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Abstract

Controlled Preemption: Amplifying Side-Channel Attacks from Userspace

by

Yongye Zhu

Master of Science in Computer Science

University of California, Berkeley

Associate Professor Christopher W. Fletcher, Chair

Microarchitectural side channels are an ongoing threat in today’s systems. Yet, many side-
channel methodologies su!er from low temporal resolution measurement, which can either
preclude or significantly complicate an attack.

This paper introduces Controlled Preemption, an attack primitive enabling a single unpriv-
ileged (user-level) attacker thread to repeatedly preempt a victim thread after colocating
with that victim thread on the same logical core. Between preemptions, the victim thread
executes zero to several instructions—su”ciently few to enable high-resolution side channel
measurements.

The key idea in Controlled Preemption is to exploit scheduler fairness heuristics. Namely,
that modern thread schedulers give a thread A the ability to preempt another thread B
until a fairness tripwire (signaling that A is starving B) fires. We show how this idea
enables hundreds of short preemptions before tripping the fairness tripwire is robust to noise
and applies to both the Linux CFS and EEVDF schedulers. We also develop a technique
that helps colocate the attacker and victim threads onto the same logical core, an attacker
capability overlooked by prior work.

Our evaluation tests Controlled Preemption in the context of several di!erent victim pro-
grams, victim privilege levels (inside and outside of Intel SGX) and choices of side chan-
nel. In each attack, we demonstrate results that are competitive with prior work but make
fewer assumptions (e.g., require only user-level privilege or require fewer colocated attacker
threads).
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Chapter 1

Introduction

Microarchitectural side-channel attacks exploit the hardware resources shared between mu-
tually distrusting programs [41, 15, 24, 73, 25, 23, 2, 39, 72]. In such attacks, an attacker
program monitors a victim program’s utilization of shared resources to infer sensitive victim
information like cryptographic keys [73, 15, 25, 20, 10, 74, 45, 24]. These attacks pose a
serious threat to both commercial multi-tenant cloud environments [53, 29, 80] and local
client environments [41, 56, 39].

A fundamental characteristic in any microarchitectural side-channel attack is its tempo-
ral resolution, i.e., the number of victim instructions that execute/retire in between attacker
measurements. Higher temporal resolution enables new attacks or otherwise significantly re-
duces the requirements of existing attacks. Consider for example the T-table AES first-round
attack [48, 25]. Given perfect temporal resolution, a cache-timing attack on the T-Tables
can extract the key after the AES routine runs a single time. By contrast, an attack with low
temporal resolution (e.g., concurrently/continuously measuring the channel or measuring the
channel once after the AES routine completes) requires 100s [52] to 1000s [77] of victim runs
(due to cache pollution from later rounds and other sources of accumulated noise).

This paper advances a line of research that enables extremely high temporal resolution
side channel analysis, i.e., giving the attacker the ability to nearly single step the victim
program and perform side channel measurements in between each step. This line of work
is based on thread preemption. In a nutshell, the attacker coerces the OS kernel to inter-
leave the attacker and victim threads’ executions onto the CPU, giving the attacker the
opportunity to monitor shared states in between short periods of victim execution.

Existing work on malicious preemption has limitations. For example, works targeting
the Enclave threat model [26, 45, 38, 60, 61] (e.g., SGX Step [61]) enable best-case temporal
resolution and minimal noise, but require supervisor privilege. While there does exist a
parallel line of work that enables similar capabilities from userspace [25, 7, 54, 6] (that
started with Cache Games [25]), it requires a large number (e.g., from 10s to 100s) of attacker
threads to assist in preemption. Requiring a large number of threads is disadvantageous
for a number of reasons. More threads make the attack less stealthy and may even be
disallowed depending on the system (e.g., through ulimit). Further, in practice, attacks
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Figure 1.1: Techniques to enable high temporal resolution channel-agnostic side-channel
analysis from userspace.

involving multiple threads are di”cult to implement (e.g., due to thread synchronization
requirements) which itself results in coarser-grain temporal resolution [25, 7].
This paper. We present Controlled Preemption, a technique that enables a single unpriv-
ileged attacker thread to repeatedly preempt a victim thread once it has been colocated to
the victim’s logical core.

To understand Controlled Preemption, we first review why prior work on preemption
from userspace requires many threads. See Chapter 1.1a. Assume a single-core system for
simplicity. The idea in prior work is for the attacker to spawn and then sleep a thread (say
A1) so that its scheduling priority increases to the point where, on wake up, it preempts the
victim thread V . Conceptually, a thread’s scheduling priority is set to that of the thread
that gets preempted on wake up. Thus, once an attacker thread preempts the victim, it
needs to sleep again to “recharge” its priority. If the attacker wishes to preempt the victim
multiple times, it requires multiple threads (A1, A2, etc.). Once thread A1 preempts V and
begins to recharge, thread A2 is responsible for the next preemption, at which point it begins
to recharge, and so on.

The key observation enabling Controlled Preemption is general and applies to multiple
thread schedulers: To improve system responsiveness, a scheduler will strive to allow a well-
slept thread A to immediately preempt a running thread V , even if V has not completed
its minimum scheduling quantum. Further, subject to fairness checks, a scheduler will al-
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low thread A to repeat the above process. The latter sentence is key to our single-thread
attack. Through careful inspection of current scheduler designs, we find that scheduler fair-
ness heuristics create what we call a preemption budget which enables an attacker thread
to repeatedly preempt a victim up to the point where the amount of attacker CPU time
exceeds a threshold (at which point the scheduler determines that the attacker is starving
the victim).

Based on the notion of a preemption budget, we instantiate and thoroughly characterize
a Controlled Preemption primitive and show that it enables a colocated single attacker
thread to nearly single step1 a victim thread hundreds of times without recharging, as shown
in Chapter 1.1b. We show that the notion applies to both the Linux Completely Fair
Scheduler (CFS) [47] and the more-recent Earliest Eligible Virtual Deadline First (EEVDF)
scheduler [58, 12].

Note that in multicore systems, the attacker additionally needs a technique to colocate
the attacker thread with the victim thread on the same logical core. Prior work ignores
this step, either limiting their attacks to a single-core system [25] or assuming the attacker
and victim threads are pinned to the same core throughout the attack [54, 7, 6]. Both of
these assumptions are unrealistic. In this work, we develop a simple yet e!ective core-level
colocation technique that exploits the scheduler’s load-balancing logic.

Finally, we demonstrate three proof-of-concept attacks leveraging Controlled Preemption.
These attacks cover a range of side channels, victim programs and victim program privilege
levels. Specifically, we show that the attacker can use Controlled Preemption to mount an
AES T-table first-round attack using Flush+Reload [73]. This attack achieves the same
attack e”ciency as prior work [7] (leaking the upper nibbles of each AES key byte in ↑ 5
victim runs) but requires only one colocated attacker thread instead of 40 threads. We then
use Controlled Preemption to demonstrate an attack on an SGX victim to extract sensitive
information that can lead to full RSA key recovery using a Prime+Probe on the last-level
cache [41]. To our knowledge, this is the first demonstration of an SGX Step-like attack
mounted from userspace. Finally, we utilize Controlled Preemption to recover the secret-
dependent control flow of an SGX victim using a BTB side channel [75], providing confidence
that Controlled Preemption can be applied to multiple side channels.

In summary, this paper makes the following contributions:

• We develop Controlled Preemption, the first userspace framework that nearly single
steps a victim thread using as few as one colocated attacker thread.

• We comprehensively characterize the Controlled Preemption primitive in the context
of two widely-deployed popular thread schedulers (the Linux CFS and EEVDF sched-
ulers). To our knowledge, we are the first to perform any characterization of user-level
malicious preemption using the EEVDF scheduler.

1
As detailed in Chapter 4.3, the victim thread executes only a few instructions between preemptions. In

fact, we show that a majority of preemptions result in the victim executing one instruction when Controlled

Preemption is combined with performance degradation.
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• We develop an attack technique that colocates the attacker and victim threads onto
the same logical core.

• We demonstrate three proof-of-concept attacks that show how Controlled Preemption
can improve existing attacks on multiple victim programs, inside and outside of SGX
and across multiple side channel types.

We have open sourced an implementation of Controlled Preemption, as well as this pa-
per’s evaluation, here: https://github.com/FPSG-UIUC/Controlled-Preemption.
Responsible disclosure. We disclosed our findings to the Linux kernel security team,
who confirmed our findings and designated Controlled Preemption as a low-priority threat.
They recommended enabling NO WAKEUP PREEMPTION to prevent the waking attacker thread
from immediately preempting the victim thread at the cost of system responsiveness.

Parts of this thesis have been published in the following papers: [82].
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Chapter 2

Background

2.1 Linux Completely Fair Scheduler

In Linux, threads that are ready to execute but not scheduled (or runnable threads) are
stored in a per-logical core software structure named the runqueue. The thread scheduler is
responsible for deciding when to preempt the current thread and switch to another in the
runqueue. In this paper, we focus on the widely used Completely Fair Scheduler (CFS) [47,
32] and discuss the transferability of our techniques to the latest Earliest Eligible Virtual
Deadline First (EEVDF) scheduler in Chapter 4.5.

In the CFS, each thread is assigned a virtual runtime (vruntime). When a thread ex-
ecutes, its vruntime is incremented by #ω = ϑ#t, where #t is the thread’s real-world
execution time and ϑ is the increment rate determined by the thread’s priority. ϑ = 1 under
the default priority. A high priority thread has a small ϑ value, allowing the thread to have
a longer execution time for the same amount of #ω . In this paper, we denote vruntime by
ω and real-world time by t.

The CFS achieves fair scheduling by ensuring that the di!erence between threads’ vrun-
times, in the local runqueue, does not exceed the kernel parameter sysctl sched latency (Sbnd

for short). We call this policy the fair scheduling invariant. The exact value of Sbnd depends
on the total number of cores in the system, and is set to 24ms in our evaluated system
(Chapter 2.1).

The CFS’s exact scheduling behavior depends on many factors. Using Linux 6.5 as
an example, we now briefly overview the characteristics that are important for our work.
Complementary to the runqueue, threads that are not ready to execute, e.g., are waiting on
blocking IO events or are asleep, are stored in a shared waitqueue.1 Then, at a high level,
the CFS can change which thread is running on a given logical core in three circumstances:

• Scenario 1. When, within the local runqueue, a thread’s vruntime exceeds another
thread’s vruntime by Sbnd.

1
To simplify the presentation, we assume a single system-wide waitqueue. In reality, the system uses

di!erent waitqueues depending on the event type that is blocking a given thread.
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• Scenario 2. When a thread wakes up, i.e., is removed from the waitqueue and enters
the local runqueue.

• Scenario 3. When a thread becomes blocked, i.e., is removed from the local runqueue
and enters the waitqueue.

We discuss each in detail below.
Scenario 1: Runqueue stationary. First consider the case when no threads are moving
between the runqueue and the waitqueue. Here, the CFS will select the thread with the
smallest vruntime in the runqueue and schedule the thread onto the hardware. We call this
thread A. To avoid excessive context switching, A is allowed to execute for a minimum time
slice configured by sysctl sched min granularity (or Smin for brevity). Smin is 3ms in our
evaluated system. Once A runs for Smin time, the CFS checks whether the fair scheduling
invariant is violated. If so, A is descheduled, and the CFS chooses the thread with the
smallest vruntime to schedule. Otherwise, A is scheduled again. As will be discussed in the
next scenario, this minimum time slice is only enforced in Scenario 1. This detail will be
critical for our work.
Scenario 2: A thread is waking up. Now consider when a thread B wakes up, B
is removed from the waitqueue and is added to the runqueue. Since B was blocked by an
IO request or sleep, B’s vruntime can be significantly behind the vruntime of other threads.
Consequently, B could monopolize the CPU for a long time before its vruntime catches up
with others. To prevent this undesirable behavior when awakening B, the CFS assigns B an
adjusted vruntime of

ωwakeup = max(ωmin → Sslack, ωsleep), (2.1)

where ωmin is the smallest vruntime among existing threads in the local runqueue, Sslack is a
fixed value determined by Sbnd, and ωsleep is the vruntime of thread B at the moment when
B was blocked. This heuristic prevents B from monopolizing the CPU and ensures that B’s
vruntime strictly increases. In the evaluated Linux kernel, Sslack is 12ms.

Notably, after thread B’s vruntime is adjusted to ωwakeup, B can preempt the current
running thread A even if A has yet to complete its minimum time slice. Our attack exploits
this preemption logic. A preemption occurs when the following condition is true:

ωcurr → ωwakeup > Spreempt, (2.2)

where ωcurr is the thread A’s vruntime and Spreempt is a fixed threshold configured by the
kernel parameter sysctl sched wakeup granularity . Spreempt is 4ms in our system. Note that
the CFS only decides between scheduling the running thread A and the waking thread B.
Even if there is a third runnable thread C whose vruntime is smaller than the vruntime of
A and B, C will not be considered for scheduling.
Scenario 3: A thread is blocked. Finally, consider when the current running thread
is about to be blocked due to an IO request or a voluntary sleep. In this case, the CFS will
de-schedule the current running thread and schedule the thread with the smallest vruntime
from the local runqueue.
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Chapter 2.1 summarizes the CFS configurations relevant to this paper and their default
values. Note that their default values depend on the number of cores in the system.

Table 2.1: Relevant CFS configurations.

Config.
Default Value (Our

System)
Description

Sbnd ω↓6ms (24ms)
1

Upper bound of vruntime di!erence

Smin ω↓0.75ms (3ms) Length of the minimum time slice

Sslack Sbnd/2 (12ms)
2

A waking thread’s max. vruntime lag

Spreempt ω↓1ms (4ms)
The vruntime threshold that the waking thread can preempt

the current thread

1 ω is a system-specific scaling factor and equals min(log2(#cores) + 1, 4). ω = 4 in our 16-core system.
2
This assumes the GENTLE FAIR SLEEPERS scheduler feature is set, which is the default configuration;

otherwise, Sslack = Sbnd.

2.2 Microarchitectural Side-Channel Attacks

Microarchitectural side-channel attacks exploit shared hardware resources to exfiltrate sen-
sitive information. Commonly exploited resources include CPU caches [24, 73, 41, 15,
52], TLBs [22, 59], coherence directories [72], on-chip interconnects [65, 49, 13], arithmetic
ports [2], and BTBs [17, 38, 18, 75, 79].

We focus on stateful/persistent side-channel attacks [24, 73, 41, 15, 22, 59, 72, 17, 38, 79,
18, 75] where the victim encodes (transmits) a message into a channel/hardware structure
that can be decoded (received) later. For these attacks, the attacker needs to interleave its
execution with the victim to monitor the channel. Consider an example where the attacker
runs on core A to perform an L1 cache Prime+Probe attack. During the attack, the attacker
(1) preconditions the channel by priming specific L1 sets, (2) triggers the victim’s execution
on core A and (3) recovers the victim’s memory access behavior by probing the L1 sets.
Steps (1)–(3) can be repeated multiple times to extract more information from the victim
execution.

A major complication is how much victim code runs during Step 2. Ideally, the attacker
would like to interleave its execution at a fine grain, ideally performing Step 1 and Step 3
before and after each of the victim’s sensitive memory accesses. This is usually impossible,
due to coarse-grain thread scheduling, which adds significant noise that worst-case blocks
the attack and best-case requires additional techniques to overcome [48, 27, 10, 66].
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Chapter 3

Threat Model

We assume that the attacker and victim programs are colocated on the same physical ma-
chine, following many prior works [48, 25, 7]. We assume an unprivileged attacker that can
interact with the Linux kernel using standard system calls like fork and sleep and can
invoke the victim (start its execution) [45, 48, 77, 10, 74, 69, 44, 35, 20, 21]. The victim
thread can be an unprivileged user-level thread or a thread inside an Intel SGX enclave.

We do not make additional assumptions about the execution environment or the priority
of the victim thread, beyond that the kernel uses the Linux CFS or EEVDF schedulers
to schedule the victim thread. Finally, we do not assume the availability of Simultaneous
Multi-Threading (SMT).
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Chapter 4

Controlled Preemption

In this section, we introduce Controlled Preemption, a series of techniques that enable a single
unprivileged colocated attacker thread to interleave its execution with a victim’s at a high
frequency (e.g., one to tens of victim instructions per interleaving), enabling high-resolution
side-channel observations.

Controlled Preemption is possible because thread schedulers enable blocked threads to
reclaim the CPU precisely at the moment when they are due to become unblocked—as
opposed to only after the currently running thread has exceeded some minimum scheduling
quantum (e.g., Smin). This is by design and enables thread schedulers to be more responsive.
For example, when a thread calls sleep(ε), it ideally wishes to be asleep for precisely ε time.
Likewise, when data becomes available (e.g., network packets arrive), the thread responsible
for processing that data should get CPU time immediately.

We show how the above characteristic can be exploited by an adversary to preempt a
victim thread at a moment of the attacker’s choosing. More subtly, we show how the above
enables a single attacker thread to repeatedly preempt the victim at a high frequency, enabling
fine-grain side channel measurements. Repeated preemption does not “come for free”—a
scheduler’s fairness heuristics (e.g., those discussed in Chapter 2.1) should prevent a malicious
thread from denying service through repeated preemption. We show how schedulers’ fairness
heuristics can be avoided for a long enough period of time (enabling hundreds to thousands
of preemptions) to attack security-critical software.

4.1 Controlled Preemption on the CFS

We now show how Controlled Preemption can be implemented using the CFS scheduler
(Chapter 2.1). The key observation is that the Sslack > Spreempt characteristic in the CFS
creates an (Sslack→Spreempt)-time preemption budget within which the attacker can repeatedly
preempt the victim. Echoing earlier discussion, setting Sslack > Spreempt is deliberate and
important for ensuring system responsiveness. By ‘preemption budget’, we mean that the
attacker can preempt the victim an arbitrary number of times, until the vruntime di!erence



CHAPTER 4. CONTROLLED PREEMPTION 10

𝑆𝑠𝑙𝑎𝑐𝑘

Δ > 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ?

(b)

(c)

(e)

Vruntime

𝐼𝑣𝑖𝑐𝑡𝑖𝑚 (d)

𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟

Δ > 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ?

𝜏𝑣𝑖𝑐𝑡𝑖𝑚

𝜏𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟

(a)
Hibernating…

Figure 4.1: Detailed illustration of Controlled Preemption where # = ωvictim → ωattacker.

between the attacker and victim threads is smaller than Spreempt. Beyond this point, no more
preemptions are possible until the victim’s vruntime increases by a su”cient amount. For
the parameters we use in the paper, Sslack → Spreempt = 8 ms which is su”cient time for the
attacker to complete its attack. In the event that this is not su”cient, we discuss several
methods to extract a longer trace of victim activity in Chapter 4.3 and Chapter 5.2.

We now explain how the attacker thread A can repeatedly preempt other threads in the
same runqueue at a high frequency. For simplicity, we consider an example illustrated in
Chapter 4.1 where a single logical core is exclusively shared between an attacker thread A
and a victim thread V . We will discuss the implications of the core being shared with more
(noisy) threads in Chapter 4.3 and how the attacker can colocate with the victim on the
same logical core in Chapter 4.4.

Let ωattacker and ωvictim denote the attacker’s and victim’s vruntimes, respectively. Let
Iattacker denote the time it takes for the attacker to perform a side-channel measurement. To
enable repeated preemptions, we require that Iattacker be small, i.e., Iattacker < Sslack→Spreempt.
Let Ivictim denote the amount of time that the attacker wishes the victim to run for in between
preemptions. For simplicity, we consider both the attacker and the victim have the default
priority and ϑ = 1, therefore #ωvictim = Ivictim and #ωattacker = Iattacker. We will discuss the
implications of priority in Chapter 4.3.

The attacker requires a method to wake up at a specific time and be considered for
scheduling. We discuss two mechanisms for this task in Chapter 4.2 and assume the first of
those methods (where the attacker uses sleep(ε)) here. The attacker will use sleep in two
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contexts (explained in the following paragraphs). In the first context, it will set ε > 2 ↔ Sbnd

(any value > 2 ↔Sbnd will do); in this case, we say the attacker is hibernating. In the second,
it will set ε = Ivictim; which we refer to as the attacker napping.

The attack begins with the attacker hibernating (Chapter 4.1 (a)). When the attacker
thread unblocks itself and enters the runqueue, its vruntime will be assigned to the left-hand
argument of the max function in Equation 2.1, i.e., ω →attacker = ωvictim → Sslack, where the tick
mark → (e.g., ω →attacker) denotes a new/updated vruntime. This is shown in Chapter 4.1 (b).
Combining this with the relation Sslack > Spreempt from earlier, Equation 2.2 says that the
attacker immediately preempts the victim.

The attacker can now monitor and preempt the victim as follows. Once the attacker be-
gins executing, it performs a side-channel measurement (i.e., the steps to pre-condition/receive
on the channel it is measuring; c.f. Chapter 2.2) and then naps. Hence, it’s vruntime in-
creases by Iattacker as shown in Chapter 4.1 (c). This triggers the CFS to schedule and execute
instructions from the victim thread. Once the victim runs for Ivictim time, the attacker wakes
up. W.l.o.g. let Iattacker > Ivictim. Then, the attacker’s vruntime will be assigned to the
right-hand argument to the max function in Equation 2.1, i.e., ω →attacker = ωattacker. Based on
our earlier requirement that Iattacker < Sslack → Spreempt, we further have that Equation 2.2
holds, meaning that the attacker will preempt the victim as shown in Chapter 4.1 (d).

The above process (Chapter 4.1 (b)-(d)) can repeat, enabling repeated preemptions.
An important detail is that because Iattacker > Ivictim, ωvictim → ωattacker gradually shrinks
and Equation 2.2 will eventually return false as shown in Chapter 4.1 (e). At this point,

preemption will fail. This gives the attacker approximately
⌈

Sslack↑Spreempt

Iattacker↑Ivictim

⌉
preemptions

to complete its attack. It is possible to stretch the ‘preemption budget’ by setting a larger
Ivictim, but doing so allows the victim to make more forward progress in between preemptions
which may aggravate the side-channel analysis.

4.2 Controlled Wake Up

Following the example from the previous section, where we assumed only an attacker and
victim thread, the attacker needs a way to wake up at a precise time and be considered for
scheduling. We utilize high-resolution hardware timers for this purpose. We explore two
methods to program these timers in userspace, enabling the attacker to interrupt the victim
potentially after the victim has executed only a single instruction. Chapter 4.2 provides
pseudo-code for both methods.

Method 1: Nanosleep.

The first method employs the nanosleep system call with a specified sleep duration ε. When
the attacker invokes nanosleep, the operating system removes it from the runqueue (Sce-
nario 3 from Chapter 2.1) and programs a one-shot hardware timer to trigger an interrupt
after ε time passes. With the attacker blocked, the scheduler selects the victim thread to
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1 // tweak timerslack
2 // to the lowest value 1ns
3 prctl(PR_SET_TIMERSLACK, 1)
4 // sleep to make
5 // vruntime lowest
6 sleep(5s)
7 while(true){
8 // sleep for interval
9 nanosleep(interval)

10 // call attacker
11 // procedure
12 attacker()
13 }

(a) Method 1: Nanosleep

1 #define SIG SIGRTMIN
2 // register signal handler
3 // as attacker procedure
4 sigaction(SIG, attacker)
5 // create a timer that
6 // sends SIG when fires
7 timer_create(SIG)
8 // set periodic interval
9 timer_settime(interval)

10 // sleep to make
11 // vruntime lowest
12 sleep(5s)
13 // pause main routine
14 while(1) pause()

(b) Method 2: Timer

Figure 4.2: Pseudo-code describing two methods to force the attacker to wake up at a precise
time.

run. After the interval ε elapses, the hardware timer fires, the victim’s execution is inter-
rupted, and control switches to the kernel’s interrupt handler. Finally, the kernel wakes up
the attacker thread, adds it back to the runqueue, sets its new vruntime and performs the
preemption check (as described in Chapter 2.1).

An additional OS parameter, called timer slack, controls the time allowed to pass beyond
ε before the OS has to wake up the attacker thread. By default, timer slack is 50µs, which
is too coarse for our needs. Fortunately, we can reduce timer slack to a small value (1 ns)
using the non-privileged prctl syscall with PR SET TIMERSLACK as the argument.

Method 2: Timers.

The second method uses the POSIX timer API to create a periodic high-resolution timer.
The attacker calls timer create to create a timer and timer settime to set it with interval
ε. A signal handler is registered to handle timer expirations. After setting up the timer,
the attacker blocks itself indefinitely by calling pause and waits for the timer signal. When
the timer expires, a signal is sent to the attacker. The kernel adds the attacker back to the
runqueue, sets the attacker’s vruntime and performs the preemption check as usual. If the
preemption condition is met, the attacker preempts the victim. The attacker’s signal handler
then executes the side-channel measurement routine. After the signal handler completes, the
attacker blocks again, awaiting the next timer signal.

We note, when using the POSIX timer API, setting an analog to timer slack is not
necessary: timer interrupts are handled immediately by the kernel while the execution of the
attacker’s userspace handler is still subject to the preemption check.
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Zero Stepping

Setting ε for both of the above methods is non-trivial because time continues to pass when
the OS is in the process of scheduling/context switching the victim onto the hardware. That
is, ε must be set in a “Goldilocks” fashion similar to SGX Step [61]:

• If ε is set to be too small, the timer fires when the victim is in the process of being
scheduled onto the CPU, which interrupts and prevents the victim from making any
forward progress before the CPU is yielded back to the attacker.

• If ε is set to be too large, the victim executes more instructions before being preempted,
which leads to lower time resolution side-channel analysis.

The former case is called a zero step [61, 11]. We analyze the characteristics of this Goldilocks
zone in the next section.

Zero steps are benign but waste preemption budget. An oracle can be constructed to
filter out signals caused by instructions of interest (Chapter 4.3), and hence data collection
when zero steps occur will be omitted. At the same time, each zero step still costs the
attacker Iattacker → Ivictim time in the preemption budget.

4.3 Evaluation

We now evaluate the Controlled Preemption primitive along multiple axes: its temporal
resolution, the number of preemptions, robustness to noise, techniques for colocation and
extensibility to the EEVDF scheduler.
Experiment setup. For the rest of the paper, we run all of our experiments on a desktop
machine with a 16-core Intel Core i9-9900K processor and 64 GB RAM. This machine runs
Ubuntu 22.04.1 with Linux kernel version 6.5 for CFS and 6.12-rc1 for EEVDF.

Until Chapter 4.3, we perform experiments on a quiescent machine to minimize interfer-
ence from other processes. As required by our attack, we ensure that the attacker and victim
threads are colocated on the same logical core; we show how to achieve this in Chapter 4.4.
At experiment launch, the attacker sleeps (hibernates) for 5 seconds to ensure it is assigned
the vruntime ωvictim → Sslack upon wake-up.

Temporal resolution

We characterize how many instructions the victim executes between interrupts using an
eBPF [16] program that records the PC of the first victim instruction whenever the victim
is scheduled. To translate the change in the victim PC to the number of instructions retired,
we use a victim program that runs a long sequence of same-Byte length instructions in an
infinite loop.

Chapter 4.3a and Chapter 4.3c show histograms of the preemption resolution, in terms
of how many victim instructions retire per preemption. Each histogram is over 80,000
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preemptions. We show results for both wake up methods from Chapter 4.2, varying the
sleep and timer interval value ε. As we increase ε, the victim executes more instructions
per preemption on average. Notably, for small ε, a majority of preemptions occur after the
victim has only executed a small number (< 10) instructions but a sizable percentage of
preemptions result in zero steps (Chapter 4.2).
Combining Controlled Preemption with performance degradation. To improve
the ratio of single steps to zero steps, we combine Controlled Preemption with well known
performance degradation techniques [3, 37, 50]. Specifically, the attacker evicts the victim
instruction page’s translation from the TLB before napping. As the victim page’s translation
can be cached either in the L1 instruction TLB and the unified L2 TLB, we construct eviction
sets for both TLBs using techniques from Gras et al. [22]. Chapter 4.3b shows that combined
with performance degradation, one can set a higher ε while reliably making non-zero but
still small amounts of victim forward progress per preemption, as desired. The cost of this
technique is a small increase in Iattacker for evicting the TLB entries, which is small compared
to the main attacker measurement procedure.

Number of preemptions

Next, we characterize the number of consecutive preemptions that the attacker can perform.

Recall from Chapter 4.3, the expected number of preemptions is
⌈

Sslack↑Spreempt

Iattacker↑Ivictim

⌉
. Note that

Sslack → Spreempt = 8 ms is fixed based on the system. Thus, the attacker can increase the
number of preemptions by decreasing its own measurement time Iattacker or by increasing the
victim time per preemption Ivictim (by changing the blocking interval ε).

To count preemptions, we record the vruntime and process ID (PID) each time the kernel
transfers control to userspace. Starting from when the attacker begins launching interrupts,
we monitor until there are two consecutive kernel exits to the victim process without in-
terleaving with the attacker. We vary Iattacker by adjusting the attacker’s execution length
using di!erent numbers of serialized cache-miss memory accesses, and run each experiment
50 times.

Chapter 4.4 shows the plot of the di!erence between Iattacker and Ivictim against the
number of repeated interrupts achieved by the attacker. We also include a curve indicating
the expected relation (given the ratio from before). The results demonstrate that the actual
number of preemptions achieved closely matches up to the expected number.
Varying thread priority. Since a high priority thread increments its vruntime at a
slower rate, we further examine the e!ect of the victim’s scheduling priority. In this exper-
iment, we vary the victim’s priority by changing its nice value while keeping the attacker’s
priority at the default value of zero.1 As shown in Chapter 4.5, decreasing the victim’s nice
value (increasing its priority) reduces the number of consecutive preemptions. Remarkably,
even with the smallest nice value (highest victim priority), Controlled Preemption can still

1
We do not set the attacker’s nice value below zero as this requires the attacker to be privileged. We

do not set the attacker’s nice value above zero as the attacker has no incentive to lower their priority.
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(a) Nanosleep (Chapter 4.2)

(b) Nanosleep + Evict iTLB

(c) Timer (Chapter 4.2)

Figure 4.3: Temporal resolution of Controlled Preemption using di!erent wake up methods
and performance degradation techniques. Data is shown as a histogram, in terms of the
number of victim instructions retired per preemption. Di!erent lines correspond to di!erent
values of ε.

achieve hundreds of consecutive preemptions. This is because Ivictim is near zero (regardless
of nice). As a result, Iattacker → Ivictim is always dominated by Iattacker.

Orthogonally, we observe that temporal resolution is also largely una!ected by the victim
nice setting.
Increasing the number of consecutive preemptions beyond the preemption bud-
get. Controlled Preemption can borrow the idea of using multiple preemption threads
from prior work [54, 7, 25] to increase the number of consecutive preemptions beyond the
preemption budget. Similar to prior work, the attacker can launch n preemption threads
A1, A2, ..., An. All these threads are well slept before the attack. During the attack, the
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Figure 4.4: The number of repeated preemptions (y-axis) achieved by Controlled Preemption
when varying Iattacker → Ivictim (x-axis). The plot assumes Method 1 (Chapter 4.2) although
the result transfers to Method 2. Blue dots are observations (concrete settings of Iattacker
and Ivictim) on our test machine. The curve indicates the expected number of consecutive
preemptions.

attacker first uses A1 to repeatedly preempt the victim thread. As A1 is about to run out of
preemption budget, the attacker wakes up A2 to continue the attack, and so on. Since A1

is sleeping while subsequent attacker threads continue the attack, it will be eligible to inter-
rupt the victim after An completes its budget. With this round-robin strategy, the attacker
achieves an e!ectively infinite preemption budget.

Measuring the impact of noise

We also test the robustness of Controlled Preemption to noise. We characterize two sources
of noise. First, scheduling noise refers to noise caused by there being additional threads in
the runqueue that are not owned by the victim or attacker. Second, channel noise refers to
noise on the side channel (e.g., cache pollution). We conduct our experiment using Method
1 (Chapter 4.2), but the analysis is transferable to Method 2.
Scheduling noise. We study a system where the runqueue is shared between a victim
thread V , an attacker thread A, and a third compute-bound noise thread N that does not
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Figure 4.5: The number of repeated preemptions (y-axis) is a function of the victim’s nice
value (x-axis). We set the attacker to the default nice value 0. Iattacker → Ivictim ranges
between 10 µs and 15 µs.

make system calls. See Chapter 4.6 for the results of an experiment that analyze how/when
the three threads’ vruntimes increase (which indicates when di!erent threads get scheduled).
Results generalize in a natural way for more noise threads.

Suppose the attacker (A) hibernates, i.e., has the smallest vruntime, at the start. We
analyze two cases. First, suppose V ’s vruntime is initially less than N ’s vruntime. In this
case, Controlled Preemption proceeds as usual between the A and V threads until either V ’s
and A’s vruntimes are such that Equation 2.2 returns false or until V ’s vruntime equals N ’s
vruntime. Second, suppose N ’s vruntime is initially less than V ’s vruntime (not shown in
Chapter 4.6). In this case, V will not be scheduled until, again, V ’s and N ’s vruntimes are
equal.

Then, the remaining question is: can the attacker perform Controlled Preemption after
the victim and noise threads’ vruntimes become equal? This occurs at the dashed vertical
line in Chapter 4.6. In this regime, we find that the attacker gets interleaved with either the
victim or noise thread in an unpredictable fashion (see the zoom-in in the figure). That is,
scheduling follows the pattern ((V |N)A)+.

To continue Controlled Preemption in this regime, we adopt a well-known side-channel
template attack (e.g., [23]) to construct a “victim ran last?” (or victim presence) oracle.
Specifically, by pre-computing the victim’s instruction trace at cache-line granularity, the
attacker can monitor specific cache lines of interest during the measurement phase. By
probing these cache lines, the attacker gathers information about the last executing thread,
and only records data points if the victim thread ran last. We implement this oracle for our
attack in Chapter 5.2.

We remark that the attacks we evaluate finish in several milliseconds. Further, the
attacker can choose when to run the victim (per Chapter 3). Thus, it will likely be the case
that any noise threads will be preexisting in the runqueue when the attack commences (as
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Figure 4.6: vruntime progression in a ‘noisy’ system with a third noise thread. The zoom-in
shows the vruntimes of the victim and noise thread at the point where they converge (Sample
54033).

opposed to: are added to the runqueue when the attack is underway). In that case, noise
thread vruntime will be higher than victim thread vruntime and Controlled Preemption will
proceed between just A and V without wasting preemption budget on noise threads (until
the victim’s vruntime catches up with the noise threads).
Channel noise. We identify two types of channel noise that interfere with the attacker’s
side-channel measurements. The first type comes from the kernel’s code/data footprint
during context switches. We mitigate this noise by monitoring a su”ciently-large structure
(e.g., the L2 Cache and LLC instead of the L1 cache) to not be polluted by the kernel.
The second type of noise is random (non-systematic) noise coming from the other threads
in other cores. To ameliorate this noise, we adopt two strategies: 1) we run the victim
several times and take a majority vote; 2) alternatively, if possible, we measure private core
structures like the BTB and TLB (which cannot be polluted by the activity of other cores).
We demonstrate such an attack on the BTB in Chapter 5.3.
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4.4 Achieving Core Colocation

Our attack requires that the attacker and victim threads reside in the same runqueue
throughout the attack. Since the runqueue is a per-logical core structure, the attacker
and victim threads need to colocate on the same logical core. One straightforward approach
would be pinning the victim thread to an attacker-desirable logical core. However, pinning
threads owned by other users requires supervisor privilege, which is not part of our threat
model (Chapter 3).

We propose a simple strategy to achieve colocation without pinning, that works if the
system has at least one idle logical core. We use this scheme in our evaluation (Chapter 5).

The idea is to exploit the load-balancing feature of the CFS [71]. The CFS periodically
checks the load on each core’s runqueue and migrates tasks from busier cores to idle cores.

Our approach starts with the attacker launching N→1 compute-intensive dummy threads,
where N is the total number of logical cores in the system. The attacker then pins these
N → 1 dummy threads to N → 1 logical cores, leaving one core C idle. Next, the attacker
invokes the victim thread, which will be scheduled onto the idle core C to improve load
balance. Finally, the attacker can launch the attack thread (as described previously) and
pin it to C, colocating with the victim thread. Note that the victim is unlikely to migrate
to another core during the attack. This is because the CFS load balancer observes that all
other cores are occupied by the attacker’s dummy threads and there are no idle cores to
migrate the victim thread to.

The above scheme requires N threads total (N → 1 dummy threads and 1 preemp-
tion/measurement thread) and is capable of monitoring either core-private or core-shared
channels. It is also simple to implement: It does not require synchronization across attacker
threads, and more generally presents the preemption/measurement thread with the illusion
of living in a single-core system.

If the system is fully loaded, the above scheme will not work because there is no idle
logical core. This situation is rare, and (in some cases) actively avoided. For example,
Google Cloud Run tries to keep containers’ CPU utilization below 60% [1]. Further, since
the attacker can choose when to invoke the victim (Chapter 3), it can opt to run the attack
when the system is not fully loaded.

4.5 EEVDF Scheduler

In this section, we show that Controlled Preemption is transferrable to the latest EEVDF
scheduler [58, 12]. Intuitively, this is because the EEVDF scheduler also allows a well-slept
thread to immediately preempt the current running thread for better system responsiveness.

To demonstrate the transferrability of our techniques, we repeat the temporal resolution
experiment from Chapter 4.3 on EEVDF, using the same environment except changing the
kernel version to 6.12-rc1. Chapter 4.7 reports the temporal resolution of the nanosleep
method assisted by the TLB-flushing performance degradation technique. From the figure,
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Figure 4.7: Temporal resolution of Controlled Preemption on EEVDF. The figure represents
the same experiment as that shown in Chapter 4.3b, but using EEVDF.

it is clear that the victim retires only a few instructions between preemptions when using a
small ε, a behavior closely resembling that of Chapter 4.3b.

We now discuss the preemption budget under the EEVDF scheduler. For simplicity, we
consider the case where a single logical core is exclusively shared between an attacker thread
A and a victim thread V . When selecting a thread to execute, the EEVDF first identifies
eligible threads whose vruntime is smaller than the average vruntime of all the threads from
the local runqueue. Among all the eligible threads, the EEVDF schedules the thread has the
nearest virtual deadline to run. Since we assume only two threads in the runqueue, there is
only one eligible thread; the scheduling algorithm is reduced to selecting the thread with the
smallest vruntime. Therefore, we omit the details of the virtual deadline and refer interested
readers to [58, 12].

Under such a scheduling policy, the attacker thread A can preempt the victim thread
V as long as A’s vruntime is smaller than V ’s. As a result, the preemption budget is
simply the vruntime di!erence between V and A when A wakes up from hibernation. We
repeat the experiment from Chapter 4.3 (that characterizes the number of preemptions) with
EEVDF. When Iattacker → Ivictim ranges between 10,000 and 15,000 ns (i.e., the same setting
in Chapter 4.5 with default nice value 0), we find that the attacker can repeatedly preempt
the victim for a median number of 219 times from 165 repeated experiments. We leave an
in-depth exploration of Controlled Preemption in the EEVDF as a future work.
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Chapter 5

Proof-of-Concept Exploits

We now show how Controlled Preemption can facilitate breaking security-critical software.
First, Chapter 5.1 characterizes a standard microarchitectural attack benchmark: Flush+Reload
cache-timing attacks on the AES T-table algorithm. Second, Chapter 5.2 demonstrates how
Controlled Preemption can also be used to conduct SGX-Step-like attacks from userspace
and perform Prime+Probe cache-timing attacks. Finally, Chapter 5.3 demonstrates that
Controlled Preemption can utilize other (non cache) hardware channels (specifically, the
BTB).

All attacks follow the setup described in Chapter 4.3. To colocate the attacker and victim
onto the same logical core, we spawn N → 1 = 15 dummy threads following Chapter 4.4.
Then, a single attacker thread performs preemptions and side-channel measurements.

5.1 Attacking T-Table AES

To start, we demonstrate Controlled Preemption by collecting high temporal-resolution cache
traces from a T-table Advanced Encryption Standard (AES) victim, which has been widely
used to evaluate cache side-channel attack techniques [27, 48, 55, 25, 54, 7, 77]. We show
that Controlled Preemption only requires 5 traces to conduct the first round attack, which is
comparable to the state of the art [7], but only uses a single attacker thread for preemptions
instead of 40 threads.

Overview

AES is a widely used symmetric block cipher with various key sizes. AES-128 uses a 16-byte
secret key k to encrypt a 16-byte plaintext p. We use the subscript to denote the 1-byte data
slice, for example, p0 is the first byte of p, while p14..15 is the last two bytes. The AES-128
encryption procedure involves 10 rounds of computation. Each round r mixes a 16-byte
input x(r) with a 16-byte round key K(r) derived from the secret key k to generate the input
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for the next round x(r+1) or the final ciphertext. The first round input x(0) is generated by
x(0) = p↗ k. Finally, the output of the last round x(10) is the ciphertext.

To enhance performance, the OpenSSL T-table AES implementation simplifies the mixure
computation in each round with table lookups using precomputed T-tables, denoted as
T0, . . . , T3, each containing 256 4-byte entries. Using T-tables, each round of computation
can be represented as follows.

x(r+1)
0..3 ↘ T0[x

(r)
0 ]↗ T1[x

(r)
5 ]↗ T2[x

(r)
10 ]↗ T3[x

(r)
15 ]↗K(r)

0..3

x(r+1)
4..7 ↘ T0[x

(r)
4 ]↗ T1[x

(r)
9 ]↗ T2[x

(r)
14 ]↗ T3[x

(r)
3 ]↗K(r)

4..7

x(r+1)
8..11 ↘ T0[x

(r)
8 ]↗ T1[x

(r)
13 ]↗ T2[x

(r)
2 ]↗ T3[x

(r)
7 ]↗K(r)

8..11

x(r+1)
12..15 ↘ T0[x

(r)
12 ]↗ T1[x

(r)
1 ]↗ T2[x

(r)
6 ]↗ T3[x

(r)
11 ]↗K(r)

12..15

Given the equation above, it is clear that the T-table AES implementation makes memory
accesses depending on the value of x(r). Since a single cache line fits 16 T-table entries, the
attacker can recover the upper 4 bits of each byte of x(r), known as the upper nibble. Now
consider the first round computation (r = 0), where x(0) = p↗ k. If the attacker can learn
information about x(0) with an attacker-controlled plaintext input p, they can partially
recover the secret AES key k. This is known as the first round attack.

The main challenge of the first round attack is to distinguish T-table accesses made in the
first round from other rounds. This is di”cult because each round of encryption takes only
about 120 cycles to complete on our system. Therefore, we employ Controlled Preemption
to monitor the victim’s execution at a fine temporal granularity.

Chapter 5.1 shows one measurement trace of one T-table T0 over a single AES encryp-
tion execution, where the four lookup indexes (x(0)

0 , x(0)
4 , x(0)

8 , x(0)
12 ) used in the first round

have upper nibbles (0, 4, 12, 8). Yellow blocks highlight the T-table access at one cache line
(y-axis) captured by one attacker measurement/sample (x-axis). As seen in Chapter 5.1, the
first four cache lines accessed by the victim are (0, 4, 12, 8), which match the aforementioned
upper nibbles of the secret indexes. Ideally, the attacker should see a single cache access
(one yellow block) in each sample, with no overlap. In practice, the attacker sees smears.
This is due to imperfect temporal resolution (stepping several vs. one instruction per pre-
emption) and speculative execution (more instructions execute speculatively than are retired
per preemption). We follow prior work to solve this by collecting more traces.

Evaluation

In our evaluation, the attacker program uses Flush+Reload [73] to monitor the victim’s
secret-dependent T-table accesses. Specifically, the attacker flushes the entire T-table before
napping and times the reload latency to each entry after waking up. A short reload latency
to an entry implies that the victim accessed the entry while the attacker is napping.
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Figure 5.1: Heatmap illustrating Flush+Reload results for a single AES run. The y-axis
denotes attacker measurements for each of the 16 cache lines making up the T-table (yellow
indicates a hit during Reload; purple indicates a miss). Each column (x-axis) denotes a
sample where the attacker preempts the victim. The first four accesses (those made in the
first round) are circled in red.

Following the prior work [7], we collect multiple victim traces with randomized plaintexts
to determine the upper nibble of each secret key byte and disable hardware prefetchers to
reduce channel noise.1

We demonstrate our exploits with both the CFS and EEVDF schedulers. In each ex-
periment, the victim is invoked 5 times, generating 5 side-channel traces that correspond to
the same key. When repeating the experiment 100 times on CFS and EEVDF, where each
repetition uses a di!erent key, the attacker can infer the upper nibble of each key byte with
an accuracy of 98.9% and 98.1%, respectively. Our recovery accuracy and the required
number of victim executions are comparable to the state-of-the-art attack [7], which also
exploits the CFS to single step the victim AES encryption process. But unlike Controlled
Preemption, the prior attack requires 40 colocated attacker threads.

5.2 Attacking SGX Enclaves

Next, we demonstrate how Controlled Preemption enables high temporal resolution side-
channel attacks on Intel SGX enclaves. This is akin to SGX Step [61, 60], but does not
require the attacker to have supervisor privilege.

To start, we note that Controlled Preemption’s temporal resolution when attacking SGX
follows very similar trends as Chapter 4.3b but without explicit iTLB flushing (as SGX
already performs TLB flushes on asynchronous enclave exit events [11]).

1
Note that the need of disabling hardware prefetchers is a limitation of Flush+Reload and is not

fundamental to Controlled Preemption. One can circumvent this limitation with Prime+Probe-based attacks

(used in the next section). We use Flush+Reload to be apples-to-apples with prior work.
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Figure 5.2: Cache probe latency trace for the base64 decoding function running inside an
SGX enclave. Blue and orange traces denote probe latencies for the two LUT eviction sets.
Red is the latency to probe the instruction cache eviction set. The grey (white) area is the
victim performing the validity (decode) loop.

Overview

Cryptographic keys are often stored as base64-encoded PEM files for ease of transmission
and are decoded into internal representations before use. OpenSSL uses a lookup table
(LUT)-based approach to translate each base64 character into a 6-bit binary value. This
process introduces secret-dependent access patterns, making it vulnerable to cache side-
channel attacks.

OpenSSL’s base64 decoding function EVP DecodeUpdate groups 64 characters to parse
at a time. First, it performs a validity check by looking up each character through the LUT.
Second, it decodes valid characters to their binary representation. Both of the above are
loops that read the LUT in a base64 character-dependent fashion. After that, the function
returns the output and proceeds to decode the next chunk.

Sieck et al. [57] uses SGX Step to single step the victim enclave that runs the RSA PEM
file decode procedure. They extract the victim’s precise LUT access pattern via a last-level
cache (LLC) Prime+Probe side channel. The LUT used for translation is 128 bytes in size
and spans two consecutive cache lines. Knowing which cache set one LUT access touches
shrinks the search space of one character. To complete the attack, they leverage prior RSA
cryptanalysis to fully recover the RSA secret key. To reduce cache measurement noise caused
by speculative or out-of-order execution, they compile the SGX program with Load Value
Injection [62] mitigations by setting MITIGATION-CVE2020-0551 to LOAD [31], which places
load fences after every load instructions.

Challenges

Based on the prior base64 decoding attack, we replace SGX Step with Controlled Preemption.
We monitor the LLC using Prime+Probe, targeting the LUT when it is accessed during the
validity check. This is non-trivial compared to using SGX Step for several reasons:
Victim ‘overlooping.’ We are interested in monitoring one LUT access per loop iteration
during the validity check. This presents a challenge. Ideally, we would like to set Ivictim to
exactly the length of one loop iteration. Setting Ivictim smaller would result in extraneous
preemptions, which consumes preemption budget. Yet, as can be seen in Chapter 4.3b, it is
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di”cult to guarantee a specific amount of forward progress per preemption, beyond single
stepping.

To side-step this issue, we (once again) combine Controlled Preemption with performance
degradation techniques. We construct an LLC eviction set that is congruent to the cache
line that contains the LUT read instruction. This way, we can use a larger Ivictim and use
the instruction cache miss to stall the victim while waiting for the next preemption.
Intra-victim induced channel noise. The LUT is accessed during both the validity
and decode loops. We must ensure that measurements correspond to the former not the
latter. To address this, we dual-purpose the eviction set that evicts the LUT access load in
the validity loop (see above) to also test whether the victim is in the validity or decode loop.
Insu!cient preemption budget. Recall Chapter 4.3 which characterizes the number
of repeated preemptions that can be achieved by Controlled Preemption. Since a 1024-bit
RSA private key PEM file consists of nearly 900 base64 characters, the preemption budget
only allows the attacker to recover about 60% of the LUT access trace.

To address this, the attacker invokes the victim twice using the same RSA key. During
the first victim execution, the attacker starts preempting the victim as soon as the victim
starts and captures the first half of the trace. During the second victim execution, the
attacker times their hibernation and only starts preempting the victim when the victim
is half way through their execution, recovering the second half of the trace. Finally, the
attacker concatenates these two traces to form a complete trace.

Evaluation

We use the same victim setup (i.e., enables LVI mitigation) as the prior work [57]. The at-
tacker constructs one LLC eviction set for the victim’s load instruction (in the validity check)
and two for the LUT. In the measurement phase, the attacker first probes the instruction
eviction set and then, if successful, probes the LUT eviction sets.

Chapter 5.2 shows one segment of the Prime+Probe measurement trace. The grey area
represents the victim’s execution in the validity loop, while the white area represents the ex-
ecution in the decode loop. As we can see, the Prime+Probe latency for the load instruction
from the validity loop (the red line in Chapter 5.2) is high in the grey area, but low in the
white area, indicating that it accurately detects when the victim is executing the validity
loop.

We test on 30 randomized 1024-bit RSA private key files which contain on average 872
base64 characters. On average, our technique can recover the first 61.5% of the LUT access
trace with a 99.2% accuracy from a single victim execution. With two victim executions and
the trace concatenation method (above), the attacker can fully recover the LUT access trace
with 98.9% accuracy.
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5.3 Monitoring the BTB Side Channel

Finally, we demonstrate how Controlled Preemption can also be applied to monitor non-cache
channels by exploiting the BTB. We reproduce an exploit first described in NightVision [75],
which combines the fine-grain preemption primitive with a BTB side channel to leak fine-
grain victim control-flow information. For the former, NightVision uses an SGX Step-like
framework, and hypothesized (but did not verify) that a userspace preemption mechanism
would also su”ce. We verify this claim, enabling NightVision attacks from userspace.

Overview

NightVision found that the BTB can be updated by both control-transfer instructions (e.g.,
jmp) and non-control-transfer instructions (e.g., nop). As a result, if a non-control-transfer
instruction A collides with the BTB entry of a control-transfer instruction C,2 executing A
will invalidate C’s BTB entry, potentially leading to a control-flow misprediction when C is
next fetched.

The above enables an attacker to infer the victim’s control flow. For example, the attacker
can execute a direct jump to create a BTB entry that collides with the victim’s instruction of
interest. Then the attacker triggers the victim execution, and later checks whether its branch
mispredicts. If a misprediction occurs, the attacker learns that the victim’s instruction of
interest was executed. This attack works regardless of the type of the victim instruction.

1 btb_prime:
2 JMP T1
3 NOP (x1019)
4 T1:
5 RET
6 ...
7 ; 4 GB padding
8 ...
9 btb_probe:

10 RET
11 NOP (x1024)
12 T2:
13 NOP

1 ; flush target prefetch line
2 CLFLUSH T2
3 ; trigger prefetch
4 CALL btb_probe
5 ; measure access time
6 RDTSCP
7 MOVQ (T2), %rax
8 RDTSCP
9 ; allocate new BTB entry

10 ; before transition
11 ; back to victim
12 CALL btb_prime

Figure 5.3: BTB prime probe code

2
In our machine setup, the BTB entry is indexed by the lower 32 bits of the PC. Instructions with the

same lower 32 bits will collide in the BTB.
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Figure 5.4: Victim control path when running medtls mpi gcd function for a = 1001941
and b = 300463. If the instruction latency is high, the victim has executed the block that
invalidates the BTB entry. So the prefetcher won’t prefetch the target fetching location.

Evaluation

As in NightVision, we attack the RSA key generation procedure in mbedTLS version 3.0 [42],
which contains a secret-dependent branch in the Greatest Common Divisor (GCD) function
mbedtls mpi gcd. Extracting the branch direction in each loop iteration is required to
fully recover the RSA secret key [51]. Unlike NightVision relying on privileged performance
counters to decode BTB states, we use BTB Train+Probe gadgets from prior work [79]
(Chapter 5.3) to encode branch predictor state into cache state.3

Before the attack, the attacker identifies two instructions, each belonging to a sepa-
rate direction of the secret-dependent branch. The attacker then creates two pairs of BTB
Train+Probe gadgets that collide with these two victim instructions respectively. We use
the same method as done in the previous PoC (Chapter 5.2) to interrupt the victim at least
once per loop iteration. During each measurement phase, the attacker uses two BTB probes
to infer which direction the victim most recently took.

Chapter 5.4 shows the attacker’s attempt to recover the control-flow of the victim program
by measuring the access latency of the prefetched locations. Suppose the victim has executed
the if block during the attacker’s sleep. In that case, the corresponding attacker-allocated
BTB entry will be invalidated because it collides with the victim’s non-branch instructions.
Later, when the attacker executes btb probe function, the CPU won’t prefetch the target
line because of the entry being invalidated, and the attacker will observe high latency. The
attacker can use similar methods for detecting else branch.

We run our attack on 30 pairs of prime numbers, each of which results in 20↑30 loop
iterations in the GCD function. We are able to extract all branch directions in a single victim

3
Directly measuring branch prediction outcomes using the timestamp counter (rdtsc) is extremely

noisy [38] and not well suited for our attack.
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run with an average accuracy of 97.3%.
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Chapter 6

Mitigations

We discuss two avenues to mitigate Controlled Preemption: (1) blocking the underlying side
channel and (2) hardening the thread scheduler.

Blocking the underlying side channel.

Controlled Preemption increases the temporal resolution of existing side channels. Therefore,
mitigating the encapsulated side-channel leakage can stop our attack. Per Chapter 2.2,
Controlled Preemption can be used in conjunction with any stateful/persistent channel.
Thus, we focus on defenses that nominally apply to any stateful/persistent channel.

In software, the most widely-deployed channel-agnostic defense is constant-time or data-
oblivious programming [8, 9, 4, 35, 46]. Constant-time programming works by rewriting the
program so that its observable execution trace is independent of secret data. The downside
of this approach is that it may not be complete (secure). For example, recent work [10, 68,
67] has demonstrated how traditional constant-time programming guidelines are insu”cient
on modern microarchitectures. Thus, modest system/hardware support [76, 10, 5, 14] is
likely also required.

In hardware, the peer to constant-time programming is spatial/temporal partitioning [81,
19, 40, 34]. Partitioning works by isolating microarchitectural resources, used by the victim,
from the attacker. Before a partition is reused by programs belonging to a di!erent security
domain, its microarchitectural state is flushed [30, 19]. The downside to this approach is
that it requires hardware support.

Finally, one can limit hardware timer resolution [28, 64], i.e., aggravate the side-channel
receiver. This is e!ective because many attacks (regardless of channel) rely on high-resolution
timers to detect microarchitectural events like cache misses and branch mispredictions. The
downside to this approach is that there exists attack primitives that either do not rely
on hardware timers to gather microarchitectural information [77, 79, 15] or otherwise can
increase the resolution of a low-resolution timer [36, 43].
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Hardening the thread scheduler.

Prior work [63] shows that setting minimum scheduling intervals for vCPUs in Xen hy-
pervisors e!ectively mitigates frequent preemption-like attacks against hypervisors. Inside
the Linux kernel, a similar strategy is to enable the NO WAKEUP PREEMPTION feature. When
this feature is enabled, the victim thread can complete its minimum time slice before being
preempted by the attacker’s awakening thread. The downside is that this feature degrades
system responsiveness.

Agnostic to enforcing a minimum time slice, Constable et al. [11] has proposed a software-
hardware co-design approach to mitigate single-step attacks on Intel SGX. The idea is to use
a special trusted prefetch handler after ERESUME to ensure that the victim makes significant
progress before being preempted again. Unfortunately, this mechanism would require signifi-
cant kernel modifications to be used by userspace programs. Moreover, this defense does not
prevent the attacker from making relative coarse-grained (50-100 instructions/preemption)
observations that are still su”ciently fine-grained to conduct certain attacks (e.g., the T-table
AES attack from Chapter 5.1).
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Chapter 7

Related Work

Improving the temporal resolution of side-channel analysis is an active area of research. Prior
work splits into three categories, (1) those that induce preemption; (2) those that speed up
the side-channel receiver; (3) those that slow down the victim (performance degradation).
These three are not mutually exclusive. For example, Controlled Preemption can increase
its preemption budget through approach (2) and Controlled Preemption already utilizes
approach (3), e.g. TLB flushing (Chapter 4.3).

Preemption-based approaches.

There is a rich line of work on preempting victim threads in an Enclave (or otherwise
privileged) threat model [26, 45, 38, 60, 61, 78]. Here, the attacker has supervisor privilege
and uses supervisor capabilities to facilitate the attack.

Our goal is to enable similar temporal resolution side channel analyses in an unprivileged
setting. The closest work is a series of papers [54, 7, 6, 25], starting with Cache Games [25],
that also exploit the CFS to preempt the victim in a fine-grain manner. Controlled Preemp-
tion di!ers from these works in that they require multiple (10s to 100s) of threads to preempt
the victim. This is because prior work overlooks Equation 2.2 in the CFS. They implicitly
require attacker threads to always take the left-hand argument to the max function in Equa-
tion 2.1. This results in the following attack workflow. When an attacker thread performs a
preemption, it is forced to “cool down” (sleep) for a significant period of time (Sbnd) before
it can perform another preemption. If the attacker wishes to preempt the victim X times
in fast succession, it requires X attacker threads—after the first preempts and is “cooling
down”, the second will preempt and so on. By contrast, our work performs a careful analysis
of the CFS and enables repeated preemption with only a single attacker thread.

Speeding up the receiver or slowing down the victim.

Beyond preempting the victim, an attacker can optimize its receiver logic for a specific side
channel (e.g., [52, 33, 27]). For example, Prime+Scope [52] reduces the accesses needed
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to perform a Probe from the cache associativity to a single cache line; Spec-o-Scope [27]
combines ideas from Prime+Scope and Katzman et al. [33] to achieve a 5 cycle resolution
over the cache-timing channel. Preemption-based techniques, such as Controlled Preemption,
di!er from these works in that they are channel agnostic: they can improve the temporal
resolution of any stateful channel.

Alternatively, the attacker can slow down the victim to achieve finer-grain measurements,
e.g., by flushing the active instruction region [37, 3, 50], bus locking through cross cache line
atomic memory accesses [70], and port contention [2]. Performance degradation, by itself,
cannot achieve as fine-grain resolution as preemption-based methods, but can be combined
with preemption for various purposes (as we do in Chapter 4.3 and Chapter 5.2).
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Chapter 8

Conclusion

This thesis presented Controlled Preemption, the first userspace framework that enables a
single colocated attacker thread to nearly single step a victim thread. We comprehensively
characterized the Controlled Preemption primitive in the context of the widely-deployed
CFS and EEVDF schedulers. We demonstrated three proof-of-concept attacks that show
how Controlled Preemption can improve existing attacks on multiple victim programs, inside
and outside of SGX, and across multiple side channel types.
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