
Scalable Verification with Applications to Hardware
Security

Sushant Dinesh

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-133
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-133.html

May 27, 2025



Copyright © 2025, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Scalable Verification with Applications to Hardware Security

By

Sushant Dinesh

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Christopher Fletcher, Chair
Professor Sanjit A. Seshia

Professor Raluca Ada Popa
Dr. Patrice Godefroid

Spring 2025



Scalable Verification with Applications to Hardware Security

Copyright 2025
by

Sushant Dinesh



1

Abstract

Scalable Verification with Applications to Hardware Security

by

Sushant Dinesh

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Christopher Fletcher, Chair

As Moore’s Law slows, microarchitects are turning to clever and exotic microarchitectural op-
timizations to accelerate workloads. However, these optimizations are often data-dependent,
inadvertently creating side channels that leak sensitive information. Disabling them for secu-
rity is impractical. Meanwhile, security-critical software—such as cryptographic code—lacks
visibility into how its execution might trigger such leaks. As these optimizations grow more
complex, writing microarchitecturally safe software will only become more difficult. De-
fending against side-channel attacks therefore demands a holistic, cross-layer approach that
bridges the hardware–software divide.

This dissertation provides a methodology, and accompanying formal analyses, to tackle the
microarchitectural side channel problem. Our approach is two-pronged. First, we verify
the microarchitecture, e.g., the RTL, for security. Once verified, we obtain software-facing
artifacts: security-centric microarchitectural specifications. Then, we develop compiler-like
frameworks that take leaky code and derived security specifications as inputs to automat-
ically produce microarchitecture-specific code that conforms to the security specification,
guaranteeing that no secrets can leak through side-channels.

We achieve this vision through three key technical contributions.

First, drawing inspiration from a variety of side-channels and defenses, we formulate an
instruction set-centric definition to microarchitectural security. We articulate this as a for-
mal property: the Safe Instruction Set Property, SISP, which guarantees that unbounded
executions of a compositions of instructions do not leak secrets on the microarchitecture.
Verifying if a set of instructions satisfies SISP on a microarchitecture gives us a convenient
software-facing abstraction: the set of instructions that are safe to allow compute on secret
data.

However, state-of-the-art verification tools do not scale to verify SISP on large hardware
designs. To overcome this verification bottleneck, we develop H-Houdini, a new scalable
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invariant learning algorithm capable of proving properties on large hardware designs. We
implement H-Houdini in tool called VeloCT: a (mostly) push-button tool to verify SISP
on hardware designs. VeloCT, for the first time, is able to scale security verification to
BOOM, a large open-source Out-of-Order (OoO) core, in timescales ranging from 6m to 3.3h
from the smallest to the largest parameterization of BOOM. More importantly, the set of
safe instructions verified by VeloCT can now be used as a software-facing abstraction to
harden code.

Lastly, we develop SynthCT, a program synthesis based framework that uses the safe set
specification to automatically harden security-critical code against side-channels on a specific
microarchitecture. Notably, SynthCT is a robust, scalable framework that handles modern,
complex ISAs like x86-64 with 1000s of instructions, and is capable of rewriting even the
most complex instructions, like division (DIVL), using a set of simple safe instructions.

We believe that the combination of techniques and tools developed in this thesis can serve as a
first step towards holistic, scalable, automated, principled defenses against microarchitectural
side-channel attacks.
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Chapter 1

Introduction

Hardware design is currently at a pivotal juncture. With Moore’s law reaching its limits
and generative AI (GAI) workloads demanding unprecedented amounts of resources [162],
hardware architects increasingly rely on sophisticated microarchitectural optimizations to
extract maximal performance from available resources.

However, history shows that these advanced optimizations often inadvertently introduce
new microarchitectural vulnerabilities [125, 137, 210, 203, 217, 43, 215, 216], leaking secrets,
e.g., cryptographic keys, model weights, passwords, pixels and more, through novel side-
channels. Such microarchitectural side-channel attacks are particularly problematic since
they break all software-level isolation mechanisms, like kernel-mode isolation [125, 137, 177,
36] and process isolation [180, 177, 123, 36], and cannot be easily patched. To make things
worse, we are increasingly giving systems access to our private data. Case in point: GAI
is being deeply integrated across the software stack—emails and apps, to file and operating
systems—granting it access to unprecedented amounts of private data, in exchange for seam-
less experience and better results. Potentially, all of this data is at risk of leaking through
side-channels [2, 86]. Thus, to fully enjoy the benefits of emerging hardware/software tech-
nologies requires fundamental methods and tools integrated in the hardware-software design
lifecycle to provide robust security guarantees.

Addressing microarchitectural side-channel vulnerabilities is inherently challenging. To
protect secrets from leakage, the research community has developed many software-only
mitigations [170, 239, 164, 37, 207, 44, 38, 212, 171, 14] or advise to carefully craft code
following the constant-time programming (CT) discipline [22, 24]. Since software has no
visibility into opaque world of microarchitectural optimizations, these mitigations need to
make conservative assumptions about the microarchitecture in order to be sound. This
leads to a high performance overhead. Further, these techniques are brittle: any mismatch
between the assumed vs. actual leakage, e.g., due to a novel optimization, can leave existing
code vulnerable subtly [128].

A parallel line of research explores hardware-only mitigations [235, 45, 234] or suggests
secure-by-construction clean-slate hardware design methodologies [238, 236]. Despite being
provably safe against all side-channels, the former is not implemented in modern processors



CHAPTER 1. INTRODUCTION 2

as they do not meet the strict power, performance, area (PPA) requirements in the industry,
while the latter requires redesigning the processor from scratch—an infeasible task.

We claim that developing holistic, high-performance mitigations necessarily needs to span
both hardware and software domains. However, developing such mitigations demands co-
ordination among several key practitioners. To fully appreciate the complexities involved
in this process, we will now view the challenges involved in developing a hardware-software
solution from the perspectives of three practitioners who currently lack the essential knowl-
edge, techniques, tools, resources, and common vocabulary to systematically confront these
security challenges.

Hardware Architects. Microarchitects are responsible implementing new optimizations
to achieve higher performance while satisfying strict power and area constraints. However,
they typically focus on performance and resource-efficiency, often lacking the expertise and
the feedback needed to assess the security implications of their design decisions. Consequently,
they may inadvertently introduce microarchitectural timing vulnerabilities as they do not
have a clear understanding of what makes a microarchitecture unsafe.

Verification Engineers. Verification engineers collaborate closely with microarchitects,
ensuring the functional correctness of hardware designs. Verification is a significant bottleneck
in the hardware development cycle, as teams must meet tight deadlines to guarantee timely
market releases. This challenge continues to grow for two primary reasons. First, designs
have become increasingly complex, while the scalability of verification tools has not kept pace.
As a result, verification engineers frequently need to manually decompose large properties
into smaller, tractable intermediate properties. Second, verification now additionally involves
evaluating designs for microarchitectural side-channel vulnerabilities. Meanwhile, although
verification engineers are skilled in formal methods, security testing remains largely ad-hoc
due to the absence of standardized security specifications or properties. Current verification
tools also struggle to scale when proving end-to-end security properties on complex hardware
designs [57, 198, 218].

Software Developers. On the software side, developers working on cryptographic
libraries, such as OpenSSL, use constant-time (CT) programming paradigms to prevent
cryptographic key leakage via microarchitectural side-channels. The standard guideline is
straightforward: avoid passing secret data to unsafe instructions. However, developers typi-
cally lack precise information about which instructions are unsafe for a given microarchitec-
ture. Because this set of unsafe instructions varies between microarchitectures—with each
CPU generation potentially being a different microarchitecture—developers conservatively
assume that simple instructions are unlikely to be optimized. But this assumption is per-
ilous. Recent research demonstrates that even these simple instructions can become sources
of leakage due to novel microarchitectural optimizations [209, 210, 55, 64].
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Figure 1.1: Overview of the work presented in this dissertation.

Summary of Challenges

To summarize the above perspectives, there are several key challenges we need to solve across
the hardware-software boundary to enable holistic defenses against microarchitectural side-
channel attacks:

(C1) What does it mean for a microarchitecture to be safe? How do we derive a definition
general enough to capture a plethora of side-channels?

(C2) Even if we define what safe means, can we scale verification to automatically prove
security on large hardware designs?

(C3) After a microarchitecture is verified for security, what is the correct software-facing
microarchitectural security specification we can ship to developers?

(C4) Once we have a microarchitectural security specification, how do we enable develop-
ers to easily develop high-performance, microarchitecturally-safe (cryptographic) code
with minimal effort?

(C5) Lastly, how can we develop push-button tools that provide microarchitects with ac-
tionable feedback on the security of their optimizations during hardware development
phase?

This Dissertation. This dissertation provides the first-steps towards a comprehensive
solution that addresses the verification and security challenges faced by practitioners across
the hardware-software stack. Concisely, this dissertation advocates for the following vision:

“We can holistically defend against microarchitectural side-channels by formally prov-
ing security properties on hardware implementations, deriving software-facing security
specifications from these proofs, and enforcing conformance at the binary level using
compiler-like toolchains, thereby ensuring no secrets leak through side-channels.”
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The complete realization of this dissertations’s vision is depicted in Figure 1.1. On the
hardware side, we start with the definition of microarchitecture security. In ConjunCT,
published in [61], we develop an instruction-centric property, called the Safe Instruction
Set Property, or SISP for short, which formally defines the safety for a set of instructions
computing on secret data (C1). Notably, verifying the SISP directly gives us a convenient
software-facing security abstraction: the set of instructions that are guaranteed to safely
compute to secret data (C3). ConjunCT also implements a tool, using existing verification
techniques, to verify SISP on hardware designs (RTL) by learning an inductive invariant.
The inductive invariants obtained as proof artifacts enable microarchitects to understand
the security implications of their optimization decisions (C5).

However, ConjunCT faces severe scalability issues, unable to prove SISP on larger,
Out-of-Order (OoO) cores, e.g., BOOM. To achieve our above vision, we need to be able to
scale beyond state-of-the-art verification tools. The key technical advancement this disser-
tation contributes is a new, scalable invariant learning technique, named H-Houdini (C2),
published in [62]. We instantiate H-Houdini in a tool named VeloCT to prove SISP.
Using VeloCT, we’re able to scale verification, for the first time, to large OoO cores, in
timescales ranging from 13s to 3.3h from smallest to the largest design. As artifacts from
SISP verification, we obtain µarch-specific security specifications.

Crossing over to the software side, we develop SynthCT [60], an automated program
synthesis based framework to harden security-critical code, e.g., cryptography, against side-
channels (C4). Just as compilers enable development of architecture agnostic code, Syn-
thCT enables developers to focus on functionality, while automatically handling the security-
related microarchitectural idiosyncrasies. The end-result is high-performance, provably se-
cure code.

Tying it all together, this dissertation holistically addresses the challenges in developing
secure software on modern leaky hardware. Viewing it through the lens of practitioners:

• VeloCT can be integrated as a part of CI/CD pipeline in an agile development
methodology giving microarchitects regular feedback and insights.

• H-Houdini (and VeloCT) improve scalability helping verification engineers by dras-
tically reducing the amount of time and effort needed to verify complex designs. Gen-
eralizing H-Houdini to prove properties beyond security is an interesting line of future
work we’re actively pursuing.

• With the security definition and tooling developed in this dissertation, hardware ven-
dors can now ship security specifications as a part of their hardware release cycles.
This enables principled software defenses against side-channels.

• Lastly, developers can focus on writing optimized functional code and can use Syn-
thCT with the security specifications to generate high-performance, secure code spe-
cific to a microarchitecture.
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1.1 Thesis Contributions and Organization

I have led the development of the results presented in this dissertation along with my co-
authors: Grant Garrett-Grossman, Yongye Zhu, Madhusudan Parthasarathy, Christopher
W. Fletcher. We will now present a brief overview of this dissertation and the salient
contributions of each piece of work:

Chapter 2: ConjunCT. ConjunCT formulates the safe instruction set problem (SISP
in Section 2.3): the formal foundation to microarchitectural security and a software-facing
abstraction. The key insight is that the root-cause of many microarchitectural timing side-
channels can be attributed to instruction operand-dependent optimizations. Therefore, prov-
ing that all possible programs, composed from a set of instructions, execute in time indepen-
dent of operand data will give us the set of instructions that can safely compute on secrets.
Chapter 2 is organized as follows:

• In Section 2.3 we develop SISP, the foundational property to describe and verify mi-
croarchitectures in this dissertation,

• In Section 2.5-Section 2.6, we develop the methodology to verify SISP, using existing
verification techniques, to verify SISP. Using the methodology and tooling we devel-
oped, we automatically proved SISP, for the first time, on Rocketchip: a popular
in-order core,

• ConjunCT is enabled by two technical nuggets: (i) Section 2.5.1 introduces a two-
phased analysis to more accurately root-cause unsafe instructions, and (ii) Section 2.6.3
describes an invariant mining procedure that dynamically instantiates the necessary
predicates during the verification phase,

• Beyond proving SISP, Section 2.8.4 shows how the synthesized inductive invariant helps
us root-causes of unsafety in the design, and Section 2.8.5 shows how ConjunCT can
inform microarchitects about the security of their proposed optimizations,

• We also provide proof-sketches regarding the soundness and precision of the derived
invariants in Section 2.7.

Chapter 3: H-Houdini. H-Houdini is a new scalable algorithm for learning inductive
invariants on large hardware designs. The key insight in H-Houdini is to use the hierarchical
nature in hardware designs to incrementally learn an inductive invariant. This allows us to
overcome the scalability limitations of existing Machine Learning-based Invariant Synthesis
(MLIS) techniques. As a successor to ConjunCT, we implement H-Houdini, in a tool
called VeloCT, to prove SISP. VeloCT, for the first time, scales up verification to large
OoO cores like BOOM. In Chapter 3, we highlight the following:

• In Section 3.4 we describe the main algorithm along with the salient features that make
it scalable,



1.1. THESIS CONTRIBUTIONS AND ORGANIZATION 6

• Section 3.6 dives into the implementation of VeloCT to prove SISP. Notably, Sec-
tion 3.6.2 talks about practical issues when learning invariants with noisy traces,

• Supporting the description of H-Houdini (and VeloCT), Section 3.12 describes a
running example of proving a property on a toy design,

• Section 3.7 evaluates VeloCT across a variety of open-source designs and shows H-
Houdini’s scalability characteristics wrt. design size and available parallelism,

• Lastly, proofs of soundness and completeness of H-Houdini is presented in Section 3.10
for interested readers.

Chapter 4: SynthCT. SynthCT develops a framework to automatically ensure that a
binary conforms to the security specification. In short, SynthCT uses program synthesis
to automatically translate any unsafe instruction in the binary into safe instructions for a
particular microarchitecture. The key insight enabling SynthCT to scale to large complex
ISAs, e.g., x86-64, is its ability to exploit the structural representation of instruction seman-
tics to guide the synthesis search space. Using the techniques we develop in SynthCT,
we’re able to automatically synthesize translations for even the most complex instructions,
like division, using simple safe instructions. At a high-level, Chapter 4 is organized as follows:

• Section 4.6 highlights the key challenges in scaling program synthesis to large complex
ISA’s like x86-64,

• In Section 4.7 we first develop the core technique, component selection (Section 4.7.1),
which uses machine learning embeddings to estimate structural similarity between
instructions,

• Then we develop supplementary techniques: (i) instruction factorization in Section 4.7.2,
a divide-and-conquer that synthesizes instruction semantics in parts and stitches the
solutions back together, and (ii) node splitting in Section 4.7.3 to expose structural
similarity between instructions to aid component selection,

• We then evaluate SynthCT in Section 4.8. In particular we develop a safe-set agnostic
evaluation methodology and show how SynthCT can support most (75%) of the ISA,
using a small set (25%) of instructions. This small set of instructions match what
experts believe are safe on today’s microarchitectures,

• Finally, in Section 4.8.4 we show how the combination of techniques in SynthCT
enable scalability to even the most complex instructions: in specific, we’re able to
automatically synthesize the divide instruction, known to be unsafe on today’s mi-
croarchitectures, using only safe instructions.

Chapter 5: Conclusion & Future Work. Lastly, we will conclude by summarizing this
dissertation and provide our thoughts on future directions.
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All chapters are self-contained. As this dissertation straddles the areas of hardware
security, formal methods, and program synthesis, the background and related work most
relevant to each work is introduced in their respective chapters.
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Chapter 2

ConjunCT:

Learning Inductive Invariants to Prove
Unbounded Instruction Safety Against
Microarchitectural Timing Attacks

This chapter addresses the foundational question: what does it mean for a microarchitecture

to be safe? To answer this, we develop a formal, instruction set–centric property called the

Safe Instruction Set Property (SISP). Once SISP is verified, it yields a set of instructions that

can safely operate on secrets for unbounded durations. We also present the first automated

analysis capable of proving SISP on hardware designs written in RTL. This chapter addresses

Challenges: (C1), (C3), and (C5). The next chapter, Chapter 3, builds on these definitions

and properties to scale verification to larger Out-of-Order designs, while Chapter 4 leverages

the verified safe instruction set to harden software.

The past decade has seen a deluge of microarchitectural side channels stemming from a
variety of hardware structures (the cache, branch predictor, execution ports, the TLB, spec-
ulation, etc). These attacks stem from software that passes sensitive data to so-called unsafe
or transmitter instructions, i.e., those whose execution time depends on their operands’ val-
ues. Correspondingly, there has been a large number of defenses (spanning hardware and
software) that attempt to enforce the policy: sensitive data ↛ unsafe instruction operand.
Implementing this policy assumes that one can identify unsafe instructions for a given mi-
croarchitecture. But this is quite difficult—requiring the designer to analyze potentially
unbounded compositions of dynamic instructions to tease out subtle interactions they may
have with one another.

This chapter addresses the above challenge by proposing ConjunCT. Given RTL: Con-
junCT proves, for all possible executions, whether each ISA instruction is either i) safe for
an unbounded number of cycles or ii) unsafe. This is done using a combination of sym-
bolic analysis (to generate examples) and inductive invariant learning (bootstrapped by said



2.1. INTRODUCTION 9

examples), and enabled by a novel conditional information flow predicate that we show is
useful for analyzing information flows in processor pipelines.

We demonstrate our analysis on several RISC-V microarchitectures of varying complexity,
and use it to extract the safe/unsafe sets for each. Through a judicious use of program
synthesis, we are able to automate the analysis (almost entirely) from end to end, e.g.,
requiring only 8 designer annotations to fully analyze the RISC-V RocketChip core. Lastly,
we show through several case studies how ConjunCT can be used by microarchitects to
understand the security implications of an advanced optimization, and how the invariants
generated by ConjunCT can be used to localize where in the microarchitecture unsafety
occurs.

2.1 Introduction

It is well known that microarchitectural optimizations—such as the cache and branch predictor—
leak program privacy through timing (or microarchitectural) side channels [90]. To compre-
hensively mitigate these attacks, a multitude of software and hardware defenses (some com-
mercialized [17, 54, 92]) strive to enforce/support enforcing the following policy for sensitive
programs: that no so-called unsafe (or transmit) instruction in the program should compute
on secret data (i.e., receive secret data as its operand) [126, 234, 235, 37, 84, 60, 164, 239,
153]. Here, an unsafe instruction is one whose execution creates observable timing differ-
ences as a function of its operand values. For example, in the widely deployed constant-time
programming paradigm, high-value programs are carefully written by the programmer or
compiler to enforce this policy [126, 23, 39, 234, 37].

Today, a major assumption made by all of the above defenses is that the set of unsafe
instructions is known and correct. This assumption is perilous. Commercial-scale microar-
chitecture is incredibly complex and the hardware optimizations that lead to instruction
unsafety leave only subtle footprints on the design (e.g., change only design timing, not
functionality). Making matters worse, there is mounting evidence to suggest that future mi-
croarchitectures will include increasingly exotic optimizations, impacting instructions once
thought to be safe [209, 210, 55, 64].

In light of the above, this paper develops ConjunCT: an automated analysis framework
that, given a microarchitecture’s RTL, determines which subset of instructions are safe (non-
transmitters) for the given RTL.

The notion of when instructions are unsafe is hard to define and analyze. Instructions
that are individually safe/secure may cease to be safe when composed, even with them-
selves, as leakage of data through side channels (including timing) can occur in any cycle,
and through a sequence of state changes cause information flow. Many unsafe/insecure in-
structions can be detected using symbolic execution of bounded instruction compositions
followed by logic satisfiability engines. However, proving that a set of instructions is safe
under unbounded composition requires establishing an inductive invariant over microarchi-
tectural states that proves that unbounded executions of these instructions keep secrets
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unrevealed. These invariants are relational invariants that relate the states of any program
composing these instructions executed on two different inputs that differ only on secret data.
Such relational invariants are difficult to express (let alone discover) in the context of modern
microarchitectures.

ConjunCT addresses these challenges and automatically constructs relational invariants
using a combination of symbolic analysis and invariant learning, inspired from techniques in
program synthesis [10, 9, 202, 157, 87]. This invariant is used to derive the set of safe and
unsafe instructions in the ISA, and prove that the instructions in the safe set will never cause
a safety violation for an unbounded number of cycles. We also show how the invariant can
be useful for subsequent analyses, e.g., for pinpointing the ‘root cause’ of an instruction’s
unsafety.

We formulate the above as an invariant learning problem in the theoretical framework
Sorcar [157] (which enhances the famous Houdini algorithm [82]), a methodology for learn-
ing conjunctive invariants from examples.

At the top level, the ConjunCT analysis proceeds in two phases. In Phase 1, we design
a symbolic execution-based analysis (similar to ‘bug finding’ in other domains) that starting
from all possible microarchitectural states, either: (i) finds that an instruction is unsafe, or
(ii) proves that an instruction is safe for a bounded number of cycles. These results from
Phase 1 are used to bootstrap inductive invariant learning in Phase 2.

In Phase 2, our first main contribution is to develop an invariant language that is rich
enough to express relational invariants for real-world microarchitecures while at the same
time being amenable to learning and minimizing designer intervention/annotation. Our key
insight is that unsafety in designs can be expressed as conjunctions of conditional information
flow rules, where each rule states that secret data should be allowed to flow into some state
element s only if the value in some other state element(s) s′ satisfies certain conditions. An
example of such a rule might be: secrets should not be allowed to flow into the input latch of
a variable-time multiplier (s) if another state element s′ (that stores control values for that
pipeline stage) indicates that the opcode is multiply.

Automatically synthesizing an invariant expressed as conjunctions of the above condi-
tional information flow rules is non-trivial. That is, for a given s, there is an exponential
number of collections of state elements s′ (and functions over those state elements) that
could be considered as predicates in the final invariant. Using information embedded in
the results from Phase 1, we develop an automated procedure for synthesizing the overall
invariant from the above rules, working in tandem with a verification engine.

Putting everything together, we implement our analysis and apply it to several microar-
chitectures (the RISC-V V-Scale, Ibex, and RocketChip cores). Our analysis is able to,
relatively quickly (on the timescale of hours), analyze and derive invariants—along with
unsafe/safe sets—for all three with 3, 7 and 8 expert annotations each, respectively.

Beyond safe set and invariant synthesis, we demonstrate usage scenarios and frame-
work capabilities for ConjunCT in two case studies. First, we show how information
contained in invariants synthesized by ConjunCT can be used to localize where (e.g., in
what pipeline stage/state element) unsafety for a particular instruction originates in the de-
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sign. Second, we show how ConjunCT enables microarchitects to reason about the safety
of proposed microarchitectural optimizations. Specifically, we implement two computation
reuse schemes [192], an exemplar advanced microarchitectural optimization, on top of the
Ibex core. We use ConjunCT to confirm a hypothesis made in Vicarte et. al. [209]: while
one of the two optimization variants creates new instruction unsafety, the other does not.
This shows how ConjunCT can be used to assist in the design of safe and performant
microarchitecture.

2.2 Contributions

In summary, this chapter makes the following contributions:

1. We propose ConjunCT, the first unbounded analysis for determining which instruc-
tions are safe for a given microarchitecture.

2. We propose an invariant language that is sufficiently rich to derive inductive invari-
ants for real-world microarchitectures, along with automated techniques for selecting
invariants from this language for a particular microarchitecture.

3. We implement and demonstrate how our analysis, based on symbolic execution as well
as invariant synthesis, is able to deduce the safe set for three RISC-V microarchitec-
tures of varying complexity (V-Scale, Ibex, RocketChip). Analysis for each took from
minutes to a day, and required no more than 8 designer annotations per design.

4. We perform two case studies to demonstrate ConjunCT’s capabilities. First, we show
how ConjunCT can be used to localize where unsafety originates from in a design.
Second, we show how ConjunCT can be used by microarchitects to evaluate the
security properties of proposed microarchitectural optimizations.

2.3 Background and Motivation

There is a rich literature on how programs interacting with hardware resources (e.g., the
cache [232, 161, 231], TLB [103], branch predictor [70, 71], functional unit execution ports [7,
26, 101], complex arithmetic instructions [14, 104, 49], speculative execution [125] and oth-
ers [69]) can create side channels and leak program privacy.

Despite the apparent complexity in this space, however, the root cause of the above
attacks can be attributed to a relatively small number of unsafe instructions whose execution
timing is a function of their operand values. For example, the root cause of conflict/alias-
based attacks in the cache, TLB, page walker, etc., is that a secret was passed to the address
operand of a memory instruction [241, 150, 161, 103, 102]. Beyond memory instructions,
several other instruction types (namely branch instructions [152, 126] and specific complex
arithmetic operations [14]) are well-known transmitters. This has led to a line of hardware
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and software defenses [126, 234, 235, 37, 207, 24, 152, 170, 81, 242] (and many more) that
aim to prevent the flow of secrets to the operands of unsafe instructions. Notably, this
defense policy is capable of mitigating not only ‘classical’ timing channels [126] but also the
more recent speculative side channels [125, 235, 84, 207]. For example, Spectre attacks [125]
are due to secret data being passed to the operands of unsafe instructions that are executing
speculatively ; this understanding is used to cast defenses in terms of well-known paradigms
like constant-time programming [207, 239, 164, 44].

Thus far, a saving grace for the above defenses has been that (even across microarchitec-
tures), the set of unsafe instructions has remained mostly unchanged. That is, branches are
inherently unsafe because they influence the number of instructions executed by the program
which in all practical scenarios influences the program’s timing. Likewise, memory instruc-
tions are unsafe whenever the system supports a cache (which is to say, nearly always). This
simplifies the above defenses: without a careful analysis of each target microarchitecture,
they can disallow secret-dependent flows to a fixed and known set of instructions.

This paper’s premise is that determining each microarchitecture’s set of unsafe instruc-
tions will become a more difficult problem as we continue to develop microarchitecture in the
post-Moore era. Specifically, as scaling slows, one avenue to continue improving performance
is to implement software-invisible optimizations (or fast paths) to different instructions [209,
55] to optimize their common case behavior. Vicarte and Deng et al. [209, 55] describe
several families of optimizations that fit this mold:

• Computation simplification / elimination optimizations (e.g., [172, 233, 19]) have been
proposed for many arithmetic operations to take advantage of operation-specific iden-
tity and absorption properties. For example, that x & 1 = x.

• Computation reuse optimizations (e.g., [192, 191, 151]) memoize computation when
the same instruction(s) are executed twice with the same operands.

• Value prediction (e.g., [149, 175, 185]) saves cycles when an instruction returns a
predictable result.

• Significance compression (e.g., [30, 34, 213]) impacts performance depending on the
position of the high-order on bit in each program word.

• Silent stores (e.g., [133, 122, 64]) impact whether stores need to be performed by
inspecting the contents of memory at the store address.

These optimizations significantly complicate security audits on processor pipelines. For
example, Vicarte et al. [209] describes how:

• The above optimizations are seldom implemented in the processor’s ‘Execute’ stage /
ALUs. For example, even computation simplification [172], which is typically associ-
ated with ‘Execute’, is often implemented in an earlier stage (e.g., register file read) to
increase its performance benefit.
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• The above optimizations may only activate based on the combined behavior of multiple
in-flight instructions. For example, operand packing [30] only activates when two arith-
metic instructions co-located to the same execution port both have ‘narrow’ operands,
i.e., operands whose most-significant 1 bit is in a low bit index.

• The above optimizations may leave microarchitectural traces that modulate channels
long-after the offending instruction retires. For example, silent stores [133] may not
effectuate a performance improvement until the store in question is at the head of the
store queue (i.e., after the store officially retires).

Putting the above together, auditing a pipeline to determine which instructions are unsafe
may soon become highly non-trivial: requiring analyses a) over multiple pipeline stages and
interactions across stages (as opposed to ‘just’, say, auditing the Execute stage logic in
isolation), b) that explore how different combinations of instructions interact with each
other (as opposed to analyzing each in isolation), and c) that analyze pipeline state for an
unknown number of cycles after instructions finish their execution/retire.

Summary of our analysis. Section 2.4-Section 2.6 proposes a framework and automated
analysis that discovers, given a processor’s RTL as input, which instructions are unsafe on
that RTL. Our analysis considers arbitrary compositions of instructions and their executions
over an unbounded number of cycles over the entire pipeline, and hence is able to cope with
the nuances of the hardware optimizations described above.

Our technical contribution is broken into three sections. First, Section 2.4 defines the
problem. As summarized in Section 2.1, the analysis itself is broken into two phases. First,
we perform a bounded analysis over a fixed number of cycles (Section 2.5) which generates
examples, along with a preliminary set of unsafe and potentially-safe instructions. Second,
we use the examples/preliminary unsafe set to bootstrap invariant learning (Section 2.6) and
prove safety of instructions for an unbounded number of cycles.

2.4 Preliminaries and Problem Definition
Let us fix a design-under-test D with a finite set of state variables V in D. The set Zbv is a
domain of n-length bit vectors, for some n, as in the width of elements in V.

Definition 2.4.1. State (s): A state is a mapping V → Zbv.

Let S denote the set of all states. Let us fix a set of opcodes Opcodes. For each opcode, we
fix a set of parameter variables −→pv, i.e., operand labels. An instruction is a tuple (opcode,−→pv),
where opcode ∈ Opcodes.

Definition 2.4.2. State Machine (C): A finite state machine C is a tuple (S, sinit, R,Σ, O,
⇝). Here sinit ∈ S is the special initial state, e.g., the reset state of the machine. R ⊆ V act
as sources of secret data. Σ is a set of input symbols. Each input symbol is an instruction
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of the form (opcode, p⃗v) or is the special symbol ϵ (no instruction).1 O ⊆ V is a set of
output variables or attacker-observable variables/the attacker’s view. The partial function
⇝: S × Σ → S is the state transition function that maps a state and input symbol to the
next state.

Let s⇝a s′ denote that ⇝ (s, a) is defined and is equal to s′ where a ∈ Σ.

Definition 2.4.3. Trace (π): Let w represent a sequence of instructions a0, a1, . . . , an.
A trace of C over w starting at s0 is a finite sequence of states of the state machine C
s0 ⇝b0 s1,⇝b1 . . .⇝bm sm where each bi ∈ Σ (an instruction or ϵ) and such that w = b1 . . . bm.

Note that in the above, the sequence b1, . . . , bm may include ϵ, and the condition w =
b1 . . . bm says that the concatenation of the bi’s (where ϵ vanishes) is equal to w.

Let s ⇂ O denote the projection of the state s onto O.

Definition 2.4.4. Trace Distinguishability: Two traces π, π′ over a sequence w (with
different start states) are trace distinguishable if they are of different lengths, or they are of
the same length with π = s0, s1, . . . , sn and π′ = s′0, s

′
1, . . . , s

′
n such that for some j ∈ [0, n],

sj ⇂ O ̸= s′j ⇂ O.

Definition 2.4.5. Equal-modulo-secret (≈sec): Let ≈sec be the relation over S× S such
that, ≈sec relates two states s , s ′ if ∀v∈V\R s [v] = s ′[v], where V \ R denotes set difference
and s [v] is the value of v on s .

In other words, two states are equal-modulo-secret if the values of non-secret variables
are the same.

Definition 2.4.6. Safe Instruction Set Problem: Find a maximal Σ+ ⊆ Σ (the set of
safe instructions on D) such that: for every sequence of instructions x over Σ+, and for
every (sL, sR) where sL ≈sec sR, the pair of traces (πL, πR) of C over x starting from states
(sL, sR), respectively, are not trace distinguishable.

We instantiate the above framework for microarchitectural designs-under-test D, where
the state machine C captures the execution semantics of D written in Verilog and V is the
set of state elements (or registers) in D. The safety of instructions needs to hold for traces
of unbounded length.

The next two sections develop the symbolic execution-based bounded analysis (Sec-
tion 2.5) to determine the set of potentially safe instructions, i.e., that are candidates for
inclusion in Σ+. More precisely, we discard instructions (opcodes with parameters) that
clearly leak secrets. Later, in Section 2.6, we learn an invariant that will prove the safety
of instructions and their composition, thereby deriving the safe set of instructions Σ+ as
defined above.

Remarks regarding Def. 2.4.6. We make two remarks regarding the definition.
First, we ask for any maximal safe set as a unique maximum safe set may not exist

and the maximal safe sets may not be comparable. Ideally, we would like an analysis to be

1Like a processor, the machine may not take a new instruction in each step, if a step is a cycle.
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Name Symbol Description

Design D Microarchitecture design-under-test.
Concrete State s A state with concrete assignment to state elements, usually

generated by a counterexample.
State S A mapping of all microarchitectural state elements, e.g.,

wires and registers, to both concrete and symbolic values.
Input Vocabulary Σ Set of all instructions plus the special symbol ϵ.
State Transition ⇝ A partial function mapping S× Σ → S
Trace π A sequence of states S0 ⇝a0 S1 ⇝a1 . . .⇝an−1 Sn.
Instruction a An instruction from the ISA.
Instruction Under Test
(IUT)

aIUT Instruction whose execution we are analyzing for safety.

Program P A static sequence of instructions represented as a word w
over Σ.

Attacker View S ⇂ O A projection of state S to attacker observation variables
(O).

Secret Sources and
Data

R, Dsecret R ⊆ V annotated to be sources of secret data (Dsecret).

Safety Safe(S) A predicate that evaluates to true if S is safe, and false

otherwise.
Unsafe Set U Set of unsafe instructions output by the bounded analysis.

Table 2.1: A summary of all definitions used in ConjunCT.

able to list out all such maximal safe sets. However, we note that in our evaluation, all the
maximal safe sets were unique and also the maximum. Hence, this alternative formulation
of the problem does not yield any additional safe sets.

Second, certain usage scenarios (e.g., constant-time programming) assume that unsafe
instructions can be executed in composition with safe instructions, subject to the constraint
that unsafe instruction operands only see non-secret data. Our definition only concerns
compositions of safe instructions. We note that the invariants generated in Section 2.6 do
not preclude injecting unsafe instructions, and will soundly detect when doing so can violate
security. However, the current analysis does not provide guarantees on precision in the regime
where unsafe/safe instructions are composed. That is, it will not necessarily recognize that
a given safe composition of safe/unsafe instructions is indeed safe. We leave addressing this
issue to future work.

2.5 Phase 1: Bounded Analysis

In this section, we build on the terminology defined in Section 2.4 to develop our symbolic
execution-based analysis on hardware designs described, e.g., in Verilog. For convenience,
terms defined are summarized in Table 2.1.

We build on previous definitions and define a Program (P) as a sequence of instructions
a0, a1, . . . , an where aj ∈ Σ. The transition function ⇝a is derived from the execution



2.5. PHASE 1: BOUNDED ANALYSIS 16

semantics of D, e.g., written in Verilog.
ConjunCT analyzes the safety of each instruction in a ∈ Σ using symbolic execution.

We denote the current instruction-under-test (IUT) as aIUT . As we want to capture all
possible interactions of aIUT with other instructions in the pipeline, we consider the analysis
of aIUT as a part of a larger program P = aIUT ∥Ps, where Ps is any possible suffix program.2

We augment the definition of state s from Def. 2.4.1 by allowing assignment of symbolic
values to variables. To disambiguate from here on, an uppercase boldface S refers to states
that may have a symbolic or concrete assignment to each variable, while the lowercase s
refers to states with concrete assignments only.

Constructing all pairs of (sL, sR). As analyzing the execution of aIUT from every possible
pair of concrete states is not possible, we analyze the execution from a fully symbolic start
state (S) instead.3 We first duplicate a fully symbolic state S to obtain (SL,SR). We extend
the definition of ≈sec on concrete states to operate on symbolic states. We say two symbolic
states S,S′ are S ≈sec S′ when ∀v∈V\RS[v] ≡ S′[v], where ≡ is symbolic equivalence between
the expressions which could be implemented, e.g., using an SMT solver. Note that SL ≈sec SR

trivially as all state elements are equal. Next, ∀rr ∈ R we set SL and SR to hold different
(secret) symbolic values. We say a variable v ∈ V is symbolic constrained if it is symbolic
and is equal in L and R (SL[v] ≡ SR[v]) and symbolic unconstrained if v is symbolic and
need not be equal in L and R. Now, the pair (SL,SR) are still SL ≈sec SR and represent all
possible pairs of (sL, sR). Note that this may also include states that are unreachable in the
microarchitecture.

Product Construction for Two-Safety. For convenience, we can construct a product
state S = (SL · SR), where · represents concatenation. This is the well-known construct of
a product program [8, 21] used for checking two-safety properties such as non-interference
and is equivalent to a miter circuit used in the architecture community [74]. From here
on, S will refer to a product state that holds variables for both L and R executions of the
microarchitecture.

SafeO(S). We define a predicate Safe that evaluates to true on a state S if S is safe:
Formally, let (SL ·SR) = S. S is Safe wrt. O if SL ⇂ O ≡ SR ⇂ O. Note that we will omit
the subscript and say Safe(S) (or Safe) when the observer model (and state S) is clear from
the context.

Defining Secret Data (R). We require that the designer annotate the secret sources R. In
the safe instruction set problem, R is set to the architectural register file. (This special case
of Def. 2.4.6 is formalized in Section 2.7.1.) We will refer to the (symbolic unconstrained)
secret data released by the register file as Dsecret.

2Although we write P as having a suffix but not prefix program, the application of P in Section 2.5.1
will be equivalent to considering P with an arbitrary prefix program.

3Such a fully symbolic state S can represent all possible states si ∈ S.
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Controlling the Release of Secret Data.
Since the analysis is over a single instance of
aIUT (but in the context of an infinitely long
P ), we further need to limit the release of
Dsecret so that only aIUT receives it. Thus,
our symbolic interpreter treats p⃗vIUT , of aIUT ,
differently from those of other instructions and
only releases Dsecret from the register file when
it is being accessed by aIUT . This does not pre-
vent aIUT from forwarding a function of Dsecret

to later instructions. We address this in Sec-
tion 2.5.1.1.

Register FileRegister File
select

Bypass Path

M

MM

Figure 2.1: Multiple sources for
operand values. Operand values for in-
structions may either arrive from the
register file or along the bypass path
and is selected by the control variable
to the MUX, select. Each , represents
a potential source of unsafety.

Soundness of analysis in the presence of corner cases. In the above, we only annotate
the architectural register file as R and only release secrets from R in a single cycle (when
they are read for each aIUT ). Can this miss cases where the instruction computes on data
from a bypass path (see (ii) in Figure 2.1)? Can this miss cases where multiple aIUT need to
receive secret data and interact for unsafety to manifest? We prove in Section 2.7.1 that our
complete analysis is sound and handles these cases, while requiring only the above specified
annotation burden.

2.5.1 Symbolic Execution
Using the ideas from the previous subsection as building blocks, we now describe the bounded
analysis (the first phase of ConjunCT). The goal is to discover a preliminary set of unsafe
instructions and “potentially safe” instructions (i.e., those where no security violation was
found for a bounded number of cycles), along with their execution traces. These will be used
to bootstrap the invariant learning stage (Section 2.6).

This process is, itself, two parts. The high-level algorithm for both parts is shown in algo-
rithm 1 and takes the following as inputs: O : the attacker observation variables, K : the max
number of cycles to run the analysis for, IIUT : the IIUT ∈ Σ representing the instruction-
under-test (IUT), and Ps: the suffix program to execute after the IUT, and returns either
Safe indicating that IIUT is safe up to the bound K or Unsafe with a counterexample that
violates the safety property. The two parts of the bounded analysis involve calling the above
algorithm twice, with different arguments passed to the Ps parameter each time.

The analysis starts from a symbolic-start-state which initializes a blank state where
all microarchitectural variables in S are symbolic and constrained to be equal on the left and
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Algorithm 1: Symbolic Execution-based analysis.

Data: O , K , IIUT , Ps

Result: Safe or Unsafe(cex)
1 S = symbolic-start-state();
2 P ′ = aIUT ∥ Ps;
3 for i ∈ (0...K ) do
4 a = pop(P ′);
5 S′ = ⇝(S, a);
6 cex = check-safety(S′, O);
7 if cex then
8 return Unsafe(cex);
9 end

10 S = S′

11 end
12 return Safe;

right executions of the design. See Section 2.5 “Constructing all pairs...” for details. Then,
on line 2 the algorithm constructs P ′, a concatenation of the IUT aIUT and the suffix program
Ps. Now, in each step, the next instruction a is popped from P ′ and used to generate the
new state S′ by evaluating⇝ (S, a). Next, the check-safety function uses O to check if the
state S′ is Safe by querying an off-the-shelf SMT solver, e.g., Z3 or CVC5. If the SafeO(S′)
evaluates to true, then the state passes the safety check. Otherwise, check-safety returns
Unsafe and a counterexample to the safety property, i.e., an assignment to variables in S′ that
leads to the safety violation. A counterexample indicates that one or more of the assertions
are violated, in which case the design is unsafe with respect to O and IIUT . Therefore,
the overall analysis terminates with Unsafe and returns the counterexample. The loop is
repeated for a maximum of K iterations by popping the next instruction a from Ps in each
iteration, and returns Safe if safety is not violated for K steps.

2.5.1.1 Attributing Blame for Unsafety

As we alluded to earlier, younger instructions in the pipeline (part of Ps) may eventually
interact with secret data from IIUT through architectural data dependencies with IIUT , mi-
croarchitectural state set by IIUT , etc. This creates a blame attribution problem: if a safety
violation occurs due to the execution of IIUT followed by some instruction a ′, should IIUT be
deemed unsafe, or should a ′? Suppose a ′ is actually unsafe. In that case, we risk incorrectly
blaming IIUT , which could lead to false positives in the overall analysis.

To solve the above problem, we perform the above symbolic analysis in two parts while
varying the instructions allowed in the suffix program Ps. In part (i), we try to find in-
structions whose executions are unsafe independently, i.e., we set Ps to only contain nop’s.
Therefore, any safety violation we find in this phase can be attributed to the instruction-



2.5. PHASE 1: BOUNDED ANALYSIS 19

under-test IIUT (as the only source of unconstrained data is from the register read on behalf
of IIUT ). From this part (i) we get a list of unsafe instructions, U, and a list of potentially

safe instructions Σ̂+
(i). Here, the subscript (i) refers to the safe set after phase (i) of the

bounded analysis. Note that by only allowing nops in this phase, we have bypassed the issue
from the previous paragraph.

Next, in part (ii), we re-analyze the instructions Σ̂+
(i) for safety while constraining the

suffix program Ps to only contain instructions from Σ̂+
(i). Any safety violation now is due

to interactions between IIUT and one or more instructions I′ in Ps. In this case, we make a
conservative assumption and treat both IIUT and I′ (i.e., all instructions a′ in the suffix) as
unsafe. This could be optimized for improved precision in a variety of ways. For example,
with more expressive specifications we believe we could more accurately capture that the
interaction of IIUT and a specific I′ is unsafe, but leave this for future work. The implications
of this in the precision of the overall analysis is discussed in Section 2.7.2.

At the end of this two-phase symbolic analysis we have a list of instructions known to be
safe for K cycles in arbitrary composition with other potentially safe instructions (denoted

Σ̂+
(ii)) and a set of unsafe instructions U.

We remark that Σ̂+
(ii) satisfies the requirements for a safe set in Def. 2.4.6, but only for

the bounded K cycles.

2.5.2 Generating Examples for Learning

In addition to identifying the set of unsafe instructions U, the bounded analysis also outputs
a set of examples used in the next phase (invariant learning). In this context, each example
is a microarchitectural state S we encounter during the bounded analysis and contains a mix
of concrete and symbolic assignments to state variables. We generate two types of examples:
(i) positive examples are states that are Safe and not known to lead to any unsafe states in
the bounded analysis, and (ii) negative examples are states that are either not Safe or are
known to lead to states that are not Safe in the bounded analysis.

We now discuss each of these in more detail. Consider the sequence of states in the trace
generated by the symbolic execution of an IUT, aIUT : S0,S1, . . . ,SK .

If aIUT is safe, then none of the states S0,S1, . . . ,SK are unsafe. In other words, all
possible concrete s represented by Si are safe. We will directly use each of the symbolic
states S0,S1, . . .SK as separate positive examples.

On the other hand, consider if aIUT was unsafe. In this case, one of the Su fails the safety
check and we get a counterexample (cex), i.e., a concrete assignment of values to V∗ ⊆ V
that causes unsafety. Note that the cex gives us a concrete state, i.e., an su that is actually
unsafe, while other concretizations of Su may still be safe. Therefore, we use the information
in the cex to concretize each of the symbolic states S0,S1, . . . to generate concrete states
s0, s1, . . ., i.e., the sequence of concrete states that will eventually lead to the concrete unsafe
state su. Each of these concrete states si are used as separate negative examples.
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2.6 Phase 2: Invariant Learning

The bounded analysis (Section 2.5) is useful to find instructions that are unsafe but, being
a bounded analysis, cannot prove that an instruction that has been safe for K cycles will
remain safe under unbounded composition. The goal of this section is to do exactly that:

prove that a set Σ̂+
(ii) ⊆ Σ of potentially safe instructions—instructions that have remained

safe for K cycles in the bounded analysis—remain safe forever.
To prove safety, we need to show that starting from a safe state S we cannot reach an

unsafe state through one or more applications of ⇝a, where a is any instruction in the ISA.
To do this, we will define an invariant H such that for a state S and invariant H,

S |= H =⇒ Safe(S) (2.1)

For this safety check to hold for an unbounded number of cycles, we require H to be inductive.
That is, satisfy a base case and inductive step. Let P be the set of positive examples
discovered during the bounded analysis. For the base case, we require that H allow all such
positive examples: ∀p ∈ P , p |= H. To satisfy the inductive step, we require that

(S |= H) ∧ (S⇝a S′) =⇒ S′ |= H ∀a ∈ Σ̂+
(ii) (2.2)

An H-state is any state S that satisfies H. Therefore, any H-state is Safe. Together, Equa-
tion 2.1 and Equation 2.2 guarantee that starting from an H-state we can never reach an
unsafe or non-H-state. Putting it all together, if H holds for a state corresponding to all pos-
sible executions of a potentially safe instruction, then we prove that the instruction remains
safe for an unbounded number of cycles.

Both Equation 2.1 and Equation 2.2 are checked using an SMT solver (like CVC5). As
both equations need to hold for every state allowed by H, we perform the check on the most
permissive symbolic state S allowed by H. Such a state S is constructed by first initializing
a fully symbolic state and then constraining S based on H.

Approach to construct H. The principle challenge in the above is how to find an H
for a given design D that is both sound and precise, i.e., does not induce false positives
(preclude safe executions) or negatives (allow unsafe executions). We would also, ideally,
like for our invariant to be minimal, i.e., contain as few predicates as possible. Such ‘smaller’
invariants typically lead to both improved analysis time—for both our and any subsequent
analysis [157]—and as we later show in Section 2.8.4 is also useful in root cause analysis.
Constructing such an H by hand is impractical. Instead, our approach is to automatically
synthesize H.

At the high level, we follow the blueprint established by the invariant learning framework
called Sorcar [157]. Sorcar describes a theoretical framework for learning conjunctive in-
variants from examples, which is an improvement over the well-known Houdini algorithm [82],
for learning invariants when the number of predicates is very large. Sorcar is a theoretical
framework that works by proposing invariants in each round along with a verification engine
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that produces counterexamples to incorrect invariants. Sorcar takes as input a large num-
ber of predicates, selectively chooses predicates to include in the invariant and guarantees
convergence to an inductive invariant using a number of rounds that is linear in the number
of predicates.

Adapting Sorcar to our setting is non-trivial as Sorcar leaves open many design
decisions when it comes to solving the safe instruction set problem. First, setting up a
self-product transition system to invoke Sorcar on so that it solves the safe instruction
set problem precisely is nontrivial (see Section 2.7.2). We also need to specify/generate the
positive/negative samples to bootstrap the learning algorithm (see Section 2.5) and we need
to find mechanisms to recover from failure when an invariant is not found (see Section 2.6.5).

Beyond the above, our main conceptual contribution (also not covered in the Sorcar
work as it is domain agnostic) is to define an appropriate universe of predicates through which
to express inductive invariants H. Choosing too large a universe would make the analysis
intractable or require significant designer intervention (e.g., to provide annotations/analysis
constraints). Choosing too few predicates would lead to invariants not being expressible for
given designs. In Section 2.6.1, we describe an invariant grammar that is sufficiently rich
to enable analysis of several recent microarchitectures (e.g., the pipelined RISC-V Rock-
etChip [18]). We then describe in Section 2.6.3 an algorithm that makes finding invariants
in said grammar tractable without additional expert annotation burden. Putting it all to-
gether, our whole analysis run on the RISC-V RocketChip required only 8 annotations and
was able to generate an invariant in 10 hours.

Tolerating unsafe instructions. Proving that a set of instructions is safe using an
invariant H has further benefits. In particular, we can allow unsafe instructions to execute
in states satisfying H provided that results in states that remain in H (we cannot allow
unsafe instructions in other states, of course). Hence, finding a larger semantic invariant
(i.e., a ‘minimal’ invariant made up of fewer predicates as discussed before) is also a useful
heuristic for admitting more safe compositions of safe/unsafe instructions. We discuss how
to obtain such minimal invariants in Section 2.6.4.

2.6.1 Language for H

We use the DSL shown in Figure 2.2 to learn and express the invariant. The hypothesis
space of this DSL is tailored to be able to express inductive safety invariants for designs we
expect to encounter in practice.

In this DSL, the Eq(v) predicate expresses the equality between the L and R versions of
a variable v , i.e., vL = vR. This is similar to secrecy assumptions in prior work [94]. With
this predicate, we say v is constrained to be equal in the L and R executions. Intuitively,
this means that v can only store non-secret data, i.e., data whose value is independent of
Dsecret.

Beyond Eq(v), we include a higher-level predicate Impl(v, vs) to express more complex
relationships between state variables in modern microarchitectures. Impl(v, vs) allows for a
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⟨H ⟩ ::= ⟨p⟩ ∧ ⟨H⟩
| ⟨empty⟩

⟨p⟩ ::= Eq (⟨state element⟩) ; Equality constraint
| Impl (⟨state element⟩, ⟨condition⟩)

⟨state element⟩ ::= s ; State-element in D

⟨condition⟩ ::= C : P(V) → { true, false }

Figure 2.2: DSL for synthesis of H. C is a boolean conditional over a subset of V. P(V) is the
power set of V.

variable v to conditionally hold unconstrained (not equal) values, i.e., secret values, when
certain conditions are true. For example, the values read by an instruction from a register
file are allowed to be secret if the instruction currently executing in the pipeline is not an
unsafe instruction. More concretely, the Impl(v, vs) predicate adds the constraint: vl ̸=
vr =⇒ C(vs) where, C is a condition on state element(s), C : P(V) → { true, false },
where P(V) is the power set of V.

Deciding what Impl predicates to include in an invariant H is more difficult than choosing
which Eq predicates to include. Specifically, Impl implies a predicate space of O(2|V|), times
the complexity of choosing an appropriate C which is exponential in |vs|. Eq implies a
predicate space of O(|V|). To address this, Section 2.6.3 describes an algorithm for efficiently
selecting a small number of useful Impl predicates to consider during invariant synthesis.

Finally, following SORCAR/Houdini, we permit conjunctions of individual predicates
(Eq and Impl). Conjunctions are sufficient to represent safety invariants for a large class of
problems in practice [25, 130, 146] (including the microarchitectures we studied) and also
admit an efficient analysis.

2.6.2 Learning H

With the invariant DSL from the previous section, we now describe a high-level overview of
our learning algorithm, shown pictorially in Figure 2.3. We define a function check-ind-safe?

that takes a candidate invariant, Hcand and outputs either a counterexample (a negative/im-
plication example) or successfully proves that the candidate invariant is safe/inductive and
outputs Hcand as the inductive invariant Hind. Internally, check-ind-safe? performs a
safety (Equation 2.1) and inductivity (Equation 2.2) check through an SMT query.4

All the examples (positive, negative, and implication examples) shown in the figure are
seeded from the bounded analysis (Section 2.5). Initially, the set of implication examples is

4As discussed in Section 2.6, we check this property for the most generic (symbolic) state admitted by
Hcand. The checks are decidable as we only use quantifier-free bit-vector theories from SMT.
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Figure 2.3: Workflow diagram showing learning of the inductive invariant H. construct-H is a
procedure that generates an invariant Hcand by taking a conjunction over P+

all.

empty. The algorithm then proceeds as follows:

Step 1. To prove safety of instructions, the invariant should admit all the positive examples.
Initially, we enumerate the set of predicates of type Eq, PEq. However, we’re only interested
in a subset of PEq that actually hold on the positive examples. Therefore, using the procedure
refine-positive-example and the set of all positive examples, we filter PEq to obtain the
set of predicates, P+

Eq, that are satisfied by all positive examples.5 The predicate discovery

algorithm takes this set P+
Eq as the initial set of all predicates P̂+

all.

Step 2. As the set of predicates, P̂+
all = P+

Eq, is usually insufficient to express an invariant

5In the following, we will use superscript + when discussing predicates, e.g., P+, to denote sets of
predicates that satisfy the positives examples.
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for real-world designs, we need to augment it with a set of Impl predicates. But, we cannot
enumerate the set of predicates PImpl as it is exponential in size. So, we develop a predi-
cate discovery algorithm to find a subset of Impl predicates that are sufficient to derive an
inductive invariant.

Predicate discovery takes as input an initial set of all predicates P̂+
all = P+

Eq and outputs

Hind of the form Hind =
∧

p p ∈ P+
all, where P+

all is the set of all predicates needed to derive the
invariant. The predicate discovery procedure invokes the mine-predicates sub-procedure
that uses information within a negative or an implication example, ex, and either (i) outputs
a set of Impl-type predicates that is consistent with the positive examples and eliminates ex,
or (ii) fails if no such predicate exists. Notice that predicate discovery only explores H by
adding predicates, and therefore cannot find an H that requires a certain p to be dropped.
To overcome this, on failure, we first run Sorcar (which can drop predicates) with the
set of predicates discovered so far to check if H exists within this set. The soundness of
this step follows from Sorcar. We discuss the other causes and remediations for failure
in Section 2.6.5 and present the details of predicate discovery next in Section 2.6.3.

Step 3. Lastly, we have an optional step to minimize the number of predicates in the
inductive invariant Hind. The invariant minimization step takes as input the discovered set
of predicates that are consistent with the positive examples P+

all and constructs an invariant
smaller than Hind. The procedure uses select-relevant-predicates that picks a subset of
predicates from P+

all based on the negative and implication examples seen so far and outputs
a candidate invariant Hcand. The candidate invariant is checked for safety and inductiv-
ity. Failing produces a new negative (safety) or implication (inductivity) counterexample,
respectively. If the check passes then the candidate invariant Hcand is our new minimized
invariant Hind−min. We formulate the invariant minimization problem in Section 2.6.4.

2.6.3 Predicate Discovery

In practice, it may not be possible to enumerate all predicates. Consider the predicates
of type Impl where the first argument is any state element and the second argument is a
condition over state element(s) in the design. As the conditional expression can be arbitrarily
complex, listing out all predicates in PImpl is intractable.

Starting from the set of all predicates containing only Eq-type predicates that hold on

positive examples, i.e., P̂+
all = P+

Eq, the predicate discovery algorithm adds a small, but

useful subset of Impl predicates to P̂+
all, forming P+

all, such that the resulting set is sufficiently
expressive to learn an invariant for D.

Predicate discovery is based on the following two key observations:
First, that the unsafety in a design is due to unsafe instructions interacting with uncon-

strained (secret) data when that data is stored in specific state elements. In other words:
we can represent those unsafe states by formulating Impl constraints that forbid secrets from
being present in specific state elements when opcode bits (or functions of opcode bits) of
unsafe instructions are present in potentially other state elements.
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Second, that both the state elements containing secret data and those encoding instruc-
tion opcode information have signatures that make it possible to identify secret- and opcode-
holding state element candidates in our negative and implication examples. Specifically:
state elements that do not satisfy Eq constraints potentially contain secret data; whereas
state elements that satisfy Eq constraints potentially contain opcode-related information.

With the above in mind, we proceed as follows. In each example, we partition the state
elements into two sets:

i. Vs : the set of state elements that, for the current example, hold different values on the
L and R executions.

ii. Vp : the set of state elements that, for the current example, hold the same values on
the L and R executions.

We build a set of Impl predicates, i.e., a subset of PImpl, by taking the cartesian product of (i)
and (ii). That is, we allow (i) only when the assignments in (ii) do not equal specific values
that are equal in both the L and R executions. Our thesis is that if a given state element holds
the same value in both the L and R executions, it is an opcode-derived constant. Thus, this
construction captures potential interactions between secret data and opcode-related data.

More detailed pseudocode for predicate discovery is given in algorithm 2. The top-

level algorithm starts from the universe of predicates P̂+
all = P+

Eq consistent with positive
examples. In every round, new predicates consistent with positive examples are added until
the predicates in what becomes P+

all are sufficient to prove inductive safety. Each round
considers the largest conjunctive invariant Hcand = ∧P+

all (line 3). On a counterexample,
cex, the procedure calls mine-predicates to find one or more predicates to add to P+

all that
can eliminate the cex (line 4). To generate this set of predicates, mine-predicates tracks
variables of types (i) (line 15) and (ii) (line 17) as described above. Next, the potential set of
predicates, P′

Impl, is constructed by taking a cartesian product of the above two cases (line 20).

Lastly, we retain only predicates from P′

Impl that hold on positive examples (line 22) to form
P+
Impl: the set of predicates that hold on positive examples and are useful in eliminating

cex. The final set of useful Impl predicates is the union over useful predicates discovered
on each cex, i.e.,

⋃
cex P

+
Impl. Note that the invariant formed by the conjunction over the

discovered set of predicates through this procedure is maximal (i.e., contains both the initial
and discovered predicates), safe, and inductive.

2.6.4 Invariant Minimization

We now formulate the problem of minimizing the invariant and develop several approaches
for doing so. A smaller invariant is desirable for three reasons. First, a smaller invariant
implies a larger state space allowed by the invariant. This means that the invariant allows
a larger number of states, i.e., including states in which even the execution of an unsafe
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Algorithm 2: Predicate Discovery.

Input : P̂+
all : Initial set of predicates, i.e., P

+
Eq.

Output: P+
all : The augmented set of all predicates sufficient to derive an invariant for D.

1 P+
all = P̂+

all;
2 while true do
3 Hcand = ∧i pi ∈ P+

all;
4 cex = check-ind-safe?(Hcand);
5 if cex then
6 P+

all = P+
all∪ mine-predicates(cex);

7 else
8 return P+

all;
9 end

10 end
11 def mine-predicates (cex) → P+

Impl:

12 Vs = Vp = ∅;
// ∀ state elements in cex

13 for s ∈ cex do
14 if cex[sL] = cex[sR] then

// (ii) s: non-secret constant

15 Vp = Vp ∪ (s, cex[sL]);

16 else
// (i) s: secret

17 Vs = Vs ∪ s;

18 end

19 end

20 P′
Impl = {Impl(v, s ̸= c) : (v, (s, c)) ∈ (Vs × Vp)};

21 P+
Impl = refine-positive-example(P′

Impl);

22 return P+
Impl;

23 end

instruction may also be safe. Second, it helps experts analyze and understand the root cause
of unsafety in their designs, as we show in Section 2.8.4. This is harder to do if the invariant
is large (contains a large # of predicates) with many irrelevant predicates. Lastly, a smaller
invariant results in faster checks during verification.

Recall that the minimization procedure starts from the set of predicates P+
all that is output

by the predicate discovery algorithm (Section 2.6.3). As predicate discovery only stops once
it has found an inductive invariant, we know that invariant H exists in the set of predicates
P+
all. Therefore, the following minimization strategy cannot fail to produce an invariant. At

worst it will produce an invariant no smaller than the existing Hind from predicate discovery.

Definition 2.6.1. Hitting-set Formulation: Observe that (ideally) we only need one p ∈
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P+
all to be consistent with a negative/implication example, exi. We formulate the problem of

picking Pcand ⊆ P+
all consistent with each example exi as a minimum-hitting set problem [121]:

Record for every exi the set of predicates Pi ⊆ P+
all that eliminates exi. Find min |Pcand| s.t.

Pcand “hits” every Pi, i.e., ∀i(Pcand

⋂
Pi) ̸= ∅.

Minimization using the greedy algorithm. We use a well known greedy approxima-
tion [46] to find a solution to the minimum hitting set formulation from above. In short,
the procedure selects p ∈ P+

all greedily such that in each step the selected p eliminates the
largest number of examples that are not yet eliminated until there are no more examples
to eliminate. This returns an Hcand in polynomial time. Although the above described
greedy algorithm runs in polynomial time, it may take an exponential number of examples
to find the invariant. Therefore, we also implement a softer version, as described in Sor-
car, where we force a new predicate to be added to the invariant on every example. We
call the former greedy-ConjunCT and the latter greedy-frozen. We use both minimization
approaches: first we try greedy-ConjunCT and fallback to greedy-frozen when the mini-
mization does not find an invariant in a reasonable amount of time. Compared to predicate
discovery, the invariant synthesized by the greedy scheme can be much smaller. For example,
on Rocketchip the invariant synthesized by greedy-frozen only contained 851 predicates vs.
the original invariant from predicate discovery which contained 3,232 predicates.

2.6.5 Failure and Recovery

The above described learning algorithm may terminate and fail to produce an inductive
safety invariant for one of several reasons:

Poisoned positive examples. It is possible that one of the examples assumed to positive
is actually a state that will eventually result in a safety violation when run for some steps
K ′ > K . Therefore, by considering an unsafe intermediate state as safe, we may have
inadvertently pruned out predicates from P+

Eq that are essential in synthesizing a safe and
inductive H. To recover from this failure, one can imagine a human-in-the-loop who can
analyze the failure, attribute it to a certain unsafe instruction being misclassified as a safe
instruction, and re-run synthesis by moving the corresponding positive examples to the
negative examples. Another simpler, less involved solution is to re-run the bounded analysis
with a bound K ′ > K to trigger the unsafe behavior in the bounded analysis phase and then
synthesize the invariant using the cleaned-up set of positive and negative examples.

DSL is not expressive enough. In general, we cannot guarantee that our DSL is
complete and sufficient to express invariants for designs that we have not evaluated on.
Fundamentally, there is a trade-off between the expressiveness of the hypothesis space and
the tractability of synthesis. That said, Impl was inspired by and captures common design
patterns seen in designs today. For example, how each state element is associated with a
specific in-flight instruction in a given cycle. Thus, we believe it will be useful in verifying
larger designs and show in Section 2.8 that it is sufficiently powerful to express invariants
for the open-source designs that we have evaluated ConjunCT on so far. We note that
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our analysis may also fail if the root cause of the unsafety is due to reasons other than
executing unsafe instructions, e.g., if the optimization acts on an instruction’s execution in
an operand-independent way.

2.7 Proof Sketches

In this section we will provide proof sketches for ConjunCT. First, we will refine Def. 2.4.6
to define sets of safe instructions useful in practice, e.g., for constant-time programs. Next, we
will show that the sets of safe instructions produced by ConjunCT satisfy the constant-time
safe sets definition (in Section 2.7.1). Finally, we show that the invariant Hind synthesized
by ConjunCT is precise (in Section 2.7.2).

2.7.1 ConjunCT Proof of Soundness

First, we will instantiate Def. 2.4.6 for the constant-time programming setting. Recall,
Def. 2.4.6 is parameterized by: (a) R: the set of secret sources, and (b) O: the set of
attacker observable variables. We refer to this definition as SISP(R,O). The choices of (a)
and (b) influence what set of instructions are safe and, as such, are context-dependent. Not
all combinations of (a) and (b) yield meaningful results.

In this work, we’re interested in the set of safe instructions which can be composed
together to form constant-time programs. This means R should be architectural sources of
operand data—i.e., the architectural register file (ARF) and/or data memory. W.l.o.g., as
we consider RISC-like ISAs where all data memory is written to the ARF before being used,
we set R to be equal to the ARF. With that in mind, we can define the constant-time safe
instruction set problem:

Definition 2.7.1. Constant-Time Safe Instruction Set Problem: The constant-time
safe instruction set problem (CT-SISP(O)) is an instance of SISP where the set of secret
sources, R, is set of be the architectural register file. That is, CT-SISP(O) := SISP(R =
ARF, O).6

It should be clear that by the definition of SISP that CT-SISP(O) – for an appropriate
choice of O – defines Σ+ for D which are safe for use in constant-time programs. That
is, the first access of a given secret must be from the ARF and the definition considers all
compositions of instructions and starting states from the point that the secret is initially
accessed. Let us call the final safe set output by ConjunCT Σ̂+. Section 2.11 provides a
proof that Σ̂+ is valid in CT-SISP(O) for the specified O.

6Note, we continue to leave O to be parametric to be able to model different attacker capabilities,
although it will generally be set to signals that correspond to an instruction’s retirement time.
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2.7.2 Proof-Sketch that Hind is Precise

In this section, we show that the invariant synthesized by ConjunCT is precise. We note
that invariants formed by Sorcar/Houdini are naturally precise, but precision isn’t dis-
cussed in those works. Below, we give an argument for why they are precise, and reconcile
differences between their analysis and ours to show that the precision arguments governing
their analysis applies to ours as well.

As we’re interested in a relational invariant for C (Def. 2.4.2), we define a product machine
that operates over a pair of states.

Definition 2.7.2. Product machine Cp: Construct a product machine for C, named
Cp = (Sp, (sinit, sinit), R,Σ, O, 7→), where all symbols have their usual notations, but redefined
for the product setting: Sp is the set formed by taking a cartesian self-product S × S,
7→a : S× S → S× S maps the pair of states (s0, s

′
0) 7→a (s1, s

′
1) if (s0 ⇝a s1) and (s ′0 ⇝

a s ′1).

Let x = a0, a1, . . . , an denote a sequence of inputs over Σ+, the set of safe instructions.

Definition 2.7.3. Precision: We say H is precise if for each state spi = (sLi , s
R
i ) appearing

in any trace generated by a x on Cp starting from states (sL, sR) where sL ≈sec sR, H allows
spi , i.e., spi |= H.

We define Cp to have a non-deterministic ϵ transition from the initial state (sinit, sinit)
to all states (sL, sR) where sL ≈sec sR. If an inductive invariant H for this Cp exists within
our predicate language, Sorcar will find said H. This H is precise: the state (sinit, sinit)
is safe and allowed by H, and furthermore, by the definition of an inductive invariant, H
should allow all safe states reachable through successive applications of 7→a ∀a ∈ Σ+, as
otherwise it would violate the inductive property of H.

ConjunCT constructs a precise invariant. Recall that we start the analysis described
in Section 2.5 from a symbolic start state, S0, that captures all states (sL, sR) where sL ≈sec

sR. Therefore, every positive example collected from the bounded analysis has the state
S0 as the prefix. Allowing S0 into H is equivalent to allowing all pairs of states (sL, sR)
where sL ≈sec sR into H. As we allow all valid start states into H, it follows from the above
argument that the inductive invariant synthesized by ConjunCT is also precise. Hence, as
long as the set of positive examples is complete, i.e., covers all safe instructions as ∈ Σ+, the
synthesized invariant is precise.

Caveat / Source of Imprecision. Since the bounded analysis in Section 2.5 may be
imprecise when attributing blame to an instruction (Section 2.5.1.1) the resulting subset of

safe instructions, Σ̂+, may be non-maximal, i.e., Σ̂+ ⊆ Σ+. As a result, the derived invariant
may also be imprecise in the same way, e.g., if Σ̂+ excluded a safe instruction as ∈ Σ+ due
to the above mentioned imprecision then H will not allow any states in the execution of
as. Or in other words, the states in the execution of as are false positives. We leave better
attribution of blame to future work.

Lastly, we note that in our evaluations, we never encounter the case where the composition
of potentially safe instructions results in unsafe behavior. Therefore, the analysis does not
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suffer from a loss of precision described in Section 2.5.1.1, and so Σ̂+ = Σ+, and the derived
invariant is indeed precise.

2.8 Evaluation

We now evaluate an implementation of ConjunCT on several RISC-V microarchitectures,
reporting on analysis time, annotation effort and statistics related to the constructed in-
variants / per-design safe instruction sets. The end of the section provides two case studies.
First, we show how the minimized invariant produced by ConjunCT can be used to localize
where in a design an unsafe optimization is implemented. Second, we show how ConjunCT
can be used to co-design safe but performant microarchitecture.

2.8.1 Implementation and Methodology

Framework. We implement ConjunCT in Python and Racket. ConjunCT is currently
implemented in about ∼ 6000 lines of Python and is responsible for parsing the design
in Verilog, converting Verilog to our internal DSL (to symbolically evaluate in Racket),
performing optimizations, computing the product program, generating test harnesses, and
instrumenting the code. Additionally, we implement all of our symbolic analysis and invariant
learning in Rosette [202], a DSL to build solver-aided tools in Racket, in about ∼ 6000 lines
of Racket. ConjunCT uses specifications from the official RISC-V repository [173] for
instruction encodings. Annotations are described in a separate file.

Experimental Setup. We ran all our evaluations on a standard desktop machine equipped
with 16GB of memory and an Intel i5-9500 with 6 cores running Ubuntu 18.04. We use
CVC5 [20] as the SMT solver in all our experiments. We obtained the open-source de-
signs from their official repositories and processed them through yosys [223], e.g., flattening
modules, performing basic optimizations etc., before pairing them with ConjunCT.

Evaluated pipelines. We evaluate ConjunCT on three pipelines (summarized in Ta-
ble 2.2) of varying complexity. We do not currently analyze the data cache, since non-memory
instructions do not interact with the data cache, but this choice was not fundamental.

All three pipelines (V-Scale [204], Ibex [141], RocketChip [18]) are single-issue in-order
cores, with 2, 3 and 5 pipeline stages, respectively. For Ibex, we evaluate the small con-
figuration; for RocketChip the DefaultRV32Config configuration. We note, the small Ibex
configuration is the default and only formally-verified configuration. We modified all three
cores to only use uncompressed instructions. V-Scale and Ibex use the RV32IMC ISA subset;
RocketChip uses the RV32 ISA subset.
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# Pipeline # Annotations
Stages # Regs # Wires O S R P A

VScale 3 1,080 11,186 1 1 1 0 0
Ibex 2 2,013 40,306 1 2 2 1 1
RocketChip 5 2,091 54,461 1 2 1 4 0

Table 2.2: Complexity of designs under analysis. The right half of the table shows the number
of annotations (by type) needed to begin the ConjunCT analysis: (O) Setting the observation
variable, (S) Setting the instruction source, Marking (R) the register file and (P) program counter
register; finally: (A) any additional annotations. # Regs denotes the number of Verilog reg bits
assigned inside clocked ‘always’ blocks. We note, this may under count the true number of flip-
flops/registers, as some registers can manifest due to code outside of clocked blocks.
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Figure 2.4: Performance of Bounded Analysis (Section 2.5). Steps correspond to clock cycles.

Predicate Discovery Greedy
Eq Impl Total Time Eq Impl Total Time

VScale 161 995 1,156 10m 60 8 68 +25m
Ibex 812 0 812 4m 84 0 84 +44h
RocketChip 326 2,906 3,232 7h 235 616 851 +3h

Table 2.3: Evaluation of Invariant Learning. Eq, Impl denote the number of each type of predicate
needed to construct the invariant (of size Eq + Impl). Time taken by greedy is in addition to the
time taken for predicate discovery.
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2.8.2 Quantitative Evaluation

Performance of ConjunCT. We now evaluate ConjunCT in terms of analysis time and
memory usage, as a function of the design complexity. Figure 2.4 shows the scalability of our
bounded analysis for each design. We run the bounded analysis on each of the three designs
for an increasing number of cycles. Figure 2.4 (left) plots the log of mean execution time vs.
a bound on analysis steps (cycles). The execution time of the analysis scales exponentially
with the number of steps, with more complex designs starting off with a higher time. All
executions were set to have a maximum timeout of four hours.

The number of bounded analysis steps needed to derive the invariant for the designs we
evaluated was 5, 3, and 6 steps, respectively. This took on the order of minutes to run for all
designs. For illustrative purposes, we show how runtime scales beyond this: The symbolic
execution was able to explore up to steps 9, 8, and 12 for VScale, Ibex and RocketChip,
respectively, before the timeout was reached.

It is interesting to note that by step 9, the analysis time of the simpler VScale design
actually exceeds that of the more complex RocketChip. At each step of the bounded analysis,
symbolic expressions are generated from values and expressions stored in the state elements
from the previous step. Hence, as the number of steps of the analysis grows, these expressions
also grow in complexity making them more difficult to solve. The rate of growth of this
expression complexity is not just a function of the number of state elements in the design,
but also of how the state elements are connected and used.

Figure 2.4 (right) shows peak memory as a function of analysis depth. The memory used
by the analysis scales linearly with the number of steps on all three designs, with the more
complex designs consuming more memory. In all cases, the memory usage was moderate and
within what’s typically available on today’s desktop machines (< 3GB).

Annotation Effort and Complexity. All three designs required minimal annotations
(< 9) for the full ConjunCT flow (both the bounded analysis and invariant learning phases).
We show this annotation effort in the right half of Table 2.2. All designs require us to anno-
tate the observation variable (O), instruction source (S), and the register file (R). In addition,
Ibex and RocketChip required us to annotate the state elements holding the program counter
(P) to ensure that the PC is aligned. Lastly, Ibex required us to add one more annotation
to eliminate an invalid start state in the load-store unit (LSU) that led to safe instructions
in the design being flagged as unsafe, but through invalid counterexamples.

For the most part, annotation effort is straightforward. The annotations for (O), (S),
(R), and (P), involve identifying registers corresponding to the key structures found in all
hardware designs. The only annotation that needed significant effort was the 1 (A) annota-
tion for Ibex. The (A) annotation required debugging and understanding the false-positive
counterexamples so as to identify the root cause that led to the unreachable initial state.
After identifying the root cause, we had to carefully constrain the initial state to eliminate
the unreachable states without removing any reachable states. This entire process took less
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and andi xor xori or ori sll sra srl add addi sub mul mulh mulhu mulhu mulhsu div divu rem remu ecall ebreak

VScale ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ibex ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✓ ✓

RocketChip ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

lb lh lw lhu sb sh sw lbu lui slt sltu slti jal jalr beq bge bgeu bge bltu blt bne fence auipc

VScale ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓

Ibex ✓ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓

RocketChip ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓

Table 2.4: Table showing the set of safe and unsafe instructions on three open-source designs:
VScale, Ibex, and RocketChip. ✓ represents that an instruction is safe on the microarchitecture
while a ✕ denotes that an instruction is unsafe.

than 1 day for a graduate student.

Learnt Invariant Statistics. ConjunCT was able to synthesize an invariant for all three
designs, the statistics for which are shown in Table 2.3. For all three designs, we invoked
predicate discovery (Section 2.6.3) to generate a set of Impl predicates necessary to learn an
invariant. We show results for both the invariant synthesized by predicate discovery and the
Greedy predicate minimization strategies (Section 2.6.4).

For all designs except Ibex, Impl predicates were necessary to synthesize an invariant.
Using predicate discovery, the invariants of V-Scale, Ibex, and RocketChip have 1,156, 812,
and 3,232, predicates respectively. Using the greedy-ConjunCT minimization strategy
(Section 2.6.4), we were able to significantly reduce the number of predicates per invariant
for V-Scale and Ibex. For RocketChip we failed to derive an invariant using the greedy-
ConjunCT strategy even after 2 weeks of running. Hence, we fallback to a softer version
of the greedy minimization strategy (described in SORCAR), greedy-frozen, and force a
new predicate to be added to the invariant in every iteration of learning. This converges
relatively quickly (in a polynomial number of examples) and generates an invariant with 851
predicates.

2.8.3 Security Properties / Security Evaluation

Next, we analyze the set of safe and unsafe instructions as identified by ConjunCT. Ta-
ble 2.4 shows which instructions are safe in each design. We manually analyzed each design
to understand root causes and validate that the instructions identified as safe are actually
safe. We also validated our result on Ibex against a related work UPEC-DIT (Section 2.9),
and found the two to be in agreement (with one exception—see below).

On V-Scale, all instructions that we tested, except for branches, are safe. Branches on
V-Scale stall for a cycle if the branch is taken vs. if the branch is not taken as the next
fetched instruction needs to be flushed and fetched again. As the conditional to the branch
is a secret, an attacker who can observe the retirement time for the branch can learn if the
secret predicate evaluated to true or false.7

7We note that aside from the above timing disturbances, branches are generally considered unsafe because
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rsL ̸= rsR =⇒ mem ctrl branch ̸= 1

Figure 2.5: Example of a predicate in the RocketChip invariant. Register names have been changed
for readability. The LHS specifies a register that can conditionally hold a secret and the RHS
describes the condition. rs is the input source register to the execute stage of the pipeline. In this
example, rs can hold a secret if the control signal mem ctrl branch is not set. This is intuitive
as branches are unsafe and acted on in the execute stage.

Similarly, branches are unsafe on Ibex for the same reason. Additionally, branches are
unsafe also due to misaligned targets: when the branch target is misaligned, Ibex needs to
perform two fetches from memory instead of one, thereby taking an additional cycle. Most
loads and stores, with the exception of lb and sb, are unsafe for the same reason: performing
an unaligned load or store causes the processor to make two aligned requests instead of one,
thereby influencing the load/store’s retire time. As lb and sb deal with a single byte there
is no misalignment. Therefore these variants of the instructions are safe.8 Recall, we are not
currently modeling cache (Section 2.8.1), so there are no cache-based attacks (Section 2.3)
to render lb/sb unsafe. Lastly, Ibex implements div/divu and rem/remu in a non-constant
time way as a division by zero completes in 1 cycle, while all other divisions take 37 cycles.

Lastly, on RocketChip all branch and memory instructions are unsafe for the same reason
as on the other cores. The multiply and divide instructions turn out to be safe because in the
default configuration they are unrolled for a minimum of 8 cycles before optimization (and
since no mul/div takes > 8 cycles, these instructions for this parameterization of RocketChip
are safe).

2.8.4 Case-Study: Analysis of RocketChip Invariant to Perform
Root Cause Analysis

The derived invariants contain a treasure trove of information regarding the root cause of
unsafety in the design. However, understanding the invariant is non-trivial as it contains a
large number of predicates, e.g., the invariant for RocketChip has more than 850 predicates.
This creates a needle in a haystack problem as most predicates do not point to root causes
of unsafety but, rather, are required to block states that will eventually lead to unsafety.
We leave a more systematic exploration of the invariant to future work, but report here
encouraging best-effort results that show how the invariant can be helpful in localizing where
in the microarchitecture an unsafe optimization is implemented.

they change the the number of dynamic instructions in the program’s execution. Our analysis does not
consider this fact, but can be easily changed to by adding the PC register to the set of observation variables.

8We note that UPEC-DIT does not break instructions down by data width, and thus finds that loads/-
stores of all widths are unsafe.
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We analyze the RocketChip invariant. To derive useful information, we focus our at-
tention to the Impl-type predicates exclusively as they provide instruction-specific causal
information in the form of: “state element X cannot hold secret values when state element Y
is associated with a specific unsafe instruction.” An example of such an Impl-type predicate
found in the RocketChip invariant is shown in Figure 2.5. We started by grouping predicates
based on the registers that appear on the LHS of the Impl predicates. By the semantics of
Impl, these registers can conditionally hold secret data (Section 2.6.1). We found that across
all (616) Impl-type predicates, there were only 8 distinct registers that appeared on the LHS:9

• (A, B, C) 3 registers that make up the rs (register source) in the Execute stage.

• (D) 1 register that stores data to be written back to memory.

• (E) 1 register that stores data to be written back to the register file.

• (F, G, H) 3 registers related to the divide unit: remainder, quotient, and a state register
storing the current operation’s running cycle count.

We now discuss when Impl predicates indicate that these registers are allowed to hold
secret data.

(A, B, C) cannot hold secret data when an unsafe instruction (Table 2.4) is executing.
More specifically, (A) cannot hold secret data when any of the control signals corresponding
to an unsafe instruction-type is set (mem ctrl {branch, div, fp, jalr, mem}), and (B,
C) cannot hold secret data when the executing instruction is a load or a store. This infor-
mation is intuitive and useful: unsafe optimizations in RocketChip are implemented in the
execute stage and the rs register is an input to the execute stage.

(D) cannot hold a secret when a CSR/system instruction-type is set (mem ctrl csr) or
when the executing instruction is a load or a store.

(E) is not allowed to hold secret data when control signals related to CSR (control status
register) writes are set. This was surprising to us as we did not consider system instructions
related to the manipulation of the CSR in our analysis. That said, most system instructions
that manipulate the CSR are unsafe. To derive an invariant, we need to eliminate all
sources of unsafety, including the flow of secrets into the CSRs or any other instruction not
included in the analysis. This highlights the power of predicate discovery (Section 2.6.3)
in automatically finding Impl that are crucial to blocking out unsafety without the need for
expert analysis or annotations.

Finally, why (F, G, H) cannot (conditionally) hold secret data requires more explanation.
Recall, our earlier results reported that the division instructions in RocketChip are safe
(Table 2.4). In that case, why would there be Impl constraints on (F, G, H), which are
registers that are part of the division unit? We found that this is because the divide unit
in RocketChip is not truly constant-time, but rather just constant time for the ISA subset

9The names of registers have been simplified/annotated to ease presentation.
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(RV32) that we evaluate. ConjunCT synthesizes Impl constraints to properly initialize the
divide unit and reflect that for this ISA subset, it is safe.

In more detail: By default, RocketChip’s divide unit always unrolls divisions for 8 cycles.
Therefore, any division that takes less than or equal to 8 cycles will always take 8 cycles.
As we are evaluating RocketChip parameterized to operate on RV32, division on any two
32-bit values can be completed within 8 cycles, and hence are constant-time and safe. The
invariant needs to capture this fact. Because the three values, count, divisor, and remainder,
are unconstrained and can take any value during invariant learning, including unreachable
values that imply a > 8 cycle operation, additional predicates are required on these variables
to disallow variable-timing behavior of the divide unit. To prevent the secret values from
affecting the retire register, the invariant disallows the above registers from holding secrets
when the state of the division unit is either s div (start of division) or s div ready (end
of division).

In addition to all of the above predicates, there are various other predicates that prohibit
exceptions under certain conditions.

2.8.5 Case-Study: Computation Reuse

Lastly, we show how ConjunCT can help microarchitects evaluate the security impacts
of their proposed optimizations (echoing Section 2.3). For this case study, we implement
computation reuse, an advanced microarchitectural optimization that memoizes the result
of an expensive instruction in case it is called with the same operands twice [192]. This is
an interesting optimization to study as it is typically implemented as a part of the pipeline’s
instruction decode (ID) logic [209, 192]. Hence, it illustrates the need to audit the entire
pipeline rather than just the execution units.

Sodani et al. [192] describes two different schemes to implement computation reuse.
Scheme (i) looks up the memoization (reuse) table by instruction opcode and operand value.
Scheme (ii) looks up the reuse table by instruction opcode and operand register id. Both
schemes update the table (add/update a table entry) when an instruction executes that is a
candidate for memoization. Since it’s possible for Scheme (ii) to have false hits, it needs to
be flushed when an instruction writes to a register whose id is present in the table.

Interestingly, Sodani et al. [192] find that both of the above schemes improve perfor-
mance. Even more interestingly, as noted by Vicarte et al. [209], they (intuitively) have
different security implications: Scheme (i) can create new unsafe instructions because it
skips instruction execution in an operand value-dependent way. Scheme (ii), on the other
hand, cannot: it skips execution only as a function of register id (which is usually considered
non-secret, e.g., in the constant-time programming setting).

We implemented the above two reuse schemes in Ibex [141], which consists of instruction
fetch (IF) and instruction decode/execute (ID/EX) stages. On this pipeline, most instruc-
tions complete the ID/EX stage in 1 cycle. Several others require multiple cycles: (a) mul

/ mulh take 3/4 cycles to complete, and (b) div / rem take either 1 cycle (when there is a
divide by 0) or 37 cycles to complete.
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We implement both reuse schemes as a part of the ID/EX stage (conceptually as a part
of the ID stage and before the EX stage), optimizing the above multi-cycle instructions. In
both schemes, reuse table hits immediately return and forward the result (in a single cycle).
The instruction executes normally, otherwise. For our proof-of-concept implementation, we
set the reuse table to contain only a single entry, and hence, both schemes only memoize the
latest mul / div / rem computation. We tested our implementations for both correctness
(did not produce incorrect results) and “performance-functionality” (i.e., the optimization
saves cycles as expected).

We evaluated ConjunCT on both schemes. For Scheme (i), ConjunCT correctly iden-
tifies during the bounded analysis (Section 2.5) that the mul-family of instructions (which
were safe without the optimization added) are now unsafe. It also identifies that div/rem

instructions are unsafe, although these instructions were already unsafe on Ibex. Finally,
ConjunCT correctly identifies that Scheme (i) doesn’t render any other safe instructions
unsafe. For Scheme (ii), mul instructions continue to remain safe, div/rem remain unsafe,
and other instructions are not affected. This also matches expectations. To complete the
evaluation, we ran invariant learning (Section 2.6.2) to derive an invariant that proves un-
bounded safety/unsafety of all instructions on both designs. This showcases ConjunCT
in action: ConjunCT is capable of advising microarchitects on when novel performance
optimizations create novel security issues in a design.

2.9 Related Work

We compare to related works on three axes. (R1): whether the analysis is sound wrt. the
safety property, i.e., it does not miss any safety violations (have false negatives). (R2):
whether the analysis is precise, i.e., does not flag states/instructions that are safe to execute
as unsafe (have false positives). Finally, (R3): the proposal’s degree of automation, i.e.,
whether it requires heavyweight annotations, or require a human-in-the-loop. ConjunCT
achieves all three goals. Invariant learning enables R1 (Section 2.6) and R2 (Section 2.7.2).
Predicate discovery (Section 2.6.3) and our approach using synthesis (Section 2.5-Section 2.6)
empirically enables analysis with very few expert guidance/annotations (Section 2.8). How-
ever, we do acknowledge that ConjunCT may require more annotations to achieve precision
for larger, more complex designs.

The closest work to ours is UPEC-DIT [58], which is a nascent proposal for identifying
which instructions are safe/unsafe in a microarchitecture. UPEC-DIT can be viewed as a
simplified version of our bounded analysis Section 2.5: it does not satisfy (R1), as their
analysis is bounded and hence not sound (although this restriction is lifted in a follow-up
work that is concurrent to ours [57]). It also does not satisfy (R3), as it requires a human-
in-the-loop to analyze counterexamples and add annotations during each iteration of the
analysis. Similarly, prior work such as Iodine [93] (and its follow-on Xenon [94]) do not
satisfy (R2): it is capable of discerning whether an entire design is “constant time”, but not
with respect to different instructions (and would therefore conclude that every instruction is
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unsafe in our setting). Iodine also does not satisfy (R3) as it requires a human-in-the-loop
to identify secrecy assumptions.

Finally, concurrent work by Wang et al. addresses the problem of verifying leakage
contracts [219] using invariant synthesis. This work is closely related to ConjunCT. For
example, the contracts I, B, M, O (on Ibex) corresponds to ConjunCT finding branch, mem-
ory, and mul/div/rem instructions unsafe. That said, their work is solving a different (while
adjacent) problem to ours. Their work requires designers to write microarchitecture-specific
leakage contracts in Verilog. By contrast, ConjunCT starts with no apriori knowledge of
any contracts, i.e., what instructions might leak, and instead tries to deduce this information.
In their terminology: our Phase 1 (Section 2.5) can be viewed as inferring likely contracts,
i.e., the set of safe/unsafe instructions. Our Phase 2 (Section 2.6.2) then proves that the
inferred likely contracts are actual contracts. This, when the problem at hand is determining
the safe instruction set (Def. 2.4.6), requires significantly lower annotation burden. Lastly,
their work does not scale to instructions that need many cycles to complete, e.g., like div

which requires 37 cycles, while ConjunCT has no such limitations.
There is rich literature in using symbolic execution [181, 97, 143, 31], fuzzing [28, 96,

237, 95], and a combination of these techniques to find bugs in both hardware and software.
While these techniques are useful in finding bugs in practice, they cannot perform verification
to prove absence of bugs or derive specifications, which is the subject of this work. In theory,
ConjunCT can use these advances in bug-finding techniques, with different soundness and
scalability trade-offs in the bounded-analysis phase. This is an interesting future direction
for research.

2.10 Conclusion

This work presented ConjunCT, a proof-of-concept framework/automated analysis that
(given an input microarchitecture and low designer annotation burden) determines which
instructions are safe in unbounded composition. The key finding is that with a modest
family of predicates it is possible to synthesize inductive relational invariants for today’s
microarchitectures that are capable of discerning safe from unsafe instructions. We view
ConjunCT as a starting point. Longer-term, we see ConjunCT-like analyses being used to
synthesize security-centric contracts for other secure programming patterns (such as writing
programs with balanced branches and spatially isolating computation).

2.11 Security Proof of ConjunCT

In this section, we will prove that the set of safe instructions, Σ̂+, output by ConjunCT
satisfies the Constant-Time Safe Instruction Set definition CT-SISP(O) (Def. 2.7.1).

For the purposes of the proof, consider ConjunCT to be composed of two black boxes,
corresponding to Phase 1 (Section 2.5) and Phase 2 (Section 2.6) of the analysis. Phase 1
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proposes a set of candidate safe instructions Σ̂+, and Phase 2 learns an inductive invariant
to prove that there does not exist a composition of said set of instructions that violates the
ConjunCT 2-safety property. With that in mind, we can state the main theorem:

Theorem 1. The set of safe instructions output as Σ̂+ by ConjunCT satisfies CT-SISP(O)
(Def. 2.7.1).

Proof. To start, suppose Hind is a final inductive invariant output by Phase 2 given
candidate safe set Σ̂+ (generated, perhaps, by Phase 1). By definition of an inductive safety

invariant, if we start from a state S |= Hind, any number of applications of ⇝a, a ∈ Σ̂+ will
only reach states that satisfy Hind and all such states are safe.

With the above in mind, to prove the theorem, it is sufficient to show that Hind does not
contain any predicates that constrain safe instructions from reading secrets from the state
elements corresponding to the architectural register file (the ARF). By definition of Hind,
this is equivalent to saying that the ARF emits secret data, i.e., ARF data is not constrained
between the L and R sides of the product program construction, which matches the semantics
and choice of R in Def. 2.7.1.

To show that state elements in the ARF are left unconstrained in Hind, consider the
following. Any invariant needs to satisfy the base case, i.e., allow all positive examples. The
set of positive examples read secret data from R, i.e., R may be different between the L and
R executions of said positive examples. This means:

• Hind cannot contain Eq on state elements in R.

• Hind also cannot contain any Impl predicates that prevent safe instructions from ac-
cessing secret data as such a predicate would not be satisfied by a positive example.

This concludes the proof: We showed that Hind does not constrain the ARF for safe
instructions, and the semantics of Hind are that any evolution from said unconstrained-ARF
data does not create a safety violation.

Note that the above argument holds for any choice of O and regardless of the microarchi-
tectural details of the design D. For example, whether D features bypass paths (Figure 2.1),
out-of-order/speculative execution, etc. In all cases, the annotation burden needed to specify
R to satisfy Def. 2.7.1 is just to specify the ARF.

Discussion: Non-termination. Now that we know that any safe set output by Phase 2
as Σ̂+ always satisfies our definition, let’s look at Phase 1. Phase 1 is integral to ConjunCT:
it proposes different sets of candidate safe instructions which are then checked by Phase 2
(Phase 2 cannot identify a set of safe instructions by itself). If the set proposed by Phase
1 can create a composition of instructions which is unsafe, it will be rejected by Phase 2.
A bad Phase 1 will cause ConjunCT to go around the Phase 1 ⇆ Phase 2 loop multiple
times. This loop may not terminate, e.g., if Phase 1 never proposes a correct safe set.

There is no way to prove that our Phase 1 will produce a safe set. At present, our Phase
1 is a heuristic that works well in practice. For example, our current Phase 1 implementation
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only releases secret data architecturally once for the instruction under test, and never again.
This design helps the analysis scale, and was useful in identifying individual unsafe instruc-
tions. That said, this design will likely not be able to discover unsafeness that manifests
due to interactions between multiple sources of secret data (since secrets are emitted only
once in Phase 1). Such a case might result in the Phase 1 ⇆ 2 loop not terminating. We
emphasize, however, that it will never lead to Phase 2 producing an unsafe invariant. That
is, Theorem 1 holds for all Phase 1 implementations.
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Chapter 3

H-Houdini:

Scalable Invariant Learning

The analysis developed in ConjunCT (Chapter 2) does not scale to large Out-of-Order (OoO)
designs: it takes 8 hours to verify Rocketchip, and worse, its runtime grows exponentially with
design size. Even state-of-the-art industrial verification tools fail to scale when proving SISP
on larger designs.

This chapter introduces a new invariant learning algorithm, H-Houdini, that enables scalable

verification for large designs. We implement H-Houdini in a tool called VeloCT, a suc-

cessor to ConjunCT for proving SISP. Concretely, VeloCT achieves a 2880× speedup over

ConjunCT and, for the first time, verifies security properties on large designs like BOOM,

with runtimes ranging from 6 minutes to 3.3 hours. H-Houdini is the key technical ad-

vancement that enables the central vision of this dissertation: automatically deriving security

specifications for real-world processors and applying them in tools like SynthCT (Chapter 4).

This chapter addresses Challenges: (C2).

Formal verification is a critical task in hardware design today. Yet, while there has
been significant progress in improving technique automation and efficiency, scaling to large
hardware designs remains a significant challenge.

We address this challenge by proposing H-Houdini: a new algorithm for (mostly) push-
button inductive invariant learning that scales to large hardware designs. H-Houdini com-
bines the strengths of Machine Learning Inspired Synthesis (MLIS) and SAT-based Incre-
mental Learning. The key advance is a method that replaces the monolithic SMT-style
checks made by MLIS with a carefully-constructed hierarchy of smaller, incremental SMT
checks that can be parallelized, memoized and reassembled into the original ‘monolithic’
invariant in a correct-by-construction fashion.

We instantiate H-Houdini as VeloCT, a framework that proves hardware security
properties by learning relational invariants. We benchmark VeloCT on the ‘safe instruction
set synthesis’ problem in microarchitectural security. Here, VeloCT automatically (with
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no expert annotations) learns an invariant for the RISC-V Rocketchip in under 10s (2880×
faster than state of the art). Further, VeloCT is the first work to scale to the RISC-V
out-of-order BOOM and can (mostly-automatically) verify all BOOM variants (ranging from
Small to Mega) in between 6.95 minutes to 199.1 minutes.

3.1 Introduction

Formal verification is a well-recognized bottleneck in hardware design today. Further, one
can expect this bottleneck to worsen into the future as design complexity further increases,
design time cycles further decrease [119], and the set of properties to be verified further
increases (e.g., due to the rise of hardware security vulnerabilities [125, 137]).

At a high level, automated verification procedures consist of an interplay between two
components: (i) an algorithm that proposes invariants or partial invariants to prove a prop-
erty, and (ii) off-the-shelf verification engines that check the proposed invariants. While
the past several decades have seen remarkable progress in this direction (e.g., [82, 157, 146,
29, 66, 116, 98]), it still faces scalability challenges when attempting to automatically learn
invariants for and verify large designs.

This chapter considers scalability challenges for a popular verification paradigm called
Machine Learning-based Invariant Synthesis (MLIS)1 [40, 243, 87, 73, 82, 157, 77, 67]. MLIS
approaches, such as the famous Houdini [82] algorithm and Sorcar [157], frame invariant
learning as an interaction between a learner and a teacher. The learner attempts to learn
an invariant using examples provided by the teacher.

MLIS algorithms come with a number of positive attributes. Broadly, they enable a
“kitchen sink” approach to verification. That is, designers can freely add predicates that
might be useful in finding an invariant, and unneeded predicates cannot cause a failure if an
invariant exists in the current predicate abstraction. They also feature several mechanisms
that can shrink the invariant search space. First, invariants that are found are restricted
to the given predicate abstraction. Properly chosen, a predicate abstraction will be able
to describe the invariant yet also imply a small (or at least tractable) universe of possible
invariants. Second, learning is bootstrapped through the use of positive examples (similar to
example-answer pairs in supervised learning), which further constrain the invariant search
space to just those invariants consistent with at least the positive examples.

Yet, MLIS still faces significant scalability challenges because it assumes the problem un-
der verification is a black box, i.e., does not leverage the problem’s structure. Consequently,
each query to the teacher to generate an example is computationally expensive, e.g., an SMT
query over the set of all predicates.

By contrast, SAT-based approaches, such as IC3/PDR [29, 66], assume the system is
white box and can exploit problem structure to perform much cheaper, ‘relative’ checks that
incrementally eliminate bad states. This results in cheaper SMT queries, but without the
aforementioned other benefits of MLIS algorithms.

1aka. inductive learning
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This chapter therefore asks a natural question: Can we design an algorithm that blends
the advantages of the MLIS learners with the ability to perform cheaper incremental checks
from white box SAT-based approaches? Would such an approach scale significantly better
than existing MLIS approaches?

This Chapter. We answer the above question in the affirmative by presenting H-Houdini.
Relative to SAT-based learners, H-Houdini uses an expert-informed predicate abstraction,
a mechanism to guide predicate selection and positive examples to dramatically shrink the
invariant search space. Relative to MLIS learners, H-Houdini uses incremental (white
box) SMT queries to dramatically decrease the time to search through the (now shrunken)
invariant search space.

At the heart of H-Houdini is a way to soundly decompose the process of learning an
inductive invariant into smaller incremental pieces that compose together at the end to form
a complete inductive invariant that proves the target property. Each of the above smaller
pieces can be proven inductive using a more efficient relative inductive check. Once all of
the pieces are checked, the composition guarantees a correct invariant by construction and
the ‘monolithic’ invariant and property never needs to be checked directly.

For example, consider a two-input AND gate in the context of
a larger digital system, whose inputs (B and C) and output (A)
are clocked state elements. If the target property is a predicate
that requires the output hold a 1, i.e., A = 1, it is sufficient to
require that the final invariant include predicates that constrain
the inputs to also be 1, i.e., B = 1 and C = 1. To be induc-
tive, this may require that we recursively add predicates to state
elements in the cone of influence of each input: the value of C
is dependent on D and E, so what should the conditions on D
and E be such that C will be 1? And so on. By verifying the
inductivity of each level of predicates locally, we prove that the
overall invariant (the set of all added predicates) is inductive.

?

B C

D E

?

A = 1

Aside from featuring more efficient checks, this approach features a high degree of paral-
lelism, opportunities for memoization and search-space pruning via positive examples. Re-
turning to the above example, synthesizing what predicates are required during the recursion
on each input state element can be done in parallel. If a predicate is inconsistent with a
positive example, it need not be considered. Once a predicate is either removed or proven
inductive, it need not be re-proven. That is, if two cones of influence overlap, the overlap
need only be analyzed once.

Application to secure hardware verification: VeloCT. We instantiate H-Houdini
to solve an important problem in hardware security called the safe instruction set synthesis
problem (SISP) [61, 75, 57, 60, 83]. We call the resulting analysis tool VeloCT.

Verifying the SISP enables portable and secure constant-time programming on modern
processors. Constant-time programming is a ubiquitous paradigm for writing code that
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is safe from timing attacks [126, 23, 39, 234, 37]. The idea is to write a program using
only ‘safe’ instructions, where a safe instruction’s execution time does not depend on its
operands. Then, by composition, the program’s execution time is not a function of its inputs.
Unfortunately, this paradigm is difficult to follow today because processors may each employ
different software-invisible optimizations that turn different sets of instructions into operand
timing-variable instructions. For example, a multiply instruction may be equipped with a
‘skip-on-0’ feature. Safe instruction synthesis addresses this issue by analyzing input RTL
and determining (synthesizing) the set of safe instructions given that RTL.

Prior work [61] on automated invariant learning for the SISP is based on the MLIS al-
gorithm Sorcar (which improves Houdini’s performance by making it property directed).
It thus faces the scalability issues described earlier. Specifically, the authors report that
learning an inductive invariant for the open-source (in-order) RISC-V Rocketchip core took
8 hours, and were unable to scale to out-of-order cores such as RISC-V BOOM. We experi-
mentally verified that Sorcar-style (monolithic) SMT queries did not scale to BOOM.

We use VeloCT to address these scalability issues. Using VeloCT, we are able to
learn an invariant for Rocketchip with no expert annotations in under 10 seconds—a 2880×
speedup over prior work. Further, with modest expert annotations, we are able to learn
invariants for all variants of BOOM (from SmallBOOM to MegaBOOM) in between 6.95
minutes and 199.1 minutes. We verify that the safe sets generated by VeloCT are consistent
with prior work.

3.2 Contributions

To summarize, we make the following contributions:

1. We propose H-Houdini, a scalable invariant learning algorithm that enables MLIS to
use incremental, parallel SMT checks.

2. We propose VeloCT, an instance of H-Houdini that enables scalable safe instruction
set synthesis given RTL as input.

3. We evaluate VeloCT on open-source processors. On the in-order Rocketchip core
(10K state bits), we learn an invariant in under 10 seconds—a 2880× speedup over
prior work. Our analysis is the first to be able to automatically learn invariants for the
out-of-order BOOM core. Ranging from SmallBOOM (48K state bits) to MegaBOOM
(133K state bits), invariant learning takes between 6.95 minutes and 199.1 minutes.

VeloCT is open source, and can be found at [63].



3.3. BACKGROUND & MOTIVATION 45

3.3 Background & Motivation

3.3.1 Terminology

We now formally setup the invariant synthesis problem.

Definition 3.3.1. Transition System (TS): We denote a transition system TS by a 3-tuple
(S, T, s0); where S is the set of all states, T : S× S is the transition relation, and s0 ∈ S is a
special initial state. Let each state s ∈ S be made up of state variables with identifiers in V.

For explanatory purposes we assume that the TS is a hardware circuit. The transition
relation T is equivalent to simulating the circuit for 1 cycle, and each state s ∈ S is a mapping
from identifiers in V (e.g., registers) to concrete values.

We are interested in proving a property P on the transition system TS, e.g., a safety
property to show TS does not reach any Bad states starting from the initial state s0. One
way to do this to to derive an inductive invariant H that proves P holds forever on TS.
Intuitively, one can think of any invariant I as forming a set of states. We can test for set
membership of a state s , denoted by I(s): I(s) is true iff s ∈ I. Then, an inductive invariant
H is a set that is closed under the transition T and ensures that for any s , if H(s) is true
then P(s) is also true. Framing this intuition formally:

Definition 3.3.2. Inductive Invariant (H): H is an inductive invariant for a property
P on TS if the following three conditions hold. (i) Initiation: H(s0), (ii) Consecution:
∀ s , s ′ ∈ S: H(s)∧ T (s , s ′) =⇒ H(s ′), and finally, (iii) P holds: ∀ s ∈ S: H(s) =⇒ P(s).

For brevity we will use H =⇒ H′ as a shorthand to denote the consecution check on
H, leaving out quantifiers and the transition relation. Similarly, we will use a shorthand of
the form H =⇒ P to denote ∀ s ∈ S: H(s) =⇒ P(s), leaving out the quantifiers when
the context is clear.

Definition 3.3.3. Invariant Synthesis Problem: Given a transition system TS and a
property P, synthesize an inductive invariant H to prove P or return None to indicate that
no such H exists.

In the above definitions, we use the concept of monolithic induction to describe the
consecution requirement (ii). However, induction can also be applied incrementally through
relative induction, whose concepts are defined below.

Definition 3.3.4. Relative Inductivity: We say H is relatively inductive to G if G ∧
H =⇒ H′. Notice that if we set G to true, then relative inductivity reduces to the well-
known monolithic inductive query. These relative inductive queries are a crucial part in
making SAT-based invariant learning algorithms like IC3/AVR incremental.

Definition 3.3.5. Abduct (A): Consider a formula of the form H =⇒ H′ that does not
hold initially. We define an abduct A, the result of an abductive query [166], as a formula
that “fixes” the above implication, i.e., A ∧ H =⇒ H′ holds and A is non-contradictory
with H.



3.3. BACKGROUND & MOTIVATION 46

Remark. A∧H is non-contradictory if ∃x, x |= A∧H. This is to ensure that the implication
is not vacuously true.

3.3.2 Machine Learning-based Invariant Synthesis

Machine Learning-based Invariant Synthesis (MLIS) frames the problem of learning an in-
variant as an interaction between a teacher and a learner, much like a machine learning
problem. The learner (who does not see TS) has to learn an invariant based on the exam-
ples returned by the teacher (who does see TS). An example can be of three types: (i) A
positive example that the proposed invariant needs to allow, (ii) A negative example that
shows that the invariant allows a Bad state, or (iii) An implication example that shows why
the invariant is not inductive. The algorithm proceeds in rounds where the learner uses the
counterexamples to refine and propose better invariants in subsequent rounds.

3.3.2.1 Houdini overview

Next, we review the most popular MLIS algorithm: Houdini [82]. Houdini takes as inputs
the set of all predicates P, a set of positive examples E , and a property of interest P and
outputs either an invariant H if successful, or None if it fails. A predicate p is a formula in
first-order logic over a subset of variables Vp ⊆ V. Given a state s , p will evaluate either
evaluate to True, denoted by s |= p or False denoted by s ̸|= p.

Houdini first sifts the predicate set P through all the positive examples to eliminate all
predicates that do not hold. That is, it performs

P∗ = {p | p ∈ P and ∀e∈E e |= p}.

This step greatly shrinks the invariant search space. At each point hereafter, the cur-
rent candidate invariant is formed by conjuncting over predicates in the current P∗, i.e.,
Hcandidate =

∧
p P∗

p. Next, the algorithm loops until the invariant is inductive. For each
counterexample to inductivity cex found, the algorithm filters the set of remaining predi-
cates as

P∗ = {p | p ∈ P∗ and cex |= p}.

Each inductivity check is a query to a theorem prover. We assume Satisfiability Modulo
Theory (SMT) solvers are used. Houdini guarantees that if an invariant exists as a con-
junction of a subset of P, it will be found. This encourages a “kitchen sink” approach to
automated invariant learning — experts throw in all predicates that might be useful and
Houdini searches for an inductive invariant.

Note, we can augment the original Houdini algorithm to take P as an input and check
to see if the inductive invariant satisfies P (returning None if not).2 Sorcar improves
Houdini by making it property directed where the property is checked throughout invariant
synthesis and used to further prune the search space.

2The original algorithm assumes no annotations, e.g., assertions, and tries to find any inductive invariant.
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3.3.2.2 Limitations of Houdini

Each query made by Houdini is monolithic over the set of remaining predicates P∗, which
is O(|P|). Following the kitchen sink philosophy, this means that queries tend to be over a
large number of predicates (even predicates that turn out not to be useful in constructing
the final invariant). Further, these expensive monolithic checks are made in the ‘inner-most
loop’ of the algorithm—for each inductivity check.

These characteristics prevent Houdini from scaling to our problems of interest. Specifi-
cally, in our experience and as supported by prior work [57], even a single SMT query over
predicates spanning the BOOM microarchitecture is prohibitively expensive and beyond the
capabilities of current automated verification tools.

3.4 H-Houdini

We now describe our invariant learning algorithm, H-Houdini3. In a nutshell, H-Houdini
replaces Houdini’s sequential monolithic inductivity checks with a “wave” of property-
directed, incremental, memoizable and parallelizable inductivity checks. These attributes
result in better efficiency and scalability.

We start by explaining the ideas conceptually. For simplicity, let the property P be a
single predicate ptarget ∈ P. (More generally, P can be a conjunct over a subset of P. In that
case, the below explanation is repeated for each predicate in P. Memoization ensures that
efficiency is unaffected.)

The insight is that to show ptarget holds, it is sufficient to require that a subset of the
predicates directly influencing ptarget be included in the final invariant. That is, it is suffi-
cient to find an abduct A for ptarget that only contains predicates whose state elements can
influence ptarget in the next step of the transition system.

For example, consider an AND gate whose inputs and output are clocked state elements.
If ptarget says that the output state element must always hold a 1, it is sufficient to require
that the final invariant include predicates that force the input state elements to hold 1s.

The above creates new proof obligations. Namely, we must now show for each predicate
p ∈ A that including p in the invariant leads to an inductive invariant. For this, we recursively
repeat the above procedure for each p.

The recursion creates a wavefront of proof obligations that resembles a depth-first search
(DFS) over the design’s state elements (predicates). If an abduct for some p forces us to
include a predicate p′ that makes the invariant not inductive, we backtrack and ask for a
different abduct for p (that does not include p′). If one does not exist, we backtrack further.
Like a normal DFS, once we ‘visit’ each predicate once (either prove that including it either
can or does not lead to an inductive invariant), we need not recurse through it again. Once
the wavefront terminates, the hierarchy of abducts are combined to form the overall invariant.

3H-Houdini stands for HierarchicalHoudini—a wordplay on ‘HarryHoudini,’ the illustrious magician’s
full name.
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This can be done without ever performing a monolithic inductivity check, by construction
of the composition of abducts.

We design the above process to be property-directed, incremental, memoizable and par-
allelizable. For property directed, we pre-filter the set of predicates that can be considered
for each abduct to only be those that are consistent with positive examples (for which we
believe the property holds) and are helpful in proving the property. For incremental, we fur-
ther pre-filter predicates to those that can influence the current ptarget within one step of the
transition system. Both of the above decrease the cost of synthesizing each abduct (which
is done using SMT queries) in the common case. When the recursion over p ∈ A completes
and A is either accepted as the solution for ptarget or the solver says there is no solution for
ptarget, ptarget is considered solved and need not be explored again. Finally, synthesizing each
abduct can be done in parallel.

We now describe the above more formally, proceeding as follows: Section 3.4.1 argues that
the main premise in H-Houdini is sound; Section 3.4.2 presents the H-Houdini algorithm
in detail; Section 3.10 provides proof sketches of soundness and completeness.

3.4.1 Hierarchical Decomposition is Sound

The main premise in H-Houdini is that we can decompose a monolithic invariant into a
hierarchy of smaller invariants, and that to prove inductivity it is sufficient to perform SMT
queries over only the smaller invariants. We now argue why this approach is sound, breaking
the argument into two parts. First, we will demonstrate how an inductive invariant can be
synthesized incrementally using relatively inductive queries and prove that this approach is
sound provided certain assumptions hold at each step. Next, we will show how exploiting
the hierarchy of the circuit to learn incrementally satisfies these assumptions.

Suppose we wish to prove the property H0. We start by finding an H1 such that H0 is
relatively inductive w.r.t. H1:

H1 ∧H0 =⇒ H′
0 (3.1)

Next, repeat the process. We find an H2 such that:

H2 ∧H1 =⇒ H′
1 (3.2)

Let us assume that H0 and H2 are non-contradictory, i.e., ∃x, x |= H0∧H2. Then, from Equa-
tion 3.1 and Equation 3.2, it follows:

H2 ∧H1 ∧H0 =⇒ H′
1 ∧H′

0

This means H1∧H0 is relatively inductive to H2. We recursively repeat this process, giving
the following n equations:

Hj+1 ∧Hj =⇒ H′
j j ∈ [0, k)

true ∧Hj =⇒ H′
j j ∈ [k, n)
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where true ∧Hj =⇒ H′
j denote base cases in the recursion, i.e., fragments of H that are

inductive by themselves (e.g., module inputs, constants). Applying the same argument from
above, we get:

true ∧Hn ∧ . . . ∧H1 ∧H0 =⇒ H′
n ∧ . . . ∧H′

1 ∧H′
0

We can denote the monolithic invariant as H = ∧n
i=0Hi, in which case the above statement

is equivalent to H =⇒ H′. Lastly, we have H0, the property of interest as a part of H, and
so H =⇒ H0 trivially. Importantly, we did not need to prove inductivity of the monolithic
invariant directly.

Now, if every Hi we construct allows every positive example, i.e., ∀e∈E e |= Hi, then
H is the required inductive invariant derived incrementally. To summarize this discussion,
hierarchical incremental invariant learning is sound as long as the following premise holds:

Premise for Soundness (P-S). Hi should allow all positive examples: ∀e∈E e |= Hi.

Remark. (P-S) ensures Hi are not contradictory.

The positive examples E act as witnesses to the fact that none of the Hi are contradictory
as clearly they allow states in E . This prevents the derived H from being vacuously true by
pruning out all states s ∈ S.

3.4.2 H-Houdini Algorithm

Now we describe the H-Houdini algorithm, a concrete instance of an incremental learner
that exploits hierarchy to soundly and incrementally learn an invariant.

See algorithm 3. The algorithm has inputs similar to the original Houdini but with two
differences. First, the predicate universe P is replaced by an oracle OA,E

mine which is instantiated
with the set of positive examples E and optionally expert annotations A. Second, as H-
Houdini is white box, it takes in the transition system TS. Note, ptarget is analogous to P
(Section 3.4). H-Houdini outputs an inductive invariant (H) that proves ptarget, or None if
no such invariant exists.

The algorithm proceeds as follows. We define a solution for a predicate ptarget as an
abduct that has been proven to be inductive or None (meaning ptarget cannot appear in
the final invariant). To start, if a solution to ptarget has already been found, it is returned
immediately via memoization (line 3). Otherwise, the algorithm enters a loop to find a new
solution (line 7). Within the loop, the algorithm first sets H to ptarget. Next, we invoke three
subroutines.

First, OTS
slice (the slicing oracle) takes as input ptarget and outputs the set of state elements

Vslice that influence the inductivity of ptarget in one step of TS. When verifying sequential
circuits (as we do in this paper), these are the state elements in the 1-step cone-of-influence
(COI) for ptarget.

4 That is, in our AND gate example (Section 3.4), if ptarget is over the
output register, Vslice is the set of input registers.

4Given a software verification task, the 1-step COI of a statement X is the data and control-dependencies
of X.
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Algorithm 3: The H-Houdini algorithm.

Input : OA,E
mine: The predicate mining oracle, ptarget: Target predicate/property, TS:

Transition system
Output: H: invariant that proves ptarget or None

1 Pfail = ∅;

2 def H-Houdini (OA,E
mine, ptarget, TS) → None/H:

3 if ptarget is memoized and soln ∩ Pfail = ∅ then
4 return solution to ptarget;

5 end
6 valid-solution = False;
7 while not valid-solution do
8 H = ptarget;
9 Vslice = OTS

slice(ptarget);

10 PV = OA,E
mine(ptarget,Vslice);

11 PV = PV \ Pfail;
12 A = Oabduct(ptarget,PV);
13 set A as the memoized solution to ptarget;
14 if A is None then
15 return None;
16 end
17 valid-solution = True;
18 for p in A do

19 Hsol = H-Houdini (OA,E
mine, p, TS);

20 if Hsol is None then
21 valid-solution = False;
22 Pfail = Pfail ∪ {p};
23 break;

24 end
25 H = H ∧Hsol

26 end

27 end
28 return H;

29 end

Second, OA,E
mine (the mining oracle) translates Vslice into a set of predicates PV that will be

considered when synthesizing abducts. This takes into account the user-specified predicate
language, the positive examples E and (optionally) additional expert annotations (A).5

Third, Oabduct (the abduction oracle) takes PV and attempts to synthesize an abduct A

5The mining oracle we describe here is deterministic. Our implementation adopts an incremental vari-
ant that returns steadily larger subsets of PV over multiple calls, to encourage smaller abducts. See Sec-
tion 3.4.2.3.
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Figure 3.1: Dependency graph between predicates in a TS and P. Each node is a predicate pi,
and edge pi → pj means pi is in the 1-step COI of pj . The hollowed out predicate p3 does not
hold inductively and cannot be included in an invariant. The figure shows that there are two
potential solutions, the nodes in the blue area and the nodes in the green area—both of which
share the common set of nodes in the middle. The blue nodes eventually fail because of p3, causing
H-Houdini to backtrack and discover the solution in green. p1 and p4 need only be analyzed once.

out of a subset of PV for ptarget (line 12). If multiple abducts are found, one is returned;
if Oabduct is called with the same ptarget multiple times, we require a different abduct be
returned each call (as in an iterator). If no abduct is found (line 15), the algorithm returns
None, indicating that no solution exists. In our implementation, each abduct returned costs
an SMT query. More details for Oabduct are given in Section 3.4.2.3.

If an abduct is found, it is added as the solution to ptarget, and valid-solution is set to
True. The algorithm then checks each predicate in the abduct recursively (line 18). For each
predicate, it calls H-Houdini to find a solution. If any predicate fails to hold inductively
(line 21), valid-solution is set to False, and the loop exits early to attempt a new solution
for ptarget (line 7). If all predicates hold, the invariant is updated with the solutions found,
and the algorithm returns H (line 28).

3.4.2.1 Backtracking and Memoization

The above algorithm partially backtracks when it discovers that a solution is not possible.
To illustrate this, look at the example in Figure 3.1. In this figure, we show a predicate
dependency graph. Each node in the graph is a predicate pi and an edge from pi → pj
denotes that pi is in the 1-step COI of pj. Suppose p3 is not inductive. We start the
algorithm from predicate P. Suppose there are two possible solutions for P: the solution in
the blue region p0 ∧ p1 or the solution in the green region p1 ∧ p2. These solutions would be
returned through successive queries to Oabduct as discussed previously.

Suppose Oabduct first returns the blue solution. Then H-Houdini fires off on subtrees p0
and p1. Eventually, because p3 fails to be inductive, H-Houdini discovers that p0 cannot
hold inductively and therefore backtracks to synthesize a new solution for P. The next query
to Oabduct for P returns the green solution as p0 is no longer available. But the work we need
to do to ratify the green solution is significantly reduced since we memoized the solution for
p1. The only additional work to do to complete the invariant is to synthesize the solution
for the nodes colored green: p2 and p5. In this way, the algorithm only backtracks partially.
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H-Houdini only squashes the path of failure while the rest of the synthesized solutions may
be reused.

Backtracking is mainly caused by deficiencies in positive examples (E). If E was exhaus-
tive, then a positive example e ∈ E would have been a witness to invalidate p3 and p0 as
candidate predicates, allowing us to synthesize the green solution first and eliminate the
backtrack. With a robust set of examples, a majority of the backtracking can be eliminated.

3.4.2.2 Cycles

We note, the recursion can encounter a cycle. For example, if the hardware design has
a backedge we can encounter pi → pj → pi. This is benign. The pending (memoized)
solution for pi will be used to verify pj. If later it is found that pi has no solution, we
must re-synthesize a solution for pj. This is done by the early return (line 3) performing an
intersection over Pfail.

3.4.2.3 Details for Abduction Oracle Oabduct(ptarget,PV)

Oabduct takes a target predicate ptarget and a set of predicates (PV) and outputs an abduct
A, a conjunction over a subset of PV that shows ptarget is 1-step inductive. Formally: A =⇒
p ′
target. Such an A can be efficiently computed using Craig’s interpolants [50, 146]. We

compute the interpolants quickly using the following (to our knowledge, novel) SMT query:6∧
v

PVv ∧ ptarget ∧ ¬p ′
target

If the above query returns SAT, then there is no conjunction over PV, such that ptarget is
relatively inductive. Thus, we return None. Otherwise, if the solver returns UNSAT, we
extract the predicates in the UNSAT core from the solver and use it as the abduct. Note
that since

∧
v PVv ∧ ptarget cannot contain any contradictions, the UNSAT-ness of the query

has to be because of its interaction with ¬p ′
target, thereby making extraction of these abducts

sound.
To minimize work and final invariant size, we bias Oabduct to output the weakest (smallest)

abduct possible. For any two abducts A1 and A2, A1 is weaker than A2 if A2 =⇒ A1.
Ideally, we desire a minimal abduct Am, defined as one where ̸ ∃ A such that Am =⇒
A. Our implementation extracts small (ideally minimal) abducts by enabling the minimal

unsat cores option in cvc5 which guarantees locally minimal unsat cores.

3.4.2.4 Parallelism

The serial implementation of H-Houdini lends itself to a high degree of parallelism. For
example, the loop that recursively checks each predicate in the abduct (line 18-line 25) can
be performed in parallel. We parallelize this loop in our implementation and evaluation.

6We tried other methods, e.g., cvc5’s native Oabduct call. Our method was fastest in practice.
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More aggressive forms of speculative parallelism, e.g., trying different abducts in parallel,
are possible. We leave more detailed investigation of these to future work.

3.4.2.5 Formal requirements for soundness and completeness

H-Houdini requires any downstream analysis to satisfy two contracts for soundness and
completeness. We present details for these in Section 3.10.

3.5 VeloCT: Preliminaries

The next three sections describe VeloCT, which instantiates H-Houdini to solve the safe
instruction set synthesis problem (SISP) [61, 57, 60, 83]. This section gives terminology
(taken mostly from [61]); Section 3.6 describes the analysis’ design in detail; Section 3.12
describes a worked example of the analysis on a simple microarchitecture.

In VeloCT, the transition system TS is the hardware circuit described in Section 3.3.
We also introduce a set of inputs Σ to TS, input during transitions, to be either ISA instruc-
tions or the special null input ϵ indicating ‘no instruction’ (following [61]). Next, we define
the main concepts in the SISP.

Definition 3.5.1. Trace (π): A trace of TS over a sequence of inputs starting at state s0
is a sequence of states in TS obtained by applying the transition relation T (⇝): s0 ⇝a0

s1 . . . ⇝ak sk+1 where ai ∈ Σ denotes ai is input during ⇝.

Definition 3.5.2. Trace Indistinguishability: Assume that an attacker can observe a
subset of elements O ⊆ V. For state s , the values of O (a projection on s) are given by
s ⇂ O . We say two traces π = s0s1 . . ., π

′ = s ′0s
′
1 . . ., are trace indistinguishable if |π| = |π′|

and ∀j j ∈ [0, |π|], sj ⇂ O = s ′j ⇂ O where |π| denotes the length of π.

Definition 3.5.3. Equal-modulo-secret I-states: Let us define a subset of state elements
to hold secret values: Vsec ⊆ V. Two states s and s ′ are equal-modulo-secret I-states if
s ≈sec s0 ≈sec s ′ where s0 is the init state of TS and ≈sec is an equality relation over the
projection of states excluding secrets, i.e., over Vpub = V \ Vsec.

Definition 3.5.4. Safe Set (Σ̂+): A set of instructions form a safe set Σ̂+ if, for every

sequence of instructions x over Σ̂+, and a pair of equal-modulo-secret I-states (sl, sr), the
pair of traces, (πl, πr) of TS starting from (sl, sr) and given x are trace indistinguishable.

Lastly, we define the soundness and precision of H in verifying safe set Σ̂+. Since H is
a relational invariant to prove the non-interference property from above, it is defined over a
pair of states. For simplicity, we construct a product state s over a product variable space
V = Vl ∪Vr, where Vx denotes that each identifier is renamed by adding a prefix x. We say
s = (sli · sri ) to denote the composition of sl, sr to form the product state s .
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Definition 3.5.5. Admits Traces (▷◁H): Consider πl = sl0 , s
l
1 , . . . and πr = sr0 , s

r
1 , . . .. For

simplicity assume the shorter trace is padded with special null states (∅). Next, construct
product states, si, between corresponding states in πl and πr, i.e., ∀i∈|πl|si = (sli ·sri ). Lastly,
define a relation ▷◁H: π × π that relates the pair (πl, πr) if ∀i∈|πl|si |= H.

Definition 3.5.6. Soundness of H: H is sound if for all pairs of traces πl, πr that are not
trace indistinguisible, (πl, πr) ̸∈ ▷◁H.

Definition 3.5.7. Precision of H: H is precise for a safe set Σ̂+ if for all sequences of
instructions x over Σ̂+ and starting with all pairs of equal-modulo-secret I-states, the pairs
of generated traces (πl, πr) ∈ ▷◁H.

Definition 3.5.8. Positive Example (e ∈ E): Each example is a product state s = (sli ·sr)
of two states sl and sr. A positive example, w.r.t. a property P, is an example which satisfies
the property (s |= P) and on application of the transition function T leads to either the
terminating state or another positive example.

3.6 VeloCT

In this section, we will describe VeloCT, a framework to learn relational invariants that
prove security properties, e.g., non-interference, for hardware designs. At a high-level, Ve-
loCT takes a hardware design in RTL, an annotation that denotes attacker observable
output, e.g., the instruction retirement signal, and a proposed set of safe instructions Σ̂+—
and outputs either an inductive invariant H that proves the safety of the proposed safe set
or outputs None if it doesn’t exist.

VeloCT implements H-Houdini for invariant learning and starts learning from P. For
simplicity assume O consists of a single state element (call it vo). Taking inspiration from
Def. 3.5.2, we need to prove that the values of vlo and vro are always equal. This property
is expressed formally in terms of an Eq-type predicate (defined in the next section) as:
Eq(vlo , v

r
o).

In what follows, we first define the predicate language (Section 3.6.1.1) and the implemen-
tation of the Omine (Section 3.6.1.2). Then, we discuss how VeloCT generates examples
in Section 3.6.2. Lastly, we conclude the section with a proof that H from VeloCT is sound
(Def. 3.5.6) and precise (Def. 3.5.7) in Section 3.11.

3.6.1 Predicate Language and Mining

We now describe the predicate language and implementation of Omine in VeloCT. A good
predicate language, coupled with an automated way to mine predicates from examples, is
essential for proving properties with H-Houdini with minimal annotations.
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3.6.1.1 Predicate Language

We start with the predicate language proposed by ConjunCT [61]. We observe that for
real-world processor designs we can actually simplify the predicate language. To prove a set
of instructions form a safe set as defined in Def. 3.5.3, we do not need the expressiveness
offered by Impl-type predicate introduced in ConjunCT. Rather, we can include a simpler
predicate that restricts a register to hold certain safe values(s). With this intuition, VeloCT
implements three base types of predicates:

Eq(vl, vr). This is the same Eq-type predicate from ConjunCT. It constrains v to hold
the same value in l and r executions. Intuitively, it disallows executions where v is influenced
by secrets.

EqConst(v, val). The EqConst-type predicate constrains v to take a constant value val .
This allows us to express invariants where the safety is dependent on v = val .

EqConstSet(v, [val1 , . . . , valn ]). The EqConstSet-type predicate is a generalization of
the above EqConst predicate. Rather than restricting v to take a particular value, it restricts
it to a set of values.

Note that both EqConst and EqConstSet also constrain the variable v to be equal in left
and right executions (i.e., they are also, implicitly, Eq-type predicates).

The InSafeSet predicate. Critically, the predicate abstraction must be expressive enough
to capture the target invariant. This creates an issue specific to SISP. Recall, SISP requires
that compositions of safe instructions satisfy the property. Yet, a microarchitecture may still
support unsafe instructions. Thus, we need a predicate that constrains the invariant to only
consider executions made up of compositions of the safe instructions (ignoring/disallowing
compositions that include unsafe instructions).

To address this, we instantiate a specialized flavor of EqConstSet – the InSafeSet pred-
icate – to constrain state elements in the pipeline to include only bit patterns that are
consistent with the safe instructions. For a given set of safe instructions, these bit patterns
(mask and match values) are automatically generated from the RISC-V specification.

3.6.1.2 Omine : Predicate Mining

The predicate mining algorithm is based on a key insight: positive examples contain the core
of safety, a skeleton that represents the necessary and sufficient conditions for an execution
to be safe. The primary challenge is then to learn an invariant strong enough to prove safety
and weak enough to generalize to safe executions beyond positive examples E (the precision
definition Def. 3.5.7).

At a high-level, the algorithm follows these two rules: (i) only consider VEq ⊆ Vslice

that are equal in E (line 2), and (ii) check-and-add: add Eq (line 5), EqConst (line 7), and
InSafeSet (line 11) predicates only when they are consistent with E . Outside the loop,
the check-and-add rule is extended to the expert predicates generated by A(VEq) (line 15).
Finally, the set of predicates, PV = PEq ∪ Pexpert is returned.
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Algorithm 4: OA,E
mine: Predicate mining algorithm.

Input : ptarget: Target predicate to mine predicates for, Vslice : Subset of V output by
Oslice to consider when mining predicates.

Output: PV: Set of predicates PV ⊆ P to use with Oabduct.
1 def OA,E

mine(ptarget,Vslice) → PV:
2 VEq = {v | v ∈ Vslice and ∀e∈E e[vl] = e[vr]};
3 PEq = ∅;
4 for v in VEq do
5 PEq = PEq ∪ Eq(vl, vr);
6 if ∃ c ∀e∈E e[v] = c then
7 PEq = PEq ∪ EqConst(vl, c);
8 end
9 psafe = InSafeSet(vl);

10 if ∀e∈E e |= psafe then
11 PEq = PEq ∪ psafe;
12 end

13 end
14 P∗

expert = Amine(VEq);

15 Pexpert = {p | p ∈ P∗
expert and ∀e∈E e |= p};

16 PV = PEq ∪ Pexpert;
17 return PV;

18 end

Even expert-provided predicates are validated against E before they are added to the
final set. This validation ensures that experts can freely propose any predicates without
risking unsoundness. We concretely discuss the expert predicates needed for the verification
of BOOM in Section 3.7.2.

In Section 3.11.1 we show how this implementation of Omine is sound and complete when
using H-Houdini. Next, we discuss how to generate these positive examples for learning,
and conclude by showing that it is sufficient to derive a precise invariant.

3.6.2 Example Generation

The high-level goal of example generation is to take the set of proposed safe instructions and
produce a set of positive examples, E , sufficient for learning an inductive invariant.

Our positive example generation strategy is simple yet robust. We simulate a pair of
concrete executions for each safe instruction that differ only in the operand values given to
the safe instruction. As we prove in Section 3.11, the specific values of the secret data are
irrelevant to soundness or precision; they only need to differ between the two traces.

Each pair of traces yields multiple positive examples, one per state in the product trace,
as defined in Def. 3.5.8. Specifically, we extract a positive example for each pair of states
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where the safe instruction under analysis is in flight in the trace.

Cleaning positive examples. Positive examples must be carefully prepared so that they
are what we refer to as clean. To be clean, each example must correspond to a pipeline state
that only reflects the execution of the safe instruction under analysis, as opposed to the safe
instruction plus potentially other unsafe instructions. Should the state reflect the execution
of an unsafe instruction(s), the positive example may remove predicates that are important
to learn the invariant.

Constructing clean positive examples is non-trivial. To run a safe instruction on the
pipeline, our infrastructure executes start-up and tear-down code containing unsafe instruc-
tions. This code may make an example dirty for two reasons. First, if an unsafe instruction(s)
is in flight in the same cycle as the safe instruction. Second, if an unsafe instruction (not
concurrently in flight) leaves a residue in the pipeline that is still present when the safe
instruction executes.

We handle the first issue by padding the safe instruction (before and after its execution)
with NOPs. Given sufficient padding, this ensures that no unsafe instructions are in flight
alongside the safe instruction. Handling the second issue requires more care for the out-of-
order (OoO) processors we evaluate, as explained below.

3.6.2.1 Example Masking

Ensuring no unsafe instruction residue remains in the pipeline is non-trivial in OoO pro-
cessors because OoO designs rely on instruction tables (e.g., the reorder buffer, instruction
queues). Instruction state in these tables typically persists after the instruction(s) logically
leaves the table. Consider an excerpt of a BOOM issue slot in a positive example:

Index valid? Uop lrs1 . . .

1 0 <UNSAFE Uop> 0b00001 . . .

This entire table entry is unused/ineffectual as the valid bit is a 0 in this positive example.
The Uop field (Uop for short) being set to an UNSAFE Uop has no bearing on this example’s
safety. At the same time, this singular example prevents us from adding a predicate that
constrains Uop to allow only SAFE Uops as such a predicate would not allow this positive
example. Yet, such a predicate is necessary for safety.

We introduce example masking to clean up such dirty traces. VeloCT uses annotations
to identify valid bits in key structures, e.g., issue/reorder buffer units. Then, VeloCT
pre-processes positive examples to set entries to their reset values if the entry is marked as
invalid. We give a detailed description of the annotations necessary for example mask-
ing on BOOM in Section 3.7.2. Note that this was only required for complex OoO cores
such as BOOM. Simple in-order cores like Rocketchip do not require example masking or
annotations.

Since VeloCT is the first effort to scale invariant learning to a large OoO like BOOM,
we focus on demonstrating feasibility rather than perfecting the approach. In the future, we
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aim to explore other alternatives: e.g., a richer predicate language that includes Impl-type
predicates from ConjunCT to conditionally constrain Uop to allow only SAFE Uops only
when the entry is valid.

3.7 Evaluation

In this section, we evaluate VeloCT on real-world processor designs. First, Section 3.7.3
evaluates analysis efficiency and scalability. Second, Section 3.7.4 evaluates security.

3.7.1 Implementation & Evaluation Setup

We implement VeloCT in ∼ 2300 lines Python. The current implementation accepts hard-
ware designs and assertions for safety in the btor [158] format. The current implementation
implements algorithm 3 and parallelizes each iteration of the inner loop (as described in
line 18).

Evaluation Setup. We ran our evaluation on a machine equipped with Dual Intel Xeon
Gold 6148 CPUs (2 sockets, 40 virtual cores/socket), 256GB of memory and Ubuntu 20.04
LTS (kernel version 5.4.0). We also evaluated on an Anyscale Ray cluster (configured with
compute-optimized C6i EC2 instances) [15]. Lastly, all code was evaluated on Python 3.8

and with CVC5 v1.1.12 as our choice of SMT solver.

Descriptions of Evaluated Designs. We evaluate VeloCT on Rocketchip [18] and all
four supported variants of BOOM [240]: SmallBOOM, MediumBOOM, LargeBOOM, Mega-
BOOM. All targets were compiled using the standard configuration with the Chipyard [12]
workflow. We added additional annotations in Chisel to flatten all modules in the generated
Verilog. Finally, we use yosys [223] to create a miter (product) circuit, add assertion(s), and
emit the output in the btor format [158] for VeloCT to consume.

For all designs, we instantiated the top-level module to be the Core, e.g., RocketCore and
BOOMCore. See Table 3.1. This does not include the L1 caches. Since memory instructions
are known to be unsafe, and no other instructions interact with these structures, caches can
be ignored. Our analysis could certainly include them if desired.

Baselines. We compare performance/scalability to the state-of-the-art in safe instruction
set synthesis ConjunCT [61]. ConjunCT’s analysis is based on Houdini/Sorcar and can
learn an invariant (Phase II of the ConjunCT analysis) in ∼ 8 hours; it was unable to
evaluate on any BOOM variant due to the cost of monolithic SMT queries. We compare
security / synthesized safe sets to ConjunCT and UPEC [57]. The latter hand crafts (does
not learn) and checks an invariant for MediumBOOM.
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Target Size (in # bits) Invariant Size

Rocketchip 10,358 bits 145
Small BOOM 48,465 bits 1,609

Medium BOOM 74,072 bits 2,560
Large BOOM 100,009 bits 4,002
Mega BOOM 133,417 bits 4,640

Table 3.1: Overview of evaluated design, their complexity (in # of state bits, in simulation/pre-
synthesis), and learned invariant sizes (# of predicates).

3.7.2 Expert Annotation Efforts

VeloCT learns an invariant for Rocketchip with no expert annotations. VeloCT needs
a modest number of annotations to learn an invariant for BOOM. There are two kinds of
annotations: (i) Annotations required to augment the predicate set with BOOM-specific
EqConstSet predicates, and (ii) Annotations required for example cleaning.

Annotations to Augment Predicate Set. Recall from Section 3.6.1.1, our current
implementation does not automatically insert/mine EqConstSet predicates. We augmented
Omine to emit these as expert annotations in two circumstances. First, BOOM decodes
RISC-V instructions into micro-ops (uops). Therefore, to constrain executions to only con-
sist of instructions from the safe set, we introduce InSafeUop to complement the InSafeSet

predicate. The InSafeUop predicate allows state elements to only take constants that cor-
respond to safe uops. Second, we manually constrain the ALUOpcode signal to correspond
to the proposed safe set.

Annotations for Example Masking. Example masking (Section 3.6.2.1) is used to
ensure that the positive examples are clean. To do this, we identify and annotate various
bits in the design that semantically hold valid bits and pair each valid bit with its corre-
sponding entries. Concretely, we identified the valid bits for the following microarchitectural
structures: ALU issue buffer, CSR issue buffer, FPU issue buffer, JMP unit, and rs2 operand
type bits. When the valid bit is semantically 0, we reset the value of its corresponding en-
tries. This step took a grad student (unfamiliar with BOOM) less than a day to find all the
required annotations for one design, and another day to generalize to larger BOOM variants.

3.7.3 VeloCT: Performance Evaluation

We now evaluate for performance and scalability.

Scalability and Parallelism. Figure 3.2 shows invariant search time for each design,
scaling the number of available cores. We do not evaluate larger designs on smaller core
counts due to time constraints and only evaluate LargeBOOM and MegaBOOM on 160
cores. The main takeaway is that doubling the core count proportionally improves analysis
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Figure 3.2: Execution Time of
VeloCT (in s) vs. # of Par-
allel Cores on designs of vari-
ous sizes. VeloCT’s execution
time consistently halves on dou-
bling the number of cores until
a saturation point is reached.
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(in s) of VeloCT vs. Design
Size. Plot shows results for an
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shows cubic growth.
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The time per SMT query scales
linearly with the design size.

time up to a point, which provides an estimate of the parallel span (i.e., time given infinite
cores). It is noteworthy that the span increases with design size. This indicates that larger
designs will benefit from yet additional parallelism. We note that we were able to generate
an invariant for Rocketchip in under 10 seconds, representing a roughly 2880× speedup
compared to ConjunCT.

Figure 3.3 performs a deeper dive, comparing the time given a fixed 80 cores (on our local
cluster) with the time given an “infinite” number of cores (on the Anyscale cluster, which
provides more cores on demand). We do not evaluate Rocketchip on Anyscale as 80 cores
is sufficient. As expected, time given infinite cores drops relative to the time given 80 cores
proportionally with design size. Especially interesting, the time given infinite cores shows
that the analysis time scales proportionally to the cubic of the design size.

Median Task and SMT Time / Task. We now explore the extent to which the above
results can improve further. The fundamental cost in the analysis is the time to perform
SMT queries. Thus, it is important to understand what percentage of CPU cycles are going
towards SMT queries. This is shown in Figure 3.4, which compares SMT time to overall
task time (i.e., all time spent in the H-Houdini function body). We see that non-SMT
activities account for about 50% of the time, even for larger designs, indicating room to
improve performance with better engineering. As expected, the time per SMT query grows
with design size (which influences the complexity of the average query) and, interestingly,
grows linearly with size across the larger designs. We note, the above only shows median
SMT query time yet we consistently saw long tails. For example, the 95th and 99th percentile
for time-per-task for MegaBOOM was 565.94s and 1000.92s respectively, while the longest
task took 9310s.

Total Number of SMT Queries. Orthogonally, we can improve analysis time by reducing
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Figure 3.5: # of Tasks and # of Instances of Backtracking vs. Design Size (# of bits). Number
of tasks grows linearly with design size. Number of tasks backtracked is relatively low indicating
good coverage from positive examples.

the total number of SMT queries that need to be performed. A task performs multiple SMT
queries only when backtracking occurs. Thus, we show frequency of backtracking relative to
the total number of tasks in Figure 3.5. The main takeaway is that the number of backtracks
is relatively small but non-negligible, and accounts for roughly the same % of tasks in each
design. If the set of positive examples was exhaustive, the number of backtracks would be 0.

3.7.4 VeloCT: Security Evaluation

We conclude the evaluation with a security evaluation, verifying that the safe set results
match prior work.

We show the set of safe instructions that we verified for each target in Table 3.2. To
summarize, we verified that most non-memory or control-flow instructions are safe. Our
result for Rocketchip matches ConjunCT, except that we found mul-family instructions to
be unsafe. We verified this manually as correct, and occurs because we evaluated on RV64
(whereas ConjunCT evaluated on RV32). We also monolithically verified the correctness of
Rocketchip invariant. Our result for BOOM matches Kunz et al. [57] for all non-FP/non-
CSR type instructions (which we categorized manually as unsafe). Interestingly, mul-family
instructions are safe on BOOM. On BOOM, we were unable to verify the safety of the
auipc instruction. On talking with the BOOM developers, we found out that even though
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Target Verified Safe Instruction Set

Rocketchip add, addi, sub, xor, xori, and, andi, or, ori, sll,

slli, srl, srli, sra, srai, lui, auipc, slt, slti, sltu,

sltui

BOOM

(All Variants)

add, addi, sub, xor, xori, and, andi, or, ori, sll,

slli, srl, srli, sra, srai, lui, slt, slti, sltu, sltui,

mul, mulh, mulhu, mulhsu

Table 3.2: Safe instruction sets synthesized by VeloCT.

the latency of auipc is supposed to be operand-independent, the instruction indeed has
variable timing behavior. We leave investigating why this is, and whether an alternate
implementation of auipc could be made safe, to future work.

3.8 Related Work

Over the years, many different techniques have been proposed to learn invariants: using
abstract interpretation [113, 89, 100], Craig’s interpolants [5, 4, 145, 112, 118], symbolic
execution [51], SAT-based [29, 98, 196, 66, 195, 111, 48, 27, 132, 99, 65, 116], machine
learning [188, 230, 190, 88, 243, 187], machine learning-based [87, 82, 157], randomized or
enumerative searches [229, 228, 108, 77, 79, 78], and more recently, even LLMs [225, 197,
165, 224, 120, 221]. More broadly, many of the invariant learning work can be viewed as
specific instances in the SID [183, 182] framework.

The most successful and widely deployed of these of these are a class of invariant learn-
ing algorithms pioneered in IC3 [29, 66] by Bradley et. al. Since then, IC3 has inspired
a long line of future work [195, 111, 48, 27, 132, 99, 65, 116] which improved the origi-
nal algorithm and generalized it to other domains, like software [114, 27] and distributed
protocols [142]. IC3 still remains a dominant algorithm in proving properties today, as ev-
idenced by rIC3 [196], an implementation of IC3-based algorithm winning the most recent
HWMCC’24 competition [115].

3.8.1 IC3-like Invariant Learning

We first start by briefly describing IC3-like invariant learning algorithm. For a more com-
plete treatment of IC3, please refer to the original paper. At a high-level, IC3 maintains a
sequence of frames, where each frame is a conjunction of clauses which represents the set of
states allowed by the frame. The algorithm operates in major and minor iterations: major
iterations add new frames while minor iterations refine existing frames. Each frame, Fi,
represents an over-approximation of states reachable in i steps from INIT.
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The algorithm checks if taking a step from the latest frame in the sequence, say Fk,
results in a property violation. If it does not, then a new frame Fk+1 is initialized as P
(property) and all the clauses that are inductive from Fk → Fk+1 are propagated to Fk+1.
If there is a property violation, then a counterexample s is generated. IC3 then uses the
counterexample to generate a blocking clause, a disjunction over literals or their negation,
to eliminate the counterexample. If there is no such clause, produces a counterexample as a
witness to the property violation.

Notice that the negation of the counterexample, ¬s, is itself a blocking clause. However,
this only eliminates the single counterexample s and not the other related counterexamples.
Ideally, IC3 wants a single clause to rule out multiple similar counterexamples, ones that
have the same root-cause. To achieve this, IC3 tries to find an inductive generalization of
¬s, a subset of ¬s which is relatively inductive to the frame Fk−1. For better performance,
we want the inductive generalization to be as strong as possible, i.e., have fewer literals and
block out as many bad states. In a nutshell, IC3 repeatedly uses a relative induction SAT
query to find the minimal inductive set of ¬s. Since the process to find the true minimal set is
expensive, IC3 uses heuristics to stop minimization when the inductive subset is deemed good
enough. This process is then repeated to push inductive generalizations to the higher frames.
Finally, at the end of each major iteration, the algorithm propagates clauses forward from
Fi → Fi+1 if the clause is inductive. The algorithm terminates with an inductive invariant
if clauses(Fi) = clauses(Fi+1).

At the surface, IC3 (and friends) and H-Houdini may seem similar: they’re both in-
cremental algorithms that use relative inductivity to learn inductive invariants. But that is
where the similarity ends. The core philosophy of the two algorithms are so fundamentally
different (discussed below) that the resulting approaches have completely different charac-
teristics:

• Bit-level vs. Word-level. IC3 is fundamentally a bit-level model checking algorithm,
while H-Houdini operates at the word-level (through predicate abstraction). Word-
level invariant learning has several advantages over bit-level: (i) solving word-level
problems (SMT) is often more efficient than the corresponding bit-level problem (SAT)
as solvers can take advantage of higher level repeated structures through clever heuris-
tics and theory specific reasoning, and (ii) inductive invariants generated at word-level
are more interpretable than bit-level as the former maintains common abstractions fa-
miliar to experts, e.g., registers and wires, and uses higher level operators, e.g., arith-
metic, relational operators. Recognizing these benefits of word-level over bit-level, the
research community has made many attempts to lift IC3 to a word-level implementa-
tion, most notable of which is AVR [98] and IC3IA [47], but, bit-level implementations
still win out in performance in many cases (see rIC3 [196] @ HWMCC’24 [115]). Lifting
IC3 to an efficient word-level implementation is still an open research challenge.

• How to add a clause (predicate)? The philosophy behind IC3 and H-Houdini can be
crisply captured by articulating the fundamental query the algorithms use to generate
clauses (or predicates):
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IC3: “What single clause can block
the root-cause of this particular
counterexample?”

vs. H-Houdini: “What conjunction (set) of

predicates are necessary to ensure that

(target) property holds?”

In order to do this, IC3 uses a counterexample generated from a failing property or a
relative inductivity check, while H-Houdini doesn’t require a counterexample. Rather,
H-Houdini is based on abduction with a predicate abstraction and uses positive ex-
amples to prune out bad guesses early. Alternatively, IC3 eliminates root-causes of
failures by adding clauses, one at a time, while H-Houdini eliminates all root-causes
at once by adding a conjunction of predicates.

• Reliance on a good generalization strategy. IC3’s effectiveness is directly tied to find-
ing general blocking clauses that can eliminate root-causes of failure. Without a good
generalization strategy, IC3 does not scale well as it needs to iterate over many coun-
terexamples all originating from the same root-cause. Indeed, the importance of gener-
alization procedure is well understood by the community as evidenced by a plethora of
follow-up work [195, 111, 48, 27, 132, 99, 65, 116], and the author’s own experiments in
the original work. However, finding the most general inductive clause is expensive and
the algorithm resorts to heuristics to make forward progress. The analogous problem
in H-Houdini is using a conjunction of predicates that is too strong as an abduct. As
a result, H-Houdini may discover that some predicates are not invariants, forcing a
backtrack. However, because of the parallelization and memoization in H-Houdini the
cost of exploring a bad predicate is mostly hidden away: any work done to analyze the
necessary set of predicates is memoized and reused, only analyzing the new predicates
in the next solution. Lastly, backtracking can be significantly reduced by generating
better and more positive examples: a process that is a lot simpler than designing a
robust generalization algorithm.

• Parallelism. The core of IC3 is to arrive at an inductive invariant by eliminating all
counterexamples. At each check, the SAT solver may return any one of the possible
counterexamples. The counterexample returned by the SAT solver, can to a certain
extent, be influenced by the random seed to the solver. IC3 exploits this fact to in-
stantiate many processes, each with a different seed for the SAT-solver, in the hope
that each IC3 instance will discover counterexamples and clauses arising from differ-
ent root-causes. The processes can then communicate the learned clauses to avoid
re-discovering the same counterexamples, allowing parallel progress. However, this
strategy of parallelism has two limitations: (i) the IC3 algorithm has no control over
if the returned counterexamples are actually different. As a result, many parallel pro-
cesses may waste efforts in eliminating similar, or even the same, counterexample, and
(ii) the communication of the clauses between the processes requires all the processes
to proceed in lockstep. This limits the amount of parallelism. H-Houdini on the other
hand parallelizes the proof search over the different predicates that are a part of the
conjunction. Therefore every process contributes to making forward progress without



3.8. RELATED WORK 65

any redundant work. Lastly, H-Houdini can also use solver randomness to push the
amount of available parallelism even further, e.g., by exploring multiple abducts at
the same time. However, in our experience, typically H-Houdini already uses all the
available cores, e.g., > 200 cores for large designs like BOOM. Therefore, we haven’t
yet found the need to explore the above option.

• Generality vs. Exploiting expert knowledge. IC3 automatically generates bit-level
blocking clauses while H-Houdini requires an expert-defined predicate abstraction.
This difference enables IC3 to be a push-button solution to solve general verification
problems while H-Houdini requires human-effort per property of interest. This how-
ever means that IC3 needs to explore a large invariant search space in order to prove
a property, thereby limiting its scalability to large designs and properties. Making H-
Houdini push-button, while maintaining scalability, is an important and interesting
direction of future research.

• Number and types of SAT queries. IC3 performs many more and many different types
of SAT queries when compared to H-Houdini which performs only a single type of
SMT query. Broadly, IC3 has three different types of SAT queries: (i) property check,
(ii) forward relative inductivity checks, and (iii) relative inductivity checks for blocking
clauses. All three of these checks are relatively inexpensive. However, the sheer number
of checks performed, particularly of type (ii) and (iii), quickly add up: multiple type
(iii) checks are required to find an inductive generalization for a counterexample. In
contrast, H-Houdini does not require any forward propagation checks and only has
one type of check, that is most similar to (iii) which is only queried once per target
predicate.

3.8.2 MLIS and ICE Learning

MLIS techniques [40, 243, 87, 73, 82, 157, 77, 67] have a long history in invariant learning,
starting with DAIKON [67] to find likely invariants from traces and Houdini [82] which is
an algorithm to find inductive invariants for unannotated programs. The MLIS setting has
strong connections to synthesis in other domains [11, 193, 194]. Garg et al. [87] first intro-
duced ICE-learning which was later generalized and successfully applied to learn invariants
in various settings [73, 40]. The main drawback with ICE-learning techniques is the need for
monolithic inductive queries, which do not scale well with a large predicate language and to
large systems under verification like BOOM. H-Houdini solves this using relative inductive
queries, making it a RICE-learner (Relative ICE) as introduced by Vizel et al. [211]. To the
best of our knowledge, H-Houdini is the first MLIS-based incremental invariant learning
algorithm developed in the RICE framework.

Counterexample/Oracle Guided Inductive Synthesis. More generally, MLIS is a
special-case of a much broader class of learning technique called Counterexample Guided In-
ductive Synthesis (CEGIS) [194]. The key characteristic in CEGIS is the interaction between
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a learner, which proposes concepts, and a teacher (or oracle) which provides examples/coun-
terexamples. Beyond invariant synthesis, CEGIS has been a centerpiece in many other works,
e.g., program synthesis [194]. Oracle Guided Synthesis (OGIS) [117], is a generalization of
CEGIS which allows more general interfaces between the teacher and the learner. As shown
in [167], ICE learning can be cast as an instance of OGIS.

3.8.3 Invariant & Specification Mining

There’s a long line of research which try to infer specifications of systems, particularly in
the software engineering community. These methods try to guess specifications or likely
invariants using static analysis [169, 135, 140], dynamic analysis [67, 109, 85, 110, 227,
136, 56], machine learning [13, 129, 220, 189], or a combination of these techniques [208,
222]. Although not the focus of this work, this line of research is highly synergistic with
H-Houdini (or other MLIS): the mined likely invariants and specifications can be directly
used as a substitute for the predicate language. We refer readers to [134] which does a deeper
survey into specification mining techniques across several domains and applications.

3.8.4 Abductive Reasoning in Program Analysis

Abductive reasoning, introduced by Pierce [166], has been applied in program analysis to
infer missing preconditions [91] and to scale shape analysis for large software through bi-
abduction [33, 32]. Dillig et al. [59] used it to synthesize inductive invariants for loops, but
their approach lacks completeness guarantees, cannot exploit hierarchy or parallelism, and
requires extensive backtracking. In contrast, H-Houdini offers strong completeness guar-
antees, utilizes hierarchical and parallel processing and reduces backtracking by leveraging
positive examples.

Hardware Constant-Time Verification. Several recent projects focus on verifying
constant-time hardware [93, 205, 75, 57, 58, 76] and constant-time contracts [219, 198, 61].
But, none of these existing works scale to large OoO cores such as BOOM—which is a major
contribution of our work.

3.9 Discussion & Conclusion

To conclude, this work proposed H-Houdini: a novel invariant learning algorithm that
combines the best of MLIS and SAT-based invariant learning approaches to scale invariant
learning to large systems. We manifest H-Houdini as the analysis VeloCT, which demon-
strates scalable invariant learning for the safe instruction set problem (SISP). VeloCT
demonstrates, for the first time, that we can scale invariant learning to large hardware de-
signs such as BOOM.

While we expect H-Houdini to generalize beyond the SISP, more research is needed
to make it completely “push button” and capable of verifying arbitrary properties. We see
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three synergistic categories of future work. First, work that further improves automation.
That is, while H-Houdini can efficiently and automatically search for an invariant, it re-
quires the user to specify a predicate abstraction, implement Omine and specify a means to
create positive examples. Nominally, these steps should also be automated. Second, work
that demonstrates H-Houdini on verification tasks beyond the SISP. We are confident that
H-Houdini will apply largely “out of the box” to other 2-safety properties, such as other
forms of traditional non-interference. Beyond 2-safety, developing extensions to N-safety
properties (common in security verification), liveness properties, LTL-style properties and
functional correctness checking are all exciting directions for future study. Third, integrat-
ing H-Houdini as an invariant learning backend in existing verification frameworks, e.g.,
UCLID5 [168, 184] or pono [144], will allow the community to easily specify new problems
and experiment with H-Houdini on a broader set of verification problems.

3.10 H-Houdini Analysis

We now provide proof sketches for soundness and completeness for H-Houdini.

3.10.1 Contracts

First, we require that any implementation of H-Houdini satisfy the following contracts,
given a predicate universe P. First construct P+ = {p | p ∈ P and ∀e∈E e |= p}, the set of
all predicates consistent with E .

Contract 1. (Slicing and mining oracle completeness.) Consider a ptarget. Let A = {A |
Oabduct(ptarget,P+) = A} be the set of all possible abducts for ptarget. Further assume each
A is minimal.

• Consider Vslice = OTS
slice(ptarget) on line 9. Construct V∗ = {v ∈ V | ∃A ∈ A ∃ p ∈

A p is over v}. We require V∗ ⊆ Vslice.

• Consider PV = OA,E
mine(ptarget,Vslice) on line 10, where Vslice is given by Oslice. We

require ∀ A ∈ A : A ⊆ PV.

Contract 2. (Consistency with positive examples.) Consider PV = OA,E
mine(ptarget,Vslice) on

line 10. We require PV ⊆ P+.

3.10.2 Soundness

We argue that H-Houdini is a concrete instance of the incremental learner from Sec-
tion 3.4.1. The initial property we aim to prove, H0, serves as the starting point. Each
incremental step Hi, synthesized as an abduct, is formed by a conjunction of a subset of
predicates from PV. That is, let Hi =

∧
k pk. Let Ak

i be the result of Oabduct on pk. Then,
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by Contract 1, Hi+1 =
∧

k A
k
i , formed by taking conjunctions over abducts for pk. Finally,

by Contract 2, H-Houdini satisfies the premise for soundness (P-S).

3.10.3 Completeness

We argue that H-Houdini is complete with respect to P. That is, if an invariant H exists
in P, H-Houdini will find H. This follows from Contract 1, which stems from our focus on
1-step relative induction.

H-Houdini will only fail to synthesize an inductive invariant if Oabduct returns None

for a given property/predicate ptarget. Thus, H-Houdini will return None for the top-level
property only if the Oabduct query for that property fails. This can occur in two cases: either
during the initial synthesis for the top-level property or during re-synthesis after a string of
recursive failures (backtracking). Since Oabduct is complete, H-Houdini will fail only if no
invariant exists within P. Therefore, H-Houdini is also complete.

3.11 Soundness & Precision of VeloCT

3.11.1 Omine satisfies H-Houdini Contracts

First, notice that all p added to PV are checked to be consistent with E (line 2, line 5, line 7,
line 15) before adding to the set. Thus, PV satisfies Contract Contract 2 of H-Houdini.

We now check compliance to Contract Contract 1. By earlier arguments, any abduct
A ∈ A for 1-step induction of ptarget can, by definition, only have predicates over variables
in 1-step COI of variables in ptarget. Oslice precisely returns the 1-step COI in Vslice and
therefore, the first part of Contract Contract 1 holds. The second part of contract follows
from first. That is, Omine generates all possible predicates consistent with E over Vslice, i.e.,
there is no p over Vslice such that p ∈ P+ and p ̸∈ PV. Why? because Omine is such that the
set of predicates over v ∈ Vslice is the same in PV and P+. From above arguments, Omine

satisfies Contract Contract 1 of H-Houdini.
By satisfying both Contract Contract 1 and Contract 2, VeloCT’s use of H-Houdini

is sound and complete.
Finally, we show the precision (Def. 3.5.7) and soundness (Def. 3.5.6) of H obtained from

VeloCT.

3.11.1.1 H is Sound

This is trivially true: P = Eq(vlo , v
r
o) is a part of H and is inductive. Therefore, any state

that eventually leads to violating P will not be allowed by H. This proves H is sound
(Def. 3.5.6).

3.11.1.2 H is Precise

We break this proof up into three parts.
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(I): For any instruction allowed by H, H allows all its executions, i.e., with any operand
value. Every e ∈ E forces the secret values in the register file to be unequal on l and r.
Therefore, we cannot add an Eq, or further, EqConst or EqConstSet, on instruction operand
values. Therefore, we cannot restrict an instruction’s operand values. (I) follows.
(II): H allows all executions of every safe instruction. We have at least one example per safe
instruction. Therefore, H needs to allow at least one execution of every safe instruction to be
consistent with E . Further, from (I), H will allow all executions from every safe instruction.
(II) follows.
(III): H allows compositions of safe instructions. From (II), as H =

∧
i pi, every pi also

satisfies (II). Consider p0, p1, p2 over state elements v0, v1, v2 respectively. Further, let the
topology be such that v0 is some composition of v1, v2. Now, as p1, p2 allow all executions
of all safe instructions, v1 and v2 are allowed to independently take values that occur in 2
different safe executions. Consequently, for p0 to be inductive, p0 should allow v0 to take any
value that occurs in the composition of allowed safe executions. Since p0 was an arbitrary
choice, this argument holds for all pi. Since every pi allows all compositions of all safe
instructions, (III) follows. Since (III) is equivalent to Def. 3.5.7, H is precise.

3.12 H-Houdini Running Example

In this section, we will demonstrate how H-Houdini works for the VeloCT setting
using the example circuit shown in Figure 3.6 (a). The figure shows a simplified version of
an execute stage in a CPU shown in Figure 3.6. This execute stage consists of 2 functional
units, an ADD and a MUL, operating on 2 32-bit operands Op1 and Op2. The final output from
the execute stage is the result in Res and a control signal, Valid, to indicate when the result
is valid. Similarly, each FU outputs a result, Resadd/mul, and a valid signal, Validadd/mul,
which is then forwarded to the final result/valid through a MUX.

Description of FU. The operational implementation of the ADD/MUL units are shown in
verilog-like pseudo code in Figure 3.7. At a high-level, the ADD FU computes the result
and valid bits in a single cycle. The MUL FU implements a classic iterative multiplier that
takes 32 cycles to output the result, but, implements a zero-skip optimization: if one of the
operands is a zero, the multiplier immediately outputs the result (0) in a single cycle. To
simplify later discussion, the slice of the circuit used to generate Validmul is shown visually
as a circuit diagram in Figure 3.6 (b-c).

Property to Prove. For this example we will prove the 2-safety property from VeloCT
using H-Houdini. We start by considering two identical copies of the circuit shown in Fig-
ure 3.6.7 We will add a superscript of L and R to all the state elements and wires, e.g.,
ResL vs. ResR, to differentiate between the copies. The two copies of the circuit are non-
interacting and execute independently of each other. Concretely, we will learn an inductive

7For experts: this is a miter or a product program construction.
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invariant to prove that the two copies of Valid are always equal at every cycle, represented
as Eq(Valid) ⇐⇒ ValidL = ValidR.

To make the explanation more intuitive, we will present the algorithm as an interactive
exercise between the authors and readers. Along the way we will construct the solution
graph Figure 3.8, where each node in the graph represents a property and an edge from node
i to node j means that property j requires property i to hold for j to be inductive. The
graph is also annotated with callouts (of the form “i:X ”) to indicate the steps. We will refer
to these in our explanation below.

Our objective is to prove the property Eq(Valid). For simplicity, we first consider how
to ensure this property holds after simulating the circuit for a single cycle. Specifically,
if we start from a state where Eq(Valid) holds and take one step, can we guarantee that
Eq(Valid) will also hold in the subsequent state? From the circuit, we observe that the value
of Valid in the next cycle is determined by the values of Opcode, Validadd, and Validmul,
which constitute the state elements in the 1-step cone-of-influence (COI) of Valid.

This leads us to our first abductive query (1-A): what constraints must be imposed on
these state elements to ensure that Eq(Valid) holds in the next cycle? A solution to this
query is the conjunction Eq(Validmul) AND Eq(Validadd). Hence, if we start from a state
where Validmul and Validadd are equal, Eq(Valid) will always hold after the next state
transition.

Next, we extend this reasoning: can we ensure that Eq(Valid) holds for two consecutive
cycles? This is equivalent to asking: can we ensure Eq(Validmul) AND Eq(Validadd) hold
for one additional cycle. Since this is a conjunction, we can decompose it into two sub
problems: one for Eq(Validmul) and one for Eq(Validadd).

This pattern of abductive reasoning is repeated across queries 2-9A, allowing us to con-
struct a solution graph (Figure 3.8). We make two remarks. First, Eq(in use) depends on
Eq(count), and vice versa. However, this circular dependency does not cause issues because
each property is processed only once. The solution for Eq(count) derived using Eq(in use)

does not require us to rethink the solution for Eq(in use), as its solution is already known
and remains unchanged. Second, more generally, no property needs to be reasoned about
twice (aside from backtracking, discussed next) as no solution changes once it is found. For
instance, abductive reasoning in 9:A does not introduce new queries, allowing us to reuse
previously memoized results (shown as 10:M).

Upon completing our abductive reasoning, we can determine, for each property p, the
set of properties that must hold to ensure that p holds in the next step. This gives us
a conjunctive set of conditions, ensuring relative inductivity. Let H = ∧p represent the
conjunction of all required properties. After one step, if all properties remain true in the
next state, we have established H =⇒ H′. Consequently, we have derived the necessary
inductive invariant to prove Eq(Valid).

Backtracking. What if the property Eq(Op1) failed to be inductive? This would invalidate
the solution we have Eq(Validmul), so we would need to step back, i.e., backtrack, and find
other ways to make Eq(Validmul) hold (11-B). Unfortunately, without a way to restrict
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values of Eq(Op1), we cannot make Eq(Validmul) hold. Thus, we need to backtrack all
the way back to Eq(Valid) (12-B). Can we find a different way to make Eq(Valid) hold
in the next step? (13-A). Yes! Another solution is to have Eq(Validadd) AND Opcode :=

ADD hold. We can continue to repeat the same abductive inference process (14-A) reusing
memoized solutions from before (15-M) to reduce work.

Parallelism. For the purposes of this example, we walked through each step of the
reasoning serially. All of this can be done in parallel. For example, the inferences 2-3:A are
completely independent from 4-9:A and can be done in parallel to 4-9:A, while exploiting
memoization opportunities to avoid repeated queries (10:M).

Positive Examples. Lastly, while parallelism and memoization are able to improve
performance and reduce slowdown due to backtracking, it would be even better if we could
avoid backtracking altogether. Positive examples are concrete execution traces that the
invariant must admit. Any property violated when considering such a trace cannot be
included in the final invariant and therefore can be eliminated early. For example, a positive
example executing ADD can tell us Eq(Validmul) does not hold, allowing us to correctly
infer the second solution and eliminate the backtrack.
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Running example block diagram.](a) A highly simplified execute stage in a pipeline
containing two functional units (FU): ADD and MUL. Each FU takes two operands as

inputs and outputs the result in Resadd/mul and a valid signal Validadd/mul to indicate when
the result is ready. The final result and valid signals are selected through the MUX

depending on the current Opcode.
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Slice of MUL FU from example.](b) Slice
of MUL FU to compute in use and
Validmul. From the figure we deduce
that the values of both in use and
Validmul are dependent on Op1, Op2,

Opcode, in use, and count.
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Slice of MUL FU from
example.](c) Slice of MUL FU
to compute count. From this

figure, we can see that count is
dependent on in use and

count.

Figure 3.6: High-level diagrams to illustrate H-Houdini. (a) shows the high-level circuit diagram
for the example. A slice of the implementation of the MUL FU (described in Figure 3.7) is shown in
(b) (in use and Validmul) and (c) (count). The red region in (b) contains the update expression
in the case in use is false, and the green region contains the update expression when in use is
true. The dashed purple line indicates the next state update.
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ADD(Op1, Op2, Opcode) → (Resadd, Validadd):
@clock

if Opcode == ADD:
Resadd <= Op1 + Op2

Validadd <= 1
else:

Validadd <= 0

MUL (Op1, Op2, Opcode) → (Resmul, Validmul):
start = Opcode == MUL and !in_use
zero_skip = Op1 == 0 or Op2 == 0

@clock
case in_use:

if multiplier [0] == 1:
Resmul <= Resmul + multiplicand

multiplicand <= multiplicand << 1
multiplier <= multiplier >> 1
count <= count + 1
if count == 31: # Done

in_use <= 0
Validmul <= 1

default: # Reset
multiplicand <= zero -extend(Op1, 64)
multiplier <= Op2

count <= 0
Resmul <= 0
if start and zero_skip:

Resmul <= 0
Validmul <= 1

elif start:
in_use <= 1

Figure 3.7: Verilog-like description of the ADD and MUL FU. ADD computes on its two operands
and outputs the results and valid in a single cycle. The MUL FU implements a classic 32-bit
iterative multiplication algorithm with a zero-skip optimization: non-zero operand values take a
slow path (32 cycles) to output the result and valid. Otherwise, if either of the operands are zero,
the result and valid bits are computed in a single cycle.
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Eq(Valid)

Eq(Validmul) Eq(Validadd)

Eq(Op1)
Eq(Opcode)

Eq(in_use) Eq(count)

Opcode := A

C: props to make succs. true

1:A

2:A

3:A

4:A

11:B

12:B 13:A

10:M

15:M

Eq(Op2)

5:A
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7:A
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After 13:A

Figure 3.8: Graphical representation of H-Houdini invariant learning for example circuit in Fig-
ure 3.6. Each node in this graph representation is a predicate, and an edge from predicate i to
j denotes that i is required for 1-step inductivity of j. The graph is labeled with callouts of the
form “i-X”, where i denotes the step number and the X denotes the action: A for abduct, B for
backtrack, M for memoization. Hence, the graph is meant to be read in order of the i ’s.
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Chapter 4

SynthCT:

Towards Portable Constant-Time Code

This chapter presents the final component of our framework: a software-level approach to

automatically harden code using the security specifications developed and verified in Chap-

ter 2 and Chapter 3. Specifically, SynthCT is a program synthesis–based framework capa-

ble of scaling to large and complex instruction set architectures (ISAs), such as x86-64, and

handling instructions known to be unsafe, like div. SynthCT enables developers to write

microarchitecture-agnostic code, automatically transforming it into secure, high-performance

implementations tailored to specific microarchitectures. This approach provides provable se-

curity guarantees, a feature lacking in current practices for developing sensitive code. This

chapter addresses Challenges: (C4).

Recent attacks have demonstrated that modern microarchitectures are fraught with mi-
croarchitectural side channels. Constant-time (CT) programming is a software development
methodology where programs are carefully written to avoid these channels. In a nutshell,
the idea is to only pass secret data to safe instructions, i.e., those whose execution creates
operand-independent hardware resource usage.

Yet, current CT programming practices have significant security and performance issues.
CT code is written and compiled once, but may execute on multiple different microarchitec-
tures. Yet, what instructions are safe vs. unsafe is fundamentally a microarchitecture-specific
issue. A new microarchitectural optimization (or vulnerability) may change the set of safe
instructions and break CT guarantees.

In this chapter, we develop SynthCT to address the above issues. Given a specification
of safe/unsafe instructions, SynthCT automatically synthesizes translations for all unsafe
instructions in the ISA using only instructions from the safe set. The synthesized translations
can be used as a part of a late-stage compiler pass to generate hardened binaries for a
specific microarchitecture. This closes the security hole as the specification, and hence the
safe translations, can target each microarchitecture individually. This also allows CT code
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to reclaim some performance, e.g., use more complex/higher-performing instructions, when
they are deemed safe for a specific microarchitecture.

Using the techniques we develop in SynthCT, we are able to synthesize translations for
a majority of the x86 64 ISA. Specifically, SynthCT is able to generate safe translations
for 75% of the ISA using only the remaining 25% of the ISA. Interestingly, the majority of
the instructions that SynthCT was unable to generate translations for are instructions that
experts believe are safe instructions on today’s x86 64 microarchitectures.

4.1 Introduction

Microarchitectural side-channel attacks are a major privacy threat. By observing hardware
resource utilization from myriad sources—virtual memory accesses [226, 214], hardware mem-
ory accesses [161, 231], branch predictor usage [1, 72], arithmetic pipeline usage [14, 104, 6],
speculative execution [35, 125] and more [163]—an attacker can learn substantial amounts
of information about a victim program, such as its memory access pattern, control flow be-
havior, arithmetic operation operands, etc. Given the large number of hardware resources
that leak different types of information, it is imperative to develop comprehensive software
defenses.

Such comprehensive software-only protection against microarchitectural side channels
is achieved through constant-time programming [22, 24, 152, 170, 81, 186, 242, 68, 148,
201, 176, 3, 14, 49, 207, 38]. In this paradigm, security critical applications are carefully
written and compiled to prevent private information from conditionally influencing hardware
resource usage. In a nutshell, constant-time programming ensures: (i) that the program does
not have private data-dependent branches, and (ii) that the program does not have unsafe
instructions with private data-dependent operands. Here, an instruction is unsafe if its
execution, e.g., timing/hardware resource usage, depends on its operands. Otherwise, the
instruction is safe.

However, the current constant-time development methodology has a significant secu-
rity and performance problem. The fundamental issue is that, much like other software,
constant-time code is written and compiled once, and reused for a long time across many
different microarchitectures. Yet, what instructions are safe vs. unsafe is fundamentally
microarchitecture-specific. If an instruction presumed to be safe at compile time is not safe
on some current/future microarchitecture, we get a potential security vulnerability. This
is especially worrisome now, as Moore’s law’s slowing incentivizes microarchitects to adopt
more exotic optimizations to get performance, rendering potentially many instructions un-
safe [209]. On the flip side, if an instruction presumed to be unsafe at compile time is safe
on some current/future microarchitecture, we incur unnecessary performance overhead as
being able to utilize more instructions tends to reduce overhead.

Prior work on constant-time programming is complementary and has not addressed this
issue. Such work either (i) generates mostly constant-time code from a higher-level language,
e.g., a compiler-based DSL such as FaCT [37], (ii) or hand-writes constant-time code for
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specific critical operations [14]. (By mostly constant-time, we mean a program that treats
control-flow and memory instructions as unsafe.) Both of the above assume that which
instructions are safe does not change across microarchitectures.

In this chapter, we develop SynthCT to address the above security and performance
issues. SynthCT enables microarchitects to specify what instructions are safe on a per-
microarchitecture basis, called the safe set, and uses program synthesis techniques to auto-
matically generate translations for every unsafe instruction in a target program to instruc-
tions in the safe set. Specifically, SynthCT takes as input: (i) a mostly constant-time target
program in binary form, (ii) the formal instruction semantics for the target program’s ISA,
and (iii) a safe-set specification for the microarchitecture the target program is to be run on,
and automatically replaces any unsafe instructions in the target program with semantically
equivalent translations made up of safe instructions. SynthCT can also improve perfor-
mance by choosing the best possible set of safe instructions for a given microarchitecure
while avoiding applying translations for safe instructions in the target program.

Importantly, SynthCT relies on each microarchitecture publishing which instructions
are safe vs. unsafe. While this is not common today, there has been both industry [16]
and academic [234, 106] traction in publishing similar specifications, suggesting they may
become common practice in the future.

SynthCT builds on state-of-the-art program synthesis techniques and formulates the
problem of synthesizing unsafe instructions as a Counter-Example Guided Inductive Syn-
thesis (CEGIS) problem. Yet, scaling CEGIS techniques to modern ISAs such as x86 64,
as needed by SynthCT, is non-trivial due to the extremely large synthesis search space.

In SynthCT, we design and implement multiple techniques to restrict the synthesis
search space and scale CEGIS to modern ISAs. Specifically, the search space grows primarily
as a function of two factors: (i) the number of available instructions in the ISA (e.g., 451 non-
floating point/vector instructions, or over 1000 instruction variants total, in x86 64) and (ii)
the maximum length of allowed synthesized programs. To address (i), we develop component
selection, a procedure that prunes the ISA down to a manageable subset of instructions
which are most likely to result in successful translations for synthesis. The component
selection strategy makes use of a key observation: instructions that are semantically similar,
and hence, more useful in synthesis, also share a high degree of structural similarity in the
instruction’s AST. To address (ii), we develop instruction factorization, a divide-and-conquer
procedure that partitions a complex instruction into smaller pieces, each of which results in
a disproportionately smaller synthesis search space. On top of these, we implement multiple
optimizations to memoize work and guide synthesis towards more likely solutions earlier—in
all cases guaranteeing that translations are semantically equivalent to the input instructions.

Putting it all together, SynthCT synthesizes translations for 75% of x86 64 ISA, i.e.,
is able to translate a large part of the ISA in terms of a small set of core instructions.
Interestingly, the instructions that we do not have translations for are extremely simple
and happen to match what experts today believe are safe instructions on microarchitectures
running x86 64.
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4.2 Contributions

In SynthCT we make the following contributions:

1. We develop SynthCT, the first framework to automatically generate translations from
unsafe → safe instructions in an ISA.

2. We develop techniques to overcome several challenges in framing synthesis of unsafe
instructions as a CEGIS problem. In specific, we develop techniques to reduce the
synthesis search space and make the problem tractable on commercial ISAs.

3. We systematically evaluate synthesized solutions from SynthCT for both performance
and security. In our evaluation, we find that SynthCT is able to generate safe trans-
lations for a majority (75%) of the ISA using only a small set of core instructions (the
remaining 25%). In case studies, we show how SynthCT is capable of synthesizing safe
translations for complex unsafe instructions, e.g., the divide instruction (DIVL-R32).

We believe SynthCT advances the state-of-the-art in constant-time programming. Syn-
thCT is a robust, modular framework which is capable of being re-targeted to other microar-
chitectures and ISAs with minimal engineering effort. We have open-sourced SynthCT as
two repositories:

• SynthCT: https://github.com/FPSG-UIUC/synthCT

• Synthesized translations: https://github.com/FPSG-UIUC/synthCT-artifacts

4.3 Threat Model and Scope

We consider a standard threat model for constant-time programming, where a victim pro-
gram runs on a shared machine in the presence of adversarial software. The adversary’s
goal is to learn private data in the victim program through microarchitectural side chan-
nels. (This is equivalent to the SGX adversary [206, 234, 242, 170], modulo a caveat stated
below in “Non-goals”.) The program itself is considered public. We trust that, for a given
microarchitecture, every instruction marked safe in the safe set specification executes with
operand-independent hardware resource usage.

4.3.0.1 Security/Functionality goal

Given a mostly constant-time program P that takes input y and safe set S (a subset of the
ISA), our goal is to automatically construct a program P ′ with the following properties:

1. Functionality: We require that P (y) = P ′(y) ∀y.

https://github.com/FPSG-UIUC/synthCT
https://github.com/FPSG-UIUC/synthCT-artifacts
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2. Security: We require that for each instruction I ∈ P ′, we have I ∈ S.1

By definition of our threat model, satisfying Property 1 implies non-interference with respect
to the program input and the microarchitectural side channel attacker, on a non-speculative
microarchitecture. That is, it implies ∀y, y′ View(P ′, y; uArchS) = View(P ′, y′; uArchS) where
View(.) returns the program’s hardware resource usage trace in space and time when run on
non-speculative microarchitecture uArchS with safe set S.

4.3.0.2 Complementary: Spectre mitigations for constant-time programming

Speculative execution attacks (e.g., Spectre [125]) use a program’s transient execution to
form accessors and transmitters that access and transmit (leak) a secret [124]. Analyzing
what accessors can be constructed for a given program and microarchitecture, i.e., analyz-
ing transient reachability, is out of our scope and is covered in complementary work [160,
107, 41, 212]. Analyzing what transmitters are possible for a given microarchitecture is in
scope: ‘transmitter’ is a synonym for ‘unsafe instruction.’ In other words, SynthCT enables
complementary works [207, 38] to produce microarchitecture-specific Spectre hardened code,
taking into account that machine’s safe set.

4.3.0.3 Non-goals/limitations

Physical side channels (e.g., power [127] or EM [156]) are out of scope. Similar to other
constant-time defenses, we treat SGX-based attacks that monitor analog information, e.g.,
the RAPL interface [138], as out of scope.

We also do not prevent secrets from leaking through a program’s control flow and memory
access pattern. That is, we do not block leakage through cache/memory- and control flow-
related side channels [1, 161, 231]. We assume the input program is already hardened against
these attacks, i.e., is mostly constant time. We elaborate on how microarchitecture can still
undermine the security of mostly constant-time code in Section 4.4. Writing and generating
mostly constant-time code is a complementary concern, and has become practical due to a
large body of prior work [22, 24, 152, 170, 81, 186, 242, 68, 148, 201, 176, 3, 14, 49, 37, 139].

4.4 What Instructions May Be Unsafe?

Before describing SynthCT, it is important to understand why instructions become un-
safe, and which instructions are likely to flip between safe and unsafe, depending on the
microarchitecture. To start, mostly constant-time code (Section 4.1) assumes that control-
flow and memory instructions are unsafe. Due to their significant influence on program

1Requiring that all instructions are safe is overly strong. More precisely, constant-time programming
requires that unsafe instruction operands are not a function of private data. Accommodating programs in
this relaxed definition would require a complementary, well-understood analysis that can easily be applied
on top of SynthCT.
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execution, it is ‘safe’ to assume that control-flow instructions are always unsafe. Likewise,
due to myriad memory-system optimizations such as caches, which enable cache-based side
channels [161, 231], it is safe to assume that memory instructions (loads, stores) are also
unsafe on performance-competitive processors.

This paper’s focus is therefore non control-flow and non memory operations. Prior work
has studied how a small number of “complex” arithmetic instructions, such as floating
point [14], divide [49] and multiply [104] are unsafe (“variable time”) on certain microarchi-
tectures. Given tools today, the only fix is to assume they are unsafe on all microarchitec-
tures. This is secure, but overly conservative. SynthCT can improve performance when
code is run on microarchitectures where such instructions are safe.

Worse, there is a large family of ISA-invisible microarchitectural optimizations that may
render a significantly larger set of arithmetic instructions unsafe [209]. For example:

• Computation simplification / elimination optimizations (e.g., [172, 233, 19]) have been
proposed for many arithmetic operations to take advantage of operation-specific identity and
absorption properties. For example, that x & 1 = x.

• Computation reuse optimizations (e.g., [192, 191, 151]) memoize computation when
the same instruction(s) are executed twice with the same operands.

• Value prediction (e.g., [149, 175, 185]) saves cycles when an instruction returns a
predictable result.

• Significance compression (e.g., [30, 34, 213]), related to serial computation, impacts
performance depending on the position of the high-order on bit in each program word.

These optimizations are a major security concern. They can be implemented on any
microarchitecture at any time.2 Further, they are often implemented on a per-instruction
basis as they often require instruction-specific logic (e.g., the identity rule for AND is dif-
ferent than that of OR). This makes it unlikely that which are safe will be consistent across
microarchitectures. SynthCT can improve security when code is run on microarchitectures
where such instructions are unsafe.

4.5 Design Overview

In this section, we present an overview of SynthCT. Figure 4.1 shows an overview of
SynthCT’s workflow. At a high-level, SynthCT takes as input an ISA specfication and
microarchitectural safe-set specification and generates a library of safe translations that im-
plement every instruction in the ISA using only the instructions that are safe on that specific
microarchitecture. The generated library may then be used to secure mostly constant-time
code (or binaries) using a late-stage compiler pass (or a binary-rewriting mechanism). The
final output is a binary that is constant time (with respect to that microarchitecture). There-
fore, SynthCT operates in three distinct phases: an offline synthesis phase, a microarchi-
tecture targeting phase, and an online deployment phase. Now we discuss each step and
artifacts in the workflow in more detail.

2Some indeed have been already. For example, [104] is an implementation of significance compression.
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Figure 4.1: Overview of SynthCT. SynthCT takes as input the specification of instructions in an
ISA and uses program synthesis to generate a library of translations. When targeting a particular
microarchitecture, SynthCT uses a safe set specification for the microarchitecture to generate a
library of safe translations for all unsafe instructions. The set of safe translations can then be
used at deployment time to secure mostly CT source code or binaries through a compiler or binary
rewriting pass. Parts of the main workflow are shown with filled lines and a possible alternate
workflow is indicated with dashed lines.

4.5.0.1 ISA Semantics

SynthCT takes as input the semantics for each instruction in the target ISA. The semantics
describe the precise functional operation of each instruction in some intermediate represen-
tation. In our current implementation, SynthCT takes x86 64 semantics written in the
K-framework [53], but the framework is conceptually agnostic to which ISA and semantics
IR. The semantics for each instruction describes how the output registers and the flag states
are computed. The semantics can be reduced to an abstract syntax tree (AST) representa-
tion that uses the K-language (/opcodes). Therefore, there is one AST per output register
and flag that the instruction sets. An example of such an AST is shown in Figure 4.3 for the
instruction “Add with Carry” (ADCQ) and the output register. Similar ASTs describe how
each of the other x86 64 flags are computed by the instruction. Note that the semantics
may not describe how the instructions are implemented in hardware nor do they indicate
what instructions may be safe. These are simply functional specifications.

4.5.0.2 Safe/Unsafe Specification

SynthCT also takes as input a microarchitecture-specific input that specifies the set of safe
and unsafe instructions for that particular microarchitecture. Safe sets may be provided by
the hardware manufacturer, or reverse engineered like unofficial currently-used safe sets [14].
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Figure 4.2: Iterative Synthesis. SynthCT performs synthesis iteratively and updates the synthesis
graph with generated translations. 1○ shows the initial synthesis graph with instructions A, B,
C, D having no translations. In 2○ and 3○ SynthCT synthesizes translations for A and B and
updates the graph.

We hope, long term, that this and related work [106] encourages processor manufacturers to
publish formal, explicit microarchitecture-specific safe sets.

4.5.1 Step 1 (Offline): Synthesis

The synthesis takes as input the semantics for all instructions in the ISA and generates a
library of translations. In the first stage, SynthCT does not assume a specific safe set
and instead tries to find translations from any instruction into any other instruction(s).
Therefore, the synthesized set of translations is microarchitecture agnostic. Alternatively,
if the target microarchitecture and its safe set are known at synthesis time, they may be
used in the synthesis step to generate microarchitecture-specific translations. We discuss
this alternate work flow at the end of this section.

4.5.1.1 Iterative Synthesis

The synthesis process discussed above is iterative. SynthCT constructs a graph using
all discovered translations. Such a synthesis graph is shown in Figure 4.2. In Figure 4.2,
SynthCT starts of with a graph containing a node for every instruction in the ISA and no
edges ( 1○). As SynthCT synthesizes solutions, e.g., in 2○ instruction A is synthesized using
instructions B and D, edges are added to the graph. Finally, as shown in 3○, SynthCT
synthesizes a solution for instruction B using instruction C, and therefore, instruction A may
also be translated using instruction C and D. This allows SynthCT to discover translations
that may otherwise not be synthesizable in a single step due to the complexity of the solution.
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Figure 4.3: Semantics AST for the adcq instruction’s output register (black and blue nodes in the
AST), written in K [53]. The figure also shows the structural similarity between ADCQ and SBBQ:
to derive SBBQ from ADCQ, one replaces the blue nodes with the red nodes.

4.5.2 Step 2 (Offline): Safe-set Mapping

SynthCT then uses the microarchitecture-agnostic set of translations and the safe-set spec-
ification for a given microarchitecture and generates the set of translations specific to that
microarchitecture, i.e., every unsafe instruction in the ISA has translations using only the
instructions from the safe set. This step ensures that every instruction is expressed with
the best possible set of safe instructions, according to some performance model. For safe
instructions this is trivial as they need not be translated. For unsafe instructions it boils
down to using the best performing synthesized solution that uses only safe instructions.
SynthCT uses program length as a proxy for performance, but a lower-level, more accu-
rate and microarchitecture-specific performance model may also be used for selecting the
best synthesized solutions. The end result from this step is a library of translations that is
specialized to harden software for a specific microarchitecture.
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4.5.3 Step 3 (Online/Compile time): Software Hardening /
Deployment

During deployment, the library of translations generated by SynthCT is used to secure
mostly constant-time code.3 We envision this step to be integrated as a late-stage compiler
pass in popular compilers, e.g., GCC or LLVM, to replace any unsafe instructions selected by
the compiler backend by their safe translations. Optionally, this may also be implemented
as a post-compilation pass using binary rewriting to secure mostly constant-time binaries,
e.g., binaries produced by DSLs like FaCT or handwritten to be constant time [14, 37, 22,
24].

The key component of SynthCT is Step 1, Synthesis. In the sections that follow we
will first frame the synthesis problem as a CEGIS problem, then, highlight several challenges
in applying the CEGIS formulation directly, and finally, present techniques that SynthCT
implements to solve these challenges. The deployment step can be implemented with minimal
additional engineering effort, e.g., writing a compiler pass that uses synthesized translations
stored in a machine-readable format.

4.5.4 Alternate Workflow

If the safe set specification and the target microarchitecture is known at synthesis time, Syn-
thCT can take such a specification as input in step 1, shown by a dashed line in Figure 4.1,
and directly synthesize safe translations that are specific to the microarchitecture.

In the following section, we highlight several challenges facing both workflows. To sum-
marize these challenges: On the one hand, if the size of the safe set is large, then both
workflows face similar scalability issues. On the other hand, if the size of the safe set is
small and simple, then the more complex instructions in the ISA may not be synthesizable
in one-shot.

4.6 SynthCT: Formulation and Challenges

This section describes the design and implementation of SynthCT. First, we formulate the
problem of instruction synthesis as a Counter Example Guided Inductive Synthesis (CEGIS)
problem in Section 4.6.1. Then, we show several challenges that we need to solve to make
synthesis tractable for an an ISA like x86 64 in Section 4.6.2. Finally, in the sections that
follow, we discuss several techniques we develop in SynthCT to tackle these challenges.

3That is, code whose control flow and access pattern to data memory is independent of private data, but
may pass private data to unsafe instructions.
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4.6.1 Formulation as a CEGIS Problem

4.6.1.1 CEGIS Sketch

We formulate the problem of instruction synthesis to an off-the-shelf CEGIS tool by speci-
fying: (i) a specification of the synthesis goal and (ii) the sketch used to generate candidate
programs. In our setting, the specification is the semantics of the target instruction, It, in
bitvector logic. Candidate programs that implement the target instruction are generated
from the sketch shown below. Our sketch is simple and general: A program is expressed
as a list of x86 instructions, and each instruction is parameterized by zero or more register
operands (as needed by the instruction).

Program (P): (list Inst*)

Inst (I): (choose* {??})

{??}: x86 Instruction { ??: register operands }

The {??} are holes that need to be filled in by synthesis to generate concrete programs.
Here, the first such hole can be filled in by choosing an appropriate component4, i.e., an
instruction, from a set of available components, i.e., all instructions or a subset of instructions
from the ISA. The second hole can then be filled in by choosing register operands for the
selected instruction from the pool of available registers. Based on this sketch, the CEGIS
procedure has three degrees of freedom in generating concrete programs: (i) The length of
program to synthesize, (ii) The choice of instructions (components) for each “line” in the
program, and (iii) The register operands to each instruction.

4.6.1.2 Verifier

The verifier checks if the synthesized program and the specification are semantically equiv-
alent. To do so, the verifier interprets the specification and the candidate program starting
from blank (symbolic) states S and S′ respectively. Then, it performs an equivalence check
over the corresponding register and flags states in S and S′. If the final states are equivalent,
then the candidate program implements the specification and we have a synthesis solution.
Otherwise, the verifier produces a counterexample that is used to refine the future solutions.
In our setting, the verifier uses the SMT solver, Z3 [154], to perform equivalence checks and
generate counterexamples.

4.6.1.3 CEGIS Implementation

For synthesis, SynthCT uses Rosette [202] a solver-aided DSL that extends Racket to make
it easy to develop various tools, e.g., a symbolic interpreter, synthesis engine etc.

In theory, above formulation is sufficient to synthesize programs for all instructions It
in an ISA in terms of a safe set of instructions. However, in practice, this formulation of

4‘Component’ is a synthesis term. In this paper a component is an instruction opcode.
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Figure 4.4: Synthesis Scalability. The graph shows synthesis time, for the running example ADCQ,
vs. program length for different numbers of components. Component sets for synthesis are expert
selected such that at least one known solution exists. Points with ● denotes a success and ✕denote
failure, i.e., unsat/timeout. Timeout is set to one day for this experiment.

synthesis does not scale to an ISA as large and complex as x86 64 due to the large synthesis
search space, as we see below.

4.6.2 Challenges

To test the scalability limits of our synthesis problem formulation, we perform several syn-
thesis experiments by varying the parameters: (i) The length of synthesized programs, (ii)
Number of available instructions for synthesis, and (iii) Number of registers available for
synthesis. For this experiment, we consider the synthesis of the “Add with Carry” (ADCQ)
shown previously in Figure 4.3, with six registers available to use in synthesis. Figure 4.4
shows the log of synthesis running time vs. synthesis program lengths for different com-
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ponent set sizes.5 The timeout is set to one day for this experiment. The set of available
components are expert chosen to ensure that at least one possible solution exists for ADCQ.
Points in the parameter space that lead to successful synthesis solutions are marked by a ●

while ones that fail, either due to unsat (no possible solution) or a timeout, are marked by
an ✕.

From the graph, we see that synthesis time is a function of both synthesis program length
and the number of available instructions to use in synthesis. The synthesis time increases
exponentially with the increase in both the program length and the number of available
instructions. We see that setting the program length to 3 gives us the first successful synthesis
and increasing the program length results in exponential increases in the time to success —
only the curve with a small number of available components (4) succeeds for program length
8 and all available instruction set sizes fail due to timeout after one day for programs of
length 16. We see a similar trend when exploring different-sized sets of available components
— increasing the set size exponentially increases the time taken for success while keeping
program length constant, with larger set sizes, e.g., 128, having successes only for very
short program lengths (3) and the largest set (# of available components = 256) having no
successes.

This experiment makes it clear that both parameters have a ‘goldilocks zone’ in which
synthesis succeeds and takes a reasonable amount of time. On the one hand, we require that
the program length, # of available components and # available registers is small. On the
other hand, if we do not sufficiently provision each of these, synthesis cannot find a solution.

4.6.2.1 Setting the program length

For example, if we make the program length too short, e.g., points in the graph where
program length is 1 or 2, then the synthesis fails as there may be no programs of such
short lengths that can implement the target instruction. Making matters worse, given an
arbitrary target instruction to synthesize, it is not possible to say ahead of time if such a
short solution exists. In fact, in x86 64, we see several such instructions, e.g., Leading Zero
Count (LZCNTQ), that are complex and cannot be synthesized with programs of short length.
Thus, we need to solve two problems related to setting program length: a) how to choose the
right program length for a given target instruction and b) how to scale synthesis to handle
complex instructions that require intractably large program lengths.

4.6.2.2 Setting the component set

When looking at the number of components to make available for synthesis, we face a
similar issue. Smaller sets of available components lead to quicker synthesis successes. As

5Setting the program length to N instructions or components forces synthesis to find only solutions with
that number of instructions. If there exists a solution with fewer than N instructions, say S, synthesis will
still need to “find” a solution S’ (in a larger search space) that is, e.g., S padded with nops (either literal
nops or sequences that are semantically nops) to reach N total instructions.
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shown from our experiments, providing the entire ISA to synthesis as choices is infeasible.
For example, the synthesis time given a candidate component set size of 256 (256 out of
451 instructions) for programs with lengths > 2 is more than a day. Therefore, the naive
solution of using all instructions in the ISA in synthesis is infeasible and we need to develop
a way to automatically (without expert guidance) select a good subset.

A strawman idea to address this “component selection” problem is to randomly sub-
sample the ISA. The smaller the size of the subset, the lower the probability of picking a
‘good’ set of components, that contains the components needed for a solution, while a larger
subset will exponentially increase the synthesis time. To check whether this simple strategy is
sufficient, consider the probability of choosing a good subset of size 32 (as 32 was the largest
component size yielding successes in Figure 4.4). Then there are

(
451
32

)
possible subsets out

of which only
(
448
29

)
have the required three components for the solution. Therefore, the

probability of picking a good subset is ≈ 0.000326 which is extremely low. Choosing subsets
with fewer instructions yields similar results. Therefore, to keep the synthesis time tractable
while generating synthesis successes, we need a better way to automatically select component
subsets for synthesis based on the target instruction.

4.6.2.3 Setting the number of available registers

In the above experiments, we keep the number of available registers a constant (6). We
observe similar scaling trends when varying the number of registers. Due to limitations in
the current sketch, synthesized programs cannot spill and restore registers to/from memory.
Therefore, having too few registers means that certain solutions that need more registers
cannot be synthesized, while having too many registers increases synthesis time.

In this paper we will focus on addressing issues with program length and component
sets (see previous two sub-sub sections). Combined with solutions to these issues, we find
that the naive strategy for registers—limiting the number of available registers to a smaller
number than the actual number of registers in x86 64 (16 general purpose registers)—is
sufficient. There may be room to develop heuristics to automatically pick the required
number of registers based on the complexity of target instruction or to iteratively increase
the number of registers when synthesis fails to produce a solution. We leave developing such
heuristics for future work.

4.7 SynthCT Design

From the above experiments, we must address several challenges.
First, we must coordinate the program length with the number of components we actually

expect will be required. This is especially when the program length is large, e.g., as we have
described with the LZCNTQ example, as synthesizing programs of this length is intractable.
Second, regardless of the program length, we need to devise a way to sample the ISA so as to
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include components that are likely to lead to successful synthesis. We now give a high-level
overview of how we solve these challenges:

4.7.0.1 Component selection

As the naive random sampling is unlikely to generate many synthesis successes, we develop
a better strategy to pick a good set of components to maximize the likelihood of synthesis
success. The key insight behind our component subset selection is that structural similarity
between instruction ASTs can be an indicator for semantic similarity. We build on this
insight to develop our component selection strategy in Section 4.7.1.

4.7.0.2 Instruction factorization

As the program length needs to be short, certain complicated instructions in x86, e.g.,
Leading Zero Count (LZCNTQ), cannot be synthesized because no loop-free program of short
length can implement such instructions. To solve this, we develop instruction factorization,
a divide-and-conquer strategy to synthesize solutions in parts, in Section 4.7.2. Sometimes,
factorization is insufficient to implement certain complicated instructions, e.g., the Divide
instruction. To synthesize such instructions we introduce several additional techniques: node
splitting and pseudo-instructions (Section 4.7.3).

4.7.0.3 Register handling

To reduce the synthesis search space, we restrict the number of registers to just 6 registers,
compared to 16 available general purpose registers in x86 64. We found that combined with
the solutions discussed above, this simple strategy of restricting the number of registers was
sufficient for synthesis. In the future, we may explore more sophisticated strategies to tailor
the number of registers based on the synthesis need.

4.7.0.4 Miscellaneous issues

Lastly, we discuss other miscellaneous challenges and solutions in synthesizing x86 instruc-
tions in Section 4.7.4.

4.7.1 Component Selection

To make the synthesis problem tractable we need to restrict the synthesis search space by
allowing synthesis to only choose components from a small subset of instructions rather
than the entire ISA. From our experiments, it is clear that choosing components at random
is unlikely to select a good subset of components for synthesis. In this section, we design
the component selector, that for a given instruction to synthesize, picks a set of components
that maximizes the likelihood of a synthesis success.
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Key Insight. The key insight behind our component selection is that instructions that are
semantically similar, and hence more useful for synthesis, have structurally similar semantics.
In other words, their ASTs are structurally similar to each other. For example, in the ADCQ

example from Figure 4.3, one can form the AST for the “Subtract with Borrow” (SBBQ)
instruction by replacing the blue nodes in the AST with red nodes. This makes sense as a
subtract is addition with a negation. If we give SynthCT a set of components that includes
sbbq, it does synthesize the desired solution:

adcq R0, R1:

movq 0x0, R3

sbbq-r64-r64 R0, R3

subq-r64-r64 R3, R1

To restate the component selection problem: given an instruction It to synthesize, return
a list of instructions, or components, from the ISA ranked according to their similarity to the
synthesis target It. Generally, we find that sub-graphs of the target instruction’s AST are
sub-graphs of a candidate component’s AST. For example, the ADCQ↔SBBQ example from
Figure 4.3. Therefore, we need a fuzzy way to estimate similarity between instructions and
assign a score based on how similar the instructions are. Performing subgraph matching on
all instruction ASTs is too expensive; we therefore need a lightweight way to estimate the
degree of similarity between ASTs.

4.7.1.1 Implementation

SynthCT implements the fuzzy similarity estimation in two steps:

1. Graph Embedding: to convert variable-sized graphs, i.e., instruction semantics ex-
pressed as an AST, to a fixed-size vector representation,

2. Similarity Estimation: that uses vector representation of ASTs to assign similarity
scores.

For graph embedding, we use graph2vec [155], an unsupervised machine learning tech-
nique similar to word2vec [147] used in NLP settings. graph2vec captures structural similar-
ity between graphs and generates similar embeddings for graphs that are structurally similar
to each other. Our implementation uses graph2vec as implemented in the python library
karateclub [174]. graph2vec takes a number of hyper-parameters for training, we refer the
readers to [155] for full details. Empirically, we found the following learning parameters to
be sufficient to find good results for synthesis (Section 4.8.5.1): We set the number of WL
iterations to 3, the number of training epochs to 30, and the size of the output vectors to
128. We did not try to optimize these hyper-parameters further or do an exhaustive search.
We leave optimizing these hyper-parameters as future work.

The output from the graph embedding stage is a fixed-length vector representation of the
semantics of each instruction. Then, to find instructions that are most similar to the query
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bv 0 64

R0 63 .. 63

#ifMInt
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R0 62 .. 62
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<Repeated 61 Times … >

Figure 4.5: Simplified Semantics for Leading Zero Count Instruction (LZCNTQ). The figure only
shows the first two levels of the AST. Observe that the structure of if-then-else is repeated
multiple times, but with the conditional comparing different bits and the then branch returning a
different value. The differences in the two levels are highlighted in red and blue respectively.

instruction we use K-Nearest Neighbors (KNN) search. We use Euclidean distance for the
distance metric and set the number of neighbors to 32 (K = 32) to get the 32 instructions
most similar to the query instruction (as 32 was the largest size that yielded successes in
reasonable time; c.f. Section 4.6.2).

4.7.2 Instruction Factorization

In order to keep synthesis times tractable, we are restricted to synthesizing programs of
short lengths (e.g., 4 instructions). However, there is no guarantee that any instruction
from any ISA will be synthesizable with a program of such short length. For example,
certain instructions in x86 64 such as the leading zero count (LZCNTQ) instruction have
complex semantics and require hundreds to thousands of simpler instructions to synthesize
(Section 4.8.2). We therefore need additional techniques to scale and generalize synthesis.

In Figure 4.5 we show the simplified semantics of LZCNTQ to illustrate potential complexity
in instruction semantics. The original, un-simplified AST has 771 different nodes with a
depth of 64. Taking a closer look, the AST has the same substructure repeated multiple
times (as shown in dashed gray lines). Indeed, this is because the same operation is repeated
on different bits, i.e., bit 0 through 64, of the operand.

To be able to synthesize such complex instructions while keeping synthesis time tractable,
we develop instruction factorization, a divide-and-conquer technique that breaks down a
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Figure 4.6: Instruction factorization example. (a) An example instruction AST to be factorized.
Lower-case labels are AST primitive operations; upper-case labels are subtrees of AST operations.
Subscripts denote different instances of the same AST subtree. (b) The different types of synthesis
tasks spawned to synthesize the AST. (c) The synthesis workflow graph for (a), depicting the order
in which synthesis tasks are evaluated (bottom to top).

complex instruction semantics AST to multiple, simpler ASTs. Each of the smaller ASTs
are treated as semantics for simpler factors. The factors are then synthesized as separate
synthesis tasks, like regular instructions in SynthCT. Once the intermediate factors have
solutions, the original larger instruction is synthesized exclusively using these smaller factors.

4.7.2.1 Factorization Strategies

There are multiple ways to factorize an instruction’s semantics. For a good factorization, we
need to find a minimal-size partition of the semantics AST, such that each of the sub-ASTs
that are generated by the partition are synthesizable in parts. In general, it is not possible to
say if a particular partition is synthesizable without investing time into trying to synthesize
solutions from it.

In this work, we primarily use a bottom-up factorization strategy. The intuition is to
try the simplest ASTs first, i.e., starting from trying to synthesize sub-trees from the tar-
get instruction’s semantic’s leaves with height = 1, and incrementally combine the simpler
solutions to synthesize larger and larger subtrees.

To illustrate this strategy, consider the example in Figure 4.6 that shows an example
AST, the generated factor types, and the bottom-up factorization workflow graph. In the
AST (Figure 4.6a), nodes are labelled such that a lowercase label (letter) indicates a single
node in the original AST and an uppercase label refers to a subtree which may have one
or more nodes. When the same node label appears two or more times, that means the
same node or subtree appears that many times. We differentiate between occurrences via
subscripts.

SynthCT synthesizes the AST by partitioning it into several types of smaller synthe-
sis tasks (Figure 4.6b). To synthesize AST leaves, SynthCT creates a synthesis task to
translate just the leaf. As the AST can be recursively viewed as a single node with subtrees
for operands, we create a synthesis task for each node and set the subtrees as stubs. We
then recursively factorize the subtrees, eventually reaching the leaves, e.g., the subtree E1

eventually reaches its leaves and their corresponding subtree of tasks are abstracted behind
the task Synth–E1. To synthesize AST non-leaves (e.g., d1), SynthCT first tries to syn-
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thesize the root node (e.g., d1) in isolation, leaving the children as stubs/residuals (denoted
Synth–d1r). It then tries to synthesize the whole rooted AST after both the root node and
children have been resolved (denoted Synth–d1).

Finally, the workflow graph (Figure 4.6c) shows the order of in which SynthCT schedules
the synthesis tasks to synthesize the overall AST. SynthCT starts synthesis of factors from
the leaves of the workflow graph and proceeds to synthesize the parents when all the subtasks
return success. Child tasks beneath a single parent are attempted left-to-right; hence, the
residual task is synthesized first, followed by tasks for each child subtree. This way, synthesis
works bottom-up, synthesizing the simplest factors first before synthesizing larger, more
complicated factors, eventually synthesizing the complete instruction. Additionally, when
synthesizing non-leaf factors, the sub-factors of the target factor are available as components
to use in synthesis.

4.7.2.2 Optimization

Factorization may create a secondary problem: there may be too many simple, overlap-
ping synthesis tasks to run in a reasonable amount of time. Consider the example from
earlier (Figure 4.6) and its corresponding bottom-up workflow graph (in Figure 4.6c). In
this example, notice that the subtrees rooted at d1 and d2 are equivalent, and yet, we have
separate synthesis tasks, Synth-d1 and Synth-d2, in the workflow graph. In fact, we see mas-
sive memoization opportunities in the wild when synthesizing several x86 64 instructions,
e.g., the aforementioned Leading Zero Count (LZCNT) shown in Figure 4.5, Population Count
(POPCNT), Trailing Zero Count (TZCNT) etc. Indeed, this is because LZCNTQ (and similarly the
other examples) performs the same repeated operations on bits 1 through 64 of its operands.
To reduce the number of synthesis tasks we exploit this observation and memoize the syn-
thesis results. When a new factor needs to be synthesized, SynthCT first computes the
hash of the subtree and checks if a solution has already been computed by another synthesis
task.

4.7.3 Node Splitting and Designing Pseudo-Instructions

Instruction factorization solves the problem where the AST is dominated by many vertices,
each with relatively simple functionality. We now tackle the opposite problem: where the
AST is dominated by few vertices, each with complex functionality, e.g., a divide opcode.
These opcodes are not translated in K internally as they have a one-to-one correspondence
with opcodes in SMTLIB, thereby enabling direct formal reasoning such as equivalence
checking.

The fundamental reason we cannot handle complex intermediate vertices is because Syn-
thCT has no structural information in the semantics to exploit during component selection,
i.e., since each individual vertex is complex and abstracts away multiple operations, picking
a good set of components to implement the functionality of that said vertex is not possible.
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Pseudo-Instruction Description

movq-imm-r64 i, r0 Move an immediate value i into the register r0
pmovq-r64-r64 r0, r1 Move from register r0 to r1

pmov-flag-r64 f, r0 Move value of flag f into register r0
pmov-r64-flag r0, f Move value in r0 into flag f

psplit-r64-r64 r0, r1, r2 Split value in r1 into r0 and r1 at index specified in r2

pconcat-r32-r32 r0, r1, r2 Combine r0 and r1 into r1 by shifting value in r0 by value in r2

pcmov-r64-r64-r64 r0, r1, r2 Conditionally move r1 into r2 depending on if the condition r0 is true

pnot-r64 r0 Logical not
por-r64-r64 r0, r1 Logical or

pand-r64-r64 r0, r1 Logical and
pxor-r64-r64 r0, r1 Logical xor

pnop No-op (NOP)

Table 4.1: List of pseudo-instructions implemented in SynthCT.

Therefore, SynthCT needs additional assistance in order to be able to exploit structural
information and synthesize such complex instructions.

In the following two subsections, we develop two techniques to handle this source of
complexity: (i) expert-written pseudo-instructions to provide synthesis with some useful
primitives and encourage creative solutions, and (ii) node splitting to manually represent
complex intermediate K-operations as simpler operations.

4.7.3.1 Pseudo-Instructions

The intuition behind pseudo-instructions is to have some extremely useful expert-chosen
primitives, e.g., generating bitmasks, extract bits i through j from a register etc., be avail-
able in all synthesis tasks. These expert-chosen primitives are treated as normal unsafe
instructions and are synthesized by SynthCT as usual. They can then be used as sub-
routines in subsequent synthesis jobs. Well chosen pseudo-instructions solve three prob-
lems: (i) re-discovering implementations for basic primitives wastes synthesis cycles, (ii) by
abstracting away useful primitives that need multiple instructions to implement behind a
pseudo-instruction, we effectively compress the program lengths of synthesis solutions that
need these primitives, and (iii) if chosen correctly, pseudo-instructions will encourage cre-
ative solutions that synthesis may not have found otherwise. Pseudo-instructions are ISA
independent and therefore can be used in synthesis of instructions in other ISAs as well,
although, their usefulness may vary depending on instructions and complexities of the ISA.

The current set of pseudo-instructions we designed for SynthCT along with their de-
scriptions are shown in Table 4.1. Just like regular instructions, pseudo-instructions are
synthesized by SynthCT, except that the set of instructions used as components during
the synthesis is a set of simple, fixed instructions. These need not be in the safe set for
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a specific microarchitecture and, if not, will themselves require translations to the safe set.
In other words, the pseudo-instructions do not go through the component selection process.
This is currently an engineering limitation6 which can be addressed in future work.

4.7.3.2 Node Splitting

We use node splitting to simplify complicated K intermediate opcodes, e.g., the K divide 64

opcode in the division family of instructions, ROL/ROR in the rotate family of instructions, and
MUL in the multiply family of instructions. K-opcodes are finite and shared across ISAs, i.e.,
instructions from any ISA need to be expressed in terms of these fundamental K-opcodes to
be compatible with formal reasoning in the K-framework. Thus, node splitting is a one-time
manual implementation effort, per complex K-opcode, and need not be re-done if SynthCT
is re-targeted to a different ISA.

Once such translations are implemented in SynthCT, ASTs of instructions that contain
the complex opcodes are first simplified by replacing the opcode with the translation before
proceeding with the rest of SynthCT’s workflow. We implement such translations in Syn-
thCT for the the rotate K-opcode, rol, and the K-opcodes used in the divide instruction,
div quotient int32 and div remainder int32. This will be discussed in our evalua-
tion Section 4.8.3. More such translations may be implemented in SynthCT on-demand
with minimal effort.

The overall algorithm uses node splitting with instruction factorization and component
selection as follows. First SynthCT uses node splitting to simplify complex vertices in an in-
struction AST using translations built into SynthCT. This process converts an AST with a
few complex vertices into an AST with simpler, but larger number of vertices. Second, we use
instruction factorization to synthesize the now larger AST through the divide-and-conquer
mechanism that we described earlier. We note that due to program length constraints, node
splitting would likely be ineffective without factorization.

Pseudo-instructions vs. node splitting. Both pseudo-instructions and node-splitting
help SynthCT to synthesize complex instructions, albeit in slightly different ways. Pseudo-
instructions are intended to be more generic and help synthesize more creative solutions that
would otherwise not be possible, while node-splitting is specific to certain complex K-opcodes
that are opaque and need to be simplified.

4.7.4 Other Challenges

Synthesizing x86 64 instructions, in particular, also introduces several additional challenges.

6Pseudo-instructions in SynthCT are directly implemented in racket (/rosette) rather than K and
therefore cannot go through the usual flow through SynthCT that other instructions written in K can go
through. Therefore, with the current prototype implementation we cannot perform the usual component
selection described in Section 4.7.1.
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4.7.4.1 Synthesizing Multiple Solutions

The earlier sections describe how SynthCT generates a single solution. But to develop a rich
set of translations so that they may be applicable to a wide-range of safe sets we ideally need
to generate multiple synthesis solutions for a single instruction, each that utilizes minimally-
or non-overlapping subsets of components.

To achieve this diversity, on a synthesis success, SynthCT generates multiple new syn-
thesis tasks for the same instruction as a feedback mechanism. Each of the new tasks are
generated by removing one of the instructions used in the synthesized solution. To do so,
SynthCT uses the same K-Nearest Neighbor (KNN) heuristic developed in Section 4.7.1 to
pick the K most similar instruction to the target instruction and then filters out the instruc-
tion(s) that were used in the synthesized solution. Therefore, a solution that uses N distinct
instructions in the solution generates N new synthesis tasks as feedback. This sampling-
without-replacement strategy encourages diversity by not re-using instructions across solu-
tions.

4.7.4.2 Side-effects: Equivalence of Flags

Many x86 instructions also set ISA flags as side-effects, i.e., RFLAGS, in addition to the output
registers(s). For example, the running example, the ADCQ, instruction sets the following flags:
OF, SF, ZF, AF, CF, and PF, according to the result. To achieve complete equivalence to the
instruction, not only does the output register need to be equivalent, but the flag state needs
to be equivalent as well.

We treat synthesis of flags as a separate synthesis task where the objective is to synthesize
these side-effects and ignore the output register. Once a solution that sets the flags is syn-
thesized, it can be combined with the solution for the output register(s) to achieve complete
equivalence. Glue code saves register values before the main computation, then, saves the
contents of the output registers after the main computation, and restores the initial operand
values for the flag computations. Lastly, it restores the saved result from main computation
to the output register using a single MOV with no side-effects.

Of course, it may be more efficient to synthesize the flags with the output registers
in one-shot in a single synthesis task. Yet, this may prevent synthesis from discovering
solutions that only implement the computations needed to set the output registers of the
target instruction correctly. Such partial solutions may be sufficient most of the time, as
described below.

Including code to set the flags correctly introduces additional overhead. However, in
many cases, the instruction side effects are ignored, i.e., the flags are never used before
being clobbered again. Therefore, we store both solutions separately: the main solution
that sets the output registers, and the additional code needed implement side-effects. When
translating instructions in mostly constant-time code, we choose from one of the two variants
depending on if the flags are live at that program point or not. This allows us to reduce
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the overhead and not needlessly emulate the instruction side-effects when the flags are never
used before being clobbered.

4.7.4.3 Exceptions

Some instructions may generate operand value-dependent exceptions. For example, the
divide instruction (DIVQ), generates an exception when the divisor is 0. These exceptions are
problematic for SynthCT, and constant-time code in general. On the one hand, throwing
the exception breaks constant-time programming. On the other hand, masking the exception
breaks semantic equivalence (which is an important goal in SynthCT). By default, we can
adopt well-established strategies (e.g., [170]) for masking exceptions in constant-time code,
but leave implementing these solutions to future work.

4.8 Evaluation

4.8.0.1 Framework

SynthCT is implemented in python in about 8000 lines of code. This code is responsible
for parsing semantics, performing AST transformations, factorization, generating individual
synthesis tasks, and orchestrating the feedback for the synthesis. Additionally, another 700
lines of code is implemented in racket to set up synthesis, implement a machine model, imple-
ment pseudo-instructions and interpret the generated K programs. The implementation uses
formal semantics for x86 64 written in K [53]. For synthesis, SynthCT uses Rosette [202]
a solver-aided DSL that extends Racket to make it easy to develop various tools, e.g., a
symbolic interpreter, synthesis engine etc. Currently, SynthCT only synthesizes instruc-
tions with register operands. To handle memory operands, or instructions with immediate
operands, we can augment the synthesized translations with an additional mov instruction
to load (or store) from memory or load immediate operands into registers. Alternatively,
the register operands in synthesized translations may be replaced by a memory expression
when the target instruction uses a memory operand (assuming the instruction behaves iden-
tically when operating on registers v/s memory, albeit performing an additional load/store
to memory).

4.8.0.2 Experimental Setup

All experiments below were performed on a server machine running Ubuntu 18.04 within a
docker container. The two machines used had 80 cores each, with 128GB/256GB of ram
respectively. Synthesis tasks were run in parallel to use as many cores as possible. Synthesis
runs were performed in batches with our longest run lasting 3 days. Instructions requir-
ing factorization were run separately in isolation. Over the course of all our experiments,
SynthCT generated a total of 2617 synthesis solutions, generating at least one translation
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for 242 (/366)7 non-vector, non-floating point instructions. We did not try synthesizing
vector and floating point instructions. While we cannot show all translations for space, we
show several representatives in Table 4.5 in the appendix. All results that we discuss below
consider full equivalence of translations, i.e., output registers + flags (Section 4.7.4.2).

In the subsections that follow, we evaluate SynthCT for: (i) security, to understand and
assess the safe sets resulting from SynthCT’s synthesized translations, (ii) performance, to
quantify the overhead introduced by using SynthCT’s safe translations, (iii) two case-
studies to illustrate the use of node-splitting (Section 4.7.3) and factorization (Section 4.7.2)
in synthesis of the rotate left (ROLL) instruction and the divide (DIVL-R32) instruction, and
(iv) lastly, highlight some secondary metrics of the synthesis process.

4.8.1 Security Evaluation

In this section, we evaluate the security implications of the generated set of translations.
More specifically, we analyze the potential safe sets that are emergent from SynthCT
synthesized translations. Then, we compare these emergent safe sets with those introduced
in the literature.

4.8.1.1 Methodology: Deriving Safe Sets from the Synthesis Graph

We represent SynthCT’s translations as a synthesis graph (Section 4.5). To recap, the
synthesis graph (shown in Figure 4.2) has a node for every instruction (and by extension,
pseudo-instructions and factors encountered in the synthesis process). For a solution syn-
thesized for a target instruction, It, the graph records the instructions used by the solution
by adding an edge from instruction It to all the instructions used in the solution. We store
additional metadata for each edge, e.g., a unique solution, the line number in the synthesized
program, and concrete values of operands to use. We iteratively build up the synthesis graph
as SynthCT synthesizes translations for all instructions in the ISA.

Once we build a synthesis graph corresponding to a set of translations, the next step
is to identify the emergent safe sets. Specifically: we define SynthCT’s safe set as those
instructions that have no translations, i.e., outgoing edges in the synthesis graph (conversely,
instructions that have at least one outgoing edge may not be needed in the safe set). By
definition, these instructions cannot be rewritten in terms of any other instruction. Thus,
any microarchitecture using SynthCT will require that its microarchitectural safe set be a
superset of the SynthCT safe set (more details are given in Section 4.8.1.3).

Deriving the safe sets from the synthesis graph is non-trivial because the synthesis graph
may contain cycles. For example, consider synthesis of instructions A and B where solution
to A may use instruction B and vice-versa, thereby creating a cycle in the synthesis graph.
In this case, neither A nor B are leaves, but at least one of them needs to be included to form
the safe set. In other words, the safe set is not unique. Therefore, the first step is to reduce

7The remaining instructions (451-366) are all mov + cmov instructions that we do not run synthesis tasks
for.
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ADCB*(2) SUBB*(2) SUBB*(2) ADCQ or SBBQ ADCL or SBBL
ADCW or SBBW ADDB*(4) NOTL or ANDL ROLL or RORL
CMPXCHGB*(4) or XCHGN*(4) or ANDB*(2) or ORB*(2) or XORB*(2) ANDB*(2) SALQ or SHLQ SHLL or SALL or BLSRL BSRL or BSFL
BSRQ or BSRW ORB*(2) XORB*(2) NEGB*(2) INCB*(2)
ROLW or RORW RCRB or RCLB RCLW or SHLW or SALW ROLB*(2) or RORB*(2) ROLL or RORL
SALB*(2) or SHLB*(2) SALL or SHLL SALW or SHLW SARB*(2) SET*(9 sets, 60 total)

Table 4.2: Safe set instructions involved in cycles. One instruction from each group needs to be
chosen to be included in the final safe set. ‘*’ denotes multiple instruction variants shown in a
compressed form. The number of instructions represented/compressed is indicated with parenthe-
ses. For example, the “SALB*(2) or SHLB*(2)” group contains 4 instructions; 1 of which must be
included in the final safe set.

the synthesis graph to a directed acyclic graph (DAG) by eliminating such cycles in the
graph. To do so, we first identify the cycles in the graph by using Tarjan’s algorithm [199] to
identify the strongly connected components (SCC) in the graph. Next, we replace the nodes
in the cycle with a single node. The new node is labeled using a disjunction of node labels
(instructions) that form the cycle. We then redirect any incoming edge to the cycle, i.e., an
edge from a node not in the cycle to a node that is a part of the cycle, to the new node.
Similarly, any outgoing edge from the cycle is redirected from the new node. We apply this
procedure multiple times until all cycles in the synthesis graph are eliminated. The leaves of
the newly generated DAG representation of the synthesis graph gives us the list of potential
safe sets: every leaf represents a single instruction, or a choice between several instructions
(represented by the disjunction as a result of replacing cycles in the graph).

4.8.1.2 SynthCT safe set

Using the methodology described in the above subsection, we derive safe sets for SynthCT
synthesized translations. Specifically: Table 4.3 represents the core safe set that must be
included in all SynthCT safe sets. Table 4.2 shows additional safe set instructions involved
in synthesis graph cycles (Section 4.8.1.1). By combining the instructions in Table 4.3 with
one instruction per group in Table 4.2, we can form one of many final safe sets. The core safe
set contains 53 instructions and we need to select 1 instruction from each of the 37 groups of
instructions to form a complete safe set, resulting in a total of 90 instructions in a safe set.
Therefore, using only 90 / 366 (25%) of the instructions we can implement the remaining
276 (75%) instructions in the ISA.

4.8.1.3 Comparing to a microarchitecture safe set

The next question we want to answer is: what are the implications of these generated safe sets
and how do they compare to a microarchitecture specific safe-set specification? Recall that
in the second phase of SynthCT, we use a microarchitecture specific safe-set specification
to generate safe translations of all instructions in the ISA. The goal is to find translations
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Category Opcode B W L Q

Bitwise Operations NOT ✓ ✕ ✕ ✕

AND/XOR ✕ ✕ ✕ ✓

Divide and Multiply DIV/IDIV ✓ ✓ ✕ ✓
IMUL/MUL ✓ ✓ ✓ ✓

Bit Rotates RCL/RCR ✓ ✓ ✓ ✓
ROL ✓ ✕ ✕ ✕

ROR ✓ ✓ ✕ ✕

Bit Shifts SAR/SHR ✓ ✓ ✓ ✓
SARX - - ✓ ✓
SHL ✕ ✕ ✕ ✓
SHLX - - ✓ ✕

Bit Counting TZCNT - ✓ ✕ ✕

POPCNT - ✓ ✕ ✓
LZCNT - ✓ ✕ ✕

Exchange XCHG ✕ ✕ ✓ ✕

CMPXCHG ✕ ✓ ✓ ✓

Miscellaneous BEXTR - - ✕ ✓
BTRW - ✓ ✕ ✕

BZHI - - ✕ ✓
BSWAP - - ✓ ✓
CMOVE - - ✕ ✓

Table 4.3: SynthCT core safe set. Rows represent different opcodes. Columns represent bitwidths:
B: Byte, W: Word (2 Bytes), L: Long (4 Bytes), and Q: Quad Word (8 Bytes). ✓indicates that
an instruction variant is a part of the safe set. ✕denotes that the instruction variant is not a part
of the safe set. ✓ denotes that the opcode is common to the LibFTFP safe set, while ✓ denotes
that the instruction is absent in the LibFTFP safe set. - indicates that the instruction does not
operate on the corresponding bitwidth.
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add and cmp imul mov
movabs movsd movsx movsxd movzx mul
neg not or sar sbb seta
setae setbe sete setg setl setle
setne shl shr sub test xor

Table 4.4: Safe Instruction Set from LibFTFP. Control-flow and memory instructions are excluded
for clarity. Opcodes present in LibFTFP and not in SynthCT’s safe set are highlighted in red.
As the table only shows the LibFTFP safe set, opcodes safe in SynthCT but not in LibFTFP
are not shown. Opcodes common to both LibFTFP and SynthCT safe sets are highlighted in
green. Opcodes with partial overlap, i.e., only some variants of instruction are in SynthCT safe
set, are highlighted in orange. Instructions in the mov* and set* family are excluded from coloring
as SynthCT has a choice in selecting between some of these variants, but does not necessarily
need to contain all. See Table 4.3 to compare the SynthCT safe set against the LibFTFP (this)
safe set.

for every instruction in the ISA to instructions in the uarch safe set. Therefore, when given
such a safe-set specification, we can have two different scenarios:

Case 1: Microarchitecture safe-set specification and SynthCT safe sets are com-
patible. In this case, at least one of the SynthCT-generated safe sets is a subset of the
microarchitecture safe set. Since, by definition, all instructions in the ISA can be translated
using only the instructions in SynthCT’s safe set and the microarchitecture safe set is a
superset of SynthCT’s safe set, every instruction in the ISA can be translated using only
the instructions in the microarchitecture safe set. Having more instructions in the microar-
chitecture safe set simply means more choices of instructions that may be used in the safe
translations. This is a success case as now any program compiled for the given ISA can be
secured by using the set of safe translations from SynthCT.

Case 2: Microarchitecture safe-set specification and SynthCT safe sets are in-
compatible. In this case, none of SynthCT’s safe sets are subsets of the microarchitecture
safe set. Since instructions in the SynthCT safe set are leaves in the synthesis graph, this
means there is one or more instruction that cannot be translated to the microarchitectural
safe set (namely, the SynthCT safe set instructions that are not contained in the microar-
chitectural safe set). This is a failure case. Not all instructions (and hence programs) in the
ISA can be expressed using the safe set of instructions for that microarchitecture. Further
synthesis tasks and expert assistance may be needed to synthesize translations for instruc-
tions that are missing in the microarchitecture safe set to make the two sets compatible.

4.8.1.4 Comparison to Prior Work

In this subsection, we compare the SynthCT safe set with safe sets from prior work, e.g.,
LibFTFP [14]. The list of safe instruction is directly taken from their work and reproduced
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in Table 4.4. We have excluded all control-flow and memory instructions, since those are
likely to be unsafe across microarchitectures (Section 4.4). Their work does not explicitly list
the different variants of instructions, i.e., the different bitwidths of operands, but rather only
the opcodes. Therefore, we assume that an opcode encodes all variants of that particular
instruction.

The key takeaway is that most instructions that are considered safe in SynthCT are
also what LibFTFP (and hence experts in constant-time programming) considers safe, this
corresponds to almost all instructions in Table 4.2 and all ✓ in Table 4.3 or alternatively
the green + orange + black opcodes in Table 4.4. Notable exceptions to this trend are
the instructions in the bit-counting and miscellaneous categories: these are complex x86 64
instructions for which SynthCT was unable for synthesize translations for certain variants of
the instruction. This is likely due to strict timeout limits and imperfect component selection
during our factorization strategy. We aim to improve this to shrink the safe set further in
future work.

That said, SynthCT need not have translations for every variant of every instruction.
For example, SynthCT’s safe set only needs to include XORQ and 1 (out of 4) variants of
XORB (as the other 3 variants of XORB map trivially to the one with a translation). Lastly,
there are certain opcodes, e.g., CMP and TEST, that SynthCT does not include in its safe set
as we were able to synthesize translations for all variants of these instructions using other
instructions in the safe set.

4.8.2 Performance Evaluation

In this section, we evaluate the performance of translations synthesized by SynthCT. We
show the distribution of lengths of synthesized safe translations in Figure 4.7. Note that
these are lengths of programs when unsafe instructions are written completely in terms of
the safe set of instructions introduced in Section 4.8.1. We split the graph into two for
clarity, one for the majority of instructions that do not use factorization, and another for
instructions that need factorization for synthesis.

As we see from the graph, most instructions have translations made up of less than 6
instructions. Each instruction may have multiple translations/solutions (Section 4.7.4.1)
of different lengths. We show the minimum/maximum solution lengths to showcase the
solution diversity. The second graph shows the complexity of solutions that SynthCT can
generate with factorization. The three bit-counting instructions all take 800+ instructions
to implement: LZCNTL (864), LZCNTQ (2893), TZCNTQ (3277). This shows the strength of
our factorization solution: with the help of factorization, SynthCT is able to scale to
generate programs of length 3000+, even though the individual synthesis tasks are limited
to synthesizing programs of small lengths.
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Figure 4.7: Distribution of lengths of Synthesized Translations. Each x-tick denotes an index for
an unsafe instruction, or a group of unsafe instructions (when they form a cycle).

4.8.3 Case-Study: Rotate Left

Now, we present a case-study on synthesis of the rotate family of instructions, specifically
Rotate-Left (ROLL), to illustrate the effectiveness of the node-splitting strategy introduced
in Section 4.7.3. During the initial synthesis run, we were unable to get synthesis successes for
rotate instructions to synthesize a translation into simpler instructions, e.g., using bitshifts
and other bitwise operations. As highlighted earlier, this is primarily due to the complex
and opaque K rol opcode used in the rotate family of instructions. Without further assis-
tance, SynthCT is unable to meaningfully pick components that increase the likelihood of
successful synthesis.

To assist SynthCT in synthesis, we introduce a new transformation in SynthCT to
node split the rol intermediate opcode into simpler K opcodes. Both the original opcode
and its translation is shown is Figure 4.8. The code snippet only shows the rotate part of
ROLL; the instruction AST has other unrelated nodes to extract and concatenate the relevant
bits of its operands (shown in the appendix, Figure 4.13 for reference). Note that before
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; assume %1 is already mod-ed

; %w = width of rotate rol, %0, and %1

(rol %0 %1) -> (bvor (bvlshr %0 (bvsub %w %1))

(bvshl %0 %1))

Figure 4.8: Node splitting transformation rule for the ROL opcode.

implementing the transform in SynthCT, we first manually verified the equivalence between
the original opcode and the transformed AST by querying the SMT solver for equivalence
through Rosette. Once node splitting is applied, the newly generated AST for ROLL (shown
in the appendix, Figure 4.14) proceeds through the synthesis process as usual. As SynthCT
now has more structural information to work with, the component selector can pick better
components for synthesis. However, the new AST is larger than the original after translation.
We therefore use instruction factorization (Section 4.7.2) to synthesize the solution for ROLL
in parts.

To summarize, using the composition of two techniques, node splitting and factorization,
along with some expert-written transformations, enables SynthCT to synthesize solutions
for some of the more complicated instructions in the ISA. These expert-written transforms
are a one time effort and scale to multiple ISAs.

4.8.4 Case-Study: Division (DIVL-R32)

In this section, we present a case study to synthesize the division instruction, specifically
DIVL-R32 — a 32-bit division from the x86 64 ISA, that is known to be unsafe on today’s
microarchitectures. Similar to the rotate instructions, we use a combination of node splitting
and instruction factorization to synthesize a safe translation for division. Compared to a
rotate operation, however, division has far more complex semantics that introduces new
scalability challenges in our above mentioned techniques.

The semantics for the DIVL-R32 instruction is shown in Figure 4.10a. As seen from the
figure, the structure of DIVL-R32 is simple. All the complexity to compute the quotient is
hidden behind the div quotient int32 K-opcode that takes two operands, the dividend
and the divisor, and computes the quotient. The semantics to set the remainder is similar
and omitted for brevity. In order to synthesize DIVL-R32 we must first split the complex
quotient opcode into simpler K-operations.

4.8.4.1 Division Algorithm

For simplicity, we use the standard long-division algorithm to compute the quotient and
the remainder. The racket implementation of our division is shown in Figure 4.9. As with
rotate, we begin by proving that our implementation of divide is semantically equivalent
to DIVL-R32 using an SMT solver. After proving equivalence, we lift the expressions for
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1

2 (define (implement-DIVL-R32 S r1 r2 r3 r4 r5)

3 (let (

4 [local-r1 (extract 31 0 (state-Rn-ref S r1))]

5 [local-r2 (extract 31 0 (state-Rn-ref S r2))]

6 [local-r3 (extract 31 0 (state-Rn-ref S r3))]

7 )

8 ; Assume r2 is edx and r1 is eax.

9 ; r3 is "real" argument to instruction (divisor)

10 ; r3 outputs quotient and r4 outputs remainder

11 (begin

12 (define dividend (concat local-r2 local-r1))

13 (define divisor (zero-extend local-r3

14 (bitvector 64)))

15 ; Avoid division by 0

16 (assume (not (bveq divisor (bv 0 64))))

17

18 (set! r3 (bv 0 64))

19 (set! r4 (bv 0 64))

20

21 (for ([r5 (in-range 63 -1 -1)])

22 (set! r4 (bvshl r4 (bv 1 64)))

23 (set! r4 (bvor r4 (bvand (bvlshr dividend

24 (bv i 64))

25 (bv 1 64))))

26 (if (bvuge r4 divisor)

27 (begin

28 (set! r4 (bvsub r4 divisor))

29 (set! r3 (bvor r3 (bvshl (bv 1 64)

30 (bv r5 64)))))

31 #f))

32

33 (state-Rn-set! S r3

34 (zero-extend (extract 31 0 r3)

35 (bitvector 64)))

36 (state-Rn-set! S r4

37 (zero-extend (extract 31 0 r4)

38 (bitvector 64)))

39 )))

40

Figure 4.9: Long-division algorithm to node split DIVL-R32, implemented in racket. The algorithm
is first checked for equivalence with the reference DIVL-R32 semantics before implementing node
splitting in SynthCT.
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div_init

div_loop

div_final

div_loop

rdx rax R1 R2 R3 R4 R5

…
Repeat

x64 times

Lines 10 - 18

Lines 21 - 30

Lines 32 - 37

div_init

div_loop

div_final

div_loop

rdx rax R1 R2 R3 R4 R5

…
Repeat

x64 times

Lines 10 - 18

Lines 21 - 30

Lines 32 - 37

concatenateMInt

bv 0 32 div_quotient_int32

concatenateMInt

rdx rax

extractMInt

R1 32 .. 64

Dividend Divisor

concatenateMInt

bv 0 32 div_quotient_int32

concatenateMInt

rdx rax

extractMInt

R1 32 .. 64

Dividend Divisor

a. b.

Figure 4.10: DIVL-R32 semantics AST (a) Semantics of DIVL-R32 from the K-framework. DIVL-R32
takes the dividend as implicit inputs in registers rdx and rax and the divisor as an explicit input
in register R1. The complex semantics of computing the quotient (and remainder) is hidden behind
the opaque K-opcode: div quotient int32 (in blue). (b) Iterative node split of DIVL-R32. The
algorithm from Figure 4.9 naturally splits DIVL-R32 into three parts: (i) div init (lines 10 - 18),
(ii) div loop (lines 21 - 30), and (iii) div final (lines 32 - 37). Solid lines represent register reads
by the newly split opcode and dashed lines represent register writes. The semantics of DIVL-R32
after the split (in (b)) is equivalent to the original semantics (in (a)).

quotient and remainder directly from our racket implementation to implement node splitting
in SynthCT.

4.8.4.2 Scalability Challenges

The expressions generated for the quotient (and remainder) from the long-division algorithm
are very large. As shown in Figure 4.9 the loop body to compute the quotient and remainder
is repeated bitwidth times (in case of DIVL-R32, this is 64) leading to a very large AST.
While factorization can generate smaller, manageable ASTs for factors, the number of factors
to synthesize makes synthesis intractable.

4.8.4.3 Iterative Node Splitting

Rather than splitting div quotient int32 down to the simplest K-operations in one sin-
gle step, we iteratively split the quotient (and remainder) K-opcode into simpler, smaller
pieces in each step. Looking at the long-division algorithm, it naturally breaks into three
smaller pieces: (i) An initial setup step that initializes values, (ii) a loop body that is re-
peated bitwidth (64) number of times, and (iii) a final post-loop step that extracts bits
corresponding to the quotient (and remainder) and sets the output registers. This split of
div quotient int32 along with the relevant lines of the algorithm is shown in Figure 4.10b.
Now, each of these splits be broken down further into simpler K-opcodes and synthesized
as independent synthesis tasks, using techniques such as factorization as required. Once
synthesized, the solutions to the splits are glued together to generate the translation for the
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original DIVL-R32. This process is exceedingly simple: the solutions to the three splits, i.e.,
loop init, loop body, and loop final, are concatenated ensuring that the loop body

solution is repeated bitwidth (64) times. Note that rather than generating a separate split
for each iteration of the loop body we can abstract away the loop iteration variable as a
symbolic operand to the loop body split. This allows us to synthesize loop body once
and instantiate with different values for iter (63...0) to generate loop body for the different
iterations of the loop.

4.8.4.4 Manual Effort

During the synthesis of DIVL-R32, we noticed that a particular factor of loop body failed
to synthesize initially. On debugging, we isolated the reason for failure to be the inabilty to
synthesize a factor that performed a bvuge, an unsigned greater-than or equal comparison,
to set a register. As the x86 64 ISA does not contain an instruction to set a register based
on a comparison directly (only indirectly through a cmp and setcc) our component selection
failed to pick the right set of components to be able to synthesize this factor. To address the
issue, we added a new pseudo-instruction to SynthCT, PSETCC (r1 r2 r3 r4), that sets
r4 based on the result of comparison between r2 and r3. The relational operator to use for
comparison, e.g., equal v/s greater-than etc., is controlled by the value in register r1. Lastly,
we manually implement PSETCC using a cmp and setcc from x86 64 due to limitations with
the current component selection strategy.

4.8.5 Secondary Metrics

4.8.5.1 Effectiveness of Component Selection

In this section, we look at the effectiveness of our component selection strategy (Section 4.7.1)
and seek to verify our hypothesis: structurally similar instructions are also semantically
similar, and hence more likely to be used in successful synthesis. To do so, we look at
the number of times an instruction ranked as the i-th nearest neighbor by the component
selection algorithm is used in the translation. The histogram plot is shown in Figure 4.11.
Recall, for all synthesis tasks K = 32 components were chosen. Instructions ranked 0 are
most similar to the target synthesis instruction, It, and instruction ranked 31 is the least
similar. As we see from the histogram, instructions that are more similar to the target
instruction, and hence ranked higher by the component selection strategy, are more often
used in a synthesis success when compared lower ranked instructions. This plot shows the
effectiveness of our component selection strategy and validates our hypothesis from earlier.

4.8.5.2 Synthesis Time for Successes Distribution

Lastly, we look at the time taken for synthesis successes to assess if the strategies we develop
in SynthCT actually result in reasonable synthesis time. To do so, we look at the time
taken (in seconds) for successful synthesis tasks. The cumulative distribution frequency
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Figure 4.11: Effectiveness of component selection. The histogram shows the number of synthesized
translations that use a component ranked at index i (denoted on the X-axis). All synthesis tasks
used a fixed set of 32 components drawn using the KNN strategy described in Section 4.7.1. Com-
ponents most similar are at index 0 while least similar component is index 31. Higher numbers for
better ranked components is indicative of a good component selection strategy.

(CDF) for synthesis time is shown in Figure 4.12. From this graph, we see that most
successful synthesis tasks generate solutions in a short amount of time: 95% of the synthesis
successes are achieved within 2000 seconds. Note that this graph shows the synthesis time for
individual synthesis tasks. Instructions that need factorization run multiple smaller synthesis
tasks that eventually result in successful synthesis of the original instruction. The synthesis
time for such instructions is the sum of time spent in the synthesis of individual synthesis
tasks. This total time is not shown in the current figure. From this, we can conclude that
the combination of: (i) component selection, (ii) small program lengths, and (iii) limiting
the number of registers, does indeed keep the synthesis time for individual synthesis tasks
small while allowing for synthesis of translations for the majority of the ISA.

4.9 Related Work

There is a rich literature that studies how to write and run applications in constant time
(sometimes called “data-oblivious programming”). For example, application-centric works
propose constant-time cryptography [22, 24], machine learning [186, 159, 131], databases [242,
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Figure 4.12: Cumulative Distribution of synthesis time for successful synthesis tasks, using data
from 2615 synthesis successes. The Y-axis shows the fraction of synthesis successes that take time
(in seconds) shown on X-axis. 95% of synthesis successes are achieved quickly, in < 2000 seconds,
showing the effectiveness of the combination of strategies developed in SynthCT.

68, 148], memory and datastructures [176, 3], general purpose code [152, 170, 49, 80], util-
ities [201] and floating point functions [14]. Other works study how to write and compile
(e.g., [37, 207, 38]) high-level programs to constant-time ones. ISA abstractions study how
to design interfaces usable by both software designers and hardware architects to uphold
constant-time security guarantees [234, 200].

SynthCT is complementary to these works. They all produce what we call mostly
constant-time code (Section 4.1) and assume a fixed set of safe instructions. SynthCT can
be used to improve their security/portability and performance, by mapping their code to
microarchitecture-specific safe sets.

The closest work to SynthCT conceptually is Arm’s DIT [17], data-oblivious ISAs
(OISAs) [234] and HW/SW contracts [105, 106]. DIT and OISAs are ISA-level specifi-
cations of what instructions are safe and therefore guarantee a consistent safe set across
microarchitectures. Widespread acceptance of such abstractions across vendors would there-
fore decrease the need for SynthCT; yet, such widespread acceptance is far off because
ISA changes have an extremely high barrier to entry. Case in point, there is no indication
that other vendors beyond Arm will support such features. Lastly, SynthCT is related to
HW/SW contracts for secure hardware [105, 106]: a safe set is a concrete example of such
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contracts (broadly construed).
There is a large body of related work that uses program synthesis to synthesize seman-

tically equivalent alternate implementations of existing code, e.g., for better performance
(superoptimizers [178]) or lower energy utilization [179]. However, none of the existing works
have considered the problem of synthesizing an instruction(s) when only a subset of the ISA
is allowed to be used in the synthesis. We consider these techniques complementary. For
example, it would be interesting to consider a genetic algorithm from [179] as a subroutine
for synthesis instead of CEGIS as in SynthCT.

4.10 Discussion

4.10.0.1 Vector and Floating-point instructions

We believe vector instructions can be supported with additional engineering effort, e.g.,
expanding parsing of x86 semantics and modelling vector registers in synthesis. As vec-
tor instructions are multiple instances of non-vector instructions, our techniques such as
instruction factorization should reduce them to multiple simpler problems. Floating-point
instructions are more challenging. In theory, using a combination of node splitting and
factorization, SynthCT should be able generate safe translations for floating-point instruc-
tions. However, precisely modelling floating-point operations in bitvector theory in a way
that performs well with SMT solvers is known to be challenging [52]. We have therefore left
floating point for future work.

4.10.0.2 Integrating with compiler-flows

SynthCT is currently implemented as a post-compilation, binary tool for ease of implemen-
tation and generality. However, SynthCT can also be implemented at the compiler level to
make it more convenient to use as a part of the compiler toolchain. Additionally, a compiler-
level implementation may also generate better performing translations, e.g., by enabling
optimizations and better register allocation. Implementing SynthCT as a part of a com-
piler toolchain also enables integration with security-aware DSLs designed for constant-time
programming, e.g., FaCT [37], and allows us to only selectively translate unsafe instructions
with secret operand values rather than all unsafe instructions.

4.10.0.3 Alternate deployment opportunities

SynthCT translations can also be deployed as a part of processor frontend or microcode in
a software-transparent way. Using the translations, unsafe instructions may be selectively
translated on-the-fly depending on if a security mode bit is set. This allows software to
turn the protection on for only sensitive pieces of code. Yet, implementing translations in
hardware is more intrusive and may introduce new tradeoffs. For example, the number of
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instructions making up the translation may become a first-order constraint as microcode
ROM is a scarce resource.

4.11 Conclusion

In this work we develop SynthCT, a framework to facilitate writing portable constant-time
code, i.e., that is both secure and performant across different microarchitectures. The high-
order bit is that with minimal programmer intervention, we can scale to complex ISAs such
as x86 64, and even tackle some of the more complex instructions in said ISAs (such as
integer division).

Long term, we hope SynthCT (along with other spiritually-similar works [234, 106, 17])
encourages systems and hardware designers to expose abstract but explicit security-critical
information in contracts such as ISAs (or their microarchitecture-specific counterparts). It
is worth stating that the safe-set specification used in this work is an extremely simple,
and already useful, exemplar abstraction of this kind — but is by no means the end of the
story. Pushing the idea of microarchitecture-specific specifications further, one can imagine
more expressive security contracts (e.g., one that specifies a partition on unsafe instruc-
tion operands, which could be used directly by SynthCT to improve CT performance) or
even contracts geared for other metrics such as performance (e.g., more formal models of
instruction interactions and their resulting pipeline throughputs).

4.12 Example Translations

This section shows examples of synthesized translations. See Table 4.5.
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Unsafe Instruction(s) Safe Instructions in a Translation

ADCB-RH-RH MOVQ, SBBB-RH-RH, (SUBB-RH-RH V SUBB-RH-R8)
DECL-R32 (XORQ-R64-R64 V PXOR-R64-R64), MOVQ,

(NOTL-R32 V ANDL-R32-R32)
INCL-R32 PNOT, NEGL-R32

BLSIL-R32-R32 (NOTL-R32 V ANDL-R32-R32), MOVQ, SHLQ-R64-CL,
SHRQ-R64-CL
SUBQ-R64-R64, (XORQ-R64-R64 V PXOR-R64-R64),
SARQ-R64-CL
NEGL-R32, PSET-FLAG

BTSL-R32-R32 MOVQ, SHLQ-R64-CL, SHRQ-R64-CL, SUBQ-R64-R64
(XORQ-R64-R64 V PXOR-R64-R64), SARQ-R64-CL,
NOP, PSET-FLAG

CLTD IMULL-R32, MOVQ
PCMOV-R64-R64-R64 CMOVEQ-R64-R64, (ANDQ-R64-R64 V PAND-R64-R64)

LZCNTQ-R64-R64 MOVQ, SHLQ-R64-CL, SHRQ-R64-CL, SUBQ-R64-R64
(XORQ-R64-R64 V PXOR-R64-R64)
(ANDQ-R64-R64 V PAND-R64-R64), CMOVEQ-R64-
R64, SARQ-R64-CL, PSET-FLAG

POPCNTL-R32-R32 POPCNTQ-R64-R64, (NOTL-R32 V ANDL-R32-R32)
SUBL-R32-R32 BEXTRL-R32-R32-R32, SBBL-R32-R32
XORL-R32-R32 (XORQ-R64-R64 V PXOR-R64-R64), XCHGL-R32-EAX,

SARQ-R64-CL
PSPLIT

(INCW-R16 V DECW-R16 V NEGW-R16) MOVW-R16-R16, NEGL-R32

Table 4.5: Example translations for unsafe instructions. The table shows which safe instruction
opcodes (Section 4.8.1.3) are used to translate several representative unsafe instructions. The “V”
denotes a disjunction: These instructions form an equivalence class and we have the freedom to
choose one of the instructions from the class to utilize in the final translation.

4.13 Case Study: ROLL-R32-CL

This section shows the semantics AST of the original ROLL-R32-CL and ROLL-R32-CL after
splitting. See Figures 4.13 and 4.14.
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Figure 4.13: The original ROLL-R32-CL instruction (used in case-study Section 4.8.3). The AST
was generated directly from K semantics.
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Figure 4.14: The ROLL instruction after splitting the rol opcode. The rol opcode from the
previous figure (Figure 4.13) is replaced by the equivalent translation in Figure 4.8, as described in
the case-study (Section 4.8.3). Notice that the node labelled as (%4: rol) has now been replaced by
the subtree rooted by the node labelled (%28: orMInt). The new AST is semantically equivalent
to the old AST and is used in further synthesis steps, e.g., factorization.
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Chapter 5

Conclusion & Future Work

In summary, this thesis provides the first-steps towards a comprehensive hardware-software
solution to protect critical software, e.g., cryptography, against microarchitectural timing
side-channels without hardware modifications, disabling optimizations, or slowing down gen-
eral purpose compute. The key idea: automatically verify and lift software-facing, security-
centric abstractions from microarchitecture implementations. Then use the security specifi-
cation with compiler-like automated tooling to harden software against side-channels for a
particular microarchitecture. To enable this vision, the key technical advancement in this
thesis is the development of a new scalable invariant learning algorithm, H-Houdini, that
enables security verification on large hardware designs.

Now we will briefly discuss two interesting threads of future research directions:
(1) The property developed and verified in this thesis, SISP, is a simple, yet useful

property in practiced. Related work, concurrent to ours, have suggested more expressive
properties, in the form of hardware-software contracts [107, 42, 106]. Nascent work in this
area have made progress is proving such contracts on hardware designs [198, 218], however,
they do not scale to large designs such as BOOM. An interesting research direction: Can
we generalize VeloCT to scalably prove more expressive properties, e.g., hardware-software
contracts, on large designs like BOOM? This would enable the development of more general
and expressive software-facing abstractions, which we can once again use with systems like
SynthCT to generate high-performance, provably secure code.

(2) In so far, we’ve shown that H-Houdini is a scalable algorithm for proving security
properties. An open and interesting research question: Can we generalize H-Houdini to
prove more general properties? Would H-Houdini show similar scalability results for the
more general class of properties? Generalizing H-Houdini to scalably prove general prop-
erties will allow verification to be applied to many more practical systems, enabling a safe,
bug-free, trustworthy future.
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