Generalizing Beyond the Training Data: New Theory and
Algorithms for Optimal Transfer Learning

Reese Pathak

I FEELC LLL]

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-137
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-137.html

June 18, 2025




Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Generalizing Beyond the Training Data:
New Theory and Algorithms for Optimal Transfer Learning
by

Reese Pathak

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in

Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Michael I. Jordan, Co-chair
Professor Martin J. Wainwright, Co-chair
Professor Adityanand Guntuboyina
Professor Jiantao Jiao

Summer 2025



Abstract

Generalizing Beyond the Training Data:
New Theory and Algorithms for Optimal Transfer Learning

by
Reese Pathak
Doctor of Philosophy in Computer Science
University of California, Berkeley
Professor Michael 1. Jordan, Co-chair

Professor Martin J. Wainwright, Co-chair

Traditional machine learning often assumes that training (source) data closely resembles the
testing (target) data. However, in many contemporary applications, this is unrealistic: in
e-commerce, consumer behavior is time-varying; in medicine, patient populations can exhibit
more or less heterogeneity; in autonomous driving, models are rolled out to new environ-
ments. Ignoring these “distribution shifts” can lead to costly, harmful, and even dangerous
outcomes. This thesis tackles these challenges by developing an algorithmic and statistical
toolkit for addressing distribution shifts. Specifically, this work focuses on covariate shift, a
form of distribution shift where the source and target distributions have different covariate
laws.

I demonstrate that for a large class of problems, transfer learning is possible, even when the
source and target data have non-overlapping support. We study covariate shift in the case
of kernel classes, Holder smoothness classes, and sparsity classes. We demonstrate how a
suitably defined notion of defect or dissimilarity in the problem instance can be leveraged
algorithmically, leading to methods with optimal learning guarantees.

Our final chapter contains results where we provide instance-optimal learning guarantees.
We introduce a new method: penalized risk minimization with a non-traditional choice of
regularization which is chosen via semidefinite programming. We show that our method has
performance which is optimal with respect to the particular covariate shift instance. To our
knowledge, these are the first instance-optimal guarantees for transfer learning. Moreover,
our results are assumption-light: we impose essentially no restrictions on the underlying
covariate laws, thereby broadening the applicability of our theory.
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Chapter 1

Covariate shift in RKHS-based
nonparametric regression

1.1 Introduction

A widely adopted assumption in supervised learning [118, 54] is that the training and test
data are sampled from the same distribution. Such a no-distribution-shift assumption, how-
ever, is frequently violated in practice. For instance, in medical image analysis [52, 67],
distribution mismatch is widespread across the hospitals due to inconsistency in medical
equipment, scanning protocols, subject populations, etc. As another example, in natural
language processing [61], the training data are often collected from domains with abundant
labels (e.g., Wall Street Journal), while the test data may well arise from a different domain
(e.g., arXiv which is mainly composed of scientific articles).

In this chapter, we focus on a special and important case of distribution mismatch, known
as covariate shift. In this version, the marginal distributions over the input covariates may
vary from the training (or source) to test (or target) datal, while the conditional distri-
bution of the output label given the input covariates is shared across training and testing.
Motivating applications include image, text, and speech classification in which the input
covariates determine the output labels [111]. Despite its importance in practice, the covari-
ate shift problem is underexplored in theory, when compared to supervised learning without
distribution mismatch—a subject that has been well studied in the past decades [54].

This chapter aims to bridge this gap by addressing several fundamental theoretical ques-
tions regarding covariate shift. First, what is the statistical limit of estimation in the presence
of covariate shift? And how does this limit depend on the “amount” of covariate shift between
the source and target distributions? Second, does nonparametric least-squares estimation—a
dominant (and often optimal) approach in the no-distribution-shift case—achieve the opti-
mal rate of estimation with covariate shift? If not, what is the optimal way of tackling
covariate shift?

Hereafter, we use source (resp. target) and training (resp. testing) interchangeably.
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1.1.1 Contributions and overview

We address the aforementioned theoretical questions regarding covariate shift in the context
of nonparametric regression over reproducing kernel Hilbert spaces (RKHSs) [104]. That is,
we assume that under both the source and target distributions, the regression function (i.e.,
the conditional mean function of the output label given the input covariates) belongs to an
RKHS. In this chapter, we focus on two broad families of source-target pairs depending on
the configuration of the likelihood ratios between them.

We first consider the uniformly B-bounded family in which the likelihood ratios are uni-
formly bounded by a quantity B. In this case, we present general performance upper bounds
for the kernel ridge regression (KRR) estimator in Theorem 1.1. Instantiations of this gen-
eral bound on various RKHSs with regular eigenvalues are provided in Corollary 1.1. It
is also shown in Theorem 1.2 that KRR—with an optimally chosen regularization parame-
ter that depends on the largest likelihood ratio B—achieves the minimax lower bound for
covariate shift over this uniformly B-bounded family. It is worth noting that the optimal
regularization parameter shrinks as the likelihood ratio bound increases.

We further show—via a constructive argument—that the nonparametric least-squares
estimator, which minimizes the empirical risk on the training data over the specified RKHS,
falls short of achieving the lower bound; see Theorem 1.3. This marks a departure from the
classical no-covariate-shift setting, where the constrained estimator (i.e., the nonparametric
least-squares estimator) and the regularized estimator (i.e., the KRR estimator) can both
attain optimal rates of estimation [120]. In essence, the failure arises from the misalignment
between the projections under the source and target covariate distributions. Loosely speak-
ing, nonparametric least-squares estimation projects the data onto an RKHS according to the
geometry induced by the source distribution. Under covariate shift, the resulting projection
can be extremely far away from the projection under the target covariate distributions.

In the second part of the chapter, we turn to a more general setting, where the likelihood
ratios between the target and source distributions may not be bounded. Instead, we only
require the target and source covariate distributions to have a likelihood ratio with bounded
second moment. We propose a variant of KRR that weights samples based on a careful
truncation of the likelihood ratios. We are able to show in Theorem 1.4 that this estimator
is rate-optimal over this larger class of covariate shift problems.

1.1.2 Related work

There is a large body of work on distribution mismatch and, in particular, on covariate shift.
Below we review the work that is directly relevant to ours, and refer the interested reader
to the book [111] and the survey [93] for additional references.

Shimodaira [105] first studied the covariate shift problem from a statistical perspective,
and established the asymptotic consistency of the importance-reweighted maximum likeli-
hood estimator (without truncation). However, no finite-sample guarantees were provided
therein. Similar to our work, Cortes and coauthors [27] analyzed the importance-reweighted
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estimator when the density ratio is either bounded or has a finite second moment. However,
their analysis applies to the function class with finite pseudodimension (cf. the book [97]),
while the RKHS considered herein does not necessarily obey this assumption. Moreover,
even when the RKHS has a finite rank D, their result (e.g., Theorem 8) is sub-optimal—
with a rate of 4/V2D/n compared to our optimal rate V2D/n. Here V? is the bound on
the second moment of the likelihood ratios and n denotes the number of samples. Recently,
Kpotufe and Martinet [69] investigated covariate shift for nonparametric classification. They
proposed a novel notion called transfer exponent to measure the amount of covariate shift
between the source and target distributions. An estimator based on k nearest neighbors
was shown to be minimax optimal over the class of covariate shift problems with bounded
transfer exponent. Inspired by the work of Kpotufe and Martinet, the current authors [94]
proposed a more fine-grained similarity measure for covariate shift and applied to nonpara-
metric regression over the class of Holder continuous functions. It is worth pointing out that
both the transfer exponent and the new fine-grained similarity measure are different and
cannot directly be compared to the moment conditions we impose on the likelihood ratios in
this work. In particular, there exist instances of covariate shift where the second moment of
the likelihood ratios is bounded whereas the transfer exponent is infinite. One such case is
when the source and target distributions are both Gaussian with the same mean but differ-
ent scales. Another significant difference lies in the assumptions on the regression function.
Kpotufe and Martinet [69] and Pathak et al. [94] focused on the class of Hélder continuous
functions, while we focus on RKHSs. This leads to drastically different optimal estimators.
Schmidt-Hieber and Zamolodtchikov [103] recently established the local convergence of the
nonparametric least-squares estimator for the specific class of 1-Lipschitz functions over the
unit interval [0, 1] and applied it to the covariate shift setting.

Apart from covariate shift, other forms of distribution mismatch have been analyzed from
a statistical perspective. Cai et al. [19] analyzed posterior shift and proposed an optimal
k-nearest-neighbor estimator. Maity et al. [78] conducted the minimax analysis for the label
shift problem. Recently, Reeve et al. [100] studied the general distribution shift problem
(also known as transfer learning) which allows both covariate shift and posterior shift.

Notation. Throughout the chapter, we use ¢, ¢, ¢1, ¢ to denote universal constants, which
may vary from line to line.

1.2 Background and problem formulation

In this section, we formulate and provide background on the problem of covariate shift in
nonparametric regression.
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1.2.1 Nonparametric regression under covariate shift

The goal of nonparametric regression is to predict a real-valued response Y based on a
vector of covariates X € X. For each fixed x, the optimal estimator in a mean-squared
sense is given by the regression function f*(z) := E[Y | X = z]. In a typical setting, we
assume observations of n i.i.d. pairs {(x;,y;)}";, where each x; is drawn according to some
distribution P over X, and then y; is drawn according to the law (Y | X = z;). We assume
throughout that for each ¢, the residual w; = y; — f*(x;) is a sub-Gaussian random variable
with variance proxy o?.

We refer to the distribution P over the covariate space as the source distribution. In the
standard set-up, the performance of an estimator f is measured according to its L?(P)-error:

~ ~ 2

7= P = Bxor (FOX) = £1(X))? = j (Fl@) - 1*(2))*px)de.

where p is the density of P.

In the covariate shift version of this problem, we have a different goal-—that is, we wish
to construct an estimate f whose L?*(Q)-error is small. Here the target distribution Q is
different from the source distribution P. In analytical terms, letting ¢ be the density of @,
our goal is to find estimators f such that

IF = 1l = By (FX) = 1 (X))" = | (Fla) = 1" (@) *alo)e

is as small as possible. Clearly, the difficulty of this problem should depend on some notion
of discrepancy between the source and target distributions.

1.2.2 Conditions on source-target likelihood ratios

The discrepancy between the L?(P) and L?*(Q) norms is controlled by the likelihood ratio

pla) = )

which we assume exists for any x € X. By imposing different conditions on the likelihood
ratio, we can define different families of source-target pairs (P, Q). In this chapter, we focus
on two broad families of such pairs.

Uniformly B-bounded families: For a quantity B > 1, we say that the likelihood ratio
is B-bounded if

sup p(z) < B. (1.2)

zeX

It is worth noting that B = 1 recovers the case without covariate shift, i.e., P = (). Our
analysis in Section 1.3 works under this condition.
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x2-bounded families: A uniform bound on the likelihood ratio is a stringent condition,
so that it is natural to relax it. One relaxation is to instead bound the second moment: in
particular, for a scalar V2 > 1, we say that the likelihood ratio is V2-moment bounded if

Ex.p[p*(X)] < V2 (1.3)

Note that when the uniform bound (1.2) holds, the moment bound (1.3) holds with V2 = B.
To see this, we can write Ex_p[p?(X)] = Ex-g[p(X)] < B. However, the moment
bound (1.3) is much weaker in general. It is also worth noting that the y?-divergence
between () and P takes the form

X*(Q||P) = Ex.p[p*(X)] — 1.

Therefore, one can understand the quantity V2 — 1 as an upper bound on the y?-divergence
between () and P. Our analysis in Section 1.4 applies under this weaker condition on the
likelihood ratio.

1.2.3 Unweighted versus likelihood-reweighted estimators

In this chapter, we focus on methods for nonparametric regression that are based on opti-
mizing over a Hilbert space H defined by a reproducing kernel. The Hilbert norm || f|4 is
used as a means of enforcing “smoothness” on the solution, either by adding a penalty to
the objective function or via an explicit constraint.

In the absence of any knowledge of the likelihood ratio, a naive approach is to simply
compute the unweighted reqularized estimate

n

Foo= argmin {0 ) + M3 (1.4)

5
fex ini3

where A > 0 is a user-defined regularization parameter. When H is a reproducing kernel
Hilbert space (RKHS), then this estimate is known as the kernel ridge regression (KRR)
estimate. This is a form of empirical risk minimization, but in the presence of covariate
shift, the objective involves an empirical approximation to Ep[(Y — f(X))?], as opposed to
Eo[(Y — £(X))2).

If the likelihood ratio were known, then a natural proposal is to instead compute the
likelthood-reweighted reqularized estimate

= argmn {3 330t ()~ 0 + AT} (15)

The introduction of the likelihood ratio ensures that the objective now provides an unbiased
estimate of the expectation Eq[(Y — f(X))?]. However, reweighting by the likelihood ratio
also increases variance, especially in the case of unbounded likelihood ratios. Accordingly,
in Section 1.4, we study a suitably truncated form of the estimator (1.5).
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1.2.4 Kernels and their eigenvalues

Any reproducing kernel Hilbert space is associated with a positive semidefinite kernel func-
tion £ : X x X — R. Under mild regularity conditions, Mercer’s theorem guarantees that
this kernel has an eigen-expansion of the form

Z pio;(x (1.6)

for a sequence of non-negative eigenvalues {y;};>1, and eigenfunctions {¢;};>1 taken to be
orthonormal in L?(Q). Given our goal of deriving bounds in the L?(Q)-norm, it is appropriate
to expand the kernel in L?*(Q)), as we have done here (1.6), in order to assess the richness of
the function class.

Given the Mercer expansion, the squared norm in the reproducing kernel Hilbert space
takes the form

0

I£l3 = Z—]J where 0; := {y f(2)¢;(z)g(x)dw

Consequently, the Hilbert space itself can be written as
0 o0 92

= {f=29j¢j | Z—]<OO}-
=1 j=1 ki

Our goal is to understand the performance of nonparametric regression under covariate shift
when the regression function lies in J.

Throughout this chapter, we impose a standard boundedness condition on the kernel
function—mnamely, there exists some finite x > 0 such that

sup  (x,z) < K> (1.7)

zeX
Note that any continuous kernel over a compact domain satisfies this condition. Moreover,

a variety of commonly used kernels, including the Gaussian and Laplacian kernels, satisfy
this condition over any domain.

1.3 Analysis for bounded likelihood ratios

We begin our analysis in the case of bounded likelihood ratios. Our first main result is to
prove an upper bound on the performance of the unweighted KRR estimate (1.4). First, we
prove a family of upper bounds (Theorem 1.1) depending on the regularization parameter
A. By choosing A so as to minimize this family of upper bounds, we obtain concrete results
for different classes of kernels (Corollary 1.1). We then turn to the complementary question
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of lower bounds: in Theorem 1.2, we prove a family of lower bounds that establish that
for covariate shift with B-bounded likelihood ratios, the KRR estimator is minimax-optimal
up to logarithmic factors in the sample size. This optimality guarantee is notable since it
applies to the unweighted estimator that does not involve full knowledge of the likelihood
ratio (apart from an upper bound).

In the absence of covariate shift, it is well-known that performing empirical risk mini-
mization with an explicit constraint on the function also leads to minimax-optimal results.
Indeed, without covariate shift, projecting an estimate onto a convex constraint set contain-
ing the true function can never lead to a worse result. In Theorem 1.3, we show that this
natural property is no longer true under covariate shift: performing empirical risk minimiza-
tion over the smallest Hilbert ball containing f* can be sub-optimal. Optimal procedures—
such as the regularized KRR estimate—are actually operating over Hilbert balls with radius
substantially larger than the true norm | f*{|s.

1.3.1 Unweighted kernel ridge regression is near-optimal

We begin by deriving a family of upper bounds on the kernel ridge regression estimator (1.4)
under covariate shift. In conjunction with our later analysis, these bounds will establish
that the KRR estimate is minimax-optimal up to logarithmic factors for covariate shift with
bounded likelihood ratios.

Theorem 1.1. Consider a covariate-shifted regression problem with likelihood ratio that is
B-bounded (1.2) over a Hilbert space with a k-uniformly bounded kernel (1.7). Then for any

A = 10xk2/n, the KRR estimate fy satisfies the bound

~ logn & 7
— %% < 4\B| f*|3 + 800°B J 1.8
Ifx = f1% | 13¢ + 800" B—> ;WHB (1.8)
biTB) v;((B)

with probability at least 1 — 28 %26_% — ﬁ

See Section 1.5.1 for the proof of this theorem. In Section 1.7.5.1, we also present a corollary
which provides a corresponding expectation bound for the KRR estimator f) for such B-
bounded covariate shifts.

Note that the upper bound (1.8) involves two terms. The first term b3 (B) corresponds
to the squared bias of the KRR estimate, and it grows proportionally with the regularization
parameter A and the likelihood ratio bound B. The second term v,(B) represents the
variance of the KRR estimator, and it shrinks as A increases, so that \ controls the bias-
variance trade-off. This type of trade-off is standard in nonparametric regression; what is
novel of interest to us here is how the shapes of these trade-off curves change as a function
of the likelihood ratio bound B.
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Bias/variance trade-off under covariate shift

Mean-squared error

Regularization A

Figure 1.1. Plot of the upper bound (1.8) on the mean-squared error versus the log
regularization parameter log A for four different choices of the likelihood ratio bound B, in
all cases with eigenvalues p; = (1/4)2, noise variance 02 = 1 and sample size n = 8000. The
points marked with * on each curve corresponds to the choice of A*(B) that minimizes the
upper bound. Note how this minimizing value shifts to the left as B increases above the
standard problem without covariate shift (B = 1).

Figure 1.1 plots the right-hand side of the upper bound (1.8) as a function of A for several
different choices B € {1,5,10, 15}. (In all cases, we fixed a kernel with eigenvalues decaying
as pi; = j 2, sample size n = 8000, and noise variance o = 1.) Of interest to us is the choice
A*(B) that minimizes this upper bound; note how this optimizing \*(B) shifts leftwards to
smaller values as B is increased.

We would like to understand the balancing procedure that leads to an optimal \*(B)
in analytical terms. This balancing procedure is most easily understood for kernels with
reqular eigenvalues, a notion introduced in past work [123] on kernel ridge regression. For a
given targeted error level § > 0, it is natural to consider the first index d(9) for which the
associated eigenvalue drops below §?—that is, d(0) := min{j > 1 | u; < 6%}. The eigenvalue
sequence is said to be regular if?

D1y < ed(8)d? (1.9)

j=d(6)+1

holds for some universal constant ¢ > 0. The class of kernels with regular eigenvalues includes
kernels of finite-rank and those with various forms of polynomial or exponential decay in
their eigenvalues; all are widely used in practice. For kernels with regular eigenvalues, the

2In fact, we can relax this to only require the minimizing § in equation (1.10) to obey the tail bound.



CHAPTER 1. RKHS-BASED COVARIATE SHIFT 9

bound (1.8) implies that there is a universal constant ¢’ such that

~ , . d(d)logn
1A= 13 <e {52\|f 12 + UQBUTg} where 8% = \B. (1.10)

We verify this claim as part of proving Corollary 1.1 below.

This bound (1.10) enables us to make (near)-optimal choices of 5—and hence A = §?/B.
Let us summarize the outcome of this procedure for a few kernels of interest. In particular,
we say that a kernel has finite rank D if the eigenvalues p; = 0 for all 7 > D. The kernels
that underlie linear regression and polynomial regression more generally are of this type. A
richer family of kernels has eigenvalues that exhibit a-polynomial decay p; < ¢ j=2* for some
a > 1/2. This kind of eigenvalue decay is seen in various types of spline and Sobolev kernels,
as well as the Laplacian kernel. It is easy to verify that both of these families have regular

eigenvalues. To simplify the presentation, we assume | f*|js = 1.

Corollary 1.1 (Bounds for specific kernels). We have the following bounds for specific kernel
eigenvalues.

(a) For a kernel with rank D, as long as >Dlogn > 10k?, the choice \ = Llog” yields
an estimate f,\ such that

Dlogn

Ih = 16 < co (1.11a)

with high probability.

(b) For a kernel with a-decaying eigenvalues, suppose that o® is sufficiently large so that

A —
_2a -~
B a1 ("21%) 2241 > 10x%/n. Then the estimate fy obeys

“ . o?Blogn\ 723
1h = £l < o(Z=22) (L.11D)
with high probability.

Proof. We begin by proving the upper bound (1.10). With the shorthand ¢* = AB, the
variance term in our bound (1.8) can be bounded as

1 logn < i log n ;
L) = 0B o {21 P!
80 n j:1Mj+62 (),u]+52
where, by the definition of d(¢§), we have split the eigenvalues into those that are larger than

52, and those that are smaller than §2. By the definition of a regular kernel, the second term
can be upper bounded

o]

g /
> <L "d(0)6% = ¢ d(6).
j>d(8) Mj+52 02
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Putting together the pieces yields %V)\(B) < c0’B lo%d(é), for some universal constant c;.
Combining with the bias term yields the claim (1.10).

We now prove claims (1.11a) and (1.11b). For a finite-rank kernel, using the fact that
d(0) < D for any § > 0, we can set A = UQD—TEOg” to obtain the claimed bound (1.11a). Now
suppose that the kernel has a-polynomial decay—that is, p; < ¢j 2 for some ¢ > 0. For
any § > 0, we then have d(6) < ¢ (1/6)/*, and hence

d(9)logn P C,azBlogn (1)1/(1
n N n o'

By equating the two terms, we can solve for near-optimal §: in particular, we set 6% =

_2a
<"23%> ***! {0 obtain the claimed result. Notice that this choice of §2 corresponds to

5° +o’B

! (0210gn 20
)

A=0°/B = B ot
n

as claimed in the corollary. O

1.3.2 Lower bounds with covariate shift for regular kernels

Thus far, we have established a family of upper bounds on the unweighted KRR estimate,
and derived concrete results for various classes of regular kernels. We now establish that,
for the class of regular eigenvalues, the bounds achieved by the unweighted KRR estimator
are minimax-optimal. Recall the definition d(§) = min{j > 1 | g; < 6%}, and the notion of
regular eigenvalues (1.9). For a Hilbert space 3, we let Bg¢(1) denote the Hilbert norm ball
of radius one.

Theorem 1.2. For any B > 1, there exists a pair (P, Q) with B-bounded likelihood ratio (1.2)
and an orthonormal basis {¢;}i=1 of L*(Q) such that for any regular sequence of kernel
eigenvalues {j1;};=1, we have

) I~ ) d(0)
inf sup E[|f — f*|3] > ¢ inf{6® + 6?B—2}. 1.12
it swp BIIF - ) > e inf { = (1.12)

See Section 1.7.1 for the proof of this claim.

Comparing the lower bound (1.12) to our achievable result (1.10) for the unweighted
KRR estimate, we see that—with an appropriate choice of the regularization parameter
A—the KRR estimator is minimax optimal up to a logn term. In particular, it is straight-
forward to derive the following consequences of Theorem 1.2, which parallel the guarantees
in Corollary 1.1:

e For a finite-rank kernel, the minimax risk for B-bounded covariate shift satisfies the lower
bound

~ D
inf sup E[|f — 3] = co’B—
FofreBac(1) n
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e For a kernel with a-polynomial eigenvalues, the minimax risk for B-bounded covariate
shift satisfies the lower bound

. N %112 o’B 22%
inf sup E[If - f3]=e (22)7
F o reBye(1) n

Note that both of these minimax lower bounds reduce to the known lower bounds [123] in
the case of no covariate shift (i.e., B = 1).

1.3.3 Constrained kernel regression is sub-optimal

In the absence of covariate shift, procedures based on empirical risk minimization with
explicit constraints are also known to be minimax-optimal. In the current setting, one such
estimator is the constrained kernel regression estimate

n

Form = arg min {%Z(f(xl) — yi)z}. (1.13)

feBoe() Ln &

Without covariate shift and for any regular kernel, this constrained empirical risk minimiza-
tion procedure is minimax-optimal over all functions f* with ||f*]s < 1.

In the presence of covariate shift, this minimax-optimality turns out to be false. In
particular, suppose that the eigenvalues decay as p; = (1/4)?, so that our previous results
show that the minimax risk for B-bounded likelihood ratios scales as (BT"Q)Q/ ®. Tt turns out
that there exists B-bounded pair (P, () and an associated kernel class with the prescribed
eigendecay for which the constrained estimator (1.13) is sub-optimal for a broad range of

(B, n) pairs. In the following statement, we use ¢y, ¢ to denote universal constants.

Theorem 1.3. Assume that |f*|sc = 1, and that 6* = 1. For any B € [c1(logn)?, can??],
there exists a B-bounded pair (P, Q) and RKHS with eigenvalues p; < (1/4°) such that

~ B3
sup E[ form — [~ 2] > c3—. 1.14
o H 15 33 (1.14)

See Section 1.7.2 for the proof of this negative result.

In order to appreciate some implications of this theorem, suppose that we use it to
construct ensembles with B, = n*3. The lower bound (1.14) then implies that over this
sequence of problems, the maximal risk of ferm is bounded below by a universal constant.
On the other hand, if we apply the unweighted KRR procedure, then we obtain consistent
estimates, in particular with L?(Q)-error that decays as

(B ()

n n
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—#— n=28000
2.6 .~ n=16000

n=32000
2.4 - —+— n=64000
n=128000

2.2-

100 10! 102
B

Figure 1.2. Results based on computing the regularized KRR estimate for the “bad”
problems, indexed by the pair (n, B), that underlie the proof of Theorem 1.3. Each curve
shows the squared Hilbert norm of the regularized KRR estimate | f,[3;, computed with

A = 423p=23B=1/3  versus the likelihood ratio bound B. Each curve corresponds to a
different choice of sample size n as indicated in the legend.

It is worth understanding why the constrained form of KRR is sub-optimal, while the reg-
ularized form is minimax-optimal. Recall from Corollary 1.1 that achieving minimax-optimal
rates with KRR requires particular choices of the regularization parameter \*(B), ones that
decrease as B increases (see Figure 1.1). This behavior suggests that the Hilbert norm || f,\H 95
of the regularized KRR estimate with optimal choice of A should grow significantly above
If*llsc = 1 when we apply this method.

In order to confirm this intuition, we performed some illustrative simulations over the
ensembles, indexed by the pair (B,n), that underlie the proof of Theorem 1.3; see Sec-
tion 1.7.2 for the details. With ¢? = 1 remaining fixed, for each given pair (B,n), we
simulated regularized kernel ridge regression with the choice A = 4%?n=23B~1/3  as sug-
gested by Corollary 1.1. In Figure 1.2, for each fixed n, we plot the squared Hilbert norm
| f2]3; of the regularized KRR estimate versus the parameter B. We vary the choice of sample
size n € {8000, 16000, 32000, 64000, 128000}, as indicated in the figure legend. In all of these
curves, we see that the squared Hilbert norm is increasing as a polynomial function of B.
This behavior is to be expected, given the sub-optimality of the constrained KRR estimate
with a fixed radius.

1.4 Unbounded likelihood ratios

Thus far, our analysis imposed the B-bound (1.2) on the likelihood ratio. In practice,
however, it is often the case that the likelihood ratio is unbounded. As a simple univariate
example, suppose that the target distribution @) is standard normal N (0, 1), whereas the
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source distribution P takes the form N (0,0.9). It is easy to see that the likelihood ratio p(z)
tends to o as |x| — o0. On the other hand, the second moment of the likelihood ratio under
P remains bounded, so that y?-condition (1.3) applies.

The key to the success of the unweighted KRR estimator (1.4) in the bounded likelihood
ratio case is the nice relationship between the covariance Yp = Ex.p[¢(X)d(X)T] of the
source distribution and the covariance I of the target distribution, namely ¥Xp > %] . In
contrast, such a nice relationship (with B replaced by V?) does not appear to hold with
unbounded likelihood ratios. It is therefore natural to consider the likelihood-reweighted
estimate (1.5), as previously introduced in Section 1.2.3, that ensures the nice identity
Ex-p[p(X)p(X)p(X)T] = I. In contrast to the unweighted KRR estimator, it requires
knowledge of the likelihood ratio, but we will see that—when combined with a suitable form
of truncation—it achieves minimax-optimal rates (up to logarithmic factors) over the much
larger classes of y2-bounded source-target pairs.

As noted before, one concern with likelihood-reweighted estimators is that they can
lead to substantial inflation of the variance, in particular due to the multiplication by the
potentially unbounded quantity p(z). For this reason, it is natural to consider truncation:
more precisely, for a given 7,, > 0, we define the truncated likelihood ratio

o (2) = {pm if ple) < 7.

Tns otherwise.

We then consider the family of estimators

AI‘W : 1 <
v = argmin {3 pr, () (f(22) = 91)* + A1}, (1.15)
feH \n P
where A > 0, along with the truncation level 7,,, are parameters to be specified.
We analyze the behavior of this estimator for kernels whose eigenfunctions are 1-uniformly
bounded in sup-norm, meaning that

il = su%? pj(x)] <1 forall j=1,2,... (1.16)
xe

Our choice of the constant 1 is for notational simplicity. Although there exist kernels whose
eigenfunctions are not uniformly bounded, there are many kernels for which this condition
does hold. Whenever the domain X is compact and the eigenfunctions are continuous, this
condition will hold. Another class of examples is given by convolutional kernels (i.e., kernels
of the form J# (x,z) = ¥(z — z) for some ¥ : X — R), which have sinusoids as their
eigenfunctions, and thus satisfy this condition.

Our theorem on the truncated-reweighted KRR estimate (1.15) involves the kernel com-
plexity function W(4, p) := 37, min{6?, ;] f*[3}, and works for any solution 8, > 0 to the
inequality M(d) < §?/2, where

M(8) = o/ 20y (5, )

n
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Here cg is a universal constant, whose value is specified via the proof.

Below, we present the performance guarantee of f{V in the large noise regime (i.e., when
o? = k2| f*|3;) to simplify the statement. Theoretical guarantees for all ranges of o can be
found in Section 1.7.4.

Theorem 1.4. Consider a kernel with sup-norm bounded eigenfunctions (1.16), and
source-target pair with Ep[p*(X)] < V2. Further assume that the noise level obeys o
k2| f*|3;. Then the estimate ﬁw with truncation 7, = VnV? and reqularization \|f*|3
62 /3 satisfies the bound

a
=
=

|5 = £l < 0+ ALl

with probability at least 1 —cn~'°. Here, we recall that §,, > 0 is any solution to the inequality
M(d) < 6?/2, where

M(3) = o 2L (5 ).

n

See Section 1.5.2 for the proof of this claim. In Section 1.7.5.3, we also present a corollary
which provides a corresponding expectation bound for the reweighted estimator f}" for such
V2-bounded covariate shifts.

To appreciate the connection to our previous analysis, in the proof of Corollary 1.2 below,
we show that for any regular sequence of eigenvalues and | f*|sc = 1, we have

(0, 1) < d6)6? (1.17)

for some universal constant ¢’. Moreover, the condition M(d) < §%/2 can be verified by
checking the inequality

\/Md@w L1

n
This further allows us to obtain the rates of estimation over specific kernel classes.

Corollary 1.2. Consider kernels with sup-norm bounded eigenfunctions (1.16).

DV?2log3(n)o?

(a) For a kernel with rank D, the truncated-reweighted estimator with A\ = c -

achieves

,DV?1og®(n)o?
n

IR =g < e (1.19)

with high probability.
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(b) For a kernel with a-polynomial eigenvalues, we have with high probability

V2log?(n) 02) agT
n

I = £l < , (1.20)

2o
provided that A\ = c(VzlngB(")U?) St

Proof. We begin by verifying the claim (1.17). Recalling the definition of d(d) as the smallest
integer for which u; < §2, we can write

d(é) 0
WS, p) = > min{e®, } + > min{6® p} < d(6)0” + ed(6)6?
j=1 j=d(6)+1

where the bound on the second sum follows from the regularity condition. This completes
the proof of the bound (1.17).

Given our bound (1.17), it is straightforward to verify the claim (1.18).

We now prove the bounds (1.19) and (1.20). For the finite rank case, we have ¥ (4, 1) <
D§?, which implies 62 < cDVzlo+3(n)02 for some universal constant c¢. Apply Theorem 1.4 to
obtain the desired rate. Now we move on to the kernel with a-polynomial eigenvalues. We

know from the proof of Corollary 1.1 that d(§) < ¢(1/6)"%, and hence W(d, u) < 6>V,
_2a
This implies 62 < c(v21+g3"02> "' which together with Theorem 1.4 vields the claim. [

Corollary 1.2 showcases that the reweighted KRR estimator is minimax optimal (up to
log factors) over this more general y*-bounded family. This can be seen from the lower
bound established in Theorem 1.2 and the fact that the y2-bounded family is a larger family
compared to the uniformly bounded family.

1.5 Proofs

In this section, we provide the proofs of our two sets of upper bounds on different estimators.
Section 1.5.1 is devoted to the proof of Theorem 1.1 on upper bounds on unweighted KRR
for B-bounded likelihood ratios, whereas Section 1.5.2 is devoted to the proof of Theorem 1.4
on the performance of LR-reweighted KRR with truncation.

1.5.1 Proof of Theorem 1.1

Define the empirical covariance operator?

SHEES PP

n i=1

3In this proof, all the operators are defined with respect to the space £2(N).
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the population covariance operator Lp := Ex.p[¢(X)¢(X)T], and the diagonal operator

M = diag({u;};>1)-
__ Before we embark on the proof, we single out two important properties regarding ¥p and
Y p that will be useful in later proofs. For a given A > 0, we define the event

1

E(N) = {M1/2§PM1/2 M > 5

(MY25p M2 4 AT) |, (1.21)

where 1 is the identity operator on ¢*(N).

Lemma 1.1. For any B-bounded source-target pair (1.2), we have the deterministic lower
bound

Sp > LI (1.22a)

=

SH

If, in addition, the kernel is k-uniformly bounded (1.7), then whenever n\ = 10x?, the event

E(A) defined in equation (1.21) satisfies

P[E(N)] > 128 £¢ Tonr.

See Section 1.5.1.3 for the proof of this claim.
Equipped with Lemma 1.1, we now proceed to the proof of the theorem. In terms of the
basis {¢;};>1, the KRR estimate has the expansion f\ = Z;C:I 6,¢;, where 8 = {0;};51 is

a sequence of coefficients in ¢?(N). By the optimality conditions for the KRR problem, we
have

0— 6 = _)\(f]p FAM YT+ (ip + )\Ml)l(% Zn:&b(:lfz)) (1.23)
i=1
By the triangle inequality, we have the upper bound ||§ — %2 < 2(Ty + Tz), where
Ty = IMEp + AM Y 'MW, and Ty = |[(Sp + AM )7} (% zn] &id(x)) |3
i=1
In terms of this decomposition, it suffices to establish that the following bounds

(a) ®) 40(logn)o® & K
Ty < 2)\B|f*|3 d T, < ! 1.24
LSBT ad TS ST (124)

=1

hold with probability at least 1 — 28 %e*ﬁ —n10
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1.5.1.1 Proof of the bound (1.24)(a)

We establish that this bound holds conditionally on the event £(X). Following some algebraic
manipulations, we have

Ty = N2 | MY2(MYPEpMY2 + )T MV20% |3
0 “
< NSRS MY+ XD THE,

(i4) ~

< MF IR MY2 (MR MY + AL 2,
(iii)

< 2N 5| MY (MESp MY + AL T o

Here inequality (i) follows from the fact that |M~Y20*|y = ||f*|s;; the second step (ii)
uses the fact that MY2XpMY2 + XI > M, and step (iii) follows from the fact that we are

conditioning on the event ().
Lemma 1.1 also guarantees that Xp > %I , whence

* 1 — Mg *
T3 < LRI G0+ M) 01 = 20 | 2 < 201
- B

This establishes the claim (1.24)(a).

1.5.1.2 Proof of the bound (1.24)(b)

Define the random vector W = (Sp + AM~1)~! (137, &¢(x;)). Conditioned on the covari-
ates {z;}I_,, W is a zero-mean sub-Gaussian random variable with covariance operator

2
A= T (Ep + AM Y 'Sp(Sp + A
n

Consequently, by the Hanson-Wright inequality in the RKHS (cf. Theorem 2.6 in the chap-
ter [26]), we have

P [T5 = 20(logn) Tr(A) | {z;}1,] < (1.25)

where the probability is taken over the noise variables.

It remains to upper bound the trace. We have Tr(A) = Tr (U—Z(ip FAM OIS (Sp +
AM~1)71), so that

2 AN ~ ~
Tr(A) < Tr (%(zp FAM Y LSp + AM Y (Ep + )\M‘l)‘1>
2 2 ~
~Tr (%(ZP + AM‘l)‘1> ~ Tr (%(MW(MWZPMW + A])‘1M1/2>.
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Under the event £(\), we have MYV2SpMY? 4 A\ » % (M1/2EPM1/2 + /\]), which implies

2
Tr(A) < 27 Te (MVA(MYSpM2 4 A1) 012
n
(i) o2 1
< 2% Tr (MVH(M + A1) M)
n B
@) J0F
92—

a7 - )
njle+)\

Here step (i) follows since Xp > 1, and step (ii) follows from a direct calculation. Substitut-
ing this upper bound on the trace into the tail bound (1.25) yields the claimed bound (1.24)(b).
1.5.1.3 Proof of Lemma 1.1

We begin with the proof of the lower bound (1.22a). Since {¢;};>1 is an orthonormal basis
of L?(Q), we have

Ex~q [6(X)6(X)T] = Bx-p [p(X)d(X)o(X)"] = I.
Thus, the B-boundedness of the likelihood ratio (1.2) implies that
I < Ex.p[Bo(X)¢(X)'] = BYp,

which is equivalent to the claim (1.22a).
Next we prove the lower bound (1.21). We introduce the shorthand notation

Syi= MYP2SpMY2 £ A, and Xy = MYV2YpMY2 4 AT

along with the matrix A = E;UZ@A — E,\)E;m. Recalling that ||-||op denotes the /5-
operator norm of a matrix, we first observe that {||Af|o, < 2} < €. Consequently, it suffices
to show that [|Al|o, < 2 with high probability.

The matrix A can be written as the normalized sum A = %Z?:l Z;, where the random
operators

Z; = 5, M (G()p(ai)T — Sp) MY2SLM
are i.i.d. The operator norm of each term can be bounded as
~1/2 —1/2 —1/2
1Zillep < 2suplI B3 A0 2 0(2) 6 (@) M2 o = 2500 [ M 20 ()]
Te e

_ 252
1/2

< 271200, < 5
where the final inequality follows from the assumption that sup,. |MY2¢(2)|? < k2, and

the fact that ¥, > M.
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On the other hand, the variance of Z; can be bounded as

E[Z?] < E[(Z; " M26(X)p(X) M52
_ E[2;1/2M1/2¢(X)¢(X>TM1/QZ;\1M1/2¢(X)¢<X)TM1/22;1/2]
<E [2;1/2M1/2¢(X)¢(X)TM1/22;1/2] . sup {¢(x)TM1/22;1M1/2¢(x)}
xeX
I<02

5 M MY = v,

<

where the last inequality follows by applying the bound (1.26) on sup,cy HE;I/ MY2(x)|3.
Suppose that we can show that

2 2
Tr(V) < % : %; (1.27a)
/{/2
IVl < & (1.270)

We can then apply a dimension-free matrix Bernstein inequality (see Lemma 1.8) with ¢ =
1/2 to obtain the tail bound
2
1 K n
Pl Al > 3] < 285 exp (= 765)-

as long as nA > 10x%. Thus, the only remaining detail is to prove the bounds (1.27a)
and (1.27Db).

Proof of the bound (1.27a): Using the definition of V', we have

2 2
Tr(V) = % Tr (2;1/2]\41/221:]\41/22;1/2) _ %Ep[Tr (Z;lmM1/2¢(ZL’)¢(I)TM1/22;1/2)]
<R
AA

Here we have again applied the bound sup,.y HE;I/QMVQQZ)(J:)H% < K2/

Proof of the bound (1.27b): Recalling the definition of ¥y, we see that
552 M8 M2 o < 1,
and hence
K2 _ K>
Vil = S I1=3 228 MY o < -

which is the claimed upper bound on ||V qp.
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1.5.2 Proof of Theorem 1.4

We now turn to the proof of our guarantee on the truncated LR-reweighted estimator. At
the core of the proof is a uniform concentration result, one that holds within a local ball

§(r) = A{f e[S = fle <r and [f = F"ls < 3[f]ls}

around the true regression function f*.

Lemma 1.2. Fizing any r > 0, we have

s {Ilg — f*la + %me (@) [ (f* () — )" — (g(xs) — yi)Q]} <M(r)  (1.28)

with probability at least 1 — cn=10.

See Section 1.5.2.1 for the proof of this lemma.

Taking this lemma as given, we now complete the proof of the theorem. Define the
regularized radius 0, = /02 + 3\ f*]3;, and denote by &£(dy) the “good” event that the
relation (1.28) holds at radius ). We immediately point out an important property of the

regularized radius dy, namely M(5,) < (1/2) - §3. To see this, note that r — M(r)/r is
non-increasing in r, and hence
M(dy) - M(0,)
S O,
Suppose that conditioned on €(d) ), the following inequality holds
) R 2 R 2 .
inf ~ — me(%){(f(%) - ?Jz) - (f (@) — yz) } + A5 = A5 > 0. (1.29)
1

FEHFES(3N) N

1 1
< =0, < =0,.
9 92

It then follows that that H]?— f*lo < 6, as desired. Consequently, the remainder of our
proof is devoted to establishing that inequality (1.29) holds conditioned on £(dy).

Given any function f € H and f ¢ G(9,), there exists an o = 1 such that f:z fr+ é(f —
f*) lies in the set H, and more importantly £ lies on the boundary of G(dx). This follows
from the convexity of the two sets H and G(d,). Since f is a convex combination of f and

f*, Jensen’s inequality implies that
pra o) { (Pl =) = (77 (o) — )} + MFI = N
< Hpm@d{ (@) — )" = (F() — )"} + NFB— A1)
Consequently, in order to establish the claim (1.29), it suffices to prove that the quantity

~

I= % 2 prae) {(F () = we)” = (Flaa) =)} + M5~ MTIGe

is negative. Since flies on the boundary of G(d,), we can split the proof into two cases: (1)

|F—f*llo = 6x, while | F— f*sc < 3] f*[lsc, and (2) | F— f*| o < 8x, while | f— f*[sc = 3] £*s¢.
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Case 1: |f — [*lo = dx, while If = f*lsc < 3| f*|3. By adding and subtracting terms,
we have

~

1 & ~ ~ -
T 2152%(%){“ () = w)" = (Flw) =)'} + 1] - f*\é] T = £+ AL — AL
i=1

(4) Lo @) 1 Lo (i)
< M) = 3+ Alf* 5 < =50 + AlF s <0,

where step (i) follows from conditioning on the event €(dy), the equality | f— f "I = 63, and
non-positivity of )\Hﬂ\?}f, step (ii) follows from the property M(d,) < (1/2) - 03 and step (iii)
uses the definitions of 6, and A.

Case 2: |f— "o < 0y, while | F = f*llsc = 3| f*|sc. By the same addition and subtraction
as above, we have

~

1 N N N
T = [; > pm(xi){(f*(xi) — )" — (Fla) — yi)Q} +[f - f*lé] —If = 13 + ALF13 = MR
i=1

0 . 5
< M(S) + AL I3 = AL F15

(#) 1 .

2R3N
Here, step (i) again follows from the conditioning on the event £(d,) and the assumption
that ||f — f*|o < dx. Step (ii) relies on the facts that M(dy) < (1/2) - 63, [f*[lsc = [ f*]ac,
and that | f]s = 2| f*|s. The latter is a simple consequence of | f — f*|s = 3| f*|s and the

triangle inequality. Substitute in the definitions of d, and A to see the negativity of 7.
Combine the two cases to finish the proof of the claim (1.29).

1.5.2.1 Proof of Lemma 1.2
Define the shifted function class F* := H — f*, along with its r-localized version
F(r)=1{he T [|hlo<r, and [hlsx <3]f* s}
We begin by observing that
. 2 2 * *
(f* (i) —wi)” = (g(2s) —wi)” = 2&[g(a:) — f*(x:)] — (9(xs) — f*(2))7,

which yields the following equivalent formulation of the claim in Lemma 1.2:

sup {l Z [2£ipm(:r;i)h(xi) + HhHé — P (xz)hQ(xz)]} < M(r). (1.30)

heg*(r) | Vi
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By the triangle inequality, it suffices to show that T} + T < M(r), where

Z &ipr, (Ti)h

More precisely, the core of our proof involves establishing the following two bounds:

V21
Ty <co L{ Z min{r?, u;| f* Hg{}} with probability at least 1 —n %, and

(1.31a)

V21
Ty < A L 2 min{r?, u; | £*]5} with probability at least 1 —n 1. (1.31b)

In conjunction, these two bounds ensure that

T =

1 n
x;)|, and Ty:= sup —Z{Hhﬂé—Prn(l’i)h2<xi)}‘-
heF n

)i

heF*(r

V2 log

V2 log
T4 T < oy 208 ) Emm{r,mf B+ e mew,mf gy oe )

0t:32)

Since the kernel function is x*-bounded, we have 2 min{r?, ;| f*[5:} < [ f*I5 272, 1y <
k2| f*|2;, which together with the assumption o > 2| f*||%, implies that

V2 log (n )02'

I+ T < Z min{r?, ;] f*[3}

j=1

Therefore the bound (1.30) holds.

It remains to prove the bounds (1.31a) and (1.31b). The proofs make use of some
elementary properties of the localized function class F*(r), which we collect here. For any
h € F*(r), we have

o0
h(@)] <10 min{r?, w412, and (1.33)

0 92

2

j:I min{rzﬁ ,U]Hf*Hg{}

< 10, where h = Zj’;l 6,0;. (1.33Db)

See Section 1.7.3 for the proof of these elementary claims.
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1.5.2.2 Proof of inequality (1.31Db)

We begin by analyzing the term 7,. By the triangle inequality, we have the upper bound
Ty < Ts + Ty, where

Ty = sup [P, (X)R2(X)]|, and
hedF*(r)
1 n
Thy == TXh2X - = Tnl’jh?l‘é .
= sup [ Belpe, (OOR(X)] = 235 pr () '}

Note that Ty, is a deterministic quantity, measuring the bias induced by truncation, whereas
Ty, is the supremum of an empirical process. We split our proof into analysis of these two
terms. In particular, we establish the following bounds:

V2 &
Thy < c\|— Z min{r?, p;| f*5}, and (1.34a)
n 4

Z min{r?, u; ] £*]5:} with probability at least 1 —n~'{1.34b)
Combining these two bounds yields the claim (1.31b).

Proof of inequality (1.34a): We begin by proving the claimed upper bound on 7Ts,. Note

that
Too < sup ||} ~ Eq{p(X) < 7} h2(X)]| + 7+ sup |Ep[L{p(X) > 7}h*(X)]

heF*(r) hed*(r)

— sup Eo [1{p(X)>Tn}h2(X)]+Tn- sup Ep[l{p(X)>Tn}h2(X)]‘
hedF*(r) hedF*(r)

<Eq [1p(X) > 7]+ sup (B + 7 Be[L{p(X) > 7] sup [h]2,

hed*(r) heF*(r)

L - V2 -
10 2, min{r?, | ) 47 g - 10 ) minr?, £,
" j=1 n j=1

where the last step follows from a combination of Markov’s inequality, Chebyshev’s inequality,

and the y-norm bound (1.33a). Recalling that 7, = vnV?2, the bound (1.34a) follows.

Proof of the bound (1.34b): We prove the claimed bound on 7%, by first bounding its
mean E[Ty], and then providing a high-probability bound on the deviation Ty, — E[Ty].

Bound on the mean: By a standard symmetrization argument (see e.g., Chapter 4 in the
book [120]), we have the upper bound

E[Ty)] < z E[ sup {Z&pm (z:)h* (2 )}]

n heF*(r) iy
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where {¢;}I , is an i.i.d. sequence of Rademacher variables. Now observe that

n

Z&Pm(%)hZ(%) < sup Z(h,h), where Z(h,h):= ‘Eszpm(xz)%(x,)h(xz) .
heF*(r) =1 h,heF* (1) i—1

Writing h = Z;’il ~j¢j, we have

J

- ‘Z me{r ) \/mln{T27“1||f H%}{Zezpm (2:)¢5 (i) (wz)}‘

8

Z(h, h)

0;{ Z Eifr, (Ti)P; (flfi)h(%‘)}’

Z min{r?, ;] £*5:} - { Z €ipr, (1) 95 (xi)h(xi)}2}1/2’

where the final step follows by combining the Cauchy—Schwarz inequality with the bound (1.33b).
We now repeat the same argument to upper bound the inner term involving A; in particular,
we have

{ZEZPTn ;) o (xi)h(w; } { igzpm (i) ¢J($z>¢k<xl))}2

E
Z {min{r2, uk\\f*]&}(Z Eipr, (%)@(%)%(%))2} '

Putting together the pieces now leads to the upper bound
2 = 9 2 ~
Z €ipr,(x)h"(2;)| < — sup  Z(h,h)

T heg*(r) 133 T heg*(r)

20 c : 2 * |2
< = { X minfe® £ 13}
j=1

. Z min{r?, | £33 ( Z €¢ﬂrn($i)¢j(xi>¢k(xi))2}1/2'

By taking expectations of both sides and applying Jensen’s inequality, we find that

B[] < 2 me{r il £l

' Z min{r?, ju | f*5} Ex.e (2 Eipr, (Ti)®; (%)%(%))2}1/2- (1.35)
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We now observe that

1=

Ex. [(ismm (2:)d; (%‘W(xi))z} -

=1

Ex.. |e2(pr, (@)63(@) 6} (1)

1

<.
I

Ex.[p*(z:)] < nV?,

N
=

1

<.
I

where we have used the fact that [¢;|, < 1 for all j > 1, and that p,, (2;) < p(;).
Substituting this upper bound into our earlier inequality (1.35) yields

V2 G .
E[Ty] <204/ — - > min{r?, ] f*[3}. (1.36)
n o

Bounding the deviation term: Recall that for any h € F*, we have

0
[l < |10 ) min{r?, s £}

J=1

Consequently, we have

hes;%) Eo[1{p(X) < 7, }h*(X)] — po, (:) 0> ()

o0
<107, Y mindr?, ;| £ 3
j=1
o0
= 10\/717‘/22 min{TQ, Mny*”gf}
j=1

In addition, we have

n

hs;l*r() ) Z E [{ Eq[1{p(X) < P X)] — pr, (xl)hg(x,)}2] < h:,;I? ) Z E [(an (Ii))2h4($i)]

0
< 100nV2( Y min{r?, ] £*13:})",
j=1

where we have applied the £,-norm bound (1.33a) as well as the V2-condition on the like-
lihood ratio. These two facts together allow us to apply Talagrand’s concentration results
(cf. Lemma 1.9) and obtain

P |:T2b = E[Tgb] + %:l

t2
<exp | — . (1.37)
< 3000V (372, minr?, oy £+ 3})° + 900VnV2 372 | min{r?, Nj‘f*|32}(}t>
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Completing the proof of the bound (1.34b): We now have the ingredients to complete the
proof of the claim (1.34b). In particular, by combining the upper bound (1.36) on the mean
with the deviation bound (1.37), we find that

V21
Ty < c\/T Z min{r?, u;|f*|3}  with probability at least 1 — n~1°,

as claimed in equation (1.34b).

1.5.2.3 Proof of inequality (1.31a)

Repeating the same

%22;1 &ipr, (i) h(z;))|.
strategy as in the proof of the bound (1.34b), we see that

1(, < /
7y < {10 3 mindr B - (3 () (a)*} (1.38)
j=1

Now we focus on the first term 77 = supjegs(y)

Fix {z;}I_,. We see that (X, &pr, (2:)9; (azzz))2 is a quadratic form of independent sub-
Gaussian random variables. Apply the Hanson-Wright inequality (e.g., Theorem 6.2.1 in the
book [119]) to obtain that with probability at least 1 — n=1%,

n

(D& (@)5(20))" < €50 35 [pr ()5 (0] (1.39)

i=1

[\

It remains to control the term Y7, [pr, (2:);(z;)] .
inequality to arrive at

To this end, we invoke Bernstein’s

n

> [pr (2:)0(2:)]" < B

=1

n

2 [an <x1>¢] Ty ] ] + 04\/@ + 655 logn

=1

with probability exceeding 1 — n~1°. Here,
S 2
o =B Y Var ([, (2)6;(2:)]°) < (nV2)?
i=1
B = sup|[py, (2)¢5(x)]] < 7% = nV?,

are the variance and range statistics, respectively. This together with the upper bound
E [Z?:I [Prn(%)%’(ﬂfi)r] < nV? implies

Zn] [pr(2:)05(2:)]” < conV? log n. (1.40)
=1

Combine the inequalities (1.38), (1.39), and (1.40) to complete the proof of the inequal-
ity (1.31a).
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1.6 Discussion

In this chapter, we study RKHS-based nonparametric regression under covariate shift. In
particular, we focus on two broad families of covariate shift problems: (1) the uniformly
B-bounded family, and (2) the x?-bounded family. For the uniformly B-bounded family, we
prove that the unweighted KRR estimate—with properly chosen regularization parameter—
achieves optimal rate convergence for a large family of RKHSs with regular eigenvalues. In
contrast, the naive constrained kernel regression estimator is provably suboptimal under co-
variate shift. In addition, for the y?-bounded family, we propose a likelihood-ratio-reweighted
KRR with proper truncation that attains the minimax lower bound over this larger family
of covariate shift problems.

Our study is an initial step towards understanding the statistical nature of covariate
shift. Below we single out several interesting directions to pursue in the future. First, it is
of great importance to extend the study to other classes of regression functions, e.g., high
dimensional linear regression, decision trees, etc. Second, while it is natural to measure
discrepancy between source-target pairs using likelihood ratio, this is certainly not the only
possibility. Various measures of discrepancy have been proposed in the literature, and it is
interesting to see what the corresponding optimal procedures are. Thirdly, our upper and
lower bounds match for regular kernels. It is standard in the kernel regression literature
to make an assumption regarding the decay of the kernel eigenvalue sequence [22, 123]. As
highlighted by the corollaries to our main upper bound, the assumption of a regular kernel
is general enough to capture the main examples of kernels used in practice. Additionally,
we emphasize that in this chapter, we have adopted a worst-case perspective where we
study the minimax rate of estimation for a sequence of regular kernel eigenvalues, over all
B-bounded covariate shifts. A more instance-dependent perspective which studies these
minimax rates for a fixed B-bounded covariate shift pair is very interesting and left for
future work. Lastly, on a technical end, it is also interesting to see whether one can remove
the uniform boundedness of the eigenfunctions in the unbounded likelihood ratio case, and
retain the optimal rate of convergence. In the current proof, we mainly use it to develop a
localization bound (1.33a) which guarantees that any function h € 3 that is r-close to f* in
5 sense (roughly) enjoys an £y bound that also scales with r.

1.7 Deferred proofs

1.7.1 Proof of Theorem 1.2

Let 9,, be the smallest positive solution to the inequality ¢ 023@ < 6%, where ¢ > 0 is
some large constant. We decompose the proof into two steps. First, we construct the lower
bound instance, namely the source, target distributions, and the corresponding orthonormal
basis. Second, we apply the Fano method to prove the lower bound.
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Step 1: Constructing the lower bound instance. Let ) be a uniform distribution on
{£1}**°. For the source distribution P, we set it as follows: with probability 1/B, we sample
x uniformly on {£1}*® and with probability 1 — 1/B, we set x = 0. It can be verified that
the pair (P, Q) has B-bounded likelihood ratio. Corresponding to the target distribution @,
we take ¢;(z) = x; for every j = 1. In other words, we consider a linear kernel.

Step 2: Establishing the lower bound. In order to apply Fano’s method, we first need
to construct a packing set of the function class Byc(1). For a given radius r > 0, consider
the r-localized ellipse

o0 92

E(r) = {e@]m@}.

It is straightforward to check that for any 6 € &(r), the function f = 2;021 6,¢; lies in Bg(1).
This set &(r) admits a large packing set in the fo-norm, as claimed in the following lemma.

Lemma 1.3. For any r € (0,6,], there exists a set {0',6%,....0M} = &(r) with log M =
d,/64 such that

2

|07 — 0|3 = = for any distinct pair of indices j # k.

See Lemma 4 in the chapter [123].

Having constructed the packing, we then need to control the pairwise KL divergence.
Fix an index j € [M]. Let P x .%; denote the joint distribution over the observed data
{(z:,vi) }1<i<n When the true function arises from 6. Then for any pair of distinct indices
j # k, we have the upper bound

n L

KL(P x Z1P x %) = 5 - Exop [ (07 = 0)T0(X))*] © 5
(i) 2nr?
= o2B’

67 — 0*[3

where step (i) follows from the definition of P; and step (ii) follows from applying the triangle
inequality, and the fact that |6]s < r for all 0 € &(r).

Consequently, we arrive at the lower bound inf;sup ..y E[| F—7 15] = %, valid for any
sample size satisfying the condition

2nr? 1 d,
log2 < = log M = —" . 1.41
2B T essgloe 128 (1.41)

né2
Bo?
more, since d,, satisfies the lower bound 62 > ¢ UQTB, the condition (1.41) is met by setting

r? = ¢,6? for some sufficiently small constant ¢; > 0.

By the definition of a regular kernel, we have d,, > ¢ for a universal constant c. Further-
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1.7.2 Proof of Theorem 1.3

Let the sample size n > 1 and likelihood ratio bound B > 1 be given. Our failure instance
relies on a function class &, together with a pair of distributions (P, Q). The function class
F, is the unit ball of a RKHS with finite-rank kernel, over the hypercube {—1,+1}". The
kernel is given by (v, 2) := >7_, j1;0;(x)$;(2). The eigenfunctions and eigenvalues are

1

72 forj=1,...,n

¢j(x) = x;, and p; =

To be clear, the function class is given by

Foim (f= Y 005 Z“—f

The target distribution, @, is the uniform distribution on {—1, +1}". The source distribution
is a product distribution, P = ®}_, P;. We take P; to be uniform on {+1,~1}, when j > 1.
On the other hand, the first coordinate follows the distribution
1 1 .
P = (1 - E)do + =Unif({~1,+1))

It is immediate that (P, Q) have B-bounded likelihood ratio.

Given this set-up, our first step is to reduce the lower bound to the separation of a
single coordinate of the parameter associated with the empirical risk minimizer and a single
coordinate of the parameter associated with a hard instance in the function class of interest
F,. We introduce a one-dimensional minimization problem that governs this separation
problem and allows us to establish our result.

1.7.2.1 Reduction to a one dimensional separation problem

To establish our lower bound it suffices to consider the following “hard” function
fhard Z Qhard qb] , Whel"e eﬁard == (1, 0, e ,O) € Rn

Since ¢;(z) = x; and p; = j~2, it follows that f},.4 € F.. We can write ferm(aj) =

Z;L:l(éerm) jzj, where we defined

N n n n 2
Oprm = argmin{ Z Z i — -)2 | Z 9—? <1 } (1.42)
J
i=1 j=1 j=1
Putting these pieces together, we see that

B [fom — 715] = B[ 1 fom — frsal] © B[ 1o~ Gal3] 2B (O —07)°]

(1.43)
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Above, the relation (i) is a consequence of Parseval’s theorem, along with the orthonormality
of {¢;}7_, in L?(Q). Inequality (ii) follows by dropping terms corresponding to indices indices
j > 1. Therefore, in view of display (1.43), it suffices to show that:

A 2 B3 1
p {((é)em)1 —1)’ = cgﬁ} > 2. (1.44)

1.7.2.2 Proof of one-dimensional separation bound (1.44)

We begin with a proof outline.

Proof outline To establish (1.44), we can assume (éerm)l € [0,1]; otherwise, the lower
bound follows trivially, provided ¢, is sufficiently small, in particular, ¢ < {/1/c35. We
introduce a bit of notation:

n n
pi=— Z rix; and v:i=— Z W;iT;.
n “ n “
i=1 i=1

Thus, we can further restrict the empirical risk minimization problem (1.42) to

- n n n 92
0 = argmin{ Z Z T — ] Z <1, e [0, 1]}
=1 gj=1 =1 /LJ
n_ g2
- argmin{ (0 —0)Sp(0 —0%) — 20T (0 — 6%) Z —] <1, 0,€][0,1] } (1.45)
o1 M
Indeed, in order to prove inequality (1.44), it suffices to show that
B3 1
{(91 —1)’ 03n—} = (1.46)

Let us define an auxiliary function g: [0,1] — R, given by

g(t) ;:inf{(e 0TSm0 — 6*) — 20T (0 — 6%) Z—fz <1, let}. (1.47)

— M

By definition (1.45), the choice § minimizes this objective, and therefore infyefo,17 9(t) = g(6h).
The next two lemmas concern the minimum value and minimizer of g. Lemma 1.4, which
we prove in section 1.7.2.5, bounds the minimal value from above. Lemma 1.5, demonstrates
that there is an interval of length order 4/B3/n? on which the function g is bounded away
from the minimal value. We prove this result in Section 1.7.2.6.

Lemma 1.4 (Minimal value of empirical objective). There is a constant ¢* > 0 such that

holds with probability at least 3/4.
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Figure 1.3. Pictorial representation of lower bound argument, separating the first coor-
dinate of empirical risk minimizer, ¢, from the true population minimizer 7. Lemma 1.4
establishes the upper bound, depicted in purple above, on the minimal value of g. Lemma 1.5
establishes an interval, shown between the red dashed line and 6} above, which excludes 6.

This allows us to ensure that 6] and 51 are sufficiently separated.
Lemma 1.5 (Separation from 67). There exists a constant c3 > 0 such that

inf t) > —cF——.
Ju 9ty > =
(1—t)2<c3 B3 /n?

where probability at least 3/4.

Note that the constant ¢* used in Lemmas 1.4 and 1.5 is the same. Thus—after union
bounding over the two error events—with probability at least 1/2,

] inf 1).
g(bh) < nf, g(t)
(1—-t)2<c3 B3 /n?

Recalling that 0, € [0,1], we conclude on this event that (1 — 51)2 > 03]3—23, which fur-
nishes (1.46), and thereby establishes the required result. To complete the proof, it then
remains to establish the auxiliary lemmas stated above. Before doing so, we record a useful
lemma, which will be used multiple times later.
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1.7.2.3 A useful lemma

Lemma 1.6. For any quantity « € (%, %), with probability at least 1 — ¢y exp ( — 02%//22),
one has

Bl/2 1 i (Uj)z _ B1/2 1

~
al/?2n

C

Here ¢y, c,C,c > 0 are absolute constants.

Proof. For each j > 1, define n; = (1 + Biuj)fl. We focus on controlling the term
Z ny [(Vrnws)? = 1] .
=2

Recall from the definition of v that v; = %Z?:l &xi;. Under the construction of the lower

bound instance, we have \/nv; ES (0,1). Therefore y/nv;)> — 1 is a mean-zero sub-

exponential random variable. This allows us to invoke Bernstein’s inequality to obtain

t? t
P >t] <2exp<{ —cmin 35 )
Zj>2 Ty max;n;

where ¢ > 0 is some universal constant.
We claim that there exist three constants C, Cy, C3 > 0 such that

Zn]ﬁj [(Vnv;)? —1]

max 1); < 1; (1.48a)
7j=2,..., n
n B1/2
2 .
D < G (1.48h)
7j=2
Bl/2 n Bl/2
sz < 277]' < C3m (1.48C)
j=2
As a result, we can t = Co% with c¢q sufficiently small to arrive at the desired conclusion.

We are left with proving the claimed relations (1.48). The first relation (1.48a) is trivial.
We provide the proof of the third inequalities (1.48¢); the proof of the middle one (cf. rela-
tion (1.48b)) follows by a similar argument. Since o € (5, 2), we can decompose the sum
into

L\/ B/a] n
1 1

+ ) .
1+ 5 1+ 5=
2 Bri i |\/Bjaj+1

i
j=2

J
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Recall that p; = j72. We thus have 1 > g for j < |v/B/a] and 1 < 5~ for j = |\/B/a].
These allow us to upper bound 77, n; as

- B - 1 B1/?
Z B/Oé + - Z -5 < Cgm

Similarly, we have the lower bound

[\Dlr—\
%
~
&
HUJ
SRS

B;L]

This finishes the proof. n

1.7.2.4 Proof of auxiliary lemmas

In order to facilitate the proofs of these lemmas, it is useful to decompose 6 = (0,6R) €
R x R*"!. Additionally, we consider the constraint set

C(t) == {GRERM|]ZQMJ } where ¢ € [0, 1].

This set plays a key role. In view of definition (1.47), we can write

T T
t—1 1 t—1
= inf ) 2
9(t) GRle%t){[eR] PlQR] lQR] v}7
where above we have used 6* = (1,0,...,0). Finally, we will use the diagonal matrix of
kernel eigenvalues M := diag(u1, pa, - - ., fin), repeatedly.

1.7.2.5 Proof of Lemma 1.4
We show that with probability at least 3/4,

VB B3/2
gw) < —c*——, where w:=14/1- .
n n

(1.49)

When n? > B?, we have w € [0, 1]. Since infyefo179(t) < g(w), the display (1.49) implies the
result.
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Proof of bound (1.49): From the proof of Lemma 1.1, if we set A\ = C’lo% for some
constant C' > 0, then we have

HSp +AM Y < Sp + AM < 3(Zp + AM Y, (1.50)

with probability at least 1 — % Consequently, for any vector § obeying 0T M~10 < 1, we
have the upper bound

@—0) Sp(0—0) =067 (ip 4 AM’l) 0 —0") =A@ 09 M1 —0)

A
2
(0 —0*) Sp(0—0%) + 2,

3
9
- ; O—60")"'Sp(0—0)+Z (-0 M~ (0—0Y
3
9

where the final inequality holds since (6 — 6*)" M~ (9 — 0*) < 4. Applying this result with
the vector 0 = (w,0gr)" yields

(w) < min Slw—l TZ w-1 -2 w1 Tv+2)\
g = OreC 2 QR P QR 9R
RE

Above, we have defined

3 (w—1)° 3 2 T
Ty (w) = 5§ Th(w) = —2v;(w—1), and T5(0R) = §H9RH2 — 2ugHR, (1.52)
and we have used the decomposition v = (v;,vg)". We now bound each of these three terms
in turn.

Controlling the term T)(w): Recall w € [0, 1] satisfies the equality 1 — w? = BZ/Q. Con-
sequently, we have

3 (1 —w)? 3(1—w2)2_§B_2

T = - < - = . 1.53
W =575 <3 B 272 (1.53)
Controlling the term Ty(w):  For the second term, by definition of w, we have
BS/2
Ty (w) =201 (1 — w) < 2v|(1 — w) < 2Jv1|(1 — w?) = 2|vy] - —. (1.54)
n

We have the following lemma to control the size of |v1].
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Lemma 1.7. The following holds true with probability at least 0.99
1 n
- Til| S ——=.
w bt < g
Proof. In view of the construction of the lower bound instance, we can calculate
1< ’ 1
(E;&fﬂzl) ZE i 11 LB
The claim then follows from Chebyshev’s inequality O

Lemma 1.7 demonstrates that |v;| < F’ with probability at least 99/100. Therefore,
on this event, the bound (1.54) guarantees

B
Ty(w) < 20—

7 (1.55)
Controlling the term 73(6,):

Our final step is to upper bound the constrained minimum

min T3(0R). Since this minimization problem is strictly feasible, Lagrange duality guarantees
RE
that

' ‘ 3 B B3/2
rerséreng(HR) = minmax {—|9R||§ — 2080R + E(OR MR "0r — - )}

Mg B2

The inner minimum is achieved at fg = [21 + §M_1]_1
equality

VR, so that we have established the

min 73(6r) = max {—533/2 -
OreC

— g [§I+§M_l]_lv } max B3/2 i
£20 " R L2 R R £20 = % £

It remains to analyze the maximum over the dual variable &, and we split the analysis
into two cases.

e Case 1: First, suppose that the maximum is achieved at some £* > % In this case, we
have

n
B3ﬂ
max
£20 { 5 Z

mlw

n n

} e B3/2 B1/2
* < )
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e Case 2: Otherwise, we may assume that the maximum achieved at some £* € [0, 5],
in which case we have

n 2

U.
ma(%({—fBZm - ( J)§
> S
¢ =2t

n n
(vy) (v;)? B'?
< — - < — < — ,
} Z%+a Z%Jr; “

where ¢ > 0 is a constant. Here in view of Lemma 1.6, the last inequality holds with
probability at least 0.9 as long as B is sufficiently large.

N

J

Combining the two cases, we arrive at the conclusion that as long as B is sufficiently large,
with probability at least 0.9,
B1/2

n

min73(6r) < —c; (1.56)
OreC

for some constant ¢; > O.

Completing the proof: We can now combine bounds (1.53), (1.55), and (1.56) on the
terms T}, T, Ty, respectively. Note that when n > 7B%2 > 7, all three events and the upper
bound (1.51) hold simultaneously, with probability 1 — ( + 55 + 15) = 3/4. Therefore, we
obtain

3 B? B BY? logn
g(w)<§F+20W—clT—|—C’ n
c Bl/2
< —— .
2 n

The final inequality above holds, since B > ¢;(logn)? and n > 7B%?2, for sufficiently large
c > 0.

1.7.2.6 Proof of Lemma 1.5

We will prove the slightly stronger claim that with probability at least 3/4, we have

inf t) > —c*~= 1.57
nf g(t) > —c"— (1.57)
|- 12<BBY2/n

Y

To see that this proves the claim, note that supcf 1 % = 4 Therefore, if (1—1)% < %25—3

then (1 —%)2 < 425;. Hence, (1.57) proves the claim as soon as ¢z = 32/4.
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Proof of bound (1.57): On the event (1.50), if § = (6;,0r)" obeys 6T M 10 < 1, then we
have the lower bound

> % O —0)" (Sp+AM YO —6)—AO—6) M(6—6")
= %(9 —0) Sp(0—6") — % 0 —6°)" M6 -6
> %(9 —0") Sp (0 —0%) — 2],

valid when A = C' 10% for some constant C' > 0. Consequently, we have

g(61) = min | {% 0—6")"Sp(0—07)—2(0—60")" v— 2/\}

OreC (61
. 1(6; —1) Lo o T
= (0, — 1) + =|0R]? — 20%0R — 2
i {5 g 201+ el 2k
1
> —Th(6;) — 2\ in {=|0r]? — 2vL0R}. 1.
5(61) +9Rr§;(gl){2|| Rz — 2vR0R} (1.58)

where the last line identifies —2v,(0; — 1) with T5(6) (cf. definition (1.52)).
We separate the proof into two cases—mainly to get around the duality issue.

Case 1: 6; = 1. In this case, we have

201
g(0) > —2x — _2clo8m.

n

Case 2: 0, €[0,1). We lower bound the terms in equation (1.58) in turn.

B3/2
n

e Lower bounding 75(6;). For any 0 < 1 — 62 < 32—, the following relation

(@) (i) B
T5(601) = =2|v1] - |61 — 1| = —2]vy]| - (1 _ g%) > _205W

holds with probability at least 0.99. Here step (i) uses the fact that

00— 1| =1—4/1—-(1-6?)]<1-0] forall 6, €l0,1],

and step (ii) relies on Lemma 1.7 and the constraint 1 — 62 < 322,

n
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e Lower bounding ming.ce(,){3/0r[3 — 2050r}. When 6; € [0, 1), the constraint set
C’(#1) has non-empty interior, and the minimization over 0g is strictly feasible. In this
case, strict duality holds so that

OreC’ (0

mln { HGRHZ QUI;I—QR} = Ilglilg( {—5(1 - 9%) _

1/3

1 92 =
n2/3 Z

le

,Uj

Here the second line arises from a particular choice of £, namely £ = (n(1 — 0%))72/ i
Since 1 — 02 < ﬁ%p, we further have

_<1—e%>”3_i () BB e (@)

2/3 B —2/3 = 2/3
n =21y (n(1 fz)) n =214 (5332)
1 1
" i 2T rB,
_Rl3R12
> _06—37
n

where C' > 0 is a constant. Here, since B is sufficiently large, Lemma 1.6 guarantees
that the last inequality holds with probability at least 0.9.

Combining the two cases above, we arrive at the conclusion that for any 1 — 62 < 533/2

lo n ﬁl/gBl/Q
9(6,) = 20572*20 & .

Under the assumptions that B > Cj(logn)? and n > CoB%? for some sufficiently large
constants C7, Cy > 0, we can choose [ sufficiently small so as to make sure that

B1/2 B3/2

9(61) = —c* forall 1-62<p
n

n

1.7.3 Proofs of the bounds (1.33)

By definition, any function h € F* obeys |h|s < 3|f*[sc. In terms of the expansion h =
3721 0;¢;, this constraint is equivalent to the bound Y772, 6%/u; < 9] f*[. In addition, the
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o0 02

i=1 9 r2. In conjunction, these two inequalities imply

constraint ||h|g < r implies that )
that

S s
J

= min{r?, u;| f*5}

as claimed in inequality (1.33b).
We now use this inequality to establish the bound (1.33a). For any x € X, we have

9= | S 000 = | X oy VRl Bl

=

— min{r?, ju; f+[ 7}

~

(

A

S minfr2, £ 3} 63 2)
j=1

—~

i) X
< |10 2 min{r2, p;]| f*3}-

Here step (i) uses the Cauchy—Schwarz inequality, whereas step (ii) follows from the previous
claim (1.33b) and the assumption that |¢;(z)| <1 for all j > 1.

1.7.4 Performance guarantees for LR-reweighted KRR

In this section, we present the performance guarantee for the LR-reweighted KRR estimate
with truncation for all ranges of o2.
Similar to the large noise regime, we define

Mnew<5) — Co\/UQVQ 17(L)g3(n)\11(6’ M) <\/% + 1) .

Our theorem applies to any solution "% > 0 to the inequality M"W(§) < §2/2.

Theorem 1.5. Consider a kernel with sup-norm bounded eigenfunctions (1.16), and a

source-target pair with Ep[p?(X)] < V2. Then the estimate [ with truncation 7, = V/nV?
and regularization \|f*|3 = 02/3 satisfies the bound

| = 1113 < 6,

with probability at least 1 — cn=10.

Proof. Inspecting the proof of Theorem 1.4 (in particular, equation (1.32)), one has with
high probability that

sup {9 = £+ 3 o ) [(F ) ) — (ale) — )]} <200,

969(6 ) ’L 1

Repeating the analysis in Section 1.5.2 with §, = ¢, yields the desired claim. m
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1.7.5 Expectation bounds for KRR estimates

In this section, we derive expectation bounds as counterparts to our previous high probability
upper bounds on the KRR estimates. In Section 1.7.5.1, we present an expectation bound
for instances with bounded likelihood ratios, essentially as a consequence of our previous
high probability statement, given in Theorem 1.1. Similarly, in Section 1.7.5.3, we present
an expectation bound for instances which have possibly unbounded likelihood ratios, but for
which the second moment of the likelihood ratios is bounded. Again, this can be seen as
an extension of our previous high-probability statement on the truncated, reweighted KRR
estimator, as stated in Theorem 1.4.

1.7.5.1 Bounded likelihood ratio

Theorem 1.6. Consider a covariate-shifted regression problem with likelihood ratio that is
B-bounded (1.2) over a Hilbert space with a k-uniformly bounded kernel (1.7). There are
universal constants c1,co > 0 such that if X\ > 01@, the KRR estimate fy satisfies the
bound

~ 2p & , o2
B[I7 - f18] < 2 { MBI+ b+ 2L
(173 = F*15] < cx B I3 + — Z Y R
Inspecting the proof, one may take ¢; = 32, ¢y = %. The proof of this result is presented in

Section 1.7.5.2.
An immediate consequence is the following result for regular kernels. Note that it matches
our lower bound (see Theorem 1.2), apart from logarithmic factors.

Corollary 1.3. Suppose 0* > r% and | f*||sc = 1. For any B = 1 and any pair (P, Q) with
B-bounded likelihood ratio (1.2), any orthonormal basis {¢;};=1 of L*(Q), and any regular
sequence of kernel eigenvalues {p;};=1, there exist a universal constant C' > 0 such that

. , 1
E[|f—f13] < C inf {6 +0*Bd(6) == |,

a2 Bd(8,) logn
n

where above \ = 62 where 62 = ¢ for a universal constant ¢ > 0.

Proof. Following the proof of Corollary 1.1, we obtain from the KRR risk bound of Theo-

rem 1.0,
logn

E [Hﬁ\ - f*”QQ]] < 01{52 + 0> Bd(6) }, where 6% = \B,

n

for any 62 > clB/-@Qlo%. Adjusting constants so that ¢ > ¢, our choice of §2 is valid since

0? > k% and d(6,) = 1. Moreover, since 6% is an increasing function of §, whereas d(¢) is

a2 Bd(8,) logn
n

nonincreasing, under the choice of §2 = ¢ , we have

logn

{53 + 0% Bd(3,) =% } < Cyin {52 + JQBd(é)loi ”}
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for a universal constant Cy > 0. Note that this inequality completes the proof of the result,

1.7.5.2 Proof of Theorem 1.6

Using Parseval’s theorem and the optimality conditions for the KRR problem as given in
equation (1.23), we have E[| fx — f*|3] < E[T1] + E[T3] where

= IAMEp + AM Y TIM T2, and Ty = ||(Sp + AM ! Zf@ z))|2.

Recall the event

E(N) = {Ml/QiPMl/2 FAL = S(MYVPERMY2 4 ) }

2

as defined in equation (1.21). We use this event to bound the two terms.

Bound for 7} Inspecting the proof of Theorem 1.1 (specifically, see the proof of bound (1.24)(a)),
it follows that E[Ti1¢\] < 2AB|f*|3. On the other hand, from inequality (ii) of the proof
of (1.24)(a), it also holds that

E[Tile)e] < |51 M lop P(E(A)) < [f*3es™ P(E(A))-

The final inequality holds since ||M||o, < Tr(M) = Eq[XS; 11;¢3(x)] < #°. Now, note that
whenever n\ > 32x?logn, by Lemma 1.1 we have that

E[Tile)] < |5 P(E(N))

28)\Hf |%[(72)26XP (- 1222)]

< A e
Putting the pieces together, we obtain
BIT < 2 A3
SERDLTI

Bound for 75 By considering the expectation over &; conditional on the covariates and
following algebraic manipulations similar to the proof of bound (1.24)(b), we have

2
E[T,] < E[T3], where T5:=Tr (U—(EP I )\]\/[’1)*1).
n
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Moreover, inspecting the proof of bound (1.24)(b), we also have

E[Ty1 ]<2UQB§] at
2RENT S n ,uj+)\B'

j=1
On the other hand, by bounding (Sp + AM 1)1 < A~1M,
~ o? K?
B[Tpleoye] < — PEN) < e

The final inequality above is established in the same manner as in the proof of the bound
for T} above, when n)\ > 32k logn. Thus, combining the two bounds,

0’B & 7 o?
E[T5]) <2 J + ——.
[72] n ZujJr)\B 256 n

j=1

1.7.5.3 Unbounded likelihood ratio

Theorem 1.7. Suppose 0 = k% and ||f*|sc = 1. Consider a kernel with sup-norm bounded
eigenfunctions (1.16), and a source-target pair with Ep[p?(X)] < V2. Then, for any or-
thonormal basis {¢;}j=1 of L*(Q) and any regular sequence of kernel eigenvalues {i1;}=1,
there exists a universal constant C > 0 such that,

B[l ria] < o+ v 7).

Above, 3\ = 6% where 62 satisfies the equation 6% = c@ for a universal constant ¢ > 0.

Before giving the proof, we emphasize that—apart from logarithmic factors—this bound
is minimax optimal.

1

Proof. By Theorem 1.4, there is an event & which has probability at least 1 — en™!% such

that the truncated, reweighted estimator f)r\w satisfies

I = flG < exd?,

o2V 2 log?(n)d(9)
n

provided we select A = §2 = . Note that under this choice of §2, we have

a2V ?log®(n)d(9) }

52 = inf {52 n
n

6>0

Consequently, there is a constant ¢y > 0 such that

o2V21og®(n)d(0) }

EIf - 13| < inf {62+ FE[IR - FRLe] 59)
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By Cauchy-Schwarz,
A = £1% < 821 = 5 < 2621+ 1A 15)-

Applying the optimality condition of the reweighted estimator f/{w, we have
~ 1 &
AMBY e < A+ VnV2= &,
i

Therefore, combining the previous two displays,

P VnV2 1 &
I = £ < 2w (24 22 3 2)).
n 4
It then follows by Cauchy-Schwarz and the sub-Gaussianity of &;, that for some constant
C3 > 0,
2

A K o2V?
B|IA = S| < (i + )

G o2V /1 k2 1
0,7V
n \n

9 A n3
@ o2V2/1 Cy
< Cc3 <—9 + —2)
n n n
(i)  g2V?
< ¢s

Above, inequality (i) uses 0% = k% and V? > 1. Inequality (ii) uses the fact that A = 6% =
M . Finally, inequality (iii) follows by defining c¢5 > ¢3(1 + ¢4). This bound
furnlshes the result since by applying it to the inequality (1.59), we obtain the result with

C =cy+cs. O

1.7.6 Performance of unweighted KRR with unbounded
likelihood ratios

In this section, we present the performance guarantee of the unweighted KRR estimator
when the likelihood ratios are unbounded.

Theorem 1.8. Consider a covariate-shifted regression problem with likelihood ratios obeying
Ep[p?(X)] < V2. Then for any A = 10k?/n, the KRR estimate fy satisfies the bound
2

K
A

o?logn

1Fx = F15 < 2VAV2R2) |2 + 40

with probability at least 1 — 28 “726_% — ﬁ
Simple algebra shows that the unweighted KRR estimator is still consistent for estima-
. . . 212 . .
tion under covariate shift, with a rate of (=-)"® (ignoring x* and log factors). However,
unfortunately, this is far from optimal.
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1.7.7 Proof of Theorem 1.8
In view of the proof of Theorem 1.1, we know that

[fx = £ < AMF* 3D 2 (M 22 p M2 4 XD MY o

+400210gn

Tr (MY2(M25pMY2 4 A1) M2)
n

holds with probability at least 1 — 28 “—;e*% — ﬁ The proof is finished with the help of
the following two bounds:

1/2/ 1 r1/2 1/2 —1qs1/2 1 [V2k?
M2V D)Mo < [ (1.60a)
2
Tr <M1/2(M1/2ZPM1/2 + AI)*1M1/2> < ’% (1.60b)

Proof of the bound (1.60b):  Note that MY2(MY2SpMY2 + XI)"*MYV2 < A7'M. We
therefore have

2
Tr (Ml/z(Ml/zEle/Q + AI)‘1M1/2> < Tr(\'M) < %
where the last relation uses the fact that Tr(M) < %

Proof of the bound (1.60a):  We first make the observation that the bound (1.60a) is

equivalent to
» )
Yp+ M =2 V%ZI' (1.61)

Therefore from now on, we focus on establishing the bound (1.61). Take an arbitrary vector
0 with |[0], = 1. We have

1= (613 2 Eo[(676(X))?] Y Epfp(X) - (676(X))]

(ig‘) Ep[2(X)] - \/EP[(9T¢(X))4]
@ /3. \/Ep[(0T¢(X))4]-

Here, the identity (i) follows from the fact that Eg[¢(X)p(X)T] = I, the relation (ii) changes
the measure from @ to P, the inequality (i) is due to Cauchy-Schwarz, and the equality
(iv) uses the definition of V2. Apply the Cauchy-Schwarz inequality again to obtain

(0T¢(X))? < [M120]5 - [ Mo (X)|5 < w2 |M 1203,
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where the second inequality relies on the fact that sup, |M2¢(z)|? < 2. Take the above
inequalities together to yield

1

Z Vegz. (0TM—10) for any ¢ with 0] = 1.

Ep[(07¢(X))*]

As a result, one has

1 [ A
T -1 Trr—1
6" (Xp + A\M )9>V2/<;2-(9TM*19)+)‘9M 0=>2 Pk

Since this inequality holds for any unit-norm 6, we establish the claim (1.61).

1.7.8 Auxiliary lemmas

The following lemma provides concentration inequalities for the sum of independent self-
adjoint operators, which appeared in the work [85].

Lemma 1.8. Let Z1,Zs,...,Z, be i.i.d. self-adjoint operators on a separable Hilbert space.
Assume that E[Z,] = 0, and || Z1||op < L for some L > 0. Let V be a positive trace-class
operator such that E[Z2] <V, and ||E[Z?]||op < R. Then one has

1 28 Tr (V) nt2/2
p (|E;Z,|Op > t> <= e ( m), for all t = \/R/n + L)(3n).
Next, we turn attention to bounding the maxima of empirical processes. Let X7, Xo, ..., X,
be independent random variables. Let F be a countable class of functions uniformly bounded
by b. Assume that for all 7 and all f € F, E[f(X;)] = 0. We are interested in control-
ling the random variable Z = sup;.s >, | f(X;), for which the variance statistics v® =
sup reg B[D 0 (f(X;))?] is crucial. Now we are in position to state the classical Talagrand’s

concentration inequalities; see the paper [66].

Lemma 1.9. For allt > 0, we have

t2
P(Z =2 E[Z] +1) < exp ( - 202+ WE[Z]) + 3vt>'
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Chapter 2

Covariate shift over Holder
smoothness classes

2.1 Introduction

In the standard formulation of prediction or classification, future data (as represented by
a test set) is assumed to be drawn from the same distribution as the training data. This
assumption, while theoretically convenient, may fail to hold in many real-world scenarios. For
instance, training data might be collected only from a sub-group within a broader population
(such as in medical trials), or the environment might change over time as data are collected.
Such scenarios result in a distribution mismatch between the training and test data.

In this chapter, we study an important case of such distribution mismatch—namely,
the covariate shift problem (e.g., [105, 98]). Suppose that a statistician observes covariate-
response pairs (X,Y), and wishes to build a prediction rule. In the problem of covariate
shift, the distribution of the covariates X is allowed to change between the training and
test data, while the posterior distribution of the responses (namely, Y | X) remains fixed.
Compared to the usual i.i.d. setting, this serves as a more accurate model for a variety
of real-world applications, including image classification [102], biomedical engineering [74],
sentiment analysis [13], and audio processing [56], among many others.

More formally, suppose that the statistician observes np covariates {X;}*, from a source
distribution P, and ng covariates {Xi}?fnJrPnfl from a target distribution (). For each observed
X;, she also observes a response Y; drawn from the same conditional distribution. The
regression function f*(x) = E[Y | z] defined by this conditional distribution is assumed to
lie in some function class F. The statistician uses these samples to produce an estimate j? ,
which will be evaluated on the target distribution, with a fresh sample X ~ @, yielding the
mean-squared error

N * ry * 2
I = 3 = B [ (FO0 = ()7,
When there is no covariate shift, the fundamental (minimax) risks for this problem are well-
understood [55, 60, 110]. The goal of this chapter is to understand how, for nonparametric
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function classes &, this minimax risk changes as a function of the “amount” of covariate shift
between P and Q).

2.1.1 Contributions and related work

Let us summarize the main contributions of this chapter, and put them in the context of
related work.

Contributions. We introduce a similarity measure! p, between two probability measures
P, @ on a common metric space (X, d). For any level h > 0, it is defined as

on(P,Q) — f L 1), (2.1)

where B(z, h) == {2’ € X | d(z,2") < h} is the closed ball of radius h centered around z. We
substantiate the significance of this similarity measure via the following contributions:

(i) For regression functions that are Holder continuous, we demonstrate a performance
guarantee for the Nadaraya-Watson kernel estimator under covariate shift that is fully

determined by the scaling of the similarity measure p, (P, Q) with respect to the radius
h.

(ii) We complement these upper bounds with matching lower bounds—in a minimax
sense—demonstrating that the best achievable rate of estimation in Holder classes
is also determined by the scaling of this similarity measure.

(iii) We show how the similarity measure py, can be controlled based on the metric properties
of the space X. In addition, we compare p, with existing notions for covariate shift
(e.g., bounded likelihood ratios, transfer exponents), thereby showcasing some of its
advantages.

Related work. The problem of covariate shift was studied in the seminal work by Shi-
modaira [105], who provided asymptotic guarantees for a weighted maximum likelihood es-
timator under covariate shift. Since then, a plethora of work has analyzed covariate shift, or
the general distribution mismatch problem (also referred to as domain adaptation or transfer
learning).

For general distribution mismatch, one line of work provides rates that depend on distance
metrics between the source-target pair (e.g., [6, 7, 45, 79, 28, 86]). These results hold under
fairly general conditions, but do not necessarily guarantee consistency as the sample size
n increases. In contrast, our guarantees for covariate shift do guarantee consistency, and

ITo be clear, this quantity actually serves as a dis-similarity measure: as shown in the sequel, source-
target pairs (P, Q) with larger values pp (P, Q) lead to “harder” estimation problems in terms of covariate
shift.
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moreover, we provide explicit nonasymptotic, optimal nonparametric rates. As pointed out
in the paper [69], the distribution mismatch problem is asymmetric in the sense that it may
be easier to estimate accurately when dealing with covariate shift from P to @) than from @
to P. Our results also corroborate this intuition. It is worth noting that these prior distance
metrics fall short of capturing the inherent asymmetry between P and Q.

Another line of work addresses covariate shift under conditions on the likelihood ra-
tio dQ)/dP. For instance, some authors have obtained results for bounded likelihood ra-
tios [113, 68] or in terms of information-theoretic divergences between the source-target
pair [112; 80]. Our work is inspired in part by the work of Kpotufe and Martinet [69],
who introduced the notion of the transfer exponent. It is a condition that bounds the mass
placed by the pair (P, Q) on balls of varying radii; using this notion, they analyzed various
problems of nonparametric classification. Our work, focusing instead on nonparametric re-
gression problems and using the measure py,, provides sharper rates than those obtainable by
considering the transfer exponent; see Section 2.3.2 for details. Thus, the similarity measure
pr provides a more fine-grained control on the effect of covariate shift on nonparametric
regression.

Finally, it is worth mentioning other recent works that give risk bounds for covariate
shift problems, including on linear models [73], as well as linear models and one-layer neu-
ral networks [90]. Although these results deal with covariate shift, the rates obtained are
parametric ones, and hence not directly comparable to the nonparametric rates that are the
focus of our inquiry.

2.1.2 Notation

Here we collect notation used throughout the chapter. We use R to denote the real numbers.
We use (X, d) to denote a metric space, and we equip it with the usual Borel o-algebra. We
let B(z,7) = {2’ € X | d(z,2') < r} be the closed ball of radius r centered at z. We reserve
the capital letters X, Y, possibly with subscripts, for a pair of random variables arising from
a regression model. Similarly, we reserve P, () for a pair of two probability measures on
(X,d). For h > 0, we denote by N(h) the covering number of X at resolution A in the metric
d. This is the minimal number of balls of radius at most h > 0 required to cover the space X.

The remainder of this chapter is organized as follows. We begin in Section 2.2 by setting
up the problem more precisely, and stating and discussing our main results on covariate
shift: namely, upper bounds in Theorem 2.1, accompanied by matching lower bounds in
Theorem 2.2. These results establish that the similarity measure (2.1) provides a useful
measure of the “difficulty” of source-target pairs in covariate shift; accordingly, Section 2.3
is devoted to a comparison and discussion of this measure relevant to concepts from past
work, including likelihood ratio bounds and transfer exponents. The proofs of all our results
are given in Section 2.4, and we conclude with a discussion in Section 2.5.
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2.2 Characterizing Holder-smooth regression under
covariate shift

In this section, we use the similarity measure introduced in equation (2.1) to characterize
how covariate shift can change the minimax risks of estimation for certain classes of non-
parametric regression models. We begin in Section 2.2.1 by setting up the observation model
to be considered, along with some associated assumptions on the regression function f*, the
conditional distribution of ¥ | X, and the covariate shift. In Section 2.2.2, we derive an
achievable result (Theorem 2.1) for nonparametric regression in the presence of covariate
shift, in particular via a careful analysis of the classical Nadaraya-Watson estimator. Our
upper bound in this section is general, and illustrates the key role of the similarity mea-
sure pp. In Section 2.2.3, we introduce the a-families of source-target pairs (P, @), and
use Theorem 2.1 to derive achievable results for these families. In Section 2.2.4, we state
some complementary lower bounds for a-families (Theorem 2.2), showing that our achievable
results are, in fact, unimprovable.

2.2.1 Observation model and assumptions

Suppose that we observe covariate-response pairs {(X;,Y;)}"; < X x R that are drawn
from nonparametric regression model of the following type. The conditional distribution of
Y | X is the same for all i = 1,...,n, and our goal is to estimate the regression function
f*(z) = E[Y | X = z]. In terms of the “noise” variables, w; = Y; — f*(X;), the observations
can be written in the form

YVi=f(X)+w;, i=1,...,n (2.2)

In our analysis, we impose three types of regularity conditions: (i) Holder continuity of the
regression function; (ii) the type of covariate shift allowed; and (iii) tail conditions on the
noise variables {w;}! ;.

Assumption 2.1 (Holder continuity). For some L > 0 and g € (0, 1], the function f*: X —
R is (5, L)-Holder continuous, meaning that

()= f1()| < L[d(22)])°, forany z,2 € X.
We note that in the special case 8 = 1, the function f* is L-Lipschitz.

Assumption 2.2 (Covariate shift). The covariates Xi, ..., X, are independent, and drawn
as N .
X1, ..., X, W4 p o and KXopt1y -+ Xnping 1'351'62 where n = np + ng.

Assumption 2.3 (Noise assumption). The variables {w;}! ; satisfy the second moment
bound

2

supE[wﬂXi:x]ga fori=1,...,n.
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Note that by construction, the variables w; are (conditionally) centered. Assumption 2.3
also allows w; to depend on Xj;, as long as the variance is uniformly bounded above.

2.2.2 Achievable performance via the Nadaraya-Watson
estimator

We first exhibit an achievable result for the problem of nonparametric regression in the
presence of covariate shift. We do so by analyzing a classical and simple method for non-
parametric estimation, namely the Nadaraya-Watson estimator [91, 122], or NW for short.
The main result of this section is to show that the mean-squared error (MSE) of the NW
estimator is upper bounded by a bias-variance decomposition that also involves the similarity
measure py.

We begin by recalling the definition of the NW estimator, focusing here on the version
in which the underlying kernel is uniform over a ball of a given bandwidth A, > 0. In
particular, define the set

5, | JB(X0h)
=1

corresponding to the set of points in X within distance h, of the observed covariates. In
terms of this set, the Nadaraya-Watson estimator f takes the form

i1 Yil{X; € B(z, hn)}

flz) =4 2in H{Xi € B(x, hn)}

0 otherwise.

forx e §G,

Our first main result provides an upper bound on the MSE of the NW estimator under
covariate shift; this bound exhibits the significance of the similarity measure (2.1). It involves
the distribution p,, = =P + nTQQ, which is a convex combination of the source and target
distributions weighted by their respective fractions of samples.

Theorem 2.1. Suppose that Assumptions 2.1, 2.2, and 2.3 hold. For any h, > 0, the
Nadaraya-Watson estimator f with bandwidth h,, has MSE bounded as

B|f-f*

* |2 2
2 2728 If 5 + o
2@ S C“{L o+

o (1 @)} (23)

where ¢, > 0 is a numerical constant.

See Section 2.4.1 for a proof of this result.

Note that the bound (2.3) exhibits a type of bias-variance trade-off, one that controls
the optimal choice of bandwidth h,,. The quantity h?® in the first term is familiar from the
classical analysis of the NW estimator; it corresponds to the bias induced by smoothing over
balls of radius h,, and hence is an increasing function of bandwidth. In the second term, the
bandwidth appears in the similarity measure py,, (f,, @), which is a non-increasing function
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of the bandwidth. The optimal choice of bandwidth arises from optimizing this tradeoff; note
that it depends on the pair (P, Q), as well as the sample sizes (np,ng), via the similarity
measure applied to the convex combination p, and Q.

No covariate shift: As a sanity check, it is worth checking that the bound (2.3) recovers
known results in the case of no covariate shift (P = ) and hence p,, = Q). As a concrete
example, if Q is uniform on the hypercube [0, 1]*, it can be verified that p,(Q,Q) = h~F
as h — 0%. (See Example 2.2 in the sequel for a more general calculation that implies this

fact.) Thus, if we track only the sample size, the optimal bandwidth is given by k¥ = nfﬁ,
and with this choice, the bound (2.3) implies that the NW estimator has MSE bounded as

__26 . . . . .
n_ 25+k, Thus, we recover the classical and known results in this special case. As we will see,
more interesting tradeoffs arise in the presence of covariate shift, so that u, # Q.

2.2.3 Consequences for a-families of source-target pairs

In order to better understand the bias-variance tradeoff in the bound (2.3) in the presence
of covariate shift, it is helpful to derive some explicit consequences of Theorem 2.1 for a
particular function class F, along with certain families of source-target pairs (P, Q). The
latter families are indexed by a parameter a > 0 that controls the amount of covariate shift;
accordingly, we refer to them as a-families.

So as to simplify our presentation, we assume that X is the unit interval [0,1]. For a
given pair 3 € (0,1] and L > 0, consider the class of regression functions

F(B,L) = {f [0,1] = R | |f(z) — f(2')| < Llz — 2| for all 2,2’ € X, f(0) = O}.

This is a special case of S-Holder continuous functions when the underlying metric space is
the unit interval [0, 1] equipped with the absolute value norm. The additional constraint
f(0) = 0 ensures that this class has finite metric entropy.

Next we introduce some interesting families of source-target pairs.

a-families of (P, Q) pairs: For a given parameter a > 1 and radius C' > 1, we define the
set of source-target pairs?

D(e, C) = {(P, Q)| sup h%pn(P,Q) < C}. (2.4a)

0<h<l

In words, these are source target pairs for which the growth of the similarity as h — 07 is
at most h~*. In the case a € (0, 1], we define the related set

D'(a,C) = { (P.Q)| sup h*p(P,Q) < C. sup pn(Q.Q) < C},

0<h<A 0<h<1

2Note that the restriction of the supremum to h € [0, 1] is necessary, as pj, (P, Q) = 1 for all h > 1. Note
also that since p1(P, Q) = 1, one necessarily has C' > 1.
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where the additional condition is added to address the fact that even without covariate
shift, the rate n=2%/(28+1) is unimprovable for some distributions [110]. Taking into account

the first part of the next corollary, it is necessary to impose some condition on the target
_ 28
distribution in order to obtain significantly faster rates such as n 28+ta when o < 1.

Corollary 2.1. Suppose that o > L, and that Assumptions 2.2 and 2.3 hold. Then there
exists a constant ¢, > 0, independent of n,np,ng,o?, and an integer n, = n,(o, 3, L,a, C)
such that, provided that max{np,ng} = n

(a) Fora>1 and C =1, we have

28+1

| < ’{(Z_I;) 2h+a 4 (Z—g)} B for any (P,Q) € D(a, C).
(2.5a)

inf
F o e3(8.L)

(b) For a e (0,1] and C = 1, we have

inf
f freF(s,L)

< {(2_5)2;% + (7;_2)}1 for any (P, Q) € D'(a, C).

See Section 2.4.2 for a proof of this corollary.

Let us discuss the bound (2.5a) to gain some intuition. The special case of no covariate

28
shift can be captured by setting np = 0 and ng > 0, and we recover the familiar n~ 25+%
rate previously discussed. At the other extreme, suppose that ng = 0 so that all of our
samples are from the shifted distribution (i.e., n = np); in this case, the MSE is bounded as

(02/n)~ e, As a increases, our set-up allows for more severe form of covariate shift, and
its deleterious effect is witnessed by the exponent m shrinking towards zero. Thus, the
NW estimator—with an appropriate choice of bandwidth—remains consistent but with an

arbitrarily slow rate as a diverges to +o0.

There are many papers in the literature (e.g., [113, 68]) that discuss the covariate shift
problem when the likelihood ratio is bounded—that is, when @ is absolutely continuous
with respect to P and sup,.y %(x) < b for some b > 1. We say that the pair (P, Q) are
b-bounded in this case.

Example 2.1 (Bounded likelihood ratio). Suppose that X = [0,1]? with the Euclidean
metric, and consider a pair (P, Q) with b-bounded likelihood ratio. In this special case, our
general theory yields bounds in terms of the b-weighted effective sample size

n
neﬁ(b) = 713 + ng.
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In particular, it follows from the proof of Corollary 2.1 that in the regime 02 > L?, we have

the upper bound
2 _28
<)
u neff(b) ’

provided that n.g(b) is large enough. Consequently, the effect of covariate shift with b-

26
bounded pairs is to reduce np to np/b. Again, we recover the standard rate (Z- )2f3+d in the
case of no covariate shift (or equivalently, when b = 1). This recovers a known result and is
minimax optimal. &

2.2.4 Matching lower bounds for a-families

Thus far, we have seen that the similarity measure p; plays a central role in determining
the estimation error of the NW estimator under covariate shift. However, this is just one of
many possible estimators in nonparametric regression. Does this similarity measure play a
more fundamental role? In this section, we answer this question in the affirmative by proving
minimax lower bounds for covariate shift problems parameterized in terms of bounds on pj,.
In order to do so, we consider the metric space X = [0, 1] equipped with the absolute value
as the metric.

The main result of this section provides lower bounds on the mean-squared error of any
estimator, when measured uniformly over functions in the Holder class (3, L), along with
target-source pairs (P, Q) belonging to the class D(«, C') when « > 1 and the class D'(«, C')
when o < 1.

Theorem 2.2. Suppose that Assumptions 2.2 and 2.3 hold. Then there is a constant ¢, > 0,
independent of n,np,ng,o?, and an integer ny == ny(o, L,C,a, B) such that for all sample
sizes max{np,ng} = ne:

(a) Fora>1 and C =1, there is a pair of distributions (P, Q) € D(«, C) such that

28+1

__2B8
- ce{(z_g)zm + (2 (2.6a)

o2

inf
f f*eF(8,L)

(b) Fora <1 and C =1, there is a pair of distributions (P,Q) € D'(a, C) such that

np 28 ng -1
— )26+« —=
ot s BIF- T > o{ G5 + ()

See Sections 2.4.3 and 2.4.4 for the proof of this result.

These lower bounds should be compared to Corollary 2.1. This comparison shows that
the MSE bounds achieved by the NW estimator are actually optimal in the minimax sense
over families defined by the similarity measure py,.
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2.3 Properties of the similarity measure

In the previous sections, we have seen that the similarity measure p; controls both the
behavior of the NW estimator, as well as fundamental (minimax) risks applicable to any
estimator. Thus, it is natural to explore the similarity measure in some more detail, and in
particular to draw some connections to existing notions in the literature.

2.3.1 Controlling p; via covering numbers

We start with a general way of controlling the similarity measure pj,, which is based on the
covering number of the metric space (X, d). In particular, for any h > 0, the covering number
N(h) is defined to be the smallest number of balls of radius h needed to cover the space X.
See Chapter 5 in the book [120] for more background.

Proposition 2.1 (Covering number bounds for the similarity measure). Suppose that P, Q
are two probability measures on the same metric space (X, d). Suppose that for some h > 0,
there 1s a A > 0 such that

P(B(z,h)) = X Q(B(z,h)) for all x € X. (2.7)
Then the similarity at scale h is upper bounded as py(P,Q) < N(Z)/X.

See Section 2.4.5 for the proof of this claim.

It is worth emphasizing that—due to the order of quantifiers above—the quantity A > 0
is allowed to depend on h > 0. We exploit this fact in subsequent uses of the bound (2.7).

One straightforward application of Proposition 2.1 is in bounding the similarity measure
when there is no covariate shift, as we now discuss.

Example 2.2 (No covariate shift). Suppose that we compute the similarity measure in the
case P = (); intuitively, this models a scenario where there is no covariate shift. In this case,
we clearly may apply Proposition 2.1 with A\ = 1, which reveals that p, (P, P) < N(h/2). To
give one concrete bound, suppose that X — R? is a compact set, with diameter D. Then—
owing to standard bounds on covering number [120, chap. 5]—we obtain p, (P, P) < (1422).
Note that this bound holds for any metric, so long as the diameter D is computed with the
same metric as the balls in the definition of the similarity measure. &

We give another application of Proposition 2.1 in the following subsection.

2.3.2 Comparison to previous notions of distribution mismatch

Next, we show how the mapping h — pp(P, Q) can be bounded naturally using previously
proposed notions of distribution mismatch for covariate shift. Again, Proposition 2.1 plays
a central role.
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Example 2.3 (Bounded likelihood ratio). Suppose that P, Q are such that @) « P and the
likelihood ratio %(I) < b, for all x € X. Then note that by a simple integration argument
P(B(x,h)) = $Q(B(x, h)). Therefore, we conclude py,(P,Q) < bN(h/2). &

As noted previously, our work was inspired by the transfer exponent introduced by
Kpotufe and Martinet [69] in the context of covariate shift for nonparametric regression.
It is worth comparing these notions so as to understand in what sense the similarity measure
pr is a refinement of the transfer exponent. In order to simplify this discussion, we focus
here on the special case X = [0, 1].

Worst-case instances coincide

%)

."4

pairs (P, Q) for which transfer exponent is loose

Figure 2.1. The yellow circle depicts the contour for the class D(y + 1, %), while the
blue square plots the contour for the class T(v, K). It can be seen from Lemma 2.1 and
Example 5 that T(v, K) is strict subset of D(y+ 1, 2). In addition, our lower bound shows
that under covariate shift, the worst-case instances for both classes coincide with each other.
However, there exist instances (P, Q) where the characterization using transfer exponent is
intrinsically loose.

We begin by providing the definition of transfer exponent:

Definition 2.1 (Transfer exponent [69]). The distributions (P, Q) have transfer exponent
v = 0 with constant K € (0,1] if

PB(z,h)) = KhQ(B(z, h)) for all z in the support of Q.

We denote by T(v, K) the set of all pairs (P, Q) with this property.
It is natural to ask how the set T(v, K) is related to the a-family previously defined in
equation (2.4a). The following result establishes an inclusion:
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Lemma 2.1. For X = [0,1] and any v = 0 and K € (0, 1], we have the inclusion
T(3, K) € Dy +1,2). (23)

The proof of this inclusion is given in Section 2.4.6. At a high level, it exploits Proposi-
tion 2.1 to show that for any (P, Q) € T(v, K), we have the bound p,(P, Q) < =N (h/2).
From the inclusion (2.8), it follows that any covariate shift instance (P, Q) with finite
transfer exponent v > 0 belongs to an a-similarity family with a = v + 1. In fact, following
a proof similar to that of Theorem 2.2, we can show that for v > 0, there is pair (P, Q)
in the class T(y, K) such that the minimax risk for S-Hélder-continous functions scales as
2

np>?""1. Note that this risk bound coincides with the minimax risk associated with the class

D(y+1, %) In other words, from a worst case point of view, the source-target class T(y, K)
is equally as hard as the class D(y + 1, %) for nonparametric regression under covariate
shift. However, this worst case equivalence does not capture the full picture: there are
many covariate shift families for which the transfer exponent provides an overly conservative
prediction, and so does not capture the fundamental difficulty of the problem. Let us consider
a concrete example to illustrate.

Example 2.4 (Separation between transfer exponent and pp,). Let the target distribution
@ be a uniform distribution on the interval [0,1], and for some xk > 1, suppose that the
source distribution P has density p(z) = (k + 1)z" for x € [0, 1]. With these definitions, it
can be verified that (P,Q) € T(k, K) for some constant K € (0, 1], and moreover, that the
quantity k is the smallest possible transfer exponent for this pair. In contrast, another direct
computation shows that the pair (P, Q) belongs to the class D(k,C") for some constant
C" > 0. These two inclusions establish a separation between the rates predicted by the
transfer exponent and the similarity p,. Indeed, as shown by our theory, the difficulty of
estimation over D(xk, C") is smaller than that prescribed by T(x, K). Indeed, if one observe n
samples from the source distribution, the worst-case rate indicated by the computation from

__28 e
the transfer exponent is n~ 25+<+1_ whereas the rate guaranteed by the similarity measure py,
25
is n~ 26+, As an explicit example, Lipschitz functions (6 = 1) and k = 1, we obtain the
slower rate n~Y/2 versus the faster rate n=2/2, so that the ratio between the two rates diverges

as n'/% as the sample size grows. &

See also Figure 2.1 for an illustration of the connections and differences between the similarity
measure and the transfer exponent.

2.4 Proofs

We now turn to the proofs of the results stated in the previous section.
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2.4.1 Proof of Theorem 2.1

Recall that the estimate f depends on the observations {(X;,Y;)}~,, and so should be
understood as a random function. The core of the proof involves proving that, for each
x € X, we have

BT I e
B|(flo) = r@)’] < 20+ == s

where the expectation is taking over the observations {(X;,Y;)}" ;. Given this inequality,
the claim (2.3) of Theorem 2.1 follows, since by Fubini’s theorem, we can write

(2.9)

~

B{IF = o) = | B[ - r@)*] aqt)

Applying inequality (2.9) and recalling the definition of the similarity measure yields the
claim (2.3).

We now focus on establishing the bound (2.9). Our proof makes use of the conditional
expectation of f given the covariates

A~

f(x) =E[f(z) | X1,...,X,], foranyzeX.

To be explicit, the expectation is taken over Y; | X;, ¢ = 1,...,n. With this definition, our
first result provides a bound on the conditional bias and variance.

Lemma 2.2. For each x € X almost surely, the Nadaraya-Watson estimator f satisfies the
bounds

(Flx) = f@)° <|f 121z ¢ G} + LAP1{z € G,}  and (2.10a)

E[(f(z) = [(@)” | X1,..., Xl < s—pfemmy Lo € Gn}- (2.10Db)

We prove this auxiliary claim at the end of this section.

Taking the results of Lemma 2.2 as given, we continue our proof of the bound (2.9). For
any fixed x € X, a conditioning argument yields

~

E[(f(x) - £(2))"] = B[(F@) = £@))"] + E | B[(F(2) = F@))? | X1, X .

By applying the bounds (2.10a) and (2.10b) to the two terms above, respectively, we arrive
at the upper bound E [(f(z) — f*(2))?] < T1 + T3, where
2

Ti=|f % B[z ¢ §u}] + L°R}7, and T, :=E [1{1’ € G}y 1{)563(@,%)}]'

We bound each of these terms in turn.
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Bounding 7}: By definition, the set G,, involves n independent random variables, so that
for any x € X, we have

B[1(r ¢ ] = (1= PB. 1) (1- QB b)) < s,

where step (i) follows from the elementary inequality

1

1= p)"(1 - )™ < expl(—(np + mq)) < ————,
(1-p)"(1—q) xp(—(np + mq)) =

valid for p,q € (0,1) and nonnegative integers n,m. Consequently, the first term is upper
bounded as

T <[ fI% + L°h. (2.11a)

n i (B(, hy))

Bounding 7,: For a fixed x € X, and for each ¢ = 1,...,n, define the Bernoulli random
variable Z; = 1[X; € B(x, h,)] € {0,1}, along with the binomial random variables U =
YiP Ziand V=37 Z;. With these definitions, we can write

i=np+1

D 1{X;eB(x,h)} =U+V, and Lze§,}=1{U+V >0}

i=1
Consequently, by an elementary bound for binomial random variables (see Lemma 2.5), it
follows that

1 4
Th=E|I{U+V >0 < . 2.11b
= B[V | < ey 24
Combining inequalities (2.11a) and (2.11b) yields the claim (2.9).
The only remaining detail is to prove the auxiliary lemma used in the proof.
Proof of Lemma 2.2. Recall that by definition, we have
(LSOO EeBE )
fz) = 21 HXi € B(z, b))}
0 T ¢ 9n
Proof of the bound (2.10a): By a direct expansion, we have
- )2 i ([ (@) = f1(Xi)1{Xi € B, hy) } 2
_ 1 = L 1
(F@) = @)t e Sa} = (S g S ) e Sa)
@) n * _f* )2 .
< Zzzl(f (l’) f <X1>> 1{X1 € B(l’, hn)}l{x c gn}

i WX e Bz, )}
(ii
< L*h*°1{x € G,},

where step (i) follows from Jensen’s inequality; and step (ii) makes use of Assumption 2.1.
The bound (2.10a) is an immediate consequence.
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Proof of the bound (2.10b): In order to prove this claim, note that by independence
among {(le wi)}zn=1’

~

BI(F(@) — F@)? | X, Xl = Y Blw? | Xl (252 ) 1o e 5,

® 2N 1{X;eB(z,hn)} |2
s 2( 1 1{§(i€B(a:,hn)}) 1{£C € 9n}

0.2

- Z?:1 1{Xi € B(;Ij, hn)}l{x € 971}:

which proves the claim. Here step (iii) is a consequence of Assumption 2.3. O

2.4.2 Proof of Corollary 2.1

Fix some h € (0, 1], and introduce the indicator variable n = 1{ax = 1}. We then have

1
L npP(B(z, h)) + noQ(B(z, h))

4Q(r) < min { = (P.Q). - (Q.Q)}

1 1
< 3"C'min { , —}
npho‘ thn

1

<2-30———.
nph® + ngh”

The last inequality follows from (2.1) and standard covering number bounds (note h < 1).

Thus the final performance bound is
L2 2
2 3o+ 0L
nph® + ngh”

We choose the bandwidth h* so as to trade off between two terms in this risk bound; more
precisely, we set

1
. n n 2840\ — 531
= () + () ) 7

This choice is valid, since 0? > L? and max{np,ng} > 402 by assumption. Substituting this
choice of bandwidth into the risk bound (2.3) yields the claim.

2.4.3 Proof of Theorem 2.2(a)

Before giving the complete proof, we outline the main steps involved.

1. We first construct a hard instance (P, Q) € D(a,C). This instance is designed such
that the integral quantity pp,(P, Q) must scale as Ch™.



CHAPTER 2. COVARIATE SHIFT OVER HOLDER CLASSES 60

2. Then we select a family of hard regression functions contained within (3, L) that
guarantees the worst-case expected error for our pair of distributions, (P, Q).

3. Finally, we apply Fano’s method over this set of regression functions to show that the
expected error must scale as the righthand side of inequality (2.6a).

It is worth commenting on our proof strategy in relation to past work. On one hand, in
the case a = 1, our construction of the distributions (P, @) is adapted from the lower bound
argument introduced by Kpotufe and Martinet [69]. The technical work involves constructing
pairs of densities of P, @), and establishing their membership in the class D(a, C'). As for the
case a € (0, 1), as stated in Theorem 2.2(b), we use a different construction of the distribution
pair (P, @), one that is new (to the best of our knowledge). We combine these constructions
of “hard” source-target pairs, in particular by packing the interval [0, 1] with a variable
number of small intervals (e.g., [124, 115, 120]). By adapting the number of intervals (and
constructing a packing set of the function class F(f3, L) appropriately over these intervals),
one can adapt the hardness of the lower bound instance to change with the number of
samples. In this case, we are able to do this such that the hardness scales appropriately with
the critical parameters that govern the final minimax lower bound: np,ng,o,a,8. With
this high-level overview in place, we now proceed to the technical content of the proof.

Constructing “hard” source-target pairs: For scalars S,r € (0,1], define M = 6ﬁ

along with the intervals
I; = (2 —3r,z; + 3r], where z; = 6jr —3r, j=1,..., M.

We specify P and () on each interval ; as follows:

subinterval density of P density of @)
(z5=3rzj—r] p-(1—5(5)*" 0
(zi—rz+r] GrE) i
(zj+72+3r] =551 0

Table 2.1. Specification of densities for lower bound pair of distributions (P, Q) on the
interval I;.

By construction, both P and () assign probability 1/M to the entire interval /. The following
proposition verifies that (P, @) lies in D(«, C') for proper choices of the € and S.

Proposition 2.2. Let a > 1 and C' = 1. Define P and Q) as in Table 2.1, with the following
choice of parameters €, 5':

(a) if C > 6, sete =6/C, and S = 1/4;
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Figure 2.2. An illustration of the distributions (P, Q) constructed as a hard pair in our
lower bound.

(b) if 1< C <6, sete=1, and S = 1(C/6)"°.
Then for any choice of M,r > 0 satisfying S = 6Mr, the pair (P, Q) lies in D(«, C).

See Section 2.4.3.1 for the proof of this claim.

Construction of “hard” regression functions. Next we construct a packing of the
function class of F(8, L). We do so by summing together scaled and shifted copies of base
function ¥: [—1,1] — R that satisfies the boundary conditions ¥(—1) = ¥(1) = 0, along
with

W(z) = U(y)| <|z—yl’, forallzye[-1,1], and, (2.12a)

1
f V() dz = Cf > 0. (2.12b)
—1

There are many possible choices of U; see Chapter 2 in the book [115] for details. For our
proof, we also require the bound C% < 1/6, so that we make the explicit choice

U(z) = e V01 (|| < 1}.

We now form a class of functions using sums of the form

M
fo(z) = Z bjgbj(x), where gb](x) — Lrﬁqj<x — Zj>’
j=1

r



CHAPTER 2. COVARIATE SHIFT OVER HOLDER CLASSES 62

and b = (by,...,by) € {0,1}M is a Boolean sequence. Our construction makes use of
the Gilbert-Varshamov lemma (e.g. [115, Lemma 2.9]), which for M > 8, guarantees the
existence of a subset B = {0, 1} of cardinality at least 2"/% such that

|b—Vly = M/8  for all distinct b, € B. (2.13)
Lemma 2.3. The function class H = {fb |be B} has the following properties:

(a) It is contained within the Hélder class—3H < F(B,L).
(b) Pairs of functions are well-separated: for each distinct f, g€ H, we have

If = 9||L2(Q L2 2,

(c) Its elements satisfy the following L*(P) and L*(Q) bounds:

CiM eC2M
2 2, 28+1 2 2, 28+a
Hf”L?(Q) 99 Lr and Hf“L?(P) S Tg5e —aa L )

for all f e H.

Applying Fano’s method. We now combine the preceding constructions with a Fano
argument to complete the proof of the lower bound. For any function f € H, let vy be
the distribution {(Xj, Y;)}™, where (X,Y) pairs are related by our nonparametric regression
model (2.2) with f f*. For proving our lower bound, it suffices to consider Gaussian noise:
in particular, w; ' N (0,0?%) for i = 1,...,n. These variables satisfy Assumption 2.3.

With these choices, Kullback—Leibler divergence between any given pair (v¢,v,) can be
bounded as

Du(vy | vy)
1
2 2

2

53 (12 F = 9l + mallf — 1) < 25 (memax | e, + nomax|f g ).

Now applying part (c) of Lemma 2.3 yields
L? 21
Du(vy | vg) < MC3 {HPFETQ'BJFO‘ T nQ_STZBH}

4o [2 9 4o [2
B+a 26+1
<M{E;npr + Oaanr }

The final inequality arises by using C2 < 1/6. Suppose we take

4% [Pnp 2501 4« L2 — 55T
<(64E o2 )7+ (645 02 )>
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Then for any distinct f, g € H, we obtain
Du(vy | vg) < M/32.

By a standard reduction to hypothesis testing [120, chap. 15| along with part (a),

inf sup E[”f_f*”%Q(Q)]
[ 3(8,L)

_ G ge(3) 1/ = 9l%zq) {1  log2 + maxp () Dalvy | v) }
- 4 log | H|

Thus, after applying part (b) of Lemma 2.3, we obtain

inf sup E[Hf—f*”%%cz)]
[ £3(8,L)

cz o, 8 1\ _ CiL*/, 4°L*np 2+ 4 [Png\\ ~ a4t
> vy ﬁ(1————>> v <64— e 4+ (64— )
64" 1) 2 s e ) (Mg s ’

provided that M > 32. Equivalently, r < S/192. It suffices that r < Klos’ this is ensured by
having
0'2 C 254—0&
ol = 72—-) .
max{np,ng} < T2 5

2.4.3.1 Proof of Proposition 2.2

We will show that for a general choice of €, € (0, 1], the following holds:

e, h

P(B(m, h)) = § (E

)ailQ(B(x, h)), for all z € supp(Q), and any h > 0. (2.14)
For the moment let us take this bound as given. By Lemma 2.1, note that bound (2.14)
implies that (P,Q) € D(a,€(e,S)), with €(e,S) = £(45)*7!, for any ¢, € (0,1]. Note
that the parameter choices given in the statement of the result ensure that £, 5 € (0,1].
When C = 6, we have C(e,5) = 6(C/6)'~V* = C(6/C)Y/* < 6 < C. Otherwise C' < 6 and
C(e, S) = C. Therefore, checking the two cases C' > 6 and C' < 6 verifies C(¢,5) = C in
both regimes, which furnishes the claim.

We now turn to establish bound (2.14). Let h > 0. First observe that the support of @
is the disjoint union of intervals uj]‘il(zj — 1, z; +r|. Thus, fix = in the support of @), and let
z; denote the center of the interval to which x belongs. Suppose that h € [0,4r], in which
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case, we have the inclusion B(z, h) < I;, whence the lower bound

P(B(xz,h)) = P(B(m, h) N B(Zgﬂ“))
O (1) QB ) BLzs1)

3 (%)a_lQ(B(% h) 0 B(z, 1)

a—1
(%) Q(B(z, 1)) (2.15)
Above, step (i) follows from the construction of P, Q; step (ii) follows from h < 4r, whereas
step (iii) follows since B(z, h)  I; and ) assigns no mass to the set 1;\B(z;, 7).

Otherwise, we may assume that h € [4r, S], in which case we have the inclusion B(z, h) o
I;. Denote by N > 1 the number of intervals of the form /; that are included within B(x, h).
Note that since B(x, h) is connected, it is always contained in at most N + 2 intervals (by
considering partial intervals on the left and right). Thus,

P(B(x,h) @) N-P(I) @
Q(B(xz, k) ~ (N +2)-Q(I))

Here step (iii) follows since B(x, h) is contained in a collection of at most (N + 2) intervals
and contains at least N intervals, and the intervals are disjoint and have the same mass
under both P and ). On the other hand, step (iv) uses the equivalence P([;) = Q(I;), along
with the fact that the function x — %5 is increasing on the set {x > 1}.

Therefore, combining inequalities (2.15) and (2.16), we conclude that

N\

%. (2.16)

P8 ) > 1 [o(15) " A1]eBEm) = (4

19 3(@)0{— Q(B(z,h))

for every z in the support of @), the final inequality follows since @ > 1. Since h > 0 was
arbitrary, this establishes bound (2.14) and completes the proof.

2.4.3.2 Proof of Lemma 2.3

We prove each of the three parts in turn.

Proof of part (a): Fix a Boolean vector b € {0, 1}. Note that the function ¢; is supported
on the interval I}, which is disjoint from any other interval I, k # j. Since W satisfies the
continuity condition (2.12a), it follows that ¢; is (8, L)-Hélder. Finally, we have f.(0) = 0 by
definition. Taking these properties together, we have shown that f. € F(5, L), as required.
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Proof of part (b): For any distinct pair b, b’ € B, we have

J, )= s a0 - [ (L0

2,
Z(bj _ b;.)zrﬁ () da

z;—3r

~)6,(x)) Q)

o 1

2Mr.

—

(f) C‘I’LQ 2
16

Here step (i) follows from the definition of @) along with the disjointedness of the supports
of ¢;. Step (ii) follows from equation (2.12b) and the fact that b,0’ € B < {0,1}*. Finally,
step (iii) follows from the Gilbert-Varshamov separation (2.13).

Proof of part (c): For any b e B, by following the calculations above, for u € {P, Q}, we
have by symmetry

M

Ll fi(z) du(z) = Z J qb ) dp(x) < M ¢1( ) dp(z).

Now observe that SST ¢ (x) dQ(x) = %LQTQ’B, and consequently, ||fy[72) < L*?8C2 /2.
Additionally, we can compute

67 4r
£ £ N
Thus, we have established the upper bound | fy| 7> ) < eL*r?**e71/(6571).

2.4.4 Proof of Theorem 2.2(b)

Given the inclusion D'(«, 1) < D'(a, C'), it suffices to prove a lower bound for C' = 1.

Construction of “hard” distributions. Let () = ¢§;, and let P, be the distribution
supported on [0, 1] with density p,(z) = a(1 —2z)* *1{x € [0,1]}. By construction, we then

( ’ ) ] (x(E ( ’7h)) ( ’ ’

which implies that (P,,Q) € D’'(«, 1). From herein, we adopt the shorthand P = P, so as
to lighten notation.
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Construction of two point alternative. If the regression function is f, we denote the
resulting joint distribution of {(X;,Y;)}!", by vs. We consider the two point alternatives
{fi, g} with g =0 and f,(z) = L(x — t)?. The next result demonstrates the validity of this
choice:

Lemma 2.4. For any t € [0,1], the function f; belongs to F(B,L).
See Section 2.4.4.1 for the proof.

Moreover, by straightforward calculations, we find that | f;|72) = L*(1 —1)*’, and

1
fol2ap = 12 f a(l — ) (z — 1) da
t

1t
< L*(1 - t)%f st ds = L3(1 —t)%*e.
0

Applying Le Cam’s method. We are now equipped to apply Le Cam’s two point bound.
In particular, we have

L2(1— )%

5 exP (= Dualvy, | vy))

inf sup B[ [ I3 | =
ffre3(B,L)
By standard KL calculations (using N (0, 0%) noises)

2

L
Dualvy. | %) = 505 {ne(1 =%+ + ng(1 - 1)}

- ((L%Pwﬁ + (L?nQyz)l
202 202
A little bit of algebra shows that this choice guarantees that Dy(vy | v,) < 2, which
completes the proof.

Finally, we make the

2.4.4.1 Proof of Lemma 2.4

We begin by observing that f;(0) = 0. Thus, in order to prove the claim, it suffices to show
that
fi(y) — fu(x) < L(y — z)? for any pair x,y such that 0 <t <z <y < 1.

In order to prove this bound, consider an arbitrary point z € (¢,1), and define the function

O (y) = L(y’B — xﬁ) — L(y — x)ﬁ for y € [z, 1].

We can compute the derivative ¢ (y) = LB(y*~! — (y — x)?71). Since y > y — 2 > 0 and
B < 1, we have y?~! < (y — 2)#~L, and hence ¢/, (y) < 0. Consequently, the function ¢, is
non-increasing, and since y > x, it follows that ¢,(y) < ¢.(x) = 0. Putting together the
pieces completes the proof.
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2.4.5 Proof of Proposition 2.1
Starting with the assumed bound (2.7), we have

1 1 1
LW Q@) < 3 L oBE ) Q@ (2.17)

By definition of the covering number N = N(h/2), there is a collection {z/}}_, such that

the set X is contained within the union U;V:I B(27, %) This fact, combined with our previous
bound (2.17), implies that

N 1

1 1
). ey @ <52 L<zj,h/2) QB 1)

j=1

dQ(x). (2.18)

Note by the triangle inequality, for each j € [N] and x € B(z;, h/2), we have B(z;, h/2) <
B(x, h). This inclusion implies that

) < | L aQu) =1,

L(Zj,h/z) Q(B(z,h)) B(z;,h2) @(B(z5,1/2))

for each j € [N]. Combining this inequality with the bound (2.18) yields the claim.

2.4.6 Proof of Lemma 2.1

By assumption, we have the upper bound

1 1 1 (! 1
J, 7 9@ < % | aeey 9@

Moreover, we can find a collection of N = [1/h] balls with centers {z;}}_, of radius h/2 that
cover the interval [0, 1], whence

N 1

Z LeB(zj,h/Q) Q(B(z,h))

=1

Qz) < dQ(z) < N.

1 1
L QB m)

The final inequality follows from the inclusion B(z, h) o B(z;, h/2).
Now define the function g(¢) = [t] /t, and observe that g(t) < 2 whenever ¢t > 1. Conse-
quently, we can write

1 2
W (P, Q) < gg(l/h) <5 foramyh<l

Passing to the supremum over h € (0, 1] yields the claim.
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2.5 Discussion

In this chapter, we have studied the problem of covariate shift in the context of nonparametric
regression. We have shown that a measure of (dis)-similarity p; between the source and
target distributions, as defined in equation (2.1), can be used to characterize how minimax
risks change as the source-target pair are varied. In particular, we proved upper bounds
on the Nadaraya-Watson estimator over Holder classes that are an explicit function of the
similarity pp, and also established matching lower bounds over classes constrained in terms
of the similarity. We also discussed how the measure py, is related to other characterizations
of covariate shift from past work, including likelihood ratio bounds and transfer exponents.
Our work shows that similarity measure p; provides a more fine-grained characterization of
how covariate shift changes the difficulty of non-parametric regression.

Our work leaves open a number of open questions. First, our lower bounds for covariate
shift (cf. Theorem 2.2) are obtained within a global minimax framework, which involves
worst-case assessments over a certain function class. These lower bounds match our upper
bound on the NW estimator (cf. Theorem 2.1) for certain source-target pairs (P, Q). But
the upper bound actually depends explicitly on the source-target pair. Is this upper bound
always optimal? Or are there instances of covariate shift for which Nadaraya-Watson is
suboptimal for some Hélder continuous function? In general, this question appears non-
trivial: even without the (interesting) complication of covariate shift, there are few results
that give distribution-dependent results for nonparametric regression outside of the uniform
distribution and fixed-design problems.

2.6 Elementary bound for binomial variables

In this section, we state and prove an elementary bound for binomial random variables, used
in the proof of Theorem 2.1.

Lemma 2.5. Let n,m be positive integers and p,q € (0,1). Suppose that U ~ Bin(n,p) and

V ~ Bin(m,q). Then
4

np +mq

E[Uivl{U+V>O}]<

Proof. We begin by observing that conditionally on the event {U + V > 0}, we have the
lower bound

U+V+1 U+1 V41
= = .
U+V 5 5 v 5
These lower bounds allow us to write
2 2 2 - 4

< < .
U+1/\ V+1  (npvmq) np+mg

E[Uivl{U+V>0}]<E

Here the penultimate inequality is a consequence of known results for binomial random
variables [25, equation (3.4)]. O
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Chapter 3

Failure of the Lasso under anisotropic
design

3.1 Introduction

In this chapter, we consider the standard linear regression model
y=X60"+w, (3.1)

where 6* € R? is the unknown parameter, X € R™*? is the design matrix, and w ~ N (0, 021,,)
denotes the stochastic noise. Such linear regression models are pervasive in statistical analy-
sis [72]. To improve model selection and estimation, it is often desirable to impose a sparsity
assumption on 6*—for instance, we might assume that 6* has few nonzero entries or that it
has few large entries. This amounts to assuming that for some p € [0, 1]

6*], < R, (32)

where | - |, denotes the £, vector (quasi)norm, and R > 0 is the radius of the ¢, ball. There
has been a flurry of research on this sparse linear regression model (3.1)-(3.2) over the last
three decades; see the recent books [18, 57, 120, 37, 62] for an overview.

Comparatively less studied, is the effect of the design matrix X on the ability (or inability)
to estimate 6* under the sparsity assumption. Intuitively, when X is “close to singular”, we
would expect that certain directions of 6* would be difficult to estimate. Therefore, in this
section we seek to determine the optimal rate of estimation when the smallest singular value
of X 1is bounded. More precisely, we consider the following set of design matrices

1 1
X a(B) = {X e R XTX > =y } (3.3)

and aim to characterize the corresponding minimax rate of estimation

Moa(p,0, B, B) = inf sup By Nixor021,) [He -
0 Xexmd(B)
6+, <R

)
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3.1.1 A motivation from learning under covariate shift

We now make a connection between this section and the overall aim of this thesis—specifically,
a connection to covariate shift. Although it may seem a bit technical to focus on the de-
pendence of the estimation error on the smallest singular value of the design matrix X, we
would like to point out an additional motivation which is more practical and also motivates
our problem formulation. This is the problem of linear regression in a well-specified model
with covariate shift.

To begin with, recall that under random design, in the standard linear observational
model (i.e., without covariate shift) the statistician observes random covariate-label pairs of
the form (x,y). Here, the covariate x is drawn from a distribution @) and the label y satisfies
Ely | ] = 276*. The goal is to find an estimator f that minimizes the out-of-sample excess
risk, which takes the quadratic form E, ¢ ( (HA —6*)T2)%]. When the covariate distribution @
is isotropic, meaning that E,g[zz"] = I, the out-of-sample excess risk equals the squared
05 error 6 — 6%|2.

Under covariate shift, there is a slight twist to the standard linear regression model
previously described, where now the covariates x are drawn from a (source) distribution
P that differs from the (target) distribution ) under which we would like to deploy our
estimator. Assuming () is isotropic, the goal is therefore still to minimize the out-of-sample
excess risk under @, which is [0* — 0|3. In general, if P # @ and no additional assumptions
are made, then learning with covariate shift is impossible in the sense that no estimator
can be consistent for the optimal parameter 6*. It is therefore common (and necessary) to
impose some additional assumptions on the pair (P, Q) to facilitate learning. One popular
assumption relates to the likelihood ratio between the source-target pair. It is common to
assume that absolute continuity holds so that () « P and that the the likelihood ratio j—g is
uniformly bounded [77]. Interestingly, it is possible to show that if 3—%(@ < B for P-almost
every x, then the semidefinite inequality

1
E,-plzz'] > =1 (3.4)
B
holds [77, 121]. Comparing the inequality (3.4) to our class X,, 4(B) as defined in display (3.3),
we note that our setup can be regarded as a fixed-design variant of linear regression with
covariate shift [73, 36, 126].

3.1.2 Determining the minimax rate of estimation

We begin with one of our main results, which precisely characterizes the (order-wise) minimax
risk M, 4(p, 0, R, B) of estimating #* under the sparsity constraint [6*|, < R and over the
restricted design class X, 4(B).

Theorem 3.1. Let n >d > 1 and o, R, B > 0 be given, and put 72 = (;;T’z. There exist two
universal constants cy, ¢, satisfying 0 < ¢, < ¢, < 00 such that
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(a) if pe (0,1] and 72 € [d=%/?,log " (ed)], then

1-p/2

1-p/2
e R? <7’3 log (edﬂj)) : < Mya(p, o, R, B) < ¢, R? <7’3 log (edﬂj)) , and
(b) if p=0, we denote s = R € [d], and have

’B d ’B d
e J—slog (e—) < Mya(p, 0,8, B) < ¢y J—slog (e—).
n s n s

The proof of Theorem 3.1 relies on a reduction to the Gaussian sequence model [62], and is
deferred to Section 3.3.1.

Several remarks on Theorem 3.1 are in order. The first observation is that Theorem 3.1
is sharp, apart from universal constants that do not depend on the tuple of problem param-
eters (p,n,d,o,s, R, B).

Secondly, it is worth commenting on the sample size restrictions in Theorem 3.1. For all
p € [0,1], we have assumed the “low-dimensional” setup that the number of observations
n dominates the dimension d.! Note that this is necessary for the class of designs X, 4(B)
to be nonempty. On the other hand, for p > 0 we additionally require that the sample size
is “moderate”, i.e., 72 € [d~%*P,log ! (ed)]. We make this assumption so that we can focus
on what we believe is the “interesting” regime: where neither ordinary least squares nor
constant estimators are optimal. Indeed, when n > d but 72 > log!(ed), it is easily verified
that the optimal rate of estimation is on the order R?: intuitively the effective noise level is
too high and no estimator can dominate # = 0 uniformly. On the other hand, when n > d
but 72 < d~%P, then the ordinary least squares estimator is minimax optimal; intuitively,
the noise level is sufficiently small such that there is, in the worst case, no need to shrink on
the basis of the ¢, constraint to achieve the optimal rate.

Last but not least, as shown in Theorem 3.1, the optimal rate of estimation depends on
the signal-to-noise ratio 7,2 = nR?/(c?B). As B increases, the design X becomes closer to
singular, estimation of 6*, as expected, becomes more challenging. The dependence of our
result on B is exactly analagous to the impact of the likelihood ratio bound B appearing in
the context of prior work on nonparametric regression under covariate shift [77].

3.1.3 A computationally efficient estimator

The optimal estimator underlying the proof of Theorem 3.1 requires computing a d-dimensional
Gaussian integral, and therefore is not computationally efficient in general. In this section
we propose an estimator that is both computationally efficient and statistically optimal, up
to constant factors.
Our procedure is based on the soft thresholding operator: for v € R% and n > 0, we
define
S(v) = arg min { |u— o3 + 2n]ull |.

ueR4

INotably, this still allows n to be proportional to d, e.g., we can tolerate n = d.
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Note that soft thresholding involves a coordinate-separable optimization problem and has
an explicit representation, thus allowing efficient computation. Then we define the soft
thresholded ordinary least squares estimator

BT (X, y) = 8,(0°S (X)) (3.5)
where §OLS(X ,) is the usual ordinary least squares estimate —equal to (XTX)™'X Ty in our
case. We have the following guarantees for its performance.

Theorem 3.2. The soft thresholded ordinary least squares estimator (3.5) satisfies
(a) in the case p e (0,1], for any R > 0, if 72 € [d=%/?,log" " (ed)], then

1-p/2
sup sup B [[B5TOS(X,y) - 0° 3| < 6 R? (rlog(edr))
XeXy,a(B) [0*|lp<R

with the choice n = /2R272log(edry), and

(b) in the case p =0, for any s € [d],

’B d
sup sup E[[85OS(X, ) — 07 < 6 72 s1og (e5)),
n S

X€Xp,a(B) [0*[o<s

with the choice n = A /2"273 log(4).

The proof is presented in Section 3.3.2.

Comparing the guarantee in Theorem 3.2 to the minimax rate in Theorem 3.1, it is
immediate to see that the soft thresholded ordinary least squares estimator is minimax
optimal apart from constant factors.

Secondly, we would like to point out a (simple) modification to the soft thresholding
ordinary least squares procedure that allows it to be adaptive to the hardness of the particular
design matrix encountered. To achieve this, note that X € X, 4(B) for B = |[(XTX) ™ op-
Therefore the results in Theorem 3.2 continue to hold with B replaced by (a possibly smaller)
E, provided that the thresholding parameter 7 is properly adjusted. For instance, in the
case with p = 0, we have

. o2B d
sup B[ 1057 (X, ) — "] < 67 slog ().

16*lo<s

provided we take 1) = y/2¥ log(<2).
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Finally, we note that inspecting our proof, the upper bound for é\%TOLS(X ,y) also holds
for a larger set of design matrices

1

-1
n ..

< B, for1<z<d}.

XS(B) = {X e R4 ( XTX)

K23

Since X, 4(B) < Xgizg(B), this means after combining the lower bounds in Theorem 3.1 with

the guarantees in Theorem 3.2, we additionally have established the minimax rate over this
larger family DCi'Zg(B).

3.1.4 Is Lasso optimal?

Arguably, the Lasso estimator [114] is the most widely used estimator for sparse linear
regression. Given a regularization parameter A > 0, the Lasso is defined to be

~ . 1
Or(X,y) = argmin { ~ X0~y + 29 }. (3.6)

YeR4

Surprisingly, we show that the Lasso estimator—despite its popularity—is provably subop-
timal for estimating 60* when B » 1.

Corollary 3.1. The Lasso is minimaz suboptimal by polynomial factors in the sample size
when d =n and B = \/n. More precisely,

(a) if pe (0,1], and 0 = R = 1, then we have

sup  sup E[inf H@\(X, y) — 9*||%] =1, and
XeXpa(B) |0*lp<k A0

(b) if p=0, and o0 = s = 1, then we have

sup  sup E[inf Hg,\(X, y) — «9*||§] =1
XeXp,a(B) [0*foss A0

Corollary 3.1 is in fact a special case of a more general theorem (Theorem 3.3) to be provided
later.
Applying Theorem 3.1 to the regime considered in Corollary 3.1, we obtain the optimal

rate of estimation
<\/1 + 1ogn)2—p «1

—y for every p € [0,1].
As shown, in the worst-case, the multiplicative gap between the performance of the Lasso
and a minimax optimal estimator in this scaling regime is at least polynomial in the sample

size. As a result, the Lasso is quite strikingly minimax suboptimal in this scaling regime.
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In fact, the lower bound against Lasso in Corollary 3.1 is extremely strong. Note
that in the lower bound, the Lasso is even allowed to leverage the oracle information 6*
to calculate the optimal instance-dependent choice of the regularization parameter (c.f.,
infy~g Ha,\(X, y) — 0*]3). As a result, the lower bound applies to any estimator which can
be written as the penalized Lasso estimator with data-dependent choice of penalty. Many
typical Lasso-based estimators, such as the norm-constrained and cross-validated Lasso, can
be written as the penalized Lasso with a data-dependent choice of the penalty parameter
A. For instance, in the case of the norm-constrained Lasso, this holds by convex duality.
Thus, we can rule out the minimax optimality of any procedure of this type, in light of
Corollary 3.1.

The separation between the oracle Lasso and the minimax optimal estimator can also be
demonstrated in experiments, as shown below in Figure 3.1.

p=0.0 p=0.2 p=0.4

L - L
o 3%10 »
= =
10! 2x10-
2x10""
Oracle LASSO (slope = -0.082) Oracle LASSO (slope = -0.076) Oracle LASSO (slope = -0.076)
¥107" ) g STOLS (slope =-0.397) =@= STOLS (slope = -0.395) =@= STOLS (slope = -0.388)
10° 104 10° 104 10° 104
sample size sample size sample size

Figure 3.1. Numerical simulation demonstrating suboptimality of the Lasso, with the
oracle choice of regularization \ € arg miny. g HQ)\(X y) — 0*|3 versus the soft thresholded
ordinary least squares (STOLS) procedure as defined in display (3.5). We have simulated
the lower bound instance from Corollary 3.1; for each sample size n, we simulate oracle
Lasso and STOLS on a pair (X, 6},), with the dimension d = n and lower singular value
bound B = 4/n. Further details on the simulation are provided in Section 3.4.2.

3.1.5 Connections to prior work

In this section, we draw connections and comparisons between our work and existing litera-
ture.

Linear regression with elliptical or no constraints. Without any parameter restric-
tions, the exact minimax rate for linear regression when error is measured in the /5 norm
along with the dependence on the design matrix is known: it is given by o?Tr((X T X)) [72].
These results match our intuition that as the smallest singular value of X decreases, the hard-
ness of estimating #* increases. It is also worth mentioning that the design matrix does not
play a role, apart from being invertible, in determining the optimal rate for the in-sample
prediction error. The rate is given uniformly by ¢ when n > d [58].
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On the other hand, with /5- or elliptical parameter constraints the minimax rate in
both fixed and random design was established in the recent paper [95]. Although that
work shows the dependence on the design, the rate is not explicit and the achievable result
requires potentially solving a semidefinite program. More explicit results were previously
derived under proportional asymptotics in the paper [31], in the restricted setting of Gaussian
isotropic random design. The author is able to establish the asymptotic minimaxity of a
particular ridge regression estimator. These type of results are not immediately useful for our
work, since they are based on linear shrinkage procedures which are known to be minimax-
suboptimal even in orthogonal design, in the ¢, setting for p < 2 [33].

Gaussian sequence model and sparse linear regression. In the case of orthogonal
design, i.e., when 2XTX = I;, the minimax risk of estimating sparse 6* is known; see [33].
It can also be shown that Lasso, with optimally-tuned parameter, can achieve the (order-
wise) optimal estimation rate [62]. This roughly corresponds to the case with B =1 in our
consideration. Our work generalizes this line of research in the sense that we characterize
the optimal rate of estimation over the larger family of design matrices %X X > %[d. In
stark contrast to the Gaussian sequence model, Lasso is no longer optimal, even with the
oracle knowledge of the true parameter.

Without assuming an orthogonal design, [20] provides a design-dependent lower bound
in the exact sparsity case (i.e., p = 0). The lower bound depends on the design through
its Frobenius norm | X |2. Similarly, in the weak sparsity case, [99] provides lower bounds
depending on the maximum column norm of the design matrix. However, matching upper
bounds are not provided in this general design case. In contrast, using the minimum singular
value of X (c.f., the parameter B) allows us to obtain matching upper and lower bounds in
sparse regression.

Suboptimality of Lasso. The suboptimality of Lasso for minimizing the prediction error
has been noted in the case of exact sparsity (i.e., p = 0). To our knowledge, previous
studies required a carefully chosen design matrix which was highly-correlated. For instance,
it was shown that for certain highly-correlated designs the Lasso can achieve only a slow rate
(1/4/n), while information-theoretically, the optimal rate is faster (1/n); see for instance the
papers [117, 65]. Additionally in the paper [21], the authors exhibit the failure of Lasso for
a fized regularization parameter, which does not necessarily rule out the optimality of other
Lasso variants. Similarly, in the paper [39], it is shown via a correlated design matrix and
a 2-sparse vector, that the norm-constrained version of Lasso can only achieve a slow rate
in terms of the prediction error. Again, this result does not rule out the optimality of other
variants of the Lasso. In addition, in the paper [30], there is an example for which Lasso with
any fixed (i.e., independent from the observed data) choice of regularization would fail to
achieve the optimal rate. Again, this fails to rule out data-dependent choices of regularization
or other variants of the Lasso. In our work, we are able to rule out the optimality of the
Lasso by considering a simple diagonal design matrix which exhibits no correlations among
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the columns. Nonetheless, for any p € [0,1], we show that the Lasso will fall short of
optimality by polynomial factors in the sample size. Our result also simultaneously rules out
the optimality of constrained, penalized, and even data-dependent variants of the Lasso, in
contrast to the literature described above.

Covariate shift. As mentioned previously, our work is also related to linear regression
under covariate shift [73, 126, 36]. The statistical analysis of covariate shift, albeit with
an asymptotic nature, dates back to the seminal work by Shimodaira [105]. Recently,
nonasymptotic minimax analysis of covariate shift has gained much attention in uncon-
strained parametric models [44], nonparametric classification [69], and also nonparametric
regression [94, 77, 121].

3.2 A closer look at the failure mode of Lasso

In this section, we take a closer look at the failure instance for Lasso. We will investigate
the performance of the Lasso on diagonal design matrices X, € R™? which satisfy, when

d— 2k,
lXTX _ %Ik 0
no 0 %Ik '

Thus, this matrix has condition number « and satisfies X, € X,, 4(B) for all @ > 1. As our
proof of Theorem 3.1 reveals, from an information-theoretic perspective, the hardest design
matrix X, is with the choice @ = 1: when all directions have the worst possible signal-to-

noise ratio. Strikingly, this is not the case for the Lasso: there are in fact choices of a » 1
which are even harder for the Lasso.

Theorem 3.3. Fizxn >d > 2 and let 0, B > 0 be given. For a > 1, on the diagonal design
Xa,

(a) if pe (0,1] and R > 0, then there is a vector 6* € R® such that |0*|, < R but

~ 9 o’Bd o?B \1-p/2
. . _p*|2 > 2( ) 2>
EyN(X.0 ,JQIn)[}\I;%HQ)\<Xaay> 9||2] 20000( —— AR o AR?), and

(b) if p=0 and s € [d], then there is a vector 0* € R which is s-sparse but

9 o*Bd 0°Bs
( )

Ey~N(Xa9*,021n) I:}\I;E He/\(XOM y) - H*HS] > 20000

A\
no n

The proof of Theorem 3.3 is presented in Section 3.3.3. We now make several comments on
the implications of this result.
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We emphasize that the dependence of the Lasso on the parameter «, which governs the
condition number of the matrix X, is suboptimal, as revealed by Theorem 3.3. At a high-
level, large o should only make the ability to estimate 6* easier—it effectively increases
the signal-to-noise ratio in certain directions. This can also be seen from Theorem 3.1: the
conditioning of the design matrix does not enter into the worst-case rate of estimation when
the bottom signular value of X is bounded. Nonetheless, Theorem 3.3 shows that the Lasso
actually can suffer when the condition number « is large.

Proof of Corollary 3.1. We now complete the proof of Corollary 3.1 given Theorem 3.3.

Maximizing over the parameter o > 1 appearing in our result, we can determine a
particularly nasty configuration of the conditioning of the design matrix for the Lasso. Doing
so, we find that for p € (0,1] and R > 0 that

UQB\/a) 44%2; A 1>

sup sup E [/1\2% H@A(X, y) — (9*H§] 2 R2(< T2

XeXn a(B) [6*[p<R

This is exhibited by considering the lower bound in Theorem 3.3 with the choice o*(p) =
(72d*P)P/(4=P)  On the other hand, if p = 0, we have for s € [d] that

2
~ B
sup sup E [ inf [0\(X,y) — 9*||§] > 722 Vsd
A>0 n

XeXn,a(B) [6*|o<s

The righthand side above is exhibited by considering the lower bound with the choice a*(0) =

Vs

The proof is completed by setting d = n, B = y/n, and 0 = R = 1.

3.3 Proofs

In this section, we present the proofs for the main results of this section. We start with
introducing a few useful notations. For a positive integer k, we define [k] = {1,...,k}. For
a real number z, we define || to be the largest integer less than or equal to z and {z} to be
the fractional part of x.

3.3.1 Proof of Theorem 3.1

Our proof is based on a decision-theoretic reduction to the Gaussian sequence model. It
holds in far greater generality, and so we actually prove a more general claim which could
be of interest to other linear regression problems on other parameter spaces or with other
loss functions.
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To develop the claim, we first need to introduce notation. Let © < R? denote a parameter
space, and let £: © x RY — R be a given loss function. We define two minimax rates,

Meeq(©, 4, v) = inf sup E, w21y [f(p*,ﬁ(y))], and (3.7a)

Ko p*e®

Mieg(©,4,0,B,n) ==inf sup sup E, nxo+021,) B [6(9*,5()(, y))] (3.7b)
0 XeX,,q(B)0*€0

The definitions above correspond to the minimax rates of estimation over the ¢, ball of
radius R > 0 in R? for the Gaussian sequence model, in the case of definition (3.7a), and
for n-sample linear regression with B-bounded design, in the case of definition (3.7b). The
infima range over measurable functions of the observation vector y, in both cases.

The main result we need is the following statistical reduction from linear regression to
mean estimation in the Gaussian sequence model.

Proposition 3.1 (Reduction to sequence model). Fiz n,d > 1 and 0, B > 0. Let © < R,
and £: © x R? — R be given. If £(0,-): R? — R is a convex function for each 0 € ©, then

2
Mieg(©, £, 0, B,n) = Myeq (@,e, A /Q).
n

Deferring the proof of Proposition 3.1 to Section 3.3.1.1 for the moment, we note that it
immediately implies Theorem 3.1. Indeed, we set © = ©,4,(R) and ¢ = (s, where

Oup(R) == {0 e R : |0, < R}, and (y(0,0) = 6 —0]3.
With these choices, we obtain

lo2B
mn,d(]); g, R, B) = mreg(@d,p(R); gsqa g, B, n) = Tnseq (@d,pa gsq: U_> )

n

where the final equality follows from Proposition 3.1. The righthand side then corresponds
to estimation in the /5 norm over the Guassian sequence model with parameter space corre-
sponding to an £, ball in R?, which is a well-studied problem [33, 12, 62]; we thus immedi-
ately obtain the result via classical results (for a precise statement with explicit constants,
see Propositions 3.2 and 3.3 presented in Section 3.4.1).
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3.3.1.1 Proof of Proposition 3.1

We begin by lower bounding the regression minimax risk by the sequence model minimax
risk. Indeed, let X, be such that %X*TX* = %Id. Then we have

Miee(0, 4,0, B,n) = inf sup E, n(x,0+ 021,.) [ 0* @]
6 0*e0

> inf sup Ez~N<0*,02—BId> [6(6’*7 é)]

0 6*€o

2
— Mg (@ .y “nB )

The penultimate equality follows by noting that in the regression model, Px, = {N (X.,0,0%I,) :
0 € O}, the ordinary least squares (OLS) estimate is a sufficient statistic. Therefore, by the
Rao-Blackwell Theorem, there exists a minimax optimal estimator which is only a function
of the OLS estimate. For any #*, the ordinary least squares estimator has the distribution,

N (6*, "QTBId>, which provides this equality.

We now turn to the upper bound. Let §OLS(X, y) = (XTX)"'XTy denote the ordinary
least squares estimate. For any estimator ji, we define

o2
~ N B _
0(X,y) = Eenow) [M(é\OLS(X’ y) + f)], where W = —Id -0 (XTX) 1

Note that for any X € X, 4(B), we have W > 0. Additionally, by Jensen’s inequality, for
any X € X, 4(B), and any 6* € O,

E, Nx0*021,) [5(9* (X y))] Ey Nixor021,) Eeano,w) [5(9*,/7(5@'3()(, y) + f))]

B 22) 07|

Passing to the supremum over 6* € © on each side and then taking the infimum over mea-
surable estimators, we immediately see that the above display implies

2
Meeg(©, 0,0, B, 1) < Meeq (@ ¢, w"nB),

as needed.

3.3.2 Proof of Theorem 3.2

We begin by bounding the risk for soft thresholding procedures, based on a rescaling and
monotonicity argument and applying results from [62]. To state it, we need to define the
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quantitites
B ) d d
0= T2 and pa(0m) = (Ve ALY A )R+ )02
i=1 i=1
Then we have the following risk bound.

Lemma 3.1. For any 6* € R and any n > 0 we have

swp (105750, y) — 0*3] < pul07,m).
XeXn,a(B)

We now define for ¢ > 0 and a subset © — R?,
d
T((,0) = sup 2(9;)2 N
6*€® ;7

Lemma 3.1 then yields with the choice n = v for some v > 1 that

ap s B[I50(0x) - 0] <3|awie v T )| 6
0*€O XeX,, 4(B)

We bound the map T for the ¢, balls of interest. To state the bound, we use the shorthand
O, for the radius-R ¢, ball in R? centered at the origin for p # 0, and for p = 0, the set of
s-sparse vectors in RY, for s € [d].

Lemma 3.2. Let d > 1 be fized. We have the following relations:

(a) in the case p € (0,1], we have for any ¢ > 0,
T(¢,0,) < R? [(%Yd A (%)21) A 1]

for any R > 0, and
(b) in the case p = 0, we have for any ( > 0,
T(C,0,) = (s,
for any s € [d].
To complete the argument, we now split into the two cases of hard and weak sparsity.

When p = 0: Combining inequality (3.8) together with Lemma 3.2, we find for n = v/,
v =1, that

d
sup sup B [[5TOS(X, y) — 0[] < 3% de™72 v 4% | = 6(v7) s 1og (o),
6*€® XeX,, q(B) S

where the last equality holds with 72 = 21og(ed/s).
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When p € (0,1] : Combining inequality (3.8) together with Lemma 3.2, we find for n =
Wiy v 21

sup sup E [H@?TOLS(X, y) — 9*||§] < 3R? ldeLe_'YQ/2 v (72_7”7'3_” A 1)] (3.9)
6+€0 XeX, 4(B)

Above, we used 72R? = ()% and 7*72d > 72 Pr2=P which holds since v > 1 and 72 > d~%P.

If we take v* = 2log(edr?), then note v* > 1 by 7'3 > d2/? and the term in brackets in

inequality (3.9) satisfies

2

alTse’VQ/2 v <72 Pr2=p A 1) ”e <(27' log(edr?))'~ p/2 1>

2[ 2Py 7' 2log(edT?)) P2 A 1)]

(1 log(edTp))1 p/2

which follows by 72 € [d=2/? log™" (ed)].
Thus, to complete the proof of Theorem 3.2 we only need to provide the proofs of the
lemmas used above.

3.3.2.1 Proof of Lemma 3.1
Note that if z = §OLS(X, y) then é\STOLS(X y) = S(2) = S(0* + ) where £ ~ N (O 2 ),

where we recall ¥, == (1/n)XTX. We now recall some classical results regarding the soft
thresholding estimator. Let us write for A > 0 and p € R,

2
rsOu i) = Byongun | (Sxy) = )°], and,
Ts(A, ) = e V24 (1 A MQ) + ()\2 A ,u2>.
Using (a + b) A ¢ < a A ¢+ b A cfor nonnegative a, b, c > 0, Lemma 8.3 and the inequalities

r$(A,0) < 14 A% and rg(X,0) < e /2 on page 219 of the monograph [62], we find that

rs(\, i) < Fs(A, 11). Define v2 i= 2 (1), Using the fact that (S,(2)), = sn( )forze [d],

n n

(S, — 02071 = s (1,55 < agig (1,55,

vi v vy VY

we obtain

Summing over the coordinates yields

D [Hé\sTOLS(X’ y) — Q*Hg] < Zd: V2T <VQ, %)
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where the last inequality follows by noting that both v — v2e=(1/ V2 and v — 6% A V? are
nondecreasing functions of v > 0. Noting that this inequality holds uniformly on X € X, 4(B)
and passing to the supremum yields the claim.

3.3.2.2 Proof of Lemma 3.2

The proof of claim (b) is immediate, so we focus on the case p € (0,1], R > 0. We consider
three cases for the tuple (R, (,p,d). Combination of all three cases will yield the claim.
When R > (d"/P: Evidently, for each § such that ||, < R, we have

d

D02 A<

=1

When R < (: This case is immediate, since 6 € ©, implies |f], <[], < R < (.

When ¢ < R < (d"/?: In this case, by rescaling and putting ¢ = C—Z, we have

d
sup ZQZQ A CQ — RQ[ sup Z e+ Z )\?/p] _ €R2<[E—p/2J n {e_p/Q}Q/p>

10lp<F = ASRd i \izer2 ihi<epl?

where above Ay denotes the probability simplex in R?. Noting that ¢ < 1 and p < 1 we
have

(lg—pﬂj + {g—p/2}2/p) < )3—13/27
which in combination with the previous display shows that
d

sup 91-2 A (L R2c1-7/2,
[0lp<R;=

To conclude, now note that R?e!~?/2 = RP(>P.

3.3.3 Proof of Theorem 3.3

Since X, has nonzero entries only on the diagonal, we can derive an explicit representation
of the Lasso estimate, as defined in display (3.6). To develop this, we first recall the notion
of the soft thresholding operator, which is defined by a parameter n > 0 and then satisfies

S,(v) = arg min{ (u —v)? + 2n|ul }
ueR
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We then start by stating the following lemma which is crucial for our analysis. It is a
straightforward consequence of the observation that

~ S A\ Zi 1
QA(Xaay)i = {Sii(/z() ) k

where we have defined the independent random variables z; ~ N (9; , %) if i < k and
zi~N (91-*, "273> otherwise.
Lemma 3.3. Let 0* € R, Then for the design matriz X,, we have
~ u 2 4 2
0\ (Xer ) = 0713 = 3 (Samelz) = 07) + D) (Sankz) = 07)
i=1 i=k+1

We will now focus on vectors 6*(n) = (0x,7n,04_2x), which are parameterized by n € R*.
For these vectors, we can further lower bound the best risk as

inf [0x(Xayy) = 0" ()5 = T1 A To()

where we have defined

B 5 k 9 2k 2
A= %% Ty = irglfx ; <SAB/a(Zi)> and  Ty(n) = igfxz :; 1 <SAB(Z") - m) '

We now move to lower bound 7 and T5(n) by auxiliary, independent random variables.

Lemma 3.4 (Lower bound on T3). Then, for any n € R if 0* = 6*(n), we have

10%2B k .
T.>-227 here 7 = 1{¢>3 2}.
12 1 ha where ; Trnem =

Lemma 3.5 (Lower bound on Ty(n)). Fiz ne RF if 0* = 6*(n), and suppose that

2
0<mn <2 o?Ba

for all i € [k].

Then, we have

1k
To(n) 2 ZZ’?ZZWZ where  W; == 1{zx1; < 1;}
i=1

Note that Z is distributed as a Binomial random variable: Z ~ Bin(k,p) where p =
P{IN(0,1)| = 3/2}. Similarly, W; are Bernoulli: we have W; ~ Ber (1/2).
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Lower bound for p > 0: We consider two choices of 7. First suppose that 472a < 1.
Then, we will consider n = Rd1, where

§:=2rna and (:=kn |67
For this choice of 7 we have by assumption that 72 > d=2? that ¢ > (1/2)0? and so

1 — R*, R 1-p/2___

Ty(n) > L R2HW, > 0", > g(Tga) "W,

Above, W, = (1/() Zle W;. On the other hand, if 472ac > 1, we take ' = Re;, and we
consequently obtain

RQ

To(n') = T

Taking § = 1/2 in Lemma 3.4, let us define

Wi

— 1
€1 = min P{Wg > 5} and ¢y = P{Z = kp}.

1<t<k
Let us take
o {6*(77) 42 < 1 '
“ 0*(n') 471ia>1
Then combining Lemmas 3.4 and 3.5 and the lower bounds on T5(n), T2(n') above, we see
that

2 2 —
P~ . coc1p (0°Bd o“B \1-p/2
Eynixoooen) | 0f [0 (Xay) = 013] = ZE (0 A B (Sa) T ARY) (310)

where above we have used k > d/4.

Lower bound when p = 0: In this case, we let s = s A k. Note that s’ = s/4. We then

o?Ba
n

set n =2 1., and this yields the lower bound

102Bs
T: = =
2(n) 3 n

In this case, we have, after combining this bound with the bound on 7} that for % = 6*(n)
as defined above,

avVg

czclp<02Bd azBs>
o
16

The proof of Theorem 3.3 is complete after combining inequalities (3.10) (3.11), and the
following lemma.

EyN(xa6s.021,) [;glg [67(Xa, ) — 0;\\3] > (3.11)

7AN
no n

9

cic2p —
20000 -

G 1s lower bounded as ¢ >

Lemma 3.6. The constant factor ¢ ==

We conclude this section by proving the lemmas above.
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3.3.3.1 Proof of Lemma 3.4

For the first term, T}, we note that for any A < X we evidently have for each i € [k] and for
any ¢ > 0, that

2 _ 2B .
Sapja(zi) ) = (Jzi] = AB/a): = (|zi| = AB/a)? = gza 1 2‘%' >1+¢
na  Ly/02B/(na)

Summing over i € [k], and taking ( = 1/2, we thus obtain the claimed almost sure lower
bound.

3.3.3.2 Proof of Lemma 3.5
Fix any i such that 1 < i < k. For any fixed A\ > X, note

Sxp(z4i) & [1i/2,30:/2]  implies  |Sxp(2x+i) — mi| = %
Note that the condition Syp(2x+i) ¢ [17:/2, 3n:/2] is equivalent to 24 ¢ [17:;/2+AB, 3n;/2+\B],
Therefore, if zx1; < 7;/2 + AB, then then for all A > X we have [Syp(zx+i) — ni| = %
Equivalently, we have that

Ea

k
1 — 1
1y = ZEﬁfl{ZkH <ni/2+ AB} = 12771'21{219-&-1' < i}
=1

The final relation uses the distribution of z;,; and

which holds by assumption that n? < 4"27304

3.3.3.3 Proof of Lemma 3.6

Evidently ¢; > 1/2 by symmetry. On the other hand, since p < 1/2, we have by anticoncen-
tration results for Binomial random variables [51, Theorem 6.4] that co = p. Therefore all
together, ¢ > p*/32. Note that by standard lower bounds for the Gaussian tail [35, Theorem

1.2.6], we have

10 g 3
> ey 2
P =570 25

which provides our claimed bound.



CHAPTER 3. FAILURE OF THE LASSO 86

3.4 Deferred results

3.4.1 Results in the Gaussian sequence model

In this section, we collect classical results regarding the nonasymptotic minimax rate of
estimation for Gaussian sequence model over the origin-centered ¢, balls, p € [0,1]. All of
the results in this section are based on the monograph [62]. We use the following notation
to specify the minimax rate of interest,

M(p,d,R.2) = inf sup Byongeos () — 1)
© M*ERd
ln*lp<R

As usual, the infimum ranges over measurable estimators from the observation vector y € R?
to an estimate fi(y) € R% Throughout, we use the notation 7 := & for the inverse signal-to-
noise ratio.

Proposition 3.2 (Minimax rate of estimation when 0 < p < 1). Fiz an integer d = 1. Let
€ (0,1]. If R,e > 0 satisfy

—1 <7< 1 5 €
ST ST 77— where T = —,
/v 1 +logd R
then .
5000 1 (7 log(edr?)) '™ < M(p,d, R, e) < 1203 R* (r* log(edr?))' ™+

The upper and lower bounds are taken from Theorem 11.7 in the monograph [62]. Al-
though the constants are not made explicit in their theorem statement, the upper bound
constant is obtained via their Theorem 11.4, setting their parameters as ¢ = %, v=2e[0=0.
Similarly, the lower bound constant is implicit in their proof of Theorem 11.7.

We now turn to the minimax rate in the special case that p = 0.

Proposition 3.3 (Minimax rate of estimation when p = 0). Suppose that d > 1 and s € [d].
Then for any € > 0 we have

3, d d
=An 1 ( _) < y Wy Oy <2 2 1 ( _>7
5005 S log eS m(p d,s 5) g™ slog eS

provided that p = 0.

The proof of the above claim is omitted as it is a straightforward combination of the
standard minimax rate €2k for the unconstrained Normal location model in a k-dimensional
problem (this provides a useful lower bound when s > d/2 or when d = 1) and the result in
Proposition 8.20 in the monograph [62].
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3.4.2 Details for experiments in Figure 3.1

For each choice of p, we simulate the oracle Lasso and STOLS procedures on instances
(Xn,0:) indexed by the sample size n € {1000, 2000, 3000, 5000, 10000, 15000}. The matrix
X, € R""™ is block diagonal and given by

LX _ In/2><n/2 0
\/ﬁ " 0 n_1/4[n/2><n/2 ’

When p = 0, 0}, = 2ey,/241 and when p # 0, 0}, = e,/2+1. In the figures, we are plotting the
average performance of the oracle Lasso and STOLS procedures, as measured by ¢, error,
when applied to the data (X,,y), where y ~ N (X,0% I,). The average is taken over 1000
trials for n < 10,000. In the case n = 10,000 due to memory constraints we only run 300
trials.

The STOLS procedure is implemented as described in Section 3.1.3. On the other hand,
the oracle Lasso procedure is implemented by a slightly more involved procedure. Our goal
is to compute R R R

05(X,y) where e ar§n§in 10x(X, y) — 6*3,
>
where the Lasso is defined as in display (3.6). To do this, we can use the fact that the Lasso
regularization path is piecewise linear. That is, there exist knot points 0 = A\g < A; < Ay <
-+ < A\, such that the knot points 6; == 0,,(X,y) satisfy ||0;]o > [|0i+1]lo. Moreover, we have

(05X, ) A e (A Aiz1)} = {6 + (041 — 6:) - a e (0,1)}.

That is, we can compute the set of Lasso solutions between the knot points by taking all
convex combinations of knot points. Therefore the distance between the oracle Lasso solution
and the true parameter 0* satisfies,

||§X(Xa y) — Q*HS = min mi

0; + (b1 — 6;) — 072
in min, |8 + a(Bia — 6:) — 6"l

We are able to compute the righthand side of the display above by noting that for each ¢
the inner minimization problem is a quadratic function of the univariate parameter o and
therefore can be minimized explicitly.

Code: The code has been released at the following public repository,
https://github.com/reesepathak/lowerlassosim.

In particular, the repository contains a Python program which runs simulations of STOLS
and oracle Lasso on the lower bound instance described above for any desired choice of

p e [0,1].
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Chapter 4

Noisy recovery in linear observational
models under elliptical constraints

4.1 Introduction

In this chapter, we study the problem of estimating an unknown vector #* on the basis of
random linear observations corrupted by noise. More concretely, suppose that we observe a
random operator 7¢ and a random vector y, which are linked via the equation

y =Te(0%) + w. (4.1)

This observation model involves two forms of randomness: the unobserved vector w, which
is a form of additive observation noise, and the observed operator T¢, which is random,
as indicated by its dependence on an underlying random variable &, and is linear in the
argument 6*.

While relatively simple in appearance, the observation model (4.1) captures a broad range
of statistical estimation problems.

Example 4.1 (Linear regression). We begin with a simple but widely used model: linear
regression. The goal is to estimate the coefficients #* € R that define the best linear
predictor = — {(x, 0*) of some real-valued response variable Y € R. In order to do so, we
observe a collection of (z;,y;) pairs linked via the noisy observation model

yi = {(xi, 0") + w; fori=1,...,n.

If we define the concatenated vector y = (y1,...,¥y,), with an analogous definition for w,
this is a special case of our general setup with the random linear operator T; : R* — R"
given by

[Te(0)]; = (zi, 0) fori=1,....n.
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Here, the random index corresponds to the covariate vectors so that & = (z1,...,x,); note
that we have imposed no assumptions on the dependence structure of these covariate vectors.
In the classical setting, these covariates are assumed to be drawn in an i.i.d. manner; however,
our general set-up is by no means limited to this classical setting. In the sequel, we consider
various examples with interesting dependence structure, and our theory gives some very
precise insights into the effects of such dependence. &

Example 4.2 (Nonparametric regression). In the preceding example, we discussed the prob-
lem of predicting a response variable Y € R in a linear manner. Let us consider the nonpara-
metric generalization: here our goal is to estimate the regression function f*(z) = E[Y |
X = z], which need not be linear as a function of x. Given observations {(z;, y;)},, we can
write them in the form

yi = f(z;) + wy, fori=1,...,n,

where w; = y; — E[Y | X = z;] are zero-mean noise variables.

Now let us suppose that f* belongs to some function class F contained with L*(X), and
show how this observation model can be understand as a special case of our setup with
6* € (*(N). Take some orthonormal basis {¢;};>1 of L?(X). Any function in F can then be
expanded as f = Zj>1 6;¢; for some sequence 6 € (*(N). Letting £ = (21,...,2,), we can
define the operator T; : /*(N) — R" via

0 — [Te(0)]; = Z 0;0;(z;) fori=1,...,n,
j=1

so that this problem can be written in the form of our general model (4.1). Observe that
the randomness in the observation operator T¢ arises via the randomness in sampling the
covariates {x;}I" ;. )

Example 4.3 (Tomographic reconstruction). The problem of tomographic reconstruction
refers to the problem of recovering an image, modeled as a real-valued function f* on some
compact domain X < R?2, based on noisy integral measurements. Formally, we observe
responses of the form

yi:Jh(a;i,u)f*(u) du + w; fori=1,...,n,
x

where h : R? x R? —» R is a known window function. If we again view f* as belonging to
some function class F within L*(X), then we can write this model in our general form with

[Te(v)]; = Z Uj[fx h(x;, w)p;(u) du], and & = (z1,...,%,).

j=1

Here we have followed the same conversion as in Example 4.2, in particular re-expressing
f* in terms of its generalized Fourier coefficients with respect to an orthonormal family

{#j}j=1- &
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Example 4.4 (Error-in-variables). Consider the Berkson variant [8, 23] of the error-in-
variables problem in nonparametric regression. In this problem, an observed covariate z—
instead of being associated with a noisy observation of f*(x)—is associated with a noisy
observation of the “jittered” evaluation f*(x+u), where u € R is the random jitter. Formally,
we observe n pairs (z;,y;) of the form

yi = [ (w0 +u) + &5 fori=1,...,n,

where the unobserved random jitter u; is drawn independently of the pair (z;,&;). We can
re-write these observations as a special case of our general model with £ = (xq,...,z,), and

[Te(f))i = Bu [ f(zi +w)], and,
w; =& + {f(x, + u;) — E, [f(xﬁ—u)]} fori=1,...,n.

Note that the new noise variables w; are again zero-mean, and our assumption that 7¢ is
observed means that the distribution of the jitter u is known. &

These examples (and others, as discussed below in Section 4.1.2) motivate our study of
the operator model (4.1). As we discuss in further detail later, a key advantage of writing
the observation model in this form is that it will allow us to separate three key components
of the difficulty of the problem: (i) the distribution of the random operator T, as expressed
via the distribution of £, (ii) the distribution of the noise variable w = y — T¢0*, and (iii)
the constraints on the unknown parameter 6*.

4.1.1 Problem formulation, notation, and assumptions

With these motivating examples in mind, we now turn to a more precise mathematical
formulation of the estimation problem introduced above.

4.1.1.1 Assumptions on the random variables (&, w)

Let us start by discussing properties of the random operator 7. In the examples previously
introduced, the domain of the observation operator T was either a subset of R?, or more
generally, a subset of the sequence space ¢?(N). The bulk of our analysis focuses on the
finite-dimensional setting —i.e., with domain R%—so that T; can be identified with a random
matrix R"*¢, for some pair (n,d) of positive but finite integers. However, as we highlight in
Section 4.3.2, simple approximation arguments can be used to leverage our finite-dimensional
results to determine minimax rates of convergence for estimating an element 6* of the infinite-
dimensional sequence space ¢?(N).

In terms of the probabilistic structure of T, we assume the random element ¢ lies in
the measurable space (Z, ), and is drawn from a probability measure P on the same space.
Throughout we take € to be large enough such that linear functionals of T, are measurable.
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As for the noise vector w € R", we assume it is drawn—conditionally on {&—from a noise
distribution with conditional mean zero, and bounded conditional covariance. Formally, we
assume that w ~ v(- | ) where v is a Borel regular conditional probability on R™ that
satisfies the following two conditions:

(N1) For P-almost every £ € Z, we have {wv(dw | §) = 0; and

(N2) For P-almost every £ € =, we have

J(uTw)2 v(dw | €) < u'S,u, for any fixed u € R".

We write that the measure v lies in the set P(X,,) when these two conditions are satisfied.

In words, Assumption 4.1.1.1 requires that w is conditionally centered, and Assump-
tion 4.1.1.1 assumes that the conditional covariance of w is almost surely upper bounded
in the semidefinite ordering by ¥,,. Let P x v denote the distribution of the tuple (£, w);
in explicit terms, writing ({,w) ~ P x v means that £ ~ P and w | £ ~ v(- | £). Having
specified the joint law of (£, w), the random variable y then satisfies the stated observation
model (4.1).

4.1.1.2 Decision-theoretic formulation

In this chapter, our goal to estimate 6* to the best possible accuracy as measured by a
fixed quadratic form. To make this rigorous, we introduce two symmetric positive definite
matrices K, and K., which induce (respectively) the squared norms

|01, =<0, K.0) and [0} =0, K '0),

defined for any ¢ € R?. We seek estimates @ of 6* that have low squared estimation error
10 — 6*||%., as defined by the matrix K. In parallel, we assume that underlying parameter
is bounded in the constraint norm, so that it lies in the ellipse

00, Ke) = {0 R 6] <o}

with radius R, as defined by the matrix K..
With this notation in hand, the central object of study in this chapter is the minimaz
risk

m(Ta IP)? Zwaga KeaKc) = Hlf sup E(f,w)~P><l/ [Hé\_ Q*H%C]? (42)
6 0*€0(o,Ke)
veP(Tw)

where the infimum ranges over all measurable functions § = é\(TE, y) that map the observed
pair (T, y) to R%. Note that by straightforward rescaling arguments, one can always take one
of the three operators (3, K., K.) to be equal to the identity. Moreover, one can “absorb”
the radius o into the constraint matrix K. so that without loss of generality it is equal to
1. For convenience in deriving results in particular problems, we have presented our main
results without making these reductions.
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4.1.2 Examples of choices of sampling laws, constraints and error
norms

As discussed previously, our general theory accommodates various forms of the random linear
operators T¢. As might one expect, the sampling law IP for £ changes the statistical structure
of the observations, and so influences the quality of the best possible estimates. Moreover,
the interaction between P and the geometry of the error norm, as defined by the matrix K.,
plays an important role. Finally, both of these factors interact with the geometry of the
constraint set, as determined by the matrix K..

Below we discuss some examples of these types of interactions. To be clear, each of these
statistical settings have been considered separately in the literature previously; one benefit
of our approach is that it provides a unifying framework that includes each of these problems
as special cases.

Example 4.5 (Covariate shift in linear regression). Recall the set-up for linear regression,
as introduced in Example 4.1. In practice, the source distribution from which the covariates
x are sampled when constructing an estimate of * need not be the same as the target
distribution of covariates on which the predictor is to be deployed. This phenomenon—a
discrepancy between the source and target distributions—is known as covariate shift. It
is now known to arise in a wide variety of applications (e.g., see the papers [75, 67] and
references therein for more details).

As one concrete example, in healthcare applications, the covariate vector z € R might
correspond to various diagnostic measures run on a given patient, and the response y € R
could correspond to some outcome variable (e.g., blood pressure). Clinicians might use one
population of patients to develop a predictive model relating the diagnostic measures x to the
outcome y, but then be interested in making predictions for a related but distinct population
of patients.

In our setting, suppose that we use the linear model § — 7 = (#, x) to make predictions
over a collection of covariates with distribution (). A simple computation shows that the
mean-squared prediction error, averaging over both the noise w and random covariates x,
takes the form

E[J-y)?]=(0- 0*)" S0 (0 — 0*) +c, where X = Eg[r ® ],

= Lq(0,0%)

and ¢ is a constant independent of the pair (,6*). Thus, the excess prediction error over
the new population ) corresponds to taking K. = X in our general set-up. Similarly,
if one wanted to assess parameter error, then studying the minimax risk with the choice
K. = I; would be reasonable. Finally, the error in the original population (denoted P) can
be assessed with the choice K, = ¥p = Ep[z ® x].

Among the claims in the paper of Mourtada [88] is the following elegant result: when no
constraints are imposed on #*, the minimax risk in the squared metric LQ(§, 0*) = Ha — 0|2 o
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is equal to

2

inf sup B|Lo(6,0%)| = = BITr(Z,"'Sq)), (4.3)
0 9*ecRd n

where ¥,, denotes the sample covariance matrix (1/n)> " | z; ® z;, and the expectation is
over xi,...,Tn i p Thus, the fundamental rate of estimation depends on the distribution
of the sample covariance matrix, the noise level, and the target distribution Q.

In this chapter, we derive related but more general results that allow for many other
choices of the error metric and, perhaps more importantly, permit the statistician to incor-
porate constraints on the parameter 6*. We demonstrate in Section 4.3.1.3 that these more
general results allow us to recover the known relation (4.3) via a simple limiting argument
where the constraint radius tends to infinity. &

Example 4.6 (Nonparametric regression with non-uniform sampling). Consider observing
covariate-target pairs {(x;, y;)}i, where y; is modeled as being a noisy realization of a condi-
tional mean function; i.e., we have y; = f*(z;) +w; where f*(z) = E[Y | X = z], analogously
to Example 4.2. When f* is appropriately smooth and the covariates are drawn from a uni-
form distribution over some compact domain, this problem has been intensively studied, and
the minimax risks are well-understood. However, when the sampling of the covariates x; is
non-uniform, the possible rates of estimation can deteriorate drastically—see for instance
the papers [40, 42, 41, 43, 53, 2].

Using tools from the theory of reproducing kernel Hilbert spaces (RKHSs), one can
formulate this problem as an infinite-dimensional counterpart to our model (4.1), where
the constraint parameters (o, K.) are determined by the Hilbert radius and the eigenvalues
of the integral operator associated with the kernel. Although formally our minimax risk
is defined for finite dimensional problems, via limiting arguments, it is straightforward to
obtain consequences for the infinite-dimensional problem of the type discussed here, which
discuss in Section 4.3.2. &

Example 4.7 (Covariate shift in nonparametric regression). Combining the scenarios in
Examples 4.5 and 4.6, now consider the problem of covariate shift in a nonparametric setting.
We observe samples (z;,y;) where the covariates have been drawn according to some law P,
and our goal is to construct a predictor with low risk in the squared norm defined by some
other covariate law Q.

In our study of this setting, the constraint set is determined by the underlying function
class in a manner analogous to Example 4.6, and the error metric is determined by the
new distribution of covariates on which the estimates must be deployed, analogously to
Example 4.5. Some recent work has studied general conditions on the pair (P, Q) and the
corresponding optimal rates of estimation [69, 46, 94, 77, 103, 121, 106, 47]. Among the
consequences of our work are more refined results that are instance-dependent, in the sense
that we characterize optimality for fixed pairs (P, @), as opposed to optimality over broad
classes of (P, Q)) pairs. See Section 4.3.2.3 for a detailed discussion of these refined results. &
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The examples above share the common feature of being problems where estimating a
conditional mean function is able to be formulated within the observation model (4.1). Ad-
ditionally, in these examples, the fundamental hardness of the problem depends on both
the structure of this function (modelled via assumptions on 6*) as well as the distribution
of the covariates. The goal of this chapter is to build a general theory for these types of
observation models, which elucidates how both the structure of #* as well as the covariate
law P determine the minimax rate of estimation in finite samples. In Section 4.3, we give
concrete consequences of our general results for these types of problems.

4.1.3 Relation to prior work

Let us discuss in more detail some connections and relations between our problem formulation
and results, and various branches of the statistics literature.

Connections to random design regression As shown by the examples discussed so far,
our general set-up includes, among other problems, many variants of random design regres-
sion. This is a classical problem in statistics, with a large literature; see the sources [54, 115,
58] and references therein for an overview. The recent paper [88] also studies the analogous
problem studied here when the vector 6* is allowed to be arbitrary; the only assumption
made is that §* € R, In this case, it is possible to use tools from Bayesian decision theory
to exhibit the minimax optimality of the ordinary least squares (OLS) estimator [88, The-
orem 1]. In Section 4.3.1.3, we demonstrate how to obtain this result as a corollary of our
more general results.

Note that in applications, such as those given by the preceding examples, it is important
that there is a constraint on 6*. For instance, in a nonparametric regression problem, the
parameter 6* denotes the coefficients of a series expansion corresponding to a conditional
mean function f*(z) = E[Y | X = z] in an appropriate orthonormal family of functions.
In this case, constraints are in fact necessary: to have consistent estimation, compactness is
essential—see the monograph [62, Theorem 5.7] for further details.

Finally, we also comment on the similarity of our results to the paper [63]. Specifically,
our main results can be compared to their Theorem 2.1. There are a few differences: first,
in the paper [63], they study “fixed design” problems, whereas our formulation allows us to
simultaneously treat both random and fixed design problems with the same analysis tools.
Secondly, even restricting to the fixed design setup, our results are stronger than theirs,
in the case of an ellispoidal constraint set. Their Theorem 2.1 shows that linear estimates
only achieve the minimax rate within ellipsoid-dependent logarithmic factors; our result, on
the other hand, demonstrates that linear estimates are order-optimal with factors which are
universal—they depend on neither the dimension nor the ellipsoid under consideration. In
fact, to the best of our knowledge, our result—even specialized to fixed design—is the first
to treat observation operators and constraint sets given by matrices that do not commute.
Previous results requirde stronger assumptions to attain (near) rate-optimality.
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Random design and Bayesian priors When the the norm of the vector 8* is constrained,
there are relatively few minimax results in the random design setting. On the other hand, a
related Bayesian setting has been studied. In this line of work, the definition of the minimax
risk is altered so that the “worst-case” supremum over #* in the constraint set is replaced with
a suitable “average”—mnamely the expectation over #* drawn according to a prior distribution
over the constraint set.

In addition to the clear differences in the formulation, this line of work exhibits two
main qualitative differences from the results in this chapter. First, these Bayesian results
have primarily been established in the proportional asymptotics framework, in the ratio d/n
is assumed to converge towards some aspect ratio v > 0 as both (d,n) diverge to infinity.
Secondly, by selecting “nice priors”, it is possible to leverage certain properties—for instance,
equivariance to some group action—that can hold for both the prior and covariate law. On
the other hand, our setting is somewhat more challenging in that we make no a prior:
assumptions about the covariate law and its relationship to the constraint set.

In more detail, when the covariates are drawn from a multivariate Gaussian, for certain
constraint sets, it is possible to find a prior such that the minimax and Bayesian risks
coincide. As one example, Dicker [31] studies the asymptotic minimax risk when the ratio
d/n is allowed to grow, and by using equivariance arguments, he obtains asymptotically
minimax procedure. Proposition 3(b) in his paper gives a prior for which the minimax and
Bayesian risks coincide. The thesis [87, Corollary 8.2] provides a matching asymptotic lower
bound. The relation between Bayes and minimax risks in this line of work cannot be expected
in general, as the arguments repose critically on the rotation invariance of the standard
multivariate Gaussian. Moreover, this and other classical work on random design regression
using Gaussian covariates typically hinges on special, closed-form formulae for quantities
related to the distribution of the sample covariance matrix (see, e.g., the papers [108, 16, 1]).

Fixed design results Although we focus on minimax estimation of the unknown param-
eter #* in the random design setting, we note that the related fixed design setting is well
studied. In fact, in classical work, Donoho studied a very similar operator-based observation
model to the one considered here; a key difference is that in that work, the focus is on
estimating a (scalar-valued) functional of 6* [32].

By sufficiency arguments, our problem, when instantiated in the setting of fixed design
with Gaussian noise, is equivalent to mean estimation on an elliptical parameter set. It is
therefore related to classical work on sharp asymptotic minimax estimation in the Gaussian
sequence model [96, 50, 34, 33, 5, 48, 49]; see also the monograph [62] for a pedagogical
overview of this topic. These works extend the classical line of work on estimating a con-
strained (possibly multivariate) Gaussian mean [24, 11, 83, 9, 81]. We refer the reader to
references [82, 38], which contain a more thorough overview of prior work on minimax esti-
mation of a parameter when a notion of ‘signal to noise ratio’ is fixed. Of course, applying
an optimal fixed design estimator cannot be expected to yield an optimal random design
estimator in general. This is because in the fixed design formulation, the worst-case 8* could
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adapt to a single design matrix, whereas in the random design formulation, the worst-case
6* must adapt to the random ensemble of design matrices induced by sampling n samples in
an IID fashion from a fixed covariate law.

4.2 Main results

We now turn to the presentation of our main results, which are upper and lower bounds
on the minimax rate of estimation as defined in display (4.2), matching up to a constant
pre-factor. These bounds are presented in Section 4.2.1.

4.2.1 General upper and lower bounds

Our general upper bounds are stated as the following functional of the distribution of the
operator T¢; the noise covariance X,,; the constraint norm, as determined by the pair (o, K.);
and the estimation norm, as defined by the operator K.,

O(T,P, %y, 0, Ke, Ke)
— sup{ ETr (Kel/Q(Q‘l 4 ng;ng)—lKg/Q) L Q> 0, Tr(K,Y20QK,?) < ¢ } (4.4)
Q

Our first main result is a general upper bound.

Theorem 4.1 (General minimax upper bound). The minimax risk is upper bounded as
(T, P, %, 0, K., K.) < ®(T,P, %, 0, K¢, K.). (4.5)

See Section 4.4.1 for the proof.

Our second result is a complementary lower bound.

Theorem 4.2 (Lower bound). The minimaz risk is lower bounded as
1
M(T, P, Xy, 0, Ke, Kc) = (T, P, 2y, §, K¢, Kc) > 1 (T, P, Xy, 0, Ke, Ke). (4.6)

See Section 4.4.2 for the proof.

Note that the functional on the righthand side of the display (4.6) above matches the
quantity appearing in our minimax upper bound (4.5). Thus, in a nonasymptotic fashion,
we have determined the minimax risk for this problem up the prefactor 1/4.
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Sharper lower bound constants The constant appearing in the lower bound (4.6) can
typically be substantially sharpened. To describe how this can be done via our results, fix a
scalar 7 € (0, 1] and a symmetric positive definite matrix 2, and let Z € R¢ be vector of 11D
standard Gaussians. Define the scalar

d
c= (1 =P{r* Y \Z} > 1}),

i=1

where {\;}%_, are the the eigenvalues of the matrix (1/0?)K.Y*QK_."%. Then, we are able to
establish the following minimax lower bound,

1
M(T,P, Sy, 0, K., K,) > ETr (K;/Q(EQ—l + Tgxngg)—lK;ﬂ), (4.7)

provided that the parameter 7 € (0, 1] and the symmetric positive definite matrix € is such
that Tr(K, Y2QK, %) = g%

With appropriate choices of the pair (7,€2), the lower bound (4.7) can lead to pre-factors
that are much closer to 1, and in some cases, converge to one under various scalings. In
Section 4.3.1.1, we give one illustration of how the family of bounds (4.7) can be exploited
to obtain an improvement of this type.

Form of an optimal procedure Inspecting the proof of Theorem 4.1—specifically, as a
consequence of Proposition 4.3—if the supremum on the righthand side of (4.4) is attained
at the matrix €),, then the following estimator, in view of the lower bound (4.6), is near
minimax-optimal,

O(Te,y) = (L + 7S, ) T7 sty (4.8)
It is perhaps instructive to write this estimator in its “ridge” formulation

~

0(Te,y) = argmin { |y — Ted|2e + |93 |-
JeR4

In the language of Bayesian statistics, our order-optimal procedure is a maximum a pos-
teriori (MAP) estimate for 8* when y ~ N (7:0*,%,,) and the parameter follows the prior
distribution 6* ~ N(0,€). The optimal prior is identified via the choice of 2, which is
determined by the functional appearing in Theorems 4.1 and 4.2. If the supremum in (4.4)
is not attained, then by selecting a sequence of matrices 2, that approach the maximal value
of the functional, one can similarly argue there exists a sequence of estimators that approach
the order-optimal minimax risk.

4.2.2 Independent and identically distributed regression models

An important application of our general result is for independent and identically distributed
(i.i.d.) regression models of the form

y; = 0%, 0(x;)) + 0z, fori=1,...,n. (4.9)
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Above, we assume that x; are independent and identical draws from a fixed covariate dis-
tribution P, on some measurable space X, and that 1: X — R¢. The covariates {z;}" , are
independent and the conditional distribution of z | z is an element of P(1,,). The parameter
o > 0 indicates the noise level; it is an upper bound on the conditional standard deviation
of y; =<0, ¥(xi)).

For the model described above, the following minimax risk of estimation provides the
best achievable performance of any estimator, when 6* lies in a compact ellipse and the error
is measured in the quadratic norm

0 0*€O(p,K.)
veP(a?1,)

mup <2/1,P, 0, O'Q,KC,K6> =1inf sup E [Hé(y?,x?) — 0" i(e] (4.10)

Note that this problem can be formulated as an instance of our general operator formula-
tion (4.1) where we take y = (y1,...,Yn), w = 0(21,...,2,), and & = (z1,...,x,), so that
P = P". The operator T; is given by the n x d-matrix with rows 1 (x;)T. In this context the
following random matrix, which is a rescaling of the operator T, 5T T¢, plays an important role:

:%Z () @ (). (4.11)

In order to state the consequence of our more general results for this problem, let us
introduce a functional. We denote it by d,, to indicate that it is essentially an “effective
statistical dimension” for this problem,

dn (¥, P, 0,0% Ko, K.)

2
— Sup{TrEpn [KM2(S, + Q)UK > 0, (K V20K ?) < 22 } (4.12)
Q o
Then an immediate corollary to Theorems 4.1 and 4.2 is the following pair of inequalities
for the IID minimax risk.

Corollary 4.1. Under the IID regression model (4.9), the minimaz rate of estimation as
defined in equation (4.10) satisfies the following inequalities,

2

06, P, 0, 0% Koy K) < Lot P, 2, 0%, Ko )
n

)99

0.2

<M (0, P, 0% Koy Ke) < T, P, 0, 0%, Ko, K,
n

So as to lighten notation, in the sequel, when the feature map v is the identity mapping
Y(x) = z, we drop the parameter ¢ from the functional d,, and the minimax rate MIP.

1Strictly speaking, this result follows immediately if we had defined the minimax risk over estimators
which are measurable functions of the variables {(y;,%¥(x;))}. Nonetheless, since our lower bounds use
Gaussian noise, the stated inequalities hold even when defining the minimax risk for estimators which
operate on {(y;,z;)}, by a standard sufficiency argument.
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4.2.3 Some properties of the functional appearing in
Theorems 4.1 and 4.2

As indicated by Theorem 4.1 and the subsequent discussion, the extremal quantity

sup{ ETr (K;/2(Q—1 + ng;ng)—lK;/"‘) L Q> 0, Tr(K,2QK, %) < 92} (4.13)
Q

is fundamental in that it determines our minimax risk; moreover when the supremum is
attained, the maximizer defines an order-optimal estimation procedure (see equation (4.8)).
Conveniently, it turns out that the maximization problem implied by the display (4.13) is
concave.

Proposition 4.1 (Concavity of functional). The optimization problem
mazimize f(Q) = TrE[KY*(Q + T7S,'T) T K.V
subject to € > 0, ’I‘r(KC_l/2QKc_1/2) < 02,

15 equivalent to a convexr program, with variable ). Formally, the constraint set above is
convex, and function f is concave over this set.

See Section 4.6.1 for a proof.

Note that this claim implies that, provided oracle access to the objective function f
appearing above, one can in principle obtain a maximizer in a computationally tractable
manner, by leveraging algorithms for convex optimization [15].

The functional (4.13) depends on the distribution of Tg Y, 'T;. In general, Jensen’s
inequality along with the convexity of the trace of the inverse of positive matrices [10,
Exercise 1.5.1] implies that it is always lower bounded by

sup{ Tr (K;/Q(Q—l + ETgZ;ng)‘1K§/2> L Q> 0, Te(K2QK,1?) < QQ} (4.14)
Q

Comparing displays (4.13) and (4.14), we have simply moved the expectation over £ into
the inverse. For certain IID regression models, as described in Section 4.2.2, we can give a
complementary upper bound. To state our result, we define

C_ZTL(P7 Q? 027 K@? KC)

2
= sup{ Tr (K2(Bpn T, + Q)T KH) - Q> 0, Te(KPQR) < B0
Q g

Note that this quantity only depends on the distribution P" through the matrix Ep» X,.
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Proposition 4.2 (Comparison of d, to d,). Define k to be the P-essential supremum of
z — | K 0(x)|y. If K < oo, then for any 0 > 0,0 > 0, we have

02 K2
o2

37’L(¢7 P7 Q? 0-27 K@? KC) < dn<w7 P7 Q? 0-27 K@? KC) < (1 + >ETL(1/}7 P? Q? 0-27K67 KC)'

Unpacking this result, when Kcl/ 2w(yc) is essentially bounded, we see that the functionals d,,
and d,, are of the same order when the signal-to-noise ratio satisfies the relation 5—2 < é
As mentioned above, the first inequality is a consequence of a generic lower bound, while
the upper bound is a consequence of a new operator inequality for random positive definite

matrices, presented as Theorem 3 in Section 4.6.2.

4.2.4 Asymptotics for a diverging radius

In this section, we develop an asymptotic limit relation for the minimax risk (4.2) as the
radius o of the constraint set ©(p, K.) tends to infinity. The relation reveals that the lower
bound constant 1/4 appearing in the lower bound Theorem 4.2 can actually be made quite
close to 1 for large radii.

Corollary 4.2. Suppose that TgE;ng 1s P-almost surely nonsingular. Then the minimax
risk (4.2) satisfies

TP, %, 0 K., K.) = (1 — 0(1)) (T, P, %, 0, K., K.), aso— .

See Section 4.6.3 for a proof of this claim.
An immediate consequence is that for IID regression settings as in Section 4.2.2, we have
the following limit relation.

Corollary 4.3. Suppose that that the empirical covariance matriz X, from equation (4.11)
is P™-almost surely invertible. Then, the minimaz risk for an IID observation model (4.9)
satisfies the relation

2
ﬂ“(LID (w,R 0, UQ,Ke,KC) - (1 - 0(1)) %dn(l/},P, 0, 027K6>KC)’ as @ = ©.

4.3 Consequences of main results

In this section, we demonstrate consequences of our main results for a variety of estimation
problems. In Section 4.3.1, we develop consequences of our main results for problems where
the underlying parameter to be estimated is finite-dimensional. In Section 4.3.2, we develop
consequences of our main results for problems where the underlying parameter is infinite-
dimensional. In both cases, we are able to derive minimax rates of estimation, which to
the best of our knowledge, are not yet in the literature. Additionally, we are also able to
re-derive classical as well as recent results in a unified fashion via our main theorems.
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4.3.1 Applications to parametric models

We begin by developing the consequences of our main results for regression problems where
the statistician is aiming to estimate a finite-dimensional parameter. Sections 4.3.1.1, 4.3.1.2,
and 4.3.1.3 concern IID regression settings of the form described in Section 4.2.2. In Sec-
tion 4.3.1.4, we consider a non-IID regression setting.

4.3.1.1 Linear regression with Gaussian covariates

As in the prior work [31], consider a random design IID regression setting of the form
presented in the display (4.9), but with Gaussian data. Formally, we assume Gaussian noise,
so that z "X N (0,1), and Gaussian covariates, so that z; N (0,1;) and 9(x) = x. Here
x and z are assumed independent. Then we define

r(n,d,0,0) = inf sup B[10- 03], and doe(n,d,0,0) = TrB[ (S, + £ 41,)7],

0 l0ll2<e

where the expectations are over the Gaussian covariates and noise pairs {(x;, z;)}1~,. These
quantities correspond, respectively, to the minimax risk and the worst-case risk (rescaled by
n/o?), of a certain ridge estimator [31, Corollary 1] on the sphere {[|0], = o}.

Dicker [31, Corollary 3] proves the following limiting result. Under the proportional
asymptotics d/n — «y, where the limiting ratio v lies in (0, ), the minimax risk satisfies

2

lim |r(n,d,o,0)— J—dDiCker(n, d,p,0) =0, (4.15)
d/n—~ n

for any radius ¢ > 0 and noise level o > 0.
Let us now demonstrate that our general theory yields a nonasymptotic counterpart of
this claim, and taking limits recovers the asymptotic relation (4.15).

Corollary 4.4. For linear regression over the p-radius Euclidean sphere with Gaussian co-
variates, the minimaz risk satisfies the sandwich relation

0_2

2
o
Cd ngicker(n,d, 0,0) < EdDicker(n,d, \€q0,0)
o2
<r(n,d, 0,0) < —dpicker(n, d, 0,0), (4.16a)
n

where

(4.16D)

U —exp(— 1)) d =2
R d=1

Note that since ¢; = (1—-0(1/d)) as d — o, the inequalities (4.16a) allow us to immediately
recover Dicker’s result. It should be emphasized, however, that Corollary 4.4, holds for any
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quadruple (n,d, o, o). In particular, it is valid in a completely nonasymptotic fashion and
with explicit constants.

We now sketch how this result follows from our main results. As calculated in Sec-
tion 4.6.4.1, our functional for this problem satisfies

dn(N (07 [d> y 0, 027 Id7 [d) = dDicker(n7 d7 0, 0)- (417&)
Hence, our Corollary 4.1 implies the following characterization of the minimax risk,?

1 o? o? 9

n _dDiCker(na d7 o, 0) < T(”) d7 o, J) < _dDicker(na d7 0,0 )

4 n n

To establish our sharper result (4.16a), we leverage the stronger lower bound (4.7). The
details of this calculation are presented in Section 4.6.4.2. Note that in Section 4.5.1.1, we
simulate this problem and find that as suggested by Corollary 4.4, that, indeed, the gap
between our upper and lower bounds is tiny, even for problems with small dimension (see
Figure 4.1).

4.3.1.2 Underdetermined linear regression

Consider observing samples from a standard linear regression model; that is, we observe pairs
{(z;,y;)} according to the model (4.9), with ¢(z) = x. A practical scenario in which some
assumption regarding the norm of the underlying parameter is necessary is when the sample
covariance matrix ,,, defined in display (4.11) is singular with positive P"-probability. This
occurs if n < d, or if there is a hyperplane H < R? such that  ~ P lies in H with positive
probability.

In this setting, the correct dependence of the minimax risk on the geometry of the con-
straint set and the distribution of sample covariance matrix is relatively poorly understood.
For simplicity—although our results are more general than this—Ilet us assume that error is
measured in the Euclidean norm and that it is assumed that the underlying parameter 6*
has Euclidean norm bounded by ¢ > 0, and that the noise is independent Gaussian with
variance 2. Then Corollary 4.1 demonstrates that

2
inf sup B[ — 0)2] = Zdu(P, 0,0 I, I)
A [ PR n
o? ng*
= — sup{ TrEp-[(Z, + Q)7 Tr(Q) < _}
n Q>0

2 Although Corollary 4.1 takes the supremum over a larger family of noise distributions, note that our
lower bounds are obtained with Gaussian noise, so that the result applies even if we restrict to Gaussian
noise.
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Taking Q =
law P,

%9—2] 4, we obtain the following lower bound on the minimax risk for any covariate

” hE (S0 + %4197
n pn n Zn d

i(Zn)>"—;£§%}}+E[§% - %j‘é}]. (4.18)

i=1
- / /
g Y
Estimation error from Approximation error due
large eigenvalues of ¥, to small eigenvalues of 3y,

ii.d

The lower bound (4.18) is sharp in certain cases. For instance, when x; "~ N (0, ;) but
there are fewer samples than the dimension, so that n < d, it is equal to the minimax risk
up to universal constants, following the same argument as in Section 4.3.1.1.

Note that above, \; denotes the ith largest (nonnegative) eigenvalue of a symmetric
positive semidefinite matrix. One possible interpretation of this lower bound is as follows:
the first term indicates the estimation error incurred in directions where the effective signal-
to-noise ratio is high; on the other hand, the second term indicates the bias or approximation
error that must be incurred in directions where the effective signal-to-noise ratio is low. In
fact, the message of this lower bound is that in these directions, no procedure can do much
better than estimating 0 there. One concrete and interesting takeaway is that if 3, has an
eigenvalue equal to zero, it increases the minimax risk by essentially the same amount as if

d

the eigenvalue were positive and in the interval (0, 729—2)

4.3.1.3 Linear regression with an unrestricted parameter space

In recent work, Mourtada [88] characterizes the minimax risk for random design linear regres-
sion problem for an unrestricted parameter space. Consider observing samples {(x;, y;)}",
following the IID model (4.9) with ¢ (z) = x, where the covariates are drawn from some
distribution P on R?. As argued by Mourtada (see his Proposition 1), or as can be seen
by taking ¢ — o0 in our singular lower bound (4.18) from Section 4.3.1.2, if we impose no
constraint on the underlying parameter 6*, then it is necessary to assume that the sample
covariance matrix 3, is invertible with probability 1 in order to obtain finite minimax risks.
Theorem 1 in Mourtada’s paper then asserts that under this condition, we have

2
inf  sup E[He 0 ]:”—E[Tr(z,;lzp)], (4.19)
G*ERd n
veP(a?1,)

where the expectation is over the data {(z;,v;)}", and Xp = Ep[x ® z] is the population
covariance matrix under P.

We now show that this result, with the exact constants, is a consequence of our more
general results. We focus on establishing the lower bound, because it is well-known (and
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easy to show) that the upper bound is achieved by the ordinary least squares estimator.?
Thus for the lower bound, our results imply that

inf sup E[Hé*@* 22 ] > sup {iqu sup E[Hé*Q* 22 ]} (4.20a)
0 P P

0*cR? 0>0 I [ PN
veP(o?l,) veP(o?1,)
0.2
= — lim d,(P, 0,0, 3p, Iy). (4.20Db)
n o—w

In order to obtain the relation (4.20b), we have used the fact that the constrained minimax

risk over the set {[|0*|2 < o} is nondecreasing in ¢ > 0, and have applied our limit relation

in Corollary 4.3. A short calculation, which we defer to Section 4.6.4.3, demonstrates that
lim d,(P, 0,0, Sp,1s) = E[ Tr(3,'Sp)]. (4.21)
0—w

Thus, after combining displays (4.20b) and (4.21), we have obtained the lower bound in

Mourtada’s result (4.19). One consequence of this argument is that the inequality (4.20a)
is, as may be expected, an equality. That is, we have

2

sl f

Note that establishing this equality directly is somewhat cumbersome, as it requires es-
sentially applying a form of a min-max theorem, which in turn requires compactness and
continuity arguments.

inf sup E[H@—H* ; ] = sup {iqf sup E[Hg—é*
0 o*eRd P >0 L 8 [0*]2<e
veP(o?I,) veP(o?1y)

4.3.1.4 Regression with Markovian covariates

We consider a dataset {(z,;)}._, comprising of covariate-response pairs. The covariates
are initialized with xy = 0, and then proceed via the recursion

v =reaa V=1 fort=1,....T, (4.22)

for some collection of parameters {r;}I_; = [0,1], and family of independent standard Gaus-
sian variates {z;}7_ ;. By construction, the samples {z;}7, form a Markov chain—a time-
varying AR(1) process with stationary distribution being the standard Gaussian law. At the
extreme r, = 0, the sequence {z;}_, is IID | whereas for r, € (0, 1), is a dependent sequence,
and its mixing becomes slower as the parameters {r;} get closer to 1. In addition to these
random covariates, suppose that we also observe responses {y;}Z_, from the model

Yy = 0" + owy, fort=1,...,T, (4.23)

3 Alternatively, note that if we define ég to be the order-optimal estimator we derive for the constraint
set {]|6*]3 < 0%} (see equation (4.8), with K, = Iy, ¥,, = 0214, and Tz = X, where X is the design matrix.),
then it converges compactly to the ordinary least squares estimate as o — 0.
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where o > 0 is a noise standard deviation, and the noise sequence {w;}_, consists of IID
standard Gaussian variates. We assume that z; and z; are independent for all t =1,...,T.

We now describe how our main results apply to this setting. Let us define a matrix
M e RT*T which is associated to the dynamical system (4.22). It has entries

T t
M,y = Z \esiCst, where cg = (1 —71y) H Tr. (4.24)

t=svs’ T=s5+1

To give one example, in the special case that r, = « € (0,1) for all ¢, then the matrix M is
similar under permutation to the matrix with entries

M, = \/a|s—t| _\/as-i-t.

Evidently, this matrix is a rank-one update to the covariance matrix for the underlying AR(1)
process (i.e., the Kac-Murdock—Szegd matrix [64]); it is easily checked to be symmetric
positive definite.

We now state the consequences of our main results for this problem.

Corollary 4.5. The minimazx risk for the Markovian observation model described above
satisfies

T _

inf sup B[(0—0%)2] = r(p,0) = B [(% + 2 ]\242> 1]. (4.25)
0 10*]<e 0 o

See Section 4.6.4.4 for details of this calculation.

Note that in the result above, the expectation on the lefthand side is over the dataset
{(xi, )}, under the Markovian model (4.22) for the covariates, and the expectation on
the righthand size is over the Gaussian vector z = (21,...,27) ~ N(0, I7). Corollary 4.5
gives one example of how our general results can even establish sharp rates for regression
problems of the form described in Section 4.2.2, but with additional dependence among the
covariates.

Additionally, we note that with 72 = 02/0% we have by simple integration that

2 o 2 T
log(1 A
Pr(0,0) = U—f exp{ S Zt‘l;)g( ru t)} du,

2 Jo

where {\;}e[r) denote the eigenvalues of the matrix M.

4.3.2 Applications to infinite-dimensional and nonparametric
models

In this section, we derive some of the consequences of our main results for infinite-dimensional
models, such as those arising in nonparametric regression. The basic idea will be to identify
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an infinite dimensional parameter space ©, typically lying in the Hilbert space ¢*(N). We
then find a nested sequence of subsets

@1C@2C"-C@kc-"C@’

where ©, are finite-dimensional truncations of ©. Under regularity conditions, we can show
that the minimax risk for the k-dimensional problems converge to the minimax risk for the
infinite dimensional problem as k — co. Thus, since we have determined the minimax risk
for each subset ©; up to universal constants (importantly, constants independent of the
underlying dimension), we take the limit of our functional in the limit & — oo to obtain a
tight characterization of the minimax risk for the infinite-dimensional set ©.

In the next few sections, we carry this program out in a few examples. We begin with
a study of the canonical Gaussian sequence model in Section 4.3.2.1. We then turn, in
Sections 4.3.2.2 and 4.3.2.3, to nonparametric regression models arising from reproducing
kernel Hilbert spaces. In this setting, we are able to derive some classical results for Sobolev
spaces, derive new and sharper forms of bounds on nonparametric regression with covariate
shift, and obtain new results for random design nonparametric models with non-uniform
covariate laws.

4.3.2.1 Gaussian sequence model

In the canonical Gaussian sequence model, we make a countably infinite sequence of obser-
vations of the form
yi = 07 + €2, fori=1,2,3,... (4.26)

Here the variables {z;} are a sequence of IID standard Gaussian variates, and ¢ = {g;}
indicate the noise level (i.e., the standard deviation) of the entries of the observation y. It is
typically assumed that there is a nondecreasing sequence of divergent, nonnegative numbers
a = {a;} and radius C' > 0 such that

0 e 6(a,C) = {9 RN : Y a20? < 2 |,
j=1

The minimax risk for this problem is then defined by
0

m<5,a, C’) = inf sup E[ (éj(y) - 9;)2],
=1

0 0*€O(a,C)

where the expectation is over y according to the observation model (4.26).
Let us define a k-dimensional truncation,

Ou(a, C) = {ee O(a,C) : 0, = 0, for all j > k:}
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Evidently ©(a,C) may be regarded as a subset of R¥. Note that the class {Ox(a, C)}r=1
forms a nested sequence of subsets within ©. Moreover, we can define the minimax risk for
the k-dimensional problem

mk(a,a,C’): inf sup E[ig —9*]

0 6*€04(a,0)

Slightly abusing notation, above we regard y,6* € R*, where y is distributed as the first &
components of the observation model (4.26). Then, this sequence of minimax risks satisfies
the limit relation

gg&ﬂu(aaxﬁ:=n1@;jﬁhcx@c») (4.27)

See Section 4.6.5.1 for justification. The k-dimensional problem can be seen as a special case
of our operator model (4.1), with parameters T®), Ef,(f), Ke(k), 0%, K, defined as,

T(k)(g) = I, zgﬁ) = diag(c2, ..., 2), K® =1,

1
—2>, and, o® =C.
Ak

1 4.28
K® = diag <—2,..., ( )
aj

Computing the functional (4.13) for the k-dimensional problem, we find it is equal to

ko 2.2 k
T4
RZ(E,CL, C’) = sup { Z R :erga? <C? } (4.29)
Ti & s

T1yeees Tk j=1"J

Hence, define the following functional of € == {¢;};>1,a == {a;};>1, and C' > 0,

R*(g,a,C) = sup- {i

T:{Tj

0

Z 2l < C? ). (4.30)
j=1

Then our main results, Theorems 4.1 and 4.2 imply the sandwich relation

im@mm<m@m®<3%ﬂcy (4.31)
See Section 4.6.5.2 for verification of this relation as a consequence of our results. Note
that this recovers a well-known result for the Gaussian sequence model [115, 62]. Some
previous work [34] has shown that the lower bound constant can be slightly improved to
125 by arguments specific to the Gaussian sequence model. Importantly, the Gaussian
sequence model is a “deterministic” operator model in the sense that the operator T¢ has
no dependence on ¢ for this problem. The next few examples show some consequences of
our theory for infinite-dimensional problems where the corresponding operator 7; is truly
random.
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4.3.2.2 Nonparametric regression over reproducing kernel Hilbert spaces
(RKHSS)

In this section, we consider a nonparametric regression model of the form
yi = f(x;) +w;, fori=1,... n. (4.32)

We assume that {z;}?_, are IID samples covariate law P and w; being conditionally centered
with conditional variance bounded above by ¢2. Equivalently, the noise variables are drawn
from a conditional distribution satisfying the noise conditions 4.1.1.1 and 4.1.1.1 with X, =
o%I,.* We will assume that f* lies in a reproducing kernel Hilbert space H, and has bounded
Hilbert norm || f*||sc < 0. The goal is to estimate f*.

Relating the RKHS observation model (4.32) with the model (4.9) We now show
that the observation model when f* € JH is an infinite-dimensional version of the observation
model (4.9), as can be made precise with RKHS theory. Indeed, fix a measure space (X, A, v),
and a measurable positive definite kernel k: X x X — R and let H denote its reproducing
kernel Hilbert space [3]. Under mild regularity assumptions®, the RKHS JH can be put into
one-to-one correspondence with a mapping of ¢?(N). Formally, we have

0 0
= { [ = Y0 | D, 02 <}, (4.34)
j=1 j=1
for a nonincreasing sequence p; — 0 as j — o, and for an orthonormal sequence {¢;} in
L?(v). This allows us to equivalently write the observations (4.32) in the form
yi = 0", ®(x;)) +w;, for i=1,...,n. (4.35)

Above, we have defined the sequence 6* == (65)72, and “feature map” ®(x) € £>(N), by the
formulas

0* — Sx [ (@) (x) dv(x)
’ VHi

4The discussion below is unaffected by imposing additional structure on the noise, so long as the family
of possible noise distributions includes w ~ N (0, 021'”).

>The elliptical representation (4.34) is available in great generality. Indeed, a sufficient condition is for
the map = — +/k(z, ) to lie in L?(v). It can be shown [109, see Lemma 2.3] that in this case, H compactly
embeds into L?(v) and that there is a series expansion

, and (@(x))J = /1 (), for all j > 1.

k(z,2') = Z wid;(z)d;(x'), for any x,z’ € X. (4.33)
j=1

Here {p; }30;1 denotes a summable sequence of non-negative eigenvalues, whereas the sequence {¢; };?O:l is
an orthonormal family of functions X — R that lie in L?(v). Finally, the series converges absolutely, for
each x,2’ € X. Note that the infinite-dimensional series representation (4.34) of H follows from the series
expansion of the underlying kernel (4.33); see Cucker and Smale [29] for details.
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With these definitions, note that the inner product in equation (4.35) is taken in the sequence
space (?(N). From the display (4.35), we see that the RKHS observation model (4.32) is in
fact an infinite-dimensional version of the observation model (4.9). The remainder of this
section is devoted to deriving consequences of our results for this model by various truncation
and limiting arguments.

Truncation argument for RKHS minimax risks Given the RKHS ball By (o) = { g €
H : |lgllsc < 0}, our goal is to characterize the minimax risk

M,.(0,0% P) ==inf sup E [Hf— I
[ freBac(o)
veP(a?1l,)

2
oo | (4.36)

It should be noted here that the covariates are drawn from P and the error is measured
in L?(v). In classical work on estimation over RKHSs, it is typical to assume that P = v.
However, we develop in this section and in Section 4.3.2.3 some interesting consequences of
our theory when P # v, and so this generality is important for our discussion.

To apply our results to this setting, we need to define certain finite-dimensional trunca-
tions. We start by defining

a0
Hy, = {f:zj;Gj\//Tj@]Hj =0, forallj >k}.

We then define the minimax risk over the the ball By (o) restricted to Hy,

2
oo | (4.37)

m,(f)(g, 0, P)==1inf sup E [Hf— fr
I freBac(0)n Ity
veP(a21,)
In analogy to the limit relation (4.27) for the Gaussian sequence model, we can show that

lim M (o, 0%, P) = M, (0,0%, P). (4.38)
—0

See Section 4.6.5.3 for a proof of this relation. The k-dimensional problem associated with
the risk (4.37) can be seen, using the representation (4.35), as a special case of our IID
observation model (4.9), with parameters, P, o, and

V(x) = Op(z) = (m¢j(x))f=1, K. = My, = diag(uy,..., ), and K.=1I,. (4.39)

Let us define the k x k empirical covariance matrix
1 n
S = 2N (1) @ B ().
no= ;_1 k(@) @ ()

Then the using (4.39), we see that the functional (4.12) for the k-dimensional problem is
equal to

2
df) = sup { TrEp [M 250 + 0710 ?]: Te(0) < 25 (4.40)

Q>0 o?
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Characterizations of RKHS minimax risks of estimation We now state the conse-
quence of our results for the rate of estimation (4.36).

Corollary 4.6. Define d: = limsup,_, ., d¥), where the sequence {dﬁf)}m is defined in
display (4.40). Then the RKHS minimax risk satisfies satisfies the inequalities,
1 0.2 2

ag
- —d’ < M,(p,0% P) < —d. 4.41
10 < Male, 0%, P) < —dy (4.41)

Note that this result is an immediate consequence of Theorems 4.1 and 4.2, together with
the limit relation (4.38).

We comment that Corollary 4.6 can also be written in a more appealing form. Indeed, al-
though we do not make use of it here, we comment that there is an “extrinsic” representation
of the rate description provided in this corollary. To define it, let us introduce

1 n
Sl/ = E:L’NV[IC(:L‘W) ®5‘C k(l‘7)] and Sn = ﬁzk<mza) ®f}f k(xif)a
i=1
which are two positive self-adjoint operators H — JH. Then, we have

2
Mo(0,0%,P) = sup TryxEpn [Sle/z(Ql/zSan/z + 7;'—:21%)-191/2].
n
Too (@)1
Let us now further simplify the characterization (4.41) in the classical situation where
the noise level dominates the Hilbert radius, we have P = v, and the map = — k(z,x) is
P-essentially bounded by a finite number x under P.

Corollary 4.7. Suppose that P = v and x — k(x,x) is P-essentially bounded by k € (0, ).
If 0% = K%0%, then the RKHS minimaz risk satisfies

2
M (0, 02, P) = %kn (4.42)

where k, = ky, (o, 0) = max{k : Z?:1 t < 73_922 :

See Section 4.6.5.4 for a proof of this claim.

We note that Corollaries 4.6 and 4.7 establish the nonasymptotic minimax risk of esti-
mation for the RKHS ball of radius p, apart from universal constants, in a fairly general
fashion. The latter claim permits easier calculation, at the expense of some slightly stronger
assumptions. One advantage to Corollary 4.6 is that it holds for any configuration of the
noise level and the Hilbert radius, in contrat to the prior work on the minimax rates for
RKHS balls which typically requires that the signal-to-noise ratio is sufficiently small.

Interestingly, we note that our characterizations—even the loosened characterization (4.42)—
does not need the kernel to satisfy an additional eigenvalue decay condition. Indeed, our
results hold even if the kernel eigenvalues do not satisfy the requirement of a reqular kernel as
proposed in prior work [123]. To emphasize this point, we now provide one concrete example
of an irregular kernel for which Corollary 4.7 provides, to our knowledge, a new result.
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Example 4.8 (Irregular kernel). Suppose that P = v and that the kernel eigenvalues sat-
isfy p;(a) = m for some o > 1. It is easily verified that the corresponding kernel
eigenvalues violates the regularity condition in the paper [123], since an elementary calcu-

lation shows for J sufficiently large, we have Jf—’ﬂj 2 log(J), which diverges as J — 0.

Nonetheless, our result—specifically Corollary 4.7—establishes the optimal rate of estima-
tion. Assuming that x — 3. y1;¢7(x) is P-almost surely less than € (0,00) and 0? > #%¢?,
the minimax rate for this kernel satsifies

~ o2
inf sup E|f— f3ep =0 5
1 loc <e L4 nlog®(ng?/o?)

where H, denotes an RKHS corresponding to kernel eigenvalues p;(c). The relation above
follows from a straightforward calculation which shows that the quantity k, appearing in

Corollary 4.7 is of the order 02105%. To our knowledge, the minimax rate for kernels
g (ne?/o?)
having eigenvalues of this type was not previously known in the literature. '

For a more classical example, we now record yet another consequence of Corollary 4.7.

Example 4.9 (Minimax rate for nonparametric regression on a Sobolev space). Suppose
that P = v is the uniform distribution on [0, 1]% and 3 is the order 3-Sobolev space with
p > d/2. It is classical that p; = j —28/d for the kernel eigenvalues associated with this setup.

Reil

_d_
Thus, calculating k,, in Corollary 4.7, we find k, = (-%-) 26+4, and consequently

o’n
inf EIT *12 _ 2f 0 2 %
s BIf =l = ()
provided that 6% 2 p?. The above relation recovers a classical result [60, 110]. &

4.3.2.3 Kernel regression under covariate shift

We now discuss one important case in which we have P # v in the RKHS model (4.32).
In the setting of covariate shift, the model (4.32) comprises of covariates x; drawn from a
source distribution P that is different from the target distribution @) of covariates on which
estimates of the regression function are to be deployed. In this setting, then we take v = @)
and P # Q.

For any such pair, following the argument given previously in Section 4.3.2, we find that

R 2
inf sup E [Hf - I = %lirkn sup d®, (4.43)
—0

' f*eBac(o)

2
LQ(Q)]

where the quantity d'¥) is defined as in display (4.40). Above, the expectation on the lefthand
side is over the noise and the covariates drawn from P as described by the model (4.32).
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Note that the eigenvalues {f;};>1 here correspond to the diagonalization of the integral
kernel operator under the target distribution Q.

Let us now compare to past work due to Ma et al. [77], who studied the covariate
shift problem in RKHSs. In contrast to this work, our result is source-target distribution-
dependent: it characterizes, apart from universal constants, the minimax risk for any kernel,
any radius, any noise level, and any covariate shift pair (P,Q). By contrast, the results
in the paper [77] consider a more restrictive setup in which pair (P, Q) satisfy an absolute
continuity condition (@ « P), and moreover, the likelihood ratio is P-essentially bounded,
meaning that there exists some B € [1,0) such that

d@
dpP
Let d (P, Q) denote the P-essential supremum of the likelihood ratio d@Q/dP when Q « P
and do, (P, Q) = +oo otherwise. “Uniform” results, where minimax risks of estimation are
studied over families of covariate shifts P relative to @ where dy(P,Q) < B for some
parameter B can be derived as a corollary to the sharper rate description (4.43).
To give one simple and concrete illustration of this, we will show how one can derive
Theorem 2 in the paper [77]. By Jensen’s inequality, we have

—(z) < B, for P-almost every z.

2
d®) > > sup {Tr(Epn M PE®ALY L o) T (M) < Z—i} (4.44)
>
If P satisfies dy (P, Q) < B, then it follows that we have the ordering
1
Ep M, P20 012 > Sl (4.45)

Moreover, this lower bound can be achieved by a shift P whenever the zero sets of the eigen-
functions ¢; in L?(Q) of the integral operator associated with the kernel & have nontrivial
intersection. Equivalently, when there exists

wo € ()6 ({0}), (4.46)

j=1

then the bound (4.45) is achieved by the distribution P,, = £Q + (1 - %)5960. This

choice is evidently a B-bounded shift relative to ). To give an example where the zero set
condition (4.46) holds, note that in the case of where the kernel k is associated with the
periodic S-order Sobolev class on [0,1] and @ is the uniform law on [0, 1], one can take
xo = 0 as the eigenfunctions are sinusoids.

Now, combining relations (4.43) and (4.44) with the choice of P = P, given above, we

have
o = Zwi ne?
sup inf sup E[ }Z— p{z ZJZ—Q;}
Py (PQ)<B | f*€Bsc(o) ow>0 L5 ko
0 9 o0
c°B
= o Sl}\lp{zn_02/\>\j/lj:A]’/ Z = } (4.47)
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Suppose, following the paper [77], we additionally impose a regularity condition on the
decay of the eigenvalues y; of kernel integral operator in L?(Q). Namely, that there exists a
constant ¢ € (0,00) such that

Zj>d(6) Hj
=S < h d(0) = inf{j = 1: u; <6} 4.48
sup 52d(0) ¢, where d(6) = inf{j 14 } (4.48)
Under this condition, we can further lower bound (4.47), up to universal constants, by
2
2 2, 0B }
0 (1Sr>1£ {(5 + 7 d(é) ¢ (4.49)

The details of this calculation can be found in Section 4.6.5.6. Note that by establishing the
lower bound (4.49), we have recovered Theorem 2 from the paper [77]. We remark that—as
seen from the steps taken to arrive at this lower bound—our more general determination
of the minimax rate (4.43) is sharper in that it holds for a fixed pair (P, Q) rather than
uniformly over the larger class {P : d,(P,Q) < B}. Moreover, our result, as compared
to the work [77], requires fewer regularity assumptions on the underlying kernel and its
diagonalization in the target Hilbert space L?(Q). In fact, as demonstrated in Section 4.6.5.6,
the regularity condition (4.48) is not necessary for us to establish the lower bound (4.49).

4.4 Proofs of Theorems 4.1 and 4.2

In this section, we present the proofs of our main results. In Section 4.4.1, we provide the
proof of our minimax upper bound (cf. Theorem 4.1). In Section 4.4.2, we provide the proof
of our minimax lower bound. Some calculations and routine verifications are deferred to
Section 4.6.

4.4.1 Proof of Theorem 4.1

In this section, we develop an upper bound on the minimax risk. In order to do so, so, we
define the risk function

2

il

defined for any measurable estimator 0 of (T¢,y), and any 0* € ©O(p, K.). Evidently, the
minimax risk we are bounding is then expressible as

MN(T, P, Su, 0, Ke, K.) = inf  sup r(6,06"). (4.50)
0 0*cO(p,Ke)

r(0,0%) = S Biuypxv B |10, Tet" + w) 0
ve w

In order to derive an upper bound, we restrict our focus to estimators that are conditionally
linear. Formally, we consider the class of procedures

Oc(Te,y) = C(T)TI Sy, (4.51)
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where C' is a R™%valued measurable function of T;. Our strategy involves the following
three steps:

(i) First, we compute the supremum risk over the parameter set ©(p, K.) and all v €
P(Ew).

(ii) Second, compute the minimizer of the supremum risk in the choice of C' in (4.51).

(iii) Finally, by using the curvature of the supremum risk and appealing to a min-max
theorem, we put the pieces together to determine the final minimax risk.

The following subsections are devoted to the details associated with each of these three steps.
In all cases, we defer routine calculations and verification to Section 4.6.6.

4.4.1.1 Supremum risk of estimator 5(;

Starting with the definition (4.51), for any matrix C', we have
Oc — 0" = (C(T)TI S, Ty — 10)0" + C(Te) T 5, w.
Therefore, the risk 7"(50, 0*) associated with 50 can be bounded as

r(fo,07) = sup B |10c(X.y) - 0", |
veP(Tw)

= Tr {K;/? E; [(C(Tg)Tg S, e — 13)0" @ 0" (C(Te) T S, e — 1)
+ C(Te)T¢ zwngc*(Tg)T]K;/?}. (4.52)

The equality above uses the property 4.1.1.1 of distributions v € P(3,); note that it is
achieved by the Gaussian distribution v = N (0, %,,).

4.4.1.2 Curvature and minimizers of the functional 7’(50, 0*)

We begin by observing that the function 7“(50, ): O(p, K.) — R, can be replaced by an
equivalent mapping—which, with a slight abuse of notation we denote by the same symbol
r— on the space of symmetric positive definite matrices of the form

K (0, K.) = {Q > 0| Tr(K, V2QK,?) < o }
We define (in a sense, this is can be regarded as an extension to the set K(p, K..))
r(0c, Q) = Tr {Kel/z E¢ [(C(Ts)TgZ;1T§ — L)QUC(T)TT S, T — 1a)"

+ C(To)T] E;ngC(Tg)T]KeI/Q}. (4.53)
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Note that r(é\c,é’*) = T(é\c,g* ® 0*) for 0* € ©(p, K.). We claim that the suprema over
O(o, K.) and K(p, K.) are the same.

Lemma 4.1. The suprema of the risk functional r taken over either the set ©(o, K.) or the
set K(o, K.) are equal—that is, we have

sup T(§C7 9*) = sup T’(é\c, Q)a
0*c0(0,K.) QeX(o,Kc)

for every conditionally linear estimator é’\c of the form (4.51).

See Section 4.6.6.1 for the proof of this claim. Briefly, the argument underlying this claim
shows that the risk functional is affine in 2 and the set K(p, K.) can be viewed as the closed
convex hull of rank-one outer products 6* ® 6*.

Our next result characterizes some properties of the mapping (C, K) — r(f¢, K).

Lemma 4.2. Quer the set of measurable functions C and matrices Q € K (o, K..), the mapping
(C,Q) — r(0c,Q) is affine in Q and convex in C.

See Section 4.6.6.2 for the proof of this claim.

Our next claim determines the minimizer of r(-,{2) over estimators fc of the form (4.51),
provided that €2 is strictly positive definite.

Proposition 4.3. Let Q be a symmetric positive definite matriz. Then
infr(fo, Q) = Tr {Kel/Q Ec(Q " + 17 2;17’5)*1[(;/2} (4.54)
Moreover, the infimum is attained with the choice C(Tg) = (1 + T X' Te) ™.

See Section 4.6.6.3 for the proof.

4.4.1.3 Proof of Theorem 4.1

We now piece together the previous lemmas to establish our main upper bound, as claimed
in Theorem 4.1. In view of the relation (4.50) and the bound (4.52), we find that

M(T,P, S, 0, K., K.) <inf sup r(0c,0%) (4.55a)
C gre0(p,K.)
—inf sup 7r(6c,Q) (4.55b)
C ex(o,Ke)
= sup infr(bc,Q) (4.55¢)
QeX (oK) ©
—  sup ETr(Kel/z(Q’l+T§TZ;1T£)*1K§/Q>. (4.55d)
Q>0

Tr(K. 1Q)<0?
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To clarify, in the first display (4.55a) and below, the infimum over C' denotes an infimum over
all R™?-valued measurable functions of T¢. In display (4.55b), we have applied Lemma 4.1.
Relation (4.55¢) follows from the generalized Ky Fan min-max theorem [14, Theorem A]
together with Lemma 4.2. Note that the set K(p, K.) is evidently a compact convex subset
of R™? The final equality (4.55d) is essentially an application of Proposition 4.3; see
Section 4.6.6.4 for the details of this verification.

4.4.2 Proof of lower bound, Theorem 4.2

In this section, we prove our lower bound on the minimax risk. In order to do so, we focus
on lower bounding the Gaussian minimax risk

mG(T, IP), Ew, 0, Ke, KC) = lllf sup E(f,w)~]P’><N(O,Zw) [HQ(T@ Tg&* + w) — Q*H%(e]
0 6+cO(0,K.)

Evidently, the Gaussian minimax risk lower bounds the general minimax risk, so that we have
MY < M. In Section 4.4.2.1, we reduce this Gaussian minimax risk to yet another Gaussian
observation model. A minimax lower bound for this auxiliary problem is then presented as
Proposition 4.4 in Section 4.4.2.2. This result is the bulk of the proof of the lower bound,
and it quickly allows us to establish our main result, Theorem 4.2. In Section 4.4.2.3, we
then complete the proof of Proposition 4.4.

4.4.2.1 Reduction to an alternate observation model

To establish the lower bound, we first show that the minimax risk associated with our
estimation problem is equivalent to another, perhaps simpler, minimax risk.

An auxiliary observation model This observation model is defined by a random quadru-
ple (r,V, A, Y). The triple (r,V, A) comprises a random integer r, a random orthogonal ma-
trix V e R¥" satisfying V'V = I, and a random, r x r diagonal positive definite matrix
A. Conditional on (7, V, A), the observation T is a Gaussian random variable, satisfying the
equation

T=VV* + VA 22, where 2z~ N(0,1,). (4.56)

Above, the random vector z is drawn from the multivariate Gaussian with identity covariance
in R"; it is independent of (v, V, A). If w == (r, V, A) is distributed according to Q, we denote
the minimax risk for this observation model as

MEH(Q.K) = inf sup B | [lw, T) = nl3].
T ned(K)

Above, the expectation indexed by (w,Y) is over w ~ Q and Y as in (4.56). The infimum
is over measurable functions of (w, ). The set ©(K) is a shorthand for the set O(1, K) =
{10 x < 13-
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Reduction to the new observation model We formally reduce the minimax risk ¢

to the reduction M&,, as follows.

Lemma 4.3. Let P denote the distribution of the triple (r(&), Ve, A¢) under P, where (&) is
the (finite) rank of Q¢ = Ke_l/QTgZ;ngKe_l/z, and Q¢ = VeAV denotes the diagonaliza-
tion of this positive definite matriz. Then, for any (T,P, ¥, 0, K., K.), we have

ME(T, P, 2, 0, Ko, Ko) = M(P, P KPP KK).
See Section 4.6.7.1 for a proof of this claim.

4.4.2.2 Lower bounding the minimax risk

We now focus on lower bounding M&,. The following result is a formal statement of the
lower bound for the “reduced” minimax risk.

Proposition 4.4. For any 7 € (0,1] and any 1T > 0 such that Tr(K2IIK~Y2) < 1, we
have

MEA(Q. 1) > ETr (! + VAV ™), (457)

where the constant c(1,11) is defined in Lemma 4.6. Moreover, we have the lower bounds
mgd(@) K)
> sup { ETr ((H—1 + VAVT)—l) LI > 0, Tr(K~V2IIKV?) < 1/4} (4.582)
I

> = sup { ETr ((H—l + VAVT)—1> LT > 0, Tr(K~V2IE~Y?) < 1}. (4.58b)

1

4 n
Proof of Theorem 4.2 We take the claim of Proposition 4.4 as given for the moment,
and use it to derive our minimax lower bound. As mentioned, we may restrict to Gaussian
noise to establish the lower bound; formally, we have N1 > M%. Additionally, the reduction

given in Lemma 4.3 combined with the stronger lower bound (4.58a) in Proposition 4.4 gives
us

m(T7 P? EUH Q7 K€7 Kc)
> supy { BT (101 + K VPTIS T 2) ) - 0, (K, PR, PR < 4 )

Now define the matrix Q = K, Y2[1K, /2. Then, the quantity on the righthand side is equal
to

Slgllp{ ETr <Kel/2(Q*1 + TgE;lTé)flK;ﬂ) Q> 0, TI‘(KC_UQQKC_VQ) < % }’

which furnishes the first inequality in Theorem 4.2. With similar manipulations to the
weaker lower bound (4.58b) in Proposition (4.4), or by arguing directly from the display
above, the second inequality in Theorem 4.2 follows. In order to establish the more detailed
lower bound (4.7), we repeat the argument above but use (4.57).
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4.4.2.3 Proof of Proposition 4.4

The lower bound proceeds in five steps:

(i) We first lower bound the minimax risk in terms of the expected conditional Bayesian
risk over any prior on the parameter set O(K).

(ii) We then demonstrate that, conditionally, there is a family of auxiliary Bayesian es-
timation problems, indexed by a parameter A > 0, which are all no harder than the
Bayesian estimation problem implied by the conditional Bayesian risk.

(iii) We compute, in closed form, the Bayesian risk for any prior and any parameter A > 0.
We are able to show that the Bayesian risk is a functional of the Fisher information of
the marginal distribution of the observed data under the prior and sampling model.

(iv) For each A > 0, we then calculate a lower bound on the Fisher information for a prior
obtained by conditioning a Gaussian distribution with mean zero and covariance II to
the parameter space.

(v) We put the pieces together: optimizing over all covariance operators II, and the family
of “easier” problems (i.e., optimizing over A > 0), we obtain our claimed lower bound.

Next, we present the details of the steps outlined above. Extended calculations and
routine verification are deferred to Section 4.6.7.

Step 1: Reduction to conditional Bayesian risk We begin by lower bounding the
minimax risk via the Bayes risk. Owing to the standard relation between minimax and
Bayesian risks, we have for any prior 7 on ©(K) that

MGG (Q K) = inf sup B |iw, 1) = nll3] = inf Byer B [17 — 0] = B(r),
1 neo(K) 7
(4.59)

The quantity B(7) appearing above is the Bayesian risk when the parameter 7 is drawn from
the prior m. The following observation is key for the lower bound. After moving to Bayesian
risks, we can condition on the “design”, denoted by the random tuple w = (r,V,A), and
consider the conditional Bayesian risk. Formally, we have

B(m) = if Byor By, [Hﬁ - nHi] > Euq li%if E,r Ex |7, (1) — || (4.60)

Above, the inequality follows by observing that if the function 7: (w, ) — 7 € R? is
measurable, then 7,(T) = f(w,T) is a measurable of Y. Note that the infimum on the
righthand side is restricted to those maps which are measurable function of w; note that
they may depend on w, and therefore we have included a subscript depending on w to
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indicate this.® To lighten notation in the subsequent discussion, we define the conditional

Bayesian risk under 7 and for a realization of the random variable w = wy,
: N - 2
B(7 | wp) = 11%f E, . Ez~N(0,ITO) [HU(VOVOTT) + VoA, 1/2z) - nH2], where wqy = (ro, Vo, Ao).

Using this definition, along with the two inequalities (4.59) and (4.60), we have demonstrated
M4(Q, K) = Euvg [B(r | w)], for any prior 7 on ©(K). (4.61)

Therefore, it suffices for us to lower bound B(7 | w).

Step 2: Reduction to a family of easier problems In this step, we fix a parameter
A > 0, which will index yet another auxiliary Bayesian estimation problem. The intuition will
be that as A — 0, we are “approaching” the difficulty of the original Bayesian estimation
problem.

Formally, fix w = (r,V,A). Throughout we will let V,: RY — ran(V)* denote the
projection of an element 7 € R? to the orthogonal complement of the closed subspace ran(V).
We now consider the observation, where for an independent random Gaussian variable z ~

N (0, I,)

Ty = (VVT + AV n+ VA 2w + VAVLz = Xonp + (VATIVT 4+ V) Y20,
| —
=X\

where the last equality holds in distribution. Define ¥, := VA™'VT + AV} ; evidently ¥, is a
symmetric positive definite matrix for any A > 0. Then, T has distribution N (X7, >,). We
remark that the observation Y, is more convenient than T as its covariance is nonsingular
and moreover its mean is a nonsingular linear transformation of n—mnote that neither of these
properties hold for T.

Our goal is to show that the observation T, is more “informative” than Y. To do this,
we now define the (conditional) Bayesian risk for T,

Balr |w) = it {By(. 7 | @) = E[I7(0) — i3]}

The main claim is that this provides a lower bound on our original conditional Bayesian risk.

Lemma 4.4. For any w and A > 0, we have
B(m | w) = Ba(7 | w).

See Section 4.6.7.2 for a proof of this claim.

5In some cases, this inequality may hold with equality. However, to be clear, in general the inequality
arises since if {7}, is a family of measurable functions (of T) for each w in the support of Q, it is not
necessarily the case that 7j(w, T) = 7,,(T) is measurable.
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Step 3: Calculation of Bayesian risk B,(7 | w), for a fixed prior 7 and parameter
A >0 To compute the Bayesian risk for a fixed prior 7 and parameter A\ > 0, we develop a
variant of Tweedie’s formula (also sometimes referred to as Brown’s identity, when applied
to Bayesian risks) [116, 101, 17].

To state the result, we need to introduce some notation. We define the marginal and
conditional densities of T \—disregarding normalization constants—as,

p(y) = fp(y |n)m(dn)  where p(y |n) = exp ( - %\y - Xw\légl)-

Finally we define the Fisher information of the marginal distribution of Y, which is given
by

J(T») = E[Vlogp(Ty) ® Viogp(Ty)].

With this notation in hand, we can now state our formula for the Bayesian risk under the
prior m and for parameter \ > 0.

Lemma 4.5. Fiz w = (r,V,A). Define Xy = VVT + AV, and &) == VAT'VT + \V,. Fix

prior m, and parameter A\ > 0. Then the conditional Bayesian risk is given by
By(r | w) = Tr <X;12A[2;1 —9(Ty) ]EAXA*).
See Section 4.6.7.3 for a proof of this claim.

Step 4: Lower bound on Fisher information for conditioned Gaussian prior Con-
sider a prior 7 which is absolutely continuous with respect to Lebesgue measure on R
Furthermore, suppose that its Lebesgue density f, = ‘31—’7; has logarithmic gradient almost
everywhere. Define

() = f Vlog f(n) ® V log f(n) dr(n).

Recall also that the Fisher information associated with a Gaussian distribution N (p, IT) for
nonsingular IT is given by IT™! [72, Example 6.3]. Therefore, applying well-known results for
the Fisher information [125, eqn. (8) and Corollary 1]

TV < (X (m) ' Xy + 2,07 (4.62)

Next, we select a prior distribution and calculate the Fisher information J(Y,) for the
marginal density under this prior. For a parameter 7 € (0, 1] and symmetric positive definite
covariance matrix II, we define the probability measures

WSH =N(0,7I) and 7. = FSH(' | O(K)).
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In other words, 7, 11 denotes the probability measure N (0, 72I1) conditioned on the constraint
set. Formally, it is defined by the relation,

(AN O(K))
A )

for any event A. For these priors, we have the following claim.

Lemma 4.6. Let 7 € (0,1] and II be a symmetric positive definite matriz satisfying the
relation Tr(ITIY2K~'T1Y2) < 1. Then the Fisher information of the conditioned prior 7, n
satisfies the inequality

I (mrm) " = e(r, I,
where ¢(7,11) = 7%(1 — 78 (O(K))) > 0.
See Section 4.6.7.4 for the proof of this claim.
Step 5: Putting the pieces together Combining Lemmas 4.4 and 4.5 along with the

inequality (4.62) and Lemma 4.6, we find that for any 7 € (0,1] and symmetric positive
definite matrix II satisfying Tr(II/2K~'11'/?) < 1, that

B(r | w) = sup Tr (X;le (S5 = (e(r, TN X,ILX, + EA)‘I]EAXA*)
A>0

= supTr ( (AT + X033 X0) ™).
A>0

Above, we used the relation A(A™'—(B+A)"1)A = (A~ + B 1)1 valid for any pair (A, B)
of symmetric positive definite matrices. Our particular choice of matrices was A = 3, and
B = X,. Note that

Xo27 X, = VAVT + AV

Therefore, by continuity, we have

B(r|w)> lim Tr (( LI+ VAVT + )\VL)*) ~ Tr (( Ly VAVT)—1>. (4.63)

et o(r,1m) o(r.1)

Taking the expectation over w, and applying our minimax lower bound (4.61), we have
established lower bound (4.57). Note that since ¢(7,1II) € (0, 1], we evidently have from the
above display that

B(r | w) > (7, 1) Tr ((rrl + VAVT)*).
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Let us define the constant

¢(K) = inf sup c(r,II).
Tr(HI}?PlKlre(o,l]

Then combining the conditional lower bound (4.63) with our minimax lower bound (4.61),
we obtain

me,(Q S%p{ ETr ( (' + VAVT)~ ) (1> 0, Te(IIV2K—'IY?) < cZ(K)}
{

ETr ( T VAVT) ) 0> 0, Te(IIV2KHIY?) < 1}

= sup
11

\Y

co(K) Sup{ ETr ((H*l + VAVT)*l) 0> 0, Tr(T2KTY?) < 1 }
11

To complete the proof, we simply need to lower bound the constant ¢,(K’) universally.

Lemma 4.7. The constant c,(K) is lower bounded, for any symmetric positive definite K,
as

Cg(K) =

IS,

See Section 4.6.7.5 for a proof of this claim.

4.5 Discussion

In this work, we determined the minimax risk of estimation for observation models of the
form (4.1), where one observes the image of a unknown parameter under a random linear
operator with additive noise. Our results reveal the dependence of the rate of convergence
on the covariate law, the parameter space, the error metric, and the noise level. We conclude
this chapter by presenting some simulation results; see Section 4.5.1

Finally, we note that in this work we studied minimax risks of convergence in expectation.
This is convenient, as it requires relatively minor assumptions of the distribution of T¢. On
the other hand, for the setting of random design regression, high-probability results, such as
those obtained in the papers [4, 84, 59, 71, 92|, typically require stronger assumptions such as
the sub-Gaussianity of the covariate distribution. Nonetheless, high-probability guarantees
provide a complementary perspective on the problem we consider. Indeed, when the covariate
law can be considered “heavy-tailed,” it may be more relevant to develop robust estimators
that have low risk with high probability. We refer to the survey article [76] for a overview
of work in this direction.



CHAPTER 4. NOISY RECOVERY IN LINEAR MODELS 123

4.5.1 Some illustrative simulations

We conclude this chapter by presenting the results of some simulations reveal how changes
in the distribution of the random operator 7T¢ can lead to dramatic changes in the overall
minimax risk.

In this section, we present simulation results to illustrate the behavior of the functionals
appearing in our main results for two versions of random design linear regression. In Sec-
tion 4.5.1.1, we present simulation results for a multivariate, random design linear regression
setting with IID covariates. Concretely, we provide two different covariate laws, where the
minimax error for the same parameter space differs by at least two orders of magnitude. We
emphasize this difference in entirely due to the covariate law; the noise, observation model,
error metric, and parameter space are fixed in this comparison.

Additionally, in Section 4.5.1.2, we present simulation results for a univariate regression
setting where the covariates are sampled from a Markov chain. In both cases, the functional
is able to capture the dependence of the minimax rate of estimation on the underlying
covariate distribution.

4.5.1.1 Higher-order effects in IID random design linear regression

For random design linear regression, higher order properties of the covariate distribution
over the covariates can have striking effects on the minimax risk. In order to illustrate
this phenomenon, we consider the regression model (4.9) with feature map ¥ (z) = z, and
parameter vector 6* constrained to a ball in the Euclidean norm. We then construct a family
of distributions over the covariates that are all zero-mean with identity covariance, but differ
in interesting ways in terms of their higher-order moment properties. More precisely, we let
dp denote the Dirac measure with unit mass at 0, and for a mixture weight A € [0, 1], we
consider covariates generated from the probability distribution

1

By construction, all members of the ensemble have the same behavior with respect to their
first and second moments,

Ep [z] =0 and Covp, (z) = Ep[z®x] =1;, forall Ae|0,1]. (4.65)

In the special case A = 0, the distribution Py corresponds to the standard Gaussian law on
R?, whereas it becomes an increasingly ill-behaved Gaussian mixture distribution as A — 1.

Following the argument in Section 4.3.1.1, in this case, the minimax risk is upper and
lower bounded as

2 2

g cqo — g
E EP;[T‘I.((ETL + ;iTzd]d) 1)] < m;,ID <P>\a 0, 027 -[da ]d> < EP;L

[Tr((S, + Z41) 7).
(4.66)

n
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Above, the lower bound constant ¢4 is defined in display (4.16b).

To understand the effect of the covariate law, we fix the signal-to-noise ratio such that
¢ — 7, for 7 € {1,10}. Note that after renormalizing the minimax risk by ¢?, it only
depends on 7 (and not on the particular choices of (p,¢)). Similarly, this invariance relation
holds for the functionals appearing on the left- and righthand sides of the display (4.66)—
after normalization by 1/¢%, they no longer depend on (g, o) except via the ratio 7 = £.
Additionally, we fix the aspect ratio v = 4 7By varying 7 € [0.05, 4] we are able to 111ustrate
the behavior of the minimax risk, as characterlzed by our functional, for problems which are
both under- and overdetermined.

Having fixed the SNR at 7 and aspect ratio at v, we can somewhat simplify the dis-
play (4.66), by introducing the following quantities which only depend on the parameters
7,7 and the sample size n and the mixture parameter A,

ng (PA, TO, 0'2, [hn], ][’Yn]>
mn</\77-77) = ’

7252
1

un (A7) = 5 B [Tr((Sn + 25 ) 7,

2
7—2 nrt

(A7) = e B [Tr((S, + @l g, 1),

2n nr?
Then, the relations (4.66), can be equivalently expressed as

gn()VTa ’7) < mn(>\7 7—7 7) < Un()\, 7—7 V)v

and moreover this holds for all A € [0,1],7 > 0,7 > 0. In our simulation, we use Monte
Carlo simulation with 50 trials to estimate the upper and lower bound functionals ¢,, and
Up.-

In our simulations, we take A € {0,0.9,0.99} and vary v € [0.05,4]. The results of
these simulations are presented in Figure 4.1; see the caption for a detailed description and
commentary. The general pattern should be clear: the covariate law can have a dramatic
impact on the overall rate of estimation, even when restricting some moments such as we
have with the relations (4.65).

4.5.1.2 Mixing time effects in Markovian linear regression

Covariates need not be drawn in an IID manner, and any dependencies can be expected to
affect the minimax risk. Here we illustrate this general phenomena via some simulations
for the Markov regression example as outlined in Section 4.3.1.4. We seek to study a wide
range of possible mixing conditions for the Markovian covariate model. In order to do so,
we consider covariates generated from the Markovian model (4.22) with

)
O

"Specifically, we take d = [yn].
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Figure 4.1. Simulations of random design regression for three covariate laws, Py as defined in
equation (4.64) with A € {0,0.9,0.99}. For a given choice of the mixture weight A and signal-to-noise
ratio (SNR) 7, we plot the lower bound ¢,,(\, 7,7) and upper bound wu, (A, 7,7) as y varies between
0.05 and 4. The normalized minimax risk my,, is then guaranteed to lie in the region whose upper
and lower envelopes are given by u,, and £, respectively. To facilitate interpretation of these figures,
we have shaded this region to highlight where we can guarantee the minimax risk m,, must lie. The
quantities wy,, £, m, are all defined in display (4.67). In panels (4.1a) and (4.1b), we set the sample
size n = 128, and set the SNR as 7 = 1,10, respectively. In panels (4.1c) and (4.1d), we set the
sample size n = 512, and set the SNR as 7 = 1,10, respectively. The plots above demonstrate
that as A increases, the minimax risks are much worse. Numerically, in the setting where n = 512
and 7 = 10—as depicted in panel (4.1d)—our upper and lower bounds guarantee that the minimax
risk for the isotropic ensemble (depicted with A = 0 above) can be over 806 times larger than the
minimax risk for the ensemble with A = 0.99. It should be noted that in this comparison the first
and second moments of the ensemble are held fixed (see equation (4.65)), and hence the differences
between the lines plotted in any given panel can only be explained by differences in higher-order
moments within the ensemble {Py}. The figures also demonstrate that the gap between our upper
and lower bounds is fairly small, particularly whenever d > 5.
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where ¢: N U {0} — R, is a nondecreasing function satisfying 1(0) = 1 and lim;_,,, ¢ (t) =
co. With this choice, it is easily checked that, marginally

N (01 o).

Therefore, x; — N(0,1) in distribution as ¢ — o0, and the rate of convergence is of order
1/4(1).

We now illustrate how the minimax rate, as determined in Corollary 4.5, for this problem
behaves for different choices of the function ¢ and the signal-to-noise ratio (SNR). As in
Section 4.5.1.1, we normalize the minimax risk by the squared radius so that it only depends
on 7 = 2. The quantity we then plot is

_ CDT(’T, 1)

2 Y

[0)) :
() -
where & (p, o) is the functional appearing in Corollary 4.5.

In the simulation, we consider the following choices of scaling function 1,

5, t+1, l4log(t+1), and 1+log(1+log(t+ 1)).

With the choice () = 5, the underlying Markov chain converges geometrically to the
standard Normal law. On the other hand, the choice ¥(t) = log(1 + log(1 +¢)) + 1 exhibits
much slower convergence—the variational distance between the law of x; and N (0, 1) is of
order O(1/(loglogt)).

We simulate each of these chains, computing the normalized functional ®7(7) over the
course of 5000 Monte Carlo trials. The sample size T is varied between 10 and 3162. In
the simulation we also include the choice r; = 0, which corresponds to IID covariates. The
results of the simulation are presented in Figure 4.2; see the caption for more details and
commentary.

4.6 Deferred proofs

4.6.1 Proof of Proposition 4.1

The constraint set is evidently convex, as it is formed by the intersection of of two convex sets:
the d x d real, symmetric positive definite matrices with the hyperplane {Q : Tr(K, Q) <
2
0°}.
We claim that the objective function f is concave over the set of symmetric positive
definite matrices. It can be expressed as

F(Q) = Be[g(T{S,'Te, Q)],  where g(X,Q) = Tr(K M (X + QY 1K 2.
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—— IID

—— (=5

—— y()=1+1
y(H)=1+log(l+1)
y()=1+log(log(1+1)+1)

normalized functional, ®(7)
normalized functional, ®(7)

—e— IID
—— p(=5
—— =1+t
w(t)=1+1log(l +1)
10731 w(t)=1+1log(log(1+1)+1) 5

10' 10° 10° 10' 10° 10°

sample size, T sample size, T
(a) 7=1 (b) 7 =10

Figure 4.2. Simulations for five distributions of Markovian covariates. In panel (4.2a),
we set the SNR parameter as 7 = 1, and in panel (4.2b), we set the SNR parameter as
7 = 10. As the scaling function 1 grows more slowly, the chain converges to its stationary
distribution more slowly, and the minimax rate decays more slowly, as indicated by the
displayed behavior of our functional 7' +— &7 (7).

Evidently to establish that f is concave, it is enough to show that g(X,-) is concave for
every symmetric positive semidefinite X. In order to establish this claim, let us fix some
e > 0, and define X (¢) := X + el;. By the joint concavity of the harmonic mean of positive

operators [107, Corollary 37.2], it follows that for any pair of positive definite matrices 2, €',
we have

4

(X(a) + (Q;Q/)_l)_l > %(X(a) + Q‘l)_l + %(X(e) + (Q’)‘1>_1.

Passing to the limit as ¢ — 0 yields

(o (55 5 3o e e

Since the trace is a monotone mapping on positive definite matrices, and ¢ is continuous in
its second argument, we obtain the claimed concavity of g.

4.6.2 Proof of Proposition 4.2

To establish the upper bQound, it suffices to show that for each positive definite 2 > 0 with
Tr(K, '?QK."?) < "% that the following inequality holds
1)1 s 1)1
T (B[S, +07) 'K]) < (1+ 25 ) Te ((5p+ 07 'K, (4.68)

g



CHAPTER 4. NOISY RECOVERY IN LINEAR MODELS 128

To prove inequality (4.68), we begin by stating a more general result: a multiplicative
positive operator inequality. We use the notation

Var(W) = E[W?] — (EW)?
whenever W is a random positive, self-adjoint operator.

Theorem 4.3 (Random positive operator inequality). Let Y denote a random positive def-
inite matriz. Suppose that there exists a (deterministic) positive definite Z > 0 such that

Y = (EY)V2YEY) 2= Z  almost surely.
Then, the following sandwich relation holds,
(EY) < E[Y < (1 + |\|Zl/2var(z—1/237z—1/2)zl/2|\|Op) (EY)L,

For proof, see Section 4.6.2.1. Note that this result can be viewed as a strengthening and
generalization of Lemma 2 in the paper [89].

We can instantiate Theorem 4.3 in the special case where the random matrix Y arises as
an average of IID summands. This immediately yields the following consequence.

Corollary 4.8. Let X,, = %Z?:l X; denote an average of IID , random, positive definite
matrices. Suppose that there exists a (deterministic) positive definite matric W > 0 such
that

X, = EX)2X(EX) 2 =W, amost surely.

Then, the following sandwich relation holds,

1

- 1 ~
(BX) 7 <EX, ] < (14 S IWVar(W 2R W, ) (Bx) 7

We now demonstrate how Corollary 4.8 establishes inequality (4.68).

Proof of bound (4.68) In Corollary 4.8, we can ensure that X,, = 3, + Q! by taking
X =(z) @¢(z;) + @ Land W = (Zp + Q)20 (Zp + Q71)~Y2. Then we have

W AVar (W2 X, W12 w2
— (Sp + Q—l)—l/2[E [‘|Ql/2¢(27)”§¢(1’) ® ¢(gj)] - ZPQEP] (Xp + Q_l)—1/2

nx2 g2

1.

o2
The final inequality uses the P-almost sure inequality

_ RO
[0 2(2) 2 < 122K lopl K ()] < v/

Since the inequality above implies || W 2Var(W~Y2X,W-YV2)W12|| . < "’32292, bound (4.68)
follows from Corollary 4.8.
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4.6.2.1 Proof of Theorem 4.3

The lower bound is immediate by Jensen’s inequality the operator convexity of the inverse
over the space of positive definite matrices. By rescaling, it suffices to prove the upper bound
under the assumption that EY = I. We can then write

Y oI+ (Y =D) = -DY Y -D< (Y -DZNY-1I).

Here, we used that Y=Y >Z7Z>0. Rearranging the above display and taking expectations,
we find

EY ' <I+EY -DNZYY -1)< (1 + mZl/2var(2*1/2YZ*1/2)Zl/2|\|0p) I,

thereby establishing our upper bound.

4.6.3 Proof of Corollary 4.2

Combining Theorems 4.1 and 4.2, we find that
(TP, Xy, ¢, Ke, Ko) < M(T, P, Xy, 0, Ke, Ke) < ®(T,P, 2, 0, Ke, Ke). (4.69)
Evidently, by definition of the functional ® (see definition (4.4)), the map
0o— (T, P, X, 0, K, Ke)

is nondecreasing. Moreover since Tg ¥, ¢ is invertible with probability 1, it is a bounded

function. Therefore,
: (b(T7P7 ZwaQa KeaKc)
lim =1,
e—® @(T, ]P)v va Q/Qa Kea Kc)

which in view of the sandwich relation (4.69), furnishes the claim.

4.6.4 Proof and calculations from Section 4.3.1
4.6.4.1 Proof of equation (4.17a)
From the definition of the functional (4.12), we have
An(N(0,14) 0,0, g, Ia) = sup { B[Tr (S, + Z4M 1)) - M > 0, Tr(M) =d }.
In this section, all expectations are over z; N (0,1;). We claim that the supremum above
is achieved at M = 1.
Lemma 4.8. For any positive definite matriz M > 0 such that Tr(M) = d, we have
E[Tr((S, + 56M ™)) < E[Tr((XTX + % 1))
Assuming Lemma 4.8, we then have
dn(N(0,15), 0,0°, Is, 1s) = B[Tr((Sn + 2410) )] = dpioker (1, d, 0, 0),
which establishes (4.17a), as needed.
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Proof of Lemma 4.8 Define the function ¢: (3, M) — (X + %M*)*l, where X, M are
assumed symmetric positive semidefinite and M is nonsingular. For each ¥ > 0, it is well
known that ¢(3, ) is operator concave [107, Corollary 37.2]—for any collection {M;}¢ ; of
symmetric positive definite matrices, one has

QU
=

d d
DO(S, M) < ¢(2,3 ) M), for any D e ST (4.70)
i=1 1=1

Now let M > 0 satisfying Tr(M) = d be given. Diagonalize M so that M = UAUT, where
A = diag(A) > 0, and U is orthogonal. Consider the cyclic permutations of A, given by
AD = diag(AD),  where AV = A,

Above, the arithmetic 7 + j occurs modulo d. By rotational invariance of the Gaussian and
the fact that x; has iid coordinates, we have

do? ar—1\—1) _ do? A —1y—1
ETe((S, + 22011 = ETr((5, + A7) )

<Tr { E I:QZS(ETUK)]} where A =

Ul

d
AD)

The final inequality above uses the concavity inequality (4.70), where we have taken M; =
A®. Now note that

Tr(A)
d

A=
Combining the preceding displays furnishes the claim.

4.6.4.2 Proof of the lower bound in equation (4.16a)

We apply our our sharp lower bound in Theorem 4.2 with Q = %2](1 and 72 = 1 — ﬁ.
Let us define v = (1 — ;;)(1 — P{Z > 2d*> — d}), where Z is a x?-random variable with

d-degrees of freedom. Note that d(d — 1) = v/dt +t for t = % for all d > 2. Therefore by
standard tail bounds for y2-variates [70, pp. 1325], we have u < exp(—d®?/4). Applying the
sharp lower bound (4.7) in Theorem 4.2 then yields the claim.
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4.6.4.3 Proof of equation (4.21)

Using the semidefinite inequality
(S, + 07 <5

and the choice () = %%Id, we have the sandwich relation

2

TrEps [S7° (S, + 2 41)7'S1%] < du(P 0,07, 11, 5p) < TrEps [SP571517

for all o > 0. Since ¢ — d,(P, 0,02, I;,¥p) is nondecreasing, the display above also demon-
strates that this map has a limit. Now, note that by continuity, P"-almost surely we have

lim Tr(SE° (S, + Z41,)7'8)%) = Tr(SE28,'51%).

0—0

Thus, using the sandwich relation (4.21) and Fatou’s lemma, we have

TrEp. [S1°5,'S1%) < liminf Tr Eps [S%(5, + © $1,) 7' 517

0—0
< lim d, (P, 0,02, I3, %p) < TrEpn [P°51517],

90—

which establishes relation (4.21), as required.

4.6.4.4 Proof of minimax relation (4.25)

Let us state the claim corresponding to relation (4.25) somewhat more precisely. We define

the functional
1 2T M2\ -1
Pr(0,0) ::E[(E+ 72 ) ]

Then the following lemma corresponds to the claim underlying relation (4.25).

Lemma 4.9. The minimax risk under the Markovian observation model defined by the dis-
plays (4.22) and (4.23) satisfies

1 ~
— ®r(p,0) < inf sup E[(0 — 6")*] < @r(0,0).
4 9 10*]<e

The remainder of this section is devoted to the proof of this claim
Note that if we define £ = (x1,...,27), and T¢ = z, then the observation model (4.23)
can be written

y =Te0* + 2w
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where w ~ N (0, I7) and X, = 0?I7. We have K. = 1 = K,, since we are considering a

univariate estimation problem. Therefore, since the functional (4.4) is attained at Q = o,

in order to establish Lemma 4.9, it is sufficient to show that
'x  2"Mz

Ty—1 _ _
TIS, Te=—5 =~

(4.71)

However, from display (4.22), by induction we can establish that
t
Ty = Z V Cst Zs,s
s=1

where the coefficients {cy} are defined as in display (4.24). Then, it follows that

T t T
t=1s,s'=1

s,8'=1t=svs’

=M,y

Using the display above, we establish the relation (4.71), which in turn establishes Lemma 4.9,
as needed.

4.6.5 Proof and calculations from Section 4.3.2
4.6.5.1 Proof of limit relation (4.27)

To lighten notation in this section, let us define the shorthands

Mg = My <{€j}§:1, Oy (a, C’)), and, (4.72a)
m:= m<{€j}§o:1, O(a, C’)) = 1191f e*eSGI)JEC)E [Z 5 ] (4.72b)

We begin by stating the following sandwich relation for the minimax risks.

Lemma 4.10. The sequence of minimaz risks {M} and infinite-dimensional risk M satisfies
the sandwich relation

CQ

k+1

M <M< My, +

(4.73)

forallk =1

Assuming Lemma 4.10 for the moment, note that it implies for any divergent sequence
ap — o0 that

lim N, = M.

k—o0

In view of the shorthands (4.72), the display above establishes our desired limit relation (4.27).
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Proof of Lemma 4.10 We begin by establishing the lower bound. Note that O (a,C) <
©(a,C), hence we have

M =inf sup E[i(@((@/z)ﬁﬁ—@y]

0 6*€04(a,C)

Sl s B[ 0005 - 5]

0 6*€04(a,C)

where the last equation arises since 67 = 0 for j > £ and thus any minimax optimal estimator

over Oy (a,C) satisfies éj = 0 for all j > k. The righthand side differs from M in that 6
is a function of the full sequence y = (y;)?2,. However, note that due to the independence
of the noise variables z;, for the observation model (4.26) restricted to ©(a,C'), the vector
y®) = (y;)k_, is a sufficient statistic. Hence we have for each k > 1

M =inf sup E[Zk: ] Mg,

0 6*€04(a,C)

which establishes the lower bound in relation (4.73).
To establish the upper bound, note that we certainly may restrict the infimum in the

definition of N to those estimators taking values in R¥ which only are a function of y*)
Indeed, we then find

k
Mm< inf sup E [ 9* + ) (07) ] 4.74
eR* 0*€0(a,C) ; ;C (4.74)
<My + sup ) 4.75
: 6*€0(a,C) ; (4.75)

The inequality (4.75) arises by taking the supremum over the two terms of the risk in

display (4.74), and noting the first term only depends on the first k& coordinate of 8* € O(a, C),

and hence the supremum may be taken over ©(a,C) in the first term so as to obtain M.
Now observe by Hélder’s inequality, and the membership 6* € O(a, C),

S = Y 56 < (max )0 = S

ka2
>k >k 4 Ik ag Q+1

with the last equality arising because j — a? is assumed nondecreasing. Combining the dis-
play above with inequality (4.75) establishes the upper bound in (4.73), and thus establishes
Lemma 4.10 as needed.
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4.6.5.2 Proof of relation (4.31)

Let us continue to adopt the shorthands N, and M defined, respectively, in the displays (4.72a)
and (4.72b). Moreover, we also use the shorthands

Rk - Rk({g}] 1’{a]}j 1 >> and R = R*(E,G,C),

corresponding to the functionals (4.29) and (4.30), respectively.
We prove the following lemma.

Lemma 4.11. The functionals R}, R* and minimax risks M, satisfy

1

ZRZ <My < R forallk =1, and, (4.76a)
lim R; = R". (4.76Db)
k—0o0

Assuming Lemma 4.11 for the moment, note that the two inequalities immediately imply
the sandwich relation (4.31), simply by applying the sandwich (4.76a) to the terms N and
then applying the limit relations (4.27) and (4.76b). Consequently, it suffices to establish
Lemma 4.11.

Proof of Lemma 4.11 Recall the settings of the parameters T, ng), K. ok K ®)
corresponding to the & dimensional minimax risk My, as given in (4.28). We claim that

(T, B2, o, K0, K,O) = Ry, (477)

(Note by our construction of ) the choice of P is irrelevant.) Then the sandwich rela-
tion (4.76a) follows by applying Theorems 4.1 and 4.2 to the minimax risk M.
To see that relation (4.77) holds, note that by definition 4.4, we have

k
(T, B, 50, o0, KW, K,0) = sup { Tr (@71 + (5077 ; Z a2y < €2,
Q>0 j=1

We claim that the supremum above can be reduced to diagonal 2. To see why, first note
that for every nonzero A € R

(71 + (M) < X204 (1 - 2)P®),

This follows from Lemma 4.14, with the choices
A=x®  B=07' and D=\

Consequently, we have for every nonzero u € R¥, that

T(O-1 (k)y—1) 1 . 2. T _ 2T(k):(1 1 )_1
u'(Q7+ (2T ué/l\géAuQu—F(l A)u By u UTQU—FUTE%)U (4.78)
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Hence taking u to be elements of the standard basis ¢;, and summing over ¢ = 1,... k, we
obtain,

k k
- 1 1\-1 Q€2
’I‘r(Q’l Bk -1 1)< (— —> - L
Q@'+ @)™ 'El R 2o, 1

1=

Moreover, by taking 2 to be diagonal, the inequality above holds with equality. Thus,

k 2
Qe
O(TH, P, x® oM |,® K0 = sup { M N a0y < 02}

which establishes the relation (4.77). Note that in the last equality, we have dropped the

2.2

. . . . . k TEEY
inequality constraints T]-Q > 0, due to the continuity of the map 7 — > ;| -/ S over T € RF.
ites

We now turn to establishing the relation (4.76b). Note that for any 7 € RN with
w22 2
21 375 < C%, we have

22 k 22

y Ti €5 c ] J < 2
Lotashoia<lz sw DT,
=TT gj j=1 TERN Zw 1 a]T] 7<C? i>k

By Holder’s inequality, the second term is bounded above by C?/a} +1, hence in view of
definitions (4.29) and (4.30), we have the sandwich relation

RZ <R <Rl’;+2—,
a
k+1

which holds for all £ > 1. Since aj — o0, the limit relation (4.76b) follows.

4.6.5.3 Proof of limit relation (4.38)

We claim that the following sandwich relation holds for the minimax risks in this case.
Lemma 4.12. For all k > 1, we have
M¥ (o, 02, P) < My(0,0% P) < MW (0,0% P) + 0*tgs1. (4.79)

Assuming Lemma 4.12, note that since pp — 0 as k& — o0, it immediately implies limit
relation (4.38)
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Proof of Lemma 4.12 The proof is quite similar to Lemma 4.10. We now prove inequal-
ity (4.79). We begin by defining the sets

B(o) ={0 € EQ(N) 02 < 0}, and Br(p) = {0 € Br(o): 0, =0, forall j > k}.

By Parseval’s identity, we may rewrite the minimax risks in the following form

mk = mgzk)(g7 027P) lnf sup E [Z [1/] yla <oy Yn, (I)k’(xl)7 ceey (Pk(xn)) - 0;>2:|7

0 6*eB(o)
Vef]f(agln) =1
o0
m=m,(o,0% P) = ir§1f sup E [Z (Y1, Yns P(21), -, D)) — 9;)2].
0*eB(o _
veP(o 21n) a

Evidently, we have MU = My, since By (0) < B(p) and (y, Px(z)) are sufficient in this sub-
model. Similarly, the upper bound follows since by restricting to those estimators 6 with
6, = 0 for all j > k that are functions of (y, ®x(z)), we have

M <M+ sup D67 = My + 0y,

0B (o) >k

which establishes the upper bound.

4.6.5.4 Proof of Corollary 4.6

Using the fact that P = v, we can define

2
dy i = Sup { Tr (L, + M, 7?07 M %)L Te(Q) < %}

Q>0 o?

Let df = limsup,,_,, % Then following Corollary 4.6 and Proposition 4.2, we obtain

1 2 2

g g% —
——d* < 2 py<2—dr. 4.81
1< M(e.0* P) <2—d; (481)

We now simply the quantities ﬂ Using an argument analagous to the proof of inequal-
ity (4.78), we can write

k
- Wik
dpy = sup {Z T+ wigt, ]Zw]\—}.

Since 3(z A 1) < 2% < A 1 for any 2 > 0, we can then introduce

r+1
Dk:= sup {ijuj/\l ij\—}.
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Evidently %Dk < dnx < Dy. By inspection, we have k A k,, < Dy < 2(k A ky,), in which case
it follows after passing to the superior limit that

kn < dfy < 2k,

which upon combination with inequality (4.81) yields the claim.

4.6.5.5 Proof of relation (4.41)
Applying Corollary 4.1 to the minimax risk M (o, 02, P), we find that

1 2
n U_d mk(@? 0-27P) < _d(k)7

4 n n "

)

since the quantity d’ equals the functional for this minimax risk (see equation (4.40)).
Therefore passing to the superior limit and applying the limit relation (4.38), we obtain the
result.

4.6.5.6 Proof of relation (4.49)

Note that the kernel regularity condition is not necessary for our lower bound. Indeed, note
that we first have
o’B 2Bd
inf {52 + —d(5)} = inf{ud +2 5 }
no

6>0 no? d=1

o'Bd

Let d; be the largest integer d such that pg > ; this must exist since uy — 0. As the
two sequences are nonincreasing and strictly increasmg, respectively, the display above is
bounded above by

2Bd* ’Bd*
4(/@:/\0 2"><40 .
no

Hence, it suffices to establish that the lower bound ”2Bd can be obtained from our re-
sult (4.47).

Note that if pg > ":Lg%d then the choice of A in the lower bound (4.47), given by

’B 1
A<=0——1{j d}, forj=1,2,3 ...,
Y

ne* i

satisfies > ;A < 1. Evaluating the corresponding lower bound, with the maximal choice

d = d; yields the lower bound 2 Bd , as needed.

4.6.6 Deferred proofs from Section 4.4.1

In this section, we collect proofs of the results underlying the argument establishing our
upper bound in Section 4.4.1.
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4.6.6.1 Proof of Lemma 4.1

Clearly the lefthand side is less than the right hand side as for § € ©(p, K..) we have Q0 > 0
and Tr(K. 0@ 0K, ) = [|0]% _, < o>
For the reverse inequality, fix Q € K(p, K.). We diagonalize the positive semidefinite
matrix K, Y?QK. Y2 = UDUT, and define 6(c) = K}*UD"?¢, where ¢ € {+1}%. Evidently,
l6(e)[I%,— = IUDY %3 = Te(D) = Tr(K. QK ?) < 0.
Thus, for all € € {£1}%, the vector 0(¢) lies in the set O(p, K.). Consequently, we have

sup r(éc,e) > max r(@c,ﬁ( )

00 (0,K.) ee{£1}4
> E.r(0c.0(c)) (4.82)
= (0, Q). (4.83)

Note that 2 € K(o, K.) was arbitrary in this argument, and hence passing to supremum over
) gives us the desired reverse inequality. Above, display (4.82) follows by lower bounding the
maximum over € € {£1}¢ by the expectation over ¢ where ¢; are IID Rademacher variables.
The relation (4.83) follows by noting that 7“(50, 0(e)) = r(fc, 0(e)®0(e)), and moreover this
latter quantity is linear in the rank-one matrix 6(c) ® 6(¢), as justified by Lemma 4.2. By
linearity of expectation we can bring the expectation inside, and use the fact that

E.[0(c) ®6(c)] = K/PUDUTKM? = Q.

4.6.6.2 Proof of Lemma 4.2

Inspecting the definition of r (see equation (4.53)), we see that it is affine in Q. To verify
that it is convex in C', note that r can be equivalently expressed as

00, ) = Ee|IIKMHOTIIIS T — QPR + 1K OIS 2R .
Evidently, the display above is convex in C'.

4.6.6.3 Proof of Proposition 4.3

In order to prove Proposition 4.3, we need two results regarding the harmonic mean of
positive (semi)definite matrices. For our results, it is important to allow once of these
matrices to be (possibly) singular, and so we study (twice) the harmonic mean of A and
the Moore-Penrose pseudoinverse Bf-—that is, the quantity (A~! + B)~!, where B > 0 and
A > 0. Note that since (BY)! = B, these results also imply bounds for the mean (A~*+BT)~!
See the reference [10, chap. 4] for additional details about the harmonic mean of positive
matrices.
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Lemma 4.13. Suppose that A, B are two symmetric positive semidefinite matrices, and that
A is nonsingular. For any x € RY and any y in the range of B, we have

(x—y)"A(x —y) +y"Bly = 27(A™' + B) 'z,
where BT denotes the Moore-Penrose pseudoinverse associated with B.
Proof. Using BB'B = B, the claim is equivalent to showing that inf, , g(z,u) > 0 where
g(z,u) = (z — Bu)"A(x — Bu) + u'Bu — 2" (A™' + B)'a.
Define f(u) = inf, g(x,u). A calculation demonstrates that
Fu) =o' [B + BAB — BA(A — (A™! + B)*l)TAB]u
— uTBAY? [KT +I—(I—(I+ K)‘l)T]Al/QBu. (4.84)

Above, K = AY2BA'Y2. Diagonalizing K, we may write K = UDU' and therefore KT =
UDTUT. Applying the similarity transformation under U, we have

UK+ T-(I-(I+K)"")YWU=D'+1-(I—-(I+D)")=I-D'D>0. (4.85)
Therefore, combining displays (4.84) with (4.85), we obtain
inf g(z,u) = inf f(u) =0,
which establishes the desired claim. ]

Lemma 4.14. Suppose that A, B are two symmetric positive semidefinite matrices, and that
A is nonsingular. If DT € R¥™? has range included in the range of B, then

(I — D)A(I = D)" + DB'D" » (A~' + B)™.
Moreover equality holds with the choice D = (A™' + B)™'B.
Proof. Let x € R and note that if y == D"x, then
xT[(I _D)A(I- D) + DBTDT]:C — (z—y) Az —y) +y" By
> (A7 4+ B) g,

where the final inequality follows from Lemma 4.13, since y lies in the range of B. As the
inequality holds for arbitrary x € R¢, we have established the desired matrix inequality. To
see the attainment at D = (A~! + B)7'B, first note that DT = B(A~! + B)~!. Therefore
the range of DT is exactly the range of B. Additionally, since I — D = (A™' + B)"' A~ we
have

(I —=D)A(I -D)" + DB'D" = (A" + By (A" + BB'B) (A + B) ™' = (A" + B)!,
as required. O

We are now in a situation to prove Proposition 4.3.
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Proof of Proposition 4.3 From display (4.53), to establish the claim, it suffices to lower
bound the following matrix in the semidefinite ordering,

(C(T)T{ S, Te — I)UC(THT{ S, T — 1a)T
+ C(Te) TP 2, T:C(Te)". (4.86)
This matrix can be written as (I — D)Q(I — D)T + DBTDT where we defined
B=TS,'Ty, and, D= C(T:)T{3,'Tt.

Evidently, the range of DT is included in the range of B, and so it follows from Lemma 4.14
that the matrix in equation (4.86) is lower bounded in the semidefinite ordering by

Q'+ TS, T (4.87)
Moreover, Lemma 4.14 also demonstrates this is established by taking
D= Q'+ TIS,'"T) TS, ' T,
which arises from taking C(T¢) = (2! + T7%,'T)™", as claimed. Evaluating this lower
bound matrix (4.87) in (4.53) establishes equality (4.54).
4.6.6.4 Proof of equation (4.55d)
Let us formally state our claim, equivalent to equation (4.55d), as a lemma.

Lemma 4.15. Let X (o, K.) denote the subset of nonsingular matrices in K(o, K.)—that
is, the set {2 > 0: Qe K(o, K.)}. Then, we have

sup infr(é\c, Q)= sup inf’r(gc, Q).
QeX(o,Ke) ¢ QX4 (0,Ke) ©
We prove this claim now. Evidently, since K, (o, K.) < K(p, K,) it suffices to show that

the lefthand side is less than or equal to the righthand side. To begin, we note that for each
A > 0, we have

—~

~ a ~ (b) ~
sup infr(6c,Q) < sup infr(Gc,Q+WKc) < sup  infr(0c,Q) = f(N).
QeX(o.K) © QeX(o,Ke) © QX (e+AKe) ©

N

Inequality (a) above follows since T(é\c,Q) < r(é\c,Q’ ) for any < Q'—this follows im-
mediately from display (4.53). Here we have taken ' = Q + WKC > Q. In-
equality (b) then follows by noting that Q' is symmetric positive (strictly) definite, and
Tr(K. ?QK,Y?) < (0 + \)?, since Q € K(o, K,). Since the displayed relation above holds
for any A > 0, it suffices to show that

inf f(\) = f(0). (4.88)

A>0
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By Proposition 4.3, we have

FO) = sgp{ ETr (K;/2(Q—1 + ng;ng)—lK;ﬂ) :

Q> 0, Tr(K, QK Y?) < (0 + )\)2}

sup { BT (K22((£22) 72070 + T75, ') K2

Q
0> 0, Tr(K 20K ) < o )
0+ A\2 _ -
< <T> sgp{ BT (KM2((07 + 175,17 K2 |
Q> 0, Tr(K, QK. %) < o }
0+ A\2
- (%,7) 1o

Hence we have established the sandwich relation
0+ A\2

£0) < fFOV) < <T> £(0),  forall A > 0.

Note that f(0) < f(\) < f(A) whenever 0 < X' < A. Thus, infy~q = limy g+ f(A) = f(0),
which establishes (4.88), completing the proof of the claim.

4.6.7 Deferred proofs from Section 4.4.2

In this section, we collect proofs of the results underlying the argument establishing our
lower bound in Section 4.4.2.

4.6.7.1 Proof of Lemma 4.3

By parameterizing 0* = K.~ "/?n*, we have

ME(T, P, %, 0, K., K.)

= inf sup E¢ wN(0,1) I:Hﬁ(TgKe_l/Q,TgK 2 4 B 2w) —
n n*ee(QZKel/QKCKelﬂ)

)

. ~ * 1/2 %112

= inf sup E5,2~N<O,I¢(g)) [H”(an Qen” + %AE/ z) =1 2] (4.89)
n n*ee(Q2K61/2KcKel/2)
: ~ * - * |2

= inf sup Ew~IF’,z~N(O,IT(§>) [Hn(w7 VngTn + V§A§1/22) — 2] (4.90)

T pre@(?K MK K.M?)

= ME (P, *K 2K K M),
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We justify some of the relations in the display above. Since the density of v = T¢ K, Y It +

El/ 2w i is, up to constants independent of n*, proportional to

1. _ ) )
exp<— AW KT PITS TR oy — 200, B T >}>

factorization arguments imply Q¢ = Ke_l/QTgE;1T5K6_1/2 and v = Ke_l/QTgTZ;UlU are
sufficient statistics for n*. Note that ¢’ is distributed N (Q¢n*, Q¢). Thus, as consequence
of the Rao-Blackwell theorem, any minimax optimal estimator is a function of (Q¢,v’), and
hence display (4.89) follows. Similarly, any optimal estimator function is a function of any
bijective function of (Q¢,v’). Evidently one can construct Q¢ from w = (r(&), Ve, A¢), and

vice versa. On the other hand, v’ lies in the range of G(§) = Kefl/zTgZ;m, which is the same
as the range of G(£)G(€)T = Q¢; consequently one may replace v’ with QZU’ = Ve(Ae) VT,
which is distributed N (VeVn*, Ve(Ae) V), and so that display (4.90) follows.

4.6.7.2 Proof of Lemma 4.4

In this argument, we use the notation B(7, 7 | w) to denote the Bayes risk of estimator 7,
conditional on w, for the original observation Y. Formally, it is the expectation E[||7(Y) —
n||3], where the expectation is over T ~ N (VVT, VATIVT).

The main observation is that if we consider the projection of T, onto the range of V', we
will recover a random variable with the same distribution as Y, and therefore the risks are
the same. Formally, let 7 be any estimator which is constant over the fibers of the operator
VVT. Equivalently, it can be written

~

Ny) = q(VVTy), for some measurable 7.
Let this class of estimators be denoted by £y. Then we evidently have

B)\(ﬂ' ‘ w) < inf B)\(ﬁ,ﬂ' | w). (491)
nely

To complete the proof of the claim, we claim that
By(i,7|w) = B(i,m|w),  forany i€ &y

This follows immediately from the fact that VVTY, = T with probability 1. We note that
combination with (4.91) furnishes the claim, since it implies that

By(m | w) < inf B(f,7 | w) = B(7 | w).

nely

The final equality occurs since for any measurable estimator 7 ¢ €y, we can define 7y (y) =
#(VVTy), and since T = VVTT with probability 1, and therefore B(7jy, 7 | w) = B(), 7 | w),
which establishes this claim.
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4.6.7.3 Proof of Lemma 4.5

Let 7, denote the posterior mean y — E[n | T\ = y|. Then, as the posterior mean 7,
minimizes the Bayes risk 77 — B\ (7,7 | w) over all measurable estimators 7), it suffices to
compute the risk of 7). Note that, by definition of conditional expectation, we have

1

) = = f np(y | m) =(dr).

We now compute the derivative of p(y). Exchanging integration and differentiation,®

EAVp(y) = J(Xw —y)p(y | n)w(dn).
Therefore, we conclude that

he(y) = X3 (y + ENlogp(y))-

Finally, to compute risk of the posterior mean 7,.(Y,) := E[n | T,], we add and subtract the
observation X;lT z, and find that

Eq1,) | (0= (1)) ® (7= (1)
= X 'O\X = XTI E[Viogp(Ty) @ Vg p(Th)]2a X5

Identifying the Fisher information in the display above, factoring the expression, and taking
the trace yields the desired result.

4.6.7.4 Proof of Lemma 4.6

Note that 7.5 is evidently absolutely continuous with respect to Lebesgue measure. In
particular, on the interior of ©(K), 7,11 and WSH have the same Lebesgue density up to
rescaling by WSH(@(K )). Denote this density by f;n. Therefore, we have

J(nly) = E, s, Lou) () Viog fru(n) ® Viog fru(n)
+ B, ¢, le)(n)Vlog frn(n) ® Viog frn(n)
> E, ¢ 1ew)(n)Viog fru(n) ® Viog fru(n)
= min(O(K))I (7))

8This is valid since y — p(y | n) is differentiable for each 7, and for each y, we have n — p(y | n) and
n— Vyp(y | n) = Sy1(Xan — y) are 7-integrable (since 0 < p(y | ) < 1, and the gradient is an affine
function of 7).
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The final equality arises since the boundary of ©(K) has Lebesgue measure zero. Using the
well known relation J (7Cy;) = (72II)~! [72, Example 6.3], the above display implies that

J (ﬂ'T,H)_l > WSH(@(K))TZH =73(1— WSH(@(K)C))H.

To ensure that 1) ~ 7oy lies in ©(K) with decent probability, we take II to satisfy the relation
Tr(K'I) < 1. Then defining

o(r,1I) = 7*(1 — w2 (O(K))),

completes the proof of the claim.

4.6.7.5 Proof of Lemma 4.7

Fix IT > 0 such that Tr(IT'2K'II"?) < 1. Let A = (\1,...,\q) denote the eigenvalues
of MY2K~'IY2. The vector satisfies the inequalities A > 0,A\T1 < 1. Moreover, by the
rotational invariance of the Gaussian, we have for g ~ N (0, [,;), that

d
RSa(O(K)) = P {72 K020 > 1} = P {3 ng? > 1},
i=1
Let us make the choice 72 = 1/2. Then, note for any A > 0, AT1 < 1, by Markov’s inequality,

d d 2
- N Elg; 1
=1

Hence, using this bound in the definition of ¢(r, IT), we find

c(K)= inf ¢(1/2,diag()\)) =

1
e
A>0,2T1<1 4

which completes the proof of the claim.
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