
Forecasting and Control of Peak Power at EV Charging
Stations

Samuel Bobick
Narges Norouzi, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-135
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-135.html

June 3, 2025



Copyright © 2025, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Forecasting and Control of Peak Power at EV Charging Stations

By Samuel Bobick

Senior Honors Thesis
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Spring 2025

Advisor: Professor Scott Moura
CS H195 Instructor of Record: Professor Narges Norouzi



1

Abstract

Workplace electric vehicle (EV) charging presents a promising opportunity to advance
transportation electrification, reduce emissions, and improve charging equity. This thesis
studies the workplace station-level joint price and power optimization problem, where the
station operator optimizes a menu of price options to incentivize users to select controllable

charging service.

In Chapter 1, we introduce the Smart Learning Pilot for EV Charging Stations
(SLRP-EV), a cyber-physical testbed for joint price and power optimization on the UC
Berkeley campus, and perform exploratory data analysis to convey usage patterns. In
Chapter 2, we benchmark the performance of several forecasting approaches on the

SLRP-EV dataset using metrics that evaluate model performance during peak-load events.
Finally, in Chapter 3, we use the framework established in Chapters 1 and 2 to propose

several solutions to enhance control of peak power. Through a Monte Carlo simulation, we
find that model predictive control using a time series forecast significantly reduces peak

power, demand charge, and overall operator costs.
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Chapter 1

Introduction to the Station-Level EV
Charging Optimization Problem

1.1 Introduction

Smart electric vehicle (EV) charging at workplaces presents many key opportunities to
contribute to transportation electrification and decarbonization. For example, although
EV owners typically charge overnight, midday workplace charging capitalizes on cheap,
renewable-laden electricity, thus realizing the full emissions reduction potential of EVs [23].
Also, workplace charging can alleviate inequities for EV owners without access to at-home
chargers, such as those in multi-unit dwellings [21]. Furthermore, intelligent charging algo-
rithms can help align charging with utility time-of-use (TOU) tariff schedules and shave peak
power consumption to maximize profit and incentivize charger expansion by private compa-
nies [29]. EV charging stations are sometimes built to oversubscribe to grid resources. That
is, the EV chargers would violate transformer constraints if they were all used at maximum
power simultaneously. In this scenario load management is utilized to satisfy grid constraints
[15]. Finally, EV charging station load management can be integrated with holistic demand
flexibility that manage many types of loads at commercial sites [22].

This thesis studies the station-level joint price and power optimization problem. By
incentivizing users with discounts if they allow their load to be controlled instead of uncon-
trolled, the station operator is able to increase revenue and reduce peak power, opening the
door to the myriad of benefits described above. This work takes an intelligent systems ap-
proach, integrating tools from machine learning and control to improve joint price and power
optimization at EV charging stations, with a particular focus on peak power reduction.
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(a)

(b) (c)

Figure 1.1: (a) UC Berkeley parking lot layout with EV spots in blue and non-EV spots in
gray; (b) SLRP-EV chargers (6.6 kW); (c) Smartphone-based web app interface.
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1.2 SLRP-EV: Smart Learning Pilot for EV Charging

Stations

This study is conducted through the lens of the Smart Learning Pilot for EV Charging
Stations (SLRP-EV), a workplace smart-charging facility located at UC Berkeley. The smart-
charging framework attempts to maximize net revenue by jointly optimizing user-facing
prices and power delivery.

Upon arrival at the charging station, the user inputs their required energy and expected
time of departure from the charging station as illustrated in Figure 1.1(c). Given this
information, the user is presented with two charging prices generated by a price and power
optimization algorithm. Given these prices, the user can make one of three choices:

1. REGULAR: the battery charges at maximum power until it tops off or unplugs. Im-
portantly, this load is uncontrollable.

2. SCHEDULED : the user’s energy required is guaranteed to be provided by their indi-
cated time of departure. The power delivery is scheduled with a control algorithm.

3. LEAVE : The user can leave if they consider the prices to be too high, opting for
nearby chargers or a parking spot without a charger. Without this option, the price
that maximizes station operator profit is infinite, which is non-sensical.

The only revenue source of SLRP-EV is the charging service fee collected from the users.
The only cost is the electricity bill paid to the utility, which includes both TOU tariffs and
demand charges.

The control objective is to maximize the expected profit from the station by choosing the
REGULAR and SCHEDULED prices presented to the user, along with the power profiles
for users who selected the SCHEDULED charging option.

1.3 Exploratory Data Analysis

In this section, we perform exploratory data analysis on the SLRP-EV dataset to convey
usage patterns and forecasting challenges at the station level. The dataset contains infor-
mation about the arrival and departure times of EVs at the station, energy requirements,
prices presented, user choices, and power profiles at 15-minute increments.

Figure 1.2 shows the maximum station-level power across all hours of the week at SLRP-
EV from 2021–2023. We observe much higher power peaks on weekdays. On weekdays, peak
power is typically reached during the middle of the workday (i.e. 12–2 PM). Furthermore,
peak power is highest during the UC Berkeley Fall and Spring semesters (i.e. January–May,
August–December).
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Figure 1.2: Heatmap showing peak power (kW) for each hour of the week at SLRP-EV from
2021–2023.

Figure 1.3 shows the relationship between peak power and key features from 2021–2023.
A higher proportion of SCHEDULED sessions increases load flexibility and corresponds to
lower peak power. Similarly, pricing REGULAR below SCHEDULED is linked to reduced
peak power.

Figure 1.3: Scatter plots of peak power vs. several features. Each point represents 1 month
(i.e. one billing cycle) from 2021–2023.

Figure 1.4 illustrates usage patterns at the SLRP-EV station. Arrivals peak between
6–10 AM, consistent with morning commute hours, while departures are concentrated in
the afternoon. Charging activity is densest around midday (between arrival and departure
peaks) and aligns with Pacific Gas & Electric’s lowest TOU rate, “super off-peak,” which is
typically about half the cost of the “peak” rate [5].
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Figure 1.4: On the top panel, arrivals and departures broken down by hour of the day. On
the bottom panel, average weekday and weekend power profiles overlaid with TOU tariff
periods.
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Chapter 2

Station-Level Load Forecasting

2.1 Introduction

Station-level load forecasting enables efficient, cost-effective, and grid-friendly operation of
EV charging infrastructure. First, forecasts can be integrated into model predictive con-
trollers, to be discussed in Chapter 3. Furthermore, forecasting enables coordination with
other loads, avoiding overloads and aligning with grid capacity or grid signals (e.g. demand
response) [25]. Finally, forecasting future load can enable EV charging stations to participate
directly in electricity markets with vehicle-to-grid technology [26].

Jacob et. al. [10] and Nti et. al. [18] both provide a reviews of existing work on load
forecasting. They differentiate between three main approaches: time series approaches [7,
1], classical machine learning approaches [8, 27], and deep learning approaches [33, 6, 12].

Station-level load forecasting at SLRP-EV involves just eight aggregated loads (i.e. eight
chargers), significantly fewer than those considered in prior work [10, 18]. With such a small
aggregation, the Law of Large Numbers has not yet taken effect. That is, the load curves are
not as smooth and periodic as if there were more aggregated loads. This makes forecasting
more challenging. In this chapter, we benchmark the performance of several forecasting
approaches on the SLRP-EV dataset using metrics that reflect average, weighted, and peak
prediction error.

2.2 Feature Engineering

Our models forecast the station load time series for the next l timesteps. Given the distinct
load patterns on weekdays and non-weekdays (see Figure 1.4), we train separate models for
each. Our models take the following as features:

1. The k most recent aggregate power values: GTstart−k, GTstart−k+1, ...GTstart−1;

2. The planned station power profile for the next l timesteps for all active users in I,
considering that user n chooses REGULAR, and given power profiles p̄ generated from
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the previous optimization (triggered when user n− 1 arrived) for users in Asch ∪Areg:
GTstart|REGULAR,p̄, ...GTstart+l|REGULAR,p̄;

3. The number of active sessions at the charging station, including new user n: |I|;

4. The total number of working chargers at the station;

5. A sinusoidal positional encoding of the time of day, time of week, and time of year [28];

6. A boolean variable that evaluates to 1 if the time index T start + 24 hours falls on a
workday.

2.3 Experiments

Models

We implement the following models1:

1. Similar Day : the average load at the same time and day over the past five weeks;

2. Linear : linear model trained with elastic net regularization [32];

3. XGBoost [4];

4. FFNN : a feed-forward neural network [2];

Loss Functions

We employ several loss functions. The first is standard RMSE. Given forecasted charging
load Ĝτ and ground truth Gτ ,

RMSE =

√√√√ 1

n

n∑
t=1

(Gt − Ĝt)2. (2.1)

In the context to SLRP-EV, underprediction can lead to missed opportunities to reduce
peak power via joint price and power optimization. As such, we adopt a weighted RMSE
(WRMSE) loss to penalize underprediction. We use α = 2.

WRMSE =

√√√√ 1

n

n∑
τ=1

wτ (Gτ − Ĝτ )2, wτ =

{
α if Gτ > Ĝτ

1 otherwise
(2.2)

1Code available at https://github.com/samuelBobick/StationLevelPowerForecasting.
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Since peak power prediction is of particular importance, both for satisfying grid con-
strants and managing demand charge, we also employ a weighted peak RMSE (WPRMSE),
which is a weighted loss function which solely considers the peak power of each day, with
α = 3.

2.4 Results and Discussion

For each model, we perform a hyperparameter grid search, select the best configuration based
on validation performance, then train and test the model, reporting test errors in Table 2.1.
Each model uses k = 96 past 15-minute timesteps (24 hours of history) to predict l = 32
future timesteps (8 hours ahead). These parameters were selected for their effectiveness in
the model predictive controller described in Chapter 3. Models are trained and tested on a
random train-test split 2021–2023 SLRP-EV dataset.

Table 2.1: Error metrics for station-level load forecasting

Model RMSE (kW) WRMSE (kW) WPRMSE (kW)

Similar Day 7.90 12.58 11.36
Linear 6.68 12.47 10.89
XGBoost 6.50 12.13 10.57
FFNN 6.96 12.83 11.22

Our results show that heuristic as simple as Similar Day yields forecasts that are reason-
ably accurate. However, models that employ the features detailed in Section 2.2 outperform
Similar Day, not only in RMSE, but also in WRMSE and WPRMSE, which capture model
performance during peak power events. Notably, a linear model using these features achieves
competitive results with XGBoost while remaining interpretable. In the context of peak
power control, a linear model is useful because it is convex in the features, which is useful
for optimization. The marginal gains of XGBoost over the linear model are modest, sug-
gesting that most of the predictive signal lies in well-engineered features rather than model
complexity.
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Chapter 3

Control Schemes for Peak Power
Reduction

3.1 Introduction

A major cost for some EV charging station operators is demand charge, a utility fee based on
the highest power consumption during a billing cycle. Approximately 5 million commercial
customers in the United States are estimated to face retail electricity tariffs with demand
charges greater than $15/kW, accounting for more than a quarter of the nation’s 18 million
commercial customers [17]. Demand charges are a significant component of commercial
utility bills, generally accounting for 30% to 70% of total electricity costs [17]. An analysis
in [9] finds that demand charge accounts for 70% to 94% of utility bills for DC fast charging
stations in Southern California.

Demand charge reduction through smart charging presents a challenging control problem.
Even with smart charging technology, EV charging station arrivals remain stochastic. On
busy days, a single ill-timed arrival can push the station’s load above the running peak,
increasing demand charge.

Most prior work on demand charge mitigation for EV charging stations focuses on op-
timizing power schedules to maximize profit while accounting for EV arrival and departure
times, energy demand constraints, demand charges, and TOU utility tariffs [14, 24, 11, 3,
30]. Lee, Pang, and Low [14] propose an offline pricing scheme that optimizes power delivery
under fixed arrival, departure, and energy demand constraints. Their approach ensures cost
recovery by incorporating facility demand charges, time-varying energy costs, and conges-
tion costs. However, it does not account for stochastic variations in EV charging behavior.
Yang et al. [30] use “block” model predictive control to optimize power delivery for demand
charge mitigation under uncertain future arrivals, departures, and energy demands. How-
ever, their approach does not consider how to structure pricing to encourage user behavior

This chapter was co-authored with Thibaud Cambronne. T. Cambronne is with TotalEnergies S.E,
Berkeley, CA 94704. Email: thibaud.cambronne@external.totalenergies.com.
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that mitigates demand charge.
Formulations in [31, 19, 20] optimize both power delivery and user-facing prices. By

incentivizing users with discounts if they allow their load to be controlled instead of uncon-
trolled, they are able to increase revenue. These formulations only control on-going charging
sessions.

However, at workplace stations, most charging sessions begin in the morning and continue
until the workday ends. Consequently, control decisions made at 8 AM can influence peak
power at 2 PM. Early indicators of a peak-inducing day should be incorporated into morning
control decisions. An effective controller needs anticipatory ability.

To solve this problem, we propose two solutions that provide anticipatory abilities: (i)
convex reformulations of the demand charge constraint, and (ii) a forecast-enabled model
predictive control (MPC) approach. Our contributions are as follows:

1. We propose an MPC method that anticipates demand spikes using time series fore-
casting.

2. We increase the load flexibility available to the controller by leveraging dynamic pricing
to incentivize users to choose a controllable charging service.

3. We demonstrate a our approach outperforms the baseline algorithm and other non-
MPC reformulations in reducing both demand charge and overall operator costs.

3.2 Baseline Optimization Problem

In this section, we present a baseline station-level optimization problem that is solved when
a new user arrives at the charging station. Our formulation closely follows the formulation
presented in [31], with some modifications.

Upon arrival at the charging station, the user inputs their required energy and expected
time of departure from the charging station. Given this information, the user is presented
with two charging prices generated by a price and power optimization algorithm. Given
these prices, the user can make one of three choices:

1. REGULAR: the battery charges at maximum power until it tops off or unplugs. Im-
portantly, this load is uncontrollable.

2. SCHEDULED : the user’s energy required is guaranteed to be provided by their indi-
cated time of departure. The power delivery is scheduled with a control algorithm.

3. LEAVE : The user can leave if they consider the prices to be too high, opting for nearby
chargers or a parking spot without a charger. Without this option, the optimal service
price that maximizes profit is infinite, which is non-sensical.
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The control objective is to maximize the expected profit from the station by choosing the
REGULAR and SCHEDULED prices presented to the user, along with the power profiles
for users who selected the SCHEDULED charging option.

The baseline solution involves solving (3.1) directly. We assume that users choose one
of the 3 charging options based solely on the price menu. We denote Pr (m | z) to be the
probability that new user n chooses option m when presented with the set of prices z.
We model these probabilities with a two-step discrete choice model, described in Appendix
A. Due to the non-convexity of the discrete choice model (A.5) – (A.9), Eqn. (3.1) is
difficult to solve numerically. As such, we find an approximate solution to (3.1) by searching
over a grid of candidate prices zcandidate = (zsch, zreg). At each point in the grid, we solve
minp E[f(p,m)|zcandidate], which is a linear program.

Objective Function

The joint price and power optimization problem is formulated as follows:

min
z,p

E[f(z, p,m)] (3.1)

= Pr (m = SCHEDULED | z) f sch(z, psch) (3.2)

+ Pr (m = REGULAR | z) f reg(z, preg) (3.3)

+ Pr (m = LEAVE | z) f leave (3.4)

Demand charge constraints (3.5) – (3.7),

Energy constraints (3.17) – (3.19).

Suppose that a new user n arrives at time T start and indicates a departure time of T end
n .

Then we optimize all SCHEDULED power profiles p over the optimization horizon [T start,
T end), where T end = maxi∈I T

end
i .

Peak Power Formulation

Peak power over a monthly billing cycle can be tracked with Dτ as follows, where the billing
cycle starts at τ = 0:

Gτ =
∑

i∈Asch

pschi,τ +
∑

j∈Areg

pmax1{τ < T end
j }, (3.5)

D0 = 0, (3.6)

Dτ+1 = max{Gτ , Dτ}. (3.7)
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Scheduled Cost Function

Provided with new user n’s energy required Ereq
n and time of departure T end

n , the cost function
assuming that user n chooses the SCHEDULED charging option is given by

f sch
(
zsch, psch

)
=

T end
n −1∑

τ=T start

(
cτ − zsch

)
· pschn,τ ·∆t (3.8)

+
∑

i∈Asch

 T end
i −1∑

τ=T start

(cτ − ζi) · pschi,τ ·∆t

 (3.9)

+
∑

j∈Areg

 T end
j −1∑

τ=T start

(cτ − ζj) · pmax ·∆t

 (3.10)

+ cD · (DT end−1 −DT start−1) . (3.11)

The key element of this equation for our study is (3.11), which represents the cost as-
sociated with the increase in peak power over the optimization horizon [T start, T end). Note
that, as indicated by (3.7), this term cannot be negative and only becomes positive when
the peak power increases over the optimization horizon.

Regular Cost Function

Provided the required energy Ereq
n from the new user n, and the charge time T end

n needed
to fill the user’s battery. The cost function assuming that user n chooses the REGULAR
charging option is given by

f reg (zreg, preg) =

T end
n −1∑

τ=T start

(cτ − zreg) · pmax ·∆t (3.12)

+
∑

i∈Asch

 T end
i −1∑

τ=T start

(cτ − ζi) · pschi,τ ·∆t

 (3.13)

+
∑

j∈Areg

 T end
j −1∑

τ=T start

(cτ − ζj) · pmax ·∆t

 (3.14)

+ cD · (DTend−1 −DTstart−1) . (3.15)

Analogous to the scheduled case, (3.15) captures the cost associated with the increase in
peak power over optimization horizon [T start, T end).
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Leave Cost Function

If the user chooses to leave, the station operator incurs neither cost nor benefit. Thus,

f leave = 0. (3.16)

Energy Constraints

Constraints (3.17) – (3.19) ensure that the chosen power profiles satisfy the user’s energy
requirements.

ei,τ = ei,τ−1 +∆t · η · pτ , (3.17)

for τ ∈ [T start, T end
i ),∀i ∈ I

Ereq
i ≤ ei,T end , ∀i ∈ I (3.18)

0 ≤ pschi,τ ≤ pmax, (3.19)

for τ ∈ [T start, T end
i ),∀i ∈ I

3.3 Controllers for Peak Power Reduction

In this section, we propose several modifications to (3.1) which aim to reduce peak power.
Section 3.3 applies a hard constraint to peak power. Section 3.3 gives extra weight to the
demand charge term when the current power profile is on the verge of exceeding peak power.
Section 3.3 uses time series forecasting to give the controller an anticipatory ability.

Iterative Hard Thresholding

In this approach, we add a hard constraint on peak power. That is, we solve (3.1) with the
additional constraint

Gτ ≤M for τ ∈ [T start, T end). (3.20)

This constraint starts at the running peak in the billing cycle so far, DT start−1. If (3.1)
with constraint (3.20) is infeasible, we iteratively loosen the constraint by increasing M by
some step size ϵ > 0, and re-solve until we find a solution.
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Softplus Demand Charge Penalty

Figure 3.1: The softplus function adds a penalty when the peak of the optimized station
power is approaching the running peak (as x −→ 0−), and converges to the baseline penalty
as the station power exceeds the running peak (as x −→ +∞).

Approaching the running peak without surpassing it is problematic because any future arrival
is likely to increase peak power. To add a demand charge penalty to a power profile that
approaches the running peak, we apply the convex softplus function, softplus(x) = log(1+ex),
to the difference between DTstart−1 and the peak power at the end of the optimization horizon.
That is, we replace the terms in (3.11) and (3.15) with

cD · softplus (DT end−1 −DT start−1) . (3.21)

Time Series Model Predictive Control

Next, we incorporate a time series forecast into the demand charge term to anticipate arrivals.
Let {ĜTstart|m, ..., ĜTstart+l|m} represent the forecasted station power time series for the next



CHAPTER 3. CONTROL SCHEMES FOR PEAK POWER REDUCTION 15

l timesteps, given that new user n chooses charging option m. Then, we can replace terms
(3.11) and (3.15) with

cD ·
(
max{ĜT start|m, ..., ĜT start+l|m, DT start−1} −DT start−1

)
. (3.22)

We test the MPC algorithm with 3 types of forecasters:

1. A naive model that assumes no additional arrivals, but uses, as a forecast, the sum of
the optimal power profile from the previous optimization with user n’s power profile,
assuming they chose the REGULAR option;

2. A linear model trained with elastic net regression [32];

3. XGBoost [4].

Integrating Forecasts into Timeseries MPC

Let ψτ represent the forecast of the station power profile, made outside of the control loop,
using one of the methodologies presented in Chapter 2. At each solver iteration, to calculate
Ĝτ |REGULAR and Ĝτ |SCHEDULED for timesteps τ ∈ [T start, T end), we can simply start from the
original forecast ψτ and add and subtract power profiles of the new control input p. Let p̄schi

represent the optimal scheduled power profile for user i found in the previous optimization
triggered by user n− 1. Then, we update our forecast as follows:

Ĝτ |REGULAR = ψτ +
∑

i∈Asch

(
pschi,τ − p̄schi,τ

)
(3.23)

For each new user, the forecast is only executed once outside of the control loop, and is
arithmetically updated to the new control actions at each iteration of the solver. Compared
to executing the forecast inside the control loop, our single forecast approach allows us to:

1. Improve forecaster performance by using non-convex forecasters versus being limited
to convex models, or having to increase computational time by using non-convex opti-
mization;

2. Improve the forecast reliability by making predictions only on controlled historical
power profiles versus candidate power profiles tested by the solver, which may not
match the distribution of data that the forecaster was trained on;

3. Reduce computational time by making a single prediction instead of one per solver
iteration.

Note that we post-process the forecast by clipping it to eliminate unrealistic forecasts:
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ψτ ≥ pregn,τ +
∑

i∈Asch

p̄schi,τ +
∑

i∈Areg

p̄regi,τ (3.24)

∀τ ∈ [T start, T end).

3.4 Numerical Study

Simulation Overview

We perform a Monte Carlo simulation0 to quantitatively validate the performance of the
control algorithms presented in the previous section. We replay all EV charging sessions
sessions on the SLRP-EV platform from 2023, a total of 2274 charging sessions [20]. We
assume a relatively high demand charge of $20/kW [17]. We use the Pacific Gas & Elec-
tric Commercial Business Electric Vehicle June 2023 rates for the TOU tariff structure [5].
Further details about the simulation setup can be found in Appendix B.

Table 3.1: Profit Comparison Across Control Schemes

Control Scheme
Mean Cost/Revenue ($) Change from Baseline (%)

Demand
Charge

TOU Revenue Cost Profit Demand
Charge

TOU Cost

Baseline 624 1,984 4,309 2,608 1,702 0.00 0.00 0.00

Threshold 628 1,987 4,331 2,615 1,716 -0.71 0.16 +0.29

Softplus 609 2,017 4,446 2,626 1,819 -2.34 1.67 +0.71

MPC (Naive) 519 1,970 4,253 2,488 1,765 -16.90 -0.71 -4.58

MPC (Linear) 521 1,970 4,362 2,491 1,870 -16.50 -0.68 -4.47

MPC (XGBoost) 533 1,956 4,434 2,489 1,944 -14.57 -1.39 -4.55

Results and Discussion

Table 3.1 presents the Monte Carlo simulation results, obtained by running each of the 12
months 10 times.

In particular, all MPC control schemes successfully decrease demand charge by approxi-
mately 15% from the baseline, while also decreasing TOU costs by approximately 1%, result-
ing in an approximately 4.5% average total cost reduction. The two non-MPC controllers
fail to significantly reduce the total costs.

Figure 3.2 demonstrates how MPC improves peak power management. As the day’s first
sessions begin, the baseline controller waits to fulfill energy demand until the cheapest energy

0Simulation code available at https://github.com/samuelBobick/StationLevelPowerForecasting.
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(super off-peak) is available. On the other hand, the MPC controller anticipates a busy day,
and starts charging earlier so that there is less demand during the peak power event. In fact,
by aggressively charging early in the day, the MPC algorithm is even able to partially avoid
peak TOU pricing periods.

Figure 3.2: Example of control actions for baseline (left) and MPC (right) on September
6th 2023. On these two examples, the users all arrived at the same time, with the same
requirements and all chose SCHEDULED . Each color represents a single user’s power profile.
The MPC algorithm shows better repartition of the load throughout the off peak hours and
achieves a lower peak (24.57 kW) compared to the baseline solution (28.64 kW), while also
reducing the energy consumed during peak TOU hours.

Figure 3.3 illustrates how the MPC controller leverages pricing to encourage users to select
SCHEDULED when demand charge mitigation is pertinent. Both strategies raise prices
before and during peak TOU hours when energy costs double. However, the MPC algorithm
sets high prices early in the morning while significantly discounting SCHEDULED between
6-8 AM, prioritizing a base of controllable SCHEDULED sessions for the day. As a result, the
MPC controller is able to maintain lower daytime prices, particularly for REGULAR sessions,
whereas the baseline controller must raise prices during peak load hours to compensate for
unanticipated sessions.
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Figure 3.3: Example of pricing strategy for baseline (top) and MPC (bottom) solutions,
overlaid with the average station power profile.

Forecast Performance vs. MPC Peak Power Reduction

Table 3.2 compares forecast errors to simulated mean peak power. The training RMSE
closely correlates with the RMSE of predictions generated during the simulation. However,
the naive forecast achieves the best peak power reduction despite a much higher training
RMSE and a higher simulation RMSE. This suggests that minimizing RMSE alone does not
strongly correspond to improved MPC performance.
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Table 3.2: The Value of Forecast Accuracy in MPC

Control Scheme Training
RMSE (kW)

Simulation
RMSE (kW)

Mean Peak Power
(kW)

MPC (Naive) 11.36 7.46 25.93
MPC (Linear) 6.25 4.13 26.05
MPC (XGBoost) 5.94 4.31 26.65

One possible explanation for this is that the models were trained on data that does not
exactly match the distribution of simulation data. Specifically, the training data contains
charging sessions which were controlled with an optimization algorithm similar to the base-
line algorithm. Retraining the model on data generated by the MPC controller during the
simulation would improve the forecasts.

Our test case, the SLRP-EV station, has eight chargers. Due to its small size, station
loads are stepwise and irregular, making forecasting more challenging. For a larger set of EV
chargers, the Law of Large Numbers would smooth load curves, increasing periodicity and
improving forecast accuracy. Consequently, the MPC approach may perform even better at
larger stations or across a collection of aggregated station loads.

3.5 Conclusions and Limitations

In this paper, we present several methods to decrease demand charge in a joint price and
power optimization scheme, and validate these experiments with Monte Carlo simulations.
The MPC implementation detailed in Section 3.3 performs particularly well and decreases
operator costs, especially demand charge.

In the baseline solution, the user whose arrival pushes the station load above its peak
bears a disproportionate share of the demand charge costs, even though other users are
already contributing to the peak. Our MPC approach addresses this issue by distributing
the cost burden of demand charge expenses across all users whose usage is forecasted to
contribute to an increase in peak power, ensuring a more fair allocation. A detailed analysis
of how demand charge costs are allocated fairly across users via online pricing presents an
potential avenue for future research.

In Section 3.4, we find that minimizing RMSE alone does not strongly correlate to im-
proved MPC performance. Li, Ju, and Wang [16] have a similar finding in the context of
building energy management. The authors find that forecasting errors have an asymmetric
impact on MPC performance when demand charge is part of the objective. Further work is
required to develop forecasting error metrics and techniques that integrate well with demand
charge mitigation controllers.

When simulating SLRP-EV user sessions, we randomly select between REGULAR and
SCHEDULED choices with probabilities specified by the discrete choice model. While we
account for LEAVE in the optimization problem presented in (3.4), in the Monte Carlo



CHAPTER 3. CONTROL SCHEMES FOR PEAK POWER REDUCTION 20

simulation we are limited in the fact that users have already decided not to LEAVE . This
limitation arises because the SLRP-EV dataset only contains information about users who
chose to charge. Thus, profit and revenue should be interpreted with caution. Ultimately,
station operators optimize for profit, so further work is needed to incorporate LEAVE be-
havior into the Monte Carlo simulation.

Ultimately, we find that MPC significantly decreases charging station operating costs,
particularly demand charge. These savings can either (i) boost operator profits or (ii) allow
the operator to offer lower prices. Enhancing behavioral simulation, testing our algorithms
for control of large aggregate loads, and experimentally deploying our control schemes with
real human behavior as in [20, 13] are key steps toward further improvement of joint price
and power control for demand charge mitigation at workplace EV charging stations.
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Appendix A

Behavioral Model Formulation

Our behavioral model describes the probability that user n selects charging choice m when
presented with prices z. Since z represents prices per unit of energy ($/kWh), we multiply it
by the maximum charging power pmax to convert it to a price per unit of time ($/hr). This
transformation ensures consistency between the optimization framework in Section 3.2 and
the utility model in [20].

z′reg = zregpmax, z′sch = zschpmax (A.1)

To estimate the choice probabilities, we use a two-step discrete choice model, using
utilities U estimated in [20].

Ureg = 0.341− 0.0184
(z′reg − z′sch)

2
(A.2)

Usch = 0.0184
(z′reg − z′sch)

2
(A.3)

Uleave = −1 + 0.005
(z′reg + z′sch)

2
(A.4)

First, we calculate the probability that the user chooses the LEAVE option:

Pr (m = LEAVE | z) = eUleave

eUsch + eUreg + eUleave
. (A.5)

Then, we calculate the probability that the user chooses SCHEDULED , given that they
do not choose the LEAVE option:

Pr(m = SCHEDULED | z,m ̸= LEAVE) (A.6)

=
eUsch

eUsch + eUreg
· (1− Pr(m = LEAVE | z)). (A.7)
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Likewise, for REGULAR,

Pr(m = REGULAR | z,m ̸= LEAVE) (A.8)

=
eUreg

eUsch + eUreg
· (1− Pr(m = LEAVE | z)). (A.9)

Figure A.1: Discrete choice probability distribution over a grid of prices.
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Appendix B

Simulation Setup

The Slrp-EV dataset used to derive our simulation has a mix of REGULAR and SCHED-
ULED charging sessions. As we re-generate user choices using the discrete choice model, we
make several assumptions:

1. Users have already made the decision to charge. That is, they cannot LEAVE . They
only choose between REGULAR and SCHEDULED options.

2. The energy demand for charging sessions that were in reality REGULAR but are
randomly simulated to be SCHEDULED have an energy demand equal to 57% of
the energy delivered in the original charging session. We choose 57% because in the
Slrp-EV dataset on average the Ereq for SCHEDULED sessions is 57% of the energy
consumed from a REGULAR session of the same length.

3. We assume we know that user n’s time of departure is fixed and known.

4. We assume that all EVs can charge at the charger’s maximum power rating (pmax) of
6.6 kW.

Additional parameter settings are listed in Table B.1.

Table B.1: Simulation Parameters

Parameter Value Description

∆t 0.25 hours Length of each time step

pmax 6.6 kW Maximum charging power

η 1 Charger efficiency

ϵ 1 kW Threshold increment for solution 3.3

k 96 Number of past time steps to use as features for the timeseries
forecaster in the MPC solution

l 32 Number of time steps the timeseries forecaster in the MPC solution


