
The Development and Management of GradeSuite: A
Microservice LMS for Mastery Learning

Connor Bernard
Dan Garcia, Ed.
Armando Fox, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-127
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-127.html

May 21, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Dan Garcia for his invaluable guidance, mentorship, and unwavering support
throughout this research project.

The development teams behind GradeView, Concept Map, GradeSync,
Instructor Dashboard, and the upcoming AutoRemind project.

Cisco, for the wealth of knowledge that I absorbed during my time working
there concurrently as I architected and developed GradeSuite; my
experience there was invaluable in guiding the development of GradeSuite's
framework.

The Development and Management of GradeSuite: A Microservice LMS for Mastery
Learning

by

Connor Robert Bernard

A research project submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science (EECS)

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Dan Garcia, Research Advisor
Armando Fox, Second Reader

Spring 2025

The Development and Management of GradeSuite: A Microservice LMS for Mastery

Learning

Copyright 2025

by

Connor Robert Bernard

All rights reserved.

1

Abstract

The Development and Management of GradeSuite: A Microservice LMS for Mastery

Learning

by

Connor Robert Bernard

Master of Science in Electrical Engineering and Computer Science (EECS)

University of California, Berkeley

Traditional Learning Management Systems (LMSs) often lack the infrastructure necessary to

support mastery learning, a pedagogical approach that emphasizes conceptual understanding

and flexible assessment timelines over rigid deadlines. This limitation creates significant

barriers for educators seeking to implement mastery-based grading policies. To address this

gap, we present GradeSuite, a microapp-based LMS designed specifically to facilitate mastery

learning implementation while integrating with existing educational infrastructure.

GradeSuite comprises four primary microapps: GradeView , a sophisticated dashboard pro-

2

viding granular concept-level feedback; Concept Map, offering interactive visualizations of

learning progression; GradeSync, enabling automated grade synchronization across multiple

LMSs; and Instructor Dashboard , delivering comprehensive analytics for course staff. This

architecture allows GradeSuite to aggregate and analyze grade data from diverse sources,

providing both students and instructors with detailed insights into conceptual mastery while

significantly reducing administrative overhead.

We deployed GradeSuite in UC Berkeley’s non-majors computer science course — CS10:

The Beauty and Joy of Computing (BJC) — across two semesters, serving 218 students

total. Our results demonstrate substantial improvements in both educational and operational

outcomes. Students actively engaged with the platform, averaging 18-19 uses per student per

semester, with the majority reporting that it helped them make informed decisions about

retaking exams and identifying knowledge gaps. Interviews with course staff revealed that

GradeSuite reduced grade management time by 90% (from 10 hours to 1 hour weekly) while

eliminating final grade calculation errors. The automated grade synchronization provided

by GradeSync significantly improved grade update frequency and accuracy, addressing a key

student concern.

This report details GradeSuite’s development, architecture, and deployment strategies, in-

cluding its evolution from cloud to bare-metal and back to cloud infrastructure. The project’s

success is supported by a robust organizational structure that grew from an individual initia-

3

tive to a team of over twenty contributors, managed through a carefully designed hierarchical

framework that promoted both accountability and open communication. We also discuss fu-

ture developments, including AutoRemind , an intelligent notification system designed to

support flexible deadlines and students continuing work beyond the traditional semester.

Our findings suggest that GradeSuite provides a scalable and effective solution to support

mastery learning.

i

This report is dedicated to:

my parents, whose unwavering support and encouragement have been the foundation of all

my achievements;

my brother Trevor, whose academic excellence and dedication have been a constant source

of inspiration, challenging me to push beyond my perceived limits;

and

Shayla Whitely, whose guidance in developing my executive functioning skills has been

transformative — the tools and strategies she taught me have been instrumental in my

academic journey and made this achievement possible.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

List of Listings vi

1 Introduction 1

2 Background 4
2.1 Prior Work . 4
2.2 Motivation . 8

3 Organizational Structure 11
3.1 Chain of Command . 12
3.2 Microapp Development Teams . 14
3.3 Management Technologies . 15
3.4 Key Leadership Takeaways . 22

4 Application and System Design 25
4.1 GradeView . 26
4.2 Concept Map . 32
4.3 GradeSync . 39
4.4 Instructor Dashboard . 43

5 Deployment 50
5.1 Containerization . 51
5.2 Early Deployment: Cloud to Bare-Metal Migration 52
5.3 Updated Cloud Deployment . 54
5.4 Continuous Integration/Continuous Deployment (CICD) 56

iii

6 Results 60
6.1 Methodology . 60
6.2 Student Usage . 62
6.3 Course Staff Impact . 74

7 Future Work 78
7.1 AutoRemind . 79
7.2 Grade Projections . 81
7.3 GradeView Multi-Environment Support . 82
7.4 Infrastructure as Code (IAC) . 83
7.5 Future Studies . 84

8 Conclusion 85

Bibliography 88

A GradeSuite Handoff Plan 99
A.1 GitHub . 100
A.2 Google Cloud Platform . 102
A.3 Slack . 103
A.4 Linear . 103
A.5 Domain Name and DNS Access . 104
A.6 Microapp Handoff . 105

B Survey Questions 107
B.1 End-of-semester Survey . 107
B.2 General Feedback Survey . 113

C Source Code 116
C.1 Pull Request Template. 119
C.2 GradeView API Configuration File. 121
C.3 CS10 Concept Map Syntax. 124

iv

List of Figures

3.1 GradeSuite Organizational Structure. 11
3.2 GradeSuite GitHub Organization Landing Page. 17

4.1 GradeSuite Data Flow. 25
4.2 GradeSuite Architecture. 26
4.3 GradeView Student Interface. 27
4.4 Concept Map Diagram. 33
4.5 Static Concept Map Diagram. 36
4.6 GradeSync User Interface. 40
4.7 Instructor Dashboard Concepts Overview Page. 43
4.8 Concept Breakdown Page in Instructor Dashboard 46
4.9 Instructor Dashboard Student Report. 47

5.1 Initial Cloud Architecture of GradeSuite in Google Cloud. 53

6.1 Normalized Student Responses to: “How often do you use GradeView?” 63
6.2 Normalized Student Responses to: “What do you primarily use GradeView for?” 64
6.3 Student Responses to: “How many questions/assignments have you retaken based

on scores shown in GradeView?” . 66
6.4 Student Responses to: “How many questions/assignments did you anticipate

retaking, but chose not to based on scores shown in GradeView?” 67
6.5 Normalized Student Responses to: “Concept Map helps me track my progress in

the class.” . 68
6.6 Student Responses to: “How often do you use Concept Map?” 69
6.7 Normalized Student Responses to: “I understood how to interpret the data pre-

sented in Concept Map.” . 71

7.1 AutoRemind Architecture and Data Flow. 79
7.2 Initial Implementation of Grade Projections in GradeView 81

v

List of Tables

4.1 Master Google Sheet for GradeView . 29
4.2 Student Scores Aggregated across Multiple Platforms. 41

vi

List of Listings

C.1 Pull Request Template. 117
C.2 GradeView API Configuration File. 120
C.3 CS10 Concept Map Syntax. 122

vii

Acknowledgments

I would like to express my deepest gratitude to Professor Dan Garcia for his invaluable

guidance, mentorship, and unwavering support throughout this research project. His ex-

pertise and insights have been instrumental in shaping both this work and my growth as a

researcher.

I am profoundly grateful to the authors of the original GradeSuite paper, whose founda-

tional work laid the groundwork for this research. Their contributions have been essential

to the development of this project.

This work would not have been possible without the dedication and technical excellence

of the development teams behind GradeView , Concept Map, GradeSync, Instructor Dash-

board , and the upcoming AutoRemind project. Their collaborative spirit and commitment

to quality have been crucial to the success of this project.

I would also like to extend my appreciation to Cisco for the wealth of knowledge that I ab-

sorbed during my time working there concurrently as I architected and developedGradeSuite;

my experience there was invaluable in guiding the development of GradeSuite’s framework.

Finally, I am thankful to the broader academic community at UC Berkeley for fostering

an environment of innovation and intellectual curiosity that has enabled this work to grow

to what it is today.

1

Chapter 1

Introduction

The landscape of education is rapidly evolving, yet traditional grading structures remain

anchored in assessments and policies that often fail to capture students’ conceptual under-

standing and growth over time. Mastery learning, a pedagogical framework that emphasizes

topic-specific proficiency and knowledge demonstration over rigid temporal constraints, of-

fers a promising alternative to these conventional approaches [5]. However, the widespread

adoption of mastery learning policies and practices is often limited by Learning Management

Systems (LMSs) that do not provide appropriate support and customization.

To address this gap, we present GradeSuite, an innovative LMS architected specifically to

facilitate the implementation of mastery learning policies. GradeSuite substantially reduces

administrative overhead while providing more instructor flexibility than conventional LMSs.

The platform’s distinctive approach lies in its ability to aggregate and visualize grade data

from diverse existing LMSs, providing students with granular feedback on their conceptual

CHAPTER 1. INTRODUCTION 2

mastery, while offering instructors comprehensive insights into course-wide understanding at

a conceptual level.

GradeSuite is comprised of a series of microservice-based applications (microapps) in-

cluding GradeView , Concept Map, GradeSync, and Instructor Dashboard , each of which is

designed to address specific aspects of mastery learning implementation. GradeView repre-

sents a paradigm shift in assessment methodology, providing instructors with a sophisticated

grading platform, enabling them to transition evaluation from traditional assignment-based

metrics — where grades are computed as a sum of grade components — to concept-focused

assessment previously unsupported by existing LMSs. This granular approach, supported by

infinitely-flexible instructor defined formulas through the familiar Google Sheets platform,

enables precise measurement of student understanding across individual topics.

Complementing this, Concept Map delivers personalized learning pathways through in-

teractive visualizations of mastery progression, while GradeSync ensures seamless real-time

data synchronization across multiple LMSs and semesters, facilitating extended learning op-

portunities beyond traditional term boundaries. The Instructor Dashboard component serves

as GradeSuite’s analytical cornerstone, offering course staff unprecedented visibility into both

aggregate and individual student progress. This comprehensive analytics platform provides

instructors with insights into student knowledge acquisition that surpass the capabilities of

traditional LMSs. The integration of these components creates a cohesive ecosystem that

supports both granular assessment and holistic understanding of student progress.

Initial deployment of GradeSuite in UC Berkeley’s introductory non-majors computer sci-

CHAPTER 1. INTRODUCTION 3

ence course, CS10: The Beauty and Joy of Computing (BJC), has yielded promising results,

with both instructors and students reporting positive experiences and expressing optimism

about its potential to enhance learning outcomes and instructional efficiency. Through care-

ful monitoring of this deployment, we quantitatively evaluated GradeSuite’s effectiveness

in streamlining grading workflows, improving student success metrics, and supporting the

implementation of mastery learning policies. Our evaluation demonstrates that GradeSuite

successfully enhanced both student learning experiences and course administration efficiency,

while providing the necessary infrastructure to implement mastery learning at scale. The

platform’s impact was particularly evident in its ability to support student self-directed

learning and significantly reduce administrative overhead for course staff. This evaluation

will provide valuable insights into the platform’s capacity to transform existing pedagogical

policies through technology-enabled mastery learning approaches. During our analysis, we

also recognized places where the microapps could be improved, and will seek to address them

in later years.

4

Chapter 2

Background

While there is a substantial body of research on learning management systems (LMSs) and

mastery learning as separate domains, their specific intersection remains underexplored.

Nevertheless, certain existing dashboards and prior research initiatives have emphasized

key aspects of mastery learning, which served as important sources of inspiration for the

development of GradeSuite.

2.1 Prior Work

While some existing dashboards such as Khan Academy’s module progress view [45] pro-

vide students and instructors with more detailed breakdowns and visualizations of concep-

tual mastery, most of these platforms remain proprietary. Alternatively, platforms such

as D2L Brightspace’s competency-based education [13] dashboard or PowerSchool’s Assess-

CHAPTER 2. BACKGROUND 5

ment Reports [1] that seek to build mastery-based analytics enable adoption of some mastery-

learning grading techniques, they remain inflexible to integrations with pre-configured course-

management technologies and only extend bare-bones customization for course-specific grad-

ing configurations. These feature-rich platforms, though, provide a much-needed resource

to instructors seeking to leverage mastery learning policies in their classes to enrich student

learning. GradeSuite is built on the premise that such policies should be easily accessible,

prioritizing integrations with existing LMSs to provide instructors with the flexibility to im-

plement custom, more equitable grading practices [18] without the need to entirely migrate

to new systems.

One key issue with existing platforms is the lack of grading information collected by

the platform required to detail conceptual breakdowns assignments used in mastery-based

policies. For example, the bespoke “Concept Map” software developed at the Institute

for Human Machine Cognition (IHMC) lacks the functionality to integrate with mastery

learning [9]. To combat this, platforms such as SCALA [46] provide much more fine-grained

data to the instructor by taking a different approach: focus on learning analytics rather than

learning management. SCALA scrapes data from various sources including certain existing

LMSs to provide instructors and students with “competency assessments.” While this system

provides key metrics for many mastery-focused policies, it does not allow instructors to

directly configure their own grading schema to assign grades due to its beyond-LMS design.

One journal article details how LMSs could “reinforce the learning process through online

classroom environments” [6]. However, another case study of LMSs used in higher education

CHAPTER 2. BACKGROUND 6

institutions found “one of the main barriers to institutional adoption and usage of specific

commercial platforms is that administrators are not permitted to constantly modify the system

to better fit user’s requirements,” indicating that despite their vast ability to improve course

management, the difficulty in customization presents a challenge to their adoption [49].

Existing platforms that focus on instructor-defined metrics, such as Ross Strader and

Candice Thille’s Open Learning Initiative (OLI) Instructor Dashboard [50] promote mastery-

based grading policies through yet another, unique approach: learning objectives. The OLI

dashboard allows instructors to define learning objectives [52] for their courses, and then

use them to track student progress towards mastery. This approach allows instructors to

more closely align their grading policies with their course goals, but unlike GradeSuite, its

learning objectives are not directly integrated with traditional assignment grading, requiring

instructors to reframe their grading structure and policies to effectively leverage the OLI

dashboard.

Despite the lack of mastery-learning focused integration with existing LMSs [25, 8], some

universities have validated the need for these systems by using their own, course-specific plat-

forms. One such course studied a sample set of 29 students and found that their dashboard

“significantly enhanced students’ self-control in terms of academic persistence compared to

the control group” [22]. Given the success of their implementation, we believed it was neces-

sary to develop a platform that integrated seamlessly with existing LMS architectures while

still providing the flexibility instructors needed to implement dynamic grading policies.

Additionally, empirical studies have established that mastery-based policies, such as

CHAPTER 2. BACKGROUND 7

definitive deadlines with flexible extension policies, can significantly enhance student perfor-

mance and the overall learning experience [33, 35]. Many of these policies specifically benefit

“weaker” students [40] or underrepresented minorities [54] who may require additional re-

sources to demonstrate adequate or equivalent course competency.

In a foundational paper on mastery learning, the author asserts that students “[...] having

time allowed for learning is the key to mastery” [5]. Traditionally, this is addressed through

extensions of assignment deadlines; however, one challenge to this approach is that a final

grade needs to be calculated at the end of the term, meaning students are only able to

work towards mastery for the duration of the course offering [23]. This terminal deadline

may limit some students’ ability to fully achieve mastery, with their only recourse being

to retake the entire course. As such, some courses have began offering post-term mastery

learning opportunities, using the “Incomplete” grade as a way to indicate that “the students’

mastery of the material is incomplete” [53], while allowing them to finish their remaining

coursework after the term ends [23].

Allowing post-term work adds additional complexities for course staff. Previous research

has demonstrated how learning environments entirely devoid of deadlines are unsuitable for

effective learning [34]. Resultingly, students who opt to continue their coursework under the

“Incomplete” policy must closely coordinate with teaching assistants (TAs) to track remain-

ing coursework, deadlines, and submission protocols. TAs, in turn, must manually update

grade books, continually recalculate final grades, and submit updates to the Registrar’s

Office. Such support often relies on extensive email exchanges, additional office hours sup-

CHAPTER 2. BACKGROUND 8

port, and complex management of semester-specific spreadsheets. This fragmented process

introduces significant risk of miscommunication and grading errors, incurring unnecessary

administrative overhead.

GradeSuite builds on prior development work done by aggregating and expanding existing

projects that motivate use of mastery learning policies in the classroom. Namely, GradeView

and Instructor Dashboard are based on works developed to address challenges with the User

Interface (UI) of mastery learning dashboards [3]. Similarly, GradeSync is a development

effort that builds upon existing work to synchronize course materials and avoid course staff

the lengthy process attributed with handling incomplete students [4].

2.2 Motivation

When creating the GradeView dashboard, there were multiple existing LMSs and dash-

boards that we referenced both as demonstrations of exemplary applications for mastery

learning as well as for areas that existing platforms fell short. In an informal survey of over

ten introductory computer science instructors from institutions worldwide, we found that

the added friction of implementing mastery-learning policies within existing LMS platforms

was substantial enough to discourage instructors from exploring these policies altogether.

Overwhelmingly, instructors indicated that the way their respective LMS handled mastery

learning policies, including exam retakes, assignment extensions, concept visualizations, and

overall grade calculation, was far from sufficient.

CHAPTER 2. BACKGROUND 9

More specifically, our initial user studies for the GradeSuite project targeted instructors

and course staff at UC Berkeley, who necessarily adopt Canvas [10] — one of the most widely

used collegiate LMSs — into their instructional workflow due the university’s native support

at the institutional level. During our preliminary interviews, we quickly identified several

core issues with the platform’s support for mastery-based policies. Notably, Canvas entirely

lacks support for “clobbering”, a grading policy where later demonstrations of conceptual

mastery can be used to overwrite previously lower scores written to the grade-book only to

indicate that the student’s mastery was still in progress at the time [24]. Additionally, in

order for courses to leverage customized grading practices, Canvas requires instructors to

download course data and manually calculate custom grading metrics. Not only does this

incur a significant amount of administrative overhead, but it also means that students are

not able to directly track their progress in the class through traditional LMS features.

Yet another challenge for instructors at UC Berkeley using Canvas in mastery learning

oriented classes is that provisioning extensions on a per-student basis is extremely cumber-

some, requiring excessive amounts of time from course staff due to its complex, multi-step

process. In order to provide a specific student with an extension, Canvas requires the cre-

ation of duplicate exam instances and custom deadlines for each individual student. While

Canvas supports basic mastery learning functionality for tagging mastery levels [28], the

aforementioned feature gaps introduce significant friction, effectively hindering instructors’

ability to implement mastery learning in its entirety. In an interview with BJC course staff,

they overwhelmingly mentioned that supporting mastery learning policies was a significant

CHAPTER 2. BACKGROUND 10

challenge. Specifically, they stated that the process of updating grades was “[...] painful,

manual, and error-prone.”

Another key mastery learning policy we aimed to support was the use of “Incomplete”

grades, as previously mentioned. In the past, handling an incomplete grade was a rare,

one-off occurrence. According to interviews with CS10 course staff, these isolated cases

were relatively easy to manage. However, implementing “Incomplete” grades as a formal

policy significantly increased administrative workload. While the policy is intended to ensure

equitable mastery learning opportunities for all students [23], its scalability remained a major

challenge.

Our collaboration with CS10 course staff served as a foundational point for developing

our system. In response to informal survey results, requests from CS10 staff, and motivation

to spearhead the adoption of mastery learning, we aimed to design a platform with mastery

learning centered at its core. Throughout the development of GradeSuite, we continually

communicated with relevant staff members to ensure that it would provide all of the necessary

features to enable a wide range of mastery learning policies while simultaneously being

flexible enough to support future policies.

11

Chapter 3

Organizational Structure

Research Group Lead

GradeSuite Organization Lead

GradeView
Team Lead(s)

GradeView
Development Team

Concept Map
Team Lead(s)

Concept Map
Development Team

GradeSync
Team Lead(s)

Concept Map
Development Team

Instructor Dashboard
Team Lead(s)

Instructor Dashboard
Development Team

Figure 3.1: GradeSuite Organizational Structure.

The GradeSuite project has evolved significantly since its inception as an individually-

developed dashboard three years ago. Initially conceived as a front-end dashboard for visual-

izing Google Sheets grade data without additional persistence requirements, the project has

CHAPTER 3. ORGANIZATIONAL STRUCTURE 12

since grown into a comprehensive suite of microapps. This expansion necessitated the imple-

mentation of a robust organizational structure to effectively manage concurrent development

and deployment processes.

Following its initial unveiling and call for development support, the project attracted four

dedicated engineers, establishing itself as one of the groups’ largest development teams at

the time. GradeSuite expansive impact horizon coupled with its robust design, multi-faceted

development framework, and complex systems architecture further captivated researchers

seeking to explore industry-grade technologies and best practices; just one year following

GradeSuite’s proposal, the project expanded to six contributors focused on UI development

and early microapp architecture. As the project continually gained traction, eliciting a

variety of complex, mastery-focused feature requests, members of other teams flocked to

the project, realizing the suite’s potential for immediate impact. Currently, in order to

support the project’s growing scope, GradeSuite maintains a robust development team of

over twenty engineers across its various microapps, reflecting its substantial growth and

increasing complexity.

3.1 Chain of Command

To facilitate efficient development and deployment across microapps, we implemented a

hierarchical organizational structure within GradeSuite, as illustrated in Figure 3.1. Notably,

in order to best inform GradeSuite’s mastery learning, a teaching professor and pioneer

CHAPTER 3. ORGANIZATIONAL STRUCTURE 13

of mastery learning policies at UC Berkeley served as the research group lead while the

GradeSuite organization lead — a founding engineer — managed and guided the project’s

technical development. While this structure defined clear reporting relationships, it was

specifically designed to promote open communication across all organizational levels; both

the research group lead and GradeSuite organization lead conducted weekly meetings with

their entire reporting chain, fostering an inclusive environment where all team members

could contribute meaningfully to discussions.

A key objective of GradeSuite’s organizational design was to establish an effective com-

munication pipeline between technical and non-technical stakeholders. The organization

lead functioned as a crucial intermediary, coordinating with individual microapp leads to

track project milestones while ensuring alignment with broader organizational objectives.

Moreover, given their technical expertise and comprehensive understanding of GradeSuite’s

unified microapp architecture, the organization lead served as the primary liaison for cross-

application concerns, facilitating seamless integrations and migrations between different com-

ponents of the system.

GradeSuite’s organizational framework enabled rapid assessment and resolution of devel-

opment blockers through direct engagement with relevant teams, while maintaining compre-

hensive stakeholder involvement. The structure similarly streamlined the approval process,

allowing decisions to be expedited directly to appropriate authorities without unnecessary

hierarchical traversal.

CHAPTER 3. ORGANIZATIONAL STRUCTURE 14

3.2 Microapp Development Teams

Each of GradeSuite’s microapps was individually developed and maintained by its own re-

search team. The size of each respective team depended primarily on the semester’s planning

session by assessing the magnitude of each team’s deliverables. Teams with large epics (an

agile framework term for “project with a large scope” [36]) typically had five to six develop-

ers; those with smaller scope (e.g., maintenance) only had two or three.

Each microapp’s development team operated under the guidance of one or two team

leads, with the number of leads scaling proportionally with team size. These leads worked

in close coordination with the organization lead to structure projects into manageable epics

and establish achievable timelines. As the primary representatives of their teams, leads

participated actively in both organizational and research group meetings, ensuring effective

communication of team progress and concerns. To maintain consistent project momentum,

leads conducted regular stand-up meetings and check-ins throughout the week, facilitating

real-time progress tracking and swift resolution of team-specific challenges.

Mid-Project Reorganization

In the project’s early stages, team formation followed a self-selection model where develop-

ers chose their microapp assignments based on personal interest and subsequently managed

their time allocation. While this approach proved effective during early development, its

limitations became evident mid-semester as resource distribution became increasingly un-

CHAPTER 3. ORGANIZATIONAL STRUCTURE 15

balanced across teams. This observation led to the implementation of a comprehensive team

reorganization initiative.

The reorganization strategy incorporated multiple factors beyond immediate project re-

quirements, including individual developer expertise and familiarity with specific microapps.

Senior team members and those with cross-application integration experience were identified

as particularly versatile resources, capable of being reassigned across teams to optimize re-

source distribution relative to delivery commitments. Under the organization lead’s direction,

the transition period spanned approximately two weeks. Despite this initial investment in

team restructuring, the enhanced operational efficiency achieved through improved resource

allocation yielded significant productivity gains within the following month alone.

3.3 Management Technologies

In order to manage the entire organization, the organization lead configured a variety

of different technologies utilized by developers and management alike. These technologies

spanned from communication standards to project planning tools. Functionally, these tools

allowed the entire GradeSuite organization to rapidly develop new features in line with

higher-level organization incentives such as grant timelines or adoption candidates interested

in deploying the suite (or individual microapps) for their own use.

CHAPTER 3. ORGANIZATIONAL STRUCTURE 16

GitHub

GitHub [7] is overwhelmingly the most popular file host developers use for storing and

versioning their code, so we adopted the technology from the get-go. Since the project was

initially just GradeView , we started with a monolithic structure, where all source code was

stored in a single repository. While this made navigating and modifying early projects simple,

as the project blossomed in size and microservices, we realized that continued expansion of

this monolithic design would not be feasible in the long term.

Early Design and Expansion Challenges

Notably, we ran into issues with developers accidentally modifying code from other projects

or breaking strict abstraction barriers, such as importing files from other microservices into

the incorrect services or applications. Moreover, the monolithic design meant initial microser-

vices did not have isolated environments to develop and test in, leading to an over-reliance

on integration and validation testing.

To combat the many issues borne from the monolithic design, we decided to revise the

development plan for an entire semester, prioritizing maintenance and structural refactoring

efforts at the cost of feature development. During this maintenance semester, we decoupled

the services into their current “microapp” structure by removing intersecting dependencies.

Similarly, we focused on extracting out different microservices within each of the microapps,

enabling us to separately develop each service while also ensuring that all of the service’s

CHAPTER 3. ORGANIZATIONAL STRUCTURE 17

dependencies were localized to its own project directory.

GitHub Organization

Figure 3.2: GradeSuite GitHub Organization Landing Page.

While breaking out the microapps into separate repositories, we realized that we needed

a way to centralize our repositories in GitHub, since individually owned and managed repos-

CHAPTER 3. ORGANIZATIONAL STRUCTURE 18

itories was not realistic. To do this, we created a GitHub organization specifically for

GradeSuite [2]. Not only did this allow us to localize our projects, but it also enabled

key access control and management functions such as global branch protection. Moreover,

the unified GitHub organization provided a centralized location for organization-wide doc-

umentation and shared scripts/utilities. Notably, the organization onboarding process and

bylaws live in the GitHub organization’s README.md, shown directly on the organization’s

GitHub landing page (Figure 3.21). Not only did this serve as a reminder for best practices

and contribution guidelines, but it also ensured that important debugging and disaster re-

mediation plans were easily accessible in a known location.

Pull Request Etiquette for Documentation

One of the most important organizational decisions we made to ensure clean and maintain-

able code across GradeSuite’s several long-lived microapps is the rigid PR etiquette. These

guidelines were strictly enforced; non-emergent changes in conflict with the guidelines were

even automatically dismissed without review, forcing developers to update their PRs to com-

ply with the guidelines. The strict guidelines in combination with a clear pull request (PR)

template (Listing C.1) established baseline standards for implicit, persistently up-to-date

code documentation, accessible through git’s blame subroutine [26]. These standards as-

sisted continuous, rapid development by mitigating the concern of outdated documentation

that misrepresented the current state of the codebase.

1The original GitHub organization’s name was “AFA Tooling,” spanning from the broader research
group’s name “A’s for All” [23].

CHAPTER 3. ORGANIZATIONAL STRUCTURE 19

Beyond documentation of code changes through PR bodies, the pull request template

likewise required developers to link the ticket they were doing work under. Further, the

ticket’s identifier was included in the branch name and as the prefix of the PR name, for

example a valid name might be [GV-10] Migrate Concept Map to APIv2. Not only did

this enable key workspace automations in our ticketing platform that updated the status

of tickets and linked the PR to the ticket, but it also ensured developers looking back at

previous code changes were able to dive into more in-depth explanations of why a specific

change happened, even being able to traverse up to the change ticket’s respective epic or

parent task.

Slack

Slack served as the primary communication platform for the entire organization, functioning

as both the central hub for interpersonal communications and an automated notification

system for project updates and deadlines. While synchronous team communications such

as stand-up meetings were conducted in person or over video calls, we leveraged Slack’s

extensive integration capabilities with development platforms such as GitHub, Jira, and

Linear to maintain automated oversight of ticket progression and pull request status. The

platform also played a crucial role in our operational reliability strategy, serving as one of

several redundant channels for on-call notifications to ensure prompt response and resolution

of production incidents.

CHAPTER 3. ORGANIZATIONAL STRUCTURE 20

One of the most important workflows we configured for Slack was our integration with

GitHub. As soon as a pull request was opened for review in one of the GradeSuite GitHub

organization’s repos, the respective slack channel was sent a message with a link and a short

preview of the PR. This allowed developers on the team to easily preform code reviews as

soon as the PR was ready for review. Likewise, when the PR was eventually merged in, the

GitHub integration bot sent a respective notification not only to the team’s channel, but to

a larger organization-wide channel such that any potential related issues with downstream

microapps could be diagnosed and resolved swiftly.

The integrations with our project management platforms (Jira and Linear) represented

another critical component of our communication infrastructure. These integrations facili-

tated comprehensive project visibility across teams, enabling developers to maintain aware-

ness of parallel development efforts and their respective roadmaps. Additionally, they en-

hanced accountability through automated ticket tracking and status updates, preventing

task stagnation while ensuring efficient progression of work items through the development

pipeline.

Ticket Tracker

Our project management system represented a cornerstone technology in GradeSuite’s de-

velopment infrastructure. Given our adherence to agile methodologies, the selection of an

appropriate ticket tracking platform remained crucial for enabling rapid development within

CHAPTER 3. ORGANIZATIONAL STRUCTURE 21

our agile framework [36].

Jira

During the project’s initial phase, Jira [30] emerged as an attractive solution due to its com-

prehensive freemium licensing model, which provided extensive platform functionality at no

cost for teams of up to ten members. However, upon exceeding this threshold, the platform’s

pricing structure proved prohibitively expensive, with our educational institution discount of

75% still resulting in monthly costs of over $100. While the platform’s capabilities justified

this expenditure in the short term, a cost-benefit analysis revealed that alternative solutions,

such as Linear [32], offered comparable functionality with significantly more favorable pricing

models for the growing organization.

Linear

Realizing that Jira was not a viable long-term solution for our team, we decided to migrate to

our current project management platform, Linear. Linear provided much of the same services

as Jira, but without the seat-number-based payment plan, allowing our organization to use it

for our specific needs entirely free of charge. Unfortunately, since we already had our systems

set up and configured for Jira, it meant spending roughly two weeks migrating the existing

configuration, tickets, and integrations to Linear. On top of the migration costs, it also

affected everyone in the organization as they spent valuable time familiarizing themselves

with the new platform.

CHAPTER 3. ORGANIZATIONAL STRUCTURE 22

Despite the aggregate time-cost of migrating to Linear, we decided the that monthly cost

of Jira sufficiently offset the one-time cost to migrate to Linear, so we moved forward with

the project. Luckily, Linear provided a helpful migration strategy and tool to do a large

amount of the work copying tickets from Jira to Linear. Unfortunately, it did mean forgoing

the pre-existing automations and project boards that we had configured specifically within

Jira. Another challenge we faced with the migration was that Linear’s free plan only allowed

for two distinct teams, whereas each microapp could have its own team in Jira. In order to

mitigate this issue, we simply had different projects for each microapp in which the teams’

respective tickets resided.

Luckily, like Jira, Linear provided light-weight integrations with both GitHub and Slack

so that our existing pipelines could remain the same post-migration. This did cost some

configuration time to set up prior to the organization’s migration to Linear, but it made

swapping to Linear a seamless process for existing developers in terms of their overall work-

flow.

3.4 Key Leadership Takeaways

Throughout the development and management of GradeSuite, several critical leadership in-

sights emerged that proved instrumental to the project’s success. First and foremost was the

importance of maintaining forward momentum while remaining adaptable to change. This

manifested in various ways, from our willingness to reorganize team structures when inef-

CHAPTER 3. ORGANIZATIONAL STRUCTURE 23

ficiencies became apparent to our strategic platform migrations when cost-benefit analyses

warranted such transitions.

A second crucial insight was the value of establishing clear communication channels

while maintaining flexibility in their usage. While our organizational structure provided

a formal hierarchy, the deliberate decision to encourage cross-level communication during

weekly meetings fostered an environment where innovative ideas could emerge from any

level of the organization. This approach proved particularly valuable during technical inte-

grations between microapps, where developers could directly address concerns with relevant

stakeholders rather than navigating multiple organizational layers.

The importance of documentation and process standardization emerged as another vi-

tal lesson. Our strict PR guidelines and templating requirements, while initially seeming

bureaucratic, proved invaluable as the project scaled from 4 to over 20 developers. These

standards not only facilitated knowledge transfer but also significantly reduced the cognitive

overhead for code reviews and maintenance tasks.

Perhaps most significantly, we learned the importance of balancing technical debt against

feature development. The decision to dedicate an entire semester to maintenance and struc-

tural refactoring — moving from a monolithic to microservice architecture — initially ap-

peared to slow progress. However, this investment in architectural integrity ultimately accel-

erated development velocity and improved system reliability. This experience reinforced the

principle that technical leadership often requires making difficult trade-offs between short-

term gains and long-term sustainability.

CHAPTER 3. ORGANIZATIONAL STRUCTURE 24

Finally, we discovered the critical nature of team composition and the need for strategic

resource allocation. The mid-project reorganization demonstrated that, while self-selection

of projects can boost initial motivation, optimal team performance requires thoughtful con-

sideration of both technical requirements and individual capabilities. This balance between

team-member autonomy and organizational needs became a cornerstone of our management

philosophy.

25

Chapter 4

Application and System Design

Figure 4.1: GradeSuite Data Flow.

GradeSuite is a microservice architecture hosted on Google Cloud developed and main-

tained by individual teams. It is currently comprised of four main microapps: GradeView ,

Concept Map, GradeSync, and Instructor Dashboard , each containing one or more microser-

vices that are independently developed, maintained, and deployed.

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 26

Figure 4.2: GradeSuite Architecture.

Each of the different microapps consists of one or more Docker containers configured to

network with each other to provide all application functionality [17]. The apps interact with

each other using their respective public/private Representational State Transfer (REST)

Application Programming Interfaces (APIs) and/or through individually built integrations

with other platforms. Figure 4.1 illustrates the end-to-end data flow -— from input to

processing to output, while Figure 4.2 depicts the GradeSuite’s currently deployed cloud

architecture.

4.1 GradeView

The GradeView microapp is the primary way that instructors and students alike directly

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 27

Figure 4.3: GradeView Student Interface.

interact with the suite. It is functionally comprised of four primary microservices: a reverse-

proxy service that orchestrates and balances requests to each of its microservices, a front-end

service that serves as the centralized interface of GradeSuite, a public API for all non-UI

related requests, and a Redis caching layer to minimize transactional load.

One of the primary focuses of GradeView during its conception was to minimize (or

altogether abstract away) the need for an external database. The motivation for this decision

was to reduce data-storage overhead and promote platform integration over individual data

management so instructors using the platform could leverage existing course infrastructure

without having to migrate to new systems. To do this, GradeView relies on a Google Sheet

as the sole “source of truth” for grade data. During our preliminary survey of instructors at

UC Berkeley, we found that instructors with courses geared towards mastery-learning had

complex grading schemes configured through the Google Sheets formula to facilitate related

policies. As such, our goal was to architect GradeView to conform to instructors’ existing

Google Sheets instead of a rigid, bespoke database schema.

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 28

Reverse-Proxy Service

The proxy service for GradeView consists of a docker container with an NGINX [41] base

image. It is configured to proxy public traffic to the other microservices in the application

stack. It acts as the public gateway for all external connections and provides Transport

Layer Encryption (TLS) for all HTTP requests including all internal API requests depicted

in Figure 4.2. While this service was initially implemented for GradeView , it was later

expanded to include all of GradeSuite’s microapps as they built direct integrations with

GradeView .

Front-End UI

The front-end UI, as shown in Figure 4.3, is what both users and instructors interact with

when they use GradeView from a web browser. Users log into the service through a public

web-URL using OAuth [42] which is then validated not only for institutional access but also

for course membership. For a student to successfully log in, they must be listed as a student

in the instructor’s Google Sheet as shown the second column of Table 4.1.

Additionally, the underlying Google Sheet is the primary source for all of the key UI

components of the dashboard Categories and topics are defined with headings, which can

be configured and updated on the fly simply by editing the Google Sheet. Likewise, new

assignments and concepts can be added to GradeView simply by adding additional columns

to the sheet. Moreover, rows can be easily hidden, simply by deleting the category-level

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 29

Legal Name Email Abstraction Iteration Algorithms
CATEGORY CATEGORY Quest Quest Midterm

MAX POINTS MAX POINTS 2 4 8
Doe, John johndoe@berkeley.edu 2 3 7
Smith, Alice alicesmith@berkeley.edu 1 4 8
Williams, Eve evewilliams@berkeley.edu 2 4 8
Wilson, Bob bobwilson@berkeley.edu 1 2 3

Table 4.1: Master Google Sheet for GradeView .

column header. For example, if configured with the example sheet in Table 4.1, GradeView

would display two categories/assignments, Quest and Midterm, with the topics Abstraction

and Iteration under the Quest category, and Algorithms under the Midterm category.

After logging in, students can view not only the assignments they have completed and

their aggregate grade on the assignment, as they would in a traditional LMS, but also the

conceptual breakdown for each assignment and how they are performing on each related

concept. This detailed breakdown of how they are performing at an individual, concept

level provides a much deeper insight into course progression than traditional LMSs. Here,

students can better focus their efforts by selectively studying the topics they have yet to

master.

Through a direct integration with the Instructor Dashboard microapp (section 4.4),

logged-in course staff likewise can view detailed breakdowns of conceptual mastery per-

student. This provides course staff with a better understanding of the foundational concepts

students are struggling with, allowing them to better assist individual students. GradeView ’s

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 30

frontend UI also informs course staff of how the class as a whole is absorbing material at

the conceptual level; staff could then use this information to motivate prioritized concepts

in lectures, assignments, and other course materials.

The front-end application is built with React [47], using Material UI [38] as its front-end

framework to ensure both fluid functionality and native accessibility. When developing the

front-end, we heavily prioritized accessibility such as by supporting assistive technologies in-

cluding screen readers, as our target audience is comprised of students from all backgrounds.

API

The GradeView API serves as the central nervous system of the application, providing a

secure and efficient interface for all data management and external integrations. Built as a

versioned REST API [37], it implements robust role-based access control at the resource level

to ensure the protection of sensitive grade data. This security model is particularly crucial

given the educational context, where student privacy and data protection are paramount.

To ensure optimal performance and scalability, the API is implemented in Node.js [21]

and follows modern ECMAScript Module syntax, maintaining consistency with the React

frontend’s development standards. This architectural choice not only simplifies the devel-

opment process but also enables seamless integration between the frontend and backend

components. Moreover, our API is containerized and deployed as a Node.js Docker image,

allowing for dynamic scaling through load balancing to handle varying request volumes.

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 31

A key architectural decision was the development of a custom Redis facade that abstracts

and standardizes all caching operations. This facade layer provides a consistent interface for

the API to interact with Redis, encapsulating complex caching logic and patterns while

ensuring proper error handling and data consistency. The facade implementation includes

standardized methods for common operations such as cache invalidation, data synchroniza-

tion, and batch processing, making it easier to maintain and extend the caching layer as the

application evolves.

The API’s design emphasizes both security and performance, with each endpoint care-

fully crafted to handle specific use cases while maintaining strict access controls. When users

authenticate through the frontend, the API serves as the gatekeeper, validating permissions

and providing access to the appropriate grade information and service-specific integration

data. This centralized approach to data management ensures consistency across the appli-

cation while maintaining the flexibility needed to support various educational workflows.

Redis Caching Layer

To increase the maximum load and minimize transactional latency, we re-architected our

application to use Redis as a caching layer.

The Redis layer sits in between Google Sheets and the API, since we noticed that requests

to Google Sheets consistently took the greatest amount of time to resolve. After introducing

the caching layer, not only were requests able to be handled much faster, but the maximum

processable load grew substantially.

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 32

During our initial release, we realized that the high volume of requests to Google Sheets

was a glaring bottleneck, even with a dedicated service account provisioned with an increased

rate-limit. We noticed that connections to Google Sheets were being throttled due to rate

limit violations during peak operational hours (post-exam after releasing grades). The Redis

instance resolves this by abstracting Google Sheets from the API entirely. To do this, we

use individual cron [14] jobs, programs configured for scheduled execution, to refresh and

update the cache on preset intervals ensuring that the rate limit, set directly by Google

Sheets, would never be exceeded.

When planning GradeView , we wanted to provide real-time data to the student as best as

possible; as soon as the Google Sheet was updated, so would the GradeView UI. As such, the

cron jobs are optimized to run efficiently and often, ensuring minimal refresh latency. Given

this optimization, we also configured the Redis [48] layer (and related cron jobs) as Docker

images, allowing for them to be easily spun up and executed on the fly. This architecture

is consistent with our plan to avoid an application-specific database since it functions as

a cache rather than as a stand-alone database. It also means that the Redis instance can

likewise be balanced as any other application.

4.2 Concept Map

The Concept Map microapp is a key component of GradeSuite that provides students and

instructors with a clear visual representation of the course’s conceptual structure and each

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 33

Figure 4.4: Concept Map Diagram.

student’s mastery progress, as illustrated in Figure 4.4. Traditional LMSs typically display

grades at the assignment level or as an overall aggregate, which can make it difficult for

students to track their understanding of specific topics. This lack of granular insight often

prevents learners from identifying the concepts they have mastered and those requiring fur-

ther study. Additionally, many concepts in a course serve as foundational prerequisites for

more advanced material, making it essential for students to understand the logical sequence

of topics and how assignments contribute to their conceptual development. The Concept

Map microapp uniquely provides a visually interactive solution to these exact issues.

The Concept Map module focuses on individual concepts and their interrelationships,

allowing students to quickly see where they stand on each topic and instructors to pinpoint

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 34

areas of confusion or misunderstanding. By visualizing how each concept connects to subse-

quent topics, the Concept Map microapp allows learners to plan their study schedules more

effectively -— focusing first on foundational material and then moving on to more complex

concepts once they have established a solid base. This approach fundamentally changes how

students engage with course material, transforming the learning experience from a series of

disconnected assessments into a coherent journey of conceptual mastery.

Early versions of Concept Map also included a feature that allowed instructors to define

expected course progression. This enabled edges in the map to be colored based on whether or

not concepts were taught, allowing students to pace themselves accordingly (see Figure 4.5).

In order to make the Concept Map visualizations more dynamic, we later removed this

feature, and instead opted to render only nodes and edges that had been taught, so as to not

overwhelm students with information that was not directly relevant to their current learning

journey.

Web Application

The Concept Map microapp is implemented as a Python Flask-based [20] microservice within

the larger codebase of GradeSuite. Its architecture follows a three-tier design pattern that

separates concerns between data management, processing logic, and presentation. The data

layer is responsible for storing and retrieving concept definitions and mastery scores, while

the processing layer manages the transformation of raw data into visualizable structures.

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 35

The presentation layer handles the rendering of the interactive visualization through a web

interface, ensuring a clear separation of functionality that promotes maintainability and

scalability.

The web interface of Concept Map is built using React [47] and D3.js [15], providing a

rich, interactive experience for users. The interface supports sophisticated navigation fea-

tures, including smooth zooming and panning capabilities that allow users to explore the

concept map at different scales. Users can expand or collapse nodes to reveal or hide de-

tailed information, creating a customizable view that adapts to their current focus and needs.

Moreover, the visualization employs a force-directed layout algorithm that automatically po-

sitions nodes in a way that minimizes edge crossings and optimizes readability [12]. This

algorithm takes into account both the hierarchical structure of the concepts and the strength

of their relationships, creating a layout that naturally reflects the conceptual organization of

the course material. The resulting visualization is both aesthetically pleasing and function-

ally effective, allowing users to quickly grasp complex relationships between concepts and

their current mastery status.

To ensure maximum accessibility and deployment flexibility, Concept Map can be de-

ployed either as an integration through its API as is done with GradeSuite or as a fully in-

teractive web application. The standalone deployment allows instructors to generate static

HTML/JS/CSS files that can be hosted on any web server, making it particularly useful

for environments with limited infrastructure. Additionally, it supports static generation of

concept map JPG images or PDF files as shown in Figure 4.5, leveraging Graphviz [19] as

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 36

Figure 4.5: Static Concept Map Diagram.

its underlying visualization library. This dual deployment approach ensures that the Con-

cept Map microapp can be integrated into a wide range of educational environments while

maintaining its core functionality and visual appeal.

Syntax and Configuration

The configuration system for Concept Map is designed to be both powerful and accessible

to instructors. Using a YAML-based syntax such as the one shown in Listing C.3, instruc-

tors can define complex hierarchical relationships between concepts with unlimited nesting

depth. This configuration language supports not only basic concept definitions but also

sophisticated relationships between concepts, including prerequisite chains and assignment

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 37

mappings. Moreover, Concept Map accepts JSON configurations as well, allowing instruc-

tors not familiar with our proprietary syntax to effortlessly adopt Concept Map into their

existing workflow. Additionally, each concept can be enriched with custom metadata, such

as learning objectives and associated resources, providing a rich context for both students

and instructors. The system’s flexibility allows for the representation of both simple linear

progressions and complex, interconnected knowledge structures.

The configuration system’s most notable feature is its ability to represent assignments

as nodes alongside concepts, creating a direct visual connection between assessment and

learning objectives. This integration enables learners to see exactly which assignments re-

inforce or assess particular topics, providing immediate context for their performance. The

visualization uses an instructor-customizable color-coding system that to denote progression

from areas of struggle to complete mastery, providing an intuitive visual representation of

student progress. This color-coding system is dynamically updated as students complete

assessments, creating a real-time feedback loop that guides their learning journey.

Data Processing Pipeline

The data processing pipeline in Concept Map is designed to transform raw configuration

and performance data into meaningful visualizations. The process begins with configura-

tion parsing, where the YAML-based concept definitions are transformed into an internal

representation that captures both the hierarchical structure and the relationships between

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 38

concepts. This internal representation serves as the foundation for the subsequent stages of

processing, which include mastery calculation and graph generation.

The Concept Map microapp generates an undirected graph structure that represents the

complex web of concept relationships, with edges indicating both hierarchical and prerequi-

site connections. To calculate student mastery Concept Map aggregates student performance

data across subtopics and assignments, taking into account both direct assessment results

and inferred understanding based on prerequisite relationships. Additionally, Concept Map’s

visualizations account not only for total score of child assignments, but also for each child’s

mastery level in order to best depict student proficiency and progress.

GradeSuite Integration

Concept Map is deeply integrated with the other components of GradeSuite, creating a co-

hesive ecosystem that supports both student learning and instructor insight. Its integrations

with GradeView and GradeSync ensure that mastery scores are updated in real-time as new

grade data becomes available, providing students with immediate feedback on their progress.

This real-time updating is crucial for maintaining the relevance and accuracy of Concept Map

as a learning tool. These integrations ensure that the visualization remains current with the

latest assessment results while maintaining the conceptual organization defined by the in-

structor. The system’s ability to connect assessment data with conceptual understanding

creates a powerful feedback loop that supports mastery-oriented learning. This comprehen-

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 39

sive integration ensures that Concept Map remains a dynamic and relevant tool throughout

the learning process, providing both students and instructors with valuable insights into the

learning journey.

Concept Map fosters a mastery-oriented mindset by making conceptual gaps visible at a

glance. Its visual nature and interactive features make it an effective tool for both students

seeking to understand their learning progress and instructors looking to identify areas where

students need additional support. The system’s architecture and deep integration with other

components of GradeSuite create a powerful platform for supporting mastery-based learning

in complex educational environments.

4.3 GradeSync

GradeSync serves as a microservice-based microapp for data synchronization between Grade-

scope [27], PrairieLearn [44], and iClicker [29], leveraging Google Sheets as an intermediary

for processing and visualization. The architecture follows a modular, cloud-based design to

ensure scalability, reliability, and ease of deployment. It is neatly integrated with GradeView

to allow instructors the ability to easily manage its configuration as shown in Figure 4.6.

Data Pipeline

The system is structured as a pipeline to handle grade synchronization and student tracking

efficiently. It begins by extracting student grade data from three major LMS platforms:

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 40

Figure 4.6: GradeSync User Interface.

Gradescope, PrairieLearn, and iClicker. Each of these LMSs expose APIs or user access

strategies that can be automated to allow GradeSync to fetch, update, and process grades

programmatically. By configuring the microapp at the beginning of the semester with re-

spective service account credentials or API keys, GradeSync can automatically retrieve and

process grade data from each platform. The extracted data is then processed into Pandas

dataframes through custom transformations and subsequently pushed to pre-configured or

automatically generated Google Sheets for ongoing tracking and analysis. When integrated

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 41

Gradescope PrairieLearn
Name Proj1 Proj2 Midterm Final
Alice 19 14 64 76
Bob 12 16 43 85

Catherine 20 17 78 110
Mary 18 12 70 118

Table 4.2: Student Scores Aggregated across Multiple Platforms.

with the master Google Sheet used by GradeView , the master sheet can then reference

the processed grade data by importing it with the IMPORTRANGE command, allowing the in-

structor to configure any number of sheets formulas to calculate and track student mastery

scores.

The core processing logic of GradeSync is encapsulated in a set of scripts responsible for

data retrieval, transformation, and synchronization. Table 4.2 illustrates a simple example

of the aggregation of scores across multiple platforms into a centralized dataframe. These

scripts are scheduled to run periodically using cron jobs to ensure automatic updates (e.g.,

hourly synchronization). The system is containerized with Docker, enabling portability and

seamless deployment across different environments. Google Cloud serves as the hosting

platform, ensuring high availability, scalability, and fault tolerance.

Data Storage

Google Sheets functions as an intermediate data storage solution in the GradeSync architec-

ture, serving as a centralized repository for synchronized grade data from multiple learning

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 42

management systems. This choice aligns with our broader architectural goals of maintaining

flexibility while ensuring data security and accessibility.

The decision to use Google Sheets as our primary storage solution was driven by several

key factors. First, it provides a familiar interface that allows instructors to leverage existing

spreadsheet expertise for custom grade calculations and analysis. Second, its robust API

and real-time collaboration features facilitate seamless integration with our microservices

architecture. Most importantly, in compliance with UC Berkeley’s data storage policies [16],

we ensure that all student grade data is stored exclusively in Berkeley-owned or licensed

Google Sheets and servers, maintaining strict institutional data governance standards while

providing the necessary functionality for our mastery-based learning platform.

Configurability

The system’s high level of configurability enables professors and teaching assistants to seam-

lessly initialize and customize integrations by specifying input parameters such as a Grade-

Scope course ID, PrairieLearn course ID, iClicker course ID, and a Spreadsheet output ID.

With a single click, a Docker container configured for a specific course and semester is

deployed to the cloud. Additionally, multiple deployments can be effortlessly initiated by

defining new configurations, enabling these cloud services to run in parallel. This ensures

that incomplete student data can be automatically processed beyond the original semester,

as data from multiple semesters is actively pulled and processed. Instructors can customize

grading formulas in Google Sheets to continuously calculate students’ overall grades as well,

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 43

taking advantage of GradeSync’s rapid refresh rate to reduce the amount of time required

to calculate grades.

Ultimately, GradeSync provides the underlying infrastructure to support mastery learn-

ing based grading policies through the integration of data from multiple platforms and cus-

tomization grading formulas that accurately reflect student mastery.

4.4 Instructor Dashboard

Figure 4.7: Instructor Dashboard Concepts Overview Page.

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 44

Although the first version of GradeSuite (consisting only of GradeView and Concept

Map) was initially developed with students in mind, we quickly realized that instructors

would also benefit from a dashboard to view course-wide mastery data. As such, Instructor

Dashboard was developed to provide instructors with a mastery-based perspective on course-

wide student learning while integrating seamlessly with GradeView .

Core Metrics and Computation

The Instructor Dashboard microapp implements a multi-stage data processing pipeline built

on Python, leveraging direct integrations with both GradeView ’s API and Google Cloud

Platform services. The system’s primary function is twofold: first, it aggregates and pro-

cesses student mastery data from GradeView to generate actionable insights; second, it ana-

lyzes platform-wide usage patterns through Google Cloud Logging and BigQuery to provide

comprehensive analytics on user engagement and system utilization.

The data processing architecture employs the Pandas framework [43] to perform real-

time analysis of incoming data streams. This choice enables efficient manipulation of large

datasets while maintaining the flexibility needed for complex statistical computations. The

system processes both structured mastery data from GradeView and semi-structured log

data from Google Cloud, transforming them into normalized datasets suitable for analysis

and visualization.

The visualization layer of Instructor Dashboard supports multiple rendering pathways to

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 45

accommodate different use cases. When integrated with GradeView , the system utilizes Ma-

terial UI [38] to deliver interactive, web-based visualizations that maintain consistency with

the broader GradeSuite interface. For standalone deployments or automated reporting sce-

narios, Instructor Dashboard can generate static visualizations using matplotlib [39], which

are particularly useful for offline analysis or integration with external reporting systems. Ad-

ditionally, all visualization capabilities are exposed through Instructor Dashboard ’s REST

API, enabling programmatic access to analytics and facilitating integration with third-party

platforms or custom dashboarding solutions.

User Interface

Instructor Dashboard ’s user interface is accessible directly through GradeView , and it con-

tains several primary views. The first is the concepts overview page, shown in Figure 4.7,

which displays a report of all of the course’s key concepts. Each of these concepts can

be clicked to view a detailed breakdown of the concept’s course-wide mastery, as shown in

Figure 4.8. Depending on the individual instructor’s configuration in Google Sheets, the

“concepts” may also include assignments that are similarly displayed in GradeView and

Concept Map respectively.

Another important feature of Instructor Dashboard ’s UI is its ability to neatly display

the mastery breakdown of each student in a tabular format (see Figure 4.9). This view

allows instructors to quickly identify individual students who are struggling with certain

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 46

Figure 4.8: Concept Breakdown Page in Instructor Dashboard .

concepts, and provides them with a starting point for further investigation. Each column in

the table is individually sortable which is likewise helpful in determining which concepts are

most challenging for the class as a whole, and can be used for instructor support, such as by

guiding the development of course materials.

Identity and Access Management (IAM)

A critical requirement for integrating Instructor Dashboard with GradeView was implement-

ing robust access control to ensure that only authorized instructors and TAs could view and

access the application. While GradeView ’s existing access control infrastructure provided a

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 47

Figure 4.9: Instructor Dashboard Student Report.

foundation, two significant challenges needed to be addressed: role-based access differentia-

tion and UI adaptation for instructor-specific functionality.

Initially, all access control was managed through the Google Sheet itself, which served

as the sole source of truth for user roles and permissions. However, this approach lacked

the granularity needed to distinguish between instructors and TAs, as well as the flexibility

required for managing varying levels of access across different course components. This

limitation became particularly apparent when implementing Instructor Dashboard , which

required more sophisticated role-based access control.

Back-End Access Control

To address these challenges, we implemented a multi-layered authentication and authoriza-

tion system. The solution leverages OAuth [42] for institutional authentication while in-

troducing a new role-based permission model that expands upon the existing authorization

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 48

systems configured in GradeView ’s API. This approach maintains backward compatibility

while enabling fine-grained access control necessary for instructor-specific features.

In order to support the new, role-based access control, we had to modify the GradeView

API config file to include role-based access as shown in lines 31–34 of Listing C.2. We

deliberately decided to declaratively provision administrator access through the API config

file to track access updates with our version control system, git. While rewriting our access

control logic, we also had to revisit our existing authorization systems to ensure that requests

by instructors (not listed in the Google Sheet) would be properly handled, since our previous

instance would deny any requests by users not listed in the Google Sheet. Although this

was a significant challenge, it was a great opportunity to refactor our existing authorization

systems to be more robust and flexible.

To best integrate our new access control system into our API, we simply had to write

a middleware function that would wrap all admin API requests. This functionality was

relatively simple to implement, as all admin-specific API requests were routed through the

/admin router, so the admin router itself natively integrated the middleware as a preliminary

filter before further processing the request.

Front-End Visibility

The front-end implementation required significant architectural changes to support role-

specific UI components and features. We introduced a new permission-based rendering

system that dynamically adjusts the interface based on the user’s role as provided by the

CHAPTER 4. APPLICATION AND SYSTEM DESIGN 49

GradeView API, ensuring that instructor-specific functionality is only visible to authorized

users.

This enhancement not only improved security but also streamlined the user experience

by presenting each role with a tailored interface containing only relevant features and data.

The modular design of this system allows for easy addition of new admin-specific features,

supporting the growing needs of course staff while maintaining robust access control.

The way we controlled front-end role-based access control was with an extremely complex

React user context that was provided at the top level of the GradeView application. The

context contained a reducer function callback that would be called when the user logged in,

and update the context with the user’s information, including their role as specified by the

GradeView API login endpoint. This not only allowed us to gracefully render student versus

instructor interfaces, but it also meant that unauthorized API requests could be denied

before they even reached the API, reducing load on the API itself. It is important to note,

though, that this client-side check was used solely for performance benefits, as the API was

already protected by the role-based access control implemented in the back-end.

50

Chapter 5

Deployment

GradeSuite is an extremely portable system, ensuring easy deployment across a variety

of platforms. Frictionless deployment was an important consideration in our initial archi-

tecture, since we wanted to make sure that instructors could adopt GradeSuite into their

workflow through much easier means than adapting their existing LMS to support mastery

learning. Over the lifespan of the GradeSuite project, the deployment architecture changed

several times, leading to its extremely dynamic design suitable for a multitude of deployment

strategies. Namely, GradeSuite supports both bare-metal and cloud deployment with Google

Cloud. Given it’s bare-metal support, GradeSuite can easily be adopted to any cloud service

provider by simply configuring the entire stack to run from within a virtual machine.

CHAPTER 5. DEPLOYMENT 51

5.1 Containerization

From the outset, we decided it would be important to containerize the platform for develop-

ment consistency and reliable deployments. To do this, we used Docker [17], overwhelmingly

the most popular containerization platform. Each microservice was declaratively configured

with its own image specification whether entirely through the docker-compose file, or through

its own individual Dockerfile.

The compose file allowed us to localize the entire microapps’ container stack for easy local

deployment. This ensured that developer and deployment infrastructure was the exact same,

such that there were no inconsistencies between production and development environments.

Likewise, it allowed us to easily push built images up to our production cloud environment

for easy execution and load balancing.

One initial challenge we faced with our entirely virtualized approach was the lack of data

persistence for our microservices. Initially, we wanted to rely only on the upstream Google

Sheet for all data access, thereby eliminating the need for a centralized persistence layer.

Unfortunately, this this meant that all grade-data accesses made respective requests to the

Google Sheets API which was not only a significant source of latency, but also proved to be

a key bottleneck due to the API’s rate limits. To subvert this issue, we decided to add a

caching layer as a service — the Redis service — which would periodically make requests

for the updated Google Sheet data and store it in the cache for quick access by the API

microservice. Not only did this solve our latency and reliability issues, but it also allowed

CHAPTER 5. DEPLOYMENT 52

us to more easily scale our platform horizontally, since the service itself can be spun-up on

demand by pre-fetching the data before serving requests.

5.2 Early Deployment: Cloud to Bare-Metal

Migration

The initial version of GradeSuite (Figure 5.1) was deployed directly to Google Cloud using

Artifact Registry as a private image repository. From there, we configured Google Cloud

Compute jobs to pick up the most recently deployed image (tagged with “:latest”) and

spin up compute instances for each microservice. In our deployment pipeline, we also declar-

atively configured orchestration of the compute instances to ensure consistent inter-service

networking configuration as the platform scaled. Likewise, we set up our Virtual Private

Cloud (VPC) with a dedicated gateway to allow for application-level load balancing and

routing, while still providing the necessary isolation for each microservice.

After configuring the platform for Google Cloud deployment, our requirements changed,

and we needed to move our entire platform to bare-metal. Doing so was relatively simple

given the existing containerization configuration, so we were able to simply configure Docker

on the deployment server and spin up the stack as we would in dev, but by setting the envi-

ronment to prod. The biggest challenge with the bare-metal deployment infrastructure was

in routing packets to the correct applications. Although GradeSuite has its own virtualized

CHAPTER 5. DEPLOYMENT 53

Figure 5.1: Initial Cloud Architecture of GradeSuite in Google Cloud.

reverse-proxy for all of its microapps, we found that the proxy service itself was not capable

of directly integrating with the bare-metal host’s web service leading to issues when the

proxy service was opened on web ports 443 (HTTPS) and 80 (HTTP). To address this issue,

we to established a secondary reverse-proxy on the deployment host. This also allowed us to

configure our SSL/TLS certificates on the deployment machine once instead of automating

their configuration at the GradeSuite reverse-proxy and in each additional microapp.

During our initial deployment of the development environment, we used one of our team

member’s personal servers as a bare-metal hosting solution. They locally forwarded ports

80 (HTTP) and 443 (HTTPS) to the deployment host on which GradeSuite listened for

requests. While this strategy saved the overall team monthly costs for cloud infrastructure,

it was not a viable long-term solution, and could not be used as a production host due to

CHAPTER 5. DEPLOYMENT 54

data protection policies at UC Berkeley [16]. For this reason, we realized we would have to

migrate back to the cloud before we could serve live grade data.

5.3 Updated Cloud Deployment

After realizing we would have to port all of our bare-metal infrastructure back to Google

Cloud, we originally took it as an opportunity to clean up and improve our previous Google

Cloud deployment strategy. Specifically, we knew that we wanted to implement better

declarative infrastructure and access control, so we explored HashiCorp’s Terraform [51], a

commonly used Infrastructure-as-Code (IAC) language that would allow us to manage and

version our cloud infrastructure from files in our git repository. Previously, we had used

Google Cloud logic in our CI/CD GitHub workflow to procedurally configure and deploy our

infrastructure.

As we further explored using Terraform for our IAC framework, we realized that there

was far more infrastructure to deploy than what we had previously configured for the initial

cloud deployment. Namely, in order to successfully configure our bare-metal solution, we

had to stand up a proxy-service in a container capable of enabling Transport-Layer Security

(TLS) for end-to-end secure communication between both internal microapps and external

hosts using GradeSuite. This proxy service not only meant setting up a new microapp in

our CICD pipeline, but it also meant entirely reconfiguring our networking architecture to

route through the proxy as a gateway. While this solution was absolutely necessary for

CHAPTER 5. DEPLOYMENT 55

the bare-metal deployment framework, porting it back over to the cloud caused issues with

application-level load balancing and internal routing. Given the complex nature of our bare-

metal solution, structuring it with Terraform was not as viable as we had initially planned,

so we decided to approach it later on down the road. To subvert these issues, we attempted

to deploy each of our non-private microservices in our Virtual Private Cloud (VPC) as

publicly accessible applications, while persisting our virtualized proxy service which was

tightly coupled to the GradeView and Concept Map microapps.

Our initial hope to migrate the proxy-as-a-service solution unfortunately did not go

entirely as expected; although the proxy itself operated as anticipated, it did not provide

the necessary certificates for proper TLS configuration on connections forwarded from our

gateway. Moreover, this new approach required us to revise our Cross-Origin Resource

Sharing (CORS) policies to support each of the new public endpoints for the individual

microapps. Given these challenges, we decided to re-evaluate our migration plan entirely in

hopes of encapsulating the entire deployment stack without the need to configure complex

networking infrastructure.

Our final choice of infrastructure was quite trivial: use a virtual machine to spin up the

entire stack using Docker as we had done on bare-metal. This not only preserved the entire

configuration, but ensured that development environments would likewise be exactly the

same as the deployment environment at the highest level. Unfortunately, this virtualized

stack came at the cost of easily-configured, application-level horizontal scaling offered by

Google Cloud’s application load balancers. When evaluating GradeSuite’s potential peak

CHAPTER 5. DEPLOYMENT 56

usage, though, we realized that the computational overhead of separately hosting and scaling

individual applications was relatively similar to that of vertically scaling the virtual machine

instance on automated load metrics, so we found that the vertically scaled approach was a

valid trade-off for the development hours saved.

Learning from our migration of our early microapps back to Google Cloud, we en-

sured that all future microapps such as GradeSync were individually deployed and managed

through their own respective cloud compute instances such as Google Artifact Registry and

Google Cloud Run respectively. Specifically, for GradeSync, we use Google Cloud Sched-

uler to configure automated triggers to update core databases used by GradeSync in the

background that function separate from the existing infrastructure deployed on the virtual

machine.

5.4 Continuous Integration/Continuous Deployment

(CICD)

A key goal in the development of our microapp infrastructure was to ensure that all applica-

tions and the stack itself were configured with proper CICD practices. Namely, we wanted to

ensure that deployments could be done easily, and that testing could be run automatically.

In order to do this, we used GitHub actions to run our test suites upon opening a PR, and

required tests to pass prior to merging. Likewise, we used automated linters, smell-checkers,

CHAPTER 5. DEPLOYMENT 57

and security audits, all of which were similarly required to pass before a ticket would even

be reviewed by a team member. These application-level, non-framework-specific integra-

tions were configured at the organization level in the overall GitHub organization to enforce

compliance across all microapps.

Pull Request Review

Perhaps the most critical policy we enacted to ensure correctness of CICD strategy was the

review process. While we relied on automated testing and code-coverage in later microapps,

earlier implementations and apps lacked necessary testing, so those projects had a strict Pull

Request (PR) review process: team members/code-owners were responsible for reviewing

PRs to their own repos/projects, and were similarly responsible for maintaining any code

that was published to their projects. This meant that co-authored commits or commits from

other teams needed to be carefully parsed and understood by the adopting team prior to

merging them in. Likewise, it ensured that all code-owners had a well-rounded understanding

of how their entire application worked, adopting responsibility of different parts of their

application through the review process.

Before merging any pull requests, all review comments needed to be addressed and re-

solved, and a terminal approval review was necessary. Likewise, if any of the code in the PR

had been impacted by a more recent merge to master regardless of whether it resulted in

a conflict, the PR would need to be updated and re-reviewed prior to merging. This strict

CHAPTER 5. DEPLOYMENT 58

PR review process balanced ownership between the reviewer(s) and the author, resulting in

clean, bug-free code understood by multiple team members.

Monitoring

Another important aspect of our CICD pipeline is monitoring. To ensure that our appli-

cations consistently run as expected and that any change-related errors are detected and

responded to immediately, each microapp had relevant monitors in place. To do this, we

ensured all of our microapps were configured with proper logging, allowing us not only to de-

tect and identify issues as they occurred, but also to collect data to analyze the performance

of the application over time.

Specifically, since our API is the gateway for our frontend to interact with all of our

microapps, it has a custom logging and monitoring utility that logs detailed information

about each request to the API, including the request body, response body, and the time it

took to process the request. Moreover, our proxy service logs all requests to each of the

different microapps in the stack, allowing us to not only monitor individual requests, but to

understand entire user flows and how students were interacting with their individual grade

data on a platform level.

Beyond our detailed logging metrics, our monitors are also configured in Google Cloud

to alert us when certain metrics were outside of expected ranges. For example, in the event

that the average response time of the API exceeds one second, the dedicated on-call team are

CHAPTER 5. DEPLOYMENT 59

notified via email, Slack, and a pager alert though the Google Cloud application. Similarly,

if the rate of failed requests to the API exceeds one percent of total requests, the on-call

team is similarly notified.

60

Chapter 6

Results

In order to evaluate the effectiveness of GradeSuite, we deployed the suite in an introduc-

tory computer science course (CS10) mid-semester in Fall 2024 and at the beginning of the

semester in Spring 2025 at UC Berkeley where GradeSuite was made available to 170 and

48 students respectively. At the end of the semester, we also distributed an optional survey

(section B.1) to elicit qualitative feedback. Throughout the deployment, we used our logging

and analytics metrics to gather usage data from all enrolled students. Simultaneously, we

continuously collaborated with course staff and students to ensure the suite met their needs.

6.1 Methodology

When launching GradeSuite in the Fall 2024 semester, we progressively rolled the suite out

to students over a three week period starting on November 3rd, when it was released to the

CHAPTER 6. RESULTS 61

first set of 20 students. The subsequent week, it was released to another 40 students, for a

total of 60 students with access to GradeSuite. Finally, two weeks after the initial launch, it

was released to the remaining 110 students in the course. The reason for this gradual rollout

was to catch any early issues with the platform and allow instructors time to adjust.

In the fall, we analyzed application usage over a 52-day period from the initial release of

GradeSuite on November 3rd to one week beyond the end of the semester on December 25th,

when we stopped supporting student accesses. In the spring, GradeSuite was first released

on March 12th, and our final analysis was conducted on April 30th, for a total term of 49

days.

For our end-of-semester qualitative survey of GradeSuite, we received responses from 59

students in the fall and 28 students in the spring. The survey contained open-ended, multiple

choice, and Likert scale questions [31] that had options ranging from “Strongly disagree” to

“Strongly agree.” Each question was optional; students could skip questions they did not

wish to answer by marking “N/A.” We administered the survey using a Google Form sent

to all students who had access to GradeSuite.

While writing the survey, we realized that students only interacted with GradeSuite

through the GradeView and Concept Map modules. As such, in order to make the questions

as intuitive for students as possible, we referred to GradeView as their entire student view of

GradeSuite and Concept Map as the specific Concept Map module within GradeView ’s user

interface. However, it is worth noting that the student reflections of GradeView apply to

the larger GradeSuite as a whole; for example, student-perceived grade update accuracy and

CHAPTER 6. RESULTS 62

frequency during the spring semester when GradeSync was deployed reflects GradeSync’s

efficacy.

Another important note is that the survey was administered as part of a broader course

survey, and as such, the incentives for completing it were set by the course staff. In the

fall, there were no auxiliary incentives specified. In the spring, however, course staff offered

extra credit applied to students’ participation grade in the course. This meant that the

demographic of students who completed the survey in the spring may disproportionately

reflect a higher subset of students who did not regularly attend lecture, as those with good

attendance stood less to gain from completing the survey.

6.2 Student Usage

One of the most important aspects of GradeSuite is the ability to provide students with

conceptual feedback on their mastery of course material. To evaluate the effectiveness of

GradeSuite, we looked at the usage data from each semester it was deployed as well as the

post-semester surveys to inform us of how the students were interacting with and evaluating

their mastery in the course through both GradeView and Concept Map respectively.

GradeView Usage

Over the fall semester, students logged into GradeView 3,231 times, for average of 19 uses per

student. They collectively visited the Grades page to monitor overall course progress a total

CHAPTER 6. RESULTS 63

6%
56%

24%

14%

(a) Fall 2024. Never

Monthly

Weekly

Daily 11.1%
38.9%

33.3%
16.7%

(b) Spring 2025.

Figure 6.1: Normalized Student Responses to: “How often do you use GradeView?”

of 2,317 times, translating to an average of 13.6 views per student. In the spring semester, we

logged a total of 867 accesses, averaging 18.1 uses per student. While these averages seem

quite promising, we found that the distribution of students using GradeView was not as

equally distributed as we had initially hoped. The survey usage results, shown in Figure 6.1,

indicate that the vast majority of students decided to consistently use GradeView , with the

average student across both semesters tending to use it every week.

Renormalizing the usage data to exclude the students who did not use GradeView as per

Figure 6.1, we see that the remaining 86% students in the fall used GradeView 22.1 times

on average, while the remaining 83.3% students in the spring used GradeView an average

of 21.7 times. This seems to indicate that those who used GradeView tended to like it and

continue using it throughout the semester to track their progress. While overall usage data

are helpful to better understand how students interact with GradeSuite, we constructed our

CHAPTER 6. RESULTS 64

90.7%

7%

2.3%

(a) Fall 2024. Other

Did not use
GradeView

Viewing the
Concept Map

Viewing
Grades 87.4%

12.6%

(b) Spring 2025.

Figure 6.2: Normalized Student Responses to: “What do you primarily use GradeView for?”

survey to paint a more nuanced picture of the students’ experiences with GradeView and its

microservices such as Concept Map. Notably, we specifically asked students which services

within GradeSuite they used as described by Figure 6.2.

Unsurprisingly, we found that the majority of students who used GradeSuite reported

that they mainly used GradeView to view their grades in the class. This is consistent with

our expectations, as GradeView is the primary tool, and therefore default landing page upon

logging in, that students use to view their exact grades. Interestingly, we observed a 3.3%

decrease in GradeView usage from Fall 2024 (Figure 6.2a) to Spring 2025 (Figure 6.2b),

with only 87.4% of students reporting that they used GradeView to view their grades in the

spring. We believe that the reason for this decrease may be due to several factors. The most

notable source of variance between the two metrics is the number of responses in the spring,

with the end-of-semester survey receiving only 28 responses, likely due to the smaller class

size. Additionally, since the extra credit incentive offered in the spring disproportionately

CHAPTER 6. RESULTS 65

benefitted students with imperfect attendance, we believe that those who did respond may

reflect a subset of students who were less likely to know about GradeView , as the main

method for informing students about the service was through lecture announcements.

Another key performance indicator we sought to measure during the early-stage deploy-

ment was the number of students who used GradeSuite to guide their retake decisions. In

the pilot course, multiple exams concerning a variety of concepts were offered; their final

grade per-topic was calculated as the maximum score they achieved on the topic across

all offerings. This policy meant that students who had already demonstrated mastery of a

given concept did not need to retake that question, allowing them to focus their efforts on

the questions they had not yet demonstrated complete mastery on. For this reason, it was

important for students to understand what concepts they had preformed poorly on to best

guide their studying and retake decisions.

To explore how students used GradeSuite to optimize their retake decisions, we asked

students how many retakes they had completed and how many they planned to complete but

decided ultimately not to based on GradeView . We found that just over 72% of respondents

who used GradeView in either semester reported that they had used it to guide their retake

decisions, as shown in Figure 6.3. Additionally, Figure 6.4 depicts that, similarly across the

semesters, 39.5% of respondents who used GradeView reported that they had used it to guide

their decision not to retake at least one assignment that they originally planned to. While

it may seem counterintuitive that students deciding not to retake an assignment or question

aligns with mastery learning, it is important to note that their informed decision to abstain

CHAPTER 6. RESULTS 66

0 1-3 4+
0

5

10

15

20

25

8

17

4
3

5

3

Number of assignments or questions retaken

N
u
m
b
er

of
re
sp
on

d
en
ts

Fall 2024
Spring 2025

Figure 6.3: Student Responses to: “How many questions/assignments have you retaken
based on scores shown in GradeView?”

reflects how their perceived mastery of the material was not aligned with their demonstrated

mastery. For this reason, their decision not to go through with a retake validatesGradeView ’s

ability to provide students with a more accurate picture of their individual course mastery.

Overall, the data demonstrate that GradeView served as an effective platform for grade

monitoring and mastery assessment, with the majority of students actively engaging with

the system during each semester. The platform’s impact on student decision-making was

particularly notable, with the vast majority of users leveraging GradeView to inform their

retake choices and just short of half of its users applying its analytics it to make more

informed decisions about forgoing initially planned retakes. While deployment timing var-

CHAPTER 6. RESULTS 67

0 1-3 4+
0

5

10

15

20

25

18

7

3

5 5

0

Number of assignments/questions ancipiated to retake but did not

N
u
m
b
er

of
re
sp
on

d
en
ts

Fall 2024
Spring 2025

Figure 6.4: Student Responses to: “How many questions/assignments did you anticipate
retaking, but chose not to based on scores shown in GradeView?”

ied between semesters, the consistent usage patterns and positive survey responses suggest

that GradeView successfully fulfilled its core objective of providing actionable feedback for

mastery-based learning decisions.

Concept Map Usage

After launching in the fall, students used Concept Map 627 times (3.6 per student, on

average). The following semester, students viewed the microapp a total of 523 times (10.9

per student, on average) for a dramatic average usage increase of over 300%. Of those who

did use Concept Map, over 55% in the fall and 50% in the spring (Figure 6.5) indicated

CHAPTER 6. RESULTS 68

11.8%44.4%

35.3%

5.9%

(a) Fall 2024.
Strongly
Disagree

Disagree

Neutral

Agree

Strongly
Agree

20%30%

35% 10%

5%

(b) Spring 2025.

Figure 6.5: Normalized Student Responses to: “Concept Map helps me track my progress in
the class.”

that it helped them track their progress in the class, meaning that the module was useful

in helping students identify their own conceptual gaps. Unfortunately, we also noticed that

6% of the same sample set in the fall and 15% in the spring felt as though Concept Map was

explicitly not helpful for tracking their progress. This is a clear indication that future work

is needed to improve the Concept Map module to better serve the needs of students.

One surprising result we noticed in Figure 6.2 is that the overall proportion of students

who primarily used Concept Map was substantially lower than we had expected in both

semesters. Despite the increase in recurring (daily, weekly, or monthly) usage in the spring

as demonstrated by Figure 6.6 as well as the per-student average usage increase, the number

of students who used Concept Map as their primary GradeSuite service dropped from only

7% in the fall to a staggering 0% in the spring. This was a stark contrast to our expectations,

CHAPTER 6. RESULTS 69

11.9%
5.1%

10.2%

72.9%

(a) Fall 2024. N/A

Rarely or
Never

Monthly

Weekly

Daily

7.1%

21.4%

7.1%
64.3%

(b) Spring 2025.

Figure 6.6: Student Responses to: “How often do you use Concept Map?”

as we had expected the primary usage of Concept Map to increase markedly in the spring.

Initially, we expected the primary usage statistics in the fall to be relatively low. This is

because the Concept Map module was launched quite early in its development, while it was

not yet fully polished, meaning that, for some students, it did not depict the correct mastery

information and progression. Specifically, throughout the duration of the semester, all nodes

were shown (not just those that had been covered in the class), and the edges were not colored

based on the course’s progression as we had initially designed (although this discrepancy was

not advertised to students). Moreover, for the vast majority of the semester, student mastery

was not updated in real-time since we had not yet integrated with GradeSync, translating

to the Concept Map module inconsistently reflecting the student’s up-to-date mastery while

waiting for course staff to manually update the data. Because of these early-stage issues, we

CHAPTER 6. RESULTS 70

believe that students may have been less inclined to use Concept Map and more inclined to

use GradeView , where the data was generally accurate across the semester. This is consistent

with the results in Figure 6.2a, in which 90.7% of students who used the platform indicated

that GradeView was their primary GradeSuite service.

Given our expectations of lower Concept Map use in the fall, we anticipated a marked

increase in the spring. We hypothesized that, after working out the kinks discovered while

launching Concept Map in the fall such as its incorrect mastery and course progression

information, students would be more inclined to use Concept Map. However, our survey

results in Figure 6.6 do not indicate as substantial of an increase as we had expected. We

believe that this is due to a variation in how students used Concept Map between the two

pilot semesters. Namely, we think that students in the fall used Concept Map to better

understand the course’s structure and progression, while students in the spring referenced

Concept Map to identify gaps in their own mastery. This is evidenced by the fact that,

in the fall, the entire concept map was viewable, despite representing incorrect mastery

information. In the spring, however, only the nodes that had been covered in the class were

rendered, meaning that students were not able to preview upcoming content with Concept

Map.

Another reason we initially hypothesized could be the source of lower primary usage

was because students may have been confused about how to use Concept Map. We were

concerned that the user interface may have been too confusing for students. Specifically,

while early iterations of Concept Map leveraged edge coloring to indicate whether concepts

CHAPTER 6. RESULTS 71

22.2%

55.6%

22.2%

(a) Fall 2024.
Strongly
Disagree

Disagree

Neutral

Agree

Strongly
Agree

10.7%

17.9% 3.6%

(b) Spring 2025.

Figure 6.7: Normalized Student Responses to: “I understood how to interpret the data
presented in Concept Map.”

had been taught or not taught, the Concept Map module during the course’s offering did not

support this feature despite a respective legend being shown. Given our concern, we included

a question in our end-of-semester survey to evaluate how comfortable students were with

reading their mastery from Concept Map. To our surprise, the survey results in Figure 6.7

contradicted our hypothesis, clearly indicating that no students struggled to interpret their

mastery information in Concept Map. While we had initially planned to revise the Concept

Map UI to further increase accessability beyond removing the deprecated legend, the survey

results motivated our decision to discard this project.

In the future, we believe it may be beneficial to revert back to the original Concept Map

design, rendering the entire course’s conceptual breakdown, but with edges colored based

on the course’s progression rather than generating the map as the course progresses. This

would allow students to continue using Concept Map to preview upcoming content, while

CHAPTER 6. RESULTS 72

still being able to view their own mastery information.

Student Feedback

In addition to the post-semester survey where students were asked to provide their own,

open-ended feedback on GradeView and Concept Map directly, we also provided a separate

survey (section B.2) for students to complete throughout the semester to detail the bigger

picture of students’ experiences with the suite. Many of the responses from these surveys in

the fall regarded grading inaccuracies and the need for more frequent grade updates by course

staff. These comments were largely unsurprising; early implementations of GradeSync were

not fully supported resulting in extended delays as course staff had to manually compute

and update grades. Moreover, bugs introduced by early versions of GradeSync in addition

to course staff manually updating the Google Sheet’s format resulted in misformed data

which propagated to GradeView and Concept Map and similarly affected student mastery

information.

In contrast, the spring survey responses were overwhelmingly positive, with students re-

porting that they found GradeView and Concept Map helpful in identifying gaps in their own

mastery and in visualizing the course’s progression. This highlights the need for GradeSync’s

automated grade synchronization which would not only provide real-time grade updates, but

also reduce the amount of miscalculations reported by students. These reports likewise val-

idate the proposed benefits of GradeView for both students and course staff, as such errors

CHAPTER 6. RESULTS 73

would not have otherwise been caught if students were not able to view their course data.

Student comments relating to the platform itself, however, largely touted the value of

GradeSuite across both semesters. Many students reported that GradeView was helpful in

viewing their overall scores and the areas where they were struggling. Similarly, multiple

students mentioned that it was nice to have all of their course data in one place. Concept

Map, while not used as frequently, was still viewed positively as students found it helpful

in visualizing the course’s progression and in identifying the topics that would be tested in

exams, allowing them to better prepare. These comments are consistent with our evaluation

of Figure 6.6, indicating that students preferred the ability to preview upcoming content

with Concept Map.

One critique we received, though, was that certain students who had changed their emails

since the beginning of the semester were not able to access the dashboard with their new

email. This is because the underlying Google Sheet responsible for storing their course data

still reflected their original email. As such, one future direction of the Instructor Dashboard

project may be to allow instructors to manually update student emails. Alternatively, it may

be beneficial to integrate GradeSync with the university’s registration systems to automate

this process.

CHAPTER 6. RESULTS 74

6.3 Course Staff Impact

While the primary focus of GradeSuite is to provide students with real-time feedback on

their mastery of course material, we also sought to measure the impact of GradeSuite on the

course staff as they used GradeSuite to manage grades and view student mastery progression.

To do this, we conducted interviews with the course staff to gather their feedback on the

suite and its impact on the course.

Our interviews indicated that GradeSuite significantly improved operational efficiency,

accuracy, and pedagogical insights. Specifically, one of our interviews unveiled that calculat-

ing a student’s concept mastery in real time during office hours previously required at least

ten minutes per student, cutting into valuable TA support time. With the introduction of

Instructor Dashboard , staff gained access to itemized reports and respective visualizations of

individual student mastery, enabling more targeted and timely assistance.

Reduction of TA Time Invested

Prior to their integration with GradeSuite, CS10 course staff invested substantial amounts

of time in managing the course’s complex grading infrastructure. Head TAs spent an esti-

mated 10 hours per week performing manual grade management tasks, including: export-

ing and consolidating grades from multiple learning platforms (Gradescope, PrairieLearn,

and iClicker), processing retake submissions, calculating concept mastery scores, managing

late submissions, and updating the status of students with Incomplete grades from prior

CHAPTER 6. RESULTS 75

semesters. These tasks were not only time-consuming but also prone to human error due to

the manual nature of data handling across multiple spreadsheets and platforms.

CS10’s use of the GradeSync microapp transformed their grading workflow through its

data-management platform and various automations. The system’s nightly synchronization

scripts automatically handle grade consolidation, retake processing, and mastery calcula-

tions, reducing the related weekly administrative workload to just one hour. The remaining

time is primarily spent on high-value tasks such as reviewing student-flagged discrepancies

which itself was largely eliminated by GradeSuite. This represents a 90% reduction in time

spent on grade processing and related logistical communication. Moreover, the 13 cases of

final grade discrepancies that were reported the semester prior to GradeSync’s integration

reduced to zero the following semester.

Additionally, the automation of grade updates significantly reduced the time spent re-

sponding to student inquiries about grades and retake status. Previously, TAs would need to

manually verify grade calculations and retake eligibility for each student inquiry, a process

that could take several minutes per request. With GradeSuite providing real-time grade

updates, many of these inquiries were eliminated entirely, as students could access this in-

formation directly through the platform.

The substantial reduction in administrative overhead afforded by GradeSuite allowed

course staff to redirect their time to more valuable pedagogical activities, such as developing

improved course materials, providing more detailed feedback on assignments, and spending

more quality time with students during office hours. Course staff reported that this shift not

CHAPTER 6. RESULTS 76

only improved their job satisfaction but also enhanced the overall quality of instruction and

student support they were able to provide.

Frequency of Grade Updates

The frequency and timeliness of official grade updates also improved substantially. Histori-

cally, final grade recalculations were performed in a single end-of-term batch, increasing the

risk of overlooking late retakes or corrections. In contrast, GradeSync introduced hourly

synchronization from Gradescope and daily synchronization with PrairieLearn, resulting in

near real-time grade accuracy and more timely feedback for students. Staff noted that this

enhanced alignment enabled quicker responses to students requesting deadline extensions.

Likewise, the introduction of GradeView and Concept Map as real-time indicators of mastery

assisted course staff in identifying students who may be struggling with the material and

in need of additional support without having to manually recalculate a student’s respective

mastery.

During the Fall 2024 semester, we integrated GradeSync with GradeView later on in

the semester, meaning that students were not able to leverage the continuously up-to-date

data provided by GradeSync for the majority of the fall semester. As mentioned in sec-

tion 6.2, students’ most common critique was GradeView needed to be updated more often.

Since adopting GradeSync into our workflow for the duration of the spring semester, it is

unsurprising that we did not receive any such reports on our surveys.

CHAPTER 6. RESULTS 77

GradeSuite’s effectiveness in reducing final grade calculation errors, combined with the

increased frequency of grade updates, and dramatic reduction of staffing time suggests that

it can effectively support more flexible course policies — such as frequent retakes and ex-

tended deadlines — without compromising accuracy or increasing administrative burden on

instructional staff. The system’s design that supports arbitrarily complex grade calculations

as defined by course staff in the Google Sheets interface has proven particularly valuable

in the context of mastery learning, giving instructors the freedom to design any equitable

grading policy they want. By automating the processing of these intricate calculations while

maintaining consistent data across all platforms, GradeSync has effectively eliminated a sig-

nificant source of stress and inefficiency in course administration, simultaneously ensuring

that students receive accurate and timely feedback on their academic performance.

78

Chapter 7

Future Work

The successful implementation of GradeSuite in CS10 has demonstrated its potential to

enhance student success. Moving forward, we plan to expand GradeSuite to both lower

and upper division Computer Science courses at UC Berkeley, further refining the system’s

effectiveness across different instructional settings. Our development roadmap prioritizes

continued development of additional microapps to expand the GradeSuite ecosystem, such

as AutoRemind , an intelligent notification system that engages students through their pre-

ferred digital platforms. Additionally, we plan to reconfigure GradeView to better support

multiple semesters, without the need to re-deploy multiple instances of the microapp. We

would also like to revise our cloud infrastructure management, reducing the amount of man-

ual configuration necessary by using IAC to declaratively describe the desired state of the

system. Finally, we hope to keep analyzing student and staff usage patterns while conduct-

ing further studies to develop a more comprehensive understanding of how best support

CHAPTER 7. FUTURE WORK 79

continued adoption of mastery learning policies through the GradeSuite project.

7.1 AutoRemind

Figure 7.1: AutoRemind Architecture and Data Flow.

CHAPTER 7. FUTURE WORK 80

One new microapp we have been working on developing over the past year is AutoRe-

mind [11], which provides students with dynamic reminders of their course work throughout

the semester on nonconventional platforms such as Discord and Instagram. The key in-

centive for AutoRemind is that early implementations of progressive deadline policies in

support of mastery learning, specifically deadline abstraction, have seen challenges as stu-

dents fall behind, intending to catch back up later in the semester [34]. Ultimately, early

studies found that students commonly became overwhelmed and eventually decided to give

up. AutoRemind mitigates this by tracking each student’s progress throughout the semester,

sending them reminders on a variety of student-configurable platforms of the outstanding

assignments they need to complete alongside relevant course materials they may benefit from

reviewing.

The general architecture and flow of AutoRemind is shown in Figure 7.1. AutoRemind

integrates with GradeSync to keep track of each students’ progress, and scrapes the course’s

syllabus and website for key content such as Office Hours times, assignment due dates, and

other course-specific information. AutoRemind then uses a custom Retrieval-Augmented

Generation (RAG) agent to parse the relevant information and send it to the students as

reminders on the platforms they have configured. While AutoRemind is currently limited

to email, Discord, and SMS, we intend to expand its reach to include more platforms in the

future. Right now, AutoRemind is still being actively integrated with GradeView , but we

expect it to be an invaluable addition to GradeSuite.

CHAPTER 7. FUTURE WORK 81

7.2 Grade Projections

Figure 7.2: Initial Implementation of Grade Projections in GradeView .

One major project we worked on during the semester was adding grade projections to

GradeView as shown in Figure 7.2. The grade projections would allow students to see their

trajectory in the course and extrapolate from it how they might perform in the future. While

these projects were initially successful, we later realized that they did not naturally support

grade clobbering [24]; the Maximum possible projection was based only on assignments the

student had not yet completed, not factoring in those that students could later clobber

through the course’s retake policy. Additionally, we were concerned that students who fell

behind or were initially struggling with the course content may be discouraged by these

projections. As such, we decided to remove them from GradeView prior to releasing it in

the Fall 2024 semester.

Despite removing the grade projections from GradeView , we believe that this could be

an extremely useful feature for students to have. We think that there could be a graceful

way to add them back without the negative side effects initially identified. In the future,

CHAPTER 7. FUTURE WORK 82

we would like to explore such integrations as adding topic-centric projections that track the

trajectory of each concept itself, rather than the overall course grade. Moreover, projecting

concept-level mastery is more consistent with the mastery-based focus of the GradeSuite

project.

7.3 GradeView Multi-Environment Support

While ideating how to improve course systems to better support mastery learning, we realized

that properly managing incomplete students, as we have previously defined, is an extensive

burden due to its lack of support from traditional LMSs. GradeView presently supports such

functionality, but the process to do so is cumbersome and expensive, requiring deployment of

additional instances for each course instance, each with their own Google Sheet integration

to provide access control and data isolation. While this approach is both effective and viable,

it is not as scalable as we had initially hoped; configuring each new instance of GradeView

takes time and introduces additional processing overhead, resulting in increased cloud or

energy costs depending on the deployment strategy.

To address these issues, we would like to add multi-environment support directly to

GradeView . Specifically, we hope to configure the GradeView API to include ‘course’ and

‘semester’ based resources, so that API calls could be made to retrieve data for a given course

and semester. To support the new API specification, we will need to similarly refactor Grade-

View ’s frontend microservice to make the appropriate API calls for the logged-in user. For

CHAPTER 7. FUTURE WORK 83

example, instead of GradeView requesting /api/v2/assignments to get a list of all assign-

ments, it would make a request to /api/v2/courses/cs10/semesters/fa24/assignments

which would fetch all CS10 assignments specifically for the Fall 2024 semester. This revised

strategy would allow us to deploy a single instance of GradeView for an institution, while still

allowing each course to have their own isolated access control and grade data per semester.

For proper support, we will similarly need to update the structuring of the Redis caching

layer to include course- and semester-based classification. Moreover, we will need to config-

ure our cron jobs to pull data from all active semesters’ Google Sheets and populate it in the

Redis cache accordingly. We expect that the additional economic overhead of running the

additional cron jobs and managing the increased Redis storage will minimally affect opera-

tional costs, especially when compared to deploying a new instance of GradeView for each

course instance.

7.4 Infrastructure as Code (IAC)

One direction we wish to move in (or rather back towards) is in declaratively managing our

infrastructure as code using a tool such as Terraform [51]. This would be extremely beneficial

to the GradeSuite project because each of the different microapps’ microservices are currently

configured manually, meaning inconsistencies or mistakes when updating infrastructure may

not be caught or directly documented. Moreover, the implicitly versioned nature of IAC

through our Git repository would allow us to more easily track and deploy changes to the

CHAPTER 7. FUTURE WORK 84

infrastructure in the specific repositories that it related to.

7.5 Future Studies

As we continue to expand GradeSuite, we feel it is of paramount importance to continue

evaluating its efficacy in supporting mastery learning policies. We plan to continue our work

in this area by conducting further studies on the impact of GradeSuite on student success as

well as its ability to assist instructors in their ability to monitor concept mastery development

and make immediate adjustments to their curriculum during the semester to ensure topics

are thoroughly understood before advancing to more complex material.

Additionally, we would like to establish a more standardized approach to collecting qual-

itative feedback from students by developing and administering our own, dedicated end-

of-semester surveys. Our previous survey efforts revealed significant variations in response

rates and potential sampling biases between semesters, particularly due to differing incentive

structures. To address these limitations, we aim to implement a uniform survey methodology

across all future analyses of GradeSuite, controlling for potential confounding variables in

our data collection process.

85

Chapter 8

Conclusion

The development and deployment of GradeSuite represents a significant advancement in

supporting mastery learning within traditional educational environments. Through its inno-

vative microservice architecture and seamless integration with existing Learning Management

Systems, GradeSuite has demonstrated its effectiveness in both enhancing student learning

outcomes and reducing administrative overhead for course staff. The successful implementa-

tion in CS10 at UC Berkeley has provided valuable insights into the platform’s impact and

potential for broader adoption.

The architectural foundation of GradeSuite has been designed to minimize barriers to

adopting mastery learning policies in existing courses such as CS10, where lack of LMS

support proved obstructed the adoption of principle mastery learning policies. Through

its various microapps, the platform integrates seamlessly with existing course infrastructure

while providing the flexibility needed to implement diverse grading policies. The system’s

CHAPTER 8. CONCLUSION 86

evolution through various deployment strategies — from cloud to bare-metal and back —

demonstrates its adaptability to different institutional environments. Particularly notable

is the platform’s use of Google Sheets as a familiar interface for instructors, enhanced by

Redis caching for scalability, which allows course staff to implement complex mastery-based

policies without requiring significant technical expertise or infrastructure changes. This

careful balance between technical capability and ease of adoption has enabled instructors to

focus on crafting effective mastery learning policies unrestricted by the technical limitations

of their LMS.

The deployment of GradeSuite has demonstrated several transformative effects in our

pilot class. The platform’s ability to provide up-to-date, concept-level mastery data has

enabled students to identify and address learning gaps more effectively, proving particularly

valuable for targeted studying and identifying retake opportunities. By supporting flexible

deadlines and post-term completion through automated grade synchronization, GradeSuite

has additionally made mastery learning more accessible to students who may require extra

time to achieve and demonstrate proficiency.

The organizational structure supporting GradeSuite’s development has been equally cru-

cial to its success. What began as an individual initiative quickly accrued a team four devel-

opers, and has since grown into a robust team of over twenty contributors across its various

microapps, managed through a carefully designed hierarchical structure that promotes both

clear accountability and open communication.

Looking forward, several promising directions for GradeSuite’s evolution have emerged.

CHAPTER 8. CONCLUSION 87

The planned integration of AutoRemind will enhance student engagement through person-

alized reminders and progress tracking across various communication platforms. Infrastruc-

ture improvements, including the implementation of IAC and multi-environment support for

GradeView , will improve scalability and reduce operational overhead. Additionally, contin-

ued analysis of student usage patterns and learning outcomes will provide valuable insights

into the effectiveness of real-time measures of mastery learning.

The implications of GradeSuite extend far beyond UC Berkeley, offering a blueprint for

institutions facing similar challenges in implementing mastery learning. Its success demon-

strates that technical limitations of existing LMSs need not prevent the adoption of mastery-

based pedagogical approaches. The platform’s integration-first architecture, which prioritizes

working with existing tools rather than replacing them, provides a practical model for ed-

ucational technology development that minimizes adoption barriers. As more institutions

seek to implement mastery learning policies, GradeSuite presents a compelling example of

how to bridge the gap between pedagogical aspirations and technical constraints.

In conclusion, GradeSuite represents a significant step forward in tooling to support mas-

tery learning. Its successful deployment has demonstrated the feasibility of implementing

flexible, student-centered learning approaches at scale while reducing administrative over-

head. As the platform continues to evolve and expand to other courses, it will hopefully

facilitate the adoption of equitable grading practices and, with it, student success.

88

Bibliography

[1] Assessment Reports: Evaluating Student Mastery Results (AMP). Schoology Learning.

url: https://uc.powerschool-docs.com/en/schoology/latest/assessment-

reports-evaluating-student-results-by-i (visited on 05/12/2025).

[2] Connor Bernard. AFA-Tooling. GitHub. url: https://github.com/AFA-Tooling

(visited on 05/13/2025).

[3] Connor Robert Bernard et al. “Supporting Mastery Learning Through an Adaptive

Grade Portal”. In: Proceedings of the 55th ACM Technical Symposium on Computer

Science Education V. 2. SIGCSE 2024. New York, NY, USA: Association for Comput-

ing Machinery, Mar. 15, 2024, pp. 1568–1569. isbn: 979-8-4007-0424-6. doi: 10.1145/

3626253.3635621. url: https://doi.org/10.1145/3626253.3635621 (visited on

03/17/2025).

[4] Manan Bhargava et al. “GradeSync: A Tool for Automating Incomplete Processing to

Support Mastery Learning”. In: Proceedings of the 56th ACM Technical Symposium on

Computer Science Education V. 2. SIGCSETS 2025. New York, NY, USA: Association

https://uc.powerschool-docs.com/en/schoology/latest/assessment-reports-evaluating-student-results-by-i
https://uc.powerschool-docs.com/en/schoology/latest/assessment-reports-evaluating-student-results-by-i
https://github.com/AFA-Tooling
https://doi.org/10.1145/3626253.3635621
https://doi.org/10.1145/3626253.3635621
https://doi.org/10.1145/3626253.3635621

BIBLIOGRAPHY 89

for Computing Machinery, Feb. 18, 2025, pp. 1387–1388. isbn: 979-8-4007-0532-8. doi:

10.1145/3641555.3705192. url: https://dl.acm.org/doi/10.1145/3641555.

3705192 (visited on 03/17/2025).

[5] Benjamin S. Bloom. “Learning for Mastery. Instruction and Curriculum. Regional

Education Laboratory for the Carolinas and Virginia, Topical Papers and Reprints,

Number 1.” In: Evaluation Comment 1.2 (May 1968). url: https://eric.ed.gov/

?id=eD053419 (visited on 03/20/2025).

[6] Vaughn Malcolm Bradley. “Learning Management System (LMS) Use with Online

Instruction”. In: International Journal of Technology in Education 4.1 (2021), pp. 68–

92. url: https://eric.ed.gov/?id=EJ1286531 (visited on 03/18/2025).

[7] Build Software Better, Together. GitHub. url: https : / / github . com (visited on

04/30/2025).

[8] Vasa Buraphadeja and Vilasinee Srisarkun. “Mastery Learning in CS1: A Longitudinal

Study during and Post-Pandemic”. In: Discover Education 3.1 (Dec. 2, 2024), p. 260.

issn: 2731-5525. doi: 10.1007/s44217-024-00361-x. url: https://link.springer.

com/10.1007/s44217-024-00361-x (visited on 03/18/2025).

[9] Alberto Cañas et al. “CmapTools: A Knowledge Modeling and Sharing Environment”.

In: Concept Maps: Theory, Methodology, Technology Proceedings of the First Inter-

national Conference on Concept Mapping. Sept. 2004.

https://doi.org/10.1145/3641555.3705192
https://dl.acm.org/doi/10.1145/3641555.3705192
https://dl.acm.org/doi/10.1145/3641555.3705192
https://eric.ed.gov/?id=eD053419
https://eric.ed.gov/?id=eD053419
https://eric.ed.gov/?id=EJ1286531
https://github.com
https://doi.org/10.1007/s44217-024-00361-x
https://link.springer.com/10.1007/s44217-024-00361-x
https://link.springer.com/10.1007/s44217-024-00361-x

BIBLIOGRAPHY 90

[10] Canvas. Instructure. url: https : / / www . instructure . com / canvas (visited on

05/13/2025).

[11] Oindree Chatterjee et al. “AutoRemind: Improving Student Academic Performance

Through a Personalized and Automated Notification System”. In: Proceedings of the

56th ACM Technical Symposium on Computer Science Education V. 2. SIGCSETS

2025. New York, NY, USA: Association for Computing Machinery, Feb. 18, 2025,

pp. 1411–1412. isbn: 979-8-4007-0532-8. doi: 10 . 1145 / 3641555 . 3705133. url:

https://doi.org/10.1145/3641555.3705133 (visited on 04/29/2025).

[12] Se-Hang Cheong, Yain-Whar Si, and Raymond K. Wong. “Online Force-Directed Al-

gorithms for Visualization of Dynamic Graphs”. In: Information Sciences 556 (May 1,

2021), pp. 223–255. issn: 0020-0255. doi: 10.1016/j.ins.2020.12.069. url: https:

//www.sciencedirect.com/science/article/pii/S0020025520312354 (visited on

05/01/2025).

[13] Competency-Based Education. D2L. Feb. 1, 2023. url: https : / / www . d2l .

com / solutions / higher - education / competency - based - education (visited on

05/12/2025).

[14] Crontab(5) - Linux Manual Page. url: https://man7.org/linux/man-pages/man5/

crontab.5.html (visited on 05/13/2025).

[15] D3 by Observable — The JavaScript Library for Bespoke Data Visualization. url:

https://d3js.org (visited on 05/01/2025).

https://www.instructure.com/canvas
https://doi.org/10.1145/3641555.3705133
https://doi.org/10.1145/3641555.3705133
https://doi.org/10.1016/j.ins.2020.12.069
https://www.sciencedirect.com/science/article/pii/S0020025520312354
https://www.sciencedirect.com/science/article/pii/S0020025520312354
https://www.d2l.com/solutions/higher-education/competency-based-education
https://www.d2l.com/solutions/higher-education/competency-based-education
https://man7.org/linux/man-pages/man5/crontab.5.html
https://man7.org/linux/man-pages/man5/crontab.5.html
https://d3js.org

BIBLIOGRAPHY 91

[16] Data and IT Resource Classification Standard — Information Security Office. url:

https://security.berkeley.edu/data- classification- standard (visited on

05/01/2025).

[17] Docker: Accelerated Container Application Development. May 10, 2022. url: https:

//www.docker.com (visited on 03/18/2025).

[18] Stephen H. Edwards et al. “Developing a Playbook of Equitable Grading Practices”. In:

Proceedings of the 2024 on ACM Virtual Global Computing Education Conference V.

2. SIGCSE Virtual 2024. New York, NY, USA: Association for Computing Machinery,

Dec. 5, 2024, pp. 283–284. isbn: 979-8-4007-0604-2. doi: 10.1145/3649409.3691071.

url: https://doi.org/10.1145/3649409.3691071 (visited on 05/12/2025).

[19] John Ellson et al. “Graphviz and Dynagraph — Static and Dynamic Graph Drawing

Tools”. In: Graph Drawing Software. Ed. by Michael Jünger and Petra Mutzel. Red.

by Gerald Farin et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 127–

148. isbn: 978-3-642-18638-7. doi: 10.1007/978-3-642-18638-7_6. url: http:

//link.springer.com/10.1007/978-3-642-18638-7_6 (visited on 03/18/2025).

[20] Flask. 2010. url: https://flask.palletsprojects.com/en/stable (visited on

03/18/2025).

[21] OpenJS Foundation. Node.Js — Run JavaScript Everywhere. 2025. url: https://

nodejs.org/en (visited on 03/25/2025).

https://security.berkeley.edu/data-classification-standard
https://www.docker.com
https://www.docker.com
https://doi.org/10.1145/3649409.3691071
https://doi.org/10.1145/3649409.3691071
https://doi.org/10.1007/978-3-642-18638-7_6
http://link.springer.com/10.1007/978-3-642-18638-7_6
http://link.springer.com/10.1007/978-3-642-18638-7_6
https://flask.palletsprojects.com/en/stable
https://nodejs.org/en
https://nodejs.org/en

BIBLIOGRAPHY 92

[22] Koen B. Franken. “Promoting Mastery Goal Orientation by Developing and Imple-

menting a Mastery Focused Canvas Dashboard”. MA thesis. Eindhoven, Netherlands:

Eindhoven University of Technology, Aug. 31, 2023. 80 pp.

[23] Dan Garcia et al. “A’s for All (As Time and Interest Allow)”. In: Proceedings of the

54th ACM Technical Symposium on Computer Science Education V. 1. SIGCSE 2023:

The 54th ACM Technical Symposium on Computer Science Education. Toronto ON

Canada: ACM, Mar. 2, 2023, pp. 1042–1048. isbn: 978-1-4503-9431-4. doi: 10.1145/

3545945.3569847. url: https://dl.acm.org/doi/10.1145/3545945.3569847

(visited on 05/12/2025).

[24] Dan Garcia et al. “Equitable Grading Best Practices”. In: Proceedings of the 54th ACM

Technical Symposium on Computer Science Education V. 2. SIGCSE 2023: The 54th

ACM Technical Symposium on Computer Science Education. Toronto ON Canada:

ACM, Mar. 2023, pp. 1200–1201. isbn: 978-1-4503-9433-8. doi: 10.1145/3545947.

3569602. url: https://dl.acm.org/doi/10.1145/3545947.3569602 (visited on

05/13/2025).

[25] James Garner, Paul Denny, and Andrew Luxton-Reilly. “Mastery Learning in Com-

puter Science Education”. In: Proceedings of the Twenty-First Australasian Comput-

ing Education Conference. ACE ’19. New York, NY, USA: Association for Comput-

ing Machinery, Jan. 29, 2019, pp. 37–46. isbn: 978-1-4503-6622-9. doi: 10.1145/

https://doi.org/10.1145/3545945.3569847
https://doi.org/10.1145/3545945.3569847
https://dl.acm.org/doi/10.1145/3545945.3569847
https://doi.org/10.1145/3545947.3569602
https://doi.org/10.1145/3545947.3569602
https://dl.acm.org/doi/10.1145/3545947.3569602
https://doi.org/10.1145/3286960.3286965
https://doi.org/10.1145/3286960.3286965

BIBLIOGRAPHY 93

3286960.3286965. url: https://doi.org/10.1145/3286960.3286965 (visited on

03/17/2025).

[26] Git - Git-Blame Documentation. url: https://git- scm.com/docs/git- blame

(visited on 05/13/2025).

[27] Gradescope — Save Time Grading. url: https://www.gradescope.com (visited on

05/13/2025).

[28] How Do I Use the Learning Mastery Gradebook to View Outcome Results in a Course?

Instructure Community. July 20, 2020. url: https://community.canvaslms.com/

t5/Instructor-Guide/How-do-I-use-the-Learning-Mastery-Gradebook-to-

view-outcome/ta-p/775 (visited on 03/25/2025).

[29] iClicker: Student Response & Classroom Engagement Tools. iClicker. url: https :

//www.iclicker.com (visited on 05/13/2025).

[30] Jira — Issue & Project Tracking Software — Atlassian. url: https : / / www .

atlassian.com/software/jira (visited on 04/17/2025).

[31] R. Likert. “A Technique for the Measurement of Attitudes.” In: Archives of Psychology

22 140 (1932), pp. 55–55.

[32] Linear – Plan and Build Products. url: https://linear.app (visited on 04/17/2025).

[33] Vedansh Malhotra and Dan Garcia. “Steering Student Behavior and Performance To-

ward Success with Mastery Learning through Policy Optimization”. In: Proceedings

https://doi.org/10.1145/3286960.3286965
https://doi.org/10.1145/3286960.3286965
https://doi.org/10.1145/3286960.3286965
https://doi.org/10.1145/3286960.3286965
https://git-scm.com/docs/git-blame
https://www.gradescope.com
https://community.canvaslms.com/t5/Instructor-Guide/How-do-I-use-the-Learning-Mastery-Gradebook-to-view-outcome/ta-p/775
https://community.canvaslms.com/t5/Instructor-Guide/How-do-I-use-the-Learning-Mastery-Gradebook-to-view-outcome/ta-p/775
https://community.canvaslms.com/t5/Instructor-Guide/How-do-I-use-the-Learning-Mastery-Gradebook-to-view-outcome/ta-p/775
https://www.iclicker.com
https://www.iclicker.com
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://linear.app

BIBLIOGRAPHY 94

of the 2024 on ACM Virtual Global Computing Education Conference V. 1. SIGCSE

Virtual 2024. New York, NY, USA: Association for Computing Machinery, Dec. 5,

2024, pp. 144–150. isbn: 979-8-4007-0598-4. doi: 10.1145/3649165.3690109. url:

https://dl.acm.org/doi/10.1145/3649165.3690109 (visited on 03/17/2025).

[34] Vedansh Malhotra and Dan Garcia. “The Effect of Messaging on Project Completion

Rates in an Introductory Computing Class Utilizing Mastery Learning”. In: Proceedings

of the ACM Conference on Global Computing Education Vol 2. CompEd 2023. New

York, NY, USA: Association for Computing Machinery, Dec. 5, 2023, p. 198. isbn:

979-8-4007-0374-4. doi: 10.1145/3617650.3624932. url: https://doi.org/10.

1145/3617650.3624932 (visited on 04/29/2025).

[35] Vedansh Malhotra, Jenny Mendez Mendez, and Daniel Garcia. “Mastery with Method:

Calibrating Policies to Boost Completion and Sentiment in a Computing Course Using

Mastery Learning”. In: Proceedings of the 55th ACM Technical Symposium on Com-

puter Science Education V. 2. SIGCSE 2024. New York, NY, USA: Association for

Computing Machinery, Mar. 15, 2024, pp. 1738–1739. isbn: 979-8-4007-0424-6. doi:

10.1145/3626253.3635629. url: https://doi.org/10.1145/3626253.3635629

(visited on 05/12/2025).

[36] Manifesto for Agile Software Development. url: https://agilemanifesto.org (vis-

ited on 04/17/2025).

https://doi.org/10.1145/3649165.3690109
https://dl.acm.org/doi/10.1145/3649165.3690109
https://doi.org/10.1145/3617650.3624932
https://doi.org/10.1145/3617650.3624932
https://doi.org/10.1145/3617650.3624932
https://doi.org/10.1145/3626253.3635629
https://doi.org/10.1145/3626253.3635629
https://agilemanifesto.org

BIBLIOGRAPHY 95

[37] Mark Masse. REST API Design Rulebook: Designing Consistent RESTful Web Service

Interfaces. ”O’Reilly Media, Inc.”, Oct. 18, 2011. 115 pp. isbn: 978-1-4493-1990-8.

Google Books: eABpzyTcJNIC.

[38] Material UI: React Components That Implement Material Design. url: https://mui.

com/material-ui (visited on 03/18/2025).

[39] Matplotlib — Visualization with Python. url: https://matplotlib.org (visited on

05/02/2025).

[40] Brendan McCane et al. “Mastery Learning in Introductory Programming”. In: Pro-

ceedings of the Nineteenth Australasian Computing Education Conference. ACE ’17.

New York, NY, USA: Association for Computing Machinery, Jan. 31, 2017, pp. 1–10.

isbn: 978-1-4503-4823-2. doi: 10.1145/3013499.3013501. url: https://dl.acm.

org/doi/10.1145/3013499.3013501 (visited on 03/17/2025).

[41] Nginx. url: https://nginx.org (visited on 03/18/2025).

[42] OAuth 2.0 — OAuth. url: https://oauth.net/2 (visited on 03/18/2025).

[43] Pandas - Python Data Analysis Library. url: https://pandas.pydata.org (visited

on 05/02/2025).

[44] PrairieLearn. url: https://www.prairielearn.com (visited on 05/13/2025).

[45] Angelina Amalia Putri. “The Effectiveness of Khan Academy as a Science Learning

Support to Improve Student’s Mastery of Skills : Literature Review”. In: Journal of

http://books.google.com/books?id=eABpzyTcJNIC
https://mui.com/material-ui
https://mui.com/material-ui
https://matplotlib.org
https://doi.org/10.1145/3013499.3013501
https://dl.acm.org/doi/10.1145/3013499.3013501
https://dl.acm.org/doi/10.1145/3013499.3013501
https://nginx.org
https://oauth.net/2
https://pandas.pydata.org
https://www.prairielearn.com

BIBLIOGRAPHY 96

Environmental and Science Education 1.2 (2 Sept. 29, 2021), pp. 52–56. issn: 2775-

2518. doi: 10.15294/jese.v1i2.50370. url: https://journal.unnes.ac.id/sju/

jese/article/view/50370 (visited on 03/18/2025).

[46] Alex Rayón, Mariluz Guenaga, and Asier Núñez. “Integrating and Visualizing Learner

and Social Data to Elicit Higher-Order Indicators in SCALA Dashboard”. In: Proceed-

ings of the 14th International Conference on Knowledge Technologies and Data-driven

Business. I-KNOW ’14. New York, NY, USA: Association for Computing Machinery,

Sept. 16, 2014, pp. 1–4. isbn: 978-1-4503-2769-5. doi: 10.1145/2637748.2638435.

url: https://doi.org/10.1145/2637748.2638435 (visited on 03/17/2025).

[47] React. url: https://react.dev (visited on 03/18/2025).

[48] Redis - The Real-time Data Platform. Redis. url: https://redis.io (visited on

03/18/2025).

[49] Mahammad Sharifov, Samaya Safikhanova, and Abdulsalam Mustafa. “Review of Pre-

vailing Trends, Barriers and Future Perspectives of Learning Management Systems

(LMSs) in Higher Institutions”. In: International Journal of Education and Devel-

opment using Information and Communication Technology (IJEDICT) 17.3 (2021),

pp. 207–216. issn: EISSN-1814-0556. url: https://files.eric.ed.gov/fulltext/

EJ1335692.pdf.

https://doi.org/10.15294/jese.v1i2.50370
https://journal.unnes.ac.id/sju/jese/article/view/50370
https://journal.unnes.ac.id/sju/jese/article/view/50370
https://doi.org/10.1145/2637748.2638435
https://doi.org/10.1145/2637748.2638435
https://react.dev
https://redis.io
https://files.eric.ed.gov/fulltext/EJ1335692.pdf
https://files.eric.ed.gov/fulltext/EJ1335692.pdf

BIBLIOGRAPHY 97

[50] Ross Strader and Candace Thille. “The Open Learning Initiative: Enacting Instruction

Online”. In: Gamer Changers: Education and Information Technologies. Ed. by Diana

Oblinger. Washington, D.C.: EDUCAUSE, 2012, pp. 201–213. isbn: 978-1-933046-00-6.

[51] Terraform — HashiCorp Developer. Terraform — HashiCorp Developer. url: https:

//developer.hashicorp.com/terraform (visited on 04/22/2025).

[52] Candace Thille. “MOOCs and Technology to Advance Learning and Learning Research

Opening Statement: MOOCs and Technology to Advance Learning and Learning Re-

search (Ubiquity Symposium)”. In: Ubiquity 2014 (April Apr. 1, 2014), 1:1–1:7. doi:

10.1145/2601337. url: https://dl.acm.org/doi/10.1145/2601337 (visited on

03/17/2025).

[53] Jeramey Tyler, Matthew Peveler, and Barbara Cutler. “A Flexible Late Day Policy

Reduces Stress and Improves Learning”. In: Proceedings of the 2017 ACM SIGCSE

Technical Symposium on Computer Science Education. SIGCSE ’17. New York, NY,

USA: Association for Computing Machinery, Mar. 8, 2017, p. 718. isbn: 978-1-4503-

4698-6. doi: 10.1145/3017680.3022439. url: https://doi.org/10.1145/3017680.

3022439 (visited on 03/17/2025).

[54] Elise Vambenepe et al. “Impact of Retake Policy on Student Performance in a CS0

Course with Mastery Learning”. In: Proceedings of the 56th ACM Technical Sympo-

sium on Computer Science Education V. 2. SIGCSETS 2025. New York, NY, USA:

Association for Computing Machinery, Feb. 18, 2025, pp. 1643–1644. isbn: 979-8-4007-

https://developer.hashicorp.com/terraform
https://developer.hashicorp.com/terraform
https://doi.org/10.1145/2601337
https://dl.acm.org/doi/10.1145/2601337
https://doi.org/10.1145/3017680.3022439
https://doi.org/10.1145/3017680.3022439
https://doi.org/10.1145/3017680.3022439

BIBLIOGRAPHY 98

0532-8. doi: 10.1145/3641555.3705199. url: https://doi.org/10.1145/3641555.

3705199 (visited on 05/12/2025).

https://doi.org/10.1145/3641555.3705199
https://doi.org/10.1145/3641555.3705199
https://doi.org/10.1145/3641555.3705199

99

Appendix A

GradeSuite Handoff Plan

The GradeSuite project is an ongoing project that has been in development for the past

two years, and will continue to be actively developed and maintained at UC Berkeley for

the foreseeable future. Notably, multiple microapps are currently in development by their

respective teams, which will be added to the GradeSuite project in the coming months and

years. The below sections outline the process by which a new Organization Lead can take

over the GradeSuite project and its respective microapps.

When selecting a new organization lead, it is recommended that they have the following

qualifications:

• Prior project management experience

• Cloud service architecture

• Experience with CI/CD pipelines and workflow automation

APPENDIX A. GRADESUITE HANDOFF PLAN 100

• Experience with secure software development practices

• The following languages:

– JavaScript

– Python

• The following technologies and frameworks:

– Git and GitHub

– Docker

– Google Cloud Platform

– Linear, Jira, and/or a similar issue tracking system

– Linux and/or Unix-like systems

– Node.js (preferred)

– React (preferred)

• Web servers (e.g. nginx) (preferred)

• Systemd services (preferred)

A.1 GitHub

The GitHub organization is currently owned only by the organization lead. The new

GradeSuite organization lead will require ownership access to the organization in order for

APPENDIX A. GRADESUITE HANDOFF PLAN 101

them to manage it as they see fit. The new organization lead will need to manage multiple

elements of the GitHub organization, including:

• Organization teams

• Organization members and their respective team memberships

• Repository access and permissions

• Authorized applications and integrations including but not limited to:

• Branch protection rules which enforce the pull request etiquette outlined in section 3.3

– CodeCov which is used for test coverage in certain microapps

– GitGuardian which is globally configured for automated security scanning and

general-purpose linting

– Linear which is used for automated issue tracking and ticket status updates

– Slack which is used for organization communication and automated pull-request

review notifications

They will also be responsible for updating the billing and contact information for the

organization (note: the organization is currently configured as a free organization, so no

payment information is required, but the billing email should be updated regardless). They

will also be responsible for the repository named ‘.github’ which contains organization meta-

data and shared resources such as the PR template and landing-page ‘README.md’ file.

APPENDIX A. GRADESUITE HANDOFF PLAN 102

A.2 Google Cloud Platform

The primary contact for access within the Google Cloud account is the organization lead.

They have ownership access to the ‘eecs-gradeview’ namespace within the ‘berkeley.edu’

Google Cloud organization. This namespace contains all of the GradeSuite related resources.

To grant access to the cloud console for new developers, the new organization lead will

need to add the new user as a principal through iam with the role ‘AFA Cloud Developer.’

General access requests that apply to all developers should be added to the ‘AFA Cloud

Developer’ role directly, and more specific, protected, access requests should be handled

on a case-by-case basis and applied directly to the user’s principal to ensure least-privilege

access.

The organization lead will also be the default on-call user for GradeSuite services —

it is recommended that monitors configured for other microapps have proper escalation

procedures to ensure that the organization lead is notified in a timely manner, and that

allow them to delegate on-call duties to other team members as needed. Moreover, it is the

organization lead’s responsibility to ensure that the alerting policies are properly integrated

with other organization systems such as Slack, to inform the overall team and relevant

stakeholders of any issues or outages that may occur. These monitors and policies should be

configured through Google Cloud’s monitoring and alerting tools.

APPENDIX A. GRADESUITE HANDOFF PLAN 103

A.3 Slack

The Slack workspace is configured with a variety of different integrations and bots which

are used to facilitate organization communication and automation. The new organization

lead will need to manage these integrations and bots, including but not limited to:

• GitHub

• Google Cloud Platform (Alerting and Monitoring)

• Linear

It is likewise the duty of the organization lead to set up channels for each microapp and

validate the above integrations for respective git repositories. Moreover, they are expected

to actively monitor and moderate the slack workspace regularly including all microapp team

channels.

A.4 Linear

The Linear project board is actively owned and managed by the organization lead. For proper

handoff, they will need admin access to the Linear project board which can be provisioned

only by the existing organization lead.

Section 3.3 outlines the use of Linear for issue tracking and ticket status updates. The new

organization lead will need to manage the Linear project board and its respective workflows.

APPENDIX A. GRADESUITE HANDOFF PLAN 104

Specifically, they will need to configure the teams and projects for each microapp. They

are also responsible for providing new developers access to the Linear project board and

assigning them to the appropriate teams and projects. Likewise, it is the organization lead’s

responsibility to ensure the Linear board actively reflects the overall organization’s goals and

objectives as laid out in the weekly meetings with the entire research group. They should

monitor the board regularly to confirm tickets are being updated and closed in a timely

manner — these updates can also be reflected in the organization’s weekly team meetings.

Linear is also configured to integrate directly with GitHub and slack as mentioned in

section A.1 and section A.3 respectively. These integrations are likewise set up in Linear

directly, so the new organization lead will need to maintain and update these integrations

as needed.

A.5 Domain Name and DNS Access

The DNS is not currently owned or managed by the GradeSuite team at all, but rather by

the University of California, Berkeley Information Technology Services team. As such, any

changes or updates to the DNS will need to be made through the respective IT personnel

whom can be reached at inst@eecs.berkeley.edu. It should be configured to point to the

Google Cloud gateway IP address and should properly resolve to the GradeSuite website

(hosting the GradeView frontend on web).

inst@eecs.berkeley.edu

APPENDIX A. GRADESUITE HANDOFF PLAN 105

A.6 Microapp Handoff

The GradeSuite organization lead must collaborate with the research group lead to select

effective team leads for each microapp. These leads will not only be responsible for the

day-to-day development and maintenance of the microapp, but will also be responsible for

onboarding and training new developers on their team. Moreover, the organization lead must

also collaborate with the research team lead at the beginning of their term to explicitly lay

out the organization’s goals and key performance indicators each semester which will inform

the workload distribution and therefore the human resources needed for each microapp.

Moreover, the organization lead is also responsible for the overall performance of the

GradeSuite project, meaning they should have a deep understanding of the project’s infras-

tructure and capabilities, specifically the architecture referenced in Figure 4.2. They will be

responsible for ensuring that the microapps are properly integrated with each other and that

the overall architecture is up-to-date and properly configured.

Microapp Lead Responsibilities

Each microapp lead also assumes a variety of responsibilities. Primarily, their goal is to

evaluate project deliverables and coordinate with their team to ensure that each deliverable

is of high quality and meets the needs of the organization. In order to most efficiently

accomplish this, they should use the Linear project board to break down large asks into

epics and stories which can be assigned to individual team members. These tickets are the

APPENDIX A. GRADESUITE HANDOFF PLAN 106

main point-of-reference for evaluating team velocity.

Microapp leads are also expected to attend the weekly meetings with research team to

ideate on future development projects as well as weekly meetings with the organization lead

to discuss the technical direction of the project and outstanding deliverables. They should

also schedule at least one meeting per week with their respective teams outside of these larger

meetings to expedite the development process and address any blockers that may arise.

If delays are anticipated, the microapp lead should communicate with the organization

lead as soon as possible to discuss potential solutions. If the issue is not resolved within

a reasonable amount of time, the microapp lead should work with the organization lead to

escalate the issue to the research team lead and any other relevant stakeholders.

In the event that a microapp lead steps down or a new lead is appointed, the existing

microapp lead is expected to work with the new lead to ensure a smooth transition. This

may include training the new lead on the microapp’s infrastructure, documentation, and any

other relevant information.

107

Appendix B

Survey Questions

Throughout the semester, we collected feedback from students in two ways: an end-of-

semester survey that course staff directly distributed to students, and a general feedback

form that students could use during the semester to provide feedback and report bugs as the

semester progressed.

B.1 End-of-semester Survey

The end-of-semester survey was primarily comprised of two sections: GradeView and Con-

cept Map. This is because these were the two services that students directly interacted with.

The related survey questions are included below.

APPENDIX B. SURVEY QUESTIONS 108

GradeView/GradeSuite

Please complete this section based on your experience with the GradeView plat-

form.

1. How often do you use GradeView?

Daily

Weekly

Monthly

Never

N/A (didn’t use GradeView)

2. What do you primarily use GradeView for?

Viewing grades

Seeing how I’m progressing relative to the class

Getting general course information

Viewing the concept map

N/A (didn’t use GradeView)

Other (please specify)

3. How many questions/assignments have you retaken based on scores shown in Grade-

View? (If you did not use GradeView , please enter “NA”)

APPENDIX B. SURVEY QUESTIONS 109

4. How many questions/assignments did you anticipate retaking, but chose not to based

on scores shown in GradeView? (If you did not use GradeView , please enter “NA”)

Please rank the following questions with how you feel best describes your expe-

rience with GradeView .

5. I was well informed about how I can use GradeView in the context of the class.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

6. GradeView helps me track my performance in this class.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

N/A (didn’t use GradeView)

7. GradeView helps me improve my performance in this class.

APPENDIX B. SURVEY QUESTIONS 110

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

N/A (didn’t use GradeView)

Other

8. Have you noticed any incorrectly reported grades on the GradeView platform?

Yes

No

N/A (didn’t use GradeView)

9. Please use this space to give us any additional feedback about the GradeView system.

Concept Map

Please answer the following questions about Concept Map in specific.

10. How often do you use Concept Map?

Daily

APPENDIX B. SURVEY QUESTIONS 111

Weekly

Monthly

Rarely/Never

11. Did Concept Map influence your decision of whether or not to retake an assignment?

Please select N/A if you do not use Concept Map.

Yes

No

N/A (didn’t use Concept Map)

12. I understood how to interpret the data presented in Concept Map.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

N/A (didn’t use Concept Map)

13. Concept Map helps me track my progress in the class.

Strongly disagree

APPENDIX B. SURVEY QUESTIONS 112

Disagree

Neutral

Agree

Strongly agree

N/A (didn’t use Concept Map)

14. Concept Map helps me pace myself through course content.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

N/A (didn’t use Concept Map)

15. Concept Map helps me improve my performance in the class.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

APPENDIX B. SURVEY QUESTIONS 113

N/A (didn’t use Concept Map)

16. Have you noticed any incorrect data on Concept Map?

Yes

No

N/A (didn’t use Concept Map)

17. Please use this space to give us any additional feedback about Concept Map.

B.2 General Feedback Survey

We also provided students with a general feedback form when announcing the launch of

GradeSuite in their course offering. They could use this form to make bug reports, feature

requests, or other general feedback; each topic consisted of its own subset of questions:

Bug Report

Sorry you’re running into issues. Let us know whats going on so we can fix it

ASAP!

1. What page is the bug you are running into on?

2. What is the expected behavior? (what do you expect should be happening)?

3. What is the actual behavior?

APPENDIX B. SURVEY QUESTIONS 114

4. Briefly describe any further details

5. Please add any images of the issue here

6. Are you willing to go through some brief troubleshooting steps to help us better diag-

nose and resolve the issue?

Yes

No

If the students answered “Yes” to the last question, we would then walk them through

how to download their network logs as a .har file, and upload them directly to us. These were

useful for diagnosing issues with early versions of GradeSuite, before we had comprehensive

logging in place.

Feature Request

Thanks for spending the time to request a feature! Let us know what we should

add :)

1. Describe your feature

General Feedback / Other

Thanks for giving us some feedback about your experience with the app!

1. Let us know your thoughts below!

APPENDIX B. SURVEY QUESTIONS 115

Final Questions

The last two questions on the form, regardless of their feedback type, were a general ques-

tions:

1. Please rate your experience with GradeView so far

1 star

2 stars

3 stars

4 stars

5 stars

2. Would you like us to reach out directly to you about your submission?

Yes

No

116

Appendix C

Source Code

The source code for this project and each of its respective microapps can be found in the

GitHub organization at https://github.com/AFA-Tooling [2]. The below listings are in-

cluded for convenience and are referenced elsewhere in this document.

https://github.com/AFA-Tooling

APPENDIX C. SOURCE CODE 117

1 ## Linear Ticket

2

3 <!-- Replace the field marked <ticket -id > with your ticket id

↪→ -->

4 [Linear Ticket](https :// linear.app/afa -tooling/issue/<ticket -id

↪→ >)

5

6 ### Description

7

8 <!-- Briefly describe the feature being introduced. -->

9

10 ### Type of Change

11

12 <!-- What types of changes does your code introduce? Put an ‘x‘

↪→ in all the boxes that apply. -->

13

14 - [] Bug fix (non -breaking change which fixes an issue)

15 - [] New feature (non -breaking change which adds functionality

↪→)

16 - [] Refactoring (non -breaking change)

APPENDIX C. SOURCE CODE 118

17 - [] Breaking change (fix or feature that would change

↪→ existing functionality)

18

19 ### Changes

20

21 <!-- List the major changes made in this pull request. -->

22

23 ### Testing

24

25 <!-- Describe how the feature has been tested , including both

↪→ automated and manual testing strategies. -->

26

27 ### Checklist

28

29 - [] My branch name matches the format: ‘<ticket -id >/<brief -

↪→ description -of-change >‘

30 - [] My PR name matches the format: ‘[<ticket -id >] <brief -

↪→ description -of-change >‘

31 - [] I have added doc -comments to all new functions ([JSDoc](

↪→ https :// jsdoc.app/) for JS and [Docstrings](https :// peps.

APPENDIX C. SOURCE CODE 119

↪→ python.org/pep -0257/) for Python)

32 - [] I have reviewed all of my code

33

34 ### Screenshots/Video

35

36 <!-- Include screenshots or video demonstrating the new feature

↪→ , if applicable. -->

37

38 ### Additional Notes

39

40 <!-- Any additional information or context relevant to this PR.

↪→ -->

Listing C.1: Pull Request Template.

APPENDIX C. SOURCE CODE 120

1 {

2 "redis": {

3 "username": "default",

4 "host": "redis",

5 "port": 6379

6 },

7 "spreadsheet": {

8 "id": "13 qkZrlXtCWIqPI -0N86s -ZLtw9DTvYVzPI5BnJZ5gaM",

9 "scopes": [

10 "https :// www.googleapis.com/auth/spreadsheets.

↪→ readonly"

11],

12 "pages": {

13 "gradepage": {

14 "pagename": "HAID",

15 "assignmentMetaRow": 2,

16 "startrow": 4,

17 "startcol": "C"

18 },

19 "binpage": {

APPENDIX C. SOURCE CODE 121

20 "pagename": "Constants",

21 "startcell": "A51",

22 "endcell": "B61"

23 }

24 }

25 },

26 "googleconfig": {

27 "oauth": {

28 "clientid": "435032403387 -5

↪→ sph719eh205fc6ks0taft7ojvgipdji.apps.googleusercontent.

↪→ com"

29 }

30 },

31 "admins": [

32 "connorbernard@berkeley.edu",

33 "ddgarcia@berkeley.edu"

34]

35 }

Listing C.2: GradeView API Configuration File.

APPENDIX C. SOURCE CODE 122

1 name: CS10

2 term: Fall 2024

3 orientation: left to right

4 start date: 2024 08 26

5 styles:

6 name: root , shape: ellipse , style: filled , fillcolor: #3

↪→ A73A5

7 name: blue1 , shape: ellipse , style: filled , fillcolor: #74

↪→ B3CE

8 name: blue2 , shape: ellipse , style: filled , fillcolor: #87

↪→ CEEB

9 name: default , shape: ellipse , style: filled , fillcolor: #

↪→ E0E0E0

10 class levels:

11 Not Taught: #dddddd

12 Taught: #8fbc8f

13 student levels:

14 First Steps: #dddddd

15 Needs Practice: #a3d7fc

16 In Progress: #59b0f9

APPENDIX C. SOURCE CODE 123

17 Almost There: #3981c1

18 Mastered: #20476a

19 nodes:

20 Quest [blue2 , Week1]

21 Abstraction [default , Week1]

22 Number Representation [default , Week1]

23 Iteration [default , Week1]

24 Domain and Range [default , Week1]

25 Booleans [default , Week1]

26 Functions [default , Week1]

27 HOFs I [default , Week1]

28 Midterm [blue2 , Week5]

29 Algorithms [default , Week5]

30 Computers and Education [default , Week5]

31 Testing + 2048 + Mutable/Immutable [default , Week5]

32 Saving the World with Computing [default , Week5]

33 Debugging [default , Week5]

34 Scope [default , Week5]

35 Iteration and Randomness [default , Week5]

36 Recursion Tracing [default , Week5]

APPENDIX C. SOURCE CODE 124

37 Algorithmic Complexity [default , Week5]

38 HOFs II [default , Week5]

39 Fractal [default , Week5]

40 Projects [blue2 , Week1]

41 Project 1: Wordle -lite [default , Week1]

42 Project 2: Spelling Bee [default , Week1]

43 Project 3: 2048 [default , Week1]

44 end

Listing C.3: CS10 Concept Map Syntax.

	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Background
	Prior Work
	Motivation

	Organizational Structure
	Chain of Command
	Microapp Development Teams
	Management Technologies
	Key Leadership Takeaways

	Application and System Design
	GradeView
	Concept Map
	GradeSync
	Instructor Dashboard

	Deployment
	Containerization
	Early Deployment: Cloud to Bare-Metal Migration
	Updated Cloud Deployment
	Continuous Integration/Continuous Deployment (CICD)

	Results
	Methodology
	Student Usage
	Course Staff Impact

	Future Work
	AutoRemind
	Grade Projections
	GradeView Multi-Environment Support
	Infrastructure as Code (IAC)
	Future Studies

	Conclusion
	Bibliography
	GradeSuite Handoff Plan
	GitHub
	Google Cloud Platform
	Slack
	Linear
	Domain Name and DNS Access
	Microapp Handoff

	Survey Questions
	End-of-semester Survey
	General Feedback Survey

	Source Code
	C.1 Pull Request Template.
	C.2 GradeView API Configuration File.
	C.3 CS10 Concept Map Syntax.

