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             Abstract 

 

GamesmanROS: A Generalized Game-Playing Robotic System 

 

by 

 

Nakul Srikanth 

 

Masters of Science in Electrical Engineering & Computer Science  

University of California, Berkeley 

Professor Dan Garcia, Chair 

 

 

GamesCrafters is a research and development group at UC Berkeley focused on 

combinatorial game theory and puzzles. Over the past 25 years, it has engaged more 

than 750 students in the strong solving of abstract strategy games and puzzles through 

exhaustive search. The group also provides tools for analysis, visualization, and perfect 

play. This report details the design and implementation of GamesmanROS—an 

autonomous, game-playing, 6-degree-of-freedom robot that leverages these strongly 

solved solutions to play over 22 board games and puzzles. 
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Chapter 1 

Background 

 

1.1 GamesCrafters 

GamesCrafters is a combinatorial game theory and puzzle research and development 

group founded by Teaching Professor Dan Garcia in 2001, as a continuation of his 

“GAMESMAN” Master’s project, a finite two-player perfect information game generator. 

Over 25+ years and 750+ undergraduate and graduate students later, the group has 

“strongly” solved 70+ games and 15+ puzzles. In addition, the group has created 

advanced analysis and visualization techniques, all of which are made available for 

public use. Over recent years, they have been motivated to strongly solve larger games 

like Connect 4, Quarto, and Othello. This approach has led to many optimized solving 

algorithms that are parallelized and utilize cloud computing. This project brings these 

games and puzzles to life, enabling a physical experience while leveraging our existing 

analysis and visualization techniques.      

1.2 A Short Introduction to Game Theory 

Combinatorial Game Theory (CGT) is a branch of mathematics that analyzes two-player, 

turn-based games with perfect information and no chance elements. ​​In CGT, every game 

position (a state of the board configuration along with whose turn it is) is categorized 

based on its outcome under optimal play called Position Value, as visualized in Figure 

1.1. Let’s break down each possible position value: 

●​ Win: The current player can always force a victory regardless of the opponent's 

moves. 

●​ Lose: The current player will lose if the opponent plays optimally. 

●​ Tie: Neither player can force a win; the game ends in a stalemate. 

●​ Draw: Neither player can force a win; the game in perfect play will go on forever. 
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Figure 1.1: Visualization for Position and Move Values (courtesy Dan Garcia) 

 

An essential concept in CGT is remoteness, which measures the distance (in moves) 

from a given position to the game’s end position under optimal play. A lower remoteness 

indicates a quicker path to the game’s conclusion.​  

1.3 GAMESMAN System Architecture 

GAMESMAN is a comprehensive software framework designed to solve and analyze 

two-player, perfect-information combinatorial games. It supports the computation of 

strongly solved solutions, wherein the entire game tree is exhaustively explored to 

determine the optimal strategy for every possible position. The system offers interactive 

tools for visualizing position and move values during gameplay, as well as post-game 

analysis through a visual value history. To accommodate the increasing complexity and 

scale of supported games, GAMESMAN employs a generalized distributed architecture, 

as shown in Figure 1.2, that facilitates efficient scaling across all stages, from game 

solving to visualization. This architecture comprises three primary components: 

GamesmanClassic, GamesCraftersUWAPI, and GamesmanUNI. 

 

In this section, we briefly introduce each component and its relation to Gamesman, and 

hopefully contextualize properties that we leverage for GamesmanROS. 
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Figure 1.2: System Architecture for GAMESMAN 

 

1.3.1 GamesmanClassic (Game Server) 

GamesmanClassic, the original game-solving engine in our system, has been written and 

actively maintained in the C programming language for over two decades. It provides a 

robust framework for encoding combinatorial games, where a user implements the 

game’s logic and rules in C. Once defined, the system outputs a strong solution by 

exhaustively traversing the game’s state space using a built-in search algorithm. This 

traversal computes the exact position value (e.g., win, lose, tie) and remoteness (i.e., 

number of moves to endgame under optimal play) for every possible game state, and 

stores these results in a solution database.  

 

GamesmanClassic also features a TUI (Text-based User Interface) that allows users to 

interactively explore these values, analyze strategies, and visualize the solved state 

space. Additionally, it can be launched in server mode via a command-line argument, 

enabling it to handle web requests from a public API. This API allows external clients to 

query the value and remoteness of a given position in a particular game, making it a 

powerful backend for web-based game analysis tools. 

1.3.2  GamesCraftersUWAPI (AutoGUI Web Server) 

GamesCraftersUWAPI (Gamescrafters Universal Web API), our official Automatic 

Graphical User Interface (AutoGUI) middleware, hosts all of our metadata used to 
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graphically display our games on the frontend. This Universal software interacts with 

games written and solved in various languages like C (GamesmanClassic), Java 

(GamesmanJava), and Python (GamesmanPy) to translate requests and responses for 

corresponding positions and moves data to interact with the frontend web application. 

 

This software hosts the center coordinates for the Scalable Vector Graphics (SVGs) used 

by the frontend to pieces on a game board. It also includes file paths for the game board 

and game pieces, both of which are in SVG format. It also stores the file path for 

animation and sound effects. This server is modified every time a user wants to add 

AutoGUI capabilities for a game already solved in GamesmanClassic or any of our other 

game servers. 

1.3.3 GamesmanUNI (Frontend Web Application) 

GamesmanUNI, our official web-based graphical user interface (GUI), serves as an 

interactive platform for engaging with solved games and visualizing analytical results. 

Developed using Vue.js, TypeScript, and HTML, this application interfaces with the 

underlying GamesCraftersUWAPI to dynamically retrieve and display game state data, 

ensuring a seamless and responsive user experience. See Figure 1.3 that depicts the 

landing page for games. 

 

Figure 1.3: GamesmanUni - Frontend landing page for games 

 

https://nyc.cs.berkeley.edu/uni/
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Chapter 2 

Previous Work 

 

To contextualize our contributions, we begin by reviewing prior work that has addressed 

similar challenges in robotic board gameplay. Existing approaches include table-top 

magnetic robots that manipulate game pieces using magnets, as well as nano-drones 

that physically represent and move as game elements. While several efforts have 

explored the generalization of board games through robotics, few have leveraged a 

6-DOF (6 Degrees Of Freedom) robotic arm to perform these tasks. Among those that 

do, the use of 6-DOF manipulators is typically coupled with machine learning models 

trained on specific game configurations, with reinforcement learning (RL) agents often 

employed to determine the next move. However, such agents typically do not guarantee 

optimal decision-making, limiting their applicability in games requiring deterministic or 

perfect play. 

 

One project that is looking to generalize board games is Square Off’s Neo and Swap 

systems that represent a commercial implementation of AI-powered, physical board 

games. [1] Neo focuses exclusively on chess, featuring a magnetic 2D movement system 

beneath the board that silently and precisely moves magnetic pieces in response to AI or 

online opponents. Swap builds on this concept by supporting multiple games—including 

Draughts, Connect 4, and Chinese Checkers—through interchangeable piece sets and 

game modes. Both boards are globally connected, allowing remote play against human 

or AI opponents, and feature adaptive difficulty settings. Notably, the platforms 

incorporate an interactive virtual coach, “Viktor,” which provides personalized training 

to improve player performance. The systems showcase how physical gameplay can be 

enhanced through robotics, AI, and user-centric design, bridging the gap between digital 

convenience and tactile engagement. 

 

One notable example of recent work that explores embodied game-playing agents is 

SwarmPlay, a system that reimagines board gameplay through a swarm of autonomous 

drones. [2] The system was demonstrated using the classic game of Tic-tac-toe, in which 
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drones autonomously detect game state changes via an overhead computer vision 

system and collaboratively execute strategic moves on a physical board. Unlike 

traditional single-robot approaches, SwarmPlay distributes agency across multiple 

UAVs, offering richer interactivity and real-time game engagement. A custom 

decision-making algorithm, based on an improved version of the Basic Algorithm, 

balances offensive and defensive strategies to create a fair challenge for human players. 

User studies confirmed the system's perceived responsiveness, minimal cognitive 

fatigue, and strong engagement—69% of participants rated engagement at the 

maximum level. Beyond Tic-tac-toe, surveyed participants expressed enthusiasm for 

drone-based adaptations of more complex games such as Billiards, Battleship, and 

Tetris, suggesting that SwarmPlay's approach could be generalized to other dynamic, 

multi-agent game environments. 

 

One project designed a novel pipeline that enabled a 6-DOF general-purpose robotic 

arm (PAPRAS) to play chess autonomously against a human using a monocular camera 

attached to the robot’s end-effector [3]. The system operates under tight constraints, 

such as a limited field of view and workspace, and avoids reliance on external sensors or 

overhead cameras. They introduce a quadrant-based scanning strategy to observe the 

board, a hand-tracking module using Google’s MediaPipe for opponent move detection, 

and a perception pipeline involving 2D detection, 3D pose estimation, and chess move 

prediction. Integration with the Stockfish engine facilitates competitive gameplay, and 

experiments show strong perception (92.16% accuracy) and manipulation (91.94% 

success rate) capabilities. 

 

Another project introduces a robust and general-purpose robot capable of playing chess 

against humans using uninstrumented boards and arbitrary pieces. [4] Their system 

combines a custom 6-DoF manipulator, a depth-sensing Kinect-style camera, and a 

palm-mounted camera to perceive, track, and manipulate chess pieces. It employs a 

hierarchical classification system for chess piece recognition and uses visual servoing to 

adjust grasps in real time, making the system highly adaptable to non-ideal conditions. 

It also features a natural language interface for human interaction, and performs 

complete perception-planning-action loops without requiring structured environments. 

Experimental evaluation shows a high success rate (91.6% manipulation success) and 

promising grasp quality improvements due to visual servoing (from 17.5% to 77.5% 

success in worst-case trials). 

 

Researchers in New Zealand developed a robotic system capable of playing the 

board game Trax autonomously against a human opponent in a natural tabletop setting. 

[5] Rather than relying on traditional mouse or keyboard inputs, the robot interacts 

exclusively through real-world manipulation and vision-based sensing. The system 

comprises four main components: a game engine that includes pattern recognition and 
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threat evaluation, a camera-based vision system for state sensing and move validation, a 

4-DOF manipulator mounted on a gantry for piece placement, and a coordination 

module that handles human-robot interaction phases like negotiation, gameplay, and 

game conclusion. The authors place strong emphasis on ensuring intuitive and seamless 

interaction, with the robot passively responding to human actions and using audio cues 

for feedback. 
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Chapter 3 

GamesmanROS: Hardware Interface 

 

3.1 Overview & Setup 

For this project, we are using the MyCobot280pi, a 6-DOF robot arm from Elephant 

Robotics driven by a Raspberry Pi, to enable simple pick-and-place of game pieces for 

autonomous robot game play. [6] This robot comes with a standard gripper and a 

monocular usb camera with pegs for attachment to the robot’s end-effector, as shown in 

Figure 3.1. 

 

Figure 3.1: MyCobot280pi kit unboxing 
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To configure this robot, we had to first set up networking configurations and remote 

access to enable access to the robot’s hardware. We then set up the robot’s sensors, 

motors, and camera to send a stream of messages. Later, we configured trajectory 

planners and inverse kinematics to enable precise movement of the robot’s end-effector 

from point A to point B, and finally, we integrated a computer vision system using the 

camera to enable detection of the game board and its pieces. 

3.1.1 Remote SSH 

To facilitate remote development and interaction with the robot from any compatible 

device, a remote access methodology was implemented, targeting the robot's onboard 

Raspberry Pi. The initial step involves identifying the robot's IP address, which requires 

direct access to its graphical user interface (GUI). This is achieved by temporarily 

connecting a monitor to the Raspberry Pi. A USB-connected keyboard and mouse are 

then used to navigate the interface and establish a connection to the local Wi-Fi 

network. 

 

This network configuration is a one-time setup, assuming continued use of the same 

Wi-Fi network. Once connected, the Raspberry Pi retains the network credentials and 

will automatically reconnect to the known network on subsequent startups. As a result, 

future interactions do not require a keyboard, although a monitor and mouse remain 

necessary until a static IP address configuration is successfully implemented for the 

Berkeley eduroam Wi-Fi network. 

 

After the Wi-Fi connection is established, the robot's current IP address can be retrieved 

via the network configuration panel within the desktop environment. This IP address is 

then used to enable secure remote access to the Raspberry Pi from external development 

machines. The following figures demonstrate the process. 
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Figure 3.2: Step 1: Navigate to the Networks panel, enable Wi-Fi, and select network 

 

 

 

Figure 3.3: Step 2: One-time authentication of your Wi-Fi network 
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Figure 3.4: Step 3: Navigate back to the Networks panel and select “Connection 

Information” 

 

 

 

 

Figure 3.5: Step 4:  The highlighted field is the robot’s IP address 

 

With the robot’s IP address, we can now remotely access the robot from any laptop or 

computer device on the same network. Code development, execution, and real-time data 

visualization can also be performed from any device connected to the same network as 

the robot. This approach is preferred due to the limited computational resources of the 

Raspberry Pi, which may struggle to handle resource-intensive tasks such as web 

browsing or graphical user interfaces concurrently with trajectory planning and motor 

control algorithms. Offloading these tasks to more powerful remote machines improves 

overall system performance and ensures reliable robot operation. 
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3.1.1 ROS Networking 

Robot Operating System (ROS) is a set of software libraries and tools that help you build 

robot applications [7]. A running ROS system can comprise dozens, even hundreds of 

nodes, spread across multiple machines. Depending on how the system is configured, 

any node may need to communicate with any other node at any time. 

 

To facilitate data visualization on local development machines from the robot’s onboard 

Raspberry Pi, it is necessary to configure ROS networking protocols consistently across 

all devices. Proper networking ensures that all systems within the distributed ROS 

environment can communicate effectively, enabling synchronized access to sensor data, 

path planning modules, and other critical information. This configuration is especially 

crucial when multiple remote SSH sessions are required for running concurrent ROS 

nodes or command-line tools. Without a correctly configured ROS network, data 

sharing and inter-process communication between nodes may fail, impairing both 

development and real-time robot operation. Therefore, establishing robust and 

consistent ROS networking is a foundational requirement for successful robot 

programming and deployment. 

 

Here are two snippets of bash scripts to be added to the respective bash files for the 

robot and laptop. 

 

 

source /opt/ros/noetic/setup.bash​
export ROS_MASTER_URI=http://localhost:11311​
export ROS_IP=$(hostname -I | awk '{print $1}')​
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/ros/noetic/lib​
export PATH=/usr/lib/ccache:$PATH 

 

Figure 3.6: ~/.bashrc file from robot 

 

# export ROS_MASTER_URI=Robot_IP:11311​
# export ROS_IP=Laptop_IP​
export ROS_MASTER_URI=http://10.40.192.41:11311​
export ROS_IP=10.40.222.157 

 

Figure 3.7: ~/.bashrc file from laptop or local device 

 

Now we are ready to set up the robot’s sensor information from its joints and camera, in 

addition to enabling trajectory, path planning, and integration of the computer vision 

system. 
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3.2 Robot Internal Communication 

The robot is equipped with joint servos that include integrated encoders, which provide 

real-time feedback on the joint angles of the 6-DOF robotic arm. This data is critical for 

multiple software modules that perform tasks such as state estimation, visualization, 

and control. Additionally, the robot supports command-based actuation, allowing 

external software to update joint positions. These functionalities often require 

integration with various components within the ROS (Robot Operating System) 

ecosystem. To facilitate this, we implemented a set of ROS nodes, including publishers 

that broadcast joint states, coordinate frame transformations, and camera data, and 

subscribers that receive control commands or configuration updates. This section 

details the setup and configuration of the ROS publishers used to integrate the robot's 

sensors and actuators into the ROS framework. 

3.2.1 TF Trees 

TF is a ROS package that lets the user keep track of multiple coordinate frames over 

time. TF maintains the relationship between coordinate frames in a tree structure 

buffered in time, and lets the user transform points, vectors, etc, between any two 

coordinate frames at any desired point in time. [8]  

 

This package is employed to determine the pose of the robot’s end-effector relative to its 

base frame. To achieve this, the Universal Robot Description Format (URDF) file is 

provided to the TF (transform) package, which generates a TF tree that defines the 

kinematic relationships between the base link and the end-effector. The tree includes all 

intermediate joints, depicted in Figure 3.8, thereby capturing the physical structure and 

dependencies within the robot’s kinematic chain. By establishing these spatial 

relationships, the system can perform trajectory planning and inverse kinematics to 

compute the joint angle trajectories necessary for moving the end-effector from an 

initial position to a desired target location within the 3D workspace. 

 

 

Figure 3.8: Full TF tree of MyCobot280pi in rviz – Before (left); After (right) 
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Figure 3.9: Simplified TF tree display highlighting base and end-effector frames 

3.2.2 Publishing MyCobot Data to ROS 

The robot’s motors and encoders can be accessed via the intrinsic Application 

Programming Interface (API) for the MyCobot280pi provided by Elephant Robotics. To 

integrate this functionality within the ROS framework, a Python script 

(mycobot_topics_pi.py) and a corresponding ROS launch file 

(communication_topic_pi.launch) are used, as detailed in Appendix C. The launch 

file initializes the Python script as a ROS node, enabling standardized communication 

through ROS topics and services. This node is responsible for publishing continuous 

streams of messages containing the robot’s current joint angles, end-effector pose, and 

gripper status. Additionally, it acts as a listener, subscribing to incoming requests that 

command changes to these same parameters. This bidirectional communication 

facilitates seamless control and monitoring of the robot within the ROS ecosystem. 

During the initial stages of this project, we tried to manipulate only the location of the 

end-effector using these protocols, but the robot’s intrinsic inverse kinematics (IK) 

calculator resulted in very jerky and unpredictable movements from the robot. We later 

found that manipulating the joint angles directly was a much better strategy using this 

API. So moving forward, we ignore the communication channels to manipulate the xyz 

location of the end-effector via this API, and only use the API for manipulation of the 

joint angles and gripper status. 

3.2.3 Publishing Joint State Data 

The MoveIt framework—responsible for path planning and trajectory execution, as 

detailed in Section 3.3.1—relies on a continuous stream of joint_state messages to 

perform accurate motion planning. These messages need to be a list of 6 joint angles in 

radians, one for each respective joint in the 6-DOF robot. The MyCobot280pi API, 

however, provides a list of joint angles in degrees that is fully integrated with ROS. To 

address this, a python script (joint_states.py) was developed to convert joint angles 
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from degrees to radians and republish them on the appropriate ROS topic compatible 

with the MoveIt framework, as detailed in Appendix C. 

3.2.4 Camera 

The MyCobot280pi robotic platform is equipped with a monocular USB camera, shown 

in Figure 3.10, which is connected directly to one of the USB ports on the robot’s 

onboard Raspberry Pi. Image data from this camera is accessed and integrated into the 

ROS ecosystem using the usb_cam package. This package facilitates the acquisition and 

publication of image streams as ROS topics, thereby enabling their use in vision-based 

perception and control tasks within the broader robotic system. The package produces a 

stream of raw images, and a stream of depth images, which tell us the depth of each 

object in a given pixel of the raw image. While monocular cameras are generally limited 

in their ability to perceive depth accurately, they can provide sufficiently reliable results 

for short-range applications, typically within 1–2 feet. For the purposes of this project, 

such performance is adequate for effective visual perception and object localization 

within the robot’s immediate workspace. Setup for the camera and the usb_cam package 

included camera calibration and providing the calibrated camera information to the 

usb_cam package. See the Computer Vision chapter for more details.. 

 

 

Figure 3.10: Monocular USB camera (left); Camera attached to end-effector (right) 

3.2.5 Overview of Robot Communication Graph 

Given the setup of the ROS Internal Communication in this section, let’s visualize the 

ROS Nodes and ROS Topics and their relationships with each other via a Robot 

Operating System Qt-based GUI Framework (R) graph. 
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Figure 3.11: Rqt graph of ROS internal communications 

3.3 Actuation 

As the robot attempts to play board games, we need to establish a software pipeline to 

tell the robot to move its end-effector to a certain XYZ position to pick and place pieces 

on the game board. As we had previously discussed, the robot’s API best supports 

actuation by manipulating joint angles. Thus, we need to implement a path planning 

framework to find Inverse Kinematics solutions and provide a collision-free trajectory 

from point A to point B in the 3D space. [9] During this project, one key challenge we 

needed to account for was the robot’s dexterity and physical limitations when designing 

the board space for our games. 

 

The design of the game board is constrained by the physical dimensions and kinematic 

limits of the MyCobot280Pi robotic arm, shown in Figure 3.12. Specifically, the size of 

the robot’s joints imposes restrictions on both the overall dimensions of the board and 

the spacing between grid cells, as densely packed pieces make it difficult for the gripper 

to perform reliable pick-and-place operations within acceptable tolerances. According to 

the manufacturer's specifications, the robot has a maximum reach of 280 mm. However, 

this does not account for the inner area near the base that the robot cannot reach 

without risking self-collision, which our empirical testing identified to be approximately 

100 mm in radius. As a result, the usable working range extends from 100 mm to 
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280 mm, meaning the largest game board that ensures full reachability should fit within 

a 180 mm-wide area. To maintain reliable manipulation at varying heights and ensure 

consistent graspability across the board, we opted for a more conservative 150 mm x 150 

mm square layout. This ensures the robot can access all positions on the board, at any 

height, without exceeding its mechanical or kinematic constraints. 

 

 

Figure 3.12: MyCobot280pi 6-DOF dimensions spec and reachable workspace [10] 

 

Finally, when planning the physical motion from the initial to the target position in XYZ 

space, the movement must be decomposed into two discrete steps: pick and place. 

During the pick phase, an intermediate z-height is introduced to safely lift the piece 

above surrounding objects, providing clearance and avoiding collisions while 

transitioning. In the place phase, the piece is lowered from this intermediate height to 

its precise final position on the board. This separation ensures reliable and collision-free 

manipulation during both pickup and placement. 

3.3.1 MoveIt Framework 

MoveIt is a Motion Planning framework that is easy to set up and consists of multiple 

path planning modules for robot arms. The system is highly modular, offering a 

plug-and-play interface that accepts a robot’s URDF (Unified Robot Description 

Format) model and produces a collision-free trajectory. This trajectory consists of a 

sequence of joint configurations which, when executed over time, result in a smooth and 

continuous motion of the end-effector from an initial position to a target location while 

maintaining the desired orientation. See MoveIt tutorials [11] for more information on 

setup and a list of motion planners. 
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The motion planner that we elected to use for this project was the PILZ Industrial 

Motion planner, which provided more Cartesian path planning algorithms that allows 

for more predictable movements for pick and place tasks for our board games. Within 

the PILZ Industrial Motion, we choose the LIN motion commander, which provides 

linear Cartesian trajectories from point A to point B in XYZ coordinates.  

 

This planner generates smooth, coordinated motions for the robot’s end-effector by 

following straight-line paths in space while respecting speed and acceleration limits. It 

creates a trapezoidal velocity profile, meaning the end-effector gradually speeds up, 

maintains a steady speed, and then slows down as it approaches the target. To move the 

end-effector in a straight line, the planner uses simple interpolation between the 

starting and ending positions. At the same time, it smoothly adjusts the orientation of 

the end-effector by rotating it between the start and goal angles using a method called 

spherical linear interpolation (slerp). Both the movement and the rotation are carefully 

synchronized in time so that the robot’s motion looks natural and happens in a 

coordinated way. The output of the planner is a time-parameterized joint trajectory 

suitable for execution by the robot. [12] 

 

One of the most accessible interfaces for interacting with MoveIt is the Python-based 

Move Group Interface. This interface provides high-level wrapper functions that support 

a wide range of common robotic operations, including setting joint-space or pose-space 

goals, generating motion plans, executing trajectories, incorporating collision objects 

into the planning scene, and managing object attachments to and from the robot. These 

capabilities make it particularly suitable for rapid development and prototyping in 

robotic applications.[13]  

 

See Appendix C our code configuration of a Move Group Interface to interact with the 

MoveIt framework.  

3.3.2 URDFs 

The Unified Robot Description Format (URDF) is an XML-based specification used to 

describe the physical structure and kinematic properties of a robot. It encodes essential 

information such as link geometries, joint configurations, motor specifications, and 

inertial properties, effectively serving as a 3D model of the robot. Within the ROS 

framework, URDF files are parsed to construct the robot’s model, which is then utilized 

for visualization, simulation, and motion planning. This representation allows both the 

system and the human operator to understand the robot’s structure and capabilities 

prior to execution of any tasks.[14] 
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The URDF for the MyCobot280pi robot, as shown in Appendix C, was available on the 

Elephant Robotics GitHub page in the mycobot_description folder in the 

mycobot_ros git repository. We use the file path for the URDF as input to the MoveIt 

framework for path planning and collision avoidance. 

 

Figure 3.13: URDF visualization of joint link tree 

3.3.3 ActionServer 

Our MoveGroup, which represents our robot’s internal information and source of 

interaction with the MoveIt framework, requests a plan from a configured path planner 

in MoveIt; in our case, it is the LIN motion commander from PILZ Industrial motion 

planner. When a plan is compiled and a trajectory for the plan is received, this 

trajectory must then be sent to our robot’s API for processing and manipulating the 

joints. The trajectory in this case is a list of 6 joint angles that must be manipulated over 

time to change the robot’s end-effector’s position and orientation while avoiding 

self-collisions. To support asynchronous, feedback-driven execution of trajectories, we 

implement a ROS Action Server, which allows the system to receive goals, provide 

real-time feedback during execution, and return a result upon completion. This is 

particularly useful for operations such as trajectory execution, where continuous 

monitoring and the ability to preempt or cancel actions are essential for robust and 

flexible robot behavior. 
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3.4 Vision 

One key challenge we encountered after setting up the robot’s actuation and enabling 

the robot to play board games is minute physical inaccuracies when placing pieces. The 

inaccuracies were within 2-3 cm but this often affected the gripper’s ability to pick up 

the piece in future iterations, and if the gripper were able to pick it up, it would do so in 

awkward positions and the errors would cascade in future movements, later prohibiting 

the piece to be picked up. 

 

To solve this problem, we chose to integrate a computer vision system that looked for a 

specific piece on the game board using a unique Augmented Reality Tag (ARTag), 

identified its real location instead of blindly assuming its ideal location and picked up 

the piece in a more accurate and error-prone manner. When placing a piece, it still 

places it in the ideal location on the game board, which is fixed and calibrated before 

use. 

 

While there are many techniques to identify game pieces on a board, like HSV filtering 

and Machine Learning image recognition models, we chose to use a much simpler and 

reliable method of leveraging QR codes called ARTags, from the ar_track_alvar ROS 

package. Techniques like HSV aren't very robust when working with multiple pieces that 

have the same color and require extra image processing, which consumes more of our 

limited resources with the Raspberry Pi. Image recognition ML models require taking 

1000+ pictures of each unique game piece for training and testing, which is 

time-consuming and hard to scale for numerous games. We also could not find any 

off-the-shelf ML models for the recognition of game pieces.  

3.4.1 Camera Calibration 

In order to enable the monocular usb camera to provide accurate data about the xyz 

location of the game pieces, we first need to calibrate the camera by identifying the 

camera’s intrinsic information like the focal lengths and camera calibration matrix, as 

well as supplying this information to the usb_cam package for integration into ROS.  

 

To calibrate the camera, we utilized the camera_calibration ROS package to snap 

images of a checkerboard and output the required calibration information to be supplied 

to the usb_cam package. [15] Upon calibration, we created our YAML file and then 

placed it in the [~/.ros/camera_info] directory for use from the usb_cam package. 

See Appendix C for calibration and launch files. 
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3.4.1 ARTag ROS Package Setup 

To develop a generalized game-playing robotic system, ARTags were selected as the 

preferred method for game piece identification and localization. By affixing an ARTag to 

each game piece, as shown in Figure 3.14, the system can accurately recognize and track 

their positions in real time, exhibiting high robustness across a wide range of lighting 

conditions. This approach offers both reliability and computational efficiency, making it 

a scalable solution applicable to a variety of games and piece types without requiring 

extensive reconfiguration. 

 

Figure 3.14: ARTag placement on 3D printed game pieces 

 

To enable ARTag detection, the ar_track_alvar ROS package is utilized. This package 

requires configuring of its launch files, as shown in Appendix C, including parameters 

such as the physical size of the ARTags, the allowable detection tolerance between 

neighboring tags, and the detection window for individual tags. It processes input from 

both the raw RGB camera stream and the depth image feed, typically provided by the 

usb_cam package. Upon detecting ARTags, the package publishes the corresponding 

pose estimates as ROS messages on predefined topics, enabling their integration into 

the broader robotic perception and control pipeline. 

3.4.2 TF Transform 

As we launch the ar_track_alvar package, we begin to see coordinates being 

published with the XYZ location of the ARTags. This location, however, is with respect 

to the camera’s frame, not the real world. To obtain the location of the piece in the real 

world, we need to do a transformation from the camera’s frame to the robot’s base 

frame. When doing this, we encounter a problem: where is the camera’s frame? 

 

To fix this problem, we create a new frame called aligned_usb_cam and specify it to be 

some offset from the end-effector, where our camera is attached to the robot. We run 

this new frame as a node (transformBoardcast.py) via a launch file 
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(tf_bringup.launch) detailed in Appendix C. We then append this frame to our TF 

tree, thus allowing us to transform the location of the camera with respect to the robot’s 

base, thus always obtaining the real-world coordinates of the camera’s location. 

3.5 Physical Calibration 

Board games come with varying board sizes and piece shapes. This creates two 

problems, 1) localizing the board to fit the robot’s reachability constraints, 2) enabling a 

generalized methodology to pick-and-place pieces, which is hard to do if every piece has 

different geometries.  

3.5.1 Board Localization 

To address the first issue, we designed a custom board enabling a precise fit for 

PDF-printable game boards, depicted in Figure 3.15 using the process outlined in 

Section 3.5.2. Additionally, this custom board includes a cutout for the robot’s base, 

allowing accurate localization of the game board relative to the robot. 

 

   

Figure 3.15: Custom wooden board – cutout for robot and paper game boards (left); 

printable SVG of Dodgem game board (middle); final setup with pieces on game board 

(right) 

3.5.2 Printable Game Boards for Size Calibration 

Due to robot reachability constraints described in Section 3.3, all games needed to be 

standardized to a 150 mm x 150 mm grid. To simplify this process, we developed a 

Streamlit-based web application to facilitate the conversion of SVG board images from 

GamesmanUni into a 150 mm x 150 mm format compatible with GamesmanROS. The 

figures below illustrate the steps required to generate the printable PDF version of the 

game board. See out GitHub documentation for information on launching the Steamlit 



CHAPTER 3. GAMESMANROS: HARDWARE INTERFACE 
25 

application. The following figures depict the process of using the web application to 

print PDFs. 

 

 

Figure 3.16: Step 1: Open the Web Application from the GamesmanROS repository 

 

 

Figure 3.17: Step 2: Choose the game board SVG from the GamesmanUni repository 

 

 

Figure 3.18: Step 3: Rename and download the pdf file 
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3.5.2 Piece Calibration 

To address the second issue, we designed custom 3D-printed game pieces with flat tops 

to facilitate the attachment of ARTags, shown in Figure 3.19. This design allows the 

pieces to be reused across multiple games, ensuring consistent and reliable 

pick-and-place functionality for the robot’s gripper. 

 

Figure 3.19: Custom 3D printed pieces 

3.5.3 Integration 

As seen in Figure 3.20, we present the solution to the two presented problems with a 

printed game board of Dodgem. This paper printout is physically localized with the 

robot, requiring no extra calibration or board detection. The pieces on the board are also 

reusable for other games and enable smooth pick and place capabilities for the gripper. 

 

 

Figure 3.20: Final setup with robot for a game of Dodgem 
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Chapter 4 

GamesmanROS: Software Interface 

 

4.1 System Overview 

GamesmanROS is our newly-designed software system for robotics that allows the robot 

to play multiple games from the GamesmanUni system. This system leverages data 

provided by GamesCraftersUWAPI, an interface for our frontend GamesmanUni, to 

support the generalized gameplay with the robot.  

 

 

Figure 4.1: GamesmanROS: System architecture diagram 
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4.2 Robot MoveTypes 

When enabling the robot to play various games in our system, it becomes very 

important to classify different move types at the atomic level to enable smooth game 

play and generalizability across various types of games.  

 

The four basic atomic moves from the robot that we have created include: 

●​ Place 

●​ Rearrange 

●​ Capture 

●​ Removal 

 

Place is the type of move where pieces are added to the board for gameplay. The robot 

scans for pieces outside the game board and picks them up to place on the game board. 

Examples of games that require the placement of pieces include TicTacToe and 

Dawson’s Chess. [16] 

 

Rearrange is the type of move where the number of pieces at the beginning of a game 

and the end of the game stays constant throughout the gameplay. All the robot has to do 

is rearrange pieces on the board for valid game moves. Examples of games that require 

rearrangement include Dao and All Queens Chess. [16] 

 

Capture is the type of move where one piece occupies the spot of another piece, while 

removing the original piece from the board simultaneously. For the robot, this is a two 

step process as we have to remove the piece first off the board to a designated removal 

area to make room for the new piece to occupy the space. Upon this step, we move the 

new piece to occupy the space of the captured piece. Examples of games that require 

capture include Chess and Dragons & Swans. [16] 

 

Removal is the type of move where pieces are simply removed from the board, and no 

other action is taken. For the robot, it simply picks the piece to be removed and places it 

in a designated removal area off the board. Examples of games that require removal 

include Chomp and Dodgem. [16] 

4.3 Leveraging UWAPI 

In order to represent board states and player turn information for the frontend, 

GamesCrafters developed the Universal Web Interface API (UWAPI) string format, 

which the API uses to interact with the game server and the frontend.  
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The general string format is as follows: 

●​ Position String: “[player turn]_[1D board string]” 

●​ Move String: “[move type]_[token]_[string index for new move]_[sound effect]” 

 

Let’s break it down with an example for the game of Dodgem: 

 

Figure 4.2: Position strings - First player (left); Second player (right) 

 

In this example depicted in Figure 4.2, 1 represents the first player and 2 for the second 

player. The ‘-’ character represents an empty space on the board, while ‘o’ and ‘x’ 

represent the blue and red pieces, respectively. The move string to transition from 

“M_4_5_x”, where M represents a “sliding” move of the piece in index 4 to index 5 to 

represent the new board position string “2_-----o--o----xx-” with ‘x’ being the 

configured sliding sound effect. Using the position and move string format for UWAPI, 

we can now decode and extract robot atomic moves for every board game. Now we are 

ready to leverage metadata in GamesCraftersUWAPI to support the robot with 

important information for perfect game play. Such information includes center 

coordinates for pieces and its mapping to a UWAPI string and choosing the next best 

optimal move.  

 

To differentiate moves into our 4 atomic move types: Place, Rearrange, Capture and 

Removal, we need to run a UWAPI string comparison between the current and future 

board states. To do this, we first extract the UWAPI representation of the board that 

results from making the optimal move by querying and parsing requests from the 

server. Upon this, we now are keeping track of the UWAPI strings for the current board 

state as well as the next state. We then analyze the strings to categorize the move types. 

 

When handling Place, Capture, and Removal move types, we need to specify 

locations where pieces can be picked up and placed off the board. This is done by 

encoding pickup and placement zones in the game board to GamesmanROS by 

providing the corresponding SVG center coordinates for the zones. 
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Let’s consider a simplified game with a 3x1 board and 2 pieces for each player. 

 

 

Figure 4.3: 3x1 Grid board game (left); Pieces (right) 

 

For this game we will analyze the parsing of the UWAPI string to determine what type of 

robot atomic move has been made to provide an overview of UWAPI conversion to robot 

moves. 

 

General guidelines for classifying UWAPI strings to robot move types: 

 

Place: The UWAPI string representation reflects an increase of one in the total number 

of pieces between successive game states. This change indicates that a new piece has 

been placed on the board. With this addition, the robotic system can determine the 

exact location of the newly placed piece, allowing it to execute a precise pick-and-place 

action to physically update the game board and reflect the intended move in the ongoing 

gameplay.  

 

 

Figure 4.4: Empty board (left); Placing a piece on board (right) 
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Rearrange: The indices occupied in the initial position string that become vacant in 

the subsequent position string signify the source locations from which the robot must 

pick up pieces. Conversely, positions that transition from vacant to occupied indicate the 

target locations where the robot should place the pieces. By mapping these transitions, 

we can produce necessary pick-and-place actions for the robotic system. Note: In cases 

where multiple pieces need to be moved, such action is not supported by 

GamesCraftersUWAPI, thus it is not compatible with GamesmanROS.  

 

Figure 4.5: Rearranging pieces on a board – Before (left); After (right) 

 

Capture: The UWAPI string representation reflects both a decrease in the total number 

of game pieces and a change in their positions between successive game states, 

essentially a Removal plus a Rearranger. We choose to create the category of Capture to 

better align with terminologies in gameplay of board games. 

 

 

Figure 4.6: Capture of pieces on a board - Before (left); After (right) 

 

Removal: The UWAPI string representation reflects a decrease of one in the total 

number of pieces between successive game states. This change indicates that a piece has 

been removed from the board. With this change, the robotic system can identify the 

specific location from which the piece was removed, enabling it to execute the 



CHAPTER 4. GAMESMANROS: SOFTWARE INTERFACE 
32 

appropriate pick-and-remove action to accurately update the physical game board and 

place the piece in a designated removal zone. 

 

 

Figure 4.7: Removal of pieces on a board - Before (left); After (right) 

 

Not every game consists of all four atomic move types, some games only have 

rearrangement, while others have a combination of two, three or all four move types. 

GamesmanROS requires the user to make a one-time configuration where they specify 

the Type class for a given game that corresponds to the combination of atomic move 

types. If such a combination is not already encoded, they are welcome to create a new 

Type class to handle the combination of atomic moves, see Appendix C for more 

details. 

4.4 Integration 

Now that we have classified games and their corresponding physical movements to the 

robot’s atomic move types, we are now ready to find the pieces on the physical board 

and process the moves by actuating the robot arm.  

To do this, we have created two layers of abstraction, the first layer is encoding the move 

recognition from the section above to output a list of before and after SVG coordinates 

that signify each move. For example, the rearranger example from above might return 

before coordinates of [0.5, 0.5] and after coordinate of [0.5, 1.5], resulting in [[0.5, 

0.5], [0.5, 1.5]]. A rearranger move only consists of 1 set of before and after 

coordinates, while a capture includes 2 sets of before and after coordinates, one to 

remove the captured piece off the board and another to rearrange the existing piece to 

complete the capture.  

 

The second layer of abstraction involves processing game moves by first transforming 

2D SVG-based coordinates into corresponding 2D real-world coordinates. The robot is 

then commanded to execute a pick operation at the initial location and a place operation 

at the target location, with appropriate adjustments to the Z-axis in the real-world XYZ 
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frame to account for vertical positioning, as seen in robotControl.py in Appendix C. 

This structured approach promotes modularity, enabling a plug-and-play design and 

facilitating the isolation and debugging of potential issues during future system 

development. 

 

Lastly, we introduce the option to either play blindly, where the robot moves to the 

assumed piece location derived from the SVG coordinates, or it leverages the vision 

system that we had setup earlier to find the live error-prone location of the piece on the 

game board for greater pickup accuracy. For the vision based system, we query the ROS 

topic from the ARTag package for the location of the specified piece 

(artag_listener.py), which we track by storing the marker number in an internal 

data structure. With this live location, we can accurately command the robot to move 

and adjust the gripper for accurate pickup of pieces. Placement of pieces is still 

completed on the ideal location of the board using SVG coordinate transforms. See 

Appendix C for more information. 
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Chapter 5 

Results 

 

With the integration of hardware and software interfaces, GamesmanROS currently 

supports 22 games, as detailed in Table 1.1. Additional games can be accommodated 

through providing software support for custom game boards, specialized game pieces, 

and accurate localization to facilitate robot movement. GamesmanROS is modular to 

support configurations for new games. However, some games remain unsupported due 

to the physical constraints of the robot’s reach. Considering a maximum board 

dimension of 150 mm x 150 mm and the use of custom 3D-printed game pieces, the 

largest practical board size compatible with reliable robot manipulation is a 5x5 grid; 

beyond this, spacing becomes insufficient to ensure consistent gripping accuracy. 

 

The robot is capable of autonomously identifying pieces on the game board, planning 

and executing pick-and-place trajectories, and interacting with the UWAPI servers. It 

continuously updates the internal UWAPI string to reflect the current game state and 

requests the optimal next move from the server. Each move is executed within 

approximately 5 to 10 seconds, accounting for the asynchronous execution of 

pre-planned trajectories and the delay associated with gripper state transitions. At 

present, the robot can play autonomously against itself, computing optimal moves for 

both players. Additionally, we have developed and validated a software interface 

enabling human-versus-robot gameplay, which has been successfully demonstrated with 

Dawson’s Chess. Future work will focus on robust testing of this capability to all 2D 

grid-based games currently supported by GamesmanROS, prior to public use. 

 

 

 

 



CHAPTER 5. RESULTS 
35 

5.2 Trajectory Execution Results 

The path planning and execution modules within the MoveIt framework consistently 

generate precise linear trajectories for 100% of motion planning queries within the 150 

mm × 150 mm game board. This includes accurate trajectories for both the pick/place 

z-values and elevated z-values used to safely hover over pieces during transitions 

between locations. 

5.3 Vision Results 

With the camera pose established relative to the robot’s base frame, and the ARTag 

positions determined relative to the camera—both represented within the unified TF 

tree—we are able to compute the full transformation from each ARTag to the robot’s 

base frame. This enables the extraction of accurate real-world (x,y,z) coordinates for 

each ARTag with respect to the robot. As a result, the system achieves precise 

localization of all game pieces within the robot’s operational workspace. The error rate 

for the perceived location of a piece on the game board with respect to the real location 

with respect to the robot’s base is within 2-3 cm, which is within tolerance for our 

gripper’s pick and place capabilities. 

 

 

Figure 5.1: Game piece detection by robot 

 

 

Figure 5.2: ARTag recognition and TF frame visualization in rviz 
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5.4 Integration Results 

Following the successful integration of the hardware and software interfaces described 

in Chapters 3 and 4, GamesmanROS enables the robot to reliably detect and track the 

last known positions of multiple game pieces on the board, as seen in Figure 5.3. The 

system also tracks the association between ARTag identifiers and their corresponding 

indices in the UWAPI position string, dynamically updating this mapping as moves are 

made. This architecture reduces the search space for piece localization and establishes a 

foundation for enabling human-versus-robot gameplay. 

In a series of 100 pick-and-place executions conducted across six perfect-play, 

robot-versus-robot games of Dodgem, the robot achieved a 92% accuracy rate in 

successfully picking up pieces, avoiding collisions by hovering over other pieces, and 

precisely placing them within their designated grid cells—mirroring the visualized 

gameplay in the GamesmanUni web application. The remaining 8% error rate was 

primarily due to minor collisions during gripper actuation, which occasionally displaced 

neighboring pieces. This marks a significant improvement over the previously observed 

27% error rate in a blind (non-vision) baseline, where the robot operated without 

perception feedback. Integrating a vision system effectively mitigated cascading errors 

by allowing the robot to confirm the actual position of each piece before executing a 

pick, thereby compensating for any minor deviations introduced during prior moves. 

This substantial reduction in error demonstrates the effectiveness of combining 

perception with motion planning and sets the stage for further enhancements to 

gameplay accuracy and robustness in real-world conditions. 

 

Figure 5.3: ARTag recognition of all pieces in Dodgem 
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Figure 5.4: Robot playing first move in Dodgem 

 

 

Figure 5.5: Robot playing second move in Dodgem 

 

 

Figure 5.6: Robot playing first move in Pong Hau K’i 
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See Table 1.1 below for a list of games in GamesmanUni and its status in 

GamesmanROS. 

 

Game Name Status 

Place  

Dawson's Chess Supported 

Domineering  

Y  

Capture  

  

Removal  

Chomp  

Rearranger  

3-Spot  

All Queens Chess Supported 

Beeline  

Change! Supported 

Dao Supported 

Five-Field Kono Supported 

Fox and Hounds  

Hares and Hounds Supported 

Jan (4x4) Supported 

Joust Supported 

Lewthwaite’s Game Supported 

Mu Torere  

Nu Tic-Tac-Toe Supported 

Pong Hau Ki Supported 

Adugo Supported 

HoBagGonu  

Place + Rearranger  

Abrobad  

Achi Supported 
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Teeko Supported 

Tsoro Yematatu  

Rearranger + Removal  

Dino Dodgem Supported 

Dodgem Supported 

Rearranger + Capture  

1D Chess Supported 

Four Field Kono Supported 

Quick Chess Supported 

Chess Supported 

Place + Rearranger + 

Removal  

Nine Men’s Morris Supported 

Place + Rearranger + 

Removal  

Bagh-Chal Supported 

Dragons & Swans Supported 

Rearranger + Capture + 

Removal  

Kōnan  

Place + Rearranger + 

Capture + Removal  

Yote  

Not categorized / Custom 

requirements  

10-to-0-by-1-or-2  

Chinese Chess  

Chopsticks  

Chung-toi  

Connect 4  

Dōbutsu shōgi  

Forest Fox  

Ghost  
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Table 1.1: List of all games in GamesmanUni and its compatibility status with 

GamesmanROS 

Graph  

Jenga  

Kayles  

L-Game  

Lite3  

Nim  

NoTakTo  

Odd or Even  

Othello  

Quarto  

Quick Cross  

Quixo  

Rubic’s Magic  

Sim  

Slide 5  

Snake  

Square Dance  

Tac-Tix  

Tic-Tac-Toe  

Tic-Tac-Two  

Totto and Otto  

TopiTop  

Euclid’s Game  

Shift Tac Toe  

Abalone  

Mancala  
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Chapter 6 

Future Work 

 

6.1 Future Work 

When we started this project, the goal was to enable human interaction with 

Gamesman. With GamesmanROS, we are now able to bring board games to life by 

having the robot play itself for all compatible games. With a better camera system, we 

should be able to enable human interaction for most of our supported games, where the 

computer detects a human move and responds with the corresponding robot move. We 

can then leverage this software solution to visualize human errors in the GamesmanUni 

web interface. Future iterations of this project can expand to user-friendly GUI 

experience as well as visualization features for testing and debugging. 

6.1.1 Play against a human 

While the robot can support human-readable moves for Dawson’s chess, a 1D game 

board, we are hoping to expand this software to support 2D game boards. A key 

challenge is snapping the fuzzy real-world XYZ coordinates of a given piece and then 

converting its locations to its respective UWAPI string. This pipeline has been tried in 

this project, and we found many gaps that were introduced. Future iterations of this 

project should re-examine the pipeline and find robust solutions for every step from 

piece recognition to UWAPI string conversion. In addition, we are requiring a human to 

provide keyboard input when they have completed their move, so the robot can begin its 

analysis. This was mainly to conserve resources and reduce errors in mistaken scans 

when a user is transitioning pieces across various locations in the game board. A nice 

optimization would be to solve this issue such that no human input is required to begin 

with, to enable playing against the robot. 
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6.1.2 Adding more games to GamesmanROS 

GamesmanROS is proud to support 22 games! However, this excludes many grid 

puzzles and other games with unconventional boards like hexagonal and diagonal 

boards. Most of the games on our system also have pieces with varying shapes and often 

overlap multiple spots on the grid board, like domineering. These custom requirements 

require adding a customized solution to the GamesmanROS. Luckily, GamesmanROS is 

a modular software platform where custom functionality can be added using 

object-oriented programming and plugged into the current software stack. 

 

Customized solutions may include utilizing suction grippers, dexterous hand-like 

grippers, or 3D printing custom grippers to pick and place unique types of pieces. 

Games that may require customized grippers include Connect 4 and Jenga. 

6.1.3 GUI for GamesmanROS 

The greatest tool that we have built to advance the mission of GamesCrafters is 

GamesmanUni, a web interface that allows for interaction and visualization of our 

solved games. When embarking on the journey of building GamesmanROS, the core 

motivation was not only to play our system via a robot, but also to check the answers 

against our strongly solved solutions in real-time. This can be possible with future 

integrations of GamesmanROS with GamesmanUni. Further motivations include the 

challenge that operating the robot via GamesmanROS requires someone with a 

technical background, limiting the availability and use of the robot to the general public. 

We hope to build a personalized GUI for GamesmanROS that allows for user-friendly 

startup and debugging of the robot. 
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Chapter 7 

Conclusion 

 

With a strong foundational robotic system in place, GamesmanROS is well-positioned 

to support a broader range of games—and even puzzles—on physical hardware. By 

investing in enhancements such as a more positionally accurate robot with a larger 

reachable workspace, advanced end-effectors (e.g., suction or human-like grippers), and 

a static stereo camera setup for improved depth perception, the system could achieve 

greater precision in piece manipulation and scale to accommodate larger game boards.  

 

GamesmanROS lays the groundwork for a flexible and intelligent game-playing 

platform—and while there’s plenty of room to grow, we've taken a significant step 

forward in bridging the gap between AI, robotics, and real-world gameplay. 
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Appendix A: User’s Guide 

 

Step 1: Follow the instructions in 3.1.1 to establish a Remote SSH connection with the 

robot. Password for the SSH connection to the robot is Elephant. 

ssh er@10.40.193.189​
Elephant 

 

Step 2: Open 6 separate terminals with Remote SSH established in each terminal, run 

the following command in each terminal: 

cd Documents/GamesmanROS/catkin_ws && source ~/.bashrc && source 

/opt/ros/noetic/setup.bash && source devel/setup.bash 

 

Step 3: Running the following commands in each respective terminal, one command 

per terminal. Allow 3-5 sec delay between running commands in each terminal. 

 

roscore​
roslaunch mycobot_communication communication_topic_pi.launch​
roslaunch gamesmanros tf_bringup.launch​
roslaunch gamesmanros spawn_all_pieces.launch​
roslaunch mycobot_280_moveit mycobot_moveit.launch​
rosrun gamesmanros main.py 

 

Step 4: In the terminal running the [rosrun gamesmanros main.py] command, follow 

the TUI (Text-Based User Interface) to choose and play the game of your choice. See 

Appendix C for supported games. 

 

[Truncated for visual]​
82  :  Tic-Tac-Toe​
83  :  Tic-Tac-Two​
84  :  Tiltago​
85  :  Toads and Frogs Puzzle​
86  :  Toot and Otto​
87  :  Top Spin​
88  :  Topitop​
89  :  Towers of Hanoi​
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90  :  Tsoro Yematatu​
91  :  Winkers​
92  :  Y​
93  :  Yoté​
Pick the index of the game you want to play: 24​
Game Chosen:  dodgem​
0  :  regular​
Pick the index of the variant you want to play: 0​
Human or Robot (Enter 'h' or 'r')​
Player 1: r​
Player 2: r​
A :  M_4_5_x​
B :  M_14_10_x​
[Truncated for visual] 
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Appendix B: Adding a Game to 

GamesmanROS 

 

Prerequisite: Games must be added to GamesmanClassic (or other game 

server), GamesCraftersUWAPI and available through GamesmanUni.  

 

Step 1: In centers.py file [GamesmanROS/catkin_ws/src/gamesmanros/src] add 

your game to the following functions and variables, using examples provided: 

 

Make sure that the string key for gameId matches that of GamesCraftersUWAPI 

 

def get_centers(game):​
   data = {​
       "1dchess": [[0.5 + i, 0.5] for i in range(8)],​
       "allqueenschess": [[(i % 5 + 0.5) / 5, (i // 5 + 0.5) / 5] for i in range(25)],​
       "dawsonschess": [[0.5,1.5],[1.5,1.5],[2.5,1.5],[3.5,1.5],[4.5,2.5],[5.5,2.5]],​
       "dao": [[(i % 4 + 0.5) / 4, (i // 4 + 0.5) / 4] for i in range(16)],​
       "dodgem": [[(i % 4 + 0.5), (i // 4 + 0.5)] for i in range(16)],​
       "dinododgem": [[i // 5 + 0.5, 5.5 - (i % 5)] for i in range(25)] + [​
                   [1.5, 0.5], [2.5, 0.5], [3.5, 0.5], [4.5, 0.5],​
                   [5.5, 1.5], [5.5, 2.5], [5.5, 3.5], [5.5, 4.5]​
               ],​
       "dragonsandswans": [[(i % 4 * 10 + 5) / 35, (i // 4 * 10 + 5) / 46] for i in 

range(16)] + [[28.7/35, 43/46], [30.2/35, 43/46], [28.7/35, 46/46], [30.2/35, 46/46]],​
       "jan": [[((i % 4)), ((i // 4))] for i in range(16)],​
       "joust": 

[[0.5,0.5],[1.5,0.5],[2.5,0.5],[3.5,0.5],[0.5,1.5],[1.5,1.5],[2.5,1.5],[3.5,1.5],[0.5,2.5],[

1.5,2.5],[2.5,2.5],[3.5,2.5],[0.5,3.5],[1.5,3.5],[2.5,3.5],[3.5,3.5]]​
   }​
   return data[game] if game in data else None​
​
ar_tracker = {​
   "dodgem" : {"ar_marker_16" : 4, "ar_marker_13" : 8, "ar_marker_6" : 13, "ar_marker_7" : 

14}​
   }​
​
def get_dim(game):​
   data = {​
       "1dchess": 8,​
       "allqueenschess": 5,​
       "dawsonschess": 5,​
       "dao": 4,​
       "dodgem": 3,​
       "jan": 3,​
       "joust": 4​
   }​
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   return data[game] if game in data else None​
​
def get_pickup(game):​
   data = {}​
   return data[game] if game in data else None​
​
def get_capture(game):​
   data = {​
       "1dchess": [5.5, 2.5]​
   }​
  ​
   return data[game] if game in data else None 

 

Step 2: Modify robotControl.py [GamesmanROS/catkin_ws/src/gamesmanros/src] 

to specify the Type of game you are adding to GamesmanROS, see Appendix C for 

more details on each corresponding Type of game. If a certain combination of robot 

atomic moves is not supported by GamesmanROS, add your own custom Type below 

using previous ones as reference. 

 

Make sure that the string key for gameId matches that of GamesCraftersUWAPI 

 

def getType(gameId):​
   types_of_games = {"Type1": ["dawsonschess"],​
                     "Type2": [],​
                     "Type3": [],​
                     "Type4": ["allqueenschess", "dao", "jan", "joust", "lewthwaitesgame",​
                               "nutictactoe", "ponghauki", "adugo"],​
                     "Type5": ["achi", "teeko"],​
                     "Type6": ["dinododgem", "dodgem"],​
                     "Type7": ["1dchess", "fourfieldkono", "quickchess"],​
                     "Type8": [],​
                     "Type9": ["baghchal", "dragonsandswans"],​
                     "Type10": [],​
                     "Type11": []}​
  ​
   types = {"Type1" : Type1, "Type2" : Type2, "Type3" : Type3, "Type4" : Type4,​
            "Type5" : Type5, "Type6" : Type6, "Type7" : Type7, "Type8" : Type8,​
            "Type9" : Type9, "Type10" : Type10, "Type11" : Type11}​
  ​
   for gameType in types_of_games:​
       if gameId in types_of_games[gameType]:​
           return types[gameType]​
  ​
   print("Error in RobotControl GameType!")​
   return None 
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Appendix C: Code 

Visit our official git repository, GamesmanROS, part of the GamesCrafters 

organization! 

https://github.com/GamesCrafters/GamesmanROS.git 

 

Below are snippets of code that are referenced in the paper: 

 

 <!-- Argument for the URDF file path -->​
 <arg name="robot_description" 

default="/home/er/catkin_ws/src/mycobot_ros/mycobot_description/urdf/mycobot/mycobot_urdf.ur

df" />​
​
 <!-- Load the URDF file into the parameter server -->​
 <param name="robot_description" textfile="$(arg robot_description)" />​
​
 <!-- <param name="use_sim_time" value="false" /> -->​
 <node name="pub_joint_states" pkg="gamesmanros" type="joint_states.py" output="screen" />​
​
 <!-- Robot State Publisher to publish the TF tree -->​
 <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" 

respawn="false">​
   <param name="robot_description" value="$(arg robot_description)" />​
 </node> 

 

Snippet of tf_bringup.launch file to launch the TF tree of the robot 

 

 

<launch>​
   <!-- Select connecting device and serial port ，选择连接设备及串口-->​
   <arg name="port" default="/dev/ttyAMA0" />​
   <arg name="baud" default="1000000" />​
​
   <!-- Open communication service --><!-- 开启通讯服务 -->​
   <node name="mycobot_services" pkg="mycobot_communication" type="mycobot_topics_pi.py" 

output="screen">​
       <param name="port" type="string" value="$(arg port)" />​
       <param name="baud" type="int" value="$(arg baud)" />​
       </node>​
</launch> 

 

Launch file communication_topic_pi.launch 
 
 

https://github.com/GamesCrafters/GamesmanROS.git
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from mycobot_communication.msg import (​
   MycobotAngles,​
   MycobotCoords,​
   MycobotSetAngles,​
   MycobotSetCoords,​
   MycobotGripperStatus,​
   MycobotPumpStatus,​
)​
​
from pymycobot import MyCobot​
# from pymycobot import MyCobotSocket​
​
class Watcher:​
   """this class solves two problems with multithreaded​
   programs in Python, (1) a signal might be delivered​
   to any thread (which is just a malfeature) and (2) if​
   the thread that gets the signal is waiting, the signal​
   is ignored (which is a bug).​
​
   The watcher is a concurrent process (not thread) that​
   waits for a signal and the process that contains the​
   threads.  See Appendix A of The Little Book of Semaphores.​
   http://greenteapress.com/semaphores/​
​
   I have only tested this on Linux.  I would expect it to​
   work on the Macintosh and not work on Windows.​
   """​
​
   def __init__(self):​
       """Creates a child thread, which returns.  The parent​
       thread waits for a KeyboardInterrupt and then kills​
       the child thread.创建一个返回的子线程。 父线程等待 KeyboardInterrupt​
       然后杀死子线程。​
       """​
       self.child = os.fork()​
       if self.child == 0:​
           return​
       else:​
           self.watch()​
​
   def watch(self):​
       try:​
           os.wait()​
       except KeyboardInterrupt:​
           # I put the capital B in KeyBoardInterrupt so I can​
           # tell when the Watcher gets the SIGINT​
           print("KeyBoardInterrupt")​
           self.kill()​
       sys.exit()​
​
   def kill(self):​
       try:​



52 

           os.kill(self.child, signal.SIGKILL)​
       except OSError:​
           pass​
​
​
class MycobotTopics(object):​
   def __init__(self):​
       super(MycobotTopics, self).__init__()​
​
       rospy.init_node("mycobot_topics_pi")​
       rospy.loginfo("start ...")​
       # problem​
       port = rospy.get_param("~port", os.popen("ls /dev/ttyAMA*").readline()[:-1])​
       baud = rospy.get_param("~baud", 1000000)​
       rospy.loginfo("%s,%s" % (port, baud))​
       # self.mc = MyCobotSocket(port, baud) # port​
       # self.mc.connect()   #pi​
       self.mc = MyCobot(port, baud)​
       self.lock = threading.Lock()​
​
   def start(self):​
       pa = threading.Thread(target=self.pub_real_angles)​
       pb = threading.Thread(target=self.pub_real_coords)​
       sa = threading.Thread(target=self.sub_set_angles)​
       sb = threading.Thread(target=self.sub_set_coords)​
       sg = threading.Thread(target=self.sub_gripper_status)​
       sp = threading.Thread(target=self.sub_pump_status)​
​
       pa.setDaemon(True)​
       pa.start()​
       pb.setDaemon(True)​
       pb.start()​
       sa.setDaemon(True)​
       sa.start()​
       sb.setDaemon(True)​
       sb.start()​
       sg.setDaemon(True)​
       sg.start()​
       sp.setDaemon(True)​
       sp.start()​
​
       pa.join()​
       pb.join()​
       sa.join()​
       sb.join()​
       sg.join()​
       sp.join()​
​
   def pub_real_angles(self):​
       """Publish real angle"""​
       """发布真实角度"""​
       pub = rospy.Publisher("mycobot/angles_real", MycobotAngles, queue_size=5)​
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       ma = MycobotAngles()​
       r = rospy.Rate(30)​
       while not rospy.is_shutdown():​
           self.lock.acquire()​
           angles = self.mc.get_angles()​
           self.lock.release()​
           if angles:​
               ma.joint_1 = angles[0]​
               ma.joint_2 = angles[1]​
               ma.joint_3 = angles[2]​
               ma.joint_4 = angles[3]​
               ma.joint_5 = angles[4]​
               ma.joint_6 = angles[5]​
               pub.publish(ma)​
           r.sleep()​
​
   def pub_real_coords(self):​
       """publish real coordinates"""​
       """发布真实坐标"""​
       pub = rospy.Publisher("mycobot/coords_real", MycobotCoords, queue_size=5)​
       ma = MycobotCoords()​
       r = rospy.Rate(30)​
       while not rospy.is_shutdown():​
           self.lock.acquire()​
           coords = self.mc.get_coords()​
           self.lock.release()​
           if coords:​
               ma.x = coords[0]​
               ma.y = coords[1]​
               ma.z = coords[2]​
               ma.rx = coords[3]​
               ma.ry = coords[4]​
               ma.rz = coords[5]​
               pub.publish(ma)​
           r.sleep()​
​
   def sub_set_angles(self):​
       """subscription angles"""​
       """订阅角度"""​
       def callback(data):​
           angles = [​
               data.joint_1,​
               data.joint_2,​
               data.joint_3,​
               data.joint_4,​
               data.joint_5,​
               data.joint_6,​
           ]​
           sp = int(data.speed)​
           self.mc.send_angles(angles, sp)​
​
       sub = rospy.Subscriber(​
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           "mycobot/angles_goal", MycobotSetAngles, callback=callback​
       )​
       rospy.spin()​
​
   def sub_set_coords(self):​
       def callback(data):​
           angles = [data.x, data.y, data.z, data.rx, data.ry, data.rz]​
           sp = int(data.speed)​
           model = int(data.model)​
           self.mc.send_coords(angles, sp, model)​
​
       sub = rospy.Subscriber(​
           "mycobot/coords_goal", MycobotSetCoords, callback=callback​
       )​
       rospy.spin()​
​
   def sub_gripper_status(self):​
       """Subscribe to Gripper Status"""​
       """订阅夹爪状态"""​
       def callback(data):​
           if data.Status:​
               self.mc.set_gripper_state(0, 80)​
           else:​
               self.mc.set_gripper_state(1, 80)​
​
       sub = rospy.Subscriber(​
           "mycobot/gripper_status", MycobotGripperStatus, callback=callback​
       )​
       rospy.spin()​
​
   def sub_pump_status(self):​
       def callback(data):​
           if data.Status:​
               self.mc.set_basic_output(data.Pin1, 0)​
               self.mc.set_basic_output(data.Pin2, 0)​
           else:​
               self.mc.set_basic_output(data.Pin1, 1)​
               self.mc.set_basic_output(data.Pin2, 1)​
​
       sub = rospy.Subscriber(​
           "mycobot/pump_status", MycobotPumpStatus, callback=callback​
       )​
       rospy.spin() 

 

Python Script mycobot_topics_pi.py 
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class JointStateRepublisher:​
   def __init__(self):​
       # Create a publisher for JointState​
       self.joint_state_pub = rospy.Publisher('/joint_states', JointState, queue_size=10)​
      ​
       # Subscribe to the topic that publishes joint angles (of type JointAngles)​
       rospy.Subscriber('/mycobot/angles_real', MycobotAngles, self.joint_angles_callback)​
​
       # Initialize the JointState message​
       self.joint_state_msg = JointState()​
​ # Actual names of joints (URDF)​
       self.joint_state_msg.name = ['joint2_to_joint1', 'joint3_to_joint2', 

'joint4_to_joint3', 'joint5_to_joint4', 'joint6_to_joint5', 'joint6output_to_joint6'] ​
       self.joint_state_msg.position = [0.0] * 6  # Initialize with zero angles for 6 joints​
​
   def joint_angles_callback(self, msg):​
   # Extract joint angles from the received message and convert them from degrees to radians​
           joint_angles = [​
           math.radians(msg.joint_1),​
           math.radians(msg.joint_2),​
           math.radians(msg.joint_3),​
           math.radians(msg.joint_4),​
           math.radians(msg.joint_5),​
           math.radians(msg.joint_6)​
       ]​
​
       # Update the JointState message​
       self.joint_state_msg.header.stamp = rospy.Time.now()  # Update timestamp​
       self.joint_state_msg.position = joint_angles​
​
       # Publish the JointState message​
       self.joint_state_pub.publish(self.joint_state_msg) 

 

Python Script joint_states.py 

 

 

<!-- move_group settings -->​
 <arg name="pipeline" default="pilz_industrial_motion_planner" />​
 <arg name="allow_trajectory_execution" default="true"/>​
 <arg name="moveit_controller_manager" default="simple" />​
 <arg name="fake_execution_type" default="interpolate"/>​
 <arg name="max_safe_path_cost" default="1"/>​
 <arg name="publish_monitored_planning_scene" default="true"/>​
​
 <arg name="capabilities" default=""/>​
 <arg name="disable_capabilities" default=""/> 

 

Snippet from move_group.launch file with PILZ as the choice of planner 
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# Initialize MoveIt and ROS nodes​
moveit_commander.roscpp_initialize(sys.argv)​
# Initialize robot commander and scene interface​
robot = moveit_commander.RobotCommander()​
​
# Initialize MoveGroupCommander for your arm (replace 'arm_group' with your MoveGroup name 

if different)​
group_name = "arm_group"  # Ensure this matches your MoveIt configuration​
move_group = moveit_commander.MoveGroupCommander(group_name)​
move_group.set_planner_id("LIN")​
​
gripper = rospy.Publisher("/mycobot/gripper_status", MycobotGripperStatus, queue_size=10) 

 

Snipped of low_level_controller.py, where “LIN” is the choice of Motion 

Commander 

 

 

# Function to move to a specified (x, y, z) position​
def plan_to_xyz(x, y, z):​
   current_state = robot.get_current_state()​
   move_group.set_start_state(current_state)​
​
   # Set up a Pose target at the desired location​
   pose_goal = geometry_msgs.msg.Pose()​
   pose_goal.position.x = x​
   pose_goal.position.y = y​
   pose_goal.position.z = z​
​
   # Apply a 180-degree rotation around X-axis (downward)​
   q1 = quaternion_from_euler(pi, 0, 0)  # Pi radians (180 degrees) around X​
   q2 = quaternion_from_euler(0, 0, pi/4)​
   q3 = quaternion_from_euler(-pi/16, 0, 0)      # 45° about Y​
   q12 = quaternion_multiply(q1, q2)​
   q = quaternion_multiply(q12, q3)​
​
​
   pose_goal.orientation.x = round(q[0], 6)​
   pose_goal.orientation.y = round(q[1], 6)​
   pose_goal.orientation.z = round(q[2], 6)​
   pose_goal.orientation.w = round(q[3], 6)​
​
   # Set the target pose for the MoveGroup​
   move_group.set_pose_target(pose_goal)​
​
   # Plan the trajectory to the target pose​
   plan = move_group.plan()​
​
   # Check if planning succeeded​



57 

   if not plan[0]:​
       rospy.logwarn("Planning failed for the target pose.")​
       return False​
​
   move_group.execute(plan[1], wait=True)​
   rospy.loginfo("Trajectory executed successfully.")​
   return True 

 

Snipped of low_level_controller.py, where we plan and execute trajectories  

 

 

<?xml version="1.0"?>​
<robot  xmlns:xacro="http://www.ros.org/wiki/xacro" name="firefighter" >​
 <xacro:property name="width" value=".2" />​
​
​
 <link name="g_base">​
   <visual>​
     <geometry>​
       <mesh filename="package://mycobot_description/urdf/mycobot_pi/G_base.dae"/>​
     </geometry>​
     <origin xyz = "0.0 0 -0.03" rpy = "0 0 1.5708"/>​
   </visual>​
   <collision>​
     <geometry>​
       <mesh filename="package://mycobot_description/urdf/mycobot_pi/G_base.dae"/>​
     </geometry>​
     <origin xyz = "0.0 0 -0.03" rpy = "0 0 1.5708"/>​
   </collision>​
 </link>​
 

​
 <link name="joint1">​
   <visual>​
     <geometry>​
      <!--- 0.0 0 -0.04  1.5708 3.14159-->​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint1_pi.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 0 " rpy = " 0 0 0"/>​
   </visual>​
   <collision>​
     <geometry>​
      <!--- 0.0 0 -0.04  1.5708 3.14159-->​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint1_pi.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 0 " rpy = " 0 0 0"/>​
   </collision>​
 </link>​
​
 <link name="joint2">​
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   <visual>​
     <geometry>​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint2.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 -0.06096 " rpy = " 0 0 -1.5708"/>​
   </visual>​
     <collision>​
     <geometry>​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint2.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 -0.06096 " rpy = " 0 0 -1.5708"/>​
   </collision>​
 </link>​
 

 

​
 <link name="joint3">​
   <visual>​
     <geometry>​
     ​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint3.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 0.03256 " rpy = " 0 -1.5708 0"/>​
   </visual>​
     <collision>​
       <geometry>​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint3.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 0.03256 " rpy = " 0 -1.5708 0"/>​
   </collision>​
 </link>​
​
​
 <link name="joint4">​
   <visual>​
     <geometry>​
      <!--- 0.0 0 -0.04 -->​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint4.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 0.03056 " rpy = " 0 -1.5708 0"/>​
   </visual>​
     <collision>​
     <geometry>​
      <!--- 0.0 0 -0.04 -->​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint4.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 0.03056 " rpy = " 0 -1.5708 0"/>​
   </collision>​
 </link>​
 

​
<link name="joint5">​
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   <visual>​
     <geometry>​
      <!--- 0.0 0 -0.04 -->​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint5.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 -0.03356 " rpy = " 0 -1.5708 1.5708"/>​
   </visual>​
     <collision>​
     <geometry>​
      <!--- 0.0 0 -0.04 -->​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint5.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 -0.03356 " rpy = " 0 -1.5708 1.5708"/>​
   </collision>​
 </link>​
 

​
 <link name="joint6">​
   <visual>​
     <geometry>​
      <!--- 0.0 0 -0.04 -->​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint6.dae"/>​
     </geometry>​
   <origin xyz = "0 0.00 -0.038 " rpy = " 0 0 0"/>​
   </visual>​
     <collision>​
     <geometry>​
      <!--- 0.0 0 -0.04 -->​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint6.dae"/>​
     </geometry>​
   <origin xyz = "0 0.00 -0.038 " rpy = " 0 0 0"/>​
   </collision>​
 </link>​
 

​
 <link name="joint6_flange">​
   <visual>​
     <geometry>​
      <!--- 0.0 0 -0.04 -->​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint7.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 -0.012 " rpy = " 0 0 0"/>​
   </visual>​
     <collision>​
     <geometry>​
      <!--- 0.0 0 -0.04 -->​
      <mesh filename="package://mycobot_description/urdf/mycobot_pi/joint7.dae"/>​
     </geometry>​
   <origin xyz = "0.0 0 -0.012 " rpy = " 0 0 0"/>​
   </collision>​
 </link>​
 



60 

​
 <joint name="g_base_to_joint1" type="fixed">​
   <axis xyz="0 0 0"/>​
   <limit effort = "1000.0" lower = "-3.14" upper = "3.14159" velocity = "0"/>​
   <parent link="g_base"/>​
   <child link="joint1"/>​
   <origin xyz= "0 0 0" rpy = "0 0 0"/> ​
 </joint>​
​
​
 <joint name="joint2_to_joint1" type="revolute">​
   <axis xyz="0 0 1"/>​
   <limit effort = "1000.0" lower = "-3.14" upper = "3.14159" velocity = "0"/>​
   <parent link="joint1"/>​
   <child link="joint2"/>​
   <origin xyz= "0 0 0.13956" rpy = "0 0 0"/> ​
 </joint>​
 

​
 <joint name="joint3_to_joint2" type="revolute">​
   <axis xyz="0 0 1"/>​
   <limit effort = "1000.0" lower = "-3.14" upper = "3.14159" velocity = "0"/>​
   <parent link="joint2"/>​
   <child link="joint3"/>​
   <origin xyz= "0 0 -0.001" rpy = "0 1.5708 -1.5708"/> ​
 </joint>​
​
 <joint name="joint4_to_joint3" type="revolute">​
   <axis xyz=" 0 0 1"/>​
   <limit effort = "1000.0" lower = "-3.14" upper = "3.14159" velocity = "0"/>​
   <parent link="joint3"/>​
   <child link="joint4"/>​
   <origin xyz= "  -0.1104 0 0   " rpy = "0 0 0"/> ​
 </joint>​
 

 

 <joint name="joint5_to_joint4" type="revolute">​
   <axis xyz=" 0 0 1"/>​
   <limit effort = "1000.0" lower = "-3.14" upper = "3.14159" velocity = "0"/>​
   <parent link="joint4"/>​
   <child link="joint5"/>​
   <origin xyz= "-0.096 0 0.06462" rpy = "0 0 -1.5708"/> ​
 </joint>​
 

​
 <joint name="joint6_to_joint5" type="revolute">​
   <axis xyz="0 0 1"/>​
   <limit effort = "1000.0" lower = "-3.14" upper = "3.14159" velocity = "0"/>​
   <parent link="joint5"/>​
   <child link="joint6"/>​
   <origin xyz= "0 -0.07318 0" rpy = "1.5708 -1.5708 0"/> ​
 </joint>​
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​
 <joint name="joint6output_to_joint6" type="revolute">​
   <axis xyz="0 0 1"/>​
   <limit effort = "1000.0" lower = "-3.14" upper = "3.14159" velocity = "0"/>​
   <parent link="joint6"/>​
   <child link="joint6_flange"/>​
   <origin xyz= "0 0.0456 0" rpy = "-1.5708 0 0"/> ​
 </joint>​
</robot> 

 

MyCobot280pi URDF - mycobot_urdf.urdf 

 

 

class JointTrajectoryActionServer:​
   def __init__(self):​
       rospy.init_node('joint_trajectory_action_server')​
​
       # Action server setup​
       self.server = actionlib.SimpleActionServer(​
           'arm_group/follow_joint_trajectory',​
           FollowJointTrajectoryAction,​
           execute_cb=self.execute_callback,​
           auto_start=False)​
      ​
       self.server.start()​
​
       self.pub = rospy.Publisher("/mycobot/angles_goal", MycobotSetAngles, queue_size=10)​
​
       rospy.loginfo("JointTrajectoryActionServer started.")​
      ​
   def execute_callback(self, goal):​
       feedback = FollowJointTrajectoryFeedback()​
       result = FollowJointTrajectoryResult()​
​
       rospy.loginfo("Received goal with %d points in trajectory.", 

len(goal.trajectory.points))​
       r = rospy.Rate(30)​
​
       # Loop through each trajectory point and execute​
       for point in goal.trajectory.points:​
           feedback.desired = point​
           self.server.publish_feedback(feedback)​
​
           angles = list(point.positions)​
​
           mycobot_sendAngles = MycobotSetAngles()​
           mycobot_sendAngles.joint_1 = math.degrees(angles[0])​
           mycobot_sendAngles.joint_2 = math.degrees(angles[1])​
           mycobot_sendAngles.joint_3 = math.degrees(angles[2])​
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           mycobot_sendAngles.joint_4 = math.degrees(angles[3])​
           mycobot_sendAngles.joint_5 = math.degrees(angles[4])​
           mycobot_sendAngles.joint_6 = math.degrees(angles[5])​
           mycobot_sendAngles.speed = 40​
​
           self.pub.publish(mycobot_sendAngles)​
           # Wait briefly to avoid overlapping trajectories​
           r.sleep()  # Adjust delay as necessary​
​
       rospy.loginfo("Trajectory executed successfully.")​
       result.error_code = result.SUCCESSFUL​
       self.server.set_succeeded(result) 

 

JointTrajectoryActionServer - joint_trajectory.py 

 

<!-- Run joint_trajectory.py -->​
 <node pkg="gamesmanros" type="joint_trajectory.py" name="joint_trajectory_node" 

output="screen">​
   <!-- <param name="use_sim_time" value="true" /> -->​
 </node> 

 

Snippet of action server launch file - tf_bringup.launch 
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image_width: 1280​
image_height: 720​
camera_name: head_camera​
camera_matrix:​
 rows: 3​
 cols: 3​
 data: [1308.70048,    0.     ,  638.84558,​
           0.     , 1321.24676,  281.60301,​
           0.     ,    0.     ,    1.     ]​
distortion_model: plumb_bob​
distortion_coefficients:​
 rows: 1​
 cols: 5​
 data: [0.065854, -0.103668, -0.023520, 0.003236, 0.000000]​
rectification_matrix:​
 rows: 3​
 cols: 3​
 data: [1., 0., 0.,​
        0., 1., 0.,​
        0., 0., 1.]​
projection_matrix:​
 rows: 3​
 cols: 4​
 data: [1333.49377,    0.     ,  641.41345,    0.     ,​
           0.     , 1331.89819,  269.28536,    0.     ,​
           0.     ,    0.     ,    1.     ,    0.     ] 

 

Camera Calibration File - head_camera.yaml (~/.ros/camera_info) 

 

 

<launch>​
 <node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >​
   <param name="video_device" value="/dev/video0" />​
   <param name="image_width" value="1280" />​
   <param name="image_height" value="720" />​
   <param name="pixel_format" value="yuyv" />​
   <param name="camera_frame_id" value="usb_cam" />​
   <param name="io_method" value="mmap"/>​
 </node>​
</launch> 

 

Camera Launch File - usb_cam.launch 
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#!/usr/bin/env python3​
import rospy​
import tf​
import math​
​
if __name__ == '__main__':​
   rospy.init_node('dynamic_tf_broadcaster')​
   br = tf.TransformBroadcaster()​
   rate = rospy.Rate(10.0)​
   while not rospy.is_shutdown():​
       br.sendTransform((0.0, -0.04, -0.0),​
                       (0.70710678, -0.70710678, 0, -0),​
                       rospy.Time.now(),​
                       "usb_cam",​
                       "joint6_flange")​
       rate.sleep() 

 

Snippet of transformBroadcast.py 

 

<node name="camera_tf" pkg="gamesmanros" type="transformBroadcast.py" output="screen" /> 

 

Launching transformBroadcast in tf_bringup.launch 

 

def pick_best_move(moves):​
   position_values = {}​
   for i in range(len(moves)):​
       if moves[i]['moveValue'] not in position_values:​
           position_values[moves[i]['moveValue']] = [moves[i]['autoguiMove']]​
       else:​
           position_values[moves[i]['moveValue']].append(moves[i]['autoguiMove'])​
​
   if 'win' in position_values and len(position_values['win']) > 0:​
       return position_values['win'][0]​
   elif 'draw' in position_values and len(position_values['draw']) > 0:​
       return position_values['draw'][0]​
   elif 'lose' in position_values and len(position_values['lose']) > 0:​
       return position_values['lose'][0]​
   else:​
       print('error: in pick_best_move')​
       exit() 

 

Code Snippet for choosing optimal move from UWAPI server response 
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class RobotControl:​
   # XYZ Values in mm​
   def __init__(self, board_size=150, dim=3, y_offset=100, pickup_z=135, lift_z=185):​
       self.board_size = board_size​
       self.dim = dim​
       self.scaling = self.board_size/(self.dim)​
       self.x_offset = (self.board_size/2)​
       self.y_offset = y_offset​
       self.pickup_z = pickup_z​
       self.lift_z = lift_z / 1000​
​
   def svg_to_real(self, svg_coord):​
       T = np.array([[1, 0, 0],​
                   [0, -1, self.dim+1],​
                   [0, 0, 1]])​
​
       coord = np.array([svg_coord[0], svg_coord[1], 1])​
​
       real_coord = np.dot(T, coord.T)​
       real_coord[1] = abs(real_coord[1])​
       return [real_coord[0], real_coord[1]] 

 

   #gripper: Open 0, Close 1​
   def play(self, before, after):​
       before = self.svg_to_real(before)​
       x = (before[0] * self.scaling) - self.x_offset​
       y = (before[1] * self.scaling) + self.y_offset​
       z = self.pickup_z​
​
       # Convert XYZ Values to meters​
       x = x / 1000​
       y = y / 1000​
       z = z / 1000​
​
       after = self.svg_to_real(after)​
       after_x = (after[0] * self.scaling) - self.x_offset​
       after_y = (after[1] * self.scaling) + self.y_offset​
       after_z = self.pickup_z​
​
       # Convert XYZ Values to meters​
       after_x = after_x / 1000​
       after_y = after_y / 1000​
       after_z = after_z / 1000​
​
       print("Before: ", (x, y, z), " | ", "After: ", (after_x, after_y, after_z))​
​
       gripper_status("open")​
       time.sleep(0.5)​
​
       plan_to_xyz(x, y, self.lift_z)​
       time.sleep(1)​
       plan_to_xyz(x, y, z)​
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​
       gripper_status("close")​
       time.sleep(0.5)​
​
       plan_to_xyz(x, y, self.lift_z)​
       time.sleep(1)​
       plan_to_xyz(after_x, after_y, self.lift_z)​
       time.sleep(1)​
       plan_to_xyz(after_x, after_y, after_z)​
       time.sleep(1)​
​
       gripper_status("open")​
       time.sleep(0.5)​
​
       plan_to_xyz(after_x, after_y, self.lift_z)​
       time.sleep(1) 

 

RobotControl class - robotControl.py 

 

class ARTagListener:​
   def __init__(self):​
       self.positions = {}​
       self.lock = threading.Lock()​
​
       # Subscribe to all AR tag topics​
       for i in range(18):​
           tag_id = f"ar_marker_{i}"​
           rospy.Subscriber(f"/piece_position/{tag_id}", Pose, self.make_callback(tag_id))​
​
   def make_callback(self, tag_id):​
       def callback(msg):​
           with self.lock:​
               self.positions[tag_id] = [msg.position.x, msg.position.y]​
       return callback​
​
   def get_pose(self, tag_id):​
       with self.lock:​
           return self.positions.get(tag_id, None)​
​
   def get_all(self):​
       with self.lock:​
           return dict(self.positions)  # Shallow copy 

 

ArTagListener Class - artag_listener.py 
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