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Darren Teh
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Abstract

Transaction scheduling plays a pivotal role in optimizing
the performance of database systems, especially in high-
contention environments. Prior approaches rely on heuristic-
based strategies, such as Shortest Makespan First (SMF) [1]
and hashing to queues followed by sequential execution [2].
In this work, we first formalize the transaction scheduling
problem to identify its core challenge. Following this formal-
ism, we explore two classes of methods (optimization and
neural networks) as scheduling policies. We also explore a
new kind of workload in which the transactions are temporally
correlated. Comparing k-SMF variants to neural net based
approaches, we find that our Q-learning reinforcement learn-
ing model outperforms k-SMF in makespan at the expense
of 3x, 5x, and 19x higher theoretical latency. We observe and
explain the tradeoffs with the different scheduling schemes.

1 Introduction

The problem we investigate is how to best schedule a set
of database transactions for OLTP databases and workloads.
Transaction scheduling for high transaction execution through-
put is critical for high-performance database systems where
said systems are serving high volumes of latency-sensitive
real-time consumers.

A transaction is a sequence of operations executed as a
logical unit of work that must adhere to the ACID (Atomic,
Consistency, Isolation, Durability) properties. For the pur-
pose of this problem, an operation is either a read or a write
operation and acts on a particular resource x, denoted as
R(x) and W (x) respectively. An example of a transaction is
T=[R(x),W(x),R(y),W(y)]. When a transaction T is sched-
uled, the operations in the list are executed sequentially.

Different transactions can be executed concurrently, but if
two concurrently executed transactions try to read or write
on the same resource there will be consistency issues where
the different transactions may interpret or modify the state
of the same resource differently. This poses a problem for
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transaction scheduling, because any two transactions must
give the illusion that they are completing in isolation of each
other, without noticing the effects of the other transaction.
For example, if a transaction T performs a write operation
W (x), then it should expect subsequent read operations R(x)
to return the same value. Two transactions T and T’ conflict if
the isolation property of ACID is violated. Concretely, one can
verify this by constructing a precedence graph and verifying
the absence of cycles.

To maintain consistency, a database management system
uses concurrency control methods such as 2PL or MVCC. For
locking based concurrency control, transactions acquire and
then release locks on resources when reading or writing them
to prevent other transactions from reading an inconsistent state
of the resources. However, if two transactions are scheduled
such that they concurrently execute on the same resource, the
later transaction must wait until the locks on shared resource
are released before reading and writing to it. Waiting for the
resource to unlock not only slows throughput of the system,
but can lead to issues like deadlock or aborted transactions.

The main goal of scheduling transactions is to maximize
throughput: the number of transactions completed (i.e. com-
mitted successfully) in a given amount of time. This must
be done while minimizing the number of aborted transac-
tions. A practical way of combining these two objectives
is to generate a workload of transactions, W, and measure
the number of time steps it take to complete the workload,
known as makespan. For simplification of the simulation, any
transaction that is scheduled and tries to access a locked re-
source and cannot access/modify said resource in accordance
to its sequence of operations is subsequently aborted. Any
aborted transaction must be continually rescheduled until it is
eventually committed successfully.

Creating an optimal schedule under standard concurrency
constraints is computationally complex; optimal transaction
scheduling is NP-Complete [3], and due to the real-time con-
straint schedulers must schedule without knowing the future.
Furthermore, these schedulers must be scalable which con-
strains intelligent methods that utilize complex computation



or other mechanisms like memory-stores to track in-use re-
sources.

2 Problem Setup and Formalism

In this section, we motivate the core challenges of the trans-
action scheduling problem.

Consider any particular point in time, the scheduler is pre-
sented with a transaction pool 7" comprising of transactions
that have not been scheduled yet. The scheduler is also aware
of another pool of transactions, F, that are in flight i.e. already
scheduled. but have not finished execution (been commit-
ted) yet. The simplest formulation of the scheduler is as a
function S : T — {0, 1} that maps a transaction T € T to a
decision S(t) € {0, 1} denoting whether the transaction T will
be scheduled (1) or not (0).

Let the maximum number of operations in a transaction be
M. M is typically a small constant in OLTP workloads. For
example, M = 6 in the SmallBank workload.

The fact that M is usually small means that one can reduce
the transaction pool 7 into a smaller filtered transaction pool
T’ consisting of transactions that will not conflict with those
in flight F'. In practice, a resource table can be constructed
R : r — N that stores the latest time step a resource will be
available. Upon scheduling a transaction T/, one updates the
resource entries in R which T’ used. For filtering, one just
checks whether each resource usage in a candidate transaction
© will occur before the last use time in R. Both the update
and the query takes O(M) time, which is very feasible. This
assumption meant that one can disregard F when trying to
model the scheduling function S.

The upshot is that the difficulty of the transaction schedul-
ing problem lies in how to schedule a subset of transactions
at any particular point in time.

An extension of the simple scheduling model is to ob-
serve that transactions can be scheduled in advance. The new
format of the scheduling function is S : T — [[T]]* where
[([T]]* :={0,1,2,...,T}U{—1}. A transaction T scheduled at
S(t) =i # —1 denotes that its first operation will start i steps
after the current time step. A transaction with S(t) = —1 is
not scheduled and is deferred to a future schedule. This for-
mulation places greater burden on the scheduler to improve
throughput.

A scheduler can obtain two main sources of signals: (1) a
transaction T has aborted (due to a conflict with a set of other
transactions); (2) a transaction T has completed. Signal (1)
offers the information that T should not have been scheduled
the way it was, and perhaps other transactions conflicting
with it should not be scheduled the way they are. Signal (2)
offers the positive reinforcement that it was okay for 7 to be
scheduled the way it was and that it is sub-optimal to schedule
7T at later time steps. Intelligent schedulers that can learn from
these signals should learn over time to ultimately improve
throughput.

3 Related Work

3.1 Serial

The serial scheduling strategy forms one of the baseline
scheduling schemes. It schedules only one transaction when
there are no transactions “in-flight”, waiting for a transaction
to complete before starting execution of the next transaction.
As a consequence, it achieves 0% abort rate at the expense of
the worst throughput.

3.2 Random

The random scheduling strategy forms another one of the
baselines. The order in which transactions are selected to be
scheduled is random.

In the Shortest Makespan First scheduling scheme, the
schedules are constructed by first randomly selecting a small
sample of k transactions (ie, k = 5) from the unscheduled trans-
action pool, then scheduling the optimal one of the k sampled
transactions [1]. Optimality is determined as the transaction
that increases the total schedule’s predicted time to execute,
or makespan, the least. This process of repeatedly picking the
next transaction to schedule from a random sample is shown
to be consistently better than truly random schedules which
don’t do any makespan calculations. This greedy algorithm,
unlike prior methods that rely on full access set knowledge,
can be paired with a classifier trained on a particular work-
load’s hotkeys and transaction types to predict the makespan
of each of the k randomly selected transactions (known as
R-SMF) [1].

3.3 Queue-Based

In a queue-based strategy, transactions are hashed into Q buck-
ets, with transactions in each bucket scheduled sequentially.
For example, locally-sensitive hashing (LSH) can be done on
the WHERE clauses of SQL statements to obtain a binary vector
within a shared vector space [2]. Subsequently, buckets can
generally represent the centroid of clusters within this space,
so the binary vector should be assigned to the bucket with the
closest corresponding centroid in this vector space. Ideally,
transactions that are a smaller distance apart in this space
would have similar where clauses and thus be more likely to
conflict. By putting similar transactions into the same cluster,
the hope is to schedule transactions within a cluster sequen-
tially as to avoid scheduling conflicts. This inter-queue serial
schedule is paired with intra-queue parallelism by having
these queues operate separately and with general disregard
of one another (no communication between the queues to
enforce there aren’t conflicts in the final result).



4 Scheduling Approaches

‘We also observe that if the order of transactions is fixed, then
scheduling becomes significantly easier. If we can only see
and schedule transactions one by one, they can only conflict
with in-flight transactions in F, so scheduling would reduce
to picking the earliest possible time to schedule). However,
interleaving the transaction into the existing schedule can be
difficult if |F| is large; this is partially alleviated by the fact
that the length of transactions in OLTP workloads, M, tends to
be small. However, by maintaining a resource mapper to track
in-use resources, we only select transactions from the filtered
set T’ that cannot conflict with transactions in F. Subsequently,
picking the earliest possible time to schedule a transaction
becomes trivial, as the earliest possible time would be stored
in the resource mapping.

For a scheduler that could make more complex schedul-
ing decisions that consider both ordering and interleaving,
we introduce the idea of a kernel that simultaneously makes
scheduling decisions for a batch of transactions B C T instead
of sequentially making scheduling decisions for each individ-
ual transaction. Then, machine learning methods such as a
neural network and reinforcement learning can be applied to
these kernels to produce an optimal schedule for each transac-
tion T € B. To constrain the size of B, we define N = |B| < 50.
We then represent the input kernel as a matrix of size N X N X
(2T + 1) known as a conflict matrix C € {0, 1}V*N>x@T+1),
Cijan— {0, 1} represents whether transaction t; and T j con-
flict if 7; is scheduled Ar C (—T,...,0,...,T) time steps ahead
of 7;. Here, C; ; o+ = 0 means the transactions will not conflict
at that timestep difference and C; j o, = 1 means they will
conflict.

From this, we postulate that conflict matrix C is a suffi-
cient statistic for some kernel-based scheduler Sg. Given this
statistic, intelligent schedulers should be able to schedule in a
way that both avoids conflicts and maximizes parallelism by
either deciding time steps / interleaving (linear neural net) or
ordering (reinforcement learning).

4.1 Optimization Problem

With the assumptions that we operate in time steps and
that each operation takes 1 timestep, an optimal schedule
can be defined as an integer optimization problem. Given
the conflict matrix C; ; A, define the optimization variables
as indicators: x;; = 1{7; scheduled at r}. The objective
is to maximize the number of transactions scheduled sub-
ject to conflict constraints. The optimization problem is
thus: maxxi‘te{oyl}zig):,r:ox,'_,, subject to Z;T:() xi; <1,Viand
Xiyy +Xj1n, < 17VCi,j,t2—tl =L

This approach gives guaranteed optimality. However, im-
plementing a real-time scheduler that constantly solves this
integer optimization problem is too computationally intensive
for a real-time scheduling scheme. Therefore, taking inspi-

ration from LSH [2], we try to do queue-based scheduling
where transactions are assigned to queues where inter-queue
transactions are likely to conflict. This allows integer opti-
mization to shine, where the kernel can try to interleave the
transactions even when the transactions conflict. Ultimately,
this only partially alleviates the scheduling latency issue, but
still does not make this viable. Thus, integer optimization
serves as a benchmark that attains optimality only on a local
"queue’ scale. The kernel is referenced as Optiy—y=g n=n for
q queues and n-sized kernel.

4.2 Linear Neural Networks

Given the conflict matrix C as statistic for the scheduling
model Sy, we denote a linear neural network with the follow-

ing scheme.
RBxNx(T+1)
REXNX(T+2)

Figure 1: A schematic of the neural network for the scheduling
function Sg.

RBXN?(2T+1)

To take into account the scheduling signals, the neural
network was designed to output two tensors P € RY x(T+1)
and A € RV*(T+2) | The i-th row of the scheduling tensor A
is a probability distribution which denotes how transaction
1; will be scheduled. The (i, j)-th element of the probability
tensor P denotes the probability that transaction i will commit
successfully without conflicts given that it is scheduled at the
Jj-th time step after the current time step, conditional on all
other information.

P, j = P[t; commits|C] )

Assuming an optimal scheduling policy A*, the probability
of witnessing a set of signals {#;,y;}% | indicating that transac-
tion i committed (y; = 1) or aborted (y; = 0) if it is scheduled
at time step #; from now is:

P[{tiayi}ll';l]
=TIL A7 ()P (1= Pig)
log P[{ti,yi} -]
= logA; () +yilog Py,
+(1—yi)log(1—Py)
This justifies the use of the logistic loss for signals relating
to P, assuming the optimal scheduling policy A* is known.

The loss for the scheduling policy A is more empirical and
uses KL divergence. Consider a transaction T; with initial



scheduling policy A; that is scheduled at time ¢. If T; commits
successfully, it gives the signal that it is suboptimal to sched-
ule this transaction at a later time step. This prompts a target
distribution A; where A,y = cA; V1’ <t and A;y = OV > 1.
Here, ¢ is a normalization constant. On the other hand, if T;
aborts, then it is not possible to schedule the transaction at the
current time step. This prompts a target distribution A; where
/~\,»,,/ =cA; V' #t and 1~\,~7f = 0. Again, c is a normalization
constant.
The total loss is therefore:

L£(6)=-2Y (yilog Pi(?r,-

+(1—y;)log(1—Pf))
+LKL(AY||7)

4.3 Reinforcement Learning

S |RN*T+D)| | T

argmax

Qg > RV ’@ *IRN| Ag41

L

A; RN

Figure 2: A schematic of the reinforcement learning Q-net for
the scheduling function Sp.

Similarly, we try a reinforcement learning (Q-learning) ap-
proach to transaction scheduling (QKernel) partially inspired
by Marcus [4]. Each action is the transaction to be scheduled
next, so unlike the neural network this approach does a pass
through the Q-net for every transaction to schedule. The ac-
tion (next transaction to schedule) o;; 1 <i < N is determined
by the g-net Qg which takes the state tensor (conflict matrix)
S; and a bitmask A, that masks the previously scheduled trans-
actions and prevents them from being scheduled again. The
timestep is then determined by some scheduling scheme such
as k-SMF.

By letting the reinforcement learning model handle the
ordering of the transactions, the model should make more
informed decisions on how to schedule transactions to maxi-
mize throughput. Ideally, it would schedule all non-conflicting
transactions immediately and serially schedule conflicting
transactions. This behavior is promoted by first immedi-
ately scheduling any transaction t; that has no conflicts, so
Eljy: lthszC,-, j.ar = 0, reducing the load on the RL scheduler.

There is also another action O, to stop scheduling and put
the unscheduled transactions back into the transaction pool.
This action might be desired if the remaining unscheduled
transactions conflict with already scheduled transactions and
there’s little to no room for interleaving.

Finally, the reward is expressed as R, = Qg(S;,A;). The
reward function used was tuned to promote scheduling trans-
actions that interleave while still potentially having conflicts.
For the stop action Oy, , the scheduler is rewarded for un-
scheduled transactions that would have aborted if scheduled
within the time limit T and punished for those that would not
have aborted.

S Temporally Correlated Workloads

We postulate that if we fix the order of transactions, then
scheduling becomes significantly easier. However, this would
lose out on the potential of intelligently selecting the order of
some batch of M transactions rather than relying on FIFO or
randomness for ordering.

Notably, k-SMF which selects one transaction at a time
may face adversarial examples where a reordering the selected
transactions would reduce the makespan and thus increase
throughput. However, real-world workloads have diverse con-
flict patterns (e.g., more transaction types, many hotkeys, etc.),
so k-SMF is unlikely to repeatedly make poor choices in the
long run [2]. For instance, on the TPC-C workload it is highly
unlikely that k-SMF encounters only transactions with high
conflict costs among its random samples at each iteration. But
in the event that the incoming transactions in a short period of
time all conflict with each other, k-SMF may perform poorly
because it can’t rely on randomness as much to avoid high
conflict costs. This motivates the need for tuneable contention
workloads.

To simulate high contention workloads, we developed cor-
related versions of benchmarking workloads such as Small-
bank and TPC-C. These workloads may transition from a
normal state R|normal to a correlated state R|corr based on
workload parameters A; and A;. The amount of time steps the
workload is in the normal and correlated state respectively
are tyormal ~ Expo(A) and torr ~ Expo(;). Within a cor-
related state / “burst”, transactions are much more likely to
interact with the same sticky resource (with probability p) and
can be thought of as drawing from an alternate distribution
Rgticky- More formally, R|corr = R with probability 1 — p and
R|corr = Ryjcy With probability p.

6 Simulation

In the simulation infrastructure, we assume that operations
take the same amount of time regardless of type (read or write)
and resource.

The Scheduler class is in the exact same form as the for-
malism. It takes in T and F and returns {0,1}/”! denoting
whether a transaction is scheduled or not. The Simulator
class takes in a scheduler and runs a workload through it. The
Workload class is an abstract class, which SmallBank and
TPC-C implements. The workload generation follows the re-



spective benchmarks’ guidelines [5]. Additionally, resources
were generated for the transaction operations based on a zipf
distribution for more custom hotkey patterns.

The research infrastructure and schedulers are implemented
and available on GitHub. '

In our experimentation, we implemented variants of k-
SMF [2]: kSMF,isteq (faithful replication), kSMF,, a1 (With-
out interleaving), kSMF,_ ,p45. (k-SMF first executed on cor-
related resources, then normal).

7 Results

After some experimentation, a bug in the conflict matrix
adding more 1s (conflicts) than necessary led us to find that
our original kSMF,,,,» implementation was outperformed
by kSMF,,piq which simply schedules all k transactions as
opposed to just 1. This led us to finding an inefficiency where
kSMF, oymar Was scheduling only on the latest time a resource
is available and not considering scheduling before the re-
source is used. The corrected kSMF;,, 5.4 significantly out-
performs other scheduling approaches.

Kernel performance over T=100 samples of M=50 transactions

Bl int-kernel (N=50)
g-kernel (N=50)

B smf-kernel (N=50)

80

60

Count

40

20

26.0 46.5 47.0 47.5 48.0 48.5 49.0 49.5 50.0
Number of transactions scheduled out of M=50

Figure 3: Number of commits for each kernel’s batch of B,
|B| =N =50, Ryormal

In Figure 3, the batch B of M = 50 transactions is scheduled
with each kernel 100 times. It displays that the integer opti-
mization and Q-learning kernel perform similarly to k<SMF.
The increase in performance is marginal because the conflict
matrix C for B is sparse; as observed in [1], it’s uncommon
to find transactions that conflict from a small random sample.
Furthermore in Figure 4, the unsupervised linear model with
heuristic based loss function doesn’t significantly learn good
scheduling schemes. The neural network model converges
on naive solutions and prioritizes scheduling transactions at
timestep tsy.p + 0 regardless of the conflict; even with the
high loss of just the commit probability tensor P the limited
loss heuristic and sparse conflict matrix makes it difficult

"https://github.com/jianzhi-1/db-workload-sim

NN Mixed-Loss Curve

—— loss
p_loss
—— lamb_loss
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Figure 4: Training loss for linear neural net model

to prioritize avoiding aborts. Alternatively, different model
architectures that approach scheduling with an interleaving-
forward approach could be explored in the future, but because
the scheduling latency of the neural net was already high (only
coming second to last to integer optimization), we felt that
the neural net approach was ultimately not worth pursuing.

In Figure 5, kSMF, isteq outperforms kSMFE, ,pmq (k=50-
smf) and kSMF ;4 by a bit. The kSMF and Optip;— 4=10,1=50
both perform well at the beginning exemplifying its ability to
schedule non-conflicting transactions well. Throughput slows
down near the tail-end as all non-conflicting transactions are
scheduled and the schedulers wait on the serially scheduled
conflicting transactions. The queue-based schedulers are sim-
ple schedulers that assign a transaction to the queue that has
the latest contention among the transactions in that queue
already. Notably, the number of aborts for kSMF,,s.q and
kSMF,rmal> as well as the queue-based schedulers, remain
0 because this is their intentional design (to schedule the
next transaction at the next available time step that won’t
conflict). kSMF,,piq experience significantly high number of
aborts despite its apparent initial high throughput because it
blindly schedules all k transactions at the current timestep
instead of just 1. The impute (I) scheduler versions only expe-
rience aborts initially because they switch to the kSMF,isreq
scheduling policy at ts = 40 (denoted by the vertical line in
the figure). This impute is done under the belief that kSMF
does well to schedule under high contention and schedule
conflicting transactions serially, but doesn’t have the highest
initial throughput. The queue-based schedulers (including
Optini—g=10,m=50) all perform poorly because they are only
optimal locally and not globally, showing the lack of viability
for transactions that operate on row level (unlike SQL queries
done in LSH) [2]. Transactions can often conflict with more
than one bucket, so naively scheduling each bucket without
consideration of the others leads to compounding conflicts as
aborted transactions are rescheduled; this explains the stagna-
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Figure 5: (Above/below) Number of transaction commits /
aborts, (1) signifies a switch to the kSM F;isreq Scheduler (at
ts =40). N =1 x 500 indicates the workload is 1 batch of
500 transactions.

tion of Optint—g=10,M=50-

For both uncorrelated and correlated workloads displayed
in Figure 6, kSMF,,,;srcq dominates other scheduling methods
at the expense of high scheduling latency (by a factor of 10
for correlated). Notably, k<SMF,, ;a1 performs significantly
worse than kSMF,,seq, signifying that interleaving is much
more important for higher contention workloads R,,.

kSMF,_ pjase first schedules all transactions with correlated
resources, then the rest of the transactions. kSMF>_ pjase,oracie
additionally makes a suggestion to schedule some transac-
tion based on makespan calculations for only non-correlated
transactions, then the scheduler probabilistically chooses
from this suggestion over picking the transaction for shortest
makespan from all transactions. From Figure 6, it shows that
kSMF,_ ppase schedulers outperforms their non 2-phase coun-
terparts and that having prior knowledge on highly contested
resources (hotkeys) can lead to minor scheduling improve-
ments.

Single trajectory plot of cumulative
number of transactions committed (N=100x20, Correlated)
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Figure 6: (Above) Number of commits on Rlcorr. N = 100 x
20 means workload that adds 20 transactions at each timestep
for 100 timesteps. (Below) Latency to complete workloads

In Figure 7 and Figure 8, k<SMF schedules are compared
to different QKernels under SmallBank and TPCC workloads.
The n parameter controls the size of the kernel conflict matrix,
and filterT filters the transaction pool T — T’ based on
whether the resources of are being accessed by the in-flight
transactions F.

After the QKernel decides the transaction schedul-
ing order, the scheduler decides each transaction’s sched-
uled timestep using either SMF (best possible timestep,
QOKernelgyr) or using the conflict matrix (optimal only within
B, QKernelyemory). When scheduling S, QKernelsyr will
simply find the earliest available time step to schedule regard-
less of T, which could be much larger than T for a transaction
that uses a hot resource. On the other hand, QKernelyemory
either delays transactions for later scheduling or tries to
schedule them within the next T time steps (from the cur-
rent time step). Transactions that are delayed don’t count
as aborts, but transactions that are chosen and cannot be



Transactions committed at timestep, (N=1x1000) on SmallBank
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Figure 7: Number of successful commits on SmallBank work-
loads

scheduled within the next T time steps are aborted. No-
tably, the OKernel,emory, fitrerr and QKernelsy fall behind
OKernelyemory, showing that these scheduler variations that
employ OKernel don’t decrease makespan much.

From observing training reward and scheduling deci-
sions of the kernels, the large kernels QKernely—_so and
QOKernely—100 struggle with contentious conflict matrices.
The reward function for scheduling a transaction is based
on whether it can schedule the transaction within T timesteps
of the current timestep, as well as recognizing that it should
defer scheduling due to too much conflict. Lots of conflicting
transactions with a large kernel make it exponentially dif-
ficult to generate good schedules. However, QKernelyemory
tries to schedule the batch of transactions within the next
T timesteps, so for conflicting transactions the kernel must
decide whether they can interleave and be scheduled within
the next T time steps or if some should be delayed for some
future B; incorrectly deciding the former case leads to aborts.

This decision is exemplified in Figure 7 where
OKernelssyr perform better than QKernelsyemory on the
SmallBank workloads where conflicts are much more
common. In line with observations made during training,
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Figure 8: Number of successful commits on TPC-C workload

OKernelspyemory struggles with high contention and even stag-
nates near the end of the workloads; transactions that are
delayed and thus likely operate on hot keys are put at the back
of the transaction pool, so near the end of the workloads con-
flicts are higher. As a result, for SmallBank, QKernel,emory 0f
N=20, 50, and 100 ended with ~ 2500, ~ 10000, and ~ 20000
aborts at 250 time steps. The smaller QKernely—9 which
doesn’t suffer from as much contention (because of a smaller
B) was able to schedule with a somewhat low makespan for
SmallBank, but still suffers from a high number of aborts.

Smaller kernels don’t benefit as much from the potential
high throughput of QKernely—so and QKernely—1g9 observed
in figures 5b and 5d. The TPC-C workloads have a lot less
contention compared to our implementation of SmallBank
(typically varying from 0-5 conflicts per B, compared to >20
for SmallBank), so generally the large kernels didn’t have
many conflicts and could optimally order easily while simulta-
neously benefiting from high throughput that comes from the
large kernel size. As aresult, QKernely—1go even outperforms
kSMF;,,isteq in both TPC-C workloads.

To allow contentious transactions finish and thus avoids
aborts at the potential expense of slower throughput, we imple-
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Figure 9: Number of commits for N=(1x1000) on
SmallBankorreiated

ment a skipT parameter makes the scheduler make a schedul-
ing decision every T time steps instead of every timestep.

Interestingly in Figure 9, with the skipT parameter ac-
tive within high contention workloads in-flight transac-
tions are allowed more time to complete; the skipT pa-
rameter lets contentious transactions finish and thus avoids
aborts, as we find QKernelsg;,r have near-0 aborts. Al-
though the initial throughput is slower because QKernelsgipr
make scheduling decisions much more infrequently, they
appear to not suffer as much during the more contentious
tail-ends of the workloads. As a result, there is not as
much contention between transactions in F and B, allow-
ing for QKernely—_s0 skipr, and QKernely—100 skipr 10 surpass
kSMFyiscq. However, QKernels fijrer skipT behaves similarly
to OKernelsgpr, meaning that just the filterT parameter
is not sufficient.

Makespan Schedulers

KSME, ot kSManced kSMFomcIe,prfmss QKem‘I’JZM:zu QKH'"EIM:Su QK”MZM:JUU
sB 249 211 216 170 DNE DNE
Workload SBeor 244 196 199 154,301  DNF,132  NIA, 85
TPC-C 40 43 43 57 29 24
TPC-Coor 40 41 41 57 49 19

Figure 10: Scheduler makespans (in ms) for N = (1 x
1000) on SmallBank and TPC-C. Bold indicates best out
of the schedulers for the workload. Underlined indicates
the worst. Comma separated entries indicate QKernely and
OKernely sipr respectively

From Figure 10 we observe that in almost all scenarios
there is some QKernel that outperforms all k<SMF variant
makespans. However, different sized kernels perform differ-
ently and thus it’s necessary to tune the model and scheduler
parameters (skipT, filterT, size of the kernel, reward func-
tion); this is on top of already individually training a model for
each workload. Larger kernels can benefit from high through-

put especially only low contention workloads. Large kernels
struggle with workloads with high contention so much so that
they can effectively stall out, but combined with the correct
scheduler customization they can outperform kSMF .

8 Limitations and Future Work

Runtime by Algorithm (milliseconds) for TPC-C Correlated (N=1x1000)

Time (ms)

Algorithms

Figure 11: Runtimes of algorithms for TPC-C correlated N =
(1 x 1000) workload Conflict time is time to compute conflict
matrix C, RL time is the Qg inference time

In terms of trade-offs between QKernel and kSMF,
QOKernels total time to execute is a factor of 10x-100x longer
than kSMF,,,isreq and 100x-1000x longer than kSMF. Fortu-
nately, most of the total scheduler decision time consists of
computing the pairwise conflict matrix which is paralleliz-
able; we do not implement this parallelization. When ignor-
ing conflict matrix computation latency, QKernels outper-
form k-SMF in makespan through batched scheduling (higher
throughput) at the expense of 3x, 5x, and 19x higher model
inference latency.

Additionally, QKernel,;¢mory in high conflict workloads suf-
fer from high aborts (although this could theoretically be
reduced with more model training or better reward model
heuristics). However, in addition to the displayed maximum
throughput benefits, the skipT parameter can be used to avoid
forcing the kernel to schedule high contention to both achieve
high throughput and avoid aborts. In the future, this can be
employed as a tunable parameter which controls how many
time steps to wait before making another scheduling decision.

We show that the parameter £ilterT doesn’t significantly
improve makespan. However, the implementation and via-
bility of a resource mapper necessary for QKernels fijrerr
depends on a number of factors. The size of the in-flight
transactions F and their correlated resources scales with the
throughput of the scheduler. Consequently, the size of the
resource mapping would scale linearly with the [Fl which con-
stantly changes as resources are locked and freed. Thus, IFI
should be small enough to fit in the device the scheduler oper-
ates on or has access to (i.e. memory). A large map size could



hinder latency, and a constrained IFl would hurt throughput.
Fortunately, this linear scaling relationship can be alleviated
if the mapper only maintains hotkeys (highly contentious re-
sources), which can be done as future work. This idea of only
operating on hotkeys rather than the entire key-set can be fur-
thered by only considering hotkeys when calculating conflicts
and scheduling, which could reduce the required computation
and storage.

Initially, we tried using reinforcement learning and neural
networks to sequentially schedule transactions with in-flight
transactions as an input to the model and the output being
the timestep to schedule. A reinforcement Q-learning proved
difficult to produce a good schedule, but because the work-
load tested on (SmallBank) was simple we generated training
input-output data pairs and saw resounding success. How-
ever, the way the input was compacted was heavily workload
dependent. The input was formatted as a vector of size n =
the number of unique transaction types (which is dependent
on workload). and without the benefit of batching like in the
kernels the latency would be too high, so this approach was
abandoned.

An alternate avenue to explore could be to use supervised
learning for the linear neural network kernel. To obtain train-
ing data, we can adapt the Opt;,; kernel to produce optimal
schedules as training data. Then, some sort of distribution dis-
tance based loss such as KL divergence or a sum of timestep
differences can be done. Furthermore, because we operate
on the conflict matrix and are blind to metadata of the work-
load, a model that’s seen high and low conflict B should be
generalizable to new workloads.

The general viability of intelligent schedulers is constrained
by computational complexity which subsequently affects
scheduling latency. Although the statistic we chose (conflict
matrix) to represent the transactions can be computed in par-
allel, there are definitely ways to simplify or modify this
metric. For example, constructing a dependency graph and
operating on a graph structure could be explored. Another
approach could be avoiding computing conflicts for known
non-conflicting transactions which would be less computa-
tionally intense.

Different model architectures that still employ a conflict
matrix could be explored. Given that model inference time is
a theoretical time latency bound, a model that can parallelize
inference and remain relatively small would make for a lower
bound for computation latency.

9 Conclusion

This report investigates and explores the viability of applying
reinforcement learning and optimization-based techniques
for transaction scheduling with OLTP workloads. We for-
malize the core scheduling challenge and evaluate different
approaches including k-SMF variants, integer optimization,
neural networks, and reinforcement learning with Q-learning.

We also use simulations of workloads like SmallBank and
TPC-C and develop correlated versions for higher conflicts.

We demonstrate that our reinforcement learning models
QKernels can outperform both traditional kSMF and our own
kSMF variants. However, these gains come with increased
latency and computational costs due to the conflict matrix
computation, which can be parallelized, and model inference
time. The QKernels struggle under high contention work-
loads but with variation to the scheduling scheme (skipT and
filterT) the kernels can still outperform kSMF .

Latency, abort rates under high conflict, and model gener-
alization are further refinements that can be before real-world
deployment. The problem of scheduling transactions is similar
to the problem of scheduling instructions in VLIW compilers;
in this vein, employing similar algorithms and heuristics done
in similar contexts can inspire practical solutions.
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