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Abstract

Efficient 3D Perception from Images

by

Ruilong Li

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Angjoo Kanazawa, Chair

The ability to capture, reconstruct, and interact with the world in three dimensions is transforming
how we experience, understand, and shape our environment. From virtual reality and digital heritage
to robotics and scientific discovery, 3D perception is opening new frontiers across art, science,
and technology. Yet, despite remarkable progress, creating high-fidelity 3D models from images
remains a computationally demanding challenge—one that limits the accessibility and scalability of
these powerful tools.

This thesis addresses the core bottleneck of efficiency in differentiable volume rendering, a founda-
tional technique behind recent breakthroughs such as Neural Radiance Fields (NeRF) and Gaussian
Splatting. While these methods have demonstrated that continuous volumetric representations
and differentiable rendering pipelines can achieve photorealistic results from sparse or uncon-
strained inputs, their high computational and memory costs pose significant barriers to real-time
and large-scale applications.

To overcome these challenges, I present a series of algorithmic and systems-level innovations aimed
at making 3D perception faster, more scalable, and more practical. First, I introduce compact and
expressive scene representations that reduce memory overhead without sacrificing quality. Second,
I develop smarter sampling and visibility strategies that exploit the inherent sparsity of 3D space,
focusing computation where it matters most. Third, I design parallelization techniques tailored
for modern multi-GPU systems, enabling distributed training and rendering at unprecedented
scales. Finally, I explore learning-based approaches that leverage multi-view geometry and attention
mechanisms to further accelerate and generalize 3D perception.

Through a combination of theoretical insights, open-source tools, and empirical validation, this
work charts a path toward real-time, high-resolution 3D reconstruction that is accessible beyond
specialized labs and supercomputers. By making 3D perception more efficient, this thesis aims
to unlock new possibilities and bring us closer to a future where anyone can capture, share, and
explore the spaces they love in all their depth and richness.
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Chapter 1

Introduction

Imagine trying to capture the feeling of standing in your favorite place—a sunlit park, a bustling
city street, or a cozy room—and sharing that experience with someone far away. For centuries,
people have used paintings, photographs, and even sculptures to try to bring scenes to life. But
while a photo can freeze a moment, it flattens the world, losing the sense of depth and space that
makes being there so special.

Today, technology offers us new ways to see and understand places in three dimensions. From
video games and movies to virtual tours and navigation apps, 3D experiences are becoming part of
everyday life. Yet, creating these digital worlds remains surprisingly challenging. Turning a handful
of photos into a lifelike 3D scene can require significant time, effort, and computational power.

Researchers have developed two main approaches to tackle this challenge. The first is akin to
an artist who carefully studies each new scene, learning its details from scratch. These methods,
known as optimization-based approaches, work by adjusting a digital model until it matches the
photos as closely as possible. They can produce beautiful, detailed results, but must start over for
every new place—like painting a new portrait each time.

The second approach is more like teaching a student who, after seeing thousands of different
places, learns to recognize patterns and can quickly sketch a new scene. These learning-based
approaches use vast collections of images to "train" a computer to understand what the world looks
like. Once trained, they can create 3D scenes much faster, but the initial training process demands
enormous resources—like building a library with millions of books just to answer a few questions.

No matter which path we take, there are significant hurdles. Making these methods faster and
less demanding—so they can run on everyday computers or even phones—would open up new
possibilities for art, science, education, and beyond. Imagine students exploring ancient ruins in 3D
from their classrooms, families sharing memories in virtual spaces, or doctors planning surgeries
with detailed models—all without needing a supercomputer.

Being able to see and understand places in three dimensions is at the heart of what we call
3D perception. It’s not just about making things look real—it’s about truly feeling present, being
able to move around, and interacting with the world as if you were really there. 3D perception
algorithms are a driving force behind many of today’s most transformative technologies. In digital
heritage preservation, 3D reconstruction techniques allow us to capture and archive culturally
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significant sites and artifacts with unprecedented fidelity, enabling future generations to study and
experience them virtually. In architecture and engineering, advanced 3D modeling and visualization
tools empower professionals to design, simulate, and evaluate buildings and infrastructure before
construction begins, reducing errors and improving outcomes. Virtual prototyping and simulation
are now essential in manufacturing, allowing for rapid iteration and testing of complex products
in a digital environment. Telepresence and remote collaboration platforms leverage real-time 3D
perception to enable immersive communication and shared experiences across distances. Moreover,
the development of intelligent agents—such as autonomous vehicles, service robots, and augmented
reality systems—relies fundamentally on the ability to perceive, reconstruct, and interact with the
world in three dimensions. In all these domains, efficient and accurate 3D perception is not just a
convenience, but a necessity for progress and innovation.

However, despite these exciting advances and applications, there remain significant challenges
that stand in the way of making 3D perception truly practical and widespread. One of the most
pressing issues is efficiency. Many promising applications are currently limited—not by a lack of
ideas, but by the sheer computational cost and resource demands of existing methods. For learning-
based approaches, the process of training large models often requires vast amounts of data, time,
and specialized hardware, making it inaccessible for most users and organizations. On the other
hand, optimization-based methods, while flexible and powerful, can be slow to run and consume
large amounts of memory, especially as scenes become more complex or detailed. As a result, tasks
like real-time 3D reconstruction, interactive design, or large-scale simulation are often out of reach,
or only possible with significant compromises in quality or speed. Improving efficiency—making
3D perception faster, lighter, and more scalable—is therefore the key to unlocking its full potential
and enabling new generations of applications and intelligent systems.

This thesis addresses the efficiency problem in 3D perception by developing new algorithms
and systems that advance both optimization-based and learning-based approaches. The first part
of this work focuses on improving optimization-based methods—such as Neural Radiance Fields
(NeRF) and Gaussian Splatting—by designing faster, more memory-efficient sampling and ren-
dering pipelines. This includes novel strategies for importance sampling, visibility culling, and
parallelization techniques that enable scalable processing of large and complex scenes, making
real-time or high-resolution 3D reconstruction more practical.

In the latter part of the thesis, I turn to learning-based solutions, focusing on methods to enhance
the efficiency and effectiveness of 3D perception models. Specifically, I investigate advanced
multi-view attention mechanisms that enable models to more effectively aggregate and reason
over geometric information from multiple images. By improving how these models consume and
integrate 3D knowledge from training data, the proposed techniques reduce the amount of data and
computation required for training, while also enhancing the model’s ability to generalize to novel
scenes and tasks. This work aims to make learning-based 3D perception not only faster and more
resource-efficient, but also more robust and widely applicable in real-world scenarios.

In the chapters ahead, I share ideas, tools, and discoveries that bring us closer to a world where
anyone can capture, share, and explore the spaces they love—in all their depth and beauty. My
hope is that, by making these advances, we can help everyone—from curious children to pioneering
scientists to future AI agents—perceive and interact with the world in new and meaningful ways.
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1.1 Dissertation Overview
This thesis is organized into five chapters, each addressing a key aspect of making 3D perception
more efficient, scalable, and accessible. Together, these chapters trace a path from foundational
innovations in optimization-based methods to advances in learning-based approaches, all with the
goal of enabling richer and more practical 3D experiences.

Chapter 2: NerfAcc – Smarter Sampling Accelerates NeRFs
This chapter introduces NerfAcc, a flexible toolbox designed to accelerate Neural Radiance Fields
(NeRFs) by rethinking how we sample and process 3D data. By unifying and generalizing sampling
strategies under the concept of transmittance estimation, NerfAcc enables significant speedups in
NeRF training and rendering across a range od NeRF representations, making high-quality 3D
reconstruction more practical and accessible.

Chapter 3: NeRF-XL – An Efficient Multi-GPU Framework for NeRFs
Here, the focus shifts to scaling up 3D reconstruction for large and complex scenes, and explore
how to efficiently harness the power of multi-GPU systems. NeRF-XL presents a principled method
for distributing NeRFs across multiple GPUs, allowing for the training and rendering of models
with far greater capacity. This chapter details how careful algorithm and system design can unlock
new levels of efficiency and quality through distributed computing, even as scenes grow in size and
detail.

Chapter 4: gsplat – A Library for Efficient Gaussian Splatting
This chapter explores Gaussian Splatting, a recent paradigm for real-time 3D scene reconstruction
and rendering. Together with collaborators, we introduce the gsplat library as an open-source,
modular platform that brings new levels of speed and memory efficiency to this approach. The
chapter highlights how thoughtful software and algorithm design can make advanced 3D techniques
more usable for both researchers and practitioners.

Chapter 5: PRoPE – Multi-view Attention Leads to Faster Convergence
The final technical chapter turns to learning-based 3D perception. It presents Projective Positional
Encoding (PRoPE), a novel method for conditioning multiview transformers on camera parameters.
By enabling models to more effectively aggregate geometric information from multiple images,
PRoPE improves both the efficiency and generalization of learning-based 3D systems, paving the
way for broader adoption of these powerful tools.
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Chapter 6: Conclusion
The thesis concludes by synthesizing the key findings and reflecting on the broader impact of efficient
3D perception. It discusses remaining challenges and outlines promising directions for future
research, with the hope of inspiring continued progress toward a world where 3D understanding is
as natural and widespread as photography is today.
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Chapter 2

NerfAcc: Efficient Sampling Accelerates
NeRFs

Optimizing and rendering Neural Radiance Fields is computationally expensive due to the vast
number of samples required by volume rendering. Recent works have included alternative sampling
approaches to help accelerate their methods, however, they are often not the focus of the work.
In this paper, we investigate and compare multiple sampling approaches and demonstrate that
improved sampling is generally applicable across NeRF variants under an unified concept of
transmittance estimator. To facilitate future experiments, we develop NerfAcc, a Python toolbox that
provides flexible APIs for incorporating advanced sampling methods into NeRF related methods.
We demonstrate its flexibility by showing that it can reduce the training time of several recent NeRF
methods by 1.5× to 20× with minimal modifications to the existing codebase. Additionally, highly
customized NeRFs, such as Instant-NGP, can be implemented in native PyTorch using NerfAcc.
Our code are open-sourced at https://www.nerfacc.com.

2.1 Introduction
Neural volume rendering has revolutionized the inverse rendering problem, with the Neural Radiance
Field (NeRF) [61] being a key innovation. The continuous radiance field representation allows
for rendering novel views of a scene from any camera position. However, the optimization of a
NeRF can be computationally expensive due to the neural representation of radiance field and the
large number of samples required by volume rendering. These challenges have limited practical
applications of NeRF-based optimization and rendering.

Several recent works have successfully reduced the computational cost of neural volume ren-
dering by proposing more efficient radiance field representations [63, 124, 123, 10, 91, 25]. While
there are differences in the specific radiance field representations and their applications, most of
these methods share a similar volume rendering pipeline which involves creating samples along the
ray and accumulating them through alpha-composition.

However, compared to the considerable efforts focused on developing efficient radiance field
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pip install nerfacc

Efficient Sampling

Training Speedup

NeRF TensoRF Instant-NGP T-NeRF TiNeuVox K-Planes BARF
Static NeRFs Dynamic NeRFs Cam Opt. NeRFs

Figure 2.1: NerfAcc Toolbox. Our proposed toolbox, NerfAcc, integrates advanced efficient
sampling techniques that lead to significant speedups in training various recent NeRF papers with
minimal modifications to existing codebases.

representations, there has been limited attention devoted to reducing the computational cost of
neural volume rendering through efficient sampling. While a few recent works have included
alternative sampling approaches to accelerate their methods [63, 124, 91, 2], these methods are
often not the main focus of the paper. Moreover, implementing advanced sampling approaches
typically requires non-trivial efforts. For example, Instant-NGP [63] and Plenoxels [124] both
employ highly customized CUDA implementations to achieve spatial skipping during ray marching,
which are tightly coupled with their respective radiance field implementations. Consequently, it can
be challenging for researchers to benefit from these advanced sampling approaches in their own
research.

In this paper, we investigate and compare several advanced sampling approaches from the
literature and provide mathematical proofs demonstrating that they can all be viewed in a unified
way of creating an estimation of transmittance for importance sampling. Our analysis shows that by
understanding the spectrum of sampling through transmittance estimator, novel sampling strategies
can be explored. Based on this, we decouple the sampling procedure from the neural volumetric
rendering pipeline and demonstrate that improved sampling is generally applicable across different
variants of NeRF. Furthermore, to facilitate future experiments, we propose NerfAcc, a plug-and-
play toolbox that provides a flexible Python API for integrating advanced sampling approaches
into NeRF-related methods, ready for researchers to incorporate into their own codebases. We
demonstrate that with less than 100 lines of code change using NerfAcc, various NeRF methods [61,
10, 22, 25, 53, 72, 63] can enjoy 1.5× to 20× training speedup with better performance. Notably,
using the NerfAcc library, one can train an Instant-NGP [63] model with pure Python code in
the same amount of time, and achieve slightly better performance (+0.2dB) than the official pure
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CUDA implementation.
Our paper presents a unique contribution to the community. Unlike other papers that introduce

novel algorithms, our work sheds light on the intricacies of various sampling approaches, which are
often overlooked despite their significance. As far as we know, this work is the first paper that dives
deep into this crucial aspect in the context of neural radiance field, and offer a novel, unified concept
that allows researchers to view existing sampling algorithms in a fresh perspective. In addition, we
provide a toolbox that facilitates research and development in this area. We believe translation of
mathematical ideas into efficient, easy-to-modify implementation is fundamental to the research
development. Overall, we hope that our proposed concept, along with the toolbox, can inspire new
research ideas and accelerate progress in this field.

2.2 Related Works
NeRF Codebases. The recent explosion of NeRF-related research has led to numerous papers,
many of which have released their own codebases [3, 2, 10, 25, 50, 61, 67, 122, 27]. These
codebases address various tasks related to NeRF, including surface reconstruction [65, 108, 119],
radiance field representation [3, 2, 63, 91, 124], dynamic modeling [22, 25, 50, 72], and camera
optimization [53, 109]. However, each codebase is tailored to a specific task and supports only
a single approach. While most of these methods share the same volume rendering pipeline of
accumulating samples along the ray, transferring the implementation from one codebase to another
requires non-trivial efforts. In this work, we address this common sampling problem by introducing
NerfAcc, a plug-and-play toolbox that supports all the aforementioned tasks and methods, making
it easy to integrate into any existing codebase.

NeRF Frameworks. Recently, several projects have been introduced to integrate different NeRF
variants into a single framework, such as NeRF-Factory [36], Nerfstudio [98], and Kaolin-Wisp [93].
These frameworks have made significant progress in facilitating future NeRF-related research.
NeRF-Factory offers a collection of NeRF variants [61, 129, 91, 124, 3, 2, 105] with original
implementations and focuses on comprehensive benchmarking. Nerfstudio consolidates critical
techniques introduced in existing literature [61, 3, 2, 63, 56] and provides modular components
for the community to easily build on. Kaolin-Wisp builds upon the Kaolin [26] framework and
implements a set of voxel-based NeRF papers [94, 63, 95]. However, these frameworks are designed
to encourage researchers to develop within the framework, and do not benefit users working on
their own codebases. Moreover, due to the high activity in the NeRF-related research, it is almost
impossible to keep track of the latest developments and integrate advanced techniques into a single
framework. Therefore, NerfAcc is designed as a standalone library that can be plugged into any
codebase. It supports a wide range of NeRF related methods and can be easily maintained as new
methods emerge.
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Figure 2.2: Illustration of Sampling via Transmittance Estimator. Although spatial skipping
approaches (e.g., Occupancy Grid in Instant-NGP [63]) and PDF approaches (e.g., Proposal Network
in Mip-NeRF 360 [2]) appear distinct from each other, they can both be viewed as constructing a
transmittance estimator from which samples can be created via importance sampling.

2.3 Importance Sampling via Transmittance
Several advanced sampling approaches exist in the literature. For instance, Plenoxels [124] uses a
sparse grid, Instant-NGP [63] uses an occupancy grid, NeRF [61] employs a coarse-to-fine strategy,
Mip-NeRF 360 [2] proposes proposal networks. However, creating a toolbox that can support all of
these approaches is not an easy task since they operate in completely different ways. In this section,
we demonstrate that these approaches can all be viewed in a unified way of importance sampling.
We also provide a mathematical proof that transmittance is all you need for importance sampling.
Thus, each method essentially has its own way of creating an estimation of the transmittance along
the ray, which we refer to as the transmittance estimator. This observation enables us to unify
different types of sampling approaches under the same framework and leads to our NerfAcc toolbox.
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Formulation
Efficient sampling is a well-explored problem in Graphics [24], wherein the emphasis is on identi-
fying regions that make the most significant contribution to the final rendering. This objective is
generally accomplished through importance sampling, which aims to distribute samples based on
the probability density function (PDF), denoted as p(t), between the range of [tn, tf ]. By computing
the cumulative distribution function (CDF) through integration, i.e., F (t) =

∫ t

tn
p(v) dv, samples

are generated using the inverse transform sampling method:

t = F−1(u) where u ∼ U [0, 1]. (2.1)

In volumetric rendering, the contribution of each sample to the final rendering is expressed by
the accumulation weights T (t)σ(t):

C(r) =

∫ tf

tn

T (t)σ(t) c(t) dt

where T (t) = exp

(
−
∫ t

tn

σ(s) ds

)
.

(2.2)

Hence, the PDF for volumetric rendering is p(t) = T (t)σ(t) and the CDF F (t) =
∫ t

tn
p(v) dv can

be derived as a function of transmittance T (t):

F (t) =

∫ t

tn

T (v)σ(v) dv

=

∫ t

tn

d

dv

[
− exp

(
−
∫ v

tn

σ(s)ds

)]
dv

= 1− exp

(
−
∫ t

tn

σ(s)ds

)
= 1− T (t).

(2.3)

Therefore, inverse sampling the CDF F (t) is equivalent to inverse sampling the transmittance
T (t). Thus a transmittance estimator is sufficient to determine the optimal samples. Intuitively, this
suggests to put more samples around regions where the transmittance changes rapidly – and that
is exactly what happens when a ray hit a surface. Implementation wise, this observation enables
us to compute the CDF directly using 1− T (t), instead of the computationally expensive integral∫ t

tn
T (v)σ(v) dv, which is the standard implementation adopted by many popular codebases [61, 3,

2, 98, 25].
While advanced transmittance estimator techniques, such as delta tracking [106] with Monte

Carlo sampling, are utilized in production-level volumetric rendering in Graphics [24], NeRFs
operate in a distinct setting in which the scene geometry is not predefined but optimized on the fly.
During NeRF optimization, the radiance field changes between iterations, necessitating the dynamic
update of the transmittance estimator at each step k:

F : T (t)k−1 7→ T (t)k. (2.4)
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Methods PDF Estimator p(ti) Trans. Estimator T (ti) Update F Instantiation

Uniform Constant 1− t−tn
tf−tn

- NeRF [61]

Spatial Skipping
1
[
σ(ti)>τ

]
∑n

j=1 1
[
σ(ti)>τ

] 1−
∑i−1

j=1 1
[
σ(ti)>τ

]
∑n

j=1 1
[
σ(ti)>τ

] EMA Instant-NGP [63]

SGD Plenoxels [124]

PDF Approaches σ(ti) exp(−σ(ti) dt) exp(−
∑i−1

j=1 σ(ti) dt)
SGD NeRF [61]

SGD Mip-NeRF 360 [2]

Table 2.1: Mathematical Formulations of Different Sampling Approaches. We outlines the
significant mathematical distinctions among each sampling approach, under the perspective of
transmittance estimator. See Section 2.3 for notations.

This introduces additional challenges to efficient sampling because it becomes more difficult to
accurately estimate the transmittance from a radiance field that is constantly changing. Current
approaches employ either exponential moving average (EMA) or stochastic gradient descent (SGD)
as the update function F . However, we note that there may be other update functions that could be
explored.

With these concepts in mind, let us now examine some of the existing approaches towards
efficient sampling.

Uniform. If a transmittance estimator is not available, the only assumption we can make is that
every point along the ray contributes equally to the final rendering. Mathematically, this assumption
translates to a constant PDF and a linearly decaying transmittance T (t) = 1− (t− tn)/(tf − tn).
In this case, the sampling process is equivalent to uniformly sampling along the ray, i.e., ti =
tn + (tf − tn) · ui. It is worth noting that every NeRF model that uses uniform sampling inherently
assumes this linear transmittance decay, such as the coarse level in vanilla NeRF [61]. See Fig. 2.2(a)
for the illustration.

Spatial Skipping. A more sophisticated approach to improve uniform sampling is to identify
empty regions and skip them during sampling, as proposed in Instant-NGP’s Occupancy Grid [63]
and Plenoctrees’ Sparse Grid [123]. This technique binarizes the density along the ray with a
conservative threshold τ : σ̂(ti) = 1

[
σ(ti) > τ

]
. Consequently, the piece-wise constant PDF

can be expressed as p(ti) = σ̂(ti)/
∑n

j=1 σ̂(tj), and the piece-wise linear transmittance estimator
is T (ti) = 1 −

∑i−1
j=1 σ̂(tj)/

∑n
j=1 σ̂(tj). To update this estimator during optimization, Instant-

NGP [63] directly updates the cached density with exponential moving average (EMA) over
iteration k: σ(ti)k = γ ·σ(ti)k−1+(1− γ) ·σ(ti)k. Meanwhile, Plenoxels [124] updates the density
via the gradient descent through the rendering loss. See Fig. 2.2(b) for an illustration.
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PDF Approaches. Another type of approach is to directly estimate the PDF along the ray
with discrete samples. In vanilla NeRF [61], the coarse MLP is trained using volumetric ren-
dering loss to output a set of densities σ(ti). This allows for the creation of a piece-wise
constant PDF: p(ti) = σ(ti) exp(−σ(ti) dt), and a piece-wise linear transmittance estimator
T (ti) = exp(−

∑i−1
j=1 σ(ti) dt). This approach was further improved in Mip-NeRF 360 [61] with a

PDF matching loss, which allows for the use of a much smaller MLP in the coarse level, namely
Proposal Network, to speedup the PDF construction. In both cases, the transmittance estimator is
updated through gradient descent. See Fig. 2.2(c) for an illustration.

Table 2.1 provides a mathematical summary and comparison of these approaches. Additionally,
we present an illustration in Figure 2.2 to provide an intuitive comparison of these approaches from
the perspective of PDF (second row) and transmittance (third row), as well as how the samples can
be created from the transmittance estimator via importance sampling (last row). This visualization
also reveals some pros and cons for each approach, which we will discuss in in Section. 2.3.

Design Spaces
Choice of Representations. The transmittance estimator can use either an explicit voxel [63,
124, 10], an MLP [3, 2, 61], or a hybrid representation [98]. Depending on whether the estimator
is explicit or not, it can be updated with either rule-based EMA [63, 10] or gradient descent with
some supervision [124, 2, 61, 98]. Generally, voxel-based estimators are faster than implicit (e.g.,
MLP-based) estimators but suffer more from aliasing issues. It is worth noting that the transmittance
estimator’s representation can significantly benefit from advances in radiance field representation.
For example, the Nerfacto model [98] uses the most recent hybird-representation HashEncoding [63]
for both the radiance field and the sampling module, achieving the best quality-speed tradeoff in
in-the-wild settings.

Handling Unbounded Scenes. So far, we have only discussed sampling within a bounded area
[tn, tf ]. For unbounded scenes, it is impossible to densely sample along the ray. Similar to the
mipmaps used in graphics rendering, a general solution is to sample more coarsely as the ray goes
further, as objects farther away appear in fewer pixels on the image plane. This can be achieved by
creating a bijective mapping function Φ : s ∈ [sn, sf ] 7→ t ∈ [tn,+∞], and performing sampling in
the s-space instead of the t-space. Several papers [2, 129, 79] that work on unbounded scenes have
introduced different mapping functions Φ, to which we refer our readers for details.

Discussions
Pros and Cons. Sampling with uniform assumption is the easiest one to implement but with
lowest efficiency in most cases. Spatial skipping is a more efficient technique since most of the 3D
space is empty, but it still samples uniformly within occupied but occluded areas that contribute
little to the final rendering (e.g., the last sample in Figure 2.2(b)). PDF-based estimators generally
provide more accurate transmittance estimation, enabling samples to concentrate more on high-
contribution areas (e.g., surfaces) and to be more spread out in both empty and occluded regions.
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However, this also means that samples are always spread out throughout the entire space without any
skipping, as shown in Figure 2.2(c). Moreover, the current approaches all introduce aliasing effects
to the volumetric rendering due to either (1) the piece-wise linearity assumption for estimating
transmittance along the ray [3, 2, 61, 124, 63] as illustrated in Figure 2.2, or (2) the underlying voxel
representation for the transmittance estimator [124, 63] as discussed in Section 2.3. A recent work,
Zip-NeRF [4], addresses the aliasing problem tied to these two exact issues (called “z-aliasing” and
“xy-aliasing” in their work), which are naturally revealed under our unified framework.

Implementation Difficulties. The current implementations for efficient sampling are all highly
customized and tightly integrated with the specific radiance field proposed in each paper. For
instance, spatial skipping is implemented with customized CUDA kernels in Instant-NGP [63] and
Plenoxels [124]. Mip-NeRF 360 [2], K-planes [25], and Nerfacto [98] have a proposal network
implemented but it is closely integrated with their repositories and can only support limited types
of radiance fields that come with the repository. However, as shown before, the sampling process
is independent of the radiance field representation, thus it should be easily transferable across
different NeRF variants. Due to the various implementation details, it typically requires significant
effort to correctly implement an efficient sampling approach from scratch. Therefore, having
an implementation that is easily transferable from repository to repository would be valuable in
supporting future research on NeRF.

Insights from Unified Formulation. Comprehending the sampling spectrum through the lens of
Transmittance Estimator paves the way for investigating novel sampling strategies. For example,
our framework reveals that the Occupancy Grid from Instant-NGP [63] and the Proposal Network
from Mip-NeRF 360 [2] are not mutually exclusive but complementary, as both aim to estimate the
transmittance along the ray. Therefore, combining them becomes straight-forward: one can first
compute the transmittance with the occupancy grid, and then refine the estimated transmittance with
a proposal network. This enables both skipping on the empty space and concentrating the samples
onto the surface. We explore this approach in Section 2.4 and demonstrate that it overcomes the
limitation of the proposal network approach, which always samples the entire space. Furthermore,
this formulation could potentially shed light on questions such as how to enhance the sampling
procedure with depth information or other priors, which we encourage readers to investigate further.

2.4 NerfAcc Toolbox
In this paper, we present NerfAcc toolbox, designed for Neural radiance field Acceleration.

It provides efficient sampling for volumetric rendering, that is universally applicable and easily
integrable for a diverse range of radiance fields [61, 10, 63, 53, 108]. In this section, we first
introduce the design principles of this toolbox, along with critical implementation details. To
demonstrate its flexibility, we further show that it can significantly speedup the training of various
NeRF-related papers by 1.5× to 20× with only minor modifications to existing codebases.
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Algorithm 1: NerfAcc Rendering Pipeline. In NerfAcc, the samples are created from a transmittance
estimator, which can be updated during the NeRF training. See Section 2.4 for details.

# nerf: a radiance field model.
# r_o: ray origins. (n_rays, 3)
# r_d: ray normalized directions. (n_rays, 3)

# e.g., Prop Net, Occ Grid.
estimator = nerfacc.TransmittanceEstimator()

def density_fn(t0, t1, r_id):
"""Query density from nerf."""
return nerf.density(r_o[r_id], r_d[r_id], t0, t1)

def rgb_density_fn(t0, t1, r_id):
"""Query rgb and density from nerf."""
return nerf.forward(r_o[r_id], r_d[r_id], t0, t1)

# Efficient sampling. (t0, t1, r_id): packed samples. (all_samples,)
t0, t1, r_id = nerfacc.sampling(r_o, r_d, estimator, density_fn=density_fn)
# Differentiable volumetric rendering.
color, opacity, depth, aux = nerfacc.rendering(t0, t1, r_id, rgb_density_fn=rgb_density_fn)
# Update the transmittance estimator.
estimator.update_every_n_steps(t0, t1, r_id, aux)
# nerf, r_o and r_d all receive gradients.
F.mse_loss(color, color_gt).backward()

Design Principles
This library is designed with these goals in mind:

• Plug-and-play. Our primary objective is to ease the challenges of implementing an efficient
volumetric sampling technique for the research community. Therefore, NerfAcc is designed
as a standalone library that can be easily installed from PyPI on both Windows and Linux
platforms, and seamlessly integrated into any PyTorch codebase.

• Efficiency & Flexibility. To maximize the speed of the code, we fuse the operations into
CUDA kernels as much as possible, while exposing flexible Python APIs to the users.

• Radiance Field Complexity. We target on supporting any radiance fields that are designed
for per-scene optimization, including both density-based and SDF-based fields, for both static
and dynamic scenes.

Implementation Details
NerfAcc incorporates two advanced sampling methods that can be decoupled from the radiance
field representation, namely the Occupancy Grid from Instant-NGP [63] and the Proposal Network
from Mip-NeRF 360 [2]. Algorithm 1 presents the pseudo code for volumetric rendering using the
NerfAcc toolbox. In this section, we do not dive into the details of each algorithm, as we basically
follow the original paper’s implementation. Instead, we discuss the implementation designs that are
crucial to maintain high efficiency and flexibility of this toolbox.
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Methods Dataset Speedup T (min) ↓ PSNR ↑ LPIPS ↓

TensoRF [10]
T&T 1.5× 18.3 28.13 0.143

+ nerfacc (occ) 12.6 28.10 0.150

TensoRF [10]
Syn. 1.6× 10.6 32.52 0.047

+ nerfacc (occ) 6.5 32.51 0.044

NeRF [61]
Syn. 20× >1000 31.00 0.081

+ nerfacc (occ)† 52.0 31.55 0.072

Instant-NGP [63]
Syn. 1.0×

4.4 32.35 -
+ nerfacc (occ)† 4.4 32.55 0.056
+ nerfacc (prop)† 5.2 31.40 0.064

Instant-NGP [63]
360 1.1×

5.3 25.93 -
+ nerfacc (occ)† 5.0 26.41 0.353
+ nerfacc (prop)† 4.9 27.58 0.292

Table 2.2: Improvements on Static NeRFs. Experiments are conducted by replacing necessary code
in the official repositories, except for those marked by † that are based on our re-implementations.

Methods Dataset Speedup T (min) ↓ PSNR ↑ LPIPS ↓

TiNeuVox [66]
Hyper. 1.7×

56.3 24.19 0.425
+ nerfacc (occ) 33.0 24.19 0.434
+ nerfacc (prop) 34.3 24.26 0.398

TiNeuVox [22]
D-NeRF 2.8× 11.8 31.14 0.050

+ nerfacc (occ) 4.2 31.75 0.038

K-Planes [25]
D-NeRF 1.6× 63.9 30.28 0.043

+ nerfacc (occ) 38.8 30.35 0.042

T-NeRF [72]
D-NeRF 20× >1000 28.78 0.069

+ nerfacc (occ)† 58.0 32.22 0.040

Table 2.3: Improvements on Dynamic NeRFs. Experiments are conducted by replacing nec-
essary code in the official repositories, except for those marked by † that are based on our re-
implementations.

Methods Dataset Speedup T (min) ↓ PSNR ↑ LPIPS ↓ ER / ET ↓

BARF [66]
Syn. 4.5× 586 28.83 0.054 0.19 / 0.74

+ nerfacc (occ) 130 30.11 0.044 0.07 / 0.35

Table 2.4: Improvements on NeRFs for Camera Optimization. Rotation / transnation errors are
denoted as ER/ET . ET is scaled by 100.
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Figure 2.3: Qualitative Results. NerfAcc is able to significantly reduce the training time of various
NeRF-related methods across multiple datasets, while also yielding slightly improved quality in the
majority of cases. The training time and test PSNR are shown on the left corner of each image.

Code Snippets from BARF Equavlent code with NerfAcc

Figure 2.4: Plug-and-play Example in BARF [53]’s Repository. With around 50 lines of code
change, both training speed and performance can be greatly improved with efficient sampling
equipped in NerfAcc, as shown in Table 2.3.

Sample as Interval. In the NerfAcc toolbox, instead of representing each sample with a coordinate
x, we represent the sample as an interval along the ray (t0, t1, r), where t0 and t1 are the start and
end of the interval along the r-th ray. This interval-based representation offers three key advantages.
Firstly, representing a sample as an interval instead of a single point allows us to support research



CHAPTER 2. NERFACC: EFFICIENT SAMPLING ACCELERATES NERFS 16

based on cone-based rays for anti-aliasing, such as Mip-NeRF [3] and Mip-NeRF 360 [2]. Secondly,
since in almost all cases ti does not require gradients, using (t0, t1, r) instead of (x0,x1) to represent
the interval allows for the detachment of the sampling process from the differentiable computational
graph, thereby maximizing its speed. Lastly, the ray id r attached to each sample enables support
for various numbers of samples across rays with a packed tensor, which we will discuss in the next
paragraph. A similar representation has been adopted in Nerfstudio [98] to support various radiance
fields.

Packed Tensor. To support sampling with spatial skipping, it is necessary to consider that each
ray may result in a different number of valid samples. Storing the data as a tensor with shape
(n_rays, n_samples, ...) and an extra mask with shape (n_rays, n_samples) to indicate
which samples are valid leads to significant inefficient memory usage when large portions of space
are empty. To address this, in NerfAcc, we represent samples as “packed tensors” with shape
(all_samples, ...), in which only valid samples are stored (see Algo. 1). To keep track of the
associated rays for each sample, we also host an integer tensor with shape (n_rays, 2), which
stores the start index in the packed tensors and the number of samples on this ray. This approach is
similar to that used in Instant-NGP [63] and PyTorch3D [76].

No Gradient Filtering. After importance sampling, inaccurate transmittance estimations can
result in some samples lying in empty or occluded spaces, particularly in spatial skipping methods
like Occupancy Grid. These samples can be filtered before being included in PyTorch’s differentiable
computation graph by evaluating their transmittance using the radiance field with gradients disabled.
As backward passes are not required during filtering, this is much faster (∼10×) than keeping
all samples in the computation graph. In practice, samples with transmittance below 10−4 are
disregarded during this process with almost no influence on the rendering quality. Note that this
strategy is inspired from Instant-NGP [63]’s implementation.

Case Studies
We showcase the flexibility of NerfAcc on three types of NeRFs across seven papers: static NeRFs
(NeRF [61], TensoRF [10], Instant-NGP [63]); dynamic NeRFs (D-NeRF [72], K-Planes [25]
TiNeuVox [22]); and a NeRF variation for camera optimization (BARF [53]). Although many of
these methods, e.g., Instant-NGP, TensoRF, TiNeuVox and K-Planes, have already been highly
optimized for efficiency, we are still able to accelerate their training by a large margin and achieve
slightly better performance on nearly all cases. It is worth mentioning that experiments with
TensoRF, TiNeuVox, K-Planes and BARF are conducted by integrating NerfAcc into the official
codebase with around 100 lines of code change. The results of our experiments, including those
of our baselines, are presented in Table 2.2,2.3, and2.4, all of which were conducted under the
same physical environment using a single NVIDIA RTX A5000 GPU to facilitate comparison, as
per [92]. Aside from the experiments reported in this paper, NerfAcc has also been integrated into
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a few popular open-source projects such as nerfstudio [98] for density-based NeRFs, as well as
sdfstudio [126] and instant-nsr-pl [32] for SDF-based NeRFs.

Static NeRFs. In this task, we experiment with three NeRF vaiants, including the original
MLP-based NeRF [61], TensoRF [10] and Instant-NGP [63]. We show that NerfAcc works with
both MLP-based and Voxel-based radiance fields, on both bounded (NeRF-Synthetic dataset [61],
Tank&Template dataset [44]) and unbounded scenes (360 Dataset [2]). It is worth to note that with
NerfAcc, one can train an Instant-NGP model with pure Python code and achieve slightly better
performance than the official pure CUDA implementation, as shown in Table 2.2.

Dynamic NeRFs. In this task, we apply the NerfAcc toolbox to T-NeRF [72], K-Planes [25]
and TiNeuVox [22], covering both the synthetic (D-NeRF [72]) and “in-the-wild” captures1 (that
accompany HyperNeRF [66]). When applying the occupancy grid approach to accelerate those
dynamic methods, instead of representing a static scene with it, we share the occupancy grid across
all frames. In other words, instead of using it to indicate the opacity of an area at a single timestamp,
We use it to indicate the maximum opacity at this area over all the timestamps. This is not optimal
but still makes the rendering very efficient, due to the fact there are limited movements in these
datasets.

NeRFs for Camera Optimization. In this task, we employed the NerfAcc toolbox to BARF [53]
on the NeRF-Synthetic dataset with perturbed cameras. The goal is to jointly optimize the radiance
field and camera extrinsic for multi-view images. We observed that the spatial skipping sampling
provided by NerfAcc facilitated faster training and significantly improved both image quality and
camera pose reconstruction. These improvements could be attributed to the sparsity enforced in our
sampling procedure. This finding may provide interesting avenues for future research.

Analysis of Different Sampling Approaches. Results in Table 2.2 show that the choice between
occupancy grid and proposal network sampling can noticeably affect run-time and performance
on different datasets. As each approach relies on a distinct set of hyperparameters, a systematic
comparison between the two methods is crucial by sweeping the hyperparameter space. We varied
the resolution and marching step size for occupancy grid and the number of samples and size of
the proposal network for the proposal network approach. We plot pareto curves for each approach
for both the NeRF-Synthetic and Mip-NeRF 360 datasets in Fig.2.5. This analysis indicates that
occupancy grid sampling is suitable for the NeRF-Synthetic dataset, whereas the proposal network
approach performs better on the 360 dataset. This is likely because the NeRF-Synthetic dataset
contains more empty space that can be skipped effectively using the occupancy grid approach.
However, in the case of real, unbounded data, the use of the occupancy grid approach is limited by
the bounding box and the lack of empty space to skip, making the proposal network approach more
effective. These experiments used the radiance field from Instant-NGP [63], with the same training
recipes.

1These datasets teleport cameras and do not represent real captures [27].
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Figure 2.5: Comparison between Different Sampling Approaches in terms of Training Time
and Rendering FPS. We sweep the hyper-parameters space for each sampling approach, and find
out that occupancy grid approach gives the best performance-speed trade-off on the NeRF-Synthetic
dataset, while the proposal network approach performs the best on the Mip-NeRF 360 dataset. Note
T (min) denotes for training time and FPS is for rendering frames per second. All experiments
use the HashEncoding from Instant-NGP [63] as the radiance field representation. Please see the
supplementary materials for the hyperparameter space that we explored.

Combined Sampling
A benefit from the unified concept of transmittance estimator introduced in Section 2.3, is that
it’s straight-forward to combine the two distinct sampling approaches, as both of them essentially
provide an estimation of the transmittance that can be used for importance sampling. For example,
we find that simply stacking an occupancy grid on top of the proposal network, can significantly
reduce the number of rays and shrink the near-far plane for the remaining rays on the NeRF-Synthetic
dataset. This leads to improvements in quality, from 31.40dB to 32.35dB, and a reduction in training
time, from 5.2min to 4.3min, compared to using only the proposal network for importance sampling.
Figure 2.6 shows an example with the FICUS scene, where the floaters are cleaned out with the
combined sampling. This experiment is conducted using the HashEncoding from Instant-NGP [63]
as the radiance field representation.

2.5 Conclusions
In conclusion, this paper highlights the significant impact of advanced sampling approaches on
improving the efficiency of Neural Radiance Fields (NeRF) optimization and rendering. We
demonstrate that advanced sampling can significantly speed up the training of various recent
NeRF papers, while maintaining high-quality results. The development of NerfAcc, a flexible
Python toolbox, enables researchers to incorporate advanced sampling methods into NeRF-related
methods easily. The exploration and comparison of advanced sampling methods are important steps
towards developing more efficient and accessible NeRF-based methods. The presented results also
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Figure 2.6: Results of Combined Sampling on NeRF-Synthetic Dataset. Benefit from our
unified concept of transmittance estimator, we find it’s straight-forward to combine the two distinct
sampling approaches.

demonstrate the potential for further research to improve the performance of NeRF and other related
techniques through advanced sampling strategies.
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Chapter 3

NeRF-XL: A Efficient Multi-GPU
Framework for NeRFs

We present NeRF-XL, a principled method for distributing Neural Radiance Fields (NeRFs) across
multiple GPUs, thus enabling the training and rendering of NeRFs with an arbitrarily large capacity.
We begin by revisiting existing multi-GPU approaches, which decompose large scenes into multiple
independently trained NeRFs [96, 101, 58], and identify several fundamental issues with these
methods that hinder improvements in reconstruction quality as additional computational resources
(GPUs) are used in training. NeRF-XL remedies these issues and enables the training and rendering
of NeRFs with an arbitrary number of parameters by simply using more hardware. At the core of
our method lies a novel distributed training and rendering formulation, which is mathematically
equivalent to the classic single-GPU case and minimizes communication between GPUs. By
unlocking NeRFs with arbitrarily large parameter counts, our approach is the first to reveal multi-
GPU scaling laws for NeRFs, showing improvements in reconstruction quality with larger parameter
counts and speed improvements with more GPUs. We demonstrate the effectiveness of NeRF-XL
on a wide variety of datasets, including the largest open-source dataset to date, MatrixCity [51],
containing 258K images covering a 25km2 city area. Visit our webpage at https://research.
nvidia.com/labs/toronto-ai/nerfxl/ for code and videos.

3.1 Introduction
Recent advances in novel view synthesis have greatly enhanced our ability to capture Neural
Radiance Fields (NeRFs), making the process significantly more accessible. These advancements
enable the reconstruction of both larger scenes and finer details within a scene. Expanding the scope
of a captured scene, whether by increasing the spatial scale (e.g., capturing a multi-kilometer-long
cityscape) or the level of detail (e.g., scanning the blades of grass in a field), involves incorporating
a greater volume of information into the NeRF for accurate reconstruction. Consequently, for scenes
with high information content, the number of trainable parameters required for reconstruction may
exceed the memory capacity of a single GPU.
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Figure 3.1: Extremely large scale NeRFs reconstructed by our principled multi-GPU dis-
tributed algorithm.

In this paper, we introduce NeRF-XL, a principled algorithm for efficiently distributing Neu-
ral Radiance Fields (NeRFs) across multiple GPUs. Our method enables the capture of high-
information-content scenes, including those with large-scale and high-detail features, by simply
adding more hardware resources. At its core, NeRF-XL allocates NeRF parameters across a disjoint
set of spatial regions and trains them jointly across GPUs. Unlike conventional distributed training
pipelines that synchronize gradients during the backward pass, our approach only requires informa-
tion synchronization during the forward pass. Additionally, we drastically reduce the required data
transfer between GPUs by carefully rewriting the volume rendering equation and relevant loss terms
for the distributed setting. This novel rewriting enhances both training and rendering efficiency. The
flexibility and scalability of our approach allows us to efficiently optimize NeRFs with an arbitrary
number of parameters using multiple GPUs.

Our work contrasts with recent approaches that utilize multi-GPU algorithms to model large-
scale scenes by training a set of independent NeRFs [96, 101, 58]. While these approaches require
no communication between GPUs, each NeRF needs to model the entire space, including the
background region. This leads to increased redundancy in the model’s capacity as the number of
GPUs grows. Additionally, these methods require blending NeRFs during rendering, which degrades
visual quality and introduces artifacts in overlapping regions. Consequently, unlike NeRF-XL, these
methods fail to achieve visual quality improvements as more model parameters (equivalent to more
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GPUs) are used in training.
We demonstrate the effectiveness of our method across a diverse set of captures, including

street scans, drone flyovers, and object-centric videos. These range from small scenes (10m2) to
entire cities (25km2). Our experiments show that NeRF-XL consistently achieves improved visual
quality (measured by PSNR) and rendering speed as we allocate more computational resources
to the optimization process. Thus, NeRF-XL enables the training of NeRFs with arbitrarily large
capacity on scenes of any spatial scale and detail.

3.2 Related Work
Single GPU NeRFs for Large-Scale Scenes Many prior works have adapted NeRF to large-scale
outdoor scenes. For example, BungeeNeRF [114] uses a multi-scale, coarse-to-fine pipeline to
address memory constraints; Grid-guided NeRF [117] uses multiple image planes for drone-captured
footage; F2-NeRF [107] introduces a space warping algorithm for efficient level-of-detail handling
in a free camera trajectory capture; and UrbanNeRF [80] leverages LiDAR and segmentation maps
to improve in-the-wild captures. Despite their advancements, these prior works are bounded by the
computational capacity of a single GPU.

NeRFs with Multiple GPUs An alternative approach for training NeRFs on large-scale scenes
is to use multiple GPUs. BlockNeRF [96], MegaNeRF [102] and SNISR [113] partition a scene
into overlapping NeRFs based on camera trajectory or spatial content, and optimize each NeRF
independently (one per GPU). ProgressiveNeRF [58] adopts a similar strategy but recursively
optimizes one NeRF at a time with overlapped blending. While these methods overcome the
memory limitations of a single GPU, each independent NeRF has to model the entire scene within a
spatial region, leading to increased redudancy (in the model’s capacity) and decreased visual quality
as more GPUs are used in training. Furthermore, these methods must rely on depth initialization for
spatial partitioning [113], or introduce overlapping between NeRFs [96, 102, 58], which causes
visual artifacts during rendering. We provide an in-depth analysis of the problems faced by prior
multi-GPU methods in the next section.

3.3 Revisiting Existing Approaches: Independent Training
In leveraging multiple GPUs for large-scale captures, prior research [57, 96, 58] has consistently
employed the approach of training multiple NeRFs focusing on different spatial regions, where each
NeRF is trained independently on its own GPU. However, independently training multiple NeRFs
has fundamental issues that impede visual-quality improvements with the introduction of additional
resources (GPUs). This problem is caused by three main issues described below.

Model Capacity Redundancy. The objective of training multiple independent NeRFs is to allow
each NeRF to focus on a different (local) region and achieve better quality within that region than a
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Figure 3.2: Independent Training v.s. Joint Training with multi-GPU. Training multiple
NeRFs independently [96, 102, 58] requires each NeRF to model both the focused region and its
surroundings, leading to redundancy in model’s capacity. In contrast, our joint training approach
utilizes non-overlapping NeRFs, thus without any redundancy.

Figure 3.3: Independent Training requires Blending for Novel-View Synthesis. Either blending
in 2D [96, 58] or 3D [102] introduces blurriness into the rendering.

single global model with the same capacity. Despite this intention, each NeRF is compelled to model
not only its designated region but also the surrounding areas, since training rays often extend beyond
the designated region as depicted in Figure 3.2(a). This leads to an inherent redundancy in the
model’s capacity since each NeRF must model both the local and surrounding regions. As a result,
increasing the number of GPUs (and hence using smaller spatial regions per NeRF), increases the
total redundancy in the model’s capacity. For example, Mega-NeRF [102] exhibits 38%/56%/62%
ray samples outside the tiled regions with 2×/4×/8× tiles on the UNIVERSITY4 capture. In contrast,
our proposed method of jointly training all tiles removes the need for surrounding region modeling
in each NeRF, thereby completely eliminating redundancy, as shown in Figure 3.2(b)). This feature
is crucial for efficiently leveraging additional computational resources.



CHAPTER 3. NERF-XL: A EFFICIENT MULTI-GPU FRAMEWORK FOR NERFS 24

Figure 3.4: Independent Training Creates Distinct Camera Optimizations. Camera optimization
in NeRF can be achieved by either transforming the inaccurate camera itself or all other cameras
along with the underlying 3D scene. Thus, training multiple NeRFs independently with camera
optimization may lead to inconsistencies in camera corrections and scene geometry, causing more
difficulties for blended rendering.

Figure 3.5: Potential Artifacts Caused by 3D Blending. On the left we show Mega-NeRF results
trained with 2 GPUs. At 0% overlap, boundary artifacts appear due to independent training, while
at 15% overlap, severe artifacts appear due to 3D blending. On the right we illustrate the reason
behind this artifact: while each independently trained NeRF renders the correct color, the blended
NeRF do not guarantee correct color rendering.

Blending for Rendering. When rendering independently trained NeRFs, it is often necessary
to employ a blending strategy to merge the NeRFs and mitigate inconsistencies at the region
boundaries. Past works typically choose local regions with a certain degree of overlap, such as 50%
in Block-NeRF [96] and 15% in Mega-NeRF [102]. Two primary approaches exist for blending
NeRFs during novel-view synthesis. One approach involves rendering each NeRF independently
and then blending the resulting images when the camera is positioned within the overlapped region
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(referred to as 2D blending) [96, 58]. The alternative approach is to blend the color and density in
3D for ray samples within the overlapped region (referred to as 3D blending) [102]. As illustrated
in Figure 3.3, both approaches can introduce blur into the final rendering. Moreover, blending in
3D can lead to more pronounced artifacts in rendering, due to deviations in the volume rendering
equation, as demonstrated in Figure 3.5. In contrast, our joint training approach does not rely on
any blending for rendering. In fact, our method renders the scene in the exact same way during
training and inference, thereby eliminating the train-test discrepancies introduced by past methods.

Inconsistent Per-camera Embedding. In many cases, we need to account for things like white
balance, auto-exposure, or inaccurate camera poses in a capture. A common approach to model
these factors is by optimizing an embedding for each camera during the training process, often
referred to as appearance embedding or pose embedding [98, 56, 53]. However, when training
multiple NeRFs independently, each on its own GPU, the optimization process leads to independent
refinements of these embeddings. This can result in inconsistent camera embeddings due to the in-
herently ambiguous nature of the task, as demonstrated in Figure 3.4. Inconsistencies in appearance
embeddings across NeRFs can result in disparate underlying scene colors, while inconsistencies
in camera pose embeddings can lead to variations in camera corrections and the transformation of
scene geometry. These disparities introduce further difficulties when merging the tiles from multiple
GPUs for rendering. Conversely, our joint training approach allows optimizing a single set of per-
camera embeddings (through multi-GPU synchronization), thus completely eliminating these issues.

Due to the issues listed above, prior works [96, 102] which train multiple independent NeRFs do
not effectively harness the benefits of additional computational resources (GPUs) as they scale up,
as evidenced in our experiments (§ 3.5). As a result, we advocate for a novel joint training approach.
Without any heuristics, our approach gracefully enhances both visual quality and rendering speed
as more GPUs are used in training, Moreover, our method reveals the multi-GPU scaling laws of
NeRF for the first time.

3.4 Our Method: Joint Training

Background
Volume Rendering NeRFs [60] employ volume rendering to determine the pixel color through
the integral equation:

C(tn ) tf ) =

∫ tf

tn

T (tn ) t)σ(t)c(t) dt,

where T (tn ) t) = exp

(
−
∫ t

tn

σ(s) ds

)
.

(3.1)

Here, T (tn ) t) represents transmittance, σ(t) denotes density, and c(t) signifies the color at position
t along the ray.
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Figure 3.6: Our Training Pipeline. Our method jointly trains multiple NeRFs across all GPUs,
each of which covers a disjoint spatial region. The communication across GPUs only happens in
the forward pass but not the backward pass (shown in gray arrows). (a) We can train this system by
evaluating each NeRF to get the sample color and density, then broadcast these values to all other
GPUs for a global volume rendering (§ 3.4). (b) By rewriting volume rendering equation we can
dramatically reduce the data transfer to one value per-ray, thus improving efficiency (§ 3.4).

Distortion Loss Initially introduced in Mip-NeRF 360 [2] and validated in subsequent works [4,
98, 49], this loss acts as a regularizer to address “floater” artifacts in NeRF reconstructions caused
by limited training viewpoint coverage. It is calculated along a ray as

Ldist(tn ) tf ) =

∫ tf

tn

w(ti)w(tj) |ti − tj| dti dtj, (3.2)

where w(t) = T (tn ) t)σ(t) represents the volume rendering weight for each sample along the ray.
Intuitively, it penalizes floaters by encouraging density concentration in minimal, compact regions.
See [2] for more details.

Non-overlapped NeRFs
A straightforward strategy to increase model capacity with multiple GPUs is to partition 3D space
into tiles and allocate a NeRF for each tile. But unlike prior works [102, 96, 58] that employ
overlapped NeRFs to model both tiles and their surrounding regions, our method exclusively models
non-overlapped tiles, with each NeRF assigned to a single tile. This distinction is illustrated in
Figure 3.2.

To render our NeRFs across multiple GPUs, we first distribute ray samples among GPUs based
on the bounding box of the tiles. Notably it’s important to ensure that sample intervals do not
extend beyond tile boundaries to prevent overlap between samples. We subsequently query sample
attributes (i.e., color and density) on each respective GPU. Volume rendering is then performed
through a global gather operation, consolidating information across all GPUs onto a single GPU
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to compute the final pixel color. Since all sample intervals are non-overlapping, the scene can be
rendered accurately following the volume rendering equation without the need for any blending.

Training proceeds in a similar fashion to rendering, except that during the forward pass each
GPU performs the global gather operation (i.e., broadcast) to obtain the information (i.e., color
and density) from all other GPUs (illustrated as gray lines in Figure 3.6(a)). Then, each GPU
computes the loss locally and back-propagates the gradients to its own parameters. Notably the
forward pass produces the exact same loss values on every GPU, but each loss lives in a different
computational graph that only differentiates with respect to its own local parameters, thus no
gradient communication are required across GPUs.

Such a naive scheme is extremely simple to implement, and mathematically identical to training
and rendering a NeRF represented by multiple small NeRFs [78, 77] on a single large GPU.
Distributing learnable parameters and computational cost across multiple GPUs allows scaling
NeRF to scenes of any size, as well as making most parts of training fully parallel (e.g., network
evaluation, back-propagation). Despite its simplicity and scalability in comparison to blending
overlapping NeRFs in prior works [96, 102, 58], this naive approach requires synchronizing O(SK2)
data across GPUs, where K is the number of GPUs, and S is the average number of samples per-
ray per-GPU. As the number of GPUs increases or the ray step size decreases, synchronization
across GPUs quickly becomes a bottleneck. Therefore, on top of this approach, we present a
sophisticated solution that significantly alleviates the burden of multi-GPU synchronization in a
principled manner.

Partition Based Volume Rendering
If we consider the near-far region [tn ) tf ] consisting of N segments [t1 ) t2, t2 ) t3, ..., tN ) tN+1],
we can rewrite the volume-rendering integral (3.1) into a sum of integrals for each segment along
the ray:

C(t1 ) tN+1) =

∫ tN+1

t1

T (t1 ) t)σ(t)c(t)dt =
N∑
k=1

T (t1 ) tk)C(tk ) tk+1) (3.3)

in which the transmittance T (t1 ) tk) can be written as:

T (t1 ) tk) =
k−1∏
i=1

T (ti ) ti+1) (3.4)

The above equation states that volume rendering along an entire ray is equivalent to first performing
volume rendering independently within each segment, then performing alpha compositing on all the
segments. We can also rewrite the accumulated weights A(t1 ) tN+1) and depths D(t1 ) tN+1) in a
similar way:

A(t1 ) tN+1) =

∫ tN+1

t1

T (t1 ) t)σ(t)dt =
N∑
k=1

T (t1 ) tk)A(tk ) tk+1) (3.5)
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D(t1 ) tN+1) =

∫ tN+1

t1

T (t1 ) t)σ(t)tdt =
N∑
k=1

T (t1 ) tk)D(tk ) tk+1) (3.6)

We can further rewrite the point-based integral in the distortion loss as an accumulation across
segments:

Ldist(t1 ) tN+1) =

∫ tN+1

t1

w(ti)w(tj) |ti − tj| dtidtj

= 2
N∑
k=1

T (t1 ) tk)S(t1 ) tk) +
N∑
k=1

T (t1 ) tk)
2Ldist(tk ) tk+1)

(3.7)

in which the S(t1 ) tk) is defined as:

S(t1 ) tk) = D(tk ) tk+1)A(t1 ) tk)− A(tk ) tk+1)D(t1 ) tk) (3.8)

Intuitively, the first term S(t1 ) tk) penalizes multiple peaks across segments (zero if only one
segment has non-zero values), while the second term Ldist(tk ) tk+1) penalizes multiple peaks
within the same segment. This transforms the pairwise loss on all samples into a hierarchy: pairwise
losses within each segment, followed by a pairwise loss on all segments. Derivations for all the
above formulae are given in the appendix.

Recall that the main drawback of our naive approach was an expensive per-sample data exchange
across all GPUs. The above formulae convert sample-based composition to tile-based composition.
This allows us to first reduce the per-sample data into per-tile data in parallel within each GPU
and exchange only the per-tile data across all GPUs for alpha compositing. This operation is
cost-effective, as now the data exchange is reduced from O(KS2) to O(S2) (each GPU contains a
single tile). Figure 3.6(b) shows an overview of our approach. § 3.5 quantifies the improvement
gained from this advanced approach compared to the naive version.

In addition to the volume rendering equation and distortion loss, a wide range of loss functions
commonly used in NeRF literature can be similarly rewritten to suit our multi-GPU approach. For
further details, we encourage readers to refer to the appendix.

Spatial Partitioning
Our multi-GPU strategy relies on spatial partitioning, raising the question of how to create these
tiles effectively. Prior works [96, 102] opt for a straightforward division of space into uniform-sized
blocks within a global bounding box. While suitable for near-rectangular regions, this method
proves suboptimal for free camera trajectories and can lead to unbalanced compute assignment
across GPUs. As noted in [107], a free camera trajectory involves uneven training view coverage,
resulting in varying capacity needs across space (e.g., the regions that are far away from any camera
require less capacity than regions near a camera). To achieve balanced workload among GPUs, we
want to ensure each GPU runs a similar number of network evaluations (i.e., has a similar number of
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Garden [2] University4 [58] Building [102] Mexico Beach [14] Laguna Seca MatrixCity [51]

#Img 161 939 1940 2258 27695 258003
#Pixc 175M 1947M 1920M 2840M 47294M 25800M
#Pixd 0.84M 3.98M - 9.63M 2819M 2007M

Table 3.1: Data Statistics. Our experiments are conducted on these captures from various
sources, including street captures (UNIVERSITY4, MATRIXCITY, LAGUNA SECA), aerial captures
(BUILDING, MEXICO BEACH) and an object-centric 360-degree capture (GARDEN). These data
span a wide range of scales, enabling a comprehensive evaluation of the multi-GPU system. Pixc

and Pixd are denoted for color pixels and depth pixels, respectively.

ray samples). This balance not only allocates compute resources evenly but also minimizes waiting
time during multi-GPU synchronization for communicating the data, as unequal distribution can
lead to suboptimal GPU utilization.

We propose an efficient partitioning scheme aimed at evenly distributing workload across GPUs.
When a sparse point cloud is accessible (e.g., obtained from SFM), we partition the space based on
the point cloud to ensure that each tile contains a comparable number of points. This is achieved by
recursively identifying the plane where the Cumulative Distribution Function (CDF) equals 0.5 for
the 3D point distribution along each axis. As a result, this approach leads to approximately evenly
distributed scene content across GPUs. In cases where a sparse point cloud is unavailable, indicating
a lack of prior knowledge about the scene structure, we instead discretize randomly sampled training
rays into 3D samples. This serves as an estimation of the scene content distribution based on
the camera trajectory, enabling us to proceed with partitioning in a similar manner. This process
is universally applicable to various types of captures, including street, aerial, and object-centric
data, and runs very quickly in practice (typically within seconds). Please refer to the appendix for
visualizations of partitioned tiles on different captures.

3.5 Experiments
Datasets. The crux of a multi-GPU strategy lies in its ability to consistently improve performance
across all types of captures, regardless of scale, as additional resources are allocated. However, prior
works typically evaluate their methods using only a single type of capture (e.g., street captures in
Block-NeRF, aerial captures in Mega-NeRF). In contrast, our experiments are conducted on diverse
captures from various sources, including street captures (UNIVERSITY4 [58], MATRIXCITY [51],
LAGUNA SECA1), aerial captures (BUILDING [102], MEXICO BEACH [14]) and an object-centric
360-degree capture (GARDEN [2]). These data also span a wide range of scales, from GARDEN with
161 images in a 10m2 area, to MATRIXCITY with 258K images in a 25km2 area, thereby offering a
comprehensive evaluation of the multi-GPU system. Table 3.1 shows detailed statistics for each of
these captures.

1Laguna Seca: An in-house capture of a 3.6km race track.
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Figure 3.7: Qualitative Comparison. Comparing to prior works, our method efficiently harnesses
multi-GPU setups for performance improvement on all types of data.

Joint Training v.s. Independent Training
In this section, we conduct a comparative analysis between our proposed approach and two prior
works, Block-NeRF [96] and Mega-NeRF [102], all of which are aimed at scaling up NeRFs
beyond the constraints of a single GPU. To ensure a fair evaluation solely on the multi-GPU
strategies, we re-implemented each baseline alongside our method within a unified framework2.
Each method is configured with the same NeRF representation (Instant-NGP [63]), spatial skipping
acceleration structure (Occupancy Grid [63]), distortion loss [2], and multi-GPU parallel inference.
This standardized setup allows us to focus on assessing the performance of different multi-GPU
strategies in both training (i.e.,, joint vs. independent [96, 102]) and rendering (i.e.,, joint vs. 2D
blending [96] vs. 3D blending [102]). For each baseline method, we adopt their default overlapping

2On BUILDING scene, our 8 GPU Mega-NeRF implementation achieves 20.8 PSNR comparing to 20.9 PSNR
reported in the original paper.
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Figure 3.8: Quantitative Comparison. Prior works based on independent training fails to realize
performance improvements with additional GPUs, while our method enjoys improved rendering
quality and speed as more resources are added to training.

configurations, which is 15% for Mega-NeRF and 50% for Block-NeRF. All methods are trained for
the same number of iterations (20K), with an equal number of total samples per iteration (effectively
the batch size of the model). Please refer to the appendix for implementation details.

In this section we conduct experiments on four captures, including GARDEN [2], BUILD-
ING [102], UNIVERSITY4 [58] and MATRIXCITY [51], with GPU configurations ranging from
1× to 16× (multi-node). We evaluate the scalability of each method using two key metrics: Peak
Signal-to-Noise Ratio (PSNR) for quality assessment and Rays Per Second for rendering speed, on
the respective test sets of each capture. As illustrated in Figure 3.8, baseline approaches struggle to
improve rendering quality with an increase in the number of GPUs, largely due to the inherent issues
associated with independent training outlined in § 3.3. Additionally, baseline methods also fails
to achieve faster rendering with additional GPUs, as they either need to evaluate duplicate pixels
for 2D blending [96] or duplicate 3D samples for 3D blending [102]. In contrast, our proposed
approach, employing joint training and rendering, effectively eliminates model redundancy and
train-test discrepancy. Thus, it gracefully benefits from increased parameters and parallelization
with additional GPUs, resulting in nearly linear improvements in both quality and rendering speed.
More qualitative comparisons are shown in Figure 3.7.

Robustness and Scalability
We further evaluate the robustness and scalability of our approach by testing it on larger scale
captures with increased GPU resources. Specifically, Figure 3.10 showcases our novel-view
rendering results on the 1km2 LAGUNA SECA with 8 GPUs, the 6km2 MEXICO BEACH [14] with 8
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Figure 3.9: Scalability of Our Approach. More GPUs allow for more learnable parameters, leading
to larger model capacity with better quality.

Figure 3.10: More Rendering Results on Large Scale Captures. We test the robustness of our
approach on larger captures with more GPUs. Please refer to the our webpage for video tours on
these data.

GPUs, and the 25km2 MATRIXCITY [51] with 64 GPUs. It’s noteworthy that each of these captures
entails billions of pixels (see Table 3.1), posing a significant challenge to the NeRF model’s capacity
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Figure 3.11: Comparison with PyTorch DDP on UNIVERSITY4. PyTorch Distributed Data
Parallel (DDP) is designed for faster rendering by distributing rays across GPUs. In contrast, our
approach distributes parameters across GPUs, scaling beyond the memory limits of single GPU in
the cluster, and enabling larger model capacity for better quality.

due to the vast amount of information being processed.
Figure 3.9 presents qualitative results obtained using our approach, highlighting how the quality

improves with the incorporation of more parameters through the utilization of additional GPUs.
Please refer to our webpage for the video rendering.

Comparison with PyTorch DDP
Another common approach to utilize multi-GPU for NeRF is distributing rays across GPUs, e.g.,
PyTorch’s Distributed Data Parallel (DDP). This method typically allows for larger batch sizes
during training or faster rendering through increased parallelization. However, DDP necessitates
that all GPUs host all model parameters, thus limiting the model’s capacity to the memory of
a single GPU. In contrast, our approach assigns each GPU to handle a distinct 3D tiled region,
aiming to alleviate memory constraints and ensure optimal quality even for large-scale scenes.
Figure 3.11 illustrates a comparison between our method and DDP on the UNIVERSITY4 dataset.
In this comparison, our method employs N× more parameters while DDP trains with N× more
rays on N GPUs. The substantial improvement in PSNR indicates that large-scale NeRF benefits
more from increased model capacity than from training more rays, a benefit uniquely enabled by
our approach. However, DDP renders much faster than our approach due to the balanced workload
created by parallelizing rays across GPUs. In contrast, our approach does not guarantee balanced
workload distribution and consequently suffers from multi-GPU synchronization in run-time.

Multi-GPU Communication
We report the profiling results of multi-GPU communication costs on the UNIVERSITY4 capture in
Figure 3.12. Despite achieving a reduction in communication costs by over 2× through partition-
based volume rendering (tile-based vs. sample-based synchronization), multi-GPU communication
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Figure 3.12: Synchronization Cost on UNIVERSITY4. Our partition-based volume rendering
(§ 3.4) allows tile-based communication, which is much cheaper than the naive sample-based
communication (§ 3.4), thus enabling faster rendering.

remains the primary bottleneck of our system. We attribute this to imbalanced workload distribution
across GPUs, which could potentially be addressed through better spatial partitioning algorithms.
We leave this optimization for future exploration.

3.6 Conclusion and Limitation
In conclusion, we revisited the existing approaches of decomposing large-scale scenes into inde-
pendently trained NeRFs, and identified significant issues that impeded the effective utilization of
additional computational resources (GPUs), thereby contradicting the core objective of leveraging
multi-GPU setups to improve large-scale NeRF performance. Consequently, we introduced NeRF-
XL, a principled algorithm to efficiently harness multi-GPU setups, and enhance NeRF performance
at any scale by jointly training multiple non-overlapped NeRFs. Importantly, our method does not
rely on any heuristics, and adheres to scaling laws for NeRF in the multi-GPU setting across various
types of data.

However, our approach still has limitations. Similar to any other multi-GPU distributed setup,
synchronization and communication overhead is inevitable in our joint training approach, which
results in a slightly slower training speed (1×-1.5×) compared to baselines with independent
training. Additionally, while our distributed approach is agnostic to NeRF representation in theory,
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we have been only experimented with a popular choice, Instant-NGP [63], that equips with hash
grids and MLPs. It will be an interesting future work to apply the framework to other representations,
even beyond the task of static scene novel-view synthesis.



36

Chapter 4

gsplat: A Library for Efficient Gaussian
Splatting

gsplat is an open-source library designed for training and developing Gaussian Splatting methods.
It features a front-end with Python bindings compatible with the PyTorch library and a back-
end with highly optimized CUDA kernels. gsplat offers numerous features that enhance the
optimization of Gaussian Splatting models, which include optimization improvements for speed,
memory, and convergence times. Experimental results demonstrate that gsplat achieves up to
10% less training time and 4× less memory than the original [40] implementation. Utilized in
several research projects, gsplat is actively maintained on GitHub. Source code is available at
https://github.com/nerfstudio-project/gsplat under Apache License 2.0. We welcome
contributions from the open-source community.

4.1 Introduction
Gaussian Splatting, a seminal work proposed by [40] is a rapidly developing area of research for
high fidelity 3D scene reconstruction and novel view synthesis with wide interest in both academia
and industry [23, 11, 1, 112]. It outperforms many of the previous NeRF-based [60] methods in
several important areas, including i) computational efficiency for training and rendering, ii) ease of
editing and post-processing, and iii) deployability on hardware-constrained devices and web-based
technologies. In this paper, we introduce gsplat, an open-source project built around Gaussian
Splatting that aims to be an efficient and user-friendly library. The underlying concept is to enable a
simple and easily modifiable API for PyTorch-based projects developing Gaussian Splatting models.
gsplat supports the latest research features and is developed with modern software engineering
practices in mind. Since its initial release in October 2023, gsplat has garnered 67 contributors
and over 2.5k stars on GitHub. gsplat is released under the Apache License 2.0. Documentation
and further information are available on the website at:

http://docs.gsplat.studio/
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The closest prior work implementing open-source Gaussian Splatting methods include GauStudio
[120] which consolidates various research papers into a single code repository, several PyTorch-
based reproductions [68, 35], and the more recent Slang.D [47] and Brush [8] reimplementations
using the Slang.D and Rust programming languages, respectively. Unlike previous work, gsplat
not only seeks to implement the original 3DGS work with performance improvements, but aims to
provide an easy-to-use and modular API interface allowing for external extensions and modifica-
tions, promoting further research in Gaussian Splatting. We welcome contributions from students,
researchers, and the open-source community.

4.2 Design
gsplat is a standalone library developed with efficiency and modularity in mind. It is installed
from PyPI on both Windows and Linux platforms, and provides a PyTorch interface. For speed
considerations, many operations are programmed into optimized CUDA kernels and exposed to
the developer via Python bindings. In addition, a native PyTorch implementation is also carried
in gsplat to support iteration on new research ideas. gsplat is designed to provide a simple
interface that can be imported from external projects, allowing easy integration of the main Gaussian
Splatting functionality as well as algorithmic customization based on the latest research. With
well-documented examples, test cases verifying the correctness of CUDA operations, and further
documentation hosted online, gsplat can also serve as an education resource for new researchers
entering the field.

1 import torch
2 from gsplat import rasterization
3 # Initialize a 3D Gaussian:
4 mean = torch.tensor([[0.,0.,0.01]], device="cuda")
5 quat = torch.tensor([[1.,0.,0.,0.]], device="cuda")
6 color = torch.rand((1, 3), device="cuda")
7 opac = torch.ones((1,), device="cuda")
8 scale = torch.rand((1, 3), device="cuda")
9 view = torch.eye(4, device="cuda")[None]

10 K = torch.tensor([[[1., 0., 120.], [0., 1., 120.], [0.,
0., 1.]]], device="cuda") # camera intrinsics

11 # Render an image using gsplat:
12 rgb_image, alpha, metadata = rasterization(
13 mean, quat, scale, opac, color, view, K, 240, 240)

Figure 4.1: Implementation of the main 3D Gaussian rendering process using the gsplat
(v1.3.0) library with only 13 lines of code. A single Gaussian is initialized (left codeblock) and
rendered as an RGB image (right).
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4.3 Features
The gsplat library consists of features and algorithmic implementations relating to Gaussian
Splatting. With a modular interface, users can choose to enable features with simple API calls.
Here, we briefly describe some of the algorithmic enhancements provided by gsplat which are not
present in the original 3DGS implementation by [40].

Densification strategies. A key component of the Gaussian Splatting optimization procedure
consists of densification and pruning of Gaussians in under- and over-reconstructed regions of the
scene respectively. This has been an active area of research, and the gsplat library supports some
of the latest densification strategies. These include the Adaptive Density Control (ADC) proposed
by [40], the Absgrad method proposed in [121], and the Markov Chain Monte Carlo (MCMC)
method proposed in [42]. gsplat’s modular API allows users to easily change between strategies.

1 from gsplat import MCMCStrategy, rasterization
2 strategy = MCMCStrategy() #Initialize the strategy
3 strategy_state = strategy.initialize_state()
4 for step in range(1000): # Training loop
5 render_image, render_alpha, info = rasterization(...)
6 strategy.step_pre_backward(...)# Pre-backward step
7 loss = ... # Compute the loss
8 loss.backward() # Backward pass
9 strategy.step_post_backward(...) # Post-backward step

10

Figure 4.2: Code-block for training a Gaussian model with a chosen densification strategy.

Pose optimization. The Gaussian rendering process (seen in 4.1) in gsplat is fully differentiable,
enabling gradient flow to Gaussian parameters G(c,Σ, µ, o) and to other parameters such as the
camera view matrices P = [R | t], which were not considered in the original work. This is
crucial for mitigating pose uncertainty in datasets. Specifically, gradients of the reconstruction loss
are computed with respect to the rotation and translation components of the camera view matrix,
allowing for optimization of initial camera poses via gradient descent.

Depth rendering. Rendering depth maps from a Gaussian scene is important for applications
such as regularization and meshing. gsplat supports rendering depth maps using an optimized
RGB+Depth rasterizer that is also fully differentiable. gsplat supports rendering depth maps using
the accumulated z-depth for each pixel and the alpha normalized expected depth.

N-Dimensional rasterization. In addition to rendering three-channel RGB images, gsplat also
supports rendering higher-dimensional feature vectors. This is motivated by algorithms that combine
learned feature maps with differentiable volume rendering [45, 41]. To accommodate the storage
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needs of these features, the gsplat backend allows for adjustments to parameters affecting memory
allocation during training, such as kernel block sizes.

Anti-aliasing. Viewing a 3D scene represented by Gaussians at varying resolutions can cause
aliasing effects, as seen in prior 3D representations [6, 5]. When the resolution decreases or the
scene is viewed from afar, individual Gaussians smaller than a pixel in size produce aliasing artifacts
due to sampling below the Nyquist rate. Mip-Splatting [125] proposes a low pass filter on projected
2D Gaussian covariances, ensuring a Gaussian’s extent always spans a pixel. gsplat supports
rendering with the 2D anti-aliasing mode introduced in Yu et al.

4.4 Evaluation
Overall comparison. We compare the training performance and efficiency of gsplat training
against the original implementation by Kerbl et al. on the MipNeRF360 dataset [5]. We use the
standard ADC densification strategy and equivalent configuration settings for both. We report
average results on novel-view synthesis, memory usage, and training time using an A100 GPU
(PyTorch v2.1.2 and cudatoolkit v11.8) at 7k and 30k training iterations in 4.1.

Table 4.1: Comparison of gsplat training performance with the original 3DGS (Kerbl et al.)
implementation on the MipNeRF360 dataset. Results are averaged over 7 scenes.

PSNR ↑ SSIM ↑ LPIPS ↓ Memory (GB) ↓ Time (min) ↓

3DGS -7K 27.23 .8290 .2041 7.7 4.64
GSPLAT -7K 27.23 .8311 .2027 4.3 3.36
3DGS -30K 28.95 .8702 .1381 9.0 26.19
GSPLAT -30K 29.00 .8715 .1357 5.6 19.39

We achieve the same rendering performance as the original implementation whilst using less
memory and significantly reducing training time.

Feature comparison. Furthermore, we analyze the impact of features provided in the gsplat
library in 4.2.
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Table 4.2: gsplat feature comparison on the MipNeRF360 dataset averaged over 7 scenes.

PSNR↑ SSIM↑ LPIPS↓ Num GS Mem (GB) ↓ Time (min) ↓

GSPLAT 29.00 .8715 .1357 3.24 M 5.62 19.39

w/ ABSGRAD 29.11 .8778 .1241 2.47 M 4.40 18.10
w/ MCMC 29.18 .8745 .1446 1.00 M 1.98 15.42
w/ ANTIALIASED 29.03 .8711 .1389 3.38 M 5.87 19.52
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Chapter 5

PRoPE: Multi-view Attention Leads to
Faster Convergence

As transformers become increasingly adopted for multi-view 3D perception tasks, a key challenge
lies in effectively conditioning these models on camera parameters that ground visual observations
in 3D space. We explore the generalization capabilities of these multi-view transformers, systemati-
cally analyzing how different approaches to camera conditioning affect model performance and
robustness. Our analysis reveals that while existing attention-level conditioning methods show good
generalization in terms of SE(3) transformations, they struggle when faced with varying intrinsic
parameters at test time. Through careful theoretical analysis, we identify that the key to robust gen-
eralization lies in encoding the complete projective relationship between cameras, which naturally
encompasses both intrinsic and extrinsic parameters while maintaining invariance to the choice
of global reference frame. This insight leads to Projective Positional Encoding (PRoPE), which
emerges as a natural theoretical extension of existing approaches. We demonstrate the effectiveness
of PRoPE across three diverse tasks: novel view synthesis, stereo depth estimation, and multi-view
spatial cognition. Our method shows strong performance and robustness, particularly when handling
varying focal lengths and number of views at test time. PRoPE integrates seamlessly into existing
transformer architectures, including CAT3D and UniMatch, yielding consistent improvements with
minimal computational overhead. The method is flash attention-friendly and is open-sourced at
https://github.com/liruilong940607/prope.

5.1 Introduction
Images of our world exist in the context of the viewpoints they were captured from. The parameters
of these viewpoints—extrinsics that provide position and orientation and intrinsics that provide focal
lengths and field of view—ground visual observations in 3D space. The importance of leveraging
this spatial grounding is becoming increasingly important, especially as advances in 3D vision and
embodied agents make multiview images more ubiquitous.
To solve these tasks with transformers, models must take both image patches and camera parameters
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as input. Image patches can be passed to models as standard visual tokens. Cameras, on the other
hand, require special care. Just as naive position encoding techniques can hinder performance for
learning in language models [85, 89], naive encodings of camera pose are also suboptimal for vision
models [62, 46].

Method Patch Coord Sys. Intri Coord Sys. Extri Coord Sys.
Plucker [128] × Abs. Abs.
CAPE [46] × × Rel.
GTA [62] Rel. × Rel.
PRoPE Rel. Rel. Rel.

(a) Coordinate System Analysis
Robustness to 

unseen intrinsic

Robustness to 

unseen extrinsic

Unseen intrinsic:

Training FoV Testing FoV

PRoPE 
(Ours)

GTA

CAPE
Raymap

Unseen extrinsic:

Training Views Testing Views

(b) Robustness to Varying Camera Configurations

Figure 5.1: Systematic Analysis of Camera Conditioning. Our analysis reveals that existing
methods either use absolute coordinate systems or encode incomplete camera information, limiting
their robustness to varying camera configurations. PRoPE addresses both limitations by encoding
complete camera information in a relative manner.

In this work, we explore the robustness of view-conditioned transformers, systematically analyzing
how different approaches to camera conditioning affect model performance under varying camera
configurations. We find that existing methods fall into two categories: token-level [128, 28, 37]
and attention-level [62, 46] conditioning. Raymaps, which concatenate image tokens with an over-
parameterized per-pixel representation of the ray and origin, naturally encode both intrinsics and
extrinsics but are inherently sensitive to the choice of global frame. Attention-level conditioning, on
the other hand, maintains invariance to global transformations by capturing pairwise relationships,
similar to RoPE in sequence modeling [89]. However, these approaches have primarily focused on
encoding extrinsics (SE(3)) without intrinsics.
Our systematic analysis reveals that while attention-level conditioning methods like GTA show good
robustness to SE(3) transformations, they struggle when faced with varying intrinsic parameters
at test time. This limitation becomes particularly apparent in real-world scenarios where cameras
may have different focal lengths or field of views. Through careful theoretical analysis, we identify
that the key to robust performance lies in encoding the complete projective relationship between
cameras, which naturally encompasses both intrinsic and extrinsic parameters.
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This insight leads us to Projective Positional Encoding (PRoPE), which emerges as a natural
theoretical extension of existing approaches. PRoPE encodes pairwise transformations between
projective camera spaces, providing a unified framework that handles both intrinsic and extrinsic
parameters while maintaining invariance to the choice of global frame. The projective transformation
between cameras captures how 3D points map onto different image planes, encapsulating both the
relative pose and the varying intrinsic parameters of the cameras. We inject these transformations
into the attention mechanism, following the successful pattern established by GTA [62], but
extending it to handle the full projective space.
We validate our approach through extensive experiments across three diverse tasks—novel view
synthesis, stereo depth estimation, and multi-view spatial cognition—demonstrating significantly
better robustness in practical settings, particularly when handling varying focal lengths and number
of views at test time. The attention-level conditioning can be further enhanced by a token-level injec-
tion of intrinsics, CamRay, which preserves global frame invariance while improving performance.
Our method consistently outperforms prior approaches across all settings, while remaining simple
to implement (fewer than 30 lines of code) and compatible with modern transformer architectures.
The code will be open-sourced upon publication.

5.2 Related Work
From absolute to relative positional encoding. Positional encoding is a fundamental technique
that injects ordering information into the otherwise order-agnostic transformer architecture [104].
It has also been found critical in enabling neural scene representations to encode high-frequency
information [61, 97]. How to encode the position information in sequence models has been an
active area of research [89, 38, 69, 29, 84]. While early works [73, 17, 18, 9, 74, 81, 127, 43]
focused on absolute positional encoding (APE), recent research has increasingly adopted relative
positional encoding (RPE), particularly RoPE [33], as a standard across domains, including natural
language processing [75, 100, 89, 31] and computer vision [55, 20, 48, 33, 99]. Notably, RPE offers
key advantages over APE, including translation invariance, improved dependency modeling, and
thus stronger generalization to long sequences [71, 89, 19]. In this work, we build on prior findings
that shows RPE enhances camera conditioning in transformers [62, 46] and extend this idea by
modeling pairwise camera relationships through projective transformations.

Multiview transformers. There is growing interest in applying transformers to 3D vision by
conditioning multiple views on cameras. This approach has been explored in tasks such as view
synthesis [90, 82, 110, 52], pose estimation [128], depth prediction [116, 118, 39], 3D scene
understanding [34, 131], and robotics [86] We address transformers where inputs include N images
from known cameras:

{(Ii,Ki,T
cw
i )}Ni=1 (5.1)

where each Ii ∈ RH×W×3 is an image, Ki ∈ R3×3 is the camera intrinsic matrix, and T cw
i =

(Rcw
i , tcw

i ) ∈ SE(3) is the rigid transform to camera coordinates from world coordinates.
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Given the growing ubiquity of multiview image inputs, research on encoding camera information
into transformers has gained traction, broadly falling into two categories (1) token-level and (2)
attention-level conditioning:

Token-level raymap conditioning. Recent works show that over-parameterizing cameras as
raymaps is effective in multiview transformers [128, 28, 37]. Each camera is encoded as a 6D
pixel-aligned token, where each pixel stores either the ray origin and direction [61, 28], or Plücker
coordinates [70, 128], providing a natural way to capture both intrinsics and extrinsics. It is then
concatenated with corresponding patch tokens before entering the network.
While effective, raymaps share similarities with APE and inherit its limitations. They are sensitive
to global SE(3) transformations applied to cameras and require defining a “canonical” coordinate
system, forcing practitioners to choose a reference frame for camera normalization [59, 28, 30]—an
often arbitrary and ambiguous decision that directly impacts performance. We overcome these
limitations by encoding relative transformation between cameras in the projective coordinate space.

Attention-level SE(3)-based conditioning. Just as NLP and vision models have transitioned
from APE to RPE [71, 89], multiview transformers have similarly incorporated relative encodings
for camera geometry by integrating them into the attention mechanism. Methods like GTA [62]
and CAPE [46] encode pairwise SE(3) extrinsic relationships in attention, ensuring invariance to
global transformations. Building on this line of work, we generalize relative transformations into
projective coordinate spaces, which naturally encode both intrinsics and extrinsics. Empirically, we
also find that injecting intrinsics at the token level in addition to attention-level conditioning further
enhances performance while preserving global frame invariance.

5.3 Method
Our systematic analysis of existing camera conditioning methods reveals a fundamental connection
between multi-view geometry and language modeling. Just as language models must capture
relationships between tokens in a sequence, multi-view systems must model relationships between
observations from different viewpoints. This insight leads us to Projective Positional Encoding
(PRoPE), which extends the successful relative positional encoding paradigm from language models
to encode complete projective relationships between cameras.
PRoPE is designed to address two key limitations we identified in existing approaches: (1) the
sensitivity to global coordinate frame choice in token-level conditioning methods, and (2) the
inability to handle varying intrinsic parameters in attention-level conditioning methods. By encoding
pairwise transformations between projective camera spaces, PRoPE naturally encompasses both
intrinsic and extrinsic parameters while maintaining invariance to the choice of global frame.
We additionally propose CamRay, a token-level geometry encoding technique that complements
PRoPE by providing camera-frame ray directions. Unlike existing raymap approaches, CamRay is
designed to be invariant to global frame choice while still capturing essential intrinsic information.
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LLM

Absolute Positional Encoding (APE) Relative Positional Encoding (RPE)

cats cuteare
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Geometry
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Figure 5.2: Key Insights of Our Method. Language-modeling and multi-view perception confront
the same core problem: learning relationships among discrete observations. In an LLM, each token’s
position is its index in the sequence, and rotary positional encoding (RoPE) replaces absolute indices
with relative offsets so attention can focus on token-to-token distances. In multi-view geometry, an
observation’s position is the camera that captured it—fully specified by its intrinsic and extrinsic
parameters. Thus we could make this direct substitution – treating token offsets as relative camera
transforms – laying the foundation for a geometry-aware attention mechanism that inherits RoPE’s
proven advantages.

Our experiments demonstrate that this combination provides the best of both worlds: the robustness
of relative encoding with the expressiveness of token-level conditioning.

Preliminaries
PRoPE is based on frustums, which can be parameterized using standard camera intrinsic and
extrinsic matrices Ki and T cw

i . The intrinsics capture the shape and field-of-view of the frustum,
while the extrinsics capture its position and orientation. The geometry of frustums are encoded in
the “world-to-image” projection matrix Pi ∈ R3×4:

Pi =
[
Ki 03×1

]
T cw
i (5.2)

This projective transformation can be used to compute 2D image coordinates from world coordinates,

x̃i ∼ PiX̃world, (5.3)

where x̃i and X̃world are homogeneous coordinates in the image and world respectively.

Pairwise Projective Transforms
The core insight of PRoPE is that geometric relationships between camera frustums can be expressed
as pairwise projective transforms, which are naturally invariant to the choice of global reference
frame. This approach mirrors the success of relative positional encoding in language models, where
pairwise relationships between tokens are encoded rather than absolute positions.
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To compute these transforms, we begin by lifting our 3× 4 world-to-image projection matrices Pi

into 4× 4 by augmenting with the standard basis vector e4 = (0, 0, 0, 1)⊤:

P̃i =

[
Pi

e⊤4

]
(5.4)

This transformation maps homogeneous world coordinates to a projective space defined by the
frustum of camera i. We can then relate frustum i and frustum j with the pairwise projective
transformation:

P̃ij = P̃iP̃
−1
j , (5.5)

The 4× 4 matrix P̃ij encodes the complete geometric relationship between camera views, in a way
that is invariant to the world coordinate frame. As we discuss next, it can also be efficiently injected
directly into attention layers.

Attention Implementation
Following common patterns in relative position encoding [46, 62, 89], PRoPE injects pairwise
frustum geometry directly into attention operations. The standard scaled dot product attention [104]
function is formulated as:

Attn(Q,K, V ) = softmax
(
QK⊤
√
d

)
V. (5.6)

where Q,K, V ∈ RT×d.We follow the GTA [62] formulation for injecting per-token transformations.
Specifically, we use each token’s geometric parameters to construct a block-diagonal transformation
matrix Dt ∈ Rd×d that can be injected into attention blocks similar to RoPE [89]. We inject the
pairwise relationships Dt1D

−1
t2 for all t1, t2 ∈ 1 . . . T by replacing attention layers with:

Attn′(Q,K, V ) = D⊚Attn(D⊤⊚Q,D−1⊚K,D−1⊚V ) (5.7)

where D =
[
D1 . . .DT

]
∈ RT×d×d and ⊚ is a token-wise matrix multiplication (D⊚Q)ni =∑

j DnijQnj ∈ RT×d. Importantly, this injection only requires transformations of the original
attention operator’s inputs and outputs; they therefore preserve compatibility with fused attention
kernels such as FlashAttention [15].
To instantiate these operations for PRoPE, Dt must be specified from a large possible design space.
We propose a simple but effective implementation, which aims to (1) encode frustum relationships
between cameras—this uses the projective transformation proposed in Equation 5.5—and (2) encode
relative patch positions within cameras.
We divide Dt into two equally sized block diagonal matrices. Each is with shape d

2
× d

2
:

DProj
t = Id/8 ⊗ P̃i(t) (5.8)

DRoPE
t = diag

(
RoPEd/4(xt),RoPEd/4(yt)

)
(5.9)
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where Id/8 is the identity matrix, ⊗ is the Kronecker product, i(t) is the camera index for token
t, RoPEd/4(·) constructs d

4
× d

4
rotary embeddings [89] for the input positions, and (xt, yt) are the

patch coordinates for token t.
From these two matrices, we can write the final Dt matrix used by PRoPE as

Dt = diag(DProj
t ,DRoPE

t ). (5.10)

This completes the definition of PRoPE.

Invariance and connections to existing methods. PRoPE has several additional properties,
which become more evident when we unpack the transformations that make up P̃ij . We can express:

P̃ij =

[
Ki 0
0 1

]
T cw
i (T cw

j )−1

[
K−1

j 0
0 1

]
(5.11)

We observe: (1) Global frame invariance. Redefining the world frame is equivalent to right-
multiplying both T cw SE(3) terms by a transformation matrix, which is algebraically eliminated in
P̃ij . (2) Reduction to GTA/CAPE. For cameras with normalized intrinsics, K = I3, P̃ij simplifies
to the relative SE(3) transformations utilized in GTA [62] and CAPE [46]. These methods can
therefore be interpreted as a special case of PRoPE where the intrinsic matrices are constrained to
identity. (3) Reduction to RoPE. P̃ij evaluates to identity for tokens derived from the same image.
For such tokens, PRoPE simplifies to the remaining terms in Dt, which correspond precisely to the
RoPE terms employed in single-image vision transformers.

Token-level Conditioning
Camera-frame raymaps. As a complement to PRoPE, we also propose a token-level encoding
of camera-frame ray directions, which are invariant to global frame and that we find empirically
improves model results. We refer to this as CamRay in our experiments. Specifically, for each
image Ii, we compute a corresponding raymap Mi,CamRay ∈ RH×W×3 using ray directions in the
camera’s local frame. For each pixel coordinate (u, v), we compute:

Mu,v
i,CamRay = K−1

i

[
u v 1

]⊤ ∈ R3 (5.12)

CamRay is concatenated with input images along the channel dimension, which expands input
dimensions from RH×W×3 to RH×W×6.

Connections to prior work. CamRay is closely related to the raymaps used in existing works.
Naive raymaps [28] are made up of origin and direction pairs and can be computed from CamRay:

oi = −(Rcw
i )⊤tcw

i (5.13)

du,v
i = (Rcw

i )⊤Mu,v
i,CamRay (5.14)

Mu,v
i,Naive =

[
oi

du,v
i

]
∈ R6 (5.15)
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(a) Testing with {2, 4, 8, 16} input views.

(b) Testing with {1, 2, 3}× zooming-in.

Figure 5.3: Evaluation on RealEstate10K [130]. Our method demonstrates superior robustness
when handling varying numbers of input views (a) and different focal lengths (b) at test time.

Plücker raymaps [128] replace the origin term with a moment term, which is computed as:

Mu,v
i,Plücker =

[
oi × du,v

i

du,v
i

]
∈ R6 (5.16)

In contrast to raymaps used by prior work, CamRay does not encode camera extrinsics information.

5.4 Experiments
We evaluate the performance of existing camera conditioning methods – Plucker Raymap [128],
CAPE [46], GTA [62]1, along with our proposed PRoPE on three different tasks with six total
datasets: we evaluate novel view synthesis on Objaverse [16] and RealEstate10K [130], stereo
depth estimation on RGBD [88], SUN3D [115], and Scenes11 [103], and multi-view perception on
DL3DV [54]. While most experiments are under academic-scale compute to systematically study
design choices instead of beating SOTA performance, we also include results from larger-scale
training to validate our findings still hold on large models. All methods are implemented in the
same codebase for fair comparison.
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Testing w/

2 views

Testing w/

16 views

GT

PRoPE+CamRayPRoPEGTACAPEPlucker

Figure 5.4: Results of Longer Input Sequences at Test Time. Our method demonstrates superior
robustness when tested with varying numbers of input views, despite being trained with only 2
views.

Testing w/

zoom 3x

GTPRoPE+CamRayPRoPEGTACAPEPlucker

Figure 5.5: Results of Varying Focal Length at Test Time. PRoPE explicitly models relative
intrinsics, making it robust to zoomed-in test views. In contrast, CAPE and GTA have to implicitly
understand intrinsic from pixels, often resulting in incorrect geometry.

Novel View Synthesis Task
Novel view synthesis requires rendering scenes from unseen viewpoints, given calibrated reference
images and target camera parameters. This task demands precise modeling of pixel-camera relation-
ships across multiple views. We reimplement LVSM [37], a recent state-of-the-art view synthesis
method, as our base model for this task. LVSM extends the Vision Transformer [18] to multi-view
inputs by encoding camera information as per-pixel Plücker rays, which are concatenated with
image pixels. For further details, we refer readers to the original paper.

Baseline Methods. To compare various camera conditioning methods, we reimplement them
into the same framework based on LVSM, with minimal changes to support different methods. (1)
Plücker Raymap: Unmodified LVSM. (2) CAPE [46] / GTA [62] / PRoPE (ours): Replace Plücker
with a shared fixed embedding and injects camera information into attention using respective formula.
(3) PRoPE + CamRay (ours): Replace Plücker with CamRay, and injects camera information into

1The GTA baseline uses the SE(3)+SO(2) variation of Dt studied by [62].
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attention. To fully analyze the capability of each approach, in addition to evaluating the model on
the test split which has the same distribution with the train split, we also evaluate the model in two
practical settings, which could lead to out-of-distribution data at test time.

Setting 1. Longer Input Sequences at Test Time. The first setting deploys the model trained
with a fixed number of input views (2 in our experiments) to significantly more views (up to 16) at
test time. This is particularly important in real-world scenarios where the number of observations
can vary substantially across different applications, and sometimes can be dynamically increasing
– this poses a unique challenge for the model to handle out-of-distribution camera poses at test
time. Note that a similar problem exists in the LLMs community known as "test-time context
length extrapolation", where models are trained with a fixed context length but evaluated on longer
sequences, requiring special handling of positional encodings.

Setting 2. Varying Focal Length at Test Time. The second setting evaluates the model’s ability
to handle varying focal lengths at test time. This is crucial as in practice, focal lengths can vary
significantly across different cameras and zoom levels, and it is impractical to train a separate model
for every possible focal length. We test our models with focal lengths ranging from 1× to 3× the
training focal length, simulating scenarios where camera zooms in during deployment. This setting
is particularly challenging for methods that don’t explicitly encode camera intrinsics, as they may
struggle to adapt to these variations in the camera’s field of view.

Discussion. Results on the RealEstate10K [130] dataset are summarized in Figure 5.3 with visuals
provided in Figure 5.4 and 5.5. Our analysis reveals three key findings. First, while Plücker Raymap
encodes more complete camera information than methods such as CAPE and GTA, it consistently
underperforms across all settings. This suggests that directly injecting pairwise camera information
into attention mechanisms is more effective than relying solely on token-level conditioning. Second,
PRoPE demonstrates superior performance and robustness compared to all other methods in both
out-of-distribution settings, particularly when handling varying focal lengths. This indicates that
explicitly modeling the relative projective relationship between cameras is more effective than
modeling the relative SE(3) relationship while inferring intrinsic relationship from pixels, as
done in GTA and CAPE. Finally, we observe that additional conditioning with CamRay on top of
PRoPE further enhances performance in certain cases. Since CamRay is designed to be invariant
to the choice of world coordinate system, it preserves the robustness of PRoPE when handling
out-of-distribution camera configurations.

Additional Results. We further validate the effectiveness of PRoPE through three additional exper-
iments. First, we integrate PRoPE into CAT3D [28], a popular multi-view diffusion model finetuned
from a video diffusion model, with the assistance of its authors on their original codebase. As shown
in Table 5.1, this integration yields consistent improvements across all metrics while requiring
zero additional model parameters and introducing negligible computational overhead. Second,
on the Objaverse [16] dataset, integrating PRoPE into the LVSM model for novel-view synthesis
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3-view 6-view 9-view
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Zip-NeRF [4] 12.77 0.271 0.705 13.61 0.284 0.663 14.30 0.312 0.633
ZeroNeRF [83] 14.44 0.316 0.680 15.51 0.337 0.663 15.99 0.350 0.655
ReconFusion [111] 15.50 0.358 0.585 16.93 0.401 0.544 18.19 0.432 0.511
CAT3D [28] 16.62 0.377 0.515 17.72 0.425 0.482 18.67 0.460 0.460
CAT3D [28] + PRoPE 16.93 0.382 0.505 18.01 0.443 0.479 18.98 0.474 0.461

Table 5.1: Improving Multi-view Diffusion Model on the task of Few-view 3D Reconstruction.
Applying our PRoPE to CAT3D [28] yields noticeable improvements over the original model, with
zero additional model parameters and negligible computational overhead.
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Figure 5.6: Qualitative Results on Stereo Depth Estimation Task. Injecting camera information
into UniMatch [116] via our proposed PRoPE leads to significant improvements.

improves performance from 21.44/0.851/0.159 to 24.17/0.885/0.094 in terms of PSNR/SSIM/LPIPS
metrics. Finally, when scaling up the LVSM training with approximately 150× more computational
resources, we observe similar improvements, with metrics improving from 25.64/0.809/0.084 to
26.56/0.832/0.071, demonstrating that our method’s advantages persist even at larger scales.

Stereo Depth Estimation Task
We set up this task using UniMatch [116], a popular pretrained multi-view transformer used in
various downstream applications [12, 13, 87, 64]. UniMatch is originally trained on three different
tasks. In this work, we focus on the stereo depth estimation task, which assumes known relative
camera poses between input views.
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Figure 5.7: The Spatial Cognition Task. The model takes multi-view images and corresponding
camera information as input and aims to identify inconsistent image-camera pairs (yellow here).
Understanding the cross-view relationships between images and cameras is crucial for this task.

Dataset Model Abs Rel Sq Rel RMSE RMSE log

RGBD [88]
UniMatch 0.123 0.175† 0.678 0.203

UniMatch (Pretrain) 0.107 0.130† 0.606 0.166
UniMatch + PRoPE 0.105 0.203† 0.573 0.181

SUN3D [115]
UniMatch 0.131 0.098 0.397 0.169

UniMatch (Pretrain) 0.122 0.085 0.374 0.158
UniMatch + PRoPE 0.117 0.075 0.343 0.152

Scenes11 [103]
UniMatch 0.065 0.085 0.575 0.126

UniMatch (Pretrain) 0.054 0.067 0.511 0.108
UniMatch + PRoPE 0.049 0.063 0.474 0.104

Table 5.2: Performance Improvement on
Stereo Depth Estimation Task with Uni-
Match [116]. †The metric “Sq Rel” is less
reliable on the RGBD dataset because its depth
and camera pose are imperfect [103]. Models
marked as “Pretrain” are initialized with optical
flow pretraining, while others are trained from
scratch.

Method 5 views 9 views 17 views

Plucker 69.1% 76.9% 74.6%
Plucker + PRoPE 81.1% 90.5% 91.8%
CamRay + PRoPE 86.1% 93.0% 94.3%

Table 5.3: Results on the Spatial Cognition
Task. We report the accuracy of detecting incon-
sistent image-camera pairs on the DL3DV [54]
dataset under varying numbers of input views.
Both CamRay and PRoPE significantly helps
with the performance without introducing addi-
tional model parameters. The illustration of this
task can be found in Figure 5.7.

We incorporate camera information into UniMatch’s cross-view attention mechanism using our
proposed PRoPE, modifying only ∼50 lines of the official code. This modification incurs negligible
computational overhead during training and inference while delivering significant performance
improvements, as shown in Table 5.2. Notably, incorporating our PRoPE formulation and training
from scratch achieves even superior performance compared to models initialized with optical flow
pretraining (denoted as “Init” in the table). All models follow the exact same training protocols as
described in the original paper.
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Spatial Cognition Task
Inspired by the multi-image cognitive task proposed in [7], we design a spatial cognition task to
assess a system’s ability on understanding multi-view consistency. In this task, the multi-view
system takes in multiple captured images (more than three) of the same environment from different
viewpoints, along with their corresponding camera information. However, one of the image-camera
pairs is deliberately mismatched. The system is then required to identify the incorrect pair among
the inputs. Figure 5.7 provides two exemplars on the input and the desired output – the pair that is
inconsistent with others.
This cognition task necessitates a faithful understanding of the relationship between images and
cameras, as well as the geometric consistency across multiple viewpoints. The problem is carefully
designed so that it cannot be solved by analyzing only the camera information, the images alone,
or without reasoning about the multi-view relationships among all inputs. Despite its seemingly
simple nature, the task is perfect to verify model’s ability on multi-view image understanding.
The base model we used in this task is a transformer-based architecture, similar to the one employed
in our NVS task, but adapted with a classification head (see details in the supplemental material).
We evaluate two approaches for incorporating camera information: (1) injecting it as a Plücker
Raymap concatenated with image pixels, and (2) using our PRoPE formulation. As shown in
Table 5.3, PRoPE significantly improves multi-view understanding. Notably, performance with
PRoPE continues to improve as the number of views increases during testing, whereas the Plücker
Raymap approach does not exhibit the same trend. This suggests that encoding camera information
solely through the Plücker Raymap is not an efficient way for the model to process and utilize the
camera effectively.

5.5 Conclusion and Future Work
In this paper, we introduce PRoPE, a simple but effective method for incorporating camera informa-
tion into multi-view transformer architectures. PRoPE offers several advantages: (1) it unifies both
intrinsic and extrinsic camera conditioning, (2) it operates between pairs, ensuring invariance to
world coordinate choice, and (3) it is compatible with FlashAttention [15] and thus induces minimal
computational overhead.
However, PRoPE still has some limitations that warrant future investigation. Direct matrix multipli-
cation of the projective matrix with Q/K/V vectors may introduce numerical instability when the
matrix is ill-conditioned. Furthermore, incorporating “multi-frequency” encoding for the projective
matrix—beneficial for positional encoding [33]—remains nontrivial. We also see potential in
extending PRoPE to handle dynamic scenes and exploring its application in video-based tasks. We
leave these challenges for future work.
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Chapter 6

Conclusion

6.1 The Central Theme: Leveraging 3D Knowledge for
Efficiency

A central theme of this thesis is that efficiency in 3D perception is not just a matter of faster
computation, but is fundamentally enabled by the unique structure and properties of 3D data. The
key factors that made the advances in this work possible stem from leveraging the inherent spatial
and geometric structure of 3D data, which offers additional levers for algorithmic innovation.
First, sparsity in 3D space means that most of the volume is empty, and only a small fraction
contains meaningful content. Methods like NerfAcc and gsplat exploit this property, focusing
computation where it matters most and skipping redundant work. Second, the volume rendering
equation provides a mathematical bridge between 2D images and 3D structure, as leveraged in
NeRF-XL to enable efficient distributed rendering and training. Third, multi-view geometry—the
relationships between images captured from different viewpoints—remains a powerful source of
structure, as demonstrated by PRoPE’s use of projective geometry to guide learning and inference.
These are not new ideas; they are rooted in the foundations of computer vision and graphics. Yet,
as this thesis shows, they remain vital tools for designing efficient algorithms in the era of deep
learning. By combining classic insights with modern computational techniques, we can build
systems that are not only more powerful, but also more practical and accessible.

6.2 Looking Ahead: The Future of 3D Perception
In this thesis, I have discussed two main approaches to 3D perception: optimization-based and
learning-based methods. Each has its own strengths and limitations. Ideally, we would like 3D
perception systems to be both accurate—with quantifiable error bounds, as in optimization-based
solutions—and able to leverage prior knowledge from large datasets, as in learning-based approaches.
In practice, learning-based methods can provide an initial estimate of 3D information—such as
depth, camera pose, or even a NeRF or Gaussian Splatting model—which, even if imperfect, can
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significantly accelerate subsequent optimization by providing a strong starting point rather than
beginning from scratch.
This raises an important question: what form should this initial knowledge from learning-based
models take? Recent trends point to two directions: feed-forward prediction models and generative
models. In my view, these are not fundamentally different; both can be seen as forms of conditional
generative models. Feed-forward models simply predict the mean or most likely outcome, ignoring
the uncertainty inherent in the prediction.
From another perspective, conditional generative models also mirror how humans perceive the
world. When we estimate the distance to an object, for example, we rarely know the exact value,
but instead form a probabilistic sense—there is always some uncertainty in our perception.
Ideally, then, the learning-based component should provide a distribution over possible 3D in-
terpretations, rather than a single deterministic guess. This leads to a new question: how can
optimization-based methods refine an initial estimate when that estimate is itself a distribution,
rather than a single prediction?
This is a central question I am constantly thinking about. Most existing optimization-based
methods—such as NeRF, Gaussian Splatting, or SLAM—begin from a single estimate of the
3D structure. For example, InstantSplat [21] uses multi-view depth predictions to initialize a
Gaussian Splatting model for rapid 3D reconstruction. But what if the depth prediction were a
distribution, or included explicit uncertainty? Could this richer information be leveraged to further
improve optimization?
A related challenge also arises recently in novel view synthesis with video models, which can
generate high-fidelity images from limited observations. However, when attempting to recover 3D
structure from these generated images, multi-view consistency often breaks down, since each view
is generated independently as a sample from its own distribution. Some researchers address this by
modeling the joint distribution of multiple views by generating all views at once, but this approach
is computationally expensive. The solution that I’m imagining should be to develop optimization-
based methods that accept distributions over pixels from each viewpoint, rather than single samples,
and output something also as a distribution, instead of a deterministic 3D structure. This could
reduce the need to model the full joint distribution in the learned model, saving computational
resources and simplifying the learning problem.
Of course, these ideas remain open questions, and I do not yet have a concrete solution. However, I
believe that the future of 3D perception lies in the integration of conditional generative models with
optimization-based approaches that can refine and build upon an initial distributional estimate of 3D
structure, and that the outputs of the optimization-based methods should still remain a distribution.
Achieving this may require a fundamental rethinking of current 3D representations and a tighter
coupling between learning-based and optimization-based methods.
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