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Abstract

Generalizing Beyond the Training Data:
New Theory and Algorithms for Optimal Transfer Learning

by

Reese Pathak

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor Martin J. Wainwright, Co-chair

Traditional machine learning often assumes that training (source) data closely resembles the
testing (target) data. However, in many contemporary applications, this is unrealistic: in
e-commerce, consumer behavior is time-varying; in medicine, patient populations can exhibit
more or less heterogeneity; in autonomous driving, models are rolled out to new environ-
ments. Ignoring these “distribution shifts” can lead to costly, harmful, and even dangerous
outcomes. This thesis tackles these challenges by developing an algorithmic and statistical
toolkit for addressing distribution shifts. Specifically, this work focuses on covariate shift, a
form of distribution shift where the source and target distributions have different covariate
laws.

I demonstrate that for a large class of problems, transfer learning is possible, even when the
source and target data have non-overlapping support. We study covariate shift in the case
of kernel classes, Hölder smoothness classes, and sparsity classes. We demonstrate how a
suitably defined notion of defect or dissimilarity in the problem instance can be leveraged
algorithmically, leading to methods with optimal learning guarantees.

Our final chapter contains results where we provide instance-optimal learning guarantees.
We introduce a new method: penalized risk minimization with a non-traditional choice of
regularization which is chosen via semidefinite programming. We show that our method has
performance which is optimal with respect to the particular covariate shift instance. To our
knowledge, these are the first instance-optimal guarantees for transfer learning. Moreover,
our results are assumption-light: we impose essentially no restrictions on the underlying
covariate laws, thereby broadening the applicability of our theory.
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Chapter 1

Covariate shift in RKHS-based
nonparametric regression

1.1 Introduction

A widely adopted assumption in supervised learning [118, 54] is that the training and test
data are sampled from the same distribution. Such a no-distribution-shift assumption, how-
ever, is frequently violated in practice. For instance, in medical image analysis [52, 67],
distribution mismatch is widespread across the hospitals due to inconsistency in medical
equipment, scanning protocols, subject populations, etc. As another example, in natural
language processing [61], the training data are often collected from domains with abundant
labels (e.g., Wall Street Journal), while the test data may well arise from a different domain
(e.g., arXiv which is mainly composed of scientific articles).

In this chapter, we focus on a special and important case of distribution mismatch, known
as covariate shift. In this version, the marginal distributions over the input covariates may
vary from the training (or source) to test (or target) data1, while the conditional distri-
bution of the output label given the input covariates is shared across training and testing.
Motivating applications include image, text, and speech classification in which the input
covariates determine the output labels [111]. Despite its importance in practice, the covari-
ate shift problem is underexplored in theory, when compared to supervised learning without
distribution mismatch—a subject that has been well studied in the past decades [54].

This chapter aims to bridge this gap by addressing several fundamental theoretical ques-
tions regarding covariate shift. First, what is the statistical limit of estimation in the presence
of covariate shift? And how does this limit depend on the “amount” of covariate shift between
the source and target distributions? Second, does nonparametric least-squares estimation—a
dominant (and often optimal) approach in the no-distribution-shift case—achieve the opti-
mal rate of estimation with covariate shift? If not, what is the optimal way of tackling
covariate shift?

1Hereafter, we use source (resp. target) and training (resp. testing) interchangeably.
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1.1.1 Contributions and overview

We address the aforementioned theoretical questions regarding covariate shift in the context
of nonparametric regression over reproducing kernel Hilbert spaces (RKHSs) [104]. That is,
we assume that under both the source and target distributions, the regression function (i.e.,
the conditional mean function of the output label given the input covariates) belongs to an
RKHS. In this chapter, we focus on two broad families of source-target pairs depending on
the configuration of the likelihood ratios between them.

We first consider the uniformly B-bounded family in which the likelihood ratios are uni-
formly bounded by a quantity B. In this case, we present general performance upper bounds
for the kernel ridge regression (KRR) estimator in Theorem 1.1. Instantiations of this gen-
eral bound on various RKHSs with regular eigenvalues are provided in Corollary 1.1. It
is also shown in Theorem 1.2 that KRR—with an optimally chosen regularization parame-
ter that depends on the largest likelihood ratio B—achieves the minimax lower bound for
covariate shift over this uniformly B-bounded family. It is worth noting that the optimal
regularization parameter shrinks as the likelihood ratio bound increases.

We further show—via a constructive argument—that the nonparametric least-squares
estimator, which minimizes the empirical risk on the training data over the specified RKHS,
falls short of achieving the lower bound; see Theorem 1.3. This marks a departure from the
classical no-covariate-shift setting, where the constrained estimator (i.e., the nonparametric
least-squares estimator) and the regularized estimator (i.e., the KRR estimator) can both
attain optimal rates of estimation [120]. In essence, the failure arises from the misalignment
between the projections under the source and target covariate distributions. Loosely speak-
ing, nonparametric least-squares estimation projects the data onto an RKHS according to the
geometry induced by the source distribution. Under covariate shift, the resulting projection
can be extremely far away from the projection under the target covariate distributions.

In the second part of the chapter, we turn to a more general setting, where the likelihood
ratios between the target and source distributions may not be bounded. Instead, we only
require the target and source covariate distributions to have a likelihood ratio with bounded
second moment. We propose a variant of KRR that weights samples based on a careful
truncation of the likelihood ratios. We are able to show in Theorem 1.4 that this estimator
is rate-optimal over this larger class of covariate shift problems.

1.1.2 Related work

There is a large body of work on distribution mismatch and, in particular, on covariate shift.
Below we review the work that is directly relevant to ours, and refer the interested reader
to the book [111] and the survey [93] for additional references.

Shimodaira [105] first studied the covariate shift problem from a statistical perspective,
and established the asymptotic consistency of the importance-reweighted maximum likeli-
hood estimator (without truncation). However, no finite-sample guarantees were provided
therein. Similar to our work, Cortes and coauthors [27] analyzed the importance-reweighted
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estimator when the density ratio is either bounded or has a finite second moment. However,
their analysis applies to the function class with finite pseudodimension (cf. the book [97]),
while the RKHS considered herein does not necessarily obey this assumption. Moreover,
even when the RKHS has a finite rank D, their result (e.g., Theorem 8) is sub-optimal—
with a rate of

a

V 2D{n compared to our optimal rate V 2D{n. Here V 2 is the bound on
the second moment of the likelihood ratios and n denotes the number of samples. Recently,
Kpotufe and Martinet [69] investigated covariate shift for nonparametric classification. They
proposed a novel notion called transfer exponent to measure the amount of covariate shift
between the source and target distributions. An estimator based on k nearest neighbors
was shown to be minimax optimal over the class of covariate shift problems with bounded
transfer exponent. Inspired by the work of Kpotufe and Martinet, the current authors [94]
proposed a more fine-grained similarity measure for covariate shift and applied to nonpara-
metric regression over the class of Hölder continuous functions. It is worth pointing out that
both the transfer exponent and the new fine-grained similarity measure are different and
cannot directly be compared to the moment conditions we impose on the likelihood ratios in
this work. In particular, there exist instances of covariate shift where the second moment of
the likelihood ratios is bounded whereas the transfer exponent is infinite. One such case is
when the source and target distributions are both Gaussian with the same mean but differ-
ent scales. Another significant difference lies in the assumptions on the regression function.
Kpotufe and Martinet [69] and Pathak et al. [94] focused on the class of Hölder continuous
functions, while we focus on RKHSs. This leads to drastically different optimal estimators.
Schmidt-Hieber and Zamolodtchikov [103] recently established the local convergence of the
nonparametric least-squares estimator for the specific class of 1-Lipschitz functions over the
unit interval r0, 1s and applied it to the covariate shift setting.

Apart from covariate shift, other forms of distribution mismatch have been analyzed from
a statistical perspective. Cai et al. [19] analyzed posterior shift and proposed an optimal
k-nearest-neighbor estimator. Maity et al. [78] conducted the minimax analysis for the label
shift problem. Recently, Reeve et al. [100] studied the general distribution shift problem
(also known as transfer learning) which allows both covariate shift and posterior shift.

Notation. Throughout the chapter, we use c, c1, c1, c2 to denote universal constants, which
may vary from line to line.

1.2 Background and problem formulation

In this section, we formulate and provide background on the problem of covariate shift in
nonparametric regression.
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1.2.1 Nonparametric regression under covariate shift

The goal of nonparametric regression is to predict a real-valued response Y based on a
vector of covariates X P X. For each fixed x, the optimal estimator in a mean-squared
sense is given by the regression function f ‹pxq :“ ErY | X “ xs. In a typical setting, we
assume observations of n i.i.d. pairs tpxi, yiquni“1, where each xi is drawn according to some
distribution P over X, and then yi is drawn according to the law pY | X “ xiq. We assume
throughout that for each i, the residual wi :“ yi ´ f ‹pxiq is a sub-Gaussian random variable
with variance proxy σ2.

We refer to the distribution P over the covariate space as the source distribution. In the
standard set-up, the performance of an estimator pf is measured according to its L2pP q-error:

} pf ´ f ‹
}
2
P :“ EX„P

`

pfpXq ´ f ‹
pXq

˘2
“

ż

X

`

pfpxq ´ f ‹
pxq

˘2
ppxqdx,

where p is the density of P .
In the covariate shift version of this problem, we have a different goal—that is, we wish

to construct an estimate pf whose L2pQq-error is small. Here the target distribution Q is
different from the source distribution P . In analytical terms, letting q be the density of Q,
our goal is to find estimators pf such that

} pf ´ f ‹
}
2
Q “ EX„Q

`

pfpXq ´ f ‹
pXq

˘2
“

ż

X

`

pfpxq ´ f ‹
pxq

˘2
qpxqdx

is as small as possible. Clearly, the difficulty of this problem should depend on some notion
of discrepancy between the source and target distributions.

1.2.2 Conditions on source-target likelihood ratios

The discrepancy between the L2pP q and L2pQq norms is controlled by the likelihood ratio

ρpxq :“
qpxq

ppxq
,

which we assume exists for any x P X. By imposing different conditions on the likelihood
ratio, we can define different families of source-target pairs pP,Qq. In this chapter, we focus
on two broad families of such pairs.

Uniformly B-bounded families: For a quantity B ě 1, we say that the likelihood ratio
is B-bounded if

sup
xPX

ρpxq ď B. (1.2)

It is worth noting that B “ 1 recovers the case without covariate shift, i.e., P “ Q. Our
analysis in Section 1.3 works under this condition.
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χ2-bounded families: A uniform bound on the likelihood ratio is a stringent condition,
so that it is natural to relax it. One relaxation is to instead bound the second moment: in
particular, for a scalar V 2 ě 1, we say that the likelihood ratio is V 2-moment bounded if

EX„P rρ2pXqs ď V 2. (1.3)

Note that when the uniform bound (1.2) holds, the moment bound (1.3) holds with V 2 “ B.
To see this, we can write EX„P rρ2pXqs “ EX„QrρpXqs ď B. However, the moment
bound (1.3) is much weaker in general. It is also worth noting that the χ2-divergence
between Q and P takes the form

χ2
pQ||P q “ EX„P rρ2pXqs ´ 1.

Therefore, one can understand the quantity V 2 ´ 1 as an upper bound on the χ2-divergence
between Q and P . Our analysis in Section 1.4 applies under this weaker condition on the
likelihood ratio.

1.2.3 Unweighted versus likelihood-reweighted estimators

In this chapter, we focus on methods for nonparametric regression that are based on opti-
mizing over a Hilbert space H defined by a reproducing kernel. The Hilbert norm }f}H is
used as a means of enforcing “smoothness” on the solution, either by adding a penalty to
the objective function or via an explicit constraint.

In the absence of any knowledge of the likelihood ratio, a näıve approach is to simply
compute the unweighted regularized estimate

pfλ :“ argmin
fPH

! 1

n

n
ÿ

i“1

pfpxiq ´ yiq
2

` λ}f}
2
H

)

, (1.4)

where λ ą 0 is a user-defined regularization parameter. When H is a reproducing kernel
Hilbert space (RKHS), then this estimate is known as the kernel ridge regression (KRR)
estimate. This is a form of empirical risk minimization, but in the presence of covariate
shift, the objective involves an empirical approximation to EP rpY ´ fpXqq2s, as opposed to
EQrpY ´ fpXqq2s.

If the likelihood ratio were known, then a natural proposal is to instead compute the
likelihood-reweighted regularized estimate

rf rwλ :“ argmin
fPH

! 1

n

n
ÿ

i“1

ρpxiqpfpxiq ´ yiq
2

` λ}f}
2
H

)

. (1.5)

The introduction of the likelihood ratio ensures that the objective now provides an unbiased
estimate of the expectation EQrpY ´ fpXqq2s. However, reweighting by the likelihood ratio
also increases variance, especially in the case of unbounded likelihood ratios. Accordingly,
in Section 1.4, we study a suitably truncated form of the estimator (1.5).
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1.2.4 Kernels and their eigenvalues

Any reproducing kernel Hilbert space is associated with a positive semidefinite kernel func-
tion K : X ˆ X Ñ R. Under mild regularity conditions, Mercer’s theorem guarantees that
this kernel has an eigen-expansion of the form

K px, x1
q :“

8
ÿ

j“1

µjϕjpxqϕjpx
1
q (1.6)

for a sequence of non-negative eigenvalues tµjujě1, and eigenfunctions tϕjujě1 taken to be
orthonormal in L2pQq. Given our goal of deriving bounds in the L2pQq-norm, it is appropriate
to expand the kernel in L2pQq, as we have done here (1.6), in order to assess the richness of
the function class.

Given the Mercer expansion, the squared norm in the reproducing kernel Hilbert space
takes the form

}f}
2
H “

8
ÿ

j“1

θ2j
µj

, where θj :“
ş

X
fpxqϕjpxqqpxqdx.

Consequently, the Hilbert space itself can be written as

H :“

"

f “

8
ÿ

j“1

θjϕj |

8
ÿ

j“1

θ2j
µj

ă 8

*

.

Our goal is to understand the performance of nonparametric regression under covariate shift
when the regression function lies in H.

Throughout this chapter, we impose a standard boundedness condition on the kernel
function—namely, there exists some finite κ ą 0 such that

sup
xPX

K px, xq ď κ2. (1.7)

Note that any continuous kernel over a compact domain satisfies this condition. Moreover,
a variety of commonly used kernels, including the Gaussian and Laplacian kernels, satisfy
this condition over any domain.

1.3 Analysis for bounded likelihood ratios

We begin our analysis in the case of bounded likelihood ratios. Our first main result is to
prove an upper bound on the performance of the unweighted KRR estimate (1.4). First, we
prove a family of upper bounds (Theorem 1.1) depending on the regularization parameter
λ. By choosing λ so as to minimize this family of upper bounds, we obtain concrete results
for different classes of kernels (Corollary 1.1). We then turn to the complementary question
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of lower bounds: in Theorem 1.2, we prove a family of lower bounds that establish that
for covariate shift with B-bounded likelihood ratios, the KRR estimator is minimax-optimal
up to logarithmic factors in the sample size. This optimality guarantee is notable since it
applies to the unweighted estimator that does not involve full knowledge of the likelihood
ratio (apart from an upper bound).

In the absence of covariate shift, it is well-known that performing empirical risk mini-
mization with an explicit constraint on the function also leads to minimax-optimal results.
Indeed, without covariate shift, projecting an estimate onto a convex constraint set contain-
ing the true function can never lead to a worse result. In Theorem 1.3, we show that this
natural property is no longer true under covariate shift: performing empirical risk minimiza-
tion over the smallest Hilbert ball containing f ‹ can be sub-optimal. Optimal procedures—
such as the regularized KRR estimate—are actually operating over Hilbert balls with radius
substantially larger than the true norm }f ‹}H.

1.3.1 Unweighted kernel ridge regression is near-optimal

We begin by deriving a family of upper bounds on the kernel ridge regression estimator (1.4)
under covariate shift. In conjunction with our later analysis, these bounds will establish
that the KRR estimate is minimax-optimal up to logarithmic factors for covariate shift with
bounded likelihood ratios.

Theorem 1.1. Consider a covariate-shifted regression problem with likelihood ratio that is
B-bounded (1.2) over a Hilbert space with a κ-uniformly bounded kernel (1.7). Then for any

λ ě 10κ2{n, the KRR estimate pfλ satisfies the bound

} pfλ ´ f ‹
}
2
Q ď 4λB}f ‹

}
2
H

loooomoooon

b2
λpBq

` 80σ2B
log n

n

8
ÿ

j“1

µj

µj ` λB
loooooooooooooomoooooooooooooon

vλpBq

(1.8)

with probability at least 1 ´ 28 κ2

λ
e´ nλ

16κ2 ´ 1
n10 .

See Section 1.5.1 for the proof of this theorem. In Section 1.7.5.1, we also present a corollary
which provides a corresponding expectation bound for the KRR estimator pfλ for such B-
bounded covariate shifts.

Note that the upper bound (1.8) involves two terms. The first term b2
λpBq corresponds

to the squared bias of the KRR estimate, and it grows proportionally with the regularization
parameter λ and the likelihood ratio bound B. The second term vλpBq represents the
variance of the KRR estimator, and it shrinks as λ increases, so that λ controls the bias-
variance trade-off. This type of trade-off is standard in nonparametric regression; what is
novel of interest to us here is how the shapes of these trade-off curves change as a function
of the likelihood ratio bound B.
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Figure 1.1. Plot of the upper bound (1.8) on the mean-squared error versus the log
regularization parameter log λ for four different choices of the likelihood ratio bound B, in
all cases with eigenvalues µj “ p1{jq2, noise variance σ2 “ 1 and sample size n “ 8000. The
points marked with ‹ on each curve corresponds to the choice of λ˚pBq that minimizes the
upper bound. Note how this minimizing value shifts to the left as B increases above the
standard problem without covariate shift (B “ 1).

Figure 1.1 plots the right-hand side of the upper bound (1.8) as a function of λ for several
different choices B P t1, 5, 10, 15u. (In all cases, we fixed a kernel with eigenvalues decaying
as µj “ j´2, sample size n “ 8000, and noise variance σ2 “ 1.) Of interest to us is the choice
λ˚pBq that minimizes this upper bound; note how this optimizing λ˚pBq shifts leftwards to
smaller values as B is increased.

We would like to understand the balancing procedure that leads to an optimal λ˚pBq

in analytical terms. This balancing procedure is most easily understood for kernels with
regular eigenvalues, a notion introduced in past work [123] on kernel ridge regression. For a
given targeted error level δ ą 0, it is natural to consider the first index dpδq for which the
associated eigenvalue drops below δ2—that is, dpδq :“ mintj ě 1 | µj ď δ2u. The eigenvalue
sequence is said to be regular if2

8
ÿ

j“dpδq`1

µj ď c dpδqδ2 (1.9)

holds for some universal constant c ą 0. The class of kernels with regular eigenvalues includes
kernels of finite-rank and those with various forms of polynomial or exponential decay in
their eigenvalues; all are widely used in practice. For kernels with regular eigenvalues, the

2In fact, we can relax this to only require the minimizing δ in equation (1.10) to obey the tail bound.
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bound (1.8) implies that there is a universal constant c1 such that

} pfλ ´ f ‹
}
2
Q ď c1

!

δ2}f ‹
}
2
H ` σ2B

dpδq log n

n

)

where δ2 “ λB. (1.10)

We verify this claim as part of proving Corollary 1.1 below.
This bound (1.10) enables us to make (near)-optimal choices of δ—and hence λ “ δ2{B.

Let us summarize the outcome of this procedure for a few kernels of interest. In particular,
we say that a kernel has finite rank D if the eigenvalues µj “ 0 for all j ą D. The kernels
that underlie linear regression and polynomial regression more generally are of this type. A
richer family of kernels has eigenvalues that exhibit α-polynomial decay µj ď c j´2α for some
α ą 1{2. This kind of eigenvalue decay is seen in various types of spline and Sobolev kernels,
as well as the Laplacian kernel. It is easy to verify that both of these families have regular
eigenvalues. To simplify the presentation, we assume }f ‹}H “ 1.

Corollary 1.1 (Bounds for specific kernels). We have the following bounds for specific kernel
eigenvalues.

(a) For a kernel with rank D, as long as σ2D log n ě 10κ2, the choice λ “
σ2D logn

n
yields

an estimate pfλ such that

} pfλ ´ f ‹
}
2
Q ď cσ2B

D log n

n
(1.11a)

with high probability.

(b) For a kernel with α-decaying eigenvalues, suppose that σ2 is sufficiently large so that
λ “

B´ 1
2α`1

`

σ2 logn
n

˘
2α

2α`1 ě 10κ2{n. Then the estimate pfλ obeys

} pfλ ´ f ‹
}
2
Q ď c

´σ2B log n

n

¯
2α

2α`1
(1.11b)

with high probability.

Proof. We begin by proving the upper bound (1.10). With the shorthand δ2 “ λB, the
variance term in our bound (1.8) can be bounded as

1

80
vλpBq “ σ2B

log n

n

8
ÿ

j“1

µj

µj ` δ2
ď σ2B

log n

n

!

dpδq
ÿ

j“1

1 `

8
ÿ

jądpδq

µj

µj ` δ2

)

,

where, by the definition of dpδq, we have split the eigenvalues into those that are larger than
δ2, and those that are smaller than δ2. By the definition of a regular kernel, the second term
can be upper bounded

8
ÿ

jądpδq

µj

µj ` δ2
ď

1

δ2
c1 dpδqδ2 “ c1 dpδq.
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Putting together the pieces yields 1
80
vλpBq ď c2σ

2B logn
n
dpδq, for some universal constant c2.

Combining with the bias term yields the claim (1.10).
We now prove claims (1.11a) and (1.11b). For a finite-rank kernel, using the fact that

dpδq ď D for any δ ą 0, we can set λ “
σ2D logn

n
to obtain the claimed bound (1.11a). Now

suppose that the kernel has α-polynomial decay—that is, µj ď cj´2α for some c ą 0. For
any δ ą 0, we then have dpδq ď c1 p1{δq1{α, and hence

δ2 ` σ2B
dpδq log n

n
ď δ2 ` c1σ2B

log n

n

`1

δ

˘1{α
.

By equating the two terms, we can solve for near-optimal δ: in particular, we set δ2 “
´

σ2B logn
n

¯
2α

2α`1
to obtain the claimed result. Notice that this choice of δ2 corresponds to

λ “ δ2{B “ B´ 1
2α`1

`σ2 log n

n

˘
2α

2α`1 ,

as claimed in the corollary.

1.3.2 Lower bounds with covariate shift for regular kernels

Thus far, we have established a family of upper bounds on the unweighted KRR estimate,
and derived concrete results for various classes of regular kernels. We now establish that,
for the class of regular eigenvalues, the bounds achieved by the unweighted KRR estimator
are minimax-optimal. Recall the definition dpδq “ mintj ě 1 | µj ď δ2u, and the notion of
regular eigenvalues (1.9). For a Hilbert space H, we let BHp1q denote the Hilbert norm ball
of radius one.

Theorem 1.2. For any B ě 1, there exists a pair pP,Qq with B-bounded likelihood ratio (1.2)
and an orthonormal basis tϕjujě1 of L2pQq such that for any regular sequence of kernel
eigenvalues tµjujě1, we have

inf
pf

sup
f‹PBHp1q

Er} pf ´ f ‹
}
2
Qs ě c inf

δą0

!

δ2 ` σ2B
dpδq

n

)

. (1.12)

See Section 1.7.1 for the proof of this claim.

Comparing the lower bound (1.12) to our achievable result (1.10) for the unweighted
KRR estimate, we see that—with an appropriate choice of the regularization parameter
λ—the KRR estimator is minimax optimal up to a log n term. In particular, it is straight-
forward to derive the following consequences of Theorem 1.2, which parallel the guarantees
in Corollary 1.1:
‚ For a finite-rank kernel, the minimax risk for B-bounded covariate shift satisfies the lower

bound

inf
pf

sup
f‹PBHp1q

Er} pf ´ f ‹
}
2
Qs ě c σ2B

D

n
.
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‚ For a kernel with α-polynomial eigenvalues, the minimax risk for B-bounded covariate
shift satisfies the lower bound

inf
pf

sup
f‹PBHp1q

Er} pf ´ f ‹
}
2
Qs ě c

´σ2B

n

¯
2α

2α`1
.

Note that both of these minimax lower bounds reduce to the known lower bounds [123] in
the case of no covariate shift (i.e., B “ 1).

1.3.3 Constrained kernel regression is sub-optimal

In the absence of covariate shift, procedures based on empirical risk minimization with
explicit constraints are also known to be minimax-optimal. In the current setting, one such
estimator is the constrained kernel regression estimate

pferm :“ arg min
fPBHp1q

! 1

n

n
ÿ

i“1

pfpxiq ´ yiq
2
)

. (1.13)

Without covariate shift and for any regular kernel, this constrained empirical risk minimiza-
tion procedure is minimax-optimal over all functions f ‹ with }f ‹}H ď 1.

In the presence of covariate shift, this minimax-optimality turns out to be false. In
particular, suppose that the eigenvalues decay as µj “ p1{jq2, so that our previous results

show that the minimax risk for B-bounded likelihood ratios scales as
`

Bσ2

n

˘2{3
. It turns out

that there exists B-bounded pair pP,Qq and an associated kernel class with the prescribed
eigendecay for which the constrained estimator (1.13) is sub-optimal for a broad range of
pB, nq pairs. In the following statement, we use c1, c2 to denote universal constants.

Theorem 1.3. Assume that }f ‹}H “ 1, and that σ2 “ 1. For any B P rc1plog nq2, c2n
2{3s,

there exists a B-bounded pair pP,Qq and RKHS with eigenvalues µj ď p1{j2q such that

sup
f‹PBHp1q

E
”

} pferm ´ f ‹
}
2
Q

ı

ě c3
B3

n2
. (1.14)

See Section 1.7.2 for the proof of this negative result.

In order to appreciate some implications of this theorem, suppose that we use it to
construct ensembles with Bn — n2{3. The lower bound (1.14) then implies that over this

sequence of problems, the maximal risk of pferm is bounded below by a universal constant.
On the other hand, if we apply the unweighted KRR procedure, then we obtain consistent
estimates, in particular with L2pQq-error that decays as

´Bn

n

¯2{3

“

´n2{3

n

¯2{3

“ n´2{9.
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Figure 1.2. Results based on computing the regularized KRR estimate for the “bad”
problems, indexed by the pair pn,Bq, that underlie the proof of Theorem 1.3. Each curve

shows the squared Hilbert norm of the regularized KRR estimate } pfλ}2H, computed with

λ “ 42{3n´2{3B´1{3, versus the likelihood ratio bound B. Each curve corresponds to a
different choice of sample size n as indicated in the legend.

It is worth understanding why the constrained form of KRR is sub-optimal, while the reg-
ularized form is minimax-optimal. Recall from Corollary 1.1 that achieving minimax-optimal
rates with KRR requires particular choices of the regularization parameter λ˚pBq, ones that

decrease as B increases (see Figure 1.1). This behavior suggests that the Hilbert norm } pfλ}H

of the regularized KRR estimate with optimal choice of λ should grow significantly above
}f ‹}H “ 1 when we apply this method.

In order to confirm this intuition, we performed some illustrative simulations over the
ensembles, indexed by the pair pB, nq, that underlie the proof of Theorem 1.3; see Sec-
tion 1.7.2 for the details. With σ2 “ 1 remaining fixed, for each given pair pB, nq, we
simulated regularized kernel ridge regression with the choice λ “ 42{3n´2{3B´1{3, as sug-
gested by Corollary 1.1. In Figure 1.2, for each fixed n, we plot the squared Hilbert norm
} pfλ}2H of the regularized KRR estimate versus the parameter B. We vary the choice of sample
size n P t8000, 16000, 32000, 64000, 128000u, as indicated in the figure legend. In all of these
curves, we see that the squared Hilbert norm is increasing as a polynomial function of B.
This behavior is to be expected, given the sub-optimality of the constrained KRR estimate
with a fixed radius.

1.4 Unbounded likelihood ratios

Thus far, our analysis imposed the B-bound (1.2) on the likelihood ratio. In practice,
however, it is often the case that the likelihood ratio is unbounded. As a simple univariate
example, suppose that the target distribution Q is standard normal N p0, 1q, whereas the
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source distribution P takes the form N p0, 0.9q. It is easy to see that the likelihood ratio ρpxq

tends to 8 as |x| Ñ 8. On the other hand, the second moment of the likelihood ratio under
P remains bounded, so that χ2-condition (1.3) applies.

The key to the success of the unweighted KRR estimator (1.4) in the bounded likelihood
ratio case is the nice relationship between the covariance ΣP :“ EX„P rϕpXqϕpXqTs of the
source distribution and the covariance I of the target distribution, namely ΣP ě 1

B
I. In

contrast, such a nice relationship (with B replaced by V 2) does not appear to hold with
unbounded likelihood ratios. It is therefore natural to consider the likelihood-reweighted
estimate (1.5), as previously introduced in Section 1.2.3, that ensures the nice identity
EX„P rρpXqϕpXqϕpXqTs “ I. In contrast to the unweighted KRR estimator, it requires
knowledge of the likelihood ratio, but we will see that—when combined with a suitable form
of truncation—it achieves minimax-optimal rates (up to logarithmic factors) over the much
larger classes of χ2-bounded source-target pairs.

As noted before, one concern with likelihood-reweighted estimators is that they can
lead to substantial inflation of the variance, in particular due to the multiplication by the
potentially unbounded quantity ρpxq. For this reason, it is natural to consider truncation:
more precisely, for a given τn ą 0, we define the truncated likelihood ratio

ρτnpxq :“

#

ρpxq, if ρpxq ď τn,

τn, otherwise.

We then consider the family of estimators

pf rw
λ :“ argmin

fPH

! 1

n

n
ÿ

i“1

ρτnpxiqpfpxiq ´ yiq
2

` λ}f}
2
H

)

, (1.15)

where λ ą 0, along with the truncation level τn, are parameters to be specified.
We analyze the behavior of this estimator for kernels whose eigenfunctions are 1-uniformly

bounded in sup-norm, meaning that

}ϕj}8 :“ sup
xPX

|ϕjpxq| ď 1 for all j “ 1, 2, . . .. (1.16)

Our choice of the constant 1 is for notational simplicity. Although there exist kernels whose
eigenfunctions are not uniformly bounded, there are many kernels for which this condition
does hold. Whenever the domain X is compact and the eigenfunctions are continuous, this
condition will hold. Another class of examples is given by convolutional kernels (i.e., kernels
of the form K px, zq “ Ψpx ´ zq for some Ψ : X Ñ R), which have sinusoids as their
eigenfunctions, and thus satisfy this condition.

Our theorem on the truncated-reweighted KRR estimate (1.15) involves the kernel com-
plexity function Ψpδ, µq :“

ř8

j“1mintδ2, µj}f
‹}2Hu, and works for any solution δn ą 0 to the

inequality Mpδq ď δ2{2, where

Mpδq :“ c0

b

σ2V 2 log3pnq

n
Ψpδ, µq.
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Here c0 is a universal constant, whose value is specified via the proof.
Below, we present the performance guarantee of pf rw

λ in the large noise regime (i.e., when
σ2 ě κ2}f ‹}2H) to simplify the statement. Theoretical guarantees for all ranges of σ2 can be
found in Section 1.7.4.

Theorem 1.4. Consider a kernel with sup-norm bounded eigenfunctions (1.16), and a
source-target pair with EP rρ2pXqs ď V 2. Further assume that the noise level obeys σ2 ě

κ2}f ‹}2H. Then the estimate pf rw
λ with truncation τn “

?
nV 2 and regularization λ}f ‹}2H ě

δ2n{3 satisfies the bound

} pf rw
λ ´ f ‹

}
2
Q ď δ2n ` 3λ}f ‹

}
2
H

with probability at least 1´cn´10. Here, we recall that δn ą 0 is any solution to the inequality
Mpδq ď δ2{2, where

Mpδq “ c0

b

σ2V 2 log3pnq

n
Ψpδ, µq.

See Section 1.5.2 for the proof of this claim. In Section 1.7.5.3, we also present a corollary
which provides a corresponding expectation bound for the reweighted estimator pf rw

λ for such
V 2-bounded covariate shifts.

To appreciate the connection to our previous analysis, in the proof of Corollary 1.2 below,
we show that for any regular sequence of eigenvalues and }f ‹}H “ 1, we have

Ψpδ, µq ď c1 dpδqδ2 (1.17)

for some universal constant c1. Moreover, the condition Mpδq ď δ2{2 can be verified by
checking the inequality

d

σ2V 2 log3pnq

n
dpδq ď c1δ. (1.18)

This further allows us to obtain the rates of estimation over specific kernel classes.

Corollary 1.2. Consider kernels with sup-norm bounded eigenfunctions (1.16).

(a) For a kernel with rank D, the truncated-reweighted estimator with λ “ cDV 2 log3pnqσ2

n

achieves

} pf rw
λ ´ f ‹

}
2
Q ď c1DV

2 log3pnqσ2

n
(1.19)

with high probability.
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(b) For a kernel with α-polynomial eigenvalues, we have with high probability

} pf rw
λ ´ f ‹

}
2
Q ď c1

´V 2 log3pnq

n
σ2
¯

2α
2α`1

, (1.20)

provided that λ “ c
`

V 2 log3pnq

n
σ2
˘

2α
2α`1 .

Proof. We begin by verifying the claim (1.17). Recalling the definition of dpδq as the smallest
integer for which µj ď δ2, we can write

Ψpδ, µq “

dpδq
ÿ

j“1

mintδ2, µju `

8
ÿ

j“dpδq`1

mintδ2, µju ď dpδqδ2 ` cdpδqδ2

where the bound on the second sum follows from the regularity condition. This completes
the proof of the bound (1.17).

Given our bound (1.17), it is straightforward to verify the claim (1.18).
We now prove the bounds (1.19) and (1.20). For the finite rank case, we have Ψpδ, µq ď

Dδ2, which implies δ2n ď cDV 2 log3pnqσ2

n
for some universal constant c. Apply Theorem 1.4 to

obtain the desired rate. Now we move on to the kernel with α-polynomial eigenvalues. We
know from the proof of Corollary 1.1 that dpδq ď cp1{δq1{α, and hence Ψpδ, µq ď c1δ2´1{α.

This implies δ2n ď c
´

V 2 log3 n
n

σ2
¯

2α
2α`1

, which together with Theorem 1.4 yields the claim.

Corollary 1.2 showcases that the reweighted KRR estimator is minimax optimal (up to
log factors) over this more general χ2-bounded family. This can be seen from the lower
bound established in Theorem 1.2 and the fact that the χ2-bounded family is a larger family
compared to the uniformly bounded family.

1.5 Proofs

In this section, we provide the proofs of our two sets of upper bounds on different estimators.
Section 1.5.1 is devoted to the proof of Theorem 1.1 on upper bounds on unweighted KRR
for B-bounded likelihood ratios, whereas Section 1.5.2 is devoted to the proof of Theorem 1.4
on the performance of LR-reweighted KRR with truncation.

1.5.1 Proof of Theorem 1.1

Define the empirical covariance operator3

pΣP :“
1

n

n
ÿ

i“1

ϕpxiqϕpxiq
T,

3In this proof, all the operators are defined with respect to the space ℓ2pNq.
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the population covariance operator ΣP :“ EX„P rϕpXqϕpXqTs, and the diagonal operator
M :“ diagptµjujě1q.

Before we embark on the proof, we single out two important properties regarding ΣP and
pΣP that will be useful in later proofs. For a given λ ą 0, we define the event

Epλq :“
!

M1{2
pΣPM

1{2
` λI ě

1

2

`

M1{2ΣPM
1{2

` λI
˘

)

, (1.21)

where I is the identity operator on ℓ2pNq.

Lemma 1.1. For any B-bounded source-target pair (1.2), we have the deterministic lower
bound

ΣP ě 1
B
I. (1.22a)

If, in addition, the kernel is κ-uniformly bounded (1.7), then whenever nλ ě 10κ2, the event
Epλq defined in equation (1.21) satisfies

PrEpλqs ě 1 ´ 28 κ2

λ
e´ nλ

16κ2 .

See Section 1.5.1.3 for the proof of this claim.

Equipped with Lemma 1.1, we now proceed to the proof of the theorem. In terms of the
basis tϕjujě1, the KRR estimate has the expansion pfλ “

ř8

j“1
pθjϕj, where pθ “ tpθjujě1 is

a sequence of coefficients in ℓ2pNq. By the optimality conditions for the KRR problem, we
have

pθ ´ θ‹
“ ´λppΣP ` λM´1

q
´1M´1θ‹

` ppΣP ` λM´1
q

´1
` 1

n

n
ÿ

i“1

ξiϕpxiq
˘

. (1.23)

By the triangle inequality, we have the upper bound }pθ ´ θ‹}22 ď 2
`

T1 ` T2
˘

, where

T1 :“ }λppΣP ` λM´1
q

´1M´1θ‹
}
2
2, and T2 :“ }ppΣP ` λM´1

q
´1
` 1

n

n
ÿ

i“1

ξiϕpxiq
˘

}
2
2.

In terms of this decomposition, it suffices to establish that the following bounds

T1
paq

ď 2λB}f ‹
}
2
H, and T2

pbq

ď
40plog nqσ2

n

8
ÿ

j“1

µj

µj{B ` λ
, (1.24)

hold with probability at least 1 ´ 28 κ2

λ
e´ nλ

16κ2 ´ n´10.
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1.5.1.1 Proof of the bound (1.24)(a)

We establish that this bound holds conditionally on the event Epλq. Following some algebraic
manipulations, we have

T1 “ λ2}M1{2
pM1{2

pΣPM
1{2

` λIq
´1M´1{2θ‹

}
2
2

piq

ď λ2}f ‹
}
2
H~M1{2

pM1{2
pΣPM

1{2
` λIq

´1
~
2
op

piiq

ď λ}f ‹
}
2
H~M1{2

pM1{2
pΣPM

1{2
` λIq

´1{2
~
2
op

piiiq

ď 2λ}f ‹
}
2
H~M1{2

pM1{2ΣPM
1{2

` λIq
´1M1{2

~op.

Here inequality (i) follows from the fact that }M´1{2θ‹}2 “ }f ‹}H; the second step (ii)

uses the fact that M1{2
pΣPM

1{2 ` λI ě λI, and step (iii) follows from the fact that we are
conditioning on the event Epλq.

Lemma 1.1 also guarantees that ΣP ě 1
B
I, whence

T1 ď 2λ}f ‹
}
2
H~M1{2

p
1

B
M ` λIq

´1M1{2
~op “ 2λ ¨ max

jě1

"

µj
µj

B
` λ

*

ď 2λB}f ‹
}
2
H.

This establishes the claim (1.24)(a).

1.5.1.2 Proof of the bound (1.24)(b)

Define the random vector W :“ ppΣP `λM´1q´1
`

1
n

řn
i“1 ξiϕpxiq

˘

. Conditioned on the covari-
ates txiu

n
i“1, W is a zero-mean sub-Gaussian random variable with covariance operator

Λ :“
σ2

n
ppΣP ` λM´1

q
´1
pΣP ppΣP ` λM´1

q
´1.

Consequently, by the Hanson-Wright inequality in the RKHS (cf. Theorem 2.6 in the chap-
ter [26]), we have

P
“

T2 ě 20plog nq TrpΛq | txiu
n
i“1

‰

ď
1

n10
, (1.25)

where the probability is taken over the noise variables.
It remains to upper bound the trace. We have TrpΛq “ Tr

`

σ2

n
ppΣP ` λM´1q´1

pΣP ppΣP `

λM´1q´1
˘

, so that

TrpΛq ď Tr
´σ2

n
ppΣP ` λM´1

q
´1

ppΣP ` λM´1
qppΣP ` λM´1

q
´1
¯

“ Tr
´σ2

n
ppΣP ` λM´1

q
´1
¯

“ Tr
´σ2

n
pM1{2

pM1{2
pΣPM

1{2
` λIq

´1M1{2
¯

.
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Under the event Epλq, we have M1{2
pΣPM

1{2 ` λI ě 1
2

`

M1{2ΣPM
1{2 ` λI

˘

, which implies

TrpΛq ď 2
σ2

n
Tr

´

M1{2
pM1{2ΣPM

1{2
` λIq

´1M1{2
¯

piq

ď 2
σ2

n
Tr

´

M1{2
p
1

B
M ` λIq

´1M1{2
¯

piiq
“ 2

σ2

n

8
ÿ

j“1

µj
µj

B
` λ

.

Here step (i) follows since ΣP ě 1
B
I, and step (ii) follows from a direct calculation. Substitut-

ing this upper bound on the trace into the tail bound (1.25) yields the claimed bound (1.24)(b).

1.5.1.3 Proof of Lemma 1.1

We begin with the proof of the lower bound (1.22a). Since tϕjujě1 is an orthonormal basis
of L2pQq, we have

EX„Q

“

ϕpXqϕpXq
T‰

“ EX„P

“

ρpXqϕpXqϕpXq
T‰

“ I.

Thus, the B-boundedness of the likelihood ratio (1.2) implies that

I ď EX„P rBϕpXqϕpXq
T
s “ BΣP ,

which is equivalent to the claim (1.22a).
Next we prove the lower bound (1.21). We introduce the shorthand notation

pΣλ :“ M1{2
pΣPM

1{2
` λI, and Σλ :“ M1{2ΣPM

1{2
` λI

along with the matrix ∆ :“ Σ
´1{2
λ ppΣλ ´ ΣλqΣ

´1{2
λ . Recalling that ~¨~op denotes the ℓ2-

operator norm of a matrix, we first observe that t~∆~op ď 1
2
u Ă E. Consequently, it suffices

to show that ~∆~op ď 1
2
with high probability.

The matrix ∆ can be written as the normalized sum ∆ “ 1
n

řn
i“1 Zi, where the random

operators

Zi :“ Σ
´1{2
λ M1{2

`

ϕpxiqϕpxiq
T

´ ΣP

˘

M1{2Σ
´1{2
λ

are i.i.d. The operator norm of each term can be bounded as

~Zi~op ď 2 sup
xPX

~Σ
´1{2
λ M1{2ϕpxqϕpxq

TM1{2Σ
´1{2
λ ~op “ 2 sup

xPX

}Σ
´1{2
λ M1{2ϕpxq}

2
2

ď 2κ2~Σ
´1{2
λ ~

2
op ď

2κ2

λ
“: L, (1.26)

where the final inequality follows from the assumption that supxPX }M1{2ϕpxq}22 ď κ2, and
the fact that Σλ ě λI.
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On the other hand, the variance of Zi can be bounded as

ErZ2
i s ď ErpΣ

´1{2
λ M1{2ϕpXqϕpXq

TM1{2Σ
´1{2
λ q

2
s

“ ErΣ
´1{2
λ M1{2ϕpXqϕpXq

TM1{2Σ´1
λ M1{2ϕpXqϕpXq

TM1{2Σ
´1{2
λ s

ď E
”

Σ
´1{2
λ M1{2ϕpXqϕpXq

TM1{2Σ
´1{2
λ

ı

¨ sup
xPX

!

ϕpxq
TM1{2Σ´1

λ M1{2ϕpxq

)

ď
κ2

λ
Σ

´1{2
λ M1{2ΣPM

1{2Σ
´1{2
λ “: V,

where the last inequality follows by applying the bound (1.26) on supxPX }Σ
´1{2
λ M1{2ϕpxq}22.

Suppose that we can show that

TrpV q ď
κ2

λ
¨
κ2

λ
; (1.27a)

~V ~op ď
κ2

λ
. (1.27b)

We can then apply a dimension-free matrix Bernstein inequality (see Lemma 1.8) with t “

1{2 to obtain the tail bound

P
“

~∆~op ě 1
2

‰

ď 28
κ2

λ
exp

´

´
nλ

16κ2

¯

,

as long as nλ ě 10κ2. Thus, the only remaining detail is to prove the bounds (1.27a)
and (1.27b).

Proof of the bound (1.27a): Using the definition of V , we have

TrpV q “
κ2

λ
Tr

´

Σ
´1{2
λ M1{2ΣPM

1{2Σ
´1{2
λ

¯

“
κ2

λ
EP rTr

`

Σ
´1{2
λ M1{2ϕpxqϕpxq

TM1{2Σ
´1{2
λ

˘

s

ď
κ2

λ
¨
κ2

λ
.

Here we have again applied the bound supxPX }Σ
´1{2
λ M1{2ϕpxq}22 ď κ2{λ.

Proof of the bound (1.27b): Recalling the definition of Σλ, we see that

~Σ
´1{2
λ M1{2ΣPM

1{2Σ
´1{2
λ ~op ď 1,

and hence

~V ~op “
κ2

λ
~Σ

´1{2
λ M1{2ΣPM

1{2Σ
´1{2
λ ~op ď

κ2

λ
,

which is the claimed upper bound on ~V ~op.
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1.5.2 Proof of Theorem 1.4

We now turn to the proof of our guarantee on the truncated LR-reweighted estimator. At
the core of the proof is a uniform concentration result, one that holds within a local ball

Gprq :“ tf P H | }f ´ f ‹
}Q ď r, and }f ´ f ‹

}H ď 3}f ‹
}Hu

around the true regression function f ‹.

Lemma 1.2. Fixing any r ą 0, we have

sup
gPGprq

!

}g ´ f ‹
}
2
Q `

1

n

n
ÿ

i“1

ρτnpxiq
“`

f ‹
pxiq ´ yi

˘2
´
`

gpxiq ´ yi
˘2‰

)

ď Mprq (1.28)

with probability at least 1 ´ cn´10.

See Section 1.5.2.1 for the proof of this lemma.

Taking this lemma as given, we now complete the proof of the theorem. Define the
regularized radius δλ :“

a

δ2n ` 3λ}f ‹}2H, and denote by Epδλq the “good” event that the
relation (1.28) holds at radius δλ. We immediately point out an important property of the
regularized radius δλ, namely Mpδλq ď p1{2q ¨ δ2λ. To see this, note that r ÞÑ Mprq{r is
non-increasing in r, and hence

Mpδλq

δλ
ď

Mpδnq

δn
ď

1

2
δn ď

1

2
δλ.

Suppose that conditioned on Epδλq, the following inequality holds

inf
fPH,fRGpδλq

1

n

n
ÿ

i“1

ρτnpxiq
!

`

fpxiq ´ yi
˘2

´
`

f ‹
pxiq ´ yi

˘2
)

` λ}f}
2
H ´ λ}f ‹

}
2
H ą 0. (1.29)

It then follows that that } pf ´ f ‹}Q ď δλ, as desired. Consequently, the remainder of our
proof is devoted to establishing that inequality (1.29) holds conditioned on Epδλq.

Given any function f P H and f R Gpδλq, there exists an α ě 1 such that rf :“ f ‹ ` 1
α

pf ´

f ‹q lies in the set H, and more importantly rf lies on the boundary of Gpδλq. This follows

from the convexity of the two sets H and Gpδλq. Since rf is a convex combination of f and
f ‹, Jensen’s inequality implies that

ρτnpxiq
!

`

rfpxiq ´ yi
˘2

´
`

f ‹
pxiq ´ yi

˘2
)

` λ} rf}
2
H ´ λ}f ‹

}
2
H

ď 1
α

!

ρτnpxiq
!

`

fpxiq ´ yi
˘2

´
`

f ‹
pxiq ´ yi

˘2
)

` λ}f}
2
H ´ λ}f ‹

}
2
H

)

.

Consequently, in order to establish the claim (1.29), it suffices to prove that the quantity

T :“
1

n

n
ÿ

i“1

ρτnpxiq
␣`

f ‹
pxiq ´ yi

˘2
´
`

rfpxiq ´ yi
˘2(

` λ}f ‹
}
2
H ´ λ} rf}

2
H

is negative. Since rf lies on the boundary of Gpδλq, we can split the proof into two cases: (1)

} rf´f ‹}Q “ δλ, while } rf´f ‹}H ď 3}f ‹}H, and (2) } rf´f ‹}Q ď δλ, while } rf´f ‹}H “ 3}f ‹}H.
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Case 1: } rf ´ f ‹}Q “ δλ, while } rf ´ f ‹}H ď 3}f ‹}H. By adding and subtracting terms,
we have

T “

«

1

n

n
ÿ

i“1

ρτnpxiq
!

`

f ‹
pxiq ´ yi

˘2
´
`

rfpxiq ´ yi
˘2
)

` } rf ´ f ‹
}
2
Q

ff

´ } rf ´ f ‹
}
2
Q ` λ}f ‹

}
2
H ´ λ} rf}

2
H

piq

ď Mpδλq ´ δ2λ ` λ}f ‹
}
2
H

piiq
ă ´

1

2
δ2λ ` λ}f ‹

}
2
H

piiiq
ă 0,

where step (i) follows from conditioning on the event Epδλq, the equality } rf ´f ‹}2Q “ δ2λ, and

non-positivity of λ} rf}2H; step (ii) follows from the property Mpδλq ď p1{2q ¨ δ2λ and step (iii)
uses the definitions of δλ and λ.

Case 2: } rf´f ‹}Q ď δλ, while } rf´f ‹}H “ 3}f ‹}H. By the same addition and subtraction
as above, we have

T “

«

1

n

n
ÿ

i“1

ρτnpxiq
!

`

f ‹
pxiq ´ yi

˘2
´
`

rfpxiq ´ yi
˘2
)

` } rf ´ f ‹
}
2
Q

ff

´ } rf ´ f ‹
}
2
Q ` λ}f ‹

}
2
H ´ λ} rf}

2
H

piq

ď Mpδλq ` λ}f ‹
}
2
H ´ λ} rf}

2
H

piiq
ă

1

2
δ2λ ´ 3λ}f ‹

}
2
H,

Here, step (i) again follows from the conditioning on the event Epδλq and the assumption

that } rf ´ f ‹}Q ď δλ. Step (ii) relies on the facts that Mpδλq ď p1{2q ¨ δ2λ, }f ‹}H “ }f ‹}H,

and that } rf}H ě 2}f ‹}H. The latter is a simple consequence of } rf ´ f ‹}H “ 3}f ‹}H and the
triangle inequality. Substitute in the definitions of δλ and λ to see the negativity of T .

Combine the two cases to finish the proof of the claim (1.29).

1.5.2.1 Proof of Lemma 1.2

Define the shifted function class F‹ :“ H ´ f ‹, along with its r-localized version

F‹
prq :“

␣

h P F‹
| }h}Q ď r, and }h}H ď 3}f ‹

}H
(

.

We begin by observing that

`

f ‹
pxiq ´ yi

˘2
´
`

gpxiq ´ yi
˘2

“ 2ξirgpxiq ´ f ‹
pxiqs ´

`

gpxiq ´ f ‹
pxiq

˘2
,

which yields the following equivalent formulation of the claim in Lemma 1.2:

sup
hPF‹prq

#

1

n

n
ÿ

i“1

”

2ξiρτnpxiqhpxiq ` }h}
2
Q ´ ρτnpxiqh

2
pxiq

ı

+

ď Mprq. (1.30)
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By the triangle inequality, it suffices to show that T1 ` T2 ď Mprq, where

T1 :“ sup
hPF‹prq

ˇ

ˇ

ˇ

2

n

n
ÿ

i“1

ξiρτnpxiqhpxiq
ˇ

ˇ

ˇ
, and T2 :“ sup

hPF‹prq

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

␣

}h}
2
Q ´ ρτnpxiqh

2
pxiq

(

ˇ

ˇ

ˇ
.

More precisely, the core of our proof involves establishing the following two bounds:

T1 ď cσ

d

V 2 log3pnq

n

!

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu

)1{2

with probability at least 1 ´ n´10, and

(1.31a)

T2 ď c

d

V 2 log3pnq

n
¨

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu with probability at least 1 ´ n´10. (1.31b)

In conjunction, these two bounds ensure that

T1 ` T2 ď c

d

V 2 log3pnq

n
¨

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu ` c

g

f

f

e

8
ÿ

j“1

mintr2, µj}f ‹}2Hu
V 2 log3pnq

n
σ2.(1.32)

Since the kernel function is κ2-bounded, we have
ř8

j“1mintr2, µj}f
‹}2Hu ď }f ‹}2H

ř8

j“1 µj ď

κ2}f ‹}2H, which together with the assumption σ2 ě κ2}f ‹}2H implies that

T1 ` T2 ď 2c

g

f

f

e

8
ÿ

j“1

mintr2, µj}f ‹}2Hu
V 2 log3pnq

n
σ2.

Therefore the bound (1.30) holds.
It remains to prove the bounds (1.31a) and (1.31b). The proofs make use of some

elementary properties of the localized function class F‹prq, which we collect here. For any
h P F‹prq, we have

|hpxq| ď

g

f

f

e10
8
ÿ

j“1

mintr2, µj}f ‹}2Hu, and (1.33a)

8
ÿ

j“1

θ2j
mintr2, µj}f ‹}2Hu

ď 10, where h “
ř8

j“1 θjϕj. (1.33b)

See Section 1.7.3 for the proof of these elementary claims.
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1.5.2.2 Proof of inequality (1.31b)

We begin by analyzing the term T2. By the triangle inequality, we have the upper bound
T2 ď T2a ` T2b, where

T2a :“ sup
hPF‹prq

ˇ

ˇ

ˇ
}h}

2
Q ´ EP rρτnpXqh2pXqs

ˇ

ˇ

ˇ
, and

T2b :“ sup
hPF‹prq

ˇ

ˇ

ˇ
EP rρτnpXqh2pXqs ´

1

n

n
ÿ

i“1

ρτnpxiqh
2
pxiq

)ˇ

ˇ

ˇ
.

Note that T2a is a deterministic quantity, measuring the bias induced by truncation, whereas
T2b is the supremum of an empirical process. We split our proof into analysis of these two
terms. In particular, we establish the following bounds:

T2a ď c

c

V 2

n

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu, and (1.34a)

T2b ď c

d

V 2 log2pnq

n

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu with probability at least 1 ´ n´10.(1.34b)

Combining these two bounds yields the claim (1.31b).

Proof of inequality (1.34a): We begin by proving the claimed upper bound on T2a. Note
that

T2a ď sup
hPF‹prq

ˇ

ˇ

ˇ
}h}

2
Q ´ EQr1tρpXq ď τnuh2pXqs

ˇ

ˇ

ˇ
` τn ¨ sup

hPF‹prq

ˇ

ˇ

ˇ
EP r1tρpXq ą τnuh2pXqs

ˇ

ˇ

ˇ

“ sup
hPF‹prq

EQ

”

1tρpXq ą τnuh2pXq

ı

` τn ¨ sup
hPF‹prq

ˇ

ˇ

ˇ
EP r1tρpXq ą τnuh2pXqs

ˇ

ˇ

ˇ

ď EQ

”

1tρpXq ą τnu

ı

¨ sup
hPF‹prq

}h}
2
8 ` τn ¨ EP r1tρpXq ą τnus ¨ sup

hPF‹prq

}h}
2
8

ď
V 2

τn
¨ 10

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu ` τn ¨

V 2

pτnq2
¨ 10

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu,

where the last step follows from a combination of Markov’s inequality, Chebyshev’s inequality,
and the ℓ8-norm bound (1.33a). Recalling that τn “

?
nV 2, the bound (1.34a) follows.

Proof of the bound (1.34b): We prove the claimed bound on T2b by first bounding its
mean ErT2bs, and then providing a high-probability bound on the deviation T2b ´ ErT2bs.

Bound on the mean: By a standard symmetrization argument (see e.g., Chapter 4 in the
book [120]), we have the upper bound

ErT2bs ď
2

n
E
”

sup
hPF‹prq

ˇ

ˇ

n
ÿ

i“1

εiρτnpxiqh
2
pxiq

ˇ

ˇ

ı

,
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where tεiu
n
i“1 is an i.i.d. sequence of Rademacher variables. Now observe that

sup
hPF‹prq

ˇ

ˇ

ˇ

n
ÿ

i“1

εiρτnpxiqh
2
pxiq

ˇ

ˇ

ˇ
ď sup

rh,hPF‹prq

Zph,rhq, where Zph,rhq :“
ˇ

ˇ

ˇ

n
ÿ

i“1

εiρτnpxiqrhpxiqhpxiq
ˇ

ˇ

ˇ
.

Writing rh “
ř8

j“1
rθjϕj, we have

Zph,rhq “

ˇ

ˇ

ˇ

8
ÿ

j“1

rθj
␣

n
ÿ

i“1

εiρτnpxiqϕjpxiqhpxiq
(

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

8
ÿ

j“1

rθj?
mintr2,µj}f‹}2

H
u

¨

b

mintr2, µj}f ‹}2Hu
␣

n
ÿ

i“1

εiρτnpxiqϕjpxiqhpxiq
(

ˇ

ˇ

ˇ

ď
?
10

!

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu ¨

␣

n
ÿ

i“1

εiρτnpxiqϕjpxiqhpxiq
(2
)1{2

,

where the final step follows by combining the Cauchy–Schwarz inequality with the bound (1.33b).
We now repeat the same argument to upper bound the inner term involving h; in particular,
we have

!

n
ÿ

i“1

εiρτnpxiqϕjpxiqhpxiq
)2

“

!

8
ÿ

k“1

θk
`

n
ÿ

i“1

εiρτnpxiqϕjpxiqϕkpxiq
˘

)2

ď 10 ¨

8
ÿ

k“1

#

mintr2, µk}f ‹
}
2
Hu

´

n
ÿ

i“1

εiρτnpxiqϕjpxiqϕkpxiq
¯2

+

.

Putting together the pieces now leads to the upper bound

2

n
sup

hPF‹prq

ˇ

ˇ

ˇ

n
ÿ

i“1

εiρτnpxiqh
2
pxiq

ˇ

ˇ

ˇ
ď

2

n
sup

h,rhPF‹prq

Zph,rhq

ď
20

n

!

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu

¨

8
ÿ

k“1

mintr2, µk}f ‹
}
2
Hu

`

n
ÿ

i“1

εiρτnpxiqϕjpxiqϕkpxiq
˘2
)1{2

.

By taking expectations of both sides and applying Jensen’s inequality, we find that

ErT2bs ď
20

n

!

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu

¨

8
ÿ

k“1

mintr2, µk}f ‹
}
2
HuEX,ε

`

n
ÿ

i“1

εiρτnpxiqϕjpxiqϕkpxiq
˘2
)1{2

. (1.35)
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We now observe that

EX,ε

”

`

n
ÿ

i“1

εiρτnpxiqϕjpxiqϕkpxiq
˘2
ı

“

n
ÿ

i“1

EX,ε

”

ε2i pρτnpxiqq
2ϕ2

jpxiqϕ
2
kpxiq

ı

ď

n
ÿ

i“1

EX,εrρ
2
pxiqs ď nV 2,

where we have used the fact that }ϕj}8 ď 1 for all j ě 1, and that ρτnpxiq ď ρpxiq.
Substituting this upper bound into our earlier inequality (1.35) yields

ErT2bs ď 20

c

V 2

n
¨

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu. (1.36)

Bounding the deviation term: Recall that for any h P F‹, we have

}h}8 ď

g

f

f

e10
8
ÿ

j“1

mintr2, µj}f ‹}2Hu.

Consequently, we have

sup
hPF‹prq

ˇ

ˇ

ˇ
EQr1tρpXq ď τnuh2pXqs ´ ρτnpxiqh

2
pxiq

ˇ

ˇ

ˇ
ď 10τn

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu

“ 10
?
nV 2

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu.

In addition, we have

sup
hPF‹prq

n
ÿ

i“1

E
”

␣

EQr1tρpXq ď τnuh2pXqs ´ ρτnpxiqh
2
pxiq

(2
ı

ď sup
hPF‹prq

n
ÿ

i“1

E
“

pρτnpxiqq
2h4pxiq

‰

ď 100nV 2
`

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu

˘2
,

where we have applied the ℓ8-norm bound (1.33a) as well as the V 2-condition on the like-
lihood ratio. These two facts together allow us to apply Talagrand’s concentration results
(cf. Lemma 1.9) and obtain

P
”

T2b ě ErT2bs ` t
n

ı

ď exp

˜

´
t2

3000nV 2
`
ř8

j“1mintr2, µj}f ‹}2Hu
˘2

` 900
?
nV 2

ř8

j“1mintr2, µj}f ‹}2Hut

¸

. (1.37)
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Completing the proof of the bound (1.34b): We now have the ingredients to complete the
proof of the claim (1.34b). In particular, by combining the upper bound (1.36) on the mean
with the deviation bound (1.37), we find that

T2b ď c

d

V 2 log2pnq

n

8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu with probability at least 1 ´ n´10,

as claimed in equation (1.34b).

1.5.2.3 Proof of inequality (1.31a)

Now we focus on the first term T1 “ suphPF‹prq

ˇ

ˇ

ˇ

1
n

řn
i“1 ξiρτnpxiqhpxiq

ˇ

ˇ

ˇ
. Repeating the same

strategy as in the proof of the bound (1.34b), we see that

T1 ď
1

n

!

10
8
ÿ

j“1

mintr2, µj}f
‹
}
2
Hu ¨

`

n
ÿ

i“1

ξiρτnpxiqϕjpxiq
˘2
)1{2

. (1.38)

Fix txiu
n
i“1. We see that

`
řn

i“1 ξiρτnpxiqϕjpxiq
˘2

is a quadratic form of independent sub-
Gaussian random variables. Apply the Hanson-Wright inequality (e.g., Theorem 6.2.1 in the
book [119]) to obtain that with probability at least 1 ´ n´10,

`

n
ÿ

i“1

ξiρτnpxiqϕjpxiq
˘2

ď c3σ
2

n
ÿ

i“1

“

ρτnpxiqϕjpxiq
‰2
. (1.39)

It remains to control the term
řn

i“1

“

ρτnpxiqϕjpxiq
‰2
. To this end, we invoke Bernstein’s

inequality to arrive at

n
ÿ

i“1

“

ρτnpxiqϕjpxiq
‰2

ď E

«

n
ÿ

i“1

“

ρτnpxiqϕjpxiq
‰2

ff

` c4
a

α log n ` c5β log n

with probability exceeding 1 ´ n´10. Here,

α :“ E
n
ÿ

i“1

Var
´

“

ρτnpxiqϕjpxiq
‰2
¯

ď pnV 2
q
2

β :“ sup
x

|
“

ρτnpxqϕjpxq
‰2

| ď τn
2

“ nV 2,

are the variance and range statistics, respectively. This together with the upper bound

E
”

řn
i“1

“

ρτnpxiqϕjpxiq
‰2
ı

ď nV 2 implies

n
ÿ

i“1

“

ρτnpxiqϕjpxiq
‰2

ď c6nV
2 log n. (1.40)

Combine the inequalities (1.38), (1.39), and (1.40) to complete the proof of the inequal-
ity (1.31a).
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1.6 Discussion

In this chapter, we study RKHS-based nonparametric regression under covariate shift. In
particular, we focus on two broad families of covariate shift problems: (1) the uniformly
B-bounded family, and (2) the χ2-bounded family. For the uniformly B-bounded family, we
prove that the unweighted KRR estimate—with properly chosen regularization parameter—
achieves optimal rate convergence for a large family of RKHSs with regular eigenvalues. In
contrast, the näıve constrained kernel regression estimator is provably suboptimal under co-
variate shift. In addition, for the χ2-bounded family, we propose a likelihood-ratio-reweighted
KRR with proper truncation that attains the minimax lower bound over this larger family
of covariate shift problems.

Our study is an initial step towards understanding the statistical nature of covariate
shift. Below we single out several interesting directions to pursue in the future. First, it is
of great importance to extend the study to other classes of regression functions, e.g., high
dimensional linear regression, decision trees, etc. Second, while it is natural to measure
discrepancy between source-target pairs using likelihood ratio, this is certainly not the only
possibility. Various measures of discrepancy have been proposed in the literature, and it is
interesting to see what the corresponding optimal procedures are. Thirdly, our upper and
lower bounds match for regular kernels. It is standard in the kernel regression literature
to make an assumption regarding the decay of the kernel eigenvalue sequence [22, 123]. As
highlighted by the corollaries to our main upper bound, the assumption of a regular kernel
is general enough to capture the main examples of kernels used in practice. Additionally,
we emphasize that in this chapter, we have adopted a worst-case perspective where we
study the minimax rate of estimation for a sequence of regular kernel eigenvalues, over all
B-bounded covariate shifts. A more instance-dependent perspective which studies these
minimax rates for a fixed B-bounded covariate shift pair is very interesting and left for
future work. Lastly, on a technical end, it is also interesting to see whether one can remove
the uniform boundedness of the eigenfunctions in the unbounded likelihood ratio case, and
retain the optimal rate of convergence. In the current proof, we mainly use it to develop a
localization bound (1.33a) which guarantees that any function h P H that is r-close to f ‹ in
ℓ2 sense (roughly) enjoys an ℓ8 bound that also scales with r.

1.7 Deferred proofs

1.7.1 Proof of Theorem 1.2

Let δn be the smallest positive solution to the inequality c1σ2B dpδq

n
ď δ2, where c1 ą 0 is

some large constant. We decompose the proof into two steps. First, we construct the lower
bound instance, namely the source, target distributions, and the corresponding orthonormal
basis. Second, we apply the Fano method to prove the lower bound.
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Step 1: Constructing the lower bound instance. Let Q be a uniform distribution on
t˘1u`8. For the source distribution P , we set it as follows: with probability 1{B, we sample
x uniformly on t˘1u`8, and with probability 1 ´ 1{B, we set x “ 0. It can be verified that
the pair pP,Qq has B-bounded likelihood ratio. Corresponding to the target distribution Q,
we take ϕjpxq “ xj for every j ě 1. In other words, we consider a linear kernel.

Step 2: Establishing the lower bound. In order to apply Fano’s method, we first need
to construct a packing set of the function class BHp1q. For a given radius r ą 0, consider
the r-localized ellipse

E prq :“
!

θ |

8
ÿ

j“1

θ2j
mintr2, µju

ď 1
)

.

It is straightforward to check that for any θ P E prq, the function f “
ř8

j“1 θjϕj lies in BHp1q.
This set E prq admits a large packing set in the ℓ2-norm, as claimed in the following lemma.

Lemma 1.3. For any r P p0, δns, there exists a set tθ1, θ2, . . . , θMu Ă E prq with logM “

dn{64 such that

}θj ´ θk}
2
2 ě r2

4
for any distinct pair of indices j ‰ k.

See Lemma 4 in the chapter [123].

Having constructed the packing, we then need to control the pairwise KL divergence.
Fix an index j P rM s. Let P ˆ Lj denote the joint distribution over the observed data
tpxi, yiqu1ďiďn when the true function arises from θj. Then for any pair of distinct indices
j ‰ k, we have the upper bound

KLpP ˆ Lj}P ˆ Lkq “
n

2σ2
¨ EX„P

”

`

pθj ´ θkq
TϕpXq

˘2
ı

piq
“

n

2σ2B
}θj ´ θk}

2
2

piiq

ď
2nr2

σ2B
,

where step (i) follows from the definition of P ; and step (ii) follows from applying the triangle
inequality, and the fact that }θ}2 ď r for all θ P E prq.

Consequently, we arrive at the lower bound inf
pf supf‹PF Er} pf ´ f ‹}2Qs ě r2

8
, valid for any

sample size satisfying the condition

2nr2

σ2B
` log 2 ď

1

2
logM “

dn
128

. (1.41)

By the definition of a regular kernel, we have dn ě c nδ2n
Bσ2 for a universal constant c. Further-

more, since δn satisfies the lower bound δ2n ě c1 σ2B
n
, the condition (1.41) is met by setting

r2 “ c1δ
2
n for some sufficiently small constant c1 ą 0.



CHAPTER 1. RKHS-BASED COVARIATE SHIFT 29

1.7.2 Proof of Theorem 1.3

Let the sample size n ě 1 and likelihood ratio bound B ě 1 be given. Our failure instance
relies on a function class Fn, together with a pair of distributions pP,Qq. The function class
Fn is the unit ball of a RKHS with finite-rank kernel, over the hypercube t´1,`1un. The
kernel is given by K px, zq :“

řn
j“1 µjϕjpxqϕjpzq. The eigenfunctions and eigenvalues are

ϕjpxq “ xj, and µj “
1

j2
, for j “ 1, . . . , n.

To be clear, the function class is given by

Fn :“ t f :“
n
ÿ

j“1

θjϕj |

n
ÿ

j“1

θ2j
µj

ď 1 u.

The target distribution, Q, is the uniform distribution on t´1,`1un. The source distribution
is a product distribution, P “ bn

j“1Pj. We take Pj to be uniform on t`1,´1u, when j ą 1.
On the other hand, the first coordinate follows the distribution

P1 :“
´

1 ´
1

B

¯

δ0 `
1

B
Unifpt´1,`1uq.

It is immediate that pP,Qq have B-bounded likelihood ratio.
Given this set-up, our first step is to reduce the lower bound to the separation of a

single coordinate of the parameter associated with the empirical risk minimizer and a single
coordinate of the parameter associated with a hard instance in the function class of interest
Fn. We introduce a one-dimensional minimization problem that governs this separation
problem and allows us to establish our result.

1.7.2.1 Reduction to a one dimensional separation problem

To establish our lower bound it suffices to consider the following “hard” function

f ‹
hardpxq “ x1 “

n
ÿ

j“1

pθ‹
hardqjϕjpxq, where θ‹

hard “ p1, 0, . . . , 0q P Rn.

Since ϕjpxq “ xj and µj “ j´2, it follows that f ‹
hard P Fn. We can write pfermpxq “

řn
j“1p

pθermqjxj, where we defined

pθerm :“ argmin
!

n
ÿ

i“1

`

n
ÿ

j“1

θjxij ´ yi
˘2

|

n
ÿ

j“1

θ2j
µj

ď 1
)

. (1.42)

Putting these pieces together, we see that

sup
f‹PFn

E
”

} pferm ´ f ‹
}
2
Q

ı

ě E
”

} pferm ´ f ‹
hard}

2
Q

ı

piq
“ E

”

}pθerm ´ θ‹
hard}

2
2

ı piiq

ě E
”

`

ppθermq1 ´ θ‹
1

˘2
ı

.

(1.43)
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Above, the relation (i) is a consequence of Parseval’s theorem, along with the orthonormality
of tϕju

n
j“1 in L

2pQq. Inequality (ii) follows by dropping terms corresponding to indices indices
j ą 1. Therefore, in view of display (1.43), it suffices to show that:

P
!

`

ppθermq1 ´ 1
˘2

ě c3
B3

n2

)

ě
1

2
. (1.44)

1.7.2.2 Proof of one-dimensional separation bound (1.44)

We begin with a proof outline.

Proof outline To establish (1.44), we can assume ppθermq1 P r0, 1s; otherwise, the lower
bound follows trivially, provided c2 is sufficiently small, in particular, c2 ď 3

a

1{c3. We
introduce a bit of notation:

pΣP :“
1

n

n
ÿ

i“1

xix
T
i and v :“

1

n

n
ÿ

i“1

wixi.

Thus, we can further restrict the empirical risk minimization problem (1.42) to

rθ :“ argmin
!

n
ÿ

i“1

`

n
ÿ

j“1

θjxij ´ yi
˘2

|

n
ÿ

j“1

θ2j
µj

ď 1, θ1 P r0, 1s

)

“ argmin

"

pθ ´ θ‹
q

T
pΣP pθ ´ θ‹

q ´ 2vT
pθ ´ θ‹

q |

n
ÿ

j“1

θ2j
µj

ď 1, θ1 P r0, 1s

*

. (1.45)

Indeed, in order to prove inequality (1.44), it suffices to show that

P
!

`

rθ1 ´ 1
˘2

ě c3
B3

n2

)

ě
1

2
. (1.46)

Let us define an auxiliary function g : r0, 1s Ñ R, given by

gptq :“ inf
!

pθ ´ θ‹
q

T
pΣP pθ ´ θ‹

q ´ 2vT
pθ ´ θ‹

q |

n
ÿ

j“1

θ2j
µj

ď 1, θ1 “ t
)

. (1.47)

By definition (1.45), the choice rθ minimizes this objective, and therefore inftPr0,1s gptq “ gprθ1q.
The next two lemmas concern the minimum value and minimizer of g. Lemma 1.4, which
we prove in section 1.7.2.5, bounds the minimal value from above. Lemma 1.5, demonstrates
that there is an interval of length order

a

B3{n2 on which the function g is bounded away
from the minimal value. We prove this result in Section 1.7.2.6.

Lemma 1.4 (Minimal value of empirical objective). There is a constant c˚ ą 0 such that

gprθ1q ď ´c˚

?
B

n

holds with probability at least 3{4.
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gptq

´c˚
?
B
n

t

rθ1 θ‹
1 ´

?
c3B3

n
θ‹
1

Figure 1.3. Pictorial representation of lower bound argument, separating the first coor-
dinate of empirical risk minimizer, rθ1, from the true population minimizer θ‹

1. Lemma 1.4
establishes the upper bound, depicted in purple above, on the minimal value of g. Lemma 1.5
establishes an interval, shown between the red dashed line and θ‹

1 above, which excludes rθ1.

This allows us to ensure that θ‹
1 and rθ1 are sufficiently separated.

Lemma 1.5 (Separation from θ‹
1). There exists a constant c3 ą 0 such that

inf
tPr0,1s

p1´tq2ďc3B3{n2

gptq ą ´c˚

?
B

n
.

where probability at least 3{4.

Note that the constant c˚ used in Lemmas 1.4 and 1.5 is the same. Thus—after union
bounding over the two error events—with probability at least 1{2,

gprθ1q ă inf
tPr0,1s

p1´tq2ďc3B3{n2

gptq.

Recalling that rθ1 P r0, 1s, we conclude on this event that p1 ´ rθ1q2 ě c3
B3

n2 , which fur-
nishes (1.46), and thereby establishes the required result. To complete the proof, it then
remains to establish the auxiliary lemmas stated above. Before doing so, we record a useful
lemma, which will be used multiple times later.
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1.7.2.3 A useful lemma

Lemma 1.6. For any quantity α P p B
4n2 ,

B
4

q, with probability at least 1 ´ c1 exp
`

´ c2
B1{2

α1{2

˘

,
one has

c
B1{2

α1{2

1

n
ď

n
ÿ

j“2

pvjq
2

1 ` α
Bµj

ď C
B1{2

α1{2

1

n
.

Here c1, c2, C, c ą 0 are absolute constants.

Proof. For each j ě 1, define ηj :“
`

1 ` α
Bµj

˘´1
. We focus on controlling the term

n
ÿ

j“2

ηj
“

p
?
nvjq

2
´ 1

‰

.

Recall from the definition of v that vj “ 1
n

řn
i“1 ξixij. Under the construction of the lower

bound instance, we have
?
nvj

i.i.d.
„ N p0, 1q. Therefore

?
nvjq

2 ´ 1 is a mean-zero sub-
exponential random variable. This allows us to invoke Bernstein’s inequality to obtain

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“2

ηj
“

p
?
nvjq

2
´ 1

‰

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

¸

ď 2 exp

#

´cmin

˜

t2
ř

jě2 η
2
j

,
t

maxj ηj

¸+

,

where c ą 0 is some universal constant.
We claim that there exist three constants C1, C2, C3 ą 0 such that

max
j“2,...,n

ηj ď 1; (1.48a)

n
ÿ

j“2

η2j ď C1
B1{2

α1{2
; (1.48b)

C2
B1{2

α1{2
ď

n
ÿ

j“2

ηj ď C3
B1{2

α1{2
. (1.48c)

As a result, we can t “ c0
B1{2

α1{2 with c0 sufficiently small to arrive at the desired conclusion.
We are left with proving the claimed relations (1.48). The first relation (1.48a) is trivial.

We provide the proof of the third inequalities (1.48c); the proof of the middle one (cf. rela-
tion (1.48b)) follows by a similar argument. Since α P p B

4n2 ,
B
4

q, we can decompose the sum
into

n
ÿ

j“2

ηj “

t
?

B{αu
ÿ

j“2

1

1 ` α
Bµj

`

n
ÿ

j“t
?

B{αu`1

1

1 ` α
Bµj

.
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Recall that µj “ j´2. We thus have 1 ě α
Bµj

for j ď t
a

B{αu and 1 ď α
Bµj

for j ě t
a

B{αu.

These allow us to upper bound
řn

j“2 ηj as

n
ÿ

j“2

ηj ď t
a

B{αu `
B

α

n
ÿ

j“t
?

B{αu`1

1

j2
ď C3

B1{2

α1{2
.

Similarly, we have the lower bound

n
ÿ

j“2

ηj ě

t
?

B{αu
ÿ

j“2

1

1 ` α
Bµj

ě
1

2
t
a

B{αu ě C2
B1{2

α1{2
.

This finishes the proof.

1.7.2.4 Proof of auxiliary lemmas

In order to facilitate the proofs of these lemmas, it is useful to decompose θ “ pθ1, θRq P

R ˆ Rn´1. Additionally, we consider the constraint set

Cptq :“
!

θR P Rn´1
|

n
ÿ

j“2

θ2j
µj

ď 1 ´ t2
)

, where t P r0, 1s.

This set plays a key role. In view of definition (1.47), we can write

gptq “ inf
θRPCptq

#

„

t ´ 1
θR

ȷJ

pΣP

„

t ´ 1
θR

ȷ

´ 2

„

t ´ 1
θR

ȷT

v

+

,

where above we have used θ‹ “ p1, 0, . . . , 0q. Finally, we will use the diagonal matrix of
kernel eigenvalues M :“ diagpµ1, µ2, . . . , µnq, repeatedly.

1.7.2.5 Proof of Lemma 1.4

We show that with probability at least 3{4,

gpωq ď ´c˚

?
B

n
, where ω :“

c

1 ´
B3{2

n
. (1.49)

When n2 ě B3, we have ω P r0, 1s. Since inftPr0,1s gptq ď gpωq, the display (1.49) implies the
result.
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Proof of bound (1.49): From the proof of Lemma 1.1, if we set λ :“ C logn
n

for some
constant C ą 0, then we have

1
2
pΣP ` λM´1

q ď pΣP ` λM´1 ď 3
2
pΣP ` λM´1

q, (1.50)

with probability at least 1 ´ 1
n
. Consequently, for any vector θ obeying θJM´1θ ď 1, we

have the upper bound

pθ ´ θ‹
q

J
pΣP pθ ´ θ‹

q “ pθ ´ θ‹
q

J
´

pΣP ` λM´1
¯

pθ ´ θ‹
q ´ λ pθ ´ θ‹

q
J M´1

pθ ´ θ‹
q

ď
3

2
pθ ´ θ‹

q
J

pΣP ` λM´1
q pθ ´ θ‹

q ´ λ pθ ´ θ‹
q

J M´1
pθ ´ θ‹

q

“
3

2
pθ ´ θ‹

q
J ΣP pθ ´ θ‹

q `
λ

2
pθ ´ θ‹

q
J M´1

pθ ´ θ‹
q

ď
3

2
pθ ´ θ‹

q
J ΣP pθ ´ θ‹

q ` 2λ,

where the final inequality holds since pθ ´ θ‹q
J M´1 pθ ´ θ‹q ď 4. Applying this result with

the vector θ “ pω, θRqT yields

gpωq ď min
θRPC

#

3

2

„

ω ´ 1
θR

ȷJ

ΣP

„

ω ´ 1
θR

ȷ

´ 2

„

ω ´ 1
θR

ȷJ

v ` 2λ

+

“ T1pωq ` T2pωq ` 2λ ` min
θRPC

T3pθRq. (1.51)

Above, we have defined

T1pωq :“
3

2

pω ´ 1q2

B
, T2pωq :“ ´2v1pω ´ 1q, and T3pθRq :“

3

2
}θR}

2
2 ´ 2vJ

RθR,(1.52)

and we have used the decomposition v “ pv1, vRqT. We now bound each of these three terms
in turn.

Controlling the term T1pωq: Recall ω P r0, 1s satisfies the equality 1 ´ ω2 “ B3{2

n
. Con-

sequently, we have

T1pωq “
3

2

p1 ´ ωq2

B
ď

3

2

p1 ´ ω2q2

B
“

3

2

B2

n2
. (1.53)

Controlling the term T2pωq: For the second term, by definition of ω, we have

T2pωq “ 2v1p1 ´ ωq ď 2|v1|p1 ´ ωq ď 2|v1|p1 ´ ω2
q “ 2|v1| ¨

B3{2

n
. (1.54)

We have the following lemma to control the size of |v1|.
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Lemma 1.7. The following holds true with probability at least 0.99

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

ξixi1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
10

?
nB

.

Proof. In view of the construction of the lower bound instance, we can calculate

E

»

–

˜

1

n

n
ÿ

i“1

ξixi1

¸2
fi

fl “
1

n2

n
ÿ

i“1

E
“

ξ2i x
2
i1

‰

“
1

nB
.

The claim then follows from Chebyshev’s inequality.

Lemma 1.7 demonstrates that |v1| ď 10?
nB

, with probability at least 99{100. Therefore,

on this event, the bound (1.54) guarantees

T2pωq ď 20
B

n3{2
. (1.55)

Controlling the term T3pθrq: Our final step is to upper bound the constrained minimum
min
θRPC

T3pθRq. Since this minimization problem is strictly feasible, Lagrange duality guarantees

that

min
θRPC

T3pθRq “ min
θR

max
ξě0

"

3

2
}θR}

2
2 ´ 2vJ

RθR ` ξpθJ
RM

´1
R θR ´

B3{2

n
q

*

“ max
ξě0

min
θR

"

3

2
}θR}

2
2 ´ 2vJ

RθR ` ξpθJ
RM

´1
R θR ´

B3{2

n
q

*

.

The inner minimum is achieved at θR “
“

3
2
I ` ξM´1

R
‰´1

vR, so that we have established the
equality

min
θRPC

T3pθRq “ max
ξě0

!

´ξB3{2

n
´ vJ

R
“

3
2
I ` ξM´1

R
‰´1

vR

)

“ max
ξě0

#

´ξ
B3{2

n
´

n
ÿ

j“2

pvjq
2

3
2

`
ξ
µj

+

.

It remains to analyze the maximum over the dual variable ξ, and we split the analysis
into two cases.

• Case 1: First, suppose that the maximum is achieved at some ξ‹ ě 1
B
. In this case, we

have

max
ξě0

#

´ξB3{2

n
´

n
ÿ

j“2

pvjq
2

3
2

`
ξ
µj

+

ď ´ξ‹B
3{2

n
ď ´

B1{2

n
.
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• Case 2: Otherwise, we may assume that the maximum achieved at some ξ‹ P r0, 1
B

s,
in which case we have

max
ξě0

#

´ξB3{2

n
´

n
ÿ

j“2

pvjq
2

3
2

`
ξ
µj

+

ď ´

n
ÿ

j“2

pvjq
2

3
2

`
ξ‹

µj

ď ´

n
ÿ

j“2

pvjq
2

3
2

` 1
Bµj

ď ´c
B1{2

n
,

where c ą 0 is a constant. Here in view of Lemma 1.6, the last inequality holds with
probability at least 0.9 as long as B is sufficiently large.

Combining the two cases, we arrive at the conclusion that as long as B is sufficiently large,
with probability at least 0.9,

min
θRPC

T3pθRq ď ´c1
B1{2

n
(1.56)

for some constant c1 ą 0.

Completing the proof: We can now combine bounds (1.53), (1.55), and (1.56) on the
terms T1, T2, T3, respectively. Note that when n ě 7B3{2 ě 7, all three events and the upper
bound (1.51) hold simultaneously, with probability 1 ´ p 1

n
` 1

100
` 1

10
q ě 3{4. Therefore, we

obtain

gpωq ď
3

2

B2

n2
` 20

B

n3{2
´ c1

B1{2

n
` C

log n

n

ď ´
c1
2

B1{2

n
.

The final inequality above holds, since B ě c1plog nq2 and n ě 7B3{2, for sufficiently large
c1 ą 0.

1.7.2.6 Proof of Lemma 1.5

We will prove the slightly stronger claim that with probability at least 3{4, we have

inf
tPr0,1s

1´t2ďβB3{2{n

gptq ą ´c˚

?
B

n
(1.57)

To see that this proves the claim, note that suptPr0,1s

p1´t2q2

p1´tq2
“ 4 Therefore, if p1´ tq2 ď

β2

4
B3

n2 ,

then p1 ´ t2q2 ď β2B3

n2 . Hence, (1.57) proves the claim as soon as c3 “ β2{4.
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Proof of bound (1.57): On the event (1.50), if θ “ pθ1, θRqJ obeys θJM´1θ ď 1, then we
have the lower bound

pθ ´ θ‹
q

J
pΣP pθ ´ θ‹

q “ pθ ´ θ‹
q

J
´

pΣP ` λM´1
¯

pθ ´ θ‹
q ´ λ pθ ´ θ‹

q
J M´1

pθ ´ θ‹
q

ě
1

2
pθ ´ θ‹

q
J

pΣP ` λM´1
q pθ ´ θ‹

q ´ λ pθ ´ θ‹
q

J M´1
pθ ´ θ‹

q

“
1

2
pθ ´ θ‹

q
J ΣP pθ ´ θ‹

q ´
λ

2
pθ ´ θ‹

q
J M´1

pθ ´ θ‹
q

ě
1

2
pθ ´ θ‹

q
J ΣP pθ ´ θ‹

q ´ 2λ,

valid when λ “ C logn
n

for some constant C ą 0. Consequently, we have

gpθ1q ě min
θRPCpθ1q

"

1

2
pθ ´ θ‹

q
J ΣP pθ ´ θ‹

q ´ 2 pθ ´ θ‹
q

J v ´ 2λ

*

“ min
θRPCpθ1q

"

1

2

pθ1 ´ 1q2

B
´ 2v1pθ1 ´ 1q `

1

2
}θR}

2
2 ´ 2vJ

RθR ´ 2λ

*

ě ´T2pθ1q ´ 2λ ` min
θRPCpθ1q

t
1

2
}θR}

2
2 ´ 2vJ

RθRu. (1.58)

where the last line identifies ´2v1pθ1 ´ 1q with T2pθ1q (cf. definition (1.52)).
We separate the proof into two cases—mainly to get around the duality issue.

Case 1: θ1 “ 1. In this case, we have

gpθ1q ě ´2λ “ ´
2C log n

n
.

Case 2: θ1 P r0, 1q. We lower bound the terms in equation (1.58) in turn.

• Lower bounding T2pθ1q. For any 0 ă 1 ´ θ21 ď βB3{2

n
, the following relation

T2pθ1q ě ´2|v1| ¨ |θ1 ´ 1|
piq

ě ´2|v1| ¨
`

1 ´ θ21
˘ piiq

ě ´20β
B

n3{2

holds with probability at least 0.99. Here step (i) uses the fact that

|θ1 ´ 1| “ |1 ´

b

1 ´ p1 ´ θ21q| ď 1 ´ θ21 for all θ1 P r0, 1s,

and step (ii) relies on Lemma 1.7 and the constraint 1 ´ θ21 ď βB3{2

n
.
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• Lower bounding minθRPC1pθ1qt
1
2
}θR}22 ´ 2vJ

RθRu. When θ1 P r0, 1q, the constraint set
C1pθ1q has non-empty interior, and the minimization over θR is strictly feasible. In this
case, strict duality holds so that

min
θRPC1pθ1q

␣

1
2
}θR}

2
2 ´ 2vJ

RθR
(

“ max
ξě0

#

´ξp1 ´ θ21q ´

n
ÿ

j“2

pvjq
2

1
2

`
ξ
µj

+

ě ´
“

np1 ´ θ21q
‰´2{3

p1 ´ θ21q ´

n
ÿ

j“2

pvjq
2

1
2

`
pnp1´θ21qq

´2{3

µj

“ ´
p1´θ21q

1{3

n2{3 ´

n
ÿ

j“2

pvjq2

1
2

`
pnp1´θ21qq

´2{3

µj

.

Here the second line arises from a particular choice of ξ, namely ξ “ pnp1 ´ θ21qq
´2{3

.

Since 1 ´ θ21 ď βB3{2

n
, we further have

´
p1 ´ θ21q

1{3

n2{3
´

n
ÿ

j“2

pvjq
2

1
2

`
pnp1´θ21qq

´2{3

µj

ě ´
β1{3B1{2

n
´

n
ÿ

j“2

pvjq
2

1
2

`
pβB3{2q

´2{3

µj

“ ´
β1{3B1{2

n
´

n
ÿ

j“2

pvjq
2

1
2

` 1
β2{3Bµj

ě ´ rC
β1{3B1{2

n
,

where rC ą 0 is a constant. Here, since B is sufficiently large, Lemma 1.6 guarantees
that the last inequality holds with probability at least 0.9.

Combining the two cases above, we arrive at the conclusion that for any 1 ´ θ21 ď βB3{2

n
,

gpθ1q ě ´20β
B

n3{2
´ 2C

log n

n
´ rC

β1{3B1{2

n
.

Under the assumptions that B ě C1plog nq2 and n ě C2B
3{2 for some sufficiently large

constants C1, C2 ą 0, we can choose β sufficiently small so as to make sure that

gpθ1q ě ´c˚B
1{2

n
for all 1 ´ θ21 ď β

B3{2

n
.

1.7.3 Proofs of the bounds (1.33)

By definition, any function h P F‹ obeys }h}H ď 3}f ‹}H. In terms of the expansion h “
ř8

j“1 θjϕj, this constraint is equivalent to the bound
ř8

j“1 θ
2
j {µj ď 9}f ‹}2H. In addition, the
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constraint }h}Q ď r implies that
ř8

j“1 θ
2
j ď r2. In conjunction, these two inequalities imply

that
8
ÿ

j“1

θ2j
mintr2, µj}f ‹}2Hu

ď 10,

as claimed in inequality (1.33b).
We now use this inequality to establish the bound (1.33a). For any x P X, we have

|hpxq| “

ˇ

ˇ

ˇ

8
ÿ

j“1

θjϕjpxq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

8
ÿ

j“1

θj
a

mintr2, µj}f ‹}2Hu
¨

b

mintr2, µj}f ‹}2Huϕjpxq

ˇ

ˇ

ˇ

piq

ď

g

f

f

e

8
ÿ

j“1

θ2j
mintr2, µj}f ‹}2Hu

¨

g

f

f

e

8
ÿ

j“1

mintr2, µj}f ‹}2Huϕ2
jpxq

piiq

ď

g

f

f

e10
8
ÿ

j“1

mintr2, µj}f ‹}2Hu.

Here step (i) uses the Cauchy–Schwarz inequality, whereas step (ii) follows from the previous
claim (1.33b) and the assumption that |ϕjpxq| ď 1 for all j ě 1.

1.7.4 Performance guarantees for LR-reweighted KRR

In this section, we present the performance guarantee for the LR-reweighted KRR estimate
with truncation for all ranges of σ2.

Similar to the large noise regime, we define

Mnew
pδq :“ c0

b

σ2V 2 log3pnq

n
Ψpδ, µq

ˆ

b

Ψpδ,µq

σ2 ` 1

˙

.

Our theorem applies to any solution δnew
n ą 0 to the inequality Mnewpδq ď δ2{2.

Theorem 1.5. Consider a kernel with sup-norm bounded eigenfunctions (1.16), and a

source-target pair with EP rρ2pXqs ď V 2. Then the estimate pf rw
λ with truncation τn “

?
nV 2

and regularization λ}f ‹}2H “ δ2n{3 satisfies the bound

} pf rw
λ ´ f ‹

}
2
Q ď δ2n

with probability at least 1 ´ c n´10.

Proof. Inspecting the proof of Theorem 1.4 (in particular, equation (1.32)), one has with
high probability that

sup
gPGpδnq

!

}g ´ f ‹
}
2
Q `

1

n

n
ÿ

i“1

ρτnpxiq
“`

f ‹
pxiq ´ yi

˘2
´
`

gpxiq ´ yi
˘2‰

)

ď Mnew
pδnq.

Repeating the analysis in Section 1.5.2 with δλ “ δn yields the desired claim.
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1.7.5 Expectation bounds for KRR estimates

In this section, we derive expectation bounds as counterparts to our previous high probability
upper bounds on the KRR estimates. In Section 1.7.5.1, we present an expectation bound
for instances with bounded likelihood ratios, essentially as a consequence of our previous
high probability statement, given in Theorem 1.1. Similarly, in Section 1.7.5.3, we present
an expectation bound for instances which have possibly unbounded likelihood ratios, but for
which the second moment of the likelihood ratios is bounded. Again, this can be seen as
an extension of our previous high-probability statement on the truncated, reweighted KRR
estimator, as stated in Theorem 1.4.

1.7.5.1 Bounded likelihood ratio

Theorem 1.6. Consider a covariate-shifted regression problem with likelihood ratio that is
B-bounded (1.2) over a Hilbert space with a κ-uniformly bounded kernel (1.7). There are

universal constants c1, c2 ą 0 such that if λ ě c1
κ2 logn

n
, the KRR estimate pfλ satisfies the

bound

E
“

} pfλ ´ f ‹
}
2
Q

‰

ď c2

!

λB}f ‹
}
2
H `

σ2B

n

8
ÿ

j“1

µj

µj ` λB
`
σ2

n

)

.

Inspecting the proof, one may take c1 “ 32, c2 “ 519
256

. The proof of this result is presented in
Section 1.7.5.2.

An immediate consequence is the following result for regular kernels. Note that it matches
our lower bound (see Theorem 1.2), apart from logarithmic factors.

Corollary 1.3. Suppose σ2 ě κ2 and }f ‹}H “ 1. For any B ě 1 and any pair pP,Qq with
B-bounded likelihood ratio (1.2), any orthonormal basis tϕjujě1 of L2pQq, and any regular
sequence of kernel eigenvalues tµjujě1, there exist a universal constant C ą 0 such that

E
“

} pfλ ´ f ‹
}
2
Q

‰

ď C inf
δą0

!

δ2 ` σ2Bdpδq
log n

n

)

,

where above λ “ δ2n where δ2n “ cσ
2Bdpδnq logn

n
for a universal constant c ą 0.

Proof. Following the proof of Corollary 1.1, we obtain from the KRR risk bound of Theo-
rem 1.6,

E
“

} pfλ ´ f ‹
}
2
Q

‰

ı

ď C1

!

δ2 ` σ2Bdpδq
log n

n

)

, where δ2 “ λB,

for any δ2 ě c1Bκ
2 logn

n
. Adjusting constants so that c ě c1, our choice of δ2n is valid since

σ2 ě κ2 and dpδnq ě 1. Moreover, since δ2 is an increasing function of δ, whereas dpδq is

nonincreasing, under the choice of δ2n “ cσ
2Bdpδnq logn

n
, we have

!

δ2n ` σ2Bdpδnq
log n

n

)

ď C2 inf
δą0

!

δ2 ` σ2Bdpδq
log n

n

)

,
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for a universal constant C2 ą 0. Note that this inequality completes the proof of the result,
with C “ C1C2.

1.7.5.2 Proof of Theorem 1.6

Using Parseval’s theorem and the optimality conditions for the KRR problem as given in
equation (1.23), we have Er} pfλ ´ f ‹}2Qs ď ErT1s ` ErT2s where

T1 :“ }λppΣP ` λM´1
q

´1M´1θ‹
}
2
2, and T2 :“ }ppΣP ` λM´1

q
´1
` 1

n

n
ÿ

i“1

ξiϕpxiq
˘

}
2
2.

Recall the event

Epλq :“
!

M1{2
pΣPM

1{2
` λI ě

1

2

`

M1{2ΣPM
1{2

` λI
˘

)

,

as defined in equation (1.21). We use this event to bound the two terms.

Bound for T1 Inspecting the proof of Theorem 1.1 (specifically, see the proof of bound (1.24)(a)),
it follows that ErT11Epλqs ď 2λB}f ‹}2H. On the other hand, from inequality (ii) of the proof
of (1.24)(a), it also holds that

ErT11Epλqcs ď }f ‹
}
2
H~M~opPpEpλq

c
q ď }f ‹

}Hκ
2PpEpλq

c
q.

The final inequality holds since ~M~op ď TrpMq “ EQr
ř

j µjϕ
2
jpxqs ď κ2. Now, note that

whenever nλ ě 32κ2 log n, by Lemma 1.1 we have that

ErT11Epλqcs ď }f ‹
}
2
H PpEpλq

c
q

ď 28λ}f ‹
}
2
H

”

`κ2

λ

˘2
exp

´

´
nλ

16κ2

¯ı

ď
7

256
λ}f ‹

}
2
H.

Putting the pieces together, we obtain

ErT1s ď
519

256
λ}f ‹

}
2
H.

Bound for T2 By considering the expectation over ξi conditional on the covariates and
following algebraic manipulations similar to the proof of bound (1.24)(b), we have

ErT2s ď ErrT2s, where rT2 :“ Tr
´σ2

n
ppΣP ` λM´1

q
´1
¯

.
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Moreover, inspecting the proof of bound (1.24)(b), we also have

ErrT21Epλqs ď 2
σ2B

n

8
ÿ

j“1

µj

µj ` λB
.

On the other hand, by bounding ppΣP ` λM´1q´1 ď λ´1M ,

ErrT21Epλqcs ď
σ2

n

κ2

λ
PpEpλq

c
q ď

7

256

σ2

n
.

The final inequality above is established in the same manner as in the proof of the bound
for T1 above, when nλ ě 32κ2 log n. Thus, combining the two bounds,

ErT2s ď 2
σ2B

n

8
ÿ

j“1

µj

µj ` λB
`

7

256

σ2

n
.

1.7.5.3 Unbounded likelihood ratio

Theorem 1.7. Suppose σ2 ě κ2 and }f ‹}H “ 1. Consider a kernel with sup-norm bounded
eigenfunctions (1.16), and a source-target pair with EP rρ2pXqs ď V 2. Then, for any or-
thonormal basis tϕjujě1 of L2pQq and any regular sequence of kernel eigenvalues tµjujě1,
there exists a universal constant C ą 0 such that,

E
”

} pf rw
λ ´ f ‹

}
2
Q

ı

ď C inf
δą0

!

δ2 ` V 2dpδq
log3 n

n

)

.

Above, 3λ “ δ2n where δ2n satisfies the equation δ2 “ cσ
2V 2 log3 n

n
for a universal constant c ą 0.

Before giving the proof, we emphasize that—apart from logarithmic factors—this bound
is minimax optimal.

Proof. By Theorem 1.4, there is an event E which has probability at least 1 ´ cn´10 such
that the truncated, reweighted estimator pf rw

λ satisfies

} pf rw
λ ´ f ‹

}
2
Q ď c1δ

2,

provided we select λ — δ2 —
σ2V 2 log3pnqdpδq

n
. Note that under this choice of δ2, we have

δ2 — inf
δą0

!

δ2 `
σ2V 2 log3pnqdpδq

n

)

.

Consequently, there is a constant c2 ą 0 such that

E
”

} pf rw
λ ´ f ‹

}
2
Q

ı

ď c2 inf
δą0

!

δ2 `
σ2V 2 log3pnqdpδq

n

)

` E
”

} pf rw
λ ´ f ‹

}
2
81Ec

ı

. (1.59)
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By Cauchy-Schwarz,

} pf rw
λ ´ f ‹

}
2
8 ď κ2} pf rw

λ ´ f ‹
}
2
H ď 2κ2p1 ` } pf rw

λ }
2
Hq.

Applying the optimality condition of the reweighted estimator pf rw
λ , we have

λ} pf rw
λ }

2
H ď λ `

?
nV 2

1

n

n
ÿ

i“1

ξ2i .

Therefore, combining the previous two displays,

} pf rw
λ ´ f ‹

}
2
8 ď 2κ2

´

2 `

?
nV 2

λ

1

n

n
ÿ

i“1

ξ2i

¯

.

It then follows by Cauchy-Schwarz and the sub-Gaussianity of ξi, that for some constant
c3 ą 0,

E
”

} pf rw
λ ´ f ‹

}
2
81Ec

ı

ď c3

´ κ2

n10
`
σ2V 2

λn4
κ2
¯

piq

ď c3
σ2V 2

n

´ 1

n9
`
κ2

λ

1

n3

¯

piiq

ď c3
σ2V 2

n

´ 1

n9
`
c4
n2

¯

piiiq

ď c5
σ2V 2

n

Above, inequality (i) uses σ2 ě κ2 and V 2 ě 1. Inequality (ii) uses the fact that λ — δ2 —
σ2V 2 log3pnqdpδq

n
Á κ2

n
. Finally, inequality (iii) follows by defining c5 ě c3p1 ` c4q. This bound

furnishes the result, since by applying it to the inequality (1.59), we obtain the result with
C “ c2 ` c5.

1.7.6 Performance of unweighted KRR with unbounded
likelihood ratios

In this section, we present the performance guarantee of the unweighted KRR estimator
when the likelihood ratios are unbounded.

Theorem 1.8. Consider a covariate-shifted regression problem with likelihood ratios obeying
EP rρ2pXqs ď V 2. Then for any λ ě 10κ2{n, the KRR estimate pfλ satisfies the bound

} pfλ ´ f ‹
}
2
Q ď 2

?
λV 2κ2}f ‹

}
2
H ` 40

σ2 log n

n
¨
κ2

λ

with probability at least 1 ´ 28 κ2

λ
e´ nλ

16κ2 ´ 1
n10 .

Simple algebra shows that the unweighted KRR estimator is still consistent for estima-
tion under covariate shift, with a rate of pσ2V 2

n
q1{3 (ignoring κ2 and log factors). However,

unfortunately, this is far from optimal.
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1.7.7 Proof of Theorem 1.8

In view of the proof of Theorem 1.1, we know that

} pfλ ´ f ‹
}
2
Q ď 4λ}f ‹

}
2
H~M1{2

pM1{2ΣPM
1{2

` λIq
´1M1{2

~op

` 40
σ2 log n

n
Tr

´

M1{2
pM1{2ΣPM

1{2
` λIq

´1M1{2
¯

holds with probability at least 1 ´ 28 κ2

λ
e´ nλ

16κ2 ´ 1
n10 . The proof is finished with the help of

the following two bounds:

~M1{2
pM1{2ΣPM

1{2
` λIq

´1M1{2
~op ď

1

2

c

V 2κ2

λ
; (1.60a)

Tr
´

M1{2
pM1{2ΣPM

1{2
` λIq

´1M1{2
¯

ď
κ2

λ
. (1.60b)

Proof of the bound (1.60b): Note that M1{2pM1{2ΣPM
1{2 ` λIq´1M1{2 ď λ´1M . We

therefore have

Tr
´

M1{2
pM1{2ΣPM

1{2
` λIq

´1M1{2
¯

ď Trpλ´1Mq ď
κ2

λ
,

where the last relation uses the fact that TrpMq ď κ2.

Proof of the bound (1.60a): We first make the observation that the bound (1.60a) is
equivalent to

ΣP ` λM´1 ě 2

c

λ

V 2κ2
I. (1.61)

Therefore from now on, we focus on establishing the bound (1.61). Take an arbitrary vector
θ with }θ}2 “ 1. We have

1 “ }θ}
2
2

piq
“ EQrpθTϕpXqq

2
s

piiq
“ EP rρpXq ¨ pθTϕpXqq

2
s

piiiq

ď
a

EP rρ2pXqs ¨

b

EP rpθTϕpXqq4s

pivq
“

?
V 2 ¨

b

EP rpθTϕpXqq4s.

Here, the identity piq follows from the fact that EQrϕpXqϕpXqTs “ I, the relation piiq changes
the measure from Q to P , the inequality piiiq is due to Cauchy-Schwarz, and the equality
pivq uses the definition of V 2. Apply the Cauchy-Schwarz inequality again to obtain

pθTϕpXqq
2

ď }M´1{2θ}
2
2 ¨ }M1{2ϕpXq}

2
2 ď κ2}M´1{2θ}

2
2,
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where the second inequality relies on the fact that supx }M1{2ϕpxq}22 ď κ2. Take the above
inequalities together to yield

EP rpθTϕpXqq
2
s ě

1

V 2κ2 ¨ pθTM´1θq
for any θ with }θ}2 “ 1.

As a result, one has

θT
pΣP ` λM´1

qθ ě
1

V 2κ2 ¨ pθTM´1θq
` λθTM´1θ ě 2

c

λ

V 2κ2
.

Since this inequality holds for any unit-norm θ, we establish the claim (1.61).

1.7.8 Auxiliary lemmas

The following lemma provides concentration inequalities for the sum of independent self-
adjoint operators, which appeared in the work [85].

Lemma 1.8. Let Z1, Z2, . . . , Zn be i.i.d. self-adjoint operators on a separable Hilbert space.
Assume that ErZ1s “ 0, and ~Z1~op ď L for some L ą 0. Let V be a positive trace-class
operator such that ErZ2

1 s ď V , and ~ErZ2
1 s~op ď R. Then one has

P
´

~
1

n

n
ÿ

i“1

Zi~op ě t
¯

ď
28TrpV q

R
¨ exp

´

´
nt2{2

R ` Lt{3

¯

, for all t ě
a

R{n ` L{p3nq.

Next, we turn attention to bounding the maxima of empirical processes. LetX1, X2, . . . , Xn

be independent random variables. Let F be a countable class of functions uniformly bounded
by b. Assume that for all i and all f P F, ErfpXiqs “ 0. We are interested in control-
ling the random variable Z :“ supfPF

řn
i“1 fpXiq, for which the variance statistics v2 :“

supfPF Er
řn

i“1pfpXiqq2s is crucial. Now we are in position to state the classical Talagrand’s
concentration inequalities; see the paper [66].

Lemma 1.9. For all t ą 0, we have

PpZ ě ErZs ` tq ď exp
´

´
t2

2pv2 ` 2vErZsq ` 3vt

¯

.
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Chapter 2

Covariate shift over Hölder
smoothness classes

2.1 Introduction

In the standard formulation of prediction or classification, future data (as represented by
a test set) is assumed to be drawn from the same distribution as the training data. This
assumption, while theoretically convenient, may fail to hold in many real-world scenarios. For
instance, training data might be collected only from a sub-group within a broader population
(such as in medical trials), or the environment might change over time as data are collected.
Such scenarios result in a distribution mismatch between the training and test data.

In this chapter, we study an important case of such distribution mismatch—namely,
the covariate shift problem (e.g., [105, 98]). Suppose that a statistician observes covariate-
response pairs pX, Y q, and wishes to build a prediction rule. In the problem of covariate
shift, the distribution of the covariates X is allowed to change between the training and
test data, while the posterior distribution of the responses (namely, Y | X) remains fixed.
Compared to the usual i.i.d. setting, this serves as a more accurate model for a variety
of real-world applications, including image classification [102], biomedical engineering [74],
sentiment analysis [13], and audio processing [56], among many others.

More formally, suppose that the statistician observes nP covariates tXiu
nP
i“1 from a source

distribution P , and nQ covariates tXiu
nQ`nP

i“nP `1 from a target distribution Q. For each observed
Xi, she also observes a response Yi drawn from the same conditional distribution. The
regression function f ‹pxq “ ErY | xs defined by this conditional distribution is assumed to

lie in some function class F. The statistician uses these samples to produce an estimate pf ,
which will be evaluated on the target distribution, with a fresh sample X „ Q, yielding the
mean-squared error

} pf ´ f ‹
}
2
L2pQq – E

”

`

pfpXq ´ f ‹
pXq

˘2
ı

.

When there is no covariate shift, the fundamental (minimax) risks for this problem are well-
understood [55, 60, 110]. The goal of this chapter is to understand how, for nonparametric
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function classes F, this minimax risk changes as a function of the “amount” of covariate shift
between P and Q.

2.1.1 Contributions and related work

Let us summarize the main contributions of this chapter, and put them in the context of
related work.

Contributions. We introduce a similarity measure1 ρh between two probability measures
P,Q on a common metric space pX, dq. For any level h ą 0, it is defined as

ρhpP,Qq –

ż

X

1

P
`

Bpx, hq
˘ dQpxq, (2.1)

where Bpx, hq – tx1 P X | dpx, x1q ď h u is the closed ball of radius h centered around x. We
substantiate the significance of this similarity measure via the following contributions:

(i) For regression functions that are Hölder continuous, we demonstrate a performance
guarantee for the Nadaraya-Watson kernel estimator under covariate shift that is fully
determined by the scaling of the similarity measure ρhpP,Qq with respect to the radius
h.

(ii) We complement these upper bounds with matching lower bounds—in a minimax
sense—demonstrating that the best achievable rate of estimation in Hölder classes
is also determined by the scaling of this similarity measure.

(iii) We show how the similarity measure ρh can be controlled based on the metric properties
of the space X. In addition, we compare ρh with existing notions for covariate shift
(e.g., bounded likelihood ratios, transfer exponents), thereby showcasing some of its
advantages.

Related work. The problem of covariate shift was studied in the seminal work by Shi-
modaira [105], who provided asymptotic guarantees for a weighted maximum likelihood es-
timator under covariate shift. Since then, a plethora of work has analyzed covariate shift, or
the general distribution mismatch problem (also referred to as domain adaptation or transfer
learning).

For general distribution mismatch, one line of work provides rates that depend on distance
metrics between the source-target pair (e.g., [6, 7, 45, 79, 28, 86]). These results hold under
fairly general conditions, but do not necessarily guarantee consistency as the sample size
n increases. In contrast, our guarantees for covariate shift do guarantee consistency, and

1To be clear, this quantity actually serves as a dis-similarity measure: as shown in the sequel, source-
target pairs pP,Qq with larger values ρhpP,Qq lead to “harder” estimation problems in terms of covariate
shift.
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moreover, we provide explicit nonasymptotic, optimal nonparametric rates. As pointed out
in the paper [69], the distribution mismatch problem is asymmetric in the sense that it may
be easier to estimate accurately when dealing with covariate shift from P to Q than from Q
to P . Our results also corroborate this intuition. It is worth noting that these prior distance
metrics fall short of capturing the inherent asymmetry between P and Q.

Another line of work addresses covariate shift under conditions on the likelihood ra-
tio dQ{ dP . For instance, some authors have obtained results for bounded likelihood ra-
tios [113, 68] or in terms of information-theoretic divergences between the source-target
pair [112, 80]. Our work is inspired in part by the work of Kpotufe and Martinet [69],
who introduced the notion of the transfer exponent. It is a condition that bounds the mass
placed by the pair pP,Qq on balls of varying radii; using this notion, they analyzed various
problems of nonparametric classification. Our work, focusing instead on nonparametric re-
gression problems and using the measure ρh, provides sharper rates than those obtainable by
considering the transfer exponent; see Section 2.3.2 for details. Thus, the similarity measure
ρh provides a more fine-grained control on the effect of covariate shift on nonparametric
regression.

Finally, it is worth mentioning other recent works that give risk bounds for covariate
shift problems, including on linear models [73], as well as linear models and one-layer neu-
ral networks [90]. Although these results deal with covariate shift, the rates obtained are
parametric ones, and hence not directly comparable to the nonparametric rates that are the
focus of our inquiry.

2.1.2 Notation

Here we collect notation used throughout the chapter. We use R to denote the real numbers.
We use pX, dq to denote a metric space, and we equip it with the usual Borel σ-algebra. We
let Bpx, rq –

␣

x1 P X | dpx, x1q ď r
(

be the closed ball of radius r centered at x. We reserve
the capital letters X, Y , possibly with subscripts, for a pair of random variables arising from
a regression model. Similarly, we reserve P,Q for a pair of two probability measures on
pX, dq. For h ą 0, we denote by Nphq the covering number of X at resolution h in the metric
d. This is the minimal number of balls of radius at most h ą 0 required to cover the space X.

The remainder of this chapter is organized as follows. We begin in Section 2.2 by setting
up the problem more precisely, and stating and discussing our main results on covariate
shift: namely, upper bounds in Theorem 2.1, accompanied by matching lower bounds in
Theorem 2.2. These results establish that the similarity measure (2.1) provides a useful
measure of the “difficulty” of source-target pairs in covariate shift; accordingly, Section 2.3
is devoted to a comparison and discussion of this measure relevant to concepts from past
work, including likelihood ratio bounds and transfer exponents. The proofs of all our results
are given in Section 2.4, and we conclude with a discussion in Section 2.5.
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2.2 Characterizing Hölder-smooth regression under

covariate shift

In this section, we use the similarity measure introduced in equation (2.1) to characterize
how covariate shift can change the minimax risks of estimation for certain classes of non-
parametric regression models. We begin in Section 2.2.1 by setting up the observation model
to be considered, along with some associated assumptions on the regression function f ‹, the
conditional distribution of Y | X, and the covariate shift. In Section 2.2.2, we derive an
achievable result (Theorem 2.1) for nonparametric regression in the presence of covariate
shift, in particular via a careful analysis of the classical Nadaraya-Watson estimator. Our
upper bound in this section is general, and illustrates the key role of the similarity mea-
sure ρh. In Section 2.2.3, we introduce the α-families of source-target pairs pP,Qq, and
use Theorem 2.1 to derive achievable results for these families. In Section 2.2.4, we state
some complementary lower bounds for α-families (Theorem 2.2), showing that our achievable
results are, in fact, unimprovable.

2.2.1 Observation model and assumptions

Suppose that we observe covariate-response pairs tpXi, Yiquni“1 Ă X ˆ R that are drawn
from nonparametric regression model of the following type. The conditional distribution of
Y | X is the same for all i “ 1, . . . , n, and our goal is to estimate the regression function
f ‹pxq – ErY | X “ xs. In terms of the “noise” variables, wi – Yi ´f ‹pXiq, the observations
can be written in the form

Yi “ f ‹
pXiq ` wi, i “ 1, . . . , n. (2.2)

In our analysis, we impose three types of regularity conditions: (i) Hölder continuity of the
regression function; (ii) the type of covariate shift allowed; and (iii) tail conditions on the
noise variables twiu

n
i“1.

Assumption 2.1 (Hölder continuity). For some L ą 0 and β P p0, 1s, the function f ‹ : X Ñ

R is pβ, Lq-Hölder continuous, meaning that
ˇ

ˇf ‹
pzq ´ f ‹

pz1
q
ˇ

ˇ ď L rdpz, z1
qs

β, for any z, z1
P X.

We note that in the special case β “ 1, the function f ‹ is L-Lipschitz.

Assumption 2.2 (Covariate shift). The covariates X1, . . . , Xn are independent, and drawn
as

X1, . . . , XnP

i.i.d.
„ P and XnP `1, . . . XnP `nQ

i.i.d.
„ Q where n “ nP ` nQ.

Assumption 2.3 (Noise assumption). The variables twiu
n
i“1 satisfy the second moment

bound
sup
x

E
“

w2
i | Xi “ x

‰

ď σ2 for i “ 1, . . . , n.
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Note that by construction, the variables wi are (conditionally) centered. Assumption 2.3
also allows wi to depend on Xi, as long as the variance is uniformly bounded above.

2.2.2 Achievable performance via the Nadaraya-Watson
estimator

We first exhibit an achievable result for the problem of nonparametric regression in the
presence of covariate shift. We do so by analyzing a classical and simple method for non-
parametric estimation, namely the Nadaraya-Watson estimator [91, 122], or NW for short.
The main result of this section is to show that the mean-squared error (MSE) of the NW
estimator is upper bounded by a bias-variance decomposition that also involves the similarity
measure ρh.

We begin by recalling the definition of the NW estimator, focusing here on the version
in which the underlying kernel is uniform over a ball of a given bandwidth hn ą 0. In
particular, define the set

Gn –

n
ď

i“1

BpXi, hnq,

corresponding to the set of points in X within distance hn of the observed covariates. In
terms of this set, the Nadaraya-Watson estimator pf takes the form

pfpxq –

$

&

%

řn
i“1 Yi1tXi P Bpx, hnqu
řn

i“1 1tXi P Bpx, hnqu
for x P Gn

0 otherwise.

Our first main result provides an upper bound on the MSE of the NW estimator under
covariate shift; this bound exhibits the significance of the similarity measure (2.1). It involves
the distribution µn –

nP

n
P `

nQ

n
Q, which is a convex combination of the source and target

distributions weighted by their respective fractions of samples.

Theorem 2.1. Suppose that Assumptions 2.1, 2.2, and 2.3 hold. For any hn ą 0, the
Nadaraya-Watson estimator pf with bandwidth hn has MSE bounded as

E
›

› pf ´ f ‹
›

›

2

L2pQq
ď cu

!

L2h2βn `
}f ‹}28 ` σ2

n
ρhnpµn, Qq

)

, (2.3)

where cu ą 0 is a numerical constant.

See Section 2.4.1 for a proof of this result.
Note that the bound (2.3) exhibits a type of bias-variance trade-off, one that controls

the optimal choice of bandwidth hn. The quantity h2βn in the first term is familiar from the
classical analysis of the NW estimator; it corresponds to the bias induced by smoothing over
balls of radius hn, and hence is an increasing function of bandwidth. In the second term, the
bandwidth appears in the similarity measure ρhnpµn, Qq, which is a non-increasing function
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of the bandwidth. The optimal choice of bandwidth arises from optimizing this tradeoff; note
that it depends on the pair pP,Qq, as well as the sample sizes pnP , nQq, via the similarity
measure applied to the convex combination µn and Q.

No covariate shift: As a sanity check, it is worth checking that the bound (2.3) recovers
known results in the case of no covariate shift (P “ Q and hence µn “ Q). As a concrete
example, if Q is uniform on the hypercube r0, 1sk, it can be verified that ρhpQ,Qq — h´k

as h Ñ 0`. (See Example 2.2 in the sequel for a more general calculation that implies this

fact.) Thus, if we track only the sample size, the optimal bandwidth is given by h˚
n “ n´ 1

2β`k ,
and with this choice, the bound (2.3) implies that the NW estimator has MSE bounded as

n´
2β

2β`k . Thus, we recover the classical and known results in this special case. As we will see,
more interesting tradeoffs arise in the presence of covariate shift, so that µn ‰ Q.

2.2.3 Consequences for α-families of source-target pairs

In order to better understand the bias-variance tradeoff in the bound (2.3) in the presence
of covariate shift, it is helpful to derive some explicit consequences of Theorem 2.1 for a
particular function class F, along with certain families of source-target pairs pP,Qq. The
latter families are indexed by a parameter α ą 0 that controls the amount of covariate shift;
accordingly, we refer to them as α-families.

So as to simplify our presentation, we assume that X is the unit interval r0, 1s. For a
given pair β P p0, 1s and L ą 0, consider the class of regression functions

Fpβ, Lq “

!

f : r0, 1s Ñ R | |fpxq ´ fpx1
q| ď L|x ´ x1

|
β, for all x, x1

P X, fp0q “ 0
)

.

This is a special case of β-Hölder continuous functions when the underlying metric space is
the unit interval r0, 1s equipped with the absolute value norm. The additional constraint
fp0q “ 0 ensures that this class has finite metric entropy.

Next we introduce some interesting families of source-target pairs.

α-families of pP,Qq pairs: For a given parameter α ě 1 and radius C ě 1, we define the
set of source-target pairs2

Dpα,Cq –

!

pP,Qq | sup
0ăhď1

hαρhpP,Qq ď C
)

. (2.4a)

In words, these are source target pairs for which the growth of the similarity as h Ñ 0` is
at most h´α. In the case α P p0, 1s, we define the related set

D1
pα,Cq –

!

pP,Qq | sup
0ăhď∆

hαρhpP,Qq ď C, sup
0ăhď1

ρhpQ,Qq ď C
)

,

2Note that the restriction of the supremum to h P r0, 1s is necessary, as ρhpP,Qq “ 1 for all h ě 1. Note
also that since ρ1pP,Qq “ 1, one necessarily has C ě 1.
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where the additional condition is added to address the fact that even without covariate
shift, the rate n´2β{p2β`1q is unimprovable for some distributions [110]. Taking into account
the first part of the next corollary, it is necessary to impose some condition on the target

distribution in order to obtain significantly faster rates such as n
´

2β
2β`α , when α ă 1.

Corollary 2.1. Suppose that σ ě L, and that Assumptions 2.2 and 2.3 hold. Then there
exists a constant c1

u ą 0, independent of n, nP , nQ, σ
2, and an integer nu – nupσ, β, L, α, Cq

such that, provided that maxtnP , nQu ě nu:

(a) For α ě 1 and C ě 1, we have

inf
pf

sup
f‹PFpβ,Lq

E
›

› pf ´ f ‹
›

›

2

L2pQq
ď c1

u

!

`nP

σ2

˘
2β`1
2β`α `

`nQ

σ2

˘

)´
2β

2β`1
for any pP,Qq P Dpα,Cq.

(2.5a)

(b) For α P p0, 1s and C ě 1, we have

inf
pf

sup
f‹PFpβ,Lq

E
›

› pf ´ f ‹
›

›

2

L2pQq
ď c1

u

!

`nP

σ2

˘

2β
2β`α `

`nQ

σ2

˘

)´1

for any pP,Qq P D1pα,Cq.

See Section 2.4.2 for a proof of this corollary.

Let us discuss the bound (2.5a) to gain some intuition. The special case of no covariate

shift can be captured by setting nP “ 0 and nQ ą 0, and we recover the familiar n´
2β

2β`k

rate previously discussed. At the other extreme, suppose that nQ “ 0 so that all of our
samples are from the shifted distribution (i.e., n “ nP ); in this case, the MSE is bounded as

pσ2{nq
´

2β
2β`α . As α increases, our set-up allows for more severe form of covariate shift, and

its deleterious effect is witnessed by the exponent 2β
2β`α

shrinking towards zero. Thus, the
NW estimator—with an appropriate choice of bandwidth—remains consistent but with an
arbitrarily slow rate as α diverges to `8.

There are many papers in the literature (e.g., [113, 68]) that discuss the covariate shift
problem when the likelihood ratio is bounded—that is, when Q is absolutely continuous
with respect to P and supxPX

dQ
dP

pxq ď b for some b ě 1. We say that the pair pP,Qq are
b-bounded in this case.

Example 2.1 (Bounded likelihood ratio). Suppose that X “ r0, 1sd with the Euclidean
metric, and consider a pair pP,Qq with b-bounded likelihood ratio. In this special case, our
general theory yields bounds in terms of the b-weighted effective sample size

neffpbq –
nP

b
` nQ.
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In particular, it follows from the proof of Corollary 2.1 that in the regime σ2 ě L2, we have
the upper bound

E
›

› pf ´ f ‹
›

›

2

L2pQq
ď c1

u

´ σ2

neffpbq

¯
2β

2β`d
,

provided that neffpbq is large enough. Consequently, the effect of covariate shift with b-

bounded pairs is to reduce nP to nP {b. Again, we recover the standard rate pσ2

n
q

2β
2β`d in the

case of no covariate shift (or equivalently, when b “ 1). This recovers a known result and is
minimax optimal. ♣

2.2.4 Matching lower bounds for α-families

Thus far, we have seen that the similarity measure ρh plays a central role in determining
the estimation error of the NW estimator under covariate shift. However, this is just one of
many possible estimators in nonparametric regression. Does this similarity measure play a
more fundamental role? In this section, we answer this question in the affirmative by proving
minimax lower bounds for covariate shift problems parameterized in terms of bounds on ρh.
In order to do so, we consider the metric space X “ r0, 1s equipped with the absolute value
as the metric.

The main result of this section provides lower bounds on the mean-squared error of any
estimator, when measured uniformly over functions in the Hölder class Fpβ, Lq, along with
target-source pairs pP,Qq belonging to the class Dpα,Cq when α ě 1 and the class D1pα,Cq

when α ă 1.

Theorem 2.2. Suppose that Assumptions 2.2 and 2.3 hold. Then there is a constant cℓ ą 0,
independent of n, nP , nQ, σ

2, and an integer nℓ – nℓpσ, L, C, α, βq such that for all sample
sizes maxtnP , nQu ě nℓ:

(a) For α ą 1 and C ě 1, there is a pair of distributions pP,Qq P Dpα,Cq such that

inf
pf

sup
f‹PFpβ,Lq

E
›

› pf ´ f ‹
›

›

2

L2pQq
ě cℓ

!

`nP

σ2

˘
2β`1
2β`α `

`nQ

σ2

˘

)´
2β

2β`1
. (2.6a)

(b) For α ď 1 and C ě 1, there is a pair of distributions pP,Qq P D1pα,Cq such that

inf
pf

sup
f‹PFpβ,Lq

E
›

› pf ´ f ‹
›

›

2

pQq
ě cℓ

!

`nP

σ2

˘

2β
2β`α `

`nQ

σ2

˘

)´1

.

See Sections 2.4.3 and 2.4.4 for the proof of this result.

These lower bounds should be compared to Corollary 2.1. This comparison shows that
the MSE bounds achieved by the NW estimator are actually optimal in the minimax sense
over families defined by the similarity measure ρh.
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2.3 Properties of the similarity measure

In the previous sections, we have seen that the similarity measure ρh controls both the
behavior of the NW estimator, as well as fundamental (minimax) risks applicable to any
estimator. Thus, it is natural to explore the similarity measure in some more detail, and in
particular to draw some connections to existing notions in the literature.

2.3.1 Controlling ρh via covering numbers

We start with a general way of controlling the similarity measure ρh, which is based on the
covering number of the metric space pX, dq. In particular, for any h ą 0, the covering number
Nphq is defined to be the smallest number of balls of radius h needed to cover the space X.
See Chapter 5 in the book [120] for more background.

Proposition 2.1 (Covering number bounds for the similarity measure). Suppose that P,Q
are two probability measures on the same metric space pX, dq. Suppose that for some h ą 0,
there is a λ ą 0 such that

P pBpx, hqq ě λ QpBpx, hqq for all x P X. (2.7)

Then the similarity at scale h is upper bounded as ρhpP,Qq ď Nph
2
q{λ.

See Section 2.4.5 for the proof of this claim.

It is worth emphasizing that—due to the order of quantifiers above—the quantity λ ą 0
is allowed to depend on h ą 0. We exploit this fact in subsequent uses of the bound (2.7).

One straightforward application of Proposition 2.1 is in bounding the similarity measure
when there is no covariate shift, as we now discuss.

Example 2.2 (No covariate shift). Suppose that we compute the similarity measure in the
case P “ Q; intuitively, this models a scenario where there is no covariate shift. In this case,
we clearly may apply Proposition 2.1 with λ “ 1, which reveals that ρhpP, P q ď Nph{2q. To
give one concrete bound, suppose that X Ă Rd is a compact set, with diameter D. Then—
owing to standard bounds on covering number [120, chap. 5]—we obtain ρhpP, P q ď p1` 2D

h
qd.

Note that this bound holds for any metric, so long as the diameter D is computed with the
same metric as the balls in the definition of the similarity measure. ♣

We give another application of Proposition 2.1 in the following subsection.

2.3.2 Comparison to previous notions of distribution mismatch

Next, we show how the mapping h ÞÑ ρhpP,Qq can be bounded naturally using previously
proposed notions of distribution mismatch for covariate shift. Again, Proposition 2.1 plays
a central role.
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Example 2.3 (Bounded likelihood ratio). Suppose that P,Q are such that Q ! P and the
likelihood ratio dQ

dP
pxq ď b, for all x P X. Then note that by a simple integration argument

P pBpx, hqq ě 1
b
QpBpx, hqq. Therefore, we conclude ρhpP,Qq ď bNph{2q. ♣

As noted previously, our work was inspired by the transfer exponent introduced by
Kpotufe and Martinet [69] in the context of covariate shift for nonparametric regression.
It is worth comparing these notions so as to understand in what sense the similarity measure
ρh is a refinement of the transfer exponent. In order to simplify this discussion, we focus
here on the special case X “ r0, 1s. D(4, C)

�(3, c)

Worst-case instances coincide

1

D
(�

+
1
,

2C
)

�
(�

,C
)

W
orst-case

instances
coincide

(1

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P, Q) for which transfer exponent is loose

1

Tpγ,Kq

Dpγ ` 1, 2
K

q

Figure 2.1. The yellow circle depicts the contour for the class Dpγ ` 1, 2
K q, while the

blue square plots the contour for the class Tpγ,Kq. It can be seen from Lemma 2.1 and
Example 5 that Tpγ,Kq is strict subset of Dpγ` 1, 2

K q. In addition, our lower bound shows
that under covariate shift, the worst-case instances for both classes coincide with each other.
However, there exist instances pP,Qq where the characterization using transfer exponent is
intrinsically loose.

We begin by providing the definition of transfer exponent:

Definition 2.1 (Transfer exponent [69]). The distributions pP,Qq have transfer exponent
γ ě 0 with constant K P p0, 1s if

P pBpx, hqq ě KhγQpBpx, hqq for all x in the support of Q.

We denote by Tpγ,Kq the set of all pairs pP,Qq with this property.
It is natural to ask how the set Tpγ,Kq is related to the α-family previously defined in

equation (2.4a). The following result establishes an inclusion:
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Lemma 2.1. For X “ r0, 1s and any γ ě 0 and K P p0, 1s, we have the inclusion

Tpγ,Kq Ă Dpγ ` 1, 2
K

q. (2.8)

The proof of this inclusion is given in Section 2.4.6. At a high level, it exploits Proposi-
tion 2.1 to show that for any pP,Qq P Tpγ,Kq, we have the bound ρhpP,Qq ď 1

KhγNph{2q.

From the inclusion (2.8), it follows that any covariate shift instance pP,Qq with finite
transfer exponent γ ě 0 belongs to an α-similarity family with α “ γ ` 1. In fact, following
a proof similar to that of Theorem 2.2, we can show that for γ ě 0, there is pair pP,Qq

in the class Tpγ,Kq such that the minimax risk for β-Hölder-continous functions scales as

n
´

2β
2β`γ`1

P . Note that this risk bound coincides with the minimax risk associated with the class
Dpγ`1, 2

K
q. In other words, from a worst case point of view, the source-target class Tpγ,Kq

is equally as hard as the class Dpγ ` 1, 2
K

q for nonparametric regression under covariate
shift. However, this worst case equivalence does not capture the full picture: there are
many covariate shift families for which the transfer exponent provides an overly conservative
prediction, and so does not capture the fundamental difficulty of the problem. Let us consider
a concrete example to illustrate.

Example 2.4 (Separation between transfer exponent and ρh). Let the target distribution
Q be a uniform distribution on the interval r0, 1s, and for some κ ě 1, suppose that the
source distribution P has density ppxq “ pκ ` 1qxκ for x P r0, 1s. With these definitions, it
can be verified that pP,Qq P Tpκ,Kq for some constant K P p0, 1s, and moreover, that the
quantity κ is the smallest possible transfer exponent for this pair. In contrast, another direct
computation shows that the pair pP,Qq belongs to the class Dpκ,C 1q for some constant
C 1 ą 0. These two inclusions establish a separation between the rates predicted by the
transfer exponent and the similarity ρh. Indeed, as shown by our theory, the difficulty of
estimation over Dpκ,C 1q is smaller than that prescribed by Tpκ,Kq. Indeed, if one observe n
samples from the source distribution, the worst-case rate indicated by the computation from

the transfer exponent is n´
2β

2β`κ`1 , whereas the rate guaranteed by the similarity measure ρh
is n´

2β
2β`κ . As an explicit example, Lipschitz functions (β “ 1) and κ “ 1, we obtain the

slower rate n´1{2 versus the faster rate n´2{3, so that the ratio between the two rates diverges
as n1{6 as the sample size grows. ♣

See also Figure 2.1 for an illustration of the connections and differences between the similarity
measure and the transfer exponent.

2.4 Proofs

We now turn to the proofs of the results stated in the previous section.
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2.4.1 Proof of Theorem 2.1

Recall that the estimate pf depends on the observations tpXi, Yiquni“1, and so should be
understood as a random function. The core of the proof involves proving that, for each
x P X, we have

E
”

`

pfpxq ´ f ‹
pxq

˘2
ı

ď L2h2βn `
4σ2 ` }f ‹}28

n

1

µnpBpx, hnqq
, (2.9)

where the expectation is taking over the observations tpXi, Yiquni“1. Given this inequality,
the claim (2.3) of Theorem 2.1 follows, since by Fubini’s theorem, we can write

E
”

›

› pf ´ f ‹
›

›

2

L2pQq

ı

“

ż

X

E
”

`

pfpxq ´ f ‹
pxq

˘2
ı

dQpxq.

Applying inequality (2.9) and recalling the definition of the similarity measure yields the
claim (2.3).

We now focus on establishing the bound (2.9). Our proof makes use of the conditional

expectation of pf given the covariates

fpxq – Er pfpxq | X1, . . . , Xns, for any x P X.

To be explicit, the expectation is taken over Yi | Xi, i “ 1, . . . , n. With this definition, our
first result provides a bound on the conditional bias and variance.

Lemma 2.2. For each x P X almost surely, the Nadaraya-Watson estimator pf satisfies the
bounds

pfpxq ´ f ‹
pxq

˘2
ď }f ‹

}
2
81tx R Gnu ` L2h2βn 1tx P Gnu and (2.10a)

Erpfpxq ´ pfpxqq
2

| X1, . . . , Xns ď σ2
řn

i“1 1tXiPBpx,hnqu
1tx P Gnu. (2.10b)

We prove this auxiliary claim at the end of this section.

Taking the results of Lemma 2.2 as given, we continue our proof of the bound (2.9). For
any fixed x P X, a conditioning argument yields

E
“

p pfpxq ´ f ‹
pxqq

2
‰

“ E
“

pfpxq ´ f ‹
pxq

˘2‰
` E

”

Erpfpxq ´ pfpxqq
2

| X1, . . . , Xns

ı

.

By applying the bounds (2.10a) and (2.10b) to the two terms above, respectively, we arrive

at the upper bound E
“

p pfpxq ´ f ‹pxqq2
‰

ď T1 ` T2, where

T1 – }f ‹
}
2
8 Er1tx R Gnus ` L2h2βn , and T2 – E

”

1tx P Gnu σ2
řn

i“1 1tXiPBpx,hnqu

ı

.

We bound each of these terms in turn.
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Bounding T1: By definition, the set Gn involves n independent random variables, so that
for any x P X, we have

E
“

1tx R Gnu
‰

“

´

1 ´ P
`

Bpx, hnq
˘

¯nP
´

1 ´ Q
`

Bpx, hnq
˘

¯nQ piq

ď
1

nµnpBpx, hnqq
,

where step (i) follows from the elementary inequality

p1 ´ pq
n
p1 ´ qqm ď expp´pnp ` mqqq ď

1

np ` mq
,

valid for p, q P p0, 1q and nonnegative integers n,m. Consequently, the first term is upper
bounded as

T1 ď }f ‹
}
2
8

1

nµnpBpx, hnqq
` L2h2βn . (2.11a)

Bounding T2: For a fixed x P X, and for each i “ 1, . . . , n, define the Bernoulli random
variable Zi “ 1rXi P Bpx, hnqs P t0, 1u, along with the binomial random variables U “
řnP

i“1 Zi and V “
řn

i“nP `1 Zi. With these definitions, we can write

n
ÿ

i“1

1tXi P Bpx, hnqu “ U ` V, and 1tx P Gnu “ 1
␣

U ` V ą 0
(

.

Consequently, by an elementary bound for binomial random variables (see Lemma 2.5), it
follows that

T2 “ E
”

1tU ` V ą 0u
1

U ` V

ı

ď
4

nµnpBpx, hnqq
. (2.11b)

Combining inequalities (2.11a) and (2.11b) yields the claim (2.9).

The only remaining detail is to prove the auxiliary lemma used in the proof.

Proof of Lemma 2.2. Recall that by definition, we have

fpxq “

$

&

%

řn
i“1 f

‹pXiq1tXi P Bpx, hnqu
řn

i“1 1tXi P Bpx, hnqu
x P Gn

0 x R Gn

Proof of the bound (2.10a): By a direct expansion, we have

`

fpxq ´ f ‹
pxq

˘2
1tx P Gnu “

´

řn
i“1pf

‹pxq ´ f ‹pXiqq1tXi P Bpx, hnqu
řn

i“1 1tXi P Bpx, hnqu

¯2

1tx P Gnu

piq

ď

řn
i“1pf

‹pxq ´ f ‹pXiqq21tXi P Bpx, hnqu
řn

i“1 1tXi P Bpx, hnqu
1tx P Gnu

piiq

ď L2h2βn 1tx P Gnu,

where step (i) follows from Jensen’s inequality; and step (ii) makes use of Assumption 2.1.
The bound (2.10a) is an immediate consequence.
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Proof of the bound (2.10b): In order to prove this claim, note that by independence
among tpXi, wiquni“1,

Erpfpxq ´ pfpxqq
2

| X1, . . . , Xns “

n
ÿ

i“1

Erw2
i | Xis

`

1tXiPBpx,hnqu
řn

i“1 1tXiPBpx,hnqu

˘2
1tx P Gnu

piiiq

ď σ2
n
ÿ

i“1

`

1tXiPBpx,hnqu
řn

i“1 1tXiPBpx,hnqu

˘2
1tx P Gnu

“
σ2

řn
i“1 1tXi P Bpx, hnqu

1tx P Gnu,

which proves the claim. Here step (iii) is a consequence of Assumption 2.3.

2.4.2 Proof of Corollary 2.1

Fix some h P p0, 1s, and introduce the indicator variable η “ 1tα ě 1u. We then have

ż

X

1

nPP pBpx, hqq ` nQQpBpx, hqq
dQpxq ď min

! 1

nP

ρhpP,Qq,
1

nQ

ρhpQ,Qq

)

ď 3ηCmin
! 1

nPhα
,

1

nQhη

)

ď 2 ¨ 3ηC
1

nPhα ` nQhη
.

The last inequality follows from (2.1) and standard covering number bounds (note h ď 1).
Thus the final performance bound is

2 ¨ 3ηCL2
!

h2β `
L2 ` σ2

nPhα ` nQhη

)

.

We choose the bandwidth h‹ so as to trade off between two terms in this risk bound; more
precisely, we set

h‹
“

´

` nQ

L2 ` σ2

˘

`
` nP

L2 ` σ2

˘

2β`η
2β`α

¯´
1

2β`η

This choice is valid, since σ2 ě L2 and maxtnP , nQu ě 4σ2 by assumption. Substituting this
choice of bandwidth into the risk bound (2.3) yields the claim.

2.4.3 Proof of Theorem 2.2(a)

Before giving the complete proof, we outline the main steps involved.

1. We first construct a hard instance pP,Qq P Dpα,Cq. This instance is designed such
that the integral quantity ρhpP,Qq must scale as Ch´α.
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2. Then we select a family of hard regression functions contained within Fpβ, Lq that
guarantees the worst-case expected error for our pair of distributions, pP,Qq.

3. Finally, we apply Fano’s method over this set of regression functions to show that the
expected error must scale as the righthand side of inequality (2.6a).

It is worth commenting on our proof strategy in relation to past work. On one hand, in
the case α ě 1, our construction of the distributions pP,Qq is adapted from the lower bound
argument introduced by Kpotufe and Martinet [69]. The technical work involves constructing
pairs of densities of P,Q, and establishing their membership in the class Dpα,Cq. As for the
case α P p0, 1q, as stated in Theorem 2.2(b), we use a different construction of the distribution
pair pP,Qq, one that is new (to the best of our knowledge). We combine these constructions
of “hard” source-target pairs, in particular by packing the interval r0, 1s with a variable
number of small intervals (e.g., [124, 115, 120]). By adapting the number of intervals (and
constructing a packing set of the function class Fpβ, Lq appropriately over these intervals),
one can adapt the hardness of the lower bound instance to change with the number of
samples. In this case, we are able to do this such that the hardness scales appropriately with
the critical parameters that govern the final minimax lower bound: nP , nQ, σ, α, β. With
this high-level overview in place, we now proceed to the technical content of the proof.

Constructing “hard” source-target pairs: For scalars S, r P p0, 1s, define M “ S
6r

along with the intervals

Ij – pzj ´ 3r, zj ` 3rs, where zj – 6jr ´ 3r, j “ 1, . . . ,M.

We specify P and Q on each interval Ij as follows:

subinterval density of P density of Q

pzj ´ 3r, zj ´ rs 1
4Mr

p1 ´ ε
3
p r
S

qα´1q 0

pzj ´ r, zj ` rs ε
6Mr

p r
S

qα´1 1
2Mr

pzj ` r, zj ` 3rs 1
4Mr

p1 ´ ε
3
p r
S

qα´1q 0

Table 2.1. Specification of densities for lower bound pair of distributions pP,Qq on the
interval Ij .

By construction, both P andQ assign probability 1{M to the entire interval Ij. The following
proposition verifies that pP,Qq lies in Dpα,Cq for proper choices of the ε and S.

Proposition 2.2. Let α ě 1 and C ě 1. Define P and Q as in Table 2.1, with the following
choice of parameters ε, S:

(a) if C ą 6, set ε “ 6{C, and S “ 1{4;
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D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P, Q) for which transfer exponent is loose

0

1

1

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P, Q) for which transfer exponent is loose

0

1

1

Proposition 2. Let ↵ > 1 and C > 1. Define P and Q as in Table 1, with the following choice of
parameters ", S:

(a) if C > 6, set " = 6/C, and S = 1/4;

(b) if 1 6 C 6 6, set " = 1, and S = 1
4(C/6)1/↵.

Then for any choice of M, r > 0 satisfying S = 6Mr, the pair (P, Q) lies in D(↵, C).

See section 5.2.1 for a proof of this claim.

Construction of hard regression functions. Now we move on to construct a packing set of
F(�, L). Let  : [�1, 1] ! R be such that  (�1) =  (1) = 0 and

�� (x) � (y)
�� 6 |x � y|� , for all x, y 2 [�1, 1], and, (10a)

Z 1

�1
 2(x) dx =·· C2

 > 0. (10b)

Many choices of  are possible above [22, see chap. 2]; we require C2
 6 1/6, which is possible by

taking  (x) = e�1/(1�x2)1{|x| 6 1}. For a sequence b = (b1, . . . , bM ) 2 {0, 1}M , we define

fb(x) ··=
MX

j=1

bj�j(x), where �j(x) ··= Lr� 
⇣x � zj

r

⌘
.

We will take
H ··=

n
fb | b 2 B

o
.

Above, B is a packing set of the discrete cube {0, 1}M , originally constructed by Gilbert [7] and
Varshamov [23]. The following result records the main property of this set.

Lemma 2 (Gilbert-Varshamov [22, Lemma 2.9]). Let M > 8. There is a subset B ⇢ {0, 1}M such
that kb � b0k1 > M/8 for all distinct b, b0 2 B, and |B| > 2M/8.

The next result summarizes the important properties of the hard set of regression functions, H.

Lemma 3. The set H has the following properties:

(a) it is contained within the Hölder class, H ⇢ F(�, L);

(b) it has the following separation: for each distinct f, g 2 H, kf � gk2
L2(Q) >

C2
 

16 L2r2� ;

(c) it satisifes the following L2(P ) and L2(Q) bounds:

kfk2
L2(Q) 6

C2
 M

2S
L2r2�+1 and kfk2

L2(P ) 6
"C2
 M

6S↵
L2r2�+↵,

for all f 2 H.

9
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This implies that

�
f(x) � f?(x)

�2
1{x 2 Gn} =

⇣Pn
i=1(f

?(x) � f?(Xi))1{Xi 2 B(x, hn)}Pn
i=1 1{Xi 2 B(x, hn)}

⌘2
1{x 2 Gn}

(i)

6
Pn

i=1(f
?(x) � f?(Xi))

21{Xi 2 B(x, hn)}Pn
i=1 1{Xi 2 B(x, hn)} 1{x 2 Gn}

(ii)

6 L2h2�
n 1{x 2 Gn}.

Bound (a) now follows immediately. Above, (i) follows from Jensen’s inequality and (ii) makes use
of Assumption 1. For bound (b), note that by independence among {(Xi, ⌫i)}n

i=1,

E[(f(x) � bf(x))2 | X1, . . . , Xn] =
nX

i=1

E[⌫2
i | Xi]

� 1{Xi2B(x,hn)}Pn
i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

(iii)

6 �2
nX

i=1

� 1{Xi2B(x,hn)}Pn
i=1 1{Xi2B(x,hn)}

�2
1{x 2 Gn}

=
�2

Pn
i=1 1{Xi 2 B(x, hn)}1{x 2 Gn},

which proves the claim. Above, (iii) follows from Assumption 3.

5.2 Proof of Part (a) of Theorem 2

Before giving the complete proof, we outline the main steps involved.

1. We first construct a hard instance (P, Q) 2 D(↵, C). This instance is designed such that the
integral quantity ⇢h(P, Q) must scale as Ch�↵.

2. Then we select a family of hard regression functions contained within F(�, L) that guarantees
the worst-case expected error for our pair of distributions, (P, Q).

3. Finally, we apply Fano’s method over this set of regression functions to show that the expected
error must scale as the righthand side of inequality (2).

Construction of hard pair of distributions. Let S, r 2 (0, 1] Let M = S
6r . Define the intervals

Ij ··= (zj � 3r, zj + 3r], where zj ··= 6jr � 3r, j = 1, . . . , M.

We specify P and Q on each interval Ij as follows: RP — would be nice to put a picture here.

subinterval density of P density of Q

(zj � 3r, zj � r] 1
4Mr (1 � "

3( r
S )↵�1) 0

(zj � r, zj + r] "
6Mr ( r

S )↵�1 1
2Mr

(zj + r, zj + 3r] 1
4Mr (1 � "

3( r
S )↵�1) 0

Table 1. Specification of densities for lower bound pair of distributions (P, Q) on the interval Ij .

By construction, both P and Q assign probability 1/M to the entire interval Ij . The following
proposition verifies that (P, Q) lies in D(↵, C) for proper choices of the " and S.
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We specify P and Q on each interval Ij as follows: RP — would be nice to put a picture here.

subinterval density of P density of Q

(zj � 3r, zj � r] 1
4Mr (1 � "

3( r
S )↵�1) 0

(zj � r, zj + r] "
6Mr ( r

S )↵�1 1
2Mr

(zj + r, zj + 3r] 1
4Mr (1 � "

3( r
S )↵�1) 0

Table 1. Specification of densities for lower bound pair of distributions (P, Q) on the interval Ij .

By construction, both P and Q assign probability 1/M to the entire interval Ij . The following
proposition verifies that (P, Q) lies in D(↵, C) for proper choices of the " and S.

8

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P, Q) for which transfer exponent is loose

0

1

M intervals
z1 = 3r

P

Q

1

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P, Q) for which transfer exponent is loose

0

1

M intervals
z1 = 3r

P

Q

1

D(� + 1, 2
C )

�(�, C)

Worst-case instances coincide
(

pairs (P, Q) for which transfer exponent is loose

0

1

M = S
6r intervals

z1 = 3r

P

Q

1

Figure 2.2. An illustration of the distributions pP,Qq constructed as a hard pair in our
lower bound.

(b) if 1 ď C ď 6, set ε “ 1, and S “ 1
4
pC{6q1{α.

Then for any choice of M, r ą 0 satisfying S “ 6Mr, the pair pP,Qq lies in Dpα,Cq.

See Section 2.4.3.1 for the proof of this claim.

Construction of “hard” regression functions. Next we construct a packing of the
function class of Fpβ, Lq. We do so by summing together scaled and shifted copies of base
function Ψ: r´1, 1s Ñ R that satisfies the boundary conditions Ψp´1q “ Ψp1q “ 0, along
with

ˇ

ˇΨpxq ´ Ψpyq
ˇ

ˇ ď |x ´ y|
β, for all x, y P r´1, 1s, and, (2.12a)

ż 1

´1

Ψ2
pxq dx — C2

Ψ ą 0. (2.12b)

There are many possible choices of Ψ; see Chapter 2 in the book [115] for details. For our
proof, we also require the bound C2

Ψ ď 1{6, so that we make the explicit choice

Ψpxq – e´1{p1´x2q1t|x| ď 1u.

We now form a class of functions using sums of the form

fbpxq –

M
ÿ

j“1

bjϕjpxq, where ϕjpxq – LrβΨ
´x ´ zj

r

¯

,
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and b “ pb1, . . . , bMq P t0, 1uM is a Boolean sequence. Our construction makes use of
the Gilbert-Varshamov lemma (e.g. [115, Lemma 2.9]), which for M ě 8, guarantees the
existence of a subset B Ă t0, 1uM of cardinality at least 2M{8 such that

}b ´ b1
}1 ě M{8 for all distinct b, b1 P B. (2.13)

Lemma 2.3. The function class H –

!

fb | b P B
)

has the following properties:

(a) It is contained within the Hölder class—H Ă Fpβ, Lq.

(b) Pairs of functions are well-separated: for each distinct f, g P H, we have

}f ´ g}
2
L2pQq ě

C2
Ψ

16
L2r2β.

(c) Its elements satisfy the following L2pP q and L2pQq bounds:

}f}
2
L2pQq ď

C2
ΨM

2S
L2r2β`1 and }f}

2
L2pP q ď

εC2
ΨM

6Sα
L2r2β`α,

for all f P H.

Applying Fano’s method. We now combine the preceding constructions with a Fano
argument to complete the proof of the lower bound. For any function f P H, let νf be
the distribution tpXi, Yiquni“1 where pX, Y q pairs are related by our nonparametric regression
model (2.2) with f “ f ‹. For proving our lower bound, it suffices to consider Gaussian noise:

in particular, wi
i.i.d.
„ N p0, σ2q for i “ 1, . . . , n. These variables satisfy Assumption 2.3.

With these choices, Kullback-Leibler divergence between any given pair pνf , νgq can be
bounded as

Dklpνf } νgq

“
1

2σ2

´

nP }f ´ g}
2
L2pP q ` nQ}f ´ g}

2
L2pQq

¯

ď
2

σ2

´

nP max
fPH

}f}
2
L2pP q ` nQmax

fPH
}f}

2
L2pQq

¯

.

Now applying part (c) of Lemma 2.3 yields

Dklpνf } νgq ď MC2
Ψ

!

nP
L2

3σ2

ε

Sα
r2β`α

` nQ
L2

σ2

1

S
r2β`1

)

ď M
!4α

C

L2

σ2
nP r

2β`α
`

4α

C

L2

σ2
nQr

2β`1
)

The final inequality arises by using C2
Ψ ď 1{6. Suppose we take

r “

´

`

64
4α

C

L2nP

σ2
q

2β`1
2β`α `

`

64
4α

C

L2nQ

σ2

˘

¯´ 1
2β`1
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Then for any distinct f, g P H, we obtain

Dklpνf } νgq ď M{32.

By a standard reduction to hypothesis testing [120, chap. 15] along with part (a),

inf
pf

sup
f‹Fpβ,Lq

E
”

} pf ´ f ‹
}
2
L2pQq

ı

ě

min
pf,gqPpH

2 q }f ´ g}2L2pQq

4

!

1 ´

log 2 ` max
pf,gqPpH

2 qDklpνf } νgq

log |H|

)

Thus, after applying part (b) of Lemma 2.3, we obtain

inf
pf

sup
f‹Fpβ,Lq

E
”

} pf ´ f ‹
}
2
L2pQq

ı

ě
C2

Ψ

64
L2r2β

´

1 ´
8

M
´

1

4

¯

ě
C2

ΨL
2

256

´

`

64
4α

C

L2nP

σ2
q

2β`1
2β`α `

`

64
4α

C

L2nQ

64σ2

˘

¯´
2β

2β`1
,

provided that M ě 32. Equivalently, r ď S{192. It suffices that r ď 1
4608

, this is ensured by
having

maxtnP , nQu ě

´

72
σ2

L2

C

4α

¯2β`α

.

2.4.3.1 Proof of Proposition 2.2

We will show that for a general choice of ε, S P p0, 1s, the following holds:

P
`

Bpx, hq
˘

ě
ε

3

` h

4S

˘α´1
Q
`

Bpx, hq
˘

, for all x P supppQq, and any h ą 0. (2.14)

For the moment let us take this bound as given. By Lemma 2.1, note that bound (2.14)
implies that pP,Qq P Dpα,Cpε, Sqq, with Cpε, Sq “ 6

ε
p4Sqα´1, for any ε, S P p0, 1s. Note

that the parameter choices given in the statement of the result ensure that ε, S P p0, 1s.
When C ě 6, we have Cpε, Sq “ 6pC{6q1´1{α “ Cp6{Cq1{α ď 6 ď C. Otherwise C ď 6 and
Cpε, Sq “ C. Therefore, checking the two cases C ą 6 and C ď 6 verifies Cpε, Sq “ C in
both regimes, which furnishes the claim.

We now turn to establish bound (2.14). Let h ą 0. First observe that the support of Q
is the disjoint union of intervals YM

j“1pzj ´ r, zj ` rs. Thus, fix x in the support of Q, and let
zj denote the center of the interval to which x belongs. Suppose that h P r0, 4rs, in which
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case, we have the inclusion Bpx, hq Ă Ij, whence the lower bound

P pBpx, hqq ě P
`

Bpx, hq X Bpzj, rq
˘

piq
“
ε

3

´ r

S

¯α´1

Q
`

Bpx, hq X Bpzj, rq
˘

piiq

ě
ε

3

´ h

4S

¯α´1

Q
`

Bpx, hq X Bpzj, rq
˘

piiiq
“

ε

3

´ h

4S

¯α´1

Q
`

Bpx, hq
˘

(2.15)

Above, step (i) follows from the construction of P,Q; step (ii) follows from h ď 4r, whereas
step (iii) follows since Bpx, hq Ă Ij and Q assigns no mass to the set IjzBpzj, rq.

Otherwise, we may assume that h P r4r, Ss, in which case we have the inclusion Bpx, hq Ą

Ij. Denote by N ě 1 the number of intervals of the form Ij that are included within Bpx, hq.
Note that since Bpx, hq is connected, it is always contained in at most N ` 2 intervals (by
considering partial intervals on the left and right). Thus,

P pBpx, hqq

QpBpx, hqq

piiiq

ě
N ¨ P pIjq

pN ` 2q ¨ QpIjq

pivq

ě
1

3
. (2.16)

Here step (iii) follows since Bpx, hq is contained in a collection of at most pN ` 2q intervals
and contains at least N intervals, and the intervals are disjoint and have the same mass
under both P and Q. On the other hand, step (iv) uses the equivalence P pIjq “ QpIjq, along
with the fact that the function x ÞÑ x

x`2
is increasing on the set tx ě 1u.

Therefore, combining inequalities (2.15) and (2.16), we conclude that

P pBpx, hqq ě
1

3

”

ε
´ h

4S

¯α´1

^ 1
ı

QpBpx, hqq ě
ε

3

` h

4S

˘α´1
QpBpx, hqq

for every x in the support of Q, the final inequality follows since α ě 1. Since h ą 0 was
arbitrary, this establishes bound (2.14) and completes the proof.

2.4.3.2 Proof of Lemma 2.3

We prove each of the three parts in turn.

Proof of part (a): Fix a Boolean vector b P t0, 1uM . Note that the function ϕj is supported
on the interval Ij, which is disjoint from any other interval Ik, k ‰ j. Since Ψ satisfies the
continuity condition (2.12a), it follows that ϕj is pβ, Lq-Hölder. Finally, we have fεp0q “ 0 by
definition. Taking these properties together, we have shown that fε P Fpβ, Lq, as required.
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Proof of part (b): For any distinct pair b, b1 P B, we have

ż 1

0

pfbpxq ´ fb1pxqq
2 dQpxq “

ż 1

0

´

M
ÿ

j“1

pbj ´ b1
jqϕjpxq

¯2

dQpxq

piq
“

1

2Mr

M
ÿ

j“1

pbj ´ b1
jq

2

ż zj`3r

zj´3r

ϕ2
jpxq dx

piiq
“

C2
Ψ

2M
L2r2β}b ´ b1

}1

piiiq

ě
C2

Ψ

16
L2r2β.

Here step (i) follows from the definition of Q along with the disjointedness of the supports
of ϕj. Step (ii) follows from equation (2.12b) and the fact that b, b1 P B Ă t0, 1uM . Finally,
step (iii) follows from the Gilbert-Varshamov separation (2.13).

Proof of part (c): For any b P B, by following the calculations above, for µ P tP,Qu, we
have by symmetry

ż 1

0

f 2
b pxq dµpxq “

M
ÿ

j“1

b2j

ż

Ij

ϕ2
jpxq dµpxq ď M

ż

I1

ϕ2
1pxq dµpxq.

Now observe that
ş6r

0
ϕ2
1pxq dQpxq “

C2
Ψ

2M
L2r2β, and consequently, }fb}

2
L2pQq

ď L2r2βC2
Ψ{2.

Additionally, we can compute

ż 6r

0

ϕ2
1pxq dP pxq “

ε

6rMα

ż 4r

2r

ϕ2
1pxq dx “

ε

6Sα
L2r2β`αC2

Ψ.

Thus, we have established the upper bound }fb}
2
L2pP q

ď εL2r2β`α´1{p6Sα´1q.

2.4.4 Proof of Theorem 2.2(b)

Given the inclusion D1pα, 1q Ă D1pα,Cq, it suffices to prove a lower bound for C “ 1.

Construction of “hard” distributions. Let Q “ δ1, and let Pα be the distribution
supported on r0, 1s with density pαpxq – αp1´ xqα´11tx P r0, 1su. By construction, we then
have

ρhpPα, Qq “
1

PαpBp1, hqq
“ h´α for all h P p0, 1s,

which implies that pPα, Qq P D1pα, 1q. From herein, we adopt the shorthand P – Pα so as
to lighten notation.
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Construction of two point alternative. If the regression function is f , we denote the
resulting joint distribution of tpXi, Yiquni“1 by νf . We consider the two point alternatives

tft, gu with g ” 0 and ftpxq – Lpx ´ tqβ`. The next result demonstrates the validity of this
choice:

Lemma 2.4. For any t P r0, 1s, the function ft belongs to Fpβ, Lq.

See Section 2.4.4.1 for the proof.

Moreover, by straightforward calculations, we find that }ft}
2
L2pQq

“ L2p1 ´ tq2β, and

}ft}
2
L2pP q “ L2

ż 1

t

αp1 ´ xq
α´1

px ´ tq2β dx

ď L2
p1 ´ tq2β

ż 1´t

0

αsα´1 ds “ L2
p1 ´ tq2β`α.

Applying Le Cam’s method. We are now equipped to apply Le Cam’s two point bound.
In particular, we have

inf
pf

sup
f‹PFpβ,Lq

E
”

} pf ´ f ‹
}
2
L2pQq

ı

ě
L2p1 ´ tq2β

16
exp

`

´ Dklpνft } νgq
˘

By standard KL calculations (using N p0, σ2q noises)

Dklpνft } νgq “
L2

2σ2

!

nP p1 ´ tq2β`α
` nQp1 ´ tq2β

)

Finally, we make the

1 ´ t “

ˆ

´L2nP

2σ2

¯

1
2β`α

`

´L2nQ

2σ2

¯
1
2β

˙´1

A little bit of algebra shows that this choice guarantees that Dklpνft } νgq ď 2, which
completes the proof.

2.4.4.1 Proof of Lemma 2.4

We begin by observing that ftp0q “ 0. Thus, in order to prove the claim, it suffices to show
that

ftpyq ´ ftpxq ď Lpy ´ xq
β for any pair x, y such that 0 ď t ă x ă y ď 1.

In order to prove this bound, consider an arbitrary point x P pt, 1q, and define the function

ϕxpyq – Lpyβ ´ xβq ´ Lpy ´ xq
β for y P rx, 1s.

We can compute the derivative ϕ1
xpyq “ Lβpyβ´1 ´ py ´ xqβ´1q. Since y ě y ´ x ą 0 and

β ď 1, we have yβ´1 ď py ´ xqβ´1, and hence ϕ1
xpyq ď 0. Consequently, the function ϕx is

non-increasing, and since y ą x, it follows that ϕxpyq ď ϕxpxq “ 0. Putting together the
pieces completes the proof.
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2.4.5 Proof of Proposition 2.1

Starting with the assumed bound (2.7), we have

ż

X

1

P pBpx, hqq
dQpxq ď

1

λ

ż

X

1

QpBpx, hqq
dQpxq. (2.17)

By definition of the covering number N – Nph{2q, there is a collection tzjuNj“1 such that

the set X is contained within the union
ŤN

j“1 Bpzj, h
2
q. This fact, combined with our previous

bound (2.17), implies that

ż

X

1

P pBpx, hqq
dQpxq ď

1

λ

N
ÿ

j“1

ż

Bpzj ,h{2q

1

QpBpx, hqq
dQpxq. (2.18)

Note by the triangle inequality, for each j P rN s and x P Bpzj, h{2q, we have Bpzj, h{2q Ă

Bpx, hq. This inclusion implies that

ż

Bpzj ,h{2q

1

QpBpx, hqq
dQpxq ď

ż

Bpzj ,h{2q

1

QpBpzj, h{2qq
dQpxq “ 1,

for each j P rN s. Combining this inequality with the bound (2.18) yields the claim.

2.4.6 Proof of Lemma 2.1

By assumption, we have the upper bound

ż 1

0

1

P pBpx, hqq
dQpxq ď

1

Khγ

ż 1

0

1

QpBpx, hqq
dQpxq

Moreover, we can find a collection of N – r1{hs balls with centers tzju
N
j“1 of radius h{2 that

cover the interval r0, 1s, whence

ż 1

0

1

QpBpx, hqq
dQpxq ď

N
ÿ

j“1

ż

xPBpzj ,h{2q

1

QpBpx, hqq
dQpxq ď N.

The final inequality follows from the inclusion Bpx, hq Ą Bpzj, h{2q.
Now define the function gptq – rts {t, and observe that gptq ď 2 whenever t ě 1. Conse-

quently, we can write

hγ`1ρhpP,Qq ď
1

K
gp1{hq ď

2

K
, for any h ď 1.

Passing to the supremum over h P p0, 1s yields the claim.
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2.5 Discussion

In this chapter, we have studied the problem of covariate shift in the context of nonparametric
regression. We have shown that a measure of (dis)-similarity ρh between the source and
target distributions, as defined in equation (2.1), can be used to characterize how minimax
risks change as the source-target pair are varied. In particular, we proved upper bounds
on the Nadaraya-Watson estimator over Hölder classes that are an explicit function of the
similarity ρh, and also established matching lower bounds over classes constrained in terms
of the similarity. We also discussed how the measure ρh is related to other characterizations
of covariate shift from past work, including likelihood ratio bounds and transfer exponents.
Our work shows that similarity measure ρh provides a more fine-grained characterization of
how covariate shift changes the difficulty of non-parametric regression.

Our work leaves open a number of open questions. First, our lower bounds for covariate
shift (cf. Theorem 2.2) are obtained within a global minimax framework, which involves
worst-case assessments over a certain function class. These lower bounds match our upper
bound on the NW estimator (cf. Theorem 2.1) for certain source-target pairs pP,Qq. But
the upper bound actually depends explicitly on the source-target pair. Is this upper bound
always optimal? Or are there instances of covariate shift for which Nadaraya-Watson is
suboptimal for some Hölder continuous function? In general, this question appears non-
trivial: even without the (interesting) complication of covariate shift, there are few results
that give distribution-dependent results for nonparametric regression outside of the uniform
distribution and fixed-design problems.

2.6 Elementary bound for binomial variables

In this section, we state and prove an elementary bound for binomial random variables, used
in the proof of Theorem 2.1.

Lemma 2.5. Let n,m be positive integers and p, q P p0, 1q. Suppose that U „ Binpn, pq and
V „ Binpm, qq. Then

E
” 1

U ` V
1tU ` V ą 0u

ı

ď
4

np ` mq
.

Proof. We begin by observing that conditionally on the event tU ` V ą 0u, we have the
lower bound

U ` V ě
U ` V ` 1

2
ě
U ` 1

2
_
V ` 1

2
.

These lower bounds allow us to write

E
” 1

U ` V
1tU ` V ą 0u

ı

ď E
2

U ` 1
^ E

2

V ` 1
ď

2

pnp _ mqq
ď

4

np ` mq
.

Here the penultimate inequality is a consequence of known results for binomial random
variables [25, equation (3.4)].
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Chapter 3

Failure of the Lasso under anisotropic
design

3.1 Introduction

In this chapter, we consider the standard linear regression model

y “ Xθ‹
` w, (3.1)

where θ‹ P Rd is the unknown parameter, X P Rnˆd is the design matrix, and w „ N p0, σ2Inq

denotes the stochastic noise. Such linear regression models are pervasive in statistical analy-
sis [72]. To improve model selection and estimation, it is often desirable to impose a sparsity
assumption on θ‹—for instance, we might assume that θ‹ has few nonzero entries or that it
has few large entries. This amounts to assuming that for some p P r0, 1s

}θ‹
}p ď R, (3.2)

where } ¨ }p denotes the ℓp vector (quasi)norm, and R ą 0 is the radius of the ℓp ball. There
has been a flurry of research on this sparse linear regression model (3.1)-(3.2) over the last
three decades; see the recent books [18, 57, 120, 37, 62] for an overview.

Comparatively less studied, is the effect of the design matrixX on the ability (or inability)
to estimate θ‹ under the sparsity assumption. Intuitively, when X is “close to singular”, we
would expect that certain directions of θ‹ would be difficult to estimate. Therefore, in this
section we seek to determine the optimal rate of estimation when the smallest singular value
of X is bounded. More precisely, we consider the following set of design matrices

Xn,dpBq –

!

X P Rnˆd :
1

n
XTX ě

1

B
Id

)

, (3.3)

and aim to characterize the corresponding minimax rate of estimation

Mn,dpp, σ,R,Bq – inf
pθ

sup
XPXn,dpBq

}θ‹}pďR

Ey„NpXθ‹,σ2Inq

”∥∥pθ ´ θ‹
∥∥2

2

ı

.
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3.1.1 A motivation from learning under covariate shift

We nowmake a connection between this section and the overall aim of this thesis—specifically,
a connection to covariate shift. Although it may seem a bit technical to focus on the de-
pendence of the estimation error on the smallest singular value of the design matrix X, we
would like to point out an additional motivation which is more practical and also motivates
our problem formulation. This is the problem of linear regression in a well-specified model
with covariate shift.

To begin with, recall that under random design, in the standard linear observational
model (i.e., without covariate shift) the statistician observes random covariate-label pairs of
the form px, yq. Here, the covariate x is drawn from a distribution Q and the label y satisfies

Ery | xs “ xJθ‹. The goal is to find an estimator pθ that minimizes the out-of-sample excess

risk, which takes the quadratic form Ex„Qrpppθ´θ‹qTxq2s. When the covariate distribution Q
is isotropic, meaning that Ex„QrxxJs “ I, the out-of-sample excess risk equals the squared

ℓ2 error }pθ ´ θ‹}22.
Under covariate shift, there is a slight twist to the standard linear regression model

previously described, where now the covariates x are drawn from a (source) distribution
P that differs from the (target) distribution Q under which we would like to deploy our
estimator. Assuming Q is isotropic, the goal is therefore still to minimize the out-of-sample
excess risk under Q, which is }θ‹ ´ pθ}22. In general, if P ‰ Q and no additional assumptions
are made, then learning with covariate shift is impossible in the sense that no estimator
can be consistent for the optimal parameter θ‹. It is therefore common (and necessary) to
impose some additional assumptions on the pair pP,Qq to facilitate learning. One popular
assumption relates to the likelihood ratio between the source-target pair. It is common to
assume that absolute continuity holds so that Q ! P and that the the likelihood ratio dQ

dP
is

uniformly bounded [77]. Interestingly, it is possible to show that if dQ
dP

pxq ď B for P -almost
every x, then the semidefinite inequality

Ex„P rxxJ
s ě

1

B
I (3.4)

holds [77, 121]. Comparing the inequality (3.4) to our class Xn,dpBq as defined in display (3.3),
we note that our setup can be regarded as a fixed-design variant of linear regression with
covariate shift [73, 36, 126].

3.1.2 Determining the minimax rate of estimation

We begin with one of our main results, which precisely characterizes the (order-wise) minimax
risk Mn,dpp, σ,R,Bq of estimating θ‹ under the sparsity constraint }θ‹}p ď R and over the
restricted design class Xn,dpBq.

Theorem 3.1. Let n ě d ě 1 and σ,R,B ą 0 be given, and put τ 2n – σ2B
R2n

. There exist two
universal constants cℓ, cu satisfying 0 ă cℓ ă cu ă 8 such that
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(a) if p P p0, 1s and τ 2n P rd´2{p, log´1
pedqs, then

cℓR
2
´

τ 2n log
`

edτ pn
˘

¯1´p{2

ď Mn,dpp, σ,R,Bq ď cuR
2
´

τ 2n log
`

edτ pn
˘

¯1´p{2

, and

(b) if p “ 0, we denote s “ R P rds, and have

cℓ
σ2B

n
s log

´

e
d

s

¯

ď Mn,dpp, σ, s, Bq ď cu
σ2B

n
s log

´

e
d

s

¯

.

The proof of Theorem 3.1 relies on a reduction to the Gaussian sequence model [62], and is
deferred to Section 3.3.1.

Several remarks on Theorem 3.1 are in order. The first observation is that Theorem 3.1
is sharp, apart from universal constants that do not depend on the tuple of problem param-
eters pp, n, d, σ, s, R,Bq.

Secondly, it is worth commenting on the sample size restrictions in Theorem 3.1. For all
p P r0, 1s, we have assumed the “low-dimensional” setup that the number of observations
n dominates the dimension d.1 Note that this is necessary for the class of designs Xn,dpBq

to be nonempty. On the other hand, for p ą 0 we additionally require that the sample size
is “moderate”, i.e., τ 2n P rd´2{p, log´1

pedqs. We make this assumption so that we can focus
on what we believe is the “interesting” regime: where neither ordinary least squares nor
constant estimators are optimal. Indeed, when n ě d but τ 2n ě log´1

pedq, it is easily verified
that the optimal rate of estimation is on the order R2; intuitively the effective noise level is
too high and no estimator can dominate pθ ” 0 uniformly. On the other hand, when n ě d
but τ 2n ď d´2{p, then the ordinary least squares estimator is minimax optimal; intuitively,
the noise level is sufficiently small such that there is, in the worst case, no need to shrink on
the basis of the ℓp constraint to achieve the optimal rate.

Last but not least, as shown in Theorem 3.1, the optimal rate of estimation depends on
the signal-to-noise ratio τ´2

n “ nR2{pσ2Bq. As B increases, the design X becomes closer to
singular, estimation of θ‹, as expected, becomes more challenging. The dependence of our
result on B is exactly analagous to the impact of the likelihood ratio bound B appearing in
the context of prior work on nonparametric regression under covariate shift [77].

3.1.3 A computationally efficient estimator

The optimal estimator underlying the proof of Theorem 3.1 requires computing a d-dimensional
Gaussian integral, and therefore is not computationally efficient in general. In this section
we propose an estimator that is both computationally efficient and statistically optimal, up
to constant factors.

Our procedure is based on the soft thresholding operator: for v P Rd and η ą 0, we
define

Sηpvq – argmin
uPRd

!

}u ´ v}
2
2 ` 2η}u}1

)

.

1Notably, this still allows n to be proportional to d, e.g., we can tolerate n “ d.
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Note that soft thresholding involves a coordinate-separable optimization problem and has
an explicit representation, thus allowing efficient computation. Then we define the soft
thresholded ordinary least squares estimator

pθSTOLS
η pX, yq – Sη

´

pθOLS
pX, yq

¯

, (3.5)

where pθOLSpX, yq is the usual ordinary least squares estimate—equal to pXTXq´1XTy in our
case. We have the following guarantees for its performance.

Theorem 3.2. The soft thresholded ordinary least squares estimator (3.5) satisfies

(a) in the case p P p0, 1s, for any R ą 0, if τ 2n P rd´2{p, log´1
pedqs, then

sup
XPXn,dpBq

sup
}θ‹}pďR

E
”

}pθSTOLS
η pX, yq ´ θ‹

}
2
2

ı

ď 6R2
´

τ 2n logpedτ pnq

¯1´p{2

,

with the choice η “
a

2R2τ 2n logpedτ pnq, and

(b) in the case p “ 0, for any s P rds,

sup
XPXn,dpBq

sup
}θ‹}0ďs

E
”

}pθSTOLS
η pX, yq ´ θ‹

}
2
2

ı

ď 6
σ2B

n
s log

´

e
d

s

¯

,

with the choice η “

b

2σ2B
n

logp ed
s

q.

The proof is presented in Section 3.3.2.
Comparing the guarantee in Theorem 3.2 to the minimax rate in Theorem 3.1, it is

immediate to see that the soft thresholded ordinary least squares estimator is minimax
optimal apart from constant factors.

Secondly, we would like to point out a (simple) modification to the soft thresholding
ordinary least squares procedure that allows it to be adaptive to the hardness of the particular
design matrix encountered. To achieve this, note that X P Xn,dp pBq for pB – ~pXTXq´1~op.
Therefore the results in Theorem 3.2 continue to hold with B replaced by (a possibly smaller)
pB, provided that the thresholding parameter η is properly adjusted. For instance, in the
case with p “ 0, we have

sup
}θ‹}0ďs

E
”

}pθSTOLS
pη pX, yq ´ θ‹

}
2
2

ı

ď 6
σ2

pB

n
s log

´

e
d

s

¯

,

provided we take pη “

b

2σ2
pB

n
logp ed

s
q.
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Finally, we note that inspecting our proof, the upper bound for pθSTOLS
pη pX, yq also holds

for a larger set of design matrices

X
diag
n,d pBq –

!

X P Rnˆd :

ˆ

1

n
XTX

˙´1

ii

ď B, for 1 ď i ď d
)

.

Since Xn,dpBq Ă X
diag
n,d pBq, this means after combining the lower bounds in Theorem 3.1 with

the guarantees in Theorem 3.2, we additionally have established the minimax rate over this
larger family X

diag
n,d pBq.

3.1.4 Is Lasso optimal?

Arguably, the Lasso estimator [114] is the most widely used estimator for sparse linear
regression. Given a regularization parameter λ ą 0, the Lasso is defined to be

pθλpX, yq – argmin
ϑPRd

! 1

n
∥Xϑ ´ y∥22 ` 2λ∥ϑ∥1

)

. (3.6)

Surprisingly, we show that the Lasso estimator—despite its popularity—is provably subop-
timal for estimating θ‹ when B " 1.

Corollary 3.1. The Lasso is minimax suboptimal by polynomial factors in the sample size
when d “ n and B “

?
n. More precisely,

(a) if p P p0, 1s, and σ “ R “ 1, then we have

sup
XPXn,dpBq

sup
}θ‹}pďR

E
”

inf
λą0

}pθλpX, yq ´ θ‹
}
2
2

ı

Á 1, and

(b) if p “ 0, and σ “ s “ 1, then we have

sup
XPXn,dpBq

sup
}θ‹}0ďs

E
”

inf
λą0

}pθλpX, yq ´ θ‹
}
2
2

ı

Á 1.

Corollary 3.1 is in fact a special case of a more general theorem (Theorem 3.3) to be provided
later.

Applying Theorem 3.1 to the regime considered in Corollary 3.1, we obtain the optimal
rate of estimation

´

?
1 ` log n

n1{4

¯2´p

! 1, for every p P r0, 1s.

As shown, in the worst-case, the multiplicative gap between the performance of the Lasso
and a minimax optimal estimator in this scaling regime is at least polynomial in the sample
size. As a result, the Lasso is quite strikingly minimax suboptimal in this scaling regime.
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In fact, the lower bound against Lasso in Corollary 3.1 is extremely strong. Note
that in the lower bound, the Lasso is even allowed to leverage the oracle information θ‹

to calculate the optimal instance-dependent choice of the regularization parameter (c.f.,

infλą0 }pθλpX, yq ´ θ‹}22). As a result, the lower bound applies to any estimator which can
be written as the penalized Lasso estimator with data-dependent choice of penalty. Many
typical Lasso-based estimators, such as the norm-constrained and cross-validated Lasso, can
be written as the penalized Lasso with a data-dependent choice of the penalty parameter
λ. For instance, in the case of the norm-constrained Lasso, this holds by convex duality.
Thus, we can rule out the minimax optimality of any procedure of this type, in light of
Corollary 3.1.

The separation between the oracle Lasso and the minimax optimal estimator can also be
demonstrated in experiments, as shown below in Figure 3.1.
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Figure 3.1. Numerical simulation demonstrating suboptimality of the Lasso, with the
oracle choice of regularization pλ P argminλą0 }pθλpX, yq ´ θ‹}22 versus the soft thresholded
ordinary least squares (STOLS) procedure as defined in display (3.5). We have simulated
the lower bound instance from Corollary 3.1; for each sample size n, we simulate oracle
Lasso and STOLS on a pair pXn, θ

‹
nq, with the dimension d “ n and lower singular value

bound B “
?
n. Further details on the simulation are provided in Section 3.4.2.

3.1.5 Connections to prior work

In this section, we draw connections and comparisons between our work and existing litera-
ture.

Linear regression with elliptical or no constraints. Without any parameter restric-
tions, the exact minimax rate for linear regression when error is measured in the ℓ2 norm
along with the dependence on the design matrix is known: it is given by σ2TrppXJXq´1q [72].
These results match our intuition that as the smallest singular value ofX decreases, the hard-
ness of estimating θ‹ increases. It is also worth mentioning that the design matrix does not
play a role, apart from being invertible, in determining the optimal rate for the in-sample
prediction error. The rate is given uniformly by σ2d

n
when n ě d [58].
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On the other hand, with ℓ2- or elliptical parameter constraints the minimax rate in
both fixed and random design was established in the recent paper [95]. Although that
work shows the dependence on the design, the rate is not explicit and the achievable result
requires potentially solving a semidefinite program. More explicit results were previously
derived under proportional asymptotics in the paper [31], in the restricted setting of Gaussian
isotropic random design. The author is able to establish the asymptotic minimaxity of a
particular ridge regression estimator. These type of results are not immediately useful for our
work, since they are based on linear shrinkage procedures which are known to be minimax-
suboptimal even in orthogonal design, in the ℓp setting for p ă 2 [33].

Gaussian sequence model and sparse linear regression. In the case of orthogonal
design, i.e., when 1

n
XTX “ Id, the minimax risk of estimating sparse θ‹ is known; see [33].

It can also be shown that Lasso, with optimally-tuned parameter, can achieve the (order-
wise) optimal estimation rate [62]. This roughly corresponds to the case with B “ 1 in our
consideration. Our work generalizes this line of research in the sense that we characterize
the optimal rate of estimation over the larger family of design matrices 1

n
XTX ě 1

B
Id. In

stark contrast to the Gaussian sequence model, Lasso is no longer optimal, even with the
oracle knowledge of the true parameter.

Without assuming an orthogonal design, [20] provides a design-dependent lower bound
in the exact sparsity case (i.e., p “ 0). The lower bound depends on the design through
its Frobenius norm }X}2F. Similarly, in the weak sparsity case, [99] provides lower bounds
depending on the maximum column norm of the design matrix. However, matching upper
bounds are not provided in this general design case. In contrast, using the minimum singular
value of X (c.f., the parameter B) allows us to obtain matching upper and lower bounds in
sparse regression.

Suboptimality of Lasso. The suboptimality of Lasso for minimizing the prediction error
has been noted in the case of exact sparsity (i.e., p “ 0). To our knowledge, previous
studies required a carefully chosen design matrix which was highly-correlated. For instance,
it was shown that for certain highly-correlated designs the Lasso can achieve only a slow rate
p1{

?
nq, while information-theoretically, the optimal rate is faster (1{n); see for instance the

papers [117, 65]. Additionally in the paper [21], the authors exhibit the failure of Lasso for
a fixed regularization parameter, which does not necessarily rule out the optimality of other
Lasso variants. Similarly, in the paper [39], it is shown via a correlated design matrix and
a 2-sparse vector, that the norm-constrained version of Lasso can only achieve a slow rate
in terms of the prediction error. Again, this result does not rule out the optimality of other
variants of the Lasso. In addition, in the paper [30], there is an example for which Lasso with
any fixed (i.e., independent from the observed data) choice of regularization would fail to
achieve the optimal rate. Again, this fails to rule out data-dependent choices of regularization
or other variants of the Lasso. In our work, we are able to rule out the optimality of the
Lasso by considering a simple diagonal design matrix which exhibits no correlations among
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the columns. Nonetheless, for any p P r0, 1s, we show that the Lasso will fall short of
optimality by polynomial factors in the sample size. Our result also simultaneously rules out
the optimality of constrained, penalized, and even data-dependent variants of the Lasso, in
contrast to the literature described above.

Covariate shift. As mentioned previously, our work is also related to linear regression
under covariate shift [73, 126, 36]. The statistical analysis of covariate shift, albeit with
an asymptotic nature, dates back to the seminal work by Shimodaira [105]. Recently,
nonasymptotic minimax analysis of covariate shift has gained much attention in uncon-
strained parametric models [44], nonparametric classification [69], and also nonparametric
regression [94, 77, 121].

3.2 A closer look at the failure mode of Lasso

In this section, we take a closer look at the failure instance for Lasso. We will investigate
the performance of the Lasso on diagonal design matrices Xα P Rnˆd which satisfy, when
d “ 2k,

1

n
XT

αXα “

ˆ

α
B
Ik 0
0 1

B
Ik

˙

.

Thus, this matrix has condition number α and satisfies Xα P Xn,dpBq for all α ě 1. As our
proof of Theorem 3.1 reveals, from an information-theoretic perspective, the hardest design
matrix Xα is with the choice α “ 1: when all directions have the worst possible signal-to-
noise ratio. Strikingly, this is not the case for the Lasso: there are in fact choices of α " 1
which are even harder for the Lasso.

Theorem 3.3. Fix n ě d ě 2 and let σ,B ą 0 be given. For α ě 1, on the diagonal design
Xα,

(a) if p P p0, 1s and R ą 0, then there is a vector θ‹ P Rd such that }θ‹}p ď R but

Ey„NpXαθ‹,σ2Inq

”

inf
λą0

}pθλpXα, yq´θ‹
}
2
2

ı

ě
9

20000

´σ2Bd

nα
^R2

´σ2B

R2n
α
¯1´p{2

^R2
¯

, and

(b) if p “ 0 and s P rds, then there is a vector θ‹ P Rd which is s-sparse but

Ey„NpXαθ‹,σ2Inq

”

inf
λą0

}pθλpXα, yq ´ θ‹
}
2
2

ı

ě
9

20000

´σ2Bd

nα
^
σ2Bs

n
α
¯

.

The proof of Theorem 3.3 is presented in Section 3.3.3. We now make several comments on
the implications of this result.
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We emphasize that the dependence of the Lasso on the parameter α, which governs the
condition number of the matrix Xα, is suboptimal, as revealed by Theorem 3.3. At a high-
level, large α should only make the ability to estimate θ‹ easier—it effectively increases
the signal-to-noise ratio in certain directions. This can also be seen from Theorem 3.1: the
conditioning of the design matrix does not enter into the worst-case rate of estimation when
the bottom signular value of X is bounded. Nonetheless, Theorem 3.3 shows that the Lasso
actually can suffer when the condition number α is large.

Proof of Corollary 3.1. We now complete the proof of Corollary 3.1 given Theorem 3.3.
Maximizing over the parameter α ě 1 appearing in our result, we can determine a

particularly nasty configuration of the conditioning of the design matrix for the Lasso. Doing
so, we find that for p P p0, 1s and R ą 0 that

sup
XPXn,dpBq

sup
}θ‹}pďR

E
”

inf
λą0

}pθλpX, yq ´ θ‹
}
2
2

ı

Á R2

ˆ

´σ2B
?
d

R2n

¯

4´2p
4´p

^ 1

˙

.

This is exhibited by considering the lower bound in Theorem 3.3 with the choice α‹ppq “

pτ 2nd
2{pqp{p4´pq. On the other hand, if p “ 0, we have for s P rds that

sup
XPXn,dpBq

sup
}θ‹}0ďs

E
”

inf
λą0

}pθλpX, yq ´ θ‹
}
2
2

ı

Á
σ2B

n

?
sd

The righthand side above is exhibited by considering the lower bound with the choice α‹p0q “
a

d{s.
The proof is completed by setting d “ n, B “

?
n, and σ “ R “ 1.

3.3 Proofs

In this section, we present the proofs for the main results of this section. We start with
introducing a few useful notations. For a positive integer k, we define rks – t1, . . . , ku. For
a real number x, we define txu to be the largest integer less than or equal to x and txu to be
the fractional part of x.

3.3.1 Proof of Theorem 3.1

Our proof is based on a decision-theoretic reduction to the Gaussian sequence model. It
holds in far greater generality, and so we actually prove a more general claim which could
be of interest to other linear regression problems on other parameter spaces or with other
loss functions.
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To develop the claim, we first need to introduce notation. Let Θ Ă Rd denote a parameter
space, and let ℓ : Θ ˆ Rd Ñ R be a given loss function. We define two minimax rates,

MseqpΘ, ℓ, νq – inf
pµ

sup
µ‹PΘ

Ey„Npµ‹,ν2Idq

”

ℓ
`

µ‹, pµpyq
˘

ı

, and (3.7a)

MregpΘ, ℓ, σ, B, nq – inf
pθ

sup
XPXn,dpBq

sup
θ‹PΘ

Ey„NpXθ‹,σ2Inq E
”

ℓ
`

θ‹, pθpX, yq
˘

ı

. (3.7b)

The definitions above correspond to the minimax rates of estimation over the ℓp ball of
radius R ą 0 in Rd for the Gaussian sequence model, in the case of definition (3.7a), and
for n-sample linear regression with B-bounded design, in the case of definition (3.7b). The
infima range over measurable functions of the observation vector y, in both cases.

The main result we need is the following statistical reduction from linear regression to
mean estimation in the Gaussian sequence model.

Proposition 3.1 (Reduction to sequence model). Fix n, d ě 1 and σ,B ą 0. Let Θ Ă Rd,
and ℓ : Θ ˆ Rd Ñ R be given. If ℓpθ, ¨q : Rd Ñ R is a convex function for each θ P Θ, then

MregpΘ, ℓ, σ, B, nq “ Mseq

ˆ

Θ, ℓ,

c

σ2B

n

˙

.

Deferring the proof of Proposition 3.1 to Section 3.3.1.1 for the moment, we note that it
immediately implies Theorem 3.1. Indeed, we set Θ “ Θd,ppRq and ℓ “ ℓsq where

Θd,ppRq – tθ P Rd : }θ}p ď Ru, and ℓsqpθ, pθq “ }pθ ´ θ}
2
2.

With these choices, we obtain

Mn,dpp, σ,R,Bq “ MregpΘd,ppRq, ℓsq, σ, B, nq “ Mseq

ˆ

Θd,p, ℓsq,

c

σ2B

n

˙

,

where the final equality follows from Proposition 3.1. The righthand side then corresponds
to estimation in the ℓ2 norm over the Guassian sequence model with parameter space corre-
sponding to an ℓp ball in Rd, which is a well-studied problem [33, 12, 62]; we thus immedi-
ately obtain the result via classical results (for a precise statement with explicit constants,
see Propositions 3.2 and 3.3 presented in Section 3.4.1).
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3.3.1.1 Proof of Proposition 3.1

We begin by lower bounding the regression minimax risk by the sequence model minimax
risk. Indeed, let X‹ be such that 1

n
XT

‹X‹ “ 1
B
Id. Then we have

MregpΘ, ℓ, σ, B, nq ě inf
pθ
sup
θ‹PΘ

Ey„NpX‹θ‹,σ2Inq

”

ℓ
`

θ‹, pθ
˘

ı

ě inf
pθ
sup
θ‹PΘ

E
z„N

ˆ

θ‹,
σ2B
n

Id

˙

”

ℓ
`

θ‹, pθ
˘

ı

“ Mseq

ˆ

Θ, ℓsq,

c

σ2B

n

˙

.

The penultimate equality follows by noting that in the regression model, PX‹
– tN pX‹θ, σ

2Idq :
θ P Θu, the ordinary least squares (OLS) estimate is a sufficient statistic. Therefore, by the
Rao-Blackwell Theorem, there exists a minimax optimal estimator which is only a function
of the OLS estimate. For any θ‹, the ordinary least squares estimator has the distribution,

N
´

θ‹, σ
2B
n
Id

¯

, which provides this equality.

We now turn to the upper bound. Let pθOLSpX, yq “ pXTXq´1XTy denote the ordinary
least squares estimate. For any estimator pµ, we define

rθpX, yq – Eξ„Np0,W q

”

pµ
`

pθOLS
pX, yq ` ξ

˘

ı

, where W “
σ2B

n
Id ´ σ2

pXTXq
´1.

Note that for any X P Xn,dpBq, we have W ě 0. Additionally, by Jensen’s inequality, for
any X P Xn,dpBq, and any θ‹ P Θ,

Ey„NpXθ‹,σ2Inq

”

ℓ
`

θ‹, rθpX, yq
˘

ı

ď Ey„NpXθ‹,σ2Inq Eξ„Np0,W q

”

ℓ
`

θ‹, pµ
`

pθOLS
pX, yq ` ξ

˘˘

ı

“ E
z„N

ˆ

θ‹,
σ2B
n

Id

˙

”

ℓ
`

θ‹, pµpzq
˘

ı

Passing to the supremum over θ‹ P Θ on each side and then taking the infimum over mea-
surable estimators, we immediately see that the above display implies

MregpΘ, ℓ, σ, B, nq ď Mseq

ˆ

Θ, ℓ,

c

σ2B

n

˙

,

as needed.

3.3.2 Proof of Theorem 3.2

We begin by bounding the risk for soft thresholding procedures, based on a rescaling and
monotonicity argument and applying results from [62]. To state it, we need to define the
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quantitites

pν‹
nq

2 –
σ2B

n
and ρnpθ, ηq – d pν‹

nq
2e´pη{ν‹

nq2{2
`

d
ÿ

i“1

θ2i ^ pν‹
nq

2
`

d
ÿ

i“1

θ2i ^ η2.

Then we have the following risk bound.

Lemma 3.1. For any θ‹ P Rd and any η ą 0 we have

sup
XPXn,dpBq

E
”

∥pθSTOLS
η pX, yq ´ θ‹∥22

ı

ď ρnpθ‹, ηq.

We now define for ζ ą 0 and a subset Θ Ă Rd,

T pζ,Θq – sup
θ‹PΘ

d
ÿ

i“1

pθ‹
i q

2
^ ζ2.

Lemma 3.1 then yields with the choice η “ γν‹
n for some γ ě 1 that

sup
θ‹PΘ

sup
XPXn,dpBq

E
”

∥pθSTOLS
η pX, yq ´ θ‹∥22

ı

ď 3

„

dpν‹
nq

2e´γ2{2
_ T pγν‹

n,Θq

ȷ

. (3.8)

We bound the map T for the ℓp balls of interest. To state the bound, we use the shorthand
Θp for the radius-R ℓp ball in Rd centered at the origin for p ‰ 0, and for p “ 0, the set of
s-sparse vectors in Rd, for s P rds.

Lemma 3.2. Let d ě 1 be fixed. We have the following relations:

(a) in the case p P p0, 1s, we have for any ζ ą 0,

T pζ,Θpq ď R2

„

´ ζ

R

¯2

d ^

´ ζ

R

¯2´p

^ 1

ȷ

for any R ą 0, and

(b) in the case p “ 0, we have for any ζ ą 0,

T pζ,Θpq “ ζ2s,

for any s P rds.

To complete the argument, we now split into the two cases of hard and weak sparsity.

When p “ 0: Combining inequality (3.8) together with Lemma 3.2, we find for η “ γν‹
n,

γ ě 1, that

sup
θ‹PΘ

sup
XPXn,dpBq

E
”

∥pθSTOLS
η pX, yq ´ θ‹∥22

ı

ď 3pν‹
nq

2
”

de´γ2{2
_ γ2s

ı

“ 6pν‹
nq

2s log
´

e
d

s

¯

,

where the last equality holds with γ2 “ 2 logped{sq.
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When p P p0, 1s : Combining inequality (3.8) together with Lemma 3.2, we find for η “

γν‹
n, γ ě 1

sup
θ‹PΘ

sup
XPXn,dpBq

E
”

∥pθSTOLS
η pX, yq ´ θ‹∥22

ı

ď 3R2

„

dτ 2ne
´γ2{2

_

´

γ2´pτ 2´p
n ^ 1

¯

ȷ

(3.9)

Above, we used τ 2nR
2 “ pν‹

nq2 and γ2τ 2nd ě γ2´pτ 2´p
n , which holds since γ ě 1 and τ 2n ě d´2{p.

If we take γ2 “ 2 logpedτ pnq, then note γ2 ě 1 by τ 2n ě d´2{p and the term in brackets in
inequality (3.9) satisfies

dτ 2ne
´γ2{2

_

´

γ2´pτ 2´p
n ^ 1

¯

“
τ 2´p
n

e
_

´

p2τ 2n logpedτ pnqq
1´p{2

^ 1
¯

ď 2

„

τ 2´p
n _

´

pτ 2n logpedτ pnqq
1´p{2

^ 1
¯

ȷ

“ 2pτ 2n logpedτ pnqq
1´p{2,

which follows by τ 2n P rd´2{p, log´1
pedqs.

Thus, to complete the proof of Theorem 3.2 we only need to provide the proofs of the
lemmas used above.

3.3.2.1 Proof of Lemma 3.1

Note that if z “ pθOLSpX, yq then pθSTOLS
η pX, yq “ Sηpzq “ Sηpθ

‹ ` ξq where ξ „ N
´

0, σ
2

n
Σ´1

n

¯

,

where we recall Σn – p1{nqXTX. We now recall some classical results regarding the soft
thresholding estimator. Let us write for λ ą 0 and µ P R,

rSpλ, µq – Ey„Npµ,1q

”

`

Sλpyq ´ µ
˘2
ı

, and,

rrSpλ, µq – e´λ2{2
`

´

1 ^ µ2
¯

`

´

λ2 ^ µ2
¯

.

Using pa` bq ^ c ď a^ c` b^ c for nonnegative a, b, c ě 0, Lemma 8.3 and the inequalities
rSpλ, 0q ď 1 ` λ2 and rSpλ, 0q ď e´λ2{2 on page 219 of the monograph [62], we find that

rSpλ, µq ď rrSpλ, µq. Define ν2i – σ2

n
pΣ´1

n qii. Using the fact that pSηpzqqi “ S η
νi

´

zi
νi

¯

for i P rds,

we obtain

ErppSηpzqqi ´ θ‹
i q

2
s “ ν2i rS

´ η

νi
,
θ‹
i

νi

¯

ď ν2i rrS

´ η

νi
,
θ‹
i

νi

¯

.

Summing over the coordinates yields

E
”

∥pθSTOLS
η pX, yq ´ θ‹∥22

ı

ď

d
ÿ

i“1

ν2i rrS

´ η

νi
,
θ‹
i

νi

¯

“

d
ÿ

i“1

ν2i e
´pη{νiq

2{2
`
`

pθ‹
i q

2
^ ν2i

˘

`
`

pθ‹
i q

2
^ η2

˘

ď ρnpθ‹, ηq,
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where the last inequality follows by noting that both ν ÞÑ ν2e´pη{νq2{2 and ν ÞÑ θ2 ^ ν2 are
nondecreasing functions of ν ą 0. Noting that this inequality holds uniformly onX P Xn,dpBq

and passing to the supremum yields the claim.

3.3.2.2 Proof of Lemma 3.2

The proof of claim (b) is immediate, so we focus on the case p P p0, 1s, R ą 0. We consider
three cases for the tuple pR, ζ, p, dq. Combination of all three cases will yield the claim.

When R ě ζd1{p: Evidently, for each θ such that }θ}p ď R, we have

d
ÿ

i“1

θ2i ^ ζ2 ď ζ2d.

When R ď ζ: This case is immediate, since θ P Θp implies }θ}2 ď }θ}p ď R ď ζ.

When ζ ď R ď ζd1{p: In this case, by rescaling and putting ε –
ζ2

R2 , we have

sup
}θ}pďR

d
ÿ

i“1

θ2i ^ ζ2 “ R2

„

sup
λP∆d

ÿ

i:λiěεp{2

ε `
ÿ

i:λiăεp{2

λ
2{p
i

ȷ

“ εR2
´

X

ε´p{2
\

` tε´p{2
u
2{p
¯

where above ∆d denotes the probability simplex in Rd. Noting that ε ď 1 and p ď 1 we
have

´

X

ε´p{2
\

` tε´p{2
u
2{p
¯

ď ε´p{2,

which in combination with the previous display shows that

sup
}θ}pďR

d
ÿ

i“1

θ2i ^ ζ2 ď R2ε1´p{2.

To conclude, now note that R2ε1´p{2 “ Rpζ2´p.

3.3.3 Proof of Theorem 3.3

Since Xα has nonzero entries only on the diagonal, we can derive an explicit representation
of the Lasso estimate, as defined in display (3.6). To develop this, we first recall the notion
of the soft thresholding operator, which is defined by a parameter η ą 0 and then satisfies

Sηpvq – argmin
uPR

!

pu ´ vq
2

` 2η|u|

)

.
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We then start by stating the following lemma which is crucial for our analysis. It is a
straightforward consequence of the observation that

pθλpXα, yqi “

#

SλB{αpziq 1 ď i ď k

SλBpziq k ` 1 ď i ď d
,

where we have defined the independent random variables zi „ N
´

θ‹
i ,

σ2B
nα

¯

if i ď k and

zi „ N
´

θ‹
i ,

σ2B
n

¯

otherwise.

Lemma 3.3. Let θ‹ P Rd. Then for the design matrix Xα, we have

}pθλpXα, yq ´ θ‹
}
2
2 “

k
ÿ

i“1

´

SλB{αpziq ´ θ‹
i

¯2

`

d
ÿ

i“k`1

´

SλBpziq ´ θ‹
i

¯2

.

We will now focus on vectors θ‹pηq “ p0k, η, 0d´2kq, which are parameterized by η P Rk.
For these vectors, we can further lower bound the best risk as

inf
λą0

}pθλpXα, yq ´ θ‹
pηq}

2
2 ě T1 ^ T2pηq

where we have defined

λ “

c

σ2

n

α

B
, T1 – inf

λďλ

k
ÿ

i“1

´

SλB{αpziq
¯2

and T2pηq – inf
λěλ

2k
ÿ

i“k`1

´

SλBpziq ´ ηi

¯2

.

We now move to lower bound T1 and T2pηq by auxiliary, independent random variables.

Lemma 3.4 (Lower bound on T1). Then, for any η P Rk if θ‹ “ θ‹pηq, we have

T1 ě
1

4

σ2B

nα
Z where Z –

k
ÿ

i“1

1
!

|zi|?
σ2B{pnαq

ě 3{2
)

.

Lemma 3.5 (Lower bound on T2pηq). Fix η P Rk if θ‹ “ θ‹pηq, and suppose that

0 ď ηi ď 2

c

σ2Bα

n
for all i P rks.

Then, we have

T2pηq ě
1

4

k
ÿ

i“1

η2iWi where Wi – 1tzk`i ď ηiu

Note that Z is distributed as a Binomial random variable: Z „ Binpk, pq where p –

Pt|N p0, 1q| ě 3{2u. Similarly, Wi are Bernoulli: we have Wi „ Ber p1{2q.



CHAPTER 3. FAILURE OF THE LASSO 84

Lower bound for p ą 0: We consider two choices of η. First suppose that 4τ 2nα ď 1.
Then, we will consider η “ Rδ1ℓ where

δ – 2τn
?
α and ℓ – k ^

X

δ´p
\

For this choice of η we have by assumption that τ 2n ě d´2{p that ℓ ě p1{2qδ´p and so

T2pηq ě
1

4
R2δ2ℓWℓ ě

R2

8
δ2´pWℓ ě

R2

8

´

τ 2nα
¯1´p{2

Wℓ

Above, Wℓ – p1{ℓq
řℓ

i“1Wi. On the other hand, if 4τ 2nα ě 1, we take η1 “ Re1, and we
consequently obtain

T2pη
1
q ě

R2

4
W1

Taking δ “ 1{2 in Lemma 3.4, let us define

c1 – min
1ďℓďk

P
!

Wℓ ě
1

2

)

and c2 – P
!

Z ě kp
)

.

Let us take

θ‹
α –

#

θ‹pηq 4τ 2nα ď 1

θ‹pη1q 4τ 2nα ą 1
.

Then combining Lemmas 3.4 and 3.5 and the lower bounds on T2pηq, T2pη1q above, we see
that

Ey„NpXαθ‹
α,σ

2Inq

”

inf
λą0

}pθλpXα, yq ´ θ‹
α}

2
2

ı

ě
c2c1p

16

´σ2Bd

nα
^ R2

´σ2B

R2n
α
¯1´p{2

^ R2
¯

(3.10)

where above we have used k ě d{4.

Lower bound when p “ 0: In this case, we let s1 “ s ^ k. Note that s1 ě s{4. We then

set η “ 2
b

σ2Bα
n

1s1 , and this yields the lower bound

T2pηq ě
1

8

σ2Bs

n
αWs1

In this case, we have, after combining this bound with the bound on T1 that for θ‹
α – θ‹pηq

as defined above,

Ey„NpXαθ‹
α,σ

2Inq

”

inf
λą0

}pθλpXα, yq ´ θ‹
α}

2
2

ı

ě
c2c1p

16

´σ2Bd

nα
^
σ2Bs

n
α
¯

(3.11)

The proof of Theorem 3.3 is complete after combining inequalities (3.10) (3.11), and the
following lemma.

Lemma 3.6. The constant factor c –
c1c2p
16

is lower bounded as c ě 9
20000

.

We conclude this section by proving the lemmas above.
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3.3.3.1 Proof of Lemma 3.4

For the first term, T1, we note that for any λ ď λ we evidently have for each i P rks and for
any ζ ą 0, that

´

SλB{αpziq
¯2

“ p|zi| ´ λB{αq
2
` ě p|zi| ´ λB{αq

2
` ě ζ2

σ2B

nα
1
!

|zi|?
σ2B{pnαq

ě 1 ` ζ
)

Summing over i P rks, and taking ζ “ 1{2, we thus obtain the claimed almost sure lower
bound.

3.3.3.2 Proof of Lemma 3.5

Fix any i such that 1 ď i ď k. For any fixed λ ě λ, note

SλBpzk`iq R rηi{2, 3ηi{2s implies
ˇ

ˇ

ˇ
SλBpzk`iq ´ ηi

ˇ

ˇ

ˇ
ě
ηi
2
.

Note that the condition SλBpzk`iq R rηi{2, 3ηi{2s is equivalent to zk`i R rηi{2`λB, 3ηi{2`λBs,
Therefore, if zk`i ď ηi{2 ` λB, then then for all λ ě λ we have |SλBpzk`iq ´ ηi| ě

ηi
2
.

Equivalently, we have that

T2 ě
1

4

k
ÿ

i“1

η2i 1tzk`i ď ηi{2 ` λBu ě
1

4

k
ÿ

i“1

η2i 1tzk`i ď ηiu

The final relation uses the distribution of zk`i and

´ηi{2 ` λB
a

σ2B{n
“

?
α ´

1

2

?
α

c

nη2i
ασ2B

ě 0

which holds by assumption that η2i ď 4σ2B
n
α.

3.3.3.3 Proof of Lemma 3.6

Evidently c1 ě 1{2 by symmetry. On the other hand, since p ď 1{2, we have by anticoncen-
tration results for Binomial random variables [51, Theorem 6.4] that c2 ě p. Therefore all
together, c ě p2{32. Note that by standard lower bounds for the Gaussian tail [35, Theorem
1.2.6], we have

p ě
10

27
e´9{8

ě
3

25
,

which provides our claimed bound.
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3.4 Deferred results

3.4.1 Results in the Gaussian sequence model

In this section, we collect classical results regarding the nonasymptotic minimax rate of
estimation for Gaussian sequence model over the origin-centered ℓp balls, p P r0, 1s. All of
the results in this section are based on the monograph [62]. We use the following notation
to specify the minimax rate of interest,

M

´

p, d, R, ε
¯

– inf
pµ

sup
µ‹PRd

}µ‹}pďR

Ey„Npµ‹,ε2q

”

∥pµpyq ´ µ‹∥22
ı

.

As usual, the infimum ranges over measurable estimators from the observation vector y P Rd

to an estimate pµpyq P Rd. Throughout, we use the notation τ – ε
R
for the inverse signal-to-

noise ratio.

Proposition 3.2 (Minimax rate of estimation when 0 ă p ď 1). Fix an integer d ě 1. Let
p P p0, 1s. If R, ε ą 0 satisfy

1

d2{p
ď τ 2 ď

1

1 ` log d
, where τ “

ε

R
,

then
7

2000
R2

pτ 2 logpedτ pqq
1´p{2

ď Mpp, d, R, εq ď 1203R2
pτ 2 logpedτ pqq

1´p{2.

The upper and lower bounds are taken from Theorem 11.7 in the monograph [62]. Al-
though the constants are not made explicit in their theorem statement, the upper bound
constant is obtained via their Theorem 11.4, setting their parameters as ζ “ 23

4
, γ “ 2e, β “ 0.

Similarly, the lower bound constant is implicit in their proof of Theorem 11.7.
We now turn to the minimax rate in the special case that p “ 0.

Proposition 3.3 (Minimax rate of estimation when p “ 0). Suppose that d ě 1 and s P rds.
Then for any ε ą 0 we have

3

500
ε2 s log

´

e
d

s

¯

ď Mpp, d, s, εq ď 2 ε2 s log
´

e
d

s

¯

,

provided that p “ 0.

The proof of the above claim is omitted as it is a straightforward combination of the
standard minimax rate ε2k for the unconstrained Normal location model in a k-dimensional
problem (this provides a useful lower bound when s ě d{2 or when d “ 1) and the result in
Proposition 8.20 in the monograph [62].
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3.4.2 Details for experiments in Figure 3.1

For each choice of p, we simulate the oracle Lasso and STOLS procedures on instances
pXn, θ

‹
nq indexed by the sample size n P t1000, 2000, 3000, 5000, 10000, 15000u. The matrix

Xn P Rnˆn is block diagonal and given by

1
?
n
Xn “

ˆ

In{2ˆn{2 0
0 n´1{4In{2ˆn{2

˙

,

When p “ 0, θ‹
n “ 2en{2`1 and when p ‰ 0, θ‹

n “ en{2`1. In the figures, we are plotting the
average performance of the oracle Lasso and STOLS procedures, as measured by ℓ2 error,
when applied to the data pXn, yq, where y „ N pXnθ

‹
n, Inq. The average is taken over 1000

trials for n ă 10, 000. In the case n ě 10, 000 due to memory constraints we only run 300
trials.

The STOLS procedure is implemented as described in Section 3.1.3. On the other hand,
the oracle Lasso procedure is implemented by a slightly more involved procedure. Our goal
is to compute

pθ
pλpX, yq where pλ P argmin

λą0
}pθλpX, yq ´ θ‹

}
2
2,

where the Lasso is defined as in display (3.6). To do this, we can use the fact that the Lasso
regularization path is piecewise linear. That is, there exist knot points 0 “ λ0 ă λ1 ă λ2 ă

¨ ¨ ¨ ă λm such that the knot points pθi – pθλi
pX, yq satisfy }θi}0 ą }θi`1}0. Moreover, we have

tpθλpX, yq : λ P pλi, λi`1qu “ tpθi ` αppθi`1 ´ pθiq : α P p0, 1qu.

That is, we can compute the set of Lasso solutions between the knot points by taking all
convex combinations of knot points. Therefore the distance between the oracle Lasso solution
and the true parameter θ‹ satisfies,

}pθ
pλpX, yq ´ θ‹

}
2
2 “ min

i
min
αPr0,1s

}pθi ` αppθi`1 ´ pθiq ´ θ‹
}
2
2.

We are able to compute the righthand side of the display above by noting that for each i
the inner minimization problem is a quadratic function of the univariate parameter α and
therefore can be minimized explicitly.

Code: The code has been released at the following public repository,

https://github.com/reesepathak/lowerlassosim.

In particular, the repository contains a Python program which runs simulations of STOLS
and oracle Lasso on the lower bound instance described above for any desired choice of
p P r0, 1s.
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Chapter 4

Noisy recovery in linear observational
models under elliptical constraints

4.1 Introduction

In this chapter, we study the problem of estimating an unknown vector θ‹ on the basis of
random linear observations corrupted by noise. More concretely, suppose that we observe a
random operator Tξ and a random vector y, which are linked via the equation

y “ Tξpθ
‹
q ` w. (4.1)

This observation model involves two forms of randomness: the unobserved vector w, which
is a form of additive observation noise, and the observed operator Tξ, which is random,
as indicated by its dependence on an underlying random variable ξ, and is linear in the
argument θ‹.

While relatively simple in appearance, the observation model (4.1) captures a broad range
of statistical estimation problems.

Example 4.1 (Linear regression). We begin with a simple but widely used model: linear
regression. The goal is to estimate the coefficients θ‹ P Rd that define the best linear
predictor x ÞÑ xx, θ‹y of some real-valued response variable Y P R. In order to do so, we
observe a collection of pxi, yiq pairs linked via the noisy observation model

yi “ xxi, θ
‹
y ` wi for i “ 1, . . . , n.

If we define the concatenated vector y “ py1, . . . , ynq, with an analogous definition for w,
this is a special case of our general setup with the random linear operator Tξ : Rd Ñ Rn

given by

rTξpθqsi “ xxi, θy for i “ 1, . . . , n.
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Here, the random index corresponds to the covariate vectors so that ξ “ px1, . . . , xnq; note
that we have imposed no assumptions on the dependence structure of these covariate vectors.
In the classical setting, these covariates are assumed to be drawn in an i.i.d. manner; however,
our general set-up is by no means limited to this classical setting. In the sequel, we consider
various examples with interesting dependence structure, and our theory gives some very
precise insights into the effects of such dependence. ♣

Example 4.2 (Nonparametric regression). In the preceding example, we discussed the prob-
lem of predicting a response variable Y P R in a linear manner. Let us consider the nonpara-
metric generalization: here our goal is to estimate the regression function f ‹pxq – ErY |

X “ xs, which need not be linear as a function of x. Given observations tpxi, yiquni“1, we can
write them in the form

yi “ f ‹
pxiq ` wi, for i “ 1, . . . , n,

where wi “ yi ´ ErY | X “ xis are zero-mean noise variables.
Now let us suppose that f ‹ belongs to some function class F contained with L2pXq, and

show how this observation model can be understand as a special case of our setup with
θ‹ P ℓ2pNq. Take some orthonormal basis tϕjujě1 of L2pXq. Any function in F can then be
expanded as f “

ř

jě1 θjϕj for some sequence θ P ℓ2pNq. Letting ξ “ px1, . . . , xnq, we can

define the operator Tξ : ℓ
2pNq Ñ Rn via

θ ÞÑ rTξpθqsi –

8
ÿ

j“1

θjϕjpxiq for i “ 1, . . . , n,

so that this problem can be written in the form of our general model (4.1). Observe that
the randomness in the observation operator Tξ arises via the randomness in sampling the
covariates txiu

n
i“1. ♣

Example 4.3 (Tomographic reconstruction). The problem of tomographic reconstruction
refers to the problem of recovering an image, modeled as a real-valued function f ‹ on some
compact domain X Ă R2, based on noisy integral measurements. Formally, we observe
responses of the form

yi “

ż

X

hpxi, uqf ‹
puq du ` wi for i “ 1, . . . , n,

where h : R2 ˆ R2 Ñ R is a known window function. If we again view f ‹ as belonging to
some function class F within L2pXq, then we can write this model in our general form with

rTξpvqsi “
ÿ

jě1

vj

”

ż

X

hpxi, uqϕjpuq du
ı

, and ξ “ px1, . . . , xnq.

Here we have followed the same conversion as in Example 4.2, in particular re-expressing
f ‹ in terms of its generalized Fourier coefficients with respect to an orthonormal family
tϕjujě1. ♣
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Example 4.4 (Error-in-variables). Consider the Berkson variant [8, 23] of the error-in-
variables problem in nonparametric regression. In this problem, an observed covariate x—
instead of being associated with a noisy observation of f ‹pxq—is associated with a noisy
observation of the “jittered” evaluation f ‹px`uq, where u P R is the random jitter. Formally,
we observe n pairs pxi, yiq of the form

yi “ f ‹
pxi ` uiq ` εi for i “ 1, . . . , n,

where the unobserved random jitter ui is drawn independently of the pair pxi, εiq. We can
re-write these observations as a special case of our general model with ξ “ px1, . . . , xnq, and

rTξpfqsi – Eu

“

fpxi ` uq
‰

, and,

wi – εi `

!

fpxi ` uiq ´ Eu

“

fpxi ` uq
‰

)

for i “ 1, . . . , n.

Note that the new noise variables wi are again zero-mean, and our assumption that Tξ is
observed means that the distribution of the jitter u is known. ♣

These examples (and others, as discussed below in Section 4.1.2) motivate our study of
the operator model (4.1). As we discuss in further detail later, a key advantage of writing
the observation model in this form is that it will allow us to separate three key components
of the difficulty of the problem: (i) the distribution of the random operator Tξ, as expressed
via the distribution of ξ, (ii) the distribution of the noise variable w – y ´ Tξθ

‹, and (iii)
the constraints on the unknown parameter θ‹.

4.1.1 Problem formulation, notation, and assumptions

With these motivating examples in mind, we now turn to a more precise mathematical
formulation of the estimation problem introduced above.

4.1.1.1 Assumptions on the random variables pξ, wq

Let us start by discussing properties of the random operator Tξ. In the examples previously
introduced, the domain of the observation operator Tξ was either a subset of Rd, or more
generally, a subset of the sequence space ℓ2pNq. The bulk of our analysis focuses on the
finite-dimensional setting —i.e., with domainRd—so that Tξ can be identified with a random
matrix Rnˆd, for some pair pn, dq of positive but finite integers. However, as we highlight in
Section 4.3.2, simple approximation arguments can be used to leverage our finite-dimensional
results to determine minimax rates of convergence for estimating an element θ‹ of the infinite-
dimensional sequence space ℓ2pNq.

In terms of the probabilistic structure of Tξ, we assume the random element ξ lies in
the measurable space pΞ,Eq, and is drawn from a probability measure P on the same space.
Throughout we take E to be large enough such that linear functionals of Tξ are measurable.
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As for the noise vector w P Rn, we assume it is drawn—conditionally on ξ—from a noise
distribution with conditional mean zero, and bounded conditional covariance. Formally, we
assume that w „ νp¨ | ξq where ν is a Borel regular conditional probability on Rn that
satisfies the following two conditions:

(N1) For P-almost every ξ P Ξ, we have
ş

w νp dw | ξq “ 0; and

(N2) For P-almost every ξ P Ξ, we have
ż

puTwq
2 νp dw | ξq ď uTΣwu, for any fixed u P Rn.

We write that the measure ν lies in the set PpΣwq when these two conditions are satisfied.
In words, Assumption 4.1.1.1 requires that w is conditionally centered, and Assump-

tion 4.1.1.1 assumes that the conditional covariance of w is almost surely upper bounded
in the semidefinite ordering by Σw. Let P ˆ ν denote the distribution of the tuple pξ, wq;
in explicit terms, writing pξ, wq „ P ˆ ν means that ξ „ P and w | ξ „ νp¨ | ξq. Having
specified the joint law of pξ, wq, the random variable y then satisfies the stated observation
model (4.1).

4.1.1.2 Decision-theoretic formulation

In this chapter, our goal to estimate θ‹ to the best possible accuracy as measured by a
fixed quadratic form. To make this rigorous, we introduce two symmetric positive definite
matrices Ke and Kc, which induce (respectively) the squared norms

}θ}
2
Ke

– xθ,Keθy and }θ}
2
Kc

´1 – xθ,Kc
´1θy,

defined for any θ P Rd. We seek estimates pθ of θ‹ that have low squared estimation error
∥pθ ´ θ‹∥2Ke

, as defined by the matrix Ke. In parallel, we assume that underlying parameter
is bounded in the constraint norm, so that it lies in the ellipse

Θpϱ,Kcq –

!

θ P Rd : ∥θ∥Kc
´1 ď ϱ

)

with radius R, as defined by the matrix Kc.
With this notation in hand, the central object of study in this chapter is the minimax

risk

MpT,P,Σw, ϱ,Ke, Kcq – inf
pθ

sup
θ‹PΘpϱ,Kcq

νPPpΣwq

Epξ,wq„Pˆν

”

∥pθ ´ θ‹∥2Ke

ı

, (4.2)

where the infimum ranges over all measurable functions pθ ” pθpTξ, yq that map the observed
pair pTξ, yq toRd. Note that by straightforward rescaling arguments, one can always take one
of the three operators pΣw, Ke, Kcq to be equal to the identity. Moreover, one can “absorb”
the radius ϱ into the constraint matrix Kc so that without loss of generality it is equal to
1. For convenience in deriving results in particular problems, we have presented our main
results without making these reductions.
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4.1.2 Examples of choices of sampling laws, constraints and error
norms

As discussed previously, our general theory accommodates various forms of the random linear
operators Tξ. As might one expect, the sampling law P for ξ changes the statistical structure
of the observations, and so influences the quality of the best possible estimates. Moreover,
the interaction between P and the geometry of the error norm, as defined by the matrix Ke,
plays an important role. Finally, both of these factors interact with the geometry of the
constraint set, as determined by the matrix Kc.

Below we discuss some examples of these types of interactions. To be clear, each of these
statistical settings have been considered separately in the literature previously; one benefit
of our approach is that it provides a unifying framework that includes each of these problems
as special cases.

Example 4.5 (Covariate shift in linear regression). Recall the set-up for linear regression,
as introduced in Example 4.1. In practice, the source distribution from which the covariates
x are sampled when constructing an estimate of θ‹ need not be the same as the target
distribution of covariates on which the predictor is to be deployed. This phenomenon—a
discrepancy between the source and target distributions—is known as covariate shift. It
is now known to arise in a wide variety of applications (e.g., see the papers [75, 67] and
references therein for more details).

As one concrete example, in healthcare applications, the covariate vector x P Rd might
correspond to various diagnostic measures run on a given patient, and the response y P R
could correspond to some outcome variable (e.g., blood pressure). Clinicians might use one
population of patients to develop a predictive model relating the diagnostic measures x to the
outcome y, but then be interested in making predictions for a related but distinct population
of patients.

In our setting, suppose that we use the linear model θ ÞÑ py – xθ, xy to make predictions
over a collection of covariates with distribution Q. A simple computation shows that the
mean-squared prediction error, averaging over both the noise w and random covariates x,
takes the form

E
“

ppy ´ yq
2
‰

“ pθ ´ θ‹
q

TΣQpθ ´ θ‹
q

looooooooooomooooooooooon

—LQppθ,θ‹q

`c, where ΣQ – EQrx b xs,

and c is a constant independent of the pair pθ, θ‹q. Thus, the excess prediction error over
the new population Q corresponds to taking Ke “ ΣQ in our general set-up. Similarly,
if one wanted to assess parameter error, then studying the minimax risk with the choice
Ke “ Id would be reasonable. Finally, the error in the original population (denoted P ) can
be assessed with the choice Ke “ ΣP – EP rx b xs.

Among the claims in the paper of Mourtada [88] is the following elegant result: when no

constraints are imposed on θ‹, the minimax risk in the squared metric LQppθ, θ‹q “ }pθ´θ‹}2ΣQ
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is equal to

inf
pθ

sup
θ‹PRd

E
”

LQppθ, θ‹
q

ı

“
σ2

n
ErTrpΣ´1

n ΣQqs, (4.3)

where Σn denotes the sample covariance matrix p1{nq
řn

i“1 xi b xi, and the expectation is

over x1, . . . , xn
i.i.d.
„ P . Thus, the fundamental rate of estimation depends on the distribution

of the sample covariance matrix, the noise level, and the target distribution Q.
In this chapter, we derive related but more general results that allow for many other

choices of the error metric and, perhaps more importantly, permit the statistician to incor-
porate constraints on the parameter θ‹. We demonstrate in Section 4.3.1.3 that these more
general results allow us to recover the known relation (4.3) via a simple limiting argument
where the constraint radius tends to infinity. ♣

Example 4.6 (Nonparametric regression with non-uniform sampling). Consider observing
covariate-target pairs tpxi, yiquni“1 where yi is modeled as being a noisy realization of a condi-
tional mean function; i.e., we have yi “ f ‹pxiq`wi where f

‹pxq “ ErY | X “ xs, analogously
to Example 4.2. When f ‹ is appropriately smooth and the covariates are drawn from a uni-
form distribution over some compact domain, this problem has been intensively studied, and
the minimax risks are well-understood. However, when the sampling of the covariates xi is
non-uniform, the possible rates of estimation can deteriorate drastically—see for instance
the papers [40, 42, 41, 43, 53, 2].

Using tools from the theory of reproducing kernel Hilbert spaces (RKHSs), one can
formulate this problem as an infinite-dimensional counterpart to our model (4.1), where
the constraint parameters pϱ,Kcq are determined by the Hilbert radius and the eigenvalues
of the integral operator associated with the kernel. Although formally our minimax risk
is defined for finite dimensional problems, via limiting arguments, it is straightforward to
obtain consequences for the infinite-dimensional problem of the type discussed here, which
discuss in Section 4.3.2. ♣

Example 4.7 (Covariate shift in nonparametric regression). Combining the scenarios in
Examples 4.5 and 4.6, now consider the problem of covariate shift in a nonparametric setting.
We observe samples pxi, yiq where the covariates have been drawn according to some law P ,
and our goal is to construct a predictor with low risk in the squared norm defined by some
other covariate law Q.

In our study of this setting, the constraint set is determined by the underlying function
class in a manner analogous to Example 4.6, and the error metric is determined by the
new distribution of covariates on which the estimates must be deployed, analogously to
Example 4.5. Some recent work has studied general conditions on the pair pP,Qq and the
corresponding optimal rates of estimation [69, 46, 94, 77, 103, 121, 106, 47]. Among the
consequences of our work are more refined results that are instance-dependent, in the sense
that we characterize optimality for fixed pairs pP,Qq, as opposed to optimality over broad
classes of pP,Qq pairs. See Section 4.3.2.3 for a detailed discussion of these refined results. ♣
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The examples above share the common feature of being problems where estimating a
conditional mean function is able to be formulated within the observation model (4.1). Ad-
ditionally, in these examples, the fundamental hardness of the problem depends on both
the structure of this function (modelled via assumptions on θ‹) as well as the distribution
of the covariates. The goal of this chapter is to build a general theory for these types of
observation models, which elucidates how both the structure of θ‹ as well as the covariate
law P determine the minimax rate of estimation in finite samples. In Section 4.3, we give
concrete consequences of our general results for these types of problems.

4.1.3 Relation to prior work

Let us discuss in more detail some connections and relations between our problem formulation
and results, and various branches of the statistics literature.

Connections to random design regression As shown by the examples discussed so far,
our general set-up includes, among other problems, many variants of random design regres-
sion. This is a classical problem in statistics, with a large literature; see the sources [54, 115,
58] and references therein for an overview. The recent paper [88] also studies the analogous
problem studied here when the vector θ‹ is allowed to be arbitrary; the only assumption
made is that θ‹ P Rd. In this case, it is possible to use tools from Bayesian decision theory
to exhibit the minimax optimality of the ordinary least squares (OLS) estimator [88, The-
orem 1]. In Section 4.3.1.3, we demonstrate how to obtain this result as a corollary of our
more general results.

Note that in applications, such as those given by the preceding examples, it is important
that there is a constraint on θ‹. For instance, in a nonparametric regression problem, the
parameter θ‹ denotes the coefficients of a series expansion corresponding to a conditional
mean function f ‹pxq “ ErY | X “ xs in an appropriate orthonormal family of functions.
In this case, constraints are in fact necessary : to have consistent estimation, compactness is
essential—see the monograph [62, Theorem 5.7] for further details.

Finally, we also comment on the similarity of our results to the paper [63]. Specifically,
our main results can be compared to their Theorem 2.1. There are a few differences: first,
in the paper [63], they study “fixed design” problems, whereas our formulation allows us to
simultaneously treat both random and fixed design problems with the same analysis tools.
Secondly, even restricting to the fixed design setup, our results are stronger than theirs,
in the case of an ellispoidal constraint set. Their Theorem 2.1 shows that linear estimates
only achieve the minimax rate within ellipsoid-dependent logarithmic factors; our result, on
the other hand, demonstrates that linear estimates are order-optimal with factors which are
universal—they depend on neither the dimension nor the ellipsoid under consideration. In
fact, to the best of our knowledge, our result—even specialized to fixed design—is the first
to treat observation operators and constraint sets given by matrices that do not commute.
Previous results requirde stronger assumptions to attain (near) rate-optimality.
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Random design and Bayesian priors When the the norm of the vector θ‹ is constrained,
there are relatively few minimax results in the random design setting. On the other hand, a
related Bayesian setting has been studied. In this line of work, the definition of the minimax
risk is altered so that the “worst-case” supremum over θ‹ in the constraint set is replaced with
a suitable “average”—namely the expectation over θ‹ drawn according to a prior distribution
over the constraint set.

In addition to the clear differences in the formulation, this line of work exhibits two
main qualitative differences from the results in this chapter. First, these Bayesian results
have primarily been established in the proportional asymptotics framework, in the ratio d{n
is assumed to converge towards some aspect ratio γ ą 0 as both pd, nq diverge to infinity.
Secondly, by selecting “nice priors”, it is possible to leverage certain properties—for instance,
equivariance to some group action—that can hold for both the prior and covariate law. On
the other hand, our setting is somewhat more challenging in that we make no a priori
assumptions about the covariate law and its relationship to the constraint set.

In more detail, when the covariates are drawn from a multivariate Gaussian, for certain
constraint sets, it is possible to find a prior such that the minimax and Bayesian risks
coincide. As one example, Dicker [31] studies the asymptotic minimax risk when the ratio
d{n is allowed to grow, and by using equivariance arguments, he obtains asymptotically
minimax procedure. Proposition 3(b) in his paper gives a prior for which the minimax and
Bayesian risks coincide. The thesis [87, Corollary 8.2] provides a matching asymptotic lower
bound. The relation between Bayes and minimax risks in this line of work cannot be expected
in general, as the arguments repose critically on the rotation invariance of the standard
multivariate Gaussian. Moreover, this and other classical work on random design regression
using Gaussian covariates typically hinges on special, closed-form formulae for quantities
related to the distribution of the sample covariance matrix (see, e.g., the papers [108, 16, 1]).

Fixed design results Although we focus on minimax estimation of the unknown param-
eter θ‹ in the random design setting, we note that the related fixed design setting is well
studied. In fact, in classical work, Donoho studied a very similar operator-based observation
model to the one considered here; a key difference is that in that work, the focus is on
estimating a (scalar-valued) functional of θ‹ [32].

By sufficiency arguments, our problem, when instantiated in the setting of fixed design
with Gaussian noise, is equivalent to mean estimation on an elliptical parameter set. It is
therefore related to classical work on sharp asymptotic minimax estimation in the Gaussian
sequence model [96, 50, 34, 33, 5, 48, 49]; see also the monograph [62] for a pedagogical
overview of this topic. These works extend the classical line of work on estimating a con-
strained (possibly multivariate) Gaussian mean [24, 11, 83, 9, 81]. We refer the reader to
references [82, 38], which contain a more thorough overview of prior work on minimax esti-
mation of a parameter when a notion of ‘signal to noise ratio’ is fixed. Of course, applying
an optimal fixed design estimator cannot be expected to yield an optimal random design
estimator in general. This is because in the fixed design formulation, the worst-case θ‹ could
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adapt to a single design matrix, whereas in the random design formulation, the worst-case
θ‹ must adapt to the random ensemble of design matrices induced by sampling n samples in
an IID fashion from a fixed covariate law.

4.2 Main results

We now turn to the presentation of our main results, which are upper and lower bounds
on the minimax rate of estimation as defined in display (4.2), matching up to a constant
pre-factor. These bounds are presented in Section 4.2.1.

4.2.1 General upper and lower bounds

Our general upper bounds are stated as the following functional of the distribution of the
operator Tξ; the noise covariance Σw; the constraint norm, as determined by the pair pϱ,Kcq;
and the estimation norm, as defined by the operator Ke,

ΦpT,P,Σw, ϱ,Ke, Kcq

– sup
Ω

!

ETr
´

Ke
1{2

pΩ´1
` T T

ξ Σ
´1
w Tξq

´1Ke
1{2
¯

: Ω ą 0, TrpKc
´1{2ΩKc

´1{2
q ď ϱ2

)

. (4.4)

Our first main result is a general upper bound.

Theorem 4.1 (General minimax upper bound). The minimax risk is upper bounded as

MpT,P,Σw, ϱ,Ke, Kcq ď ΦpT,P,Σw, ϱ,Ke, Kcq. (4.5)

See Section 4.4.1 for the proof.

Our second result is a complementary lower bound.

Theorem 4.2 (Lower bound). The minimax risk is lower bounded as

MpT,P,Σw, ϱ,Ke, Kcq ě ΦpT,P,Σw,
ϱ
2
, Ke, Kcq ě

1

4
ΦpT,P,Σw, ϱ,Ke, Kcq. (4.6)

See Section 4.4.2 for the proof.

Note that the functional on the righthand side of the display (4.6) above matches the
quantity appearing in our minimax upper bound (4.5). Thus, in a nonasymptotic fashion,
we have determined the minimax risk for this problem up the prefactor 1{4.
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Sharper lower bound constants The constant appearing in the lower bound (4.6) can
typically be substantially sharpened. To describe how this can be done via our results, fix a
scalar τ P p0, 1s and a symmetric positive definite matrix Ω, and let Z P Rd be vector of IID
standard Gaussians. Define the scalar

c – τ 2p1 ´ Ptτ 2
d
ÿ

i“1

λiZ
2
i ą 1uq,

where tλiu
d
i“1 are the the eigenvalues of the matrix p1{ϱ2qKe

1{2ΩKe
1{2. Then, we are able to

establish the following minimax lower bound,

MpT,P,Σw, ϱ,Ke, Kcq ě ETr
´

Ke
1{2

p
1

c
Ω´1

` T T
ξ Σ

´1
w Tξq

´1Ke
1{2
¯

, (4.7)

provided that the parameter τ P p0, 1s and the symmetric positive definite matrix Ω is such
that TrpKc

´1{2ΩKc
´1{2

q “ ϱ2.
With appropriate choices of the pair pτ,Ωq, the lower bound (4.7) can lead to pre-factors

that are much closer to 1, and in some cases, converge to one under various scalings. In
Section 4.3.1.1, we give one illustration of how the family of bounds (4.7) can be exploited
to obtain an improvement of this type.

Form of an optimal procedure Inspecting the proof of Theorem 4.1—specifically, as a
consequence of Proposition 4.3—if the supremum on the righthand side of (4.4) is attained
at the matrix Ω‹, then the following estimator, in view of the lower bound (4.6), is near
minimax-optimal,

pθpTξ, yq –
`

Ω´1
‹ ` T T

ξ Σ
´1
w Tξ

˘´1
T T
ξ Σ

´1
w y. (4.8)

It is perhaps instructive to write this estimator in its “ridge” formulation

pθpTξ, yq “ argmin
ϑPRd

!

}y ´ Tξϑ}
2
Σ´1

w
` }ϑ}

2
Ω´1

‹

)

.

In the language of Bayesian statistics, our order-optimal procedure is a maximum a pos-
teriori (MAP) estimate for θ‹ when y „ N pTξθ

‹,Σwq and the parameter follows the prior
distribution θ‹ „ N p0,Ω‹q. The optimal prior is identified via the choice of Ω‹ which is
determined by the functional appearing in Theorems 4.1 and 4.2. If the supremum in (4.4)
is not attained, then by selecting a sequence of matrices Ωk that approach the maximal value
of the functional, one can similarly argue there exists a sequence of estimators that approach
the order-optimal minimax risk.

4.2.2 Independent and identically distributed regression models

An important application of our general result is for independent and identically distributed
(i.i.d.) regression models of the form

yi “ xθ‹, ψpxiqy ` σzi, for i “ 1, . . . , n. (4.9)
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Above, we assume that xi are independent and identical draws from a fixed covariate dis-
tribution P , on some measurable space X, and that ψ : X Ñ Rd. The covariates txiu

n
i“1 are

independent and the conditional distribution of z | x is an element of PpInq. The parameter
σ ą 0 indicates the noise level; it is an upper bound on the conditional standard deviation
of yi ´ xθ‹, ψpxiqy.

For the model described above, the following minimax risk of estimation provides the
best achievable performance of any estimator, when θ‹ lies in a compact ellipse and the error
is measured in the quadratic norm

MIID
n

´

ψ, P, ϱ, σ2, Kc, Ke

¯

– inf
pθ

sup
θ‹PΘpϱ,Kcq

νPPpσ2Inq

E
”∥∥pθpyn1 , x

n
1 q ´ θ‹

∥∥2

Ke

ı

. (4.10)

Note that this problem can be formulated as an instance of our general operator formula-
tion (4.1) where we take y “ py1, . . . , ynq, w “ σpz1, . . . , znq, and ξ “ px1, . . . , xnq, so that
P “ P n. The operator Tξ is given by the nˆ d-matrix with rows ψpxiq

T. In this context the
following random matrix, which is a rescaling of the operator T T

ξ Tξ, plays an important role:

Σn –
1

n

n
ÿ

i“1

ψpxiq b ψpxiq. (4.11)

In order to state the consequence of our more general results for this problem, let us
introduce a functional. We denote it by dn to indicate that it is essentially an “effective
statistical dimension” for this problem,

dnpψ, P, ϱ, σ2, Ke, Kcq

– sup
Ω

!

TrEPn

“

Ke
1{2

pΣn ` Ω´1
q

´1Ke
1{2
‰

: Ω ą 0,TrpKc
´1{2ΩKc

´1{2
q ď

nϱ2

σ2

)

. (4.12)

Then an immediate corollary to Theorems 4.1 and 4.2 is the following pair of inequalities
for the IID minimax risk.1

Corollary 4.1. Under the IID regression model (4.9), the minimax rate of estimation as
defined in equation (4.10) satisfies the following inequalities,

1

4

σ2

n
dnpψ, P, ϱ, σ2, Ke, Kcq ď

σ2

n
dnpψ, P, ϱ

2
, σ2, Ke, Kcq

ď MIID
n

´

ψ, P, ϱ, σ2, Ke, Kc

¯

ď
σ2

n
dnpψ, P, ϱ, σ2, Ke, Kcq.

So as to lighten notation, in the sequel, when the feature map ψ is the identity mapping
ψpxq “ x, we drop the parameter ψ from the functional dn and the minimax rate MIID

n .
1Strictly speaking, this result follows immediately if we had defined the minimax risk over estimators

which are measurable functions of the variables tpyi, ψpxiqqu. Nonetheless, since our lower bounds use
Gaussian noise, the stated inequalities hold even when defining the minimax risk for estimators which
operate on tpyi, xiqu, by a standard sufficiency argument.
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4.2.3 Some properties of the functional appearing in
Theorems 4.1 and 4.2

As indicated by Theorem 4.1 and the subsequent discussion, the extremal quantity

sup
Ω

!

ETr
´

Ke
1{2

pΩ´1
` T T

ξ Σ
´1
w Tξq

´1Ke
1{2
¯

: Ω ą 0, TrpKc
´1{2ΩKc

´1{2
q ď ϱ2

)

(4.13)

is fundamental in that it determines our minimax risk; moreover when the supremum is
attained, the maximizer defines an order-optimal estimation procedure (see equation (4.8)).
Conveniently, it turns out that the maximization problem implied by the display (4.13) is
concave.

Proposition 4.1 (Concavity of functional). The optimization problem

maximize fpΩq – TrE
“

Ke
1{2
`

Ω´1
` T T

ξ Σ
´1
w Tξ

˘´1
Ke

1{2
‰

subject to Ω ą 0, TrpKc
´1{2ΩKc

´1{2
q ď ϱ2,

is equivalent to a convex program, with variable Ω. Formally, the constraint set above is
convex, and function f is concave over this set.

See Section 4.6.1 for a proof.

Note that this claim implies that, provided oracle access to the objective function f
appearing above, one can in principle obtain a maximizer in a computationally tractable
manner, by leveraging algorithms for convex optimization [15].

The functional (4.13) depends on the distribution of T T
ξ Σ

´1
w Tξ. In general, Jensen’s

inequality along with the convexity of the trace of the inverse of positive matrices [10,
Exercise 1.5.1] implies that it is always lower bounded by

sup
Ω

!

Tr
´

Ke
1{2

pΩ´1
` ET T

ξ Σ
´1
w Tξq

´1Ke
1{2
¯

: Ω ą 0, TrpKc
´1{2ΩKc

´1{2
q ď ϱ2

)

(4.14)

Comparing displays (4.13) and (4.14), we have simply moved the expectation over ξ into
the inverse. For certain IID regression models, as described in Section 4.2.2, we can give a
complementary upper bound. To state our result, we define

dnpP, ϱ, σ2, Ke, Kcq

– sup
Ω

!

Tr
`

Ke
1{2

pEPn Σn ` Ω´1
q

´1Ke
1{2
˘

: Ω ą 0,TrpKc
´1{2ΩKc

´1{2
q ď

nϱ2

σ2

)

.

Note that this quantity only depends on the distribution P n through the matrix EPn Σn.
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Proposition 4.2 (Comparison of dn to dn). Define κ to be the P -essential supremum of
x ÞÑ }Kc

1{2ψpxq}2. If κ ă 8, then for any ϱ ą 0, σ ą 0, we have

dnpψ, P, ϱ, σ2, Ke, Kcq ď dnpψ, P, ϱ, σ2, Ke, Kcq ď

´

1 `
ϱ2κ2

σ2

¯

dnpψ, P, ϱ, σ2, Ke, Kcq.

Unpacking this result, when K
1{2
c ψpxq is essentially bounded, we see that the functionals dn

and dn are of the same order when the signal-to-noise ratio satisfies the relation ϱ2

σ2 À 1
κ2 .

As mentioned above, the first inequality is a consequence of a generic lower bound, while
the upper bound is a consequence of a new operator inequality for random positive definite
matrices, presented as Theorem 3 in Section 4.6.2.

4.2.4 Asymptotics for a diverging radius

In this section, we develop an asymptotic limit relation for the minimax risk (4.2) as the
radius ϱ of the constraint set Θpϱ,Kcq tends to infinity. The relation reveals that the lower
bound constant 1{4 appearing in the lower bound Theorem 4.2 can actually be made quite
close to 1 for large radii.

Corollary 4.2. Suppose that T T
ξ Σ

´1
w Tξ is P-almost surely nonsingular. Then the minimax

risk (4.2) satisfies

MpT,P,Σw, ϱ,Ke, Kcq “
`

1 ´ op1q
˘

ΦpT,P,Σw, ϱ,Ke, Kcq, as ϱ Ñ 8.

See Section 4.6.3 for a proof of this claim.
An immediate consequence is that for IID regression settings as in Section 4.2.2, we have

the following limit relation.

Corollary 4.3. Suppose that that the empirical covariance matrix Σn from equation (4.11)
is P n-almost surely invertible. Then, the minimax risk for an IID observation model (4.9)
satisfies the relation

MIID
n

´

ψ, P, ϱ, σ2, Ke, Kc

¯

“
`

1 ´ op1q
˘ σ2

n
dn
`

ψ, P, ϱ, σ2, Ke, Kc

˘

, as ϱ Ñ 8.

4.3 Consequences of main results

In this section, we demonstrate consequences of our main results for a variety of estimation
problems. In Section 4.3.1, we develop consequences of our main results for problems where
the underlying parameter to be estimated is finite-dimensional. In Section 4.3.2, we develop
consequences of our main results for problems where the underlying parameter is infinite-
dimensional. In both cases, we are able to derive minimax rates of estimation, which to
the best of our knowledge, are not yet in the literature. Additionally, we are also able to
re-derive classical as well as recent results in a unified fashion via our main theorems.
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4.3.1 Applications to parametric models

We begin by developing the consequences of our main results for regression problems where
the statistician is aiming to estimate a finite-dimensional parameter. Sections 4.3.1.1, 4.3.1.2,
and 4.3.1.3 concern IID regression settings of the form described in Section 4.2.2. In Sec-
tion 4.3.1.4, we consider a non-IID regression setting.

4.3.1.1 Linear regression with Gaussian covariates

As in the prior work [31], consider a random design IID regression setting of the form
presented in the display (4.9), but with Gaussian data. Formally, we assume Gaussian noise,

so that zi
i.i.d.
„ N p0, 1q, and Gaussian covariates, so that xi

i.i.d.
„ N p0, Idq and ψpxq “ x. Here

x and z are assumed independent. Then we define

rpn, d, ϱ, σq – inf
pθ

sup
∥θ∥2ďϱ

E
”

∥pθ ´ θ∥22
ı

, and dDickerpn, d, ϱ, σq – TrE
”

pΣn ` σ2

n
d
ϱ2
Idq

´1
ı

,

where the expectations are over the Gaussian covariates and noise pairs tpxi, ziquni“1. These
quantities correspond, respectively, to the minimax risk and the worst-case risk (rescaled by
n{σ2), of a certain ridge estimator [31, Corollary 1] on the sphere t}θ}2 “ ϱu.

Dicker [31, Corollary 3] proves the following limiting result. Under the proportional
asymptotics d{n Ñ γ, where the limiting ratio γ lies in p0,8q, the minimax risk satisfies

lim
d{nÑγ

ˇ

ˇ

ˇ
rpn, d, ϱ, σq ´

σ2

n
dDickerpn, d, ϱ, σq

ˇ

ˇ

ˇ
“ 0, (4.15)

for any radius ϱ ą 0 and noise level σ ą 0.
Let us now demonstrate that our general theory yields a nonasymptotic counterpart of

this claim, and taking limits recovers the asymptotic relation (4.15).

Corollary 4.4. For linear regression over the ϱ-radius Euclidean sphere with Gaussian co-
variates, the minimax risk satisfies the sandwich relation

cd
σ2

n
dDickerpn, d, ϱ, σq ď

σ2

n
dDickerpn, d,

?
cdϱ, σq

ď rpn, d, ϱ, σq ď
σ2

n
dDickerpn, d, ϱ, σq, (4.16a)

where

cd –

#

p1 ´ 1
2d´1

qp1 ´ expp´d3{2

4
qq d ě 2

1{4 d “ 1
. (4.16b)

Note that since cd “ p1´Op1{dqq as d Ñ 8, the inequalities (4.16a) allow us to immediately
recover Dicker’s result. It should be emphasized, however, that Corollary 4.4, holds for any



CHAPTER 4. NOISY RECOVERY IN LINEAR MODELS 102

quadruple pn, d, ϱ, σq. In particular, it is valid in a completely nonasymptotic fashion and
with explicit constants.

We now sketch how this result follows from our main results. As calculated in Sec-
tion 4.6.4.1, our functional for this problem satisfies

dnpN p0, Idq , ϱ, σ2, Id, Idq “ dDickerpn, d, ϱ, σq. (4.17a)

Hence, our Corollary 4.1 implies the following characterization of the minimax risk,2

1

4

σ2

n
dDickerpn, d, ϱ, σq ď rpn, d, ϱ, σq ď

σ2

n
dDickerpn, d, ϱ, σ

2
q.

To establish our sharper result (4.16a), we leverage the stronger lower bound (4.7). The
details of this calculation are presented in Section 4.6.4.2. Note that in Section 4.5.1.1, we
simulate this problem and find that as suggested by Corollary 4.4, that, indeed, the gap
between our upper and lower bounds is tiny, even for problems with small dimension (see
Figure 4.1).

4.3.1.2 Underdetermined linear regression

Consider observing samples from a standard linear regression model; that is, we observe pairs
tpxi, yiqu according to the model (4.9), with ψpxq “ x. A practical scenario in which some
assumption regarding the norm of the underlying parameter is necessary is when the sample
covariance matrix Σn, defined in display (4.11) is singular with positive P n-probability. This
occurs if n ă d, or if there is a hyperplane H Ă Rd such that x „ P lies in H with positive
probability.

In this setting, the correct dependence of the minimax risk on the geometry of the con-
straint set and the distribution of sample covariance matrix is relatively poorly understood.
For simplicity—although our results are more general than this—let us assume that error is
measured in the Euclidean norm and that it is assumed that the underlying parameter θ‹

has Euclidean norm bounded by ϱ ą 0, and that the noise is independent Gaussian with
variance σ2. Then Corollary 4.1 demonstrates that

inf
pθ

sup
}θ}2ďϱ

Er}pθ ´ θ}
2
2s —

σ2

n
dnpP, ϱ, σ2, Id, Idq

“
σ2

n
sup
Ωą0

!

TrEPn

“

pΣn ` Ω´1
q

´1
‰

: TrpΩq ď
nϱ2

σ2

)

.

2Although Corollary 4.1 takes the supremum over a larger family of noise distributions, note that our
lower bounds are obtained with Gaussian noise, so that the result applies even if we restrict to Gaussian
noise.
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Taking Ω “ n
d
ϱ2

σ2 Id, we obtain the following lower bound on the minimax risk for any covariate
law P ,

σ2

n
TrEPn

“

pΣn ` σ2

ϱ2
d
n
Idq

´1
‰

— E
”

d
ÿ

i“1

σ2

n
1

λipΣnq
1tλipΣnq ě σ2

n
d
ϱ2

u

ı

looooooooooooooooooooomooooooooooooooooooooon

Estimation error from
large eigenvalues of Σn

`E
”

d
ÿ

i“1

ϱ2

d
1tλipΣnq ă σ2

n
d
ϱ2

u

ı

looooooooooooooooomooooooooooooooooon

Approximation error due
to small eigenvalues of Σn

. (4.18)

The lower bound (4.18) is sharp in certain cases. For instance, when xi
i.i.d.
„ N p0, Idq but

there are fewer samples than the dimension, so that n ă d, it is equal to the minimax risk
up to universal constants, following the same argument as in Section 4.3.1.1.

Note that above, λi denotes the ith largest (nonnegative) eigenvalue of a symmetric
positive semidefinite matrix. One possible interpretation of this lower bound is as follows:
the first term indicates the estimation error incurred in directions where the effective signal-
to-noise ratio is high; on the other hand, the second term indicates the bias or approximation
error that must be incurred in directions where the effective signal-to-noise ratio is low. In
fact, the message of this lower bound is that in these directions, no procedure can do much
better than estimating 0 there. One concrete and interesting takeaway is that if Σn has an
eigenvalue equal to zero, it increases the minimax risk by essentially the same amount as if
the eigenvalue were positive and in the interval p0, σ

2

n
d
ϱ2

q.

4.3.1.3 Linear regression with an unrestricted parameter space

In recent work, Mourtada [88] characterizes the minimax risk for random design linear regres-
sion problem for an unrestricted parameter space. Consider observing samples tpxi, yiquni“1

following the IID model (4.9) with ψpxq “ x, where the covariates are drawn from some
distribution P on Rd. As argued by Mourtada (see his Proposition 1), or as can be seen
by taking ϱ Ñ 8 in our singular lower bound (4.18) from Section 4.3.1.2, if we impose no
constraint on the underlying parameter θ‹, then it is necessary to assume that the sample
covariance matrix Σn is invertible with probability 1 in order to obtain finite minimax risks.
Theorem 1 in Mourtada’s paper then asserts that under this condition, we have

inf
pθ

sup
θ‹PRd

νPPpσ2Inq

E
”∥∥pθ ´ θ‹

∥∥2

ΣP

ı

“
σ2

n
E
“

TrpΣ´1
n ΣP q

‰

, (4.19)

where the expectation is over the data tpxi, yiquni“1, and ΣP – EP rx b xs is the population
covariance matrix under P .

We now show that this result, with the exact constants, is a consequence of our more
general results. We focus on establishing the lower bound, because it is well-known (and



CHAPTER 4. NOISY RECOVERY IN LINEAR MODELS 104

easy to show) that the upper bound is achieved by the ordinary least squares estimator.3

Thus for the lower bound, our results imply that

inf
pθ

sup
θ‹PRd

νPPpσ2Inq

E
”∥∥pθ ´ θ‹

∥∥2

ΣP

ı

ě sup
ϱą0

"

inf
pθ

sup
}θ‹}2ďϱ

νPPpσ2Inq

E
”∥∥pθ ´ θ‹

∥∥2

ΣP

ı

*

(4.20a)

“
σ2

n
lim
ϱÑ8

dnpP, ϱ, σ2,ΣP , Idq. (4.20b)

In order to obtain the relation (4.20b), we have used the fact that the constrained minimax
risk over the set t}θ‹}2 ď ϱu is nondecreasing in ϱ ą 0, and have applied our limit relation
in Corollary 4.3. A short calculation, which we defer to Section 4.6.4.3, demonstrates that

lim
ϱÑ8

dnpP, ϱ, σ2,ΣP , Idq “ E
“

TrpΣ´1
n ΣP q

‰

. (4.21)

Thus, after combining displays (4.20b) and (4.21), we have obtained the lower bound in
Mourtada’s result (4.19). One consequence of this argument is that the inequality (4.20a)
is, as may be expected, an equality. That is, we have

inf
pθ

sup
θ‹PRd

νPPpσ2Inq

E
”∥∥pθ ´ θ‹

∥∥2

ΣP

ı

“ sup
ϱą0

"

inf
pθ

sup
}θ‹}2ďϱ

νPPpσ2Inq

E
”∥∥pθ ´ θ‹

∥∥2

ΣP

ı

*

.

Note that establishing this equality directly is somewhat cumbersome, as it requires es-
sentially applying a form of a min-max theorem, which in turn requires compactness and
continuity arguments.

4.3.1.4 Regression with Markovian covariates

We consider a dataset tpxt, ytquTt“1 comprising of covariate-response pairs. The covariates
are initialized with x0 “ 0, and then proceed via the recursion

xt “
?
rt xt´1 `

?
1 ´ rt zt for t “ 1, . . . , T, (4.22)

for some collection of parameters trtu
T
t“1 Ă r0, 1s, and family of independent standard Gaus-

sian variates tztu
T
t“1. By construction, the samples txtu

T
t“1 form a Markov chain—a time-

varying ARp1q process with stationary distribution being the standard Gaussian law. At the
extreme rt ” 0, the sequence txiu

n
i“1 is IID , whereas for rt P p0, 1q, is a dependent sequence,

and its mixing becomes slower as the parameters trtu get closer to 1. In addition to these
random covariates, suppose that we also observe responses tytu

T
t“1 from the model

yt “ xtθ
‹

` σwt, for t “ 1, . . . , T, (4.23)

3Alternatively, note that if we define pθϱ to be the order-optimal estimator we derive for the constraint
set t}θ‹}22 ď ϱ2u (see equation (4.8), with Kc “ Id, Σw “ σ2Id, and Tξ “ X, where X is the design matrix.),
then it converges compactly to the ordinary least squares estimate as ϱ Ñ 8.
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where σ ą 0 is a noise standard deviation, and the noise sequence twtu
T
t“1 consists of IID

standard Gaussian variates. We assume that zt and xt are independent for all t “ 1, . . . , T .
We now describe how our main results apply to this setting. Let us define a matrix

M P RTˆT which is associated to the dynamical system (4.22). It has entries

Mss1 “

T
ÿ

t“s_s1

?
cstcs1t, where cst – p1 ´ rsq

t
ź

τ“s`1

rτ . (4.24)

To give one example, in the special case that rt ” α P p0, 1q for all t, then the matrix M is
similar under permutation to the matrix with entries

Mst “
?
α

|s´t|
´

?
α
s`t
.

Evidently, this matrix is a rank-one update to the covariance matrix for the underlying ARp1q

process (i.e., the Kac–Murdock–Szegö matrix [64]); it is easily checked to be symmetric
positive definite.

We now state the consequences of our main results for this problem.

Corollary 4.5. The minimax risk for the Markovian observation model described above
satisfies

inf
pθ

sup
|θ‹|ďϱ

E
“

ppθ ´ θ‹
q
2
‰

— ΦT pϱ, σq – E

„

´ 1

ϱ2
`
zTMz

σ2

¯´1
ȷ

. (4.25)

See Section 4.6.4.4 for details of this calculation.
Note that in the result above, the expectation on the lefthand side is over the dataset

tpxi, yiquTi“1, under the Markovian model (4.22) for the covariates, and the expectation on
the righthand size is over the Gaussian vector z “ pz1, . . . , zT q „ N p0, IT q. Corollary 4.5
gives one example of how our general results can even establish sharp rates for regression
problems of the form described in Section 4.2.2, but with additional dependence among the
covariates.

Additionally, we note that with τ 2 “ σ2{ϱ2, we have by simple integration that

ΦT pϱ, σq “
σ2

2

ż 8

0

exp
!

´
uτ 2 `

řT
t“1 logp1 ` uλtq

2

)

du,

where tλtutPrT s denote the eigenvalues of the matrix M .

4.3.2 Applications to infinite-dimensional and nonparametric
models

In this section, we derive some of the consequences of our main results for infinite-dimensional
models, such as those arising in nonparametric regression. The basic idea will be to identify
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an infinite dimensional parameter space Θ, typically lying in the Hilbert space ℓ2pNq. We
then find a nested sequence of subsets

Θ1 Ă Θ2 Ă ¨ ¨ ¨ Ă Θk Ă ¨ ¨ ¨ Ă Θ,

where Θk are finite-dimensional truncations of Θ. Under regularity conditions, we can show
that the minimax risk for the k-dimensional problems converge to the minimax risk for the
infinite dimensional problem as k Ñ 8. Thus, since we have determined the minimax risk
for each subset Θk up to universal constants (importantly, constants independent of the
underlying dimension), we take the limit of our functional in the limit k Ñ 8 to obtain a
tight characterization of the minimax risk for the infinite-dimensional set Θ.

In the next few sections, we carry this program out in a few examples. We begin with
a study of the canonical Gaussian sequence model in Section 4.3.2.1. We then turn, in
Sections 4.3.2.2 and 4.3.2.3, to nonparametric regression models arising from reproducing
kernel Hilbert spaces. In this setting, we are able to derive some classical results for Sobolev
spaces, derive new and sharper forms of bounds on nonparametric regression with covariate
shift, and obtain new results for random design nonparametric models with non-uniform
covariate laws.

4.3.2.1 Gaussian sequence model

In the canonical Gaussian sequence model, we make a countably infinite sequence of obser-
vations of the form

yi “ θ‹
i ` εizi, for i “ 1, 2, 3, . . . (4.26)

Here the variables tziu are a sequence of IID standard Gaussian variates, and ε – tεiu
indicate the noise level (i.e., the standard deviation) of the entries of the observation y. It is
typically assumed that there is a nondecreasing sequence of divergent, nonnegative numbers
a – taiu and radius C ą 0 such that

θ‹
P Θpa, Cq –

!

θ P RN :
ÿ

jě1

a2jθ
2
j ď C2

)

.

The minimax risk for this problem is then defined by

M

´

ε, a, C
¯

– inf
pθ

sup
θ‹PΘpa,Cq

E
”

8
ÿ

j“1

ppθjpyq ´ θ‹
j q

2
ı

,

where the expectation is over y according to the observation model (4.26).
Let us define a k-dimensional truncation,

Θkpa, Cq –

!

θ P Θpa, Cq : θj “ 0, for all j ą k
)

.
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Evidently Θkpa, Cq may be regarded as a subset of Rk. Note that the class tΘkpa, Cqukě1

forms a nested sequence of subsets within Θ. Moreover, we can define the minimax risk for
the k-dimensional problem

Mk

´

ε, a, C
¯

– inf
pθ

sup
θ‹PΘkpa,Cq

E
”

k
ÿ

j“1

ppθjpyq ´ θ‹
j q

2
ı

.

Slightly abusing notation, above we regard y, θ‹ P Rk, where y is distributed as the first k
components of the observation model (4.26). Then, this sequence of minimax risks satisfies
the limit relation

lim
kÑ8

Mk

´

ε, a, C
¯

“ M

´

tεju
8
j“1,Θpa, Cq

¯

. (4.27)

See Section 4.6.5.1 for justification. The k-dimensional problem can be seen as a special case
of our operator model (4.1), with parameters T pkq,Σ

pkq
w , Ke

pkq, ϱpkq, Kc
pkq defined as,

T pkq
pξq ” Ik, Σpkq

w “ diagpε21, . . . , ε
2
kq, Ke

pkq
“ Ik,

Kc
pkq

“ diag
´ 1

a21
, . . . ,

1

a2k

¯

, and, ϱpkq
“ C.

(4.28)

Computing the functional (4.13) for the k-dimensional problem, we find it is equal to

R‹
k

´

ε, a, C
¯

– sup
τ1,...,τk

!

k
ÿ

j“1

τ 2j ε
2
j

τ 2j ` ε2j
:

k
ÿ

j“1

τ 2j a
2
j ď C2

)

. (4.29)

Hence, define the following functional of ε – tεjujě1, a – tajujě1, and C ą 0,

R‹
pε, a, Cq – sup

τ“tτju8
j“1

!

8
ÿ

j“1

τ 2j ε
2
j

τ 2j ` ε2j
:

8
ÿ

j“1

τ 2j a
2
j ď C2

)

. (4.30)

Then our main results, Theorems 4.1 and 4.2 imply the sandwich relation

1

4
R‹

pε, a, Cq ď M

´

ε, a, C
¯

ď R‹
pε, a, Cq. (4.31)

See Section 4.6.5.2 for verification of this relation as a consequence of our results. Note
that this recovers a well-known result for the Gaussian sequence model [115, 62]. Some
previous work [34] has shown that the lower bound constant can be slightly improved to
1

1.25
by arguments specific to the Gaussian sequence model. Importantly, the Gaussian

sequence model is a “deterministic” operator model in the sense that the operator Tξ has
no dependence on ξ for this problem. The next few examples show some consequences of
our theory for infinite-dimensional problems where the corresponding operator Tξ is truly
random.
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4.3.2.2 Nonparametric regression over reproducing kernel Hilbert spaces
(RKHSs)

In this section, we consider a nonparametric regression model of the form

yi “ f ‹
pxiq ` wi, for i “ 1, . . . , n. (4.32)

We assume that txiu
n
i“1 are IID samples covariate law P and wi being conditionally centered

with conditional variance bounded above by σ2. Equivalently, the noise variables are drawn
from a conditional distribution satisfying the noise conditions 4.1.1.1 and 4.1.1.1 with Σw “

σ2In.
4 We will assume that f ‹ lies in a reproducing kernel Hilbert space H, and has bounded

Hilbert norm ∥f ‹∥H ď ϱ. The goal is to estimate f ‹.

Relating the RKHS observation model (4.32) with the model (4.9) We now show
that the observation model when f ‹ P H is an infinite-dimensional version of the observation
model (4.9), as can be made precise with RKHS theory. Indeed, fix a measure space pX,A, νq,
and a measurable positive definite kernel k : X ˆ X Ñ R and let H denote its reproducing
kernel Hilbert space [3]. Under mild regularity assumptions5, the RKHS H can be put into
one-to-one correspondence with a mapping of ℓ2pNq. Formally, we have

H “

!

f –

8
ÿ

j“1

θj
?
µjϕj |

8
ÿ

j“1

θ2j ă 8

)

. (4.34)

for a nonincreasing sequence µj Ñ 0 as j Ñ 8, and for an orthonormal sequence tϕju in
L2pνq. This allows us to equivalently write the observations (4.32) in the form

yi “ xθ‹,Φpxiqy ` wi, for i “ 1, . . . , n. (4.35)

Above, we have defined the sequence θ‹ – pθ‹
j q8

j“1 and “feature map” Φpxq P ℓ2pNq, by the
formulas

θ‹
j –

ş

X
f ‹pxqϕjpxq dνpxq

?
µj

, and
`

Φpxq
˘

j
–

?
µjϕjpxq, for all j ě 1.

4The discussion below is unaffected by imposing additional structure on the noise, so long as the family
of possible noise distributions includes w „ N

`

0, σ2In
˘

.
5The elliptical representation (4.34) is available in great generality. Indeed, a sufficient condition is for

the map x ÞÑ
a

kpx, xq to lie in L2pνq. It can be shown [109, see Lemma 2.3] that in this case, H compactly
embeds into L2pνq and that there is a series expansion

kpx, x1q “

8
ÿ

j“1

µjϕjpxqϕjpx1q, for any x, x1 P X. (4.33)

Here tµju8
j“1 denotes a summable sequence of non-negative eigenvalues, whereas the sequence tϕju8

j“1 is

an orthonormal family of functions X Ñ R that lie in L2pνq. Finally, the series converges absolutely, for
each x, x1 P X. Note that the infinite-dimensional series representation (4.34) of H follows from the series
expansion of the underlying kernel (4.33); see Cucker and Smale [29] for details.
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With these definitions, note that the inner product in equation (4.35) is taken in the sequence
space ℓ2pNq. From the display (4.35), we see that the RKHS observation model (4.32) is in
fact an infinite-dimensional version of the observation model (4.9). The remainder of this
section is devoted to deriving consequences of our results for this model by various truncation
and limiting arguments.

Truncation argument for RKHS minimax risks Given the RKHS ball BHpϱq –
␣

g P

H : ∥g∥H ď ϱ
(

, our goal is to characterize the minimax risk

Mnpϱ, σ2, P q – inf
pf

sup
f‹PBHpϱq

νPPpσ2Inq

E
”∥∥ pf ´ f ‹

∥∥2

L2pνq

ı

. (4.36)

It should be noted here that the covariates are drawn from P and the error is measured
in L2pνq. In classical work on estimation over RKHSs, it is typical to assume that P “ ν.
However, we develop in this section and in Section 4.3.2.3 some interesting consequences of
our theory when P ‰ ν, and so this generality is important for our discussion.

To apply our results to this setting, we need to define certain finite-dimensional trunca-
tions. We start by defining

Hk –

!

f –

8
ÿ

j“1

θj
?
µjϕj | θj “ 0, for all j ą k

)

.

We then define the minimax risk over the the ball BHpϱq restricted to Hk,

Mpkq
n pϱ, σ2, P q – inf

pf
sup

f‹PBHpϱqXHk

νPPpσ2Inq

E
”∥∥ pf ´ f ‹

∥∥2

L2pνq

ı

. (4.37)

In analogy to the limit relation (4.27) for the Gaussian sequence model, we can show that

lim
kÑ8

Mpkq
n pϱ, σ2, P q “ Mnpϱ, σ2, P q. (4.38)

See Section 4.6.5.3 for a proof of this relation. The k-dimensional problem associated with
the risk (4.37) can be seen, using the representation (4.35), as a special case of our IID
observation model (4.9), with parameters, P, ϱ, σ and

ψpxq “ Φkpxq –
`?

µjϕjpxq
˘k

j“1
, Ke “ Mk – diagpµ1, . . . , µkq, and Kc “ Ik. (4.39)

Let us define the k ˆ k empirical covariance matrix

Σpkq
n –

1

n

n
ÿ

i“1

Φkpxiq b Φkpxiq.

Then the using (4.39), we see that the functional (4.12) for the k-dimensional problem is
equal to

dpkq
n – sup

Ωą0

!

TrEPn

“

M
1{2
k pΣpkq

n ` Ω´1
q

´1M
1{2
k

‰

: TrpΩq ď
nϱ2

σ2

)

(4.40)
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Characterizations of RKHS minimax risks of estimation We now state the conse-
quence of our results for the rate of estimation (4.36).

Corollary 4.6. Define d‹
n “ lim supkÑ8 d

pkq
n , where the sequence td

pkq
n ukě1 is defined in

display (4.40). Then the RKHS minimax risk satisfies satisfies the inequalities,

1

4

σ2

n
d‹
n ď Mnpϱ, σ2, P q ď

σ2

n
d‹
n. (4.41)

Note that this result is an immediate consequence of Theorems 4.1 and 4.2, together with
the limit relation (4.38).

We comment that Corollary 4.6 can also be written in a more appealing form. Indeed, al-
though we do not make use of it here, we comment that there is an “extrinsic” representation
of the rate description provided in this corollary. To define it, let us introduce

Sν – Ex„νrkpx, ¨q bH kpx, ¨qs and Sn –
1

n

n
ÿ

i“1

kpxi, ¨q bH kpxi, ¨q,

which are two positive self-adjoint operators H Ñ H. Then, we have

Mnpϱ, σ2, P q —
σ2

n
sup
Ωě0

TrHpΩq“1

TrH EPn

”

Sν Ω
1{2

pΩ1{2SnΩ
1{2

` σ2

nϱ2
IHq

´1Ω1{2
ı

.

Let us now further simplify the characterization (4.41) in the classical situation where
the noise level dominates the Hilbert radius, we have P “ ν, and the map x ÞÑ kpx, xq is
P -essentially bounded by a finite number κ under P .

Corollary 4.7. Suppose that P “ ν and x ÞÑ kpx, xq is P -essentially bounded by κ P p0,8q.
If σ2 ě κ2ϱ2, then the RKHS minimax risk satisfies

Mnpϱ, σ2, P q —
σ2

n
kn, (4.42)

where kn ” knpσ, ϱq – maxtk :
řk

j“1
1
µj

ď
nϱ2

σ2 u.

See Section 4.6.5.4 for a proof of this claim.
We note that Corollaries 4.6 and 4.7 establish the nonasymptotic minimax risk of esti-

mation for the RKHS ball of radius ρ, apart from universal constants, in a fairly general
fashion. The latter claim permits easier calculation, at the expense of some slightly stronger
assumptions. One advantage to Corollary 4.6 is that it holds for any configuration of the
noise level and the Hilbert radius, in contrat to the prior work on the minimax rates for
RKHS balls which typically requires that the signal-to-noise ratio is sufficiently small.

Interestingly, we note that our characterizations—even the loosened characterization (4.42)—
does not need the kernel to satisfy an additional eigenvalue decay condition. Indeed, our
results hold even if the kernel eigenvalues do not satisfy the requirement of a regular kernel as
proposed in prior work [123]. To emphasize this point, we now provide one concrete example
of an irregular kernel for which Corollary 4.7 provides, to our knowledge, a new result.
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Example 4.8 (Irregular kernel). Suppose that P “ ν and that the kernel eigenvalues sat-
isfy µjpαq “ 1

pj`1q logαpj`1q
for some α ą 1. It is easily verified that the corresponding kernel

eigenvalues violates the regularity condition in the paper [123], since an elementary calcu-

lation shows for J sufficiently large, we have
ř

jąJ µj

JµJ
Á logpJq, which diverges as J Ñ 8.

Nonetheless, our result—specifically Corollary 4.7—establishes the optimal rate of estima-
tion. Assuming that x ÞÑ

ř

j µjϕ
2
jpxq is P -almost surely less than κ P p0,8q and σ2 ě κ2ϱ2,

the minimax rate for this kernel satsifies

inf
pf

sup
}f‹}Hαďϱ

E } pf ´ f ‹
}
2
L2pP q — ϱ

d

σ2

n logαpnϱ2{σ2q

where Hα denotes an RKHS corresponding to kernel eigenvalues µjpαq. The relation above
follows from a straightforward calculation which shows that the quantity kn appearing in

Corollary 4.7 is of the order
b

nϱ2

σ2 logαpnϱ2{σ2q
. To our knowledge, the minimax rate for kernels

having eigenvalues of this type was not previously known in the literature. ♣

For a more classical example, we now record yet another consequence of Corollary 4.7.

Example 4.9 (Minimax rate for nonparametric regression on a Sobolev space). Suppose
that P “ ν is the uniform distribution on r0, 1sd and Hβ is the order β-Sobolev space with
β ą d{2. It is classical that µj — j´2β{d for the kernel eigenvalues associated with this setup.

Thus, calculating kn in Corollary 4.7, we find kn — p σ2

ϱ2n
q

´
d

2β`d , and consequently

inf
pf

sup
}f‹}Hβ

ďϱ

E } pf ´ f ‹
}
2
L2pP q — ϱ2

´ σ2

ϱ2n

¯

2β
2β`d

,

provided that σ2 Á ϱ2. The above relation recovers a classical result [60, 110]. ♣

4.3.2.3 Kernel regression under covariate shift

We now discuss one important case in which we have P ‰ ν in the RKHS model (4.32).
In the setting of covariate shift, the model (4.32) comprises of covariates xi drawn from a
source distribution P that is different from the target distribution Q of covariates on which
estimates of the regression function are to be deployed. In this setting, then we take ν “ Q
and P ‰ Q.

For any such pair, following the argument given previously in Section 4.3.2, we find that

inf
pf

sup
f‹PBHpϱq

E
”∥∥ pf ´ f ‹

∥∥2

L2pQq

ı

—
σ2

n
lim sup
kÑ8

dpkq
n , (4.43)

where the quantity d
pkq
n is defined as in display (4.40). Above, the expectation on the lefthand

side is over the noise and the covariates drawn from P as described by the model (4.32).
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Note that the eigenvalues tµjujě1 here correspond to the diagonalization of the integral
kernel operator under the target distribution Q.

Let us now compare to past work due to Ma et al. [77], who studied the covariate
shift problem in RKHSs. In contrast to this work, our result is source-target distribution-
dependent : it characterizes, apart from universal constants, the minimax risk for any kernel,
any radius, any noise level, and any covariate shift pair pP,Qq. By contrast, the results
in the paper [77] consider a more restrictive setup in which pair pP,Qq satisfy an absolute
continuity condition (Q ! P ), and moreover, the likelihood ratio is P -essentially bounded,
meaning that there exists some B P r1,8q such that

dQ

dP
pxq ď B, for P -almost every x.

Let d8pP,Qq denote the P -essential supremum of the likelihood ratio dQ{ dP when Q ! P
and d8pP,Qq “ `8 otherwise. “Uniform” results, where minimax risks of estimation are
studied over families of covariate shifts P relative to Q where d8pP,Qq ď B for some
parameter B can be derived as a corollary to the sharper rate description (4.43).

To give one simple and concrete illustration of this, we will show how one can derive
Theorem 2 in the paper [77]. By Jensen’s inequality, we have

dpkq
n ě sup

Ωą0

!

TrpEPn M
´1{2
k Σpkq

n M
´1{2
k ` Ω´1

q
´1 : TrpM´1

k Ωq ď
nϱ2

σ2

)

. (4.44)

If P satisfies d8pP,Qq ď B, then it follows that we have the ordering

EPn M
´1{2
k Σpkq

n M
´1{2
k ě

1

B
Ik. (4.45)

Moreover, this lower bound can be achieved by a shift P whenever the zero sets of the eigen-
functions ϕj in L2pQq of the integral operator associated with the kernel k have nontrivial
intersection. Equivalently, when there exists

x0 P
č

jě1

ϕ´1
j pt0uq, (4.46)

then the bound (4.45) is achieved by the distribution Px0 – 1
B
Q `

´

1 ´ 1
B

¯

δx0 . This

choice is evidently a B-bounded shift relative to Q. To give an example where the zero set
condition (4.46) holds, note that in the case of where the kernel k is associated with the
periodic β-order Sobolev class on r0, 1s and Q is the uniform law on r0, 1s, one can take
x0 “ 0 as the eigenfunctions are sinusoids.

Now, combining relations (4.43) and (4.44) with the choice of P “ Px0 given above, we
have

sup
P :d8pP,QqďB

inf
pf

sup
f‹PBHpϱq

E
”∥∥ pf ´ f ‹

∥∥2

L2pQq

ı

Á
σ2

n
sup
ωą0

!

8
ÿ

j“1

Bωj

ωj ` B
:

8
ÿ

j“1

ωj

µj

“
nϱ2

σ2

)

— ϱ2 sup
λ

!

8
ÿ

j“1

σ2B

nϱ2
^ λjµj : λj ě 0,

8
ÿ

j“1

λj “ 1
)

. (4.47)
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Suppose, following the paper [77], we additionally impose a regularity condition on the
decay of the eigenvalues µj of kernel integral operator in L

2pQq. Namely, that there exists a
constant c P p0,8q such that

sup
δą0

ř

jądpδq
µj

δ2dpδq
ď c, where dpδq – inftj ě 1 : µj ď δ2u. (4.48)

Under this condition, we can further lower bound (4.47), up to universal constants, by

ϱ2 inf
δą0

!

δ2 `
σ2B

ϱ2n
dpδq

)

. (4.49)

The details of this calculation can be found in Section 4.6.5.6. Note that by establishing the
lower bound (4.49), we have recovered Theorem 2 from the paper [77]. We remark that—as
seen from the steps taken to arrive at this lower bound—our more general determination
of the minimax rate (4.43) is sharper in that it holds for a fixed pair pP,Qq rather than
uniformly over the larger class tP : d8pP,Qq ď Bu. Moreover, our result, as compared
to the work [77], requires fewer regularity assumptions on the underlying kernel and its
diagonalization in the target Hilbert space L2pQq. In fact, as demonstrated in Section 4.6.5.6,
the regularity condition (4.48) is not necessary for us to establish the lower bound (4.49).

4.4 Proofs of Theorems 4.1 and 4.2

In this section, we present the proofs of our main results. In Section 4.4.1, we provide the
proof of our minimax upper bound (cf. Theorem 4.1). In Section 4.4.2, we provide the proof
of our minimax lower bound. Some calculations and routine verifications are deferred to
Section 4.6.

4.4.1 Proof of Theorem 4.1

In this section, we develop an upper bound on the minimax risk. In order to do so, so, we
define the risk function

rppθ, θ‹
q – sup

νPPpΣwq

Epξ,wq„Pˆν E
”∥∥pθpTξ, Tξθ

‹
` wq ´ θ‹

∥∥2

Ke

ı

.

defined for any measurable estimator pθ of pTξ, yq, and any θ‹ P Θpϱ,Kcq. Evidently, the
minimax risk we are bounding is then expressible as

MpT,P,Σw, ϱ,Ke, Kcq “ inf
pθ

sup
θ‹PΘpϱ,Kcq

rppθ, θ‹
q. (4.50)

In order to derive an upper bound, we restrict our focus to estimators that are conditionally
linear. Formally, we consider the class of procedures

pθCpTξ, yq – CpTξqT
T
ξ Σ

´1
w y, (4.51)
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where C is a Rdˆd-valued measurable function of Tξ. Our strategy involves the following
three steps:

(i) First, we compute the supremum risk over the parameter set Θpϱ,Kcq and all ν P

PpΣwq.

(ii) Second, compute the minimizer of the supremum risk in the choice of C in (4.51).

(iii) Finally, by using the curvature of the supremum risk and appealing to a min-max
theorem, we put the pieces together to determine the final minimax risk.

The following subsections are devoted to the details associated with each of these three steps.
In all cases, we defer routine calculations and verification to Section 4.6.6.

4.4.1.1 Supremum risk of estimator pθC

Starting with the definition (4.51), for any matrix C, we have

pθC ´ θ‹
“ pCpTξqT

T
ξ Σ

´1
w Tξ ´ Idqθ‹

` CpTξqT
T
ξ Σ

´1
w w.

Therefore, the risk rppθC , θ
‹q associated with pθC can be bounded as

rppθC , θ
‹
q – sup

νPPpΣwq

E
”

∥pθCpX, yq ´ θ‹∥2Ke

ı

“ Tr

"

Ke
1{2Eξ

”

pCpTξqT
T
ξ Σ

´1
w Tξ ´ Idqθ‹

b θ‹
pCpTξqT

T
ξ Σ

´1
w Tξ ´ Idq

T

` CpTξqT
T
ξ Σ

´1
w TξCpTξq

T
ı

Ke
1{2

*

. (4.52)

The equality above uses the property 4.1.1.1 of distributions ν P PpΣwq; note that it is
achieved by the Gaussian distribution ν “ N p0,Σwq.

4.4.1.2 Curvature and minimizers of the functional rppθC , θ
‹q

We begin by observing that the function rppθC , ¨q : Θpϱ,Kcq Ñ R` can be replaced by an
equivalent mapping—which, with a slight abuse of notation we denote by the same symbol
r— on the space of symmetric positive definite matrices of the form

Kpϱ,Kcq –

!

Ω ě 0 | TrpKc
´1{2ΩKc

´1{2
q ď ϱ2

)

.

We define (in a sense, this is can be regarded as an extension to the set Kpϱ,Kcq)

rppθC ,Ωq – Tr
!

Ke
1{2Eξ

”

pCpTξqT
T
ξ Σ

´1
w Tξ ´ IdqΩpCpTξqT

T
ξ Σ

´1
w Tξ ´ Idq

T

` CpTξqT
T
ξ Σ

´1
w TξCpTξq

T
ı

Ke
1{2
)

. (4.53)
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Note that rppθC , θ
‹q “ rppθC , θ

‹ b θ‹q for θ‹ P Θpϱ,Kcq. We claim that the suprema over
Θpϱ,Kcq and Kpϱ,Kcq are the same.

Lemma 4.1. The suprema of the risk functional r taken over either the set Θpϱ,Kcq or the
set Kpϱ,Kcq are equal—that is, we have

sup
θ‹PΘpϱ,Kcq

rppθC , θ
‹
q “ sup

ΩPKpϱ,Kcq

rppθC ,Ωq,

for every conditionally linear estimator pθC of the form (4.51).

See Section 4.6.6.1 for the proof of this claim. Briefly, the argument underlying this claim
shows that the risk functional is affine in Ω and the set Kpϱ,Kcq can be viewed as the closed
convex hull of rank-one outer products θ‹ b θ‹.

Our next result characterizes some properties of the mapping pC,Kq ÞÑ rppθC , Kq.

Lemma 4.2. Over the set of measurable functions C and matrices Ω P Kpϱ,Kcq, the mapping

pC,Ωq ÞÑ rppθC ,Ωq is affine in Ω and convex in C.

See Section 4.6.6.2 for the proof of this claim.

Our next claim determines the minimizer of rp¨,Ωq over estimators pθC of the form (4.51),
provided that Ω is strictly positive definite.

Proposition 4.3. Let Ω be a symmetric positive definite matrix. Then

inf
C
rppθC ,Ωq “ Tr

!

Ke
1{2EξpΩ

´1
` T T

ξ Σ
´1
w Tξq

´1Ke
1{2
)

(4.54)

Moreover, the infimum is attained with the choice CpTξq “ pΩ´1 ` T T
ξ Σ

´1
w Tξq

´1.

See Section 4.6.6.3 for the proof.

4.4.1.3 Proof of Theorem 4.1

We now piece together the previous lemmas to establish our main upper bound, as claimed
in Theorem 4.1. In view of the relation (4.50) and the bound (4.52), we find that

MpT,P,Σw, ϱ,Ke, Kcq ď inf
C

sup
θ‹PΘpϱ,Kcq

rppθC , θ
‹
q (4.55a)

“ inf
C

sup
ΩPKpϱ,Kcq

rppθC ,Ωq (4.55b)

“ sup
ΩPKpϱ,Kcq

inf
C
rppθC ,Ωq (4.55c)

“ sup
Ωą0

TrpKc
´1Ωqďϱ2

ETr
´

Ke
1{2

pΩ´1
` T T

ξ Σ
´1
w Tξq

´1Ke
1{2
¯

. (4.55d)
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To clarify, in the first display (4.55a) and below, the infimum over C denotes an infimum over
all Rdˆd-valued measurable functions of Tξ. In display (4.55b), we have applied Lemma 4.1.
Relation (4.55c) follows from the generalized Ky Fan min-max theorem [14, Theorem A]
together with Lemma 4.2. Note that the set Kpϱ,Kcq is evidently a compact convex subset
of Rdˆd. The final equality (4.55d) is essentially an application of Proposition 4.3; see
Section 4.6.6.4 for the details of this verification.

4.4.2 Proof of lower bound, Theorem 4.2

In this section, we prove our lower bound on the minimax risk. In order to do so, we focus
on lower bounding the Gaussian minimax risk

MG
pT,P,Σw, ϱ,Ke, Kcq – inf

pθ
sup

θ‹PΘpϱ,Kcq

Epξ,wq„PˆNp0,Σwq

”

∥pθpTξ, Tξθ
‹

` wq ´ θ‹∥2Ke

ı

.

Evidently, the Gaussian minimax risk lower bounds the general minimax risk, so that we have
MG ď M. In Section 4.4.2.1, we reduce this Gaussian minimax risk to yet another Gaussian
observation model. A minimax lower bound for this auxiliary problem is then presented as
Proposition 4.4 in Section 4.4.2.2. This result is the bulk of the proof of the lower bound,
and it quickly allows us to establish our main result, Theorem 4.2. In Section 4.4.2.3, we
then complete the proof of Proposition 4.4.

4.4.2.1 Reduction to an alternate observation model

To establish the lower bound, we first show that the minimax risk associated with our
estimation problem is equivalent to another, perhaps simpler, minimax risk.

An auxiliary observation model This observation model is defined by a random quadru-
ple pr, V,Λ,Υq. The triple pr, V,Λq comprises a random integer r, a random orthogonal ma-
trix V P Rdˆr satisfying V TV “ Ir, and a random, r ˆ r diagonal positive definite matrix
Λ. Conditional on pr, V,Λq, the observation Υ is a Gaussian random variable, satisfying the
equation

Υ “ V V Tη‹
` V Λ´1{2z, where z „ N p0, Irq . (4.56)

Above, the random vector z is drawn from the multivariate Gaussian with identity covariance
in Rr; it is independent of pr, V,Λq. If ω – pr, V,Λq is distributed according to Q, we denote
the minimax risk for this observation model as

MG
redpQ, Kq – inf

pη
sup

ηPΘpKq

Epω,Υq

”

∥pηpω,Υq ´ η∥22
ı

.

Above, the expectation indexed by pω,Υq is over ω „ Q and Υ as in (4.56). The infimum
is over measurable functions of pω,Υq. The set ΘpKq is a shorthand for the set Θp1, Kq “

t}θ}K ď 1u.
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Reduction to the new observation model We formally reduce the minimax risk MG

to the reduction MG
red, as follows.

Lemma 4.3. Let rP denote the distribution of the triple prpξq, Vξ,Λξq under P, where rpξq is
the (finite) rank of Qξ “ Ke

´1{2T T
ξ Σ

´1
w TξKe

´1{2, and Qξ “ VξΛξV
T
ξ denotes the diagonaliza-

tion of this positive definite matrix. Then, for any pT,P,Σw, ϱ,Kc, Keq, we have

MG
pT,P,Σw, ϱ,Kc, Keq “ MG

redprP, ϱ2Ke
1{2KcKe

1{2
q.

See Section 4.6.7.1 for a proof of this claim.

4.4.2.2 Lower bounding the minimax risk

We now focus on lower bounding MG
red. The following result is a formal statement of the

lower bound for the “reduced” minimax risk.

Proposition 4.4. For any τ P p0, 1s and any Π ą 0 such that TrpK´1{2ΠK´1{2q ď 1, we
have

MG
redpQ, Kq ě ETr

´

p 1
cpτ,Πq

Π´1
` V ΛV T

q
´1
¯

, (4.57)

where the constant cpτ,Πq is defined in Lemma 4.6. Moreover, we have the lower bounds

MG
redpQ, Kq

ě sup
Π

!

ETr
´

pΠ´1
` V ΛV T

q
´1
¯

: Π ą 0, TrpK´1{2ΠK´1{2
q ď 1{4

)

(4.58a)

ě
1

4
sup
Π

!

ETr
´

pΠ´1
` V ΛV T

q
´1
¯

: Π ą 0, TrpK´1{2ΠK´1{2
q ď 1

)

. (4.58b)

Proof of Theorem 4.2 We take the claim of Proposition 4.4 as given for the moment,
and use it to derive our minimax lower bound. As mentioned, we may restrict to Gaussian
noise to establish the lower bound; formally, we have M ě MG. Additionally, the reduction
given in Lemma 4.3 combined with the stronger lower bound (4.58a) in Proposition 4.4 gives
us

MpT,P,Σw, ϱ,Ke, Kcq

ě supΠ

!

ETr
´

pΠ´1 ` Ke
´1{2T T

ξ Σ
´1
w TξKe

´1{2
q´1

¯

: Π ą 0,TrpKe
´1{2ΠKe

´1{2Kc
´1

q ď
ϱ2

4

)

.

Now define the matrix Ω “ Ke
´1{2ΠKe

´1{2. Then, the quantity on the righthand side is equal
to

sup
Ω

!

ETr
´

Ke
1{2

pΩ´1
` T T

ξ Σ
´1
w Tξq

´1Ke
1{2
¯

: Ω ą 0, TrpKc
´1{2ΩKc

´1{2
q ď

ϱ2

4

)

,

which furnishes the first inequality in Theorem 4.2. With similar manipulations to the
weaker lower bound (4.58b) in Proposition (4.4), or by arguing directly from the display
above, the second inequality in Theorem 4.2 follows. In order to establish the more detailed
lower bound (4.7), we repeat the argument above but use (4.57).
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4.4.2.3 Proof of Proposition 4.4

The lower bound proceeds in five steps:

(i) We first lower bound the minimax risk in terms of the expected conditional Bayesian
risk over any prior on the parameter set ΘpKq.

(ii) We then demonstrate that, conditionally, there is a family of auxiliary Bayesian es-
timation problems, indexed by a parameter λ ą 0, which are all no harder than the
Bayesian estimation problem implied by the conditional Bayesian risk.

(iii) We compute, in closed form, the Bayesian risk for any prior and any parameter λ ą 0.
We are able to show that the Bayesian risk is a functional of the Fisher information of
the marginal distribution of the observed data under the prior and sampling model.

(iv) For each λ ą 0, we then calculate a lower bound on the Fisher information for a prior
obtained by conditioning a Gaussian distribution with mean zero and covariance Π to
the parameter space.

(v) We put the pieces together: optimizing over all covariance operators Π, and the family
of “easier” problems (i.e., optimizing over λ ą 0), we obtain our claimed lower bound.

Next, we present the details of the steps outlined above. Extended calculations and
routine verification are deferred to Section 4.6.7.

Step 1: Reduction to conditional Bayesian risk We begin by lower bounding the
minimax risk via the Bayes risk. Owing to the standard relation between minimax and
Bayesian risks, we have for any prior π on ΘpKq that

MG
redpQ, Kq “ inf

pη
sup

ηPΘpKq

Epω,Υq

”

∥pηpω,Υq ´ η∥22
ı

ě inf
pη
Eη„π Epω,Υq

“

∥pη ´ η∥22
‰

— Bpπq.

(4.59)

The quantity Bpπq appearing above is the Bayesian risk when the parameter η is drawn from
the prior π. The following observation is key for the lower bound. After moving to Bayesian
risks, we can condition on the “design”, denoted by the random tuple ω “ pr, V,Λq, and
consider the conditional Bayesian risk. Formally, we have

Bpπq “ inf
pη
Eη„π Epω,Υq„Dη

”∥∥
pη ´ η

∥∥2

2

ı

ě Eω„Q

„

inf
pηω

Eη„π EΥ

∥∥
pηωpΥq ´ η

∥∥2

2

ȷ

. (4.60)

Above, the inequality follows by observing that if the function pη : pω,Υq ÞÑ pη P Rd is
measurable, then pηωpΥq – pηpω,Υq is a measurable of Υ. Note that the infimum on the
righthand side is restricted to those maps which are measurable function of ω; note that
they may depend on ω, and therefore we have included a subscript depending on ω to
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indicate this.6 To lighten notation in the subsequent discussion, we define the conditional
Bayesian risk under π and for a realization of the random variable ω “ ω0,

Bpπ | ω0q – inf
pη
Eη„π Ez„Np0,Ir0q

”∥∥
pηpV0V

T
0 η ` V0Λ

´1{2
0 zq ´ η

∥∥2

2

ı

, where ω0 “ pr0, V0,Λ0q.

Using this definition, along with the two inequalities (4.59) and (4.60), we have demonstrated

MG
redpQ, Kq ě Eω„Q

“

Bpπ | ωq
‰

, for any prior π on ΘpKq. (4.61)

Therefore, it suffices for us to lower bound Bpπ | ωq.

Step 2: Reduction to a family of easier problems In this step, we fix a parameter
λ ą 0, which will index yet another auxiliary Bayesian estimation problem. The intuition will
be that as λ Ñ 0`, we are “approaching” the difficulty of the original Bayesian estimation
problem.

Formally, fix ω “ pr, V,Λq. Throughout we will let VK : Rd Ñ ranpV qK denote the
projection of an element η P Rd to the orthogonal complement of the closed subspace ranpV q.
We now consider the observation, where for an independent random Gaussian variable z „

N p0, Idq

Υλ “ pV V T
` λVKq

looooooomooooooon

—Xλ

η ` V Λ´1{2w `
?
λVKz “ Xλη ` pV Λ´1V T

` λVKq
1{2w1,

where the last equality holds in distribution. Define Σλ – V Λ´1V T `λVK; evidently Σλ is a
symmetric positive definite matrix for any λ ą 0. Then, Υλ has distribution N pXλη,Σλq. We
remark that the observation Υλ is more convenient than Υ as its covariance is nonsingular
and moreover its mean is a nonsingular linear transformation of η—note that neither of these
properties hold for Υ.

Our goal is to show that the observation Υλ is more “informative” than Υ. To do this,
we now define the (conditional) Bayesian risk for Υλ,

Bλpπ | ωq – inf
pη

!

Bλppη, π | ωq – E
“

∥pηpΥλq ´ η∥22
‰

)

.

The main claim is that this provides a lower bound on our original conditional Bayesian risk.

Lemma 4.4. For any ω and λ ą 0, we have

Bpπ | ωq ě Bλpπ | ωq.

See Section 4.6.7.2 for a proof of this claim.

6In some cases, this inequality may hold with equality. However, to be clear, in general the inequality
arises since if tpηωuω is a family of measurable functions (of Υ) for each ω in the support of Q, it is not
necessarily the case that pηpω,Υq – pηωpΥq is measurable.
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Step 3: Calculation of Bayesian risk Bλpπ | ωq, for a fixed prior π and parameter
λ ą 0 To compute the Bayesian risk for a fixed prior π and parameter λ ą 0, we develop a
variant of Tweedie’s formula (also sometimes referred to as Brown’s identity, when applied
to Bayesian risks) [116, 101, 17].

To state the result, we need to introduce some notation. We define the marginal and
conditional densities of Υλ—disregarding normalization constants—as,

ppyq –

ż

ppy | ηq πp dηq where ppy | ηq – exp
´

´
1

2
}y ´ Xλη}

2
Σ´1

λ

¯

.

Finally we define the Fisher information of the marginal distribution of Υλ, which is given
by

I pΥλq – Er∇ log ppΥλq b ∇ log ppΥλqs.

With this notation in hand, we can now state our formula for the Bayesian risk under the
prior π and for parameter λ ą 0.

Lemma 4.5. Fix ω “ pr, V,Λq. Define Xλ – V V T ` λVK and Σλ – V Λ´1V T ` λVK. Fix
prior π, and parameter λ ą 0. Then the conditional Bayesian risk is given by

Bλpπ | ωq “ Tr
´

X´1
λ Σλ

“

Σ´1
λ ´ I pΥλq

‰

ΣλX
´1
λ

¯

.

See Section 4.6.7.3 for a proof of this claim.

Step 4: Lower bound on Fisher information for conditioned Gaussian prior Con-
sider a prior π which is absolutely continuous with respect to Lebesgue measure on Rd.
Furthermore, suppose that its Lebesgue density fπ – dπ

dη
has logarithmic gradient almost

everywhere. Define

I pπq –

ż

∇ log fπpηq b ∇ log fπpηq dπpηq.

Recall also that the Fisher information associated with a Gaussian distribution N pµ,Πq for
nonsingular Π is given by Π´1 [72, Example 6.3]. Therefore, applying well-known results for
the Fisher information [125, eqn. (8) and Corollary 1]

I pΥλq ď pXλI pπq
´1Xλ ` Σλq

´1. (4.62)

Next, we select a prior distribution and calculate the Fisher information I pΥλq for the
marginal density under this prior. For a parameter τ P p0, 1s and symmetric positive definite
covariance matrix Π, we define the probability measures

πG
τ,Π “ N

`

0, τ 2Π
˘

and πτ,Π “ πG
τ,Π

`

¨ | ΘpKq
˘

.
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In other words, πτ,Π denotes the probability measure N p0, τ 2Πq conditioned on the constraint
set. Formally, it is defined by the relation,

πτ,ΠpAq –
πG
τ,Π

`

A X ΘpKq
˘

πG
τ,Π

`

ΘpKq
˘ ,

for any event A. For these priors, we have the following claim.

Lemma 4.6. Let τ P p0, 1s and Π be a symmetric positive definite matrix satisfying the
relation TrpΠ1{2K´1Π1{2q ď 1. Then the Fisher information of the conditioned prior πτ,Π
satisfies the inequality

I pπτ,Πq
´1

ě cpτ,ΠqΠ,

where cpτ,Πq “ τ 2p1 ´ πG
τ,ΠpΘpKqcqq ą 0.

See Section 4.6.7.4 for the proof of this claim.

Step 5: Putting the pieces together Combining Lemmas 4.4 and 4.5 along with the
inequality (4.62) and Lemma 4.6, we find that for any τ P p0, 1s and symmetric positive
definite matrix Π satisfying TrpΠ1{2K´1Π1{2q ď 1, that

Bpπ | ωq ě sup
λą0

Tr
´

X´1
λ Σλ

“

Σ´1
λ ´ pcpτ,ΠqXλΠXλ ` Σλq

´1
‰

ΣλX
´1
λ

¯

“ sup
λą0

Tr
´

p 1
cpτ,Πq

Π´1
` XλΣ

´1
λ Xλq

´1
¯

.

Above, we used the relation ApA´1´pB`Aq´1qA “ pA´1`B´1q´1, valid for any pair pA,Bq

of symmetric positive definite matrices. Our particular choice of matrices was A “ Σλ and
B “ Xλ. Note that

XλΣ
´1
λ Xλ “ V ΛV T

` λVK.

Therefore, by continuity, we have

Bpπ | ωq ě lim
λÑ0`

Tr
´

p 1
cpτ,Πq

Π´1
` V ΛV T

` λVKq
´1
¯

“ Tr
´

p 1
cpτ,Πq

Π´1
` V ΛV T

q
´1
¯

. (4.63)

Taking the expectation over ω, and applying our minimax lower bound (4.61), we have
established lower bound (4.57). Note that since cpτ,Πq P p0, 1s, we evidently have from the
above display that

Bpπ | ωq ě cpτ,ΠqTr
´

pΠ´1
` V ΛV T

q
´1
¯

.
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Let us define the constant

cℓpKq – inf
Πą0

TrpΠK´1qď1

sup
τPp0,1s

cpτ,Πq.

Then combining the conditional lower bound (4.63) with our minimax lower bound (4.61),
we obtain

MG
redpQ, Kq ě sup

Π

!

ETr
´

pΠ´1
` V ΛV T

q
´1
¯

: Π ą 0, TrpΠ1{2K´1Π1{2
q ď cℓpKq

)

“ sup
Π

!

ETr
´

p 1
cℓpKq

Π´1
` V ΛV T

q
´1
¯

: Π ą 0, TrpΠ1{2K´1Π1{2
q ď 1

)

ě cℓpKq sup
Π

!

ETr
´

pΠ´1
` V ΛV T

q
´1
¯

: Π ą 0, TrpΠ1{2K´1Π1{2
q ď 1

)

.

To complete the proof, we simply need to lower bound the constant cℓpKq universally.

Lemma 4.7. The constant cℓpKq is lower bounded, for any symmetric positive definite K,
as

cℓpKq ě
1

4
.

See Section 4.6.7.5 for a proof of this claim.

4.5 Discussion

In this work, we determined the minimax risk of estimation for observation models of the
form (4.1), where one observes the image of a unknown parameter under a random linear
operator with additive noise. Our results reveal the dependence of the rate of convergence
on the covariate law, the parameter space, the error metric, and the noise level. We conclude
this chapter by presenting some simulation results; see Section 4.5.1

Finally, we note that in this work we studied minimax risks of convergence in expectation.
This is convenient, as it requires relatively minor assumptions of the distribution of Tξ. On
the other hand, for the setting of random design regression, high-probability results, such as
those obtained in the papers [4, 84, 59, 71, 92], typically require stronger assumptions such as
the sub-Gaussianity of the covariate distribution. Nonetheless, high-probability guarantees
provide a complementary perspective on the problem we consider. Indeed, when the covariate
law can be considered “heavy-tailed,” it may be more relevant to develop robust estimators
that have low risk with high probability. We refer to the survey article [76] for a overview
of work in this direction.
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4.5.1 Some illustrative simulations

We conclude this chapter by presenting the results of some simulations reveal how changes
in the distribution of the random operator Tξ can lead to dramatic changes in the overall
minimax risk.

In this section, we present simulation results to illustrate the behavior of the functionals
appearing in our main results for two versions of random design linear regression. In Sec-
tion 4.5.1.1, we present simulation results for a multivariate, random design linear regression
setting with IID covariates. Concretely, we provide two different covariate laws, where the
minimax error for the same parameter space differs by at least two orders of magnitude. We
emphasize this difference in entirely due to the covariate law; the noise, observation model,
error metric, and parameter space are fixed in this comparison.

Additionally, in Section 4.5.1.2, we present simulation results for a univariate regression
setting where the covariates are sampled from a Markov chain. In both cases, the functional
is able to capture the dependence of the minimax rate of estimation on the underlying
covariate distribution.

4.5.1.1 Higher-order effects in IID random design linear regression

For random design linear regression, higher order properties of the covariate distribution
over the covariates can have striking effects on the minimax risk. In order to illustrate
this phenomenon, we consider the regression model (4.9) with feature map ψpxq “ x, and
parameter vector θ‹ constrained to a ball in the Euclidean norm. We then construct a family
of distributions over the covariates that are all zero-mean with identity covariance, but differ
in interesting ways in terms of their higher-order moment properties. More precisely, we let
δ0 denote the Dirac measure with unit mass at 0, and for a mixture weight λ P r0, 1s, we
consider covariates generated from the probability distribution

Pλ – λδ0 ` p1 ´ λqN
ˆ

0,
1

1 ´ λ
Id

˙

. (4.64)

By construction, all members of the ensemble have the same behavior with respect to their
first and second moments,

EPλ
rxs “ 0 and CovPλ

pxq “ EPλ
rx b xs “ Id, for all λ P r0, 1s. (4.65)

In the special case λ “ 0, the distribution Pλ corresponds to the standard Gaussian law on
Rd, whereas it becomes an increasingly ill-behaved Gaussian mixture distribution as λ Ñ 1´.

Following the argument in Section 4.3.1.1, in this case, the minimax risk is upper and
lower bounded as

σ2

n
EPn

λ
rTrppΣn `

cdσ
2d

nϱ2
Idq

´1
qs ď MIID

n

´

Pλ, ϱ, σ
2, Id, Id

¯

ď
σ2

n
EPn

λ
rTrppΣn ` σ2d

nϱ2
Idq

´1
qs.

(4.66)
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Above, the lower bound constant cd is defined in display (4.16b).
To understand the effect of the covariate law, we fix the signal-to-noise ratio such that

ϱ
σ

“ τ , for τ P t1, 10u. Note that after renormalizing the minimax risk by ϱ2, it only
depends on τ (and not on the particular choices of pϱ, σq). Similarly, this invariance relation
holds for the functionals appearing on the left- and righthand sides of the display (4.66)—
after normalization by 1{ϱ2, they no longer depend on pϱ, σq except via the ratio τ “

ϱ
σ
.

Additionally, we fix the aspect ratio γ “ d
n
.7By varying γ P r0.05, 4s we are able to illustrate

the behavior of the minimax risk, as characterized by our functional, for problems which are
both under- and overdetermined.

Having fixed the SNR at τ and aspect ratio at γ, we can somewhat simplify the dis-
play (4.66), by introducing the following quantities which only depend on the parameters
τ, γ and the sample size n and the mixture parameter λ,

mnpλ, τ, γq –

MIID
n

´

Pλ, τσ, σ
2, Irγns, Irγns

¯

τ 2σ2
,

unpλ, τ, γq –
1

τ 2n
EPn

λ
rTrppΣn `

rγns

nτ2
Irγnsq

´1
qs,

ℓnpλ, τ, γq –
1

τ 2n
EPn

λ
rTrppΣn `

cdrγns

nτ2
Irγnsq

´1
qs.

Then, the relations (4.66), can be equivalently expressed as

ℓnpλ, τ, γq ď mnpλ, τ, γq ď unpλ, τ, γq,

and moreover this holds for all λ P r0, 1s, τ ą 0, γ ą 0. In our simulation, we use Monte
Carlo simulation with 50 trials to estimate the upper and lower bound functionals ℓn and
un.

In our simulations, we take λ P t0, 0.9, 0.99u and vary γ P r0.05, 4s. The results of
these simulations are presented in Figure 4.1; see the caption for a detailed description and
commentary. The general pattern should be clear: the covariate law can have a dramatic
impact on the overall rate of estimation, even when restricting some moments such as we
have with the relations (4.65).

4.5.1.2 Mixing time effects in Markovian linear regression

Covariates need not be drawn in an IID manner, and any dependencies can be expected to
affect the minimax risk. Here we illustrate this general phenomena via some simulations
for the Markov regression example as outlined in Section 4.3.1.4. We seek to study a wide
range of possible mixing conditions for the Markovian covariate model. In order to do so,
we consider covariates generated from the Markovian model (4.22) with

rt “
ψpt ´ 1q

ψptq
,

7Specifically, we take d “ rγns.
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(c) n “ 512, τ “ 1
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Figure 4.1. Simulations of random design regression for three covariate laws, Pλ as defined in
equation (4.64) with λ P t0, 0.9, 0.99u. For a given choice of the mixture weight λ and signal-to-noise
ratio (SNR) τ , we plot the lower bound ℓnpλ, τ, γq and upper bound unpλ, τ, γq as γ varies between
0.05 and 4. The normalized minimax risk mn is then guaranteed to lie in the region whose upper
and lower envelopes are given by un and ℓn, respectively. To facilitate interpretation of these figures,
we have shaded this region to highlight where we can guarantee the minimax risk mn must lie. The
quantities un, ℓn,mn are all defined in display (4.67). In panels (4.1a) and (4.1b), we set the sample
size n “ 128, and set the SNR as τ “ 1, 10, respectively. In panels (4.1c) and (4.1d), we set the
sample size n “ 512, and set the SNR as τ “ 1, 10, respectively. The plots above demonstrate
that as λ increases, the minimax risks are much worse. Numerically, in the setting where n “ 512
and τ “ 10—as depicted in panel (4.1d)—our upper and lower bounds guarantee that the minimax
risk for the isotropic ensemble (depicted with λ “ 0 above) can be over 806 times larger than the
minimax risk for the ensemble with λ “ 0.99. It should be noted that in this comparison the first
and second moments of the ensemble are held fixed (see equation (4.65)), and hence the differences
between the lines plotted in any given panel can only be explained by differences in higher-order
moments within the ensemble tPλu. The figures also demonstrate that the gap between our upper
and lower bounds is fairly small, particularly whenever d ą 5.
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where ψ : N Y t0u Ñ R` is a nondecreasing function satisfying ψp0q “ 1 and limtÑ8 ψptq “

8. With this choice, it is easily checked that, marginally

xt „ N
ˆ

0, 1 ´
1

ψptq

˙

.

Therefore, xt Ñ N p0, 1q in distribution as t Ñ 8, and the rate of convergence is of order
1{ψptq.

We now illustrate how the minimax rate, as determined in Corollary 4.5, for this problem
behaves for different choices of the function ψ and the signal-to-noise ratio (SNR). As in
Section 4.5.1.1, we normalize the minimax risk by the squared radius so that it only depends
on τ “

ϱ
σ
. The quantity we then plot is

ΦT pτq –
ΦT pτ, 1q

τ 2
,

where ΦT pϱ, σq is the functional appearing in Corollary 4.5.
In the simulation, we consider the following choices of scaling function ψ,

5t, t ` 1, 1 ` logpt ` 1q, and 1 ` log
`

1 ` logpt ` 1q
˘

.

With the choice ψptq “ 5t, the underlying Markov chain converges geometrically to the
standard Normal law. On the other hand, the choice ψptq “ logp1 ` logp1 ` tqq ` 1 exhibits
much slower convergence—the variational distance between the law of xt and N p0, 1q is of
order Op1{plog log tqq.

We simulate each of these chains, computing the normalized functional ΦT pτq over the
course of 5000 Monte Carlo trials. The sample size T is varied between 10 and 3162. In
the simulation we also include the choice rt ” 0, which corresponds to IID covariates. The
results of the simulation are presented in Figure 4.2; see the caption for more details and
commentary.

4.6 Deferred proofs

4.6.1 Proof of Proposition 4.1

The constraint set is evidently convex, as it is formed by the intersection of of two convex sets:
the d ˆ d real, symmetric positive definite matrices with the hyperplane tΩ : TrpKc

´1Ωq ď

ϱ2u.
We claim that the objective function f is concave over the set of symmetric positive

definite matrices. It can be expressed as

fpΩq “ EξrgpT T
ξ Σ

´1
w Tξ,Ωqs, where gpX,Ωq – TrpKe

1{2
pX ` Ω´1

q
´1Ke

1{2
q.
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Figure 4.2. Simulations for five distributions of Markovian covariates. In panel (4.2a),
we set the SNR parameter as τ “ 1, and in panel (4.2b), we set the SNR parameter as
τ “ 10. As the scaling function ψ grows more slowly, the chain converges to its stationary
distribution more slowly, and the minimax rate decays more slowly, as indicated by the
displayed behavior of our functional T ÞÑ ΦT pτq.

Evidently to establish that f is concave, it is enough to show that gpX, ¨q is concave for
every symmetric positive semidefinite X. In order to establish this claim, let us fix some
ε ą 0, and define Xpεq – X ` εId. By the joint concavity of the harmonic mean of positive
operators [107, Corollary 37.2], it follows that for any pair of positive definite matrices Ω,Ω1,
we have

´

Xpεq `

´Ω ` Ω1

2

¯´1¯´1

ě
1

2

´

Xpεq ` Ω´1
¯´1

`
1

2

´

Xpεq ` pΩ1
q

´1
¯´1

.

Passing to the limit as ε Ñ 0 yields

´

X `

´Ω ` Ω1

2

¯´1¯´1

ě
1

2

´

X ` Ω´1
¯´1

`
1

2

´

X ` pΩ1
q

´1
¯´1

.

Since the trace is a monotone mapping on positive definite matrices, and g is continuous in
its second argument, we obtain the claimed concavity of g.

4.6.2 Proof of Proposition 4.2

To establish the upper bound, it suffices to show that for each positive definite Ω ą 0 with
TrpKc

´1{2ΩKc
´1{2

q ď
nϱ2

σ2 that the following inequality holds

Tr
´

E
“`

Σn ` Ω´1
˘´1

Ke

‰

¯

ď

´

1 `
ϱ2κ2

σ2

¯

Tr
``

ΣP ` Ω´1
˘´1

Ke

¯

. (4.68)
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To prove inequality (4.68), we begin by stating a more general result: a multiplicative
positive operator inequality. We use the notation

VarpW q “ ErW 2
s ´ pEW q

2

whenever W is a random positive, self-adjoint operator.

Theorem 4.3 (Random positive operator inequality). Let Y denote a random positive def-
inite matrix. Suppose that there exists a (deterministic) positive definite Z ą 0 such that

rY – pEY q
´1{2Y pEY q

´1{2 ě Z, almost surely.

Then, the following sandwich relation holds,

pEY q
´1 ď ErY ´1

s ď

´

1 ` ~Z1{2VarpZ´1{2
rY Z´1{2

qZ1{2
~op

¯

pEY q
´1.

For proof, see Section 4.6.2.1. Note that this result can be viewed as a strengthening and
generalization of Lemma 2 in the paper [89].

We can instantiate Theorem 4.3 in the special case where the random matrix Y arises as
an average of IID summands. This immediately yields the following consequence.

Corollary 4.8. Let Xn “ 1
n

řn
i“1Xi denote an average of IID , random, positive definite

matrices. Suppose that there exists a (deterministic) positive definite matrix W ą 0 such
that

rX1 – pEX1q
´1{2X1pEX1q

´1{2 ě W, almost surely.

Then, the following sandwich relation holds,

pEX1q
´1 ď ErXn

´1
s ď

´

1 `
1

n
~W 1{2VarpW´1{2

rX1W
´1{2

qW 1{2
~op

¯

pEX1q
´1.

We now demonstrate how Corollary 4.8 establishes inequality (4.68).

Proof of bound (4.68) In Corollary 4.8, we can ensure that Xn “ Σn ` Ω´1 by taking
Xi “ ψpxiq b ψpxiq ` Ω´1 and W “ pΣP ` Ω´1q´1{2Ω´1pΣP ` Ω´1q´1{2. Then we have

W 1{2VarpW´1{2
rX1W

´1{2
qW 1{2

“ pΣP ` Ω´1
q

´1{2
”

E
“

}Ω1{2ψpxq}
2
2ψpxq b ψpxq

‰

´ ΣPΩΣP

ı

pΣP ` Ω´1
q

´1{2

ď
nκ2ϱ2

σ2
I.

The final inequality uses the P -almost sure inequality

}Ω1{2φpxq}2 ď ~Ω1{2Kc
´1{2

~op}Kc
1{2φpxq}2 ď

?
n
κϱ

σ
.

Since the inequality above implies ~W 1{2VarpW´1{2
rX1W

´1{2qW 1{2~op ď
nκ2ϱ2

σ2 , bound (4.68)
follows from Corollary 4.8.
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4.6.2.1 Proof of Theorem 4.3

The lower bound is immediate by Jensen’s inequality the operator convexity of the inverse
over the space of positive definite matrices. By rescaling, it suffices to prove the upper bound
under the assumption that EY “ I. We can then write

Y ´1
´ I ` pY ´ Iq “ pY ´ IqY ´1

pY ´ Iq ď pY ´ IqZ´1
pY ´ Iq.

Here, we used that rY “ Y ě Z ą 0. Rearranging the above display and taking expectations,
we find

ErY ´1
s ď I ` EpY ´ IqZ´1

pY ´ Iq ď

´

1 ` ~Z1{2VarpZ´1{2Y Z´1{2
qZ1{2

~op

¯

I,

thereby establishing our upper bound.

4.6.3 Proof of Corollary 4.2

Combining Theorems 4.1 and 4.2, we find that

ΦpT,P,Σw,
ϱ
2
, Ke, Kcq ď MpT,P,Σw, ϱ,Ke, Kcq ď ΦpT,P,Σw, ϱ,Ke, Kcq. (4.69)

Evidently, by definition of the functional Φ (see definition (4.4)), the map

ϱ Ñ ΦpT,P,Σw, ϱ,Ke, Kcq

is nondecreasing. Moreover since T T
ξ Σ

´1
w Tξ is invertible with probability 1, it is a bounded

function. Therefore,

lim
ϱÑ8

ΦpT,P,Σw, ϱ,Ke, Kcq

ΦpT,P,Σw, ϱ{2, Ke, Kcq
“ 1,

which in view of the sandwich relation (4.69), furnishes the claim.

4.6.4 Proof and calculations from Section 4.3.1

4.6.4.1 Proof of equation (4.17a)

From the definition of the functional (4.12), we have

dnpN p0, Idq , ϱ, σ2, Id, Idq “ sup
!

ErTrppΣn ` σ2d
nϱ2
M´1

q
´1

qs :M ą 0, TrpMq “ d
)

.

In this section, all expectations are over xi
i.i.d.
„ N p0, Idq. We claim that the supremum above

is achieved at M “ Id.

Lemma 4.8. For any positive definite matrix M ą 0 such that TrpMq “ d, we have

ErTrppΣn ` σ2d
nϱ2
M´1

q
´1

qs ď ErTrppXTX ` dσ2

ϱ2
Idq

´1
qs

Assuming Lemma 4.8, we then have

dnpN p0, Idq , ϱ, σ2, Id, Idq “ ErTrppΣn ` σ2d
nϱ2
Idq

´1
qs “ dDickerpn, d, ϱ, σq,

which establishes (4.17a), as needed.



CHAPTER 4. NOISY RECOVERY IN LINEAR MODELS 130

Proof of Lemma 4.8 Define the function ϕ : pΣ,Mq ÞÑ pΣ ` dσ2

nϱ2
M´1q´1, where Σ,M are

assumed symmetric positive semidefinite and M is nonsingular. For each Σ ě 0, it is well
known that ϕpΣ, ¨q is operator concave [107, Corollary 37.2]—for any collection tMiu

d
i“1 of

symmetric positive definite matrices, one has

1

d

d
ÿ

i“1

ϕpΣ,Miq ď ϕpΣ, 1
d

d
ÿ

i“1

Miq, for any Σ P Sd
`. (4.70)

Now let M ą 0 satisfying TrpMq “ d be given. Diagonalize M so that M “ UΛUT, where
Λ “ diagpλq ą 0, and U is orthogonal. Consider the cyclic permutations of Λ, given by

Λpjq
“ diagpλpjq

q, where λ
pjq

i “ λi`j.

Above, the arithmetic i ` j occurs modulo d. By rotational invariance of the Gaussian and
the fact that xi has iid coordinates, we have

ETrppΣn ` dσ2

nϱ2
M´1

q
´1

q “ ETrppΣn ` dσ2

nϱ2
Λ´1

q
´1

q

“ E
”1

d

d
ÿ

j“1

TrppΣn ` dσ2

nϱ2
pΛpjq

q
´1

q
´1

q

ı

“ Tr
!

E
”1

d

d
ÿ

j“1

ϕpΣn,Λ
pjq

q

ı)

ď Tr
!

E
”

ϕpΣn,Λq

ı)

where Λ – 1
d

d
ÿ

j“1

Λpjq,

The final inequality above uses the concavity inequality (4.70), where we have taken Mi “

Λpiq. Now note that

Λ “
TrpΛq

d
Id “

TrpMq

d
Id “ Id.

Combining the preceding displays furnishes the claim.

4.6.4.2 Proof of the lower bound in equation (4.16a)

We apply our our sharp lower bound in Theorem 4.2 with Ω “
ϱ2

d
Id and τ 2 “ 1 ´ 1

2d´1
.

Let us define u “ p1 ´ 1
2d´1

qp1 ´ PtZ ą 2d2 ´ duq, where Z is a χ2-random variable with

d-degrees of freedom. Note that dpd ´ 1q ě
?
dt ` t for t “ d3{2

4
for all d ě 2. Therefore by

standard tail bounds for χ2-variates [70, pp. 1325], we have u ď expp´d3{2{4q. Applying the
sharp lower bound (4.7) in Theorem 4.2 then yields the claim.
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4.6.4.3 Proof of equation (4.21)

Using the semidefinite inequality

`

Σn ` Ω´1
˘´1

ď Σ´1
n ,

and the choice Ω “ n
σ2

ϱ2

d
Id, we have the sandwich relation

TrEPn

“

Σ
1{2
P pΣn ` σ2

n
d
ϱ2
Idq

´1Σ
1{2
P

‰

ď dnpP, ϱ, σ2, Id,ΣP q ď TrEPn

“

Σ
1{2
P Σ´1

n Σ
1{2
P

‰

,

for all ϱ ą 0. Since ϱ ÞÑ dnpP, ϱ, σ2, Id,ΣP q is nondecreasing, the display above also demon-
strates that this map has a limit. Now, note that by continuity, P n-almost surely we have

lim
ϱÑ8

TrpΣ
1{2
P pΣn ` σ2

n
d
ϱ2
Idq

´1Σ
1{2
P q “ TrpΣ

1{2
P Σ´1

n Σ
1{2
P q.

Thus, using the sandwich relation (4.21) and Fatou’s lemma, we have

TrEPn

“

Σ
1{2
P Σ´1

n Σ
1{2
P

‰

ď lim inf
ϱÑ8

TrEPn

“

Σ
1{2
P pΣn ` σ2

n
d
ϱ2
Idq

´1Σ
1{2
P

‰

ď lim
ϱÑ8

dnpP, ϱ, σ2, Id,ΣP q ď TrEPn

“

Σ
1{2
P Σ´1

n Σ
1{2
P

‰

,

which establishes relation (4.21), as required.

4.6.4.4 Proof of minimax relation (4.25)

Let us state the claim corresponding to relation (4.25) somewhat more precisely. We define
the functional

ΦT pϱ, σq – E

„

´ 1

ϱ2
`
zTMz

σ2

¯´1
ȷ

Then the following lemma corresponds to the claim underlying relation (4.25).

Lemma 4.9. The minimax risk under the Markovian observation model defined by the dis-
plays (4.22) and (4.23) satisfies

1

4
ΦT pϱ, σq ď inf

pθ
sup

|θ‹|ďϱ

E
“

ppθ ´ θ‹
q
2
‰

ď ΦT pϱ, σq.

The remainder of this section is devoted to the proof of this claim
Note that if we define ξ “ px1, . . . , xT q, and Tξ “ x, then the observation model (4.23)

can be written

y “ Tξθ
‹

` Σ1{2
w w,
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where w „ N p0, IT q and Σw “ σ2IT . We have Kc “ 1 “ Ke, since we are considering a
univariate estimation problem. Therefore, since the functional (4.4) is attained at Ω “ ϱ2,
in order to establish Lemma 4.9, it is sufficient to show that

T T
ξ Σ

´1
w Tξ “

xTx

σ2
“
zTMz

σ2
. (4.71)

However, from display (4.22), by induction we can establish that

xt “

t
ÿ

s“1

?
cst zs,

where the coefficients tcstu are defined as in display (4.24). Then, it follows that

xTx “

T
ÿ

t“1

t
ÿ

s,s1“1

?
cstcs1tzszs1 “

T
ÿ

s,s1“1

ÿ

t“s_s1

?
cstcs1t

loooooomoooooon

“Mss1

zszs1 .

Using the display above, we establish the relation (4.71), which in turn establishes Lemma 4.9,
as needed.

4.6.5 Proof and calculations from Section 4.3.2

4.6.5.1 Proof of limit relation (4.27)

To lighten notation in this section, let us define the shorthands

Mk – Mk

´

tεju
k
j“1,Θkpa, Cq

¯

, and, (4.72a)

M – M

´

tεju
8
j“1,Θpa, Cq

¯

– inf
pθ

sup
θ‹PΘpa,Cq

E
”

8
ÿ

j“1

ppθjpyq ´ θ‹
j q

2
ı

. (4.72b)

We begin by stating the following sandwich relation for the minimax risks.

Lemma 4.10. The sequence of minimax risks tMku and infinite-dimensional risk M satisfies
the sandwich relation

Mk ď M ď Mk `
C2

a2k`1

, (4.73)

for all k ě 1.

Assuming Lemma 4.10 for the moment, note that it implies for any divergent sequence
ak Ñ 8 that

lim
kÑ8

Mk “ M.

In view of the shorthands (4.72), the display above establishes our desired limit relation (4.27).
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Proof of Lemma 4.10 We begin by establishing the lower bound. Note that Θkpa, Cq Ă

Θpa, Cq, hence we have

M ě inf
pθ

sup
θ‹PΘkpa,Cq

E
”

8
ÿ

j“1

ppθjppyiq
8
i“1q ´ θ‹

j q
2
ı

ě inf
pθ

sup
θ‹PΘkpa,Cq

E
”

k
ÿ

j“1

ppθjppyiq
8
i“1q ´ θ‹

j q
2
ı

,

where the last equation arises since θ‹
j “ 0 for j ą k and thus any minimax optimal estimator

over Θkpa, Cq satisfies pθj ” 0 for all j ą k. The righthand side differs from Mk in that pθ
is a function of the full sequence y “ pyiq

8
i“1. However, note that due to the independence

of the noise variables zi, for the observation model (4.26) restricted to Θkpa, Cq, the vector
ypkq “ pyiq

k
i“1 is a sufficient statistic. Hence we have for each k ě 1,

M ě inf
pθ

sup
θ‹PΘkpa,Cq

E
”

k
ÿ

j“1

ppθjpy
pkq

q ´ θ‹
j q

2
ı

“ Mk,

which establishes the lower bound in relation (4.73).
To establish the upper bound, note that we certainly may restrict the infimum in the

definition of M to those estimators taking values in Rk which only are a function of ypkq.
Indeed, we then find

M ď inf
pθPRk

sup
θ‹PΘpa,Cq

E
”

k
ÿ

j“1

ppθjpy
pkq

q ´ θ‹
j q

2
`

ÿ

jąk

pθ‹
j q

2
ı

(4.74)

ď Mk ` sup
θ‹PΘpa,Cq

ÿ

jąk

pθ‹
j q

2. (4.75)

The inequality (4.75) arises by taking the supremum over the two terms of the risk in
display (4.74), and noting the first term only depends on the first k coordinate of θ‹ P Θpa, Cq,
and hence the supremum may be taken over Θkpa, Cq in the first term so as to obtain Mk.

Now observe by Hölder’s inequality, and the membership θ‹ P Θpa, Cq,

ÿ

jąk

pθ‹
j q

2
“

ÿ

jąk

1

a2j
pa2jpθ

‹
j q

2
q ď

´

max
jąk

1

a2j

¯

C2
“

C2

a2k`1

,

with the last equality arising because j ÞÑ a2j is assumed nondecreasing. Combining the dis-
play above with inequality (4.75) establishes the upper bound in (4.73), and thus establishes
Lemma 4.10 as needed.
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4.6.5.2 Proof of relation (4.31)

Let us continue to adopt the shorthandsMk andM defined, respectively, in the displays (4.72a)
and (4.72b). Moreover, we also use the shorthands

R‹
k – R‹

k

´

tεukj“1, taju
k
j“1, C

¯

, and R‹ – R‹
pε, a, Cq,

corresponding to the functionals (4.29) and (4.30), respectively.
We prove the following lemma.

Lemma 4.11. The functionals R‹
k, R

‹ and minimax risks Mk satisfy

1

4
R‹

k ď Mk ď R‹
k for all k ě 1, and, (4.76a)

lim
kÑ8

R‹
k “ R‹. (4.76b)

Assuming Lemma 4.11 for the moment, note that the two inequalities immediately imply
the sandwich relation (4.31), simply by applying the sandwich (4.76a) to the terms Mk and
then applying the limit relations (4.27) and (4.76b). Consequently, it suffices to establish
Lemma 4.11.

Proof of Lemma 4.11 Recall the settings of the parameters T pkq,Σ
pkq
w , Ke

pkq, ϱpkq, Kc
pkq,

corresponding to the k dimensional minimax risk Mk, as given in (4.28). We claim that

ΦpT pkq,P,Σpkq
w , ϱpkq, Ke

pkq, Kc
pkq

q “ R‹
k. (4.77)

(Note by our construction of T pkq the choice of P is irrelevant.) Then the sandwich rela-
tion (4.76a) follows by applying Theorems 4.1 and 4.2 to the minimax risk Mk.

To see that relation (4.77) holds, note that by definition 4.4, we have

ΦpT pkq,P,Σpkq
w , ϱpkq, Ke

pkq, Kc
pkq

q “ sup
Ωą0

!

Tr
´

pΩ´1
` pΣpkq

w q
´1

q
´1
¯

:
k
ÿ

j“1

a2jΩjj ď C2
)

.

We claim that the supremum above can be reduced to diagonal Ω. To see why, first note
that for every nonzero λ P R

`

Ω´1
` pΣpkq

w q
´1
˘´1

ď λ2Ω ` p1 ´ λq
2Σpkq

w .

This follows from Lemma 4.14, with the choices

A “ Σpkq
w , B “ Ω´1, and D “ λI.

Consequently, we have for every nonzero u P Rk, that

uT`Ω´1
` pΣpkq

w q
´1
˘´1

u ď inf
λPR

λ2uTΩu ` p1 ´ λq
2uTΣpkq

w u “

´ 1

uTΩu
`

1

uTΣ
pkq
w u

¯´1

.(4.78)
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Hence taking u to be elements of the standard basis ei, and summing over i “ 1, . . . , k, we
obtain,

Tr
´

`

Ω´1
` pΣpkq

w q
´1
˘´1

¯

ď

k
ÿ

i“1

´ 1

Ωii

`
1

ε2i

¯´1

“

k
ÿ

i“1

Ωiiε
2
i

Ωii ` ε2i
.

Moreover, by taking Ω to be diagonal, the inequality above holds with equality. Thus,

ΦpT pkq,P,Σpkq
w , ϱpkq, Ke

pkq, Kc
pkq

q “ sup
Ωjją0

!

k
ÿ

j“1

Ωjjε
2
j

Ωjj ` ε2j
:

k
ÿ

j“1

a2jΩjj ď C2
)

“ sup
τ2j ą0

!

k
ÿ

j“1

τ 2j ε
2
j

τ 2j ` ε2j
:

k
ÿ

j“1

a2jτ
2
j ď C2

)

“ R‹
k,

which establishes the relation (4.77). Note that in the last equality, we have dropped the

inequality constraints τ 2j ą 0, due to the continuity of the map τ ÞÑ
řk

i“1

τ2j ε
2
j

τ2j `ε2j
over τ P Rk.

We now turn to establishing the relation (4.76b). Note that for any τ P RN with
ř8

j“1 a
2
jτ

2
j ď C2, we have

k
ÿ

j“1

τ 2j ε
2
j

τ 2j ` ε2j
ď

8
ÿ

j“1

τ 2j ε
2
j

τ 2j ` ε2j
ď

k
ÿ

j“1

τ 2j ε
2
j

τ 2j ` ε2j
` sup

τPRN:
ř8

j“1 a
2
jτ

2
j ďC2

8
ÿ

jąk

τ 2j

By Hölder’s inequality, the second term is bounded above by C2{a2k`1, hence in view of
definitions (4.29) and (4.30), we have the sandwich relation

R‹
k ď R‹

ď R‹
k `

C2

a2k`1

,

which holds for all k ě 1. Since ak Ñ 8, the limit relation (4.76b) follows.

4.6.5.3 Proof of limit relation (4.38)

We claim that the following sandwich relation holds for the minimax risks in this case.

Lemma 4.12. For all k ě 1, we have

Mpkq
n pϱ, σ2, P q ď Mnpϱ, σ2, P q ď Mpkq

n pϱ, σ2, P q ` ϱ2µk`1. (4.79)

Assuming Lemma 4.12, note that since µk Ñ 0 as k Ñ 8, it immediately implies limit
relation (4.38)
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Proof of Lemma 4.12 The proof is quite similar to Lemma 4.10. We now prove inequal-
ity (4.79). We begin by defining the sets

Bpϱq “ tθ P ℓ2pNq : }θ}2 ď ϱu, and Bkpϱq “ tθ P Bkpϱq : θj “ 0, for all j ą ku.

By Parseval’s identity, we may rewrite the minimax risks in the following form

Mk ” Mpkq
n pϱ, σ2, P q “ inf

pθ
sup

θ‹PBkpϱq

νPPpσ2Inq

E
”

k
ÿ

j“1

µjp
pθjpy1, . . . , yn,Φkpx1q, . . . ,Φkpxnqq ´ θ‹

j q
2
ı

,

M ” Mnpϱ, σ2, P q “ inf
pθ

sup
θ‹PBpϱq

νPPpσ2Inq

E
”

8
ÿ

j“1

µjp
pθjpy1, . . . , yn,Φpx1q, . . . ,Φpxnqq ´ θ‹

j q
2
ı

.

Evidently, we have M ě Mk, since Bkpϱq Ă Bpϱq and py,Φkpxqq are sufficient in this sub-

model. Similarly, the upper bound follows since by restricting to those estimators pθ with
pθj “ 0 for all j ą k that are functions of py,Φkpxqq, we have

M ď Mk ` sup
θPBpϱq

ÿ

jąk

µjθ
2
j “ Mk ` ϱ2µk`1,

which establishes the upper bound.

4.6.5.4 Proof of Corollary 4.6

Using the fact that P “ ν, we can define

dn,k – sup
Ωą0

!

TrpIk ` M
´1{2
k Ω´1M

´1{2
k q

´1 : TrpΩq ď
nϱ2

σ2

)

.

Let d‹
n “ lim supkÑ8 dn,k. Then following Corollary 4.6 and Proposition 4.2, we obtain

1

4

σ2

n
d‹
n ď Mpϱ, σ2, P q ď 2

σ2

n
d‹
n. (4.81)

We now simply the quantities dn,k. Using an argument analagous to the proof of inequal-
ity (4.78), we can write

dn,k “ sup
ω1,...,ωką0

!

k
ÿ

j“1

ωjµj

1 ` ωjµj

:
k
ÿ

j“1

ωj ď
nϱ2

σ2

)

.

Since 1
2
px ^ 1q ď x

x`1
ď x ^ 1 for any x ą 0, we can then introduce

Dk – sup
ω1,...,ωką0

!

k
ÿ

j“1

ωjµj ^ 1 :
k
ÿ

j“1

ωj ď
nϱ2

σ2

)

.
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Evidently 1
2
Dk ď dn,k ď Dk. By inspection, we have k^ kn ď Dk ď 2pk^ knq, in which case

it follows after passing to the superior limit that

kn ď d‹
n ď 2kn,

which upon combination with inequality (4.81) yields the claim.

4.6.5.5 Proof of relation (4.41)

Applying Corollary 4.1 to the minimax risk Mkpϱ, σ2, P q, we find that

1

4

σ2

n
dpkq
n ď Mkpϱ, σ2, P q ď

σ2

n
dpkq
n ,

since the quantity d
pkq
n equals the functional for this minimax risk (see equation (4.40)).

Therefore passing to the superior limit and applying the limit relation (4.38), we obtain the
result.

4.6.5.6 Proof of relation (4.49)

Note that the kernel regularity condition is not necessary for our lower bound. Indeed, note
that we first have

inf
δą0

!

δ2 `
σ2B

nϱ2
dpδq

)

“ inf
dě1

!

µd `
σ2Bd

nϱ2

)

Let d‹
n be the largest integer d such that µd ě σ2Bd

nϱ2
; this must exist since µd Ñ 0. As the

two sequences are nonincreasing and strictly increasing, respectively, the display above is
bounded above by

4
´

µd‹
n

^
σ2Bd‹

n

nϱ2

¯

ď 4
σ2Bd‹

n

nϱ2
.

Hence, it suffices to establish that the lower bound σ2Bd‹
n

nϱ2
can be obtained from our re-

sult (4.47).
Note that if µd ě σ2Bd

nϱ2
then the choice of λ in the lower bound (4.47), given by

λj “
σ2B

nϱ2
1

µj

1tj ď du, for j “ 1, 2, 3, . . . ,

satisfies
ř

j λj ď 1. Evaluating the corresponding lower bound, with the maximal choice

d “ d‹
n yields the lower bound σ2Bd

nϱ2
, as needed.

4.6.6 Deferred proofs from Section 4.4.1

In this section, we collect proofs of the results underlying the argument establishing our
upper bound in Section 4.4.1.
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4.6.6.1 Proof of Lemma 4.1

Clearly the lefthand side is less than the right hand side as for θ P Θpϱ,Kcq we have θbθ ě 0,
and TrpKc

´1{2θ b θKc
´1{2

q “ ∥θ∥2
Kc

´1 ď ϱ2.
For the reverse inequality, fix Ω P Kpϱ,Kcq. We diagonalize the positive semidefinite

matrix Kc
´1{2ΩKc

´1{2
“ UDUT, and define θpεq “ Kc

1{2UD1{2ε, where ε P t˘1ud. Evidently,

∥θpεq∥2Kc
´1 “ ∥UD1{2ε∥22 “ TrpDq “ TrpKc

´1{2ΩKc
´1{2

q ď ϱ2.

Thus, for all ε P t˘1ud, the vector θpεq lies in the set Θpϱ,Kcq. Consequently, we have

sup
θPΘpϱ,Kcq

rppθC , θq ě max
εPt˘1ud

rppθC , θpεqq

ě Eε rppθC , θpεqq (4.82)

“ rppθC ,Ωq. (4.83)

Note that Ω P Kpϱ,Kcq was arbitrary in this argument, and hence passing to supremum over
Ω gives us the desired reverse inequality. Above, display (4.82) follows by lower bounding the
maximum over ε P t˘1ud by the expectation over ε where εi are IID Rademacher variables.

The relation (4.83) follows by noting that rppθC , θpεqq “ rppθC , θpεq b θpεqq, and moreover this
latter quantity is linear in the rank-one matrix θpεq b θpεq, as justified by Lemma 4.2. By
linearity of expectation we can bring the expectation inside, and use the fact that

Eεrθpεq b θpεqs “ Kc
1{2UDUTKc

1{2
“ Ω.

4.6.6.2 Proof of Lemma 4.2

Inspecting the definition of r (see equation (4.53)), we see that it is affine in Ω. To verify
that it is convex in C, note that r can be equivalently expressed as

rppθC ,Ωq “ Eξ

”

~Ke
1{2

pCpTξqT
T
ξ Σ

´1
w Tξ ´ IdqΩ1{2

~
2
F ` ~Ke

1{2
pCpTξqT

T
ξ Σ

´1{2
w ~

2
F

ı

.

Evidently, the display above is convex in C.

4.6.6.3 Proof of Proposition 4.3

In order to prove Proposition 4.3, we need two results regarding the harmonic mean of
positive (semi)definite matrices. For our results, it is important to allow once of these
matrices to be (possibly) singular, and so we study (twice) the harmonic mean of A and
the Moore-Penrose pseudoinverse B:—that is, the quantity pA´1 ` Bq´1, where B ě 0 and
A ą 0. Note that since pB:q: “ B, these results also imply bounds for the mean pA´1`B:q´1.
See the reference [10, chap. 4] for additional details about the harmonic mean of positive
matrices.
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Lemma 4.13. Suppose that A,B are two symmetric positive semidefinite matrices, and that
A is nonsingular. For any x P Rd and any y in the range of B, we have

px ´ yq
TApx ´ yq ` yTB:y ě xT

pA´1
` Bq

´1x,

where B: denotes the Moore-Penrose pseudoinverse associated with B.

Proof. Using BB:B “ B, the claim is equivalent to showing that infx,u gpx, uq ě 0 where

gpx, uq – px ´ Buq
TApx ´ Buq ` uTBu ´ xT

pA´1
` Bq

´1x.

Define fpuq “ infx gpx, uq. A calculation demonstrates that

fpuq “ uT
”

B ` BAB ´ BApA ´ pA´1
` Bq

´1
q

:AB
ı

u

“ uTBA1{2
”

K:
` I ´ pI ´ pI ` Kq

´1
q

:
ı

A1{2Bu. (4.84)

Above, K – A1{2BA1{2. Diagonalizing K, we may write K “ UDUT and therefore K: “

UD:UT . Applying the similarity transformation under U , we have

UT
pK:

` I ´ pI ´ pI ` Kq
´1

q
:
qU “ D:

` I ´ pI ´ pI ` Dq
´1

q
:

“ I ´ D:D ě 0. (4.85)

Therefore, combining displays (4.84) with (4.85), we obtain

inf
x,u
gpx, uq “ inf

u
fpuq ě 0,

which establishes the desired claim.

Lemma 4.14. Suppose that A,B are two symmetric positive semidefinite matrices, and that
A is nonsingular. If DT P Rdˆd has range included in the range of B, then

pI ´ DqApI ´ Dq
T

` DB:DT ě pA´1
` Bq

´1.

Moreover equality holds with the choice D “ pA´1 ` Bq´1B.

Proof. Let x P Rd and note that if y – DTx, then

xT
”

pI ´ DqApI ´ Dq
T

` DB:DT
ı

x “ px ´ yq
TApx ´ yq ` yTB:y

ě xT
pA´1

` Bq
´1x,

where the final inequality follows from Lemma 4.13, since y lies in the range of B. As the
inequality holds for arbitrary x P Rd, we have established the desired matrix inequality. To
see the attainment at D “ pA´1 ` Bq´1B, first note that DT “ BpA´1 ` Bq´1. Therefore
the range of DT is exactly the range of B. Additionally, since I ´D “ pA´1 `Bq´1A´1, we
have

pI ´ DqApI ´ Dq
T

` DB:DT
“ pA´1

` Bq
´1

pA´1
` BB:BqpA´1

` Bq
´1

“ pA´1
` Bq

´1,

as required.

We are now in a situation to prove Proposition 4.3.
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Proof of Proposition 4.3 From display (4.53), to establish the claim, it suffices to lower
bound the following matrix in the semidefinite ordering,

pCpTξqT
T
ξ Σ

´1
w Tξ ´ IdqΩpCpTξqT

T
ξ Σ

´1
w Tξ ´ Idq

T

` CpTξqT
T
ξ Σ

´1
w TξCpTξq

T. (4.86)

This matrix can be written as pI ´ DqΩpI ´ DqT ` DB:DT where we defined

B – T T
ξ Σ

´1
w Tξ, and, D – CpTξqT

T
ξ Σ

´1
w Tξ.

Evidently, the range of DT is included in the range of B, and so it follows from Lemma 4.14
that the matrix in equation (4.86) is lower bounded in the semidefinite ordering by

pΩ´1
` T T

ξ Σ
´1
w Tξq

´1. (4.87)

Moreover, Lemma 4.14 also demonstrates this is established by taking

D “ pΩ´1
` T T

ξ Σ
´1
w Tξq

´1T T
ξ Σ

´1
w Tξ,

which arises from taking CpTξq “ pΩ´1 ` T T
ξ Σ

´1
w Tξq

´1, as claimed. Evaluating this lower
bound matrix (4.87) in (4.53) establishes equality (4.54).

4.6.6.4 Proof of equation (4.55d)

Let us formally state our claim, equivalent to equation (4.55d), as a lemma.

Lemma 4.15. Let K`pϱ,Kcq denote the subset of nonsingular matrices in Kpϱ,Kcq—that
is, the set tΩ ą 0 : Ω P Kpϱ,Kcqu. Then, we have

sup
ΩPKpϱ,Kcq

inf
C
rppθC ,Ωq “ sup

ΩPK`pϱ,Kcq

inf
C
rppθC ,Ωq.

We prove this claim now. Evidently, since K`pϱ,Kcq Ă Kpϱ,Kcq it suffices to show that
the lefthand side is less than or equal to the righthand side. To begin, we note that for each
λ ą 0, we have

sup
ΩPKpϱ,Kcq

inf
C
rppθC ,Ωq

paq

ď sup
ΩPKpϱ,Kcq

inf
C
rppθC ,Ω`

pϱ`λq2´ϱ2

d
Kcq

pbq

ď sup
ΩPK`pϱ`λ,Kcq

inf
C
rppθC ,Ωq — fpλq.

Inequality (a) above follows since rppθC ,Ωq ď rppθC ,Ω
1q for any Ω ď Ω1—this follows im-

mediately from display (4.53). Here we have taken Ω1 – Ω `
pϱ`λq2´ϱ2

d
Kc ě Ω. In-

equality (b) then follows by noting that Ω1 is symmetric positive (strictly) definite, and
TrpKc

´1{2Ω1Kc
´1{2

q ď pϱ` λq2, since Ω P Kpϱ,Kcq. Since the displayed relation above holds
for any λ ą 0, it suffices to show that

inf
λą0

fpλq “ fp0q. (4.88)
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By Proposition 4.3, we have

fpλq “ sup
Ω

!

ETr
´

Ke
1{2

pΩ´1
` T T

ξ Σ
´1
w Tξq

´1Ke
1{2
¯

:

Ω ą 0,TrpKc
´1{2ΩKc

´1{2
q ď pϱ ` λq

2
)

“ sup
Ω

!

ETr
´

Ke
1{2

pp
ϱ`λ
ϱ

q
´2Ω´1

` T T
ξ Σ

´1
w Tξq

´1Ke
1{2
¯

:

Ω ą 0,TrpKc
´1{2ΩKc

´1{2
q ď ϱ2

)

ď

´ϱ ` λ

ϱ

¯2

sup
Ω

!

ETr
´

Ke
1{2

ppΩ´1
` T T

ξ Σ
´1
w Tξq

´1Ke
1{2
¯

:

Ω ą 0,TrpKc
´1{2ΩKc

´1{2
q ď ϱ2

)

“

´ϱ ` λ

ϱ

¯2

fp0q.

Hence we have established the sandwich relation

fp0q ď fpλq ď

´ϱ ` λ

ϱ

¯2

fp0q, for all λ ą 0.

Note that fp0q ď fpλ1q ď fpλq whenever 0 ă λ1 ď λ. Thus, infλą0 “ limλÑ0` fpλq “ fp0q,
which establishes (4.88), completing the proof of the claim.

4.6.7 Deferred proofs from Section 4.4.2

In this section, we collect proofs of the results underlying the argument establishing our
lower bound in Section 4.4.2.

4.6.7.1 Proof of Lemma 4.3

By parameterizing θ‹ “ Ke
´1{2η‹, we have

MG
pT,P,Σw, ϱ,Kc, Keq

“ inf
pη

sup
η‹PΘpϱ2Ke

1{2KcKe
1{2q

Eξ,w„Np0,Inq

”∥∥
pηpTξKe

´1{2, TξKe
´1{2η‹

` Σ1{2
w wq ´ η‹

∥∥2

2

ı

“ inf
pη

sup
η‹PΘpϱ2Ke

1{2KcKe
1{2q

Eξ,z„Np0,Irpξqq

”∥∥
pηpQξ, Qξη

‹
` VξΛ

1{2
ξ zq ´ η‹

∥∥2

2

ı

(4.89)

“ inf
pη

sup
η‹PΘpϱ2Ke

1{2KcKe
1{2q

Eω„rP,z„Np0,Irpξqq

”∥∥
pηpω, VξV

T
ξ η

‹
` VξΛ

´1{2
ξ zq ´ η‹

∥∥2

2

ı

(4.90)

“ MG
redprP, ϱ2Ke

1{2KcKe
1{2

q.
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We justify some of the relations in the display above. Since the density of v “ TξKe
´1{2η‹`

Σ
1{2
w w is, up to constants independent of η‹, proportional to

exp
´

´
1

2

␣

xη‹, Ke
´1{2T T

ξ Σ
´1
w TξKe

´1{2η‹
y ´ 2xv,Σ´1

w TξKe
´1{2η‹

y
(

¯

,

factorization arguments imply Qξ – Ke
´1{2T T

ξ Σ
´1
w TξKe

´1{2 and v1 – Ke
´1{2T T

ξ Σ
´1
w v are

sufficient statistics for η‹. Note that v1 is distributed N pQξη
‹, Qξq. Thus, as consequence

of the Rao-Blackwell theorem, any minimax optimal estimator is a function of pQξ, v
1q, and

hence display (4.89) follows. Similarly, any optimal estimator function is a function of any
bijective function of pQξ, v

1q. Evidently one can construct Qξ from ω – prpξq, Vξ,Λξq, and

vice versa. On the other hand, v1 lies in the range ofGpξq – Ke
´1{2T T

ξ Σ
´1{2
w , which is the same

as the range of GpξqGpξqT “ Qξ; consequently one may replace v1 with Q:

ξv
1 ” VξpΛξq

´1V T
ξ v

1,

which is distributed N
`

VξV
T
ξ η

‹, VξpΛξq
´1V T

ξ

˘

, and so that display (4.90) follows.

4.6.7.2 Proof of Lemma 4.4

In this argument, we use the notation Bppη, π | ωq to denote the Bayes risk of estimator pη,
conditional on ω, for the original observation Υ. Formally, it is the expectation Er∥pηpΥq ´

η∥22s, where the expectation is over Υ „ N
`

V V T, V Λ´1V T˘.
The main observation is that if we consider the projection of Υλ onto the range of V , we

will recover a random variable with the same distribution as Υ, and therefore the risks are
the same. Formally, let pη be any estimator which is constant over the fibers of the operator
V V T. Equivalently, it can be written

pηpyq “ pη0pV V
Tyq, for some measurable pη0.

Let this class of estimators be denoted by EV . Then we evidently have

Bλpπ | ωq ď inf
pηPEV

Bλppη, π | ωq. (4.91)

To complete the proof of the claim, we claim that

Bλppη, π | ωq “ Bppη, π | ωq, for any pη P EV .

This follows immediately from the fact that V V TΥλ “ Υ with probability 1. We note that
combination with (4.91) furnishes the claim, since it implies that

Bλpπ | ωq ď inf
pηPEV

Bppη, π | ωq “ Bpπ | ωq.

The final equality occurs since for any measurable estimator pη R EV , we can define pηV pyq “

pηpV V Tyq, and since Υ “ V V TΥ with probability 1, and therefore BppηV , π | ωq “ Bppη, π | ωq,
which establishes this claim.
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4.6.7.3 Proof of Lemma 4.5

Let pηπ denote the posterior mean y ÞÑ Erη | Υλ “ ys. Then, as the posterior mean pηπ
minimizes the Bayes risk pη ÞÑ Bλppη, π | ωq over all measurable estimators pη, it suffices to
compute the risk of pηπ. Note that, by definition of conditional expectation, we have

pηπpyq “
1

ppyq

ż

η ppy | ηq πp dηq.

We now compute the derivative of ppyq. Exchanging integration and differentiation,8

Σλ∇ppyq “

ż

pXλη ´ yq ppy | ηq πp dηq.

Therefore, we conclude that

pηπpyq “ X´1
λ

´

y ` Σλ∇ log ppyq

¯

.

Finally, to compute risk of the posterior mean pηπpΥλq – Erη | Υλs, we add and subtract the
observation X´1

λ Υλ, and find that

Epη,Υλq

”

pη ´ pηπpΥλqq b pη ´ pηπpΥλqq

ı

“ X´1
λ ΣλX

´1
λ ´ X´1

λ Σλ Er∇ log ppΥλq b ∇ log ppΥλqsΣλX
´1
λ .

Identifying the Fisher information in the display above, factoring the expression, and taking
the trace yields the desired result.

4.6.7.4 Proof of Lemma 4.6

Note that πτ,Π is evidently absolutely continuous with respect to Lebesgue measure. In
particular, on the interior of ΘpKq, πτ,Π and πG

τ,Π have the same Lebesgue density up to
rescaling by πG

τ,ΠpΘpKqq. Denote this density by fτ,Π. Therefore, we have

I
`

πG
τ,Π

˘

“ Eη„πG
τ,Π

1ΘpKqpηq∇ log fτ,Πpηq b ∇ log fτ,Πpηq

` Eη„πG
τ,Π

1ΘpKqcpηq∇ log fτ,Πpηq b ∇ log fτ,Πpηq

ě Eη„πG
τ,Π

1ΘpKqpηq∇ log fτ,Πpηq b ∇ log fτ,Πpηq

“ πG
τ,ΠpΘpKqqI pπτ,Πq .

8This is valid since y ÞÑ ppy | ηq is differentiable for each η, and for each y, we have η ÞÑ ppy | ηq and
η ÞÑ ∇yppy | ηq “ Σ´1

λ pXλη ´ yq are π-integrable (since 0 ď ppy | ηq ď 1, and the gradient is an affine
function of η).
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The final equality arises since the boundary of ΘpKq has Lebesgue measure zero. Using the
well known relation I

`

πG
τ,Π

˘

“ pτ 2Πq´1 [72, Example 6.3], the above display implies that

I pπτ,Πq
´1

ě πG
τ,ΠpΘpKqqτ 2Π “ τ 2p1 ´ πG

τ,ΠpΘpKq
c
qqΠ.

To ensure that η „ πG
τ,Π lies in ΘpKq with decent probability, we take Π to satisfy the relation

TrpK´1Πq ď 1. Then defining

cpτ,Πq – τ 2p1 ´ πG
τ,ΠpΘpKq

c
qq,

completes the proof of the claim.

4.6.7.5 Proof of Lemma 4.7

Fix Π ą 0 such that TrpΠ1{2K´1Π1{2q ď 1. Let λ “ pλ1, . . . , λdq denote the eigenvalues
of Π1{2K´1Π1{2. The vector satisfies the inequalities λ ą 0, λT1 ď 1. Moreover, by the
rotational invariance of the Gaussian, we have for g „ N p0, Idq, that

πG
τ,ΠpΘpKq

c
q “ P

!

τ 2gTΠ1{2K´1Π1{2g ą 1
)

“ P
!

τ 2
d
ÿ

i“1

λig
2
i ą 1

)

.

Let us make the choice τ 2 “ 1{2. Then, note for any λ ą 0, λT1 ď 1, by Markov’s inequality,

P
!

d
ÿ

i“1

λig
2
i ą 2

)

ď

řd
i“1 λi Erg2i s

2
“

1

2
.

Hence, using this bound in the definition of cpτ,Πq, we find

cℓpKq ě inf
λą0,λT1ď1

cp1{2,diagpλqq ě
1

4
,

which completes the proof of the claim.
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[71] G. Lecué and S. Mendelson. Performance of empirical risk minimization in linear
aggregation. Bernoulli, 22(3):1520–1534, 2016.

[72] E. L. Lehmann and G. Casella. Theory of point estimation. Springer Texts in Statistics.
Springer-Verlag, New York, second edition, 1998.

[73] Q. Lei, W. Hu, and J. Lee. Near-optimal linear regression under distribution shift. In
M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proc. Mach. Learn. Res., pages 6164–6174. PMLR,
18–24 Jul 2021.

[74] Y. Li, H. Kambara, Y. Koike, and M. Sugiyama. Application of covariate shift adapta-
tion techniques in brain–computer interfaces. IEEE Trans. Biomed. Eng., 57(6):1318–
1324, 2010.

[75] M. Liu, Y. Zhang, K. P. Liao, and T. Cai. Augmented transfer regression learning
with semi-non-parametric nuisance models, 2020.

[76] G. Lugosi and S. Mendelson. Mean estimation and regression under heavy-tailed dis-
tributions: a survey. Found. Comput. Math., 19(5):1145–1190, 2019.

[77] C. Ma, R. Pathak, and M. J. Wainwright. Optimally tackling covariate shift in RKHS-
based nonparametric regression, 2022.

[78] S. Maity, Y. Sun, and M. Banerjee. Minimax optimal approaches to the label shift
problem. arXiv preprint arXiv:2003.10443, 2020.

[79] Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adaptation: Learning bounds
and algorithms. arXiv preprint arXiv:0902.3430, 2009.

[80] Y. Mansour, M. Mohri, and A. Rostamizadeh. Multiple source adaptation and the
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