.2 Dynamic Energy

Pdynamic = Pshort-circuit + Pswitching mW

Edynamic = Pdynamic × 103 × cycles

frequency
uJ

Dynamic energy for a specific workload is computed by summing up short-circuit and switching

power, then multiplying the combined dynamic power with the workload’s latency, determined

using the cycle count and clock frequency. In this work, the dynamic energy of a workload is used

to determine its energy efficiency. Dynamic energy is a useful evaluation metric because it accounts

for both workload power consumption and latency.

2.3 Prior Work

Prior work for DNN accelerator energy modeling has been done mainly at the architectural stage

through fast analytical models with less than ideal accuracy. However, work has also been done for

more general-purpose energy models, which provide frameworks and methodologies applicable to

DNN accelerator energy modeling. An opportunity lies in constructing an energy model based on

RTL-level over architecture-level dynamic energy to improve model prediction accuracy. Overall,

there is a need for DNN accelerator energy models to comprehend microarchitectural design choices

while maintaining low-latency evaluation speeds.

8

2.3.1 DNN Accelerator Energy Models

Existing energy models for DNN accelerators have emphasized their use for DSE at the architec-

tural level. The Deep Neural Network Energy Estimation Tool [19] is an analytical model that

predicts the dynamic energy consumption per layer of a DNN workload using the DNN model’s

layer dimensions and the number of bits accessed per memory hierarchy level as input. Although

great for comparing dynamic energy consumption between different DNN models, this tool does

not account for energy consumption variation between different software implementations of the

same model.

Timeloop [20] is a more robust analytical model designed to find the most optimal hardware con-

figuration and software implementation for a target DNN model. Timeloop uses Accelergy’s [21]

energy model by utilizing dynamic energy cost per access of key hardware components to predict

workload dynamic energy. These energy predictions are used as input to a mapper to select the

most energy-efficient and valid algorithm-to-hardware mapping for workloads on DNN accelerators.

DOSA [22] is an extension of Timeloop that automates DSE using a similar access-based model to

find optimal hardware configurations and algorithm-to-hardware mappings for DNN workloads.

Although these analytical models provide fast evaluations that are useful for continuous DSE iter-

ation, they are unable to consider the microarchitectural impacts to dynamic energy consumption.

As a result, their accuracy is significantly reduced compared to the energy consumption at signoff.

DNN accelerator energy modeling can benefit from an energy model that considers microarchitec-

tural design choices.

2.3.2 CPU Instruction-Level Energy Models

In the field of CPU energy modeling, there have been promising methods to increase prediction

accuracy while maintaining fast prediction times, namely instruction-level energy models. These

energy models estimate the EPI for all instructions in the CPU’s ISA and, depending on how each

instruction is used, can be calculated for the same instruction in various architectural states to cap-

ture possible hardware or software scenarios that need to be considered by the energy model. Work

has been done to create an instruction-level dynamic energy model for Intel’s high-performance

computing Xeon Phi processor [23]. Through computing EPI for CPU instructions with differ-

ent changes to the processor—such as number of cores, threads, and operands—this energy model

has achieved an accuracy between 1% and 5% on real-world benchmarks. Additionally, work on

an instruction-level dynamic energy model for the RISC-V ISA, using the Rocket CPU [24], has

quantitatively shown the energy impact of different arithmetic and memory access instructions [25].

9

Fastest

Architecture RTL Physical DesignVLSI Design Stage

Power Tool Wattch Joules

PrimePower

Voltus

Least
Accurate

Slowest

Most
Accurate

Figure 2.4: VLSI design stages and their available power estimation tools [2–5].

Unlike architectural energy models, these instruction-level energy models are created using dynamic

energy values from real microarchitectural implementations, making them much more accurate to

the energy consumption at signoff.

2.3.3 Power Estimation Tools

Power modeling for chip designs, in general, can span a wide range of levels in the VLSI design

process, from architecture to GDSII file. Power models closer to the architecture stage tend to

be faster, allowing for quick iteration over architectural design choices, at the cost of being one of

the least signoff-accurate models. In contrast, power models closer to the GDSII file tend to be

significantly slower at producing power estimates, but they are closer to actual signoff numbers.

The accuracy and latency of these power models are influenced by the input data to these models.

Hardware designs closer to GDSII files can provide more traits and behaviors representative of the

physical chip that higher-level power models cannot capture. However, as designs are converted

into GDSII files, their size and complexity increase substantially. As a result, power models that

take these designs as input can take significantly longer to process. Furthermore, in order to use

these lower-level power models, additional time must be spent to convert hardware designs into an

input accepted by the power model.

For this work, we use Joules [3], a state-of-the-art industry power estimation tool, to provide

ground-truth dynamic energy values for software workloads running on DNN accelerators. Joules

is an RTL-level power estimator that traces signals in RTL simulation on logic gate representa-

tions to determine capacitive loads and switching activity for every hardware module in a design.

10

Joules strikes a balance between architectural and post-place-and-route power estimation tools,

where the design input comes early enough in the VLSI design process, yet still provides critical

microarchitectural details for the tool to make accurate estimates.

11

Chapter 3

Energy Model Overview

To demonstrate the methodology required to create an instruction-level energy model for DNN

accelerators, we construct one for the Gemmini accelerator. To do this, we determine the EPI

for all Gemmini instructions to create the energy model. For validation, we count the Gemmini

instructions of compiled target workloads to predict their overall energy consumption with the

precomputed EPI values. As an analytical model, these dynamic energy predictions are delivered

almost instantaneously, similar to many other architectural energy models.

We design two energy models, a naive ISA-based model and an optimized dimension-aware instruction-

level (DAIL) model. The ISA-based energy model is inspired by energy models for CPUs and serves

as the de facto baseline model for this work. The DAIL energy model is built on top of the ISA-

based model, optimizing for DNN accelerator-specific architectural states. Although the ISA-based

energy model works effectively for CPUs, DNN accelerators face different challenges. The DAIL

model considers these challenges for its energy predictions, making it an instruction-level energy

model specialized for DNN accelerators.

3.1 Hardware Configuration

The SoC designed to evaluate Gemmini’s energy efficiency uses the Intel16 fabrication process with

a 250 MHz clock frequency to capture the traits and behaviors of a modern process technology,

especially with respect to power consumption. Using the Chipyard ecosystem, the SoC is configured

to be as simple as possible, containing:

• 1× In-order scalar RV64GC Rocket CPU

12

Simulated DRAM

M
vi
n M

vout

Gemmini

256 KB
Scratchpad

64 KB Accumulator

16 x 16
PE

Mesh

Compute

M
em

 In
st

.

Rocket
 CPU

Rocket Tile
RoCC
Cmd

Figure 3.1: Gemmini operations on our SoC with the WS dataflow.

• 1× Gemmini accelerator that is coupled to the Rocket core

• Crossbar bus that uses the TileLink [26] protocol

• Off-chip DRAM simulated with DRAMSim2 [27]

• No last-level cache memory

Gemmini, specifically, is configured to have the following hardware properties:

• 16 × 16 systolic array

• 256 KB int8 scratchpad memory

• 64 KB int32 accumulator memory

In this SoC, Gemmini is interfaced through the host Rocket CPU that can issue Gemmini instruc-

tions, through rocket co-processor (RoCC) commands, in addition to standard RISC-V instructions.

To manage data movement, the crossbar facilitates memory requests between Gemmini and simu-

lated DRAM. Gemmini does not interface with Rocket’s L1 DCache, and the SoC’s last-level cache

is removed from the memory hierarchy to prevent cache hits and misses from having an impact on

the latency and, by extension, energy consumption of Gemmini data movement instructions.

13

3.2 Model Construction

Table 3.1: Matrix dimension impact on Gemmini’s dynamic power for data movement.

Instruction Matrix Dimensions Bandwidth Avg. Dynamic Power

mvin 16 rows, 16 columns 256 elems / instruction 1.048 mW

mvin 16 rows, 64 columns 1024 elems / instruction 5.064 mW

Table 3.2: Matrix dimension impact on Gemmini’s dynamic power for computation.

Instruction Matrix Dimensions MAC Operations Avg. Dynamic Power

compute preloaded A: 16 × 16, B: 16 × 16 4096 ops / instruction 23.892 mW

compute preloaded A: 2 × 16, B: 16 × 16 512 ops / instruction 13.142 mW

compute preloaded A: 16 × 16, B: 16 × 2 512 ops / instruction 15.288 mW

compute preloaded A: 16 × 2, B: 2 × 16 512 ops / instruction 16.243 mW

compute preloaded A: 2 × 16, B: 16 × 2 64 ops / instruction 8.617 mW

We present two energy models to characterize the EPI for all non-configuration Gemmini instruc-

tions with a single hardware configuration: an ISA-based energy model serving as a baseline model

and a dimension-aware instruction-level (DAIL) energy model optimized for DNN accelerators. The

ISA-based energy model uses the same methodology as CPU ISA-based energy models, but applies

it to DNN accelerator ISAs. This model only considers EPI values based solely on instruction type

(see Table 2.1 for a list of instructions). Since DNN accelerator ISAs are significantly smaller than

CPU ISAs, the DAIL energy model considers multiple EPI values for the same instruction type,

focusing on the energy impact of different matrix dimensions specified in the instruction arguments.

Matrix dimension sizes can affect DNN accelerator energy consumption because they have a direct

impact on MAC utilization and data movement bandwidth. Tables 3.1 and 3.2 show the importance

of matrix dimensions to DNN accelerator dynamic power consumption.

To make these Gemmini energy models more generalizable, we only predict the dynamic energy

of modules that are common across other DNN accelerator architectures, including the scratchpad

and accumulator for data movement and mesh—the systolic array—for computation. As shown

in Figure 3.2, these three modules make up 85.7% of Gemmini’s average dynamic energy across

various workloads. Gemmini’s exclusive architectural features—including the internal DMA, ROB,

and TLB modules—are not considered for this energy model.

3.2.1 Microbenchmarks

14

Other
14.3%

Mesh
52.3%

Scratchpad
17.6%

Accumulator
15.8%

Average Energy Contribution By Module

Figure 3.2: Average dynamic energy contribution per Gemmini module for target workloads.

1 i n t 8 t A[DIM I] [DIM K] ;

2 i n t 8 t B[DIM K] [DIM J] ;

3 i n t 8 t C[DIM I] [DIM J] ;

4

5 unsigned long c y c l e s t a r t , cyc l e end ;

6 // Setup Code Here

7

8 c y c l e s t a r t = r e ad cy c l e s () ;

9 // Main Loop

10 f o r (i n t i = 0 ; i < 1000 ; i++) {
11 // Gemmini I n s t r u c t i o n s Here

12 }
13 cyc l e end = r e ad cy c l e s () ;

Listing 3.1: Microbenchmark code format

To characterize the dynamic energy of Gemmini’s instructions, we construct microbenchmarks that

repeatedly execute the same Gemmini instruction 1,000 times to produce a clear and consistent

activity period in which to extract EPI per module. Once the dynamic energy of the microbench-

mark is computed per module, the EPI can be calculated by dividing these energy values by 1,000.

To simplify the microbenchmarks:

• Gemmini is set to the WS dataflow

• D (bias) is excluded from the GEMM operation

15

• No activation functions are used

• All data movement transactions use int8 matrix elements

– For mvout instructions, which work with int32 accumulator data, values outside of the

int8 range are saturated to be 127 or -128

As shown in Table 3.3, there are four types of instructions that we evaluate: mvin, mvout, preload

and compute, and compute accumulated.

Table 3.3: Instructions used for microbenchmarks and their instruction arguments.

Instruction Type Key Instruction Arguments

Mvin mvin(src addr, dest sp addr, cols, rows)

Mvout mvout(src acc addr, dest addr, cols, rows)

Preload and Compute preload(B sp addr, C acc addr, B cols, B rows, C cols, C rows)

compute preloaded(A sp addr, A cols, A rows)

Compute Accumulated preload(NULL, C acc addr, 0, 0, C cols, C rows)

compute accumulated(A sp addr, A cols, A rows)

3.2.1.1 Mvin Microbenchmark

The mvin microbenchmarks move randomized int8 data into the scratchpad using the mvin instruc-

tion. For setup, the scratchpad is completely filled with randomized int8 data. In the main loop, the

mvin instruction is given a new scratchpad address on each iteration. Multiple microbenchmarks

are created to evaluate the energy impact of moving in different numbers of columns, ranging from

1 column to 64 columns, while the number of rows is kept constant at 16.

3.2.1.2 Mvout Microbenchmark

The mvout microbenchmarks move randomized, saturated int8 data out of the accumulator and

into main memory using the mvout instruction. For setup, the accumulator is completely filled

with randomized int32 data. In the main loop, the mvout instruction is given a new accumulator

address on each iteration. Multiple microbenchmarks are created to evaluate the energy impact of

moving out different numbers of columns, ranging from 1 column to 64 columns, while the number

of rows is kept constant at 16.

16

0 200 400 600 800 1000
Gemmini Instructions

0.0

0.1

0.2

0.3

0.4

0.5
Dy

na
m

ic
En

er
gy

 (u
J)

Matrix Multiplication
Multi-Layer Perceptron
Convolution

(a) Scratchpad

0 200 400 600 800 1000
Gemmini Instructions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dy
na

m
ic

En
er

gy
 (u

J)

Matrix Multiplication
Multi-Layer Perceptron
Convolution

(b) Accumulator

0 200 400 600 800 1000
Gemmini Instructions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Dy
na

m
ic

En
er

gy
 (u

J)

Matrix Multiplication
Multi-Layer Perceptron
Convolution

(c) Mesh

Figure 3.3: Gemmini instruction count and ground-truth dynamic energy per target workload.

3.2.1.3 Preload and Compute Microbenchmark

The preload and compute microbenchmarks do non-tiled matrix multiplications on randomized A

and B int8 matrices. For setup, the randomized A and B matrices are moved into the scratchpad.

In the main loop, the preload instruction sets the same output accumulator address for C and

reloads the same B matrix data into the mesh. Then, the compute preloaded instruction reloads

the same A matrix data into the mesh and recomputes C. Multiple microbenchmarks are created

to evaluate the energy impact of moving out different numbers of A rows, A columns (B rows), and

B columns, with each argument ranging from 1 to 16.

3.2.1.4 Compute Accumulated Microbenchmark

The compute accumulated microbenchmarks do non-tiled matrix multiplications on randomized

A and B int8 matrices. For setup, the randomized A matrix is moved into the scratchpad while

the B matrix is loaded into the mesh. In the main loop, the preload instruction sets the same

output accumulator address for C, but does not load a new matrix into the mesh. Then, the

compute accumulated instruction reloads the same A matrix data into the mesh and recomputes C

with the reused B matrix. Multiple microbenchmarks are created to evaluate the energy impact of

moving out different numbers of A rows, A columns (B rows), and B columns, with each argument

ranging from 1 to 16.

3.2.2 Target Workloads

We create validation benchmarks comprised of matrix multiplication and convolution workloads

so that we can compare their ground-truth dynamic energy against the predictions of our energy

17

models. Similar to the microbenchmark configuration, these target workloads use the WS dataflow,

exclude bias from computation, do not use activation functions, and only use INT8 matrix elements

for data movement. Workloads are separated into three classes:

• Single Matrix Multiplication

• Sequential Matrix Multiplication (Multi-Layer Perception Model)

• Multi-Channel 2-D Convolution

To ensure a variety of workload sizes and types, we create multiple benchmarks—each with different

matrix dimensions—for every workload class. For matrix multiplication workloads, the A and B

matrix sizes are unique per workload. For multi-layer perceptron workloads, the hidden layer

count, input layer dimensions, output layer dimensions, and hidden layer dimensions are unique

per workload. For convolution workloads, the input channel count, output channel count, input

matrix dimensions, and kernel matrix dimensions are unique for every workload.

3.2.3 ISA-based Energy Model

Table 3.4: Arguments used for each instruction type for ISA-based microbenchmarks.

Instruction Type Instruction Arguments

Mvin 16 rows, 64 columns

Mvout 16 rows, 64 columns

Preload and Compute A: 16 × 16, B: 16 × 16

Compute Accumulated A: 16 × 16, B: 16 × 16

The ISA-based energy model predicts the dynamic energy of the following modules:

• Scratchpad

• Accumulator

• PE Mesh (Systolic Array)

For each instruction type, only one corresponding microbenchmark is created to compute its EPI. As

shown in Table 3.4, the ISA-based energy model assumes maximum bandwidth per data movement

instruction and maximum MAC utilization per computation instruction. When evaluating the

18

0 20 40 60
Columns

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
Dy

na
m

ic
En

er
gy

 (u
J)

1e 3

(a) Scratchpad

0 20 40 60
Columns

4

2

0

2

4

Dy
na

m
ic

En
er

gy
 (u

J)

1e 2

(b) Accumulator

0 20 40 60
Columns

4

2

0

2

4

Dy
na

m
ic

En
er

gy
 (u

J)

1e 2

(c) Mesh

Figure 3.4: Regression for mvin instructions used to predict EPI for various matrix column sizes.

dynamic energy of validation benchmarks, every Gemmini instruction in the workload is counted

to determine the amount of each Gemmini instruction type. Then, each instruction type multiplies

its EPI, as determined by the microbenchmarks, with its instruction count in the workload. The

validation benchmark’s total dynamic energy is calculated by summing up the overall dynamic

energy contribution by each Gemmini instruction type on a per-module basis.

E =
∑
i∈I

∑
m∈M

ni × EPIi,m

I = {mvin, mvout, compute preloaded, compute accumulated}

M = {Scratchpad,Accumulator,PE Mesh}

(3.1)

3.2.4 Dimension-Aware Instruction-Level (DAIL) Energy Model

Table 3.5: Matrix dimensions, from instruction arguments, and their associated EPI, derived from
microbenchmarks, are used to train a linear regression model to predict EPI for any matrix size.

Instruction Type Regression Variables

Mvin rows, cols

Mvout rows, cols

Preload and Compute A rows, A cols, B cols

Compute Accumulated A rows, A cols, B cols

Similar to the ISA-based energy model, the DAIL energy model also predicts the dynamic energy

of the scratchpad, accumulator, and PE mesh modules. Since there is a significant energy differ-

ence between Gemmini instructions of the same type but with different matrix dimensions in the

19

instruction arguments, we use a linear regression model to determine the EPI of an individual in-

struction. For each instruction type, multiple microbenchmarks are created, each microbenchmark

differing only in their instruction arguments. The linear regression model is trained on the mi-

crobenchmark’s matrix dimensions and the corresponding EPI so that we can provide unique EPI

estimates for any possible combination of arguments for that instruction type. Table 3.5 shows the

regression parameters for each instruction type. An example of regression analysis can be seen in

Figure 3.4 for mvin instructions. For validation benchmarks, dynamic energy prediction is nearly

identical to the ISA-based energy model, but extra steps are required to determine an instruction

type’s dynamic energy contribution:

1. For each instruction type, sum up the dynamic energy contribution by each unique combina-

tion of arguments of that same instruction type

(a) Instruction counting is done at the argument-level granularity, meaning two instructions

can only be counted together if they have identical instruction types and arguments

(b) An instruction’s EPI is predicted from its respective instruction type’s regression model,

with its respective instruction arguments being fed as inputs to the model

(c) Similar to the ISA-based energy model, an EPI regression model is created per module

2. Once dynamic energy contribution is determined for all instruction types, sum them up

(a) This step is identical to how the ISA-based energy model does it

E =
∑
i∈I

∑
args

∑
m∈M

ni(args) × EPIi,m(args)

I = {mvin, mvout, compute preloaded, compute accumulated}

mvin and mvout args ∈ {(x, y) ∈ N× N | 1 ≤ x ≤ 16, 1 ≤ y ≤ 64}

compute preloaded and compute accumulated args ∈ {(x, y, z) ∈ N3 | 1 ≤ x, y, z ≤ 16}

M = {Scratchpad,Accumulator,PE Mesh}

(3.2)

20

Chapter 4

Instruction-Level Energy Model for

Gemmini

4.1 Toolflow

A variety of industry and Chipyard ecosystem tools are utilized to create an instruction-level energy

model for Gemmini. Joules estimations are utilized as the ground-truth dynamic energy to compare

Software

Microbenchmark

Validation Workload

Chipyard

Hammer

RTL Sim

Intel 16 PDK

Joules

Binary

Gemmini HW Generator

Waveform

Standard Cells

SoC RTL

Binary
EPI Model

Instruction Count

Microbenchmark EPI

Microbenchmark Dynamic Energy

X

Spike

All workload
instructions

Predicted
Energy

Figure 4.1: An architecture diagram of instruction-level energy modeling for Gemmini, utilizing
Chipyard [6], Hammer [7], Spike [8], and Joules [3]

21

against our models. Spike [8], a RISC-V ISA simulator that supports Gemmini instructions, is

utilized as a functional simulator to extract Gemmini instruction counts from target workloads.

Hammer [7] is a Chipyard tool that generates TCL scripts to run RTL simulation and Joules power

estimation. Figure 4.1 shows how all these tools interact with each other. The following are detailed

steps for how instruction-level energy modeling works for Gemmini:

Model Creation

1. Chipyard generates RTL for the SoC configuration containing Gemmini

2. Microbenchmarks are compiled and run through RTL simulation to create a waveform

3. Microbenchmarks are run through Joules to determine dynamic energy consumption

(a) Joules takes in RTL simulation waveforms and post-synthesis gate-level designs as inputs

4. EPI is computed for each module from microbenchmark dynamic energy consumption

5. (DAIL energy model only) Linear regression models are created to predict EPI for each

instruction type based on instruction arguments for each module

(a) This model is trained on EPI values from microbenchmarks of the same instruction type

(b) Every module has its own EPI linear regression model

Model Validation

1. Validation benchmarks are compiled and run through Spike to generate a list of Gemmini

instruction commits

2. For each instruction type and (DAIL energy model only) set of instruction arguments, mul-

tiply the instruction count with the pre-computed EPI from model creation for each module

(a) The DAIL energy model uses the linear regression prediction as the EPI for an instruction

4.1.1 Dynamic Energy Computation

Joules provides detailed reports and plots that estimate the static and dynamic power consump-

tion of software workloads over time. To determine the dynamic energy of microbenchmarks and

validation benchmarks, we use Joules to create power plots for each module. Dynamic energy is

computed for workloads by multiplying the average dynamic power across the entire power plot

with its latency, also found in the power plot.

22

Table 4.1: Gemmini aggregated baseline power consumption by module.

Module Baseline Power (mW)

Scratchpad 0.0494

Accumulator 1.5294

PE Mesh 2.1804

Gemmini 14.6065

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Simulation Time (ns) 1e5

0

5

10

15

20

25

Po
we

r (
m

W
)

Mesh Combined Power

(a) Original Power Plot

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Simulation Time (ns) 1e5

0

5

10

15

20

Po
we

r (
m

W
)

Mesh Combined Power

(b) Baseline Power Removed

Figure 4.2: Power plot visualization for microbenchmarks.

Initial experimentation found that even software workloads without Gemmini instructions cause

Gemmini to consume a non-negligible amount of both static and dynamic power. The presence of

static power was expected, but these results showed that a small, non-negligible amount of activity

occurs within Gemmini even without it being explicitly invoked via instructions. Thus, a baseline

Gemmini power consumption that aggregates the static and baseline dynamic power consumption

for each module was determined by running a simple program, without Gemmini instructions,

through Joules. The exact power consumption values can be seen in Table 4.1.

With the baseline power for each Gemmini module determined, the dynamic power is computed

for both microbenchmarks and validation benchmarks by subtracting the baseline power from their

overall power consumption, eliminating both the static power consumption and baseline dynamic

power consumption that persist regardless of the workload. Once a workload’s power plot contains

only dynamic power, its dynamic energy can be computed. Figure 4.2 shows the impact of removing

baseline power from a microbenchmark’s mesh module power plot.

Pbaseline = Pstatic + Pdynamic baseline mW

Pworkload, dynamic = Pworkload, joules − Pbaseline mW

23

Table 4.2: ISA-based energy model Mean Absolute Percentage Error (MAPE) and 95% confidence
interval of validation workload dynamic energy predictions per module.

Validation Workload Scratchpad Accumulator PE Mesh Combined

Matrix Multiplication 0.31 ± 0.16 0.07 ± 0.04 0.10 ± 0.07 0.12 ± 0.07

Multi-Layer Perceptron 0.33 ± 0.12 0.07 ± 0.04 0.10 ± 0.07 0.11 ± 0.07

Convolution 2.05 ± 0.96 1.74 ± 2.58 1.36 ± 0.82 1.44 ± 1.09

Overall 0.61 ± 0.31 0.35 ± 0.46 0.31 ± 0.24 0.34 ± 0.26

Table 4.3: DAIL energy model Mean Absolute Percentage Error (MAPE) and 95% confidence
interval of validation workload dynamic energy predictions per module.

Validation Workload Scratchpad Accumulator PE Mesh Combined

Matrix Multiplication 0.21 ± 0.11 0.04 ± 0.04 0.09 ± 0.06 0.07 ± 0.05

Multi-Layer Perceptron 0.18 ± 0.11 0.04 ± 0.03 0.11 ± 0.07 0.08 ± 0.06

Convolution 0.80 ± 0.36 0.10 ± 0.05 0.13 ± 0.11 0.24 ± 0.12

Overall 0.29 ± 0.12 0.05 ± 0.02 0.10 ± 0.05 0.10 ± 0.05

4.2 Model Evaluation

When validating against target workloads, the ISA-based energy model achieved a Mean Absolute

Percentage Error (MAPE) of 34%, with a 95% confidence interval of [8%, 60%] for its dynamic

energy predictions. On the other hand, the DAIL energy model achieved a MAPE of 10%, with

a 95% confidence interval of [5%, 15%] for its dynamic energy predictions. MAPE per module is

depicted in Table 4.2 for the ISA-based energy model and Table 4.3 for the DAIL energy model.

The effectiveness of the DAIL energy model over the baseline ISA-based energy model for Gem-

mini energy prediction shows that there is a significant distinction between the sub-fields of DNN

accelerator energy modeling and CPU energy modeling. By specifically targeting DNN acceler-

ator architectures, the DAIL energy model was able to better capture the behavior of Gemmini

programs, especially lower utilization ones such as convolution workloads. Furthermore, the DAIL

energy model slightly improved precision across all modules, effectively decreasing the range of the

95% confidence interval. These results show the effectiveness of creating instruction-level energy

models for DNN accelerators through the methodology that we provide.

4.2.1 ISA-based Energy Model

Since the ISA-based energy model differentiated between Gemmini instructions only by type, one

EPI value is assigned per instruction type. Instruction parameters used for these microbenchmarks

are listed in Table 3.4 and EPI values per module are included in Table 4.4.

24

Table 4.4: ISA-based energy model’s EPI for each instruction type per module.

Instruction Type Spad EPI (uJ) Acc EPI (uJ) Mesh EPI (uJ) Combined (uJ)

Mvin 2.19 ×10−3 0 0 2.19 ×10−3

Mvout 6.72 ×10−5 4.98 ×10−4 0 5.65 ×10−4

Preload and Compute 5.59 ×10−4 7.53 ×10−4 2.73 ×10−3 4.04 ×10−3

Compute Accumulated 5.60 ×10−4 7.60 ×10−4 2.67 ×10−3 3.99 ×10−3

0 200 400 600 800 1000
Gemmini Instructions

0

50

100

150

200

250

300

350

En
er

gy
 P

re
di

ct
io

n
Er

ro
r (

%
)

Matrix Multiplication
Multi-Layer Perceptron
Convolution

(a) Scratchpad

0 200 400 600 800 1000
Gemmini Instructions

100

0

100

200

300

400

500

En
er

gy
 P

re
di

ct
io

n
Er

ro
r (

%
)

Matrix Multiplication
Multi-Layer Perceptron
Convolution

(b) Accumulator

0 200 400 600 800 1000
Gemmini Instructions

0

50

100

150

200

250

En
er

gy
 P

re
di

ct
io

n
Er

ro
r (

%
)

Matrix Multiplication
Multi-Layer Perceptron
Convolution

(c) Mesh

Figure 4.3: ISA-based energy model Mean Percentage Error (MPE) per module and Gemmini
instruction counts for target workloads.

Experimental results show that generic ISA-based energy modeling, common for CPU designs, is

much less effective for DNN accelerators, where MAC utilization and instruction bandwidth have

a substantial impact on dynamic energy. With a high MAPE and spread, the ISA-based energy

model faces considerable difficulties modeling the dynamic energy of DNN accelerators.

4.2.2 DAIL Energy Model

The DAIL energy model significantly improves dynamic energy predictions for convolution work-

loads, with a 6.0× reduction of MAPE and a 9.1× reduction of spread for the 95% confidence

interval. Although the DAIL energy model improves prediction accuracy for the scratchpad mod-

ule, it still possesses a high MAPE of 29% when compared to the MAPE of the accumulator (5%)

and PE mesh (10%) modules. Despite this, the DAIL energy model improves upon the prediction

accuracy of the baseline ISA-based energy model, with a 90% overall accuracy.

The major sources of error come from convolution workloads and the scratchpad module. These

errors can compound, with scratchpad dynamic energy predictions for convolution workloads still

possessing a MAPE of 80%, with a 95% confidence interval of [44%, 116%], when using the DAIL

model. For convolution workloads, this error likely comes from its exceptionally low Gemmini uti-

lization, meaning that the error would reduce with larger convolutions. For the scratchpad module,

25

0 200 400 600 800 1000
Gemmini Instructions

0

20

40

60

80

100

En
er

gy
 P

re
di

ct
io

n
Er

ro
r (

%
)

Matrix Multiplication
Multi-Layer Perceptron
Convolution

(a) Scratchpad

0 200 400 600 800 1000
Gemmini Instructions

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

En
er

gy
 P

re
di

ct
io

n
Er

ro
r (

%
)

Matrix Multiplication
Multi-Layer Perceptron
Convolution

(b) Accumulator

0 200 400 600 800 1000
Gemmini Instructions

20

10

0

10

20

En
er

gy
 P

re
di

ct
io

n
Er

ro
r (

%
)

Matrix Multiplication
Multi-Layer Perceptron
Convolution

(c) Mesh

Figure 4.4: DAIL energy model Mean Percentage Error (MPE) per module and Gemmini in-
struction counts for target workloads.

Table 4.5: Times associated with data generation, training, and prediction.

ISA-based Energy Model DAIL Energy Model Joules Evaluation

Data Generation Time 8 hours 90 hours N/A

Training Time 76.71 ms 866.56 ms N/A

Prediction Time 40.75 ms 41.41 ms 3 hours

this error likely comes from additional overhead from microbenchmarks that cause the scratchpad

EPI to increase for some—if not all—Gemmini instructions, resulting in an over-prediction of over-

all scratchpad dynamic energy. Without changing the methodology, updating microbenchmarks

that use the scratchpad would see a reduction in error.

4.3 Model Usability

The DAIL energy model for Gemmini has an accuracy close to Joules, the ground-truth dynamic

energy evaluator, but it can predict dynamic energy consumption significantly faster. Table 4.5

shows the time for each of the three steps. Data generation time was evaluated on a single run for

each due to the significant amount of time it took to generate all ground-truth dynamic energy data

with Joules. Model training—building the instruction-level energy model with generated data—and

prediction time—instruction counting and using the energy model—was averaged across 10 runs.

Although there are significant differences in data generation and training time between the ISA-

based and DAIL energy models, both models predict dynamic energy consumption significantly

faster than Joules.

26

Chapter 5

Conclusion

In this work, we presented a methodology for designing instruction-level energy models for DNN

accelerators. By creating instruction-level energy models for the Gemmini accelerator, including

the ISA-based and DAIL energy models, we showed that this methodology can be applied to

a real DNN accelerator. With the ISA-based energy model serving as a baseline energy model

inspired by work from CPU energy modeling, we outperformed it with the DAIL energy model

and reduced the overall benchmark MAPE by 3.4× and the 95% confidence interval range by 5.2×.

For convolution workloads, where the ISA-based energy model significantly over-predicted dynamic

energy consumption compared to other workloads, the DAIL energy model reduced the MAPE by

6.0× and the 95% confidence interval range by 9.1×.

The DAIL energy model, created to tackle the intricacies of DNN accelerator architectures, performs

with an average accuracy of 90% with a 95% confidence interval of [85%, 95%]. The DAIL energy

model’s improvement over the baseline ISA-based energy model shows that CPU energy modeling

techniques do not completely transfer over to DNN accelerator energy modeling. Furthermore,

due to the speed and accuracy of the DAIL model, this work shows that DNN accelerator energy

models can have the speed of analytical architectural models, like Timeloop, with an accuracy

remarkably close to the accuracy of industry tools, like Joules. With this work, we bridge the gap

between architectural and microarchitectural DNN accelerator energy models to empower software

developers to make workloads for DNN accelerators more energy-efficient than ever before.

27

Bibliography

[1] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash, Jerry

Zhao, Daniel Grubb, Harrison Liew, Howard Mao, Albert Ou, Colin Schmidt, Samuel Steffl,

John Wright, Ion Stoica, Jonathan Ragan-Kelley, Krste Asanovic, Borivoje Nikolic, and

Yakun Sophia Shao. Gemmini: Enabling systematic deep-learning architecture evaluation

via full-stack integration. In 2021 58th ACM/IEEE Design Automation Conference (DAC),

pages 769–774, 2021. doi: 10.1109/DAC18074.2021.9586216.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-level power

analysis and optimizations. In Proceedings of 27th International Symposium on Computer

Architecture (IEEE Cat. No.RS00201), pages 83–94, 2000.

[3] Joules rtl power solution. URL https://www.cadence.com/en_US/home/tools/

digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html.

[4] Primepower: Rtl to signoff power analysis. URL https://www.synopsys.com/

implementation-and-signoff/signoff/primepower.html.

[5] Voltus ic power integrity solution. URL https://www.cadence.

com/en_US/home/tools/digital-design-and-signoff/silicon-signoff/

voltus-ic-power-integrity-solution.html.

[6] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison

Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, Paul Rigge, Colin Schmidt,

John Wright, Jerry Zhao, Yakun Sophia Shao, Krste Asanović, and Borivoje Nikolić. Chipyard:

Integrated design, simulation, and implementation framework for custom socs. IEEE Micro,

40(4):10–21, jul 2020. ISSN 0272-1732. doi: 10.1109/MM.2020.2996616. URL https://doi.

org/10.1109/MM.2020.2996616.

[7] Harrison Liew, Daniel Grubb, John Wright, Colin Schmidt, Nayiri Krzysztofowicz, Adam

Izraelevitz, Edward Wang, Krste Asanović, Jonathan Bachrach, and Borivoje Nikolić. Ham-

mer: a modular and reusable physical design flow tool: invited. In Proceedings of the 59th

28

https://www.cadence.com/en_US/home/tools/ digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.cadence.com/en_US/home/tools/ digital-design-and-signoff/power-analysis/joules-rtl-power-solution.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://www.synopsys.com/implementation-and-signoff/signoff/primepower.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/silicon-signoff/voltus-ic-power-integrity-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/silicon-signoff/voltus-ic-power-integrity-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/silicon-signoff/voltus-ic-power-integrity-solution.html
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1109/MM.2020.2996616

Bibliography

ACM/IEEE Design Automation Conference, DAC ’22, page 1335–1338, New York, NY, USA,

2022. Association for Computing Machinery. ISBN 9781450391429. doi: 10.1145/3489517.

3530672. URL https://doi.org/10.1145/3489517.3530672.

[8] Màrius Montón. A risc-v systemc-tlm simulator, 2020. URL https://arxiv.org/abs/2010.

10119.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet Classification with Deep

Convolutional Neural Networks. In Proceedings of the Conference on Neural Information

Processing Systems (NeurIPS), 2012.

[10] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image

Recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

 L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the Conference

on Neural Information Processing Systems (NeurIPS), 2017.

[13] OpenAI. Chatgpt. https://openai.com/blog/chat-gpt-3-launched/, 2020. Accessed:

March 15, 2025.

[14] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. Eyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks. IEEE Journal of Solid-State

Circuits, 52(1):127–138, 2017. doi: 10.1109/JSSC.2016.2616357.

[15] Ben Keller, Rangharajan Venkatesan, Steve Dai, Stephen G. Tell, Brian Zimmer, William J.

Dally, C. Thomas Gray, and Brucek Khailany. A 17–95.6 tops/w deep learning inference

accelerator with per-vector scaled 4-bit quantization for transformers in 5nm. In 2022 IEEE

Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pages 16–17,

2022. doi: 10.1109/VLSITechnologyandCir46769.2022.9830277.

[16] Pouya Houshmand, Giuseppe M. Sarda, Vikram Jain, Kodai Ueyoshi, Ioannis A. Papistas,

Man Shi, Qilin Zheng, Debjyoti Bhattacharjee, Arindam Mallik, Peter Debacker, Diederik

Verkest, and Marian Verhelst. Diana: An end-to-end hybrid digital and analog neural network

soc for the edge. IEEE Journal of Solid-State Circuits, 58(1):203–215, 2023. doi: 10.1109/

JSSC.2022.3214064.

29

https://doi.org/10.1145/3489517.3530672
https://arxiv.org/abs/2010.10119
https://arxiv.org/abs/2010.10119
https://openai.com/blog/chat-gpt-3-launched/

Bibliography

[17] Gaofeng Zhou, Jianyang Zhou, and Haijun Lin. Research on nvidia deep learning accelerator. In

2018 12th IEEE International Conference on Anti-counterfeiting, Security, and Identification

(ASID), pages 192–195, 2018. doi: 10.1109/ICASID.2018.8693202.

[18] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas

Avižienis, John Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in a scala

embedded language. In DAC Design Automation Conference 2012, pages 1212–1221, 2012.

doi: 10.1145/2228360.2228584.

[19] Tien-Ju Yang, Yu-Hsin Chen, Joel Emer, and Vivienne Sze. A method to estimate the energy

consumption of deep neural networks. In 2017 51st Asilomar Conference on Signals, Systems,

and Computers, pages 1916–1920, 2017. doi: 10.1109/ACSSC.2017.8335698.

[20] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A. Ying,

Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany, Stephen W. Keckler, and Joel

Emer. Timeloop: A systematic approach to dnn accelerator evaluation. In 2019 IEEE In-

ternational Symposium on Performance Analysis of Systems and Software (ISPASS), pages

304–315, 2019. doi: 10.1109/ISPASS.2019.00042.

[21] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. Accelergy: An architecture-level energy

estimation methodology for accelerator designs. In 2019 IEEE/ACM International Confer-

ence on Computer-Aided Design (ICCAD), pages 1–8, 2019. doi: 10.1109/ICCAD45719.2019.

8942149.

[22] Charles Hong, Qijing Huang, Grace Dinh, Mahesh Subedar, and Yakun Sophia Shao. Dosa:

Differentiable model-based one-loop search for dnn accelerators. In Proceedings of the 56th An-

nual IEEE/ACM International Symposium on Microarchitecture, MICRO ’23, page 209–224,

New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400703294. doi:

10.1145/3613424.3623797. URL https://doi.org/10.1145/3613424.3623797.

[23] Yakun Sophia Shao and David Brooks. Energy characterization and instruction-level energy

model of intel’s xeon phi processor. In International Symposium on Low Power Electronics

and Design (ISLPED), pages 389–394, 2013. doi: 10.1109/ISLPED.2013.6629328.

[24] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin, Christo-

pher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, Sagar Karandikar,

Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin Maas, Albert Mag-

yar, Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian Richards, Colin

Schmidt, Stephen Twigg, Huy Vo, and Andrew Waterman. The rocket chip generator. Tech-

nical Report UCB/EECS-2016-17, Apr 2016. URL http://www2.eecs.berkeley.edu/Pubs/

TechRpts/2016/EECS-2016-17.html.

30

https://doi.org/10.1145/3613424.3623797
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

Bibliography

[25] Zhiping Wang and W. Rhett Davis. An instruction-level power and energy model for the rocket

chip generator. In 2021 IEEE/ACM International Symposium on Low Power Electronics and

Design (ISLPED), pages 1–6, 2021. doi: 10.1109/ISLPED52811.2021.9502485.

[26] Size Zheng, Jin Fang, Xuegui Zheng, Qi Hou, Wenlei Bao, Ningxin Zheng, Ziheng Jiang,

Dongyang Wang, Jianxi Ye, Haibin Lin, Li-Wen Chang, and Xin Liu. Tilelink: Generating

efficient compute-communication overlapping kernels using tile-centric primitives, 2025. URL

https://arxiv.org/abs/2503.20313.

[27] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dramsim2: A cycle accurate memory

system simulator. IEEE Computer Architecture Letters, 10(1):16–19, 2011. doi: 10.1109/

L-CA.2011.4.

31

https://arxiv.org/abs/2503.20313

	signed_thesis_title_page
	thesis_content
	List of Figures
	List of Tables
	Acknowledgements
	1 Introduction
	2 Background
	2.1 Domain-Specific Processors
	2.1.1 Deep Neural Network Accelerators
	2.1.2 Gemmini

	2.2 Chip-Level Power and Energy
	2.2.1 Static Energy
	2.2.2 Dynamic Energy

	2.3 Prior Work
	2.3.1 DNN Accelerator Energy Models
	2.3.2 CPU Instruction-Level Energy Models
	2.3.3 Power Estimation Tools

	3 Energy Model Overview
	3.1 Hardware Configuration
	3.2 Model Construction
	3.2.1 Microbenchmarks
	3.2.1.1 Mvin Microbenchmark
	3.2.1.2 Mvout Microbenchmark
	3.2.1.3 Preload and Compute Microbenchmark
	3.2.1.4 Compute Accumulated Microbenchmark

	3.2.2 Target Workloads
	3.2.3 ISA-based Energy Model
	3.2.4 Dimension-Aware Instruction-Level (DAIL) Energy Model

	4 Instruction-Level Energy Model for Gemmini
	4.1 Toolflow
	4.1.1 Dynamic Energy Computation

	4.2 Model Evaluation
	4.2.1 ISA-based Energy Model
	4.2.2 DAIL Energy Model

	4.3 Model Usability

	5 Conclusion
	Bibliography

