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Abstract

Dynamic Multi-agent Autonomous Systems for Societal Transformation

by

Chinmay Maheshwari

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Shankar Sastry, Chair

Autonomous AI technologies are increasingly embedded in critical societal systems, including
robotics, transportation, logistics, and energy—where they enable large-scale, data-driven
decision-making. While recent advances have enabled autonomous agents to perform effec-
tively in isolated or structured environments, a fundamental open challenge is to integrate
such agents into dynamic, uncertain, and resource-constrained multi-agent environments
where they must learn and interact strategically with other autonomous systems and with
humans. The emerging outcomes not only impact the individual utility but also impacts
societal efficiency, equity and safety.

This dissertation addresses the design and analysis of intelligent autonomous agents in such
multi-agent societal settings. It is motivated by two central questions: (1) How can we design
learning and decision-making algorithms that allow autonomous agents to act rationally and
strategically in the presence of other agents? (2) How can we ensure that the collective
outcomes of such agent interactions align with broader societal goals such as efficiency,
equity, and safety?

To answer these questions, the dissertation introduces new theoretical, algorithmic, and
computational frameworks for multi-agent learning, decision-making, and design of multi-
agent interactions in societal systems. These contributions are organized into four parts, each
grounded in application domains that highlight key challenges and propose novel solutions.

Part I focuses on learning in general-sum Markov games, which model multi-agent interac-
tions in uncertain, dynamic environments. Unlike classical control or reinforcement learning
settings that assume either fully cooperative or fully adversarial interactions, many real-
world systems exhibit a mix of cooperative and competitive behavior. To address this, we
propose a new theoretical framework of Markov near-potential games, which approximates
the underlying multi-agent interaction using a potential game. We leverage this framework
to design and analyze multi-agent learning algorithms. Specifically, we use it to design real-
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time, high-performance strategies for autonomous multi-car racing that outperform several
existing baselines. Additionally, we use the framework to characterize the long-run out-
comes of interactions between decentralized reinforcement learning algorithms, with a focus
on actor-critic methods.

Part II examines strategic learning under competition induced due to shared resource and
infrastructure constraints, including settings with congestion. The focus is on domains such
as transportation networks and two-sided matching markets, where agents compete over
scarce, congestible resources. This part introduces learning dynamics that achieve desirable
performance guarantees—such as low regret and equilibrium convergence—even when agents
adapt based on local observations and uncertain feedback.

Part III shifts from agent-level optimization to designing mechanisms to align strategic agent
behavior with societal objectives. A key challenge here is that agents may respond strategi-
cally to deployed mechanisms, leading to distribution shifts, while designers often lack access
to private agent preferences. This part proposes data-driven methods for design of societal
mechanisms that remain robust to strategic behavior and result in socially beneficial out-
come. We highlight applications in design of congestion pricing on road networks and design
of data-driven online services.

Part IV explores market design for the emerging Advanced Air Mobility (AAM)—a future
mobility paradigm involving UAVs and air taxis operating in low-altitude urban airspace.
Given the decentralized and adaptive nature of AAM systems, traditional centralized air
traffic control methods are inadequate. This part introduces market-based mechanisms for
allocating trajectories to UAVs with potentially heterogeneous preferences that ensure safety,
fairness, and efficiency.

Overall, the dissertation offers new theoretical insights, algorithmic tools, and practical mech-
anisms for ensuring that future autonomous systems are not only efficient in maximizing
individual utility, but also result in socially efficient, equitable and safe outcomes.
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Chapter 1

Overview

Autonomous AI technologies are fundamentally reshaping critical societal systems—including
robotics, mobility, logistics, and energy—by enabling intelligent, data-driven decision-making
at unprecedented scale. While significant progress has been made in developing autonomous
agents that operate effectively in isolation or structured environments, a central challenge
remains: integrating these agents into complex societal systems. In such settings, agents
must make real-time decisions while interacting strategically with other autonomous sys-
tems and humans, all within uncertain, dynamic, and resource-constrained environments.
Crucially, these agents often operate without access to others’ private information, and must
continually adapt to the evolving behavior of both autonomous agents and humans.

Such interactions raise a range of theoretical, algorithmic, computational, and societal
challenges. These include developing new frameworks for modeling and analyzing strate-
gic behavior in societal systems. Furthermore, we need efficient algorithms that support
real-time learning and decision-making in multi-agent environments. Additionally, with-
out careful societal design, interactions among autonomous agents can lead to undesirable
societal outcomes—including inefficiencies in shared resource usage, inequities in access or
outcomes, or systemic risks to safety and reliability. Addressing these challenges is essential
to ensure that the next generation of autonomous systems are both efficient and socially
responsible.

This dissertation addresses these challenges by focusing on two fundamental questions:

Q1 How can we design learning and decision-making algorithms for strategic autonomous
agents operating in societal settings?

Q2 How can we ensure that their interactions align with broader societal goals such as
efficiency, equity, and safety?

To answer these questions, this dissertation introduces new theoretical and algorithmic
frameworks and demonstrates their effectiveness through a variety of application-driven case
studies.
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The dissertation is organized into four parts. Parts I and II address Q1, focusing on
the incorporating the strategic nature of multi-agent interaction in design and analysis of
learning and decision-making algorithms. Parts III and IV address Q2, developing adap-
tive incentive mechanisms and market-based coordination tools that guide agent behavior
toward socially beneficial outcomes. These contributions are illustrated through a range of
applications, including high-performance multi-robot system, efficient and equitable urban
mobility (both in air and road networks), and the design of online services.

The following sections provide a detailed overview of each part, highlighting the theoret-
ical insights and practical implications of the proposed approaches.

1.1 Part I: Multi-agent Learning in Dynamic
Environments

Modern autonomous systems increasingly operate in environments shared with other au-
tonomous agents. For instance, consider autonomous robo-taxis navigating busy urban areas,
autonomous drones or racing cars competing in high-speed events, or online service providers
leveraging data to facilitate new online services. In such settings, agents must not only adapt
to uncertain dynamics, but also anticipate and respond to the strategic behavior of others.
This interdependence fundamentally alters the nature of decision-making: outcomes depend
not only on an agent’s own actions but also on the evolving strategies of other agents. As
a result, classical single-agent learning and control methods fall short, motivating the need
for a rigorous understanding of multi-agent learning in dynamic, uncertain environments.

This part (Chapters 2–5) develops new theoretical and algorithmic frameworks for strate-
gic decision-making and learning in multi-agent autonomous systems operating in uncertain
and dynamic environments. The analysis is grounded in the framework of Markov games,
which model interactions among strategic agents over long time horizons under stochastic
dynamics. A central objective is to understand how independently learning agents can oper-
ate in a rational manner in multi-agent environment. This objective is often characterized by
ensuring converge to some approximate Nash equilibria—a popular solution concept in game
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theory that characterizes stable outcomes where no agent has an incentive to unilaterally
deviate. Unlike classical formulations that assume either fully cooperative (team-optimal) or
fully adversarial (zero-sum) objectives, many real-world multi-agent systems involve mixed
cooperative and competitive (aka “general-sum”) interactions. This part addresses the al-
gorithmic and theoretical challenges inherent in such settings.

Chapter 2 introduces Markov α-potential games, a novel theoretical framework for design
and analysis of multi-agent learning algorithms in general-sum Markov games. The core idea
is to approximate the long-run utility difference resulting from a unilateral policy deviation
by a scalar function, termed the α-potential function. We show that such an approxima-
tion exists for any general-sum Markov game, and that optimizing the α-potential yields an
approximate Nash equilibrium, where α quantifies the deviation from an exact equilibrium.
This framework encompasses several structured game classes—including Markov congestion
games and perturbed team games—that are not captured by dominant frameworks such
as team games or zero-sum games. The chapter presents a computational approach based
on semi-infinite linear programming to estimate the α parameter for a given game. Addi-
tionally, it introduces learning dynamics such as projected gradient ascent and sequential
best-response updates, and provides both theoretical and empirical evidence of their conver-
gence to approximate equilibria, even without explicit knowledge of the α-potential function.
This chapter is based on the reference [171].

Building on this foundation, Chapter 3 applies the Markov α-potential games framework
to the domain of autonomous racing, a benchmark for real-time, strategic decision making
in competitive environments. The chapter formalizes multi-agent racing as a general-sum
Markov game and introduces a two-phase solution approach: (1) an offline phase that ap-
proximates the α-potential function from simulated game data, and (2) an online phase
that performs real-time planning by maximizing this learned potential. Empirical results
in three-car racing demonstrate the efficacy of this approach by beating several existing
baselines. Moreover, winning strategies generate strategic maneuvers like overtaking and
blocking. This chapter is based on the reference [277].

Chapters 4–5 focus on decentralized learning in multi-agent environments, where agents
must act based on local observations without any access to information about other agents.
We study decentralized actor-critic style algorithms. In particular, the algorithm has three
key features: (1) each agent updates its long-term utility estimates using Temporal Differ-
ence (TD) learning, and its policy updates using inertial one-stage best response; (2) each
agent updates its policy slower than its long-term utility estimates, resulting in a timescale-
separated dynamical system; and (3) each agent relies solely on bandit feedback for the
most recent state-action pair, leading to asynchronous updates of different components of
the policy and utility estimates.

Leveraging advances in two-timescale stochastic approximation theory, we decouple the
convergence analysis of the critic and policy updates. The analysis reduces to showing
that the critic updates converge to the true value functions for fixed policies, followed by
analyzing the convergence of policy updates assuming the critic has already converged to
the corresponding true value function. The convergence of the critic updates is established
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using the contraction property of the Temporal Difference (TD) operator.
In Chapter 4, we establish the convergence of policy updates under the structural as-

sumption that the underlying game is a Markov potential game—a special case of Markov
α-potential games with α = 0. In particular, we show that the potential function serves as
a Lyapunov function for the policy updates. This chapter is based on the reference [275].

Chapter 5 extends this analysis to general-sum Markov games. Central to our analysis
is the framework of Markov near-potential functions (MNPFs), a generalization of Markov
α-potential functions introduced in Chapter 2. We show that for any general-sum Markov
game, the MNPF acts as an approximate Lyapunov function for the policy updates—one
that increases unless the policies converge to an (approximate) Nash equilibrium set—thus
enabling us to characterize the set of convergent policies. This chapter is based on the
reference [276].

Taken together, these chapters highlight the critical role of tools from game theory,
machine learning, dynamical systems, and control theory in developing the theoretical and
algorithmic foundations for multi-agent learning in dynamic environments.

1.2 Part II: Multi-agent Learning in
Resource-Constrained/Congested Environments

In many existing and emerging AI-driven societal systems, agents operate in environments
with limited resources and shared infrastructure, which add important challenges to strategic
decision-making. Resource constraints naturally create competition, while congestion effects
lead to costs that depend on the collective actions of many agents. These factors require
agents to learn and adapt to the competition and congestion caused by other agents in the
system.

This part, comprising Chapters 6–8, investigates multi-agent learning specifically in two
key domains characterized by such constraints: two-sided matching markets and transporta-
tion networks. In matching markets, agents learn to compete for scarce resources (e.g., job
openings, college placements), while in transportation systems, agents interact over shared,
congestible network resources where travel costs depend on aggregate usage. Across both
domains, we develop learning algorithms with provable performance guarantees—such as
regret bounds and convergence to equilibrium—that enable agents to effectively navigate
competition and congestion in uncertain environments.

Chapter 6 focuses on online learning in two-sided matching markets, which model multi-
agent interactions in large-scale marketplaces such as Amazon Mechanical Turk. These
markets involve two types of participants: agents and firms. While we consider that firms
have fixed and known preferences over agents, agents must learn their preferences over firms
through repeated interactions, all while competing with other agents for successful matches.
The central challenge is to design decentralized algorithms that enable agents to learn their
preferences while simultaneously competing for limited resources, since each firm can match
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with only one agent at a time. We propose a class of decentralized, communication- and
coordination-free algorithms in which agents make decisions solely based on their individual
histories of interaction, without any knowledge of firms’ or other agents’ preferences. Our
approach decouples the statistical learning of preferences (from noisy observations) from
the strategic competition for firms. Under mild structural assumptions on the preferences
of agents and firms, we show that agents incur at most logarithmic regret over the time
horizon. This chapter is based on the reference [274].

Chapter 7 addresses multi-agent learning in matching markets with time-varying prefer-
ences, where agents’ preferences are unknown and may change over time. Unlike Chapter 6,
which assumes fixed but unknown preferences, this chapter considers a setting in which one
side of the market (firms) has known preferences, while the other side (agents) must adapt
to unknown, time-varying preferences. We propose a centralized algorithm that enables
agents to learn and track their evolving preferences over time. We prove that agents achieve
uniform sub-linear regret that scales with the number of preference changes. Remarkably,
this matches the best-known regret bounds in the single-agent setting, up to constant fac-
tors, despite the added complexity of strategic competition. This chapter is based on the
reference [309].

Chapter 8 studies routing in congested environments, focusing on arc-based traffic as-
signment models (TAMs) in transportation community. In this framework, travelers make
sequential routing decisions based on observed congestion. We develop a Condensed DAG
(CoDAG) representation of the network graph that enables agents to learn to route on the
network in presence of the evolving congestion patterns due to actions of other agents. We
define and analyze the Condensed DAG equilibrium—a unique equilibrium flow computable
via a strictly convex optimization program. Additionally, we propose a natural learning dy-
namics that allows agents to select arcs in the transportation network based on past observed
congestion. This dynamics is proven to converge to a neighborhood of the Condensed DAG
equilibrium. To our knowledge, this is the first framework that jointly analyzes learning and
equilibrium behavior in arc-based TAMs. This chapter is based on the reference [278].

Collectively, these chapters advance the theoretical understanding of learning and adapta-
tion in multi-agent systems with resource constraints, providing new algorithmic and analyt-
ical tools with potential applicability beyond matching markets and transportation systems.

1.3 Part III: Data-driven Mechanisms for Societal
Good

Interactions among self-interested agents with misaligned objectives often lead to undesirable
societal outcomes. In transportation systems, for instance, individual route optimization
leads to congestion and increased emissions. In automated decision-making systems—such
as loan approvals—users may manipulate input features if they understand the model’s
structure, compromising both accuracy and fairness. These examples underscore the need
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for a system designer to implement mechanisms that align individual incentives with social
objectives. The widespread availability of behavioral and system-level data has enabled
the use of data-driven approaches to design such mechanisms. However, doing so requires
addressing two fundamental challenges that lie beyond the scope of traditional data science
and machine learning paradigms. First, agents are strategic and may adapt their behavior in
response to deployed mechanisms, resulting in distribution shifts and model misspecification.
Second, system designers often have limited or no access to agent-specific private information
due to privacy constraints.

This part of the dissertation, comprising Chapters 9–12, investigates the design of data-
driven mechanisms that address these challenges. The first two chapters study scenario when
the agents know their preferences while the latter two allow online adaptation of strategies of
agents as they learn and the mechanism steers such adaptive agents toward socially desirable
outcomes under limited knowledge of private information of agents.

Chapter 9 studies the design of congestion pricing mechanisms using behavioral and
socioeconomic data from modern transportation networks. Travelers aim to minimize in-
dividual travel costs, often resulting in system-level inefficiencies such as congestion and
pollution. Congestion pricing is a standard intervention, but its regressive impact on low-
income users raises equity concerns. This chapter proposes a new class of pricing mechanisms
that improve both efficiency and equity by minimizing total congestion while reducing cost
disparities across income groups. Using data from the San Francisco Bay Area Freeway
Network, we develop an equilibrium model that captures heterogeneous traveler sensitivities
to tolls. Machine learning and optimization techniques are employed to estimate behav-
ioral parameters across income segments. Our analysis demonstrates that failure to account
for demographic and geographic heterogeneity can exacerbate congestion and socioeconomic
disparities. This chapter is based on the reference [269].

Chapter 10 addresses the design of robust machine learning classifiers under the distri-
bution shifts induced to the strategic response of users. In settings such as credit scoring
or spam detection, users may manipulate features in response to deployed classifiers, under-
mining predictive performance. Additionally, the data-generating process needs to be robust
against adversarial manipulation or unmodeled user behavior. We model this as a distri-
butionally robust strategic classification problem. These problems are generally intractable
and hard due to the lack of access to agents’ private utility functions. To overcome these
challenges, we reformulate the problem as a finite-dimensional convex-concave min-max op-
timization and introduce a gradient-free learning algorithm that computes a robust classifier
using only observed user responses. This approach enables robustness to both strategic be-
havior and distribution shifts without requiring knowledge of agents’ private preferences.
Additionally, we also derive finite time convergence of proposed algorithm to the solution of
min-max optimization problem. This chapter is based on the reference [268].

The focus then shifts to online, adaptive incentive mechanisms where the agents them-
selves are learning and adapting their strategies with time. In Chapter 11, we develop an
efficient algorithm for computing the incentive mechanism when the agents are updating
their strategies over time (a la Part I-II) and the operator has no knowledge of the agents’
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utility functions, strategy spaces, or learning algorithms. By designing a novel gradient
estimator based solely on observed actions of agents, our algorithm allows the operator to
adapt incentives in real-time. We establish convergence guarantees to a stationary point
of societal objective and demonstrate the effectiveness of this approach in large-scale trans-
portation network problems, where it enables incentive design without requiring access to
user demand information. This chapter is based on the reference [271].

A key shortcoming of gradient-based method presented in Chapter 11 is that sometimes
the critical points of the resulting dynamics may not be desirable in terms of social cost
function. We overcome this shortcoming by proposing a novel adaptive incentive mechanism
in Chapter 12. The mechanism updates incentives based on each player’s externality –
the difference between their marginal cost and the system operator’s marginal cost–on a
slower timescale relative to the agents’ learning dynamics. This two-timescale approach is
agnostic to the specific learning dynamics of the agents and ensures that any fixed point of
the mechanism corresponds to a socially optimal Nash equilibrium. We provide sufficient
conditions for asymptotic convergence of the mechanism and validate the mechanism in both
atomic and non-atomic game settings, with applications to aggregative and routing games.
This chapter is based on the reference [272].

Together, these chapters present new methods to design and analyze data-driven incentive
mechanisms, demonstrating how both offline and online data can be harnessed to align
strategic agents’ behavior with societal objectives such as efficiency, equity, and robustness.

1.4 Part IV: Market Mechanisms for Emerging
Advanced Air Mobility

As autonomous technologies increasingly permeate the physical world, they are poised to
enable a wide range of new services. There is a tremendous opportunity to ensure that multi-
agent interactions within these systems are socially responsible from the outset. One such
emerging service is Advanced Air Mobility (AAM), which encompasses the use of unmanned
aerial vehicles (UAVs), air taxis, and novel cargo and passenger transport solutions. By
leveraging previously underutilized airspace, AAM has the potential to transform urban
transportation. Recent studies project that the air mobility market could exceed USD 50
billion by 2035, highlighting its substantial growth potential.

Despite the widespread optimism surrounding AAM, the design of regulatory and oper-
ational frameworks remains an open challenge. While concepts from traditional air traffic
management can provide a foundation, they often fall short in addressing the dynamic, de-
centralized, and adaptive nature of AAM operations. In recognition of this, the Federal
Aviation Administration (FAA) is actively developing a clean-slate congestion management
framework aimed at ensuring efficiency, fairness, and safety. Market-based congestion man-
agement mechanisms have been proposed as promising tools for coordinating AAM opera-
tions. However, despite their conceptual appeal, practical progress in developing and de-
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ploying such mechanisms has been limited—underscoring the need for new, interdisciplinary
approaches that integrate tools from engineering, economics, and algorithmic design.

This part (Chapters 13–14) proposes two market-based mechanisms for allocating airspace
infrastructure resources, with the goal of ensuring socially beneficial outcome in the pres-
ence of strategic agents and real-time operational considerations. We model the airspace as
a time-extended network of contiguous regions, each subject to capacity constraints on entry,
transit, and exit. Vehicle requests, expressed as desired time-trajectories, are represented as
paths in this time-extended graph. Leveraging the structure of this graph-based model, we
develop two distinct market mechanisms to allocate conflict-free paths to AAM vehicles.

In Chapter 13, we address the problem of designing a market mechanism for coordinating
the movement of AAM vehicles operated by multiple flight operators. Each operator man-
ages a heterogeneous fleet and holds private valuations over airspace resources. The model
incorporates operational constraints on arrival, departure, and parking at vertiports. We
propose a centralized mechanism that elicits bids from operators representing their private
preferences over the desired airspace resources. Based on these bids, the system designer
allocates resources and determines payments. The proposed mechanism guarantees four key
properties. First, it ensures efficiency by maximizing the total reported value of flight op-
erators over the allocated resources. Second, it ensures safety by distributing congestion
and guaranteeing that all allocations respect the relevant airspace and vertiport capacity
constraints. Third, it ensures that truthful reporting of preferences is in each operator’s best
interest. Fourth, to improve computational scalability, we develop a mixed-integer linear pro-
gramming formulation that exploits the underlying network flow structure of the problem.
This chapter is based on the reference [397].

In Chapter 14, we introduce a novel market mechanism for allocating airspace resources
in scenarios where the private valuations of operators are not accessible to the central system
designer. To address this challenge while preserving operator privacy, we assign each vehicle
a fixed budget of artificial currency, referred to as air-credits, and anonymously post prices
for traversing edges of the time-extended network. The goal is to compute a competitive
equilibrium such that all capacity constraints are satisfied, each vehicle receives an allocation
that is optimal given the posted prices and its budget, and no payment is charged for under-
utilized resources. Since such competitive equilibria with integral allocations may not always
exist, we establish sufficient conditions under which a fractional competitive equilibrium ex-
ists and can be computed efficiently. Building on this theoretical foundation, we propose a
distributed two-step algorithm: the first step computes a fractional competitive equilibrium,
and the second derives an integral, feasible allocation from this fractional solution.

The mechanism developed in Chapter 14 offers several advantages. It encourages fair
allocation by allowing the system designer to regulate operator budgets to promote equitable
access to airspace resources. It ensures safe allocation by satisfying all capacity constraints
across the network. It is privacy-preserving and distributed in nature, relying only on limited
information from the operators, and does not require access to their private utility functions.
Furthermore, it supports flexible and adaptive routing by encouraging operators to modify
their travel plans—such as departure times or routes—in response to network conditions
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and posted prices, thereby facilitating congestion mitigation. The efficacy of this approach
is demonstrated using real-world drone delivery data from Airbus operations in Toulouse.
This chapter is based on the reference [273].
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Part I

Multi-agent Learning in Dynamic
Environments
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Chapter 2

Markov α-Potential Games: A New
Framework for Multi-agent
Reinforcement Learning

Designing non-cooperative multi-agent systems interacting within a shared dynamic environ-
ment is a central challenge in many existing and emerging autonomy applications, including
autonomous driving, smart grid management, and e-commerce. Markov game, proposed in
[382], provide a mathematical framework for studying such interactions [447]. A primary
objective in these systems is for agents to reach a Nash equilibrium, where no agent benefits
from changing its strategy unilaterally. However, designing algorithms for approximating or
computing Nash equilibrium are generally intractable [329], unless certain structure of under-
lying multi-agent interactions are exploited. There is a rich line of literature on equilibrium
computation and approximation algorithms for Nash equilibrium in Markov zero-sum games
(see [367] and references therein), Markov team games (see [36] and references therein), sym-
metric Markov games (see [440]), and in particular, Markov potential games (see [275, 450,
238, 313] and references therein) and its generalization to weakly acyclic games (see [17, 439]
and references therein).

In this chapter, we propose the Markov α-potential game framework, where changes in
an agent’s long-run utility from unilateral policy deviations are captured by an “α-potential
function” and a parameter α (Definition 2.2.3). We establish that any finite-state, finite-
action Markov game is a Markov α-potential game for some α ⩾ 0, and there exists an
α-potential function (Theorem 2.2.1). Furthermore, we show that any optimizer of an α-
potential function, if it exists, is an α-stationary Nash equilibrium (Proposition 2.2.1).

Markov α-potential games generalize the framework of Markov potential games (MPGs).
MPGs, originally proposed in [410] and [238], correspond to the special case of α = 0 and
extend a rich body of literature on static potential games (or static congestion games) [306].
The MPG structure has enabled learning algorithms with convergence guarantees to Nash
equilibrium (e.g., [275, 121]). However, two main challenges remain: (1) the lack of real-world
examples that can be provably shown to be MPGs, and (2) the difficulty of certifying games as
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MPGs and constructing potential functions, except in special cases (e.g., state-independent
transitions or identical payoffs [313, 238]). Our α-potential game framework addresses both
challenges: it shows that any finite-state, finite-action Markov game is a Markov α-potential
game and provides a semi-infinite linear programming approach to certify MPGs (Section
2.4).

Our Markov α-potential games framework extends the static near-potential games, pro-
posed in [81], to Markov games. Unlike static games, where the nearest potential function
always exists, the existence of an α-potential function requires additional analysis (The-
orem 2.2.1). Moreover, while finding the nearest static potential function involves finite-
dimensional linear programming, computing the α and its potential function requires solving
a semi-infinite linear programming problem, as the α-potential function spans both state and
policy spaces, the latter being uncountable.

We derive explicit upper bounds on the parameter α for two classes of relevant games.
First, we consider Markov Congestion Games (MCGs), where each stage game is a congestion
game (proposed in [351]) and the state transition depends on agents’ aggregate resource
utilization. This is equivalent to Markov games where each stage is a static potential game,
as static congestion games and static potential games are equivalent [306]. This class models
applications like dynamic routing, communication networks, and robotic interactions [111,
398, 210]. We show that the upper bound on α for MCGs scales linearly with the state and
resource set sizes, and inversely with the number of agents (Proposition 2.3.2). Second, we
consider Perturbed Markov Team Games (PMTGs), which generalize Markov team games
by allowing deviations of individual utility from the team objective. We provide an upper
bound for PMTGs that scales with the magnitude of these deviations (Proposition 2.3.3).
For both MCGs and PMTGs, we calculate an upper bound on α by using a specific candidate
α-potential function to compute an analytical upper bound on α. However, this upper bound
can be loose. In such cases, the semi-infinite linear programming method described in Section
2.4 can be used to obtain tighter numerical estimates of α.

We propose two algorithms to approximate stationary Nash equilibrium in Markov α-
potential games that are based only on the utility function of agents and not on the knowledge
of α−potential function. We study the Nash-regret of both algorithms and characterize its
dependence on α (Theorems 2.5.1 and 2.5.2). First, we analyze the projected gradient-ascent
algorithm (Algorithm 1), originally proposed in [121] for MPGs, in the context of Markov
α-potential games by bounding the path length of policy updates using changes in the α-
potential function and α. Following our proof technique, the analysis of many existing
algorithms for MPGs can be extended similarly to Markov α-potential games. Second, we
propose a new algorithm called the sequential maximum improvement algorithm (Algorithm
2) and derive its Nash-regret. The main technical novelty in the analysis is to bound the
maximum improvement of a “smoothed” Q-functions with respect to change in policies (aka
“path length of policies”), which in turn is bounded by cumulative change in α-potential
function (Lemma 2.5.5). For α = 0, this algorithm and its analysis are independently
relevant to MPGs. We numerically validate these algorithms on examples of MCGs and
PMTGs.
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Additional Related Works
This chapter on Markov α-potential games is related to the literature on weakly acyclic
Markov games, proposed in [17]. Weakly acyclic Markov games extend weakly acyclic static
games to Markov games, encompassing MPGs as a special case. Unlike MPGs, weakly
acyclic Markov games do not require the existence of an exact potential function, instead
retain many key properties of potential games, such as the existence of pure equilibria and
finite strict best-response paths. Just as MPGs, most games are not weakly acyclic, and
determining whether a game is weakly acyclic remains an open problem. On one hand, the
introduction of a Markov α-potential games allows for design and analysis of algorithms
as a game diverges from a MPG. On the other hand, if a game is weakly acyclic, it is an
α-potential game with the value of α not necessarily zero. Exploring the connection between
these two approaches and how they might be used together to analyze general Markov games
is an interesting and open direction for future research.

Our Algorithm 1 for Markov α-potential games is connected with a substantial body of
work on learning approximate Nash equilibria (NEs) in MPGs (see [275, 121, 284, 391, 144,
400, 449]). The first global convergence result for the policy gradient method in MPGs was
established in [238]. Additionally, these algorithms have been studied in both discounted
infinite horizon settings [121, 144] and finite horizon episodic settings [284, 391]. Other
methods, such as natural policy gradient [144, 400, 449] and best-response based methods
[275], have also been explored.

Our Algorithm 2 is reminiscent of the “Nash-CA” algorithm developed for MPGs in
[391], which requires each player to sequentially compute the best response policy using an
RL algorithm in each iteration; in contrast, our algorithm only computes a smoothed one-step
optimal deviation. One-step optimal deviation based algorithms has also been studied for
MPGs [275] [83]. Additionally, incorporating smoothness for better performance in Markov
games is also studied in [86, 133, 297].

Finally, a recent work [111] introduces an approximation algorithm for MCGs and inves-
tigates the Nash-regret. Their results and approach are tailored exclusively for congestion
games, whereas our work focuses on a broader framework of Markov α-potential games.

Notations
For any n ∈ N, [n] := {1, 2, 3, ...,n}. For a finite set X, ∆(X) denotes the set of
probability distributions over X. For any function f : X → R, the L∞-norm is defined
by ∥f∥∞ = maxx∈X |f(x)|, the L1-norm is ∥f∥1 =

∑
x∈X |f(x)|, and the L2-norm is

∥f∥ =
√∑

x∈X |f(x)|2.

Organization
The rest of the chapter is organized as follows. Section 2.1 introduces the setup of Markov
games; Section 2.2 introduces the framework of Markov α-potential game and establishes the
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existence of associated α-potential function, with examples of Markov α-potential games an-
alyzed in Section 2.3; an optimization framework in the form of semi-infinite linear program-
ming for finding the upper bound of α is in Section 2.4; Section 2.5 presents two algorithms,
projected gradient-ascent and sequential maximum improvement, and their Nash-regret anal-
ysis; and numerical examples are in Section 2.6.

The proofs of technical lemmas and propositions, unless otherwise specified, are deferred
to Appendix A.

2.1 Preliminaries on Markov Games
Let us first recall the mathematical setup of Markov games. An N -player Markov game G
is characterized by ⟨I,S, (Ai)i∈I , (ui)i∈I ,P , γ⟩, where

1. I = (1, 2, · · ·N) is the finite set of N ∈N players,

2. S is the finite set of states,

3. Ai is the finite set of actions of player i ∈ I and A := ×i∈IAi is the set of joint actions
of all players,

4. ui : S ×A→ R is the one-stage payoff function of player i ∈ I,

5. P = (P (s′|s, a))s,s′∈S,a∈A is the probability transition kernel such that the probability
of transitioning to state s′ ∈ S given the current state s ∈ S and action profile a ∈ A
is given by P (s′|s, a), and

6. γ ∈ [0, 1) is the discount factor.

The game proceeds in discrete time steps. At each time step k = 0, 1, 2, · · · , the state
of the game is sk ∈ S, the action taken by player i ∈ I is aki ∈ Ai, and the joint action
of all players is ak = (aki )i∈I ∈ A. Once players select their actions, each player i ∈ I
observes her one-stage payoff ui(sk, ak) ∈ R, and the system transits to state sk+1, where
sk+1 ∼ P (·|sk, ak).

In this study, we assume that the action taken by any player is based on a randomized
stationary Markov policy, as in the Markov games literature [149, 117, 238, 121, 440]. That
is, for any player i ∈ I, the action selected at time step k is aki ∼ πi(·|sk), and the joint
policy of all players is π = (πi)i∈I ∈ Π := ×i∈IΠi, with Πi := {πi : S → ∆(Ai)}. The joint
policy of all players except player i is denoted as π−i = (πj)j∈I\{i} ∈ Π−i := ×j∈I\{i}Πj .
Given π ∈ Π, the probability of the system transiting from s to s′ is denoted as P π(s′|s) :=
Ea∼π[P (s′|s, a)]. The accumulated reward (a.k.a. the utility function) for player i, given
the initial state s ∈ S and the joint policy π ∈ Π, is

Vi(s, π) := Eπ

 ∞∑
k=0

γkui
(
sk, ak

)
| s0 = s

 , (2.1)
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where γ ∈ [0, 1) is the discount factor, ak ∼ π
(
sk
)
, and sk+1 ∼ P

(
·|sk, ak

)
. Denote also

Vi(µ, π) := Es∼µ[Vi(s, π)], if the initial state follows a distribution µ ∈ ∆(S). Additionally,
define the discounted state visitation distribution as

dπµ(s) := (1− γ)
∞∑
k=0

γkP (sk = s|s0 ∼ µ). (2.2)

To analyze this game, we will adopt the solution concept of ϵ-stationary Nash equilibrium
(NE).

Definition 2.1.1. (ϵ-stationary Nash equilibrium). For any ϵ ⩾ 0, a policy profile π∗ =
(π∗
i , π∗

−i) is an ϵ-stationary Nash equilibrium of the Markov game G if for any i ∈ I, any
πi ∈ Πi, and any µ ∈ ∆(S),

Vi(µ, π∗
i , π∗

−i) ⩾ Vi(µ, πi, π∗
−i)− ϵ.

When ϵ = 0, it is simply called a stationary NE. A stationary NE always exists in any
Markov game with finite states and actions [149].

2.2 Markov α-potential games
In this section, we introduce the framework of Markov α-potential games. We show that any
Markov game can be analyzed under this framework. First, we introduce some preliminaries.
We define a metric d on Π as follows: for any π, π̃ ∈ Π,

di (πi, π̃i) := max
s∈S,ai∈Ai

|πi (ai | s)− π̃i (ai | s)| , ∀i ∈ I,

d(π, π̃) :=max
i∈I

di (πi, π̃i) . (2.3)

Evidently, the sets of policies {Πi}i∈I are compact in the topology induced by the metrics
{di}i∈I , Π is compact in the topology induced by d, and the utility functions are continuous
with respect to π under the metric d [440]. Next, we introduce the notion of maximum
pairwise distance between a Markov game and a real-valued function defined on S ×Π.

Definition 2.2.1. (Maximum pairwise distance). Given any Markov game G and a function
Ψ : S ×Π→ R, the maximum pairwise distance d̂ between Ψ and G is defined as

d̂(Ψ,G)

:= sup
s∈S,i∈I,
πi,π′

i∈Πi,
π−i∈Π−i

∣∣∣∣Ψ (
s, π′

i, π−i
)
−Ψ (s, πi, π−i)−

(
Vi
(
s, π′

i, π−i
)
− Vi (s, πi, π−i)

) ∣∣∣∣.
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Definition 2.2.1 generalizes the concept of maximum pairwise distance from [81, Definition
2.3], extending it from static games (action profiles) to Markov games, where the distance
is measured over policies that map states to action distributions. Next, we introduce
the notion of a game elasticity parameter, which is useful for defining Markov α-potential
games. Intuitively, this parameter captures the smallest value of the maximum pairwise
distance between any function in a set FG (to be defined shortly) and G.

Definition 2.2.2. (Game elasticity parameter). Given any game G, its game elasticity
parameter α is defined as

α := inf
Ψ∈FG

d̂(Ψ,G), (2.4)

where
FG := {Ψ : S ×Π→ R s.t. ∥Ψ∥∞ ⩽ (2N)/(1− γ)max

i∈I
∥ui∥∞}

is a class of bounded uniformly equi-continuous function on Π 1

Our choice of the specific value of the upper bound on functions in FG is useful for the
proof of Proposition 4.1.

Clearly α <∞ as one can take Ψ = 0 in (2.4) to ensure α ⩽ 2∥Vi∥∞<∞.
Furthermore, the game elasticity parameter depends on variety of game parameters,

including the number of players, the action and state sets, the utility function values, the
Markov state transition dynamics, and the discount factor.

Next, we define Markov α-potential games.

Definition 2.2.3. (Markov α-potential game). A Markov game G is a Markov α-potential
game if α is the game elasticity parameter. Furthermore, any Φ ∈ FG such that d̂(Φ,G) = α
is called an α-potential function of G.

Next, we present a useful property due to Definition 2.2.3.

Corollary 2.2.1. Let G be a Markov α-potential game with α-potential function Φ. Then
∀s ∈ S, πi, π′

i ∈ Πi, π−i ∈ Π−i,

|Vi(s, πi, π−i)− Vi(s, π′
i, π−i)− (Φ(s, πi, π−i)−Φ(s, π′

i, π−i))| ⩽ α. (2.5)

Next, we show existence of an α-potential function.

Theorem 2.2.1. (Existence of α-potential function). For any Markov game G, there exists
Φ ∈ FG such that

d̂(Φ,G) = inf
Ψ∈FG

d̂(Ψ,G).

1A set F of functions f : S ×Π → R is called uniformly equi-continuous on Π, if there exists δF :
R+ → R+ such that for every ϵ > 0, |f(s,π) − f(s,π′)| ⩽ ϵ for all f ∈ F , s ∈ S, π,π′ ∈ Π such that
d(π,π′) ⩽ δF (ϵ).
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Proof. Define a mapping

FG ×Π×Π ∋ (Ψ, π, π′) 7→ h(Ψ, π, π′)

:= max
s∈S,i∈I

∣∣∣Ψ (
s, π′

i, π−i
)
−Ψ (s, πi, π−i)−

(
Vi
(
s, π′

i, π−i
)
− Vi (s, πi, π−i)

) ∣∣∣ ∈ R.

Note that such h is continuous under the standard topology induced by sup-norm on FG ×
Π ×Π. By Berge’s maximum theorem, g(Ψ) := maxπ,π′∈Πh(Ψ, π, π′) is continuous with
respect to Ψ. Since FG is uniformly bounded and uniformly equi-continuous, Arzelà–Ascoli
theorem implies that FG is relatively compact in CΠ, where CΠ := {f : S ×Π → R | ∀s ∈
S, f(s, ·) is a continuous function} [357]. Finally, by extreme-value theorem [357], there ex-
ists a function Φ ∈ FG such that d̂(Φ,G) = infΨ∈FG d̂(Ψ,G).

Corollary 2.2.1 and Theorem 2.2.1 jointly show that for any Markov game G, an α-
potential function exists such that the gap between the change in the utility function of any
agent due to a unilateral change in its policy and the change in α-potential function is at
most α. Next, we show that any optimizer of α-potential function with respect to policy π
yields an α-Nash equilibrium (NE) of game G.

Proposition 2.2.1. Given a Markov α-potential game G with an α-potential function Φ, for
any ϵ > 0, if there exists a π∗ ∈ Π such that for every s ∈ S, Φ(s, π∗) + ϵ ⩾ supπ∈Π Φ(s, π),
then π∗ ∈ Π is an (α+ ϵ)-stationary NE of G.

Remark 2.2.1. Note that Proposition 2.2.1 holds for any function Ψ∈ FG that yields an
upper bound for α. That is, given a Markov α-potential game G and a function Ψ satisfying

|Vi(s, πi, π−i)− Vi(s, π′
i, π−i)− (Ψ(s, πi, π−i)−Ψ(s, π′

i, π−i))| ⩽ ᾱ,
∀s ∈ S, πi, π′

i ∈ Πi, π−i ∈ Π−i,

for some ᾱ ∈ [α,∞), then for any π∗ ∈ Π such that Ψ(s, π∗) + ϵ ⩾ supπ∈Π Ψ(s, π) for any
s ∈ S, π∗ is an (ᾱ+ ϵ)-stationary NE of G.

2.3 Examples of Markov α-potential game
In this section, we present three important classes of games, Markov potential games, Markov
congestion games, and perturbed Markov team games, which can be analytically analyzed
within the framework of Markov α-potential games.

Markov potential game
A game is a Markov potential game if there exists an auxiliary function (a.k.a. potential
function) such that when a player unilaterally deviates from her policy, the change of the
potential function is equal to the change of her utility function.
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Definition 2.3.1 (Markov potential games [238]). A Markov game G is a Markov potential
game (MPG) if there exists a potential function Φ : S ×Π→ R such that for any i ∈ I, s ∈
S, πi, π′

i ∈ Πi, and π−i ∈ Π−i, Φ(s, π′
i, π−i)−Φ(s, πi, π−i) = Vi(s, π′

i, π−i)− Vi(s, πi, π−i).

Proposition 2.3.1. An MPG is a Markov α-potential game with α = 0.

Markov congestion game
The Markov congestion game (MCG) Gmcg is a dynamic counterpart to the static congestion
game introduced by [306], involving a finite number of players using a finite set of resources.
Each stage of Gmcg is a static congestion game with a state-dependent reward function for
each resource, and the state transition depends on the aggregated usage of each resource by
the players. Specifically, let the finite set of resources in the one-stage congestion game be
denoted as E. The action ai ∈ Ai ⊆ 2E of each player i ∈ I represents the set of resources
chosen by player i. Here, the action set Ai is the set of all resource combinations that are
feasible for player i. The total usage demand of all players is 1, and each player’s demand is
assumed to be 1/N .

Given an action profile a = (ai)i∈I , the aggregated usage demand of each resource e ∈ E
is given by

we(a) =
1
N

∑
i∈I
1(e ∈ ai). (2.6)

In each state s, the reward for using resource e is denoted as (1/N) · ce(s,we(a)). Thus,
the one-stage payoff for player i ∈ I in state s ∈ S, given the joint action profile a ∈
A, is ui(s, a) = (1/N) ·∑e∈ai

ce(s,we(a)). The state transition probability, denoted as
P (s′|s,w), depends on the aggregate usage vector w = (we)e∈E , which is induced by the
players’ action profile as in (2.6). The set of all feasible aggregate usage demands is denoted
by W .

The next proposition shows that, under a regularity condition on the state transition
probability, Gmcg is a Markov α-potential game such that the upper bound of α scales linearly
with respect to the Lipschitz constant ζ, the size of state space |S|, resource set |E|, and
decreases as N increases.

Proposition 2.3.2. If there exists some ζ > 0 such that for any s, s′ ∈ S,w,w′ ∈ W ,
|P (s′|s,w) − P (s′|s,w′)| ⩽ ζ∥w − w′∥1, then the congestion game Gmcg is a Markov α-
potential game with α ⩽ 2ζγ|S||E| sups,π Ψ(s, π)/(N(1− γ)), where

Ψ(µ, π) :=
1
N

Eµ,π

 ∞∑
k=0

γk
( ∑
e∈E

wk
eN∑
j=1

ce

(
sk, j

N

)), (2.7)

such that s0 ∼ µ, the aggregate usage vector wk = (wke )e∈E is induced by ak ∼ π(sk), and
sk ∼ P (·|sk−1,wk−1).
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Perturbed Markov team game
A Markov game is called a perturbed Markov team game (PMTG) Gpmtg if the payoff function
for each player i ∈ I can be decomposed as ui(s, a) = r(s, a) + ξi(s, a). Here, r(s, a)
represents the common interest of the team, and ξi(s, a) represents player i’s heterogeneous
preference, such that ∥ξi∥L∞ ⩽ κ, where κ ⩾ 0 measures each player’s deviation from the
team’s common interest. As κ→ 0, Gpmtg becomes a Markov team game, which is an MPG
[238].

The next proposition shows that a Gpmtg is a Markov α-potential game, and the upper
bound of α decreases as the magnitude of the payoff perturbation κ decreases.

Proposition 2.3.3. A perturbed Markov team game Gpmtg is a Markov α-potential game
with α ⩽ 2κ

(1−γ)2 .

2.4 Finding an upper bound of α
The analysis of MCG and PMTG in Section 2.3 utilizes a specific form of the Markov α-
potential function to obtain an upper bound on α. In this section, we provide an optimization-
based procedure to find an upper bound on α by also computing the α-potential function.

Our approach is based on changing the feasible set of the optimization problem in (2.4)
to F̃G , defined as follows:

F̃G :=

Ψ(s, π) =
∑

s′∈S,a′∈A
ds(s′, a′; π)ϕ(s′, a′),∀s ∈ S, π ∈ Π

∣∣∣∣∣
∃ ϕ : S ×A→ R s.t. ∥ϕ∥∞ ⩽ N max

i∈I
∥ui∥∞

, (2.8)

where, for any s ∈ S, ds(·; π) : S ×A → R is the state-action occupancy measure induced
due to π, defined as follows:

ds(s′, a′; π) := π(a′|s′)Eπ

 ∞∑
k=0

γk1(sk = s′)
∣∣∣∣s0 = s

 ,

where ak ∼ π
(
sk
)
, and sk+1 ∼ P

(
·|sk, ak

)
. Intuitively, for any Ψ ∈ F̃G , there exists

ϕ : S ×A→ R such that Ψ(s, π) represents the long-horizon discounted value of a Markov
decision process with state transition P , starting from state s, using policy π ∈ Π, and
one-step utility ϕ.

Proposition 2.4.1. For any Markov α-potential game G, F̃G ⊆ FG . That is, ᾱ ⩾ α with

ᾱ := inf
Ψ∈F̃G

d̂(Ψ,G). (2.9)
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Using Remark 2.2.1, we can conclude that any optimizer of Ψ̄, where d̂(Ψ̄,G) = ᾱ, can
be used to find a ᾱ-stationary NE for the game G.

Next, we provide an optimization based method to compute ᾱ. Note that (2.9) can be
reformulated as follows:

min
y∈R

ϕ:S×A→R

y (2.10)

s.t.
∣∣∣∣ ∑
s′,a′

(ds(s′, a′; πi, π−i)− ds(s′, a′; π′
i, π−i)) · (ϕ− ui)(s′, a′)

∣∣∣∣ ⩽ y, (C1)

∀s ∈ S, ∀i ∈ I, ∀πi, π′
i ∈ Πi, ∀π−i ∈ Π−i,

|ϕ(s, a)| ⩽ N max
i∈I
∥ui∥∞, ∀s ∈ S, a ∈ A.

Here, we use
Vi(s, π) =

∑
s′∈S,a′∈A

ds(s′, a′; π)ui(s′, a′),

and
Ψ(s, π) =

∑
s′∈S,a′∈A

ds(s′, a′; π)ϕ(s′, a′),

for some ϕ : S ×A→ R. Note that (2.10) is a semi-infinite linear program where the objec-
tive is a linear function with an uncountable number of linear constraints. Particularly, in
(C1) there is one linear constraint corresponding to each tuple (s, i, πi, π′

i, π−i). Moreover,
the coefficients of each linear constraint in (C1) are composed of state-action occupancy mea-
sures which are computed by solving a Bellman equation. There are a number of algorithmic
approaches to solve semi-infinite linear programming problems [402, 180]. In Appendix A,
we adopt an algorithm from [402] to solve (2.10) and find (an upper bound of) α. Figure 2.1
illustrates how α varies with different discount factors γ in a PMTG. Note that the growth
of the numerical estimate of α is much more benign than the analytical characterization
obtained in Proposition 2.3.3.

2.5 Approximation algorithms and Nash-regret
analysis

In this section, we present two equilibrium approximation algorithms for Markov α-potential
games: the projected gradient-ascent algorithm, proposed in [121] for MPGs, and the sequen-
tial maximum improvement algorithm, where each player’s strategy is updated based on a
one-stage smoothed best response. We also derive non-asymptotic convergence rates for
these algorithms in terms of Nash-regret, defined as

Nash-regret(T ) :=
1
T

T∑
t=1

max
i∈I

R
(t)
i ,
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Figure 2.1: Variation of α with the discount factor in the perturbed Markov team game with
N = 3 and perturbation parameter κ = 0.1. The setup of this game is same as that in
Section 2.6 with λ1 = λ3 = 0.8,λ2 = λ4 = 0.2.

where
R
(t)
i := max

π′
i∈Πi

Vi

(
µ, π′

i, π
(t)
−i

)
− Vi

(
µ, π(t)

)
,

and π(t) denotes the t-th iterate. Note that Nash-regret is always non-negative; if

Nash-regret(T ) ⩽ ϵ

for some ϵ > 0, then there exists t† such that π(t†) is an ϵ-approximate NE.

Projected gradient-ascent algorithm
First, we define some useful notations. Given a joint policy π ∈ Π, define player i’s Q-
function as

Qπi (s, ai) = Ea−i∼π−i(s)

[
ui(s, ai, a−i) + γ

∑
s′∈S

P (s′|s, ai, a−i)Vi(s
′, π)

]
,

and denote Qπ
i (s) = (Qπi (s, ai))ai∈Ai

. Let κµ denote the maximum distribution mismatch
of π relative to µ, and let κ̃µ denote the minimax value of the distribution mismatch of π
relative to µ. That is,

κµ := sup
π∈Π

∥∥∥dπµ/µ
∥∥∥

∞
, κ̃µ := inf

ν∈∆(S)
sup
π∈Π
∥dπµ/ν∥∞, (2.11)
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where dπµ is defined in (2.2), and the division dπµ/ν is evaluated in a component-wise manner.
The algorithm iterates for T steps. We abuse the notation to use Q(t)

i to denote Qπ(t)i , and
Q(t)
i to denote Qπ(t)

i . In every step t ∈ [T − 1], each player i ∈ I updates her policy following
a projected gradient-ascent algorithm as in (2.12).

Algorithm 1 Projected Gradient-Ascent Algorithm

Input: Step size η, for every i ∈ I, ai ∈ Ai, s ∈ S, set π(0)i (ai|s) = 1/|Ai|.
for t = 0, 1, 2, ...,T − 1 do

For every i ∈ I, s ∈ S, update the policies as follows

π
(t+1)
i (s) = ProjΠi

(
π
(t)
i (s) + ηQ(t)

i (s)
)

, (2.12)

where ProjΠi
denotes the orthogonal projection on Πi.

end for

Remark 2.5.1. Algorithm 1 is not the standard policy gradient algorithm. The standard
policy gradient (cf. [238]) is given by

∂V π
i (ρ)

∂πi (ai | s)
= 1/(1− γ) · dπρ (s)Qπi (s, ai) .

The RHS in the this equation scales with the state visitation frequency dπρ (s), which results
in slow learning rate for states with low visitation frequencies under the current policy. To
address this issue, [121] proposed to remove the term dπρ (s)/(1− γ) from the standard policy
gradient update, which accelerates the learning for states with low visitation probabilities. We
adopted the convention of [121] to call it “policy gradient-ascent algorithm”.

Theorem 2.5.1. Given a Markov α-potential game with an α-potential function Φ and an
initial state distribution µ, the policy updates generated from Algorithm 1 satisfies

(i) Nash-regret(T ) ⩽ O
(√

κ̃µĀN

(1−γ)
9
4

(
CΦ
T +N2α

) 1
4
)

with η = (1−γ)2.5
√
CΦ+N2αT

2NĀ
√
T

;

(ii) Nash-regret(T ) ⩽ O
(√

min (κµ,|S|)4
NĀ

(1−γ)6

(
CΦ
T +N2α

) 1
2
)

with η = (1−γ)4

8 min (κµ,|S|)3
NĀ

,

where Ā := maxi∈I |Ai|, κµ and κ̃µ are defined in (2.11), and CΦ > 0 is a constant satisfying
|Φ(µ, π)−Φ(µ, π′)| ⩽ CΦ for any π, π′ ∈ Π,µ ∈ ∆(S).

We emphasize that the Nash-regret bounds in Theorem 2.5.1 (also Theorem 2.5.2 in the
next section) will hold even without knowing the exact form of Φ and the game elasticity
parameter α. It is sufficient to have an upper bound ᾱ for α and an associated function Ψ



CHAPTER 2. MARKOV α-POTENTIAL GAMES: A NEW FRAMEWORK FOR
MULTI-AGENT REINFORCEMENT LEARNING 23

for which this upper bound holds. In the special case of α = 0, the Nash-regret bound in
Theorem 2.5.1 recovers the Nash-regret bound from [121] for MPG.

The proof of Theorem 2.5.1 is inspired by [121] for the Nash-regret analysis of MPGs.
First, we state multi-player performance difference lemma (Lemma 2.5.1), which enables
bounding the Nash-regret of an algorithm by summing the norms of policy updates, denoted
as ∥π(t+1)

i −π(t)i ∥. The main modification for our analysis is to bound the sum of these policy
update differences by the game elasticity parameter α and the change in the α-potential
function Φ (Lemma 2.5.2).

Lemma 2.5.1 (Performance difference (Lemma 1 in [121])). For any i ∈ I, µ ∈ ∆(S),
π′
i, πi ∈ Πi, and π−i ∈ Π−i,

Vi(µ, π′
i, π−i)− Vi(µ, πi, π−i)

=
1

1− γ
∑
s,ai

dπ
′
i,π−i
µ (s) ·

(
π′
i(ai|s)− πi(ai|s)

)
Q
πi,π−i
i (s, ai) .

Lemma 2.5.2 (Policy improvement). For Markov α-potential game (2.4) with any state
distribution ν∈ ∆(S), the α-potential function Φ(ν, π) at two consecutive policies π(t+1) and
π(t) in Algorithm 1 satisfies

(i) Φ(ν, π(t+1))−Φ(ν, π(t)) +N2α ⩾ −4η2Ā2N2

(1− γ)5

+
1

2η(1− γ)
∑

i∈I,s∈S
d
π
(t+1)
i ,π(t)−i
ν (s)

∥∥∥∥π(t+1)
i (s)− π(t)i (s)

∥∥∥∥2
;

(ii) Φ(ν, π(t+1))−Φ(ν, π(t)) +N2α ⩾

1
2η(1− γ)

(
1− 4ηκ3

νĀN

(1− γ)4

) ∑
i∈I,s∈S

d
π
(t+1)
i ,π(t)−i(s)
ν ·

∥∥∥∥π(t+1)
i (s)− π(t)i (s)

∥∥∥∥2
.

Proof of Theorem 2.5.1

Using the variational characterization of projection operation in (2.12), we note that for any
π′
i ∈ Πi, 〈

π′
i(s)− π

(t+1)
i (s), ηQ(t)

i (s)− π(t+1)
i (s) + π

(t)
i (s)

〉
Ai

⩽ 0.

Therefore, for any π′
i ∈ Πi,〈

π′
i(s)− π

(t)
i (s), Q(t)

i (s)
〉
Ai

=
〈
π′
i(s)− π

(t+1)
i (s), Q(t)

i (s)
〉
Ai

+
〈
π
(t+1)
i (s)− π(t)i (s), Q(t)

i (s)
〉
Ai

⩽
1
η

〈
π′
i(s)− π

(t+1)
i (s), π(t+1)

i (s)− π(t)i (s)
〉
Ai

+
〈
π
(t+1)
i (s)− π(t)i (s), Q(t)

i (s)
〉
Ai

.
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Note that for any two probability distributions p1 and p2,

∥p1 − p2∥ ⩽ ∥p1 − p2∥1 ⩽ 2.

Therefore, 〈
π′
i(s)− π

(t)
i (s), Q(t)

i (s)
〉
Ai

⩽
2
η

∥∥∥∥π(t+1)
i (s)− π(t)i (s)

∥∥∥∥+ ∥∥∥∥π(t+1)
i (s)− π(t)i (s)

∥∥∥∥ ∥∥∥∥Q(t)
i (s)

∥∥∥∥
⩽

3
η

∥∥∥∥π(t+1)
i (s)− π(t)i (s)

∥∥∥∥ , (2.13)

where the last inequality is due to
∥∥∥∥Q(t)

i (s)
∥∥∥∥ ⩽ √

Ā
1−γ and η ⩽ 1−γ√

Ā
. Hence, by Lemma 2.5.1

and (2.13),

T ·Nash-regret(T ) =
T∑
t=1

max
i∈I,π′

i

Vi(µ, π′
i, π

(t)
−i )− Vi(µ, π(t))

=
T∑
t=1

max
π′

i

∑
s,ai

d
π′

i,π
(t)
−i

µ (s)

1− γ (π′
i (ai|s)− π

(t)
i (ai|s))Q

(t)
i (s, ai)

⩽
3

η(1− γ)

T∑
t=1

∑
s
d
π′

i,π
(t)
−i

µ (s)
∥∥∥∥π(t+1)

i (s)− π(t)i (s)
∥∥∥∥ ,

where in the second line we slightly abuse the notation i to represent arg maxi and in the
last line we slightly abuse the notation π′

i to represent arg maxπ′
i
. Now, continuing the above

calculation with an arbitrary ν ∈ ∆(S) and using

d
π′

i,π
(t)
−i

µ (s)

d
π
(t+1)
i ,π(t)−i
ν (s)

⩽
d
π′

i,π
(t)
−i

µ (s)

(1− γ)ν(s) ⩽
supπ∈Π

∥∥∥dπµ/ν
∥∥∥

∞
1− γ

to get:

T ·Nash-regret(T )

⩽
3
√

supπ∈Π

∥∥∥dπµ/ν
∥∥∥

∞

η(1− γ) 3
2

T∑
t=1

∑
s

√
d
π′

i,π
(t)
−i

µ (s)d
π
(t+1)
i ,π(t)−i
ν (s) ·

∥∥∥∥π(t+1)
i (s)− π(t)i (s)

∥∥∥∥
⩽

3
√

supπ∈Π

∥∥∥dπµ/ν
∥∥∥

∞

η(1− γ) 3
2

√√√√ T∑
t=1

∑
s
d
π′

i,π
(t)
−i

µ (s) (2.14)

·

√√√√ T∑
t=1

N∑
i=1

∑
s
d
π
(t+1)
i ,π(t)−i(s)
ν

∥∥∥∥π(t+1)
i (s)− π(t)i (s)

∥∥∥∥2
, (2.15)
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where the last inequality follows from the Cauchy-Schwarz inequality and replacing arg maxi
by the sum over all players. There are two choices to proceed beyond (2.14):
1) Fix ϵ > 0. Take ν∗

ϵ ∈ ∆(S) such that

sup
π∈Π

∥∥∥dπµ/ν∗
ϵ

∥∥∥
∞
− ϵ ⩽ inf

ν∈∆(S)
sup
π∈Π

∥∥∥dπµ/ν∗
ϵ

∥∥∥
∞

.

Then apply Lemma 2.5.2 (i) and the fact |Φ(ν, π)−Φ(ν, π′)| ⩽ CΦ for any π, π′ ∈ Π, ν ∈
∆(S) to get

Nash-regret(T ) ⩽ 3
T

2(κ̃µ + ϵ)T (CΦ +N2α · T )
η(1− γ)2 +

8(κ̃µ + ϵ)ηT 2Ā2N2

(1− γ)7


1
2

.

By letting ϵ to 0 and taking step size η = (1−γ)2.5
√
CΦ+N2αT

2NĀ
√
T

, we have

Nash-regret(T ) ⩽
3 · 2 3

2
√
κ̃µĀN

(1− γ) 9
4

(
CΦ

T
+N2α

) 1
4

.

2) We can also proceed (2.14) with Lemma 2.5.2 (ii) and η ⩽ (1−γ)4

8κ3
νNĀ

to get

Nash-regret(T ) ⩽ 6

√√√√√supπ∈Π

∥∥∥dπ
µ

ν

∥∥∥
∞
(CΦ +N2α · T )

ηT (1− γ)2 .

We next discuss two special choices of ν for proving our bound. First, if ν = µ, then
η ⩽ (1−γ)4

8κ3
µNĀ

. By letting η = (1−γ)4

8κ3
µNĀ

, the last square root term can be bounded by

O


√√√√κ4

µNĀ(CΦ +N2α · T )
T (1− γ)6

.

Second, if ν = 1
|S|1, the uniform distribution over S, then κν ⩽ 1

S , which allows a valid

choice η = (1−γ)4

8|S|3NĀ ⩽ (1−γ)4

8κ3
νNĀ

. Hence, we can bound the last square root term by

O


√√√√ |S|4NĀ(CΦ +N2α · T )

T (1− γ)6

 .

Since ν is arbitrary, combining these two special choices completes the proof.
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Sequential maximum improvement algorithm
Let us first fix some notations. Associated with any Markov game G, we define smoothed
(or regularized) Markov game G̃, where the expected one-stage payoff of each player i with
state s under the joint policy π is ũi(s, π) = Ea∼π(s)[ui(s, a)]− τ

∑
j∈I νj(s, πj), where

νj(s, πj) :=
∑
aj∈Aj

πj(aj |s) log(πj(aj |s))

is the entropy function, and τ > 0 denotes the regularization parameter. With the smoothed
one-stage payoffs, the expected total discounted infinite horizon payoff of player i under
policy π is given by

Ṽi(s, π) = Eπ

[ ∞∑
k=0

γk
(
ui(s

k, ak)− τ
∑
j∈I

νj(s
k, πj)

)
|s0 = s

]
, (2.16)

for every s ∈ S. The smoothed (or entropy-regularized) Q-function is given by

Q̃πi (s, ai)

=
∑

a−i∈A−i

π−i(a−i|s)
(
ui(s, ai, a−i)− τ

∑
j∈IN

νj(s, πj) + γ
∑
s′∈S

P (s′|s, a)Ṽi(s′, π)
)

. (2.17)

Algorithm 2 has two main components: first, it computes the optimal one-stage policy
update, by using the smoothed Q-function. Here the vector of smoothed Q-functions for all
ai ∈ Ai is denoted by Q̃π

i (s) = (Q̃πi (s, ai))ai∈Ai
. Second, it selects the player who achieves

the maximum improvement in the current state to adopt her one-stage policy update, with
the policy for the remaining players and the remaining states unchanged. More specifically,
the algorithm iterates for T time steps. In every time step t ∈ [T − 1], based on the
current policy profile π(t), we abuse the notation to use Q̃(t)

i to denote Q̃π(t)i and Q̃(t)
i to

denote Q̃π(t)

i . The expected smoothed Q-function of player i is computed as Q̃(t)
i (s, πi) =∑

ai∈Ai
πi(ai|s)Q̃

(t)
i (s, ai) for all s ∈ S and all i ∈ I. Then, each player computes her one-

stage best response strategy by maximizing the smoothed Q-function: for every i ∈ I, ai ∈
Ai, s ∈ S,

BR(t)
i (ai|s) =

arg max
π′

i∈Πi

(
Q̃

(t)
i (s, π′

i)− τνi(s, π′
i)
)

ai

=
exp(Q̃(t)

i (s, ai)/τ )∑
a′

i∈Ai
exp(Q̃(t)

i (s, a′
i)/τ )

, (2.18)

and its maximum improvement of smoothed Q-function value in comparison to current policy
is

Ω(t)
i (s) = max

π′
i∈Πi

(
Q̃

(t)
i (s, π′

i)− τνi(s, π′
i)
)
−
(
Q̃

(t)
i (s, π(t)i )− τνi(s, π(t)i )

)
, ∀s ∈ S. (2.19)
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Note that computing Ω(t)
i is straightforward as the maximization in (2.19) is attained at

BR(t)
i (s) (cf. (2.18)).
If the maximum improvement Ω(t)

i (s) ⩽ 0 for all i ∈ I and all s ∈ S, then the algorithm
terminates and returns the current policy profile π(t). Otherwise, the algorithm chooses a
tuple of player and state (ī(t), s̄(t)) associated with the maximum improvement value Ω(t)

i (s),
and updates the policy of player ī(t) in state s̄(t) with her one-stage best response strategy2.
The policies of all other players and other states remain unchanged.

Remark 2.5.2. Using entropy regularization in (2.18) has several advantages: (i) unlike
Algorithm 1, it avoids projection over simplex which can be costly in large-scale problems;
(ii) it ensures that the optimizer is unique.

Remark 2.5.3. Algorithm 2 is reminiscent of the “Nash-CA” algorithm3 proposed in [391],
which requires each player to sequentially compute the best response policy using an RL al-
gorithm in each iteration, while keeping the strategies of other players fixed. Such sequential
best response algorithms are known to ensure finite improvement in the potential function
value in potential games [306], which ensures convergence. Meanwhile, Algorithm 2 does
not compute the best response strategy in the updates. Instead, it only computes a smoothed
one-step optimal deviation, as per (2.18), for the current state. The policies for the remain-
ing states and other players are unchanged. The analysis of such one-step deviation-based
dynamics is non-trivial and requires new techniques, as highlighted in the next section.

Remark 2.5.4. While Algorithm 1 can be run independently by each player in a decentralized
fashion, Algorithm 2 is centralized as players do not update their policies simultaneously.
Comparing Nash regret in Theorems 2.5.1 and 2.5.2, it is evident that the coordination in
Algorithm 2 ensures better scaling of regret with respect to the number of players.

Theorem 2.5.2. Consider a Markov α-potential game with an α-potential function Φ and
initial state distribution µ such that µ̄ := mins∈S µ(s) > 0. Denote Ā := maxi∈I |Ai| and
C := maxi∈I ∥ui∥∞. Then the policy updates generated from Algorithm 2 with parameter

τ =
1
N

 log(Ā) + log(Ā)√
α+ CΦ

T

√√√√2 log(Ā)
(1− γ)

√
N

T
+

2√µ̄(1− γ) log(Ā)
8C
√
Ā
√
α+ CΦ

T

−1

(2.22)

has the Nash-regret(T ) bounded by

O

√N3/2Ā log(Ā)
(1− γ)5/2√µ̄

max
{(

α+
CΦ

T

) 1
2
,
(
α+

CΦ

T

) 1
4
},

2Any tie-breaking rule can be used here if the maximum improvement is achieved by more than one
tuple.

3Unlike here, the Nash-CA Algorithm in [391] was proposed in the context of finite horizon Markov
potential games.
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Algorithm 2 Sequential Maximum Improvement Algorithm

Input: Smoothness parameter τ , for every i ∈ I, ai ∈ Ai, s ∈ S, set π(0)i (ai|s) = 1/|Ai|.
for t = 0, 1, 2, ...,T − 1 do

Compute the maximum improvement of smoothed Q-function {Ω(t)
i (s)}i∈I,s∈S as in

(2.19).
if Ω(t)

i (s) ⩽ 0 for all i ∈ I and all s ∈ S then
return π(t).

else
Choose the tuple (ī(t), s̄(t)) with the maximum improvement

(ī(t), s̄(t)) ∈ arg max
i∈I,s∈S

Ω(t)
i (s), (2.20)

and update policy

π
(t+1)
ī(t)

(a|s̄(t)) = BR(t)

ī(t)
(a|s̄(t)), ∀a ∈ Aī(t) , (2.21)

π
(t+1)
i (s) = π

(t)
i (s) ∀(i, s) ̸= (ī(t), s̄(t)).

end if
end for

where CΦ > 0 is a constant satisfying |Φ(µ, π)−Φ(µ, π′)| ⩽ CΦ for any π, π′ ∈ Π,µ ∈
∆(S).

In the special case of α = 0, Theorem 2.5.2 provides a Nash-regret bound of Algorithm
2 for the case of MPGs.

To prove Theorem 2.5.2, we first develop a smoothed version of the multi-agent perfor-
mance difference lemma (Lemma 2.5.3). This lemma bounds the difference in the smoothed
value function Ṽi by the changes in policy πi, which is further bounded by the maximum
improvements Ω(t)

i . Lemma 2.5.4 bounds the discrepancy between the value function Vi and
the smoothed value function Ṽi. Lemma 2.5.3 and 2.5.4 together implies that the Nash-
regret of Algorithm 2 is bounded by Ω(t)

i (2.19). Finally, Lemma 2.5.5 establishes Ω(t)
i can

be bounded by policy updates, which in turn, are bounded by α and the difference in the
α-potential function Φ.

Lemma 2.5.3 (Smoothed performance difference). For any i ∈ I, µ ∈ ∆(S), πi, π′
i ∈

Πi, π−i ∈ Π−i,

Ṽi(µ, π)−Ṽi(µ, π′)

=
1

1− γ
∑
s′∈S

dπµ(s
′)
(
(πi(s

′)− π′
i(s

′))⊤ · Q̃π′
i (s

′) + τνi(s
′, π′

i)− τνi(s′, πi)
)

,
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where π = (πi, π−i), and π′ = (π′
i, π−i).

Lemma 2.5.4. For any i ∈ I,µ ∈ ∆(S), πi, π′
i ∈ Πi, π−i ∈ Π−i,∣∣∣∣Vi(µ, πi, π−i)− Vi(µ, π′

i, π−i)− (Ṽi(µ, πi, π−i)− Ṽi(µ, π′
i, π−i))

∣∣∣∣ ⩽ 2τN log(Ā)
1− γ .

Lemma 2.5.5. The following inequalities hold:

(1)

Ω(t)

ī(t)
(s̄(t)) ⩽

4C
√
Ā(1 + τN log(Ā))

1− γ ∥π(t+1)
ī(t)

(s̄(t))− π(t)
ī(t)

(s̄(t))∥2, for any t ∈ [T ].

(2.23)

(2)
T−1∑
t=0
∥π(t+1)

ī(t)
(s̄(t))− π(t)

ī(t)
(s̄(t))∥22

⩽
2
τ µ̄

(
|Φ(µ, π(T ))−Φ(µ, π(0))|+ αT +

2τN log(Ā)
1− γ

)
. (2.24)

Proof of Theorem 2.5.2

First, we bound the instantaneous regret R(t)
i for any arbitrary player i ∈ I at time t ∈ [T ].

Recall that
R
(t)
i = Vi(µ, π†

i , π
(t)
−i )− Vi(µ, π(t)),

where π†
i ∈ arg maxπ′

i∈Πi
Vi(µ, π′

i, π
(t)
−i ). By Lemma 2.5.4,

R
(t)
i ⩽ Ṽi(µ, π†

i , π
(t)
−i )− Ṽi(µ, π(t)) + 2τN log(Ā)

(1− γ) .

Next, note that for any i ∈ I,µ ∈ ∆(S), by Lemma 2.5.3,

Ṽi(µ, π†
i , π

(t)
−i )− Ṽi(µ, π(t)i , π(t)−i )

⩽
1

1− γ
∑
s∈S

d
π†

i ,π(t)−i
µ (s)

(
τ (νi(s, π(t)i )− νi(s, π′

i))

+ max
π′

i

∑
ai∈Ai

((
π′
i(ai|s)− π

(t)
i (ai|s)

)
Q̃

(t)
i (s, ai)

))

(a)
=

1
1− γ

∑
s∈S

d
π†

i ,π(t)−i
µ (s)Ω(t)

i (s)

(b)
⩽

1
1− γ

∑
s∈S

d
π†

i ,π(t)−i
µ (s)Ω(t)

ī(t)
(s̄(t))=

1
1− γ

(
Ω(t)

ī(t)
(s̄(t))

)
,
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where (a) is by (2.19), (b) holds since Ω(t)
i (s) ⩽ Ω(t)

ī(t)
(s̄(t)) for all i ∈ I, s ∈ S. To summarize,

R
(t)
i ⩽

1
1− γ

(
Ω(t)

ī(t)
(s̄(t)) + 2τN log(Ā)

)
.

Then by Lemma 2.5.5 (1),

Nash-regret(T ) ⩽ 1
T (1− γ)

∑
t∈[T ]

(
Ω(t)

ī(t)
(s̄(t)) + 2τN log(Ā)

)

⩽
2τN log(Ā)
(1− γ) +

4C
√
Ā(1 + τN log(Ā))
T (1− γ)2

∑
t∈[T ]

∥∥∥∥π(t+1)
ī(t)

(s̄(t))− π(t)
ī(t)

(s̄(t))
∥∥∥∥

2

⩽
2τN log(Ā)
(1− γ) +

4C
√
Ā(1 + τN log(Ā))√
T (1− γ)2

( ∑
t∈[T ]

∥∥∥∥π(t+1)
ī(t)

(s̄(t))− π(t)
ī(t)

(s̄(t))
∥∥∥∥2

2

) 1
2
, (2.25)

where the last inequality follows from Cauchy-Schwarz inequality. For ease of exposition,
define D1 := 8C

√
Ā√

µ̄(1−γ)2 ,D2 :=
√
α+ CΦ

T , and D3 :=
√

2 log(Ā)
(1−γ) . Then by Lemma 2.5.5 (2),

(2.25)⩽D1(1 + τN log(Ā))√
τ

√
D2

2 +
τN

T
D2

3 + τND2
3

⩽
D1(1 + τN log(Ā))√

τ

D2 +

√
τN

T
D3

+ τND2
3,

where the last inequality follows from the fact that for any two positive scalars x, y,
√
x+ y ⩽√

x+
√
y. Setting τ as per (2.22) ensures that τ <

√
τ as τ ⩽ 1. Thus,

Nash-regret(T ) ⩽ D1D2√
τ

+
D1D3

√
N√

T
+
√
τN

D1D2 log(Ā) +D1D3 log(Ā)
√
N

T
+D2

3

 .

Plugging in the value of τ as per (2.22) we obtain,

Nash-regret(T ) ⩽
√
N

D2
1D

2
2 log(Ā) +D2

1D2D3 log(Ā)
√
N

T
+D1D2D

2
3


1
2

+
D1D3

√
N√

T

⩽ D1D2
√
N
√

log(Ā) +D1
√
D2D3 log(Ā)N

3
4

T
1
4
+
√
D1D2D3

√
N +

D1D3
√
N√

T
.
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Note that D3 ⩾ 1 and additionally, we assume that D1 ⩾ 1 (choose large enough C that
ensures this). Then,

Nash-regret(T )

⩽ D1D2D3
√
N
√

log(Ā) +D1D3
√
D2 log(|Ā|)N

3
4

T
1
4
+
√
D2D1D3

√
N +

D1D3
√
N√

T

⩽ D1D3
√
N log(Ā)

D2 +
√
D2

1 +
(
N

T

) 1
4
+

√
1
T



⩽ D1D3
√

log(Ā)N
3
4O(max{D2,

√
D2}).

The proof is finished by plugging in D1,D2 and D3.

2.6 Numerical Results
This section studies the empirical performance of Algorithms 1 and 2 for Markov congestion
game (MCG) and perturbed Markov team game (PMTG) discussed in Section 2.2. Although
Section 2.5 focuses on model-based algorithms, in our numerical study both Algorithm 1 and
Algorithm 2 are implemented in a model-free manner, where the Q-functions are estimated
from samples [121, 238]. Below are the details for the setup of the experiments.

MCG: Consider MCG with N = 8 players, where there are |E| = 4 facilities A,B,C,D
that each player can select from, i.e., |Ai| = 4. For each facility j, there is an associated state
sj : normal (sj = 0) or congested (sj = 1) state, and the state of the game is s = (sj)j∈E .
The reward for each player being at facility k is equal to wsafe

k times the number of players
at k = A,B,C,D. We set wsafe

A = 1 < wsafe
B = 2 < wsafe

C = 4 < wsafe
D = 6, i.e., facility

D is most preferable by all players. However, if more than N/2 players find themselves in
the same facility, then this facility transits to the congested state, where the reward for each
player is reduced by a large constant c = −100. To return to the normal state, the facility
should contain no more than N/4 players.

PMTG: Consider a game where each player votes for approving or disapproving a
project, which is only conducted if a majority of players vote for approval. The state of
excitement about the project changes between different rounds depending on the number of
players approving it. Mathematically, consider a game with N = 16 players, where there are
two actions per player: approve (ai = 1) or disapprove (ai = 0). There can be two states of
the project: high (s = 1) and low (s = 0) levels of excitement for the project.

The individual reward of player i is given by ui(s, a) = 1∑
i ai⩾N/2 + wi1{ai=s} −w

′
iai,

where the first term represents the common utility derived by everyone if the project is
approved, the second term represents the utility derived by a player in approving a high-
priority project or disapproving a low-priority project, and the third term corresponds to
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the cost of approving the project. Here, we set wi = 10κ · N+1−i
N and w′

i = κ · i+1
N . Here,

parameter κ captures the magnitude of perturbation.
The state transitions from the high excitement state to itself with probability λ1 if more

than N/4 players approve it; otherwise, it transitions to itself with probability λ2. In
contrast, the state transitions from the low excitement state to high with probability λ3 if
there are at least N/2 approvers; if there are N/2 or fewer approvers, it transitions to high
with probability λ4.

For both games, we perform episodic updates with 20 steps and a discount factor γ =
0.99. We estimate the Q-functions and the utility functions using the average of mini-batches
of size 10. For MCG, Figures 2.2a and 2.2b illustrate the average number of players taking
particular action in different states at the converged values of policy. For example, in the
state (0, 0, 0, 1) (denoted by the yellow label in Figure 2.2a and 2.2b), facility D is congested,
while the other facilities remain in a normal state. In this scenario, only N/4 = 2 players
select facility D to restore it to a normal state. Simultaneously, N/2 players choose facility
C, which provides the second-highest reward after D. The number of players at C is within
the congestion threshold (N/2), thus ensuring that it remains in a normal state.

For PMTG, we set λ1 = λ3 = 1, λ2 = λ4 = 0 and κ = 0.1. Figures 2.3a and 2.3b
illustrate the average number of players taking particular action in different states at the
converged values of policy. For example, in the ‘high’ state of excitement about project
(denoted by the red label in Figure 2.3a and 2.3b), almost all players will select to approve
as it will always remain in high state thereon. Meanwhile, if the state of excitement is ‘low’,
then at least half of the players select to approve it so that it transitions to ‘high’ state in
future.

Figures 2.2c and 2.3c depict the L1-accuracy in the policy space at each iteration, defined
as the average distance between the current policy and the final policy of all 8 players, i.e.,
L1-accuracy = 1

N

∑
i∈I ∥πi− π

(T )
i ∥1. Figures 2.2c and 2.3c show that Algorithm 1 converges

faster for PMTG, while Algorithm 2 converges faster for MCG.

Remark 2.6.1. We note that the regret bound proposed in our analysis can be loose. In
Figure 2.4, we compare growth of regret bound obtained in our theoretical results with that
obtained in experiments, where we observe significant gap between the two quantities. This
suggests an interesting direction of future research to develop tighter regret bounds.

2.7 Concluding Remarks
This chapter introduces a new framework called Markov α-potential games to study Markov
games, which generalizes the framework of Markov potential games. We analytically compute
upper bounds on α for Markov congestion games and perturbed Markov team games. We
also present a semi-infinite linear programming approach to compute an upper bound on
α for general discrete-time Markov games. This framework is used to design model-based
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(a) (b) (c)

Figure 2.2: Markov congestion game: (a) and (b) are distributions of players taking four
actions in representative states using π(T ) given by (a) Algorithm 1 with step-size η = 0.01;
(b) Algorithm 2 with regularizer τt = 0.999t · 5. (c) is mean L1-accuracy with shaded region
of one standard deviation over all runs.

(a) (b) (c)

Figure 2.3: Perturbed Markov team game: (a) and (b) are distributions of players taking
actions in all states: (a) using Algorithm 1 with step-size η = 0.05; (b) using Algorithm 2
with regularizer τt = 0.9975t · 0.05. (c) is mean L1-accuracy with shaded region of one
standard deviation over all runs.

MARL algorithms for Markov games in discrete-time setting, along with associated regret
bounds.

The proposed framework opens up new avenues for design and analysis of multi-agent
algorithms in dynamic environments. One such example is discussed in Chapter 3, where we
use this framework to design high-performance algorithms for autonomous multi-car racing
that outperform several existing baselines.
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Figure 2.4: Variation of Nash regret with the discount factor for perturbed Markov team
game with perturbation parameter ζ = 0.1. The red curve plots the function 1/(1− γ)9/4

(as stated in Theorem 6.1) and the blue shaded region show the Nash regret computed
through 10 rounds of experiments with random initialization. Note that the scale on y-axis
is in log.
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Chapter 3

Competitive Algorithm for Real-time
Autonomous Multi-car Racing

In this chapter, we discuss an interesting application of the framework of Markov α−potential
functions, introduced in Chapter 2. In particular, we use that framework to design real-time
algorithms for multi-car autonomous racing.

Autonomous racing is a challenging task in autonomous vehicle development, requiring
efficient planning, reasoning, and action in high-speed, dynamic, and constrained environ-
ments—key for addressing edge cases in broader autonomous driving. Recent advances, such
as deep reinforcement learning (RL), have enabled vehicles to outperform human drivers [433,
209]. However, challenges remain in optimizing strategies against other autonomous agents
and in reducing the extensive training times required for achieving competitive performance.

A key challenge in multi-agent autonomous racing is developing real-time competitive
strategies that consider the presence of other autonomous vehicles while maintaining high
speeds [52]. Algorithms must balance lap-time optimization with aggressive driving, collision
avoidance, and dynamic responses to competitors. While existing research on single-agent
racing focuses on computing race lines based on vehicle dynamics and track constraints [353,
27, 390, 179, 249, 201], these approaches cannot accommodate complexities of multi-agent
settings, where interactions such as blocking and overtaking become crucial. To address
these challenges, multi-agent racing requires strategies that account for the interdependent
behaviors of agents, with frameworks like Nash equilibrium offering a way to anticipate and
adapt to competitors’ actions in a competitive environment.

Computation of Nash equilibrium is generally computationally challenging. Several stud-
ies have investigated its computation in autonomous racing, but many limitations persist.
Many works use kinematic vehicle models [319, 417, 418, 250, 197, 428, 384, 372], which
simplify vehicle dynamics but fail to capture the nonlinear tire forces that are critical for
high-speed racing. Others rely on open-loop control via receding horizon techniques [76,
200, 417, 418, 250, 197, 372, 454, 455], focusing on finite-horizon planning at the expense of
long-term strategies. Additionally, many methods assume two-player zero-sum game [417,
405, 202, 452] or two-team competition [404], which are insufficient for races involving more
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than two agents. Alternative approaches, such as Stackelberg games [319, 250], iterative
linear quadratic games [372], and local Nash equilibrium [454, 455], provide partial local
solutions but do not fully capture the global competitive nature of multi-agent racing.

Towards this end, we propose α-RACER
(α-potential function based Real-time Algorithm for CompetitivE Racing). We study the
following key question:

How to design real-time algorithms for autonomous racing that approximate Nash
equilibrium, while accounting for nonlinear tire forces, long-horizon planning and
accommodating competitive interaction in any number of competing vehicles?

We highlight three main contributions of this work towards answering the question posed
above.

1. Modeling Contribution: We model the multi-agent interaction as an infinite-horizon
discounted dynamic game and introduce a novel policy parametrization to enable competitive
maneuvers. Specifically, we propose MPC-based policies that track a specially designed,
parameterized reference trajectory, while avoiding other vehicles. This trajectory is derived
by adjusting the optimal single-agent race-line to account for the presence of other agents,
enabling competitive racing maneuvers such as overtaking and blocking. Additionally, we
structure each agent’s immediate utility function to increase its relative progress along the
track in comparison to other at each time-step. Moreover, our approach is modular with
respect to the vehicle dynamics model. In this work, we use a nonlinear vehicle dynamics
model that captures nonlinear tire forces, but we can integrate other sophisticated dynamics.
By designing the reference trajectory in this way, we integrate long-term strategic planning
for optimizing lap times with tactical planning for effective competition with other cars.

2. Algorithmic Contribution: We present an algorithmic approach to compute Nash
equilibrium of the dynamic game, which is inspired by the framework of α-potential functions
(developed in Chapter 2). Specifically, we compute an α-potential function that captures
the change in each agent’s (long-term) value function resulting from unilateral deviations in
its policy parameters. The structure of α-potential function allows us to approximate the
Nash equilibrium as an optimizer of this function (refer Proposition 3.2.1). We leverage this
structure to develop a two-phase algorithmic approach to approximate the Nash equilibrium,
consisting of an offline and an online phase. In the offline phase, we learn an α-potential
function using simulated game data. During the online phase, the agent observes the current
state of the game and selects the policy parameters that maximize the potential function in
that state. This approach enables autonomous agents to engage in competitive maneuvers
with reduced computational demands.

3. Numerical Evaluation: We numerically validate the effectiveness of our approach by
applying it to three-car autonomous racing scenarios. Our results show that the approxi-
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mation gap of our learned potential function is small, enabling us to closely approximate
Nash equilibrium strategies. We demonstrate that the maximizer of the potential function
effectively captures competitive racing maneuvers. Furthermore, we show that our method
outperforms opponent policies—obtained using iterated best response, and finite-horizon
self-play reinforcement learning—in most cases.

Additional Related Works.
Several works in the autonomous racing literature use the solution concept of (open-loop)
generalized Nash equilibrium (e.g., [417, 197]) to incorporate hard collision avoidance con-
straints, which introduces added computational complexity. In contrast, our modeling frame-
work incorporates collision avoidance in two ways: (i) through the MPC controller used to
track the reference trajectory, and (ii) by slowing down vehicles when they enter a pre-defined
radius around each other.

Our algorithmic approach also contributes to the growing literature on computational
game theory for multi-robot systems [224, 100, 148, 263, 341, 210, 360, 416] by offering a
new method to compute approximate Nash equilibrium.

A consolidated summary of comparison with previous literature is provided in Table
3.0.1.

Organization. In Section 3.1, we describe our model of multi-car racing as a dynamic
game, including the policy parametrization, utility function, and vehicle dynamics model. In
Section 3.2, we present our algorithmic approach. In Section 3.3, we evaluate the performance
of our approach using a numerical racing simulator. Finally, we conclude with remarks in
Section 3.4.

3.1 Modeling Multi-car Autonomous Racing
In this section, we first present the necessary preliminaries on dynamic game theory, followed
by a novel model of multi-car autonomous racing as an instantiation of a dynamic game.

Preliminaries on Dynamic Game Theory
Consider a game involving N strategic players, with the set of players denoted as I :=
{1, 2, . . . ,N}. The game proceeds in discrete time steps, indexed by t ∈ N. At each time
step t, the state of player i ∈ I is represented as xit ∈ X i, where X i is the set of all possible
states for player i. The joint state of all players at time t is denoted by xt =

(
xit
)
i∈I
∈ X ,

where X := ×i∈IX i. At every time step t, each player i ∈ I selects an action uit ∈ U i,
where U i is the set of feasible actions for player i. The joint action at time t is expressed as
ut =

(
uit
)
i∈I
∈ U , where U := ×i∈IU i.
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Ref. Vehicle Model Game Model # of cars Planning
[76] Dynamic Known Dynamic Obstacle 2 Local
[200] Dynamic Stackelberg Game ⩾ 2 Local
[319] Kinematic Zero-sum (IBR) 2 Local
[417] Kinematic Zero-sum (IBR) Game 2 Local
[418] Kinematic Non-zero sum game ⩾ 2 Local
[250] Kinematic Stackelberg/Nash Game 2 Local
[197] Kinematic Potential Game ⩾ 2 Local
[428] Kinematic IBR ⩾ 2 Local
[384] Kinematic Robust RL / Self play ⩾ 2 Local
[372] Kinematic iLQG ⩾ 2 Local
[405] Dynamic Zero-sum 2 Global
[202] Dynamic Zero-sum 2 Global

[454, 455] Dynamic General-sum ⩾ 2 Local
Ours Dynamic General-sum ⩾ 2 Global

Table 3.0.1: Comparison to previous literature on game theoretic planning for multi-car
autonomous racing.

For each player i ∈ I, given the current state xit and the joint action ut, the state
transitions to a new state at time t+ 1 according to the dynamics xit+1 = f i(xt, uit), where
f i : X ×U i → X i describes the state transition dynamics of player i. Finally, at each time
step t, player i ∈ I receives a reward rit(xt, ut, xt+1), which depends on the current and next
joint state, and joint action of all players. We assume that players select their actions based
on a state feedback strategy, denoted by πi : X → U i, such that uit = πi(xt). The set of
strategies of player i ∈ I is denoted by Πi, and the set of joint strategies by Π = ×i∈IΠi.
In our study, we consider a parameterized set of policies. Specifically, for any player i ∈ I,
the player adopts a policy πi(·; θi) ∈ Πi, where θi ∈ Θi represents the policy parameter. We
consider non-myopic players who aim to maximize their long-term discounted utility starting
from any state x ∈ X . Specifically, each player i ∈ I selects a parameter θi ∈ Θi to optimize
the discounted infinite-horizon objective,

V i(x, θi, θ−i) := E

[ ∞∑
t=0

γtrit(xt, ut, xt+1)

]
,

where γ ∈ [0, 1) is the discount factor, x0 = x, uit = πi(xt; θi), u−i
t = π−i(xt; θ−i)1, and the

state transitions according to xit+1 = f i(xit, uit).

1We use the standard game theory notation of π−i (resp. θ−i) to denote the joint policy (joint policy
parameters) of all players except player i.
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Definition 3.1.1. For every x ∈ X , a joint strategy profile θ∗ ∈ Θ is called a ϵ-Nash
equilibrium if, for every i ∈ I, θi ∈ Θi, V i(x, θ∗,i, θ∗,−i) ⩾ V i(x, θi, θ∗,−i)− ϵ. If ϵ = 0, the
strategy profile θ∗ is referred to simply as a Nash equilibrium.

Multi-car Racing as a Dynamic Game
In this subsection, we formulate the multi-car racing problem as a dynamic game by detailing
the various components of the game.

Set of Players: Each car is modeled as a strategic player in the dynamic game.

Set of States and Actions: For every car i ∈ I, the state xi = (pix, piy,ϕi, vix, viy,ωi),
where (pix, piy) denote the longitudinal and lateral position of car i in the Frenet frame along
the track; ϕi denotes the orientation of the car in the Frenet frame along the track; (vix, viy)
denote the longitudinal and lateral velocities of car i in the Frenet frame; and ωi denotes the
angular velocity of car i in the body frame. Additionally, ui = (di, δi), where δi ∈ [δmin, δmax]
denotes the steering angle of car i and di ∈ [dmin, dmax] is the throttle input of car i.

Dynamics: The most widely used dynamics models in the context of racing are the kine-
matic [197, 319, 420, 418] and dynamic bicycle models [203, 70]. In this work, we use the
dynamic model as it can accurately model the high-speed maneuvers of the car. A detailed
vehicle model description is in Appendix B. On top of the standard dynamic bicycle model,
we also incorporate near-collision behavior in our dynamics. Suppose two cars, i and j,
are within an unsafe distance from each other and pix,t > pjx,t, we reduce their velocities to
replicate the time lost due to collision in an actual race with more penalty for the car behind
than the one ahead. More concretely, we update the dynamics as vix,t+1 = (1/2) · vix,t and
vjx,t+1 = (1/3) · vjx,t. Moreover, if a car goes out of track boundary, i.e., when |piy,t| > wmax/2
(where wmax is the width of track) we penalize it by reducing its speed and re-align the car
along the track. More concretely, we update the dynamics as vix,t+1 = vix,t/2 and ϕit+1 = 0.

Policy Parametrization: In this section, we introduce a novel policy parametrization
(Θi)i∈I designed to capture competitive driving behaviors, such as overtaking, blocking,
apex hugging, late braking, and early acceleration. To achieve this, we restrict the set of
policies to MPC controllers that track a reference trajectory specifically designed to encode
such competitive behaviors in multi-car racing. For each car i ∈ I, the parametrization of
the MPC controller and its reference trajectory is represented by θi, which is characterized
by five variables: (qi, ζi, si1, si2, si3). Before describing these parameters in detail, we present
the MPC controller.

At each time step t, for every car i ∈ I, the MPC controller is determined by solving
an optimization problem (cf. (3.1)) over a planning horizon of K steps, indexed by k. The
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optimization is parameterized by: (a) the longitudinal and lateral positions on the reference
trajectory (to be defined shortly), denoted by (pref,i,k

x|t , pref,i,k
y|t )k∈[K]; (b) the current state of

car i at time t, xit; and (c) the longitudinal and lateral positions of the opponent cars located
just behind and just ahead of car i. We use the notation j∗, j∗ ∈ I to denote the car in front
and the car behind car i at the start of the planning window, based on longitudinal position.
For any opponent vehicle j ∈ {j∗, j∗}, we assume that the lateral velocity is zero during
the planning horizon for the MPC controller, and the longitudinal velocity remains constant
at its value at the start of the planning horizon. That is, for every k ∈ [K], pj,ky|t = pjy,t,
and pj,k+1

x|t = pj,kx|t + ∆t · vjx,t. With this setup, we can now describe the MPC optimization
problem:

min
(xi,k

t )K
k=1,(ui,k

t )K−1
k=0

K∑
k=1

∥∥∥∥∥∥
pi,kx|t − p

ref,i,k
x|t

pi,ky|t − p
ref,i,k
y|t

∥∥∥∥∥∥
2

Q

+
K−1∑
k=1

∥∥∥∥∥
(
di,kt − d

i,k−1
t

δi,kt − δ
i,k−1
t

)∥∥∥∥∥
2

R
(3.1a)

s.t. xi,k+1
t = f i(xkt , ui,kt ), ∀k = 0, 1, ...,K − 1, (3.1b)

xi,0t = xit, (3.1c)
∆δimin ⩽ δi,kt − δ

i,k−1
t ⩽ ∆δimax, ∀k = 0, 1, ...,K − 1, (3.1d)

dimin ⩽ di,kt ⩽ dimax, ∀k = 0, 1, ...,K − 1, (3.1e)
|pi,ky,t| ⩽ wmax/2, ∀k = 1, ...,K, (3.1f)
|pi,ky|t − p

j,k
y|t | ⩾ pmin

y , ∀k = 1, ...,K,∀j ̸= i, (3.1g)

|pi,kx|t − p
j,k
x|t | ⩾ pmin

x , ∀k = 1, ...,K,∀j ̸= i, (3.1h)

where xi,kt = (pi,kx|t, p
i,k
y|t,ϕ

i,k
t , vi,kx|t, v

i,k
y|t,ω

i,k
t ) is the state of car i in the Frenet frame at the kth

step in the planning horizon; ui,kt = (di,kt , δi,kt ) is the control input of car i at the kth step in
the planning horizon; wmax is the track length, and pmin

x and pmin
y are the minimum required

separation between two cars in the longitudinal and lateral directions, respectively; dimin and
dimax are the throttle limits, and ∆δimin and ∆δimax are the steering rate limits; and Q and R
are positive definite matrices. Following the MPC approach, the control input at time t is
then ui,0t .

In (3.1), (3.1a) defines the MPC objective, where the first term penalizes the tracking
error relative to the reference trajectory, and the second term penalizes variations in the
control input. (3.1b) represents the system dynamics constraint, while (3.1c) ensures the
planning horizon begins at the car’s current state. (3.1d) and (3.1e) enforce constraints on
the control inputs, including throttle limits and steering rate bounds. (3.1f) ensures the car
stays within the track boundaries, and (3.1g) and (3.1h) enforce the minimum separation
between vehicles in the lateral and longitudinal directions, respectively. Next, we describe
the policy parameter θi = (qi, ζi, si1, si2, si3) ∈ R5, which parametrizes the policy.
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(i) Parameter qi: In (3.1a), we take R = I and Q = qi · I, where I is the identity
matrix. A higher qi value results in a more aggressive controller that closely follows the
racing line, but it can introduce oscillations that may increase lap time. In contrast, a lower
qi value allows for smoother merging with reduced oscillations, though it may result in larger
lateral errors, increased time loss at corners, and a higher risk of track boundary violations.

(ii) Parameter ζi: We use this parameter to develop a perturbed version of the optimal
(single-agent) race-line (see Appendix B for a discussion on race-line), which is generated by
sampling points along the optimal racing line at time intervals of ∆t. More formally, let the
optimal race-line be denoted by xrl,i. Given the current state xit, we find the closest point
on the race-line and consider a race-line starting at time t, denoted by x̄rl,i

t . Using this, we
compute a trajectory of length K, denoted by (ppert,i,k

x|t , ppert,i,k
y|t )k∈[K]. Specifically, for every

k ∈ [K], we construct:

ppert,i,k
x|t = ppert,i,k−1

x|t + vpert,i,k−1
x|t · ∆t, ppert,i,k

y|t = ppert,i,k−1
y|t + vpert,i,k−1

y|t · ∆t,

where
vpert,i,k−1
x|t = ζiv̄rl,i

x,t+k−1, and vpert,i,k−1
y,t = ζiv̄rl,i

y,t+k−1

are the perturbed race-line velocities. Higher values of ζi capture how aggressively the vehicle
wants to follow the optimal race-line.

(iii) Parameters s1, s2, s3: The reference trajectory, (pref,i,k
x|t , pref,i,k

y|t ), is generated by
modifying the perturbed race-line (ppert,i,k

x|t , ppert,i,k
y|t )k∈[K] by accounting for the positions and

velocities of the cars immediately ahead (in terms of longitudinal coordinates) of the ego car
and immediately behind (in terms of longitudinal coordinates) ego car. Let’s denote the ego
car by i, the car immediately ahead of this car by j∗, and the one immediately behind by
j∗. We define the reference trajectory as follows

pref,i,k
y|t = clip(ppert,i,k

y|t + pot,i,k
y|t + pbl,i,k

y|t , [−wmax,wmax]),

where

pot,i,k
y|t = sign(piy,t − p

j∗

y,t)max
{
(s1 − |(piy,t − p

j∗

y,t)|) exp
(
−s2

(
∆pi,j

∗,k
x|t

)2)
, 0
}

+ sign(piy,t − p
j∗
y,t)max

{
(s1 − |(piy,t − p

j∗
y,t)|) exp

(
−s2

(
∆pi,j∗,k

x|t

)2)
, 0
}

,

is an adjustment for overtaking that smoothly changes the trajectory of the ego vehicle
opposite the leading vehicle to overtake. Here, for any j ∈ {j∗, j∗}, ∆pi,j,kx|t = ppert,i,k

x|t − pj,kx|t ,
and

p̄bl,i,k
y|t = 1(vpert,i,k

x|t ⩽ vj∗x,t)1(p
pert,i,k
x|t ⩾ pj∗,k

x|t )h(p
j∗,k
y|t , ppert,i,k

x|t , vpert,i,k
x|t , vj∗x,t, ∆pi,j∗,k

x|t )

+ 1(vpert,i,k
x|t ⩽ vj

∗

x,t)1(p
pert,i,k
x|t ⩾ pj

∗,k
x|t )h(pj

∗,k
y|t , ppert,i,k

x|t , vpert,i,k
x|t , vj

∗

x,t, ∆pi,j
∗,k

x|t )



CHAPTER 3. COMPETITIVE ALGORITHM FOR REAL-TIME AUTONOMOUS
MULTI-CAR RACING 42

is the adjustment for blocking that smoothly changes the trajectory of the ego vehicle towards
trailing vehicle to block it. Here, for any j ∈ {j∗, j∗},

h(pj,ky|t , p
pert,i,k
x|t , vpert,i,k

x|t , vjx,t, ∆pi,j,kx|t )

= (pj,ky|t − p
pert,i,k
y|t )(1− exp(−s3(v

pert,i,k
x|t − vjx,t))) exp(−s2(∆p

i,j,k
x|t )2).

One-step Utility Function: We consider that the one-step utility for every car is to
maximize progress along track:

R ∋ ri(xt, ut, xt+1) = (pix,t+1 −max
j ̸=i

pjx,t+1)− (pix,t −max
j ̸=i

pjx,t).

3.2 Approximating multi-agent interactions
In this section, we provide a tractable approach to compute an approximate Nash equilibrium
for the racing game described in Section 3.1. Core to our approach is the framework of α-
potential functions, recently introduced in [171, 276, 170].

α-Potential Function
Definition 3.2.1. A potential function Φ : X ×Θ → R is called a dynamic α-potential
function2 with approximation parameter α if for every x ∈ X , i ∈ I, θ ∈ Θ, θi′ ∈ Θi,

|(Φ(x, θi, θ−i)−Φ(x, θi′, θ−i))− (V i(x, θi, θ−i)− V i(x, θi′, θ−i))| ⩽ α. (3.2)

This definition intuitively requires that for any agent, the change in its value function
resulting from a unilateral adjustment to its policy parameter can be closely approximated
by the corresponding change in the dynamic α-potential function. This property allows us
to approximate the Nash equilibrium as an optimizer of the near-potential function.

Proposition 3.2.1. Given an α-potential function Φ, for any x ∈ X , λ > 0, and any policy
θ∗ satisfying Φ(x, θ∗) ⩾ maxθ∈Θ Φ(x, θ)−λ, the policy θ∗ constitutes a (λ+α)-approximate
Nash equilibrium.

Proof. Consider a policy parameter θ∗ such that Φ(x, θ∗) ⩾ maxθ∈Θ Φ(x, θ)− λ. For any
θi ∈ Θi,

V i(x, θ∗,i, θ∗,−i)− V i(x, θi, θ∗,−i) ⩾ Φ(x, θ∗,i, θ∗,−i)−Φ(x, θi, θ∗,−i)− α
⩾ −λ− α,

where first inequality is due to (3.2) and the second inequality is because θ∗ maximizes Φ.
The proof follows using the definition of Nash equilibrium (Definition 3.1.1).

2For convenience, we adopt a slightly different definition of the α-potential function than that in [171,
276]; however, the results of this work extend to the definitions used there.
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Computational Approach
Our approach for real-time approximation of Nash equilibrium relies on two phases: offline
and online. In the offline phase, we learn an α-potential function using simulated game data.
In the online phase, the ego vehicle updates its policy parameters by optimizing the potential
function.

Offline Phase: We parameterize the potential function through using a feed-forward neu-
ral network with ReLU activation and a BatchNorm layer added at the beginning. More
concretely, we define the parametrized potential function as Φ(·;ϕ) : X ×A → R, where
ϕ denotes the weights of neural network. Using Definition 3.2.1, we cast the problem of
learning potential function as a semi-infinite program as shown below:

min
y,ϕ

y (3.3)

s.t.
∣∣∣∣(Φ(x, θi, θ−i;ϕ)−Φ(x, θi′, θ−i;ϕ))− (V i(x, θi, θ−i; υ)− V i(x, θi′, θ−i; υ))

∣∣∣∣ ⩽ y,

∀i ∈ I, ∀θi, θi′ ∈ Θi, ∀θ−i ∈ Θ−i, x ∈ X ,

where we use a neural network (same architecture as potential function), with parameters
υ, to estimate the value function V i for every i ∈ I. Let (y∗,ϕ∗) be a solution of the
above optimization problem. The main challenge with solving (3.3) is that the there are
un-countably many constraints, one constraint corresponding to each value of initial state
and policy parameter. Therefore, we numerically solve (3.3) by using simulated game data
with randomly chosen starting position and policy parameters. Details of simulated game
are discussed in next section.

Online Phase: Leveraging Proposition 3.2.1, the ego vehicle optimizes the learned poten-
tial function, i.e. Φ(·,ϕ∗), to approximate the Nash equilibrium policy parameter. More
formally, given the current state xt, the ego vehicle computes θ∗ ∈ arg maxθ∈Θ Φ(xt, θ;ϕ∗),
using a non-linear optimization solver. Using θ∗, the ego vehicle takes action uit = πi(xt; θ∗,i).

3.3 Numerical Evaluation
Here, we evaluate our approach on a numerical simulator by focusing on three questions:

(Q1) Can our approach closely approximate Nash equilibrium and generate competitive
behavior?

(Q2) How do hyper-parameters like the discount factor γ and the amount of data used to
learn the α-potential function affect the performance?

(Q3) How does our approach compare against common baselines?
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Figure 3.1: Histogram of (a) Relative approximation gap of potential function (b) Nash
regret

Experimental Setup: We generate a dataset of 4000 races, each lasting 50 seconds, con-
ducted with randomly chosen policy parameters and involving 3 cars. This dataset is used
to first train value function estimators V 1, V 2, and V 3 for each of the cars. These are then
used to learn Φ using (3.3). To maximize the learned potential function, we use gradient
ascent with a learning rate of 10−4 and warm-start by using the solution from the previous
time step.

Competitive Behavior by Approximating Nash Equilibrium
We observe that the approximation gap of the learned potential function is small. As shown
in Figure 3.1(a), the approximation gap across all states and policy parameters used in
the training samples remains within 10% of the value function’s range, with a median
gap of approximately 2%. Next, we demonstrate that the optimization solver effectively
computes the maximizer of the potential function, leading to a lower Nash approximation
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Figure 3.2: Potential values and the trajectories at a given joint state for different (a) q (b)
ζ (c) s1 (d) s2 (e) s3 of only the ego agent. We only denote 2 players here (only 1 player
for (a) and (b)) and the 3rd player is far away from this position to not affect any players.
Additionally, for ease of readability, we only show the impact of variation in trajectory of
other player in response to ego in (e) as such deviations are not significant in (c) and (d).

error. In particular, Figure 3.1(b) shows the Nash regret for the ego agent, defined as
maxθi V i(x, θi, θ∗,−i)− V i(x, θ∗,i, θ∗,−i), where θ∗ is the optimizer of the potential function
with the starting state x. The regret is plotted for different game states during a race,
and we observe that it remains within 3% of the range of the value function. In summary,
Figure 3.1 highlights that the dynamic game admits an α-potential function with small α,
and that we accurately compute a near-optimal solution to the potential function.

Next, in Figure 3.2, we show that, by fixing all policy parameters but one, the parameter
that (approx.) maximizes potential function generates a trajectory that maximizes progress
along the track over the next 5 seconds. This is highlighted by yellow diamond in Figure
3.2.
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Performance Comparison
To address questions Q2 and Q3, we conduct 99 races involving three agents: ego, O1,
and O2. Here, ego represents the agent using our proposed algorithm, while O1 and O2 are
opponents employing other algorithms. In this study, we vary the opponents’ algorithms
and compute the winning fraction for the ego car. A visualization of the track used in the
study, along with the computed optimal race-line, is provided in the Appendix B (cf. Figure
B.1). The starting positions for the races are taken from three regions (denoted by R1, R2,
and R3), such that R1 is the furthest ahead on the track, followed by R2, and then R3, as
shown in Figure B.1. We perform 33 races, each with the ego agent starting in R1, R2, or
R3. Also, O1 is always placed ahead of O2.

For the ego, we use a discount factor γ = 0.99 and a training dataset comprising 4000
races. Below, we summarize five different opponent strategies for O1 and O2:
(i) Case I: Opponents trained with a lower discount factor than ego (i.e., γ = 0.98);
(ii) Case II: Opponents trained with a higher discount factor than ego (i.e., γ = 0.995);
(iii) Case III: Opponents trained using fewer simulated races than ego (i.e., 400 races);
(iv) Case IV: Opponents use the Iterated Best Response (IBR) algorithm 3, which computes
the best response of opponents in round-robin for a fixed number of rounds (i.e., 6), with a
planning horizon4 of length 2s;
(v) Case V: Opponents trained using self-play RL5. We use a similar observation and reward
as used in [405] and train with 2M steps.
The number of races won for all cases are provided in Table 3.3.1, where we see that ego agent
trained using our approach has superior performance in comparison to all other opponent
strategies.

Performance Variation with Hyperparameters (Cases I–III). The ego car outper-
forms opponents with lower discount factors (Case I) because lower discount factors lead to
more myopic behavior, causing opponents to prioritize short-term progress over long-term
track performance. Similarly, the ego car also outperforms opponents with higher discount
factors (Case II) as higher discount factors increase the ”effective horizon” of the game,
which requires significantly more data to accurately approximate the value and potential
functions. Furthermore, the ego car has superior performance against opponents trained
with less data of only 400 races (Case III), as more data enables the learning of a more
accurate α-potential function.

Comparison with opponents using IBR (Case IV). Our approach surpasses IBR for
two key reasons. First, IBR may not always converge to a Nash equilibrium. Second, IBR’s
real-time computation is often restricted to local planning with a short 2s horizon, as noted

3The IBR algorithm used here is representative of the methods developed in [396, 421], though it may
not be an exact implementation, as the original code is not publicly available.

4Choice of hyperparameters is such that it roughly takes the same compute time as our approach.
5Here, self-play RL represents the approach in [405], excluding the high-level tactical planner.
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Racing Scenario # wins (ours) # wins (O1) # wins (O2)
Case I (Opponents with low γ) 61 28 10
Case II (Opponents with high γ) 52 40 7
Case III (Opponents trained with less data) 76 16 7
Case IV (Opponents using IBR) 73 22 4
Case V (Opponents trained using self-play RL) 91 7 1

Table 3.3.1: Outcomes of 99 races conducted between 3 cars under three different initial
positions

Figure 3.3: Example overtake in a race MPC vs IBR. Opponent (IBR) overtakes from t4 to
t5 but later suffers at the turn from t5 to t9 when the Ego agent (Ours) overtakes back to
re-claim it’s position

in [396, 417]. In contrast, competitive racing demands prioritizing a global racing line to
optimize long-term performance, with strategic deviations for overtaking or blocking rather
than short-term gains. This distinction is highlighted in Figure 3.3, where the IBR player
achieves higher straight-line speeds to overtake but struggles in turns due to aggressive
braking. While our implementation is not a direct comparison with [396], our approach
supports longer-horizon planning for real-time control by leveraging offline potential function
learning. This is achieved by constraining the policy space to primitive behaviors, closely
aligning with practical racing strategies.

Comparison with opponents using self-play RL (Case V). Our approach also out-
performs opponents trained via self-play RL. While we do not claim an optimized imple-
mentation of self-play RL—acknowledging potential improvements through further training,
hyperparameter tuning, or tactical enhancements as in [405]—our method offers clear ad-
vantages. It delivers interpretable solutions grounded in realistic racing strategies and ap-
proximation guarantees to a Nash equilibrium in races with more than 2 cars. In contrast,
self-play RL often requires additional insights to develop effective policies. For example,
[405] showed that augmenting self-play RL with high-level tactical plans significantly en-
hances policy learning.
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3.4 Concluding Remarks
In this chapter, we study real-time algorithms for competitive multi-car autonomous rac-
ing. Our approach is built on two key contributions: first, a novel policy parametrization
and utility function that effectively capture competitive racing behavior; second, the use of
dynamic α-potential functions to develop real-time algorithms that approximate Nash equi-
librium strategies. This framework enables the learning of equilibrium strategies over long
horizons at different game states through the maximization of a potential function.
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Chapter 4

Decentralized Learning in Markov
Potential Games

As highlighted through Chapters 2-3, Markov games are a useful framework for modeling the
strategic interactions among multiple self-interested players in a dynamic environment. This
framework has been adopted to study many important applications that include autonomous
driving [380], adaptive traffic control [344, 38], e-commerce [221], and AI training in real-
time strategy games [414, 68]. In a lot of these applications, players get to interact with one
another over long periods of time. Typically, these players interact in an independent and
decentralized manner, adapting to the information received through interactions in uncertain
and dynamic environments. Coordination and communication may be absent, and players
might not even be aware of the existence of others. In such an environment, a natural
approach for each agent is to adopt a single-agent reinforcement learning algorithm, which
uses only the information from the observed state, each player’s individual action, and bandit
feedback about their own payoff in each stage. Such learning dynamics are fully decentralized
and independent, meaning that each agent updates their own policy as if they are the sole
decision-maker in the environment even though they are playing a Markov game.

A canonical example of such decentralized interactions arises in ride-hailing platforms,
where drivers must decide where to position themselves, when to go online, and which
requests to accept, all while lacking coordination or knowledge of other drivers’ strategies.
Each driver learns independently based on their own experience—such as location, travel
time, and earnings—resulting in emergent behavior that can be modeled as a Markov game
with decentralized learning dynamics.

Another example appears in electricity markets with distributed energy resources such as
prosumers or energy storage operators, where each agent decides when to consume, store, or
sell energy based on local information like price signals, battery levels, and weather forecasts.
These decisions impact and are influenced by grid-wide conditions, yet coordination among
agents is typically absent. Each agent may apply reinforcement learning to maximize their
long-term return, treating the environment as stationary while in fact it is shaped by all
agents’ actions—again, naturally modeled as a Markov game.
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Motivated by this requirement, we study the following important question in this Chapter
and the next (i.e. Chapter 5):

What is the long run outcome of interactions among players who update their
strategies in an independent and decentralized manner using RL algorithms?

In this chapter, we study the above question in the context of Markov Potential Games
(MPGs) ([238, 450, 391, 284, 121, 144, 449, 286, 410]). Recall from Chapter 2, in MPGs the
change of utility of any player from unilaterally deviating their policy can be evaluated by
the change of the potential function. MPGs can be used to study Markov team games (also
known as common interest games) [17], some variant of congestion games [144], and dynamic
demand-response in energy marketplaces [313]. Previous studies of MPGs have mainly fo-
cused on analyzing convergence properties of gradient-based algorithms in both discounted
infinite horizon settings [450, 238, 121, 144] and finite horizon episodic settings [284, 391].
However, the evaluation of gradient (or its estimate) of any player’s value function requires
players to either have access to a simulator/oracle of the value function or to coordinate
and communicate their strategies and payoffs with each other [238, 144, 117, 121]. Such
communication and coordination may be restricted in many real-world multi-agent systems
due to communication constraints or privacy concerns [221, 320, 239].

We focus on the learning dynamics, where each agent independently and decentralizely
adopts an actor-critic algorithm [214] with asynchronous step sizes. In our setting, players do
not know the existence of other players participating in the game, and do not have knowledge
of state transition probabilities, their own payoff functions or the opponents’ payoff functions.
Additionally, players do not have access to any information about the potential function or
its existence. Each player only observes the realized state, and their own realized payoff in
each stage. In particular, the multi-agent actor-critic learning dynamics considered in this
chapter has the following key features:

(i) The dynamics have two timescales: each player updates the q-estimate of their contin-
gent payoff (represented as the Q-function defined in Sec. 4.1) at a faster timescale,
and update their policies at a slower timescale.

(ii) Players are self-interested in that their updated policy incorporates an optimal one-
stage deviation that maximizes the expected contingent payoff derived from the current
q-estimate.

(iii) Learning is asynchronous and heterogeneous among players. In every stage, only the
q-estimate of the realized state-action pair, and the policy corresponding to the realized
state are updated. The remaining elements in q-estimate and policy remain unchanged.
Furthermore, the stepsizes of updating the element correspond to each state and action
are heterogeneous across players, and are asynchronously adjusted according to the
number of times a state and that player’s action are realized.
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(iv) In each stage, players generate their actions by combining their updated policy with
a uniform randomization (exploration) of all of their actions in order to learn the Q-
function across all states. The exploration probability can be heterogeneous across
players.

Independent and decentralized learning algorithms often do not converge [403, 289, 291].
We develop a new approach to characterize the convergent set our learning dynamics. Our
approach involves non-trivial extensions of the analysis of single-agent reinforcement learn-
ing to MPG, and developing game-theoretic tools to utilize the equilibrium condition of the
underlying Markov game. Specifically, we study the asymptotic behavior of discrete-time
dynamics using an associated continuous-time dynamical system by exploiting the timescale
separation between the updates of q-estimate and policy [60, 408, 337]. In this dynamical
system, the fast dynamics – update of the q-estimates – can be analyzed while viewing the
policy updates (the slow dynamics) as static, and thus the q-estimate of each player con-
verges to their Q-function (Lemma 4.2.1). Importantly, we show that, for every ϵ > 0, the
potential function always increases along the trajectory of the continuous-time dynamical
system outside a set of ϵ-stationary Nash equilibrium, given that the total exploration prob-
ability of all players is bounded by Lϵ, where L > 0 is a game dependent parameter (Lemma
4.2.2). This key lemma allows us to characterize the convergent set of policies. Particularly,
we show that the trajectories converge to the smallest super-level set of potential function
that contains the ϵ-Nash equilibrium set (Theorem 4.2.1). Furthermore, under additional as-
sumption on the potential function and Nash equilibrium set, we establish convergence to the
set of ϵ-stationary Nash equilibrium (Corollary 4.2.1). Finally, we validate the performance
of our algorithm on a numerical example.

Additional Related Works
Apart from learning in MPGs, another line of work in multi-agent reinforcement learning
focuses on the fully competitive setting of Markov zero-sum games [117, 368, 367, 8, 168, 339].
Most articles in this line of works require players to either observe the opponents’ rewards or
actions [8, 368, 369], or to coordinate in policy updates [117, 168]. The paper [367] proposed
an independent and decentralized learning dynamics, and showed its convergence in Markov
zero-sum games. The algorithm in [367] also has timescale separation between policy update
and value update, but is in reversed ordering compared to ours. That is, their dynamics
update value function at a slower timescale, and update policies at a faster timescale, while
our policy update is slower compared to the q-estimate update. Another difference is that
our learning dynamics adopts a different stepsize adjustment procedure that allows players
to update their step-sizes based on their own counters of states and actions heterogeneously.
We emphasize that the convergence analysis in this chapter is different from that in [367]
due to the differences in the two learning algorithms and the inherent difference between
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Markov zero-sum games and Markov potential games.1
Two-timescale based algorithms have also been studied in other non-zero sum games [58,

338, 345, 17, 239]. Specifically, [239] studied the two-timescale based algorithm for static
games. The paper [58] proposed an actor-critic algorithm, and showed that certain weighted
empirical distribution of realized actions converges to a generalized Nash equilibrium. In
[17], the authors presented an algorithm in the setting of acyclic Markov games, which sub-
sume Markov team games. However, the proposed algorithm require coordination amongst
players. The paper [345, 338] proposed actor-critic algorithms with a fast value function
update – based on temporal difference learning – and a slow policy update. In [345], the
gradient-based policy update requires the knowledge of opponents’ rewards. The paper [338]
adopted a best-response based policy update that is similar to our learning dynamics, and
proved its convergence in multistage games, which are a class of generalized normal form
games with tree structures. Our algorithm is different from the one in [338]. First, we con-
sider a uniform exploration policy which is different from [338] where the authors consider
perturbed or smoothed best response (similar to [239]). Second, we consider updates with
asynchronous step sizes that are adjusted based on counters of each state and each state-
action pair while [338] considers homogeneous step sizes. The proof technique developed in
[338] exploits the special tree structure of multistage games, they cannot be applied in our
setting. Additionally, [440] proposes a two-loop algorithm where the policies are updated
in the outer-loop and the value functions are updated in the inner-loop. Between any two
updates of outer-loop, the algorithm makes multiple rounds of update of the inner-loop. The
role of two loop algorithms here is to ensure stationarity in the learning environment by fixing
the policy updates while learning the value function. This algorithm requires coordination
among agents to decide the length of the inner loop.

Finally, our results also advance the rich literature of learning in stateless potential game
that includes continuous and discrete time best response dynamics [306, 401], fictitious play
[305, 183, 287], replicator dynamics [328, 184], no-regret learning [178, 218], and payoff-based
learning [105, 239]. In particular, our learning dynamics share similar spirit with the payoff-
based learning dynamics in stateless potential games [105, 239]. In payoff-based learning,
players update their payoff estimates based only on their own payoffs and adjust their mixed
strategy using a best response. In MPGs, the payoff estimates of different state-action pairs
are updated asynchronously, and the best response becomes an optimal one-stage deviation
policy. Therefore, our result is not a direct extension of stateless potential games as it
involves using reinforcement learning tools to study long-run behavior.

Outline

Section 4.1 presents Markov potential games. We present our independent and decentralized
learning dynamics, and the convergence results in Section 4.2, validate the performance of

1Our convergence proof builds on the existence of potential function and the convergence of fast q-
learning. On the other hand, the proof of convergence in zero-sum Markov games depends on the Shapley
iteration convergence.
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algorithm numerically in Section 4.3, and conclude our work in Section 4.4. We include the
proofs of technical lemmas in the appendix.

4.1 Model
In this chapter, we consider the same setup of Markov game as in Section 2.1. We review
the setup again here for completeness.

We define the Markov game by tuple G = ⟨I,S, (Ai)i∈I , (ui)i∈I ,P , γ⟩, where I is a finite
set of players; S is a finite set of states; Ai is a finite set of actions with generic member
ai for each player i ∈ I, and a = (ai)i∈I ∈ A = ×i∈IAi is the action profile of all players;
ui(s, a) : S ×A→ R is the one-stage payoff of player i with state s ∈ S, and action profile
a ∈ A; We define umax = maxi,s,a |ui(s, a)|; P = (P (s′|s, a))s,s′∈S,a∈A is the state transition
matrix and P (s′|s, a) is the probability that state changes from s to s′ with action profile a;
and γ ∈ (0, 1) is the discount factor.

We denote a stationary Markov policy πi = (πi(s, ai))s∈S,ai∈Ai
∈ Πi = ∆(Ai)|S|, where

πi(s, ai) is the probability that player i chooses action ai given state s. For each i ∈ I
and each s ∈ S, we denote πi(s) = (πi(s, ai))ai∈Ai

. The joint policy profile is denoted as
π = (πi)i∈I ∈ Π = ×i∈IΠi. We also use the notation π−i = (πj)j∈I\{i} ∈ Π−i = ×j∈I\{i}Πj

to refer to the joint policy of all players except for player i. For concise presentation, we will
use the following notation throughout the chapter:

ui(s, ai, π−i) =
∑
a−i

π−i(s, a−i)ui(s, ai, a−i),

P (s′|s, ai, π−i) =
∑
a−i

π−i(s, a−i)P (s
′|s, ai, a−i),

and
P (s′|s, π) =

∑
ai

∑
a−i

πi(s, ai)π−i(s, a−i)P (s
′|s, ai, a−i).

The game proceeds in discrete-time stages indexed by k = {0, 1, ...}. At k = 0, the
initial state s0 is sampled from a distribution µ. At every time step k, given the state sk,
each player’s action aki ∈ Ai is sampled from the policy πi(sk), and the joint action profile is
ak = (aki )i∈I . The state transitions to sk+1 ∼ P (·|sk, ak) based on the current state sk and
action profile ak. Given an initial state distribution µ, and a stationary policy profile π, the
expected total discounted payoff of each player i ∈ I is given by:

Vi(µ, π) = E

 ∞∑
k=0

γkui(s
k, ak)

 , (4.1)

where s0 ∼ µ, ak ∼ π(sk), and sk ∼ P (·|sk−1, ak−1). For the rest of the chapter, with slight
abuse of notation, we use Vi(s, π) to denote the expected total utility of player i when the
initial state is a fixed state s ∈ S. Thus, we have Vi(µ, π) = ∑

s∈S µ(s)Vi(s, π).
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Definition 4.1.1 (Markov potential games (cf. Definition 2.3.1)). A Markov game G is
a Markov potential game (MPG) if there exists a state-dependent potential function Φ :
S ×Π→ R such that for every s ∈ S, i ∈ I, πi, π′

i ∈ Πi, π−i ∈ Π−i,

Φ(s, π′
i, π−i)−Φ(s, πi, π−i) = Vi(s, π′

i, π−i)− Vi(s, πi, π−i).

Moreover, given an initial state distribution µ ∈ ∆(S), the potential function Φ(µ, π) :=∑
s∈S µ(s)Φ(s, π) satisfies

Φ(µ, π′
i, π−i)−Φ(µ, πi, π−i) = Vi(µ, π′

i, π−i)− Vi(µ, πi, π−i),

for every i ∈ I, πi, π′
i ∈ Πi, π−i ∈ Π−i.

That is, in a MPG, the change of a single deviator’s value function can be characterized
by the change of the value of the potential function.

We next present the definition of stationary Nash equilibrium, and ϵ-stationary Nash
equilibrium.

Definition 4.1.2 (Stationary Nash equilibrium policy). A policy profile π∗ is a stationary
Nash equilibrium of G if for any i ∈ I, any πi ∈ Πi, and any µ ∈ ∆(S), Vi(µ, π∗

i , π∗
−i) ⩾

Vi(µ, πi, π∗
−i).

Definition 4.1.3 (ϵ-Stationary Nash equilibrium policy). For any ϵ ⩾ 0, a policy profile π∗

is an ϵ-stationary Nash equilibrium of G if for any i ∈ I, any πi ∈ Πi, and any µ ∈ ∆(S),
Vi(µ, π∗

i , π∗
−i) ⩾ Vi(µ, πi, π∗

−i)− ϵ. For any ϵ ⩾ 0, we define the set of all ϵ-stationary Nash
equilibrium as NE(ϵ). Any ϵ-stationary Nash equilibrium with ϵ = 0 is a Nash equilibrium.

Both stationary Nash equilibrium and ϵ-stationary Nash equilibrium exist in Markov
games with finite states and actions [150]. In a MPG, if there exists a policy π∗ such that
π∗ = arg maxπ∈Π Φ(s, π) for every s ∈ S, then π∗ is a stationary Nash equilibrium policy of
the MPG. However, computing the Nash equilibrium as the maximizer of Φ(s, ·) is impossible
in our setting since the players do not have the knowledge of the potential function Φ(s, ·)
or the oracle access to its value. Moreover, even in settings where the potential function is
known, e.g. common interest games, computing its maximizer is challenging due to the fact
that Φ(s, π) is non-linear and non-concave in π.

4.2 Independent and Decentralized Learning
Dynamics

In this section, we present the learning dynamics and characterize its long-run behavior.
First, we highlight the information available to every player in the learning process.
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Discussion on available information to players. We assume that each player i ∈ I
knows their own action set Ai and the state set S. Players do not know the state transition
probability matrix P , their own or others’ payoff functions (ui)i∈I , and they do not know
the initial state distribution µ ∈ ∆(S). Players do not know the existence of other players or
the underlying potential function of the game. In each stage k = 0, 1, 2, . . . of the learning
algorithm, players observe the realized state sk that they use to compute the action ak and in
turn obtain the reward rki = ui(sk, ak). We want to emphasize that the players only receive
the bandit feedback of reward function, i.e. in any stage they do not receive the reward
corresponding to the action they did not choose. Additionally, players do not observe the
actions or the rewards of their opponents. Moreover, players do not know the parameters
used by other players in the learning dynamics (to be presented shortly).

Given any policy π ∈ Π, and any initial state s ∈ S, we define the following Q-function
for each player i ∈ I and action ai ∈ Ai:

Qi(s, ai; π) = ui(s, ai, π−i) + δ
∑
s′∈S

P (s′|s, ai, π−i)Vi(s
′, π). (4.2)

In (4.2), player i’s expected utility in the first stage with state s is derived from playing
action ai and her opponents choosing policy π−i. The expected total utility starting from
stage 2 is derived from all players following policy π. Therefore, the Q-function Qi(s, ai; π)
represents player i’s expected discounted utility when the game starts in state s, and player i
deviates for one-stage (namely, the first stage) from her policy to play ai. With slight abuse
of notation, we define Qi(s; π) = (Qi(s, ai; π))ai∈Ai

∈ R|Ai| for every i ∈ I, s ∈ S, π ∈ Π.
Furthermore, we define optimal one-stage deviation from policy π ∈ Π in state s ∈ S as

bri(s; π) = arg max
π̂i∈∆(Ai)

π̂⊤
i Qi(s; π). (4.3)

One can obtain equivalent characterization of Nash equilibrium in terms of optimal one-stage
deviation. Specifically, a policy is a Nash equilibrium if and only if it is fixed point of optimal
one-stage deviation (Lemma C.3.2).

Learning Dynamics
The proposed learning happens in iterates, denoted by t. In every iterate t, each player i ∈ I
updates four components nt, ñti, q̃ti , πti . In particular, nt = (nt(s))s∈S is the vector of state
counters, where nt(s) is the number of times state s is realized before iterate t. For each
player i ∈ I, ñti = (ñti(s, ai))s∈S,ai∈Ai

is the counter of state-action tuple, where ñti(s, ai) is
the number of times that player i has played action ai in state s before iterate t.

Additionally, q̃ti = (q̃ti(s, ai))s∈S,ai∈Ai
is player i’s estimate of her Q-function, and πti =

(πti(s, ai))s∈S,ai∈Ai
is player i’s policy in iterate t. Given the state-(local) action tuple of any

player i, (st−1, at−1
i ), the estimate q̃ti(st−1, at−1

i ) is updated in (4.4) as a linear combination
of the estimate q̃t−1

i (st−1, at−1
i ) in the previous stage, and a new estimate that is comprised
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of the realized one-stage payoff rt−1
i and the estimated total discounted payoff from the next

iterate.
The policy πti(s

t−1) updated in (4.5) is a linear combination of the policy πt−1
i (st−1)

in the previous stage, and player i’s optimal one-stage deviation. Particularly, the optimal
one-stage deviation is computed using the updated q-estimate q̃ti , instead of the actual Qi,
which is unknown to the player.

Each player’s action ati is sampled from their policy πti with probability (1− θi) and from
a uniform distribution over their action set Ai with probability θi, where θi ∈ (0, 1) is the
exploration parameter that can be heterogeneous among players (refer to (4.6)). With slight
abuse of notation, we define θ = (θi)i∈I ∈ (0, 1)|I|.

Note that the updates of q̃ti (resp. πti), in each iterate, only change the element that
corresponds to the realized state and action (st−1, at−1) (resp. state st−1), and the remaining
elements stay unchanged. Furthermore, the update speed of q̃ti(st−1, at−1

i ) (resp. πti(st−1))
is governed by the step size sequence αi(n) (resp. βi(n)) corresponds to the state-action
counter ñ = ñti(s

t−1, at−1
i ) (resp. state counter n = nt(st−1)). Therefore, the update is

asynchronous in that the stepsizes are different across the elements associated with different
states and actions, and stepsizes are different for different players.

Convergence Analysis
Next, we introduce the assumptions that are needed for obtaining the convergent set of the
learning dynamics.

Assumption 4.2.1. The initial state distribution µ(s) > 0 for all s ∈ S. Additionally,

min
s,s′∈S,a∈A

P (s′|s, a) > 0.

Assumption 4.2.1 ensures that every state is visited infinitely often so that agents can
learn the Q-function associated with each state. We note that similar assumptions on the
probability transition are commonly made in multi-agent reinforcement learning literature.
For example, the paper [240] also assumed that mins,s′∈S,a∈A P (s

′|s, a) > 0 and [367] as-
sumed that for any pair of states (s, s′) ∈ S × S and any infinite sequence of joint actions,
the state s′ is reachable from s in finite steps.

Next, we make the following assumption on the stepsizes:

Assumption 4.2.2. The step sizes {αi(n) ∈ (0, 1)}∞n=0,i∈I and {βi(n) ∈ (0, 1)}∞n=0,i∈I
satisfy

(i) For all i ∈ I, ∑∞
n=0 αi(n) =∞,∑∞

n=0 βi(n) =∞, limn→∞ αi(n) = limn→∞ βi(n) = 0;

(ii) For every i ∈ I, there exist some q, q′ ⩾ 2,
∞∑
n=0

αi(n)
1+q/2 <∞, and

∞∑
n=0

βi(n)
1+q′/2 <∞;
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Algorithm 3 Independent and decentralized learning dynamics
Initialization: n0(s) = 0,∀s ∈ S; ñ0

i (s, ai) = 0, q̃0
i (s, ai) = 0, set arbitrary

π0
i (s, ai), ∀(i, ai, s), and θi ∈ (0, 1), ∀ i.

In iterate 0, each player observes s0 ∈ S, choose their action a0
i ∼ π0

i (s
0), and observe

r0
i = ui(s0, a0).

In every iterate t = 1, 2, ..., each player observes st, and independently updates
{nt, ñti, q̃ti , πti}.
Update nt, ñti:

nt(st−1) = nt−1(st−1) + 1,
ñti(s

t−1, at−1
i ) = ñt−1

i (st−1, at−1
i ) + 1,

Furthermore, for s ̸= st−1, ai ̸= at−1
i ,

ñti(s, ai) = ñt−1
i (s, ai), nt(s) = nt−1(s).

Update q̃ti :

q̃ti(s
t−1, at−1

i ) = q̃t−1
i (st−1, at−1

i ) + αi(ñ
t
i(s

t−1, at−1
i ))

·
(
rt−1
i + γπt−1

i (st)⊤q̃t−1
i (st)− q̃t−1

i (st−1, at−1
i )

)
, (4.4a)

q̃ti(s, ai) = q̃t−1
i (s, ai), ∀ (s, ai) ̸= (st−1, at−1

i ), (4.4b)

where rt−1
i = ui(st−1, at−1).

Update πti :

πti(s
t−1) = πt−1

i (st−1) + βi(n
t(st−1))·(

b̂rt−1
i (st−1)− πt−1

i (st−1)
)

, (4.5a)

πti(s) = πt−1
i (s), ∀ s ̸= st−1, (4.5b)

where b̂rti(s) ∈ arg maxπi∈∆(Ai) π
⊤
i q

t
i(s) for every s ∈ S.

At the end of iterate t, each player chooses their action

ati ∼ (1− θi)πti(st) + θi · (1/|Ai|)1Ai
, (4.6)

where 1Ai
∈ R|Ai| is a vector with all entries 1.

Each player observes their own reward rti = ui(st, at).
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(iii) For every i ∈ I,x ∈ (0, 1), supn αi([xn])/αi(n) < Ax < ∞, supn βi([xn])/βi(n) <
Ax <∞, where [xn] denotes the largest integer less than or equal to xn. Additionally,
{αi(n)}, {βi(n)} are non-increasing in n;

(iv) For every i, j ∈ I, limn→∞ βi(n)/αj(n) = 0;

(v) For every i, j ∈ I, there exists 0 < ξαij < ζαij < ∞, and 0 < ξβij < ζβij < ∞ such that
αi(n)
αj(n)

∈ [ξαij , ζαij ], and βi(n)
βj(n)

∈ [ξβij , ζ
β
ij ] for all n.

Assumption 4.2.2(i) ensures that the asymptotic properties of our learning dynamics can
be studied by using a continuous-time dynamical system [60, 42, 408]. Assumption 4.2.2(ii)
ensures that the average cumulative impact of noise terms on the asymptotic behavior of
learning dynamics diminishes. Assumption 4.2.2(iii) is a technical condition required for
the asynchronous update in the learning dynamics to ensure that the value functions and
policies associated with different state-action pairs are updated at the same timescale [337].
Assumption 4.2.2(iv) implies that our learning dynamics have two timescales: the update of
{q̃ti}∞t=0 is asymptotically faster than the update of {πti}∞t=0. Assumption 4.2.2(v) suggests
that players can employ varying step sizes, provided that the ratio between their step sizes
remains bounded between zero and a finite number for all steps. One example of stepsizes
that satisfies Assumption 4.2.2 is αi(n) = zin

−c1 and βi(n) = yin
−c2 where 0 < c1 ⩽ c2 ⩽ 1

and yi, zi can be any player specific positive scalars.
Next, we state the main result of this chapter that characterizes the convergent set

of policy updates of Algorithm 3 as a super-level set of potential function Φ (Theorem
4.2.1). Furthermore, by imposing additional assumption on the potential function and the
set of Nash equilibrium, we characterize the convergent set as a set of approximate Nash
equilibrium (Corollary 4.2.1).

Theorem 4.2.1. Under Assumptions 4.2.1 and 4.2.2, for every ϵ > 0, the policy sequence
{πt}∞t=0 induced by Algorithm 3 converges to the set

Π∗
ϵ := {π ∈ Π : Φ(µ, π) ⩾ min

π′∈NE(ϵ)
Φ(µ, π′)} (4.7)

with probability 1 given that

∑
i∈I

θi < ϵ · η(1− γ)2

4umax|I|(η+ (D/(1− γ))) =: Lϵ, (4.8)

where

D =
1

1− γ max
i,π−i,s

∣∣∣∣dπ
†
i ,π−i
µ (s)

µ(s)

∣∣∣∣,π†
i ∈ arg max

πi∈Πi

Vi(µ,πi,π−i),

η =
ζ

Aζ
, ζ = min

s,s′∈S,a∈A
P (s′|s, a),
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and Aζ is defined as in Assumption 4.2.2 (iii). Moreover, for any ϵ, ϵ′ such that 0 ⩽ ϵ ⩽ ϵ′,
Π∗
ϵ ⊆ Π∗

ϵ′. Additionally, for every ϵ ⩾ 0, NE(ϵ) ⊆ Π∗
ϵ .

Theorem 4.2.1 guarantees that for any ϵ > 0, for sufficiently small exploration rate that
satisfies (4.8), the sequence of policies induced by the learning dynamics asymptotically
converges to the smallest super-level set of potential function that contains the set of ϵ-
stationary Nash equilibrium (i.e. NE(ϵ)). Moreover, Theorem 4.2.1 states that for the policy
sequence induced by Algorithm 3 to converge to the set of approximate Nash equilibria with
smaller approximation gap, the sum of the exploration probabilities of all players should be
smaller.

The convergence result of Theorem 4.2.1 can be refined to ensure convergence to an
approximate Nash equilibrium set under additional Assumption 4.2.3.

Assumption 4.2.3. For every ϵ > 0, there exists hϵ ∈ R+ such that Π∗
ϵ ⊆ NE(ϵ+ hϵ), hϵ

is continuous and non-decreasing in ϵ, and limϵ↓0 hϵ = 0.

Corollary 4.2.1. Suppose that Assumptions 4.2.1, 4.2.2 and 4.2.3 hold. For every ϵ̃, ϵ̃′ such
that 0 < ϵ̃ < ϵ̃′, there exist positive scalars 0 < ϵ < ϵ′ such that ϵ+ hϵ = ϵ̃ and ϵ′ + hϵ′ = ϵ̃′,
and the sequence of policies {πt}∞t=0 induced by Algorithm 3 converges to the set NE(ϵ̃) (resp.
NE(ϵ̃′)) with probability 1, if ∑i∈I θi < Lϵ (resp. ∑i∈I θi < Lϵ′).

Corollary 4.2.1 states that for the policy sequence induced by Algorithm 3 to converge
to the set of approximate Nash equilibria with a smaller approximation gap, the sum of
the exploration probabilities of all players must be smaller. We have included the proof of
Corollary 4.2.1 in Section C.2.

Now we prove Theorem 4.2.1. First, we introduce some useful notations. For any i ∈
I, s ∈ S, we define π◦

i (s) = (1/|Ai|) · 1Ai
to be a uniformly random policy. Additionally,

for any π ∈ Π and any θ = (θi)i∈I ∈ (0, 1)|I|, we define π(θ) ∈ Π such that for every
s ∈ S, i ∈ I, π(θ)i (s) := (1− θi)πi(s) + θiπ

◦
i (s) to be a perturbed version of policy π given

exploration probability vector θ.
To prove Theorem 4.2.1, we apply the two-timescale asynchronous stochastic approxima-

tion theory [337], where we first ensure the convergence of the (“fast”) q-estimate updates,
{q̃ti}∞t=0, in Lemma 4.2.1. Next, in Lemma 4.2.2-4.2.4, we study the convergent set of the
(“slow”) policy updates given the convergent values of q-estimates.

Lemma 4.2.1. Under Assumptions 4.2.1 and 4.2.2, for any s ∈ S and i ∈ I, limt→∞ ∥q̃ti(s)−
Qi(s; (πti , π

t,(θ)
−i ))∥∞ = 0 with probability 1.

The proof of Lemma 4.2.1 is based on two steps. First, we show that under Assumption
4.2.1 and 4.2.2, our learning dynamics satisfies the set of conditions introduced in [337]
(restated in Section C.1) so that convergence of q-estimates can be analyzed by the associated
continuous-time dynamical system where the policy drifts are treated as asymptotically
negligible errors. Second, we argue the global convergence of the continuous-time dynamical
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system using the contraction property of the Bellman operator associated with q-estimate
update. The complete proof of Lemma 4.2.1 is deferred to Section C.2.

Next, we analyze the policy updates with respect to the convergent values of the q-
estimates provided by the fast dynamics as in Lemma 4.2.1. Particularly, the policy πti(st−1)
in (4.5) becomes a linear combination of πt−1

i (st−1), and the optimal one-stage deviation
bri(st−1; (πt−1

i , πt−1,(θ)
−i )) based on the actual Q-function as in (4.3). Under Assumption

4.2.1, the asymptotic behavior of {πt}∞t=0 can be analyzed using the following continuous-
time differential inclusion, where τ ∈ [0,∞) is a continuous-time index,

d

dτ
ϖτ
i (s) ∈ γi(s)

(
bri(s; (ϖτ

i ,ϖτ ,(θ)
−i ))−ϖτ

i (s)
)

, (4.9)

and γi(s) ∈ [η, 1], for every s ∈ S, i ∈ I, captures 2 the asynchronous update of policies
in different states (cf. (4.5)), and η = ζ/Aζ > 0 [337]. Since bri(·) is a non-empty closed,
convex and compact set, there exists an absolutely continuous solution of (4.9), ϖτ

i for every
i ∈ I [43]. Consequently, for every i ∈ I and s ∈ S, there exists

b̃rτ ,(θ)
i (s) ∈ bri(s; (ϖτ

i ,ϖτ ,(θ)
−i ))

such that
d

dτ
ϖτ
i (s) = γi(s)

(
b̃rτ ,(θ)
i (s)−ϖτ

i (s)
)

. (4.10)

To establish the convergence of (4.10), we define a Lyapunov function ϕ : [0,∞)→ R as
follows:

ϕ(τ ) = max
ϖ∈Π

∑
s∈S

µ(s)Φ(s,ϖ)−
∑
s∈S

µ(s)Φ(s,ϖτ ), (4.11)

which is the difference of the potential function at its maximizer with that of its value at
ϖτ . We show that ϕ(τ ) is strictly decreasing (alternatively, the potential function is strictly
increasing) as long as ϖτ is outside the set NE(ϵ).

Lemma 4.2.2. Suppose that Assumptions 4.2.1 holds and θ satisfies (4.8). For every τ ⩾ 0
and ϵ > 0, if ϖτ ̸∈ NE(ϵ) then dϕ(τ )/dτ < 0.

Unlike static potential games, the potential function is non-concave in each player’s policy
in Markov potential games. Therefore, we need a new approach to demonstrate that ϕ(τ )
decreases outside a neighborhood of approximate Nash equilibrium. To prove Lemma 4.2.2,
we need the following technical lemma that extends the single-agent reinforcement learning
theory to multi-agent games.

2 From two-timescale asynchronous stochastic approximation theory [337] (also reviewed in Section C.1),
the value of γi(s) ⩾ κ/Aκ, where κ is a lower bound on the stationary distribution of the Markov chain over
the state space induced by any policy. Assumption 4.2.1 ensures that the probability of every state in this
stationary distribution, under any policy, is greater than ζ.
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Lemma 4.2.3. (a) Gradient of value function: For any µ ∈ ∆(S), s ∈ S, π ∈ Π, i ∈ I, ai ∈
Ai,

∂Vi(µ, π)
∂πi(s, ai)

=
1

1− γ d
π
µ(s)Qi(s, ai; π),

where

dπµ(s) := (1− γ)
∑
s0∈S

µ(s0)
∞∑
k=0

γkPr(sk = s|s0). (4.12)

(b) Multi-agent performance difference lemma: For any policy π = (πi, π−i), π′ = (π′
i, π−i) ∈

Π and any µ ∈ ∆(S),

Vi(µ,π)− Vi(µ,π′) =
1

1− γ
∑
s′

dπµ(s
′)Γi(s′,πi;π′), (4.13)

where Γi(s, ai; π) is the advantage function given by

Γi(s, ai; π) := Qi(s, ai; π)− Vi(s, π), (4.14)

for every i ∈ I, s ∈ S, ai ∈ Ai, π ∈ Π.
(c) Sensitivity of value function: For any i ∈ I, πi ∈ Πi, π−i ∈ Π−i,

max
s∈S
|Vi(s, πi, π−i)− Vi(s, πi, π(θ)−i )| ⩽

2∑k∈I\{i} θk

(1− γ)2 umax.

(d) Sensitivity of Q-function: For any i ∈ I, πi ∈ Πi, π−i ∈ Π−i, it holds that

max
s,ai
|Qi(s, ai; π)−Qi(s, ai; πi, π(θ)−i )| ⩽

2∑k∈I\{i} θk

(1− γ)2 umax.

The proof of Lemma 4.2.3 is included in Section C.2. We are now ready to prove Lemma
4.2.2 based on Lemma 4.2.3.
Proof of Lemma 4.2.2: We compute the derivative of ϕ(τ ) with respect to τ , where ϕ(τ ) is
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given by (4.11).

d

dτ
ϕ(τ ) = −

∑
i,s

∂Φ(µ,ϖτ )

∂ϖi(s)

dϖτ
i (s)

dτ

=
(i)
−
∑
i,s

∂Vi(µ,ϖτ )

∂ϖi(s)

dϖτ
i (s)

dt

=
(ii)

∑
i,s

dϖ
τ

µ (s)

γ − 1 γi(s)Qi(s;ϖτ )⊤
(

b̃rτ ,(θ)
i (s)−ϖτ

i (s)
)

,

=
(iii)

∑
i,s

dϖ
τ

µ (s)

γ − 1 γi(s)(∆Qi(s))⊤
(

b̃rτ ,(θ)
i (s)−ϖτ

i (s)
)

+
∑
i,s

dϖ
τ

µ (s)

γ − 1 γi(s)(Qi(s;ϖτ
i ,ϖτ ,(θ)

−i ))⊤
(

b̃rτ ,(θ)
i (s)−ϖτ

i (s)
)

, (4.15)

where
∆Qi(s) = Qi(s;ϖτ )−Qi(s;ϖτ

i ,ϖτ ,(θ)
−i ).

Here, (i) is due to Lemma C.3.1, (ii) is due to Lemma 4.2.3(a) and (4.10), and (iii) is by
adding and subtracting terms. Note that the first term in the RHS of (4.15) can be bounded
as

∑
i,s

dϖ
τ

µ (s)

γ − 1 γi(s)(∆Qi(s))⊤
(

b̃rτ ,(θ)
i (s)−ϖτ

i (s)
)

⩽
1

1− γ
∑
i∈I

max
s∈S

∣∣∣∣(∆Qi(s))⊤
(

b̃rτ ,(θ)
i (s)−ϖτ

i (s)
) ∣∣∣∣

⩽
2

1− γ
∑
i∈I

max
s∈S,ai∈Ai

∣∣∣∣(∆Qi(s, ai))∣∣∣∣ ⩽ 4|I|∑i∈I θiumax
(1− γ)3 , (4.16)

where the first inequality is because γi(s) ⩽ 1 as it denotes the fraction of time state s is
visited, and last inequality is due to Lemma 4.2.3(d).

Recall that b̃rτ ,(θ)
i (s) ∈ bri(s; (ϖτ

i ,ϖτ ,(θ)
−i )) where bri(s;ϖ) = arg max

ϖ̂i∈∆(Ai)
ϖ̂⊤
i Qi(s;ϖ) for

every s ∈ S,ϖ ∈ Π. Therefore, Qi(s; (ϖτ
i ,ϖτ ,(θ)

−i ))⊤
(

b̃rτ ,(θ)
i (s)−ϖτ

i (s)
)
⩾ 0. Addition-

ally, given the fact that γi(s) ⩾ η for all i ∈ I, s ∈ S, (4.15), and (4.16), we obtain
d

dτ
ϕ(τ ) ⩽

4|I|∑i∈I θiumax
(1− γ)3 − η

1− γ
∑
i,s
dϖ

τ

µ (s) ·Qi(s; (ϖτ
i ,ϖτ ,(θ)

−i ))⊤
(

b̃rτ ,(θ)
i (s)−ϖτ

i (s)
)

.

(4.17)

Additionally, let π†
i ∈ arg maxπi∈Πi

Vi(µ, πi,ϖτ
−i) be a best response of player i if the

joint strategy of other players is ϖτ
−i. Note that π†

i maximizes the total payoff instead of
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just maximizing the payoff of one-stage deviation. Therefore, π†
i can be different from the

optimal one-stage deviation policy. We drop the dependence of π†
i on ϖτ

−i for notational
simplicity.

Recall that D = 1
1−γ maxi,ϖ−i ∥d

π†
i ,ϖτ

−i
µ /µ∥∞. We note that D is finite under the as-

sumption that µ has full support (Assumption 4.2.1). Next, we provide an inequality that
is crucial to bound (4.17). Note that

∑
i,s
d
π†

i ,ϖτ ,(θ)
−i

µ (s)Qi(s;ϖτ
i ,ϖτ ,(θ)

−i )⊤
(
π†
i (s)−ϖ

τ
i (s)

)

⩽
∑
i,s
d
π†

i ,ϖτ ,(θ)
−i

µ (s) · max
π̂i∈∆(Ai)

Qi(s;ϖτ
i ,ϖτ ,(θ)

−i )⊤ (π̂i(s)−ϖτ
i (s))

⩽
∑
i,s
dϖ

τ

µ (s)

∥∥∥∥∥d
π†

i ,ϖτ ,(θ)
−i

µ

dϖ
τ

µ

∥∥∥∥∥
∞
· max
π̂i∈∆(Ai)

Qi(s;ϖτ
i ,ϖτ ,(θ)

−i )⊤ (π̂i(s)−ϖτ
i (s))

(i)
⩽ D

∑
i,s
dϖ

τ

µ (s) · max
π̂i∈∆(Ai)

Qi(s;ϖτ
i ,ϖτ ,(θ)

i )⊤ (π̂i(s)−ϖτ
i (s))

= D
∑
i,s
dϖ

τ

µ (s) ·Qi(s;ϖτ
i ,ϖτ ,(θ)

−i )⊤
(

b̃rτ ,(θ)
i (s)−ϖτ

i (s)
)

,

where (i) is using3 dϖ
τ ,(θ)

µ (s) ⩾ (1− γ)µ(s) along with the definition of D. Therefore,

∑
i,s
dϖ

τ

µ (s) ·Qi(s;ϖτ
i ,ϖτ ,(θ)

−i )⊤
(

b̃rτ ,(θ)
i (s)−ϖτ

i (s)
)

⩾
1
D

∑
i,s
d
π†

i ,ϖτ ,(θ)
−i

µ (s)Qi(s;ϖτ
i ,ϖτ ,(θ)

−i )⊤
(
π†
i (s)−ϖ

τ
i (s)

)
.

(4.18)

Then, from (4.17) and (4.18), we have

d

dt
ϕ(τ ) ⩽

4|I|∑i∈I θiumax
(1− γ)3 − η

D(1− γ)
∑
i,s
d
π†

i ,ϖτ ,(θ)
−i

µ (s) ·Qi(s;ϖτ
i ,ϖτ ,(θ)

−i )⊤
(
π†
i (s)−ϖ

τ
i (s)

)
.

(4.19)
3This is obtained by dropping all terms corresponding to k ⩾ 1 in (4.12).
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Next, we note that

Qi(s;ϖτ
i ,ϖτ ,(θ)

−i )⊤(π†
i (s)−ϖ

τ
i (s))

(i)
=

∑
ai∈Ai

(
Qi(s, ai;ϖτ

i ,ϖτ ,(θ)
−i )− Vi(s,ϖτ

i ,ϖτ ,(θ)
−i )

)
· (π†

i (s, ai)−ϖτ
i (s, ai))

(ii)
=
∑
ai

Γi(s, ai;ϖτ
i ,ϖτ ,(θ)

−i )π†
i (s, ai) = Γi(s, π†

i ;ϖτ
i ,ϖτ ,(θ)

−i ), (4.20)

where (i) holds because Vi is not dependent on actions, and (ii) follows from the definition
of advantage function in (4.14). Combining (4.19) and (4.20),

dϕ(τ )

dt
⩽

4|I|∑i∈I θiumax
(1− γ)3 − η

D(1− γ)
∑
i,s
d
π†

i ,ϖτ ,(θ)
−i

µ (s)Γi(s, π†
i ;ϖτ

i ,ϖτ ,(θ)
−i )

=
4|I|∑i∈I θiumax

(1− γ)3 − (η/D) ·
∑
i

(
Vi(µ, π†

i ,ϖ
τ ,θ
−i )− Vi(µ,ϖτ

i ,ϖτ ,θ
−i )

)
(4.21)

where the equality follows from the multi-agent performance difference lemma (Lemma
4.2.3(b)). Next, note that

− (η/D) ·
∑
i

(
Vi(µ, π†

i ,ϖ
τ ,(θ)
−i )− Vi(µ,ϖτ

i ,ϖτ ,(θ)
−i )

)
⩽ −(η/D) ·

∑
i

(
Vi(µ, π†

i ,ϖτ
−i)− Vi(µ,ϖτ

i ,ϖτ
−i)

)
+(2η/D) · max

πi∈Πi

∑
i

|Vi(µ, πi,ϖτ ,(θ)
−i )− Vi(µ, πi,ϖτ

−i)|

⩽ − η
D

∑
i

(
Vi(µ, π†

i ,ϖτ
−i)− Vi(µ,ϖ)

)
+

4η|I|∑i∈I θiumax
D(1− γ)2 , (4.22)

where the first inequality is based on adding and subtracting the term

−(η/D)
∑
i

(Vi(µ, π†
i ,ϖτ

−i)− Vi(µ,ϖτ
i ,ϖτ

−i))

, arranging terms and taking maximum over πi, and the last inequality is due to Lemma
4.2.3(c).

Combining (4.21) and (4.22), we obtain

dϕ(τ )/dτ

⩽
4|I|∑i∈I θiumax

(1− γ)3 +
4η|I|∑i∈I θiumax

D(1− γ)2 − (η/D) ·
∑
i

(
Vi(µ, π†

i ,ϖτ
−i)− Vi(µ,ϖτ )

)
.
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Since π†
i is a best response to ϖτ

−i, Vi(µ, π†
i ,ϖτ

−i)− Vi(µ,ϖτ ) ⩾ 0 for all i. Furthermore, for
any ϖτ ̸∈ NE(ϵ), there must exist at least one player i ∈ I and best response policy π†

i ∈ Πi

such that Vi(µ, π†
i ,ϖτ

−i) ⩾ Vi(µ,ϖτ
i ,ϖτ

−i) + ϵ. Therefore, given that θ satisfies (4.8), we
have dϕ(τ )/dτ < 0.

■

Next, we present the following result that leverages Lemma 4.2.2 to obtain the convergent
set of the sequence of policies induced by Algorithm 3.

Lemma 4.2.4. Under the conditions stated in Theorem 4.2.1, the sequence of policies
(πt)∞

t=0 given by Algorithm 3 almost surely converges to Π∗
ϵ with probability 1.

Proof. By applying the asynchronous stochastic approximation theory [337, Theorem 4.7],
the asymptotic behavior of the policies (πt)∞

t=0 is the same as the asymptotic behavior of
(4.10). Therefore, it is sufficient to show that any absolutely continuous trajectory of (4.10)
will converge to Π∗

ϵ .
From Lemma 4.2.2, we know that the potential function always (strictly) increases along

the trajectory of (4.10) outside NE(ϵ). Since the potential function is bounded4, any ab-
solutely continuous trajectory of (4.10) will enter the set NE(ϵ) in finite time5. Since
NE(ϵ) ⊆ Π∗

ϵ , once the trajectory of (4.10) enters the set NE(ϵ), it is already inside the
set Π∗

ϵ . The proof concludes by showing that Π∗
ϵ is an invariant set. Indeed, by noting that

Π∗
ϵ is a super-level set of the potential function and Π∗

ϵ contains NE(ϵ), we conclude that Π∗
ϵ

is an invariant set using Lemma 4.2.2. Thus, any absolutely continuous trajectory of (4.10)
will enter the set Π∗

ϵ and remain inside it forever.

Proof of Theorem 4.2.1. From Lemmas 4.2.1-4.2.4, we conclude that the policy sequence
{πt}∞t=0 induced by Algorithm 3 converges to the set Π∗

ϵ .
Next, we show that for any 0 ⩽ ϵ ⩽ ϵ′, Π∗

ϵ ⊆ Π∗
ϵ′ . This follows from the fact that

NE(ϵ) ⊆ NE(ϵ′). Thus, minπ∈NE(ϵ′) Φ(µ, π) ⩽ minπ∈NE(ϵ) Φ(µ, π). As a result, if π ∈ Π∗
ϵ ,

then π ∈ Π∗
ϵ′ .

Finally, we show that for every ϵ ⩾ 0, NE(ϵ) ⊆ Π∗
ϵ . Suppose that π ∈ NE(ϵ), then

Φ(µ, π) ⩾ minπ′∈NE(ϵ) Φ(µ, π′). This ensures that π ∈ Π∗
ϵ .

4.3 Numerical Experiments
In this section, we demonstrate the performance of the proposed learning dynamics (Algo-
rithm 3) in a Markov routing game (inspired by the example presented in [238]). Consider
a parallel link network comprising of L links which is repeatedly used by I travelers (i.e.
players). At every stage k, each player i picks a link aki ∈ [L] to commute. The state of the

4The boundedness of potential function is without loss of generality as it is shift invariant.
5Even though we state that any absolutely continuous trajectory of (4.10) enters NE(ϵ), but it may leave

that set and re-enter.
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network is s = (sℓ)ℓ∈[L], where sℓ = 1 represents that link ℓ is unsafe and sℓ = 0 represents
that link ℓ is safe. The probability that a particular link becomes unsafe in the next time
step k+ 1 is λ1 if the number of players using that link in stage k is larger than or equal to
a threshold T , and this probability is λ2 otherwise.

Here, we consider the common interest rewards. That is, given network state s and joint
action a, the utility of any player i ∈ I is

ui(s, a) = u(s, a) =
∑
i∈I

L∑
ℓ=1

1(ai = ℓ)
(
bℓ − (1 + sℓ)mℓ

∑
j∈I

I(aj = ℓ)
)
.

Here, bℓ is the fixed utility of using link ℓ ∈ [L], mℓ is a link-dependent constant which
weights the effect of congestion on the cost and (1 + sℓ)mℓ

∑
j∈I I(aj = ℓ) represents the

cost of using ℓ given the total number of users on ℓ and the network state. The goal of
every player i ∈ I is to choose a policy πi : S → ∆([L]) to maximize the long run expected
discounted payoff E[

∑∞
k=0 γ

ku(sk, ak)]. Due to the common reward structure the game is a
Markov potential game. In this example, we set |I| = 4, L = 2, T = 2, λ1 = 0.8, λ2 = 0.2,
m1 = 2, b1 = 9, m2 = 4, and b2 = 16. We simulate for T = 104 stages. The step size
schedule αi(n) = 1/n0.5, βi(n) = 1/n for all i ∈ I. The initial state of every link is sampled
uniformly randomly.

To study the Nash approximation error with respect to the converged policy, we study
the function: ∥Vi(·, πti , πT−i) −maxπ′

i∈Πi
Vi(·, π′

i, πT−i)∥1, where πTi is the converged policy
update and πti is kth policy update. We observe that decreasing the exploration probabilities
asymptotically leads to lower Nash approximation error (Figure 4.1(a)-4.1(b)).

4.4 Concluding Remarks
In this chapter, we analyzed the long-run behavior of a multi-agent decentralized reinforce-
ment learning algorithm in infinite-horizon discounted Markov potential games. We demon-
strated that when agents independently employ actor-critic algorithm using only their local
information, their learning processes converge to an approximate Nash equilibrium set. The
size of the set shrinks if the exploration rates decrease.

In the next chapter, we extend this analysis beyond the framework of Markov potential
games, exploring how these methods perform in general-sum Markov games.
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(a)

(b)

Figure 4.1: Variation of Nash approximation gap during 104 steps of Algorithm 3. The
first (resp. second) figure shows the variation with exploration probability θi = 0.1 (resp.
θi = 0.2), for every i ∈ I. In each of the figures the four curves correspond to four players.
Each curve represents the mean value of the quantity over 5 trials, and we give error margins
of ±1 standard deviation.
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Chapter 5

Decentralized Learning General-Sum
Markov Games

This chapter is an extension of the problem studied in Chapter 4. Recall, in Chapter 4,
we characterized the asymptotic convergent set of strategies when players use actor-critic
learning algorithm in a decentralized manner, using their own local information, in Markov
potential games. This chapter expands the scope of that analysis to any general-sum Markov
game.

Our analysis builds on a new Markov near-potential function (MNPF) framework. In this
framework, given any Markov game with finite state and action space, we can construct an
MNPF such that the rate of the change in MNPF with respect to an agent’s policy deviation
approximates the rate of change in the agent’s own value function (see Definition 5.2.1), and
the difference between the two rates is captured by the closeness parameter. In the special
case of the Markov potential game, which is heavily studied in literature, the MNPF becomes
the exact Markov potential function, and the closeness parameter becomes zero.

The idea of MNPF builds on the notion of near potential game in static games (intro-
duced in [81, 80]), and is related to the concept of Markov α-potential games discussed in
Chapter 2. In static games, a near potential function approximates the absolute change of an
agent’s utility with their own strategy. The paper [80] analyzed the convergence of fictitious
play, showing that the convergent set of strategies is related to the closeness parameter of the
near potential function. This idea was extended to Markov games as the Markov α-potential
function. Our MNPF generalizes this by approximating the rate of change in agents’ value
functions with their policies, rather than absolute value changes (Remark 5.2.1). This gen-
eralization allows us to approximate the gradient of the value function (Lemma 5.2.1), which
is essential for characterizing the convergence set of the decentralized actor-critic algorithm
(Remark 5.2.2). We show that MNPFs always exist for Markov games with finite state and
action sets (Proposition 5.2.2).

Similar to Chapter 4, the convergence result leverages the timescale separation in decen-
tralized actor-critic dynamics, where agents update their local estimate of the Q-function on
a faster timescale and their policies on a slower one, using only bandit feedback on state tran-
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sitions and their own reward. Using two-timescale stochastic approximation theory [337], we
show that the fast updates converge to the Q-function’s value while treating the slow policy
updates as static. The agents’ policy trajectories can then be analyzed as a continuous-time
dynamical system, with the MNPF acting as an approximate Lyapunov function. We prove
that these trajectories converge to a level set of the MNPF, which can be viewed as a set of
approximate Nash equilibria (Theorem 5.3.1). When the MNPF is Lipschitz continuous and
the set of Nash equilibria is finite, the dynamics converge to the neighborhood of a single
equilibrium (Theorem 5.3.2). In both theorems, the convergent set is characterized by the
closeness parameter of the MNPG. We evaluate the effectiveness of our results through a
numerical experiment in Section 5.4.

A schematic summarizing our approach is presented in Figure 5.1.

Markov Game
Stable

Long-run
Outcome

Near-
Potential
Function

Impossible
in general

Approximating
multi-agent
interaction

Potential
function

as Lyapunov

Figure 5.1: Schematic of the our approach.

Additional Related Works
Existing literature on design and analysis of decentralized learning algorithms has focused
on the competitive setting represented as the two player zero-sum games (see [367, 117,
424] and references therein), the cooperative setting represented by the Markov team games
(see [427, 17, 439] and references therein), and their generalizations to Markov potential
games (see Chapter 4, [144] and references therein) or weakly acyclic games (see [438] and
references therein). However, these studies fail to capture the complexity of large-scale multi-
agent interactions in the real world, which often involves a mixture of both cooperative and
competitive dynamics. Recent research has explored decentralized learning in general-sum
Markov games (e.g., [283, 198, 265]), but are only concerned with convergence to weaker
equilibrium concepts, such as the correlated equilibrium and coarse-correlated equilibrium,
rather than reaching a Nash equilibrium.

Notations. We denote the set of all probability distributions over a set X by ∆(X).
For any function f : X × Y → R we define f(x, p) = Ey∼q[f(x, y)], where p ∈ ∆(X) and
q ∈ ∆(Y ). We use the notation 1X to denote a vector of dimension |X| with all entries to
be one. We use ×i∈[N ]Xi to denote X1×X2× ...×XN . Unless otherwise stated, we use ∥ · ∥
to mean l2-norm.



CHAPTER 5. DECENTRALIZED LEARNING GENERAL-SUM MARKOV GAMES 70

5.1 Setup
A (general-sum) Markov game G is given by the tuple ⟨I,S, (Ai)i∈I , (ui)i∈I ,P , γ⟩, where
I is a finite set of players (where |I| = N); S is a finite set of states; Ai is a finite set
of actions for each player i ∈ I, with joint action profile a = (ai)i∈I ∈ A = ×i∈IAi; ui :
S×A→ R is the one-stage payoff function of player i and umax := maxi∈I,s∈S,a∈A |ui(s, a)|;
P = (P (s′|s, a))s,s′∈S,a∈A is the state transition matrix and P (s′|s, a) is the probability
that state changes from s to s′ with action profile a; and γ ∈ [0, 1) is the discount factor.
For each player i, a stationary Markov policy πi : S → ∆(Ai) specifies the probability
πi(s, ai) of choosing action ai in state s. The set of all stationary policies for player i is
Πi := ∆(Ai)|S|, and the joint policy profile of all players is π := (πi)i∈I ∈ Π := ×i∈IΠi.
Similarly, π−i := (πj)j∈I\{i} is the joint policy of all players except i.

The game proceeds in discrete-time stages indexed by k ∈ {0, 1, . . . }. At k = 0, the initial
state s0 is sampled from a distribution µ ∈ ∆(S). At each time step k, given state sk ∈ S,
each player samples aki ∼ πi(sk), forming the joint action profile ak := (aki )i∈I . The next
state is sk+1 ∼ P (·|sk, ak). For an initial distribution µ and a stationary policy profile π, the
expected total discounted payoff for each player i ∈ I is Vi(µ, π) = E

[∑∞
k=0 γ

kui(sk, ak)
]

,
where s0 ∼ µ, ak ∼ π(sk), and sk+1 ∼ P (·|sk, ak). We define the discounted state occupancy
measure as dπµ(s) := (1− γ)∑s0∈S µ(s

0)
∑∞
k=0 γ

kPr(sk = s|s0), with ∑s∈S d
π
µ(s) = 1.

Definition 5.1.1 (Stationary Nash equilibrium). For any ϵ ⩾ 0, a policy profile π∗ ∈ Π
is an ϵ-stationary Nash equilibrium of G if for any i ∈ I, any πi ∈ Πi, Vi(µ, π∗

i , π∗
−i) ⩾

Vi(µ, πi, π∗
−i)− ϵ. Any ϵ-Nash equilibrium with ϵ = 0 is a Nash equilibrium. For any ϵ ⩾ 0,

we use the notation NE(ϵ) to denote the set of all ϵ-stationary Nash equilibria.

5.2 Markov Near-Potential Function
We introduce the notion of Markov near potential function which is crucial for subsequent
disposition.

Definition 5.2.1 (Markov near-potential function). A bounded function Φ : S ×Π → R

is called a Markov near potential function (MNPF) for a game G with closeness parameter
κ ⩾ 0, if for all s ∈ S, i ∈ I, πi, πi′ ∈ Πi, and π−i ∈ Π−i,

|
(

Φ
(
s, πi′, π−i

)
−Φ (s, πi, π−i)

)
−
(
Vi
(
s, π′

i, π−i
)
− Vi (s, πi, π−i)

)
| ⩽ κ∥π′

i − πi∥, (5.1)

where the ∥π′
i − πi∥ :=

√∑
s∈S

∑
ai∈Ai

(π′
i(s, ai)− πi(s, ai))2.

Definition 5.2.1 ensures that the difference between the rate of change in value function
of any player with respect to the unilateral change in their policy and that of the potential
function is upper bounded by κ.
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Remark 5.2.1. Our MNPF framework generalizes the framework of Markov α-potential
function (cf. Chapter 2). Specifically, if Φ is a Markov α-potential function for a game G,
then for all s ∈ S, i ∈ I, πi, π′

i ∈ Πi, and π−i ∈ Π−i,

|
(

Φ(s, π′
i, π−i)−Φ(s, πi, π−i)

)
−
(
Vi(s, π′

i, π−i)− Vi(s, πi, π−i)
)
| ⩽ α, (5.2)

which requires that the difference between an agent’s value function change and the Markov
α-potential function change due to a unilateral policy shift is uniformly bounded by α. In
contrast, our Definition 5.2.1 bounds this difference based on the magnitude of policy changes.
Comparing (5.1) and (5.2), if Φ is an MNPF for G with parameter κ, then G is a Markov
α-potential game with α ⩽ κ

√
2|S|.

Remark 5.2.2. Our Markov near-potential function framework (5.1) offers an advantage
over the Markov α-potential function (5.2) by quantifying the gap between each agent’s value
function gradient and that of a potential function (Lemma 5.2.1). This property is essential
for characterizing the convergent set of the decentralized actor-critic algorithm, as demon-
strated in Theorems 5.3.1 and 5.3.2. To establish convergence, we show a positive correlation
between policy update rates and the gradient of agents’ value functions. Since this gradient
closely approximates that of the potential function, with the closeness parameter defining the
gap, we prove that the potential function consistently increases outside a neighborhood of the
Nash equilibrium. This neighborhood, which defines the convergence set, varies in size based
on the closeness parameter.

Next, we show that the gradient of MNPF provides an approximation of gradient of value
function of players in their local strategies.

Lemma 5.2.1. For any Markov game G and an associated MNPF Φ with closeness param-
eter κ, it holds that

|v⊤
i
∂Φ(µ, π)
∂πi

− v⊤
i
∂Vi(µ, π)
∂πi

| ⩽ κ∥vi∥2, ∀i ∈ I, vi ∈ R|S||Ai|.

Proof. For any vi ∈ R|S|·|Ai| it holds that

v⊤
i
∂Φ(µ, π)
∂πi

= lim
h→0

Φ(µ, πi + hvi, π−i)−Φ(µ, πi, π−i)

h
,

v⊤
i
∂Vi(µ, π)
∂πi

= lim
h→0

Vi(µ, πi + hvi, π−i)− Vi(µ, πi, π−i)

h
.

(5.3)

Additionally, using the definition of MNPF, we obtain

Vi(µ, πi + hvi, π−i)− Vi(µ, πi, π−i)− κh∥vi∥2
⩽ Φ(µ, πi + hvi, π−i)−Φ(µ, πi, π−i)

⩽ Vi(µ, πi + hvi, π−i)− Vi(µ, πi, π−i) + κh∥vi∥2.
(5.4)
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Dividing everything by h in (5.4) and using (5.3), we obtain

|v⊤
i
∂Φ(µ, π)
∂πi

− v⊤
i
∂Vi(µ, π)
∂πi

| ⩽ κ∥vi∥2, ∀i ∈ I, vi ∈ R|S|·|Ai|.

This concludes the proof.

The following proposition shows that a near-potential function can be constructed for
any Markov game, and the approximate optimal solution of the near-potential function is
an approximate Nash of the original game.

Proposition 5.2.2. For any game G, there exists a tuple (Φ,κ) such that Φ is a MNPF of G
with closeness parameter κ. Furthermore, for any ϵ > 0 and any π∗ ∈ Π such that Φ(s, π∗) ⩾
supπ∈Π Φ(s, π)− ϵ for all s ∈ S, π∗ is a (κ

√
2|S|+ ϵ)−stationary Nash equilibrium.

Proof. For any game G, we set Φ(s, π) = 0 for every s ∈ S, π ∈ Π. We note that
|Vi (s,π′

i,π−i)− Vi (s,πi,π−i) |
(a)
⩽

1
1− γ

∑
s′∈S,ai∈Ai

∣∣∣dπµ(s′)(πi(s
′, ai)− π′

i(s
′, ai))

∣∣∣ · |Qi(s′, ai;π′)|

(b)
⩽

umax
(1− γ)2 ∥πi − π

′
i∥,

where (a) is due to multi-agent performance difference lemma (see Lemma D.1.5), and (b)
is due to the fact that for any π ∈ Π,

max
s,ai
|Qi(s, ai; π)| ⩽

umax
(1− γ)

and dπµ(s) ∈ [0, 1] for every s ∈ S. Thus, Φ is a MNPF for G with the closeness-parameter
κ = umax

(1−γ)2 .
Next, we show that for any ϵ > 0 and any π∗ ∈ Π such that Φ(s, π∗) ⩾ supπ∈Π Φ(s, π)− ϵ

for all s ∈ S, and thus π∗ is a (κ
√

2|S|+ ϵ)−stationary Nash equilibrium. Particularly, using
(5.1), we observe that for any i ∈ I, π′

i ∈ Πi,

Vi(µ, π∗)− Vi(µ, π′
i, π∗

−i)

⩾Φi(µ, π∗)−Φi(µ, π′
i, π∗

−i)− κ∥π′
i − π∗

i ∥ ⩾ −ϵ− κ
√

2|S|,

where we note that ∥π′
i − π∗

i ∥ ⩽
√

2|S| using Cauchy Schwartz inequality.

A game G may be associated with multiple MNPF with different κ. Proposition 5.2.2
suggests that an MNPF with a smaller closeness parameter κ is a better approximation of
the original game in that the optimum of the potential function is a closer approximation
of the Nash equilibrium in the original game. Following [171], we can compute the MNPF
with the smallest closeness parameter of a game as a semi-infinite linear program. We omit
those details here for concise presentation.



CHAPTER 5. DECENTRALIZED LEARNING GENERAL-SUM MARKOV GAMES 73

5.3 Decentralized Actor-Critic Algorithm
In this section, we restate the decentralized learning algorithm discussed in Chapter 4. Recall,
in such dynamics each player makes decisions based solely on the current state information
and their local reward feedback. Players do not need any knowledge about other players.
Using MNPF, we provide theoretical guarantees on the long-run outcomes of the algorithm.

For every i ∈ I, s ∈ S, ai ∈ Ai, π ∈ Π, we define Q-function as

Qi(s, ai; π) := ui(s, ai, π−i) + γ
∑
s′∈S

P (s′|s, ai, π−i)Vi(s
′, π),

which is player i’s expected long-horizon discounted utility when the game starts in state s
and they play action ai in the first stage and then employs policy πi from the second stage
onwards, and other players always employ policy π−i. With slight abuse of notation, we
define Qi(s; π) = (Qi(s, ai; π))ai∈Ai

∈ R|Ai|. Furthermore, given Qi and policy π ∈ Π, we
define the optimal one-stage deviation of player i in state s ∈ S as

bri(s; π) = arg max
π̂i∈∆(Ai)

π̂⊤
i Qi(s; π). (5.5)

Decentralized Learning Algorithm and Preliminaries
We study the discrete-time decentralized learning algorithm proposed in Algorithm 3 in
Chapter 4, where each player adopts an actor-critic algorithm in a decentralized manner. In
each iterate t of the algorithm, every player i ∈ I updates the following quantities: (i) the
counters nt = (nt(s))s∈S and ñti = (ñti(s, ai))s∈S,ai∈Ai

, which keep track of the number of
visits of all states and all state-action pairs up to the current iteration; (ii) their estimate of
the local Q-functions qti , which is updated as a linear combination of the previous estimate
and a new estimate based on the realized one-stage reward and the long-horizon discounted
value from the next state as estimated from the q-function estimate and policy from previous
iterate (refer (5.6)); and (iii) their local policies πti , which is updated as a linear combination
of the policy in the previous iterate, and player i’s optimal one-stage deviation (refer (5.7)).
Finally, every player samples an action ati ∼ πti with probability (1− θ) and from the uniform
distribution over their action set Ai with probability θ, where θ ∈ (0, 1) is the exploration
parameter1.

Remark 5.3.1. The updates in Algorithm 4 are asynchronous because each player updates
the counters, q-function estimate, and policy only for the most recently visited state-(local)
action pair, rather than for all state-action pairs.

Next, we state assumptions that are central to analyze the convergence of Algorithm 4.
1For the sake of concise notations, we take the exploration rate to be same for all the players, but the

analysis in this chapter extends to the scenario when it is heterogeneous.
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Algorithm 4 Decentralized Learning Algorithm
Initialization: n0(s) = 0,∀s ∈ S; ñ0

i (s, ai) = 0, q̃0
i (s, ai) = 0, π0

i (s) = 1/|Ai|, ∀(i, ai, s),
and θ ∈ (0, 1). In stage 0, each player observes s0, choose their action a0

i ∼ π0
i (s

0), and
observe u0

i = ui(s0, a0).
In every iterate t = 1, 2, ..., each player observes st, and independently updates
{nti, ñti, q̃ti , πti}.
Update nt, ñti: nt(st−1) = nt−1(st−1) + 1, ñti(st−1, at−1

i ) = ñt−1
i (st−1, at−1

i ) + 1.
Update q̃ti : Using the one-stage reward ut−1

i , update

q̃ti(s
t−1, at−1

i ) = q̃t−1
i (st−1, at−1

i ) + α(ñti(s
t−1, at−1

i ))

·
(
rt−1
i + γπt−1

i (st)⊤q̃t−1
i (st)− q̃t−1

i (st−1, at−1
i )

)
.

(5.6)

Update πti: Pick b̂ri ∈ arg maxπi∈∆(Ai) π
⊤
i q

t−1
i (st−1) and set

πti(s
t−1) = πt−1

i (st−1) + β(nt(st−1)) · (b̂ri − πt−1
i (st−1)). (5.7)

Sample action and observe reward:

ati ∼ (1− θ)πti(st) + θ · (1/|Ai|)1Ai
. (5.8)

Each player observes their own reward uti = ui(st, at).

Assumption 5.3.1. (a) The initial state distribution µ(s) > 0 for all s ∈ S.
Additionally, mins,s′∈S,a∈A P (s

′|s, a) > 0.
(b) The step-sizes satisfy

(i) ∑∞
n=0 α(n) =∞,∑∞

n=0 β(n) =∞, limn→∞ α(n) = limn→∞ β(n) = 0;

(ii) There exist some q, q′ ⩾ 2, ∑∞
n=0 α(n)

1+q/2 <∞ and ∑∞
n=0 β(n)

1+q′/2 <∞;

(iii) supn α([xn])/α(n) < ∞, supn β([xn])/β(n) < ∞ for all x ∈ (0, 1), where [xn] de-
notes the largest integer less than or equal to xn. Additionally, {α(n)}, {β(n)} are
non-increasing in n;

(iv) limn→∞ β(n)/α(n) = 0.

Assumption 5.3.1-(a) is a standard assumption to ensure ergodicity of the Markov state
transition for learning Q-functions. Additionally, Assumption 5.3.1-(b) is standard assump-
tion on step sizes in actor-critic algorithms [275].

To study the convergent set of Algorithm 4, we apply two-timescale asynchronous stochas-
tic approximation (TTASA) theory (see Section C.1). The discrete-time updates in Algo-
rithm 4, along with Assumption 5.3.1, satisfy the conditions in Section C.1, as noted in
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Chapter 4. TTASA theory ensures two things: First, the (fast) q-function estimates asymp-
totically track the Q-functions of the current policy. Using Assumption 5.3.1 and the con-
traction property of temporal difference operator, we observe that

lim
t→∞
∥q̃ti(s)−Qi(s; πti , π

t,θ
−i)∥∞ = 0

holds with probability 1 for all s ∈ S and i ∈ I, where

πt,θ−i(s) := (1− θ)πt−i + θ(1/|Ai|) · 1Ai
.

Second, the convergent set of policy updates is the same as the convergent limit of any
absolutely continuous trajectory of the following differential inclusion:

d

dτ
ϖτ
i (s) ∈ η̄(s)

(
bri(s;ϖτ

i ,ϖτ ,θ
−i )−ϖ

τ
i (s)

)
, (5.9)

where τ ∈ [0,∞) is a continuous-time index,

ϖτ ,θ
−i (s) := (1− θ)ϖτ

−i(s) + θ(1/|A−i|) · 1A−i
, ∀ s ∈ S, i ∈ I,

and η̄(s) ∈ [η, 1] for some positive scalar η that depends on the ergodicity of the probability
transition function.

Convergence Guarantees
We now present the first main result of this paper, which characterizes the convergent set
of policy updates in Algorithm 4 in terms of the superlevel set of a MNPF over the set of
approximate Nash equilibria. This characterization is based on the closeness parameter κ
associated with the MNPF.

Theorem 5.3.1. Consider a Markov game G and an associated MNPF Φ with closeness-
parameter κ. Under Assumptions 5.3.1, the sequence of policies {πt}∞t=0 induced by Algorithm
4, with the exploration parameter

θ ⩽ λ

√
2|S|(1− γ)2

4umax
(

1
(1−γ) +

η
D

) , (5.10)

converge almost surely to the set

Λ :=
{
π : Φ(µ, π) ⩾ min

y∈NE(Θ(κ+λ))
Φ(µ, y)

}
,

where λ is a positive scalar,

Θ := DN2
√

2|S|/η,D =
1

1− γ max
i,π−i,s

∣∣∣∣dπ†
i ,π−i
µ (s)/µ(s)

∣∣∣∣, π†
i ∈ arg max

πi∈Πi

Vi(µ, πi, π−i),

and η is a positive scalar that depends on the ergodicity of the probability transition function.
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Proof. Following Section 5.3, it is sufficient to show that every absolutely continuous trajec-
tory of (5.9) converges to the set Λ.

We construct a Lyapunov function candidate ϕ : [0,∞)→ R as

ϕ(τ ) = max
ϖ∈Π

Φ(µ,ϖ)−Φ(µ,ϖτ ),

which is the difference of the MNPF at its maximizer with that of its value at ϖτ . The key
step in the proof is to show that ϕ(τ ) is weakly decreasing in τ as long asϖτ ̸∈ NE(Θ(κ+λ)).
We claim that it is sufficient to establish that for any ϖτ that is an ϵ−stationary Nash
equilibrium, the following equation holds

dϕ(τ )

dτ
⩽ (κ+ λ)N2

√
2|S| − η

D
ϵ =

η

D
Θ(κ+ λ)− η

D
ϵ. (5.11)

Indeed, if (5.11) holds, then for any ϵ > Θ(κ + λ), ϕ(τ ) decreases at a rate η/D · (ϵ−
Θ(κ+ λ)). Since ϕ is bounded, any absolutely continuous trajectory of (5.9) will enter the
set NE(Θ(κ+ λ)) in finite time, starting from any initial policy. Subsequently, even if trajec-
tories leave this set, the function Φ(µ, ·) cannot decrease below minπ∈NE(Θ(κ+λ)) Φ(µ, π), and
once the trajectory leaves this set the potential function will always increase (as dϕ(τ )/dτ <
0). Thus, it only remains to show that (5.11) hold. Towards that goal, we note that

d

dτ
ϕ(τ ) = −

∑
i∈I,s∈S

(
∂Φ(µ,ϖτ )

∂ϖi(s)

)⊤
dϖτ

i (s)

dτ

=
∑

i∈I,s∈S

(
∂Vi(µ,ϖτ )

∂ϖi(s)
− ∂Φ(µ,ϖτ )

∂ϖi(s)

)⊤
dϖτ

i (s)

dτ

−
∑

i∈I,s∈S

(
∂Vi(µ,ϖτ )

∂ϖi(s)

)⊤
dϖτ

i (s)

dτ

(i)
⩽ κ

∑
i∈I

√ ∑
s∈S,ai∈Ai

(bri(s, ai;ϖτ
i ,ϖτ ,θ

i )−ϖτ
i (s, ai))2

+
∑

i∈I,s∈S

dϖ
τ

µ (s)

γ − 1 η̄(s)Qi(s;ϖτ )⊤
(

b̃rτ ,θ
i (s)−ϖτ

i (s)
)

,

⩽ κN
√
|S|

∑
ai∈Ai

(
bri(s, ai;ϖτ

i ,ϖτ ,θ
i ) +ϖτ

i (s, ai)
)

+
∑

i∈I,s∈S

dϖ
τ

µ (s)

γ − 1 η̄(s)Qi(s;ϖτ )⊤
(

b̃rτ ,θ
i (s)−ϖτ

i (s)
)

,

= κN
√

2|S|

+
∑

i∈I,s∈S

dϖ
τ

µ (s)

γ − 1 η̄(s)Qi(s;ϖτ )⊤
(

b̃rτ ,θ
i (s)−ϖτ

i (s)
)

, (5.12)
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where b̃rτ ,θ
i (s) ∈ bri(s;ϖτ

i ,ϖτ ,θ
−i ), and (i) is due to Lemma 5.2.1. Next, by adding and

subtracting the term ∑
i∈I,s∈S

dϖτ
µ (s)
γ−1 η̄(s)Qi(s;ϖτ

i ,ϖτ ,θ
−i )

⊤
(

b̃rτ ,θ
i (s)−ϖτ

i (s)
)

on the RHS
in (5.12), we obtain

dϕ(τ )

dτ
⩽ κN

√
2|S|

+
∑

i∈I,s∈S

dϖ
τ

µ (s)

γ − 1 η̄(s)(Qi(s;ϖτ )−Qi(s;ϖτ
i ,ϖτ ,θ

−i ))
⊤
(

b̃rτ ,θ
i (s)−ϖτ

i (s)
)

︸ ︷︷ ︸
Term 1

+
∑

i∈I,s∈S

dϖ
τ

µ (s)

γ − 1 η̄(s)Qi(s;ϖτ
i ,ϖτ ,θ

−i )
⊤
(

b̃rτ ,θ
i (s)−ϖτ

i (s)
)

︸ ︷︷ ︸
Term 2

, (5.13)

First, we bound Term 1 in the above equation. Note that

Term 1 ⩽
1

1− γ
∑
i∈I

max
s∈S

∣∣∣∣∣(Qi(s;ϖτ )−Qi(s;ϖτ
i ,ϖτ ,θ

−i ))
⊤
(

b̃rτ ,θ
i (s)−ϖτ

i (s)
) ∣∣∣∣∣

⩽
2

1− γ
∑
i∈I

max
s∈S,ai∈Ai

|(Qi(s, ai;ϖτ )−Qi(s, ai;ϖτ
i ,ϖτ ,θ

−i ))|

⩽
4θN2

(1− γ)3umax, (5.14)

where the last inequality is due to Lemma D.1.4. Next, we analyze Term 2 in (5.13). Using
(5.5), it holds that, for every i ∈ I,

Qi(s;ϖτ
i ,ϖτ ,θ

−i )
⊤
(

b̃rτ ,θ
i (s)−ϖτ

i (s)
)
⩾ 0.

Furthermore, given the fact that η̄(s) > η and dϖ
τ

µ (s) ⩾ 0 for all i ∈ I, s ∈ S, we bound

Term 2 ⩽ − η

1− γ
∑
i,s
dϖ

τ

µ (s)Qi(s;ϖτ
i ,ϖτ ,θ

−i )
⊤
(

b̃rτ ,θ
i (s)−ϖτ

i (s)
)

. (5.15)

We claim that ∑
i,s
dϖ

τ

µ (s)Qi(s;ϖτ
i ,ϖτ ,θ

−i )
⊤
(

b̃rτ ,θ
i (s)−ϖτ

i (s)
)

⩾ 1/D ·
∑
i,s
d
π†

i ,ϖτ ,θ
−i

µ (s)Qi(s;ϖτ
i ,ϖτ ,θ

−i )
⊤
(
π†
i (s)−ϖ

τ
i (s)

)
, (5.16)
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where π†
i ∈ arg maxπi∈Πi

Vi(µ, πi,ϖτ
−i) be a best response2 of player i, given that the strategy

of other players is ϖτ
−i. Indeed, note that

∑
i,s
d
π†

i ,ϖτ ,θ
−i

µ (s)Qi(s;ϖτ
i ,ϖτ ,θ

−i )
⊤
(
π†
i (s)−ϖ

τ
i (s)

)

⩽
∑
i,s
d
π†

i ,ϖτ ,θ
−i

µ (s) max
π̂i∈∆(Ai)

Qi(s;ϖτ
i ,ϖτ ,θ

−i )
⊤ (π̂i(s)−ϖτ

i (s))

⩽
∑
i,s
dϖ

τ

µ (s)

∥∥∥∥∥d
π†

i ,ϖτ ,θ
−i

µ

dϖ
τ

µ

∥∥∥∥∥
∞
· max
π̂i∈∆(Ai)

Qi(s;ϖτ
i ,ϖτ

−i)
⊤ (π̂i(s)−ϖτ

i (s))

(i)
⩽ D

∑
i,s
dϖ

τ

µ (s) · max
π̂i∈∆(Ai)

Qi(s;ϖτ
i ,ϖτ ,θ

i )⊤ (π̂i(s)−ϖτ
i (s))

= D
∑
i,s
dϖ

τ

µ (s) ·Qi(s;ϖτ
i ,ϖτ ,θ

−i )
⊤
(

b̃rτ ,θ
i (s)−ϖτ

i (s)
)

, (5.17)

where (i) is due to the fact that dϖτ ,θ
µ (s) ⩾ (1− γ)µ(s) along with the definition of D.

Using (5.16) in (5.15), we obtain

Term 2

⩽ − η

D(1− γ)
∑
i,s
d
π†

i ,ϖτ ,θ
−i

µ (s) · max
π̂i∈∆(Ai)

Qi(s;ϖτ
i ,ϖτ ,θ

−i )
⊤ (π̂i(s)−ϖτ

i (s))

⩽ − η

D(1− γ)
∑
i,s
d
π†

i ,ϖτ ,θ
−i

µ (s)Qi(s;ϖτ
i ,ϖτ ,θ

−i )
⊤
(
π†
i (s)−ϖ

τ
i (s)

)
, (5.18)

where the last inequality is because π†
i ∈ ∆(Ai). Finally, note that

∑
i,s
d
π†

i ,ϖτ ,θ
−i

µ (s)Qi(s;ϖτ
i ,ϖτ ,θ

−i )
⊤
(
π†
i (s)−ϖ

τ
i (s)

)

=
∑
i,s
d
π†

i ,ϖτ
−i

µ (s)
(
Qi(s;ϖτ

i ,ϖτ ,θ
−i )− Vi(s,ϖτ

i ,ϖτ ,θ
−i )

)⊤
(π†
i (s)−ϖ

τ (s))

= (1− γ)
∑
i

Vi(µ, π†
i ,ϖ

τ ,θ
−i )− Vi(µ,ϖτ

i ,ϖτ ,θ
−i ), (5.19)

where the last inequality is due to multi-agent performance difference lemma (Lemma D.1.5).
2Note that π†

i maximizes the total payoff instead of just maximizing the payoff of one-stage deviation.
Therefore, π†

i is different from the optimal one-stage deviation policy. We drop the dependence of π†
i on ϖτ

−i
for notational simplicity.
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Combining (5.18) and (5.19), we obtain

Term 2⩽− η

D

∑
i

(
Vi(µ, π†

i ,ϖ
τ ,θ
−i )− Vi(µ,ϖτ

i ,ϖτ ,θ
−i )

)
⩽ − η

D

∑
i

(
Vi(µ, π†

i ,ϖτ
−i)− Vi(µ,ϖτ

i ,ϖτ
−i)

)
+

2η
D

max
πi∈Πi

∑
i

|Vi(µ, πi,ϖτ ,θ
−i )− Vi(µ, π†

i ,ϖτ
−i)|

⩽ − η
D

∑
i

(
Vi(µ, π†

i ,ϖτ
−i)− Vi(µ,ϖτ

i ,ϖτ
−i)

)
+

4ηθN2

D(1− γ)2umax, (5.20)

where the last inequality is due to Lemma D.1.3. Using (5.14) and (5.20) in (5.13), we obtain

dϕ(τ )

dτ
⩽ κN

√
2|S|+ 4θN2

(1− γ)3umax +
4ηθN2

D(1− γ)2umax

− η

D

∑
i

(
Vi(µ, π†

i ,ϖτ
−i)− Vi(µ,ϖτ

i ,ϖτ
−i)

)
,

where we used the fact that η ⩽ 1. Since

θ ⩽ λ

√
2|S|(1− γ)2

4umax
(

1
(1−γ) +

η
D

) ,

it ensures that

dϕ(τ )

dτ
⩽ (κ+ λ)N2

√
2|S| − η

D

∑
i

(
Vi(µ, π†

i ,ϖτ
−i)− Vi(µ,ϖτ

i ,ϖτ
−i)

)
.

From the definition of best response, Vi(µ, π†
i ,ϖτ

−i) ⩾ Vi(µ, πi,ϖτ
−i) for every i ∈ I. Fur-

thermore, if ϖτ is not an ϵ−Nash equilibrium then there exists a player i ∈ I and a policy
πi such that Vi(µ, πi,ϖτ

−i)− Vi(µ,ϖτ ) ⩾ −ϵ. Therefore,

dϕ(τ )

dτ
⩽ (κ+ λ)N2

√
2|S| − η

D
ϵ.

This proves (5.11) and concludes the proof.

Remark 5.3.2. Theorem 5.3.1 can be viewed as a generalization of Theorem 4.2.1. In
particular, when players have homogeneous exploration rates and the setting corresponds to
a Markov potential game (i.e., κ = 0), Theorem 5.3.1 recovers the result of Theorem 4.2.1.
Setting λ = ϵη

DN2
√

2|S|
establishes the equivalence between the two.
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Next, we show that when game G has a finite number of equilibria and the function
Φ(µ, ·) is Lipschitz (Assumption 5.3.2), Theorem 5.3.1 can be strengthened. Specifically, we
show that the learning dynamics converge to neighborhood of equilibrium set instead of just
converging to a level set of the MNPF.

Assumption 5.3.2. The equilibrium set is finite NE(0) = {π∗1, π∗2, ...,π∗K}.

Assumption 5.3.2 has been adopted in previous literature in MARL (e.g. [144]). In fact,
[125] has shown that Assumption 5.3.2 holds generically. For any δ >, recall that NE(δ) is
the set of approximate Nash equilibrium with approximation parameter δ. We define Γ(δ) as
the maximum distance between an approximate equilibrium in NE(δ) and the equilibrium
set.

Γ(δ) := max
π∈NE(δ)

min
k∈[K]

∥π− π∗k∥. (5.21)

Since NE(0) denotes the set of Nash equilibria, Γ(0) = 0.

Theorem 5.3.2. Consider a Markov game G and an associated MNPF Φ with closeness-
parameter κ. Suppose Assumptions 5.3.1-5.3.2 hold. There exists κ̄, ϵ̄ such that if κ+ λ ⩽ κ̄,
for some λ > 0, the sequence of policies {πt}∞t=0 induced by Algorithm 4, with the exploration
parameter (5.10), converge almost surely to the set Λ̃ :=

{
π|∃ k ∈ [K] : ∥π− π∗k∥ ⩽ χ

}
,

χ := min
0⩽ϵ⩽ϵ̄

Γ(ϵ+ Θ(κ+ λ)) + (2DLN
√
|S|Γ(Θ(κ+ λ)))/(ηϵ), (5.22)

λ is a positive scalar, Θ,D, η are defined in Theorem 5.3.1, and L is defined in Lemma
D.1.1.

Remark 5.3.3. In (5.22), χ is weakly increasing with κ and λ, as Γ(·) is weakly increasing
and upper-semicontinuous (see Lemma D.1.2). If the game is a Markov potential game (i.e.,
κ = 0) and players have access to exact Q-functions, then they do not need to explore (i.e.,
λ = 0). In this case, the policy updates in (5.7), evaluated at the exact Q-functions, converge
to a Nash equilibrium. Indeed, with κ = 0 and λ = 0, one can follow the same steps as in
the proof of Theorem 5.3.2 to show that the second term in the optimization problem (5.22)
does not depend on ε since Γ(0) = 0, and consequently, χ = 0.

Proof of Theorem 5.3.2. Similar to the proof of Theorem 5.3.1, this result boils down to
show that, under the conditions presented in Theorem statement, any absolutely continuous
trajectory of the continuous time differential inclusion (5.9) converges to the set Λ̃. The
proof comprises of two parts: first, we show that the trajectory of dynamical system (5.9)
will eventually converge to a close neighborhood of an approximate equilibrium, where one
π∗k for some k ∈ [K]. Second, we bound the maximum distance that the policy trajectory
can be away from that equilibrium. These two steps together show that equilibrium will be
refined in the set Γ̃ that is in the neighborhood of one equilibrium π∗k.
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Before presenting each of these steps in detail, we present a few preliminary results that
will be used later. Define

d∗ := min
k,l∈[K],k ̸=l

∥π∗k − π∗l∥

as the minimum distance between a pair of equilibrium policies. Additionally, define
B(π; r) := {π′ ∈ Π : ∥π′ − π∥2 ⩽ r}

as the neighborhood set of a policy π with radius r. Let ζ be such that Γ(ζ) ⩽ d∗/4, which
exists due to Lemma D.1.2. This construction ensures that for any k, l ∈ [K] such that k ̸= l
it holds that

B(π∗k; Γ(ζ)) ∩B(π∗l; Γ(ζ)) = ∅.
Moreover, from the definition of Γ(·) in (5.21), it must hold that for any δ > 0, NE(δ) ⊆
∪k∈[K]B(π∗k; Γ(δ)). Additionally, using the fact that for any k, l ∈ [K] such that k ̸= l,
it must hold that B(π∗k; Γ(ζ)) ∩ B(π∗l; Γ(ζ)) = ∅,. Therefore, we conclude that NE(ζ) is
contained in a disjoint union of sets, which is ⊔k∈[K]B(π∗k; Γ(ζ)). We select κ̄, ϵ̄ such that

ϵ̄+ Θκ̄ < ζ/2, and, Γ(ϵ̄+ Θκ̄) ⩽
ζηd∗

32NDL
√
S

.

Lemma D.1.2 ensures that such construction exists. Finally, we define κ′ := κ+ λ.
From the proof of Theorem 5.3.1 we know that starting from any initial policy, any

solution of (5.9) eventually hits the set NE(ϵ̄+ Θκ′) in finite time. Suppose that the tra-
jectory leaves the component of the set NE(ϵ̄+ Θκ′) around the neighborhood of π∗k and
enters the component in the neighborhood of π∗l, for some k, l ∈ [K] such that k ̸= l.
Since ϵ̄ + Θκ′ ⩽ ϵ̄ + Θκ̄ < ζ, it holds that NE(ϵ̄ + Θκ′) ⊆ NE(ζ), which is contained
in the set ⊔k∈[K]B(π∗k; Γ(ζ)). Therefore, any trajectory has to leave B(π∗k; Γ(ζ)) and
enter B(π∗l; Γ(ζ)). Let t1 denote the time when the trajectory leaves the component of
NE(ϵ̄+ Θκ′) in neighborhood of π∗k, t2 denote the time when it leaves B(π∗k; Γ(ζ)), t3 denote
the time when the trajectory enters B(π∗l; Γ(ζ)), and t4 denotes the time when the trajec-
tory enters the component of NE(ϵ̄+ Θκ) around π∗l. Since the function ϕ(τ ) is decreasing
outside NE(ϵ̄+ Θκ′), it must hold that Φ(µ,ϖt2) ⩾ Φ(µ,ϖt1) and Φ(µ,ϖt4) ⩾ Φ(µ,ϖt3).
We claim that

∥ϖt2 −ϖt3∥ ⩾ d∗/2. (5.23)
We show this by contradiction. Suppose that ∥ϖt2 −ϖt3∥ < d∗/2. Since ϖt2 lies on the
boundary of B(π∗k; Γ(ζ)) and ϖt3 on B(π∗l; Γ(ζ)), it must hold that

∥ϖt2 − π∗k∥ = Γ(ζ) = ∥ϖt3 − π∗l∥.
Furthermore, using the definition of d∗, we know that ∥π∗k − π∗l∥ ⩾ d∗. But, from triangle
inequality it must hold that

∥π∗k − π∗l∥ ⩽ ∥π∗k −ϖt2∥+ ∥ϖt2 −ϖt3∥+ ∥ϖt3 − π∗l∥
= 2Γ(ζ) + ∥ϖt2 −ϖt3∥ < d∗,
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which leads to a contradiction. Thus, (5.23) holds.
Using (5.23) and the fact that ∥ϖ̇τ∥ ⩽ 2N

√
|S|, it must hold that t3− t2 ⩾ d∗/(4N

√
|S|).

Additionally, using the fact the trajectory in the time interval [t2, t3] lies outside NE(ζ) and
(5.11), we conclude that

ϕ(t3)− ϕ(t2) ⩽ −(ζ −Θκ̄)
ηd∗

4ND
√
S

. (5.24)

Define
ϕ := min

π∈B(π∗k;Γ(ϵ̄+Θκ′))
Φ(µ, π), ϕ̄ := max

π∈B(π∗l;Γ(ϵ̄+Θκ′))
ϕ(π).

We claim that

ϕ̄ ⩽ ϕ. (5.25)

Suppose that this is true, it shows that once the trajectory leaves the component of ap-
proximate equilibrium around π∗k and enters the component of π∗l it will never enter the
component of approximate equilibrium around π∗k in future. Thus, eventually the tra-
jectories will visit the component of approximate equilibrium only around at most one
equilibrium. Now we show (5.25). Let yk ∈ B(π∗k; Γ(ϵ̄+ Θκ′)), yl ∈ B(π∗l; Γ(ϵ̄+ Θκ′))
be such that ϕ = ϕ(yk), ϕ̄ = ϕ(yl). This ensures that ∥yk −ϖt1∥ ⩽ 2Γ(ϵ̄ + Θκ′) and
∥yl −ϖt4∥ ⩽ 2Γ(ϵ̄+ Θκ′). Furthermore, from the Lipschitz property of potential function,
it holds that

ϕ(ϖt2)− ϕ ⩽ ϕ(ϖt1)− ϕ ⩽ L∥yk −ϖt1∥ ⩽ 2LΓ(ϵ̄+ Θκ̄),
ϕ̄− ϕ(ϖt3) ⩽ ϕ̄− ϕ(ϖt4) ⩽ L∥yl −ϖt4∥ ⩽ 2LΓ(ϵ̄+ Θκ̄).

Combining the two inequalities and using (5.24), we obtain

ϕ̄− ϕ ⩽ 4LΓ(ϵ̄+ Θκ̄)− (ζ −Θκ̄)
ηd∗

4ND
√
S

.

The choice of κ̄ and ϵ̄ ensures that

4LΓ(ϵ̄+ Θκ̄)− (ζ −Θκ̄)
d∗η

16NLS < 0,

which shows (5.25).
To summarize, so far we have shown that there exists a time T after which the trajectories

will only visit the approximate equilibrium set that is close to one equilibrium. Let’s say
that the equilibrium is π∗k. Next, we characterize the maximum distance the trajectory can
travel around the equilibrium π∗k.

Fix ϵ, ϵ1 arbitrarily such that 0 ⩽ ϵ1 < ϵ ⩽ ϵ̄. Let τ1 denote the time when the trajectory
leaves the component of NE(ϵ1 + Θκ′) in neighborhood of π∗k, τ2 denote the time when
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the trajectory leaves B(π∗k; Γ(ϵ+ Θκ′)), τ3 denote the time when the trajectory returns to
this neighborhood again, and τ4 denotes the time enters the component of NE(ϵ1 + Θκ′) in
neighborhood of π∗k.

Let r∗ denote the maximum distance the trajectory goes outside of B(π∗k; Γ(ϵ+ Θκ′)).
Since ∥ϖ̇τ∥ ⩽ 2N

√
|S|, it must hold that

τ3 − τ2 ⩾
r∗

N
√
|S|

.

Furthermore, since ϕ̇ ⩽ −ηϵ/D during time interval [τ2, τ3], it must hold that ϕ(τ3) −
ϕ(τ2) ⩽ − r∗ηϵ

ND
√

|S|
. Moreover, note that ϕ(τ2) ⩽ ϕ(τ1), and ϕ(τ4) ⩽ ϕ(τ3). This implies

ϕ(τ1)− ϕ(τ4) ⩾ ϕ(τ2)− ϕ(τ3) ⩾
r∗ηϵ

ND
√
|S|

.

Furthermore, by Lipschitz continuity

ϕ(τ1)− ϕ(τ4) ⩽ L∥ϖτ1 −ϖτ4∥ ⩽ L(∥ϖτ1 − π∗k∥+ ∥π∗k −ϖτ4∥) ⩽ 2LΓ(ϵ1 + Θκ′).

Combining previous two inequalities we obtain that

r∗ηϵ

ND
√
|S|

⩽ 2LΓ(ϵ1 + Θκ′) =⇒ r∗ ⩽
2DLN

√
|S|Γ(ϵ1 + Θκ′)

ηϵ
.

The proof concludes by noting that the maximum distance the trajectories eventually
goes away from π∗k is

Γ(ϵ+ Θκ′) +
2DLN

√
|S|Γ(ϵ1 + Θκ′)

ηϵ
.

Since ϵ, ϵ1 are chosen arbitrarily, we conclude the proof of the theorem.

5.4 Numerical Experiments
We demonstrate the performance of the proposed learning dynamics (Algorithm 4) in a
perturbed Markov team game with a parallel link network of L links used by N travelers. At
each stage k, player i chooses a link aki ∈ [L], and the network state is s = (sℓ)ℓ∈[L], where
sℓ = 1 means link ℓ is unsafe. A link becomes unsafe with probability ν1 if the number of
users exceeds a threshold T , and ν2 otherwise.
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The utility of player i is a combination of individual and common rewards:

ui(s, a) = ρi
L∑
ℓ=1

I(ai = ℓ)
(
bℓ − (1 + sℓ)mℓ

∑
j∈I

I(aj = ℓ)
)

︸ ︷︷ ︸
Individual Reward

+
∑
i∈N

L∑
ℓ=1

I(ai = ℓ)
(
bℓ − (1 + sℓ)mℓ

∑
j∈I

I(aj = ℓ)
)

︸ ︷︷ ︸
Common Reward

.

Here, bℓ is the fixed utility of using link ℓ ∈ [L], mℓ is a link-dependent constant which
weights the effect of congestion on the cost and (1 + sℓ)mℓ

∑
j∈I I(aj = ℓ) represents the

cost of using ℓ given the total number of users on ℓ and the network state. The utility
depends on two terms: one is an individual reward function and another is the common
reward term. The parameter ρi characterizes how much agent i weighs individual reward
over the common interest.

Although the game is not a Markov potential game, the expected long-run common re-
ward acts as a near-potential function with closeness parameter depending on ρ = maxi∈I ρi.

We simulate the system with N = 4, L = 2, T = 2, ν1 = 0.8, ν2 = 0.2, m1 = 2, b1 = 9,
m2 = 4, and b2 = 16, for 5000 stages. The step sizes are αi(n) = 1/n0.5 and βi(n) = 1/n0.9.
We set ρi = (i/N) ·K, with K ∈ {10, 100, 500, 1000}. Initial link states are random.

For the exploration parameter θ = 0.05 and the perturbation parameter ρi with K = 10,
policies converge close to Nash equilibrium (Figure 5.2). Interestingly, we observe that the
Nash gap goes close to zero even though K ̸= 0 indicating that the parameter κ for this game
is a very small number. Furthermore, we see that the Nash approximation gaps3 increase
with θ and K (Figure 5.3), which validates our theoretical convergence guarantees.

5.5 Concluding Remarks
In this chapter, we characterize the set of convergent strategies under decentralized actor-
critic dynamics in general-sum Markov games. This extends the results from Chapter 5,
which focused exclusively on Markov potential games—a special subclass of general-sum
Markov games. To facilitate this extension, we introduce a novel framework of Markov
near-potential functions, inspired by the α-potential functions discussed in Chapter 4. This
framework guarantees the existence of a near-potential function for any Markov game, such
that the rate of change of a player’s value function with respect to their own strategy is well-
approximated by the rate of change of the near-potential function. Central to our analysis is
the observation that the near-potential function serves as an approximate Lyapunov function
for the policy updates in decentralized actor-critic algorithm, enabling us to characterize
convergence behavior even beyond potential games.

3We define the Nash gap to be maxi∈I maxs∈S |Vi(s,πtmax)−maxπi∈Πi
Vi(s,πi,πtmax

−i )|, where tmax is
the number of iterations of Algorithm 4.
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(a) (b) (c)

Figure 5.2: Convergence of q-estimate, policies, and Nash error after 105 steps of Algorithm
4. In each of the figures the four curves correspond to four players. Each curve represents the
mean value of the quantity over 5 trials, and we give error margins of ±1 standard deviation.

Figure 5.3: Variation of Nash gap with change in the exploration rate θ and the reward
perturbation K. Increasing both of these parameters increases the Nash gap.
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Chapter 6

Decentralized Learning in Matching
Markets

Online decision-making under uncertainty is one of the central problems in modern machine
learning, reflecting the need for efficient and high-performing algorithms for real-time learn-
ing in real-world settings. Despite being a well-researched area, there remains a broad lack
of understanding of how to deploy online learning algorithms in settings where they must
compete with each other for resources or information.

While classical problems in online learning focus on balancing the exploration of possible
choices with the exploitation of current knowledge (i.e., the exploration–exploitation trade-
off [228, 386]), the introduction of competition adds a new dimension to the problem [281,
15]—namely, the challenge of competing (perhaps unsuccessfully) for highly desired outcomes
or settling for less desired (but also less competitive) alternatives.

Broadly speaking, the dominant approach to handling competition in machine learning
has been to treat opponents as adversarial [87], despite a long-standing literature in eco-
nomics and game theory [252, 149] showing that agents who understand the competitive
structure of their environment can often outperform solutions based on worst-case assump-
tions.

In this chapter, we address the problem of online learning in competitive settings within
the context of two-sided matching markets. Two-sided matching markets match users on
one side of the market with those on the other to facilitate the exchange of goods or services.

In such settings, each user on one side of the market has a preference ordering over the
users on the other side. Since each user seeks to find their most desired match, this results in
a game in which a natural equilibrium concept is that of a stable matching, wherein no two
users would prefer switching from their current match to each other, given their preferences.
In seminal work, [151] proposed a simple and effective algorithm—the Deferred Acceptance
(DA) Algorithm—that users on one side of the market can implement to find such a solution
when every user knows their own preferences.

The algorithm has been widely used in applications ranging from kidney exchanges to
medical resident matching, where preferences can be assigned or reported to a central au-
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thority that performs the matching. However, recent years have seen the emergence of a new
form of online matching markets, such as online labor markets (e.g., TaskRabbit, Upwork),
online dating platforms (e.g., Tinder, Match.com), and online crowdsourcing platforms (e.g.,
Amazon Mechanical Turk), where users do not know their preferences a priori and can
interact with the market repeatedly to improve their match quality.

Motivated by these applications, we consider a generalization of the problem studied in
the seminal paper [151], wherein one side of the market—the agents—do not know their own
preferences but are able to interact repeatedly with the market. In particular, we analyze
a repeated game in which, at each round, agents can request to match with a user or firm
on the other side of the market. If, in a given round, multiple agents request the same
firm, the firm—assumed to be a myopic utility maximizer—accepts the request of its most
preferred agent (who receives a noisy measurement of their utility from the match, from
which they can learn their preferences) and rejects the others (who receive no information
about their preferences). This setup has been studied in a line of recent works on online
matching markets [256, 257, 363, 35].

Successful algorithms in this framework must simultaneously solve a statistical learning
problem (learning about an agent’s own preferences) and a competitive problem (ensuring
that agents secure their most desired match despite the presence of other self-interested
agents). Previous approaches to this problem propose algorithms that are centralized [256]
(where agents send their current beliefs about their preferences to a central platform that
performs the matching), require coordination between agents (i.e., a choreographed set of
strategies to minimize rejections)[363, 35], or assume agents can fully observe the market
outcomes of others[257].

In contrast, the DA algorithm—which we take as the full-information benchmark for
comparison—is (i) fully decentralized, (ii) coordination-free, and (iii) requires agents to make
decisions solely based on their own history of rejections and successful matches. Designing
learning algorithms that operate under conditions (i)–(iii) ensures scalability and privacy
in large-scale systems, where it is unrealistic to assume agents can track all other agents’
matchings. Thus, in this work, we focus on the question:

Does there exist a decentralized, coordination-free algorithm—based
only on agents’ local history of interactions—that provably converges
to a stable matching?

Contributions. In this chapter, we design algorithms for learning while matching in a
class of structured matching markets known as α reducible matching markets. This condition
ensures the existence of a unique stable matching and encompasses many realistic preference
structures, including serial dictatorship and no-crossing conditions [98]. We show that the
proposed algorithms incur stable regret with respect to the unique stable matching, which
grows at most logarithmically with the time horizon. The particular contributions of this
chapter are:
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1. We present a general framework for constructing decentralized, communication-free,
and coordination-free algorithms for learning while matching. In particular, we com-
bine index-based stochastic bandit algorithms—specifically the
Upper Confidence Bound (UCB) algorithm and Thompson Sampling [20, 228, 386]—to
address the statistical problem of learning an agent’s preferences, with a path-length
adversarial bandit algorithm [72, 425] to address the competitive problem. The result-
ing algorithms are fully decentralized and require no communication or coordination, as
each agent selects which firm to request based solely on their own history of collisions,
matches, and rewards.
Furthermore, the algorithms are “any-time” algorithms, meaning they do not require
knowledge of the time horizon or any specific parameters of the bandit instance beyond
the sub-Gaussian noise parameter.

2. We show that when the agents’ and firms’ preferences satisfy the α-reducibility con-
dition, and every agent uses the proposed algorithm, the regret accumulated by any
agent a with respect to the stable matching is

O

(
Ca|A||F | log(T )

∆2

)
,

where A is the set of agents, F is the set of firms, ∆ is the minimum sub-optimality
gap for any agent in the market, and Ca is a constant that depends on the α-reducible
structure of the market.

Related works
Sequential decision-making under uncertainty has been extensively studied in machine learn-
ing under the framework of multi-armed bandit (MAB) problems. In general, MAB problems
can be divided into two distinct categories, which differ in the type of feedback agents re-
ceive. Crucially, in both settings, the central challenge is to trade off the exploration of
actions with the exploitation of current knowledge.

The first class of MAB problems, known as stochastic MAB, provides agents with an
unbiased estimate of the utility of an action when it is played. Solutions to this problem
generally fall into two dominant algorithmic paradigms. The first, based on the principle
of optimism in the face of uncertainty, includes the well-known Upper Confidence Bound
(UCB) algorithm [228, 223] and its variants. The second approach, based on Thompson
Sampling, adopts a Bayesian perspective [359, 407]. Each of these approaches is known to
achieve optimal performance, measured in terms of regret: the expected cumulative utility
lost by following the algorithm instead of always selecting the optimal action (i.e., the best
action in hindsight with full information) [228, 6]. In particular, both paradigms are known
to achieve logarithmic regret—regret that grows at most logarithmically over time—which
is optimal for this class of problems up to constant factors.
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In this chapter, we present an algorithmic framework for learning in matching markets
that is compatible with either class of algorithm, and furthermore, achieves logarithmic
regret even in the presence of competition.

The second class of multi-armed bandit problems, originating from the literature on learn-
ing in games, seeks algorithms that perform well against arbitrary feedback sequences [87].
Solutions to this class of problems, known as adversarial bandit algorithms, remain an active
area of research. While it is well known that simple strategies such as multiplicative weights
can guarantee regret against the best fixed action in hindsight on the order of

√
T in the

worst case [87], designing algorithms that improve upon this bound when adversaries are not
worst-case remains an open problem. In this chapter, we leverage advances in the develop-
ment of path-length adversarial regret algorithms that address this challenge by guaranteeing
regret bounds that depend directly on the variation exhibited by the adversary [72, 425].

We briefly remark that several lines of research study multi-agent bandits. One such
line focuses on multi-agent bandits with collisions, primarily motivated by applications in
wireless spectrum sharing [255, 205, 350, 264, 71]. In these models, the arms do not have
preferences, and when multiple agents select the same arm, no agent receives any utility or
all incur maximum possible loss. These models differ from our setting, where both sides of
the market have preferences over one another, and in the event of a collision, only one agent
is matched. Another line of work explores collaborative learning in bandit settings [73, 88,
364], where agents can communicate and jointly learn a single bandit instance. Notably,
these settings typically do not model competition—i.e., more than one agent choosing the
same arm at the same time.

The particular intersection of multi-armed bandits and two-sided matching markets has
recently garnered considerable attention [256, 257, 35, 363]. To the best of our knowledge,
[116] presented the first numerical study on using MAB algorithms to learn preferences in
matching markets. However, it was only recently that [256] formally introduced the bandit
learning problem in matching markets, and generalized the notion of regret from the MAB
literature to matching markets via the concept of stable regret—i.e., the expected cumulative
utility benchmarked against the expected cumulative reward that would have been received
if every agent had consistently requested their match in a fixed stable matching.1 Moreover,
they proposed a centralized UCB-based algorithm that coordinates matching between agents
and firms based on each agent’s beliefs over preferences and play history, and achieves a regret
bound of O(|A||F | log(T )), where A and F are the sets of agents and firms, respectively,
and T is the time horizon.

In follow-up work, [257] proposed a decentralized bandit learning algorithm based on
UCB that allows agents to make decisions independently while still converging to a stable
matching, with a regret bound of O(exp(|F |4) log2(T )). More recently, [215] introduced
a Thompson Sampling-based variant of [257]. However, both of these approaches require

1Note that the stable matching need not be unique in general. Thus, the notion of stable regret must
be specified with respect to a particular stable matching. Typically, the literature focuses on two canonical
stable matchings: the agent-optimal and firm-optimal stable matchings.
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knowledge of the outcomes at other firms in each round, leaving open the question of whether
algorithms based solely on each agent’s local history of play can achieve similar guarantees.

Concurrently, [363] proposed a phased algorithm that uses communication between agents
to coordinate their actions. Under this information structure, their algorithm achieves re-
gret of O(|F |2|A|2 log(T )), but assumes that all firms have homogeneous preferences over
agents (also known as the serial dictatorship model). Follow-up work by [35] improved the
regret for serial dictatorship to O(|F ||A| log(T )) by designing a new algorithm. Addition-
ally, they showed that relaxing the serial dictatorship assumption to a weaker structural
condition yields O(poly(|A|, |F |) log(T )) regret. Although the algorithm in [35] allows for
some decentralization, it is still a phase-based approach in which agents follow a coordinated
protocol during specific rounds.

In this chapter, we propose a simple, decentralized, communication- and coordination-
free algorithm in which agents rely solely on their own local observations to learn while
matching. In contrast to prior works [256, 257, 363, 35], which rely exclusively on UCB-
based subroutines, we also show that our algorithmic framework naturally extends to a
Thompson Sampling variant.

We also remark on another line of research at the intersection of multi-armed bandits
and matching markets [188, 199, 85], which considers the problem of learning preferences
from the perspective of a platform.

Organization. The chapter is organized as follows: In Section 6.1, we introduce the general
problem setup, define matching markets, and describe the structural assumptions on the
preferences of agents and firms. In Section 6.2, we present the algorithmic design paradigm
along with a specific algorithm based on the Upper Confidence Bound. In Section 6.3, we
show that the algorithm incurs O(log(T )) regret and provide a brief sketch of the proof. In
Section 6.4, we study the performance of the algorithm through simulations. We conclude
the chapter in Section 6.5.

The proofs of our results are relegated to Appendix E. Additionally, we introduce another
important algorithmic variant based on Thompson Sampling and present similar results, also
in Appendix E.

6.1 Setup
We define a two-sided market M as a collection of agents A and firms F . In the setting
under consideration, we assume that each agent a ∈ A has unknown preferences over firms
f ∈ F , represented by utilities ua(f) ∈ R. Moreover, no two firms provide the same utility
to a given agent; that is, ua(f) ̸= ua(f ′) for f ̸= f ′.

We assume that each agent seeks to be matched to their most preferred firm, and that
firms have preferences over all agents, which are also captured by utilities uf (a) for each a
and f , such that no two agents yield the same utility to a firm; that is, uf (a) ̸= uf (a

′) for
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a ̸= a′. Importantly, we assume that firms know their own preference orderings over agents,
and that there are more firms than agents, i.e., |A| ⩽ |F |.

The interaction between agents and firms unfolds as follows: at each time step t =
1, . . . ,T , every agent a ∈ A independently requests a firm fa(t) ∈ F . Since agents request
independently, it is possible that multiple agents request the same firm f . For each f ∈ F ,
let

Af (t) := {a ∈ A : fa(t) = f}

denote the set of agents that request firm f at time t. At each time step t, we assume that
firm f accepts the request of its most preferred agent in Af (t), denoted by

af (t) := arg max
a∈Af (t)

uf (a),

and rejects the request of all other agents. The agent af (t) is said to be matched with firm
f at time t.

Moreover, every matched agent receives a noisy measurement of their utility, denoted
ra,f , such that

ra,f = ua(f) + ζa,f , (6.1)

where ζa,f is a zero-mean, one-sub-Gaussian random variable. Meanwhile, all agents who
are rejected are said to have collided on firm f , and receive no utility; that is, ra,f (t) = 0.

We restrict that agents only receive the following information at any time step t:

1. Ya(t) = 1 [agent a is matched to fa(t)], which indicates whether agent a is matched
at time t;

2. if matched, the agent receives a noisy measurement of their utility, Ua,f (t).

Remark 6.1.1. We note that in this setup, an agent does not know anything about how other
agents are performing in the market. Agents do not observe who gets successfully matched
to the firms they have requested, nor do they observe with whom they have collided. We
emphasize that this is the same information structure assumed by the DA algorithm, and it
is the key assumption that distinguishes our work from prior approaches to this problem [256,
257, 35, 363].

In the following subsection, we recall some important results from the matching market
literature that are crucial for the subsequent exposition.

Preliminaries on Matching Markets
To analyze the matching market defined in the previous section, we first review key concepts
from the literature on matching markets. A matching M : A → F is an injective function
such that M(a) = f denotes that agent a is matched with firm f .



CHAPTER 6. DECENTRALIZED LEARNING IN MATCHING MARKETS 93

A matching is called unstable if there exists an agent–firm pair (a, f) ∈ A×F such that

ua(M(a)) < ua(f) and uf (a) > uf (M
−1(f)).

In other words, the agent and the firm prefer each other over their current match; such a
pair is referred to as a blocking pair. A matching is said to be stable if it is not unstable.

It is well known that a market may admit multiple stable matchings. However, for
the purposes of this chapter, we focus on markets that are α-reducible, a property first
introduced in [9] and further analyzed in [98], which guarantees the existence of a unique
stable matching. Before formally describing this property, we introduce the notions of a
submarket and a fixed pair.

A submarket of M is a market M ′ such that M ′ = A′ ∪ F ′, where A′ ⊆ A, F ′ ⊆ F , and
|A′| ⩽ |F ′|.

A pair (a, f) ∈ A× F is called a fixed pair of the market M if

ua(f) ⩾ ua(f
′) for all f ′ ∈ F , and uf (a) ⩾ uf (a

′) for all a′ ∈ A.

In words, a fixed pair is an agent–firm pair that strictly prefer each other over any other
available option in the market.

We now define the notion of α-reducibility.

Definition 6.1.1 (α-reducibility). A market M = A∪ F is α-reducible if every sub-market
of M has a fixed pair.

The notion of α-reducibility is weaker than the no-crossing condition and serial dictator-
ship [98]. These conditions have been introduced in the effort to characterize the existence
and uniqueness of stable matchings. In [98], the authors show that every submarket of M
admits a unique stable matching if M is α-reducible.

The preceding property of α-reducible markets will be crucial for establishing regret
guarantees for the proposed algorithm in this chapter. Therefore, we assume that M is
α-reducible.

Remark 6.1.2. An important property of the α-reducibility assumption, which is central
to the subsequent analysis, is that it allows us to partition the market into a sequence of
submarkets by sequentially eliminating fixed pairs. More formally, let us define A0 = F0 = ∅
and M0 = M . Now, for i ⩾ 1, define inductively:

Ai ⊆ A \
i−1⋃
j=0
Aj , Fi ⊆ F \

i−1⋃
j=0
Fj

to be the sets of agents and firms that form fixed pairs in the market Mi−1. That is, for every
agent a ∈ Ai, there exists a unique firm f ∈ Fi such that (a, f) is a fixed pair in Mi−1. The
market then evolves as:

Mi :=

A \ i⋃
j=0
Aj

∪
F \ i⋃

j=0
Fj

 .
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Let K denote the total number of such submarkets {Mi}. Moreover, this decomposition of
the market is unique.

For any agent a ∈ A, we denote by f∗
a its match in the unique stable matching. Further-

more, let
Fa := {f ∈ F : ua(f) > ua(f

∗
a )}

be the set of firms that agent a prefers over its stable match. We call such firms super-optimal
firms for a.

Similarly, let
Fa := {f ∈ F : ua(f) < ua(f

∗
a )}

be the set of firms less preferred than the stable match by agent a. We call these sub-optimal
firms for a. Note the following lemma, which states a crucial property of super-optimal firms
in α-reducible markets.

Lemma 6.1.1. For any i ∈ [K] and agent a ∈ Ai, the set of super-optimal firms is contained
in ⋃i−1

j=1Fj.

An immediate consequence of Lemma 6.1.1 is that it induces a hierarchy in the market.
That is, an agent a ∈ Ai, for some i ∈ [K], is in a sense “higher ranked” than an agent
a′ ∈ Aj with j > i, since the stable match of the former can be super-optimal for the latter.
This hierarchy naturally manifests in the learning process, where the learning of agent a
creates an externality for agent a′.

6.2 Description of the Algorithm
In this section, we present a novel algorithm design principle that enables agents to learn their
preferences while ensuring competitive performance compared to the matching they could
have achieved had they known their preferences and used the DA algorithm. Throughout
this section, we assume that every agent a ∈ A uses these algorithms to decide which firm
to choose at any time t.

The proposed algorithms—by design—use only the feedback information outlined in
(1)–(2) in Section 6.1, and involve no implicit or explicit communication or coordination
strategies such as phase-based methods with coordinated actions [35] or partial observation
of other agents’ actions [257]. Thus, the algorithms operate in the same informational regime
as the DA algorithm but without assuming that agents know their preferences.

A key aspect of our approach is blending stochastic bandit (SB) algorithms with ad-
versarial bandit (AB) algorithms. In the subsequent exposition, we formally describe our
approach and demonstrate its desirable properties in terms of regret and convergence.

Before proceeding, we comment on the difficulties of the problem at hand and what
makes the analysis of these algorithms highly non-trivial. The key challenge in designing
algorithms for matching while learning is determining when to stop requesting super-optimal
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firms (i.e., firms that an agent prefers over their stable match) without any prior knowledge
of the market structure.

The crux of this problem lies in enabling an agent to learn that certain firms are unattain-
able due to competition, despite the non-stationarity of the environment arising from the
fact that other agents are simultaneously learning, while the agent does not know with whom
they collide or who is successfully matched in each round. Furthermore, due to the lack of
communication or coordination, agents cannot learn which firms are super-optimal without
risking numerous collisions.

A high-level sketch of the algorithm is provided in Algorithm 5, while the precise algo-
rithm—where agents use the UCB algorithm as a subroutine—is detailed in Algorithm 6.

Algorithm 5 High-level algorithmic description
Each agent a ∈ A, at every time t ∈ [T ]:

1. Keeps an ordering of firms according to an index computed by a stochastic bandit
subroutine.

2. Agent a goes through the firms one by one according to this ordering.

3. Using an adversarial bandit subroutine, decides whether to request the firm or to prune
it:

a) If a firm is requested, the agent either gets matched or collides.
b) If pruned, the agent moves to the next firm in the ordering.

4. Updates both the stochastic and adversarial bandit subroutines based on the feedback
received.

As per Algorithm 6, each agent is equipped with a stochastic bandit (SB) subroutine. At
every time step t ∈ [T ], the SB subroutine of each agent a maintains an ordering of firms
in decreasing order of preference according to an index (e.g., UCB). We denote the index of
firm f maintained by agent a at time t as UCBa,f (t).

At time t, each agent considers firms one by one in decreasing order of UCBa,f (t). For
any firm f considered by agent a, the agent decides either to request f or to prune2 it
(i.e., reject that firm). Specifically, agent a requests firm f with probability pa,f (t). Let
Pa,f (t) ∼ Bernoulli(pa,f (t)).

If a firm is pruned (i.e., Pa,f (t) = 0), then the agent considers the next best firm from
the sorted list, continuing this process until a firm is requested (i.e., Pa,f (t) = 1). If all firms
are pruned, the agent requests the firm with the highest index: arg maxf UCBa,f (t).

Once an agent decides which firm to request, it obtains a noisy utility measurement
if it is successfully matched. This feedback is used to update its UCB index. Based on

2Note that pruning here is not permanent; it indicates that a particular firm is not considered at that
time step.
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whether agent a prunes or requests a firm f , it updates pa,f using an adversarial bandit
(AB) subroutine. The details of this are given below.3

We note that not all firms are considered by agent a at every time t. Once an agent
decides to request a firm f , it does not consider firms in the set {f ′ ∈ F : Ia,f ′(t) < Ia,f (t)}.
Formally, for any agent-firm pair (a, f) ∈ A× F , define the event that agent a selects firm
f at time t to decide whether to request or prune it by

E
(c)
a,f (t) = 1

{
Pa,f ′(t) = 0, ∀f ′ : Ia,f (t) ⩽ Ia,f ′(t)

}
.

If firm f is considered by agent a, then the event that agent a requests f is denoted by

E
(r)
a,f (t) = 1

{
Pa,f (t) = 1, E(c)

a,f (t) = 1
}

.

Next, we describe the UCB computation method for the SB subroutine. Following which,
we illustrate how the matchings and collisions are used to update the probability pa,f (t) as
per an AB subroutine.

Stochastic Bandit Subroutine
The stochastic bandit subroutine is used to efficiently handle the inherent uncertainty in the
payoffs obtained upon successful matching. In this section, we develop the theory for the
setting in which agents use a UCB-based stochastic bandit (SB) subroutine. Similar results
for Thompson Sampling are provided in the Appendix.

To begin, we denote byMa,f (t) the number of times agent a has been successfully matched
with firm f up to time t. Similarly, let Ca,f (t) denote the number of times agent a has collided
with firm f up to time t. Given this notation, the UCB estimate of agent a for firm f at
time t [20] is given by

UCBa,f (t) = µ̂a,f (t− 1) +

√√√√√2 log
(
1 + M̄a(t) log2(M̄a(t))

)
Ma,f (t)

,

where M̄a(t) =
∑
f∈F Ma,f (t) and µ̂a,f (t− 1) is the empirical average of the payoffs received

from successfully matching to firm f up to time t− 1.
The UCB estimate consists of two parts: (i) the empirical mean, which captures the

exploitation aspect; and (ii) an exploration bonus that decreases as Ma,f (t) increases. We
remark that it does not depend on the number of collisions Ca,f (t).

Adversarial Bandit Subroutine
A key component of the proposed methodology is the use of an adversarial bandit (AB) sub-
routine to address the competitive aspect of the problem. In particular, the AB subroutine

3The corresponding algorithmic subroutine pullModule is presented in the Appendix.
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Algorithm 6 UCB based Decentralized Matching Algorithm (UCB-DMA)
Initialize: µ̂a,f = 0, Ma,f = 0, pa,f = 0.5, xa,f = 0.5, La,f = 0, ∀a ∈ A, f ∈ F
for t = 1 to T do

for each f ∈ F do
M̄a ←

∑
f∈F Ma,f

UCBa,f ← µ̂a,f +
√

2 log(1+(M̄a+1) log2(M̄a+1))
Ma,f

end for
ArgUCBa ← ArgDescendingSort({UCBa,f}f∈F )
i← 1
while i ⩽ |F | do
f ← ArgUCB[i]

a

Sample Pa,f ∼ Bernoulli(pa,f )
if Pa,f = 0 then
(xa,f , pa,f ,La,f )← AB Subroutine(Pa,f ,xa,f , pa,f ,La,f ,Ya)

else
if Pa,f = 1 then

Request firm f and receive (ra,Ya)
µ̂a,f ← Ya ·

µ̂a,fMa,f+ra

Ma,f+1 + (1− Ya) · µ̂a,f
Ma,f ←Ma,f + Ya
(xa,f , pa,f ,La,f )← AB Subroutine(Pa,f ,xa,f , pa,f ,La,f ,Ya)
break

end if
end if
i← i+ 1

end while
if i = |F |+ 1 then

Request firm ArgUCB[1]
a and receive (ra,Ya)

µ̂a,f ← Ya ·
µ̂a,fMa,f+ra

Ma,f+1 + (1− Ya) · µ̂a,f
Ma,f ←Ma,f + Ya

end if
end for
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updates the request probabilities (pa,f )f∈F so that the agent stops requesting firms on which
collisions are frequent, while ensuring it does not miss out on firms that are achievable. In-
tuitively, by design, the adversarial bandit algorithm learns to prune arms (firms) that lead
to frequent collisions and to request firms where successful matches are likely.

We demonstrate this by analyzing the regret of the AB subroutine, showing that high
regret is incurred if the algorithm either prunes too often when successful matching is possible
or requests a firm that is unachievable due to the frequent presence of higher-ranked agents.
By bounding the regret of the AB subroutine, we immediately obtain a bound on the number
of collisions.

We now describe the update scheme for pa,f (t) for any (a, f) at any time t ∈ [T ]. In this
work, we consider an optimistic mirror descent–based adversarial bandit (AB) subroutine
specialized from [72]. Interestingly, such AB algorithms have data-dependent regret bounds
[425, 72], unlike other AB algorithms like Exp3 [228, 386]. Since the competition in the
matching market is not actually adversarial, such data-dependent regret bounds enable us
to characterize the competition more effectively in the analysis rather than just treating
competition as adversarial.4 We note that the proof techniques developed here can also be
used to analyze an Exp3-based AB subroutine, but the regret bounds of such an approach
will not be as sharp.

For a given agent a, our algorithm associates a separate adversarial bandit (AB) subrou-
tine to every firm f ∈ F . Each AB algorithm has two arms, which correspond to the actions
of requesting the firm f or pruning it, each of which incurs different losses depending on the
outcome. In particular, if Pa,f (t) = 0, then it receives a fixed loss of 0; if Pa,f (t) = 1, the
loss received is +1 or −1 if it collides or matches, respectively.

If we denote the loss received by the AB subroutine associated with (a, f) at time t by
La,f (t), then we have

La,f (t) = Pa,f (t)
(
1− 2Ya(t)

)
.

Note that Ya(t) is unknown to any agent before requesting any firm, as it depends on the
requests made by other agents.

We note that the request probability pa,f is not updated at every time t, but only when
E

(c)
a,f (t) = 1 (i.e., if all firms with a higher UCB index have been pruned). As such, the

adversarial bandit algorithms can be seen as operating on a randomized timescale

τa,f (T ) = {t ∈ [T ] : E(c)
a,f (t) = 1},

which corresponds to the time steps on which agent a considers firm f . We also note that
pa,f (t+ 1) = pa,f (t) if t /∈ τa,f (T ).

For the specific AB algorithm we analyze (which is a version of optimistic mirror descent
with a log-barrier regularizer first studied in [425]), the simple setup of the losses leads to

4We review the required background on optimistic mirror descent–based AB algorithms in the Appendix
along with a result that characterizes the corresponding data-dependent regret bounds in the setting of
matching markets.
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a closed-form update for the probability of requesting or pruning a firm. In particular, for
every (a, f) ∈ A× F and t ∈ τa,f (T ), the optimistic mirror descent AB subroutine creates
unbiased estimates of the losses due to pruning and requesting, denoted by L̂

(prune)
a,f (t) and

L̂
(pull)
a,f (t), respectively.

In particular, if Pa,f (t) = 1

L̂
(prune)
a,f (t) =

1 + La,f (t− 1)
2 , L̂

(pull)
a,f (t) =

1− 2Ya(t)−La,f (t− 1)
2pa,f (t)

+
1 + La,f (t− 1)

2 .

On the other hand, if Pa,f (t) = 0 then

L̂
(prune)
a,f (t) =

−La,f (t− 1)
2(1− pa,f (t))

+
1 + La,f (t− 1)

2 , L̂
(pull)
a,f (t) =

1 + La,f (t− 1)
2 .

The term 1+La,f (t−1)
2 is an optimistic prediction of the losses based on the last round of

interaction [72]. Given these estimators the probability of requesting a firm is updated as:

pa,f (t+ 1) = (1−Λa,f (t))xa,f (t) + Λa,f (t)Pa,f (t),

where
xa,f (t) =

(
2 + ξ(t)−

√
4 + ξ(t)2

)
(2ξ(t))−1,

and
ξ(t) = η

(
L̂

(pull)
a,f (t)− L̂(prune)

a,f (t)
)
+

1
xa,f (t− 1) −

1
1− xa,f (t− 1)

is the result of a step of mirror descent with the log-barrier regularizer, and Λa,f (t) =
λ(1−La,f (t))

2+λ(1−La,f (t))
, for λ > 0, promotes exploration. The algorithmic description of this process

is stated in Algorithm 7.

6.3 Bounds on the regret of proposed algorithm
To capture the performance of the algorithm we use the natural notion of stable regret as
introduced in [256]. More formally, the stable regret accrued by any agent a ∈ A is

E[Ra(T )] = E

 T∑
t=1

ua,f∗
a
−

T∑
t=1

ua,fa(t)

 ⩽
∑
f∈Fa

∆a(f)E[Ma,f (T )] + ua(f
∗
a )

∑
f∈F

E[Ca,f (T )],

(6.2)

where ∆a(f) = ua(f∗
a )− ua(f) is the gap between the mean that agent a gets upon suc-

cessfully matching with its stable match as compared firm f . If there are no collisions, then
this regret definition is same as that used in stochastic bandits literature (cf. [228]). In the
following theorem, we present the regret of any agent using Algorithm 6:
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Algorithm 7 Pull Probability Update Module: AB Subroutine
Input: Pa,f ,xa,f , pa,f ,La,f ,Ya
Parameters: η ⩽ 1

50 , λ = 8η
if Pa,f = 0 then
L̂

(prune)
a,f ← −La,f

2(1−pa,f )
+

La,f+1
2

L̂
(pull)
a,f ← 1+La,f

2
La,f ← 0

else
if Pa,f = 1 then
L̂

(prune)
a,f ← 1+La,f

2
L̂

(pull)
a,f ← 1−2Ya−La,f

2pa,f
+

1+La,f
2

La,f ← 1− 2Ya
end if

end if
ξ ← η(L̂

(pull)
a,f − L̂(prune)

a,f ) + 1
xa,f
− 1

1−xa,f

xa,f ←
2+ξ−
√

4+ξ2

2ξ

Λa,f ←
λ(1−La,f )

2+λ(1−La,f )

pa,f ← (1−Λa,f )xa,f + Λa,fPa,f
Output: La,f ,xa,f , pa,f

Theorem 6.3.1. Suppose every agent a ∈ A uses Algorithm 6. Then, for any i ∈ [K]

i∑
j=1

∑
a∈Aj

E[Ra(T )] = O
(
Ci|F ||A|log(T )

(
1 + 1

∆2

))
,

where ∆ = mina,f ∆a,f and Ci is a constant dependent on market Mi and C1 < C2 < ... <
CK .

We see that the regret of any agent a ∈ A is logarithmic in the horizon T , which matches
the lower bound for single-player stochastic bandit algorithms [223]. As such, perhaps sur-
prisingly, we observe that in α-reducible markets, it is possible for agents to learn while
competing without incurring drastically worse regret in the long run. It is interesting to
note that the learning of an agent depends on its position in the market according to prefer-
ences (Remark 6.1.2). An agent low in the hierarchy incurs more regret during the learning
process due to the agents higher up in the hierarchy, mainly driven by the larger number
of collisions incurred while waiting for agents higher in the hierarchy to stop exploring. We
note that, in the worst case, the constant Ci can grow exponentially with the number of
agents in the market. This is a consequence of the proof technique and not a fundamental
limitation of the algorithmic design paradigm, as we show through numerical studies in the



CHAPTER 6. DECENTRALIZED LEARNING IN MATCHING MARKETS 101

next section. We leave it as future work to establish tighter regret bounds in terms of the
number of agents. In Appendix Chapter E, we also show that if Algorithm 6 uses a SB
subroutine based on Thompson Sampling, then a similar regret guarantee can be obtained.
We now present a sketch of the proof of Theorem 6.3.1.

Sketch of the proof. Before presenting the sketch, we first define a few notations to make
the exposition clear. Let

Ma,Fa
(T ) =

∑
f∈Fa

Ma,f (T ), Ma,Fa
(T ) =

∑
f∈Fa

Ma,f (T ).

Moreover, for any a ∈ A, define

Ha,f∗
a
(t) =

{
∃a′ ∈ A s.t. uf∗

a
(a′) ⩾ uf∗

a
(a), fa′(t) = f

}
,

which is the event that characterizes whether any other more preferred agent has requested
the stable match of agent a at time t.

Against this backdrop, we now present the following crucial lemma:

Lemma 6.3.1. Suppose every agent uses Algorithm 6 then the following holds:

(L1) For any i ∈ [K], the cumulative regret can be decomposed as

i∑
j=1

∑
a∈Aj

E[Ra(T )] = O
(

k∑
i=1

∑
a∈Ai

(E[Ma,Fa
(T )] +

∑
f∈F

f ̸={f∗
a }

E[Ca,f (T )] + E[
T∑
t=1

Ha,f∗
a
(t)])

)
;

(L2) For any i ∈ [K], the expected matches with suboptimal firm satisfies

i∑
j=1

∑
a∈Aj

E[Ma,Fa
(T )] = O

 i∑
j=1

∑
a∈Aj

|Fa| log(T )
(

1 + 1
∆2

)
+ E

 T∑
t=1

Ha,f∗
a
(t)

 ,

(L3) The expected number of collisions between for any agent a ∈ A satisfies

∑
f∈F

E[Ca,f (T )] = O

|F | log(T ) + E

Ma,Fa
(T ) +Ma,Fa

(T ) +
T∑
t=1

1

(
Ha,f∗

a
(t)
) ,

(L4) For any i ∈ [K], we have

i∑
j=1

∑
a∈Aj

E

 T∑
t=1

1

(
Ha,f∗

a
(t)
) = O

Ci
 i∑
j=1
|Aj |

 log(T )
(

1 + 1
∆2

) ,

where Ci is a constant dependent on market Mi such that C1 < C2 < ... < CK .
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(L5) For any i ∈ [K], we have

i∑
j=1

∑
a∈Aj

∑
f∈Fa

E[Ma,f (T )] ⩽ O

Ci
 i∑
j=1
|Aj |

 |F | log(T )
(

1 + 1
∆2

) .

Theorem 6.3.1 is proved using (L1)-(L5) from Lemma 6.3.1. Note that (L1) follows
from (6.2) and the definition of Ha,f∗

a
(t). From (L1) we see that to bound the regret

we need to consider three components: (i) expected number of matchings with subopti-
mal firms, (ii) expected number of collisions with any firm other than stable match, (iii)
the potential collisions at the stable match5. (L2) bounds the expected number of match-
ings with suboptimal firms. Note that the total matchings between agent a and firm f
is Ma,f (T ) =

∑T
t=1 1 (Ya(t) = 1, fa(t) = f). Thus, we present the following lemma which

plays a key role in the proof of (L2):

Lemma 6.3.2. The event that agent a chooses the firm f ∈ Fa and successfully matches at
time t ∈ [T ] satisfies

{Ya(t) = 1, fa(t) = f}

⊂
{
Ya(t) = 1, UCBa,f∗

a
(t) ⩽ UCBa,f (t)

}
∪ {E(r)

a,f (t) = 1,E(r)
a,f∗

a
(t) = 0}.

Lemma 6.3.2 separates the challenge associated with uncertainty from that of competi-
tion. Note that the first event on the right-hand side is standard in the analysis of the UCB
algorithm [228]. Meanwhile, the other event corresponds to the case when the stable firm is
pruned by agent a to avoid potential collisions. To bound the latter event, we use the regret
bounds for the adversarial bandit subroutine (see Appendix).

To bound (L3), we use the path-length-based regret bounds from [72, 425] for the adver-
sarial bandit subroutine. Meanwhile, to bound (L4), we use the α-reducibility assumption
and (L2). In particular, the α-reducibility assumption induces a hierarchy in the mar-
ket as described in Remark 6.1.2. This decomposition reduces the bound in (L4) to an
appropriate accounting of the number of matches with suboptimal firms via an induction
argument. Finally, (L5) follows again due to the hierarchy induced by α-reducibility and
using (L2)–(L4).

6.4 Experimental Study
In this section, we present numerical experiments that demonstrate and validate the results
presented in this chapter. Moreover, we observe that our algorithm performs surprisingly
well in general market structures, i.e., in markets that are not α-reducible. We leave it as
future work to establish regret bounds for the proposed algorithms in such general markets.

5by potential collision at stable match we mean total number of collision that would have been faced by
an agent at its stable firm had it always requested the stable firm



CHAPTER 6. DECENTRALIZED LEARNING IN MATCHING MARKETS 103

In both sets of experiments, we consider a market comprising 5 agents and 5 firms. We
study the following two settings:

(S-I). Randomly initialized preferences for agents and randomly initialized (but uniform)
preferences for firms. This setting ensures that the market is α-reducible.

(S-II). Randomly initialized preferences for both agents and firms. In this setting, we
specifically consider cases where α-reducibility does not hold. This provides directions for
future research in this area.

In our simulations, for every agent, we randomly sample the preference ordering of firms
and assign a mean reward in [0, 5] such that a successful match with the most preferred firm
gives mean reward 5, the least preferred firm gives mean reward 0, and the mean rewards
from other firms are equally spaced in between. The rewards follow a normal distribution
with variance 1. We run both Algorithm 6 and Algorithm 16 25 times for two randomly
sampled preference orderings in each of (S-I) and (S-II).

In Figure 6.1, we consider (S-I) and observe the performance of the algorithms. We see
that the mean regret (averaged over 25 runs) accumulated by the algorithms saturates very
quickly and agents identify their stable matches.

In Figure 6.2, we consider (S-II) and observe the performance of the algorithms. Sur-
prisingly, even without the α-reducibility structure, the mean regret6 (averaged over 25 runs)
accumulated by the algorithms saturates quickly and agents identify their stable matches.
This presents an opportunity to further explore the algorithms presented in this chapter for
general markets.

Furthermore, in both (S-I) and (S-II), we observe that TS-DMA exhibits higher variance
but converges faster than UCB-DMA. This is because, compared to UCB-DMA, TS-DMA
very rarely encounters scenarios where all firms get pruned by the adversarial bandit module.
We also note that in some cases the regret can be negative (which is desirable), as shown in
Figure 6.1(c) for the red agent.

6.5 Concluding Remarks
We consider the problem of bandit learning in two-sided matching markets comprising agents
and firms. We focus on the setting where agents have unknown preferences over the firms.
In this chapter, we present a simple design principle for a decentralized, communication- and
coordination-free algorithm for learning in two-sided matching markets.

The primary challenge in learning in two-sided matching markets is to balance explo-
ration, exploitation, and collision avoidance. We embed these properties into the algorithm
through the novel idea of blending a stochastic bandit subroutine with an adversarial bandit
subroutine. The stochastic bandit subroutine manages the exploration-exploitation trade-off,
while the adversarial bandit subroutine limits collisions.

As an instance of this design principle, we present an algorithm that uses a stochastic
bandit subroutine based on UCB and an adversarial bandit subroutine based on the Opti-

6Here, mean regret refers to the agent-optimal stable regret [257]
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(a) UCB-DMA(Algorithm 6) (b) UCB-DMA(Algorithm 6)

(c) TS-DMA(Algorithm 16) (d) TS-DMA(Algorithm 16)

Figure 6.1: Performance of UCB-DMA (Algorithm 6) and TS-DMA (Algorithm 16) where
the α-reducibility condition is satisfied. We simulated the algorithms for two randomly
generated preference orderings that satisfy the α-reducibility condition. The simulation
results for one preference ordering are presented in the left column, and for the other in the
right column. The bold lines and the corresponding shaded regions denote the mean regret
and variance of regret for the agents over 25 runs of the algorithms.

mistic Mirror Descent algorithm. We show that if the agents’ preferences satisfy a certain
structural property known as α-reducibility, then these algorithms incur regret logarithmic
in the time horizon.
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(a) UCB-DMA(Algorithm 6) (b) UCB-DMA(Algorithm 16)

(c) TS-DMA(Algorithm 16) (d) TS-DMA(Algorithm 16)

Figure 6.2: Performance of UCB-DMA (Algorithm 6) and TS-DMA (Algorithm 16) where
the α-reducibility condition is not satisfied. We simulated the algorithms for two randomly
generated preference orderings that do not satisfy the α-reducibility condition. The simula-
tion results for one preference ordering are presented in the left column, and for the other
in the right column. The bold lines and the corresponding shaded regions denote the mean
regret and variance of regret for the agents over 25 runs of the algorithms.
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Chapter 7

Learning in Time-varying Matching
Markets

Similar to Chapter 6, this chapter studies matching markets where agents may not initially
know their underlying preferences. Unlike the previous chapter’s emphasis on decentralized
algorithms, we simplify the setting by considering a centralized platform that coordinates
the matching process. The primary focus here is on enabling agents to learn effectively when
the unknown preferences may itself evolve over time. Agents observe only their local (and
potentially noisy) feedback based on the firm assigned by the platform. They then update
their preference estimates and report them back to the platform, which uses this information
to determine matches in subsequent rounds.

In a recent work, [256] introduced the competing bandits framework to study the inter-
action of learning and competition in two-sided online matching markets. This framework
is inspired by many modern matching markets, which are two-sided and involve multiple
rounds of interactions. In each round, agents submit their preferences, and the market is
cleared based on these submitted preferences. After the market clears and the matching is
made, agents observe the final outcome or reward from their match, which may be subject
to statistical uncertainty.

Thus, the feedback agents receive is similar to bandit feedback. The players need to
learn their preferences over the other side of the market from this bandit feedback, with
the added complexity that the set of options they can explore is influenced by the other
agents’ actions. The competing bandits framework allows us to study the interaction of
learning when multiple agents are simultaneously learning and competing. The ultimate
goal is to design algorithms that enable agents to learn their underlying preferences and help
the market converge to a stable matching despite the complex interplay of competition and
learning.

Contribution We study an extension of the competing bandits problem in which the
underlying unknown preferences of agents may vary over time. While [256] introduced the
competing bandits framework, they assume that agents’ preferences remain fixed. However,
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this assumption is often unrealistic, as preferences are likely to evolve in many practical
settings.

In this work, we develop an algorithm and provide theoretical guarantees for the setting
where agents’ preferences are time-varying. While [156] study a similar problem under a serial
dictatorship preference structure and assume smoothly varying preferences, our proposed
methodology is significantly more general—it accommodates arbitrary preference structures
and arbitrary variation patterns, while remaining computationally efficient. This flexibility
and efficiency constitute our main contribution to this line of work.

We show that with our approach, each agent incurs a regret of Õ(L1/2
T T 1/2), where

T is the number of rounds and LT denotes the total number of changes in the preference
orderings across all agents over T rounds. This matches the optimal regret rate for non-
stationary single-agent bandit learning [22].

Additional Related Works
Here, we discuss the literature on time-varying bandits and learning in matching markets.

Time Varying Multi-armed Bandits. The non-stationary Multi-Armed Bandits (MAB)
problem was first studied by [21], who proposed a variant of the EXP3 algorithm called
EXP3.S. They showed that EXP3.S achieves minimax-optimal regret of O(

√
KLT ) up to

logarithmic factors, where K is the number of arms, L is the number of abrupt changes in
the reward distribution, and T is the number of rounds.

Subsequent works, such as [153] and [10], demonstrated that alternative strategies based
on sliding windows or restart mechanisms can also attain minimax-optimal regret. More
recently, [22] proposed a near-optimal algorithm that does not require prior knowledge of
the number of changes.

In another line of work, [51] and [219] considered the setting of non-stationary MABs with
slowly varying reward distributions and showed that a regret of Õ

(
P 1/3
T T 2/3

)
is achievable,

where PT denotes the total variation in the reward sequence over time.
The non-stationary linear bandits problem has also been explored in works such as

[93], [358], and [451]. These studies introduced methods like sliding-window least squares,
weighted UCB, and restart-based approaches, respectively, and established that a regret of
Õ
(
P 1/4
T T 3/4

)
can be attained.

Learning in Two-sided Matching Markets. Learning in the context of two-sided
matching markets is a relatively new and active area of research [116, 256, 257, 188, 274,
35, 84, 115]. The earliest work in this direction was by [116], which employed multi-armed
bandit algorithms to learn preferences in matching markets. However, it was only more
recently that [256] formalized the problem framework.

The existing literature in this domain can broadly be classified into two categories. The
first class assumes that the true underlying preferences of the participants over the firms
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remain fixed over time [256, 188, 84, 35, 363, 274, 215]. The second class considers the more
general and realistic setting where the underlying preferences may vary with time [301, 156].

Interestingly, the literature on learning in time-varying matching markets remains rel-
atively sparse [301, 156]. [301] consider the setting of a Markov Matching Market, where
agents’ preferences depend on an underlying context that evolves according to a Markovian
process, influenced by the planner’s policy. In contrast, [156] study learning in smoothly vary-
ing matching markets, where agents’ underlying preferences are allowed to change gradually,
bounded by a fixed threshold at each time step. While their framework is decentralized, it
focuses on a specific preference structure—namely, a serial dictatorship—limiting its gener-
ality.

7.1 Problem Formulation
Consider a two-sided matching market consisting of players and arms, which we will refer to
as the two sides of the market. Each side derives some positive utility when matched with
a participant from the other side.

Formally, let the set of N players be denoted by N = {p1, p2, . . . , pN}, and the set of K
arms by K = {a1, a2, . . . , aK}. A distinguishing feature of two-sided matching markets is
that each side possesses preferences over the participants on the opposite side.

The preferences of an arm aj ∈ K over the players are represented by a utility vector
πj ∈ RN

+ , where πj(i) denotes the utility that arm aj obtains when matched with player pi.
Similarly, the preferences of a player pi ∈ N over the arms are encoded by a utility vector
µi ∈ RK

+ , where µi(k) denotes the utility that player pi receives when matched with arm ak.
For the sake of concise notation, if arm aj prefers player pi over player pi′ , we denote this

as pi ≻j pi′ . Similarly, if player pi prefers arm ak over arm ak′ , we write this as ak ≻i ak′ .
In what follows, we first introduce the framework of two-sided matching markets and

present relevant background in Section 7.1. Subsequently, we formulate the problem of
learning in two-sided time-varying matching markets.

Preliminaries on Matching Markets
To formally present the setup, we begin by recalling some relevant concepts from the litera-
ture on two-sided matching markets. A matching m : N → K is defined as an injective map
such that m(p) = a denotes player p ∈ N is matched with arm a ∈ K.

Definition 7.1.1 (Blocking Pair). We say a tuple (pi, aj) ∈ N ×K is a blocking pair for a
matching m if player pi is matched to arm aj′ = m(pi), but

aj ≻i aj′ and aj is either unmatched or pi ≻j m−1(aj).

In this case, we say that the triplet (pi, aj , aj′) blocks the matching m.

Having defined the notion of blocking pair, we are now ready to define stable matching.
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Definition 7.1.2 (Stable matching). A matching m is called stable if there is no blocking
pair. Alternatively, a matching is called unstable if there exists at least one blocking pair for
it.

Gale and Shapley in 1962 proposed a polynomial time algorithm – referred as Deferred-
Acceptance (DA) algorithm – to find a stable matching. Without enforcing any specific as-
sumptions on the underlying preference structure, the stable matching is not unique. There-
fore, we define the notion of valid partners of a player which captures the set of all arm to
which it can match in some stable matching.

Definition 7.1.3 (Valid partner). Given the full preference rankings of arms and players,
we call arm aj to be a valid partner of player pi if there exists a stable matching m such that
m(pi) = aj.

We now define two important types of matching which are very crucial for subsequent
exposition.

Definition 7.1.4 (Optimal matching and pessimal matching). We say a matching m to be
optimal matching if every player is matched to its most preferred valid partner. Similarly we
say a matching m to be pessimal matching if every player is matched to its least preferred
valid partner.

To identify the optimal and pessimal stable matchings, one can initialize the Deferred
Acceptance algorithm from the players’ side and the arms’ side, respectively. Notably, if the
stable matching is unique, then the optimal and pessimal matchings coincide. Interestingly,
[208] provide necessary and sufficient conditions on the underlying preference structure that
guarantee the uniqueness of the stable matching.

Learning in Time Varying Matching Markets
While a stable matching can be identified directly by employing the Deferred-Acceptance
algorithm when players know their preferences, in many modern matching markets, players
are often unaware of their true preferences. Furthermore, these underlying preferences can
be time-varying.

In this chapter, we study the problem of bandit learning in time-varying matching mar-
kets, where the objective is to find a stable match through repeated interactions.

For example, consider an online labor market where the two sides are employers (players)
and freelancers (arms). Due to the scale of the system, employers do not know a priori the
quality of work provided by a freelancer and must repeatedly interact with them to learn.
Moreover, the inherent quality of a freelancer’s work may change in a nonstationary manner
due to factors such as health issues or personal circumstances. Consequently, employers must
adapt to these nonstationary changes while updating their preference estimates.

We formulate the repeated market setting as follows. We assume that the preferences of
arms are fixed and are common knowledge. However, the preferences of players are unknown
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and time-varying. The players and arms interact with each other over a total of T rounds,
indexed by t. At any time t, the true underlying preference of a player pi ∈ N over an arm
aj ∈ K is encapsulated by the mean reward of their interaction, denoted by µi,t(j), which
is unknown. The players repeatedly interact with arms through a platform to learn these
underlying utilities.

At every round t, the players submit their estimates of their preferences over the arms to a
platform based on past rounds of interaction. The platform then computes a stable matching
mt based on the submitted preferences and assigns the players to the arms accordingly. Upon
being assigned an arm mt(i), player pi pulls the arm mt(i) and receives a stochastic reward
Xi,mt(i) sampled from a 1-sub-Gaussian distribution with mean µi,t(mt(i)). The players use
the observed reward to update their estimates of preferences over the arms.

In order to evaluate the performance of any online learning algorithm this setup, we in-
troduce the relevant notion of regret. Unlike the single player learning setting, in a two-sided
matching market, all of the players cannot be assigned their most preferred arm due to the
misaligned preference structure of the different players and arms. With this consideration,
[256] proposed a regret metric for the stationary preference setting which we extend here to
non-stationary setting. This notion of regret, termed as arm-stable regret with respect to a
stable matching m† = (m†

t)t∈[T ] corresponding to true underlying preferences, is given by

RiT (m†) =
T∑
t=1

µi,t(m†
t(i))−

T∑
t=1

µi,t(mt(i)), (7.1)

where µi,t(m†
t(i)) is the mean reward of the arm that would be assigned to a player pi in a

stable matching outcome if the players know the true underlying preference.
In any two-sided matching market, there are two important matchings: the player-optimal

and the player-pessimal matchings. Correspondingly, there are two associated regret metrics:
the player-optimal regret, defined as the regret with respect to the optimal matching m, and
the player-pessimal regret, defined as the regret with respect to the pessimal matching m.
As noted in [256], achieving sub-linear player-optimal regret is not possible even in a static
environment without imposing strong assumptions on the underlying preference structure.
Therefore, we adopt the player-pessimal regret as our performance metric.

To quantify the non-stationarity in the environment, we introduce the notion of time-
variation, which captures the variability in the underlying true preferences. In single-player
bandit learning, time-variation is typically characterized by quantities such as the total
variation [51] or the total number of changes [22]. However, in the matching setting, the
interdependence among players is such that changes in other players’ preferences can lead
to lower rewards than the pessimal match, even without any change in a given player’s own
preferences. These occurrences are not directly bounded by the magnitude of variation but
rather depend on the number of changes in the order of players’ preferences.

Therefore, we adopt the number of changes as the measure of variation for the competing
bandits setting. Specifically, we define the variation measure as the total number of changes
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across all the players:

LT =
T∑
t=2

∑
i∈N

∑
j∈K

1[µi,t(j) ̸= µi,t−1(j)], (7.2)

where 1[·] is the standard indicator function. Such a definition accounts for all the variations
in the market and its impact uniformly across all the players. Naturally, if the players’
preferences are fixed then LT = 0.

In any realistic scenario, the preferences do not change arbitrarily over time. Further-
more, to obtain meaningful quantitative guarantees, it is necessary to assume certain struc-
ture on the underlying preference dynamics. Against this backdrop, we make the following
assumption on the preferences of the players.

Assumption 7.1.1. We make the following assumptions on the mean reward of arms

(i) The mean reward of arms are bounded. That is µi,t(k) ⩽ µ̄ for all t ∈ [T ], i ∈ [N ], k ∈
[K];

(ii) The gap between the arms for any player is always greater than ∆. That is,
0 < ∆ = mintmini,k,k′ |µi,t(k)− µi,t(k′)|.

Some remarks about Assumption 7.1.1 are in order. Assumptions 7.1.1-(i) and 7.1.1-(ii)
are necessary to obtain any meaningful regret guarantees for competing bandits in non-
stationary matching markets without imposing structure on preferences. Furthermore, we
argue that these are practical assumptions on the rewards obtained in real-world applications.
Our focus here is on changing preferences, on which we impose no restrictions whatsoever.
We note that we do not require any assumptions on the magnitude of instantaneous changes
in the preferences of any player, which is typically assumed in many prior works on non-
stationary bandits [219, 153]. Moreover, the changes in the underlying true preferences of
players can occur asynchronously.

7.2 Algorithm and Results
There are three key challenges associated with designing an effective algorithm that works
in this setting: uncertainty, competition, and non-stationarity. Overcoming each of these
challenges individually has been studied extensively in the existing literature. However,
the key challenge is to develop a provably effective algorithm that can overcome all of these
challenges in a holistic manner. In particular, any single player cannot explore independently
to learn its preferences because the arm it gets matched with is determined by the submitted
preferences of all players, who are simultaneously exploring different arms. Furthermore, this
challenge is exacerbated by the inherent non-stationarity of the environment, as a change in
the preference of any single player can affect the stable matching. Interestingly, we show that
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the proposed algorithmic design, to be presented, handles these challenges while achieving
low player-pessimal regret.

Algorithmic Description
Our algorithm is an extension of the bandit learning algorithm proposed by [256] for the
stationary setting, where players repeatedly interact with the market platform by submitting
a preference order over the arms. After receiving the preferences, the platform assigns
players to arms according to a stable matching computed using the Deferred-Acceptance
(DA) algorithm on the set of preferences submitted by the players. Upon being matched to
an arm, the players receive a reward, which they then use to update their preferences before
the next round. The key idea in [256] lies in how the players compute their preferences,
enabling them to efficiently explore the arms and allowing the market to converge to a
stable outcome despite competition among the players. Specifically, each player submits
a preference order based on the Upper Confidence Bound (UCB) estimates of the mean
rewards of the arms, computed using the collected rewards from previous time steps.

We extend this algorithm to the time-varying setting by adopting a restart strategy,
which is a widely used technique in time-varying bandit learning [451]. The core idea of
the restart strategy is to reset the base algorithm (such as the UCB algorithm) after a fixed
period H. If the number of changes LT is known, then the restart period H can be chosen
optimally a priori. We adopt this straightforward approach to handle the time variations in
the competing bandits setting. Specifically, in the proposed algorithm, the market platform
ensures that players restart their local UCB algorithms after every H rounds, and between
two restarts, the players run their local UCB algorithms exactly as in the stationary setting
of [256]. The complete algorithm is shown in Algorithm 8.

We now introduce the algorithm more formally. Let Ti,t(j) denote the number of times
player pi is matched with arm aj by the platform after the latest restart. After every restart,
Ti,t(j) is assigned to zero, and Ti,t(j) is incremented by one whenever player pi is matched
with arm aj . Let µ̂i,t(j) denote the mean of the rewards observed whenever player pi pulls
arm aj after a restart and till t− 1. Let St denote the latest restart before time step t. Then,
µ̂i,t(j) is given by

µ̂i,t(j) =

∑t−1
k=St

Xi,mk
1[mk(i) = j]

Ti,t−1(j)
.

Then, for a player pi, the upper confidence bound for arm aj in the current period is given
by

ui,t(j) =

 ∞, if Ti,t(j) = 0,
µ̂i,t(j) +

√
3 log(t−St)
2Ti,t−1(j)

, otherwise. (7.3)

At the beginning of every round t, each player updates its UCB for the arms as in (7.3). The
players then compute their respective rank ordering r̂i,t according to the updated UCBs.
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Algorithm 8 Restart Competing Bandits (RCB) Algorithm
1: Input: Common restart period H
2: Set k ← 1
3: for t = 1 to T do
4: if k = 1 then
5: Set Ti,t(j)← 0 for all i ∈ [N ], j ∈ [K]
6: end if
7: Each player i computes UCB values ui,t(j) for all j ∈ [K] using Eq. (7.3)
8: Each player i computes rank ordering r̂i,t using ui,t(j) as per Eq. (7.4)
9: Match players to arms using optimal stable matching mt computed from r̂i,t and πj

10: for each player i ∈ [N ] do
11: Update Ti,t+1(mt(i))← Ti,t(mt(i)) + 1
12: end for
13: if k ⩽ H then
14: k ← k+ 1
15: else
16: k ← 1
17: end if
18: end for

Specifically, the rank ordering r̂i,t is computed as follows: for any two arms aj , aj′ ,

r̂i,t(j) > r̂i,t(j
′), if ui,t(j) > ui,t(j

′). (7.4)

The platform receives these rank orderings from every player, computes a stable matching,
and assigns the matched arms to the respective players. This completes a round.

Algorithm 8 has several important features: first, it is a simple algorithm which us
computationally efficient and intuitive. Second, the algorithm does not require storing exact
rewards obtained in past rounds at the end of both players and platforms. Third, the
preferences of players are updated only using local information which is a crucial aspect to
ensure privacy and reliability of the system.

Regret Guarantee
Below, we characterize the regret accrued by a player while using the RCB algorithm (Al-
gorithm 8) under time-varying preferences.

Theorem 7.2.1. Suppose Assumption 7.1.1 holds. Under RCB algorithm (Algorithm 8),
with the common restart period H = L−1/2

T T 1/2, the pessimal regret for each player i is
given as

RiT = Õ
(
L1/2
T T 1/2

(
1 + 1

∆2

))
.
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Some comments about Theorem 7.2.1 are in order. First, we note that the constant in
the above regret bound can be exponentially large in the size of the market, which is also the
case with [256] which considered stationary preferences of players. Second, the achievable
regret bounds in a single agent MAB setting is Õ(

√
KLTT ) [21]. Our regret bounds are

similar to the single agent multi-arm bandit setting up to some constant, although under
the assumption that the gap between the arm of any two players is greater than ∆ at all
the times. As pointed out in [256], the dependence on ∆2 cannot be improved in general
because of the dependence of a player’s regret on the gaps of other players in the competing
bandit setting. For the same reason, it is not be possible to extend the results to the case
where the arm gaps for a player can be arbitrarily close to each other. Third, we note that
the regret RT can be negative, which is desirable as player’s can receive better utility than
the pessimal matching.

A detailed proof of Theorem 1 can be found in Appendix F. However, we provide a sketch
of the proof below.

Proof Sketch: In the following analysis, we outline only the key steps. We begin by
analyzing the agent regret for a player pi within an interval of length H, from one restart to
the next. The total regret is then obtained by summing the regrets across all such intervals
of length H.

Let the start and end times of the ℓth interval be denoted by tℓs and tℓe, respectively. Let
Riℓ denote the agent regret incurred by player i within the ℓth interval. Then, the regret of
player i in interval ℓ is given by

Riℓ =
tℓe∑
t=tℓs

(µi,t(mt(i))− µi,t(mt(i))) .

The critical component in bounding the regret lies in accounting for two key challenges:
(i) unlike in the single-agent setting, each player can be assigned an unstable match with
lower reward than their valid partners due to the exploration and preference submissions of
other players; and (ii) the underlying preferences—and hence the set of stable matchings—are
time-varying.

While the first challenge was addressed by [256] for the case of stationary preferences,
our analysis extends to handle the non-stationarity in players’ preferences, and the added
complexity it introduces in how others’ preference changes can indirectly lead to unstable
matches for a player.

The cornerstone of our analysis is the concept of the minimal cover of an unstable match
(see Definition F.1.2) computed prior to the first change in preferences across all players
within an interval. This concept allows us to isolate the effect of preference changes and
bound the regret incurred.

We now present a crucial lemma that bounds the pessimal regret incurred by any player
between two restarts. The proof of this lemma is deferred to the appendix.
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Lemma 7.2.1. Suppose Assumption 7.1.1 holds. Then, under the RCB algorithm (Algorithm
8), the pessimal regret for a player i between (ℓ− 1)th restart and ℓth restart is given by

Riℓ ⩽ O(KLℓH) +O
(
K

(
1 + log(H)

∆2

))
.

The agent-stable regret over all rounds can be bounded by summing the pessimal regrets
incurred across the individual intervals. Therefore, we have

RiT ⩽
⌊T/H⌋∑
ℓ=1

Riℓ ⩽ O(LTH) + Õ
(

T

H∆2

)
,

where LT is the total number of preference changes, H is the restart period, and ∆ is the
minimum preference gap.

Substituting the optimal restart period H = L−1/2
T T 1/2 yields the final regret bound.

Remark 7.2.1 (Relation to [256]). The bound presented in Lemma 7.2.1 clearly highlights
the connection to the stationary setting analyzed in [256]. The lemma quantifies the regret
incurred by a player within an interval following a restart. The constant accompanying the
main term, Õ(1 + 1/∆2), is analogous to the constant in the time-invariant case, which
corresponds to the sum over the minimal cover induced by the blocking pairs that block an
unstable match. The key difference in our setting is that this minimal cover is defined with
respect to the set of blocking pairs prior to the first change in preferences within the interval.
In the absence of time variations, this recovers the constant used in [256]. The first term
in Lemma 7.2.1, O(LℓH), captures the additional regret incurred due to time variations.
Naturally, this term vanishes when there are no changes in the underlying preferences.

7.3 Extension to Unknown Time Variation
Algorithm 8 requires knowledge of the time variation LT in order to compute the optimal
restart period H. However, in many real-world applications, LT is not known a priori.

One approach to extend the RCB algorithm to the unknown time variation setting is
the bandits-over-bandits strategy [451]. The key idea behind this approach is to adaptively
tune the restart period by exploring restart periods drawn from an ensemble that ranges
from very short to very long intervals. Specifically, a meta-bandit algorithm is employed to
periodically reset the restart period of the base algorithm, treating each candidate period in
the ensemble as an arm. The meta-bandit algorithm selects the restart period by balancing
exploration and exploitation, thereby ensuring that the process converges efficiently to the
most effective restart period.

The same idea can be extended to learning in two-sided matching markets. The platform
can employ a bandit meta-algorithm to explore and adaptively choose the best restart period
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for the base RCB algorithm. To ensure that the ensemble of restart periods is sufficiently
rich, we consider the ensemble

H = {H = 2j−1 | j ∈ [1,N ]},

where N = ⌈1
2 log T ⌉+ 1.

Let us denote by H∗ the optimal restart period defined in Theorem 7.2.1. Then, H∗ =
O(T 1/2) when LT = O(1) and H∗ = O(1) when LT = O(T ). Therefore, the ensemble H
contains the H∗ values corresponding to the full range of LT and is thus sufficiently rich.

To explore the restart periods, the meta-algorithm can partition the total time horizon T
into intervals of length Υ = O(T 1/2), and within each interval, it explores a specific restart
period. A standard bandit algorithm such as EXP3 [21] can be employed to efficiently explore
the restart periods and adaptively select the best-performing one.

The key challenge in the competing bandits setting is how to define the reward for the
EXP3 meta-algorithm. We discuss this in more detail below. Let the matching under the
RCB algorithm with a fixed restart period H∗ be denoted by m∗

t . Then, the regret for each
player can be split as

RiT =
T∑
t=1

µi,t(mt(i))−
T∑
t=1

µi,t(mt(i))

=

 T∑
t=1

µi,t(mt(i))−
T∑
t=1

µi,t(m
∗
t (i))


︸ ︷︷ ︸

Base Regret for pi

+
T∑
t=1

[µi,t(m
∗
t (i))]−

T∑
t=1

[µi,t(mt(i))]︸ ︷︷ ︸
Meta-regret for pi

.

The first term corresponds to the regret incurred when following a fixed restart period. The
second term captures the difference between the rewards accumulated by adhering to a fixed
restart period and those obtained by the meta-algorithm that adaptively tunes the restart
period by exploring an ensemble of periods. We refer to this second term as the meta-regret.

The current proof technique to bound the base regret requires that all agents restart
simultaneously. Therefore, in this setting, we consider that the platform coordinates the
restarting period uniformly across all players. Consequently, we can only obtain bounds on
the joint regret of all players.

Towards this goal, we define the reward for the meta-algorithm as the sum total of
the accumulated rewards over the period Υ across all players. The term ∑T

t=1 µi,t(m
∗
t (i))

corresponds to the total returns with the restart period H∗. Since H∗ ∈ H, the total return
must be less than or equal to the returns corresponding to the best restart period for the
players. Therefore, the meta-regret term can be upper bounded by the actual regret of the
meta-algorithm, which can be bounded as in [451, Theorem 3] by Õ(T 3/4).

Hence, the joint regret when the number of changes is unknown can be bounded as

N∑
i=1

RiT = Õ
(
NL1/2

T T 1/2
)
+ Õ(T 3/4).
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The exploration required for tuning the restart period incurs an additional regret on top
of the regret bound established in Theorem 7.2.1. Consequently, in the unknown LT setting,
the achievable total regret is dominated by the Õ(T 3/4) term. It is possible that this regret
bound can be improved by designing a more efficient exploration strategy. Moreover, it
remains an open problem to derive meaningful bounds on the individual regret of the players
when the number of changes LT is unknown.

7.4 Concluding Remarks
In this chapter, we studied the framework of competing bandits in time-varying matching
markets. Specifically, we addressed the problem of how players can learn their preferences
amidst competition, enabling the platform to converge to a stable matching outcome. While
this challenge has been previously explored, we focused on the more realistic setting where
players’ preferences themselves may vary over time.

To tackle this problem, we proposed the Restart Competing Bandits algorithm, which
provably achieves sub-linear regret for each player, provided that the total variation in pref-
erences across all players is also sub-linear. A key insight of our work is that non-stationarity
does not fundamentally hinder learning in matching markets. To the best of our knowledge,
our result is the first of its kind for general preference structures.

We also discussed an extension of our algorithm to the setting where the number of
preference changes is not known a priori and highlighted several open directions for future
research.
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Chapter 8

Multi-agent Learning in Congested
Networks

Chapters 6–7 addressed multi-agent learning problems under explicit, hard resource con-
straints. In many practical settings, however, resource limitations manifest implicitly through
congestion effects. A canonical example of this phenomenon arises in transportation net-
works, where users’ interactions are naturally modeled by congestion-induced costs that
depend on the aggregate usage of shared infrastructure. In this chapter, we focus on such
congestion-based models and develop multi-agent learning algorithms that enable users to
adaptively learn optimal routing decisions in presence of congestion effects introduced due
to decisions by other users.

Traffic assignment models (TAMs) [104, 422, 26, 143, 114, 7, 120] play a central role
in congestion modeling for transportation networks, by informing crucial decisions about
infrastructure investment, capacity management, and tolling for congestion regulation. The
central dogma behind this modeling approach is that self-interested travelers select routes
with minimal perceived latency (i.e., the Wardrop or user equilibrium), which can be modeled
as deterministic [104, 422] or stochastic [114, 120, 7, 26, 143]. Empirical studies confirm that
stochastic TAMs achieve greater success at interpreting congestion levels, compared to their
deterministic counterparts [383].

There exist two dominant modeling paradigms in TAM: the route-based model [104, 120,
114, 434]—where each traveler makes a single choice between set of available routes from
origin to destination—and the arc (or edge) based model [26, 456, 325, 280, 279]—where the
traveler sequentially makes routing decision at each node on the network, based on their per-
ception of arc latencies. There are two major drawbacks of route-based models on real-world
networks: route correlation and route enumeration. Specifically, the utility generated from
different routes is correlated due to overlapping arcs on different routes. Moreover, exhaus-
tive route enumeration is prohibitive in terms of computational cost, memory storage, and
information acquisition, since the number of routes in a traffic network can be exponential
in the number of arcs.

To avoid explicit route enumeration, Akamatsu [7] proposed the first arc-based stochastic
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TAM, which was further generalized by Baillon and Cominetti [26]. More recently, Fosgerau
et al. and Mai et al. [143, 280] presented similar arc-based models based on dynamic discrete
choice analysis, which are mathematically similar to the models proposed by Akamatsu [7]
and Baillon and Cominetti [26]. However, these models suggest that travelers take cyclic
routes with positive probability. To overcome this fundamental modeling challenge, Oyama
et al. [326, 324] recently proposed various methods to explicitly avoid routing on cyclic
routes. Unfortunately, these methods either do not apply beyond acyclic graphs [324] or
restrict the set of feasible routes, at the expense of modeling accuracy [326], or restrictive
assumptions on cost structure [26]. Sequential arc selection models in network routing have
also been studied by Calderone et al. [77, 78] where each arc selection is accompanied by
stochastic transitions to the next arc, and a deterministic transition cost. This stands in
contrast to the stochastic TAM literature, where transitions from arc to arc are assumed
deterministic and the travel cost (latency) is assumed stochastic.

In this work, we propose an arc-based stochastic TAM that explicitly avoids cycles by
considering routing on a directed acyclic graph derived from the original network, henceforth
referred to as the Condensed Directed Acyclic Graph (CoDAG). The CoDAG representation
duplicates an appropriate subset of nodes and arcs in the original network, to explicitly
avoids cycles while preserving all feasible routes. Travelers sequentially select arcs on the
CoDAG network at every intermediate node, based on perceived arc latencies. This route
choice behavior is akin to the models prescribed by Akamatsu [7] and Baillon and Cominetti
[26], but with routing occurring over the CoDAG associated with original network. We
show that the corresponding equilibrium congestion pattern—which we term the Condensed
DAG equilibrium (CoDAG equilibrium)—can be characterized as the unique minimizer of a
strictly convex optimization problem.

Moreover, we propose a discrete-time dynamical system that captures a natural adap-
tation rule used by self-interested travelers who progressively learn towards equilibrium arc
selections. In the game theory literature, an equilibrium notion is only considered useful if
there exists an adaptive learning scheme that allows self interested players to converge to
it [149]. Despite research progress on both theoretical and algorithmic aspects of stochas-
tic arc-based TAMs, to the best of our knowledge, there has been no research on adaptive
learning schemes that ensure convergence to such equilibria. Recently, adaptive learning
schemes that converge to equilibria in route-based TAMs have been extensively studied [217,
216, 213, 270, 362, 295, 158], by considering self-interested travelers who repeatedly select
routes by observing route latencies in past rounds of interaction. In this work, we extend
this line of research to arc-based TAMs by proposing a discrete-time dynamics, in which in
every round, travelers update arc selections at every node on the CoDAG network based on
previous interactions. We prove that the emergent aggregate arc selection probabilities at
every node (and the resulting congestion levels on each arc) globally asymptotically converge
to a neighborhood of the CoDAG equilibrium.

To establish convergence, we appeal to the theory of stochastic approximation [57], which
requires two conditions: (i) The vector field of the discrete-time dynamical system is Lips-
chitz, and (ii) The trajectories of an associated continuous-time dynamical system asymp-
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totically converge to the CoDAG equilibrium. To prove (i), we establish recursive Lipschitz
bounds for vector fields associated with every node. For (ii), we first construct a Lyapunov
function using a strictly convex optimization objective associated with the CoDAG rep-
resentation. We then show that the value of this Lyapunov function decreases along the
trajectories of the continuous-time dynamical system. Our contributions are:

1. We introduce a new arc-based traffic equilibrium concept—the Condensed DAG equi-
librium—which overcomes some limitations of existing traffic equilibrium notions. Fur-
thermore, we show that the Condensed DAG equilibrium is characterized by a solution
to a strictly convex optimization problem.

2. We present, to the best of our knowledge, the first adaptive learning scheme in the
context of stochastic arc-based TAM. Furthermore, we establish formal convergence
guarantees for this learning scheme.

3. We validate our theorems on a simulated traffic network.

The chapter unfolds as follows. Section 8.1 introduces the setup considered in this chap-
ter, and defines the Condensed DAG representation. Section 8.2 defines the Condensed DAG
equilibrium, and characterize it as a solution to a strictly convex optimization problem. Sec-
tion 8.3 presents discrete-time dynamics that converges to the Condensed DAG equilibrium
and also provides a proof sketch. In Section 8.4, we numerically study the convergence
of the discrete-time dynamics on a simulated traffic network. Finally, Section 8.5 presents
concluding remarks and future work directions.

Notation For each positive integer n ∈ N, we denote [n] := {1, · · · ,n}. For each i ∈ [n]
in an Euclidean space Rn, we denote by ei the i-th standard unit vector.

8.1 Condensed DAG Representation

Setup
Consider a traffic network represented by a directed graph GO = (IO,AO), possibly with
bidirectional arcs, where IO and AO denote nodes and arcs, respectively. An example is
depicted in Figure 8.1 (top left). Let the origin nodes and destination nodes be two disjoint
subsets of nodes in GO. Each traveler enters the network through an origin node to travel
to a destination node, by sequentially selecting arcs at every intermediate node. This gives
rise to congestion on each arc, which in turn decides the travel times. Specifically, each arc
ã ∈ AO is associated with a strictly increasing latency function ℓã : [0,∞) → [0,∞), which
gives for each arc the travel time as a function of traffic flow. To simplify our exposition, we
assume that there is only one origin-destination tuple (o, d), although the results presented
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in this chapter naturally extend to settings where the traffic network has multiple origin-
destination pairs. We denote by go the demand of (infinitesimal) travelers who travel from
the origin o to the destination d.

Remark 8.1.1. Arc selections made by travelers at different nodes are independent of one
another. Therefore, if the underlying network has bidirectional edges, then sequential arc
selection by a traveler can result in a cyclic route. For example, sequential arc selection in
the original network shown on the top left in Figure 8.1 may lead a traveler to loop between
iO2 and iO3 before reaching destination. To overcome this, we introduce a directed acyclic
graph (DAG) representation of the original graph GO in the following subsections, called the
condensed DAG. Sequential arc selections made on this network encodes the travel history
by design and therefore avoids cyclic routes.

Preliminaries on DAG: Depth and Height
Before introducing condensed DAG representation, we first present the notions of height and
depth of a DAG. These concepts are crucial for the construction and analysis of condensed
DAGs in the following sections. For the exposition in this subsection, let G be a DAG with
a single origin-destination pair (o, d). Furthermore, let R be the set of all acyclic routes in
G which start at the origin node o and end at the destination node d.

Definition 8.1.1 (Depth). For each r ∈ R and a ∈ r, let ℓa,r denote the location of arc
a in route r, i.e., a is the ℓa,r-th arc in the route r, and with a slight abuse of notation,
define: ℓa := maxr∈R:a∈r ℓa,r, We say that a is an ℓa-th depth arc in the Condensed DAG
G. Moreover, we define the depth of a node i ∈ I\{o} by:

ℓ̄i := max
a∈A−

i

ℓa

with ℓ̄o = 0.

Definition 8.1.2 (Height). For each r ∈ R and a ∈ r, let ma,r denote the location of
arc a in route r when enumerating arcs in r backwards from the destination node, i.e.,
a is the (|r| −ma,r)-th arc in route r, and with a slight abuse of notation, define: ma :=
maxr∈R:a∈rma,r. We say that a is an ma-th height arc in the Condensed DAG G . Moreover,
we define the height of a node i ∈ I\{d} by:

m̄i := max
a∈A+

i

ma

with m̄d = 0.
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Table 8.1.1: Arc correspondences between the graphs in Figure 8.1: The original network
(top left), fully expanded tree (bottom), and the CoDAG (top right).

Original Tree DAG CoDAG

aO1 aT1 , aT2 , aT3 , aT4 , aT5 aC1

aO2 aT6 , aT7 , aT8 , aT9 , aT10 aC2

aO3 aT12, aT13 aC4

aO4 aT18, aT19, aT20 aC7

aO5 aT14, aT15, aT23, aT24 aC5 , aC9
aO6 aT16, aT17, aT21, aT22 aC6 , aC8
aO7 aT11, aT25 aC3 , aC10

aO8 aT26, aT28, aT30, aT32 aC11

aO9 aT27, aT29, aT31, aT33 aC12

Construction of Condensed DAG
For ease of description, we illustrate the construction through an example in Figure 8.1. We
also present a pseudo-code to generate the condensed DAG representation.

A straightforward way to associate GO with a DAG would be to brute-force enumerate
all acyclic (simple) routes and construct a tree network by replicating arcs and nodes by the
number of routes passing through them (see Figure 8.1, bottom). However, the resulting
tree network may contain a significantly larger number of arcs and nodes compared with the
original network. To ameliorate this, we present the condensed DAG representation (Figure
8.1, top right). The condensed DAG is formed by merging superfluous nodes and arcs in
the tree network, while ensuring that the graph remains acyclic, and preserving the set of
acyclic routes from the original network.

One can design a condensed DAG representation as follows:

(S1) Convert the original network GO to a tree structure GT = (IT ,AT ), in which every
branch emanating from the origin represents a route. Each node and arc is replicated
by the number of acyclic routes that contains it. For every node i in GT , compute the
depth ℓ̄i and height m̄i (see Definition 8.1.1-8.1.2).

(S2) Generate a partition PT of IT such that:

(i) For each X ∈ PT , all nodes in X replicate the node in IO that shares the same
height or depth in GT .
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Figure 8.1: Example of a single-origin single-destination original network GO (top left, with
superscript O), and its corresponding tree network (bottom, with superscript T ) and con-
densed DAG G (top right, with superscript C). The blocks in GT represent a partition PT
(see (S2)). The depth and height of nodes in every partition are denoted above GT . Arc
correspondences between the three networks are given by Table 8.1.1, while node correspon-
dences are indicated by color.



CHAPTER 8. MULTI-AGENT LEARNING IN CONGESTED NETWORKS 124

(ii) For any X,Y ∈ PT , there exists no i, i′ ∈ X, j, j′ ∈ Y , such that m̄j > m̄i and
m̄j′ < m̄i′

(S3) For each set element X of PT , merge all nodes in X into a single node. Then, merge
arcs which have the same start and end nodes, and are replicas of the same edge in
the original network GO.

We refer to any graph generated via (S1)-(S3) as a condensed DAG (CoDAG) representation
G = (I,A) of the original network, where I and A are the set of nodes and arcs, respectively.
By construction, the CoDAG representation explicitly avoids cyclic routes, and preserves all
the acyclic routes from the original network. This is because the tree network constructed in
(S1) preserves all acyclic routes from original network. Furthermore, the merging conditions
stated in (S3) prohibit both the removal and the addition of routes.

Remark 8.1.2. A given traffic network with bidirectional arcs may yield several distinct
CoDAG representations, any of which would be amenable to our analysis in subsequent sec-
tions. The development of an algorithmic procedure to compute a CoDAG with the least
number of arcs or nodes is beyond the scope of this work.

Remark 8.1.3. The Condensed DAG representation G can be significantly smaller in size,
compared to the tree network. There exist original networks whose corresponding tree repre-
sentation GT is exponentially larger than its corresponding CoDAG G. For example, con-
sider a network with nodes i1, · · · , in, with two directed arcs connecting ik to ik+1, for each
k ∈ [n− 1]. Here, the corresponding tree network would have 2n− 2 arcs, while the CoDAG
representation only has 2(n− 1) arcs.

Remark 8.1.4. The arc-based TAM literature also considers modified representations of
traffic networks with bidirectional arcs. For example, Oyama, Hara et al. [324, 330] consider
the Network Generalized Extreme Value (NGEV) representations, which are similar to our
CoDAG representation, but applies only to acyclic networks [324]. Thus, NGEV models
cannot capture realistic traffic networks where almost all arcs are bidirectional. Meanwhile,
Oyama, Hato et al. [326] consider the Choice Based Prism (CBP) representation, which
prunes the available set of feasible routes to ameliorate computational inefficiency. While
CBP explicitly avoids cyclic routes, it also removes some acyclic routes during the pruning
process. In contrast, the CoDAG representation avoids this issue.

To conclude this section, we introduce some notation used throughout the rest of the
chapter. Recall that CoDAGs are formed by replicating the arcs in GO. To describe this
correspondence between arcs, we define [·] : A → AO to be a map from each CoDAG arc
a ∈ A to the corresponding arc [a] ∈ AO. For each arc a ∈ A, let ia and ja denote the start
and terminal nodes, and for each node i ∈ I, let A−

i ,A+
i ⊂ A denote the set of incoming

and outgoing arcs.
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8.2 Equilibrium Characterization
In this section, we introduce the condensed DAG (CoDAG) equilibrium (Definition 8.2.1),
which is based on the CoDAG representation of the original traffic network. Specifically, we
show that the CoDAG equilibrium exists, is unique, and solves a strictly convex optimization
problem (Theorem 8.2.1).

Condensed DAG Equilibrium
Below, we assume that every traveler knows GO and has access to the same CoDAG rep-
resentation of GO. To avoid cyclic routes, we model travelers as performing sequential arc
selection over the CoDAG representation G = (I,A). The aggregate effect of the travel-
ers’ arc selections gives rise to the congestion on the network. Concretely, for each a ∈ A,
let the flow or congestion level on arc a be denoted by wa, and let the total flow on the
corresponding arc in the original network be denoted, with a slight abuse of notation, by
w[a] :=

∑
a′∈[a] wa′ . (Note that unlike existing TAMs, the latency of arcs in G can be coupled

through the map w[·], since multiple copies of the same arc in GO may exist in G.) Then,
the perceived latency of travelers on each arc a ∈ A is described by:

s̃[a](w[a]) := s[a](w[a]) + νa,

where νa is a zero-mean random variable. At each non-destination node i ∈ I\{d}, travelers
select among outgoing nodes a ∈ A+

i by comparing their perceived latencies-to-go z̃a :
R|A| → R, given recursively by:

z̃a(w) := s̃[a](w[a]) + min
a′∈A+

ja

z̃a′(w), ja ̸= d, (8.1)

z̃a(w) := s̃[a](w[a]), ja = d.

Consequently, the fraction of travelers who arrive at i ∈ I\{d} and choose arc a ∈ A+
i is

given by:

Pija := P(z̃a ⩽ z̃a′ , ∀a′ ∈ A+
i ). (8.2)

An explicit formula for the probabilities {Pija : a ∈ A+
i } in terms of the statistics of z̃a, is

provided by the discrete-choice theory [40]. In particular, define za(w) := E ([) z̃a(w)] and
ϵa := z̃a(w)− za(w), and define the latency-to-go at each node by:

φi({za′(w) : a′ ∈ A+
i }) = E

 min
a′∈A+

i

z̃a′(w)

. (8.3)

Then, from discrete-choice theory [40]:

Pija =
∂φi(z)

∂za
, i ∈ I\{d}, a ∈ A+

i , (8.4)
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where, with a slight abuse of notation, we write φi(z) for φi({za′ : a′ ∈ A+
i }). To obtain

a closed form expression of φ, this work considers the logit Markovian model [7, 26], which
assumes that the zero-mean noise ϵ is Gumbel-distributed with scale β > 0. Intuitively, β > 0
is an entropy parameter that models the degree to which the average traveler’s perception
of network latency is suboptimal. In this case, the corresponding latency-to-go at each node
i in G is:

φi(z) = −
1
β

ln
 ∑
a′∈A+

i

e−βza′

. (8.5)

Using (8.1) and (8.5), the expected minimum latency-to-go za : R|A| → R, associated
with traveling on each arc a ∈ A, is given by:

za(w) = ℓ[a]

 ∑
ā∈[a]

wā

− 1
β

ln
 ∑
a′∈A+

ja

e−βza′ (w)

. (8.6)

Note that (8.6) is well-posed, as za can be recursively computed along arcs of increasing
height (Definition 8.1.2) from the destination back to the origin. For more details, please
see Appendix G.2 [278].

Against the preceding backdrop, we formally define the central equilibrium solution con-
cept studied in this chapter: the Condensed DAG Equilibrium (CoDAG Equilibrium).

Definition 8.2.1 (Condensed DAG Equilibrium). Given β > 0, a vector of arc-flow
w̄β ∈ R|A| is called a Condensed DAG equilibrium if, for each i ∈ I\{d}, a ∈ A+

i :

w̄βa =

gi + ∑
a′∈A+

i

w̄βa′

 · exp(−βza(w̄β))∑
a′∈A+

ia
exp(−βza′(w̄β))

, (8.7)

where gi = go if i = o, gi = 0 otherwise, and w ∈ W, with:

W :=

w̄β ∈ R|A| :
∑
a∈A+

i

w̄βa =
∑
a∈A−

i

w̄βa , ∀ i ̸= o, d, (8.8)

∑
a∈A+

o

w̄βa = go, w̄βa ⩾ 0, ∀a ∈ A
.

For any CoDAG equilibrium w̄β, the fraction of travelers at any node i ∈ I\{d} who
selects an arc a ∈ A+

i is:

ξ̄βa :=
w̄βa∑

a′∈A+
i
w̄βa′

.
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Remark 8.2.1. Essentially, at the CoDAG equilibrium, the traveler population at each in-
termediate node i ∈ I\{d} (with total flow gi +

∑
a′∈Awa′) select from outgoing arcs by

comparing their costs-to-go using the softmax function. While the CoDAG equilibrium and
Markovian Traffic Equilibrium (MTE) share some similarities (see [26]), there also exist
two main fundamental differences. First, by design, the CoDAG equilibrium does not yield
cyclic routes with strictly positive probability (as is the case with the MTE). Second, unlike
the MTE, congestion levels on arcs (which may be replicas of the same arc in GO) in the
CoDAG representation are coupled to each other. Therefore, MTE analysis does not extend
straightforwardly to the CoDAG equilibrium.

Existence and Uniqueness of the CoDAG equilibrium
In this subsection, we show the existence and uniqueness of the CoDAG equilibrium, by
characterizing it as the unique minimizer of a strictly convex optimization problem over a
compact set. First, for each [a] ∈ AO, define:

f[a](w) :=
∫ w[a]

0
ℓ[a](u)du, (8.9)

and for each i ∈ I\{d}, set:

χi(wA+
i
) :=

∑
a∈A+

i

wa lnwa −
 ∑
a∈A+

i

wa

 ln
 ∑
a∈A+

i

wa

. (8.10)

Finally, define F :W → R by:

F (w) =
∑

[a]∈AO

f[a](w) +
1
β

∑
i̸=d

χi(wA+
i
), (8.11)

where wA+
i
∈ R|A+

i | denotes the components of w corresponding to arcs in A+
i .

Theorem 8.2.1. The CoDAG equilibrium w̄β ∈ W exists, is unique, and is the unique
minimizer of F over W.

To prove Theorem 8.2.1, we first show that F (·) is strictly convex overW (Lemma 8.2.1),
so F has a unique minimizer in W . It then suffices to show that the CoDAG equilibrium
definition (Definition 8.2.1) matches the Karush-Kuhn-Tucker (KKT) conditions for the
optimization problem (8.11).

Lemma 8.2.1. The map F :W → R is strictly convex.

Proof. (Proof Sketch) It suffices to show that f[a] and χi are convex for each [a] ∈ AO,
i ∈ I\{d}. Each f[a] is convex, since it is the composition of a convex function (w 7→
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∑
a∈AO

∫wa
0 sa(u)du) with a linear function (w[a] :=

∑
a′∈[a] wa′). Furthermore, we establish

that for any i ∈ I\{d}, yi ∈ R|A+
i |:

y⊤
i ∇2

wχi(w)yi ⩾ 0,

where the equality holds if and only if yi and wA+
i

are scalar multiples of one another. Strict
convexity then follows by a contradiction argument showing that there exists at least one
node i ∈ I\{d} such that y⊤

i ∇2
wχi(w)yi > 0.

8.3 Learning Dynamics
In this section, we propose a discrete-time dynamical system (PBR) which captures travelers’
preferences for minimizing total travel time, as well as their perception uncertainties, while
simultaneously learning about the emergent congestion on the network.

We leverage the constant step-size stochastic approximation theory to prove that these
discrete-time dynamics converge to a neighborhood of the CoDAG equilibrium (Theorem
8.3.1). To this end, we first prove that the continuous-time counterpart to (PBR) globally
asymptotically converges to the CoDAG equilibrium (Lemma 8.3.1). We then conclude the
proof by verifying technical assumptions required to invoke results in stochastic approxima-
tion theory [57] (Lemma 8.3.2).

Discrete-time Dynamics
In this subsection, we present a discrete-time dynamical equation that captures the evolution
of flows on the network as a result of learning and adaptation by self-interested travelers.
More formally, at each discrete time step n ⩾ 0, go units of travelers arrive at the origin
node o. At time step n, every traveler who reaches node i ∈ I\{d} selects some arc a ∈ A+

i .
For any i ∈ I\{d}, a ∈ A+

i , let ξa[n] be the aggregate arc selection probability: the fraction
of travelers at node i choosing arc a at time n. As a result of the arc selections made by
every traveler, a flow of W [n] is induced on the arcs as given below. For every a ∈ A:

Wa[n] =

gia + ∑
a′∈A−

ia

Wa′ [n]

 · ξa[n], (8.12)

where, as given in Definition 8.2.1, gia = go if ia = o, and gia = 0 otherwise.
At the end of each time step, every traveler reaches the destination and observes a noisy

estimate of the latency-to-go, independent across travelers, on every arc in the network
(including ones they did not visit in that time step). Note that the latency-to-go for any arc
is dependent on the congestion W [n], which in turn depends on aggregate decisions taken
by travelers (please refer to (8.12)). Based on the observed latencies, at time n+ 1, at every
non-destination node i ∈ I\{d}, a ηi[n+ 1] ·Ki fraction of travelers at node i switches to
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an arc with the minimum observed latency-to-go. Meanwhile, a 1− ηi[n+ 1] ·Ki fraction
of travelers selects the same arc they selected at time step n. We assume that {ηi[n+ 1] ∈
R : i ∈ I,n ⩾ 0} are independent bounded random variables in [µ,µ], independent of
travelers’ perception stochasticities, with 0 < µ < µ < µ < 1/ max{Ki : i ∈ I\{d}} and
E ([) ηia [n+ 1]] = µ for each node index i ∈ I and discrete time index n ⩾ 0. Meanwhile, the
constants Ki represent node-dependent update rates. To summarize, the dynamic evolution
of arc selections by infinitesimal travelers is captured by the following evolution of ξ[n]. For
every i ∈ I\{d}, a ∈ A+

i :

ξa[n+ 1] = ξa[n] + ηia [n+ 1] ·Kia (−ξa[n] + Pija) ,

where Pija is defined in (8.2). Using (8.4) and (8.5), the previous equation can be rewritten
as:

ξa[n+ 1] (PBR)

= ξa[n] + ηia [n+ 1] ·Kia ·

− ξa[n] + exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

,

The dynamics (PBR) bears close resemblance to perturbed best response dynamics in routing
games [362], so we shall refer to (PBR) as perturbed best response dynamics.

We assume ξa[0] > 0 for each a ∈ A, i.e., each arc has some strictly positive initial traffic
flow. This is reasonable, since the stochasticity in travelers’ perception of network congestion
ensures that each arc has a nonzero probability of being selected.

Convergence Results
Our main theorem establishes that the discrete-time dynamics (PBR) asymptotically con-
verges to a neighborhood of the CoDAG equilibrium w̄β.

Theorem 8.3.1. Under the discrete-time flow dynamics (PBR), for each δ > 0:

lim sup
n→∞

E
[
∥ξ[n]− ξ̄β∥22

]
⩽ O(µ),

lim sup
n→∞

P
(
∥ξ[n]− ξ̄β∥22 ⩾ δ

)
⩽ O

(
µ

δ

)
.

To prove Theorem 8.3.1, we leverage the theory of constant step-size stochastic approxi-
mation [57]. This requires proving that the continuous-time dynamics corresponding to the
discrete-time update (PBR), presented below, converges to the CoDAG equilibrium. For
each arc a ∈ A:

ξ̇a(t) = −Ki

ξa(t) + exp(−β · za(w(t)))∑
a′∈A+

ia
exp(−β · za′(w(t)))

 , (8.13)
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where w(t) is the resulting arc flow associated with the arc selection probability ξ(t), similar
to (8.12):

wa(t) = ξa(t) ·

gia + ∑
a′∈A−

ia

wa′(t)

. (8.14)

Lemma 8.3.1 (Informal). Suppose w(0) ∈ W, i.e., the initial flow satisfies flow continuity.
Under the continuous-time flow dynamics (8.14) and (8.13), if Ki ≪ Ki′ whenever ℓi < ℓi′,
the traffic flow w(t) globally asymptotically converges to the CoDAG equilibrium w̄β.

Proof. (Proof Sketch) Recall that w̄β is the unique minimizer of the map F : W → R,
defined by (8.11). We show that F is a Lyapunov function for the continuous-time flow
dynamics (G.6) induced by the arc selection dynamics (8.13). To this end, we first unwind
the dynamics (8.13) and (8.14) to obtain the recursive relation:

ẇa(t) = −Kia

1− 1
Kia

·

∑
a′∈A−

ia
ẇa′(t)∑

â∈A+
ia
wâ(t)

wa(t)
+Kia ·

∑
a′∈A−

ia

wa′(t) · exp(−βza(w(t)))∑
a′∈A+

ia
exp(−βza′(w(t)))

.

Then, we establish that along any trajectory starting on W and following the dynamics
given by (8.13), we have for each t ⩾ 0:

Ḟ (t) = ẇ(t)⊤∇wF (w(t)) ⩽ 0.

The proof then follows from LaSalle’s Theorem (see [365, Proposition 5.22]). For a precise
characterization and detailed proof of Lemma 8.3.1, please see Appendix G.3 [278].

Remark 8.3.1. On a technical level, the statement and proof technique of Theorem 8.3.1
share similarities with methods used to establish the convergence of best-response dynamics in
potential games [362]. However, there exist crucial distinctions between the two approaches
which render our problem more difficult. First, since the map F defined by (8.11) is not a
potential function, the mathematical machinery of potential games cannot be directly applied.
Moreover, the continuous-time flow dynamics (8.13) and (8.14) allow couplings between ar-
bitrary arcs in the CoDAG. For more details, please see Appendix G.3 [278].

Remark 8.3.2. The assumption that Ki ≪ Ki′ whenever the depth of node i ∈ I\{d} is less
than the depth of node i′ ∈ I\{d} conforms to the intuition that travelers farther away from
the destination node face more complex route selection decisions based on more information
regarding traffic flow throughout the rest of the network, and thus perform slower updates.

Having established the global asymptotic convergence of the continuous-time dynamics
(8.13) and (8.14) to the CoDAG equilibrium w̄β, it remains to verify the remaining tech-
nical conditions necessary to prove Theorem 8.3.1 via stochastic approximation theory. To
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this end, we rewrite the discrete ξ-dynamics (PBR) as a Markov process with a martingale
difference term:

ξa[n+ 1] = ξa[n] + µ
(
ρa(ξ[n]) +Ma[n+ 1]

)
,

where ρa : R|A| ×R|AO| → R|A| is given by:

ρa(ξ) := Kia

−ξa + exp(−β · za(w))∑
a′∈A+

ia
exp(−β · za′(w))

 , (8.15)

with w ∈ R|A| defined arc-wise by wa = (gia +
∑
â∈A−

ia
wa′) · ξa, and:

Ma[n+ 1] :=
(

1
µ
ηia [n+ 1]− 1

)
· ρa(ξ[n]). (8.16)

Here, Wa[n] =
(
gia +

∑
a′∈A−

ia
Wa′ [n]

)
, as given by (8.12).

The following lemma bounds the magnitude of the discrete-time flow W [n] ∈ R|A| and
the martingale difference terms M [n] ∈ R|A|.

Lemma 8.3.2. Given initial flows W [0] and arc selection probabilities ξ[0]:

1. For each a ∈ A: {Ma[n+ 1] : n ⩾ 0} is a martingale difference sequence with respect
to the filtration Fn := σ

(
∪a∈A (Wa[1], ξ[1], · · · ,Wa[n], ξ[n])

)
.

2. There exist Cw,Cm > 0 such that, for each a ∈ A, n ⩾ 0, we have Wa[n] ∈ [Cw, go]
and |Ma[n]| ⩽ Cm.

3. For each a ∈ A, the map ρa, given by (8.15), is Lipschitz continuous over the range
of realizable flow and arc selection probability trajectories {W [n] : n ⩾ 0} and {ξ[n] :
n ⩾ 0}.

Proof. (Proof Sketch) The first part of Lemma 8.3.2 follows because, with respect to Fn,
the only stochasticity in Ma[n+ 1] originates from the i.i.d. input flows ηia [n+ 1]. The
second part follows by invoking the flow continuity equations in (8.12) to recursively upper
bound each Wa[n] and za(W [n]), in increasing order of depth and height, respectively (flows
are propagated from origin to destination, and latency-to-go values are computed in the
opposite direction). These bounds are then used to recursively establish upper and lower
bounds for each ξa[n], and consequently each W [n], in order of increasing depth. Finally,
the Lipschitz continuity of each ρa can be proved by establishing that ρa is continuously
differentiable, with bounded derivatives over the compact domain defined by the bounds
on W [n] established in the second part of the lemma. For details, please see the proofs of
Lemmas G.3.2 and G.3.3 in Appendix G.3 [278].
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Table 8.4.1: Parameters for simulation.

NotationDefault value
k0 0, 1, 0, 1, 1, 0, 1, 1, 1 (ordered by

edge index)
k1 2, 1, 1, 1, 1, 1, 2, 2, 2 (ordered by

edge index)
g1 1
β 10
ηia [n] Uniform(0, 0.1), ∀a ∈ A, i ∈ I\{d}

Figure 8.2: Steady state traffic flow on each arc for an original network and condensed DAG.
Flows on arcs emerging from same node are represented in same color.

8.4 Numerical Results
In this section, we conduct numerical experiments to validate the theoretical analysis pre-
sented in Section 8.3. We show in simulation that, under (PBR), the traffic flows converge
to a neighborhood of the condensed DAG equilibrium, as claimed by Theorem 8.3.1.

Consider the network presented in Figure 8.1, with affine edge-latency functions

ℓ[a](w[a]) = k0 + k1w[a]

for each arc a ∈ A, where k0, k1 > 0 are simulation parameters provided in Table 8.4.1.
To validate Theorem 8.3.1, we evaluate and plot the traffic flow values Wa[n] on each arc
a ∈ A and discrete time n ⩾ 0. Figure 8.2 presents traffic flow values at the condensed DAG
equilibrium (i.e., wβ) for the original network and condensed DAG. While travelers generally
prefer routes of lower latency, each route has a nonzero level of traffic flow at equilibrium.
The reason is that under the perturbed best response dynamics, users do not allocate all
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Figure 8.3: Traffic flow W [n] for the network in Fig. 8.2.

the traffic flow to the minimum-cost route, but instead distribute their traffic allocation
more evenly. Meanwhile, Figure 8.3 illustrates that w converges to the condensed DAG
equilibrium in approximately 100 iterations with some initial fluctuations. The fluctuations
are due to the magnitude of the average step-size µ. If µ is small, the discrete-time update is
close to the continuous-time dynamics, and the resulting evolution of the traffic flow follows
a smoother trend. Note that in practice, flow convergence to the CoDAG equilibrium occurs
even when the effects of the constants {Ki : i ∈ I} are ignored, i.e., when each Ki is set to
unity.

8.5 Concluding Remarks
We introduce a novel equilibrium concept for stochastic arc-based traffic assignment mod-
els (TAMs) that ensures all travelers are routed along acyclic paths. This is achieved by
constructing a condensed directed acyclic graph (DAG) representation of the original net-
work through systematic replication of arcs and nodes, which eliminates cyclic routes while
preserving the original feasible route set. We rigorously characterize this equilibrium as
the unique optimal solution to a strictly convex optimization problem. Building on this
formulation, we propose adaptive learning dynamics that model the evolution of traffic flow
resulting from the simultaneous learning and strategic adaptation of self-interested travelers.
Finally, we establish convergence guarantees, proving that the proposed learning dynamics
asymptotically converge to the equilibrium flow allocation.
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Part III

Data-driven Mechanisms for Societal
Good
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Chapter 9

Efficiency and Equity Considerations
in Transportation through
Data-driven Congestion Pricing

Congestion pricing is an incentivize mechanism for effective utilization of road infrastructure
among selfish travelers. Widely adopted in many major cities, both theoretical [435] and
empirical [107, 342, 335, 130] studies have shown that congestion pricing can reduce traffic
congestion and greenhouse gas emissions, and improve air quality [254, 234, 446, 172]. The
revenue generated from congestion pricing is often reinvested to improve the road infras-
tructure, public transit, and other sustainable mobility initiatives [160, 387]. Despite these
benefits, implementation of congestion pricing often faces challenges, and one of the primary
concerns is its disproportional impact on low-income travelers [118, 154]. These travelers
often have limited access to alternative transportation options, and the additional financial
burden of congestion fees may exacerbate existing inequalities.

In this work we present a principled approach to compute congestion pricing schemes
that incorporate both (i) the efficiency objective of minimizing the total travel time on
the network, and (ii) the equity-welfare objective, where the equity is assessed in terms
of maximum disparity in relative change in travel costs experienced by different traveler
populations following the implementation of tolls, compared to a scenario with no tolls, and
welfare is assessed as the average relative change in travel costs experienced by travelers
across all types following the implementation tolls, compared to scenario with no tolls.

We consider a non-atomic routing game, where travelers make routing decisions based
on the travel time of each route plus the monetary cost that includes tolls and gas prices.
The monetary cost is adjusted by the travelers’ value-of-time— the amount of money a
traveler is willing to pay to save a unit of time. Our game has a finite number of traveler
populations, each with a heterogeneous value-of-time. Following the result from [169], the
equilibrium flow in our game is unique, and can be computed by solving a convex optimization
problem. Moreover, the congestion minimizing edge flow vector (i.e. the edge flow vector
that minimizes the total travel time) is unique.
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We propose four kinds of congestion pricing schemes that differ in terms of whether (a)
tolls are differentiated based on the type of population, and (b) tolls can be set on all edges
or a subset of edges. In particular, the four congestion pricing schemes are: (i) homoge-
neous pricing scheme with no support constraints, denoted by hom, where all populations
are charged with the same tolls and all edges are allowed to be tolled; (ii) heterogeneous
pricing scheme with no support constraints, denoted by het, where populations are charged
with differentiated toll prices based on their types and all edges can be tolled; (iii) homo-
geneous pricing scheme with support constraints, denoted by hom sc, where tolls are not
differentiated but only a subset of edges can be tolled; (iv) heterogeneous pricing scheme
with support constraints, denoted by het sc, where tolls are differentiated and only a subset
of edges are tolled.

We compute the tolls in each pricing scheme using a two-step approach. First, we char-
acterize the set of tolls that minimize the total travel time (i.e. efficiency objective). Second,
we select a particular toll price in the set of tolls computed in the first step to optimize for
an objective that achieves the trade-off between average welfare of all populations and the
equity across different populations. Under the hom and het pricing schemes, the set of tolls
that minimize the total travel time (as computed in the first step) can be characterized as
the set of solutions of a linear program, and the second step of selecting a particular toll
price is also an optimal solution of a linear program (Proposition 9.2.3) and het (Proposition
9.2.4). The two step approach and the linear program formulations build on the study of
enforceable equilibrium flows in routing games with heterogeneous populations [142, 206,
435, 175]. On the other hand, under hom sc and het sc, direct extensions of the two linear
programs to include toll support set constraints are not guaranteed to achieve the efficiency
goal. In fact, the problem of designing congestion minimizing pricing schemes with support
constraints is known to be NP hard without the consideration of heterogeneous value-of-time
[182, 56, 174]. Building on the linear programming based approaches developed for the pric-
ing schemes without support constraints, we propose a linear programming based heuristic
to compute tolls with support constraints and evaluate their efficiency outcomes in the case
study.

We next apply our results to evaluate the performances of the four congestion pricing
schemes in the San Francisco Bay Area freeway network. Populations in the San Francisco
Bay area exhibit significant socioeconomic disparities. This is evident from the distribution
of median annual individual income of each neighborhood as shown in Figure 9.1. Moreover,
the area has low public transport coverage and thus majority of the populations commute
via car. We can see in Figure 9.2 that the driving population percentage of most zip codes
outside of San Francisco and Oakland cities are higher than 60%. Moreover, zip codes that
are on the east side of the Bay Area have both a high percentage of driving population and
a low median individual income. This observation underscores the importance to design
efficient and equitable congestion pricing schemes that account for the socioeconomic and
geographic disparities, and the disproportionate impact of tolling on different populations.

We model the freeway network in the San Francisco Bay Area as a network with 17
nodes (Figure 9.3). Each node represents a major work or home location for travelers, and
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Figure 9.1: Median income.

Figure 9.2: Driving population percentage.
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the edges represent the primary freeways connecting these locations. Since we differentiate
populations based on their value-of-time, which is a latent parameter that cannot be directly
estimated from the data, we use the median individual income as a proxy ([19, 167, 423,
406]) to categorize travelers with home at each node into three types of populations with
low, middle and high value-of-time, respectively.

Using high-fidelity datasets from Safegraph, the Caltrans Performance Measurement Sys-
tem (PeMS), and the American Community Survey (ACS), we calibrate the latency function
of each edge and the demand of each traveler population between each pair of nodes.

The current congestion pricing scheme, denoted as curr sets $7 price on each of the bridges
in the Bay Area (Figure 9.3). We compute the four congestion pricing schemes (hom, het,
hom sc, het sc), and compare the resulting equilibrium routing behavior in comparison to
curr and the zero pricing scheme that set no tolls. We summarize our finding below:

(i) Efficiency and Equity: All four proposed pricing schemes leads to a lower value of
total travel time compared to curr. Surprisingly, curr is also marginally outperformed by
zero. This is primarily attributed to the fact that the homogeneous toll price of $7 on
all bridges under curr does not account for the heterogeneous distribution of populations
between different home-work locations. We show that hom and het achieve the minimum
congestion, as indicated by our theoretical result (Proposition 9.2.2). Additionally, hom sc
and het sc achieve lower value of total travel time than curr and zero but higher than hom
and het. Furthermore, we find that the price of anarchy (POA) – the ratio between the total
travel time in equilibrium with no tolls and that of the minimum value total travel time
[354] – in our setup is 1.04, which is close to 1. This is likely due to high total demand of
travelers in the Bay area network since POA always converges to 1 in routing games as the
population demand increases [102, 103].

We find that all pricing schemes, except hom, result in lower travel costs for all traveler
populations compared to curr. Additionally, our results show that curr is outperformed by
all other schemes, except hom, even on the equity metric.

(ii) Revenue Generation: We observe that the revenue generated by hom is the highest as
it charges high tolls to all travelers in order to achieve the minimum congestion. Moreover,
the revenues generated by het, hom sc and het sc are comparable to curr with het being
marginally higher and, hom sc and het sc, marginally lower.

The rest of the chapter is organized as follows: Section 9.1 presents the model of routing
games with heterogeneous populations. Section 9.2 presents the computation methods for
the four congestion pricing schemes (hom, het, hom sc, and het sc). Section 9.3 presents
calibration of the routing game model in the San Francisco Bay Area. Section 9.4 presents
the efficiency and equity evaluation of the proposed pricing schemes and the comparison of
the emerging congestion patterns.

Related Works
The literature on designing congestion pricing schemes can be categorized into two main
threads: first-best and second-best. First-best pricing schemes allow tolls to be placed on
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every edge of the network. The most popular first-best tolling scheme is marginal cost
pricing, which sets the toll price to be the marginal cost created by an additional unit of
congestion on each edge. [16, 39, 389, 354]. Additionally, an extensive line of research in
this thread also focuses on characterizing the set of all congestion-minimizing toll prices (see
[435], and references therein). On the other hand, second-best pricing schemes restrict the
set of edges that can be tolled. The literature on second-best pricing schemes primarily
focuses on formulating the problem as a mathematical program with equilibrium constraints
(MPEC) and developing algorithms to approximate the optimal solution (e.g. [436, 67, 138,
222, 227, 247, 332, 412, 230, 128, 204]). The papers [182, 56, 174] studied the problem of
characterizing the hardness of the problem of designing second-best tolls. The paper [182]
showed that it is NP hard to compute optimal tolls on a subset of edges in general networks
and gave a polynomial time algorithm to solve the problem for the parallel link case with
affine latency functions. This was extended to allow for non-affine latency functions by [174],
and upper bound on the toll values in [56]. In our setup, hom and het are first-best pricing
schemes and hom sc and het sc are second-best pricing schemes. We contribute to this line
of literature by proposing a multi-step linear programming based approach to compute hom
and het that account for the equity objective and the heterogeneous traveler populations.
Our approach is also an efficient heuristic to solve hom sc and het sc with atmost three linear
programs instead of iteratively computing the Wardrop equilibrium.

The literature on congestion pricing has mostly focused on homogeneous pricing schemes
with a few exceptions. The paper [137] considered tolling schemes that differentiate con-
ventional vehicles from clean energy vehicles. Moreover, differentiated tolls are also used
in [233, 232, 293] to study mixed autonomy. The paper [69] studied the impact of differ-
entiated tolling in parallel-link networks with affine cost functions and travelers that have
heterogeneous value-of-time.

One effort to ameliorate the inequities resulting from congestion pricing is to redistribute
the toll revenue (see [387, 161, 113, 3, 169, 194], or references therein), or provide tradable
or untradable travel credits (see [453, 248, 123, 317, 431], or references therein). The papers
[160, 387] were amongst the first to propose different ways to redistribute the revenue in form
of infrastructure development and tax rebates. The effectiveness of redistribution schemes
are theoretically analyzed in single-lane bottleneck models [16, 44], parallel networks [3], and
single origin-destination network [129].

Pareto-improving congestion pricing schemes were introduced as another approach to
reduce inequality. First proposed by [229], Pareto-improving congestion pricing minimizes
the total congestion while ensuring that no travelers are worse off in comparison to no
tolls. The paper [392] studied the design of Pareto-improving schemes for travelers with
heterogeneous value-of-time, and [231] further proved that such Pareto-improving schemes
only exist in special classes of networks. The paper [169] studied the problem of designing
Pareto-improving pricing schemes combined with revenue refund. [194] extended this line of
research by developing optimal revenue refunding schemes to minimize the congestion and
inequity together. In both [169] and [194], the tolls minimize the weighted sum of travel
times with weights being each population’s value-of-time. This objective is different from
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our goal of minimizing the unweighted total travel time, which is a more suitable metric to
assess the environmental impact of congestion.

The third approach to addressing inequality is the study of fairness constrained traffic
assignment problem proposed by [189], where the fairness metric is the maximum differ-
ence of travel time experienced by travelers between the same origin-destination pair. [13,
14] extended this line of research by developing algorithmic methods to solve the fairness
constrained traffic assignment problem. The problem of devising congestion pricing schemes
which could enforce the resulting traffic assignment patters was studied in [195]. Particularly,
[195] studies homogeneous pricing scheme that implements the traffic assignment minimizing
an interpolation of the potential function (which is used to characterize the equilibrium) and
the social cost function.

Our work contributes to all of the above studies on the equity of congestion pricing
from three aspects: (i) Our equity consideration accounts for both the travel time cost
and the monetary cost that includes both the toll and the gas prices. This generalizes
the fairness notion that focuses only on the travel time difference; (ii) Our tolling scheme
minimizes the total congestion in the network (i.e. guarantees the optimal efficiency) while
providing the central planner a flexible way to trade-off between the total welfare, equity
across heterogeneous populations and total revenue. In particular, by tuning the parameter
that governs the trade-off between the average welfare and equity, we can increase or reduce
the revenue collected by the our pricing scheme; (iii) We provide a comprehensive evaluation
of different congestion pricing schemes in terms of efficiency, equity and revenue using real-
world data collected in the San Francisco Bay Area.

Another line of research related to this chapter is on developing inverse optimization
based tools to estimate model parameters in non-atomic routing games such as demand,
latency functions etc [429, 47, 445]. There are several differences between our approach and
these works. First, we use high fidelity datasets to directly estimate the latency on every
edge and the demand of travelers. Second, we consider heterogeneous population of travelers
as opposed to the homogeneous population of travelers considered in these works.

Finally, on the empirical side, [147, 311, 31, 448] focused on understanding the impact
of congestion pricing of the San Francisco-Oakland Bay Bridge, which is the most heavily
congested segment in the San Francisco Bay Area highway network. Our work generalizes
this line of work to the entire Bay Area highway network using high-fidelity mobility and
socioeconomic datasets.

9.1 Model
In this section, we introduce the non-atomic networked routing game model that forms the
basis for our theoretical and computational results. We introduce equilibrium routing and
the four types of congestion pricing schemes we consider in this chapter.
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Network
Consider a transportation network G = (N ,E), where N is the set of nodes, and E is the
set of edges. A set of non-atomic travelers (agents) make routing decisions in the network
between their origin and destination. We denote the set of origin-destination (o-d) pairs as
K and the set of routes (i.e. sequences of edges) connecting each o-d pair k ∈ K as Rk.

Travelers for each o-d pair k are grouped into I populations, where each population
is associated with a different level of value-of-time θi ∈ R⩾0 that captures the trade-off
travelers in population i are willing to make between travel time and monetary cost while
selecting between different routes. We refer to agents with value-of-time θi as type i agents.
The demand vector is given by D = (Dik)i∈I,k∈K , where Dik is the demand of agents
with type i that want to travel between o-d pair k. Throughout this chapter, we operate
under the inelastic demand assumption: traveler demands on each origin-destination pair are
constant. This assumption is reasonable given that (i) our analysis focuses on the commuting
behavior during the morning rush hour, when the majority of trips are work-related with
little elasticity; (ii) the availability of public transit is sparse and the cost of car ownership
is high [119].

The strategy distribution of agents is denoted q = (qikr )r∈Rk,i∈I,k∈K , where qikr is the
flow of agents with type i and o-d pair k who take route r. Therefore, given a demand D,
the set of feasible strategy distributions is given by:

Q(D) :=

q :
∑
r∈Rk

qikr = Dik, qikr ⩾ 0,∀r ∈ Rk, i ∈ I, k ∈ K

. (9.1)

Given a strategy distribution q ∈ Q(D), the flow of agents of type i ∈ I on edge e ∈ E is
given by

f ie(q) :=
∑
k∈K

∑
r∈Rk

qikr 1(e ∈ r), (9.2)

and the total flow of agents on edge e ∈ E is

we(q) :=
∑
i∈I

f ie(q). (9.3)

The travel time experienced by agents taking edge e ∈ E is ℓe(we(q)), where the latency
function ℓe : R+ → R+ is continuous, strictly increasing, and convex. Consequently, the
total travel time experienced by agents from o-d pair k ∈ K who use route r ∈ Rk is given
by ℓr(q) :=

∑
e∈r ℓe(we(q)). With slight abuse of notation, we use ℓr(q) and ℓr(w) inter-

changeably to represent the latency of route r where w is the edge flow vector corresponding
to the strategy distribution q. In addition to the travel time, the total cost experienced by
each individual agent also includes the congestion price imposed by the planner, and the
gas cost required to travel on the route the agent chooses. In particular, let pie be the toll
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price imposed on travelers of type i ∈ I for using edge e ∈ E, and ge be the gas cost of
using an edge e ∈ E. Note that we allow for the toll price to be type-specific in the general
setting. We will later discuss different scenarios for setting the toll prices. Given the tolls
p = (pie)e∈E,i∈I , the cost experienced by travelers of type i ∈ I associate with o-d pair k ∈ K
and taking route r ∈ Rk is given by

cir(q, p) := ℓr(q) +
1
θi
∑
e∈r

(pie + ge). (9.4)

Crucially, a key feature of our model is that the toll and gas costs experienced by each
agent are modulated by the value-of-time θi of that agent. This allows us to model the
heterogeneity present in the types of travelers. Given this setup, we define Nash equilibrium
to be the strategy distribution such that no traveler has incentive to deviate from their
chosen route. That is,

Definition 9.1.1. Given tolls p, a strategy profile q∗(p) is a Nash equilibrium if

∀i ∈ I, k ∈ K, r ∈ Rk, qik∗
r (p) > 0

⇒ cir(q
∗(p), p) ⩽ cir′(q∗(p), p) ∀r′ ∈ Rk.

The objective of the planner is to minimize the network congestion, measured by the
total travel time experienced by all travelers. For any strategy distribution q, we denote the
planner’s cost function as follows:

S(q) :=
∑
e∈E

we(q)ℓe(we(q)), (9.5)

where we(q) is given by (9.3). We denote the set of socially optimal strategy distributions
as q† := arg minq∈Q(D) S(q), and the induced socially optimal edge flows as w† = (w†

e)e∈E ,
where w†

e = we(q†) given by (9.3).

Congestion pricing
We now introduce two practical considerations for toll implementation. The first considera-
tion is whether or not the toll is type-specific. In particular, a congestion pricing scheme is
homogeneous if the toll is uniform across all population types, and heterogeneous if the toll
varies with population types (formally, whether pie is allowed to depend on i or not, on each
edge). The challenge of implementing a heterogeneous scheme is that the population type
(i.e. value-of-time) is a latent variable that is privately known only by the individual trav-
eler. In practice, an individual’s value-of-time is often closely correlated with their income
level, i.e. higher-income groups are typically associated with a higher value-of-time, while
lower-income groups correlate with a lower value-of-time [19, 167, 423, 406]. Therefore, one
way to implement heterogeneous tolling is to set tolls based on the income level of travelers.
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For example, low income groups, which have significant overlap with the population of low
value-of-time travelers, may receive a subsidy or a toll rebate in certain areas. Such toll
relief programs have been established in several states in the United States, e.g. California
1 , Virginia 2 , New York 3 etc.

The second consideration is whether or not tolls can be set on all the edges of the network
or only on a subset (formally, whether or not pie is allowed to be strictly positive on all e ∈ E).
In practical terms, congestion pricing often requires the installation of toll collection facilities,
which might not be feasible on all road segments. Thus, a congestion pricing scheme has
no support constraints if tolls can be imposed on all edges, or has support constraints if
tolls can only be imposed on a subset of edges, denoted as ET . We note that congestion
pricing schemes with (resp. without) support constraints are also referred as first-best (resp.
second-best) tolling schemes in literature.

Building on the above two considerations, we define four types of tolling schemes: (i)
Homogeneous tolls with no support constraints (hom): pie ⩾ 0 and pie = pje for all e ∈ E
and all i, j ∈ I; (ii) Heterogeneous tolls with no support constraints (het): pie ⩾ 0 for all
e ∈ E, i ∈ I; Homogeneous tolls with support constraints (hom sc): pie = pje for all i, j ∈ I
and all e ∈ E. Additionally, pie = 0 for all e ∈ E\ET , and pie ⩾ 0 for all e ∈ ET .(iii) Building
on the above two considerations, we define four types of tolling schemes: (i) Homogeneous
tolls with no support constraints (hom): pie ⩾ 0 and pie = pje for all e ∈ E and all i, j ∈ I;
(ii) Heterogeneous tolls with no support constraints (het): pie ⩾ 0 for all e ∈ E, i ∈ I; (iii)
Homogeneous tolls with support constraints (hom sc): pie = pje for all i, j ∈ I and all e ∈ E.
Additionally, pie = 0 for all e ∈ E\ET , and pie ⩾ 0 for all e ∈ ET ; (iv) Heterogeneous tolls
with support constraints (het sc): pie = 0 for all e ∈ E\ET , and pie ⩾ 0 for all e ∈ ET .

9.2 Computation Methods
In this section, we outline methods for computing equilibrium routing strategies and the
four congestion pricing schemes. We first establish that, given any fixed toll values, the
equilibrium outcome can be derived as the optimal solution to a convex optimization problem.
We then demonstrate that the set of homogeneous tolls (hom) and heterogeneous tolls (het)
without support constraints that realize the socially optimal edge flows can be characterized
as the set of optimal solutions of linear programs. Next, we present a multi-step approach
for calculating the toll prices that strikes a balance between equity, as measured by the cost
disparity between travelers from different populations, and at the same time, maximizing the
welfare of all traveler populations. For congestion pricing schemes with support constraints,
we adapt our approach to provide a heuristic for calculating hom sc and het sc, acknowledging
that such solutions may not guarantee the implementation of the socially optimal edge flows.

1https://mtc.ca.gov/news/new-year-brings-new-toll-payment-assistance-programs
2https://www.vdottollrelief.com/
3https://new.mta.info/fares-and-tolls/bridges-and-tunnels/resident-programs

https://mtc.ca.gov/news/new-year-brings-new-toll-payment-assistance-programs
https://www.vdottollrelief.com/
https://new.mta.info/fares-and-tolls/bridges-and-tunnels/resident-programs
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Proposition 9.2.1. Given toll prices p, a strategy distribution q∗(p) is a Nash equilibrium
if and only if it is a solution to the following convex optimization problem:

min
q∈Q(D)

Φ(q, p, θ) =
∑
e∈E

∫ we(q)

0
ℓe(z) dz

+
∑
i∈I

∑
e∈E

(pie + ge)

θi
f ie(q), (9.6)

where wie(q), we(q) are given by (9.2) and (9.3), respectively. Moreover, given any toll price
vector p, the equilibrium edge flow vector w∗(p) := w(q∗(p)) is unique. Additionally, the
socially optimal edge flow vector w† is unique.

[169] showed the same result as Proposition 9.2.1 without the gas price. The proof follows
directly from [169], and is available in the Appendix H.

Proposition 9.2.1 shows that w† is unique. However, we note that such a w† may be
induced by multiple type-specific flow vectors f †. Although these different type-specific flow
vectors all induce the same aggregate edge load, and thus minimize the total cost, they may
lead to different travel times experienced by different populations.

The following proposition shows that the set of prices hom (resp. het) that implements
the socially optimal edge load can be characterized each by a linear program.

Proposition 9.2.2. (1) A homogeneous congestion pricing scheme p† = (p†
e)e∈E imple-

ments the socially optimal edge flow w† = (w†
e)e∈E if and only if there exists z† such

that (p†, z†) is a solution to the following linear program:

T ∗
hom = max

p,z

∑
i∈I

∑
k∈K

Dikzik −
∑
e∈E

pew
†
e,

s.t. zik −
∑
e∈r

(pe + ge) ⩽ θiℓr(w
†),

∀k ∈ K, r ∈ Rk, i ∈ I,
pe ⩾ 0, ∀e ∈ E.

(Phom)

(2) A heterogeneous congestion pricing scheme p† = (pi†e )e∈E,i∈I implements a type-specific
socially optimal edge flow f †, = (f †i,

e )e∈E,i∈I if and only if there exists a z† such that
(p†, z†) is a solution to the following linear program:

T ∗
het(f

†) = max
p,z

∑
i∈I

∑
k∈K

Dikzik −
∑
e∈E

∑
i∈I

pief
†i,
e ,

s.t. zik −
∑
e∈r

(pie + ge) ⩽ θiℓr(w
†),

∀k ∈ K, r ∈ Rk, i ∈ I,
pie ⩾ 0, ∀e ∈ E, i ∈ I.

(Phet)
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Proposition 9.2.2 follows the results in [142, 206, 285, 435, 175]. The proof builds on the
two linear programs (Phom) – (Phet) and their dual programs (Dhom) and (Dhet) as follows:

min
q

∑
i∈I

∑
k∈K

∑
r∈Rk

(θiℓr(w
†) +

∑
e∈r

ge)q
ik
r (Dhom)

s.t.
∑
i∈I

∑
k∈K

∑
r∈Rk :e∈r

qikr ⩽ w†
e, ∀e ∈ E, (Dhom.a)∑

r∈Rk

qikr = Dik, ∀i ∈ I, k ∈ K, (Dhom.b)

qikr ⩾ 0 ∀i ∈ I, k ∈ K, r ∈ Rk. (Dhom.c)
min
q

∑
i∈I

∑
k∈K

∑
r∈Rk

(θiℓr(w
†) +

∑
e∈r

ge)q
ik
r (Dhet)

s.t.
∑
k∈K

∑
r∈Rk :e∈r

qikr ⩽ f †i,
e , ∀e ∈ E, i ∈ I, (Dhet.a)∑

r∈Rk

qikr = Dik, ∀i ∈ I, k ∈ K, (Dhet.b)

qikr ⩾ 0, ∀i ∈ I, k ∈ K, r ∈ Rk. (Dhet.c)

Under both hom and het, the feasibility constraints of the associated primal and dual pro-
grams as well as the complementary slackness conditions are equivalent to the equilibrium
condition where only routes with the minimum cost are taken by travelers. Moreover, con-
straints (Dhom.a) and (Dhet.a) must be tight at optimality, indicating that the induced flow
vector in equilibrium is indeed w†, which minimizes total travel time. Therefore, the set of
optimal solutions of (Phom) and (Phet) are the set of toll vectors that induce w† under hom
and het, respectively.

We denote P †
hom as the set of socially optimal toll prices for hom, and P †

het(f
†) as the set

of socially optimal toll price for het that induces a type-specific socially optimal edge flow
f †. Proposition 9.2.2 demonstrates that both sets can be computed as the optimal solution
set of linear programs. We note that the set P †

het(f
†) depends on which type-specific socially

optimal flow f † is induced since the objective function (Phet) depends on f †.
Furthermore, P †

hom and P †
het(f

†) may not be singleton. This presents an opportunity for
the planner to decide which specific toll price from the optimal solution set to implement.
While all tolls in P †

hom and P †
het(f

†) achieve the minimum social cost, they do so by impacting
travelers differently given their individual origin-destination pair and value-of-time. We
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consider that the central planner aims at solving the following problem:

min
p

L(p) :=

max
i,i′∈I

∣∣∣∣∣ 1
Di

∑
k∈K

Dik c
ik†(p)

cik†(0) −
1
Di′

∑
k′∈K

Di′k′ ci
′k′†(p)

ci′k′†(0)

∣∣∣∣∣︸ ︷︷ ︸
(i)

+ λ
1
D

∑
i∈I

∑
k∈K

Dik c
ik†(p)

cik†(0)︸ ︷︷ ︸
(ii)

,

s.t. p ∈

 P †
hom, in hom,

P †
het(f

†), in het with route flow f †,

(9.8)

where Di =
∑
k∈K D

ik, D =
∑
i∈I D

i, λ ⩾ 0,

cik†(p) = min
r∈Rk

{
ℓr(w

†) +
1
θi
∑
e∈r

(pe + ge)

}
(9.9)

is the equilibrium cost of individuals with o-d pair k and type i given the toll price p and
socially optimal edge load w†, and cik†(0) is the equilibrium cost of individuals with o-d pair
k and type i given no (or zero) tolls. We emphasize that the cost cik†(p) is the minimum
cost of choosing a route given the socially optimal load vector w†, the toll price, and the
gas fee. This is indeed an equilibrium cost of traveler population with type i and o-d pair k
since any p ∈ P †

hom or p ∈ P †
het(f

†) guarantees that the equilibrium edge vector is w†.
The objective function in (9.8) indicates that the central planner selects the toll price

that not only minimizes the total travel time but also balances the equity among populations
with different value-of-time, and the average welfare that accounts for the travel time as well
as the toll price and gas fee. In particular, in (9.8) (i) reflects an equity objective by assessing
the maximum disparity in the relative change in travel costs experienced by different types of
travelers following the implementation of tolls, compared to a scenario without tolls, and (ii)
reflects the an average welfare objective that is the average of the relative change in travel
costs experienced by all of the travelers following the implementation of tolls, compared to
a scenario without tolls. Balancing welfare maximization with cost disparity minimization
avoids the potential problem with just minimizing cost disparity: charging excessively high
tolls to every type of travelers. Moreover, λ ⩾ 0 is a parameter that governs the relative
weight between the equity objective and the welfare objective.

We denote the socially optimal homogeneous congestion pricing scheme that solves the
central planner’s problem (9.8) as p∗

hom. The next proposition shows that we can solve the
central planner’s problem (9.8) for hom by another linear program.
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Proposition 9.2.3. For the hom tolling scheme, p∗
hom is an optimal solution of the following

linear program:

min
p,z,y

y+
λ

D

∑
i∈I

∑
k∈K

Dik zik

θicik†(0) (P∗
hom)

s.t. y ⩾
1
Di

∑
k∈K

Dik zik

θicik†(0) −
1
Di′

∑
k′∈K

Di′k′ zi
′k′

θi′ci′k′†(0) ,

∀i, i′ ∈ I, (P∗
hom.a)∑

i∈I

∑
k∈K

Dikzik −
∑
e∈E

pew
†
e ⩾ T ∗

hom, (P∗
hom.b)

zik −
∑
e∈r

(pe + ge) ⩽ θiℓr(w
†), ∀k ∈ K, r ∈ Rk, i ∈ I, (P∗

hom.c)

pe ⩾ 0 ∀e ∈ E, (P∗
hom.d)

where T ∗
hom is the optimal value of (Phom).

In (P∗
hom), constraints (P∗

hom.c) and (P∗
hom.d) ensure that variables (p, z) are in the feasible

set of (Phom), and constraint (P∗
hom.b) further restrict that the set of (p, z) in (P∗

hom) to be
the set of optimal solutions of (Phom). Thus, following Proposition 9.2.2, any feasible p in
(P∗

hom) must be a toll vector that induces the socially optimal edge flow w†. Moreover, the
proof of Proposition 9.2.2 further ensures that for every i ∈ I, k ∈ K there exists r ∈ Rk

such that the corresponding constraint in (P∗
hom.c) must be tight at optimum, which indicates

that any zik in (P∗
hom) equals to θi · cik†(p). Additionally, constraints (P∗

hom.a) guarantee that

at optimality y = maxi,i′∈I
∣∣∣∣∣ 1
Di

∑
k∈K D

ik c
ik†(p)
cik†(0) −

1
Di′

∑
k′∈K D

i′k′ ci′k′†(p)

ci′k′†(0)

∣∣∣∣∣. Thus, the linear

program (P∗
hom) computes the homogeneous toll prices that minimize the total travel time

and optimize the equity and welfare objectives with a relative weight λ.
To summarize, the programs (Phom) and (P∗

hom) provide a two-step approach for comput-
ing p∗

hom: first, compute T ∗
hom by solving the linear program (Phom) given the unique edge

flow w†. Second, compute p∗
hom by solving the linear program (P∗

hom) using T ∗
hom.

Next, we show that the central planner can compute the heterogeneous toll price vector
(het) that minimize the total travel time and optimize the equity-welfare objectives (9.8),
denoted as p∗

het, using a similar approach as described above. However, in het, one additional
issue arises as the set P †

het(f
†) and consequently p∗

het depend on the selection of the type-
specific flow vector f †, which may not be unique. Here, we propose to select the type-specific
flow vector f † as the one that induces the edge flow vector w† (which minimizes total travel
time) while also minimizing the disparity in the total travel time experienced across all
traveler populations. To compute such a f †, we first find a feasible routing strategy profile
q† that induces w† and minimizes the average cost difference among traveler populations.
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Such a q† can be solved by the following linear program:

min
q

x,

s.t. x ⩾
∑
k∈K

∑
r∈Rk

(
qikr ℓr(w

†)− qi
′k
r ℓr(w

†)
)

, ∀i, i′ ∈ I,
∑
r∈Rk

qikr = Dik,∀ i ∈ I, k ∈ K,
∑
i∈I

∑
k∈K

∑
r∈Rk :e∈r

qikr = w†
e,∀e ∈ E,

qikr ⩾ 0,∀ i ∈ I, k ∈ K, r ∈ Rk.

Then, the induced population-specific flow vector f † associated with q† is given by (9.2).
Based on f †, we compute p∗

het as the optimal solution of a linear program.

Proposition 9.2.4. For the het tolling scheme, given f †, p∗
het is an optimal solution of the

following linear program:

min
p,z,y

y+
λ

D

∑
i∈I

∑
k∈K

Dik zik

θicik†(0) (P∗
het)

s.t. y ⩾
1
Di

∑
k∈K

Dik zik

θicik†(0) −
1
Di′

∑
k′∈K

Di′k′ zi
′k′

θi′ci′k′†(0) ,

∀i, i′ ∈ I, (P∗
het.a)∑

i∈I

∑
k∈K

Dikzik −
∑
e∈E

pew
†
e ⩾ T ∗

het(f
†), (P∗

het.b)

zik −
∑
e∈r

(pie + ge) ⩽ θiℓr(w
†),∀k ∈ K, r ∈ Rk, i ∈ I, (P∗

het.c)

pie ⩾ 0,∀e ∈ E, i ∈ I, (P∗
het.d)

where T ∗
het(f

†) is the optimal value of the objective function of (Phet) associated with f †.

Propositions 9.2.2 and 9.2.4 show that p∗
het can be computed using a three-step approach:

first, we compute the type-specific flow vector f † that induces the edge flow w† while also
minimizing the travel time difference among all traveler populations using (9.2). Second, we
compute T ∗

het(f
†) using (Phet) given f †. Third, we compute p∗

het using (P∗
het).

Finally, we discuss how to extend our approaches of computing p∗
hom and p∗

het to incor-
porate the support constraints of the toll price. Previous studies [182, 56] showed that the
problem of computing toll prices that satisfy support set constraints and also minimize the
total travel time is NP hard even without considering heterogeneous value-of-time of trav-
elers or equity objectives. Here, we provide heuristics for computing the toll prices with
support constraints. We evaluate the performance of our heuristics in terms of total travel
time, equity, and welfare on the San Francisco Bay Area network in Sec. 9.2.
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Heuristics for computing p∗
hom sc We propose a two-step heuristic to compute hom sc

by appropriately modifying the two-step method to compute hom.
We first solve the following linear program that adds the support constraints to (Phom):

T ∗
hom sc = max

p,z

∑
i∈I

∑
k∈K

Dikzik −
∑
e∈E

pew
†
e,

s.t. zik −
∑
e∈r

(pe + ge) ⩽ θiℓr(w
†),

∀k ∈ K, r ∈ Rk, i ∈ I,
pe ⩾ 0, ∀e ∈ ET , pe = 0, ∀e ∈ E \ET .

(Phom sc)

We note that the equilibrium edge load associated with any optimal solution of (Phom sc),
say ŵ, may not be equal to the socially optimal edge load w†. This is because the constraints
that edges in E \ET having zero tolls remove the dual constraints in (Dhom.a) for edges in
ET . As a result, the primal and dual argument in the proof of Proposition 9.2.2 no longer
holds, and thus the induced edge flow ŵ may not be equal to w†.

Note that the optimal solution to (Phom sc) will be non-unique. Therefore, inspired by
(P∗

hom), we consider the following heuristic to incorporate both equity and welfare metric
while also accounting for support constraints. Note that simply adding the support con-
straints in (P∗

hom) could render the optimization problem infeasible as the optimal set of
homogeneous tolls P ∗

hom need not have a solution that satisfies the support constraints. Par-
ticularly the constraint (P∗

hom.b) would get violated. This is because T ∗
hom ⩾ T ∗

hom sc as the
constraint set of (P∗

hom sc) is contained in that of (P∗
hom). Therefore, we compute p∗

hom sc
as the optimal solution of the following linear program which adds support constraints to
(P∗

hom) while relaxing the constraint (P∗
hom.b) by using T ∗

hom sc instead of T ∗
hom:

min
p,z,y

y+
λ

D

∑
i∈I

∑
k∈K

Dik zik

θicik†(0) (P∗
hom sc)

s.t. y ⩾
1
Di

∑
k∈K

Dik zik

θicik†(0) −
1
Di′

∑
k′∈K

Di′k′ zi
′k′

θi′ci′k′†(0) ,

∀i, i′ ∈ I, (P∗
hom sc.a)∑

i∈I

∑
k∈K

Dikzik −
∑
e∈E

pew
†
e ⩾ T ∗

hom sc, (P∗
hom sc.b)

zik −
∑
e∈r

(pe + ge) ⩽ θiℓr(w
†),∀k ∈ K, r ∈ Rk, i ∈ I, (P∗

hom sc.c)

pe ⩾ 0, ∀e ∈ ET , pe = 0, ∀e ∈ E \ET . (P∗
hom sc.d)

Heuristics for computing p∗
het sc The computation of p∗

het sc follows a three-step proce-
dure, similar to that of p∗

het but restricting the set of allowable tolls to be zero on non-tollable
edges, as done in hom sc. First, we compute the population-specific flow vector f † that in-
duces the congestion minimizing edge flow w† while also minimizes the average difference of



CHAPTER 9. EFFICIENCY AND EQUITY CONSIDERATIONS IN
TRANSPORTATION THROUGH DATA-DRIVEN CONGESTION PRICING 150

travel time among all traveler populations using (9.2). Next, we add the support constraints
to (Phet) to compute the optimal value T ∗

het sc(f
†) as follows:

T ∗
het sc(f

†) = max
p,z

∑
i∈I

∑
k∈K

Dikzik −
∑
e∈E

∑
i∈I

pief
†i
e ,

s.t. zik −
∑
e∈r

(pie + ge) ⩽ θiℓr(w
†),

∀k ∈ K, r ∈ Rk, i ∈ I,
pie ⩾ 0, ∀e ∈ ET ∀i ∈ I,
pe = 0, ∀e ∈ E \ET ∀i ∈ I.

(Phet sc)

Analogous to the case hom sc, the equilibrium edge load associated with the optimal solution
of (Phet sc), ŵ, may not be equal to the socially optimal edge load w† due to the added
support constraints. We compute p∗

het sc as the optimal solution of the following linear
program which adds support constraints to (P∗

het) while relaxing the constraint (P∗
het.b) by

using T ∗
het sc instead of T ∗

het:

min
p,z,y

y+
λ

D

∑
i∈I

∑
k∈K

Dikzik, (P∗
het sc)

s.t. y ⩾
1
Di

∑
k∈K

Dik zik

θicik†(0) −
1
Di′

∑
k′∈K

Di′k′ zi
′k′

θi′ci′k′†(0) ,

∀i, i′ ∈ I, (P∗
het sc.a)∑

i∈I

∑
k∈K

Dikzik −
∑
e∈E

piew
†
e ⩾ T ∗

het sc, (P∗
het sc.b)

zik −
∑
e∈r

(pie + ge) ⩽ θiℓr(w
†),

∀k ∈ K, r ∈ Rk, i ∈ I, (P∗
het sc.c)

pie ⩾ 0, ∀e ∈ ET , i ∈ I, pie = 0, ∀e ∈ E \ET , i ∈ I. (P∗
het sc.d)

9.3 Model Calibration for the San Francisco Bay
Area Freeway Network

In this section, we calibrate the non-atomic routing game model for the San Francisco Bay
Area freeway network using the Caltrans Performance Measurement System (PeMS) dataset
4, American Community Survey (ACS) dataset 5 and Safegraph neighborhood patterns

4available at https://pems.dot.ca.gov/
5available at https://www.census.gov/programs-surveys/acs

https://pems.dot.ca.gov/
https://www.census.gov/programs-surveys/acs
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dataset from 2019 6. In Sec. 9.3, we briefly describe each dataset. We subsequently present
the calibration of the Bay Area transportation network, the demand of each population type
in Sec. 9.3, and the value-of-time parameters in Sec. 9.3.

Datasets
Caltrans PeMS Dataset The Caltrans PeMS dataset is based on measurements taken
from loop detectors placed on a network of freeways and bridges in California. Our dataset is
taken from district 4, which covers the entire San Francisco Bay Area. This dataset provides
hourly flow counts and average vehicle speeds measured by each loop detector placed along
the freeways. We use this dataset to calibrate the latency functions of edges (See Sec. 9.3
for detailed discussion).

American Community Survey (ACS) Dataset The ACS dataset is collected by the
US Census Bureau to record demographic and socioeconomic information. We use the in-
formation from Means of Transportation (2019) entry in ACS, which provides information
of commuters’ mode choices (percentage of driving population), employment, and household
income. The dataset is collected at the zip-code level for the entire United States.

Safegraph Neighborhood Patterns Dataset This dataset records the aggregate mo-
bility pattern using the data collected from 40 million mobile devices in the US. This dataset
estimates the commuting pattern by counting the number of mobile devices that travel from
one census block group (CBG) to another CBG and dwell for at least 6 hours between 7:30
am and 5:30 pm Monday through Friday. We use this dataset in conjunction with ACS and
the Safegraph datasets to estimate the demand of driving commuters between each o-d pair
in the network within each income level (See Sec. 9.3 for detailed discussion).

The San Francisco Bay Area freeway network
We represent the San Francisco Bay Area using a network with 17 nodes (see Fig. 9.3). Each
node represents a major city, and the edges are the major freeways connecting these cities.
Among these edges, five of them are bridges: the Golden Gate Bridge, the Richmond-San
Rafael Bridge, the San Francisco-Oakland Bay Bridge, the San Mateo-Hayward Bridge, and
the Dumbarton Bridge. They are represented as the magenta boxes in Figure 9.3. In 2019,
a flat toll of $7 is imposed for a single crossing on each bridge in the direction denoted in
Figure 9.3.

Demand estimate We categorize the driving population into three distinct segments
based on their value-of-time, namely low, middle, and high value-of-time. The determination

6This dataset was available for public use at https://www.safegraph.com till 2021 and is now commer-
cially available

https://www.safegraph.com
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Node Abbr

San Rafael SRFL
Richmond RICH
Oakland OAKL
San Francisco SFRN
San Leandro SLND
Hayward HAYW
South SF SSFO
Fremont FREM
San Mateo SANM
Redwood City REDW
Palo Alto PALO
Milpitas MILP
Mountain View MTNV
San Jose SANJ
Sausalito SAUS
Daly City DALY
Berkeley BERK

Figure 9.3: Bay Area transportation network with tolled bridge segments. Different colors
on the map represent the boundaries of cities. The table contains the names of the nodes in
map along with abbreviations.
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(a) Distribution of traveler types based on
their origin (home) nodes

(b) Distribution of traveler types based on
their destination (work) nodes.

Figure 9.4: Distribution of origin and destination traveler demands.

of the fraction of driving population in each of these categories relies on the Means of Trans-
portation dataset from ACS. Specifically, we assign a traveler to the (a) low value-of-time
category if their annual individual income is less than $25, 000, to the (b) middle value-of-time
category if their annual individual income falls within the range of $25, 000 to $65, 000, and
to the (c) high value-of-time category if their annual individual income exceeds $65, 000.

Figure 9.4 provides a visual representation of the distribution of traveler demand to and
from each node in the network, stratified by value-of-time. Note that this demand specifically
pertains to inter-node travel, with within-node demand excluded from the analysis. We find
that approximately 40% of travelers are high willingess-to-pay, and 30% of travelers are of
middle and low value-of-time, each. In Figure 9.4a (resp. Figure 9.4b), we present the
distribution of traveler demand based on their home (resp. work) location. Around 55%
of traffic emerges from relatively few nodes on the East Bay such as RICH, OAKL, SLND,
HAYW, FREM, SANJ. Moreover, around 40% of traffic has a work destination in one of the
four nodes SFRN, PALO, MTNV, and OAKL. Notably, there exists substantial heterogeneity
in both the home and work locations of different traveler types, as can be observed by
comparing the distribution of demands in Figure 9.4 to the distribution of median income
found in Figure 9.1. For instance, nodes such as RICH, HAYW, SLND, and DALY are
predominantly inhabited by a higher number of low value-of-time travelers, while nodes such
as PALO, OAKL, SFRN, FREM, and SAUS are predominantly inhabited by high value-of-time
travelers. It is interesting to note that on most of the nodes the demographics of incoming
traffic predominantly comprise high value-of-time travelers. Additionally, as can be seen in
Figure 9.5, high-income travelers make up a large fraction demand that originates in the
West Bay, as well as of the work location demand on both the East and West Bay.

Next, we describe the approach used to compute the daily demand of different types
of travelers traveling between different o-d pairs during January 2019-June 2019. There
are three main steps to our approach: first, we obtain an estimate of the relative demand
of travelers traveling between different zip-codes in the Bay Area by using the Safegraph
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(a) Home Location (b) Home Location (c) Work Location (d) Work Location

Figure 9.5: Distribution of home and work demands across high, middle, and low income
levels aggregated over the two sides of the bay area.

dataset. Particularly, for every month, the Neighborhood Patterns data in the Safegraph
dataset provides the average daily count of mobile devices that travel between different
census block groups (CBGs) during the work day, which is then aggregated to obtain the
relative demand of travelers traveling between different zip codes. After accounting for the
sampling bias induced due to the randomly sampled population across the United States,
we calibrate demands by using the ACS dataset which provides the income-stratified driving
population in every zip code. Finally, to obtain an estimate of daily variability in demand we
further augment the demand data with the PeMS dataset by adjusting for daily variation in
the total flow on the network in every month. The details of demand estimation are included
in [269].

Calibrating the edge latency functions We calibrate the latency functions of each
edge of the Bay Area freeway network shown in Figure 9.3. We adopt the Bureau of Public
Roads (BPR) function proposed by the Federal Highway Administration (FHA) [282],defined
as ℓe(we) = ae + bew

4
e , for every e ∈ E, where ae represents the free-flow travel time (i.e.

latency with zero flow) of edge e and be is the slope of congestion.
We compute the average driving time of each edge during the morning rush hour (6am to

12pm) on each workday from January 1, 2019 to June 30, 2019 using the speed and distance
data from the PeMS dataset. We denote the set of all days as T , the travel time and traffic
flow of each edge e ∈ E on day t ∈ T as ℓ̂te and ŵte, respectively. The details of computing(
ℓ̂te, ŵte

)
t∈T

are provided in [269]. We estimate the free-flow travel time ae of each e ∈ E

using the average travel time of edge e computed from the PeMS dataset at 3am, when the
traffic flow is approaching zero. We denote the estimated value of ae as âe for each e ∈ E.
We next estimate the slope be of each edge e ∈ E using an ordinary least squares regression.
In particular, the estimate b̂e is solved as the minimizer of the following convex program: for
every e ∈ E,

b̂e = arg min
be∈R

∑
t∈T
∥ℓ̂te − âe − be · (ŵte)4∥2.
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Estimating the value-of-time parameters
We formulate the problem of estimating the value-of-time parameters as an inverse optimiza-
tion problem. Specifically, the optimal estimate of value-of-time parameters corresponding
to the three types of travelers, θH∗, θM∗, θL∗, are the ones that minimize the difference be-
tween the observed flows on each edge of the network and the corresponding equilibrium
edge flows. That is,

θ∗
H , θ∗

M , θ∗
L = arg min

θH ,θM ,θL

∑
t∈T

∑
e∈E

(ŵte −we(qt))2

s.t. qt ∈ arg min
q∈Q(Dt)

Φ(q, p, θ) ∀t ∈ T , (9.14a)

we(q
t) is given by (9.3), (9.14b)

Q(Dt) is given by (9.1), (9.14c)

where p is the toll price vector in 2019 (i.e. $7 on each bridge, and $0 for the remaining
edges), ŵte is the observed edge flow on each edge e ∈ E and each day t ∈ T computed using
the PeMS dataset, and Dt is the estimated demand vector of each day t computed using the
ACS and Safegraph datasets.

Directly solving (9.14) is challenging due to the non-linearity of the edge latency function
and the potential function in (9.14a). We compute the estimates using grid search: we
construct a grid of value-of-time, where the granularity of each of θH , θM , θL is $5 per
hour. We also assume that the maximum value of value-of-time is $100 per hour and the
minimum is $0 per hour. Therefore, we define the set of all possible parameter values as
Θ := {0, 5, 10, 15, . . . , 100}3. For each θ = (θH , θM , θL) ∈ Θ, we compute the equilibrium
flow qt for every t ∈ T and compute the total squared error as in the objective function of
(9.14). The optimal parameter θ∗ is the one that minimizes the total squared error. We
obtain:

θ∗ = (θL∗, θM∗, θH∗) = ($10/hour, $30/hour, $70/hour).
Our estimate θ∗ is consistent with the observations reported in prior works, which show

that the value-of-time values typically lie between 60%− 100% of the average hourly income
of the population ([327, 19, 299]).

Furthermore, as a robustness check, we plot the equilibrium edge flow we(qt∗) and ob-
served edge flow ŵte for every e ∈ E, t ∈ T in Figure 9.6. Each dot in this figure represents
the flow on an edge e ∈ E on a single day t ∈ T . Overall, the dots are distributed along
the diagonal of the plot indicating that the our computed equilibrium edge flow are rel-
atively consistent with the observed edge flow subject to noise in time costs and demand
fluctuations.
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Figure 9.6: Observed and computed equilibrium edge flow.

9.4 Efficiency and Equity Analysis of Congestion
Pricing schemes

Our goal in this section is three fold. First, we analyze the congestion levels induced at
equilibrium due to current congestion pricing scheme, curr, and identify corridors in the Bay
Area which are congested. Next, using the computational method introduced in Section
9.2 and the calibrated model of San Francisco Bay area freeway network in Section 9.3, we
compute the toll values under the congestion pricing schemes hom, het, hom sc, and het sc.
Finally, we compare different congestion pricing schemes in terms of efficiency and equity of
travel cost, and also in terms of overall revenue generated at equilibrium.

Congestion under the current congestion pricing scheme (curr)
Here, we analyze the congestion levels induced at equilibrium under the current congestion
pricing scheme, curr, which imposes a uniform toll of $7 on each of the five bridges in the
Bay Area, namely on the Richmond-San Rafael Bridge (RICH-SRFL), San Francisco-Oakland
Bay Bridge (OAKL-SFRN), Golden Gate Bridge (SAUS-SFRN), San Mateo-Hayward Bridge
(HAYW-SANM), and Dumbarton Bridge (FREM-PALO).

Figure 9.7a depicts the difference between the equilibrium travel time given curr and
the congestion minimizing travel time (normalized by free flow travel time on every edge).
We observe that edges on the eastern corridor (connecting nodes RICH-BERK-OAKL-SLND-
HAYW-FREM) are over-congested. Meanwhile, the edges on the western corridor (connecting
nodes SRFL-SAUS-SFRN-DALY-SSFO-SANM-REDW) are relatively less congested. Further-
more, we observe that amongst all bridges the Bay Bridge (OAKL-SFRN) is also most con-
gested, which is consistent with several prior studies [311, 31, 159]. Additionally, Figure 9.7b
presents the difference in the edge flows induced at equilibrium with that of socially optimal
edge flows. We observe that in order to reduce the overall congestion we need to ensure that
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(a) Proportional travel time increase under
curr (normalized by free flow travel time).

(b) Difference between equilibrium flow in-
duced by curr and optimal flow.

Figure 9.7: Current congestion pricing scheme

(R1) the travelers using the edges in the corridor RICH-BERK-OAKL-SFRN (resp. SFRN-
OAKL-BERK-RICH) are incentivized to use the edges in the corridor RICH-SRFL-SAUS-
SFRN (resp. SFRN-SAUS-SRFL-RICH).

(R2) the travelers using the edges in the corridor SFRN-SSFO are incentivized to use the
corridor SFRN-DALY-SSFO.

(R3) the travelers using the eastern corridor MILP-FREM-HAYW-SLND-OAKL are diverted
to use the western corridor MTNV-PALO-REDW-SANM-SSFO by suitably incentivizing
them to use the Dumbarton Bridge or the San Mateo-Hayward Bridge.

Furthermore, we note that the average travel cost7 (the sum of the travel time cost and
the equivalent time cost of the monetary expense as in (9.4)) experienced by different types
of travelers at equilibrium is unequal in curr. Specifically, low value-of-time travelers bear
the travel cost of approximately 91 minutes, while high and middle value-of-time travelers
face costs of 61 and 68 minutes, respectively. Moreover, as indicated in Table 9.4.1, this
unequal distribution of travel time persists not only on average but also when examined
across different threshold levels of travel cost.

To summarize, we observe that the current congestion pricing scheme implemented the
Bay area does not result in efficient allocation of traffic on the network. Additionally, it also
leads to unequal distribution of travel cost across different types of travelers.

7It can be shown that the average travel cost experienced by travelers is independent of the route flows on
the network and is only dependent on the equilibrium edge flows, which are unique as shown in Proposition
9.2.1.
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Travel Cost Low (%) Middle (% ) High (%)

⩾ 60 minutes 69 55 46
⩾ 90 minutes 51 31 28
⩾ 120 minutes 32 13 12
⩾ 150 minutes 17 1 1

Table 9.4.1: Fraction of low, middle and high value-of-time travelers that incur total cost
(in minutes) more than stated threshold at equilibrium.

Toll values under different congestion pricing schemes
Here, using the calibrated model of the Bay area obtained in Section 9.3, we present the
computed values of tolls on various edges of the Bay area network under different conges-
tion pricing schemes (namely, hom, het, hom sc, het sc) obtained using the computational
methodology presented in Section 9.2.

Figure 9.8a presents the toll values computed under hom by solving (P∗
hom). Figures

9.8b-9.8d present the toll values for low, middle, and high value-of-time travelers under het
by solving (P∗

het). Figure 9.8e presents the toll values computed under hom sc by solving
(P∗

hom sc). Figure 9.8f further presents the toll values for low, middle, and high value-of-time
travelers under het sc by solving (P∗

het sc). To compute all of these toll values, we choose
λ = 20 in (P∗

hom), (P∗
het), (P∗

hom sc), and (P∗
het sc). This choice of parameter λ ensures that

the numerical value of the average welfare metric and the equity metric in these optimization
problems are of the same order of magnitude.

Note that in hom and het, on all the bridges, tolls in the east-to-west direction are lower
than tolls in the west-to-east direction. This is in contrast to curr, where the west-to-east
direction is not tolled at all on any bridge and only the east-to-west direction is tolled at a
flat rate of $7 (refer Figure 9.3). Given that the western corridor is less congested than the
eastern corridor in curr (refer Figure 9.7a), such tolling is useful to efficiently redistribute
traffic in the network. Furthermore, note that in all of the congestion pricing schemes we
compute, unlike curr, the Golden Gate Bridge (SAUS-SFRN) is not tolled at all. This choice
ensures that more travelers in the eastern corridor, particularly in nodes such as RICH and
BERK are able to reach nodes in the west, particularly SFRN, through Golden-Gate bridge
instead of Bay-bridge (OAKL-SFRN).

Discussion on efficiency, equity and revenue generation
In this subsection, we compare the effectiveness of curr, hom, hom sc, het and het sc in terms
of efficiency (the average travel time per traveler), equity (average increase in travel cost in
comparison to no tolls), and revenue generation (the total toll revenue generated by these
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(a) Tolls under hom (b) Tolls under het for low type

(c) Tolls under het for middle type (d) Tolls under het for high type

(e) Tolls under hom sc (f) Tolls under het sc

Figure 9.8: Toll values under congestion pricing schemes hom, het, hom sc, and het sc.
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schemes). Additionally, we also compare these pricing schemes with the scenario when no
toll is implemented (denoted zero).

Efficiency and Equity Considerations.

Figure 9.9 represents the average travel time experienced by travelers under different con-
gestion pricing schemes.

Figure 9.9: Comparison of average social cost per traveler for curr, zero, hom, hom sc, het,
and het sc. Here, the dashed line represent congestion minimizing cost computed by solving
(9.5).

As expected from Proposition 9.2.2, the congestion pricing schemes hom and het achieves
the minimum congestion levels on the network. Additionally, we note that hom sc and het sc
do not achieve the minimum congestion level due to the support constraints. Furthermore,
it’s noteworthy that het sc results in a slightly improved average travel time compared to
hom sc. This improvement can be attributed to the flexibility of heterogeneous pricing
schemes, which allow for type-specific tolls.

From Figure 9.9, we observe that the Price of Anarchy (PoA) – which is the ratio of
the social cost of equilibrium congestion levels induced under no tolls with that of opt– is
1.04 for the Bay area transportation network. This is likely due to the high congestion level
of the network during the morning rush hour. Indeed, theoretical studies [102, 103] have
proved that the PoA approaches to 1 as the total demand of travelers increases. Moreover,
empirical studies [441, 321, 307] have also shown that the PoA in the transportation networks
of London, Boston, New York city and Singapore are also close to 1. Furthermore, from
Figure 9.9, we find that all congestion pricing schemes hom, hom sc, het, het sc outperform
curr in terms of the average travel time. Surprisingly, it is also marginally outperformed by
zero. A key reason is that curr imposes the same tolls on all of the bridges which does not
result in effective re-distribution of traffic from eastern corridor to western corridor. While a
reduced toll price or zero toll price may increase the total demand of travelers, but its impact
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is likely to be not significant due to (1) the high expense of car ownership and parking fee
([119] estimates that US average annual car ownership cost is $12182 in 2023), and (2) the
low coverage of public transportation in the Bay Area.

Figure 9.10 illustrates the average travel cost experienced by type of travelers under
different pricing schemes. We observe that the difference of average cost across the three
traveler types is lower in het, het sc, hom sc, and zero, in comparison to curr. Moreover, we
observe that for all type of travelers, the average travel cost is lower in het, het sc, hom sc,
and zero, in comparison to curr. Furthermore, we note that this observation not only holds in
the averaged sense but also in a distributional sense as illustrated in Table 9.4.2-9.4.4, which
presents the proportion of travelers of a particular type experiencing travel costs surpassing
a predetermined threshold. We observe that, regardless of the value of threshold and the
type of travelers, the proportion of travelers experiencing cost higher than a threshold is
higher in curr in comparison to het, het sc, hom sc, and zero. This clearly shows that curr is
not preferred by any type of traveler. The pricing scheme hom results in higher travel cost
because it cannot differentiate between type of traveler and charges higher tolls to travelers
in order to ensure minimum average travel time.

In homogeneous congestion pricing schemes, regardless of the threshold and the type of
traveler, a higher percentage of travelers incur travel costs exceeding a set threshold compared
to heterogeneous pricing. This is due to type-specific tolls in heterogeneous schemes resulting
in lower tolls for low income travelers. Additionally, pricing schemes with support constraints
reduce the percentage of travelers exceeding a threshold. While the differences are marginal
between het and het sc, such differences are more prominent between hom and hom sc.

Figure 9.10: Average travel cost experienced by different types of travelers under different
tolling schemes.

Next, in Figure 9.11, we compare different pricing schemes using two metrics: average
travel time and the equity metric (as defined in (9.8)-(i)). Our results show that all pricing
schemes, except for hom , outperform curr on both metrics. Additionally, we present a
Pareto front (dotted line) that illustrates the trade-off between minimizing average travel
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Travel Cost curr zero het sc hom sc hom het

⩾ 60 minutes 69% 56% 64% 67% 76% 66%
⩾ 90 minutes 51% 39% 42% 43% 55% 42%
⩾ 120 minutes 32% 22% 25% 27% 41% 25%
⩾ 150 minutes 17% 10% 11% 12% 26% 13%

Table 9.4.2: low value-of-time travelers

Travel Cost curr zero het sc hom sc hom het

⩾ 60 minutes 55% 49% 50% 50% 54% 52%
⩾ 90 minutes 31% 28% 31% 30% 35% 30%
⩾ 120 minutes 13% 12% 11% 11% 17% 14%
⩾ 150 minutes 1% 1% 1% 1% 3% 2%

Table 9.4.3: middle value-of-time travelers

Travel Cost curr zero het sc hom sc hom het

⩾ 60 minutes 46% 46% 46% 46% 48% 46%
⩾ 90 minutes 28% 27% 26% 27% 30% 27%
⩾ 120 minutes 12% 7% 7% 8% 10% 7%
⩾ 150 minutes 1% 0% 0% 0% 1% 1%

Table 9.4.4: high value-of-time travelers
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time and reducing inequity. The method used to compute this trade-off curve is detailed in
the Appendix.

Figure 9.11: Trade-off between average travel time and equity: The blue triangles represent
different pricing schemes, positioned near the Pareto curve (a polynomial best-fit curve
through the triangle points), based on computations detailed in the Appendix.

Revenue considerations

Another important aspect of determining the congestion pricing scheme is the revenue it
generates, which could be used for maintenance of existing transportation infrastructure,
enhancing public transit options, amongst other things. Figure 9.12 presents a comparison
of different congestion pricing scheme in terms of total revenue. As per the data released
by Metropolitan Transportation Commission (MTC) 8 a total toll revenue of $633, 932, 206
was collected in the Bay Area during the year 2019-2020. Our calibrated model in curr
predicts toll revenues on the same order of magnitude but slightly lower than MTC data.
The mismatch between our prediction and MTC data is attributed to the fact that (i) our
analysis only focuses on morning rush hour but MTC data also include tolls collected beyond
morning rush hour as well, (ii) MTC data also includes tolls on HOV (High Occupancy
Vehicle) lanes which are currently not added in our analysis, (iii) there is some additional
demand incoming from other nearby cities not included in our analysis, and (iv) higher tolls
are charged to multi-axle vehicles, with tolls charged as high as $36 in 2019.9

8available at https://mtc.ca.gov/about-mtc/authorities/bay-area-toll-authority/
historic-toll-paid-vehicle-counts-toll-revenue

9refer http://tinyurl.com/MTC-Multi-Axle)

https://mtc.ca.gov/about-mtc/authorities/bay-area-toll-authority/historic-toll-paid-vehicle-counts-toll-revenue
https://mtc.ca.gov/about-mtc/authorities/bay-area-toll-authority/historic-toll-paid-vehicle-counts-toll-revenue
http://tinyurl.com/MTC-Multi-Axle
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Notably, hom generates the highest revenue as it applies uniformly higher prices across
all edges, irrespective of traveler types, with the goal of achieving a minimum congestion
congestion level. Moreover, the revenue of the other three pricing schemes hom sc, het and
het sc are comparable to that of curr with het being slightly higher and hom sc and het sc
being slightly lower.

Figure 9.12: Comparison of total revenue collected for current,hom,hom-c,het,het-c.

9.5 Concluding Remarks
We study the problem of designing congestion pricing schemes which not only minimize the
overall congestion but also reduce the disparate impact of congestion pricing schemes on the
basis of socioeconomic and geographic diversity of travelers. We present a multi-step linear
programming based approach to design four kinds of congestion pricing schemes varying in
terms of their implementation depending on whether (a) they can toll travelers on the basis
of their willingness-to-pay, and (b) they can toll every edge of the network or only a subset
of it. The evaluation and comparison of these congestion pricing schemes on the San Fran-
cisco Bay Area highway network reveal several significant insights. The proposed schemes
outperform the currently implemented scheme in terms of overall congestion reduction and
exhibit improvements in equity by providing better travel costs to each type of traveler. The
analysis also highlights the revenue generation potential of different pricing schemes. Fur-
thermore, heterogeneous pricing schemes can yield more equitable distribution of travel cost
between different types of travelers, paving the way for future research to explore effective
implementation strategies.
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Chapter 10

Data-driven Method for
Distributionally Robust Strategic
Classification

Real-world deployment of machine learning models often triggers feedback effects, where the
model influences user behavior, which in turn alters the data distribution. In high-stakes
domains such as credit scoring, hiring, or spam detection, individuals may strategically
modify their features to receive more favorable predictions. Strategic classification is an
emerging paradigm that attempts to close this loop—designing classifiers that account for
such reactive behavior during training. Ignoring this feedback loop by deploying a näıvely
trained model can result in substantial performance degradation or even catastrophic failure.

Modeling these interactions poses significant challenges: the learner typically lacks access
to agents’ private objectives or preferences and thus cannot observe or encode their best-
response functions directly. To address this, we adopt a natural model of agent behavior
introduced by [124], where agents make optimal manipulations subject to individual costs.
This model captures key aspects of strategic behavior, but still suffers from a major limi-
tation: it assumes perfect knowledge of how agents respond. In practice, this assumption
rarely holds.

Prior work has studied this setting through the lens of risk minimization with decision-
dependent data distributions, identifying conditions under which the learner can optimize
performance [300]. However, these analyses generally do not account for model misspecifi-
cation. When the assumed agent response model deviates from reality, the performance of
standard learning approaches may degrade significantly—an issue we explore empirically in
this chapter.

To address this, we propose a data-driven approach that ensures robustness to such mis-
specification by adopting a distributionally robust optimization (DRO) framework. Specifi-
cally, we place an ambiguity set over possible, strategically influenced data distributions and
optimize for the worst-case risk over this set. We show that, under mild assumptions, this
DRO formulation of the decision-dependent learning problem, which is an infinite dimen-
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sional problem, is equivalent to a finite dimensional convex-concave min-max optimization
problem.

To solve the resulting min-max problem, we develop a novel zeroth-order (gradient-free)
algorithm. This method is especially well-suited to settings with strategic agents, where the
decision-maker cannot observe or differentiate through the data-generating process. This is
because the decision maker may not know the exact preferences of users. Our algorithm
relies solely on function evaluations, enabling robust learning even when gradients of the loss
with respect to strategic responses are inaccessible or undefined.

Contributions. This chapter makes the following contributions:

1. Problem Formulation. We formulate the Wasserstein distributionally robust strate-
gic classification problem as a constrained, finite-dimensional, smooth convex-concave
min-max optimization problem:

min
x∈X

max
y∈Y

L(x, y), (10.1)

where L(x, y) = 1
n

∑n
i=1 Li(x, y) is a finite-sum loss, and X ,Y are compact sets. This

formulation extends classical strategic classification to account for uncertainty in the
data-generating process via a distributional ambiguity set.

2. Algorithmic Development. We propose a zeroth-order randomized algorithm for
solving this min-max problem that operates without assuming strong convexity or
concavity. The algorithm is well-suited to settings where gradients are unavailable due
to unobserved agent response mechanisms.

3. Theoretical Guarantees. We provide the first non-asymptotic convergence analysis
of the Optimistic Gradient Descent Ascent (OGDA) method under random reshuffling
and zeroth-order oracle access for general convex-concave min-max problems.

Together, these results establish a robust and practical framework for learning in strategic
environments under model mis-specification.

Related Work
Our work builds upon and integrates insights from four key research areas: distribution-
ally robust optimization, strategic classification and performative prediction, zeroth-order
methods for min-max optimization. Below, we summarize the most relevant developments
in each.
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Distributionally Robust Optimization (DRO). DRO aims to train models that are
robust to distributional shifts between training and deployment. These shifts may result from
sample selection bias, class imbalance, or adversarial perturbations [79, 266]. A common
approach is to formulate the learning problem as a min-max optimization, where the learner
minimizes loss under the worst-case distribution within an ambiguity set, typically defined
using f -divergence or Wasserstein distance [24, 46, 312, 41, 377, 442, 186]. While these
frameworks address robustness to arbitrary or adversarial noise, they generally do not capture
settings in which the data distribution shifts in response to the learner’s decision rule—a key
challenge in strategic environments.

Strategic Classification and Performative Prediction. Strategic classification [173,
124, 373] and performative prediction [336, 300, 126] study learning settings where the data-
generating process is influenced by the deployed model. Such feedback loops occur when
users respond strategically to deployed decision rules—for example, when applicants alter
their features to receive a favorable credit decision, or when bank clients withdraw funds in
response to perceived instability. In these models, the learner observes only the strategically
altered (best-response) features and lacks access to the original data-generating process [124].
While this literature has introduced frameworks for learning in such interactive settings, it
has largely ignored robustness to misspecification in the assumed response behavior—a gap
that our work addresses.

Zeroth-Order Methods for Min-Max Optimization. Zeroth-order (gradient-free)
methods are attractive in applications where gradient information is unavailable or expensive
to compute, such as black-box adversarial attacks [91, 187, 409]. Recent work has estab-
lished non-asymptotic convergence guarantees for such methods in convex optimization and
strongly-convex/concave min-max settings [262, 152, 419, 157, 316]. However, these guar-
antees typically rely on strong convexity or concavity assumptions that are often violated
in practice. In contrast, our work provides the first convergence analysis for a zeroth-order
algorithm under the more general and practically relevant convex-concave setting.

10.1 Primer on Distributionally Robust Generalized
Linear Problem

Consider a generalized linear problem, which generalizes many classification tasks, where the
goal is to estimate the parameter θ ∈ Θ, with Θ assumed to be a compact set, by solving
the following convex optimization problem:

inf
θ∈Θ

E(x̄,ȳ)∼D
[
ϕ
(
⟨x̄, θ⟩

)
− ȳ⟨x̄, θ⟩

]
, (10.2)

where ϕ : R → R is a smooth convex function, and (x̄, ȳ) ∈ Rd × {−1,+1} is a random
feature-label pair drawn from an unknown distribution D, which is typically approximated
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by the empirical distribution of observed data. The generalized linear model framework
captures a wide range of classical and modern machine learning models [292].

A distributionally robust generalized linear problem extends this formulation by minimiz-
ing the worst-case expected loss over an ambiguity set P of probability distributions close
to the nominal data distribution. Before introducing this robust formulation, we recall the
definition of the Wasserstein metric, which we will use to define the ambiguity set.

Definition 10.1.1 (Wasserstein Distance between Distributions on Z with Cost
Function c). Let µ, ν be probability distributions over Z := Rd×{+1,−1} with finite second
moments. Denote by Π(µ, ν) the set of all couplings (joint distributions) with marginals µ
and ν. Given a metric c : Z ×Z → [0,∞), the Wasserstein distance is defined as

Wc(µ, ν) := inf
π∈Π(µ,ν)

E(Z,Z′)∼π
[
c(Z,Z ′)

]
.

Assumption 10.1.1. We use the cost function

c(z, z′) := ∥x− x′∥22 + κ · |y− y′|,

for z = (x, y), z′ = (x′, y′) ∈ Z, with a fixed constant κ > 0.

This setup can be interpreted as a game between a learning algorithm and an adversary.
Given the parameter θ chosen by the learning algorithm, the adversary selects a probability
measure from the uncertainty set P to maximize the expected risk for that parameter choice:

inf
θ∈Θ

sup
P∈P

E(x̄,ȳ)∼P

[
ϕ
(
⟨x̄, θ⟩

)
− ȳ⟨x̄, θ⟩

]
. (10.3)

Here, (x̄, ȳ) ∼ P ∈ P .
Typically, P is chosen as a Wasserstein ball around the empirical distribution D̃n con-

structed from a dataset of n independent observations {(x̃i, ỹi) ∈ Rd × {−1,+1}}ni=1, sam-
pled from the true data distribution D. For any radius δ > 0, the ambiguity set P is defined
to be a subset of ball in Wasserstein metric

Bδ(D̃n) :=
{

P :Wc(P, D̃n) ⩽ δ
}

. (10.4)

We refer the reader to [377] for algorithmic and theoretical properties of this formulation.
A key limitation of the formulations in (10.2) and (10.3) is the assumption that the

underlying data distribution D is fixed and independent of the decision variable θ. In
many strategic settings, however, the data distribution depends on the chosen parameter
θ. Decision-dependent supervised learning aims to address such problems. When specialized
to the generalized linear model, this formulation becomes

inf
θ∈Θ

E(x̄,ȳ)∼D(θ)

[
ϕ
(
⟨x̄, θ⟩

)
− ȳ⟨x̄, θ⟩

]
,

where the data distribution D(θ) explicitly depends on the decision θ.
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In this work, we take a step further and consider a special case of the following distribu-
tionally robust decision-dependent generalized linear model:

inf
θ∈Θ

sup
P∈P(θ)

E(x̄,ȳ)∼P

[
ϕ
(
⟨x̄, θ⟩

)
− ȳ⟨x̄, θ⟩

]
, (10.5)

where P(θ) ⊆ Bδ(D̃n(θ)). The dependence of P on θ is explicitly captured by the ambiguity
set P(θ), which is a Wasserstein ball centered at the empirical distribution D̃n(θ) induced
by θ.

To model the decision-dependent distribution shifts D̃n(θ), we focus on the setting of
strategic classification. The following section formalizes the modeling assumptions underly-
ing this framework.

10.2 Model
The distributionally robust decision-dependent learning problem considered in this chapter
comprises two main components: the strategic component, which captures the distribution
shift D(θ) induced by the choice of classifier θ; and the adversarial component, which models
ambiguity in the data distribution via the uncertainty set P(θ). We describe each of these
components in detail below.

Strategic Component
We denote data points sampled from the true distribution by (x̃i, ỹi) ∼ D, where D is an
unknown underlying distribution. For convenience, we associate each data point index i
with a distinct agent. Each agent i ∈ [n] is assumed to act strategically, choosing a reported
feature vector in response to the deployed classifier parameter θ ∈ Rd. Specifically, given a
utility function ui(x; θ, x̃i, ỹi) ∈ R, the agent selects a response bi(θ, x̃i, ỹi) satisfying:

bi(θ, x̃i, ỹi) ∈ arg max
x

ui(x; θ, x̃i, ỹi).

We allow each agent to have a distinct utility function.
We now impose the following assumptions on these utility functions, which will be crucial

for our subsequent analysis.

Assumption 10.2.1. For each agent i ∈ [n], the utility function is defined as:

ui(x; θ, x̃i, ỹi) :=
1− ỹi

2 ⟨x, θ⟩ − gi(x− x̃i), (10.6)

where gi : Rd → R satisfies the following properties:

1. gi(x) > 0 for all x ̸= 0;
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2. gi is convex on Rd;

3. gi is positively homogeneous1 of degree p > 1;

4. The convex conjugate g∗
i (θ) := supx∈Rd {⟨x, θ⟩ − gi(x)} is Gi-Lipschitz and Ḡi-smooth

on Θ.

A direct consequence of this setup is that for any agent i, if ỹi = +1, then the agent
reports truthfully: bi(θ, x̃i,+1) = x̃i. Strategic behavior arises only when ỹi = −1, as
only such agents benefit from misreporting. This asymmetry reflects many real-world sce-
narios—for example, in algorithmic loan approval systems, where only applicants at risk of
rejection (i.e., with negative labels) have an incentive to strategically modify their features.

A broad class of functions satisfies Assumption 10.2.1. For instance, for any norm ∥ · ∥
and any p > 1, the function g(x) = 1

p∥x∥
p is a valid choice [124].

The following lemma, which plays a key role in our analysis, characterizes the structure
of agents’ best responses.

Lemma 10.2.1 ([124]). Under Assumption 10.2.1, for each agent i ∈ [n], the set of best re-
sponses arg maxx ui(x; θ, x̃i, ỹi) is nonempty, finite, and bounded. Furthermore, the function
θ 7→ ⟨bi(θ, x̃i, ỹi), θ⟩ is convex. Specifically, for all i ∈ [n],

⟨bi(θ, x̃i, ỹi), θ⟩ = ⟨x̃i, θ⟩+
1− ỹi

2 qg∗
i (θ),

where q > 1 is such that 1
p +

1
q = 1.

Adversarial Component
In this subsection, we formally define our model for the adversary and the uncertainty set
of distributions resulting from both strategic and adversarial perturbations of the data.

Following the standard formulation of distributionally robust optimization, we restrict
P(θ) to be a Wasserstein neighborhood of D̃n(θ), the empirical distribution of the strategi-
cally manipulated dataset {(bi(θ), yi)}ni=1. That is,

P(θ) ⊆ Bδ

(
D̃n(θ)

)
for some δ > 0. However, to ensure that the resulting min-max formulation of the WDRSC
problem is convex-concave, we impose an additional restriction on the adversary: it may
modify the feature bi(θ) of any data point i, but may modify the label yi only if yi = +1.
That is, the adversary cannot flip negative labels to positive.

This imposes a constraint on the conditional distribution Pi
θ of (dx, y) generated by the

adversary for each sample i:

Pi
θ(dx,+1 | bi(θ),−1) = 0 ∀i ∈ [n].

1A function f : Rd → R is positively homogeneous of degree r if for all α > 0 and x ∈ Rd, f(αx) = αrf(x).
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By the definition of empirical distributions, any P ∈ P(θ) must be a mixture of these
conditionals:

P(dx, y) = 1
n

n∑
i=1

Pi
θ(dx, y | bi(θ), ỹi).

We now formalize the above constraint.

Assumption 10.2.2. We assume that for all i ∈ [n], Pi
θ(dx,+1 | bi(θ),−1) = 0, and

P ∈ Bδ(D̃n(θ)). Thus, the uncertainty set is given by:

P(θ)

= Bδ(D̃n(θ)) ∩
{

1
n

n∑
i=1

Pi
θ(dx, y | bi(θ), ỹi)

∣∣∣∣∣Pi
θ(dx,+1 | bi(θ),−1) = 0 for all i ∈ [n]

}
.

(10.7)

10.3 Reformulation to Finite Dimensional
Convex-Concave Min-max Optimization

In this section, we present the main result that reformulates the WDRSC problem (10.5)
into a finite-dimensional min-max optimization problem, under the modeling assumptions
described in Section 10.2.

Theorem 10.3.1. Suppose Assumptions 10.1.1, 10.2.1, and 10.2.2 hold. Additionally, let
ϕ : R → R be convex, β-smooth, and assume the function x 7→ ϕ(x) + x is non-decreasing.
Then, the WDRSC problem (10.5) admits the following convex-concave min-max reformula-
tion:

min
(θ,α)

max
γ∈Rn

α(δ− κ) + 1
n

n∑
i=1

1 + yi
2 [ϕ (⟨bi(θ), θ⟩) + γi (⟨bi(θ), θ⟩ − ακ)]

+
1
n

n∑
i=1

1− yi
2 [ϕ (⟨bi(θ), θ⟩) + ⟨bi(θ), θ⟩]

 (10.8)

s.t. ∥θ∥ ⩽ α

β + 1, ∥γ∥∞ ⩽ 1,

where for any i ∈ [n], we use the shorthand bi(θ) := bi(θ,xi, yi).

The proof of Theorem 10.3.1 is provided in Appendix I.

Remark 10.3.1. The condition that the mapping x 7→ ϕ(x)+x is non-decreasing is satisfied
by many loss functions, including the logistic loss commonly used in supervised learning.
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Remark 10.3.2. Note that we can convert the smooth convex-concave minmax problem
(10.8) into a non-smooth convex minimization problem by explictly taking maximization over
γ. But we refrain from doing as it has been observed [442] that solving the smooth minimax
optimization problem is faster than solving the non-smooth problem.

Proof of Theorem 10.3.1
The proof takes inspirations from [377, Theorem 1]. First, we define the Wasserstein distance
between distributions on Z with cost function c (Definition 10.1.1).

Proof. (Proof of Theorem 10.3.1) Fix a θ ∈ Θ. Note that bi(θ, x̃i,+1) = x̃i. For any
(x, y) ∈ Rd × {−1, 1}, let ℓ((x, y), θ) := ϕ(⟨x, θ⟩) − y ⟨x, θ⟩. We first analyze the inner
supremum term, i.e.

sup
P∈P(θ)

EP[ϕ(⟨x, θ⟩)− y⟨x, θ⟩]

= sup
P∈P(θ)

∫
Z
ℓ(z, θ)P(z)dz

=


sup

πθ∈Π(P,D̃n(θ))

∫
Z ℓ(z, θ)πθ(dz,Z),

s.t.
∫
Z×Z ∥z − z̃∥πθ(dz, dz̃) ⩽ δ.

Here, Π(P, D̃n(θ)) denotes the set of all joint distributions that couple P ∈ P(θ) and D̃n(θ).
Since the marginal distribution D̃n(θ) of z̃ is discrete, such couplings πθ are completely de-
termined by the conditional distribution Pi

θ of z given z̃i = (x̃i(θ), ỹi) for each i ∈ {1, . . . ,n}.
That is:

πθ(dz, dz̃) = 1
n

∑
i∈[n]

ϑ(bi(θ),ỹi)(dz̃)P
i
θ(dz),

where for any (x, y) ∈ Z, ϑ(x,y) is a Dirac delta distribution with its support at point (x, y).
We introduce some notations. Let I+1 = {i ∈ [n] : ỹi = +1} and I−1 = {i ∈ [n] : ỹi =

−1}. Let’s introduce two distributions µiθ and νiθ such that

Pi
θ =

µiθ if i ∈ I+1,
νiθ if i ∈ I−1.

Due to Assumption (10.2.2), we have νiθ(dx,+1) = 0 at every x. This implies:

πθ(dz, dz̃) = 1
n

 ∑
i∈I+1

ϑ(bi(θ),1)(dz̃)µ
i
θ(dz) +

∑
i∈I−1

ϑ(bi(θ),−1)(dz̃)ν
i
θ(dz)

 .
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With a slight abuse of notation, we denote µiθ,+1(dx) = µiθ(dx,+1), µiθ,−1(dx) = µiθ(dx,−1)
and νiθ(dx) = νiθ(dx,−1). The optimization problem of concern then simplifies to:

sup
µi

θ,±1,νi
θ

1
n

∑
i∈I+1

∫
Rd
ℓ((x,+1), θ)µiθ,+1(dx) +

1
n

∑
i∈I+1

∫
Rd
ℓ((x,−1), θ)µiθ,−1(dx)

+
1
n

∑
i∈I−1

∫
Rd
ℓ((x,−1), θ)νiθ(dx)

s.t. 1
n

∑
i:ỹi=+1

∫
Rd
∥(x,+1)− (bi(θ), ỹi)∥µiθ,+1(dx)

+
1
n

∑
i:ỹi=+1

∫
Rd
∥(x,−1)− (bi(θ), ỹi)∥µiθ,−1(dx)∫

Rd
µiθ,+1(dx) +

∫
Rd
µiθ,−1(dx) = 1, ∀ i ∈ I+1∫

Rd
νiθ(dx) = 1, ∀ i ∈ I−1.

First, we rewrite the inequality constraint above as follows. Recall that:

2κ
n

∫
Rd

∑
i∈I+1

µiθ,−1(dx) +
1
n

∫
Rd

∑
i∈I+1

∥x− bi(θ)∥µiθ,+1(dx)

+
1
n

∫
Rd

∑
i∈I+1

∥x− bi(θ)∥µiθ,−1(dx) +
1
n

∫
Rd

∑
i∈I−1

∥x− bi(θ)∥νiθ(dx) ⩽ δ.

Hence,

sup
µi

θ,±1,νi
θ

1
n

∑
i∈I+1

∫
Rd
ℓ((x,+1), θ)µiθ,+1(dx) +

1
n

∑
i∈I+1

∫
Rd
ℓ((x,−1), θ)µiθ,−1(dx)

+
1
n

∑
ỹi=−1

∫
Rd
ℓ((x,−1), θ)νiθ(dx)

s.t. 2κ
n

∫
Rd

∑
i∈I+1

µiθ,−1(dx) +
1
n

∫
Rd

∑
i∈I+1

∥x− bi(θ)∥µiθ,+1(dx)

+
1
n

∫
Rd

∑
i∈I+1

∥x− bi(θ)∥µiθ,−1(dx) +
1
n

∫
Rd

∑
i∈I−1

∥x− bi(θ)∥νiθ(dx) ⩽ δ

∫
Rd
µiθ,+1(dx) +

∫
Rd
µiθ,−1(dx) = 1, ∀ i ∈ I+1∫

Rd
νiθ(dx) = 1, ∀ i ∈ I−1.

Now, we can use duality to reformulate the infinite-dimensional optimization problem
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into a finite-dimensional problem:

sup
P∈P(θ)

EP[ϕ(⟨x, θ⟩)− y⟨x, θ⟩]

=



infα,si αδ + 1
n

∑
i∈I+1 si +

1
n

∑
i∈I−1 ti

s.t. supx ℓ((x,+1), θ)− α · 1+ỹi
2 ∥x− bi(θ)∥ ⩽ si ∀ i ∈ I+1

supx ℓ((x,−1), θ)− α · 1+ỹi
2 ∥x− bi(θ)∥ − ακ(1 + ỹi) ⩽ si ∀ i ∈ I+1

supx ℓ((x,−1), θ)− α · 1−ỹi
2 ∥x− bi(θ)∥ ⩽ ti ∀ i ∈ I−1

α ⩾ 0,

which is equivalent to:

sup
P∈P(θ)

EP[ϕ(⟨x, θ⟩)− y⟨x, θ⟩]

=



infα,si αδ + 1
n

∑
i∈I+1 si +

1
n

∑
i∈I−1 ti

s.t. supx ℓ((x,+1), θ)− α∥x− bi(θ)∥ ⩽ si ∀ i ∈ I+1

supx ℓ((x,−1), θ)− α∥x− bi(θ)∥ − 2ακ ⩽ si ∀ i ∈ I+1

supx ℓ((x,−1), θ)− α∥x− bi(θ)∥ ⩽ ti ∀ i ∈ I−1

α ⩾ 0,

We now invoke [442, Lemma A.1], which claims that for any ỹ ∈ {+1,−1} and x̃ ∈ Rd:

sup
x
ℓ((x, ỹ), θ)− α∥x− x̃∥ =

ℓ((x̃, ỹ), θ) if ∥θ∥ ⩽ α/(L+ 1),
−∞ otherwise.

We now have:

sup
P∈P(θ)

EP[ϕ(⟨x, θ⟩)− y⟨x, θ⟩]

=



infα,si αδ + 1
n

∑
i∈I+1 si +

1
n

∑
i∈I−1 ti

s.t. ℓ((bi(θ),+1), θ) ⩽ si ∀ i ∈ I+1

ℓ((bi(θ),−1), θ)− 2ακ ⩽ si ∀ i ∈ I+1

ℓ((bi(θ),−1), θ) ⩽ ti ∀ i ∈ I−1

α ⩾ 0
∥θ∥ ⩽ α/(L+ 1).

In the above presented optimization problem we can conclude that:

ti = ϕ(⟨bi(θ), θ⟩) + ⟨bi(θ), θ⟩ ∀i ∈ I−1

si = max{ℓ((bi(θ),+1), θ), ℓ((bi(θ),−1), θ)− 2ακ} ∀i ∈ I+1.
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To further simplify the si expression, note that:

si = max{ϕ(⟨bi(θ), θ⟩)− ⟨bi(θ), θ⟩ ,ϕ(⟨bi(θ), θ⟩) + ⟨bi(θ), θ⟩ − 2ακ}
= ϕ(⟨bi(θ), θ⟩)− ⟨bi(θ), θ⟩+ max{0, 2 ⟨bi(θ), θ⟩ − 2ακ}
= ϕ(⟨bi(θ), θ⟩)− ακ+ max

γi:|γi|⩽1
γi (⟨bi(θ), θ⟩ − ακ) ,

so the overall objective can be written as:

sup
P∈P(θ)

EP[ϕ(⟨x, θ⟩)− y⟨x, θ⟩]

=


infα maxγ:∥γ∥∞⩽1 α(δ− κ) + 1

n

∑
i

1+ỹi
2 (ϕ(⟨bi(θ), θ⟩) + γi (⟨bi(θ), θ⟩ − ακ))

+ 1
n

∑
i

1−ỹi
2 (ϕ(⟨bi(θ), θ⟩) + ⟨bi(θ), θ⟩)

s.t. ∥θ∥ ⩽ α/(L+ 1).

We claim that the minimax objective above is convex is θ. There are mainly two cases
to analyze:

1. Case I (i ∈ I+1): We have bi(θ) = x̃i as per the strategic classification model.
Therefore ⟨bi(θ), θ⟩ is a linear function. For every γ,α, we claim that the mapping
θ 7→ ϕ(⟨bi(θ), θ⟩) + γi(⟨bi(θ), θ⟩ − ακ) is convex. Indeed, the assumption that ϕ is
convex and the observation that ⟨bi(θ), θ⟩ is affine in θ ensures the convexity.

2. Case II (i ∈ I−1): We know from Lemma 10.2.1 that ⟨bi(θ), θ⟩ is convex in θ.
Moreover, the convexity of ϕ and the assumption that z 7→ ϕ(z) + z is non-decreasing
ensures that ϕ(⟨bi(θ), θ⟩) + ⟨bi(θ), θ⟩ is convex for every i.

This concludes the proof.

10.4 A New Gradient-free Algorithm for Convex
Concave Min-max Optimization

In this section, we introduce a novel gradient-free version of the well-studied Optimistic
Gradient Descent Ascent (OGDA) algorithm to solve convex-concave min-max optimization
problem, and provide non-asymptotic rates showing that it can efficiently find the saddle
point in constrained convex-concave problems. In the following section, we use this algorithm
to numerically solve (10.8).

Preliminaries on Min-max Optimization
Here, we review the following form of min-max optimization problem:

min
x∈X

max
y∈Y

L(x, y), (10.9)
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where X ⊂ Rdx , Y ⊂ Rdy , and L := 1
n

∑n
i=1 Li, where L1, . . . ,Ln : Rdx ×Rdy → R denote

n individual loss functions. For convenience, we denote d := dx + dy.

Assumption 10.4.1. The following statements hold:

1. The sets X ⊂ Rdx and Y ⊂ Rdy are convex and compact.

2. The functions L1, . . . ,Ln : Rd → R are convex in x ∈ Rdx for each y ∈ Rdy , concave
in y ∈ Rdy for each x ∈ Rdx, and G-Lipschitz2 and ℓ-smooth3 in (x, y) ∈ Rd (which
implies that L : Rd → R, by definition, also possesses the same properties).

For ease of exposition, we denote

u := (x, y), ML := sup
u∈X ×Y

|L(u)|, D := sup
u,u′∈X ×Y

∥u− u′∥2,

and define the operators F ,Fi : Rd → Rd, for each i ∈ [n], by:

F (u) :=

 ∇xL(u)
−∇yL(u)

 , Fi(u) :=

 ∇xLi(u)
−∇yLi(u)

 . (10.10)

Observe that under Assumption 10.4.1, ML,D < ∞, and F and each Fi are monotone4.
Finally, we define the gap function ∆ : Rd → [0,∞) associated with the loss L by

∆(x, y) := L(x, y⋆)−L(x⋆, y) ⩾ 0, (10.11)

where u⋆ := (x⋆, y⋆) ∈ X ×Y denotes the min-max saddle point of the overall loss L(x, y),
and (x, y) ∈ X ×Y denotes any feasible point. This gap function allows us to measure the
convergence rate of our proposed algorithm. To this end, we define the ϵ-optimal saddle-point
of (10.9) as follows.

Definition 10.4.1 (ϵ-optimal saddle point solution). A feasible point (x, y) ∈ X ×Y is
said to be an ϵ-optimal saddle-point solution of (10.9) if

∆(x, y) = L(x, y⋆)−L(x⋆, y) ⩽ ϵ.
2A function f : Rd → R is said to be G-Lipschitz for some G > 0 if, for each u,u′ ∈ Rd,

|f(u)− f(u′)| ⩽ G∥u− u′∥2.

3A differentiable function f : Rd → R is said to be ℓ-smooth for some ℓ > 0 if, for each u,u′ ∈ Rd:

∥∇f(u)−∇f(u′)∥2 ⩽ ℓ · ∥u− u′∥2.

4A function F : Rd → Rd is called monotone if ⟨F (x)− F (y),x− y⟩ ⩾ 0 for all x, y ∈ Rd.
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Zeroth-Order Gradient Estimates
In our zeroth-order, random reshuffling-based variant of the OGDA algorithms, we use the
one-shot randomized gradient estimator [394, 141]. In particular, given the current iterate
u ∈ Rd and a query radius δ > 0, we sample a vector v uniformly from unit sphere Sd−1

(i.e. v ∼ Unif(Sd−1)), and define the zeroth-order estimator F̂ (u; δ, v) ∈ Rd of the min-max
loss L(u) to be:

F̂ (u; δ, v) :=
d

δ
L(u+ δv)v. (10.12)

Several important properties of this estimator is reviewed in Appendix I.

Optimistic Gradient Descent Ascent with Random Reshuffling
(OGDA-RR)
In this subsection, we formulate our main algorithm, Optimistic Gradient Descent Ascent
with Random Reshuffling (OGDA-RR). In each epoch t ∈ {0, 1, · · · ,T − 1}, the algorithm
generates a uniformly random permutation σt := (σt1, · · · ,σtn) of [n] := {1, · · · ,n} indepen-
dently of any other randomness. This is what is referred as random reshuffling (or sampling
without replacement) where within every epoch we do not re-sample and this naturally gives
rise to correlations between different iterations within an epoch. Furthermore, the algo-
rithm fixes a query radius δt > 0 and search direction vti ∈ Rd in every epoch t. Note that
query radii only depends on epoch indices t, and not on sample indices {σti}ni=1. For each
i ∈ [n], t ∈ [T − 1], we compute the OGDA-RR update as follows:

uti+1 = PX ×Y

(
uti − ηtF̂σt

i
(uti; δt, vti)− ηtF̂σt

i−1
(uti; δt, vti) + ηtF̂σt

i−1
(uti−1; δt, vti−1)

)
,
(10.13)

where the terms F̂σt
i

and F̂σt
i−1

are the zeroth-order estimators of gradients Fσt
i

and Fσt
i−1

(defined in (10.10)).
After repeating this process for T epochs, the algorithm returns the step-size weighted

average of the iterates, ũT := 1
n·
∑T −1

t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti. The following theorem states that

if we run Algorithm 9 long enough then ũT will be close to the saddle point.

Theorem 10.4.1. Let L(u) denote the objective function in the constrained min-max opti-
mization problem given by (10.9), and let u⋆ = (x⋆, y⋆) ∈ X ×Y denote any saddle point of
L(u). Fix ϵ > 0. Suppose Assumption 10.4.1 holds, and the number of epochs T , step sizes
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Algorithm 9 OGDA-RR Algorithm

Require: Stepsizes ηt, δt, data points {(xi, yi)}ni=1 ∼ D, initial value u(0)0 , time horizon T
1: for t = 0 to T − 1 do
2: σt = (σt1, · · · ,σtn)← a random permutation of the set [n]
3: for i = 0 to n− 1 do
4: Sample vti ∼ Unif(Sd−1)
5: uti+1 ← update from equation (10.13)
6: end for
7: u

(t+1)
0 ← utn

8: u
(t+1)
−1 ← utn−1

9: end for
Ensure: ũT := 1

n·
∑T −1

t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti

sequence {ηt}T−1
t=0 , and query radius sequence {δt}T−1

t=0 satisfy:

ηt := η0 · (t+ 1)−3/4+χ, ∀ t ∈ {0, 1, · · · ,T − 1},
δt := δ0 · (t+ 1)−1/4, ∀ t ∈ {0, 1, · · · ,T − 1},

T >
1
ϵ4

 3
16nD+

5
4C ·max

{
δ0, η0, η0δ0, η

0

δ0 , η0

(δ0)2

}(
1 + 1

χ

)
4

1−4χ

,

for some initial step size η0 ∈
(

0, 1
2ℓ

)
, initial query radius δ0 > 0, parameter χ ∈ (0, 1/4),

and constant C = O(nd2D). Then the iterates {uti} generated by the OGDA-RR Algorithm
(Alg. 9) satisfy:

E
[
∆(ũT )

]
< ϵ.

There are three main components to the proof of Theorem 10.4.1: First, we bound the
bias introduced due to random reshuffling (or sampling without replacement) by Wasser-
stein distance between two appropriate distributions that characterize the correlations intro-
duced between iterates because of random reshuffling. Second, we bound the aforementioned
Wasserstein distance by constructing an appropriate coupling between iterates generated
with and without random reshuffling [191]. The coupled iterates thus obtained are then
bounded by exploiting the recent connections between OGDA method and proximal point
methods [303], which is one of the main contributions of our proof technique. Third, we
balance the bias and variance introduced due to zeroth-order gradient estimator by suitably
choosing the step size sequence {ηt} and the perturbation radius sequence {δt}.

Remark 10.4.1. Note that one can obtain better convergence rates if we use a multi-point
zeroth-order estimator as opposed to the single-point zeroth-order estimator (10.12). For
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instance, if we use the following two-point gradient estimator:

F̂ (u; δ, v) = d

2δ (L(u+ δv)−L(u− δv))v

then it follows easily from our analysis that the epochs required to obtain an ϵ−optimal saddle
point decreases from Õ

(
n4d8

ϵ4

)
to Õ

(
n2d4

ϵ2

)
. But we restrict our presentation to single point

estimators, as the distributionally robust strategic classification problem discussed in previous
section demands that we query the objective function as minimally as possible. It is an
interesting future research direction to study the OGDA-RR algorithm with more advanced
zeroth-order methods. Detailed proof is provided in Appendix I.

Remark 10.4.2. The analysis of OGDA algorithm with random reshuffling and exact gra-
dient information is an immediate feature of our proof technique. For such algorithms, the
number of epochs required to obtain an ϵ−optimal saddle point is Õ

(
n2

ϵ2

)
. Note that there

is no dependence on d with exact gradient based methods.

Remark 10.4.3. Note that the OGDA-RR algorithm is computationally more efficient than
[442, Algorithm 2], if one replaces the gradient estimates with true gradient values. This is
because that algorithm requires O(log(n)) inner loop iterations to approximate a proximal
point update. Here, we overcome extra computations by exploiting the recent perspective that
the OGDA update is a perturbed proximal point update [304].

10.5 Empirical Results
In this section we deploy zeroth-order OGDA algorithm with random reshuffling to solve the
convex concave reformulation of WDRSC as presented in (10.8). Throughout the rest of this
chapter, we denote the min-max objective in (10.8) by L(α, θ, γ).

We point out that in order to solve (10.8), the zeroth-order method should only be applied
to estimate the gradient with respect to θ. This is because the gradient with respect to other
variables, namely (α, γ), can be exactly computed. Specifically, to compute derivative with
respect to θ the designer must know the best response function which is often not available
and it can only be queried.

We now present some illustrations of the empirical performance of our proposed algo-
rithm, as well as empirical justification for solving the WDRSC problem over existing prior
approaches to strategic classification.

Experimental Setup
Our first set of empirical results uses synthetic data to illustrate the effectiveness of our
algorithms. The datasets used in this section are constructed as follows: the ground truth
classifier θ⋆ and features x̃i are sampled as θ⋆ ∼ N (0, Id) and x̃i ∼ i.i.d. N (0, Id), for each
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i ∈ [n], while the ground truth labels ỹi are given by ỹi = sign(⟨x̃i, θ⋆⟩+ zi) for each i ∈ [n],
where zi ∼ i.i.d. N (0, 0.1 · Id). We use n ∈ {500, 1000} with d = 10. The first five of the
d = 10 features are chosen to be strategic. In all experiments, we take κ = 0.5 and δ = 0.4.
Each strategic agent i ∈ [n] has a utility function given by:

ui(x; θ, x̃i, ỹi, ζi) =
1− ỹi

2 ⟨x, θ⟩ − 1
2ζi
∥x− x̃i∥2, (10.14)

where ζi denote the perturbation “power” of agent i. For simplicity, we assume all agents are
homogeneous, in the sense that ζi = ζ > 0 for all i ∈ [n]; in practice, one need not impose
this assumption. Given this utility function, the best response of agents takes the form:

bi(θ, x̃i, ỹi; ζ) =
x̃i if ỹi = +1,
x̃i + ζθ if ỹi = −1,

(10.15)

where, in our simulations, we fix ζ = 0.05. We reemphasize that our algorithm does not
use the value of ζ in any of its computations. For purposes of illustration, we focus on the
performance of the following algorithms:

1. Zeroth-order optimistic-GDA with random reshuffling (see Algorithm 9),

2. Zeroth-order optimistic-GDA without random reshuffling (see Algorithm 17 in Ap-
pendix I),

3. Zeroth-order stochastic-GDA with random reshuffling (see Algorithm 18 in Appendix
I),

4. Zeroth-order stochastic-GDA without random reshuffling (see Algorithm 19 in Ap-
pendix I).

and we evaluate the proposed algorithms and model formulation on two criteria:

1. Suboptimality: To measure suboptimality, we use the gap function

∆(α, θ, γ) = L(α, θ, γ⋆)−L(α⋆, θ⋆, γ),

defined in Definition 10.11, where (α⋆, θ⋆, γ⋆) is a solution of the min-max reformulation
(10.8) of the WDRSC problem. If the objective L(·) is convex-concave, ∆(·) is non-
negative, and equals zero at (and only at) saddle points.

2. Accuracy: Given a data set {(x̃i, ỹi)}i∈[n], the accuracy of a classifier θ is measured
as 1

n

∑
i∈[n] ỹi ⟨bi(θ, x̃i, ỹi; ζ), θ⟩. Under this criterion we compare the accuracy under

different perturbations for different classifiers θ;

To compute suboptimality, we first compute a true min-max saddle point (α⋆, θ⋆, γ⋆) via a
first order gradient based algorithm (namely, GDA). All experiments were run using Python
3.7 on a standard MacBook Pro laptop (2.6 GHz Intel Core i7 and 16 GB of RAM).
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Results
Simulation results presented in Figure (10.1a)-(10.1b) show that our proposed algorithm
(i.e. Algorithm 1) outperforms algorithms without reshuffling (i.e. 2 and 4). However,
its performance resembles that of zeroth-order stochastic-GDA with random reshuffling.
More experimental studies need to be conducted to more conclusively determine whether 1
outperforms 3, or vice versa. In fact, there has been no theoretical investigations even for
the first order stochastic-GDA algorithm with random reshuffling.

In Figure 10.1, we also compare the robustness of the classifier obtained by using Algo-
rithm 1 with that obtained from prior work on solving probems of strategic classification
trained with ζ = 0.05 (referred as LogReg SC in Figure 10.1). As expected, due to the
formulation, the performance of the classifier obtained via 1 degrades gracefully even when
subject to large perturbations, while the performance of existing approaches to strategic
classification degrades rapidly. Further numerical results on synthetically generated and real
world datasets are given in Appendix I.

10.6 Concluding Remarks
This chapter addresses the challenge of learning in strategic environments where agent behav-
ior is influenced by the deployed model, and where the learner’s assumptions about agent re-
sponses may be misspecified. To overcome the limitations of prior work that assumes perfect
knowledge of agent behavior, we propose a novel formulation based on a Wasserstein distribu-
tionally robust optimization (DRO) framework. This approach explicitly accounts for model
uncertainty by optimizing for worst-case performance over an ambiguity set that captures
strategically perturbed data distributions. We show that the resulting infinite-dimensional
DRO problem can be reformulated as a finite-dimensional, smooth convex-concave min-max
problem.

Building on this reformulation, we develop a gradient-free (zeroth-order) optimization
algorithm tailored for settings in which gradients of the min-max objective are unavailable.
This is particularly important in the DRO setting, where the gradient with respect to users’
strategic responses is not directly accessible. The proposed algorithm enables learning purely
from observed outcomes, without requiring access to the underlying response mechanisms.
Furthermore, the method is applicable to general convex-concave min-max problems. Our
theoretical analysis establishes non-asymptotic convergence guarantees for the algorithm,
even under random reshuffling of data-points.
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(a) n = 500

(b) n = 1000

Figure 10.1: Experimental results for a synthetic dataset with n = 500 and n = 1000. (Left
panes of (10.1a), (10.1b))) Suboptimality iterates generated by the four algorithms 1, 2, 3,
4, respectively denoted as Z-OGDA w RR, Z-OGDA w/o RR, Z-SGDA w RR, Z-SGDA w/o
RR. (Right panes of (10.1a), (10.1b))) Comparison between decay in accuracy of strategic
classification with logistic regression (trained with ζ = 0.05) and Algorithm 1 with change
in perturbation.
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Chapter 11

Follower Agnostic Learning in
Stackelberg Games

Incentive mechanisms play a crucial role in many societal systems, where outcomes are
governed by the interactions of a large number of self-interested users (or algorithms acting
on their behalf). The outcome of such strategic interactions, characterized by the Nash
equilibrium, is often suboptimal because individual players typically do not account for the
externality of their actions (i.e., how their actions affect the costs of others) when minimizing
their own costs. An important way to address this suboptimality is to provide players with
incentives that align their individual goal of cost minimization with the goal of minimizing the
total cost of the societal system [242, 33]. However, this problem becomes more challenging
as the system operator often needs to account for the learning behavior of players, who
repeatedly update their strategies in response to the incentive mechanism, especially when
the physical system experiences a random shock and players are learning to reach a new
equilibrium [32, 106, 270, 97].

In this chapter, we study the problem of designing incentive mechanisms in settings
where the operator (also referred to as the leader) has no knowledge of the utility functions or
learning algorithms used by the agents (referred to as followers). These strategic interactions
can be naturally modeled using Stackelberg games, which encompass a wide range of practical
applications, including incentive design, Bayesian persuasion, inverse optimization, bilevel
optimization, cybersecurity, and adversarial learning [253, 18, 258, 244, 443, 268], to name
a few.

Mathematically, Stackelberg games are represented as follows:

min
x∈X,y∈Y

f(x, y)

s.t. y ∈ S(x) := SOL(Y ,G(x, ·))),
(11.1)

where X is the leader’s strategy set, Y ⊆ Rd is the followers’ (joint) strategy set, f :
X × Y → R is the utility of the leader, G : X × Y → Rd is the game Jacobian of followers
and SOL(Y ,G(x, ·)) is a variational inequality problem that denotes the equilibrium response
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of followers, given the strategy of leader be x ∈ X. Assuming that the set br(x) is singleton
for every x ∈ X (commonly referred as lower-level singleton assumption), (11.1) is equivalent
to optimizing the following hyper-objective:

min
x∈X

f̃(x) := f(x, br(x)). (11.2)

Note that in general (11.2) is non-convex optimization problem. Thus, the goal in Stackelberg
games is to find a stationary point / local optima of (11.2) ([139]).

In numerous practical scenarios, it is unrealistic to presume that the leader possesses any
information regarding the variational inequality problem at the lower-level, including the
mapping G(x, ·) and even their strategy set Y – information traditionally assumed in prior
research on solving Stackelberg games. Thus, the key question we ask in this chapter is:

Q: Can we design efficient algorithms for Stackelberg games where the leader does
not require any explicit knowledge of the game played between followers?

In this chapter, we affirmatively answer the above question in the setting where the leader
can only probe the followers with different strategies and receive estimates of their (approxi-
mated) equilibrium responses. This is in contrast to the common assumption in the literature
on Stackelberg games, where it is assumed that the leader has access to an equilibrium or
best-response of followers either by knowledge of the utility function of followers or through
an oracle. In particular, we consider that followers are rational in the sense that they employ
an adaptation/learning algorithm, which asymptotically converges to the equilibrium [149].

We propose a two-loop algorithm where, in the outer loop, the leader fixes its strategy
(i.e., the value of x) and announces it to the followers. Between two updates of the leader’s
strategy, the followers employ an adaptation algorithm, for a finite number of steps, so
that they converge to an approximate equilibrium (or best-response). Upon observing the
followers’ behavior, the leader constructs an approximate estimator of the gradient of the
hyper-objective (11.2) and updates its strategy via gradient descent using the estimator.

We show that the proposed algorithm converges to a stationary point of (11.2) at a
rate O(T−1/2). Moreover, we show that if the hyper-objective satisfies the strict-saddle
property, i.e. the minimum eigenvalue at any saddle point is strictly negative, then the
iterates asymptotically avoid saddle points (which include local maxima) and converge to a
local minima of the hyper-objective (aka local Stackelberg equilibrium [139]).

We corroborate the theoretical results by conducting a simulated study of the proposed
algorithm to design tolls over the Sioux Falls (South Dakota, US) transportation network.
In this setup, we assume that the leader does not know the origin-destination (o-d) demand
of travelers moving between different o-d pairs, which is sensitive information.

Related works
Learning in Stackelberg games: Learning in Stackelberg games with finite actions is an
active area of research ([55, 241, 334, 25, 374]), where the leader has access to either a noisy
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or exact best response oracle. Furthermore, a dominant paradigm in this literature is to
consider two-player games with finite strategy sets or linearly parametrized utility functions,
with the exception of [139, 165, 164, 253]. In [139], the authors study the convergence of a
two-timescale algorithm to the Stackelberg equilibrium, requiring knowledge of the Hessian of
followers’ utility functions for leader updates. In [165, 164], the authors require the followers
to follow a specific (i.e. gradient type) learning algorithm in order to ensure convergence.
Finally, in [253], the authors impose strong convexity assumption on the hyper-objective
which is restrictive (as shown in [272]). In this chapter, we aim to design follower-agnostic
learning in a general-sum Stackelberg game in continuous spaces with no knowledge of the
followers’ utility functions or learning algorithms and not imposing restrictive assumptions
about convexity of hyper-objective.

Bilevel optimzation. Bilevel optimization, a subset of problem (11.1), is extensively
studied in literature, resembling a Stackelberg game with a single leader and follower. Exist-
ing research on bilevel optimization pursues three main approaches. The first utilizes a value
function-based approach, converting the problem into a constrained single-level optimization
problem with convergence guarantees to approximate Karush-Kuhn-Tucker (KKT) points
[393, 437]. However, such points may not capture locally optimal solutions [90]. Another
line of research focuses on asymptotic convergence of solutions of simpler bilevel problems
than (11.1) under various assumptions on the lower-level objective function structure [261,
259, 260]. The third line explores solving the non-convex optimization problem (11.2) using
gradient descent, requiring the computation of the gradient of the solution mapping, denoted
as ∇br(x). While many methods exist for approximating ∇br(x), including Automatic Im-
plicit Differentiation (AID) ([163, 145, 333, 196, 146]), or Iterative Differentiation ([145,
155, 162, 376]), this chapter is closely related to zeroth-order methods, specifically avoid-
ing the computation of the Hessian ([90]). Our proposed algorithm shares similarities with
[90], but we eliminate the need for oracle access to a lower-level optimal solution, leveraging
two-timescale stochastic approximation to analyze accumulated errors [90].

11.1 Problem Formulation
Consider the following Stackelberg game

min
x∈X,y∈Y

f(x, y)

such that y ∈ S(x) := SOL(Y ,G(x, ·))), (SG)

where (i) X = Rd and Y ⊂ Rd′ is assumed to be convex and compact set; (ii) f : X×Y → R

and G : X × Y → Rd′ are twice continuously differentiable functions; (iii) SOL(Y ,G(x, ·))
denotes the solution to variational inequality characterized by functional G(x, ·). That is,
SOL(Y ,G(x, ·)) = {y ∈ Y : ⟨y′ − y,G(x, y)⟩ ⩾ 0, ∀ y′ ∈ Y }. Under mild conditions on
the monotonicity of G(x, ·), it is ensured that S(x) is non-empty and convex ([134]).
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In what follows, we call a continuously differentiable function f̃ : Rd → R to be
L−Lipschitz if for every x,x′ ∈ Rd, ∥f̃(x) − f̃(x′)∥ ⩽ L∥x − x′∥. Furthermore, we call
it to be ℓ−smooth if for every x,x′ ∈ Rd, ∥∇f̃(x)−∇f̃(x′)∥ ⩽ ℓ∥x− x′∥.

Next, we introduce the main assumptions on the parameters of (SG) made throughout
this chapter.

Assumption 11.1.1. (1) For every y ∈ Y , the function f(·, y) is L1-Lipschitz. Addition-
ally, for every x ∈ X, the function f(x, ·) is L2−Lipschitz and ℓ2-smooth.

(2) For every x ∈ X, the set S(x) is singleton and function S(x) is LS-Lipschitz.

(3) The function f̃(x) = f(x,S(x)) is twice-continuously differentiable, L̃-Lipschitz and
ℓ̃−smooth.

Assumption 11.1.1-(1) is a common assumption employed in literature to derive rates of
convergence [253, 164]. Assumption 11.1.1-(2), which requires that the set S(x) exists, is
singleton and Lipscthiz continuous for every x, holds for strongly monotone games at lower
level [112]. Furthermore, it also applies to the incentive design problem in routing games,
as discussed in Section 11.2. Assumption 11.1.1-(3) is a technical condition we impose on
the hyper-objective to use Taylor’s series expansion in the proof of convergence. Notably,
this assumption is less restrictive than those imposed on the hyper-objective in [253]. We
believe this assumption can be further relaxed, but we leave this as an interesting direction
for future work.

11.2 Motivating Example: Incentive Design in
Routing Games

Consider a transportation network G = (N , E) comprised of set of nodes N and set of edges
E , used by self-interested (infinitesimal)travelers. Each traveler is traveling between some
origin-destination (o-d) pair on the network. The set of all o-d pairs be denoted by Z. For
each o-d pair z ∈ Z, let Rz be the set of routes connecting the o-d pair z. Let Dz be the
demand of travelers traveling between o-d pair z ∈ Z and yrz be the flow of travelers from
o-d pair z ∈ Z that choose route r ∈ Rz. Naturally, ∑r∈Rz

yrz = Dz, for every z ∈ Z. We
denote the set of all feasible route flows by Y =

∏
z∈Z Yz, where Yz := Dz · ∆(R|Rz |) is a

simplex. The route flow gives rise of congestion on the edges of the network. Given a route
flow y ∈ Y , the resulting congestion on edges is denoted by w(y) = (we(y))e∈E , where

we(y) =
∑
z∈Z

∑
r∈Rz

yrz1(e ∈ r), ∀ e ∈ E . (11.3)

Higher congestion leads to higher travel time on any edge. More formally, let ℓe(·) be a
strictly increasing smooth function which denotes the travel time of using edge e ∈ E as a
function of congestion. A social planner can alter the congestion levels on the network by
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imposing tolls on the edges of the network which changes the preferences of travelers for
different routes. Let xe ∈ R denote the tolls imposed on edge e ∈ E . 1 Under the network
tolls x = (xe)e∈E ∈ R|E| and route flow y ∈ Y , the overall cost experienced by travelers from
o-d pair z ∈ Z taking a route r ∈ Rz is

cr(y,x) =
∑
e∈r

ℓe(we(y)) + xe. (11.4)

Given a fixed network tolls x, the resulting congestion – Wardrop equilibrium – can be
obtained by solving the following strictly convex optimization problem ([331])

S(x) = arg min
y∈Y

Φ(y,x) =
∑
e∈E

∫ we(y)

0
ℓe(θ)dθ+ xewe(y). (11.5)

Under the setting presented in this section, it can be verified that the set S(x) exists, is
singleton, and is Lipschitz continuous mapping [112].

The goal of social planner is to minimize the overall congestion on the network while also
minimizing the tolls levied on travelers. More formally, the planner’s objective function is
given by f(x, y) =

∑
e∈E we(y)ℓe(we(y)) + λ∥x∥2, where the first term corresponds to the

average congestion on the network and second term is a regularization term with parameter
λ > 0, which ensures low values of tolls2. Thus, the problem of toll design is as follows

min
x∈R|E|,y∈Y

f(x, y)

s.t. y ∈ S(x) = arg min
y′∈Y

Φ(y,x), (11.6)

which is an instantiation of (SG).

Remark 11.2.1. In order to compute S(x) in (11.5) the planner needs to know the set
Y that requires knowledge of the demand of travelers between various o-d pairs, which is a
sensitive information. In Section 11.4, we use the proposed approach to solve (11.6) where
the designer does not know the demand of travelers and can only observe the congestion levels
(we)e∈E on the network in response to the set tolls.

11.3 Algorithms and Analysis
In this section, we present a follower agnostic algorithm for solving (SG). Following which,
we present the convergence guarantees of the proposed algorithm to a stationary point.
Additionally, we show that the algorithm will eventually converge to a local optima by
avoiding the saddle points and local maximum.

1Here, we allow for tolls to take negative values. Such tolling scheme can be implemented by considering
revenue-refunding schemes.

2Note that λ can in-general be zero, i.e. we do not require strong convexity of leader’s objective function
in its decision variable for our theoretical results to hold. We choose λ > 0 to impose a “soft-constraint” on
the amount of tolls.
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Algorithmic structure
The algorithm is based on alternatively moving towards solution to the variational inequality
at lower level and descending along the upper-level objective function. Specifically, between
two updates of leader (upper-level), the followers (lower level) employ an iterative adaptive
rule, aimed to solve the variational inequality SOL(·), for a fixed number of steps. Following
which, the upper level iterates descend along an “approximated” gradient estimator, inspired
from zeroth-order optimization ([395, 140]), evaluated at the lower-level iteration in current
round.

Leader’s strategy update The leader’s update rule is as follows:

xt+1 = xt − ηtF̂ (xt; δt, vt), (UL)

where F̂ (x; δ, v) denotes a gradient estimator of function f̃(·) := f(·, br(·)), evaluated at x
with parameters δ, v. We shall describe the estimator in detail below.

Gradient estimator In order to compute the gradient of f̃(x), we need to compute the
derivative through the solution to the variational inequality in (SG), i.e. S(x), which may
involve higher order gradient computations and at times is not computable in closed form
due to constraints. In this work, we consider a gradient estimator inspired from [395, 140].
Specifically, we consider the following estimator

F̂ (x; δ, v) :=
d

δ

(
f(x̂, y(K)(x̂))− f(x, y(K)(x))

)
v, (11.7)

such that (i) x̂ = x+ δv, where v ∈ S(Rd) := {z ∈ Rd : ∥z∥2 = 1} and δ > 0, are referred as
perturbation and perturbation radius respectively; (ii) K is a positive integer capturing the
number of rounds of adaptation rule employed by followers between two updates of leader’s
strategy; (iii) for any x ∈ X, k ∈ [K − 1] consider a iterative solver for variational inequality
denoted by H such that

y(k+1)(x) = Hk(y
(k)(x);x), ∀ k ∈ [K − 1], (LL)

where y(0) is some initialization for the iterative solver of variational inequality. For ex-
ample, when the lower level problem is just a convex optimization problem with objec-
tive function g(x, ·), a typical choice of Hk is projected gradient descent, i.e. Hk(y;x) =
PY (y − γk∇yg(x, y)), where PY denotes the orthogonal projection on Y and γk is the step
size. Note that, in order to construct the gradient estimator in (11.7), the leader need not
know the exact description of update rule Hk. For most of the chapter, we shall concisely
denote y(k)(x) and y(k)(x̂) as ỹ(k) and y(k) respectively.
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Remark 11.3.1. Direct application of zeroth-order gradient estimator from [395, 140] would
result in following estimator

F̃ (x; δ, v) = d

δ

(
f̃(x̂)− f̃(x)

)
v, (11.8)

where f̃ is defined in (11.2). Observe that the gradient estimators F̂ and F̃ differ because
in (11.7) we evaluate f(x, ·) at y(K)(x) while in (11.8) we evaluated it at br(x) for any
x ∈ Rd. This induces additional bias in the gradient estimator that needs to be appropriately
accounted while establishing convergence results.

Algorithm The algorithms runs for T rounds. In every round t ∈ [T − 1] the leader queries
the followers with two strategies xt and x̂t = xt + δtvt where vt ∼ Unif(S(Rd)) is a vector
sampled uniformly randomly from the unit sphere in Rd and δt is the perturbation radius
(refer line 2-3 in Algorithm 10). The followers respond to the leader’s strategies by using

Algorithm 10 Follower Agnostic Stackelberg Optimization Algorithm

1: Input: Time horizon T , initial conditions y(0)0 ∈ Y , ỹ(0)0 ∈ Y , x0 ∈ X, step sizes (ηt),
perturbation radius (δt)

2: for t = 0 to T − 1 do
3: Sample vt ∼ Unif(S(Rd))
4: Set x̂t ← xt + δtvt
5: for k = 0 to K − 1 do
6: Update y(k+1)

t ← Hk(y
(k)
t ; x̂t)

7: Update ỹ(k+1)
t ← Hk(ỹ

(k)
t ;xt)

8: end for
9: Update

xt+1 ← xt − ηt ·
d

δt

(
f(x̂t, y(K)

t )− f(xt, ỹ(K)
t )

)
vt

10: Set y(0)t+1 ← ỹ
(0)
t+1 ← ỹ

(K)
t

11: end for

an iterative variational inequality solver for K steps to obtain ỹ
(K)
t and y

(K)
t respectively

(refer line 4 and 7 in Algorithm 10). After observing ỹ
(K)
t and y

(K)
t , the leader computes

a gradient estimator as per (11.7). The leader updates its strategy for next time as per
(UL) (refer line 8 in Algorithm 10). The followers initialize their strategies as per line 9 in
Algorithm 10.

Convergence to stationary points
We now study the convergence properties of Algorithm 10.
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Assumption 11.3.1. For any x, x̂ ∈ X, the updates in (LL) are such that ∥y(K)(x) −
y(K)(x̂)∥ ⩽ C∥x− x̂∥, for some C > 0.

Assumption 11.3.1 posits that the adaptation rule employed by followers is stable with
respect to perturbations in the leader’s strategy. This assumption is typically satisfied by
many algorithms, including gradient-based algorithms.

Assumption 11.3.2. Atleast one of the following holds:

(1a) For any x ∈ X, the iterates (LL) converge to equilibrium at a polynomial rate. That is,
for any initial point y(0) ∈ Y ,∥y(K)(x)− br(x)∥2 ⩽ CK−λ∥y(0) − br(x)∥2, where λ,C
are positive scalars.

(1b) For any x ∈ X, the iterates (LL) converge to equilibrium at a exponential rate. That
is, for any initial point y(0), ∥y(K)(x) − br(x)∥ ⩽ CρK∥y(0) − br(x)∥, where C is a
positive scalar and ρ ∈ [0, 1).

Remark 11.3.2. Convergence of lower-level problem is extensively studied in literature, e.g.
[315, 430], and is not the focus of this chapter. Assumption 11.3.2(1a) holds for gradient de-
scent updates for convex functions that satisfy quadratic growth condition [207]. Meanwhile,
Assumption 11.3.2(1b) holds for gradient descent on strongly convex functions.

Theorem 11.3.1. Let Assumption 11.1.1-11.3.2 hold. If we choose

ηt = η̄(t+ 1)−1/2d−1, δt = δ̄(t+ 1)−1/4d−1/2

such that η̄ ⩽ d/2ℓ̃. Then the updates (xt)t∈[T ] in Algorithm 10 are such that

min
t∈[T ]

E
[
∥∇f̃(xt)∥2

]
⩽ Õ

(
d√
T
+

α

1− αd
3
(

1 + 1√
T

))
,

where α = CK−λ if Assumption 11.3.2(1a) hold, or α = ρK if Assumption 11.3.2(1b) hold.

Intuitively, the theorem states that if we want to converge closer to a stationary point
then we need to run the Algorithm 10 with larger T or smaller α (i.e. larger K). Crucially,
the term αd3 in the bound is due to error accumulation between time steps due to non-
convergence of lower-level to exact solution of variational inequality S(x). Owing to such
precise characterization of error accumulation across time steps, our rate is informative of
the computational complexity of solving the bi-level problem while in other contemporary
work, namely [90], it resembles iteration complexity of the oracle. Since α is a function of
K, the number of lower level iterations in every round, we can choose K to be large enough
to make sure that the algorithm converges closer to the stationary point.

Corollary 11.3.1. Let Assumption 11.1.1-11.3.1 and Assumption 11.3.2(1a) hold. Set
ηt = η̄(t+ 1)−1/2d−1, δt = δ̄(t+ 1)−1/4d−1/2 such that η̄ ⩽ d/2ℓ̃. Additionally, set K ⩾
T 1/2λd2/λ. Then, the iterates of Algorithm 10 satisfy mint∈[T ] E

[
∥∇f̃(xt)∥2

]
⩽ Õ

(
d√
T

)
.
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Corollary 11.3.2. Let Assumption 11.1.1-11.3.1 and Assumption 11.3.2(1b) hold. Set
ηt = η̄(t + 1)−1/2d−1, δt = δ̄(t + 1)−1/4d−1/2 such that η̄ ⩽ d/2ℓ̃. Additionally, set
K ⩾ (1/| log(ρ)|) ((1/2) log(T ) + 2 log(d)). Then, mint∈[T ] E

[
∥∇f̃(xt)∥2

]
⩽ Õ

(
d√
T

)
.

Remark 11.3.3. We know that for non-convex smooth functions, gradient descent con-
verges to a stationary point (at a rate of O(1/

√
T )). However, the key point of departure

of (UL) from standard gradient descent is the presence of bias in the gradient estimator.
Consequently, the key component of the proof is to bound the error in the gradient estimator
(11.7). This is because the estimator can be decomposed as

F̂ (xt; δt, vt) = ∇f̃(xt) + E (1)t + E (2)t + E (3)t ,

where

E (1)t := E
[
F̃ (xt; δt, vt)|xt

]
−∇f̃(xt),

E (2)t := F̃ (xt; δt, vt)−E
[
F̃ (xt; δt, vt)|xt

]
,

E (3)t := F̂ (xt; δt, vt)− F̃ (xt; δt, vt).

The term E (1)t denotes the bias introduced due to the difference between standard zeroth-
order gradient estimator, as per (11.8), and the true gradient. The term E (2)t denotes the
randomness introduced if we were to use the standard zeroth-order gradient estimator (11.8).
Finally, the term E (3)t denotes the bias introduced due to difference between our gradient
estimator (11.7) and the standard zeroth-order gradient estimator (cf. Remark 11.3.1).

Proof of Theorem 11.3.1 The proof of Theorem 11.3.1 follows by noting that f̃ ap-
proximately decreases along the trajectory (UL) (Lemma 11.3.1). Note that the decrease is
said to be “approximate” because of the bias introduced by (11.7) in comparison to actual
gradient ∇f̃(·). We then proceed to individually bound the bias terms (Lemma 11.3.2).
The convergence rate follows by using the step size and perturbation radius stated in the
statement of Theorem 11.3.1.

Proof of Theorem 11.3.1. From Lemma 11.3.1 we know that f̃(·) approximately
decreases along the trajectory of (UL). That is,

E
[
f̃(xt+1)

]
⩽ E

[
f̃(xt)

]
− ηt

2 E
[
∥∇f̃(xt)∥2

]
+ ηtE

[
∥E (1)t ∥2

]
+ ηtE

[
∥E (3)t ∥2

]
+ ℓ̃η2

tE

[
∥E (2)t ∥2

]
. (11.9)
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Using the bounds on error terms from Lemma 11.3.2, we obtain

E
[
f̃(xt+1)

]
⩽ E

[
f̃(xt)

]
− ηt

2 E
[
∥∇f̃(xt)∥2

]
+ ηt

ℓ̃2δ2
t d

2

4

+ ηt

(
d2

δ2
t

L2
2

(
2αte0 + 2Cd2

t−1∑
k=0

αt−kη2
k +Cd

t−1∑
k=0

αt−kδ2
k

))
+ 4d2L̃2ℓ̃η2

t .

Re-arranging the terms and adding and substracting the term f̃(x∗) = minx∈X f̃(x), we
obtain

ηt
2 E

[
∥∇f̃(xt)∥2

]
⩽ E

[
f̃(xt)

]
− f̃(x∗) + ηt

ℓ̃2δ2
t d

2

4

+ ηt
d2

δ2
t
L2

2

2αte0 + 2Cd2
t−1∑
k=0

αt−kη2
k +C

t−1∑
k=0

αt−kδ2
k


−
(
E
[
f̃(xt+1)

]
− f̃(x∗)

)
+ 4d2L̃2ℓ̃η2

t .

Summing the previous equation over time step t we obtain

∑
t∈[T ]

ηtE
[
∥∇f̃(xt)∥2

]
⩽
(
f̃(x0)− f̃(x∗)

)
+
ℓ̃2d2

4
∑
t∈[T ]

ηtδ
2
t + 2e0d

2L2
2
∑
t∈[T ]

ηt
δ2
t
αt

+ 2Cd4L2
2
∑
t∈[T ]

ηt
δ2
t

t−1∑
k=0

αt−kη2
k

︸ ︷︷ ︸
Term E

+CL2
2d

2 ∑
t∈[T ]

ηt
δ2
t

t−1∑
k=0

αt−kδ2
k

︸ ︷︷ ︸
Term F

+4d2L̃2ℓ̃
∑
t∈[T ]

η2
t . (11.10)

Setting ηt = η̄(t + 1)−1/2d−1 and δt = δ̄(t + 1)−1/4d−1/2, as per the statement of
Theorem 11.3.1, and dividing both sides by ∑t∈[T ] ηt, we obtain

1∑
t∈[T ] ηt

∑
t∈[T ]

ηtE
[
∥∇f̃(xt)∥2

]
⩽

Cd

η̄
√
T

(
f̃(x0)− f̃(x∗)

)

+
Cℓ̃d log(T )δ̄2

4
√
T

+
2Cd3L2

2α

(1− α)η̄
√
T
+

4CL̃2ℓ̃2η̄ log(T )d√
T

,

+
1∑

t∈[T ] ηt
2d4CL2

2
∑
t∈[T ]

ηt
δ2
t

t−1∑
k=0

αt−kη2
k

︸ ︷︷ ︸
Term E

+
1∑

t∈[T ] ηt
L2

2Cd
2 ∑
t∈[T ]

ηt
δ2
t

t−1∑
k=0

αt−kδ2
k

︸ ︷︷ ︸
Term F

,
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where C is a positive scalar. Next, we bound Term E + Term F as follows

Term E + Term F ⩽
T∑
t=1

ηt
δ2
t

t−1∑
k=0

αt−k
(
d4η2

k + d2δ2
k

)

=
η̄

δ̄2

T∑
t=1

t−1∑
k=0

αt
Θk

αk
=

η̄

δ̄2

T−1∑
k=0

Θk

αk

T∑
t=k+1

αt

⩽
η̄

δ̄2

T−1∑
k=0

Θk

αk
αk+1

1− α =
η̄

δ̄2
α

1− α

T−1∑
k=0

Θk

=
η̄

δ̄2
Cα

1− α
(
d2η̄2 log(T ) + d2δ̄2√T

)
, (11.11)

where in second equality Θk := (d4η2
k + d2δ2

k), and we have appropriately adjusted the
constant C to account for additinal constants. Thus, combining (11.10) and (11.11), we
obtain

1∑
t∈[T ] ηt

∑
t∈[T ]

ηtE
[
∥∇f̃(xt)∥2

]

⩽ O
(

d√
T

(
f̃(x0)− f̃(x∗)

)
+
d log(T )√

T
+

d3α

(1− α)
√
T

+
4 log(T )d√

T
+

d√
T

α

1− α
(
d2 log(T ) + d2√T

))
.

To conclude, we obtain

min
t∈[T ]

E
[
∥∇f̃(xt)∥2

]
⩽

1∑
t∈[T ] ηt

∑
t∈[T ]

ηtE
[
∥∇f̃(xt)∥2

]

⩽ Õ

(
d√
T
+

α

1− αd
3
(

1 + 1√
T

))
.

This concludes the proof.
Now, we formally state the Lemmas used in the proof.

Lemma 11.3.1. If η̄ ⩽ d/(2ℓ̃) then

E
[
f̃(xt+1)

]
⩽ E

[
f̃(xt)

]
− ηt

2 E
[
∥∇f̃(xt)∥2

]
+ ηtE

[
∥E (1)t ∥2

]
+ ηtE

[
∥E (3)t ∥2

]
+ ℓ̃η2

tE

[
∥E (2)t ∥2

]
.

(11.12)

The proof of Lemma 11.3.1 follows in two steps: First, we use second-order Taylor series
expansion of f̃ along the iterate values. Second, we use (UL) and complete the squares using
algebraic manipulations. A detailed proof is provided in Appendix J.
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Lemma 11.3.2. The errors E

[
∥E (i)t ∥2

]
for i ∈ {1, 2, 3} are bounded as follows:

E

[
∥E (1)t ∥2

]
⩽
ℓ̃2δ2

t d
2

4 , E

[
∥E (2)t ∥2

]
⩽ 4d2L̃2,

E

[
∥E (3)t ∥2

]
⩽
d2

δ2
t
L2

2

(
2αte0 + 2C

t−1∑
k=0

αt−kη2
k +C

t−1∑
k=0

αt−kδ2
k

)
, (11.13)

where C is a scalar and e0 = ∥y(0)0 − S(x0)∥2.

The stated bounds on E

[
∥E (1)t ∥2

]
and E

[
∥E (2)t ∥2

]
are inspired by the literature on two-

point zeroth-order gradient estimators [395, 140]. We use the Lipschitz property of f(x, ·)
to bound

∥E (3)t ∥2 ⩽ 2d
2

δ2
t
L2

2

(
∥y(K)
t − br(x̂t)∥2︸ ︷︷ ︸

Term A

+ ∥ỹ(K)
t − br(xt)∥2︸ ︷︷ ︸

Term B

)
.

Following which, Term A and Term B are recursively bounded. A detailed proof is provided
in Appendix J.

Non-convergence to saddle points
In this section, we show that the updates in (UL) does not converge to a saddle point.
Towards that goal, we make the following assumption that posits that the function f̃(·)
satisfy the strict saddle property.

Assumption 11.3.3. For any saddle point x∗ of f̃ , it holds that λmin(∇2f̃(x∗)) < 0.

In the following theorem, we formally state the non-convergence result.

Theorem 11.3.2. Let Assumption 11.1.1-11.3.3 hold. For ϵ > 0 there exists a time Tϵ such
that for any saddle point x∗ of f̃ it holds that E

[
∥xt − x∗∥2

]
⩾ ϵ, ∀ t ⩾ Tϵ.

To prove Theorem 11.3.2, an asymptotic pseudo-trajectory of (UL) is constructed. We
then show that the asymptotic pseudo-trajectory almost surely avoids saddle point.

Proof of Theorem 11.3.2 The proof follows by contradiction. Suppose there exists a
saddle point x∗ such that limt→∞ E

[
∥xt − x∗∥2

]
= 0. This implies that for any ϵ > 0 there

exists an integer Tϵ such that for all t ⩾ Tϵ it holds that

E
[
∥xt+s − x∗∥2

]
⩽ ϵ/4 ∀s ⩾ 0. (11.14)

Next, for any arbitrary point xt along the trajectory (UL), we define a
dynamics parametrized by x̂t = xt + δtvt, as follows zs+1(x̂t) := zs(x̂t)− ηt+s∇f̃(zs(x̂t)),
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where z0(x̂t) = x̂t. From Lemma 11.3.3, we know that for any ϵ > 0 and positive integer S
there exists T̃ϵ,S such that

sup
s∈[0,S]

E
[
∥zs(x̂t)− xt+s∥2

]
⩽ ϵ/4 ∀ t ⩾ T̃ϵ,S . (11.15)

Next, note that ∥zs(x̂t)− x∗∥2 ⩽ 2∥zs(x̂t)− xt+s∥2 + 2∥xt+s − x∗∥2. Therefore, combining
(11.14)-(11.15), we observe that for every t ⩾ max{Tϵ,Tϵ,S}, E[∥zs(x̂t)− x∗∥2] ⩽ ϵ, ∀ s ∈
[0,S].

But from [235] we know that for gradient descent with random initialization almost
surely avoids converging to saddle point 3 there exists Sϵ such that for all s ⩾ Sϵ it holds
that ∥zs(x̂t)− x∗∥2 ⩾ 2ϵ. This establishes contradiction.

Lemma 11.3.3. Let xt be an arbitrary point along the trajectory (UL). Define a dynam-
ics parametrized by x̂t = xt + δtvt, such that zs+1(x̂t) := zs(x̂t)− ηt+s∇f̃(zs(x̂t)), where
z0(x̂t) = x̂t and it holds that for any positive integer L, we have

lim
t→∞

sup
s∈[0,L]

E
[
∥xt+s − zs(x̂t)∥2

]
= 0.

A detailed proof of Lemma 11.3.3 is provided in Appendix J.

11.4 Numerical Experiments
We numerically study the Algorithm 10 in the context of incentive design in routing games
(described in Section 11.2). We consider the Sioux Falls transportation network, as de-
picted in Figure 11.1(a). The latency function and network topology are inherited from
http://tinyurl.com/y4fm4nvt. We consider a synthetic demand of (1, 2, 3, 2, 2, 1) units,
respectively, between o-d pairs Z = ((1, 20), (13, 2), (20, 1), (10, 13), (11, 20), (4, 21)).

The incentive designer can set tolls on each edge of the network. In response, unknown
to the planner, the travelers alter their route selection as per a gradient rule. More formally,
given a toll x ∈ R|E|, we consider that the route choices made by the travelers are updated
by descending along the gradient of the potential function Φ(·,x) (cf. (11.5)). Note that, for
any x ∈ R|E|, z ∈ Z, r ∈ Rz, the gradient is ∂Φ(y,x)

∂yrz
=
∑
e∈E ℓe(we(y))

∂we(y)
∂yrz

+ xe
∂we(y)
∂yrz

=
(i)∑

e∈E ℓe(we(y))1(e ∈ r) + xe1(e ∈ r) =
(ii)

cr(y,x), where (i) is due to (11.3) and (ii) follows

from (11.4). Consequently, the gradient update takes the following form: for every z ∈ Z,
y
(k+1)
z = PYz

(
(y

(k)
rz − γcr(qk, p))r∈Rz

)
.

3More specifically, we use the results from [235, Proposition 8]. Even though the results in [235, Propo-
sition 8] hold for gradient descent update with constant step-size, we can use this result for decaying step
size in our context as well. This is because the proof of [235, Proposition 8] only requires each step of the
gradient update to be diffeomorphism, which holds in our setting as the step-sizes are always non-negative
and decaying.

http://tinyurl.com/y4fm4nvt
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(a) Schematic depiction of Sioux Falls trans-
portation network. The numbers on the edges
and nodes are identifiers.

(b) Evolution of planner’s objective function.
The shaded blue region denotes the confidence
interval over 12 runs.

Figure 11.1: Simulation results on the Sioux Falls transportation network.

We simulate 12 runs of Algorithm 10 with T = 1000 and K = 3. The initial route
flow vector y(0)0 and ỹ

(0)
0 are randomly initialized. We set initial tolls uniformly randomly
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between [0, 0.1]. We set the step size ηt = 6(t+ 1)−1/2, δt = 0.3 · (t+ 1)−1/4, γ = 0.005
and λ = 0.01. In Figure 11.1(b), we show the leader’s objective value as function of time
iterates t ∈ [T ]. We observe that all trajectories converge to same objective value even with
random initializations. This shows that the convergent point is perhaps a global optimizer.

11.5 Concluding Remarks
We propose an efficient algorithm for Stackelberg games which converges to a stationary
point at a rate of O(T−1/2) and asymptotically reaches a local Stackelberg equilibrium. The
algorithm is designed so that the leader does not need to know any information about the
game structure at lower-level and updates its strategies by only querying for the followers
response to its strategy.
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Chapter 12

Externality-based Adaptive Incentive
Design with Learning Agents

Similar to Chapter 11, in this chapter we study design of adaptive incentive mechanism that
adjusts incentives based on the strategies of players, who repeatedly update their strategies
as part of a learning process. This results in a coupled dynamical system that comprises
both incentive and strategy updates.

The incentive mechanism studied here has four key features. Firstly, our framework ap-
plies to both atomic and non-atomic games. Secondly, the incentive update incorporates the
externality generated by the players’ current strategies, quantified as the difference between
their own marginal cost and the marginal cost for the entire system. Thirdly, the incentive
mechanism is agnostic to the strategy update dynamics used by players and requires only
oracle access to either the gradient (in atomic games) or the value (in non-atomic games) of
the cost function, given the current strategy, to evaluate the externality. Finally, the incen-
tive update occurs on a slower timescale compared to the players’ strategy updates. This
slower evolution of incentives is a desirable characteristic because frequent incentive updates
often hinder players’ participation.

We prove that any fixed point of the coupled incentive and strategy updates leads to
a socially optimal outcome. Specifically, at any fixed point, the incentive provided to each
player equals the externality of the equilibrium strategy, ensuring that the resulting Nash
equilibrium is socially optimal (Proposition 12.2.1). Additionally, we establish sufficient
conditions on the underlying game that ensure the fixed point – coinciding with the socially
optimal incentive mechanism – is unique (Proposition 12.2.1).

We characterize sufficient conditions for (both local and global) convergence of the cou-
pled dynamical system to the fixed points (Proposition 12.2.3). Since the convergent strategy
profile and incentive mechanism correspond to a socially optimal outcome, these sufficient
conditions ensure that the coupled dynamical system induce a socially optimal outcome in
the long run. Our analysis builds on the theory of two-timescale dynamical systems [59].
Due to the timescale separation between the strategy and incentive updates, we can decou-
ple the convergence of the strategy update from that of the incentive update. First, the
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convergence of the strategy update, which evolves on the faster timescale, is analyzed by
treating the incentive mechanism, which evolves on the slower timescale, as static. In our
work, we offload this analysis to the extensive literature on learning in games (e.g., [296,
239, 43, 361, 401]). Second, the convergence of the incentive mechanism update is examined
through the corresponding continuous-time dynamical system, evaluated at the fixed point
of the strategy update (i.e., the Nash equilibrium).

To demonstrate the usefulness of the adaptive incentive mechanism, we apply it to two
practically relevant classes of games: (i) atomic aggregative games and (ii) non-atomic
routing games. In atomic aggregative games, each player’s cost function depends on their
own strategy as well as the aggregate strategies of their opponents. This aggregation is
performed through a linear combination of neighboring players’ strategies, with weights
characterized by a network matrix. Our proposed incentive mechanism enables the system
operator to adaptively adjust incentives based on each player’s externality on their neighbors
while players learn their equilibrium strategies. When applied to this setting, our results
provide sufficient conditions on the network matrix to ensure global convergence to a socially
optimal outcome.

Furthermore, in non-atomic routing games, players (travelers) make routing decisions in
a congested network with multiple origin-destination pairs. The system operator imposes
incentives in the form of toll prices on network edges. Our proposed incentive mechanism
is adaptively updated based solely on the observed edge flows and the gradient of the edge
latency functions. Players can follow various strategy update rules that lead to the equilib-
rium of the routing game. We show that the adaptive incentive mechanism locally converges
to the toll prices that minimize total congestion.

The chapter is organized as follows: In Section 12.1, we describe the setup for both atomic
and non-atomic games and introduce the joint strategy and incentive update framework.
Section 12.2 presents our results on the fixed points being socially optimal, and sufficient
conditions for local and global convergence in general games. In Section 12.3, we apply
these convergence results to atomic aggregative games (Section 12.3) and non-atomic routing
games (Section 12.3). Finally, we conclude in Section 12.4.

Related Works
Two-timescale Learning Dynamics: Learning dynamics in which incentives are updated
on a slower timescale than players’ strategies have been studied in [302, 92, 343, 322, 253, 243,
11, 12]. Specifically, [302] examines Stackelberg games with a single leader and a population
of followers, where the leader employs gradient-based updates while the followers adjust
their strategies using replicator dynamics. Moreover, [92, 343] focus on incentive design in
affine congestion games, where incentives are updated using a distributed version of gradient
descent. Similarly, [322] studies incentive design for traffic control on a single highway
through gradient-based incentive updates. Additionally, [253, 243] propose a two-timescale
discrete-time learning dynamic in which players update their strategies using mirror descent,
while the system operator adjusts the incentive parameter via a gradient-based method.
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Furthermore, [11, 12] study the convergence of gradient-based incentive updates when the
system operator has access to the gradient of the equilibrium strategy with respect to the
incentive.

All of these works adopt gradient-based incentive updates. In such approaches, ensuring
that the fixed point is socially optimal relies on the assumption that the equilibrium social
cost is a convex function of the incentive parameter [302, 92, 343, 322, 253, 243] or that the
gradient of the equilibrium strategy with respect to the incentive is non-singular [12, 11].
However, these assumptions are restrictive and often do not hold, even in simple games. In
Chapter K.1, we provide a counterexample—a two-link routing game—in which both the
convexity and non-singular gradient assumptions fail to hold.

Single-timescale Learning Dynamics: The problem of steering non-cooperative play-
ers toward a desired Nash equilibrium using an incentive update that operates on the same
timescale as strategy updates has been studied in [378, 379, 444, 348]. Specifically, [378]
examines such updates in the setting of quadratic aggregative games. In [379], the authors
consider a scenario where players’ costs depend only on their own actions and a price signal
provided by an operator. In [444], the authors address the problem of guiding no-regret
learning players toward an optimal equilibrium; however, their approach requires solving an
optimization problem at each time step to compute the incentive mechanism. The work in
[348] explores incentive design while simultaneously learning players’ cost functions. The
authors assume that both cost functions and incentive policies are linearly parameterized,
with incentive updates relying on knowledge of the players’ strategy update rules rather than
solely on their current strategies, as in our setting.

Learning in Stackelberg Games: Our work is also related to the literature on learning
in Stackelberg games, where the planner often has limited information about the interac-
tions between players and must design an optimal mechanism by dynamically incorporating
feedback from players’ responses (see, e.g., [55, 241, 334, 25, 110, 192, 267]). This line of
research typically imposes structural assumptions on the game among followers, such as a
finite action space or linearly parameterized utility functions [55, 241, 334, 25, 110, 192].
Alternatively, some works, such as [267], focus on ensuring convergence only to a locally
optimal solution.

Compared to the preceding three lines of research, we introduce a novel externality-based
adaptive incentive design that applies to both atomic and nonatomic games, accommodates
continuous action spaces, and allows for nonlinear utility functions. Unlike gradient-based
incentive updates, externality-based updates ensure that any fixed point of the dynamics
is socially optimal without requiring the equilibrium social cost function to be convex in
the incentive vector or the gradient of equilibrium strategy with respect to the incentive
to be non-singular. Furthermore, our incentive update is agnostic to the players’ learning
dynamics and relies only on oracle access to zeroth-order or first-order information about
players’ costs given their current strategies.
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Notations
Given a function f : Rn → R, we use ∇xif(x) to denote the partial derivative of f with
respect to xi for any i ∈ {1, 2, ...,n}, and ∇f(x) to denote the gradient of the function.
For any set A, we use conv(A) to denote its convex hull. For any set X ⊆ Rn, a function
f : X → R is Lipschitz if there exists a positive scalar L such that ∥f(x) − f(x′)∥ ⩽
L∥x− x′∥, for every x,x′ ∈ X. For any vector x ∈ X and any positive scalar r > 0, the
set Br(x) = {x′ ∈ X|∥x′ − x∥ < r} denotes the r-radius neighborhood of the vector x.
For any set X, we define boundary(X) and int(X) to be the boundary and interior of set X,
respectively. Finally, for any function f(·), we denote the domain of the function by dom(f).
For any vector x ∈ Rn, we define diag(x) ∈ Rn×n to be a diagonal matrix with diagonal
entries corresponding to x.

12.1 Model
We introduce both atomic and non-atomic static games in Sec. 12.1. In Sec. 12.1, we present
our proposed adaptive incentive design approach.

Static Games
Atomic Games

Consider a game G with a finite set of players I. The strategy of each player i ∈ I is denoted
by xi ∈ Xi, where Xi is a non-empty, closed interval in R. The joint strategy profile of all
players is given by x = (xi)i∈I , and the set of all joint strategy profiles is X :=

∏
i∈I Xi.

The cost function of each player i ∈ I is represented as ℓi : R|I| → R.
A system operator designs incentives by setting a payment pixi ∈ R for each player

i, which is linear in their strategy xi. Here, pi ∈ R represents the marginal payment for
every unit increase in the strategy of player i. The value of pixi can be either negative or
positive, representing a marginal subsidy or a marginal tax, respectively. Given the incentive
mechanism p = (pi)i∈I , the total cost for player i ∈ I is:

ci(x, p) = ℓi(x) + pixi, ∀ x ∈ X. (12.1)
A strategy profile x∗(p) ∈ X is a Nash equilibrium in the atomic game G with the

incentive mechanism p if
ci(x

∗
i (p),x∗

−i(p), p) ⩽ ci(xi,x∗
−i(p), p), ∀ xi ∈ Xi, ∀i ∈ I.

A strategy profile x† ∈ X is socially optimal if it minimizes the social cost function Φ :
R|I| → R over X.

Assumption 12.1.1. For any p ∈ R|I|, the Nash equilibrium x∗(p) is unique and Lipschitz
continuous in p. Moreover, the social cost function Φ(x) is continuously differentiable, has
a Lipschitz gradient, and is strictly convex in x.
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Assumption 12.1.1 is widely adopted in the literature to study incentive design in atomic
games (e.g., [245, 253, 243, 378]), either directly or through other conditions that guarantee
this1.

Non-atomic Games

Consider a game G̃ with a finite set of player populations Ĩ. Each population i ∈ Ĩ is com-
prised of a continuum set of (infinitesimal) players with mass M̃i > 0. Every (infinitesimal)
player in any population can choose an action in a finite set S̃i. The strategy distribu-
tion of population i ∈ Ĩ is x̃i = (x̃ji )j∈S̃i

, where x̃ji is the mass of players in population
i who choose action j ∈ S̃i. Then, the set of all strategy distributions of population i is
X̃i =

{
x̃i ∈ R|S̃i||∑j∈S̃i

x̃ji = M̃i, x̃ji ⩾ 0,∀j ∈ S̃i
}

. The strategy distribution of all popu-
lations is given by x̃ = (x̃i)i∈Ĩ ∈ X̃ =

∏
i∈Ĩ X̃i. We define S̃ =

∏
i∈Ĩ S̃i. Given a strategy

distribution x̃ ∈ X̃, the cost of players in population i ∈ Ĩ for choosing action j ∈ S̃i is
ℓ̃ji (x̃). We denote ℓ̃i(x̃) = (ℓ̃ji (x̃))j∈S̃i

as the vector of costs for each i ∈ Ĩ.
A system operator designs incentives by setting a payment p̃ji for players in population

i who choose action j ∈ S̃i. Consequently, given the incentive mechanism p̃ = (p̃ji )j∈Si,i∈Ĩ ,
the total cost experienced by any player in population i ∈ Ĩ who chooses action j ∈ S̃i is

c̃ji (x̃, p̃) = ℓ̃ji (x̃) + p̃ji , ∀ x̃ ∈ X̃. (12.2)

A strategy distribution x̃∗(p̃) ∈ X̃ is a Nash equilibrium in the non-atomic game G̃ with
p̃ if

x̃j∗i (p̃) > 0, ⇒ c̃ji (x̃
∗(p̃), p̃) ⩽ c̃j

′

i (x̃
∗(p̃), p̃),

∀j, j′ ∈ S̃i, ∀i ∈ Ĩ.
(12.3)

A strategy distribution x̃† ∈ X̃ is socially optimal if x̃† minimizes a social cost function
Φ̃ : R|S̃| → R.

Assumption 12.1.1. For any p ∈ R|Ĩ|, the Nash equilibrium x̃∗(p̃) is unique and Lipschitz
continuous in p̃. Moreover, Φ̃(x̃) is continuously differentiable and strictly convex.

Assumption 12.1.1 is widely adopted in the literature on incentive design for non-atomic
games (e.g., [253, 322, 302]), either directly or through other conditions that guarantee this2.

1Uniqueness and Lipschitz continuity of x∗(p) hold if, for every i ∈ I and x−i = (xj)j∈I\{i}, the cost
function ℓi(xi,x−i) is strongly convex in xi and ℓi(·) is continuously differentiable with a Lipschitz gradient
[112].

2Uniqueness and Lipschitz continuity of x∗(p) hold if ℓ̃(·) is Lipschitz continuous and strongly monotone
[361]. That is, there exists ρ > 0 such that ⟨ℓ̃(x̃)− ℓ̃(x̃′), x̃− x̃′⟩ ⩾ ρ∥x̃− x̃′∥2 for every x̃ ̸= x̃′ ∈ X̃.
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Coupled Strategy and Incentive Update
We consider a coupled dynamical system that jointly updates players’ strategies and the
incentive mechanism with discrete time-steps k ∈ N. At step k, the strategy profile in the
atomic game G (resp. non-atomic game G̃) is xk = (xi,k)i∈I (resp. x̃k = (x̃i,k)i∈Ĩ), where
xi,k (resp. x̃i,k) is the strategy of player i (population i), and the incentive mechanism is
pk = (pi,k)i∈I (resp. p̃k = (p̃ji,k)j∈Si,i∈Ĩ). The strategy updates and the incentive updates
are presented below:
Strategy update.

xk+1 = (1− γk)xk + γkf(xk, pk), (x-update)
x̃k+1 = (1− γk)x̃k + γkf̃(x̃k, p̃k). (x̃-update)

In each step k + 1, the updated strategy is a linear combination of the strategy in stage k
(i.e. xk in G and x̃k in G̃), and a new strategy f(xk, pk) ∈ X in G (resp. f̃(x̃k, p̃k) ∈ X̃ in
G̃) that depends on the previous strategy and the incentive mechanism. The relative weight
in the linear combination is determined by the step-size γk ∈ (0, 1). We require that for any
p (resp. p̃), the fixed point associated with update (x-update) (resp. (x̃-update)) is a Nash
equilibrium, i.e.

x∗(p) = {x : f(x, p) = x}, ∀p ∈ R|I|,
x̃∗(p̃) = {x̃ : f̃(x̃, p̃) = x̃}, ∀ p̃ ∈ R|Ĩ|.

(12.4)

We shall impose additional assumptions on f(·) and f̃(·) when studying the convergence of
strategy and incentive updates in the next section. Some examples of commonly studied
learning dynamics (x-update) and (x̃-update) include:

1. Equilibrium update ([110, 192]): The strategy update incorporates a Nash equilibrium
strategy profile with respect to the incentive mechanism in step k:

f(xk, pk) = x∗(pk), and f̃(x̃k, p̃k) = x̃∗(p̃k). (12.5)

2. Best response update ([149, 361]): The strategy update incorporates a best response
strategy with respect to the strategy and the incentive mechanism in step k:

fi(xk, pk) = arg min
yi∈Xi

ci(yi,x−i,k, pk),

f̃i(x̃k, p̃k) = arg min
ỹi∈X̃i

ỹ⊤
i c̃i(x̃k, p̃k),

(12.6)

where the first equation is the best response update in atomic games [149], and the
second is the best response update in non-atomic games [361].
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3. Gradient-based update ([251, 226, 361]): Gradient-based strategy update commonly
studied in literature takes the following form:

fi(xk, pk) = arg max
yi∈Xi

zi(xk, pk)yi − h(yi),

f̃i(x̃k, p̃k) = arg max
ỹi∈X̃i

ỹ⊤
i c̃i(x̃k, p̃k)− h̃(ỹi),

(12.7)

where zi(xk, pk) = xk − η∇xici(xk, pk), η is step size, and h(·), h̃(·) are regularizers. If
h(·) is a quadratic function, then the update becomes projected gradient descent [298].
Furthermore, if h̃(·) is the entropy function, then the update becomes a perturbed
best-response update[361].

Incentive update.

pk+1 = (1− βk)pk + βke(xk), (p-update)
p̃k+1 = (1− βk)p̃k + βkẽ(x̃k), (p̃-update)

where e(x) = (ei(x))i∈I , ẽ(x̃) = (ẽji (x̃))j∈Si,i∈Ĩ , and

ei(x) = ∇xiΦ(x)−∇xiℓi(x), ∀i ∈ I, (12.8a)
ẽji (x̃) = ∇x̃j

i
Φ̃(x̃)− ℓ̃ji (x̃), ∀j ∈ S̃i, ∀i ∈ Ĩ. (12.8b)

In (12.8a), ei(x) represents the difference between the marginal social cost and the marginal
cost of player i given x. Similarly, ẽji (x̃) denotes the difference between the marginal social
cost and the cost experienced by players in population i who choose action j. We refer to
ei(x) and ẽi(x̃) = (ẽji (x̃))j∈Si

as the externalities of players i and population i, respectively,
since they capture the difference in the impact of their strategies on the social cost and
individual cost.

The updates (p-update)-(p̃-update) modify the incentives on the basis of the externality
caused by the players. In each step k + 1, the updated incentive mechanism is a linear
combination of the incentive mechanism in step k (i.e. pk in G and p̃k in G̃), and the
externality (i.e. e(xk) in G and ẽ(x̃k) in G̃) given the strategy in step k. The relative weight
in the linear combination is determined by the step size βk ∈ (0, 1).

In summary, the joint evolution of strategy and incentive mechanism (xk, pk)∞
k=1 (resp.

(x̃k, p̃k)∞
k=1) in the atomic game G (resp. non-atomic game G̃) is governed by the learning

dynamics (x-update)–(p-update) (resp. (x̃-update)–(p̃-update)). The step-sizes (γk)∞
k=1 and

(βk)
∞
k=1 determine the speed of strategy updates and incentive updates, respectively.

Information environment of incentive update. The incentive updates in (p-update)
and (p̃-update) are based on the externalities created by players’ strategies. In the absence
of additional problem structure, computing externality requires oracle access to the gradient
of players’ costs (first-order information) in atomic games (cf. (12.8a)) or the players’ cost
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functions (zeroth-order information) in non-atomic games (cf. (12.8b)), both evaluated at
the current strategy profile. This information requirement is less demanding compared to the
gradient-based incentive updates adopted in previous literature [302, 92, 343, 322, 253, 243,
11, 12], where estimating the gradient of the social cost function with respect to the incentive
vector often requires the knowledge of the game Jacobian (i.e., second-order information)
3 [253, 243], or knowledge of the gradient of equilibrium strategy with respect to incentive
(i.e., ∇px∗(p)) [12, 11]. Furthermore, our incentive updates do not require knowledge of
players’ entire cost function, and are agnostic to the specific strategy update dynamics (i.e.,
(x-update) and (x̃-update)) employed by the players.

In many settings, leveraging the structure of the underlying problem enables the social
planner to compute externalities with less information. For instance, in non-atomic routing
games (see Section 12.3), the social planner can compute externality using only the travel
time costs of edges (road segments in the network) instead of the cost of each path taken
by each population given their origin-destination pair. Additionally, in energy system appli-
cations (e.g., [245]), player’s cost function ℓi(x) = gi(xi) often only depends on their own
energy consumption xi, and the social cost function Φ(x) = r(x) +

∑
i∈I gi(xi) is modeled

as the sum of the public cost r(x) that depends on the joint action x and the cost of indi-
vidual players. In this case, the externality for any player i depends only on the gradient of
the public cost function r(x) and not on the private cost of players.

ei(x) =
∂Φ(x)

∂xi
− ∂ℓi(x)

∂xi
=
∂r(x)

∂xi
.

12.2 General results
In Section 12.2, we characterize the set of fixed points of the updates (x-update)-(p-update)
and (x̃-update)-(p̃-update), and show that any fixed point corresponds to a socially optimal
incentive mechanism such that the induced Nash equilibrium strategy profile minimizes the
social cost. In Section 12.2, we provide a set of sufficient conditions that guarantee (local
and global) convergence of incentive updates. Under these conditions, our adaptive incentive
mechanism eventually induces a socially optimal outcome.

3 For instance, the gradient based incentive update of atomic games studied in [253] takes the following
form pk+1 = pk − βk∇px∗(pk)

⊤∇xΦ(x∗(pk)), which is a gradient descent update on the function Φ(x∗(p)).
The authors estimate ∇px∗(pk)

⊤ with −∇pJ(xk; pk)⊤(∇xJ(xk; pk))−1, where J(x; p) = (∂ci(x, p)/∂xi)i∈I
is the game Jacobian. Therefore, these updates require second order information about the cost function of
players. Meanwhile, our approach of externality based pricing only requires first-order information about
the cost function of players.
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Fixed point analysis
We first characterize the set of fixed points of the updates (x-update)-(p-update), and
(x̃-update)-(p̃-update) as follows:

Atomic game G, {(x, p)|f(x, p) = x, e(x) = p} , (12.9a)
Non-atomic game G̃,

{
(x̃, p̃)|f̃(x̃, p̃) = x̃, ẽ(x̃) = p̃

}
. (12.9b)

Using (12.4), from (12.9a) – (12.9b), we can write the set of incentive mechanisms at the
fixed point, P † as follows:

Atomic game G, P † = {(p†
i )i∈I |e(x

∗(p†)) = p†},
Non-atomic game G̃, P̃ † = {(p̃†

i )i∈Ĩ |ẽ(x̃
∗(p̃†)) = p̃†}.

(12.10)

That is, at any fixed point, the incentive of each player is set to be equal to the externality
evaluated at their equilibrium strategy profile.

Our first result characterizes conditions under which the fixed point set P † (resp. P̃ †)
is non-empty and singleton in G (resp. G̃). Moreover, given any fixed point incentive
mechanism p† ∈ P † and p̃† ∈ P̃ †, the corresponding Nash equilibrium is socially optimal.

Proposition 12.2.1. Let Assumptions 12.1.1 hold and the strategy set X in an atomic
game G be compact. The set P † is a non-empty singleton set. The unique p† ∈ P † is socially
optimal, i.e. x∗(p†) = x†.

Moreover, in a non-atomic game G̃ under Assumptions 12.1.1, P̃ † is a non-empty sin-
gleton set. The unique p̃† ∈ P̃ † is socially optimal, i.e., x̃∗(p̃†) = x̃†.

Advantage of externality-based incentive updates. Proposition 12.2.1 demonstrates
that the externality-based incentive updates (p-update) and (p̃-update) ensure that any
fixed point must achieve social optimality. In contrast, the gradient-based incentive update,
commonly considered in the literature (e.g., [253, 243, 302, 12, 11]), does not guarantee that
its fixed point corresponds to a socially optimal incentive mechanism. Typically, these works
impose additional assumptions, such as the equilibrium social cost function Φ(x∗(p)) (resp.
Φ̃(x̃∗(p̃))) being strongly convex in the incentive mechanism p (resp. p̃) [253, 243, 302], or
that the gradient of the equilibrium strategy, ∇px∗(p) (resp. ∇p̃x̃∗(p̃)), with respect to the
incentive mechanism p (resp. p̃) is non-singular [12, 11], to ensure that the fixed points of
the gradient-based update achieve the socially optimal outcome. In fact, in Chapter K.1,
we provide an example of a two-link non-atomic routing game, where these assumptions are
not satisfied and nearly all fixed points of the gradient-based incentive update fail to achieve
the socially optimal outcome. Consequently, the gradient-based incentive update can lead to
inefficient outcomes. In contrast, our externality-based incentive update has a unique fixed
point that always induces the socially optimal outcome.
Proof of Proposition 12.2.1. First, we show that P † is non-empty, i.e., there exists p† such
that e(x∗(p†)) = p†. Define the function θ(p) = e(x∗(p)). By Assumption 12.1.1, θ is
well-defined. Thus, the problem reduces to proving the existence of a solution to p = θ(p).
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We note that Assumption 12.1.1 ensures that θ(p) is a continuous function. Now, define
K := {θ(p) : p ∈ R|I|} ⊆ R|I|. We claim that the set K is compact. Indeed, this follows
from two observations. First, the externality function e(·) is continuous. Second, the range
of the function x∗(·) is X, which is a compact set. These two observations ensure that
θ(p) = e(x∗(p)) is a bounded function. Let K̃ := conv(K) be the convex hull of K, which
in turn is also a compact set. Let’s denote the restriction of function θ on the set K̃ as
θ|K̃ : K̃ → K̃ where θ|K̃(p) = θ(p) for all p ∈ K̃. We note that θ|K̃ is a continuous function
from a convex compact set to itself and therefore, the Schauder fixed point theorem ensures
that there exists p† ∈ K̃ such that p† = θ|K̃(p

†) = θ(p†) [388]. This concludes the proof of
the existence of p†. Analogous argument applies for the non-atomic game G̃ to show that
P̃ † is non-empty.

Next, we show that the incentive p† aligns the Nash equilibrium with socially optimal
strategy (i.e. for any p† ∈ P †, x∗(p†) = x†). For any p† ∈ P † and any i ∈ I, it holds that
p†
i = ei(x∗(p†)). This implies that ∇xiℓi(x

∗(p†)) + p†
i = ∇xiΦ(x∗(p†)) for every i ∈ I, and

thus

J(x∗(p†), p†) = ∇Φ(x∗(p†)), (12.11)

where J(x, p) is the game Jacobian defined as Ji(x, p) = ∇xiℓi(x) + pi for every i ∈ I. From
Assumption 12.1.1 and the first order necessary condition for Nash equilibrium [135], we
know that the Nash equilibrium x∗(p†) must satisfy

⟨J(x∗(p†), p†),x− x∗(p†)⟩ ⩾ 0, ∀ x ∈ X. (12.12)

From (12.11) and (12.12), we observe that

⟨∇Φ(x∗(p†)),x− x∗(p†)⟩ ⩾ 0, ∀ x ∈ X. (12.13)

Further, from the first order conditions of optimality for social cost function we know that
x† is socially optimal if any only if it satisfies

⟨∇Φ(x†),x− x†⟩ ⩾ 0, ∀ x ∈ X. (12.14)

Comparing (12.13) with (12.14), we note that x∗(p†) is the minimizer of social cost function
Φ. This implies that x∗(p†) = x†, since x† is the unique minimizer of the social cost function
Φ under Assumption 12.1.1.

Similarly, for non-atomic game G̃, we show that the incentive p̃† aligns the Nash equi-
librium with social optimality. Fix p̃† ∈ P̃ †. For every j ∈ S̃i and i ∈ Ĩ, it holds that
p̃j†i = ẽji (x̃

∗(p̃†)). Consequently,

c̃ji (x̃
∗(p̃†), p̃†) = ∇

x̃j
i
Φ̃(x̃∗(p̃†)). (12.15)

Under Assumption 12.1.1, x̃∗(p̃†) is a Nash equilibrium only if

⟨c̃(x̃∗(p̃†), p̃†), x̃− x̃∗(p̃†)⟩ ⩾ 0, ∀ x̃ ∈ X̃. (12.16)
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From (12.15) and (12.16), we observe that

⟨∇Φ̃(x̃∗(p̃†)), x̃− x̃∗(p̃†)⟩ ⩾ 0, ∀ x̃ ∈ X̃. (12.17)

Comparing (12.17) with the first order necessary and sufficient conditions of optimality of
social cost function, we note that x̃∗(p̃†) is the minimizer of the social cost function Φ̃. This
implies that x̃∗(p̃†) = x̃†, since x̃† is the unique minimizer of the social cost function Φ̃ under
Assumption 12.1.1.

Finally, we show that the set P † is singleton. We prove this via contradiction. Suppose
that P † contains two element p†

1, p†
2, and both align the Nash equilibrium with social op-

timality. Then, x† = x∗(p†
1) = x∗(p†

2). From (12.10), we know that p†
1 = e(x∗(p†

1)) and
p†

2 = e(x∗(p†
2)). Thus, we must have p†

1 = e(x†) = p†
2, which implies that P † is a singleton.

The proof of uniqueness of P̃ † follows analogously. □

Convergence to optimal incentive mechanism
In this subsection, we provide sufficient conditions for the convergence of strategy and in-
centive updates (x-update)-(p-update) and (x̃-update)-(p̃-update). Before presenting the
convergence result, we first introduce two assumptions.

Assumption 12.2.1. The step sizes in (x-update)-(p-update) and (x̃-update)-(p̃-update)
satisfy the following conditions:

(i) ∑∞
k=1 γk =

∑∞
k=1 βk = +∞, ∑∞

k=1 γ
2
k + β2

k < +∞.

(ii) limk→∞ βk/γk = 0.

Assumption 12.2.1-(i) is a standard assumption on step sizes that allows us to analyze the
convergence properties of the discrete-time learning updates through that of a continuous-
time dynamical system [60]. Assumption 12.2.1-(ii) ensures that the incentive update
evolves on a slower timescale than the players’ strategy updates [60, 225]. Any step sizes of
the form γk = k−a and βk = k−b with 0.5 < a < b ⩽ 1, satisfy Assumption 12.2.1.

Assumption 12.2.1 has been adopted in several previous works on adaptive incentive de-
sign (e.g., [245, 89]). Under Assumption 12.2.1, the strategy update (x-update) represents
a fast transient, whereas the incentive update (p-update) is a slow component. To analyze
such discrete-time updates, we employ techniques from two-timescale approximation theory
[60, 61, 89], which allows us to analyze the convergence of the strategy and incentive up-
dates separately. An intermediate step in this process is to ensure that, for every p, p̃, the
trajectories of the following continuous-time strategy dynamics globally converge (cf. [60,
61, 89]):

ẋ(t) = f(x(t), p)− x(t), (x-dynamics)
˙̃x(t) = f̃(x̃(t), p̃)− x̃(t). (x̃-dynamics)
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In this work, we do not focus on analyzing the convergence of (x-dynamics)-(x̃-dynamics).
Instead, we assume any off-the-shelf convergent strategy update that satisfies the following
assumption:

Assumption 12.2.2. For any incentive mechanism p (resp. p̃), the Nash equilibrium x∗(p)
(resp. x̃∗(p̃)) is the globally asymptotically stable fixed point of the continuous-time dynamical
system (x-dynamics) (resp. (x̃-dynamics)).

Assumption 12.2.2 is satisfied for a variety of strategy updates in various games. This
includes the best-response and fictitious play strategy update in zero-sum and potential
games [185, 43, 401, 239], and gradient-based strategy update in continuous games [290,
296].

Our goal here is to characterize conditions under which the coupled strategy and incen-
tive updates (x-update)-(p-update) and (x̃-update)-(p̃-update) converge. Before stating the
convergence results, we define two notions of convergence.

Definition 12.2.2. We say that the coupled strategy and incentive updates (x-update)-
(p-update)

(i) globally converges to the fixed point (x†, p†) if, for any initial condition p0 ∈ R|I| and
x0 ∈ X, and any selection of step sizes that satisfy Assumption 12.2.1, the discrete-time
updates (x-update)-(p-update) asymptotically converge to (x†, p†).

(ii) locally converges to the fixed point (x†, p†) if there exist positive scalars r̄, ᾱ, β̄, γ̄ such
that, when p0 ∈ Br̄(p†) and x0 ∈ Br̄(x∗(p0)), the step sizes satisfy Assumption 12.2.1
and the following condition:

sup
k∈N

βk
ηk

⩽ ᾱ, sup
k∈N

βk ⩽ β̄, sup
k∈N

ηk ⩽ γ̄, (12.18)

then the discrete-time updates (x-update)–(p-update) asymptotically converge to (x†, p†).

Local and global convergence are analogously defined for the updates (x̃-update)-(p̃-update)
in non-atomic games.

Proposition 12.2.3. Consider the atomic game G with discrete-time update (x-update)-
(p-update) that satisfy Assumptions 12.2.1 and 12.2.2. The following requirements provide
sufficient conditions for (x-update)-(p-update) to locally converge to the fixed point4 (x†, p†)
in the sense of Definition 12.2.2:

(R1) p† is a locally asymptotically stable equilibrium of the following continuous-time dy-
namical system:

ṗ(t) = e(x∗(p(t)))− p(t). (12.19)
4This result holds even if the updates (x-update)-(p-update) and (x̃-update)-(p̃-update) are perturbed

with square-integrable martingale difference noise [61].
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(R2) The trajectories of the discrete-time updates satisfy the boundedness condition:

sup
k∈N

(
∥xk∥+ ∥pk∥

)
< +∞.

Furthermore, the sufficient conditions for (x-update)-(p̃-update) to globally converge to the
fixed point (x†, p†) in the sense of Definition 12.2.2 are (R1’) and (R2), where

(R1’) p† is a globally asymptotically stable equilibrium of the continuous-time dynamical sys-
tem:

ṗ(t) = e(x∗(p(t)))− p(t). (12.20)

Analogous result holds for the non-atomic game G̃.

Proposition 12.2.3 states two sets of generic conditions that can be verified when study-
ing convergence in any specific game. In particular, by leveraging results from nonlinear
dynamical systems theory, (R1) (or (R1’)) can be verified by showing the existence of a
Lyapunov function [366] or by establishing that the dynamical system is cooperative [181];
see Lemma 1 in Chapter K.4. Additionally, (R2) holds in any game with a compact strategy
set. In games with an unbounded strategy set, (R2) can be verified by analyzing the global
convergence of continuous-time (‘scaled’) strategy and incentive dynamics [225, Theorem
10]. In Section 12.3, we verify that the conditions in Proposition 12.2.3 are satisfied in
atomic aggregative games and non-atomic routing games. Proof of Proposition 12.2.3.
Assumption 12.2.1-(ii), allow us to study the convergence of (x-update)-(p-update) in two
stages [59, 61]. First, we study the convergence of fast strategy updates, for every fixed value
of incentive. Second, we study the convergence of slow incentive updates, assuming that the
fast strategy updates have converged to the equilibrium.

Formally, to study the convergence of fast strategy updates, we re-write (x-update)-
(p-update) as follows

xk+1 = xk + γk (f(xk, pk)− xk) ,

pk+1 = pk + γk
βk
γk

(e(xk)− pk) .
(12.21)

Since supk∈N(∥xk∥+ ∥pk∥) < +∞ (cf. requirement (R2)) and limk→∞ βk/γk = 0 (cf. As-
sumption 12.2.1), the term βk

γk
(e(xk)− pk) in (12.21) goes to zero as k →∞. Consequently,

leveraging the standard approximation arguments [60, Lemma 1, Section 2.2], we conclude
that the asymptotic behavior of the updates in (12.21) is same as that of the following
dynamical system

ẋ(t) = f(x(t), p(t))− x(t), ṗ(t) = 0.

Using Assumption 12.2.2, we conclude that

lim
k→∞

(xk, pk)→ {(x∗(p), p) : p ∈ R|I|}. (12.22)
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Next, to study the convergence of the slow incentive updates, we re-write (p-update) as
follows

pk+1 = pk + βk (e(x
∗(pk))− pk) + βk (e(xk)− e(x∗(pk))) . (12.23)

We will show that (pk)k∈N will asymptotically follow the trajectories of the following
continuous-time dynamics:

ṗ(t) = e(x∗(p(t)))− p(t). (12.24)

Note that p† is the fixed point of the trajectories of the dynamical system (12.19) (cf. Propo-
sition 12.2.1). Requirement (R1) in Proposition 12.2.3 ensures convergence of (12.19).

Let D† denote the domain of attraction of p† for the dynamical system (12.19). From the
converse Lyapunov theorem [370], we know that there exists a continuously differentiable
function V̄ : D† → R+ such that V̄ (p†) = 0, V̄ (p) > 0 for all p ∈ D†\{p†} and V̄ (p) → ∞
as p→ boundary(D†). For any r > 0, define V̄r = {p ∈ dom(V̄ ) : V̄ (p) ⩽ r} to be a sub-level
set of V̄ . There exists 0 < r̄′ < r̄ such that V̄r̄′ ⊊ Br̄′(p†) ⊊ Br̄(p†) ⊊ V̄r̄. Additionally,
define t0 = 0, tk =

∑k
i=1 βi and Lk = tn(k) where n(0) = 0, and

n(k) = min

m ⩾ n(k− 1) :
m∑

j=n(k−1)+1
βj ⩾ T

 ∀k ∈N. (12.25)

Here, T is a positive integer to be described shortly. Furthermore, define p̄(k) : R+ → R|I|

to be a solution of (12.19) on [Lk,∞) such that p̄(k)(Lk) = pLk
.

To ensure that p̄(k)(Lk) ∈ dom(V̄ ) for k > 0, we show that for an appropriate choice of
T in (12.25), pLk

∈ int(D†) for every k ∈N. From [61, Theorem IV.1], we know that there
exists K > 0 such that for all k ∈N,

∥pk − p̄(0)(tk)∥

⩽ K

(
sup
k
βk + sup

k
γk + sup

k

βk
γk

+ sup
k

βk
γk
∥x0 − x∗(p0)∥

)
= K (ᾱ+ β̄ + γ̄ + ᾱr̄) =: κ.

Consequently, using the triangle inequality, it holds that

∥pk − p†∥ ⩽ κ+ ∥p̄(0)(tk)− p†∥. (12.26)

Since V̄ is a Lyapunov function of (12.19) and p̄(0)(0) = p0 ∈ Br̄(p†) ⊊ V̄r̄, there exists
k̄ ∈ N such that for all k ⩾ k̄, p̄(0)(tk) ∈ V̄r̄′ ⊊ Br̄′(p†). If we choose κ < r̄− r̄′ then, from
(12.26), it holds that for all k ⩾ k̄, pk ∈ Br̄(p†). Therefore, if we choose T ⩾ k̄ in (12.25), it
holds that

pLk
∈ dom(V̄ ), ∀ k ∈N. (12.27)
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Define p̂ : R+ → R such that, for every k ∈ N, p̂(tk) = pk with linear interpolation on
[tk, tk+1]. Using the standard approximation arguments from [60, Chapter 6], it holds that5

sup
t∈[Lk,Lk+1]

∥p̂(t)− p̄(k)(t)∥

⩽ O

 ∑
m⩾Lk

β2
m + sup

m⩾Lk

∥xm − x∗(pm)∥

 . (12.28)

Using (12.22) and Assumption 12.2.1, we conclude that RHS in the above equation goes
to zero as k → ∞. Finally, using (12.27), (12.28) and [59, Lemma 2.1], we conclude that
pk → p† as k →∞. □

12.3 Applications
In this section, we study the applicability of the general results from Section 8.4 to study
convergence of our externality-based incentive updates in two practically relevant classes of
games: atomic aggregative games, and non-atomic routing games.

Atomic Aggregative Games
Here, we study quadratic networked aggregative games [65, 64, 378, 1]. Consider a game G
comprised of a finite set of players I. The strategy set of every player is the entire real line
R. Given the joint strategy profile x = (xi)i∈I , the cost of each player i ∈ I is given by

ℓi(x) =
1
2qix

2
i + αxi(Ax)i, (12.29)

where A ∈ R|I|×|I| is the network matrix, with Aij representing the impact of player j’s
strategy on the cost of player i. The parameter α > 0 characterizes the impact of the aggre-
gate strategy on the individual cost of players. Moreover, qi > 0 determines the influence
of each player’s own strategy on their cost function. Without loss of generality, we consider
Aii = 0 for all i ∈ I. For notational brevity, we define Q = diag((qi)i∈I) ∈ R|I|×|I|.

A system operator designs incentives through a payment pixi for player i when choosing
strategy xi. Thus, the total cost of player i is given by ci(x, p) = ℓi(x) + pixi. The system
operator’s cost is

Φ(x) =
n∑
i=1

1
2(xi − ζi)

2, (12.30)

where ζ = (ζi)i∈I ∈ R|I| denotes the socially optimal strategy. Similar cost function has
been considered for systemic risk analysis in financial networks [2]. In Chapter K.1, we
generalize our results for a broader class of social cost functions.

5For any T ⩾ k̄ and δ > 0, there exists k(δ) such that p̂(tk(δ) + ·) form a “(T , δ)” perturbation (cf. [59])
of (12.19).
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Proposition 12.3.1. Suppose M := Q+ αA is invertible. Then, the Nash equilibrium is
given by x∗(p) = −M−1p. Furthermore, the set P † is a singleton set.

The proof follows by noting that the game is strongly convex and equilibrium is computed
by first order conditions. Proof of Proposition 12.3.1 is provided in Chapter K.2.

Next, we provide sufficient conditions to ensure global convergence of (x-update)-
(p-update) to the fixed points.

Proposition 12.3.2. Consider the updates (x-update)-(p-update) associated to the aggrega-
tive game G. Suppose that Assumptions 12.2.1 and 12.2.2 are satisfied. Additionally, if

(i) M := Q+ αA is symmetric positive definite, and

(ii) The function fc(x, p) := 1
c (f(cx, cp)− cx), satisfy fc → f∞ as c → ∞, uniformly on

the compacts, and for every incentive vector p ∈ R|I|, x∗(p) is the globally asymptoti-
cally stable fixed point of

ẋ(t) = f∞(x(t), p), (12.31)

where, for any x ∈ X and p ∈ R|I|, f∞(x, p) = limc→∞ fc(x, p).

Then, the discrete-time updates (x-update) and (p-update) globally converges to the fixed
point (x†, p†) in the sense of Definition 12.2.2.

We establish Proposition 12.3.2 by verifying requirements (R1’) and (R2) of Proposition
12.2.3. To verify (R1’), we use Proposition 12.3.2-(i) to show that V (p) = (p−p†)⊤M−⊤(p−
p†) serves as a Lyapunov function candidate for the dynamical system (12.20), guaranteeing
global convergence. Next, we leverage Proposition 12.3.2-(ii) along with [225, Theorem 10]
to show that (R2) of Proposition 12.2.3 holds. Proof of Proposition 12.3.2 is in Chapter K.2.

Condition (ii) in Proposition 12.3.2 and Assumption 12.2.2 both impose global conver-
gence of a suitably defined continuous-time strategy dynamics. In general, one need not
imply the other. However, the two conditions become equivalent if the strategy update rule
f(x, p) (cf. (x-update)) is linear in both x and p, which is the case if the strategy updates
are best-response-based (12.6) or gradient-based (12.7) in aggregative game.

Non-atomic Traffic Routing on General Networks
Consider a routing game G̃ that models the interactions of strategic travelers over a directed
graph G = (Ẽ , Ñ ), where Ñ is the set of nodes and Ẽ is the set of edges. Let Ĩ be the set of
origin-destination (o-d) pairs. Each o-d pair i ∈ Ĩ is connected by a set of routes,6 denoted
by Ri. Let R =

⋃
i∈Ĩ Ri represent the set of all routes in the network.

An infinitesimal traveler on the network is associated with an o-d pair and chooses a
route to commute between the o-d pair. Let the total population of travelers associated with

6A route is a sequence of contiguous edges.
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any o-d pair i ∈ Ĩ be denote by M̃i. Let x̃ji be the amount of travelers taking route j ∈ Ri

to commute between o-d pair i ∈ Ĩ and x̃ = (x̃ji )j∈Ri,i∈Ĩ is a vector which contains, as its
entries, the route flow of all population on different routes. Naturally, for every i ∈ Ĩ, it
holds that ∑j∈Ri

x̃ji = M̃i. Any route flow x̃ induces a flow on the edges of the network,
denoted by w̃, such that w̃a =

∑
i∈Ĩ

∑
j∈Ri

x̃ji1(a ∈ j), for every a ∈ Ẽ . We denote the
set of feasible route flows by X̃ and the set of feasible edge flows by W̃ = {(w̃a)a∈Ẽ :
∃x̃ ∈ X̃, w̃a =

∑
i∈Ĩ

∑
j∈Ri

x̃ji}. For any o-d pair i ∈ Ĩ and route flow x̃ ∈ R|R|, the cost
experienced by travelers using route j ∈ Ri is ℓ̃ji (x̃) =

∑
a∈Ẽ la(w̃a)1(a ∈ j), where la(·) is

the edge latency function that depends on the edge flows. For every edge a ∈ Ẽ , we assume
that the edge latency function la(·) is convex and strictly increasing. This property of edge
latency function captures the congestion effect on the transportation network [39, 354]. A
system operator designs incentives by setting tolls on the edges of the network in the form
of edge tolls7, denoted by p̃ = (p̃a)a∈Ẽ . Every edge toll vector induces a unique route toll
vector P̃ . That is, for any o-d pair i ∈ Ĩ, the toll on route j ∈ Ri is

P̃ ji =
∑

a∈Ẽ :a∈j
p̃a. (12.32)

Consequently, the total cost experienced by travelers on o-d pair i ∈ Ĩ who choose route
j ∈ Ri is c̃ji (x̃, P̃ ) = ℓ̃ji (x̃) + P̃ ji . Let x̃∗(P̃ ) denote a Nash equilibrium ( also known as
Wardrop equilibrium in non-atomic routing games literature) corresponding to route tolls
P̃ . Owing to (12.32), with slight abuse of notation, we shall frequently use x̃∗(P̃ ) and
x̃∗(p̃) interchangeably. Typically, the equilibrium route flows can be non-unique but the
corresponding edge flows w̃∗(p̃) are unique. Furthermore, the function p̃ 7→ w̃∗(p̃) is a
continuous function [435].

The system operator’s objective is to design tolls that ensure that the resulting equilib-
rium minimizes the overall travel time incurred by travelers on the network, characterized
as the minimizer of

Φ̃(x̃) =
∑
i∈Ĩ

∑
j∈Ri

x̃ji ℓ̃
j
i (x̃). (12.33)

Note that the optimal route flow can be non-unique but the optimal edge flow, denoted by
w†, is unique [435].

Using the description of travelers’ costs, the externality caused by travelers from o-d pair
i ∈ Ĩ using route j ∈ Ri, based on (12.8b), is given by

ẽji (x̃) =
∑
i′∈Ĩ

∑
j′∈Ri

x̃j
′

i′
∂ℓ̃j

′

i′ (x̃)

∂x̃ji

(a)
=

∑
a∈Ẽ :a∈j

∇la(w̃a)w̃a, (12.34)

7 If we directly use the setup of non-atomic games presented in Section 12.1, we would require the
system operator to use route-based tolls rather than edge-based tolls. Our approach of using edge-based tolls
is rooted in practical consideration with implementation of tolls.
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where (a) is due to Lemma 2 in Chapter K.4.
From (12.34), we note that the externality on any route j is the sum externality on every

edge on that route. Therefore, we study the following incentive update, which updates the
edge-tolls as follows:

p̃a,k+1 = (1− βk)p̃a,k + βkẽa(x̃k), ∀ a ∈ Ẽ , (12.35)

where ẽa(x̃k) = ∇la(w̃a,k)w̃a,k, and wa,k =
∑
i∈Ĩ

∑
j∈R̃i

x̃ji,k. Define

P̃†
= {(p̃†

a)a∈Ẽ : p̃†
a = w̃∗

a(p̃
†)∇la(w̃∗

a(p̃
†)),∀ a ∈ Ẽ

}
,

to be the fixed point of the joint update (x̃-update)-(12.35).

Proposition 12.3.3. The set P̃† is non-empty singleton set. The unique p† ∈ P̃† is socially
optimal, i.e. w̃(p†) = w†.

Proof of Proposition 12.3.3 follows in two steps. First, we show that any p† ∈ P̃† aligns
the Nash equilibrium with social optimality, i.e. w̃(p†) = w†. Next, using contradiction
argument similar to the proof of Proposition 12.2.1, we show that P̃† is singleton. Detailed
proof of Proposition 12.3.3 is provided in Chapter K.3.

Next, we provide sufficient conditions for local convergence of the updates (x̃-update)-
(p̃-update).

Proposition 12.3.4. Consider the updates (x̃-update)-(p̃-update) associated with the rout-
ing game G̃. Suppose that Assumptions 12.2.1 and 12.2.2 are satisfied, and there exists an
equilibrium route flow x̃∗(p̃†) such that for every i ∈ Ĩ, j, j′ ∈ R̃i,

c̃ji (x̃
∗(p̃†)) ⩽ c̃j

′

i (x̃
∗(p̃†)) =⇒ x̃j,∗i (p̃†) > 0. (12.36)

The discrete-time updates (x̃-update)-(p̃-update) locally converges to fixed point (x̃†, p̃†) in
the sense of Definition 12.2.2.

Remark 12.3.1. There is a subtle distinction between the definition of Nash equilibrium (cf.
(12.3)) and (12.36). The former states that at equilibrium, any route with a positive flow
must have the minimum cost. In contrast, (12.36) further requires that all minimum-cost
routes have strictly positive equilibrium flow. This regularity condition, commonly used in
transportation literature ([435, Chapter 4]), ensures the differentiability of link flows w̃∗(p)
in the neighborhood of p̃†.

We show Proposition 12.3.4 by verifying the requirements (R1)-(R2) in Proposition
12.2.3. (R2) holds due to the fact that X̃ is compact. Thus, it only remains to verify
(R1). Towards this goal, we define ∆ ∈ R|Ẽ |×|Ẽ| to be a diagonal matrix such that, for every
a ∈ Ẽ ,

∆a,a = (∇la(w̃∗
a(p̃

†)) + w̃∗
a(p̃

†)∇2la(w̃
∗
a(p̃

†)))−1. (12.37)
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Using condition (12.36), we show that V (p̃) = (p̃ − p̃†)⊤∆(p̃ − p̃†), acts as a Lyapunov
function candidate for the following dynamical system

˙̃pa(t) = w̃∗
a(p̃)∇la(w̃∗

a(p̃))− p̃a, ∀ a ∈ Ẽ . (12.38)

Detailed proof is provided in Chapter K.3.

12.4 Concluding Remarks
We propose an adaptive incentive mechanism that updates based on agents’ externalities,
operates independently of their learning rules, and evolves on a slower timescale, forming
a two-timescale coupled strategy and incentive dynamics. We show that its fixed point
corresponds to an optimal incentive ensuring he Nash equilibrium of the corresponding game
achieves social optimality. Additionally, we provide sufficient conditions for convergence of
the coupled dynamics and validate our approach in atomic quadratic aggregative games and
non-atomic routing games.
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Part IV

Market Mechanisms for Emerging
Advanced Air Mobility: A Case Study
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Chapter 13

Incentive-Compatible Market
Mechanisms for Advanced Air
Mobility

Advanced air mobility (AAM) encompasses the utilization of unmanned aerial vehicles
(UAVs), air taxis, and various cargo and passenger transport solutions. This innovative
approach taps into previously unexplored airspace, poised to revolutionize urban airspace.
A recent report forecasts the air mobility market alone to exceed US$50 billion by 2035,
underlining this area’s immense growth potential [101].

Despite the widespread optimism surrounding AAM, the design of regulatory policies re-
mains an open problem. While ideas from conventional air traffic management (e.g. [49, 50,
48, 355, 323]) could be leveraged, they often fall short in accommodating the dynamic and
adaptable nature of AAM operations [53], resulting from on-demand requests from operators
with heterogeneous private valuations [385, 375]. Indeed, the administrative management
methods prevalent in traditional air traffic management, such as grand-fathering rights, flow
management, and first-come-first-serve, prove ineffective for AAM operations [166, 132] as
these approaches fail to elicit the heterogeneous private valuations (arising from different
aircraft specifications, demand realization, etc.) different operators have on using AAM
resources. Furthermore, they risk fostering inefficient and anti-competitive outcomes, as evi-
denced in traditional airspace operations [122]. Recognizing the need for tailored regulation,
the Federal Aviation Administration (FAA) is actively developing a clean-slate congestion
management framework for AAM operations to ensure efficiency, fairness, and safety [5].

Market-based congestion management mechanisms have been proposed as potential so-
lutions for AAM operations [96, 346, 415, 132, 385, 375]. Even in conventional airspace
management, market-based mechanisms are extensively studied such as [29, 34, 82, 294],
where both theoretical and empirical evidence show their precedence over administrative
approaches [122]. However, the design of market-based mechanisms that guarantee safety,
efficiency, and fairness under the heterogeneous and on-demand nature of AAM operations
has remained elusive as the existing approaches concentrate heavily on tactical deconflic-
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Figure 13.1: Schematic representation of the air traffic network with a service provider tasked
with coordinating the movement of aircraft of various fleet operators between vertiports in
its domain. Each vertiport has a constraint on the number of arriving aircraft, departing
aircraft, and parked aircraft.

tion [211, 45], while not accounting for efficiency, fairness and the economic incentives of
operators [95, 399, 94, 96, 415, 346, 166, 132].

In this chapter, we introduce an auction-based mechanism for a prominent AAM scenario
of vertiport reservation, where electric vertical take-off and landing (eVTOL) operators with
heterogeneous private valuations need to be coordinated to use vertiports based on their
realized demands. This problem is challenging for three main reasons. First, the resulting
reservation must ensure efficient, fair, and safe allocation of resources. Second, the opera-
tors may misreport their private valuations and demands to gain access to more valuable
airspace resources (i.e. ensuring incentive compatibility). Third, the computation of these
auction mechanisms is combinatorial, as evidenced by existing air traffic flow management
frameworks [49, 50, 48] (i.e. ensuring fast computability). Thus, the main question we set
out for this work is:

How to design an efficient, fair, and safe vertiport reservation mechanism for
heterogeneous and on-demand nature of eVTOL operators, while ensuring incen-
tive compatibility and faster computation?

We consider an air transportation network (ATN) managed by a service provider (SP).
The SP is responsible for ensuring the efficient, safe, and fair movement of aircraft operated
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by various fleet operators (FOs) between vertiports (as depicted in Figure 13.1). The goal
of the SP is to maximize a metric of social welfare that is comprised of two objectives: (i)
maximize the overall (weighted) valuations1 of all FOs, and (ii) minimize excessive conges-
tion at vertiports2. Additionally, the SP must (iii) enforce arrival, departure, and parking
capacity constraints at vertiports, and (iv) elicit truthful valuations from heterogeneous FOs
in the form of bids.

We propose an auction mechanism, to be used by the SP, that satisfies (i)− (iv). In this
mechanism, using the bids submitted by FOs, the SP allocates the resources by maximizing
social welfare, subject to capacity constraints. Next, the SP charges each FO a payment
based on the externality imposed by them, which is assessed by the difference in the optimal
social welfare of remaining FOs when this FO is included versus when it is excluded from
the auction environment. Note that this payment mechanism is inspired by the generalized
Vickrey–Clarke–Groves (VCG) mechanism [318]. We theoretically study the properties of
the proposed mechanism in terms of incentive compatibility, individual rationality, and social
welfare maximization (cf. Theorem 13.2.1).

There are two computational challenges associated with designing this mechanism. First,
naively optimizing social welfare over the set of feasible allocations can be computationally
challenging. To address this, we frame the problem as a mixed binary linear program by
constructing a network-flow graph, which reduces the number of binary variables. Second,
computing the externality in the payment mechanism— which requires maximizing social
welfare over the set of feasible allocations— entails characterizing the set of feasible allo-
cations when an FO is excluded from the auction environment. This is non-trivial, as the
underlying resource allocation problem is an exchange problem. To overcome this, we intro-
duce the idea of pseudo-bids, where we simply set a bid of 0 for an FO while computing the
optimal allocation when this FO is excluded from the auction environment.

We note two important features of the problem we study in this chapter. First, we
focus only on strategic deconfliction where the safety is encoded in the form of minimizing
congestion and ensuring capacity constraints, and not on tactical deconfliction. However,
our approach can be integrated into the airborne automation workflow proposed in [426] to
also account for tactical deconfliction. Second, this problem is an “exchange problem”,
where some of the resources desired by any FO could be occupied by aircraft of other FOs,
and a feasible allocation in this setting needs to exchange the resources between FOs while
respecting capacity constraints. In contrast, the standard slot allocation problems studied
in conventional air traffic literature (cf. [122, 294, 29, 347, 340, 30, 53]) are “assignment
problems” where the slots need to be assigned to airlines and not exchanged between airlines.

Notation: We denote the set of real numbers by R, non-negative real numbers by R+,
integers by Z, non-negative integers by Z+, and natural numbers by N. For N ∈ N, we
define [N ] := {1, 2, ...,N}. The indicator function is denoted as 1(·), which is 1 when (·)

1We allow the SP to weigh FOs differently in order to encourage new-comers in this emerging market.
2Note that we only consider congestion at the vertiports in this work. An extension to airborne congestion

is discussed in Subsection 13.4.
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is true and 0 otherwise. When indexing a set b = {b1, b2, ..., bN}, we follow the standard
game-theoretic notation: b−i := {b1, ..., bi−1, bi+1, ..., bN}.

13.1 Problem Setup

System Model
We consider an air transportation network (ATN), comprised of multiple vertiports, which
are used by electric vertical take-off and landing (eVTOL) aircraft. We focus on a strategic
deconfliction mechanism that complements the tactical deconfliction algorithms proposed
in [211, 432, 45, 381]. The scheduling mechanism proceeds over non-overlapping time slots
with a receding time horizon. At the beginning of each time slot, all fleet operators (FOs)
submit a menu of desired origin-destination pairs and the corresponding bids specifying how
much they are willing to pay for getting scheduled. Then, the service provider (SP) will
compute a feasible allocation and payment and execute them in the next time slot. The
granted aircraft can now go to their desired locations. In most congested vertiports, when
the parking capacity is fully utilized, any additional arrival would necessitate a simultaneous
departure of an aicraft from that vertiport. Thus, this is an “exchange problem” as opposed
to the “assignment problem” studied in other air traffic allocation problems [122, 294, 29,
347, 340, 30, 53].

We denote the set of vertiports by R, the set of FOs by F , and the set of eVTOL aircraft
by A. We consider the problem for H time slots.

Vertiports At any time t ∈ [T ], each vertiport r ∈ R has three kinds of capacity con-
straints 3: (i) arrival capacity constraints, denoted by arr(r, t) ∈ Z+, that restrict the number
of eVTOLs that can land at vertiport r at time t; (ii) departure capacity constraints, denoted
by dep(r, t) ∈ Z+, that restrict the number of eVTOLs that can depart from vertiport r
at time t; (iii) parking capacity constraints, denoted by park(r, t) ∈ Z+, that restrict the
number of eVTOLs that can park at vertiport r at time t.

Fleet Operators Let Ai be the fleet of aircraft operated by FO i ∈ F , and A := {ai,j |i ∈
F , j ∈ Ai} be the set of all aircraft using the ATN. Each aircraft ai,j is identified by a tuple(
rorig
i,j ,mi,j , {tdep

i,j,k, tarr
i,j,k, vi,j,k, bi,j,k, rdest

i,j,k}k∈mi,j

)
where (i) rorig

i,j ∈ R is the origin vertiport of
aircraft ai,j , (ii) mi,j is the menu of available routes to aircraft ai,j ; (iii) any route k ∈ mi,j
implies that aircraft ai,j departs from rorig

i,j ∈ R at time tdep
i,j,k to arrive at rdest

i,j,k ∈ R at time
tarr
i,j,k; (iv) vi,j,k denotes the private valuation of aircraft ai,j to choose the route k ∈ mi,j ;

and (v) bi,j,k ∈ R+ is the bid submitted by FO i to schedule aircraft ai,j on route k ∈ mi,j .
3The arrival, departure and parking capacity constraints in our model are exogeneously determined at

every time step and are un-correlated between two consecutive time steps. Extending our model to account
for correlations is an interesting direction of future research.
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Note that we include the option to stay parked at the same vertiport in mi,j , denoted by ∅,
and set its departure time to 0.

Additionally, we denote the joint bid profile of all aircraft operated by FO i ∈ F by
Bi := (bi,j,k)j∈Ai,k∈mi,j and joint valuation profile of its fleet by Vi := (vi,j,k)j∈Ai,k∈mi,j . For
succinct notation, we denote the joint bid and valuation profile of all FOs as B := (Bi)i∈F
and V := (Vi)i∈F , respectively.

Problem Formulation
We consider an SP tasked with coordinating4 the movement of aircraft by allocating them
to their desired vertiports while ensuring that the capacity constraints are met. Formally,
the SP needs to decide on a feasible allocation x = (xi,j,k ∈ {0, 1}|i ∈ F , j ∈ Ai, k ∈ mi,j),
where

xi,j,k =

1, if aircraft ai,j is allocated route k ∈ mi,j ,
0, otherwise.

Given an allocation x, let S(r, t,x) ∈ Z+ denote the number of aircraft occupying the
parking spots at vertiport r ∈ R at time t ∈ [T ]. For every r ∈ R, the initial occupation
S(r, 1,x) is

S(r, 1,x) =
∑
i∈F

∑
j∈Ai

1(rorig
i,j = r).

For concise notation, we shall denote S(r, 1,x) by S̄(r) for every r ∈ R since it does not
depend on x. Naturally, it must hold that, for every r ∈ R, t ∈ {2, . . . ,T},

S(r, t,x) = S(r, t− 1,x) +
∑
i∈F

∑
j∈Ai

∑
k∈mi,j

xi,j,k1(rdest
i,j,k = r, tarr

i,j,k = t)

−
∑
i∈F

∑
j∈Ai

∑
k∈mi,j

xi,j,k1(rorig
i,j = r, tdep

i,j,k = t),
(13.1)

where the second (resp. third) term on the RHS in the above equation denotes the set of
incoming (resp. departing) aircraft in vertiport r at time t. The residual capacity at vertiport
r ∈ R at time t ∈ [H ] is Z(r, t,x) := park(r, t)− S(r, t,x). To ensure the existence of a
feasible allocation as defined later in (13.2), we assume that park(r, t) − S̄(r) ⩾ 0,∀r ∈
R, t ∈ [H ].

An allocation x is called feasible if it satisfies the following constraints:

(C1) Each aircraft is allocated at most one route. That is, for every i ∈ F , j ∈ Ai,∑
k∈mi,j xi,j,k ⩽ 1.

4We do not impose the information sharing constraints in [346, 94], where different sectors have different
operators, and an SP only provides the identities, but not the positions, of aircraft to neighboring sectors.
We follow the architecture in the current ATFM framework [323, 49, 50, 48, 355], where a central SP can
aggregate information from all the sectors and make decisions.
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(C2) Arrival and departure capacity constraints must be satisfied at every vertiport r at
all times. That is, for every r ∈ R, t ∈ [T ],∑

i∈F

∑
j∈Ai

∑
k∈mi,j

xi,j,k1(rdest
i,j,k = r, tarr

i,j,k = t) ⩽ arr(r, t),

∑
i∈F

∑
j∈Ai

∑
k∈mi,j

xi,j,k1(rorig
i,j = r, tdep

i,j,k = t) ⩽ dep(r, t).

(C3) Parking capacity constraints must be satisfied. That is, for every vertiport r ∈ R at
any time t ∈ [T ], Z(r, t,x) ⩾ 0.

Consequently, we define

X :=
{
x ∈ {0, 1}

∑
i∈F

∑
j∈Ai

|mi,j |
∣∣∣∣ x satisfies (C1)-(C3)

}
(13.2)

to be the set of feasible allocations.

Definition 13.1.1 (Social Welfare). Given x ∈ X, social welfare is defined as follows.

SW(x;V ):=
∑
i∈F

ρi
∑
j∈Ai

∑
k∈mi,j

vi,j,k · xi,j,k − λ
∑
r∈R

∑
t∈[T ]

Cr,t(S(r, t,x)), (13.3)

where (i) ρi ∈ R+ is the weight factor specifying the relative importance of different FOs5,
(ii) Cr,t : Z+ → R+ with Cr,t(0) = 0 is discrete convex6 to capture increasing marginal cost
of congestion7, and (iii) λ ∈ R+ is the ratio between the congestion cost and the cumulative
weighted valuations of FOs. Furthermore, we define an optimal allocation as

x∗(V ) ∈ arg max
x∈X

SW(x;V ), (13.4)

where ties are resolved arbitrarily.

Remark 13.1.1. The social welfare objective (13.3) captures three main desiderata: effi-
ciency, fairness, and safety. The objective (13.3) incorporates efficiency through additive
valuations of FOs. Additionally, it incorporates the proportional fairness criterion8 by
assigning different weights to the valuations of different FOs, denoted by (ρi)i∈F . Well-
constructed weights can prevent larger FOs from monopolizing the resources; for example,
using the logarithm of the number of aircraft as an FO’s weight. Finally, it encompasses
safety considerations in two ways: first, through capacity constraints; and second, by in-
troducing a congestion-dependent term in (13.3) that penalizes vertiports when the number
of aircraft increases. With these three considerations, the definition of social welfare aligns
closely with that presented in [122].

5Similar weight factors, termed as remote city opportunity factor, are used in [122].
6Based on [308], a function f : Z→ R is discrete convex if f(x+ 1)− f(x) ⩾ f(x)− f(x− 1), ∀x ∈ Z.
7While we only consider the congestion resulting from parked aircraft, it is straightforward to extend

our formulation to arriving and departing aircraft; see Subsection 13.4.
8We emphasize that the fairness is at the FO-level.
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We assume the SP does not have access to the true valuations V , as it is private in-
formation. Instead, the SP must use bids B reported by the FOs to allocate the aircraft
to vertiports through an auction mechanism. More formally, given a bid profile B, the SP
uses a mechanism M̄ = (x̄, (p̄i)i∈F ), where for a given bid profile B, (i) x̄(B) ∈ X is the
allocation proposed by the mechanism; and (ii) p̄i(B) ∈ R denotes the payment charged to
FO i ∈ F . Under the mechanism M̄ , the utility derived by any FO i ∈ F is

Ui(B; M̄) =
∑
j∈Ai

∑
k∈mi,j

vi,j,k1(x̄i,j,k(B))− p̄i(B). (13.5)

Given any arbitrary valuation profile V , the goal is to design a vertiport reservation mecha-
nism M̄ = (x̄, p̄) with the following desiderata.

(D1) Incentive Compatibility (IC): Bidding truthfully is each FO’s (weakly) dominant
strategy, i.e., for every i ∈ F , B−i ∈ R

∑
ℓ∈F \{i}

∑
j∈Aℓ

|mℓ,j |
+ ,

Vi ∈ arg max
Bi∈R

∑
j∈Ai

|mi,j |
+

Ui(Bi,B−i; M̄).

(D2) Individual Rationality (IR): Bidding truthfully results in non-negative utility, i.e.,
for every i ∈ F ,

Ui(Vi,B−i; M̄) ⩾ 0, ∀ B−i ∈ R

∑
ℓ∈F \{i}

∑
j∈Aℓ

|mℓ,j |
+ .

(D3) Social Welfare Maximization (SWM): The resulting allocation maximizes social
welfare, i.e.,

x̄(B) ∈ arg max
x∈X

SW(x;V ).

13.2 Mechanism Design
In this section, we present an auction mechanism that satisfies (D1)-(D3) in Subsection 13.2
and prove its theoretical properties in Subsection 13.2. We defer the optimization algorithm
to Section 13.3.

Mechanism
Inspired by Myerson’s lemma [310], our approach is to separate the allocation and payment
functions so that the latter can ensure IC and IR as long as the former ensures maximization
of total welfare in terms of bids submitted.
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Allocation Function: Given a bid profile B ∈ R

∑
i∈F

∑
j∈Ai

|mi,j |
+ , the allocation is obtained

by

x̄(B) ∈ arg max
x∈X

SW(x;B). (13.6)

Payment Function: We first define a function

θ : F ×R

∑
i∈F

∑
j∈Ai

|mi,j |
+ → R

∑
i∈F

∑
j∈Ai

|mi,j |
+

such that for any ℓ ∈ F and bid B ∈ R

∑
i∈F

∑
j∈Ai

|mi,j |
+ ,

θi,j,k(ℓ,B) =
bi,j,k, if i ̸= ℓ,

0, if i = ℓ,
∀ i ∈ F , j ∈ Ai, k ∈ mi,j . (13.7)

The payment function, given a bid profile B, is

p̄i(B)=
1
ρi

(
max
x′∈X

SW−i(x
′; θ(i,B))−SW−i(x̄;B)

)
, (13.8)

where for every i ∈ F , x ∈ X, and B ∈ R

∑
i∈F

∑
j∈Ai

|mi,j |
+ ,

SW−i(x;B) :=
∑
ℓ∈F−i

ρℓ
∑
j∈Aℓ

∑
k∈mℓ,j

bℓ,j,k · xℓ,j,k − λ
∑
r∈R

∑
t∈[T ]

Cr,t(S(r, t,x)). (13.9)

Remark 13.2.1. The payment rule is inspired by the VCG mechanism, where each FO
is charged a payment based on the externality created by them. Particularly, the typical
VCG payment for any player is determined by assessing the difference in the optimal social
welfare of players when they are present, versus when they are excluded from the auction
environment.

Remark 13.2.2. There are some notable differences between the VCG payment and (13.8).
First, since our problem is an “exchange problem” and not the typical “assignment problem”,
we need to be cognizant of the physical resources occupied by the aircraft of that operator.
However, this would require us to enumerate all the feasible combinations if we were to
directly implement VCG mechanisms. To overcome the problem of enumerating all feasible
solutions while computing payments, we adopt a novel approach of “pseudo-bids”, where while
computing the payments, each non-participating aircraft is considered to be using a bid of 0,
as formally described in (13.7).

Second, since the objective function (13.3) is not the summation of the participants’
valuations, the typical VCG auction is not directly applicable. Instead, we follow [122, 318]
to devise the payment rule for any i ∈ F and b ∈ R

∑
j∈Ai

|mi,j |
+ .
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Theoretical Analysis
Theorem 13.2.1. The proposed mechanism M̄ := (x̄, p̄), defined by (13.6) and (13.8) is
IC, IR, and SWM.

Proof. Observe from (13.3) that SW(x;V ) is a weighted summation of FOs’ valuations and
the congestion cost. Since the congestion cost is independent of valuations,

x̄(V ) ∈ arg max
x∈X

SW(x;V )

is an affine maximizer with respect to FOs’ valuations, as defined in [318, Definition 9.30].
Thus, the allocation function (13.6) and the payment function (13.8) form a generalized VCG
mechanism, and IC directly follows from [318, Proposition 9.31]. Finally, IR follows from
[318, Lemma 9.20] since the bids are non-negative, and the allocation is an affine maximizer,
as formally proved below.

For any B−i ∈ R

∑
ℓ∈F \{i},j∈Aℓ

|mℓ,j |
+ ,

Ui(Vi,B−i; M̄)=
∑
j∈[Ai]

∑
k∈[mi,j ]

vi,j,k1(x̄i,j,k(Vi,B−i))− p̄i(Vi,B−i)

=
1
ρi

(
ρi

∑
j∈[Ai]

∑
k∈[mi,j ]

vi,j,k1(x̄i,j,k(Vi,B−i)) +SW−i(x̄;Vi,B−i)

−max
x′∈X

SW−i(x
′; θ(i,Vi,B−i))

)

=
1
ρi

(
SW(x̄;Vi,B−i)−max

x′∈X
SW−i(x

′; θ(i,Vi,B−i))

)
. (13.10)

Since x̄ ∈ arg maxx∈X SW(x̄;Vi,B−i), it holds that SW(x̄;Vi,B−i) ⩾ SW(x†;Vi,B−i),
where x† ∈ arg maxx′∈XSW−i(x′; θ(i,Vi,B−i)). Thus, we obtain

Ui(Vi,B−i; M̄)⩾
1
ρi

(
SW(x†;Vi,B−i)−SW−i(x

†; θ(i,Vi,B−i))

)

=
1
ρi

∑
j∈[Ai]

∑
k∈[mi,j ]

vi,j,k1(x†
i,j,k(Vi,B−i)) ⩾ 0.

13.3 Optimization Algorithm
In this section, we formulate (13.6) as a mixed binary linear program (MBLP), as shown
in (13.16). We derive this in three steps. First, in Subsection 13.3, we construct a time-
extended flow network, where vertices are vertiport-time and aircraft-time pairs with edges
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Figure 13.2: Auxiliary graph Ḡ constructed from an ATN with two vertiports and one aircraft
over three time slots.

capturing capacity constraints and route allocation. Then, using binary variables (δi,j,τ as
formally defined later in (13.12d) and (13.12e)) to ensure that each aircraft is allocated one
route, we formulate a mixed integer linear program (MILP (13.12)) in Subsection 13.3. This
MILP has fewer binary variables than (13.6) when the number of unique departure times
for any aircraft is less than the size of its menu. Finally, in Subsection 13.3, we show that
the total unimodularity of the constraint matrix (Ī⋆ in (13.12b)) guarantees that all flows
are integral for each binary variable assignment, so we can drop the integrality constraint
(13.12f) and get the final MBLP formulation (13.16).

Auxiliary Graph
We construct an auxiliary graph Ḡ = (V̄ , Ē) as detailed below. Figure 13.2 shows a pictorial
depiction.

(i) Set of vertices V̄ = ∪3
ℓ=1V̄ℓ. We define these sets below:

– V̄1 := {(ν̄(r, t), ν̄arr(r, t), ν̄dep(r, t))|r ∈ R, t ∈ [T ]}:
We consider three replica for each vertiport r ∈ R at time t ∈ [T ], denoted
as ν̄(r, t), ν̄arr(r, t), and ν̄dep(r, t). These vertices, along with Ē1, Ē2, Ē3, and
Ē8 defined later, embed capacity constraints and congestion costs into the graph
structure.

– V̄2 := {ν̄(i, j, τ )|i ∈ F , j ∈ Ai, τ ∈ T dep
i,j }:

For each i ∈ F , j ∈ Ai, we consider one vertex corresponding to all routes that
have the same departure time. More formally, for every i ∈ F , j ∈ Ai, define
T dep
i,j := ∪k∈mi,j

{
tdep
i,j,k

}
, to be the set of unique departure times amongst all

routes. We consider one vertex corresponding to each i ∈ F , j ∈ Ai, and τ ∈ T dep
i,j ,



CHAPTER 13. INCENTIVE-COMPATIBLE MARKET MECHANISMS FOR
ADVANCED AIR MOBILITY 228

denoted as ν̄(i, j, τ ), which, along with Ē4, Ē5, Ē7, and Ē9 defined later, embeds
the route choice of the aircraft.

– V̄3 := {ν̄source, ν̄sink}:
ν̄source and ν̄sink denote the source and sink in the flow network (to be described
shortly). These vertices, along with Ē6, Ē7, and Ē8, ensure flow conservation of
the parking aircraft.

(ii) Set of edges Ē = ∪9
ℓ=1Ēℓ ⊆ V̄ × V̄ ×Z+ ×Z+ ×R, where each edge is identified

with a tuple (r, r′, c, c, w̄) such that (i) r, r′ ∈ R are the upstream and downstream
vertiport on an edge, respectively, (ii) c, c ∈ Z+ are the upper and lower bound on
the capacity of the edge, respectively, and (iii) w̄ ∈ R is the edge weight.

– Ē1 := {(ν̄arr(r, t), ν̄(r, t), c = arr(r, t), c = 0, w̄ = 0)|r ∈ R, t ∈ [T ]}.
– Ē2 := {(ν̄(r, t), ν̄dep(r, t), c = dep(r, t), c = 0, w̄ = 0)|r ∈ R, t ∈ [T ]}.
– Ē3 := ∪r∈R,t∈[T−1]Ē3,r,t:

For every r ∈ R, t ∈ [H − 1], we consider park(r, t) edges connecting ν̄(r, t) and
ν̄(r, t+ 1). We denote this set by Ē3,r,t. For any q ∈ [park(r, t)], we denote the
weight of the q−th edge in Ē3,r,t by w̄q,r,t, and upper and lower capacity by cq,r,t
and cq,r,t, respectively. For any r ∈ R, q ∈ [park(r, t)], w̄q,r,t = −λ(Cr,t(q) −
Cr,t(q− 1)), cq,r,t = 1, and cq,r,t = 0.

– Ē4 := {(ν̄dep(rorig
i,j , τ ), ν̄(i, j, τ ), c = c = δi,j,τ , w̄ = 0)|i ∈ F , j ∈ Ai, τ ∈

T dep
i,j \{0}}:
δi,j,τ ∈ {0, 1} is a variable defined later.

– Ē5 := {(ν̄(i, j, tdep
i,j,k), ν̄arr(rdest

i,j,k, tarr
i,j,k), c = 1, c = 0, w̄ = ρibi,j,k)|i ∈ F , j ∈

Ai, k ∈ mi,j\{∅}}.

– Ē6 := {(ν̄source, ν̄(r, 1), c = c = S̄(r)−∑i∈F
∑
j∈Ai

δi,j,01(rorig
i,j = r), w̄ = 0)|r ∈

R}9.
– Ē7 := {(ν̄source, ν̄(i, j, 0), c = c = δi,j,0, w̄ = ρibi,j,∅)|i ∈ F , j ∈ Ai}:
δi,j,0 ∈ {0, 1} is a variable which would be defined shortly, and bi,j,∅ is the bid
placed by aircraft ai,j on staying parked at the same location.

– Ē8 := ∪r∈RĒ8,r:
For every r ∈ R, we consider park(r,H) edges connecting ν̄(r,H) and ν̄sink. We
denote these edges by Ē8,r. For any q ∈ [park(r,H)], we denote the weight of the
q−th edge in Ē8,r by w̄q,r,H , and upper and lower capacity by cq,r,H and cq,r,H
respectively. For any r ∈ R, q ∈ [park(r,H)], w̄q,r,H = −λ(Cr,H(q)−Cr,H(q −
1)), cq,r,H = 1, and cq,r,H = 0.

9Recall that S̄(r) is the state of occupancy of vertiport r at t = 1.
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– Ē9 := {(ν̄(i, j, 0), ν̄(rorig
i,j , 1), c = c = δi,j,0, w̄ = 0)|i ∈ F , j ∈ Ai}.

Remark 13.3.1. In the preceding construction, the capacity of any outgoing edge (resp.
incoming edge) from a node which does not have an incoming edge (resp. outgoing edge),
other than ν̄source and ν̄sink, is set to 0.

Mixed Binary Linear Program Formulation
We concatenate the weight, upper capacity bound, and lower capacity bound of each edge as
W ∈ R|Ē|, C ∈ Z

|Ē|
+ , and C ∈ Z

|Ē|
+ , respectively. Define an incidence matrix of the graph

Ḡ as Ī ∈ {−1, 0, 1}|V̄ |×|Ē|, where

Īij =


1, if edge j ends at vertex i,
−1, if edge j starts from vertex i,
0, otherwise.

(13.11)

Defining a truncated incidence matrix Ī⋆ obtained from Ī by removing rows corresponding
to ν̄source and ν̄sink, we have the following optimization problem.

max
A,δ

W⊤A (13.12a)

s.t. Ī⋆A = 0 (13.12b)
C(δ) ⩽ A ⩽ C(δ) (13.12c)∑
τ∈T dep

i,j

δi,j,τ = 1, ∀ i ∈ F , j ∈ Ai (13.12d)

δi,j,τ ∈ {0, 1}, ∀ i ∈ F , j ∈ Ai, τ ∈ T dep
i,j (13.12e)

A ∈ Z
|Ē|
+ (13.12f)

Aq+1,r,t⩽Aq,r,t,∀r ∈ R, t ∈ [T ], q ∈ [park(r, t)− 1]. (13.12g)

Here, (13.12b) denotes the “flow balance” constraint at every node in V̄ \V̄3; (13.12c) denotes
the capacity constraints where we have explicitly denoted the dependence of constraints on δ
(cf. definitions of Ē4 and Ē7); (13.12d) and (13.12e) denote the constraint that each aircraft
must be allocated exactly one route; (13.12f) denotes the integrality constriants; (13.12g)
denotes additional constraints which require that edges in Ē3,r,t and Ē8,r are allocated in an
increasing order.

Next, we highlight the connection between the optimization problems (13.6) and (13.12).

Lemma 13.3.1. Given the values of Ae for e ∈ Ē3 ∪ Ē5 ∪ Ē8 that satisfy the capacity
constraints (13.12c), there exists a unique feasible solution (A, δ) that satisfies (13.12b)-
(13.12g).
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Proof. First, note that any feasible solution to (13.12b)-(13.12g) has the same value of Ae(x)
for e ∈ Ē6∪ Ē7∪ Ē9 since the lower and upper bound on capacity are the same on these edges
by construction. Thus, it is sufficient to show that the values of Ae for e ∈ Ē3 ∪ Ē5 ∪ Ē6 ∪
Ē7 ∪ Ē8 ∪ Ē9 uniquely determine a feasible solution (A, δ) that satisfies (13.12b)-(13.12g).
Particularly, we will show that we can uniquely recover the values of Ae for e ∈ Ē1∪ Ē2∪ Ē4.

To show this claim, we leverage the flow balance constraint (13.12b) at every node. Below,
we state the incoming and outgoing edges from every type of node in the network.

Vertex Incoming Edges Outgoing Edges

ν̄arr(r, t) Ē5 Ē1

ν̄(i, j, τ ) Ē4 Ē5

ν̄dep(r, t) Ē2 Ē4

ν̄(i, j, 0) Ē7 Ē9

ν̄(r, t) Ē1, Ē3, Ē6, Ē9 Ē2, Ē3, Ē8

Note that flow balance at nodes of the form ν̄arr(r, t) will determine the values Ae on edge
Ē1, as we know these values for edges Ē5. Next, flow balance at nodes of the form ν̄(i, j, τ )
will determine the values Ae on edge Ē4, as we know these values for edges Ē5. This and the
capacity constraints on Ē4, ensure that we know the value of δ. Next, flow balance at nodes
of the form ν̄dep(r, t) will determine the values Ae on edge Ē2, as we can uniquely determine
these values on Ē4. Finally, flow balance at nodes of the form ν̄(r, t) will determine the
values Ae on edge Ē2, as we can uniquely determine these values on Ē1 ∪ Ē3 ∪ Ē6 ∪ Ē8 ∪ Ē9.

Proposition 13.3.2. Suppose (A†, δ†) is an optimal solution to (13.12). Then W⊤A† =
maxx∈X SW(x;B). Additionally, using A† we can uniquely determine x† ∈ X such that
x† ∈ arg max

x∈X
SW(x;B).

Proof. First, we show that, for every x ∈ X, there exists a unique (A(x), δ(x)) satisfying
(13.12b)-(13.12g) and W⊤A(x) = SW(x;B). Indeed, we construct (A(x), δ(x)) such that

(i) for every e∈ Ē5, where (ν̄(i, j, tdep
i,j,k), ν̄arr(rdest

i,j,k, tarr
i,j,k)) ∈ e for some i ∈ F , j ∈ Ai, k ∈

mi,j , it holds that Ae(x) = xi,j,k;

(ii) for every r ∈ R, t ∈ [T ], and q ∈ [park(r, t)], it holds that Ae(x) = 1(q ⩽ S(r, t,x)),
where e is the q−th edge in Ē3,r,t ∪ Ē8,r.

The above construction specifies the values of Ae(x) for e ∈ Ē3 ∪ Ē5 ∪ Ē8. Additionally, by
Lemma 13.3.1, there exists a unique feasible solution (A(x), δ(x)), and we get

W⊤A(x) =
∑
e∈Ē

w̄eAe(x) =
∑

e∈Ē3∪Ē5∪Ē7∪Ē8

w̄eAe(x),
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where the last equality holds because w̄e = 0 for e ∈ Ē1 ∪ Ē2 ∪ Ē4 ∪ Ē6 ∪ Ē9.
Then, we examine each term. First, observe the following.∑

e∈Ē5

w̄eAe(x) =
∑
i∈F

∑
j∈Ai

∑
k∈mi,j

ρibi,j,kxi,j,k.

∑
e∈Ē7

w̄eAe(x) =
∑
i∈F

∑
j∈Ai

ρibi,j,ϕxi,j,0.

Next, we use the definition of weights in Ē3,r,t.

∑
e∈Ē3

w̄eAe(x) =
∑
r∈R

T−1∑
t=1

∑
e∈Ē3,r,t

w̄eAe(x)

=
∑
r∈R

T−1∑
t=1

park(r,t)∑
q=1

w̄q,r,tAq,r,t(x)

= −λ
∑
r∈R

T−1∑
t=1

S(r,t,x)∑
q=1

(Cr(q)−Cr(q− 1))

= −λ
∑
r∈R

T−1∑
t=1

Cr(S(r, t,x)).

Similarly, we get ∑e∈Ē8 w̄eAe(x) = −λ
∑
r∈R Cr(S(r,H,x)).

To summarize, we obtain

W⊤A(x) = SW(x;B). (13.13)

Using this, we conclude that

max
x∈X

SW(x;B) = max
x∈X

W⊤A(x)

⩽ max
(A,δ) s.t. (13.12b)−(13.12g)

W⊤A = W⊤A†.
(13.14)

Next, we show that for every (A, δ) satisfying (13.12b)-(13.12g), there exists x(A, δ) ∈ X
such that SW(x(A, δ)) = W⊤A. Indeed, we construct x(A, δ) such that for every i ∈ F , j ∈
Ai, k ∈ mi,j it holds that xi,j,k = Ae for e ∈ Ē5 such that (ν̄(i, j, tdep

i,j,k), ν̄arr(rdest
i,j,k, tarr

i,j,k)) ∈ e
or e ∈ Ē9 such that (ν̄(i, j, 0), ν̄(rdest

i,j,k, 1)) ∈ e. Note that due to capacity constraints on
these edges, xi,j,k ∈ {0, 1}. Additionally, the flow balance at the nodes of the form ν̄(i, j, τ ),
for some i ∈ F , j ∈ Ai, τ ∈ T dep

i,j , ensures that

δi,j,τ =
∑

k∈mi,j

∑
e∈Ē9

Ae1((ν̄(i, j, 0), ν̄(rdest
i,j,k, 1))∈e, τ = 0)

+
∑

k∈mi,j

∑
e∈Ē5

Ae1((ν̄(i, j, tdep
i,j,k), ν̄

arr(rdest
i,j,k, tarr

i,j,k))∈e, τ=t
dep
i,j,k).
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Summing over τ , we get∑
τ∈T dep

i,j

δi,j,τ =
∑

k∈mi,j

∑
e∈Ē9

Ae1((ν̄(i, j, 0), ν̄(rdest
i,j,k, 1)) ∈ e)

+
∑

k∈mi,j

∑
e∈Ē5

Ae1((ν̄(i, j, tdep
i,j,k), ν̄

arr(rdest
i,j,k, tarr

i,j,k)) ∈ e)

=
∑

k∈mi,j

xi,j,k(A, δ).

Using (13.12d), we conclude that ∑k∈mi,j xi,j,k(A, δ) = 1.
Next, we use the flow balance at nodes of the form ν̄arr(r, t), for every r ∈ R, t ∈ [T ], to

ensure that ∑
i∈F ,j∈Ai,
k∈mi,j ,e∈Ē5

Ae1((ν̄(i, j, tdep
i,j,k), ν̄

arr(rdest
i,j,k, tarr

i,j,k))∈e, rdest
i,j,k=r, tarr

i,j,k= t) ⩽ arr(r, t).

By using ∑
e∈Ē5

Ae1((ν̄(i, j, tdep
i,j,k), ν̄

arr(rdest
i,j,k, tarr

i,j,k))∈e) = xi,j,k(A, δ),

we get10 ∑
i∈F

∑
j∈Ai

∑
k∈mi,j

xi,j,k1(rdest
i,j,k = r, tarr

i,j,k = t) ⩽ arr(r, t).

Analogously, the flow balance equations at the nodes of the form ν̄dep(r, t), for some r ∈
R, t ∈ [T ], ensure that ∑i∈F

∑
j∈Ai

∑
k∈mi,j xi,j,k1(r

orig
i,j = r, tdep

i,j,k = t) ⩽ dep(r, t). Finally,
we can establish S(r, t,x(A, δ)) =

∑park(r,t)
q=1 Aq,r,t through the flow balance equation at

ν̄(r, t) and (13.1). Since ∑park(r,t)
q=1 Aq,r,t ⩽ park(r, t), due to the capacity constraints on the

edge Ē3,r,t, it holds that S(r, t,x(A, δ)) ⩽ park(r, t). Thus, we conclude that x(A, δ) ∈ X.
Additionally, using the analysis to show (13.13) in the backward direction and the con-

struction of x(A, δ), we can establish that SW(x(A, δ)) = W
⊤A. Thus, we conclude that

W⊤A† = max
(A,δ) s.t. (13.12b)−(13.12g)

W⊤A

= max
(A,δ) s.t. (13.12b)−(13.12g)

SW(x(A, δ)) ⩽ max
x∈X

SW(x).
(13.15)

By (13.14) and (13.15), we get W⊤A† = maxx∈X SW(x).
10When t = 1, the arrival capacity constraints are trivially satisfied since there is no incoming aircraft.
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Reduction to Mixed Binary Linear Program
Instead of solving (13.12), we can obtain (A†, δ†) by solving the following MBLP. We estab-
lish this fact in Proposition 13.3.3.

max
A,δ

W⊤A (13.16a)

s.t. (13.12b)− (13.12e) (13.16b)

A ∈ R
|Ē|
+ . (13.16c)

Proposition 13.3.3. The optimal values of (13.12) and (13.16) are equal.

Proof. First, we prove that we can drop (13.12g) when solving (13.12). Suppose there exists
r ∈ R, t ∈ [T ], q ∈ [park(r, t)− 1] such that A†

q,r,t < A†
q+1,r,t. By swapping the value of

A†
q+1,r,t with that of A†

q,r,t, we get a new feasible allocation with a weakly higher objective
value. This is because w̄q+1,r,t ⩽ w̄q,r,t as λ ⩾ 0 and Cr,t(·) is discrete convex. Then, for
any feasible value of δ, the optimization problem (13.12) is an integer linear program where
the constraint matrix Ī⋆ satisfies total unimodularity, so it is guaranteed to have an integral
solution [371, Chapter 19].

For any fixed values of binary variables (δi,j,τ )i∈F ,j∈Ai,τ∈T dep
i,j

, the optimization problem
(13.12) is a maximum-weight flow problem. Thus, one can enumerate all the departure time
combinations, and solve each maximum-weight flow problem with the number of scenarios
being ∏i∈F ,j∈Ai

|{tdep
i,j,k|k ∈ mi,j}|. The complete problem can be solved efficiency using the

above MBLP approach, which will provide speed-up due to some techniques implemented in
commercial solvers such as branch and bound, cutting-plane methods, etc.

13.4 Discussions
We show how the proposed mechanism generalizes existing works in Subsection 13.4 and
present some extensions in Subsection 13.4.

Connections to Existing Mechanisms
We consider H = 1, arr(r, 1) =∞, dep(r, 1) =∞, ∀r ∈ R, and |Ai| = 1, ∀i ∈ F .

(i) Air Traffic Protocol: When we treat each vertiport r ∈ R as a sector with park(r, 1)
being the sector capacity, our model generalizes the problem studied in [346], where the
authors did not consider arrival and departure capacities and assumed single-aircraft
FOs.
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(ii) Airport Time Slot Auction: When we treat each vertiport r ∈ R as a time slot
with park(r, 1) being the slot capacity, our model subsumes the framework in [122].
Therefore, our formulation becomes a two-sided matching problem as detailed in [122]
and is subject to a faster strongly polynomial-time algorithm.

Extensions of the Proposed Mechanism
(i) Arrival, Departure, and Airborne Congestion: To consider congestion due to

arriving and departing aircraft, we can apply the same technique in Ē3 to Ē1 and
Ē2 by constructing corresponding edge weights. To consider airborne congestion, we
treat waypoints in the airspace as vertiports and setting corresponding capacities and
congestion costs.

(ii) External Demand: Aircraft that are not available in the service area of the SP at
t = 0 can be incorporated in our framework by setting rorig

i,j = O and tdep
i,j,k = 0, ∀k ∈

mi,j11.

(iii) Entire Trajectory: We can extend each route to an entire trajectory with multiple
vertiport-time pairs. By setting a binary variable for each route and combining those
variables when two routes only differ in one time slot, we can apply the same MBLP
approach.

(iv) Cancellation Policy: It is possible to cancel or re-allocate some of the previously
scheduled flights due to changing vertiport capacities or newly emerging aircraft. While
there is no single re-allocation policy, it is typical to consider three aspects: congestion,
efficiency, and fairness, where we cancel flights from congested vertiports, with low
valuations, or at random, respectively.

13.5 Concluding Remarks
In this chapter, we propose an auction mechanism to incentivize fleet operators to report
their valuations truthfully and consequently perform a socially optimal allocation of vertiport
access. This approach adapts the popular Vickrey–Clarke–Groves mechanism while consid-
ering the egalitarian, congestion-aware, and computational issues. The proposed framework
could be of interest beyond air traffic management, such as multi-robot coordination.

11In this case, rorig
i,j and tdep

i,j,k do not affect our analysis, so we can set them arbitrarily.
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Chapter 14

Privacy Preserving Market
Mechanisms

Integrating advanced air mobility (AAM) into existing air traffic management (ATM) sys-
tems presents complex and unresolved challenges. Projections of AAM traffic density and
operational complexity have raised concerns about the scalability of traditional ATM infras-
tructure. The Federal Aviation Administration (FAA) has acknowledged these challenges [4,
136], stating:

“Given the number, type, and duration of UAS operations envisioned, the existing
ATM system infrastructure and associated resources cannot cost-effectively scale
to deliver services for UAS.” — FAA UAS/UTM Con-Ops ([4])

The limitations of conventional ATM approaches become evident when examining their
underlying design principles. Existing systems [49, 50, 48, 355, 323, 29, 30] are designed
to manage fixed-wing aircraft operating between established airports, with flight schedules
planned weeks or months in advance to minimize overall delays. In contrast, AAM introduces
a fundamentally different paradigm: a high volume of electric vertical take-off and landing
(eVTOL) aircraft and UAVs operating on demand and pursuing diverse objectives. These
vehicles will not only travel between fixed vertiports but also serve ad-hoc destinations—such
as residential areas for package deliveries—further straining legacy ATM systems.

To address this challenge, the FAA [4, 136] and other Air Navigation Service Providers
(ANSPs) worldwide [131] have stated that the day-to-day traffic management of AAM op-
erations will be delegated to third-party service providers (SPs). These providers will coor-
dinate directly with AAM vehicles to allocate airspace efficiently and safely, thus reducing
the dependence on the FAA.

Beyond operational challenges, the introduction of third-party SPs in AAM systems raises
additional concerns, particularly related to privacy. A key issue stems from the heterogeneous
private valuations of AAM vehicles, which can vary significantly depending on their specific
use cases. For instance, a passenger air taxi may have strict scheduling constraints, whereas
a regional cargo flight might be more flexible with delays [385, 375]. This variability in
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Figure 14.1: A schematic of a city with 3D airspace segmented into regions. Drones depart
from vertiports, ascend to cruising altitude, traverse horizontal paths across regions, and
descend to land at distant pads.

preferences, coupled with the sensitivity of business and personal data, makes AAM operators
reluctant to disclose their private valuation information to SPs.

Against this backdrop, this work aims to answer the following question:

How can SPs allocate capacity-constrained airspace resources to dynamically ar-
riving AAM vehicles with heterogeneous private valuations, in a way that enables
these vehicles to achieve an (approximately) optimal allocation based on their
valuations, without requiring them to disclose this private information to the
SPs?

We address this question by focusing on a single SP managing access to a specific region
of airspace, as this problem remains an open challenge even under a single SP.

We model the airspace as a set of contiguous regions, each with specific capacity con-
straints on the number of AAM vehicles (modeled as eVTOLs) that can arrive, depart,
or remain in a given region at any time (see Fig. 14.1). Vehicles submit requests for
airspace access through a menu of feasible (discrete-time) time-trajectories (or air corri-
dors), where each trajectory corresponds to a sequence of tuples specifying the time step
and the sector the vehicle wishes to occupy at that time. We formulate the allocation of
these time-trajectories within capacity-constrained airspace as a path allocation problem on
a time-extended graph (Definition 14.1.1), where all capacity constraints are represented as
constraints on the graph’s edges.

To prevent monopolization of airspace by major players, we introduce an artificial currency-
based auction mechanism [385]. Furthermore, to accommodate the dynamically arriving
requests of AAM vehicles, we propose implementing this auction mechanism in a receding-
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horizon manner (see Section 14.2). This approach periodically collects AAM vehicle requests
and determines allocations based on the proposed auction mechanism.

In each of these auction mechanisms, the SP allocates “air-credits” (the artificial cur-
rency) to each AAM vehicle requesting airspace access and charges an anonymous price (in
air-credits) for using different airspace regions (i.e., resources on the time-extended graph).
Based on these prices, each vehicle selects its most preferred time-trajectory on the time-
extended graph, maximizing its valuation while adhering to its budget constraint. The SP’s
objective is to design prices and allocate airspace efficiently and safely, guided by the follow-
ing desiderata: (i) Given the price vector, the SP’s allocation should be optimal for every
AAM vehicle, ensuring that each vehicle maximizes its private valuation subject to budget
constraints; (ii) the capacity constraints of the airspace must be respected; (iii) prices must
be nonnegative, and if strictly positive, the capacity of each airspace region must match
its demand. An allocation-price tuple satisfying these conditions is known as a competitive
equilibrium in economics, which may not always exist [74]. However, drawing inspiration
from Fisher markets under linear constraints [193], we establish the existence of a fractional
competitive equilibrium—a relaxation of the competitive equilibrium that allows fractional
allocations (Proposition 14.3.1). Moreover, we demonstrate that the prices at a fractional
competitive equilibrium can be computed as the optimal dual multipliers of a budget-adjusted
welfare problem (see (14.3)), which is a convex optimization problem (Lemma 14.3.2). No-
tably, the budget adjustment for each vehicle is determined by the optimal dual multiplier
associated with a linear constraint of this optimization problem. Consequently, computing
a fractional competitive equilibrium reduces to solving a fixed-point problem (Proposition
14.3.3).

Building on these theoretical insights, we propose a two-step algorithmic procedure to
allocate AAM vehicles to airspace. In the first step, we develop a two-loop algorithm to
compute the fractional competitive equilibrium without requiring information about the
vehicles’ private valuations. Specifically, this step involves solving the fixed-point problem
stated in Proposition 14.3.3 using a two-loop algorithm (see Algorithm 11) that mimics
fixed-point iteration. The inner loop solves a reformulated budget-adjusted welfare problem
(cf. (14.4)) in a distributed manner using the Alternating Direction Method of Multipliers
(ADMM) (see Appendix L.3 for a review of ADMM). This ensures that AAM vehicles do
not need to share their valuations with the SP or other AAM vehicles. The outer loop
then updates the budget adjustment parameter using the latest value of the dual multiplier
associated with each AAM vehicle’s individual constraints.

Algorithm 11 can be interpreted as an online learning process, where AAM vehicles iter-
atively refine their trajectory choices based on anonymized market signals, such as expected
demand and prices, while the SP dynamically adjusts these signals based on observed demand
from AAM vehicles. This enables the SP to estimate equilibrium prices without access to
private valuations of AAM vehicles while vehicles deconflict through indirect, price-mediated
coordination, eliminating the need for direct trajectory or valuation sharing. This mechanism
aligns with the literature on online learning of market mechanisms (cf. [212, 246, 54]), as
both the agents and the SP update their strategies sequentially based on observed feedback.
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In the second step (i.e., Algorithm 12), we derive an integral allocation from the frac-
tional competitive equilibrium obtained in the first step while keeping the prices unchanged.
We rank the vehicles according to the fractional allocation they received for their most de-
sired resource in the first step. The SP then allocates resources to the vehicles sequentially
according to this ranking, updating the remaining capacity after each allocation (Algorithm
12). Importantly, in both Algorithms 11–12, the SP requires only information on resource
demands, feasible time trajectories, and the most desired path of each AAM vehicle, without
accessing any private valuation data. Likewise, individual AAM vehicles do not obtain infor-
mation about the time trajectories or private valuations of other vehicles, thereby ensuring
privacy is preserved throughout the process.

To validate the effectiveness of our approach, we analyze drone-based package delivery
using a dataset of drone trajectories generated by Airbus over the city of Toulouse, France,
using realistic physical models. A further study of the scheduling problem for electric air
taxis on a hypothetical air traffic network in Northern California, United States, is provided
in Appendix L.4.

Related Works
The literature on market mechanisms for airspace management in Advanced Air Mobility
(AAM) remains relatively limited [375]. Recent works [346, 96] have explored airspace
management using second-price auctions combined with congestion management algorithms,
as well as combinatorial auctions [237]. However, these approaches are restricted to unit-
capacity regions, limiting their applicability to real-world AAM systems that require flexible
allocation across multiple capacity-constrained airspace sectors.

Su et al. [397] addressed these limitations by employing a generalized
Vickrey–Clarke–Groves (VCG) auction for AAM resource management, incorporating con-
siderations of social welfare, safety, and congestion. Their approach ensures proportional
fairness by optimizing a social cost function based on the weighted utilities of all fleet oper-
ators. A key design goal in their work is to elicit truthful preferences from AAM vehicles to
enable efficient airspace allocation. However, this reliance on truthful bidding raises privacy
concerns, as vehicles must disclose their exact valuations through bids—potentially exposing
sensitive operational information to competitors or regulators. Balakrishnan and Chandran
[28] proposed a column generation algorithm that iteratively updates prices to determine an
allocation satisfying capacity constraints. However, their method relies on vehicles reporting
their private valuations, which may raise privacy concerns. In contrast, our approach elim-
inates the need for AAM vehicles to disclose private valuations, thereby enhancing privacy
while still achieving efficient allocation.

A distinguishing feature of our approach, compared to existing market mechanisms for
AAM, is the use of artificial currency. While monetary transactions are effective in eliciting
preferences, as noted by [375], they can disproportionately advantage operators with greater
financial resources. Our approach mitigates this issue by introducing a system of artificial
currency designed to promote fairness. The idea of using artificial currency for fair and
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efficient resource allocation has been extensively studied in economics, beginning with [411].
These works typically consider environments in which agents are endowed with artificial
currency that holds no value outside the market. However, most of these studies focus on the
allocation of substitutable goods, whereas our setting requires agents to select multiple goods
over a time-extended network, resulting in complementarities rather than substitutability.
Artificial currency mechanisms that address complementarities have been explored in [74,
75]. The key distinction of our work is that agents are allowed to save currency for future
use, and the saved budget directly influences their utility in a quasi-linear manner. This
feature aligns our model more closely with combinatorial auction environments.

Combinatorial auctions enable participants to bid on bundles of items rather than on in-
dividual items [108]. Due to the exponential complexity inherent in these auctions, no single
format universally applies across all settings. In environments with budget constraints, iter-
ative auction formats—such as the Simultaneous Ascending Auction, the Ascending Proxy
Auction, and the Clock-Proxy Auction [23, 109]—are particularly relevant. These formats
allow agents to observe current prices and iteratively adjust their bids within budget con-
straints prior to final submission. Additionally, they offer a privacy advantage by enabling
incremental bid submission, thereby reducing the exposure of complete preference infor-
mation. However, these mechanisms may suffer in efficiency when applied to combinatorial
auction settings with strong complementarities. In our approach, we propose a novel method
for modeling complementarities using linear equality constraints and leverage recent advances
in Fisher markets with linear constraints to determine allocations. Specifically, we compute
a fractional competitive equilibrium, which yields a relaxed solution that is easier to com-
pute. From this fractional equilibrium, we then derive an integral allocation that satisfies
the problem’s capacity constraints.

Organization The chapter is organized as follows. In Section 14.1, we introduce the
model of airspace management studied in this chapter. Section 14.2 presents a high-level
overview of our approach, which implements an artificial-currency-based auction mechanism
in a receding-horizon manner. In Section 14.3, we formally describe this auction mechanism
and provide theoretical results on fractional competitive equilibrium. Section 14.4 outlines
the algorithmic procedure used to compute an approximate market mechanism. In Section
14.5, we validate the performance of our mechanism using a drone delivery dataset generated
from a realistic drone dynamics model developed by Airbus. We discuss the limitations of
our approach in Section 14.6 and conclude in Section 14.7.

14.1 Model of Advanced Air Mobility
Consider the problem of allocating airspace to Advanced Air Mobility (AAM) vehicles, such
as drones and eVTOLs, which enable novel AAM services in urban environments. In our
model, we segment the urban airspace into contiguous regions or sectors, denoted by R.
The spatial configuration of the airspace is represented as a graph G = (R, E), where R
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corresponds to the set of vertices, and E ⊆ R×R denotes the set of edges connecting adja-
cent regions, indicating feasible movements for AAM vehicles. To account for the temporal
dimension, we divide the day into T time steps, with each time step comprising τ seconds.
AAM vehicles arrive dynamically, each requesting access to the airspace.

Each AAM vehicle has a feasible set of time trajectories (also referred to as ”air corridors”)
that it can utilize within the airspace. Each vehicle can independently determine its set of
feasible trajectories by accounting for energy consumption, travel time, and other operational
factors. Furthermore, the feasible set includes only time trajectories that start before the
vehicle’s takeoff; mid-flight trajectory changes are not permitted. Fig. 14.2 illustrates a
schematic representation of a time trajectory for a package delivery scenario. For each
feasible trajectory, the AAM vehicle generates a private valuation that may differ across
trajectories, reflecting its preferences.

In our model, we assume that each region has a limit on the number of vehicles that can
simultaneously arrive, depart, or remain in that region at any given time1. Due to capacity
constraints, it may not be feasible to allocate each AAM vehicle its most preferred time
trajectory, as this could violate airspace constraints. In such a scenario, a service provider
(SP) is typically responsible for managing the airspace and assigning each AAM vehicle a
feasible time trajectory while ensuring compliance with airspace constraints. To facilitate
this process, we introduce the framework of a time-extended graph, which is essential for
integrating arrival, departure, and transit constraints when allocating time trajectories to
AAM vehicles.

Figure 14.2: A time trajectory diagram of a drone delivering a package in an urban setting.
The drone starts from the launch pad V1 (Sector 1) and needs to drop a package in Sector 5
before returning. Here, we show a simple trajectory that moves between regions in one time
step, but in general, such trajectories can remain in any region for multiple time steps.

1This constraint arises from safety concerns that limit the number of vehicles that can be autonomously
de-conflicted in a confined space [37].
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Definition 14.1.1 (Time-extended Graph). We define G̃ = (R̃, Ẽ) as the time-extended
graph with horizon T , for some positive integer T , such that

(i) R̃ = ∪Tt=1 ∪r∈R {ν(r, t), νarr(r, t), νdep(r, t)}, where ν(r, t), νarr(r, t) , and νdep(r, t)
are three replicas of region r at time t.

(ii) Ẽ = ∪4
j=1Ẽ (j) ⊆ R̃× R̃, where

– Ẽ (1) := ∪Tt=1{(νarr(r, t), ν(r, t))}.
Any edge of the type (νarr(r, t), ν(r, t)) has capacity2 Carr(r, t).

– Ẽ (2) := ∪Tt=1{(ν(r, t), νdep(r, t))}.
Any edge of the type (ν(r, t), νdep(r, t)) has capacity Cdep(r, t).

– Ẽ (3) := ∪T−1
t=1 {(ν(r, t), ν(r, t+ 1))}.

Any edge of the type (ν(r, t), ν(r, t+ 1)) has capacity Cstay(r, t).
– Ẽ (4) := ∪T−1

t=1 ∪(r,r′)∈E {(νdep(r, t), νarr(r′, t+ 1))}.
Any edge of the type (νdep(r, t), νarr(r′, t+ 1)) is unconstrained.

Any time trajectory of an AAM vehicle is a path on this time-extended graph. A simple
example describing the time-extended graph and time trajectories is provided in Appendix
L.1.

In this work, we propose a market-based mechanism for the service provider (SP) to
allocate capacity-constrained airspace infrastructure to dynamically arriving AAM vehicles.
Our mechanism ensures that: (i) the capacity constraints of the airspace are strictly sat-
isfied, (ii) each AAM vehicle receives an (approximately) optimal allocation according to
its preferences, and (iii) AAM vehicles are not required to disclose their private valuations
to the SP. The detailed design and implementation of this mechanism are discussed in the
following section.

14.2 High-level Overview of Market-based
Mechanism

We propose an auction-based approach that allocates airspace to dynamically arriving AAM
vehicles in a receding-horizon fashion by periodically allocating the available airspace capacity
through an auction mechanism. In particular, for a total duration of T time steps (with
each time step comprising τ seconds), the service provider (SP) conducts I auctions. In each
auction, the SP allocates airspace to AAM vehicles participating in that auction.

2The arrival and departure constraints are primarily required for airspace regions comprising of verti-
ports/launch pads.
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Figure 14.3: A schematic depiction of the receding horizon approach.

The allocation of the i-th auction is determined at time-step ti = (i− 1)⌊T/I⌋+ 1. The
set of vehicles participating in the i-th auction comprises new vehicles that have requested
airspace access from the SP after the (i− 1)-th auction (i.e., after time-step ti−1), as well
as those that were not allocated in previous auctions. Each AAM vehicle has a feasible set
of time trajectories that it can follow3. In each auction, the SP assigns a time trajectory to
each participating AAM vehicle from its feasible set4. It is important to emphasize that the
flight trajectory of each AAM vehicle is finalized before takeoff, and they are not allowed
to participate in subsequent auctions to modify their trajectory mid-flight. Finally, the SP
updates the remaining airspace capacity before initiating the next auction. A schematic of
the receding-horizon approach is provided in Fig. 14.3.

At a high level, in each auction, the SP allocates a certain amount of ”air credits” to each
participating AAM vehicle. These air credits, along with other credits they have from past
auctions, act as an artificial currency for purchasing airspace access during that auction.
Additionally, the SP imposes a payment (in air credits) for the use of each edge in the time-
extended graph. AAM vehicles can utilize any leftover budget in future auctions to purchase
access to airspace.

The main design component of this auction mechanism is to determine these prices in a
way that allows each AAM vehicle to afford an (approximately) optimal time-trajectory—one
that maximizes its utility within its allocated budget—while ensuring that the overall airspace
allocation adheres to capacity constraints. Moreover, these prices must be computed in a
manner that preserves the privacy of AAM vehicles, ensuring that they do not need to
disclose their private valuations.

In Section 14.3, we formally present one such auction mechanism used in the receding
3Note that the time trajectory allocated in auction i may start at time-step ti and can end at time-step

T .
4Note that the feasible set of trajectories for each vehicle includes an option ∅, which indicates that the

vehicle will not take off in that auction (i.e., remain unallocated), ensuring that our problem always has a
feasible allocation.
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horizon approach discussed above, assuming that the SP has access to private valuations.
Additionally, we study the theoretical properties of the proposed auction mechanism. In
Section 14.4, we relax the assumption that the SP knows the private valuations of AAM
vehicles and develop an algorithmic approach (Algorithm 11-12) to implement the proposed
auction mechanism without requiring this knowledge.

14.3 Auction Mechanism: Design and Analysis
In this section, we formally describe the elements of our proposed auction mechanism, along
with theoretical guarantees, assuming that the service provider (SP) has access to the private
valuations of each AAM vehicle.

Let U be the set of AAM vehicles requesting access to airspace in the current auction.
Each AAM vehicle u ∈ U is allocated a budget of air credits, denoted by wu ⩾ 05. The
set of feasible time-trajectories for any AAM vehicle u ∈ U is given by Mu = Ru ∪ {∅},
where Ru represents a subset of paths on the time-extended graph (cf. Definition 14.1.1),
and ∅ denotes the option to drop out of the system if no feasible path is available due to
high congestion.

We define xu,e ∈ {0, 1} to indicate whether an AAM vehicle u is using edge e ∈ Ẽ ,
and xu,∅ ∈ {0, 1} to indicate whether the AAM vehicle u has dropped out of the system.
Furthermore, each AAM vehicle has the option to convert its unused budget into an “outside
option” for future auctions6. We use xu,o to denote the amount of outside options that the
AAM vehicle consumes in any auction. For concise notation, we define xu = (xu,e)e∈Ẽ and

x̄u =
[
x⊤
u ,xu,o,xu,∅

]⊤
.

The utility derived by any vehicle u ∈ U from selecting a route s ∈ Ru is denoted by
vu,s ∈ R+, the utility from selecting the option ∅ is denoted by vu,∅ ∈ R+, and for the
per-unit consumption of the outside option is given by vu,o ∈ R+. Therefore, the overall
utility derived by AAM vehicle u is given by

fu(x̄u) =
∑
s∈Ru

vu,sxu,e∗(s) + vu,oxu,o + vu,∅xu,∅, (14.1)

where e∗(s) denotes the departing edge7 on the route s.
5The variation in budgets among AAM vehicles can arise due to two factors: (i) savings accumulated

from previous auctions, and (ii) the priority given by the SP, for instance, in the case of disaster relief and
emergency service vehicles.

6The budget converted into the outside option is carried forward and added to the AAM vehicle’s budget
in future auctions.

7In our framework, we use the convention that the AAM vehicles place all their valuation of a route on
the first edge on the time-extended graph that goes out from the origin node. This is an edge of type Ẽ (4)
in Definition 14.1.1. Additionally, we add a constraint (cf. (14.3b)) that ensures that if a vehicle selects a
departing edge corresponding to a route, then all edges on that route will be selected.
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The SP charges a price pe for any AAM vehicle using the edge e ∈ Ẽ , and a payment
po ⩾ 0 for the consumption per unit of the outside option. Upon observing the prices, each
AAM vehicle u ∈ U solves the following optimization problem:

max
x̄u

fu(x̄u) (IOP)

s.t. p⊤xu + poxu,o ⩽ wu (14.2a)
ã⊤
u xu + xu,∅ = 1 (14.2b)

Ãuxu = 0 (14.2c)
xu ∈ {0, 1}|Ẽ |,xu,∅ ∈ {0, 1}, (14.2d)

where ãu ∈ R|Ẽ | is such that the constraint (14.2b) enforces ∑s∈Ru
xu,e∗(s) + xu,∅ = 1,

indicating that the AAM vehicle u will either select a path in Ru or will drop out. The
matrix Ãu ∈ RK×(|Ẽ |) in (14.2c) represents two types of constraints: (i) Auxu = 0, where
Au ∈ R|R̃|×|Ẽ| is an incidence matrix of the time-extended graph encoding flow-balance
constraints at each node in G̃; and (ii) Bu,sxu = 0 for each s ∈ Ru, where Bu,s ∈ R(K−|R̃|)×|Ẽ|

encodes the constraint that the flow on any edge connecting two different regions along path
s matches the flow on the departing edge e∗(s). Intuitively, (ii) ensures that any feasible
solution that satisfies (14.2b) and (i) results in a unique edge flow. We present a simple
example in Appendix L.1 to describe these constraints.

In (14.2), (IOP) represents the utility derived by the AAM vehicle u; (14.2a) denotes the
budget constraint of AAM vehicle u; (14.2b) represents the requirement that AAM vehicle u
must select at least one of the paths in Ru or consider dropping out; (14.2c) ensures a unique
edge flow for every feasible solution from (14.2b); and (14.2d) ensures that the selections
made by AAM vehicles are integral. Note that the feasible set in (14.2) is non-empty. This
is because xu = 0,xu,∅ = 1, and xu,o = wu/po is always a feasible solution.

The goal of the SP is to set the prices such that the resulting allocation is a competitive
equilibrium:

Definition 14.3.1. (x̄∗, p∗) is said to be a competitive equilibrium if the following condi-
tions are satisfied

(i) For every u ∈ U , x̄∗
u is an optimal solution of (14.2) with prices set to p∗;

(ii) The capacity constraints are satisfied. That is, for every e ∈ Ẽ, ∑u∈U x
∗
u,e ⩽ ℓe.

(iii) p∗
e ⩾ 0 for all e ∈ Ẽ; and if p∗

e > 0 then ∑
u∈U x

∗
u,e(p

∗) = ℓe.

We call (x̄∗, p∗) the market clearing allocation and market clearing prices, respectively.
In general, a competitive equilibrium may not always exist [74]. Therefore, we introduce a
relaxed version of competitive equilibrium, where we relax the requirement that allocations
are integral.



CHAPTER 14. PRIVACY PRESERVING MARKET MECHANISMS 245

Definition 14.3.2. (x̄∗, p∗) is called a fractional-competitive equilibrium if all conditions
in Definition 14.3.1 are satisfied, except that in Definition 14.3.1-(i) the integral constraint
(14.2d) is relaxed to a positivity constraint.

This relaxation is inspired by the competitive equilibrium framework studied in the lit-
erature on Fisher markets with linear constraints [193].

In what follows, we demonstrate that a fractional competitive equilibrium always exists
and can be computed as the solution to a fixed-point problem. Then, in Section 14.4, we
leverage this property to develop a two-step algorithmic procedure that produces an integral
allocation and prices approximating a competitive equilibrium, without requiring knowledge
of the private valuations of the AAM vehicles.

Existence and Computation of Fractional Competitive
Equilibrium
We state the following existence result regarding the fractional competitive equilibrium.

Proposition 14.3.1. There exists a fractional-competitive equilibrium.

The proof builds on the result establishing the existence of a competitive equilibrium in
Fisher markets with auxiliary inequality constraints [193]. Specifically, our proof accounts for
auxiliary equality constraints that arise from (14.2b)-(14.2c). A detailed proof of Proposition
14.3.1 is provided in Appendix L.2.

Next, we present a computational framework that can be used by the service provider
for computing a fractional-competitive equilibrium, if they know the private valuations of all
AAM vehicles. Consider the following optimization problem, parametrized by ω ∈ R

|U |
⩾0 :

max
x̄=(x̄u)u∈U

∑
u∈U

(wu + ωu) log (fu(x̄u))−
∑
u∈U

poxu,o (14.3a)

s.t.
∑
u∈U

xu,e ⩽ ℓe, ∀ e ∈ Ẽ , (14.3b)

ã⊤
u xu + xu,∅ = 1, ∀ u ∈ U , (14.3c)

Ãuxu = 0, ∀ u ∈ U , (14.3d)
xu,e ⩾ 0, ∀ u ∈ U , e ∈ Ẽ ∪ {o,∅}, (14.3e)

where the first term in (14.3a) represents the “budget-adjusted” weighted geometric mean
of the utilities of all AAM vehicles, while the second term accounts for the total expendi-
ture on the outside option. Constraint (14.3b) enforces the capacity limit on every edge,
and constraints (14.3c)–(14.3d) are analogous to (14.2b)–(14.2c). Additionally, (14.3e) is a
relaxation of the integrality constraint in (14.2d). The objective in (14.3) is related to the
“budget-adjusted social optimization problem” studied in [193] for Fisher markets, with the
key difference being the second term, which ensures that a smaller amount of credits is spent
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on the outside option. On an intuitive level, the weighted geometric mean structure of the
objective in (14.3a) can be seen as finding an allocation that balances the trade-offs between
different AAM vehicles’ utilities, weighted by their budget adjustments. It ensures that an
improvement in a vehicle’s utility contributes to the overall objective in proportion to its
market power. At the optimal point, this results in a fair and efficient allocation of airspace
among AAM vehicles. On a more technical level, the weighted geometric mean is fundamen-
tal in the proof of Proposition 14.3.3, which ensures that if we can adjust the weights of AAM
vehicles in an appropriate manner (through a careful choice of ω), then the optimal dual
multiplier of (3b) is the market-clearing price and the optimizer of (3) yields market-clearing
allocations. Before stating Proposition 14.3.3, we present an important property of (14.3).

Lemma 14.3.2. The constraints (14.3b)-(14.3e) always have a feasible solution. Further-
more, for any ω ∈ R

|U |
+ , (14.3) is a convex optimization problem.

The proof of this result follows from the fact that the constraint set in (14.3) is a polytope.
Moreover, the objective fu(·) is a linear function with positive coefficients. For any ω ∈ R

|U |
+ ,

let p†(ω) denote an optimal dual multiplier corresponding to the constraint (14.3b), λ†(ω)
denote an optimal dual multiplier corresponding to the constraint (14.3c), and x̄†(ω) denote
an optimal solution to (14.3).

Proposition 14.3.3. Suppose there exists ω∗ ∈ R
|U |
+ that is a fixed point of the mapping

ω 7→ λ†(ω). Then (x̄†(ω∗), p†(ω∗)) is a fractional-competitive equilibrium.

The proof relies on the convexity of the optimization problems (14.3) (Lemma 14.3.2)
and (14.2) (after relaxing the integrality constraint in (14.2d) to fractional in (14.3e)), along
with matching the KKT conditions for optimality. The detailed proof of Proposition 14.3.3
is provided in Chapter L.2.

Remark 14.3.1. The proof of Proposition 14.3.3 can be extended to settings where a fixed
point may not exist. Suppose there exists ω∗ ∈ R

|U |
+ such that, for each u ∈ U , ω∗

u−λ†
u(ω

∗) =
ϵu for some ϵu ∈ R ensuring that wu + ϵu ⩾ 0. Then (x̄†(ω∗), p†(ω∗)) is a fractional
competitive equilibrium of a market where, for each u ∈ U , the budget is adjusted to wu+ ϵu.

14.4 Algorithmic Design of Auction Mechanism
without Private Valuations

In this section, we outline our algorithmic procedure for the service provider (SP) to compute
(approximate) competitive equilibria using Proposition 14.3.3, without requiring knowledge
of the private valuations of AAM vehicles. Our approach unfolds in two stages. First,
we introduce an algorithm that solves the fixed-point equation from Proposition 14.3.3 to
compute the fractional competitive equilibrium in a distributed manner (cf. Algorithm
11). The SP then generates a ranked list of AAM vehicles using the prices and fractional
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allocations derived from this step. This ranking allows the SP to obtain an integral allocation
by successively assigning regions to AAM vehicles according to the ranking (cf. Algorithm
12). In the following subsections, we elaborate on each of these steps.

Step 1: Distributed Algorithm for Computing
Fractional-Competitive Equilibrium
To compute a fractional-competitive equilibrium, we propose Algorithm 11 to solve the
fixed-point problem described in Proposition 14.3.3 in a distributed manner. Algorithm 11
emulates the fixed-point iteration for the mapping

ω 7→ λ†(ω). (FP)

Since the SP lacks access to λ†(ω), as computing it requires solving (14.3), which in turn
depends on the private valuations of AAM vehicles, we adopt a two-loop approach to circum-
vent this challenge. In the inner loop, we iteratively solve the convex optimization problem
(14.3) in a distributed manner that does not require the SP to access the private valuations of
AAM vehicles. This is achieved by repeatedly interacting with the AAM vehicles for a finite
number of rounds, while holding ω constant, to approximate λ†(ω). This approximation is
then used to update ω using a fixed-point iteration in the outer loop.

To solve the inner-loop problem in a distributed manner, we reformulate (14.3) as (14.4)
by introducing two additional variables, y and z. This reformulation enables the use of
distributed optimization techniques, facilitating computation across multiple agents while
preserving the structure of the original problem.

min
(x̄u,yu)u∈U ,(ze)e∈Ẽ

∑
u∈U

(wu + ωu) log (fu(x̄u))−
∑
u∈U

poxu,o (14.4a)

s.t. yu = xu, ∀ u ∈ U , (14.4b)∑
u∈U

yu,e + ze = ℓe, ∀ e ∈ Ẽ , (14.4c)

ã⊤
u xu + xu,∅ = 1, ∀ u ∈ U (14.4d)

Ãuxu = 0, ∀ u ∈ U , (14.4e)
x̄u ⩾ 0, z ⩾ 0, yu ∈ R|Ẽ |, ∀ u ∈ U . (14.4f)

In this reformulation, Equation (14.4b) enforces equality between x and y, while Equation
(14.4c) ensures that the capacity constraints are satisfied. Constraints (14.4d)–(14.4f) are
identical to (14.3c)–(14.3e), with additional positivity constraints on y and z. This reformu-
lation ensures that the Lagrangian of (14.4) becomes a separable function of x̄u, allowing the
problem to be solved in a distributed manner using the ADMM algorithm [176, 193]. The
variable y can be interpreted as the “expected allocation” estimate of the service provider
(SP), while z represents the “resource surplus” in each region. Next, we describe the inner
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Figure 14.4: Flowchart of Algorithm 11, illustrating the processes executed independently
by the SP and AAM vehicles, as well as the steps computed within the inner and outer loops.

and outer loops in detail. We index the inner-loop iterations by n = 1, 2, . . . ,N and the
outer-loop iterations by k = 1, 2, . . . ,K. A flowchart of our algorithm in Step 1 is shown in
Figure 14.4.

Inner Loop: Inner loop iterations are obtained by performing ADMM iterations8 for
(14.4) with step-size parameter β. For any ω ∈ R

|U |
⩾0 , this implementation allows us to

estimate the dual multiplier λ†(ω) in a distributed manner without requiring knowledge of
the private valuations of AAM vehicles. Next, we describe these iterations in more detail.

Given that the outer loop is at iteration k, at any iteration n of the inner loop: (a) each
AAM vehicle u keeps track of its individual demand x̄(n,k)

u ; and (b) the SP keeps track of
four quantities: the estimate of expected allocations y(n,k), the expected resource surplus
z(n,k), the prices of all regions p(n,k), and a dual multiplier λ(n,k), which is used to adjust
the budgets of AAM vehicles.

Local update for each AAM vehicle: Given that the outer loop is at iteration k, at every
iteration n of the inner loop, each AAM vehicle u receives its expected allocation y(n,k)

u , the
current prices on regions p(n,k), and the dual multiplier corresponding to its local constraints
λ
(n,k)
u . Using this information, the AAM vehicle updates its requested demand using the

8Derivation of ADMM updates for (14.4) is provided in Appendix L.3.
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Algorithm 11 Distributed Algorithm for Fractional Competitive Equilibrium

1: Input: p(0,0) = 0, λ(0,0) = 0, y(0,0) = 0,ω(0) = 0, tolCE, tolICE, tolEAE, β
2: for k = 0 to K − 1 do
3: // Outer loop
4: for n = 0 to N − 1 do
5: // Inner loop
6: // Distributed Updates by AAM vehicles
7: Each u ∈ U updates x̄(n+1,k)

u using (14.5)
8: // Service Provider (SP) Updates
9: Update y(n+1,k) and z(n+1,k) using (14.6)

10: Update prices p(n+1,k) using (14.7)
11: For each u ∈ U , update λ(n+1,k)

u using (14.8)
12: if CE ⩽ tolCE and ICE ⩽ tolICE and EAE ⩽ tolEAE then
13: Return: x̄† = x̄(n+1,k), p̄† = p(n+1,k)

14: end if
15: end for
16: Set ω(k+1) = λ(N ,k)

17: Set p(0,k+1) = p(N ,k), y(0,k+1) = y(N ,k)

18: end for
19: Return: x̄† = x̄(N ,K), ȳ† = p(N ,K)

following update and shares this with the SP.

x̄(n+1,k)
u = arg max

x̄u, s.t. (14.3d)−(14.3e) hold

(wu + ω(k)
u ) log (fu(x̄u))− poxu,o

−
∑
e∈Ẽ

p(n,k)
e xu,e − λ(n,k)

u · (ã⊤
u xu + xu,∅ − 1)

− β

2 (ã
⊤
u xu + xu,∅ − 1)2 − β

2 ∥y
(n,k)
u − xu∥2

,

(14.5)

where β is a positive scalar that represents the step-size in the ADMM algorithm (cf. Ap-
pendix L.3).

Remark 14.4.1. The update in Equation (14.5) can be implemented through a ”proxy bid-
ding agent” in place of an actual AAM vehicle. The AAM vehicle operator can have the
proxy agent at their local end, where they feed the AAM vehicle’s valuation, and the proxy
agent then participates on behalf of the AAM vehicle. This ensures that no on-board energy
resources are used to run Algorithm 11. The proxy agent attempts to maximize the vehicle’s
budget-adjusted utility while penalizing deviations from the expected allocation, overspending
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artificial currency, and violating constraints. These constraints ensure that the bundle of
edges selected by the AAM vehicle results in a feasible path on the time-extended graph.

Updates by SP: Using the demand from AAM vehicles, the SP updates the expected
allocation and the excess supply through (14.6). The objective in (14.6) requires the SP
to minimize three terms: (i) the difference between the expected allocation by the SP and
the demand sent by AAM vehicles; (ii) the violation of resource constraints; and (iii) the
minimization of unused capacity on any resource with a positive price.

(y(n+1,k), z(n+1,k))

= arg max
y∈RU×|Ẽ|, z∈R

|Ẽ|
+

− β

2
∑
u∈U
∥yu − x(n+1,k)

u ∥2 − β

2 ∥
∑
u∈U

yu + z− ℓ∥2 −
∑
e∈Ẽ

p(n,k)
e ze

.

(14.6)
Next, the SP updates the price estimates using the updated values of the expected al-

location and the excess supply through (14.7). Equation (14.7) reflects the idea that the
SP should increase the price if the capacity constraint is violated and reduce it if there is
available capacity.

p(n+1,k) = p(n,k) + β

∑
u∈U

y(n+1,k)
u + z(n+1,k) − ℓ

 . (14.7)

Finally, the SP updates the dual multiplier estimate λu for each AAM vehicle u using
(14.8).

λ(n+1,k)
u = λ(n,k)

u + β

ã⊤
u x(n+1,k)

u + x
(n+1,k)
u,∅ − 1

. (14.8)

Outer loop. In the outer loop, the SP updates the budget adjustment after every N
iteration of the inner loop, using the value of λ(N ,k) to approximate the fixed-point iteration
(line 12 of Algorithm 11). This step ensures that budget adjustments progressively converge
toward equilibrium by iteratively refining the dual variables based on the current solution
from the inner loop.

Termination criterion9: We terminate the algorithm once all of the following errors
fall below their predefined threshold:

• Complementarity error (CE): Smaller values of CE ensure that resources with a positive
price maintain a balance between demand and supply, while resources priced at zero
satisfy capacity constraints. We define

CE(x̄, p) =
√∑
e∈Ẽ

p2
ez

2
e , (14.9)

9Reaching a fixed point may be used as an alternative stopping criteria.
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where ze =
∑
u∈U xu,e − ℓe is the excess demand. The definition of CE is motivated

from the “complementarity condition” in general equilibrium theory in economics [288].
We define tolCE to be the threshold for this error.

• Individual constraint error (ICE): Smaller values of ICE ensure that (14.4d) constraint
is satisfied. We define

ICE(x̄) = max
u∈U
∥ã⊤

u xu + xu,∅ − 1∥∞. (14.10)

We define tolICE to be the threshold for this error.

• Expected allocation error (EAE): Smaller value of EAE ensure that (14.4b) is satisfied.
We define

EAE(x, y) = max
u∈U
∥yu − xu∥∞. (14.11)

We define tolEAE to be the threshold for this error.

We represent the output of Algorithm 11 by (x̄†, p†).

Remark 14.4.2. Algorithm 11 is similar to online learning algorithms for computing market
equilibrium [212, 246, 54]. In this process, AAM vehicles iteratively adjust their demand
based on anonymized signals—such as prices, expected allocation, resource surplus, and dual
multipliers—broadcast by the SP. Meanwhile, the SP dynamically updates these signals in
response to the aggregate demand from AAM vehicles, without requiring knowledge of their
private valuations.

Step 2: Computing Integral Allocation
Using the output from Algorithm 11, the SP computes an integral allocation in a distributed
manner using Algorithm 12. The SP sets the airspace price to p† (the output of Algorithm
11) and generates a ranked list of AAM vehicles based on x̄† (cf. Sec. 14.4). This list is
created by ranking the AAM vehicles in descending order according to the numerical value
of the (fractional) allocation of their preferred routes (cf. Sec. 14.4).

Ranked List.

To generate a ranked list of AAM vehicles, we define s∗(u) to be the most desired route of
AAM vehicle u in Ru. Using x̄† from Algorithm 11, the SP creates a ranking over agents
based on decreasing values of x†

u,e∗(s∗(u)), where e∗(s∗(u)) denotes the departing edge on the
route s∗(u). We denote the ranked list10 of AAM vehicles by rank.

10Ties are broken arbitrarily.
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Figure 14.5: Flowchart of Algorithm 12, illustrating the ranking system and the removal of
over-demanded edges.

Integral Allocation.

After generating the ranked list, the SP fixes the prices for all resources based on the output
of Algorithm 11 (i.e., p̄†) and iterates over AAM vehicles according to rank (cf. Line 3 in
Algorithm 12). Each AAM vehicle is allocated its most desired feasible route (cf. Lines
5–10 in Algorithm 12), subject to the current resource capacity 11. If a capacity constraint
is violated on any resource, the SP either removes that resource from the available pool for
all remaining agents or increases its price to infinity for the remaining AAM vehicles (as
described in Line 12 of Algorithm 12). See Fig. 14.5 for a schematic illustration.

Remark 14.4.3. For Algorithms 11-12, the SP only requires information on the resource
demands of AAM vehicles, their feasible time-trajectories, and their most preferred time-
trajectory. Importantly, the SP does not need any details regarding the private valuations of
individual AAM vehicles. Moreover, each AAM vehicle does not have access to the demands
or private valuations of other vehicles, ensuring that privacy is maintained throughout the
process.

11The IOP in Algorithm 12 is constrained by the adjusted budget w†
u = wu + ωu.
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Algorithm 12 Integral Allocation Based on Ranked List
1: Input: p†, w†, rank
2: Initialize remaining capacity: ℓrem ← ℓ
3: for i = 1 to |U | do
4: u← ranki
5: // Select AAM vehicle from the ranked list
6: AAM vehicle allocated← False
7: while AAM vehicle allocated = False do
8: AAM vehicle u reports its integral allocation x̄u by solving (14.2)
9: if xu,e ⩽ ℓrem

e for every e ∈ Ẽ then
10: Update remaining capacity: ℓrem

e ← ℓrem
e − x̄u,e, ∀e ∈ Ẽ

11: AAM vehicle allocated← True
12: else
13: Define contested set C ← {e ∈ Ẽ | xu,e > ℓrem

e }
14: // Identify contested goods
15: for each e ∈ C do
16: Update price: pe ←∞
17: // Remove e from further consideration
18: end for
19: end if
20: end while
21: end for
22: Return: x̄

14.5 Drone Delivery in Toulouse: A Case Study
In this section, we validate our proposed mechanism using a dataset of simulated package
deliveries by Airbus, as shown in Fig. 14.7. Specifically, we use a synthetic dataset generated
by Airbus to simulate a drone-based package delivery scenario in Toulouse, France [127, 94].

Dataset Specification: The data involves four warehouses located on the periphery of
the city, which serve as hubs for UAV take-off and landing. Delivery requests are generated
with spatial locations drawn uniformly across Toulouse and their temporal occurrences follow
a Poisson process. Each request triggers a UAV to depart from the launchpad of a warehouse,
deliver a package to the specified destination, and return to its origin. The UAV flight
trajectory, including take-off, cruise, and landing phases, is generated by Airbus’s high-
fidelity trajectory simulator, ensuring that the simulated operations closely mimic real-world
conditions. The data set includes data corresponding to 177 UAV flights, which spans roughly
6000 seconds (100 minutes). The average length of a UAV flight from a warehouse to the
delivery location is approximately 300 seconds (5 minutes).

Airspace Specifications: To implement our auction approach, we partitioned Toulouse’s
airspace into 12 “cruising-altitude” regions, along with 4 warehouses, as shown in Fig. 14.7.
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Figure 14.6: Division of Toulouse airspace into 12 cruising sectors (polygons) and 4 launch-
pad sectors (circles). The lines show the trajectory of UAVs in the dataset. Labels indicate
the sector (S#) or vertiport (V#).

Figure 14.7: A map is shown overlaid with 12 regions labeled S001 to S0012. There are
also four circles labeled V001 to V004, which are in between regions S005 and S006, S007
and S008, S009 and S0010, and S0011 and S0012, respectively. Lines for the flight paths are
shown emanating from each circle.

We construct a time-extended graph (cf. Definition 14.1.1) with a total of T = 400 time-
steps, where each step of corresponds to τ = 15 seconds. Based on the data we find that
the minimum capacity needed to accommodate all requests from UAVs is 14 units in all
12 cruising regions of the airspace and 4 units for vertiport departure and arrival at the
warehouse locations. Therefore, to make the problem more interesting, we set the capacity
of each airspace region to 50% of the maximum number of vehicles it can accommodate at
each time step unless otherwise specified.

UAV Specifications: Each UAV is either allocated a path on the time-extended graph
or is rebased. For every UAV, the feasible set of paths on the time-extended graph includes
its most desirable path, along with four alternative paths, each incurring a one-time-step
delay. If a UAV is rebased, it converts its budget into outside options to be used again in the
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next auction window. Every rebased UAV requests access to the airspace from the start of
the next auction window. Any UAV may be rebased at most twice, after which it is dropped
and no longer considered in future auctions.

The private value generated by each UAV on its most desirable path is a uniformly
random number between 150 and 250 units. The utility decreases by a factor of 0.95 for
each time-step delay in departure. If a UAV is rebased, its utility decreases by a factor of
0.5. The utility derived by any UAV from dropping out is 40 units.

Implementation Specifications: In each auction window, the SP allocates an addi-
tional budget of artificial currency to each participating UAV, randomly sampled between
150 and 250 units. This amount is then added to the UAV’s existing budget accumulated
from past auctions. For our numerical study, we set the nominal tolerance values in Al-
gorithm 11 as follows: tolCE = 0.1%, tolICE= 0.01%, and tolEAE= 0.1% of their respective
maximum attainable values. Additionally, in Algorithm 11, we set β = 50 and N = 10 for
the qualitative analysis and β = 50 and N = 30 for the sensitivity analysis. We imple-
mented our approach in Python and ran the simulations on a laptop equipped with a 12th-
gen Intel Core i7-1200H CPU (14 cores, 20 threads) and 32GB DDR4 RAM. The operating
system used was Ubuntu 22.04. Our code is publicly available at https://github.com/sastry-
group/Mechanism-Design-for-AAM.

Qualitative Analysis
In this subsection, we present the outcome of our receding-horizon auction approach that we
conducted for a total of 15 (i.e, I = 15) auctions. Before the start of every auction, the SP
gathers the demand of AAM vehicles requesting access to the airspace. The overall budget
of any UAV includes the new air credits they received and any unused air credits from a
previous round. Additionally, we also compare our performance with two baselines.

In Fig. 14.8a, we present the number of agents that were allocated, delayed, dropped,
rebased-once, and rebased-twice across different auctions. We observe that the number of
rebased and dropped agents increases in later rounds. This is because congestion builds up
over time, as we operate in highly contested settings where the maximum capacity of every
region is set to 50%.

In Fig. 14.8b, we present the market clearing error (MCE) after Algorithm 12, which
captures the fraction of edges on the time-extended graph that have a positive price de-
spite congestion being below capacity. This metric aligns with the third component of the
competitive equilibrium definition in Definition 14.3.1, reflecting the economic principle that
a good should not carry a positive price if it is underutilized. We find that this error is
small—under 2%—highlighting that our approach (Algorithm 11 + 12) does not impose
prices on uncontested goods.

In Table 14.5.1, we compare our approach to two baselines based on the ascending clock
auction [109]. Both baselines implement simultaneous ascending clock auctions using β as
the price increment. Agents are allowed to perform price discovery by bidding only on their
most beneficial request, rather than on all goods across their preferred and delayed options.

https://github.com/sastry-group/Mechanism-Design-for-AAM
https://github.com/sastry-group/Mechanism-Design-for-AAM


CHAPTER 14. PRIVACY PRESERVING MARKET MECHANISMS 256

(a) A bar plot shows the number of agents
with status Allocated, Delayed, Dropped, Re-
based Once, and Rebased Twice for each auc-
tion. The earlier auctions show mostly allocated
agents with more Delayed, Dropped, and Re-
based agents in the later auctions.

(b) A line graph shows the value of the market-
clearing error for each auction. The error for all
auctions except for the 14th is below 1 percent.

Figure 14.8: Properties of allocation finalized by our receding-horizon auction approach.

Table 14.5.1: Comparison to baseline auction approaches under different capacities.

Approach Capacity Num. Times
Rebased

Num. Delayed
UAVs

Avg. Delay
(time steps)

Num. Rebased
UAVs

Avg. Times
Rebased

Num. Never
Allocated

Budget-based
60% 20 12 1.83 17 1.18 0
50% 148 22 1.22 84 1.76 43

Profit-based
60% 59 17 2.41 32 1.84 24
50% 164 22 2.86 87 1.89 70

Ours
60% 14 10 1.1 14 1 0
50% 153 35 1.51 91 1.68 25

Due to constraint (14.2b), we can assume that agents will always bid either on a request or
on the outside option, and are therefore always active. The overall procedure is outlined in
Algorithm 13. In the Budget-based comparison, agents solve their individual optimization
problem (IOP) to determine their bids. In the Profit-based comparison, agents determine
their bids based on their profit (value minus price). In each round, all agents submit bids,
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and prices are increased on contested goods until no further goods are contested.

Algorithm 13 Ascending Clock Auction Comparisons
1: Initialize prices: p← 0
2: repeat
3: x̂u ← AAM vehicle u’s integral output from (14.2) // Budget-based Bid
4: x̂u ← arg maxx̄u

∑
s∈Ru

vu,sxu,e∗(s) + vu,oxu,o − pTxu − poxu,o
5: subject to: constraints (14.2b)–(14.2d), ∀u ∈ U // Profit-based Bid
6: C ←

{
e ∈ Ẽ | ℓe <

∑
u∈U x̂u,e

}
7: pe ← pe + β ∀e ∈ C // Increase price for overcapacitated goods
8: until C = ∅
9: Return: x̂u∈U

We compare these approaches using the Toulouse example at a 50% capacity level and also
consider a slightly less constrained case (60% capacity). The set of goods remains consistent
across all approaches. Our evaluation includes the following metrics: the number of agents
that are never allocated (dropped agents), the number of delayed agents, the average delay
duration for delayed agents, the total number of times agents are rebased (including both
once- and twice-rebased cases), the number of agents rebased at least once, and the average
number of times agents are rebased. Lower values are preferable across all metrics, and the
lowest value for each metric is shown in green and bolded.

For the 60% capacity case, both our approach and the Budget-based comparison allocate
all agents, with our approach additionally resulting in fewer delayed and rebased aircraft. In
the more constrained 50% case, our approach significantly reduces the number of unallocated
agents. While the Budget-based approach results in fewer delayed aircraft and a lower
number of rebased agents, minimizing the number of unallocated agents is the more desirable
outcome. The Profit-based approach performs worse in both cases across nearly every metric,
further highlighting the benefits of using artificial currency. We attribute this to the high
cumulative costs incurred when agents must bid on multiple goods in this setting. These
results demonstrate that, for comparable values of β, our approach is better equipped to
manage increasing congestion, as evidenced by the lower numbers of unallocated and rebased
agents.

Sensitivity Analysis
In this subsection, we conduct numerical studies to evaluate the impact of key design pa-
rameters on the performance of our algorithmic approach.

In Fig. 14.9a, we present the variation in the number of iterations of Algorithm 11 with
respect to different numbers of agents under various capacity constraints. This scenario can
be interpreted as a setting with a single auction window in which all agents simultaneously
request their desired goods on the time-extended graph. We observe that an increase in the
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(a) Iterations vs. Number of UAVs
(b) Percent of Unallocated UAVs vs. Num-
ber of UAVs

Figure 14.9: Variation of the number of iterations and percent of unallocated agents with
respect to the number of agents as we vary capacity constraints on the resources.

number of agents leads to a higher number of contested goods, which requires more itera-
tions of Algorithm 11 to compute a fractional competitive equilibrium. At 100% capacity,
there are no contested resources, and the algorithm requires only 8 iterations regardless of
the number of agents. As the capacity decreases, the number of iterations increases due
to the higher number of contested goods. In Fig. 14.9b, we analyze the variation in the
percentage of unallocated agents with respect to different numbers of agents under various
capacity constraints. We observe that when the resource capacity is 100%, all UAVs receive
their desired paths. However, as the capacity decreases, a greater number of agents remain
unallocated. Furthermore, for any given capacity level, the percentage of unallocated agents
trends upwards as more agents participate in the auction.

In Fig. 14.10, we study the variation in the number of iterations of Algorithm 11 with
respect to different market parameters. First, in Fig. 14.10a, we examine how the number
of iterations of Algorithm 11 changes as we vary the number of auctions in our receding
horizon approach. As the number of auctions increases, the number of UAVs participating
in each auction decreases, resulting in fewer contested goods. Consequently, Algorithm 11
converges more quickly. Next, in Fig. 14.10b, we evaluate the impact of the number of
inner loop updates (parameter N in Algorithm 11). Recall that the goal of Algorithm 11
is to emulate fixed-point iteration (FP). Toward this goal, the role of inner loop updates
in Algorithm 11 is to estimate λ†(ω(k)) for every update of ω(k) in the outer loop. The
results show that when N is lower, the number of iterations of Algorithm 11 is higher, as the
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(a) Iterations vs. Number of Auctions (I)
(b) Iterations vs. Inner Loop Update Param-
eter in Algorithm 11 (N)

(c) Iterations vs. Tolerance in Algo-
rithm 11

Figure 14.10: Variation in number of iterations of Algorithm 11 with different algorithmic
parameters.
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inner loop cannot accurately estimate λ†(ω(k)). Consequently, increasing N decreases the
number of iterations up to a point. However, if we continue to increase N past this point,
the additional steps in the inner loop do not help the convergence of fixed-point iteration
(FP) and instead cause the iterations of Algorithm 11 to start increasing again. Finally,
in Fig. 14.10c, we analyze how the number of iterations varies with different convergence
tolerances. For clarity, we introduce the variable α, which is a multiplier for the nominal
value of tolerances (i.e., tolCE, tolICE, tolEAE) described in our setup above, and we study the
variation in the number of iterations with respect to α. As expected, stricter tolerances (i.e.,
lower α) generally increase the number of iterations, since the algorithm must satisfy more
stringent stopping conditions.

14.6 Limitations
We highlight several limitations of the current modeling framework, each of which presents
a promising direction for future research:

(i) We assume that the AAM vehicles are not malicious and follow Algorithms 11 and 12 as
intended. In practice, this can be implemented before takeoff via a ‘proxy agent’, which
is an autonomous entity that bids on behalf of each vehicle. The use of proxy agents
is a well-established approach for implementing iterative auctions [109]. Designing
effective auditing mechanisms to ensure agent compliance remains an important open
problem.

(ii) We assume that communication between the service provider and each UAV is delay-
free and noiseless. Once a vehicle has taken off, its route is fixed, and no further
in-flight communication is required.

(iii) The current framework assumes that a single service provider manages the entire
airspace. Extending the model to support multiple, potentially competing, service
providers is an important direction for future exploration.

(iv) Each UAV is assigned a trajectory before takeoff and does not deviate from it during
flight.

(v) We assume that sufficient infrastructure and operational measures are in place to man-
age emergencies.

(vi) Budgets are randomly assigned to AAM vehicles by the SP. Developing improved
budget allocation mechanisms that promote social welfare or fairness is a compelling
direction for future research.
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14.7 Concluding Remarks
In this work, we introduce a novel mechanism that enables service providers to allocate
on-demand requests from AAM vehicles—each with heterogeneous private valuations—to a
capacity-constrained airspace. This is the first work in the AAM literature to allocate con-
strained airspace resources to dynamically arriving AAM vehicles without requiring knowl-
edge of their private valuations. Central to our approach is an artificial currency-based
auction mechanism implemented in a receding-horizon manner. In every auction, we use a
distributed iterative algorithm that accounts for individual agent preferences while ensuring
system efficiency and safety. We evaluate the effectiveness of our approach using an urban
air delivery dataset.
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Part V

Final Remarks
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Chapter 15

Summary & Future Directions

This dissertation advances the rapidly evolving field of autonomous AI technologies, which
are increasingly being integrated into societal systems where multiple autonomous agents and
humans interact strategically under uncertainty, dynamic environments, resource constraints,
and limited information. Addressing these challenges requires not only the development
of novel paradigms for efficient, real-time learning in multi-agent environments but also
developing mechanisms that ensure socially efficient, equitable, and safe outcomes.

To this end, this dissertation advocates for a new systems-theoretic paradigm that syn-
thesizes concepts from machine learning and AI for algorithmic decision-making, optimiza-
tion and statistics for performance guarantees, and game theory and mechanism design for
modeling and shaping strategic interactions.

Structured in four parts, the dissertation develops new theory and algorithms for the
design, analysis, and regulation of dynamic multi-agent autonomous systems for societal
transformation. It discusses several applications spanning from mobility to autonomous
high-performance robotics. Looking forward, several promising research directions emerge by
leveraging ideas from different parts. These directions present not only technical challenges
but also opportunities to influence how autonomous systems are engineered, deployed, and
governed in real-world societal contexts.

Future Directions
Below, I highlight a subset of open research directions that emerge out of the ideas discussed
in this dissertation:

Dynamic Coalition Formation and Information Sharing: Building on the theoretical
and algorithmic frameworks introduced in Part I, which explores interactions among multi-
ple autonomous agents in dynamic environments, future work could focus on frameworks for
dynamic collaborations among agents to improve individual and collective outcomes. Re-
cent studies, such as those examining collaborations between strategic EV charging stations
[220], demonstrate that poorly designed collaborations can lead to unintended consequences
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for both individuals and society. Thus, it is crucial to develop a principled theory of dynamic
coalition formation and information sharing, with an emphasis on understanding when and
how agents should collaborate under asymmetric information. This is particularly important
in applications such as vehicle platooning, distributed energy markets, and robotic swarms
for humanitarian assistance and disaster response, where efficient and equitable team forma-
tion is vital.

Integration of Dynamic and Resource-Constrained Multi-Agent Learning: Re-
call that Parts I and II focus on multi-agent learning in dynamic and resource-constrained
(or congested) environments, respectively. An important next step is to combine these
insights to design and analyze decentralized algorithms that operate in environments char-
acterized by both dynamic transitions and resource constraints or congestion effects. Such
interactions are central to the development of navigation algorithms for transportation net-
works and other critical infrastructure.

High-Speed, High-Stakes Multi-Agent Planning and Control: Inspired by the re-
sults in Chapter 3, another promising direction is the extension of multi-agent planning and
control algorithms to high-speed, high-stakes robotic applications, such as multi-drone rac-
ing, pursuit-evasion under limited information, and space robotics. These domains require
algorithms that can operate under strict time constraints and adversarial interactions, while
coordinating multiple physical agents in uncertain environments. Progress in this area will
help bridge the gap between high-level AI reasoning and low-level robotic control, unlocking
the potential for safe and intelligent robotic autonomy in complex, real-world settings.

Characterizing Convergence and Designing Adaptive Incentive Mechanisms: In
Part I (Chapters 4-5), this dissertation characterizes the set of convergent policies when
agents employ decentralized actor-critic algorithms. Building on this, future work should in-
vestigate convergence properties when agents use heterogeneous algorithms (e.g., Q-learning,
policy gradients). Furthermore, as discussed in Part III, interactions among learning agents
can sometimes yield socially inefficient, inequitable and unsafe outcomes. Another key chal-
lenge is to develop adaptive incentive mechanisms that align agent behavior with societal
objectives in dynamic environments. These mechanisms must be privacy-preserving, robust
to un-modeled system dynamics, and provide guarantees not only on long-run equilibria but
also on transient dynamics, especially in systems with non-myopic or non-stationary agents.
Applications include real-time pricing in traffic and logistics networks and coordination of
autonomous service providers in urban environments.

Market Mechanisms for Advanced Air Mobility: While Part IV focuses on the de-
sign of market mechanisms for advanced air mobility that ensure strategic (network-level)
deconfliction between UAV fleets, future research must also address tactical (low-level) de-
confliction between individual robots. This involves enabling robots to dynamically negotiate
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trajectories, even as conditions change mid-flight. Additionally, future work should develop
airspace allocation mechanisms that are both efficient and fair across competing UAV ser-
vice providers, who may privately manage different airspaces. This direction aligns with
NASA’s Sky for All initiative and underscores the need for scalable, socially aligned market
mechanisms in urban air traffic management.

Concluding Words
This dissertation lays the methodological foundation for engineering autonomous systems
that reconcile individual decision-making with broader societal objectives. By unifying in-
sights from artificial intelligence, systems theory, and economics, the proposed frameworks
address key challenges in multi-agent learning, coordination, and governance. The research
directions outlined—from high-speed robotic control to adaptive market design—offer a road
map for building autonomous technologies that are both effective and responsible within
complex socio-technical systems.

While substantial theoretical and technical challenges remain, the opportunity to shape
a future in which autonomous technologies enhance human life is immense. This endeavor
extends beyond purely academic inquiry—it is a societal imperative to design and deploy
autonomous systems that can be responsibly integrated into diverse real-world multi-agent
domains.
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[72] Sébastien Bubeck, Yuanzhi Li, Haipeng Luo, and Chen-Yu Wei. “Improved path-
length regret bounds for bandits”. In: Conference On Learning Theory. PMLR. 2019,
pp. 508–528.

[73] Swapna Buccapatnam, Jian Tan, and Li Zhang. “Information sharing in distributed
stochastic bandits”. In: 2015 IEEE Conference on Computer Communications (IN-
FOCOM). IEEE. 2015, pp. 2605–2613.

https://doi.org/https://doi.org/10.1016/j.trc.2009.09.006
https://doi.org/https://doi.org/10.1016/j.trc.2009.09.006
https://www.sciencedirect.com/science/article/pii/S0968090X09001399
https://www.sciencedirect.com/science/article/pii/S0968090X09001399
https://api.semanticscholar.org/CorpusID:218487458
https://api.semanticscholar.org/CorpusID:218487458


BIBLIOGRAPHY 272

[74] Eric Budish. “The Combinatorial Assignment Problem: Approximate Competitive
Equilibrium from Equal Incomes”. In: Journal of Political Economy 119.6 (2011),
pp. 1061–1103. issn: 00223808, 1537534X. url: http://www.jstor.org/stable/
10.1086/664613 (visited on 10/07/2024).

[75] Eric Budish, Ruiquan Gao, Abraham Othman, Aviad Rubinstein, and Qianfan Zhang.
“Practical algorithms and experimentally validated incentives for equilibrium-based
fair division (A-CEEI)”. In: Proceedings of the 24th ACM Conference on Economics
and Computation. EC ’23. London, United Kingdom: Association for Computing Ma-
chinery, 2023, pp. 337–368. isbn: 9798400701047. doi: 10.1145/3580507.3597809.
url: https://doi.org/10.1145/3580507.3597809.

[76] Alexander Buyval, Aidar Gabdulin, Ruslan Mustafin, and Ilya Shimchik. “Deriving
overtaking strategy from nonlinear model predictive control for a race car”. In: 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE.
2017, pp. 2623–2628.

[77] Dan Calderone and S Shankar Sastry. “Markov Decision Process Routing Games”.
In: Proceedings of the 8th International Conference on Cyber-Physical Systems. 2017,
pp. 273–279.

[78] Dan Calderone and Shankar Sastry. “Infinite-horizon Average-cost Markov Decision
Process Routing Games”. In: 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC). IEEE. 2017, pp. 1–6.

[79] Joaquin Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence.
Dataset Shift in Machine Learning. The MIT Press, 2009. isbn: 0262170051.

[80] Ozan Candogan, Asuman Ozdaglar, and Pablo A Parrilo. “Dynamics in near-potential
games”. In: Games and Economic Behavior 82 (2013), pp. 66–90.

[81] Ozan Candogan, Asuman Ozdaglar, and Pablo A Parrilo. “Near-potential games:
Geometry and dynamics”. In: ACM Transactions on Economics and Computation
(TEAC) 1.2 (2013), pp. 1–32.

[82] Alan Carlin and R. E. Park. “Marginal Cost Pricing of Airport Runway Capacity”.
In: The American Economic Review 60.3 (1970), pp. 310–319. issn: 00028282. url:
http://www.jstor.org/stable/1817981 (visited on 01/03/2024).
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[87] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge
university press, 2006.

[88] Mithun Chakraborty, Kai Yee Phoebe Chua, Sanmay Das, and Brendan Juba. “Co-
ordinated Versus Decentralized Exploration In Multi-Agent Multi-Armed Bandits.”
In: IJCAI. 2017, pp. 164–170.

[89] Siddharth Chandak, Ilai Bistritz, and Nicholas Bambos. “Learning to Control Un-
known Strongly Monotone Games”. In: arXiv preprint arXiv:2407.00575 (2024).

[90] Lesi Chen, Jing Xu, and Jingzhao Zhang. “On Bilevel Optimization without Lower-
level Strong Convexity”. In: arXiv preprint arXiv:2301.00712 (2023).

[91] P. Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. “ZOO: Zeroth-
Order Optimization-based Black-box Attacks to Deep Neural Networks Without Train-
ing Substitute Models”. In: Proceedings of the 10th ACM Workshop on Artificial In-
telligence and Security (2017).

[92] Yilan Chen, Daniel E Ochoa, Jason R Marden, and Jorge I Poveda. “High-Order
Decentralized Pricing Dynamics for Congestion Games: Harnessing Coordination to
Achieve Acceleration”. In: 2023 American Control Conference (ACC). IEEE. 2023,
pp. 1086–1091.

[93] Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. “Learning to optimize under
non-stationarity”. In: (2019), pp. 1079–1087.

[94] Christopher Chin, Karthik Gopalakrishnan, Hamsa Balakrishnan, Maxim Egorov, and
Antony Evans. “Protocol-Based Congestion Management for Advanced Air Mobility”.
In: Journal of Air Transportation 31.1 (2023), pp. 35–44.

[95] Christopher Chin, Karthik Gopalakrishnan, Maxim Egorov, Antony Evans, and Hamsa
Balakrishnan. “Efficiency and Fairness in Unmanned Air Traffic Flow Management”.
In: IEEE Transactions on Intelligent Transportation Systems 22.9 (2021), pp. 5939–
5951. doi: 10.1109/TITS.2020.3048356.

[96] Christopher Chin, Victor Qin, Karthik Gopalakrishnan, and Hamsa Balakrishnan.
“Traffic management protocols for advanced air mobility”. In: Frontiers in Aerospace
Engineering 2 (2023), p. 1176969.

[97] Chih-Yuan Chiu, Chinmay Maheshwari, Pan-Yang Su, and Shankar Sastry. “Dynamic
Tolling in Arc-based Traffic Assignment Models”. In: 2023 59th Annual Allerton Con-
ference on Communication, Control, and Computing (Allerton). IEEE. 2023, pp. 1–
8.

[98] Simon Clark. “The Uniqueness of Stable Matchings”. In: Contributions to Theoretical
Economics 6 (Feb. 2006), pp. 1283–1283. doi: 10.2202/1534-5971.1283.

https://doi.org/10.1109/TITS.2020.3048356
https://doi.org/10.2202/1534-5971.1283


BIBLIOGRAPHY 274

[99] Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1990.
[100] Simon Le Cleac’h, Mac Schwager, and Zachary Manchester. “Algames: A fast solver

for constrained dynamic games”. In: arXiv preprint arXiv:1910.09713 (2019).
[101] Adam P Cohen, Susan A Shaheen, and Emily M Farrar. “Urban air mobility: History,

ecosystem, market potential, and challenges”. In: IEEE Transactions on Intelligent
Transportation Systems 22.9 (2021), pp. 6074–6087.

[102] Riccardo Colini-Baldeschi, Roberto Cominetti, Panayotis Mertikopoulos, and Marco
Scarsini. “When is selfish routing bad? The price of anarchy in light and heavy traffic”.
In: Operations Research 68.2 (2020), pp. 411–434.

[103] Roberto Cominetti, Valerio Dose, and Marco Scarsini. “The price of anarchy in routing
games as a function of the demand”. In: Mathematical Programming (2021), pp. 1–28.

[104] Roberto Cominetti, Francisco Facchinei, and Jean B Lasserre. Modern Optimization
Modeling Techniques. Springer Science & Business Media, 2012.

[105] Roberto Cominetti, Emerson Melo, and Sylvain Sorin. “A payoff-based learning pro-
cedure and its application to traffic games”. In: Games and Economic Behavior 70.1
(2010), pp. 71–83.

[106] Giacomo Como and Rosario Maggistro. “Distributed Dynamic Pricing of Multiscale
Transportation Networks”. In: IEEE Transactions on Automatic Control (2021).

[107] Lauren Craik and Hamsa Balakrishnan. “Equity impacts of the London congestion
charging scheme: an empirical evaluation using synthetic control methods”. In: Trans-
portation research record 2677.5 (2023), pp. 1017–1029.

[108] Peter Cramton, Yoav Shoham, and Richard Steinberg. “Introduction to combinatorial
auctions”. In: Combinatorial auctions (2006), pp. 1–14.

[109] Peter C Cramton, Yoav Shoham, Richard Steinberg, and Vernon L Smith. Combina-
torial auctions. Vol. 1. 0. MIT press Cambridge, 2006.

[110] Qiwen Cui, Maryam Fazel, and Simon S Du. “Learning Optimal Tax Design in
Nonatomic Congestion Games”. In: arXiv preprint arXiv:2402.07437 (2024).

[111] Qiwen Cui, Zhihan Xiong, Maryam Fazel, and Simon S Du. “Learning in congestion
games with bandit feedback”. In: Advances in Neural Information Processing Systems
35 (2022), pp. 11009–11022.

[112] Stella Dafermos. “Sensitivity analysis in variational inequalities”. In: Mathematics of
Operations Research 13.3 (1988), pp. 421–434.

[113] Carlos F Daganzo. “A pareto optimum congestion reduction scheme”. In: Transporta-
tion Research Part B: Methodological 29.2 (1995), pp. 139–154.

[114] Carlos F Daganzo and Yosef Sheffi. “On Stochastic Models of Traffic Assignment”.
In: Transportation science 11.3 (1977), pp. 253–274.



BIBLIOGRAPHY 275

[115] Xiaowu Dai and Michael I Jordan. “Learning strategies in decentralized matching
markets under uncertain preferences”. In: Journal of Machine Learning Research
22.260 (2021), pp. 1–50.

[116] Sanmay Das and Emir Kamenica. “Two-Sided Bandits and the Dating Market.” In:
IJCAI. Vol. 5. Citeseer. 2005, p. 19.

[117] Constantinos Daskalakis, Dylan J Foster, and Noah Golowich. “Independent policy
gradient methods for competitive reinforcement learning”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 5527–5540.

[118] P DeCorla-Souza. “Income-Based Equity Impacts of Congestion Pricing”. In: Federal
Highway administration (2008).

[119] Lydia Depillis, Rebecca Lieberman, and Crista Chapman. How the costs of car own-
ership add up. 2023. url: https://www.nytimes.com/interactive/2023/10/07/
business/car-ownership-costs.html.

[120] Robert B. Dial. “A Probabilistic Multipath Traffic Assignment Model which Obviates
Path Enumeration”. In: Transportation Research 5.2 (1971), pp. 83–111. issn: 0041-
1647.

[121] Dongsheng Ding, Chen-Yu Wei, Kaiqing Zhang, and Mihailo Jovanovic. “Indepen-
dent policy gradient for large-scale Markov potential games: Sharper rates, function
approximation, and game-agnostic convergence”. In: International Conference on Ma-
chine Learning. PMLR. 2022, pp. 5166–5220.

[122] Aasheesh Kumar Dixit, Garima Shakya, Suresh Kumar Jakhar, and Swaprava Nath.
“Algorithmic mechanism design for egalitarian and congestion-aware airport slot al-
location”. In: Transportation Research Part E: Logistics and Transportation Review
169 (2023), p. 102971. issn: 1366-5545. doi: https://doi.org/10.1016/j.tre.
2022.102971. url: https://www.sciencedirect.com/science/article/pii/
S1366554522003489.

[123] Nico Dogterom, Dick Ettema, and Martin Dijst. “Tradable credits for managing car
travel: a review of empirical research and relevant behavioural approaches”. In: Trans-
port Reviews 37.3 (2017), pp. 322–343.

[124] Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhiwei Steven
Wu. “Strategic classification from revealed preferences”. In: Proceedings of the 2018
ACM Conference on Economics and Computation. EC ’18. Ithaca, NY, USA: Asso-
ciation for Computing Machinery, 2018, pp. 55–70. isbn: 9781450358293. doi: 10.
1145/3219166.3219193. url: https://doi.org/10.1145/3219166.3219193.

[125] Ulrich Doraszelski and Juan F Escobar. “A theory of regular Markov perfect equilibria
in dynamic stochastic games: Genericity, stability, and purification”. In: Theoretical
Economics 5.3 (2010), pp. 369–402.

[126] Dmitriy Drusvyatskiy and Lin Xiao. “Stochastic optimization with decision-dependent
distributions”. In: arXiv (2020). eprint: 2011.11173 (math.OC).

https://www.nytimes.com/interactive/2023/10/07/business/car-ownership-costs.html
https://www.nytimes.com/interactive/2023/10/07/business/car-ownership-costs.html
https://doi.org/https://doi.org/10.1016/j.tre.2022.102971
https://doi.org/https://doi.org/10.1016/j.tre.2022.102971
https://www.sciencedirect.com/science/article/pii/S1366554522003489
https://www.sciencedirect.com/science/article/pii/S1366554522003489
https://doi.org/10.1145/3219166.3219193
https://doi.org/10.1145/3219166.3219193
https://doi.org/10.1145/3219166.3219193
2011.11173


BIBLIOGRAPHY 276

[127] Maxim Egorov, Vanessa Kuroda, and Peter Sachs. “Encounter aware flight planning
in the unmanned airspace”. In: 2019 Integrated Communications, Navigation and
Surveillance Conference (ICNS). IEEE. 2019, pp. 1–15.

[128] Joakim Ekström, Leonid Engelson, and Clas Rydergren. “Heuristic algorithms for a
second-best congestion pricing problem”. In: NETNOMICS: Economic Research and
Electronic Networking 10 (2009), pp. 85–102.

[129] Jonas Eliasson. “Road pricing with limited information and heterogeneous users: A
successful case”. In: The annals of regional science 35 (2001), pp. 595–604.
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[153] Aurélien Garivier and Eric Moulines. “On upper-confidence bound policies for switch-
ing bandit problems”. In: (2011), pp. 174–188.



BIBLIOGRAPHY 278
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Appendix A

Appendix for Chapter 2

Here, we provide additional material supplementing the content of Chapter 2.

A.1 Proofs in Section 2.3

Proof of Proposition 2.3.1
Let Φ be a potential function of MPG G. Using Definition 2.3.1, it suffices to show Φ ∈ FG .
First, we claim that for every s ∈ S, π, π′ ∈ Π,

|Φ(s, π)−Φ(s, π′)| ⩽
N∑
i=1
|Vi(s, π̃(i))− Vi(s, π̃(i+1))|, (A.1)

where for any i ∈ I, π̃(i) = (π′
1, π′

2, ..π′
i−1, πi, πi+1, ...,πN ) with the understanding that

π̃(1) = π and π̃(N+1) = π′. To prove this claim, note that

|Φ(s, π)−Φ(s, π′)| =
∣∣∣∣∣
N∑
i=1

Φ(s, π̃(i))−Φ(s, π̃(i+1))

∣∣∣∣∣
⩽

N∑
i=1

∣∣∣Vi(s, π̃(i))− Vi(s, π̃(i+1))
∣∣∣,

which follows from Definition 2.3.1 as π̃(i) and π̃(i+1) only differ at player i’s policy. By
(A.1), for any s ∈ S, π, π′ ∈ Π,

|Φ(s, π)−Φ(s, π′)| ⩽ 2N max
i∈I
∥Vi∥∞ ⩽

2N
1− γ max

i∈I
∥ui∥∞.

We note without loss of generality, minπ∈Π Φ(s, π) = 0 for every s ∈ S (cf. Definition 2.3.1).
Therefore,

∥Φ∥∞ ⩽
2N

1− γ max
i∈I
∥ui∥∞.
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To show that Φ lies in a uniformly equicontinuous set FG , we next show that Φ is
uniformly continuous. Note that for each s ∈ S and i ∈ IN , Vi(s, ·) : Π→ R is a continuous
function [440, Lemma 2.10]. Given that Π is compact and |S| < ∞, for every ϵ > 0
there exists δ̄(ϵ) > 0 such that max

i∈IN ,s∈S
|Vi(s, π) − Vi(s, π′)| ⩽ ϵ/N for any π, π′ ∈ Π

satisfying d(π, π′) ⩽ δ̄(ϵ). Consequently, from (A.1), we conclude that for any ϵ > 0,
|Φ(s, π)−Φ(s, π′)| ⩽ ϵ for any π, π′ ∈ Π satisfying d(π, π′) ⩽ δ̄(ϵ).

Proof of Proposition 2.3.2
The proof of Proposition 2.3.2 relies on the following lemma.

Lemma A.1.1. If there exists some ζ > 0 such that for all s, s′ ∈ S, |P (s′|s,w) −
P (s′|s,w′)| ⩽ ζ∥w−w′∥1. Then for any i ∈ I, πi, π′

i ∈ Πi, π−i ∈ Π−i,

∥P πi,π−i − P π
′
i,π−i∥∞ ⩽ 2ζ|S| max

ai∈Ai

|ai|/N . (A.2)

Proof. For any i ∈ I, π ∈ Π, π′
i ∈ Πi, and s, s′ ∈ S,

P πi,π−i(s′|s)− P π
′
i,π−i(s′|s)

= Ea−i∼π−i
ai∼πi

[
P (s′|s,w(ai, a−i))− P (s′|s,w(ai, a−i))

]
⩽ Ea−i∼π−i

[
P (s′|s,w(āi, a−i))− P (s′|s,w(ai, a−i))

]
, (A.3)

where the first equation is due to the structure of transition function,

āi ∈ arg maxai∈Ai
P (s′|s,w(ai, a−i)),

and
ai ∈ arg minai∈Ai

P (s′|s,w(ai, a−i)).
By (A.3) and the Lipschitz property of the transition matrix in Lemma A.1.1,

∑
s′∈S
|P πi,π−i(s′|s)− P π

′
i,π−i(s′|s)|

(a)
=

ζ|S|
N

E
a−i∼π−i

∑
e∈E
|1(e ∈ āi)− 1(e ∈ ai)|


=

2ζ|S|maxai∈Ai
|ai|

N
, ∀ s ∈ S,

where (a) follows by (2.6).
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Proof of Proposition 2.3.2

Recall that for any s ∈ S, the stage game is a potential game with a potential function

φ(s, a) = 1/N
∑
e∈E

we(a)N∑
j=1

ce (s, j/N) .

Under this notation, we can equivalently write (2.7) as

Ψ(s, π) = φ(s, π) + γ
∑
s′∈S

P π(s′|s)Ψ(s′, π). (A.4)

For the rest of the proof, fix arbitrary πi, π′
i ∈ Πi, π−i ∈ Π−i and denote π = (πi, π−i),

π′ = (π′
i, π−i). By (A.4),

Ψ(s, π)−Ψ(s, π′) = φ(s, π)− φ(s, π′) + γ
∑
s′∈S

(
P π(s′|s)Ψ(s′, π)− P π

′
(s′|s)Ψ(s′, π′)

)
.

(A.5)

Additionally, recall that Vi(s, π) = ui(s, π) + γ
∑
s′∈S P

π(s′|s)Vi(s′, π). Consequently,

Vi(s, π)− Vi(s, π′) = ui(s, π)− ui(s, π′) + γ
∑
s′∈S

(
P π(s′|s)Vi(s′, π)− P π

′
(s′|s)Vi(s′, π′)

)
.

(A.6)

Subtracting (A.5) from (A.6), we obtain

Vi(s, π)− Vi(s, π′)−
(

Ψ(s, π)−Ψ(s, π′)
)

=γ
∑
s′∈S

P π(s′|s)
(
Vi(s

′, π)−Ψ(s′, π)
)
− γ

∑
s′∈S

P π
′
(s′|s)

(
Vi(s

′, π′)−Ψ(s′, π′)
)

=γ
∑
s′∈S

P π(s′|s)
(
Vi(s

′, π)− Vi(s′, π′) + Ψ(s′, π′)−Ψ(s′, π)
)

− γ
∑
s′∈S

(
P π

′
(s′|s)− P π(s′|s)

) (
Vi(s

′, π′)−Ψ(s′, π′)
)

.

Thus,

max
s∈S
|Vi(s, π)− Vi(s, π′)− (Ψ(s, π)−Ψ(s, π′))| (A.7)

⩽ γmax
s∈S
|Vi(s, π)− Vi(s, π′)−

(
Ψ(s, π)−Ψ(s, π′)

)
|

+ γmax
s′∈S
|Ψ(s′, π)− Vi(s′, π)|max

s∈S

∑
s′∈S

∣∣∣P π(s′|s)− P π
′
(s′|s)

∣∣∣ .
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Rearranging terms leads to

(A.7) ⩽ γ

1− γ max
s′∈S
|Ψ(s′, π)− Vi(s′, π)|∥P π − P π

′
∥∞

⩽
2γζ|S|maxai∈Ai

|ai|
(1− γ)N max

s′∈S
|Ψ(s′, π)− Vi(s′, π)|. (A.8)

where the last inequality follows from Lemma A.1.1. Finally, since

ui(s
k, ak) =

∑
e∈E

ce(s
k,wke )1(e ∈ aki ) ⩽

∑
e∈E

ce(s
k,wke )

⩽ φ(sk, ak),

then for any s′ ∈ S,

|Ψ(s′, π)− Vi(s′, π)| ⩽ E

 ∞∑
k=0

γk
∣∣∣φ(sk, ak)− ui(sk, ak)∣∣∣


⩽

∣∣∣∣∣∣E
 ∞∑
k=0

γkφ(sk, ak)
∣∣∣∣∣∣ ⩽ sup

s,π
Ψ(s, π).

Plugging the above inequality into (A.8) finishes the proof.

Proof of Proposition 2.3.3
Throughout the proof, let us fix arbitrary i ∈ I, πi, π′

i ∈ Πi, π−i ∈ Π−i, and define π =
(πi, π−i), π′ = (π′

i, π−i). We show that for every i ∈ I, πi, π′
i ∈ Πi, π−i ∈ Π−i,

max
s∈S
|Vi(s, π)− Vi(s, π′)− (Ψ(s, π)−Ψ(s, π′))| ⩽ 2κ

(1− γ)2 ,

where Ψ(s, π) := Eπ

[∑∞
k=0 γ

kr(sk, ak)|s0 = s
]
. Note that

Ψ(s, π) = r(s, π) + γ
∑
s′∈S

P π(s′|s)Ψ(s′, π). (A.9)

By (A.9), for any s ∈ S,

Ψ(s, π)−Ψ(s, π′) = r(s, π)− r(s, π′)

+ γ
∑
s′∈S

(
P π(s′|s)Ψ(s′, π)− P π

′
(s′|s)Ψ(s′, π′)

)
. (A.10)

Similarly, for any s ∈ S,

Vi(s, π)− Vi(s, π′) = ui(s, π)− ui(s, π′)

+ γ
∑
s′∈S

P π(s′|s)Vi(s′, π)− P π
′
(s′|s)Vi(s′, π′). (A.11)
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Consequently,

Vi(s, π)− Vi(s, π′)−
(

Ψ(s, π)−Ψ(s, π′)
)

=ui(s, π)− ui(s, π′)−
(
r(s, π)− r(s, π′)

)
− γ

∑
s′∈S

(
P π

′
(s′|s)− P π(s′|s)

) (
Vi(s

′, π′)−Ψ(s′, π′)
)

+ γ
∑
s′∈S

P π(s′|s)
(
Vi(s

′, π)− Vi(s′, π′) + Ψ(s′, π′)−Ψ(s′, π)
)

.

Since |ui(s, π)− ui(s, π′)− (r(s, π)− r(s, π′))| ⩽ 2∥ξi∥∞ ⩽ 2κ, then

max
s∈S
|Vi(s, π)− Vi(s, π′)−

(
Ψ(s, π)−Ψ(s, π′)

)
| (A.12)

⩽2κ+ 2γmax
s′∈S
|Ψ(s′, π)− Vi(s′, π)|

+ γmax
s∈S
|Vi(s, π)− Vi(s, π′)−

(
Ψ(s, π)−Ψ(s, π′)

)
|.

Rearranging terms in above inequality, we obtain

(A.12) ⩽ 2κ
1− γ +

2γ
1− γ max

s′∈S
|Ψ(s′, π)− Vi(s′, π)|. (A.13)

Finally, note that |Ψ(s′, π)− Vi(s′, π)| =
∣∣∣∑∞

k=0 γ
kξi(s, π(sk))

∣∣∣ ⩽ κ/(1− γ). Plugging this
inequality into (A.13) completes the proof.

A.2 Proofs in Section 2.4

Proof of Proposition 2.4.1
To prove Proposition 2.4.1, we first need the following lemma.

Lemma A.2.1 (Lemma B.1 in [440]). Fix i ∈ I and K ∈ N. For any s ∈ S and ω =(
s̃k, ãk

)K
k=0

∈ (S × A)K+1, the mapping Π ∋ π 7→ Eπ

[
1

(
(sk, ak)Kk=0 = ω

)
| s0 = s

]
is

continuous.

Proof of Proposition 2.4.1

Fix ϵ > 0 and defineM := N maxi∈I ∥ui∥∞. ChooseK ∈N large enough that γK ·M
1−γ < ϵ

4 and
ϵ̃ := (1−γ)ϵ

2M |S|K+1|A|K+1 . Since Π is compact and S×A is finite, Lemma A.2.1 ensures that there
exists δ(ϵ) such that for any π, π′ ∈ Π with d(π, π′) ⩽ δ(ϵ), and ω ∈ (S ×A)K+1, s ∈ S,∣∣∣∣∣Eπ

[
1

(
(sk, ak)Kk=0 = ω

)
| s0 = s

]
−Eπ′

[
1

(
(sk, ak)Kk=0 = ω

)
| s0 = s

] ∣∣∣∣∣ ⩽ ϵ̃. (A.14)
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From (2.8), we note that for any Ψ ∈ F̃G , there exists ϕ : S ×A → R such that for any
π, π′ ∈ Π, s ∈ S,∣∣∣Ψ(s, π)−Ψ(s, π′)

∣∣∣
⩽

∣∣∣∣∣∣Eπ

 K∑
k=0

γkϕ
(
sk, ak

)
| s0 = s

−Eπ′

 K∑
k=0

γkϕ
(
sk, ak

)
| s0 = s

 ∣∣∣∣∣∣+ ϵ

2. (A.15)

Define a function φ : (S ×A)K+1 → R such that for every
(
s̃k, ãk

)K
k=0
∈ (S ×A)K+1,

φ
(
s̃0, ã0, · · · , s̃K , ãK

)
:=

K∑
k=0

γkϕ
(
s̃k, ãk

)
.

Thus, for any π ∈ Π,

Eπ

 K∑
k=0

γkϕ
(
sk, ak

)
| s0 = s


=

∑
ω∈(S×A)K+1

φ(ω)Eπ

[
1

((
sk, ak

)K
t=0

= ω
) ∣∣∣∣∣s0 = s

]
,

Thus, by applying the above equation and (A.14) to (A.15), we obtain that for any s ∈
S, π, π′ ∈ Π satisfying d(π, π′) ⩽ δ(ϵ),∣∣∣Ψ(s, π)−Ψ(s, π′)

∣∣∣ ⩽ ∥φ∥∞|S|K+1|A|K+1ϵ̃+
ϵ

2

⩽
M |S|K+1|A|K+1ϵ̃

1− γ +
ϵ

2 ⩽ ϵ.

Since we chose arbitrary Ψ ∈ F̃G , and δ is independent of the choice of Ψ, then F̃G is
equi-continuous. Thus, F̃G ⊆ FG .

Proof of Lemma 2.5.2
To prove Lemma 2.5.2, we define πi∼j := {πk}j−1

k=i+1 as the joint policy for players from i+ 1
to j − 1; π<i := {πk}i−1

k=1, and π>j := {πk}Nk=j+1 are defined similarly. Next, we recall a
useful result from [121].
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Lemma A.2.2 (Lemma 2 in [121]). For any function f : Π → R, and any two policies
π, π′ ∈ Π,

f(π′)− f(π) =
N∑
i=1

(
f(π′

i, π−i)− f(π)
)

+
N∑
i=1

N∑
j=i+1

(
f(π<i,i∼j , π′

>j , π′
i, π′

j)− f(π<i,i∼j , π′
>j , πi, π′

j)

− f(π<i,i∼j , π′
>j , π′

i, πj) + f(π<i,i∼j , π′
>j , πi, πj)

)
. (A.16)

Next, we state a result that lower bounds the improvement in value function of each
player in each step of Algorithm 1.

Lemma A.2.3. Consider a Markov game G with initial state distribution ν, let π(t+1) and
π(t) be consecutive policies in Algorithm 1. Then we have,

(i)Vi(ν, π(t+1))− Vi(ν, π(t)) ⩾ −4η2Ā2N2

(1− γ)5 +
1

2η(1− γ)

·
∑

i∈I,s∈S
d
π
(t+1)
i ,π(t)−i
ν (s)

∥∥∥∥π(t+1)
i (s)− π(t)i (s)

∥∥∥∥2
;

(ii)Vi(ν, π(t+1))− Vi(ν, π(t)) ⩾ 1
2η(1− γ)

(
1− 4ηκ3

νĀN

(1− γ)4

)

·
N∑
i=1

∑
s∈S

d
π
(t+1)
i ,π(t)−i
ν (s)

∥∥∥∥π(t+1)
i (s)− π(t)i (s)

∥∥∥∥2
.

Proof. This result directly follows from [121, Lemma 3]. Specifically, the proof of [121,
Lemma 3] is established by lower-bounding the difference Φ(ν, π(t+1)) − Φ(ν, π(t)) for a
Markov potential game with potential function Φ. At its core, the proof relies on the key
property of Markov potential games, which allows the difference in potential functions to be
expressed as the difference in value functions for each player. The remainder of the proof
focuses on lower-bounding the difference in value functions at each step of the policy update
process in Algorithm 1, which is precisely what we require. We omit details due to space
constraints.

Proof of Lemma 2.5.2

For ease of exposition, let π′ = π(t+1) and π = π(t). By Definition 2.2.2, |Vi(ν, π′
i, π−i)−

Vi(ν, πi, π−i)− (Φ(ν, π′
i, π−i)−Φ(ν, πi, π−i))| ⩽ α for any ν, i ∈ I, πi, π′

i ∈ Πi and π−i ∈
Π−i. Apply Lemma A.2.2 with f(·) = Vi(ν, ·)−Φ(ν, ·) respectively. Since each term in
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(A.16) only differs in one player’s policy, we obtain

|Vi(ν, π′)− Vi(ν, π)− (Φ(ν, π′)−Φ(ν, π′))|

⩽
N∑
i=1

α+
N∑
i=1

N∑
j=i+1

α ⩽ N2α.

The proof follows by the above inequality and Lemma A.2.3.

Proofs in Section 2.5

Proof of Lemma 2.5.3
Fix arbitrary i ∈ I,µ ∈ ∆(S), πi, π′

i ∈ Πi, π−i ∈ Π−i. We define π = (πi, π−i), π′ =
(π′
i, π−i) ∈ Π. Note that

Ṽi(µ, π)− Ṽi(µ, π′)

= Eπ

[ ∞∑
k=0

γk
(
ui(s

k, ak)− τ
∑
j∈I

νj(s
k, πj)− Ṽi(sk, π′) + Ṽi(s

k, π′)

)]
− Ṽi(µ, π′)

= Eπ

[ ∞∑
k=0

γk
(
ui(s

k, ak)− τ
∑
j∈I

νj(s
k, πj)− Ṽi(sk, π′)

)]
+ Eπ

 ∞∑
k=1

γkṼi(s
k, π′)

 . (A.17)

Note that

Eπ

[ ∞∑
k=1

γkṼi(s
k, π′)

]
= γEπ

 ∞∑
k=0

γkṼi(s
k+1, π′)

 .

Therefore,

(A.17) = Eπ

[ ∞∑
k=0

γk
(
ui
(
sk, ak

)
− τ

∑
j∈IN

νj
(
sk, πj

)
− Ṽi

(
sk, π′

)
+ γṼi

(
sk+1, π′

) )]

= Eπ

[ ∞∑
k=0

γk
(
ui(s

k, ak)− τ
∑
j∈I

νj(s
k, π′

j)+γ
∑
s′∈S

P (s′|sk, ak)Ṽi(s′, π′)− Ṽi(sk, π′)

+ τ
∑
j∈I

νj(s
k, π′

j)− τ
∑
j∈I

νj(s
k, πj)

)]

= Eπi

[ ∞∑
k=0

γk
(
Q̃π

′
i (s

k, aki )− Ṽi(sk, π′) + τ
∑
j∈I

νj(s
k, π′

j)− τ
∑
j∈I

νj(s
k, πj)

)]
.

(A.18)
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We can continue the above calculations by noting that π′
j = πj for all j ̸= i and Ṽi(s′, π′) =

π′
i(s

′)⊤Q̃π′
i (s

′),

(A.18)= 1
1− γ

∑
s′∈S

dπµ(s
′)
(
πi(s

′)− π′
i(s

′)
)⊤

Q̃π′
i (s

′) + τνi(s
′, π′

i)− τνi(s′, πi)
)

.

Proof of Lemma 2.5.4
From the definition of smoothed infinite horizon utility (2.16), we note that for every i ∈
I, πi ∈ Πi, π−i ∈ Π−i, s ∈ S,

Ṽi(s, πi, π−i) = Vi(s, πi, π−i)− τEπ

 ∞∑
k=0

γk
∑
j∈I

νj(s
k, πj)|s0 = s

 . (A.19)

Using (A.19), it holds that for any µ ∈ ∆(S) and π ∈ Π,

|Ṽi(µ, π)− Vi(µ, π)| = τ

∣∣∣∣∣∣Eµ,π

 ∞∑
k=0

γk
∑
j∈I

νj(s
k, πj)

∣∣∣∣∣∣
⩽
τN maxs,πi νi(s, πi)

1− γ =
τN log(Ā)

1− γ . (A.20)

The desired result follows from triangle inequality and (A.20).

Proof of Lemma 2.5.5
The proof of Lemma 2.5.5 requires the following technical lemmas.

Lemma A.2.4. If G is a Markov α-potential game with Φ as its α-potential function, then
for any s ∈ S, i ∈ I, π′

i, πi ∈ Πi, π−i ∈ Π−i,
∣∣∣∣(Ψ̃(s, π′

i, π−i)− Ψ̃ (s, πi, π−i))− (Ṽi(s, π′
i, π−i)−

Ṽi(s, πi, π−i))
∣∣∣∣ ⩽ α, where

Ψ̃(s, π) := Φ(s, π)− τEπ[
∑
j∈I

∞∑
k=0

γkνj(s
k, πj) | s0 = s].

Proof. To ease the notation, for function f : S×Π→ R, we write f(s, ·) as fs(·). By (A.19)
and the definition of Ψ̃ in Lemma 2.5.5, we have for all s ∈ S, i ∈ I, π′

i, πi ∈ Πi, π−i ∈ Π−i,

|Ψ̃s(π′
i, π−i)− Ψ̃s(πi, π−i)− (Ṽ s

i (π
′
i, π−i)− Ṽ s

i (πi, π−i))|
=|Φs(π′

i, π−i)−Φs(πi, π−i)− (V s
i (π

′
i, π−i)− V s

i (πi, π−i))|,

which is bounded by α using Definition 2.2.3.
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Lemma A.2.5. For any i ∈ I, s ∈ S, π′
i ∈ Πi, t ∈ [T ], it hold that

∑
ai∈Ai

Q̃
(t)
i (s, ai)

(
BR(t)

i (ai|s)− π′
i(ai|s)

)

⩾ τ
∑
ai∈Ai

log
(

BR(t)
i (ai|s)

)(
BR(t)

i (ai|s)− π′
i(ai|s)

)
.

Proof. Fix arbitrary i ∈ I, s ∈ S, and t ∈ [T ]. Next, note that the optimization problem in
(2.18) is a strongly concave optimization problem. By the first order conditions of constrained
optimality, for all π′

i ∈ Πi,(
Q̃(t)
i (s)− τ∇πi(s)νi(s, BR(t)

i (s))
)⊤

(BR(t)
i (s)− π′

i(s)) ⩾ 0.

Note that ∇πi(ai|s)νi(s, πi) = 1 + log(πi(ai|s)) for every ai ∈ Ai. Therefore, for every
π′
i ∈ Πi,

∑
ai∈Ai

Q̃
(t)
i (s, ai)

(
BR(t)

i (ai|s)− π′
i(ai|s)

)

⩾ τ
∑
ai∈Ai

(
1 + log

(
BR(t)

i (ai|s)
))(

BR(t)
i (ai|s)− π′

i(ai|s)
)

.

The result follows by noting that ∑ai∈Ai
BR(t)

i (ai|s) =
∑
ai∈Ai

π′
i(ai|s) = 1.

Lemma A.2.6. For any i ∈ I, s ∈ S, πi, π′
i ∈ Πi,

νi(s, πi)− νi(s, π′
i) ⩾

1
2∥πi(s)− π

′
i(s)∥2 +

∑
ai∈Ai

(
log(π′

i(ai|s))
) (
πi(ai|s)− π′

i(ai|s)
)

.

Proof. Fix arbitrary i ∈ I, s ∈ S. To prove the lemma, we first claim that the mapping
∆(Ai) ∋ π 7→ νi(s, π) is 1-strongly convex. This can be observed by computing the Hessian,
which is a RAi×Ai diagonal matrix with (ai, ai) entry as 1/π(ai|s). Since π(ai|s) ⩽ 1, it
follows that the diagonal entries of the Hessian matrix are all greater than 1. Thus, νi(s, ·)
is 1-strongly convex function. The result follows by noting that for any κ-strongly convex
function f ,

f(y) ⩾ f(x) +∇f(x)⊤(y− x) + κ

2∥y− x∥
2.

Lemma A.2.7. For any i ∈ I, t ∈ [T ], a ∈ Aī(t), there exists 0 ⩽ t∗ ⩽ t such that

τ | log(π(t)
ī(t)

(a|s̄(t)))| ⩽ 2∥Q̃(t∗)

ī(t)
(s̄(t))∥∞ + τ log(|Aī(t) |).
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Proof. Recall that in Algorithm 2, at any time step t ∈ [T ], player ī(t) updates her policy at
time t+ 1 in the state s̄(t), while policies for other players and other states remain unchanged.
Fix arbitrary t ∈ [T ]. Let 0 ⩽ t∗ ⩽ t be the latest time step when player ī(t) updated its
policy in state s̄(t) before time t. Note that t∗ = 0 if t is the first time when player ī(t) is
updating its policy in state s̄(t). Naturally, ī(t) = ī(t

∗) and s̄(t) = s̄(t
∗). Consequently, for

every a ∈ Aī(t) ,

π
(t)

ī(t)
(a|s̄(t)) = BR(t∗)

ī(t)
(a|s̄(t)) =

exp(Q̃(t∗)

ī(t)
(s̄(t), a))∑

a′∈A
ī(t)

exp(Q̃(t∗)

ī(t)
(s̄(t), a′))

.

Consequently, for every a ∈ Aī(t) ,

π
(t)

ī(t)
(a|s̄(t)) ⩾

exp(Q̃(t∗)

ī(t)
(s̄(t), a)/τ )

|Aī(t) | exp(Q̃(t∗)

ī(t)
(s̄(t), ā)/τ )

=
1
|Aī(t) |

exp
((
Q̃

(t∗)

ī(t)
(s̄(t), a)− Q̃(t∗)

ī(t)
(s̄(t), ā)

)
/τ
)

,

with ā ∈ arg max
a∈A

ī(t)

Q̃
(t∗)

ī(t)
(s̄(t), a) and a ∈ arg min

a∈A
ī(t)

Q̃
(t∗)

ī(t)
(s̄(t), a). Since π(t)

ī(t)
(a|s̄(t)) ⩽ 1, it follows

that for every a ∈ Aī(t) ,

| log(π(t)
ī(t)

(a|s̄(t)))|

⩽ log(|Aī(t) |) +
1
τ

(
Q̃

(t∗)

ī(t)
(s̄(t), ā)− Q̃(t∗)

ī(t)
(s̄(t), a)

)
⩽ log(|Aī(t) |) +

2
τ
∥Q̃(t∗)

ī(t)
(s̄(t))∥∞.

Lemma A.2.8. For any t ∈ [T ], i ∈ I, s ∈ S, it holds that ∥Q̃(t)
i (s)∥∞ ⩽ C 1+τN log(Ā)

1−γ ,
where C := maxi∈I ∥ui∥∞.

Proof. First, we note that for any s ∈ S, π ∈ Π,

|Ṽi(s, π)| ⩽ Eπ

 ∞∑
k=0

γk|ui(sk, ak)− τ
∑
j∈IN

νj(s
k, πj)|


⩽ Eπ

 ∞∑
k=0

γk
(
|ui(sk, ak)|+ τN log(Ā)

)
⩽ C

1 + τN log(Ā)
(1− γ) .
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By (2.17), we note that for every i ∈ I, s ∈ S, ai ∈ Ai,

|Q̃(t)
i (s, ai)| ⩽ E

a−i∼π−i

[
|ui(s, ai, a−i)− τ

∑
j∈IN

νj(s, πj)|+ γ
∑
s′∈S

P (s′|s, ai, a−i)
∣∣∣Ṽi(s′, π)

∣∣∣]

⩽ C E
a−i∼π−i

(1 + τN log(Ā))
(

1 + γ

1− γ

).

Proof of Lemma 2.5.5

(1) Fix t ∈ [T ]. To ease the notation, let π′
∗ := π

(t+1)
ī(t)

, π∗ := π
(t)

ī(t)
, π−∗ := π

(t)

−ī(t) , ν∗ := νī(t) ,
Q∗ denote Q̃(t)

ī(t)
, Q∗ denote Q̃(t)

ī(t)
. Note that by (2.19) and (2.21),

Ω(t)

ī(t)
(s̄(t)) =

∑
a∈A

ī(t)

(
π′

∗(a|s̄(t))− π∗(a|s̄(t))
)
Q∗(s̄

(t), a) + τν∗(s̄
(t), π∗)− τν∗(s̄

(t), π′
∗)

⩽
∑

a∈A
ī(t)

(
π′

∗(a|s̄(t))− π∗(a|s̄(t))
)
Q∗(s̄

(t), a)

+ τ
∑

a∈A
ī(t)

log(π∗(a|s̄(t)))
(
π∗(a|s̄(t))− π′

∗(a|s̄(t))
)

⩽
∑

a∈A
ī(t)

(∣∣∣∣π′
∗(a|s̄(t))− π′

∗(a|s̄(t))
∣∣∣∣ · ∣∣∣∣Q∗(s̄

(t), a)− τ log(π∗(a|s̄(t)))
∣∣∣∣
)

, (A.21)

where the first inequality follows from convexity of νi(s, ·). By Cauchy-Schwarz inequality
and noting that max

i∈I
|Ai| ⩽ Ā,

(A.21)⩽
√
Ā max
a∈A

ī(t)

∣∣∣∣Q∗(s̄
(t), a)− τ log(π∗(a|s̄(t)))

∣∣∣∣ ∥∥∥π′
∗(s̄

(t))− π∗(s̄
(t))

∥∥∥
2

⩽
√
Ā

 max
a∈A

ī(t)

∣∣∣∣Q∗(s̄
(t), a)

∣∣∣∣+ max
a∈A

ī(t)

τ
∣∣∣∣ log(π∗(a|s̄(t)))

∣∣∣∣
 ∥∥∥π′

∗(s̄
(t))− π∗(s̄

(t))
∥∥∥

2
.

Note that Lemma A.2.7 implies that there exists t̂ ⩽ t such that

max
a∈A

ī(t)

τ

∣∣∣∣∣ log(π∗(a|s̄(t)))
∣∣∣∣∣ ⩽ 2∥Q̃(t̂)

ī(t)
(s̄(t))∥∞ + τ log(Ā).

Consequently, it follows that

Ω(t)

ī(t)
(s̄(t)) ⩽

√
Ā
(
∥Q∗(s̄

(t))∥∞ + 2∥Q̃(t̂)

ī(t)
(s̄(t))∥∞ + τ log(Ā)

)
·
∥∥∥π′

∗(s̄
(t))− π∗(s̄

(t))
∥∥∥

2

⩽4C 1 + τN log(Ā)
1− γ

√
Ā
∥∥∥π′

∗(s̄
(t))− π∗(s̄

(t))
∥∥∥

2
,
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where the last inequality follows from Lemma A.2.8. This concludes the proof for Lemma
2.5.5 1).
(2) Here, we show that

T−1∑
t=1
∥π′

∗(s̄
(t))− π∗(s̄

(t))∥22 ⩽
2
τ µ̄

(
Ψ̃(µ, π(T ))− Ψ̃(µ, π(0)) + αT

)
.

To see this, note that for any t ∈ [T ],

Ψ̃(µ, π(t+1))− Ψ̃(µ, π(t)) = Ψ̃(µ, π′
∗, π−∗)− Ψ̃(µ, π∗, π−∗)

(i)
⩾ Ṽī(t)(µ, π′

∗, π−∗)− Ṽī(t)(µ, π∗, π−∗)− α
(ii)
=

1
1− γ

∑
s∈S

dπ
′
∗,π−∗
µ (s)

((
π′

∗(s)− π∗(s)
)⊤

Q∗(s) + τν∗(s, π∗)− τν∗(s, π′
∗)

)
− α

(iii)
=

1
1− γ d

π′
∗,π−∗
µ (s̄(t))

(
(π′

∗(s̄
(t))− π∗(s̄

(t))⊤) ·Q∗(s̄
(t)) + τν∗(s̄

(t), π∗)− τν∗(s̄
(t), π′

∗)

)
− α,

(A.22)

where (i) follows from Lemma A.2.4, (ii) follows from Lemma 2.5.3, and (iii) holds because
π′

∗(s) = π∗(s) for all s ̸= s̄(t). Next, from Algorithm 2, note that π′
∗(s̄

(t)) = BR(t)

ī(t)
(s̄(t)).

Consequently, using Lemma A.2.5, we obtain

(A.22)

⩾
τd

π′
∗,π−∗
µ (s̄(t))

1− γ

(
log(π′

∗(s̄
(t)))⊤ ·

(
π′

∗(s̄
(t))− π∗(s̄

(t))
)
+ ν∗(s̄

(t), π∗)− ν∗(s̄
(t), π′

∗)
)
− α.

(A.23)

Furthermore, using Lemma A.2.6, we obtain

(A.23)⩾ τ

2(1− γ)d
π′

∗,π′
−∗(s̄

(t))
µ ∥π′

∗(s̄
(t))− π∗(s̄

(t))∥22 − α

(a)
⩾

τ µ̄

2 ∥π
′
∗(s̄

(t))− π∗(s̄
(t))∥22 − α,

where (a) follows from d
π
(t+1)
i ,π(t)−i
µ (s̄(t)) ⩾ (1− γ)µ̄. Summing the above inequality over all

t ∈ [T ] yields:

Ψ̃(µ, π(T ))− Ψ̃(µ, π(0)) =
∑
t∈[T ]

Ψ̃(µ, π(t+1))− Ψ̃(µ, π(t))

⩾
τ µ̄

2
∑
t∈[T ]
∥π′

∗(s̄
(t))− π∗(s̄

(t))∥22 − αT .
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Finally to conclude Lemma 2.5.5 2), note that∑
t∈[T ]
∥π′

∗(s̄
(t))− π∗(s̄

(t))∥22

⩽
2
τ µ̄

(
Ψ̃(µ, π(T ))− Ψ̃(µ, π(0)) + αT

)
⩽

2
τ µ̄

(
|Φ(µ, π(T ))−Φ(µ, π(0))|+ 2τN log(Ā)

1− γ + αT

)
,

where the last inequality follows by noting that for any π, π′ ∈ Π and any µ ∈ ∆(S),

|Ψ̃(µ, π)− Ψ̃(µ, π′)| ⩽
∣∣∣Φ(µ, π)−Φ(µ, π′)

∣∣∣
+ τ

∣∣∣∣∣∣Eπ

[ ∑
j∈I
t∈N

γtνj(s
t, πj)

]∣∣∣∣∣∣+ τ

∣∣∣∣∣∣Eπ′

[ ∑
j∈I
t∈N

γtνj(s
t, πj)

]∣∣∣∣∣∣
⩽ |Φ(µ, π)−Φ(µ, π′)|+ 2τ N log(Ā)

1− γ .

A.3 Algorithms to solve semi-infinite linear
programming

In this section, we present an algorithm based on the stochastic gradient method from [402]
to solve the semi-infinite linear programming problem (2.10). Denote C := Nmax

i∈I
∥ui∥∞ and

define

g(ϕ, y; π, π′) = max
max

i∈I

∣∣∣∣ ∑
s′,a′

(ds(s′, a′; πi, π−i)− ds(s′, a′; π′
i, π−i))(ϕ− ui)(s′, a′)

∣∣∣∣− y,

max
s∈S,a∈A

|ϕ(s, a)| −C
,

(A.24)
which ensures that constraint (C1) in (2.10) can be rewritten as g(ϕ, y; π, π′) ⩽ 0, ∀π, π′ ∈ Π.
Let h : R→ R be a convex differentiable function such that

h(x) = 0 for all x ⩽ 0, and h(x) > 0 for all x > 0.
A candidate choice of h is h(x) = (max{0,x})2. Finally, we consider step-size schedules
{ηt}∞t=1 and {βt}∞t=1 such that

lim
t→∞

βt =∞,
∞∑
t=1

η2
t β

2
t <∞,

∞∑
t=1

ηt =∞, and ηt > 0, βt < βt+1 for all t ⩾ 0. (A.25)

Theorem 4 in [402] shows that with probability 1, (y(t),ϕ(t)) almost surely converges to a
solution of (2.10).
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Algorithm 14 Algorithm to solve (2.10) [402]

Input: y(0) ∈ R+,ϕ(0) ∈ RS×A, {ηt}∞t=1 and {βt}∞t=1 satisfying (A.25).
for t = 0, 1, 2, ...,T − 1 do

Sample π, π′ in Π from uniform distribution and calculate g(ϕ(t), y(t); π, π′) in (A.24).
Update ϕ(t) with

ϕ(t+1) = ϕ(t)−ηt+1βt+1h
′
(
g
(
ϕ(t), y(t); π, π′

))
· ∇ϕg

(
ϕ(t), y(t); π, π′

)
, (A.26)

and update y(t) with

y(t+1) = y(t) − ηt+1

(
1 + βt+1h

′
(
g
(
ϕ(t), y(t); π, π′

))
· ∇yg

(
ϕ(t), y(t); π, π′

))
.

end for

Figure A.1: Find the game elasticity parameter α for MCG using Algorithm 14. (ϕ(0) = ϕ∗,
ηt =

1
t , βt = t0.4999, ∀t ⩾ 1.)

State-wise potential games. Algorithm 14 iteratively updates the variables y ∈ R and
ϕ ∈ RS×A. However, this method may be slow as the dimension of ϕ scales with |S| · |A|.
For MCGs, where each state is a static potential game, one can utilize the game structure
to accelerate the convergence of algorithm.

For an MCG Gmcg, there exists a function ϕ∗ : S ×A→ R such that for every i ∈ I, s ∈
S, ai, a′

i ∈ Ai, a−i ∈ A−i, |ϕ∗(s, ai, a−i)− ϕ∗(s, a′
i, a−i)− (ui(s, ai, a−i)− ui(s, a′

i, a−i))| = 0.
Then one can input ϕ(0) = ϕ∗ and omit the update of ϕ(t) in (A.26) in Algorithm (14).
Figure A.1 shows the empirical performance of Algorithm 14 for the Markov congestion
game. Note that with the setting in Section 2.6, y(t) converges to 0, which suggests that
Gmcg may be an MPG, at least for some model parameters.
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Appendix B

Appendix for Chapter 3

Here, we provide additional material supplementing the content of Chapter 3.

B.1 Description of Single-agent Racing Line
Race drivers follow a racing line for specific maneuvers. This line can be used as a reference
path by the motion planner to assign time-optimal trajectories while avoiding collision. The
racing line is minimum-time or minimum-curvature. They are similar, but the minimum-
curvature path additionally allows the highest cornering speeds given the maximum legiti-
mate lateral acceleration [177].

There are many proposed solutions to finding the optimal racing line, including nonlinear
optimization [352, 177], genetic algorithm-based search [413] and Bayesian optimization
[190]. However, for our work, we calculate the minimum-curvature optimal line, which
is close to the optimal racing line as proposed by [177]. The race track is represented by
a sequence of tuples (xi,yi,wi), i ∈ {0, ...,N − 1}, where (xi,yi) denotes the coordinate of
the center location and wi denotes the lane width at the i-th point. The output racing
line consists of a tuple of seven variables: coordinates x and y, longitudinal displacement s,
longitudinal velocity vx, acceleration ax, heading angle ψ, and curvature κ. It is obtained
by minimizing the following cost:

min
η1...ηN

N−1∑
n=0

κ2
i (n)

s.t. ηi ∈
[
−wi2 +

wveh
2 , wi2 −

wveh
2

] (B.1)

where the vehicle width is wveh, and ηi is the lateral displacement with respect to the
reference center line.

To create a velocity profile, we need to consider the vehicle’s constraints on both longi-
tudinal and lateral acceleration [177]. Our approach involves generating a library of velocity
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Figure B.1: Track and the starting position regions

profiles, each tailored to specific lateral acceleration limits determined by the friction co-
efficients for the front (µf ) and rear (µr) tires, as well as the vehicle’s mass (m) and the
gravitational constant (g). In particular, we produce a set of velocity profiles covering a range
of maximum lateral forces corresponding to the friction µeff within the interval [µmin,µmax].
This library allows us to retrieve a velocity profile that matches a given value of µ. Interpo-
lation is necessary when we encounter a friction value that falls within the valid range but
is not explicitly present in the library.

An example of a racing line calculated for the racetrack used in our numerical study in
Section 3.3 is shown in Figure B.1.

B.2 Dynamic Bicycle Model
For any car i, we denote its mass by mi, its moment of inertia in the vertical direction about
the center of mass by Iiz, the distance between the center of mass (COM) and its front wheel
by lif , and the distance from the COM to the rear wheel lir. Also, κit denotes the inverse
of radius of curvature of the track at pix,t. Using these notations, the dynamics of car i is
defined below:

pix,t+1

piy,t+1

ϕit+1

ṽix,t+1

ṽiy,t+1

ωit+1


=



pix,t

piy,t

ϕit

vix,t

viy,t

ωit


+ ∆t



vix,t

viy,t

ωit −
κi

t

(1−κi
tp

i
y,t)

(ṽix,t cos(ϕit)− ṽiy,t sin(ϕit))
1
mi (F

i
r,x,t − F if ,y,t sin(δit) +miṽiy,tω

i
t)

1
mi (F

i
r,y,t + F if ,y,t cos(δit)−miṽix,tω

i
t)

1
Ii

z
(F if ,y,tl

i
f cos(δit)− F ir,y,tl

i
r)


, (B.2)
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where (i) vix,t =
1

(1−κi
tp

i
y,t)

(ṽix,t cos(ϕit)− ṽiy,t sin(ϕit)), viy,t = ṽix,t sin(ϕit) + ṽiy,t cos(ϕit) are the
velocities in frenet frame; (ii) ṽix,t, ṽiy,t are velocities in body frame; (iii) F ir,x,t = (C1 −
C2ṽix,t)d

i
t − C3 − C4(ṽix,t)

2 is the longitudinal force on the rear tire at time t. Here, C1
and C2 are parameters that govern the longitudinal force generated on the car in response
to the throttle command, while C3 and C4 are parameters that account for the friction
and drag forces acting on the car; (iv) F if ,y,t = Df sin(Cf tan−1(Bfα

i
f ,t)) is the lateral

force on the front tire depending on the slipping angle αif ,t, which is given by αif ,t = δit −

tan−1
(
ωi

tlf+ṽ
i
y,t

ṽi
x,t

)
. Here Bf ,Cf ,Df are the parameters of Pacejka tire model; and (v) F ir,y,t =

Di
r sin(Cir tan−1(Bi

rα
i
r,t)) is the lateral force on the rear tire depending on the slipping angle

αir,t, which is given by αir,t = tan−1
(
ωi

tlr−ṽi
y,t

ṽi
x,t

)
. Here Bi

r,Cir,Di
r are the parameters of

Pacejka tire model.

B.3 Hyperparameters

Network architecture
We use a simple feed-forward deep neural network with ReLU activation except for the last
layer to represent the value function and the potential function. The network for value
function consists of 3 hidden layers with (128, 128, 64) hidden features on each layer. The
network for potential function consists of 3 hidden layers with (384, 384, 192) hidden features
on each layer.

Training
We use a learning rate of 0.0001 and train for 50000 epochs (both value functions and
potential function). Each race consists of 500 time steps with ∆t = 0.1s, hence 50s race.

B.4 Self-play RL training
We use standard PPO training parameters as available in stable baselines3 with batch size
1024, number of epochs 5, learning rate 0.0005, γ = 0.99 and 8 environments in parallel. The
observation used is the same as the joint state input used for our work for fair comparison.
The reward design used is also the same as the utility used in our work. We train for 100K
time-steps for each iteration of self-play RL where we switch agents for training for total of
99 times i.e. 33 cycles of training for 3 agents
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B.5 Iterated Best Response (IBR) hyperparameters
We use 6 iterations for iterated best response with the same utility as the one used in our
work and with horizon length of 2s with 20 time-steps of length ∆t = 0.1s. The solve time
with the following parameters is 0.1s which is comparable to the compute time required by
our algorithm.
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Appendix C

Appendix for Chapter 4

This chapter is organized as follows. In Section C.1 we review the theory of two-timescale
asynchronous stochastic approximation from [337]. In Section C.2 we present the proofs of
technical lemmas presented in Section 4.2.

C.1 Review of Two-timescale asynchronous stochastic
approximation

In this section we review the results from [337] on the theory of two-timescale asynchronous
stochastic approximation. Note that we do not state their results in full generality but only
to the extent necessary for this chapter.

Let {xt}∞t=1, {yt}∞t=1 be the stochastic approximation updates. Let xt ∈ RX , yt ∈ RY

for all t ∈ {1, 2, ..}. Let X̄ ⊂ [X ] (resp. Ȳ ⊂ [Y ]) be the elements of x update (resp. y
update) that have positive probability of being updated in the asynchronous update process.
At iterate t, let X̄t ⊂ X̄ and Ȳ t ⊂ Ȳ be the elements that are updated. Let

ñt(i) =
t∑

p=1
1(i ∈ X̄p), nt(j) =

t∑
p=1

1(j ∈ Ȳ p),

for every i ∈ [X ] and j ∈ [Y ]. Consider the following asynchronous stochastic approximation
updates indexed by t ∈ {1, 2, ..}

xt(i) ∈ xt−1(i) + αi(ñ
t(i))1(i ∈ X̄t)[F (i;xt−1, yt−1) + M̃ t(i) + dt(i)], ∀ i ∈ [X ]

yt(j) ∈ yt−1(j) + βj(n
t(j))1(j ∈ Ȳ t)[G(j;xt−1, yt−1) +M t(j) + et(j)], ∀ j ∈ [Y ],

(C.1)

where

(i) for any x ∈ RX , y ∈ RY , F (x, y) = (F (i;x, y))i∈[X ] ⊂ RX and

G(x, y) = (G(j;x, y))j∈[Y ] ⊂ RY

are set-valued maps;
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(ii) {M̃ t = (M̃ t(i))i∈[X ]}, {M t = (M t(j))j∈[Y ]} be martingale difference processes defined
on RX , RY respectively;

(iii) {dt = (dt(i))i∈RX , et = (et(j))j∈RY } are asymptotically negligible error terms;

(iv) For every i ∈ [X ], j ∈ [Y ], {αi(n)}∞n=0, {βj(n)}∞n=0 are the step sizes;

(v) x0 ∈ RX , y0 ∈ RY are initialized at some values.

For every t ∈ {1, 2, ...}, define

ᾱt = max
i∈X̄t

αi(ñ
t(i)), µt(i) =

αi(ñ
t(i))

ᾱt
1(i ∈ X̄t)

β̄t = max
j∈Ȳ t

βj(ñ
t(j)), σt(j) =

βj(ñ
t(j))

β̄t
1(j ∈ Ȳ t)

D̃t = diag([µt(1),µt(2), ...,µt(X)]),
Dt = diag([σt(1),σt(2), ...,σt(Y )]).

Using these notations we can concisely write (C.1) as

xt ∈ xt−1 + ᾱtD̃t
(
F (xt−1, yt−1) + M̃ t + dt

)
yt ∈ yt−1 + β̄tDt

(
G(xt−1, yt−1) +M t + et

)
.

(C.2)

We now state some assumption that are crucial to study the asymptotic property of the
stochastic approximation (C.2). First, we introduce some important notations. Define H̄ ⊂
X̄ × Ȳ such that if i ∈ X̄, j ∈ Ȳ then (i, j) ∈ H̄ if and only if i, j have positive probability
of occurring simultaneously. At iterate t, H̄t ∈ H̄ be the updated component in [X ]× [Y ].
Furthermore zt = (xt, yt) be the joint update. Let

F t = σ({H̄m}m, {zm}m, {ñm(i)}, {nm(j)}} ∀ m ⩽ t, i ∈ [X ], j ∈ [Y ])

be sigma-algebra containing all information upto iterate t. For any positive integer K and a
positive scalar η, define Ωη

K = {diag(ω(1), ...,ω(K)) : ω(i) ∈ [η, 1] ∀i = 1, 2, ..,K}.
Next, we present the assumptions required in [337] to study the asymptotic behavior of

two-timescale asynchronous stochastic approximation update (C.1).
Assumption C.1.1. Let the following assumptions hold

(A1) For compact sets S̃ ⊂ RX ,S ⊂ RY , xt ∈ S̃, yt ∈ S for all t ∈ {0, 1, ...}.

(A2) {dt}, {et} are bounded sequence such that limt→∞ dt = limt→∞ et = 0.

(A3) Following must be true for the stepsizes:

(i) For every i ∈ [X ], j ∈ [Y ], ∑n αi(n) = ∞,∑n βj(n) = ∞, limn→∞ αi(n) =
limn→∞ βj(n) = 0 and {αi(n)}, {βj(n)} are non-increasing sequences.
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(ii) For any λ ∈ (0, 1), i ∈ [X ] and j ∈ [Y ] it holds that supn αi([λn])/αi(n) < Aλ <
∞, supn βj([λn])/βj(n) < Aλ <∞.

(iii) For every i ∈ [X ], j ∈ [Y ] it holds that limn→∞ βj(n)/αi(n) = 0.
(iv) For every i, i′ ∈ [X ], j, j′ ∈ [Y ], there exists 0 < ξαii′ < ζαii′ < ∞, and 0 < ξβjj′ <

ζβjj′ <∞ such that αi(n)
αi′ (n)

∈ [ξαii′ , ζαii′ ] and βj(n)
βj′ (n)

∈ [ξβjj′ , ζ
β
jj′ ] for all n.

(A4) The maps F (·, ·),G(·, ·) are such that

(i) F : S̃ × S ⇒ S is upper semi-continuous, for every z ∈ S̃ × S, F (z) is non-
empty, compact, convex subset of S, and supt∈F (z) ∥t∥ ⩽ c(1 + ∥z∥) where c is a
constant independent of z.

(ii) G : S̃ × S ⇒ S̃ is upper semi-continuous. G(x, ·) is non-empty, convex and
compact and satisfy supt∈G(x,y) ∥t∥ ⩽ c(1+ ∥y∥) where c is a constant independent
of x, y.

(A5) (i) for all z ∈ S̃ × S and ht−1,ht ∈ H̄,

P
(
H̄t = ht|F t−1

)
= P(H̄t = ht|H̄t−1 = ht−1, zt−1 = z)

(ii) For any z ∈ S̃ × S the transition probability

P(z;ht,ht−1) := P(H̄t = ht|H̄t−1 = ht−1, zt−1 = z) (C.3)

form aperiodic and irreducible Markov chain over H̄ and for every i ∈ X and
j ∈ Y there exists h,h′ ∈ H̄ such that i ∈ h and j ∈ h′.

(iii) the map z 7→ P(z;ht,ht−1) is Lipschitz.

(A6) For some q ⩾ 2, ∑n αi(n)
1+q/2 <∞ and supt E

[
∥M̃ t∥q

]
<∞ for every i ∈ [X ]. For

some q′ ⩾ 2, ∑n βj(n)
1+q′/2 <∞ and supt E [∥M t∥q] <∞ for every j ∈ [Y ].

(A7) For all y ∈ S and every ϕ > 0 the differential inclusion

d

dτ
xτ ∈ Ωϕ

X · F (x
τ , y),

has unique global attractor Λ(y), where Λ : RY → RX is bounded, continuous and
single-valued for all y ∈ S.

Theorem C.1.1 (Fast-timescale convergence). [337, Corollary 4.4] Under assumption (A1)-
(A7) in Assumption C.1.1, with probability 1,

(xt, yt)→ {(Λ(y), y) : y ∈ S} as t→∞.
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Next, we present the corresponding convergence results for the slow updates, {yt}. Prior
to that, we define the linearly interpolated trajectory {ȳτ}τ∈R+ defined as

ȳτ̄
t+s = yt + s

yt+1 − yt

β̄t+1 , s ∈ [0, β̄t+1),

where τ̄ t = ∑t
p=0 β̄

t.
Define GΛ : RY → RY as GΛ(y) = G(Λ(y), y). Furthermore, let ḠΛ,η(y) = Ωη

YG
Λ(y),

where η = κ/Aκ for some 0 < κ ⩽ minz∈S̃×S,j∈[Y ] ψz(j), and ψz ∈ ∆(Y ) is the marginal of
the stationary distribution of the Markov chain on H̄ with transition kernel P(z;h,h′) [337,
Lemma A.1, Appendix A.3]. Consider the following differential inclusion

ẏτ ∈ ḠΛ,η(yτ ). (C.4)

Theorem C.1.2 (Slow-timescale convergence). [337, Theorem 4.7] If the conditions (A1)-
(A7) in Assumption C.1.1 are satisfied then {ȳτ}τ∈R+ is an asymptotic pseudo-trajectory to
(C.4).
Remark C.1.1. Note that [337] assume that for every i, i′ ∈ [X ], j, j′ ∈ [Y ] it holds that
αi(·) = αi′(·) and βj(·) = βj′(·). However, they easily generalize under the setting of het-
erogeneous step sizes considered here due to Assumption (A3)-(iv). Indeed, Theorem C.1.1
(resp. Theorem C.1.2) follow similar to [337] if we fix a ĩ ∈ [X ] (resp. j̃ ∈ [Y ]) and bound
the relative evolution of step sizes at fast (resp. slow) timescale i ̸= ĩ (resp. j ̸= j̃ with respect
to ĩ, j̃ using Assumption (A3)-(iv).

C.2 Remaining Proofs
For clear presentation, we define Qi(s, π′

i; π) = π′
i(s)

⊤Qi(s; π). Recall, for any π ∈ Π, θ ∈
(0, 1)|I|, we define π(θ) ∈ Π such that for every s ∈ S, i ∈ I, π(θ)i (s) := (1− θi)πi(s) +
θi(1/|Ai|) · 1Ai

to be a perturbed version of policy π due to exploration parameter θ.

Proof of Lemma 4.2.1
The proof follows by verifying that Assumption C.1.1 (A1)-(A7) are satisfied and then evok-
ing Theorem C.1.1. Towards that goal, we first verify Assumption C.1.1 (A1)-(A7).

Before verifying the conditions for two-timescale asynchronous stochastic approximation
stated in Section C.1, we introduce some notations. For any π ∈ Π, i ∈ I, ai ∈ Ai, s ∈ S, we
define

T πi q̃i(s, ai) := ui(s, ai, π−i) + γ
∑
s′
P (s′|s, ai, π−i)πi(s

′)⊤q̃i(s
′), (C.5)
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which is analogous to Bellman operator in the setup of this chapter. Furthermore, for any
π ∈ Π, we define

T̂ πi q̃i(s, ai) := ui(s, ai, a−i) + γπi(s
′)⊤q̃i(s

′), (C.6)

where a−i ∼ π−i(s) and s′ ∼ P (·|s, ai, π−i). Moreover, for any s ∈ S, i ∈ I, ai ∈ Ai, we
define

b̄ri(s; q) = arg max
π∈∆(Ai)

π⊤qi(s), (C.7)

where for every i ∈ I, s ∈ S, qi(s) ∈ R|Ai|. Using the above notations, we re-write (4.4)-(4.5)
as

q̃ti(s, ai) = q̃t−1
i (s, ai) + αi(ñ

t
i(s, ai))1{(s, ai) = (st−1, at−1

i )} (C.8a)

· (T (πt−1
i ,πt−1,(θ)

−i )
i q̃t−1

i (s, ai)− q̃t−1
i (s, ai) + M̃ t

i (s, ai)), (C.8b)

πti(s) ∈ πt−1
i (s) + βi(n

t(s))1{s = st−1}
(
b̄ri(s; qt−1)− πt−1

i (s)
)

, (C.8c)

for all (s, ai) ∈ S ×Ai, i ∈ I, where

M̃ t
i (s, ai) = T̂

(πt−1
i ,πt−1,(θ)

−i )
i q̃t−1

i (s, ai)−T
(πt−1

i ,πt−1,(θ)
−i )

i q̃t−1
i (s, ai). (C.9)

Note that E[M̃ t
i (s, ai)|F t−1] = 0 where F t−1 = σ({(sm, am)}m, {q̃mi }m, {πmi }m : m ⩽

t− 1, i ∈ I) is the sigma-algebra comprising of history till stage t− 1. Consequently, {M̃ t
i }

is a martingale difference sequence. The updates (C.8a)-(C.8c) are now cast in the same
formulation as in (C.1). The asynchronous q-estimate updates (C.8a) and the policy updates
(C.8c) both have |ΠI

i=1(S ×Ai)| components.
We now verify Assumption C.1.1 (A1)-(A7) one by one

(i) First, we show that (A1) in Assumption C.1.1 is satisfied with (q̃t, πt) update (C.8a)-
(C.8c). Let ū = maxi,s,a |ui(s, a)|. Moreover let R̄ = max{ū/(1− γ), maxi ∥q̃0

i ∥∞}. Then
we claim that ∥q̃ti∥∞ ⩽ R̄ for all t = {0, 1, 2, ..}. We show this by induction. It holds for
t = 0 by construction. Suppose it holds for t = m− 1 for some m then we show that it also
holds for t = m. Indeed, we note from (C.8a) that q̃ti is a convex combination1 of q̃t−1

i and

T (πt−1
i ,πt−1,(θ)

−i )
i q̃t−1

i (s, ai) + M̃ t
i (s, ai). Using (C.6) and (C.9) we see that

∥T (πt−1
i ,πt−1,(θ)

−i )
i q̃t−1

i + M̃ t
i ∥∞

= ∥T̂ (πt−1
i ,πt−1,(θ)

−i )
i q̃t−1

i ∥∞
⩽ ū+ δR̄ ⩽ (1− γ)R̄+ γR̄ = R̄.

1This is because we assume that α(n) ∈ (0, 1) in Assumption 4.2.2.
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This shows that ∥q̃ti∥∞ ⩽ R̄. Moreover note that πt ∈ Π which is product simplex and is
always compact.
(ii) Since we do not have any asymptotically negligible error terms in the asynchronous
updates, AssumptionC.1.1-(A2) is immediately satisfied
(iii) Next we note Assumption C.1.1-(A3) is satisfied due to Assumption 4.2.2.
(iv) Now we show Assumption C.1.1-(A4) is satisfied. First, we concisely write the mean
fields of (C.8a)-(C.8c) as follows

F ((s, ai); q̃, π, θ) := T (πi,π
(θ)
−i )

i q̃i(s, ai)− q̃i(s, ai),
G((s, ai); q̃, π) = b̄ri(s, ai; q)− πi(s, ai),

for every s ∈ S, i ∈ I, ai ∈ Ai. Define F (q̃, π, θ) = (F ((s, ai); q̃, π, θ))s∈S,i∈I,ai∈Ai
,

G(q̃, π) = (G((s, ai); q̃, π))s∈S,i∈I,ai∈Ai
. We note that both F ,G are continuous as de-

manded in Assumption C.1.1-(A4). Furthermore, observe that

∥F (q̃, π, θ)∥∞ ⩽ ∥T (πi,π
(θ)
−i )

i q̃i∥∞ + ∥q̃∥∞
⩽ ū+ δ∥q̃∥∞ + ∥q̃∥∞ ⩽ c̃(1 + ∥q̃∥∞),

where c̃ = max{ū, 1 + δ}. Also note that supw∈G(q̃,π) ∥w∥∞ ⩽ 1 + ∥π∥∞. Thus we conclude
that Assumption C.1.1-(A4) is satisfied.
(v) We now verity Assumption C.1.1-(A5). Consider h,h′ ∈ H̄ such that

h = ((s, a1), (s, a2), ..(s, aI)), h′ = ((s′, a′
1), (s, a′

2), ...(s′, a′
I)).

Moreover, let z = (q̃, π) then,

P(z;h,h′) = P (s′|s, a)
∏
i∈I

π
(θ)
i (s′, a′

i), (C.10)

where a = (ai)i∈I and the function P(z;h,h′) is defined in (C.3). Since θ > 0, all actions
have positive probability of being selected. That is, for every k ∈N we have πt,(θ)i (s, ai) >
θ/|Ai| for all s ∈ S, i ∈ I, ai ∈ Ai. Moreover, we impose Assumption 4.2.1 on transition
matrix which ensures that every state is visited with some non-zero probability. Thus,
Assumption C.1.1(A5)-(i) and C.1.1(A5)-(ii) are satisfied. Finally Assumption C.1.1(A5)-
(iii) is satisfied by noting that (C.10) is Lipschitz in π and therefore in z.
(vi) Assumption C.1.1-(A6) is satisfied by noting that (a) M̃ is a bounded martingale dif-
ference sequence and (b) the step size condition in Assumption 4.2.2-(ii) holds.
(vii) For any ϕ > 0, π ∈ Π consider the differential equation

d

dτ
q̃τi = Ωϕ

Ai

(
T (πi,π

(θ)
−i )

i q̃τi − q̃τi

)
, ∀ i ∈ I, (C.11)
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where Ωϕ
Ai

= {diag(ω(1), ...,ω(|Ai|)) : ω(k) ∈ [ϕ, 1] ∀k = 1, 2, .., |Ai|}. In order to verify
Assumption C.1.1-(A7), we show that (C.11) has unique global attractor for every π ∈ Π.

We show that T πi is a contraction for every π ∈ Π. For any q, q̄,

T πi qi(s, ai)−T πi q̄i(s, ai)
=γ

∑
s′
P (s′|s, ai, π−i)

∑
a′

i∈Ai

πi(s
′, a′

i)
(
qi(s

′, a′
i)− q̄i(s′, a′

i)
)

.

Thus, for every s ∈ S, i ∈ I, ai ∈ Ai, we have |T πi qi(s, ai) − T πi q̄i(s, ai)| ⩽ γ∥qi − q̄i∥∞.
Consequently, ∥T πi qi −T πi q̄i∥∞ ⩽ γ∥qi − q̄i∥∞, and T πi is a contraction mapping.

Consequently, T (πi,π
(θ)
−i )

i is a contraction and (C.11) has a unique global attractor, which

is the fixed point of the mapping T (πi,π
(θ)
−i )

i [60, Chapter 7.4]. Moreover, from the defi-

nition it follows that Qi(·, ·; (πi, π(θ)−i )) is the fixed point of T (πi,π
(θ)
−i )

i . That is, for every

s ∈ S, i ∈ I, ai ∈ Ai, T
(πi,π

(θ)
−i )

i Qi(s, ai; (πi, π(θ)−i )) = Qi(s, ai; (πi, π(θ)−i )). Additionally,
∥Qi(·, ·; (πi, π(θ)−i ))∥∞ ⩽ umax

1−γ , and Qi(·, ·; π) is also continuous in π. Thus, Assumption
C.1.1-(A7) is satisfied. Finally, the claim in Lemma 4.2.1 follows by Theorem C.1.1.

Proof of Lemma 4.2.3
We prove (a)-(d) in sequence
(a) We claim that for any integer K ⩾ 0, µ ∈ γ(S), π ∈ Π, s ∈ S, i ∈ I, ai ∈ Ai,

∂Vi(µ, π)
∂πi(s, ai)

= E

 K∑
k=0

γk1(sk = s)

Qi(s, ai; π) + γK+1E

[
∂Vi(sK+1, π)
∂πi(s, ai)

]
, (C.12)

where s0 ∼ µ, ak−1 ∼ π(sk−1), sk ∼ P (·|sk−1, ak−1). We prove this claim by induction.
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Indeed, this holds for K = 0 by noting that

∂Vi(µ, π)
∂πi(s, ai)

=
∂

∂πi(s, ai)
∑
s̄∈S

µ(s̄)

 ∑
āi∈Ai

πi(s̄, āi)Qi(s̄, āi; π)


=
∂

∂πi(s, ai)

(∑
s̄

µ(s̄)
∑
āi

πi(s̄, āi)
(
ui(s̄, āi, π−i(s̄)) + γ

∑
s′
P (s′|s̄, āi, π−i(s̄))Vi(s

′, π)
))

=µ(s)

(
ui(s, ai, π−i(s)) + γ

∑
s′
P (s′|s, ai, π−i(s))Vi(s

′, π)
)

+ γ
∑
s̄

µ(s̄)
∑
s′
P (s′|s̄, π)∂Vi(s

′, π)
∂πi(s, ai)

=µ(s)Qi(s, ai; π) + γ
∑
s̄

µ(s̄)
∑
s′
P (s′|s̄, π)∂Vi(s

′, π)
∂πi(s, ai)

=E
[
1(s0 = s)

]
Qi(s, ai; π) + γE

[
∂Vi(s1, π)
∂πi(s, ai)

]
We now suppose that the claim holds for some integer K and then show that it holds for

K + 1, that is we have

∂Vi(µ, π)
∂πi(s, ai)

= E

 K∑
k=0

γk1(sk = s)

Qi(s, ai; π) + γK+1E

[
∂Vi(sK+1, π)
∂πi(s, ai)

]

= E

 K∑
k=0

γk1(sk = s)

Qi(s, ai; π) + γK+1E

[
∂

∂πi(s, ai)

(∑
ai

πi(s
K+1, ai)Qi(sK+1, ai; π)

)]

= E

 K∑
k=0

γk1(sk = s)

Qi(s, ai; π)
+ γK+1

1(sK+1 = s) ·Qi(s, ai; π) + γ

∑
s′
P (s′|sK+1, π)∂Vi(s

′, π)
∂πi(s, ai)


= E

K+1∑
k=0

γk1(sk = s)

Qi(s, ai; π) + γK+2E

[
∂Vi(sK+2, π)
∂πi(s, ai)

]
.

This completes the proof of (C.12). Now if we let K →∞ in (C.12) then we obtain

∂Vi(µ, π)
∂πi(s, ai)

= E

 ∞∑
k=0

γk1(sk = s)

Qi(s, ai; π)
=

∑
s0∈S

µ(s0)
∞∑
k=0

Pr(sk = s|s0)Qi(s, ai; π)

=
1

1− γ d
π
µ(s)Qi(s, ai; π).
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(b) For any initial state distribution µ and joint policy π = (πi, π−i), π′ = (π′
i, π−i) ∈ Π,

Vi(µ, π)− Vi(µ, π′)

= E

 ∞∑
k=0

γkui(s
k, ak)

− Vi(µ, π′)

=E

[ ∞∑
k=0

γk
(
ui(s

k, ak)− Vi(sk, π′) + Vi(s
k, π′)

)]
− Vi(µ, π′)

=E

 ∞∑
k=0

γk
(
ui(s

k, ak)− Vi(sk, π′)
)

+ E
[
Vi(s

0, π′)
]
+ E

 ∞∑
k=1

γkVi(s
k, π′)

− Vi(µ, π′),

where s0 ∼ µ, ak−1 ∼ π(sk−1), sk ∼ P (·|sk−1, ak−1). We note that

E
[
Vi(s

0, π′)
]
= Vi(µ, π′),

E

 ∞∑
k=1

γkVi(s
k, π′)

 = γE

 ∞∑
k=0

γkVi(s
k+1, π′)

 .

Therefore,

Vi(µ, π)− Vi(µ, π′)

= E

 ∞∑
k=0

γk
(
ui(s

k, ak)− Vi(sk, π′)
)+ γE

 ∞∑
k=0

γkVi(s
k+1, π′)


= E

[ ∞∑
k=0

γk
(
ui(s

k, ak)− Vi(sk, π′) + γVi(s
k+1, π′)

)]

= E

[ ∞∑
k=0

γk
(
ui(s

k, ak) + γVi(s
k+1, π′)− Vi(sk, π′)

)]

= E

[ ∞∑
k=0

γk
(
ui(s

k, ak) + γ
∑
s′
P (s′|sk, ak)Vi(s′, π′)− Vi(sk, π′)

)]
.
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Thus, we conclude that

Vi(µ, π)− Vi(µ, π′)

= E

[ ∞∑
k=0

γk
(
Qi(s

k, aki ; π′)− Vi(sk, π′)

)]

= E

 ∞∑
k=0

γkΓi(sk, aki ; π′)


=

1
1− γ

∑
s′
dπµ(s

′)Γi(s′, πi; π′).

(c) For every s ∈ S, define γVi(s, π) := Vi(s, πi, π(θ)−i )− Vi(s, πi, π−i). Since Vi(s, πi, π−i) =
ui(s, πi, π−i) + γ

∑
s′∈S P (s

′|s, πi, π−i)Vi(s′, πi, π−i), we note that

γVi(s, π) = ui(s, πi, π(θ)−i )− ui(s, πi, π−i)

+ γ
∑
s′∈S

P (s′|s, πi, π(θ)−i )Vi(s
′, πi, π(θ)−i )

− γ
∑
s′∈S

P (s′|s, πi, π−i)Vi(s
′, πi, π−i)

= ui(s, πi, π(θ)−i )− ui(s, πi, π−i)

+ γ
∑
s′∈S

(
P (s′|s, πi, π(θ)−i )− P (s

′|s, πi, π−i)
)
Vi(s

′, πi, π(θ)−i )

+ γ
∑
s′∈S

P (s′|s, πi, π−i)
(
Vi(s

′, πi, π(θ)−i )− Vi(s
′, πi, π−i)

)
,

where the last equality is obtained by adding and subtracting the term

γ
∑
s′
P (s′|s, π)Vi(s′, πi, π(θ)−i ).

Next, we note that

|γVi(s, π)| ⩽ |ui(s, πi, π(θ)−i )− ui(s, πi, π−i)|

+ γ

∣∣∣∣∣ ∑
s′∈S

(
P (s′|s, πi, π(θ)−i )− P (s

′|s, πi, π−i)
)
Vi(s

′, πi, π(θ)−i )

∣∣∣∣∣
+ γ|γVi(s′, π)|. (C.13)

First, for every s ∈ S, π ∈ Π, we bound the term |ui(s, πi, π(θ)−i )−ui(s, πi, π−i)| in (C.13).
To bound this, we define a notation, for every i ∈ I,

π
(θ[1:k])

−i :=

π
(θ)
j if j ∈ {1, 2, ...k}\{i},
πj otherwise.
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If k = 0 (resp. k = |I|) then π
(θ[1:k])

−i is π−i (resp. π(θ)−i ). Using this notation, we obtain

|ui(s, πi, π(θ)−i )− ui(s, πi, π−i)|

= |
∑

a−i∈A−i

ui(s, πi, a−i)(Prπ
(θ)
−i (a−i|s)− Prπ−i(a−i|s))|

= |
∑

a−i∈A−i

ui(s, πi, a−i)

·

 ∑
k∈I\{i}

(Prπ
(θ[1:k])

−i (a−i|s)− Prπ
(θ[1:k−1])
−i (a−i|s))

 |
⩽ umax

∑
a−i∈A−i

∑
k∈I\{i}

|((1− θk)πk(ak|s)Prπ
(θ[1:k−1])
−ik (a−ik|s)

+ θk
1
|Ak|

Prπ
(θ[1:k−1])
−ik (a−ik|s)− πk(ak|s)Prπ

(θ[1:k−1])
−ik (a−ik|s))|

= umax
∑

a−i∈A−i

∑
k∈I\{i}

|(−θkπk(ak|s)Prπ
(θ[1:k−1])
−ik (a−ik|s)

+ θk
1
|Ak|

Prπ
(θ[1:k−1])
−ik (a−ik|s))|

⩽ umax
∑

k∈I\{i}
θk

∑
a−i∈A−i

Prπ
(θ[1:k−1])
−i (a−i|s)

+ umax
∑

k∈I\{i}
θk

∑
a−i∈A−i

1
|Ak|

Prπ
(θ[1:k−1])
−ik (a−ik|s)

= 2umax
∑

k∈I\{i}
θk, (C.14)

where the last equality is using the fact that Prπ
(θ[1:k−1])
−i (a−i|s) and Prπ

(θ[1:k−1])
−ik (a−ik|s) are

probability distribution on A−i and A−ik respectively.
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Next, we bound the second term in (C.13). Note that∣∣∣∣∣ ∑
s′∈S

(
P (s′|s,πi,π(θ)−i )− P (s

′|s,πi,π−i)
)
Vi(s

′,πi,π(θ)−i )

∣∣∣∣∣
⩽
∑
s′∈S

∣∣∣∣∣ (P (s′|s,πi,π(θ)−i )− P (s
′|s,πi,π−i)

) ∣∣∣∣∣V̄i
⩽
∑
s′∈S

∣∣∣∣∣ ∑
k∈I\{i}

(
P (s′|s,πi,π

(θ[1:k])
−i )− P (s′|s,πi,π

(θ[1:k−1])
−i )

)∣∣∣∣∣V̄i
= V̄i

∑
s′∈S

∣∣∣∣∣ ∑
k∈I\{i}

(
(1− θk)P (s′|s,πi,πk,π

(θ[1:k−1])

−ik )

+ θkP (s
′|s,πi,π◦

k,π
(θ[1:k−1])

−ik )− P (s′|s,πi,πk,π
(θ[1:k−1])

−ik )

)∣∣∣∣∣
= V̄i

∑
s′∈S

∣∣∣∣∣ ∑
k∈I\{i}

(−θkP (s′|s,πi,πk,π
(θ[1:k−1])

−ik )

+ θkP (s
′|s,πi,π◦

k,π
(θ[1:k−1])

−ik ))

∣∣∣∣∣
⩽ 2V̄i

∑
k∈I\{i}

θk, (C.15)

where V̄i = maxs′ |Vi(s′, πi, π(θ)−i )| and the last inequality is using the fact that

P (s′|s, πi, πk, π
(θ[1:k−1])
−ik )

and
P (s′|s, πi, π◦

k, π
(θ[1:k−1])
−ik )

are probability distributions on S.
Combining (C.13), (C.14), and (C.15), we obtain

max
s,π |γVi(s, π)| ⩽

∑
k∈I\{i} θk

1− γ

(
2umax +

2γumax
(1− γ)

)

⩽
2∑k∈I\{i} θk

(1− γ)2 umax.

This concludes the proof.
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(d) For any s ∈ S, i ∈ I, ai ∈ Ai, π ∈ Π, we note that

|Qi(s, ai; πi, π−i)−Qi(s, ai; πi, π(θ)−i )|

⩽ |ui(s, ai, π−i)− ui(s, ai, π(θ)−i )|

+ γ

∣∣∣∣∣∑
s′
P (s′|s, ai, π−i)Vi(s

′; π)

−
∑
s′
P (s′|s, ai, π(θ)−i )Vi(s

′; πi, π(θ)−i )

∣∣∣∣∣
(C.14)
⩽ 2

∑
k∈I\{i}

θkumax + γ

∣∣∣∣∣∑
s′
P (s′|s, ai, π−i)Vi(s

′; π)

−
∑
s′
P (s′|s, ai, π(θ)−i )Vi(s

′; πi, π(θ)−i )

∣∣∣∣∣
⩽ 2

∑
k∈I\{i}

θkumax + γ

∣∣∣∣∣∑
s′
P (s′|s, ai, π−i)

(
Vi(s

′; π)

− Vi(s′; πi, π(θ)−i )
)∣∣∣∣∣+ γ

∣∣∣∣∣∑
s′

(
P (s′|s, ai, π−i)

− P (s′|s, ai, π(θ)−i )
)
Vi(s

′; πi, π(θ)−i )

∣∣∣∣∣
(i)
⩽ 2

∑
k∈I\{i}

θkumax + γ
2∑k∈I\{i} θk

(1− γ)2 umax

+ γ

∣∣∣∣∣∑
s′

(
P (s′|s, ai, π−i)− P (s′|s, ai, π(θ)−i )

)
Vi(s

′; πi, π(θ)−i )

∣∣∣∣∣
(C.15)
⩽ umax

∑
k∈I\{i}

θk

(
2 + γ

2
(1− γ)2 + γ

2
(1− γ)

)

=
2∑k∈I\{i} θk

(1− γ)2 umax,

where (i) is due to Lemma 4.2.3-(c). This completes the proof.

Proof of Corollary 4.2.1
First, we note that for every ϵ̃ > 0, there exists ϵ > 0 such that ϵ+ hϵ = ϵ̃. This claim
follows by noting that Assumption 4.2.3 guarantees that the map ϵ ∈ R+ 7→ ϵ+ hϵ ∈ R+

is continuous function that goes to zero as ϵ approaches 0. Furthermore, since hϵ is non-
decreasing in ϵ, we note that ϵ+ hϵ is increasing in ϵ. Next, we show that every ϵ̃, ϵ̃′ such
that 0 < ϵ̃ < ϵ̃′, there exist positive scalars 0 < ϵ < ϵ′ such that ϵ+ hϵ = ϵ̃ and ϵ′ + hϵ′ = ϵ̃′.
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We show this by contradiction. Suppose for some 0 < ϵ̃ < ϵ̃′ it holds that ϵ+ hϵ = ϵ̃ and
ϵ′ + hϵ′ = ϵ̃′ with ϵ ⩾ ϵ′. This implies that ϵ̃ = ϵ+ hϵ ⩾ ϵ′ + hϵ′ = ϵ̃′, which contradicts the
fact that ϵ̃ < ϵ̃′.

Next, we show that for every ϵ̃ > 0, the sequence of policies {πt}∞t=0 induced by Algorithm
3 converges to the set NE(ϵ̃) with probability 1, if ∑i∈I θi < Lϵ, where ϵ is such that
ϵ + hϵ = ϵ̃. Following the same steps from the proof of Theorem 4.2.1, it is sufficient
to characterize the convergent set of the dynamical system (4.10) in order to study the
asymptotic behavior of the policy updates in Algorithm 3.

From the proof of Lemma 4.2.4, we know that any absolutely continuous trajectory
of (4.10) converges to the set Π∗

ϵ , if ∑i∈I θi < Lϵ. The proof concludes by noting that
Π∗
ϵ ⊆ NE(ϵ+ hϵ) = NE(ϵ̃), due to Assumption 4.2.3.

C.3 Auxiliary Lemma
Lemma C.3.1 ([238]). Consider a Markov potential game G, with potential function Φ.
Then, for every s ∈ S, i ∈ I, ai ∈ Ai, π ∈ Π,

∂Vi(s, π)
∂πi(s, ai)

=
∂Φ(s, π)
∂πi(s, ai)

. (C.16)

Proof. To prove this result, we first show that for every i ∈ I, there exists a function
Ui : S ×Π−i → R such that

Vi(s, π) = Φ(s, π) + Ui(s, π−i), ∀ s ∈ S, π ∈ Π. (C.17)

Fix arbitrary i ∈ I, πi, π′
i, π′′

i ∈ Πi, and π−i ∈ Π−i. By Definition 2.3.1, it holds that, for
every s ∈ S,

Φ(s, πi, π−i)−Φ(s, π′
i, π−i) = Vi(s, πi, π−i)− Vi(s, π′

i, π−i)

Φ(s, πi, π−i)−Φ(s, π′′
i , π−i) = Vi(s, πi, π−i)− Vi(s, π′′

i , π−i).

By re-arranging the terms in the above equation, we have

Vi(s, πi, π−i)−Φ(s, πi, π−i) = Vi(s, π′
i, π−i)−Φ(s, π′

i, π−i)

Vi(s, πi, π−i)−Φ(s, πi, π−i) = Vi(s, π′′
i , π−i)−Φ(s, π′′

i , π−i).
(C.18)

Thus, equating the RHS in the above equation, we obtain that

Vi(s, π′
i, π−i)−Φ(s, π′

i, π−i) = Vi(s, π′′
i , π−i)−Φ(s, π′′

i , π−i).

Since π′′
i , π′

i are arbitrary, we know that for every i ∈ I, s ∈ S, π−i ∈ Π−i, Vi(s, πi, π−i)−
Φ(s, πi, π−i) does not depend on πi. Thus, using (C.18), we conclude that (C.17) holds.

Equation (C.16) follows from taking the derivative with respect to πi(s, ai) on both sides
of (C.17) and noting that Ui(s, π−i) does not depend on πi.
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Lemma C.3.2 (Characterization of Nash equilibrium). A policy π∗ ∈ Π is a Nash equilib-
rium of G if and only if π∗(s) = bri(s; π∗) for all i ∈ I and all s ∈ S.

Proof. We prove the claim in two parts – first, we show that any policy π∗ such that π∗(s) =
bri(s; π∗) is a Nash equilibrium of G. Next, we show the converse.

First, we provide an important characterization of the one-step optimal deviation which
is crucial for the following proof

bri(s; π∗
i , π

∗,(θ)
−i ) = arg max

π̂i∈γ(Ai)
π̂⊤
i Qi(s; π∗

i , π∗
−i)

= arg max
π̂∈γ(Ai)

(
ui(s, π̂i, π∗

−i) (C.19)

+ γ
∑
s′
P (s′|s, π̂i, π∗

−i)Vi(s
′, π∗

i , π∗
−i)

)
. (C.20)

First, we prove that π̃∗ is a Nash equilibrium of G, we need to show that for every
i ∈ I, s ∈ S, π′

i ∈ Πi,

Vi(s, π̃∗
i , π∗

−i) ⩾ Vi(s, π′
i, π∗

−i). (C.21)

Before proving (C.21), we first show that for any integer K ⩾ 1, any s ∈ S, any i ∈ I,
and any π′

i ∈ Πi,

Vi(s, π∗
i , π∗

−i)

⩾ E

[
K−1∑
k=0

γkui(s
k, π′

i, π∗
−i) + γKVi(s

K , π̃∗
i , π∗

−i)

]
, (C.22)

where s0 = s, aki ∼ π′
i(s

k), ak−i ∼ π∗
−i(s

k), sk ∼ P (·|sk−1, ak−1).
Consider K = 1, for any s ∈ S, any i ∈ I, any π′

i ∈ Πi we have,

Vi(s, π̃∗
i , π∗

−i)

= ui(s, π∗
i , π∗

−i) + γ
∑
s′
P (s′|s, π̃∗

i , π∗
−i)V (s

′, π̃∗
i , π∗

−i) (C.23)

⩾ ui(s, π′
i, π∗

−i) + γ
∑
s′
P (s′|s, π′

i, π̃∗
−i)V (s

′, π̃∗
i , π∗

−i)

= E

[
ui(s

0, π′
i, π

∗,(θ)
−i ) + γVi(s

1, π̃∗
i , π

∗,(θ)
−i )

]
,

where, again, s0 = s, a0
i ∼ π

′
i(s

0), a0
−i ∼ π∗

−i(s
0), s1 ∼ P (·|s0, a0) and the inequality follows

from (C.19) as π∗
i (s) ∈ bri(s; π∗) for every i ∈ I, s ∈ S.
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Next, suppose that (C.22) holds for some integer K, we consider K + 1:

Vi(s, π∗
i , π∗

−i)

⩾
(a)

E

K−1∑
k=0

γkui(s
k, π′

i, π∗
−i) + γKVi(s

K , π̃∗
i , π∗

−i)


=
(b)

E

[
K−1∑
k=0

γkui(s
k, π′

i, π∗
−i) + γK

(
ui(s

K , π∗
i , π∗

−i)

+ γ
∑
s′
P (s′|sK , π∗

i , π∗
−i)Vi(s

′, π̃∗
i , π∗

−i)

)]

⩾
(c)

E

[
K−1∑
k=0

γkui(s
k, π′

i, π∗
−i) + γK

(
ui(s

K , π′
i, π∗

−i)

+ γ
∑
s′
P (s′|sK , π′

i, π∗
−i)Vi(s

′, π̃∗
i , π∗

−i)

)]

=
(d)

E

 K∑
k=0

γkui(s
k, π′

i, π∗
−i) + γK+1Vi(s

K+1, π̃∗
i , π∗

−i)

 ,

where (a) is by induction hypothesis, (b) is due to (C.23), (c) is due to (C.19) and (d) is by
rearrangement of terms. Thus, by mathematical induction, we have established that (C.22)
holds for all K. Let K →∞ in (C.22), we have

Vi(s, π∗
i , π∗

−i) ⩾ E

 ∞∑
k=0

γkui(s
k, π′

i, π∗
−i)

 = Vi(s, π′
i, π∗

−i),

for every s ∈ S, i ∈ I, π′
i ∈ Π. Thus, we have proved (C.21), i.e. π̃∗ is a Nash equilibrium of

game G.
Next, we show that any Nash equilibrium π∗ of G satisfies that π̃∗

i (s) ∈ bri(s; π̃∗) for
every i ∈ I, s ∈ S. We prove this by contradiction. Suppose there exists a player i ∈ I, and
set of states S̄ ⊂ S such that for every s̄ ∈ S̄ it holds that π̃∗

i (s̄) ̸∈ bri(s̄; π̃∗). Let π′ be a
policy such that for all s ∈ S, i ∈ I, π′

i(s) ∈ bri(s; π̃∗). Without loss of generality we assume
|S̄| = 1.

We claim that for any integer K ⩾ 1, any s ∈ S, i ∈ I it holds that

Vi(s, π∗
i , π∗

−i)

⩽ E

K−1∑
k=0

γkui(s
k, π′

i, π∗
−i) + γKVi(s

K , π̃∗
i , π∗

−i)

 , (C.24)

where s0 = s, aki ∼ π′
i(s

k), ak−i ∼ π∗
−i(s

k), sk ∼ P (·|sk−1, ak−1) and the inequality is strict
for s = s̄.
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Consider K = 1, for any s ∈ S, any i ∈ I, we have

Vi(s, π∗
i , π∗

−i)

= ui(s, π̃∗
i , π∗

−i) + γ
∑
s′
P (s′|s, π̃∗

i , π∗
−i)Vi(s

′, π̃∗
i , π∗

−i)

⩽ ui(s, π′
i, π̃∗

−i) + γ
∑
s′
P (s′|s, π′

i, π̃∗
−i)Vi(s

′, π̃∗)

= E
[
ui(s

0, π′
i, π∗

−i) + γVi(s
1, π̃∗)

]
,

where, again, s0 = s, a0
i ∼ π′

i(s
0), a0

−i ∼ π∗
−i(s

0), s1 ∼ P (·|s0, a0) and the inequality follows
from (C.19). Note that inequality is strict for s0 = s̄.

Next, suppose (C.24) holds for some integer K, we consider K + 1:

Vi(s, π∗
i , π∗

−i) ⩽
(a)

E

K−1∑
k=0

γkui(s
k, π′

i, π∗
−i) + γKVi(s

K , π̃∗)


=E

[
K−1∑
k=0

γkui(s
k, π′

i, π∗
−i) + γK

(
ui(s

K , π∗
i , π∗

−i)

+ γ
∑
s′
P (s′|sK , π∗

i , π∗
−i)Vi(s

′, π̃∗)

)]

⩽
(b)

E

[
K−1∑
k=0

γkui(s
k, π′

i, π∗
−i) + γK

(
ui(s

K , π′
i, π∗

−i)

+ γ
∑
s′
P (s′|sK , π′

i, π∗
−i)Vi(s

′, π̃∗)

)]

=
(c)

E

 K∑
k=0

γkui(s
k, π′

i, π∗
−i) + γK+1Vi(s

K+1, π̃∗)

 ,

where (a) is by induction hypothesis, (b) is due to (C.19) and (c) is by rearrangement of
terms. Thus, by mathematical induction, we have established that (C.24) holds for all K.
Let K →∞ in (C.24), we have

Vi(s, π∗
i , π∗

−i) ⩽ E

 ∞∑
k=0

γkui(s
k, π′

i, π∗
−i)

 = Vi(s, π′
i, π∗

−i),

for every s ∈ S, i ∈ I, π′
i ∈ Π. Furthermore,

Vi(s̄, π∗
i , π∗

−i) < E

 ∞∑
k=0

γkui(s
k, π′

i, π∗
−i)

 = Vi(s̄, π′
i, π∗

−i),

This contradicts the fact that π∗
i is a Nash equilibrium of game G.
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Appendix D

Appendix for Chapter 5

D.1 Technical Results for the Proof of Theorem 5.3.1
We now present a technical result used in proof of Theorem 5.3.2.
Lemma D.1.1. For any Markov game G, an associated MNPF Φ with closeness parameter
κ, and µ ∈ ∆(S), the mapping π 7→ Φ(µ, π) is L−Lipschitz continuous, with

L =

(
κ
√
N +

rmax
(1− γ)2

√
N |S||A|

)
.

Proof. To show the desired Lipschitz bound, it is sufficient to show that

|Φ(µ, π)−Φ(µ, π′)| ⩽ L∥π− π′∥, ∀ π, π′ ∈ Π.

For the remaining proof, consider two arbitrary policies π = (π1, π2, ...,πN ), and π′ =
(π′

1, π′
2, ...,π′

N ). For any i ∈ {0, 1, ..,N}, define a joint policy

π(i) = (π1, π2, · · · , πi, π′
i+1, · · · , π′

N ).

Naturally, π(0) = π′ and π(N) = π.
Note that

|Φ(µ, π)−Φ(µ, π′)| = |Φ(µ, π(N))−Φ(µ, π(0))| ⩽
N−1∑
i=0
|Φ(µ, π(i+1))−Φ(µ, π(i))|.

Since π(i+1) and π(i) only differ in the policy of player (i+ 1), using Definition 5.2.1, we
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obtain

|Φ(s, π)−Φ(s, π′)| ⩽ κ
N−1∑
i=0
∥π(i+1) − π(i)∥+

N−1∑
i=0
|Vi+1(s, π(i+1))− Vi+1(s, π(i))|

⩽ κ
N−1∑
i=0
∥πi+1 − π′

i+1∥

+
N−1∑
i=0

∣∣∣∣∣∣
∑

s′∈S,a′
i+1∈Ai+1

∂Vi+1(s, π̃)
∂π̃i+1(s′, a′

i+1)

∣∣∣∣∣
π̃=ζ(i)

(πi+1(s
′, a′

i+1)− π′
i+1(s

′, a′
i+1))

∣∣∣∣∣∣, (D.1)

where ζ(i) = (π1, π2, · · · , πi, ξ′
i+1, π′

i+2..., π′
N ) and ξ′

i+1 = πi+1 + t(πi+1 − π′
i+1) for some

t ∈ [0, 1].
Using (D.1), along with Lemma 4.2.3-(a), we obtain

|Φ(µ, π)−Φ(µ, π′)|

⩽ κ
N−1∑
i=0
∥πi+1 − π′

i+1∥

+
1

(1− γ)

N−1∑
i=0

∣∣∣∣∣∣
∑

s′∈S,a′
i+1∈Ai+1

dζ
(i)

µ (s′)Qi+1(s
′, a′

i+1, ζ(i))(πi+1(s
′, a′

i+1)− π′
i+1(s

′, a′
i+1))

∣∣∣∣∣∣,
⩽ κ

N−1∑
i=0
∥πi+1 − π′

i+1∥

+
1

(1− γ)

N−1∑
i=0

∑
s′∈S,a′

i+1∈Ai+1

∣∣∣∣∣∣dζ(i)µ (s′)Qi+1(s
′, a′

i+1, ζ(i))(πi+1(s
′, a′

i+1)− π′
i+1(s

′, a′
i+1))

∣∣∣∣∣∣.

Additionally, using the fact that |d(ζ
(i))

µ (s′)| ∈ [0, 1], we obtain

|Φ(µ, π)−Φ(µ, π′)| ⩽ κ
N−1∑
i=0
∥πi+1 − π′

i+1∥

+
1

(1− γ)

N−1∑
i=0

∑
s′∈S,a′

i+1∈Ai+1

∣∣∣∣∣∣Qi+1(s
′, a′

i+1, ζ(i))(πi+1(s
′, a′

i+1)− π′
i+1(s

′, a′
i+1))

∣∣∣∣∣∣
⩽ κ

N−1∑
i=0
∥πi+1 − π′

i+1∥

+
1

(1− γ)

N−1∑
i=0

max
s′,a′

i+1,ζ(i)
Qi+1(s

′, a′
i+1, ζ(i))

∑
s′,a′

i+1∈Ai+1

∣∣∣∣∣∣(πi+1(s
′, a′

i+1)− π′
i+1(s

′, a′
i+1))

∣∣∣∣∣∣.
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Furthermore, we note that

max
s′,a′

i+1,ζ(i)
|Qi+1(s

′, a′
i+1, ζ(i))| ⩽ umax

(1− γ) .

where umax = maxi,s,a ui(s, a). Therefore, we obtain,

|Φ(µ, π)−Φ(µ, π′)|

⩽ κ
N−1∑
i=0
∥πi+1 − π′

i+1∥

+
umax

(1− γ)2

N−1∑
i=0

∑
s′∈S,a′

i+1∈Ai+1

∣∣∣∣∣∣(πi+1(s
′, a′

i+1)− π′
i+1(s

′, a′
i+1))

∣∣∣∣∣∣.
Finally, by using Cauchy-Schwarz inequality, we conclude that

|Φ(s, π)−Φ(s, π′)|

⩽

(
κ
√
N +

umax
(1− γ)2

√
|S||A|N

)
∥π− π′∥.

Lemma D.1.2. For any δ ⩾ 0, the function Γ(δ) (defined in (5.21)) exists, is upper semi-
continuous and weakly increasing.

Proof. First, we show that Γ(·) exists for every δ ⩾ 0 and is upper semicontinous. This fol-
lows directly from the fact that NE(δ) is a non-empty and compact for any non-negative δ,
and the mapping π 7→ mink∈[K] ∥π− π∗k∥ is continuous. Furthermore, the upper semiconti-
nuity follows directly from Berge’s maximum theorem. Finally, we show that Γ(·) is a weakly
increasing function. This is due to the fact that NE(δ) ⊆ NE(δ′) for any δ′ > δ ⩾ 0.

Lemma D.1.3 (Lemma 4.2.3-(c)). For any i ∈ I, πi ∈ Πi, π−i ∈ Π−i it holds that

max
s∈S
|Vi(s, πi, π−i)− Vi(s, πi, πθ−i)| ⩽

2θ|I|
(1− γ)2 rmax,

where rmax := maxi,s,a |ri(s, a)|, πθ−i(s) := (1− θ)π−i(s) + θπ◦ and π◦ := (1/|A−i|)1A−i
.

Lemma D.1.4 (Lemma 4.2.3-(d)). For any i ∈ I, πi ∈ Πi, π−i ∈ Π−i, it holds that

max
s,ai
|Qi(s, ai; πi, π−i)−Qi(s, ai; πi, πθ−i)| ⩽

2θ|I|
(1− γ)2 rmax,

where rmax := maxi,s,a |ri(s, a)|, πθ−i(s) := (1− θ)π−i(s) + θπ◦ and π◦ := (1/|A−i|)1A−i
.
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Lemma D.1.5 (Lemma 4.2.3-(b)). For any policy π = (πi, π−i), π′ = (π′
i, π−i) ∈ Π and

any µ ∈ ∆(S),

Vi(µ, π)− Vi(µ, π′) = (1/(1− γ)) ·
∑
s′
dπµ(s

′)Γi(s′, πi; π′),

where Γi(s, ai; π) := Qi(s, ai; π)− Vi(s, π).
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Appendix E

Appendix for Chapter 6

In Section E.1, we review the adaptive adversarial algorithms proposed in [72] and specialize
them to our setting to derive the regret bounds presented in Chapter 6. In Section E.2, we
provide the proofs of the lemmas stated in Section 6.3. In Section E.3, we present the proof
of the main theorem stated in Section 6.3. In Section E.4, we present the main technical
lemmas used in the proof of our main result (Theorem 6.3.1). In Section E.5, we provide
the Thompson sampling-based variant of Algorithm 6 and present the analogous results to
those in Section 6.3.

Before, discussing the content of this chapter, we present the table of notations (Table
E.0.1) that will be useful in navigating through the notations.

E.1 Adaptive Adversarial Algorithms
In this work, we deploy the optimistic mirror descent-based adversarial bandit module. We
adapt algorithms from [72], which build upon and improve the algorithm originally proposed
in [425]. In this section, we recap the results from [72]. For completeness, we restate
the problem formulation and algorithm. Toward the end, we specialize their results to
the setting of this chapter and state a useful result that characterizes the regret of such
algorithms—within the bandit structure described in Section 6.2—in terms of the number
of matchings and collisions.

Problem formulation from [72]
In this section, we review the algorithm described in [72], which improves upon the one
introduced in [425]. Consider a multi-armed bandit problem that unfolds over τ time steps
with A ⩽ τ fixed actions. In each round t, the algorithm selects one arm i(t) ∈ [A], while
simultaneously, an adversary chooses the loss vector ℓ(t) = (ℓi(t))i∈[A] ∈ [−1, 1]A. The
adversary may be adaptive, meaning it can base its choices on the algorithm’s past actions.
The goal of the algorithm is to minimize the regret, defined as the gap between the total
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Notation Description
A Set of agents
F Set of firms/arms
M Union of agents and firms

ua(f) Utility for agent a when matched with firm f

uf (a) Utility for firm f when matched with agent a
fa(t) Firm chosen by agent a at time t
f∗
a Stable match of agent a

Fa Set of super-optimal firms for agent a
Fa Set of sub-optimal firms for agent a
K Number of markets formed by decomposition as stated in Remark 6.1.2
Ai Agents forming fixed pairs after i− 1 rounds of elimination (Remark 6.1.2)
Fi Firms forming fixed pairs after i− 1 rounds of elimination (Remark 6.1.2)
ra,f Noisy reward that agent a receives on getting matched with firm f

Af Set of agents that pull firm f

Ma,f (T ) Number of times agent a has successfully matched with firm f till time T
Ca,f (T ) Number of times agent a has collided on firm f till time T
pa,f (t) Probability that agent a will pull firm f at time t
Pa,f (t) An indicator if agent a has pulled arm f at time t
Ya(t) An indicator if agent a got successfully matched at time t
µ̂a,f (t) Empirical mean of utility derived by agent a on matching with f

UCBa,f (t) UCB estimate of reward from firm f to agent a at time t
Ta,f (t) Thompson Sampling index of reward from firm f to agent a at time t
E

(r)
a,f (t) An indicator if agent a pulled firm f at time t

E
(c)
a,f (t) An indicator if all the firms with higher index than f got pruned at time t

τa,f (T ) Time steps during which E
(c)
a,f (t) = 1

∆a,f ua(f∗
a )− ua(f)

Ha,f (t) Event when some other more preferred agent than a has requested firm f at time t

Table E.0.1: Table of notations
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accumulated loss and the loss of the best fixed arm in hindsight:

Regret(adv)(τ ) = max
i⋆∈[A]

E

[
τ∑
t=1

ℓi(t)(t)−
τ∑
t=1

ℓi⋆(t)

]
.

The algorithm is based on the optimistic mirror descent framework. At any time t, the
algorithm samples an arm i(t) ∈ [A] according to a probability distribution p(t) ∈ ∆([A]).
The algorithm only observes the loss associated with the chosen action and not those of
the other actions. Therefore, upon receiving the loss ℓi(t)(t), the algorithm constructs an
unbiased estimator of the losses for all actions. The estimator is

L̂i(t) =
ℓi(t)−L(t− 1)

2pi(t)
1 (i(t) = i) +

1 + L(t− 1)
2 , ∀ i

The unbiased loss estimate L̂(t) is used to update the an auxiliary probability distribution
x(t+ 1) ∈ ∆([A]) through an optimistic mirror descend update with learning rate η. The
optimistic mirror descend update is constructed from the Bregman divergence1 associated
with a log-barrier regularizer RA ∋ x 7→ ψ(x) = 1

η

∑A
i=1 ln 1

xi
as follows

x(t+ 1) = arg min
z∈∆([A])

〈
z, L̂(t)

〉
+Dψ(z,x(t)).

The distribution x(t+ 1) is used to update the arm sampling distribution p(t+ 1) after
mixing a small bias towards most recently picked arm as follows

p(t+ 1) = (1− λ(t+ 1))x(t+ 1) + λ(t+ 1)ei(t),

where eit ∈ RA is an element of standard basis in RA with i(t) element as 1 and all others
as zero and

λ(t+ 1) = λ(1−L(t))
2 + λ(1−L(t)) ,

for some λ > 0.
Against the preceding backdrop, we restate Theorem 2 from [72] below:

Theorem E.1.1. Algorithm 15 with η ⩽ 1
50 , λ = 8η ensures that

Regret(adv)(τ ) = O
(
A ln(T )

η

)
+ 8ηE [V (T )] ,

where V (T ) :=
∑T
t=2 |ℓi(t−1)(t)− ℓi(t−1)(t− 1)| is commonly referred as “path-length”.

Remark E.1.1. Note that Theorem 2 in [72] requires2 η ⩽ 1/162 and λ = 8η. But in fact
the proof goes through for η ⩽ 1/50. This is because in [72] for the proof of Theorem 2, they
directly lift [425, Theorem 7] where η ⩽ 1/162 which is not tuned completely.

1Bregman divergence between two point x, y with respect to a convex regularizer ψ is given as Dψ(x, y) =
ψ(x)−ψ(y)− ⟨∇ψ(y),x− y⟩.

2Moreover, it is an algebraic exercise to establish that η < 1
24 and λ = 1−12η−c·

√
1−24η

24 also works for
some c ∈ (0, 1). But we don’t go in this direction to retain simplicity of algorithmic description.
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Algorithm 15 Optimistic Mirror Descent for Adversarial Bandits
1: Parameters: η,λ ∈ (0, 1)
2: Initialize: p(1), x(1) ∼ Unif([A]), ψ(x) = 1

η

∑A
i=1 ln 1

xi

3: for t = 1 to τ do
4: Play i(t) ∼ p(t) and observe L(t) = ℓi(t)(t)

5: for each i ∈ [A] do
6: L̂i(t) =

ℓi(t)−L(t−1)
2pi(t)

· 1{i(t)=i} +
1+L(t−1)

2
7: end for
8: Update x(t+ 1) = arg minz∈∆([A])⟨z, L̂(t)⟩+Dψ(z,x(t))
9: λ(t+ 1) = λ(1−L(t))

2+λ(1−L(t))
10: p(t+ 1) = (1− λ(t+ 1))x(t+ 1) + λ(t+ 1)ei(t)
11: end for

Adaptive Adversarial Module
In this section we describe AB Subroutine in Algorithm 6 which is based on the algorithm
presented in Section E.1.

For any (a, f) ∈ A×F , the adversarial bandit module associated with (a, f) (as described
in Algorithm 7) is a specialized version of Algorithm 15 for the case with two actions: request
the firm f or prune the firm f . In this setup, the loss incurred by pruning firm f is always 0,
while the loss from requesting firm f depends on whether agent a was successfully matched
with it or experienced a collision. In this special case of two actions, the optimistic mirror
descent update (line 4 in Algorithm 15) admits a closed-form expression (see Lemma E.1.2).
Note that the adversarial bandit module associated with any agent-firm pair (a, f) is only
active during rounds t ∈ τa,f (T ) ⊂ [T ].
Lemma E.1.1. Given a scalar η ⩽ 1

50 , for any agent-firm pair (a, f) ∈ A×F , the regret of
the adversarial bandit algorithm is bounded as

E[Regret(adv)
a,f (τa,f (T ))]

⩽ O
(

log(T )
η

)
+ 32ηE

[
min

{
M⋆
a,f (T ),C⋆a,f (T ),Ma,f (T ) +Ca,f (T )

}]
,

where M⋆
a,f (T ) =

∑T
t=1 1

(
Hc
a,f (t)

)
and C⋆a,f (T ) =

∑T
t=1 1 (Ha,f (t)).

Proof. To prove this lemma, it suffices to bound the path length Va,f (T ) in Theorem E.1.1.
We claim that the path length satisfies

Va,f (T ) ⩽ min
{
C⋆a,f (T ),M⋆

a,f (T )
}

.

Recall that τa,f (T ) = {t ∈ T : E(c)
a,f (t) = 1}. For the remainder of the proof, for any

t ∈ τa,f (T ), by t− 1 we mean max{t < t : t ∈ τa,f (T )}.
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For any t ∈ τa,f (T ), let ℓ(prune)
a,f (t) denote the loss due to pruning at time t, and let

ℓ
(pull)
a,f (t) denote the loss due to pulling at time t. By design of loss function, we know that,

for any t ∈ τa,f (T ),

ℓ
(prune)
a,f (t) = 0, and ℓ

(pull)
a,f (t) = 1− 2Ya(t).

Furthermore, note that

Va,f (T ) ⩽
∑

t∈τa,f (T )

|ℓ(pull)a,f (t)− ℓ(pull)a,f (t− 1)|

⩽
(a)

2
∑

t∈τa,f (T )

1

(
Ha,f (t− 1),Hc

a,f (t)
)
+ 1

(
Hc
a,f (t− 1),Ha,f (t)

)

⩽ 4 min


T∑
t=1

1

(
Hc
a,f (t)

)
,
T∑
t=1

1 (Ha,f (t))


= 4 min

{
M⋆
a,f (T ),C⋆a,f (T )

}
,

where the factor of 2 in is by the fact that a path length change in going from matching to
potential collision or collision to potential matching is 2. The remaining inequalities follow
from algebra.

Furthermore, we have

Va,f (T ) =
∑

t∈τa,f (T )

1 (Pa,f (t) = 1,Pa,f (t− 1) = 1) |ℓ(pull)a,f (t)− ℓ(pull)a,f (t− 1)|

+
∑

t∈τa,f (T )

1 (Pa,f (t) = 0,Pa,f (t− 1) = 1) |ℓ(pull)a,f (t)− ℓ(pull)a,f (t− 1)|

⩽
∑

t∈τa,f (T )

1 (Pa,f (t) = 1,Pa,f (t− 1) = 1) |ℓ(pull)a,f (t)− ℓ(pull)a,f (t− 1)|

+ 2
∑

t∈τa,f (T )

1 (Pa,f (t) = 0,Pa,f (t− 1) = 1)

=
∑

t∈τa,f (T )

1 (Pa,f (t) = 1,Pa,f (t− 1) = 1) |ℓ(pull)a,f (t)− ℓ(pull)a,f (t− 1)|

+ 2
∑

t∈τa,f (T )

1 (Pa,f (t) = 0,Pa,f (t− 1) = 1)

= 2
∑

t∈τa,f (T )

1 (Pa,f (t) = 1,Pa,f (t− 1) = 1,Ya(t) = 0,Ya(t− 1) = 1)

+ 2
∑

t∈τa,f (T )

1 (Pa,f (t) = 1,Pa,f (t− 1) = 1,Ya(t) = 1,Ya(t− 1) = 0)

+ 2
∑

t∈τa,f (T )

1 (Pa,f (t) = 0,Pa,f (t− 1) = 1)
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⩽ 2

 ∑
t∈τa,f (T )

1 (Pa,f (t) = 1,Ya(t) = 0) + 1 (Pa,f (t− 1) = 1,Ya(t− 1) = 1)


+ 2

∑
t∈τa,f (T )

1 (Pa,f (t) = 0,Pa,f (t− 1) = 1)

⩽ 4 (Ma,f (T ) +Ca,f (T )) .

Technical Lemma
Lemma E.1.2. For any L ∈ R2 and X ∈ ∆(R2), the update

X+ = arg min
Z∈∆(R2)

⟨Z,L⟩+Dψ(Z,X)

admits a closed-form solution given by X+ = [x+, 1− x+], where

x+ =
2 + ξ −

√
4 + ξ2

2ξ (E.1)

and ξ = η(L1 − L2) +
1
X1
− 1

X2
. For better interpretability, we provide a plot of the update

in Equation (E.1) in Figure E.1.

Proof. For any X,Z ∈ ∆(R2), we represent X = [x, 1−x] and Z = [z, 1− z] for x, z ∈ [0, 1].
Under this notation we can write

Dψ(Z,X) =
1
η

(
log

(
x

z

)
+ log

(1− x
1− z

)
+
z − x
x

+
x− z
1− x

)
.

Thus the optimization problem becomes

x+ = arg min
z∈[0,1]

⟨z,L⟩+Dψ(z,X)

= arg min
z∈[0,1]

zL1 + (1− z)L2 +
1
η

(
log

(
x

z

)
+ log

(1− x
1− z

)
+
z − x
x

+
x− z
1− x

)

= arg min
z∈[0,1]

zL1 + (1− z)L2 +
1
η

(
− log (z)− log (1− z) + z

x
− z

1− x

)
.

Let f(z) = zL1 + (1− z)L2 +
1
η

(
− log (z)− log (1− z) + z

x −
z

1−x

)
. Note that f(0) =

+∞, and f(1) = +∞ so the minimizer of f(z) lies stricly inside [0, 1]. Therefore, ∇f(x+) =
0. We compute

∇f(z) = L1 −L2 +
1

η(1− z) −
1
ηz

+
1
ηx
− 1
η(1− x)

= L1 −L2 +
2z − 1

ηz(1− z) +
1
ηx
− 1
η(1− x) .
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Figure E.1: Update function of pulling probability based on line 10 in Algorithm 7

Imposing the condition ∇f(x+) = 0 implies that

ξx2
+ − (2 + ξ)x+ + 1 = 0,

where ξ = η(L1 −L2) +
1
x −

1
1−x . Thus there are two possibilities

x+ =
2 + ξ +

√
4 + ξ2

2ξ , or x+ =
2 + ξ −

√
4 + ξ2

2ξ ,

However, the first possibility implies that x+ > 1, thus the only solution which lies in (0, 1)
is the latter. This completes the proof.

E.2 Proofs of main Lemmas
We introduce the following notation for every a ∈ A, f ∈ F

Ha,f (t) = 1

(
∃a′ ∈ A : fa′(t) = f ,uf (a′) > uf (a)

)
,

which characterizes an event some agent more preferred than a by firm f has requested firm
f . We now present the proofs of Lemmas in Chapter 6 in the following subsections.

Proof of Lemma 6.3.2
Proof of Lemma 6.3.2 follows directly from the following Lemma.
Lemma E.2.1. The event that agent a chooses a firm f ∈ F at time t ∈ [T ] satisfies

{Ya(t) = 1, fa(t) = f}

⊂
{
Ya(t) = 1, UCBa,f∗

a
(t) ⩽ UCBa,f (t)

}⋃{
E

(r)
a,f (t) = 1,E(r)

a,f∗
a
(t) = 0

}
. (E.2)
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Proof. For any agent a fix some f . Recall that fa(t) = f implies that agent a has chosen to
pull arm f . Based on design of Algorithm 6 there are two possibilities: either all the firms
with higher UCB than firm f got pruned and the firm f was requested; or all of the firms
in F got pruned and the firm f got selected as it was having highest UCB. Thus,

{fa(t) = f} =
{
E

(r)
a,f (t) = 1

}⋃{
E

(r)
a,f (t) = 0 ∀ f ∈ F , UCBa,f ⩾ UCBa,f ′ ∀ f ′ ∈ F

}
=
(i)

{
E

(r)
a,f (t) = 1, UCBa,f∗

a
(t) ⩾ UCBa,f (t)

}⋃{
E

(r)
a,f (t) = 1, UCBa,f∗

a
(t) ⩽ UCBa,f (t)

}
⋃{

E
(r)
a,f (t) = 0 ∀ f ∈ F , UCBa,f ⩾ UCBa,f ′ ∀ f ′ ∈ F

}
⊂
(ii)

{
E

(r)
a,f (t) = 1, UCBa,f∗

a
(t) ⩾ UCBa,f (t)

}⋃{
E

(r)
a,f (t) = 1, UCBa,f∗

a
(t) ⩽ UCBa,f (t)

}
⋃{

UCBa,f∗
a
(t) ⩽ UCBa,f (t)

}

⊂
(iii)

{
E

(r)
a,f (t) = 1,E(r)

a,f∗
a
(t) = 0, UCBa,f∗

a
(t) ⩾ UCBa,f (t)

}
⋃{

E
(r)
a,f (t) = 1, UCBa,f∗

a
(t) ⩽ UCBa,f (t)

}⋃{
UCBa,f∗

a
(t) ⩽ UCBa,f (t)

}
⊂
(iv)

{
E

(r)
a,f (t) = 1,E(r)

a,f∗
a
(t) = 0, UCBa,f∗

a
(t) ⩾ UCBa,f (t)

}⋃{
UCBa,f∗

a
(t) ⩽ UCBa,f (t)

}
⊂
(v)

{
E

(r)
a,f (t) = 1,E(r)

a,f∗
a
(t) = 0

}⋃{
UCBa,f∗

a
(t) ⩽ UCBa,f (t)

}
,

where in (i) we introduced two complementary events {UCBa,f∗
a
(t) ⩾ UCBa,f (t)} and

{UCBa,f∗
a
(t) ⩽ UCBa,f (t)}. Note that (ii) holds due to the fact that

{UCBa,fa(t) ⩾ UCBa,f ∀ f ∈ F}

implies {UCBa,fa(t) ⩾ UCBa,f∗
a
}. Furthermore, (iii) holds due to the fact that a firm with

lower UCB will be pulled only if all the firms with higher UCB are pruned. Finally, (iv), (v)
holds by dropping appropriate events.

The result follows by noting that

1 (Ya(t) = 1, fa(t) = f)

⊂
({
E

(r)
a,f (t) = 1,E(r)

a,f∗
a
(t) = 0

}⋃{
UCBa,f∗

a
(t) ⩽ UCBa,f (t)

})⋂
1 (Ya(t) = 1)

⊂
{
Ya(t) = 1, UCBa,f∗

a
(t) ⩽ UCBa,f (t)

}⋃{
E

(r)
a,f (t) = 1,E(r)

a,f∗
a
(t) = 0

}
.

Remark E.2.1. The results in Lemma E.2.1 holds even if we replace UCB subroutine in
Algorithm 6 with any other index based stochastic bandit subroutine, e.g. Thompson sam-
pling.
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Proof of Lemma 6.3.1
We present the proof of each result (L1)-(L5) in Lemma 6.3.1 individually in the following
subsubsections. Before that we recall an important notation as follows:

Ha,f (t) = 1

(
∃ a′ ∈ A : fa′(t) = f ,uf (a′) ⩾ uf (a)

)
(E.3)

Proof of (L1) in Lemma 6.3.1

From (6.2), we get

k∑
i=1

∑
a∈Ai

Ra ⩽ ∆̄
k∑
i=1

∑
a∈Ai

∑
f∈Fa

E[Ma,f (T )] + u
k∑
i=1

∑
a∈Ai

∑
f∈F\{f∗

a }
E[Ca,f (T )]

+ ū
k∑
i=1

∑
a∈Ai

E[Ca,f∗
a
(T )]

⩽ C̄

(
k∑
i=1

∑
a∈Ai

∑
f∈Fa

E[Ma,f (T )] +
k∑
i=1

∑
a∈Ai

∑
f∈F\{f∗

a }
E[Ca,f (T )]

+
k∑
i=1

∑
a∈Ai

E[
T∑
t=1

Ha,f∗
a
(t)]

)
,

where ∆̄ = maxa,f ∆a(f) and ū = maxa ua(f∗
a ). This completes the proof.

Proof of (L2) in Lemma 6.3.1

Proof of (L2) in Lemma 6.3.1 follows immediately from the following more general result.
Lemma E.2.2. For any agent a ∈ A using Algorithm 6 the expected number of matches
with any set F̃ ⊆ Fa can be bounded as

E[Ma,F̃ (T )] ⩽ O

|F̃ |(log(T ) + log(T )
∆2

)
+ E

 T∑
t=1

1

(
Ha,f∗

a
(t)
) ,

where ∆ = mina,f ∆a(f).

Proof. Recall that we say an agent amatches with firm f at time t if Ya(t) = 1 and fa(t) = f .
Therefore, the total number of matchings between a and f up to time T is given by

Ma,f (T ) =
T∑
t=1

1 (Ya(t) = 1, fa(t) = f) .
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Hence, from Lemma 6.3.2, the following holds for every f ∈ F̃ :

Ma,F̃ (T ) =
∑
f∈F̃

T∑
t=1

1 (Ya(t) = 1, fa(t) = f)

⩽
∑
f∈F̃

T∑
t=1

(
1

(
Ya(t) = 1, fa(t) = f , UCBa,f (t) ⩾ UCBa,f∗

a
(t)
)

+ 1

(
E

(r)
a,f (t) = 1,E(r)

a,f∗
a
= 0

))

⩽
∑
f∈F̃

T∑
t=1

1

(
Ya(t) = 1, fa(t) = f , UCBa,f (t) ⩾ UCBa,f∗

a
(t)
)

+
T∑
t=1

∑
f∈F̃

1

(
E

(r)
a,f (t) = 1,E(r)

a,f∗
a
= 0

)

⩽
∑
f∈F̃

T∑
t=1

1

(
Ya(t) = 1, fa(t) = f , UCBa,f (t) ⩾ UCBa,f∗

a
(t)
)

︸ ︷︷ ︸
Term A

+
T∑
t=1

1

(
E

(r)
a,f∗

a
= 0

)
︸ ︷︷ ︸

Term B

.

For any fixed firm f ∈ F̃ , we now bound Term A. For that purpose, define an event

Za,f (t) :=
{
UCBa,f (t) ⩾ ua(f

∗
a )− ϵ

}
=

µ̂a,f (t− 1) +

√√√√2 log(Ba(t))
Ma,f (t− 1) ⩾ ua(f

∗
a )− ϵ

 ,

where Ba(t) := 1 + M̄a(t) log2 (M̄a(t)) ⩽ 1 + t log2(t) =: B̄(t)3.
Using this notation, we have

Term A =
T∑
t=1

1(Ya(t) = 1, fa(t) = f , UCBa,f (t) ⩾ UCBa,f∗
a
(t),Za,f (t))︸ ︷︷ ︸

Term C

+
T∑
t=1

1(Ya(t) = 1, fa(t) = f , UCBa,f (t) ⩾ UCBa,f∗
a
(t),Zc

a,f (t))︸ ︷︷ ︸
Term D

.

3The inequality holds due to the fact that M̄a(t) ⩽ t and monotonicity of the mapping x 7→ 1+x log2(x).
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We shall first bound E[Term C] below:

Term C =
T∑
t=1

1(Ya(t) = 1, fa(t) = f , UCBa,f (t) ⩾ UCBa,f∗
a
(t),Za,f (t))

⩽
T∑
t=1

1(Ya(t) = 1, fa(t) = f ,Za,f (t))

=
T∑
t=1

1

(
Ya(t) = 1, fa(t) = f , µ̂a,f (t− 1) +

√√√√2 log(Ba(t))
Ma,f (t− 1) ⩾ ua(f

∗
a )− ϵ

)

⩽
T∑
t=1

1

(
Ya(t) = 1, fa(t) = f , µ̂a,f (t− 1) +

√√√√2 log(Ba(T ))
Ma,f (t− 1) ⩾ ua(f

∗
a )− ϵ

)

=
T∑
t=1

t−1∑
s=0

1

(
Ya(t) = 1, fa(t) = f , µ̂(s)a,f +

√
2 log(Ba(T ))

s
⩾ ua(f

∗
a )− ϵ,Ma,f (t− 1) = s

)

⩽
T−1∑
s=0

T∑
t=s+1

1

(
fa(t) = f , µ̂(s)a,f +

√
2 log(Ba(T ))

s
⩾ ua(f

∗
a )− ϵ,Ma,f (t− 1) = s,Ma,f (t) = s+ 1

)

⩽
T−1∑
s=0

1

(
µ̂
(s)
a,f +

√
2 log(Ba(T ))

s
⩾ ua(f

∗
a )− ϵ

)

⩽
T−1∑
s=0

1

(
µ̂
(s)
a,f − ua(f) +

√
2 log(B̄(T ))

s
⩾ ua(f

∗
a )− ua(f)︸ ︷︷ ︸
∆a(f)

−ϵ
)

,

where µ
(s)
a,f is defined to be the empirical utility that agent a obtains on s independent

successful pulls of arm f . Using Lemma E.4.1 to further bound E[Term C] we get

E[Term C] ⩽ 1 + 2
(∆a(f)− ϵ)2

(
log(B̄(T ) +

√
π log(B̄(T )) + 1)

)
.
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Next, we bound E[Term D] below:

E[Term D]

= E

 T∑
t=1

1(Ya(t) = 1, fa(t) = f , UCBa,f (t) ⩾ UCBa,f∗
a
(t), UCBa,f (t) ⩽ ua(f

∗
a )− ϵ


⩽ E

 T∑
t=1

1

Ya(t) = 1, µ̂a,f∗
a
(t− 1) +

√√√√ 2 log(Ba(t))
Ma,f∗

a
(t− 1) ⩽ ua(f

∗
a )− ϵ


⩽

T∑
t=1

T−1∑
s=0

Pr
µ̂(s)a,f∗

a
+

√
2 log(B̄(t))

s
⩽ ua(f

∗
a )− ϵ



⩽
T∑
t=1

T−1∑
s=0

exp

−
s

(√
2 log(B̄(t))

s + ϵ

)2

2


⩽

T∑
t=1

1
B̄(t)

T∑
s=1

exp
(
−sϵ

2

2

)

⩽
ϵ2

2

T−1∑
t=0

1
B̄(t)

,

which can further be bounded as E[Term D] ⩽ 5
ϵ2 in [228, Exercise 8.1]. For simplicity, we

choose ϵ = ∆a(f)/2 which ensures that E[Term A] ⩽ O
(

log(T )
(∆a(f))

2

)
.

Now let’s turn our attention to Term B which characterizes the number of times agent a
has pruned the stable match. Using Lemma E.4.3, we have

E[Term B] ⩽ O
E

 T∑
t=1

1

(
Ha,f∗

a
(t)
)+ log(T )

 .

Thus the Term A is bounded by number of there can be potential collisions at the stable
firm. This concludes the proof of this lemma.

Proof of (L3) in Lemma 6.3.1

In this part, we prove a result which is more general than (L3) in Lemma 6.3.1.
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Lemma E.2.3. Expected number of collisions faced by agent a on the set of firms F † ⊆
F\{f∗

a}∑
f∈F †

E[Ca,f (T )]

⩽ O

|F †| log(T ) + E[Ma,F †
a
(T )] + E[M

a,F̄ †
a
(T )] + E

 T∑
t=1

1

(
Ha,f∗

a
(t)
) , (E.4)

where F †
a = Fa ∩ F † and F̄ †

a = Fa ∩ F †. Additionally,

E
[
Ca,f∗

a
(T )

]
⩽ E

 T∑
t=1

1

(
Ha,f∗

a
(t)
) . (E.5)

Proof. To compute the number of collisions, we compute the following for a ∈ A and f ∈
F\{f∗

a}

∑
f∈F †

Ca,f (T ) =
∑
f∈F †

T∑
t=1

1 (fa(t) = f ,Ha,f (t))

=
∑
f∈F †

T∑
t=1

1

(
E

(r)
a,f (t) = 1,E(c)

a,f (t) = 1,Ha,f (t)
)

+
∑
f∈F †

T∑
t=1

1

(
E

(r)
a,f ′(t) = 0 ∀ f ′ ∈ F , fa(t) = f ,Ha,f (t)

)

⩽
∑
f∈F †

T∑
t=1

1

(
E

(r)
a,f (t) = 1,E(c)

a,f (t) = 1,Ha,f (t)
)
+

∑
f∈F †

T∑
t=1

1

(
E

(r)
a,f∗

a
(t) = 0, fa(t) = f

)
,

⩽
∑
f∈F †

T∑
t=1

1

(
E

(r)
a,f (t) = 1,E(c)

a,f (t) = 1,Ha,f (t)
)
+

T∑
t=1

1

(
E

(r)
a,f∗

a
(t) = 0

)
,

where the first inequality holds because {E(r)
a,f ′(t) = 0 ∀ f ′ ∈ F} implies that {E(r)

a,f∗
a
(t) = 0}.

Using (E.10) we have: for all a ∈ A, f ∈ F and ϖ ∈ (0, 32η) ⊂ (0, 1),∑
f∈F †

E[Ca,f (T )]

⩽
∑
f∈F †

(1 +ϖ)E[Ma,f (T )] +O(log(T )) +ϖE[Ca,f (T )] + E

 T∑
t=1

1

(
E

(r)
a,f∗

a
= 0

)
⩽ O

|F †| log(T ) +
∑
f∈F †

E[Ma,f (T )]

+ E

 T∑
t=1

1

(
Ha,f∗

a
(t)
)+ϖ

∑
f∈F †

E[Ca,f (T )],
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where the last inequality is due to Lemma E.4.3. In summary,

∑
f∈F †

E[Ca,f (T )] ⩽ O

|F |O(log(T )) +
∑
f∈F †

(E[Ma,f (T )])

+ E

 T∑
t=1

1

(
Ha,f∗

a
(t)
)

⩽ O

|F †| log(T ) + E[Ma,F †
a
(T )] + E[M

a,F̄ †
a
(T )] + E

 T∑
t=1

1

(
Ha,f∗

a
(t)
) .

This completes the proof of (E.4). We now prove (E.5). We note that

E
[
Ca,f∗

a
(T )

]
= E

 T∑
t=1

1

(
fa(t) = f ,Ha,f∗

a
(t)
) ⩽ E

 T∑
t=1

1

(
Ha,f∗

a
(t)
) .

This completes the proof.

Proof of (L4) in Lemma 6.3.1

We restate (L4) from Lemma 6.3.1 below:
Lemma E.2.4. For any i ∈ [K] we have

i∑
j=1

∑
a∈Aj

E

 T∑
t=1

1

(
Ha,f∗

a
(t)
) = O

Ci|F |
 i∑
j=1
|Aj |

 log(T )
(

1 + 1
∆2

) ,

where Ci is a constant dependent on market Mi such that C1 < C2 < ... < CK .

Proof. For any k ∈ [K], define

Sk =
k∑
i=1

∑
a∈Ai

E[
T∑
t=1

1

(
Ha,f∗

a
(t)
)
],

and
Z(T , ∆) = |F | log(T )

(
1 + 1

∆2

)
.

Define f(θ; ℓ) = ∑ℓ
j=1 θ

j , f(θ; 0) = 1 and g(θ; ℓ) = ∑ℓ−1
j=0 θ

j . Moreover, let

Hi =
∑
a∈Ai

E[
T∑
t=1

1

(
Ha,f∗

a
(t)
)
].

Consequently, Sk =
∑k
i=1Hi. We claim that
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SK ⩽ SK−ℓ + f(θ; ℓ)HK−ℓ +
ℓ∑

p=1
g(θ; p)

∑
a∈AK−p+1

∑
a′∈∪K−ℓ−1

j=1 Aj

E
[
Ma′,f∗

a
(T )

]

+ Z(T , ∆)
ℓ∑

r=1
f(θ; r)|AK−r|. (E.6)

We prove this via induction. We first show that this holds for ℓ = 1. Indeed note that

SK = SK−1 +HK = SK−1 +
∑
a∈AK

E

 T∑
t=1

1

(
Ha,f∗

a
(t)
)

⩽
(a)

SK−1 +
∑
a∈AK

∑
a′∈∪K−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]
+

∑
a∈AK

∑
a′∈AK−1

E
[
Ma′,f∗

a
(T )

]

=
(b)
SK−1 +

∑
a∈AK

∑
a′∈∪K−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]
+

∑
a′∈AK−1

∑
f∈FK

E
[
Ma′,f (T )

]

⩽
(c)
SK−1 +

∑
a∈AK

∑
a′∈∪K−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]
+

∑
a′∈AK−1

E
[
Ma′,Fa′ (T )

]

⩽
(d)

SK−1 + θ
∑

a′∈AK−1

E

 T∑
t=1

1

(
Ha′,f∗

a′ (t)
)+ ∑

a∈AK

∑
a′∈∪K−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]
+

θ|AK−1|Z(T , ∆)

=SK−1 + θHK−1 +
∑
a∈AK

∑
a′∈∪K−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]
+ θ|AK−1|Z(T , ∆),

where the (a) holds due to α−reducible structure which says that any agent in AK will
only get collided at stable arm if some agent from ∪k−1

j=1Aj has also requested the stable
firm. Next, (b) holds due to the fact that for any agent a ∈ Ak, the corresponding stable
match f∗

a ∈ Fk(see Remark 6.1.2). Next, (c) follows because for agents in AK−1, the set
of suboptimal firms is super set of FK . This is again a property of α−reducible structure.
Finally (d) follows from (L2) in Lemma 6.3.1 where θ is the corresponding constant from
big-oh notation.

Suppose the bound in (E.6) holds for ℓ = L for some integer ℓ ∈ {2, 3, ...,K}. Then we
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show it also holds for ℓ+ 1. That is,

SK ⩽
(a)

SK−ℓ + f(θ; ℓ)HK−ℓ +
ℓ∑

p=1
g(θ; p)

∑
a∈AK−p+1

∑
a′∈∪K−ℓ−1

j=1 Aj

E
[
Ma′,f∗

a
(T )

]

+ Z(T , ∆)
ℓ∑

r=1
f(θ; r)|AK−r|

=
(b)
SK−ℓ−1 + g(θ; ℓ+ 1)HK−ℓ +

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−1

j=1 Aj

E
[
Ma′,f∗

a
(T )

]

+ Z(T , ∆)
ℓ∑

r=1
f(θ; r)|AK−r|
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⩽
(c)
SK−ℓ−1 + g(θ; ℓ+ 1)

HK−ℓ +
ℓ∑

p=1

∑
a∈AK−p+1

∑
a′∈AK−ℓ−1

E
[
Ma′,f∗

a
(T )

]
+

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]
+ Z(T , ∆)

ℓ∑
r=1

f(θ; r)|AK−r|

⩽
(d)

SK−ℓ−1

+ g(θ; ℓ+ 1)
K−ℓ−1∑

p=1

∑
a′∈Ap

∑
a∈AK−ℓ

E[Ma′,f∗
a
] +

ℓ∑
p=1

∑
a∈AK−p+1

∑
a′∈AK−ℓ−1

E
[
Ma′,f∗

a
(T )

]
+

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]
+ Z(T , ∆)

ℓ∑
r=1

f(θ; r)|AK−r|

=
(e)
SK−ℓ−1

+ g(θ; ℓ+ 1)
K−ℓ−2∑

p=1

∑
a′∈Ap

∑
a∈AK−ℓ

E[Ma′,f∗
a
] +

ℓ+1∑
p=1

∑
a∈AK−p+1

∑
a′∈AK−ℓ−1

E
[
Ma′,f∗

a
(T )

]
+

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]
+ Z(T , ∆)

ℓ∑
r=1

f(θ; r)|AK−r|

⩽
(f)

SK−ℓ−1 + g(θ; ℓ+ 1)
K−ℓ−2∑

p=1

∑
a′∈Ap

∑
a∈AK−ℓ

E[Ma′,f∗
a
] +

∑
a′∈AK−ℓ−1

E
[
Ma′,Fa′ (T )

]
+

ℓ∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]
+ Z(T , ∆)

ℓ∑
r=1

f(θ; r)|AK−r|

=
(g)

SK−ℓ−1 + g(θ; ℓ+ 1)
 ∑
a′∈AK−ℓ−1

E
[
Ma′,Fa′ (T )

]
+

ℓ+1∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]
+ Z(T , ∆)

ℓ∑
r=1

f(θ; r)|AK−r|

⩽
(h)

SK−ℓ−1 + g(θ; ℓ+ 1) (θ|F |Z(T , ∆)|AK−ℓ−1|+ θHK−ℓ−1)

+
ℓ+1∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]
+ Z(T , ∆)

ℓ∑
r=1

f(θ; r)|AK−r|

=
(i)
SK−ℓ−1 + f(θ; ℓ+ 1)HK−ℓ−1 +

ℓ+1∑
p=1

g(θ; p)
∑

a∈AK−p+1

∑
a′∈∪K−ℓ−2

j=1 Aj

E
[
Ma′,f∗

a
(T )

]

+ Z(T , ∆)
ℓ+1∑
r=1

f(θ; r)|AK−r|.
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Here, (a) holds by the induction hypothesis; (b) holds by the definition of Sk, and of the
functions f(θ; ℓ) and g(θ; ℓ); (c) follows by rearranging terms and noting that g(θ; ·) is
increasing. Next, (d) holds by α-reducibility and the definition of Hk (using the same
analysis as in the base case of the induction). Then, (e) follows by splitting the terms. Next,
(f) holds by the definition of α-reducibility. Then, (g) follows by combining similar terms.
Next, (h) holds by (L2) in Lemma 6.3.1. Finally, (i) follows from combining similar terms.

Thus we conclude that induction claim (E.6) holds true. We know that S1 = 0 therefore
from (E.6) we obtain

Sk ⩽ Z(T , ∆)
K−1∑
r=1

f(θ; r)|AK−r| ⩽

K−1∑
j=1
|Aj |

KθK−1Z(T , ∆). (E.7)

The term Ck = kθk−1 in the statement. This completes the proof.

Proof of (L5) in Lemma 6.3.1

So only thing to bound is matching with superoptimal firms.
Lemma E.2.5. For any k ∈ [K] we have

k∑
j=1

∑
a∈Aj

∑
f∈Fa

E[Ma,f (T )] ⩽ O

Ci
k−1∑
j=1
|Aj |

 |F | log(T )
(

1 + 1
∆2

) ,

where Ci is a constant dependent on market Mi such that C1 < C2 < ... < CK .

Proof. For any k ∈ [K], define

S̃k =
k∑
i=1

∑
a∈Ai

E[Ma,Fa
(T )],

and
Z(T , ∆) = |F | log(T )

(
1 + 1/∆2

)
.

Define f(θ; ℓ) = ∑ℓ
j=1 θ

j , f(θ; 0) = 1 and g(θ; ℓ) = ∑ℓ−1
j=0 θ

j . Let

Hi =
∑
a∈Ai

E[
T∑
t=1

1

(
Ha,f∗

a
(t)
)
]

and
Mi =

∑
a∈Ai

E[Ma,Fa
(T )].



APPENDIX E. APPENDIX FOR CHAPTER 6 360

Then, S̃k =
∑k
i=1 Mi. We claim that

S̃k ⩽ O

θ̃k−1

k−1∑
j=1
|Aj |

 |F |Z(T , ∆)

 , (E.8)

where θ̃ is a constant greater than 1. Note that the bound holds for k = 1 as there is not
super-optimal firms for those agents. Let (E.8) holds till some integer K − 1 then we show
that it holds for K as well. We claim that

S̃K ⩽ S̃K−ℓ + f(θ̃; ℓ)MK−ℓ +
ℓ∑

p=1
g(θ̃; p)

∑
a∈AK−p+1

∑
f∈∪j⩽K−ℓ−1Fj

E [Ma,f ] +
ℓ∑

p=1
f(θ̃, p)HK−p

+ Z(T , ∆)
ℓ∑

p=1
f(θ̃, p)|AK−p|. (E.9)

We prove (E.8) by induction. First, consider the case ℓ = 1

S̃K =
K∑
i=1

∑
a∈Ai

E[Ma,Fa
(T )]

=
(a)

S̃K−1 +
∑
a∈AK

E[Ma,Fa
(T )]

⩽
(b)
S̃K−1 +

∑
a∈AK

∑
f∈∪j⩽K−2Fj

E[Ma,f (T )] +
∑
a∈AK

∑
f∈FK−1

E[Ma,f (T )]

=
(c)
S̃K−1 +

∑
a∈AK

∑
f∈∪j⩽K−2Fj

E[Ma,f (T )] +
∑

a′∈AK−1

∑
a∈AK

E[Ma,f∗
a′ (T )]

⩽
(d)

S̃K−1 + θ̃
∑

a′∈AK−1

E[Ma′,Fa′
(T )] +

∑
a∈AK

∑
a′∈∪j⩽K−2Aj

E[Ma,f∗
a′ (T )]

+
∑

a′∈AK−1

θ̃
(
Ha′,f∗

a′ + Z(T , ∆)
)

=
(e)
S̃K−1 + θ̃MK−1 +

∑
a∈AK

∑
f∈∪j⩽K−2Fj

E[Ma,f (T )] + θ̃HK−1 + Z(T , ∆)θ̃|AK−1|.

Here, (a) holds by definition. (b) holds by using the α-reducible structure, which ensures
that the set of superoptimal firms for any agent lies in markets preceding it. Next, (c) holds
by the property of α-reducible markets, which guarantees that for any firm f ∈ FK−1, there
exists an agent a′ ∈ AK−1 such that f = f∗

a′ . Then, (d) follows from Lemma E.4.4, and (e)
holds by rearranging the terms. Next, we show that if equation (E.8) holds for some ℓ, then
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it also holds for ℓ+ 1. That is,

S̃K ⩽
(a)

S̃K−ℓ + f(θ̃; ℓ)MK−ℓ +
ℓ∑

p=1
g(θ̃; p)

∑
a∈AK−p+1

∑
f∈∪j⩽K−ℓ−1Fj

E [Ma,f ] +
ℓ∑

p=1
f(θ̃, p)HK−p

+ Z(T , ∆)
ℓ∑

p=1
f(θ̃, p)|AK−p|

=
(b)
S̃K−ℓ−1

+ g(θ̃; ℓ+ 1)MK−ℓ +
ℓ∑

p=1
g(θ̃; p)

∑
a∈AK−p+1

∑
f∈∪j⩽K−ℓ−1Fj

E [Ma,f ] +
ℓ∑

p=1
f(θ̃, p)HK−p

+ Z(T , ∆)
ℓ∑

p=1
f(θ̃, p)|AK−p|

=
(c)
S̃K−ℓ−1 + g(θ̃; ℓ+ 1)

 ∑
a∈AK−ℓ

∑
f∈∪j⩽K−ℓ−2Fj

E [Ma,f ] +
∑

a∈AK−ℓ

∑
f∈FK−ℓ−1

E [Ma,f (T )]


+

ℓ∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j⩽K−ℓ−1Fj

E [Ma,f ] +
ℓ∑

p=1
f(θ̃, p)HK−p

+ Z(T , ∆)
ℓ∑

p=1
f(θ̃, p)|AK−p|

⩽
(d)

S̃K−ℓ−1 + g(θ̃; ℓ+ 1)
ℓ+1∑
p=1

∑
a∈AK−p+1

∑
f∈FK−ℓ−1

E [Ma,f (T )]


+

ℓ+1∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j⩽K−ℓ−2Fj

E [Ma,f ] +
ℓ∑

p=1
f(θ̃, p)HK−p

+ Z(T , ∆)
ℓ∑

p=1
f(θ̃, p)|AK−p|

=
(e)
S̃K−ℓ−1 + g(θ̃; ℓ+ 1)

 ∑
a′∈AK−ℓ−1

ℓ+1∑
p=1

∑
a∈AK−p+1

E
[
Ma,f∗

a′ (T )
]

+
ℓ+1∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j⩽K−ℓ−2Fj

E [Ma,f ] +
ℓ∑

p=1
f(θ̃, p)HK−p

+ Z(T , ∆)
ℓ∑

p=1
f(θ̃, p)|AK−p|
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⩽
(f)

S̃K−ℓ−1 + g(θ̃; ℓ+ 1)
(
θ̃HK−ℓ−1 + θ̃MK−ℓ−1 + θ̃Z(T , ∆)|AK−ℓ−1|

)

+
ℓ+1∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j⩽K−ℓ−2Fj

E [Ma,f ] +
ℓ∑

p=1
f(θ̃, p)HK−p

+ Z(T , ∆)
ℓ∑

p=1
f(θ̃, p)|AK−p|

=
(g)

S̃K−ℓ−1 + f(θ̃; ℓ+ 1)MK−ℓ−1+

+
ℓ+1∑
p=1

g(θ̃; p)
∑

a∈AK−p+1

∑
f∈∪j⩽K−ℓ−2Fj

E [Ma,f ] +
ℓ+1∑
p=1

f(θ̃, p)HK−p

+ Z(T , ∆)
ℓ+1∑
p=1

f(θ̃, p)|AK−p|.

Here, (a) follows from the induction hypothesis; (b) is by decomposing S̃K−ℓ; (c) follows
from the definition of MK−ℓ; (d) is by rearranging terms and using the fact that g(θ̃, ·) is
increasing. Next, (e) follows from rearranging terms and using the fact that for any f ∈ Fk
(for some k), there exists a′ ∈ Ak such that f = f∗

a′ . Then, (f) follows from Lemma E.4.4,
and (g) is obtained by combining similar terms. This concludes the induction proof.

We know that S̃1 = M1 = 0 because of α−reducible structure which ensures that these
firms do not have superoptimal firms. Thus in (E.8) if take ℓ = K − 1 then we get

S̃K ⩽
K−1∑
p=1

f(θ̃, p)HK−p + Z(T , ∆)
K−1∑
p=1

f(θ̃, p)|AK−p|

⩽
K−1∑
p=1

p∑
j=1

θ̃jHK−p + Z(T , ∆)
K−1∑
p=1

f(θ̃, p)|AK−p|

⩽
K−1∑
j=1

θ̃j
K−1∑
p=j

HK−p + Z(T , ∆)
K−1∑
p=1

f(θ̃, p)|AK−p|

=
(a)

K−1∑
j=1

θ̃jSK−j + Z(T , ∆)

K−1∑
j=1
|Aj |

Kθ̃K−1

⩽
(b)
Z(T , ∆)

K−1∑
j=1
|Aj |

K−1∑
j=1

θ̃j(K − j)θK−j−1 + Z(T , ∆)

K−1∑
j=1
|Aj |

Kθ̃K−1,

where SK−j in (a) is from proof of (L4) in Lemma 6.3.1 and (b) is by (E.7). Define
C̃k = kθ̃k−1 +

∑k−1
j=1 θ̃

j(k− j)θk−j−1. Thus we see that

S̃K ⩽ |F | log(T )
(

1 + 1
∆2

)K−1∑
j=1
|Aj |

 C̃K .
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E.3 Proof of Theorem 6.3.1
We now look at the joint regret for any k ∈ [K]. Before that, we define Z(T , ∆) =

|F | log(T )
(
1 + 1

∆2

)
. Note that

k∑
i=1

∑
a∈Ai

Ra =
(a)
O
(

k∑
i=1

∑
a∈Ai

E[Ma,Fa
(T )] +

k∑
i=1

∑
a∈Ai

∑
f∈F\{f∗

a }
E[Ca,f (T )]

+
k∑
i=1

∑
a∈Ai

E[
T∑
t=1

Ha,f∗
a
(t)]

)

=
(b)
O

 k∑
i=1

∑
a∈Ai

E[Ma,Fa
(T )] +

k∑
i=1

∑
a∈Ai

E[Ma,Fa
(T )] +

k∑
i=1

∑
a∈Ai

E[
T∑
t=1

Ha,f∗
a
(t)]


+O

|F | k∑
i=1
|Ai| log(T )


=
(c)
O

 k∑
i=1

∑
a∈Ai

E[Ma,Fa
(T )] +

k∑
i=1

∑
a∈Ai

E[
T∑
t=1

Ha,f∗
a
(t)]

+O(
k∑
i=1

∑
a∈Ai

|Fa|Z(T , ∆))

+O

|F | k∑
i=1
|Ai| log(T )


=
(d)
O(C̃k

 k∑
p=1
|Ap|

Z(T , ∆)) +O(

 k∑
p=1
|Ap|

CkZ(T , ∆)) +O(
k∑
p=1

∑
a∈Ap

|Fa|Z(T , ∆))

+O

|F | k∑
p=1
|Ap| log(T )


=
(e)
O

(Ck + C̃k)|F |

 k∑
p=1
|Ap|

 log(T )
(

1 + 1
∆2

)
,

where (a) holds due to (L1) in Lemma 6.3.1, (b) holds due to (L3) in Lemma 6.3.1, (c) is
due to (L2) in Lemma 6.3.1. Next, (d) is due to (L4)-(L5) in Lemma 6.3.1. Finally, (e)
follows by combining terms.

E.4 Technical Lemmas
In this section we present some technical lemmas which are helpful in the proofs in next
section.
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Lemma E.4.1. (Lemma 8.2,[228]) Let X1,X2, . . . ,XT be a sequence of independent 1-
subgaussian random variable, and µ̂(t) := 1

t

∑t
s=1Xs, ϵ > 0, a > 0 and

κ :=
n∑
t=1

1

µ̂t +
√

2a
t

⩾ ϵ

 , κ′ := u+
T∑

t=⌈u⌉
1

µ̂t +
√

2a
t

⩾ ϵ

 ,

where u = 2a
ϵ2 . Then,

E[κ] ⩽ E[κ′] ⩽ 1 + 2
ϵ2
(a+

√
πa+ 1).

Lemma E.4.2. Suppose we use the AB subroutine Algorithm 7 with η ⩽ 1/50 then the
following two inequalities hold:

E

 T∑
t=1

1

(
E

(r)
a,f (t) = 1,E(c)

a,f (t) = 1,Ha,f (t)
)

⩽ (1 +ϖ)E[Ma,f (T )] +O(log(T )) +ϖE[Ca,f (T )],
(E.10)

where 0 < ϖ ⩽ 32η < 1and

E

 T∑
t=1

1

(
E

(r)
a,f (t) = 0,E(c)

a,f (t) = 1,Hc
a,f (t)

)
⩽ O

log(T ) + E

 T∑
t=1

1 (Ha,f (t))

+ E[C⋆a,f (T )]

 .
(E.11)

Proof. To simplify the presentation of proof, let’s define

L
(adv)
a,f (T )

:=
T∑
t=1

(
1

(
E

(r)
a,f (t) = 1,E(c)

a,f (t) = 1,Ha,f (t)
)
− 1

(
E

(r)
a,f (t) = 1,E(c)

a,f (t) = 1,Hc
a,f (t)

))
The regret bound for adversarial bandit algorithm from Lemma E.1.1 under η ⩽ 1/50

implies

E

[
L

(adv)
a,f (T )

]
⩽ O(log(T )) +ϖE

[
min

{
M⋆
a,f (T ),C⋆a,f (T ),Ma,f (T ) +Ca,f (T )

}]
E

[
L

(adv)
a,f (T )− ℓa,f (T )

]
⩽ O(log(T )) +ϖE

[
min

{
M⋆
a,f (T ),C⋆a,f (T ),Ma,f (T ) +Ca,f (T )

}]
,

(E.12)

where ϖ ⩽ 32η and

ℓa,f (T ) =
T∑
t=1

(
1

(
E

(c)
a,f (t) = 1,Ha,f (t)

)
− 1

(
E

(c)
a,f (t) = 1,Hc

a,f (t)
))

,
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which denotes the total loss received by the adversarial bandit subroutine associated with
(a, f) in time T if it never take pruning action. Therefore, in (E.12) LHS in first inequality
is the regret associated with always pruning. While LHS in second inequality is the regret
associated with never pruning.

In the following proof we shall analyze each of the equations in (E.12) separately.

1. The first inequality in (E.12) implies

E

[
T∑
t=1

(
1

(
E

(r)
a,f (t) = 1,E(c)

a,f (t) = 1,Ha,f (t)
)
− 1

(
E

(r)
a,f (t) = 1,E(c)

a,f (t) = 1,Hc
a,f (t)

))]
⩽ O(log(T )) +ϖ (E[Ma,f (T ) +Ca,f (T )]) .

This in turn leads to

E

 T∑
t=1

(
1

(
E

(r)
a,f (t) = 1,E(c)

a,f (t) = 1,Ha,f (t)
))

⩽ E

[
1

(
E

(r)
a,f (t) = 1,E(c)

a,f (t) = 1,Hc
a,f (t)

)]
+O(log(T ))

+
1
2 (E[Ma,f (T ) +Ca,f (T )])

⩽ (1 +ϖ)E[Ma,f (T )] +O(log(T )) +ϖE[Ca,f (T )].

2. Using the definition of ℓa,f (T ) in the second inequality in (E.12) we obtain

E

[
T∑
t=1

(
−1

(
E

(r)
a,f (t) = 0,E(c)

a,f (t) = 1,Ha,f (t)
)
+ 1

(
E

(r)
a,f (t) = 0,E(c)

a,f (t) = 1,Hc
a,f (t)

))]
⩽ O(log(T ) + E[min{M⋆

a,f (T ),C⋆a,f (T )}]),

which implies

E

 T∑
t=1

1

(
E

(r)
a,f (t) = 0,E(c)

a,f (t) = 1,Hc
a,f (t)

)
⩽ O

(
E

 T∑
t=1

1

(
E

(r)
a,f (t) = 0,E(c)

a,f (t) = 1,Ha,f (t)
)+O(log(T ))

+ E[min{M⋆
a,f (T ),C⋆a,f (T )}]

)

⩽ O

E

 T∑
t=1

1 (Ha,f (t))

+ log(T ) + E[min{M⋆
a,f (T ),C⋆a,f (T )}]

 .

This concludes the proof.
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Lemma E.4.3 (Pruning stable match). For any a ∈ A,

E

 T∑
t=1

1

(
E

(r)
a,f∗

a
(t) = 0,E(c)

a,f∗
a
(t) = 1

)
︸ ︷︷ ︸

E[Term I]

⩽ O

E

 T∑
t=1

1

(
Ha,f∗

a
(t)
)+ log(T )



Proof. We note that

E[Term I] ⩽ E

[
T∑
t=1

1

(
E

(r)
a,f∗

a
(t) = 0,E(c)

a,f∗
a
(t) = 1,Ha,f∗

a
(t)
)

+
T∑
t=1

1

(
E

(r)
a,f∗

a
(t) = 0,E(c)

a,f∗
a
(t) = 1,Hc

a,f∗
a
(t)
) ]

⩽ O

E

 T∑
t=1

1

(
Ha,f∗

a
(t)
)+O(log(T )) + E[C⋆a,f∗

a
(T )]


⩽ O

E

 T∑
t=1

1

(
Ha,f∗

a
(t)
)+O(log(T ))


where the first inequality is due to (E.11) and the last inequality holds due to Lemma
E.2.3.

Lemma E.4.4. For any a ∈ A and a′ ∈ A\{a} we have

∑
a′∈A

E[Ma′,f∗
a
(T )] ⩽ O

E

 T∑
t=1

1

(
Ha,f∗

a
(t)
)+ |F |Z(T , ∆) + E[Ma,Fa

(T )]


Proof. For any agent a ∈ A we know that at every time step it either gets matched with
some firm or gets collided. This implies∑

f ′∈F
E[Ca,f ′(T )] +

∑
f ′∈F\{f∗

a }
E[Ma,f ′(T )] + E[Ma,f∗

a
(T )] = T . (E.13)

Furthermore, in T steps the firm f∗
a can get matched with some agents or remain unmatched.

This implies ∑
a′∈A\{a}

E[Ma′,f∗
a
(T )] + E[Ma,f∗

a
(T )] ⩽ T . (E.14)

Combining (E.13), (E.14) and Lemma E.2.3 we see that∑
a′∈A

E[Ma′,f∗
a
(T )] ⩽

∑
f ′∈F

E[Ca,f ′(T )] +
∑

f ′∈F\{f∗
a }

E[Ma,f ′(T )]

⩽ O

E

 T∑
t=1

1

(
Ha,f∗

a
(t)
)+ |F | log(T )

+O
(
E[Ma,Fa

(T )] + E[Ma,Fa
(T )]

)
.
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Note that from Lemma E.2.2 we have

∑
a′∈A

E[Ma′,f∗
a
(T )] ⩽ O

E

 T∑
t=1

1

(
Ha,f∗

a
(t)
)+ |F | log(T ) + |Fa|Z(T , ∆) + E[Ma,Fa

(T )]


⩽ O

E

 T∑
t=1

1

(
Ha,f∗

a
(t)
)+ |F |Z(T , ∆) + E[Ma,Fa

(T )]

 .

This completes the proof.

E.5 Thompson Sampling based Decentralized
Matching Algorithm

Algorithmic Description
In this section we present a variant of Algorithm 6 but with Thompson sampling based
stochastic bandit subroutine. For simplicity, we consider the scenario where the noise in
(6.1) is sampled from a normal distribution. To compute the Thompson sampling index
each agent a maintains an empirical average of utility generated from any firm f till time
t which is µ̂a,f (t− 1). At time step t any agent a ∈ A will maintain an index of every
firm f ∈ F by sampling it from a normal distribution with mean µ̂a,f (t− 1) and variance

1∑
f∈F Ma,f

(refer line 3 in Algorithm 16).

Bounds for Algorithm 16
We first present the regret bound for Algorithm 16.
Theorem E.5.1. Suppose every agent a ∈ A uses Algorithm 16. Then for any i ∈ [K] :

i∑
j=1

∑
a∈Aj

E[Ra(T )] = O
(
Ci|F ||A|

(
1

∆2 log
( 1

∆

)
+

log(T )
∆2 + log(T )

))
,

where ∆ = mina,f ∆a,f and Ci is a constant dependent on market Mi and C1 < C2 < ... <
CK .

The only difference between proof of Theorem 6.3.1 and Theorem E.5.1 is the bound on
expected number of matchings with suboptimal firms (refer (L2) in Lemma 6.3.1). We now
present the analogue of (L2) of Lemma 6.3.1 below.
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Algorithm 16 Thompson Sampling based Decentralized Matching Algorithm (TS-DMA)
1: Initialize: µa,f ← 0, Na,f ← 0, πa,f ← 0.5, qa,f ← 0.5, ℓa,f ← 0 ∀a ∈ A, f ∈ F
2: for t = 1 to T do
3: for each f ∈ F do
4: Sample θa,f ∼ N

(
µa,f , 1∑

f ′∈F Na,f ′

)
5: end for
6: Let θa ← descending sort of {θa,f}f∈F
7: i← 1
8: while i ⩽ n do
9: f ← θ

[i]
a

10: Sample za,f ∼ Bernoulli(πa,f )
11: if za,f = 0 then
12: (qa,f , πa,f , ℓa,f )← PullModule(za,f , qa,f , πa,f , ℓa,f , matcheda)
13: else if za,f = 1 then
14: Query firm f and receive (ra, matcheda)
15: µa,f ← matcheda ·

µa,f ·Na,f+ra

Na,f+1 + (1−matcheda) · µa,f
16: Na,f ← Na,f + matcheda
17: (qa,f , πa,f , ℓa,f )← PullModule(za,f , qa,f , πa,f , ℓa,f , matcheda)
18: break
19: end if
20: i← i+ 1
21: end while
22: if i = |F|+ 1 then
23: Query firm θ

[1]
a and receive (ra, matcheda)

24: µa,f ← matcheda ·
µa,f ·Na,f+ra

Na,f+1 + (1−matcheda) · µa,f
25: Na,f ← Na,f + matcheda
26: end if
27: end for
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Lemma E.5.1. For any i ∈ [K], the expected matches with suboptimal firm satisfies
i∑

j=1

∑
a∈Aj

E[Ma,Fa
(T )]

= O

 i∑
j=1

∑
a∈Aj

|Fa|
(

1
∆2 log

( 1
∆

)
+

log(T )
∆2 + log(T )

)
+ E

 T∑
t=1

Ha,f∗
a
(t)

 ,

where ∆ = mina,f ∆a(f)

Proof. Note that we call an agent a matches with firm f at time t if Ya(t) = 1 and fa(t) =
f . Therefore the total number of matchings between a and f till time T is Ma,f (T ) =∑T
t=1 1 (Ya(t) = 1, fa(t) = f). Therefore from Lemma E.2.1 and Remark E.2.1 the following

holds for every f ∈ Fa:

Ma,Fa
(T ) =

∑
f∈Fa

T∑
t=1

1 (Ya(t) = 1, fa(t) = f)

⩽
∑
f∈Fa

T∑
t=1

(
1

(
Ya(t) = 1, fa(t) = f , Ta,f (t) ⩾ Ta,f∗

a
(t)
)
+ 1

(
E

(r)
a,f (t) = 1,E(r)

a,f∗
a
= 0

))

⩽
∑
f∈Fa

T∑
t=1

1

(
Ya(t) = 1, fa(t) = f , Ta,f (t) ⩾ Ta,f∗

a
(t)
)

+
T∑
t=1

∑
f∈Fa

1

(
E

(r)
a,f (t) = 1,E(r)

a,f∗
a
= 0

)

⩽
∑
f∈Fa

T∑
t=1

1

(
Ya(t) = 1, fa(t) = f , Ta,f (t) ⩾ Ta,f∗

a
(t)
)

︸ ︷︷ ︸
Term A

+
T∑
t=1

1

(
E

(r)
a,f∗

a
= 0

)
︸ ︷︷ ︸

Term B

.

Let’s first analyze Term A. Define Ft−1 = {{fa(τ ),Ya(τ ), ra(τ )}t−1
τ=1}a∈A. We first ob-

serve that

1

(
Ya(t) = 1,E(r)

a,f (t) = 1,E(c)
a,f (t) = 1, Ta,f∗

a
⩽ Ta,f (t)

)
= 1

(
Ya(t) = 1,E(r)

a,f (t) = 1,E(c)
a,f (t) = 1, Ta,f∗

a
⩽ Ta,f (t), Ta,f (t) < µ̂a,f∗

a
− ϵ

)
︸ ︷︷ ︸

Term C

+ 1

(
Ya(t) = 1,E(r)

a,f (t) = 1,E(c)
a,f (t) = 1, Ta,f∗

a
⩽ Ta,f (t), Ta,f (t) ⩾ µ̂a,f∗

a
− ϵ

)
︸ ︷︷ ︸

Term D

.

(E.15)

We first provide a bound on Term C. Prior to that let’s define some notations. Let’s
define G(s)

a,f (ϵ) = 1− F (s)
a,f (µ̂a,f∗

a
− ϵ). Furthermore, conditioned on the event that atleast
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one arm is pulled, for any agent a let’s define Pa(t) to be the set of arms that are pruned
before one is chosen to be played at time t. Moreover let Ãselect

a,f (t) be a random variable
such that Ãselect

a,f (t) = 1 iff f is the firm with maximum index value in all of the non-pruned
arms at time t. That is, Ãselect

a,f (t) = 1

(
f ∈ arg maxf ′∈F\{P(t)∪{f∗

a }} Ta,f ′(t)
)

. Using this the
following holds:

E[Term C] = E[E[Term C|Ft−1]]

= E[Pr
(
Ya(t) = 1,E(r)

a,f (t) = 1,E(c)
a,f (t) = 1, Ta,f∗

a
⩽ Ta,f (t), Ta,f (t) < µ̂a,f∗

a
− ϵ|Ft−1

)
]

⩽ E
[
Pr
(
Ta,f∗

a
< µ̂a,f∗

a
− ϵ|Ft−1

)
Pr
(
Ya(t) = 1, Ãselect

a,f (t) = 1, Ta,f (t) < µ̂a,f∗
a
− ϵ|Ft−1

)]
.

(E.16)

Moreover, note that

Pr
(
Ya(t) = 1,E(c)

a,f∗
a
(t) = 1, Ta,f (t)(t) < µ̂a,f∗

a
− ϵ|Ft−1

)
⩾ Pr

(
Ya(t) = 1, Ãselect

a,f (t) = 1, Ta,f (t)(t) < µ̂a,f∗
a
− ϵ, Ta,f∗

a
(t) > µ̂a,f∗ − ϵ|Ft−1

)
= Pr

(
Ta,f∗

a
(t) > µ̂a,f∗

a
(t− 1)− ϵ|Ft−1

)
(E.17)

· Pr
(
Ya(t) = 1, Ãselect

a,f (t) = 1, Ta,f (t)(t) < µ̂a,f∗
a
− ϵ|Ft−1

)
. (E.18)

Using (E.17) in (E.16), we obtain the following

E[Term C] = E

[ Pr
(
Ta,f∗

a
< µ̂a,f∗

a
− ϵ|Ft−1

)
Pr
(
Ta,f∗

a
(t) > µ̂a,f∗

a
(t− 1)− ϵ|Ft−1

) ·
Pr
(
Ya(t) = 1,E(c)

a,f∗
a
(t) = 1, Ta,f (t)(t) < µ̂a,f∗

a
− ϵ|Ft−1

) ]

= E

1−G
(Ma,f∗

a
(t−1))

a,f∗
a

(ϵ)

G
(Ma,f∗

a
(t−1))

a,f∗
a

(ϵ)
Pr
(
Ya(t) = 1,E(c)

a,f∗
a
(t) = 1, Ta,f (t)(t) < µ̂a,f∗

a
− ϵ|Ft−1

)

⩽ E

1−G
(Ma,f∗

a
(t−1))

a,f∗
a

(ϵ)

G
(Ma,f∗

a
(t−1))

a,f∗
a

(ϵ)
Pr
(
Ya(t) = 1,E(c)

a,f∗
a
(t) = 1|Ft−1

) .
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Further, evaluating the expectation of Term C we have:

E[Term C] =
T∑
t=1

E

1−G
(Ma,f∗

a
(t−1))

a,f∗
a

(ϵ)

G
(Ma,f∗

a
(t−1))

a,f∗
a

(ϵ)
1

(
E

(c)
a,f∗

a
(t) = 1,E(r)

a,f∗
a
(t) = 1,Ya(t) = 1

)

=
T∑
t=1

t∑
s=1

E

1−G(s)
a,f∗

a
(ϵ)

G
(s)
a,f∗

a
(ϵ)

1

(
E

(c)
a,f∗

a
(t) = 1,E(r)

a,f∗
a
(t) = 1,Ya(t) = 1,Ma,f∗

a
(t− 1) = s

)
⩽ E

 T∑
s=1

1−G(s)
a,f∗

a
(ϵ)

G
(s)
a,f∗

a
(ϵ)

T∑
t=s+1

1 (Ma,f (t− 1) = s,Ma,f (t) = s+ 1)


⩽

∞∑
s=0

1−G(s)
a,f∗

a
(ϵ)

G
(s)
a,f∗

a
(ϵ)

⩽
1
ϵ2

log(1
ϵ
),

where the last inequality is due to [228]. Now let’s look at Term D. Let’s set of time indices
when Ja,f = {t : G(Ma,f (t−1))

a,f (ϵ) > 1/T}.

E[Term D]

=
T∑
t=1

E

[
1

(
Ya(t) = 1,E(r)

a,f (t) = 1,E(c)
a,f (t) = 1, Ta,f∗

a
⩽ Ta,f (t), Ta,f (t) ⩾ µ̂a,f∗

a
− ϵ

)]

⩽
∑

t∈Ja,f

E

[
1

(
Ya(t) = 1,E(r)

a,f (t) = 1
)]

︸ ︷︷ ︸
Term E

+
∑

t ̸∈Ja,f

E
[
1

(
Ta,f (t) ⩾ µ̂a,f∗

a
− ϵ

)]
︸ ︷︷ ︸

Term F

.

Let’s first analyze the Term E above. Note that
∑

t∈Ja,f

1

(
Ya(t) = 1,E(r)

a,f (t) = 1
)

⩽
T∑
t=1

t−1∑
s=1

1

(
Ya(t) = 1,E(r)

a,f (t) = 1,Gsa,f (ϵ) >
1
T

,Ma,f (t− 1) = s,Ma,f (t) = s+ 1
)

=
T−1∑
s=0

1

(
G

(s)
a,f (ϵ) >

1
T

) T∑
t=s+1

1 (Ma,f (t− 1) = s,Ma,f (t) = s+ 1)

=
T−1∑
s=0

1

(
G

(s)
a,f (ϵ) >

1
T

)
⩽ O

(
log(T )

(∆a,f − ϵ)2 + log(T )
)

,

where the last property is a property of concentration of normal distribution and is standard
in frequentist Thompson sampling analysis. For reader’s reference we point to the book
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[228]. Next, we bound Term F below:

∑
t ̸∈Ja,f

E
[
1

(
Ta,f (t) ⩾ µ̂a,f∗

a
− ϵ

)]
=

T∑
t=1

E

[
1

(
Ta,f (t) ⩾ µ̂a,f∗

a
− ϵ,G(Ma,f (t−1))

a,f (ϵ) ⩽
1
T

)]

=
T∑
t=1

E

[
E

[
1

(
Ta,f (t) ⩾ µ̂a,f∗

a
− ϵ,G(Ma,f (t−1))

a,f (ϵ) ⩽
1
T

)]
|Ft−1

]

=
T∑
t=1

E

[
G

(Ma,f (t−1))
a,f (ϵ)1

(
G

(Ma,f (t−1))
a,f (ϵ) <

1
T

)]
⩽ 1.

Combining the bounds on Term C, Term E and Term F and choosing ϵ = ∆
2 we have

∑
f∈Fa

E[Ma,f (T )] ⩽ |Fa|O
(

1
∆2 log

( 1
∆

)
+

log(T )
∆2 + log(T )

)

+ E

 T∑
t=1

1

(
E

(c)
a,f∗

a
(t) = 1,E(r)

a,f∗
a
(t) = 0

)
⩽ |Fa|O

(
1

∆2 log
( 1

∆

)
+

log(T )
∆2 + log(T )

)
+O

E

 T∑
t=1

1

(
Ha,f∗

a
(t)
) ,

where the second inequality is due to Lemma E.4.3. This concludes the proof.
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Appendix F

Appendix for Chapter 7

F.1 Proof of Main Results
Note that proof of Theorem 7.2.1, follows immediately from Lemma 7.2.1 as stated in Section
7.2. Therefore, in this section we provide the proof of Lemma 7.2.1.

Before presenting the proof, we introduce some notations which are crucial for the subse-
quent exposition. Let Γℓ be the number of time steps in ℓth interval when there is a change
in the underlying preference of any player. For k ∈ [Γℓ], let tℓk be the kth time step when
there is change in preference of some player. Let tℓ0 = tℓs. Before presenting the proof we
introduce few definitions about matching market which are crucial in the proof.
Definition F.1.1 (Set of all Matchings Blocked by (pj , ak, ak′)). For a fixed preference
ordering, the set of all matching in which player pj is matched to ak′ and (pj , ak) is a
blocking pair is denoted by Bj,k,k′.
Definition F.1.2 (Cover of a Set of Matchings). Let Q denote be set of triplets (pj , ak, ak′).
For a fixed preference ordering of players and set S of matchings, we say Q is a cover of set
S, or Q ∈ C(S), if ⋃(pj ,ak,ak′ )∈QBj,k,k′ ⊇ S.

Lemma F.1.1 (Restatement of Lemma 7.2.1). Suppose Assumption 7.1.1 holds. Then,
under the RCB algorithm (Algorithm 8), the pessimal regret for a player i between (ℓ− 1)th
restart and ℓth restart is given by

Riℓ ⩽ O(KLℓH) +O
(
K

(
1 + log(H)

∆2

))
.
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Proof. We note that the regret in any interval ℓ can be decomposed as follows:

Riℓ = E

 tℓe∑
t=tℓs

(µi,t(mt(i))− µi,t(mt(i)))


= E

 tℓe∑
t=tℓs

K∑
k=1

I(mt(i) = k) (µi,t(mt(i))− µi,t(k))


⩽ E

 tℓe∑
t=tℓs

K∑
k=1

I(mt(i) = k)|µi,t(mt(i))− µi,t(k)|


⩽ E

2µ̄
K∑
k=1

tℓe∑
t=tℓs

I(mt(i) = k,mtis unstable)



⩽ E

2µ̄
K∑
k=1

Γℓ−1∑
q=0

tℓq+1−1∑
t=tℓq

I(mt(i) = k,mtis unstable)


⩽ E

2µ̄
(

K∑
k=1

tℓ1−1∑
t=tℓ0

I(mt(i) = k,mtis unstable)

︸ ︷︷ ︸
Term A

+
K∑
k=1

Γℓ−1∑
q=1

tℓq+1−1∑
t=tℓq

I(mt(i) = k,mtis unstable)

︸ ︷︷ ︸
Term B

).

First we bound Term A. We note that this term can be bounded similar to analysis in
[256] for the setting where the preferences are stationary. This is because for t ∈ [tℓ0, tℓ1 − 1]
the preferences do not change and at t = tℓ0 the UCB are reintitialized by players as per
Algorithm 8. We provide the detailed proof here for the sake of completeness.

For any interval ℓ, player pi and arm ak, let Mℓ
ik denote the unstable matchings where

player pi is matched to arm ak based on the preferences before the first change in the interval
ℓ. Furthermore, for any matching m let Tm([t̃, t̃′]) denote the number of time steps when
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mt = m for t ∈ [t̃, t̃′]. Note that for any k and Qℓ ∈ C(Mℓ
ik)

E

tℓ1−1∑
t=tℓ0

I(mt(i) = k,mtis unstable)

 ⩽ E

 ∑
m∈Mℓ

ik

Tm([t
ℓ
0, tℓ1 − 1])


⩽ min

Qℓ∈C(Mℓ
ik)

E

 ∑
(pj ,as,as′ )∈Qℓ

∑
m∈Bj,s,s′

Tm([t
ℓ
0, tℓ1 − 1])


⩽ E

 ∑
(pj ,as,as′ )∈Q̃ℓ

∑
m∈Bj,s,s′

Tm([t
ℓ
0, tℓ1 − 1])


(a)
⩽ E

 ∑
(pj ,as,as′ )∈Q̃ℓ

5 + 6 log(H)

∆2
j,s,s′




(b)
⩽ E

 ∑
(pj ,as,as′ )∈Q̃ℓ

(
5 + 6 log(H)

∆2

)
⩽ C̄

(
5 + 6 log(H)

∆2

)
,

where

Q̃ℓ ∈ arg min
Qℓ∈C(Mℓ

ik)
E

 ∑
(pj ,as,as′ )∈Qℓ

∑
m∈Bj,s,s′

Tm([t
ℓ
0, tℓ1 − 1])

 ,

and C̄ = maxℓ |Q̃ℓ|. Here, inequality (a) follows due to the property of UCB estimates (refer
[256, Proof of Theorem 3]) and (b) follows from Assumption 7.1.1-(ii). Therefore, we have

E[Term A] ⩽ C̄K

(
5 + 6 log(H)

∆2

)
.

We next bound Term B. Note that by definition of Lℓ we have

Term B =
K∑
k=1

Γℓ−1∑
q=1

tℓq+1−1∑
t=tℓq

I(mt(i) = k,mtis unstable)

=
K∑
k=1

tℓe∑
t=tℓ1

I(mt(i) = k,mtis unstable) ⩽ KLℓH.

Thus, we have

Rℓi ⩽ 2µ̄C̄K
(

5 + 6 log(H)

∆2

)
+ 2µ̄KLℓH.
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Appendix G

Appendix for Chapter 8

G.1 Properties of Depth and Height
In the main text, we recursively defined some dynamical quantities, such as the time evo-
lution of the traffic flows w ∈ R|A| and the latency-to-go z ∈ R|A|, in a component-wise
fashion, either from the origin of the Condensed DAG G towards the destination, or from
the destination to the origin. To facilitate these recursive definitions, we require the following
characterizations regarding the depths and heights of arcs in a Condensed DAG G.

Depth
First, we define the concept of depth of a directed acyclic graph (DAG), which will be crucial
for the remaining exposition.
Definition G.1.1 (Depth of a DAG). Given a DAG G = (I,A) describing a single-origin
single-destination traffic network, the depth of G, denoted ℓ(G), is defined by:

ℓ(G) := max
a∈A

ℓa.

In this work, we consider only acyclic routes in traffic networks with finitely many edges,
so we have ℓ(G) <∞. Moreover, the case ℓ(G) = 1 corresponds to a parallel link network, for
which the results of the following proposition have already been analyzed in [270]. Therefore,
we assume below that ℓ(G) ⩾ 2.
Proposition G.1.1. Given a Condensed DAG G = (I,A) with the route set R:

1. For any a ∈ A, we have ℓa = 1 if and only if ia = o. Similarly, if ℓa = ℓ(G), then
ja = d.

2. For any fixed r ∈ R, and any a, a′ ∈ r with ℓa,r < ℓa′,r, we have ℓa < ℓa′ i.e., arcs
along a route have strictly increasing depth from the origin to the destination.
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3. Fix any a ∈ A, and any r ∈ R containing a such that ℓa,r = ℓa. Then, for any a′ ∈ R
preceding a in r, we have ℓa′,r = ℓa′.

4. For each depth k ∈ [ℓ(G)] := {1, · · · , ℓ(G)}, there exists some a ∈ A such that ℓa = k.

Proof.

1. If ℓa ̸= 1, then ℓa ⩾ 2, so there exists at least one route r ∈ R containing a ∈ A such
that ℓa,r ⩾ 2. Thus, ia ̸= o (otherwise the first ℓa,r − 1 arcs of r would form a cycle).
Conversely, if ia ̸= o, then no route r ∈ R contains a ∈ A as its first arc, i.e., ℓa,r ⩾ 2
for each r ∈ R containing a. Thus, ℓa = maxr∈R:a∈r ℓa,r ⩾ 2; in particular, ℓa ̸= 1.
This establishes that ℓa = 1 if and only if ia = o.

Now, suppose by contradiction that there exists some a ∈ A such that ℓa = ℓ(G)
but ja ̸= d. Fix any r ∈ R such that a ∈ r and ℓa,r = ℓa. Then a cannot be at the
end of R, since by definition, routes must end at d. Let a′ ∈ r be the arc immediately
after a in r. Then ℓa′ ⩾ ℓa′,r = ℓa,r + 1 = ℓ(G) + 1, a contradiction to the definition
of ℓ(G).

2. Fix r ∈ R, a, a′ ∈ r such that ℓa,r < ℓa′,r. If ℓa = 1, then ℓa′ ⩾ ℓa′,r > ℓa,r = 1 = ℓa,
and we are done. Suppose ℓa ⩾ 2. By definition of ℓa, there exists some route r2 such
that ℓa,r2 = ℓa. Construct a new route r3 ∈ R by replacing the first ℓa,r arcs of r with
the first ℓa,r2 arcs of r2. Then ℓa′ ⩾ ℓa′,r3 = ℓa′,r − ℓa,r + ℓa,r2 > ℓa,r2 = ℓa.

3. Fix any a ∈ A, and any r ∈ R containing a such that ℓa,r = ℓa. Suppose by contradic-
tion that there exists some a′ ∈ R, preceding a in r, for which ℓa′ ⩾ ℓa′,r + 1. Then,
by applying the second part of this lemma along the (ℓa,r − ℓa′,r) arcs of R from a′ to
a, we find that ℓa ⩾ ℓa′ + (ℓa,r − ℓa′,r) ⩾ ℓa,r + 1 = ℓa + 1, a contradiction.

4. Fix any arc a ∈ A with ℓa = ℓ(G). Then there exists some r ∈ R containing a such
that ℓa,r = ℓa = ℓ(G). It follows from the third part of this proposition that, for each
k ∈ [ℓ(G)], the k-th arc in R is of depth k.

Height
Next, we define the concept of height of a directed acyclic graph (DAG), which will be crucial
for the remaining exposition.
Definition G.1.2 (Height of a DAG). Given a DAG G = (I,A) describing a single-origin
single-destination traffic network, the height of G, denoted m(G), is defined by:

m(G) := max
a∈A

ma.
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Since the traffic network under study is finite, and we consider only acyclic routes, we
have m(G) < ∞. Moreover, the case m(G) = 1 corresponds to a parallel link network,
for which the results of the following proposition have already been extensively analyzed in
[270]. We will henceforth assume that m(G) ⩾ 2.
Proposition G.1.2. Given an Condensed DAG G = (I,A) with the route set R:

1. For any a ∈ A, we have ma = 1 if and only if ja = d. Similarly, if ma = m(G), then
ia = o.

2. For any fixed r ∈ R, and any a, a′ ∈ r with ma,r < ma′,r, we have ma < ma′ i.e., arcs
along a route from the origin to the destination have strictly decreasing depth.

3. Fix any a ∈ A, and any r ∈ R containing a such that ma,r = ma. Then, for any
a′ ∈ R following a in r, we have ma′,r = ma′.

4. For each height k ∈ [m(G)] := {1, · · · ,m(G)}, there exists an arc a ∈ A such that
ma = k.

The proof of Proposition G.1.2 parallels that of Proposition G.1.1, and is omitted for
brevity.

G.2 Proofs of Results in Section 8.2
Proof of Lemma 8.2.1 Here, we establish Lemma 8.2.1, restated as follow: The map
F :W → R, as given below, is strictly convex.

F (w) :=
∑

[a]∈AO

∫ w[a]

0
ℓ[a](u)du+

1
β

∑
i̸=d

 ∑
a∈A+

i

wa lnwa −
 ∑
a∈A+

i

wa

 ln
 ∑
a∈A+

i

wa

.

For convenience, we define f[a] :W → R, χi : R|A+
i | → R, F :W → R for each [a] ∈ AO,

i ∈ I\{d} by:

f[a](w) :=
∫ w[a]

0
ℓ[a](u)du, ∀ [a] ∈ AO,

χi(wA+
i
) :=

∑
a∈A+

i

wa lnwa −
 ∑
a∈A+

i

wa

 ln
 ∑
a∈A+

i

wa

, ∀ i ̸= I\{d},

where wA+
i
∈ R|A+

i | denotes the components of w corresponding to arcs in A+
i . Then:

F (w) =
∑

[a]∈A0

f[a](w) +
1
β

∑
i∈I\{d}

χβi (w).
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Also, for convenience, define:

Ws :=

w ∈ R|A| :
∑
a∈A+

i

wa =
∑
a∈A−

i

wa, ∀ i ̸= o, d,
∑
a∈A+

o

wa = 0.
. (G.1)

Essentially, Ws is the tangent space of the linear manifold with boundary W . Note that,
using the notation described in Chapter 8, we can rewrite (G.1) as:

Ws =
{
eA−

i
− eA+

i
: i ̸= o, d

}⊥
∩
{
eA+

o

}⊥
.

We can now establish the strict convexity of F .
We first establish the convexity of F . It suffices to show that f[a] and χi are convex for

each [a] ∈ AO, i ∈ I\{d}. Note that each f[a] is convex since it is the composition of a
convex function (g(w) =

∑
a∈A0

∫wa
0 sa(u)du) with a linear function (w[a] :=

∑
a′∈[a] wa′).

We show below that χi is convex, for each i ∈ I\{d}.
Fix i ∈ I\{d}. For any a, a′ ∈ A+

i and each w ∈ W :

∂2χi
∂wa∂wa′

(w) =
1
wa

1{a′ = a} − 1∑
ā∈A+

i
wā

.

Thus, for any y ∈ R|A+
i |:

y⊤∇2
wχi(w)y

=
∑

a,a′∈A+
i

yaya′
∂2χi

∂wa∂wa′
(w)

=
∑
a∈A+

i

y2
a

wa
− 1∑

ā∈A+
i
wā
·
∑

a,a′∈A+
i

yaya′

=
1∑

ā∈A+
i
wā

 ∑
ā∈A+

i

wā ·
∑
a∈A+

i

y2
a

wa
−

 ∑
a′∈A+

i

ya′


2

=
1∑

ā∈A+
i
wā

 ∑
ā∈A+

i

(√
wā
)2
·
∑
a∈A+

i

 ya√
wa

2

−

 ∑
a′∈A+

i

√
wa′ · ya′

√
wa′


2

⩾ 0, (G.2)

where the final inequality follows from the Cauchy-Schwarz inequality. Cauchy-Schwarz also
implies that equality holds in (G.2) if and only if the vectors (

√
wa)a∈A+

i
∈ R|A+

i | and
(ya/
√
wa)a∈A+

i
∈ R|A+

i | are parallel, i.e., if (ya)a∈A+
i

and (wa)a∈A+
i

are scalar multiples of
each other. This shows that χi is convex, and dim(N(∇2

wχi)) = 1.
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Second, suppose by contradiction that F is not strictly convex on W . Then there exists
some w̄ ∈ W , z ∈ Ws\{0} such that:

z⊤∇2
wF (w̄)z = 0.

Since ∇2
wF (w̄) is symmetric positive semidefinite, this is equivalent to stating that z is in

N(∇2
wF (w̄)), the null space of ∇2

wF (w̄). Let Az denote the set of arc indices for which z
has a nonzero component, i.e.:

Az := {a′ ∈ A : za′ ̸= 0}.

Since z is not the zero vector, Az is non-empty. Since there are a discrete and finite number
of levels of G, there exists some a ∈ Az such that ℓa ⩽ ℓa′ for all a′ ∈ Ay, i.e., ℓa = min{ℓa′ :
a′ ∈ Ay}. Without loss of generality, we consider the case za > 0 (if not, then replace z with
−z, which would also be a nonzero vector in N(∇2

wF (w̄))). We claim that wa ̸= 0, and that
for all a′ ∈ A+

ia :

za′ = za ·
wa′

wa
⩾ 0.

To see this, note that otherwise, the vectors (za)a∈A+
i
∈ R|A+

i | and (wa)a∈A+
i

are not parallel,
and so equality cannot be obtained in (G.2), i.e.,:

z⊤∇2
wχi(w̄)z > 0,

where, with a slight abuse of notation, we have defined χi(w) = χi(A
+
i ). As a result:

z⊤∇2
wF (w̄)z

=
∑
[a]∈A

z⊤∇2
wf[a](w̄)z +

1
β

∑
i′ ̸=d

z⊤∇2
wχi′(w̄)z

⩾
1
β
z⊤∇2

wχi(w̄)z

> 0,

a contradiction. Thus, za > 0, and za′ ⩾ 0 for each a′ ∈ A+
ia , so:∑

a′∈A+
ia

za′ > 0.

If ℓa = 1, i.e., ia = o, we arrive at a contradiction, since the fact that z ∈ Ws implies∑
a′∈A+

ia
za′ = 0. If ℓa > 1, we also arrive at a contradiction, since the fact that z ∈ Ws

implies: ∑
â∈A−

ia

zâ =
∑

a′∈A+
ia

za′ > 0,
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so there exists at least one ℓâ ∈ A−
ia with zâ > 0. Then, by definition of a ∈ A, we have

ℓa ⩽ ℓâ; this contradicts Proposition G.1.1, Part 2, which implies that since â ∈ A−
ia , there

exists at least one arc containing â immediately before a ∈ A, and thus ℓâ ⩽ ℓa − 1. These
contradictions complete the proof of the strict convexity of F on W .

Proof of Theorem 8.2.1 We present the proof of Theorem 8.2.1, restated as follows: The
Condensed DAG Equilibrium w̄β ∈ W exists, is unique, and is the unique optimal solution
to the following convex optimization problem:

min
w∈W

∑
[a]∈A0

∫ w[a]

0
ℓ[a](u)dz +

1
β

∑
i̸=d

 ∑
a∈A+

i

wa lnwa −
 ∑
a∈A+

i

wa

 ln
 ∑
a∈A+

i

wa

.

Proof. (Proof of Theorem 8.2.1) The following proof parallels that of Baillon, Cominetti
[26, Theorem 2]. Recall that N denotes the set of nodes of the corresponding DAG. The
Lagrangian L : W ×R|N |−1 ∈ R|A| → R corresponding to the above optimization problem
is:

L(w,µ,λ) :=
∑

[a]∈A0

∫ w[a]

0
ℓ[a](u)dz +

1
β

∑
i ̸=d

 ∑
a∈A+

i

wa lnwa −
 ∑
a∈A+

i

wa

 ln
 ∑
a∈A+

i

wa



+
∑
i̸=d

µi

gi + ∑
a′∈A−

i

wa′ −
∑

a′∈A+
i

wa′

+
∑
a∈A

λawa,

with gi = go · 1{i = o}, where 1{·} is the indicator function that returns 1 if the input
argument is true, and 0 otherwise. At optimum (w⋆,µ⋆) ∈ W ×R|N |−1, the KKT conditions
give, for each a ∈ A:

0 =
∂L
∂wa

(w⋆,µ⋆) = ℓ[a](w
⋆
[a]) +

1
β

ln
 w⋆a∑

a′∈A+
ia
w⋆a′

+ µ⋆ja − µ
⋆
ia + λa,

0 = λawa, ∀a ∈ A.

We claim that (ŵ, µ̂) ∈ W ×R|N |−1, as given by the Condensed DAG equilibrium defi-
nition: For each a ∈ A, i ∈ N :

ŵa =

gia + ∑
a′∈A−

ia

ŵa′

 · exp(−βza(ŵ))∑
a′∈A+

ia
exp(−βza′(ŵ))

, a ∈ A,

µ̂i = φi(z(ŵ)) = −
1
β

ln
 ∑
a′∈A+

i

e−βza′ (ŵ)

, i ∈ N ,

λ̂a = 0, ∀a ∈ A,
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satisfies the KKT conditions stated above. Indeed, we have ŵa ⩾ 0 for each a ∈ A, and:

∂L
∂wa

(ŵ, µ̂, λ̂) = ℓ[a](ŵ[a]) +
1
β

ln
 ŵa∑

a′∈A+
ia
ŵa′

+ µ̂ja − µ̂ia +
∑
a∈A

λa

= ℓ[a](ŵ[a]) +
1
β

ln
 exp(−βza(w))∑

a′∈A+
ia

exp(−βza′(w))

+ φja(z)− φia(z)

= ℓ[a](ŵ[a])− za(w) + φia(z) + φja(z)− φia(z)
= ℓ[a](ŵ[a]) + φja(z)− za(w)
=0,

where the final equality follows from the definition of (za)a∈A.

G.3 Proofs for Section 8.3
Proof of Lemma 8.3.1 We present the proof of Lemma 8.3.1, stated formally as follows:
Suppose w(0) ∈ W , and:

Ki >
go
Cw

max{Kiâ : â ∈ A−
i }

for each i ∈ I\{d}, with Cw given by Lemma 8.3.2. Then, the continuous-time dynamical
system (G.6) for the traffic flow w(t) globally asymptotically converges to the corresponding
Condensed DAG Equilibrium w̄β ∈ W .

Proof. (Proof of Lemma 8.3.1) We recursively write the continuous-time evolution of the
arc flows w(·) as follows, from (8.13) and (8.14). Recall that for any fixed w ∈ W , at each
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non-destination node i ∈ I\{d}, we have ∑a′∈A+
ia
wa′ =

∑
â∈A−

ia
wâ. Thus, for each a ̸∈ A+

o :

ẇa(t) = ξ̇a(t) ·

gia + ∑
â∈A−

ia

wâ(t)

+ ξa(t) ·
∑
â∈A−

ia

ẇa(t)

=Kia

− ξa(t) + exp(−βza(w(t)))∑
a′∈A+

ia
exp(−βza′(w(t)))

 ·
gia + ∑

â∈A−
ia

wâ(t)

+ ξa(t) ·
∑
â∈A−

ia

ẇâ(t)

= −Kiawa(t) +Kia ·

gia + ∑
â∈A−

ia

wâ(t)

 · exp(−βza(w(t)))∑
a′∈A+

ia
exp(−βza′(w(t)))

+
wa(t)∑

a′∈A+
ia
wa′(t)

·
∑
â∈A−

ia

ẇâ(t) (G.3)

= −Kia

1− 1
Kia
·

∑
â∈A−

ia
ẇâ∑

a′∈A+
ia
wa′

wa (G.4)

+Kia ·

gia + ∑
â∈A−

ia

wâ(t)

 · exp(−βza(w(t)))∑
a′∈A+

ia
exp(−βza′(w(t)))

, (G.5)

for each a ∈ A. More formally, we define each component h : W → R|A| recursively as
follows. First, for each a ∈ A+

o , we set:

ha(w) := Ko

(
−wa + go ·

exp(−βza(w))∑
a′∈A+

o
exp(−βza′(w))

)
.

Suppose now that, for some arc a ∈ A, the component ha : W → R of h has been defined
for each â ∈ A−

ia . Then, we set:

ha(w) := −Kia

1− 1
Kia
·

∑
â∈A−

ia
hâ(w)∑

a′∈A+
ia
wa′

wa +Kia ·
∑

a′∈A−
ia

wa′ · exp(−βza(w))∑
a′∈A+

o
exp(−βza′(w))

.

By iterating through the above definition forward through the Condensed DAG G from
origin to destination, we can completely specify each ha in a well-posed manner (For a more
rigorous characterization of this iterative procedure, see Chapter G.1, Proposition G.1.1).
We then define the w-dynamics corresponding to the ξ-dynamics (8.13) by:

ẇ = h(w). (G.6)

Now, recall the objective F :W×R|AO| → R of the optimization problem that characterizes
w̄β, first stated in Theorem 8.2.1 as Equation (8.11), reproduced below:

F (w) :=
∑

[a]∈A0

∫ w[a]

0
ℓ[a](z)dz +

1
β

∑
i̸=d

 ∑
a∈A+

i

wa lnwa −
 ∑
a∈A+

i

wa

 ln
 ∑
a∈A+

i

wa

.



APPENDIX G. APPENDIX FOR CHAPTER 8 384

Roughly speaking, our main approach is to show that F is a Lyapunov function for the
best-response dynamics in (G.6). Let Ws denote the tangent space to W , and let ΠWs

denote the orthogonal projection onto the linear subspace Ws. Under the continuous-time
flow dynamics (8.13) and (8.14), if w ̸= w̄β:

d

dt
(F ◦w)(t) = ẇ(t)⊤∇wF (w(t)) (G.7)

= ẇ(t)⊤ΠWs∇wF (w(t)) (G.8)

= ẇ(t)⊤ΠWs

(
∇wf(w(t)) +∇χβ(w(t))

)
= ẇ(t)⊤ΠWs

((
ℓ[a](w[a](t))

)
a∈A

+∇χβ(w(t))
)

(G.9)

= ẇ(t)⊤ΠWs

−∇χβ
gia + ∑

a′∈A−
ia

wa′(t)

 · exp(−βza(w(t)))∑
ā∈A+

i
exp(−βzā(w(t)))


a∈A

+∇χβ(w(t))


(G.10)

= ẇ(t)⊤ΠWs

−∇χβ
gia + ∑

a′∈A−
ia

wa′(t)

 · exp(−βza(w(t)))∑
ā∈A+

i
exp(−βzā(w(t)))


a∈A

 (G.11)

+∇χβ
1−

∑
a′∈A−

ia
ha′(w(t))

Kia ·
∑
â∈A+

ia
wâ(t)

 ·wa(t)

a∈A


=

−Kia

1−

∑
a′∈A−

ia
ha′(w(t))

Kia ·
∑
â∈A+

ia
wâ(t)

wa(t) (G.12)

+Kia

gia + ∑
a′∈A+

ia

wa′(t)

 · exp(−βza(w(t)))∑
ā∈A+

ia
exp(−βzā(w(t)))


a∈A

⊤

(G.13)

−∇χβ
gia + ∑

a′∈A−
ia

wa′(t)

 · exp(−βza(w(t)))∑
ā∈A+

i
exp(−βzā(w(t)))


a∈A


+∇χβ

1−

∑
a′∈A−

ia
ha′(w(t))

Kia ·
∑
â∈A+

ia
wâ(t)

 ·wa(t)

a∈A


< 0. (G.14)

We explain the equalities (G.7) = (G.8), (G.9) = (G.10), (G.10) = (G.11), and (G.12) <
(G.14) below.

Verifying (G.7) = (G.8) From the equations leading up to (G.4), we have, for each w ∈ W :

wa =

gia + ∑
â∈A−

ia

wa′

 · ξa,
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and so:

ẇa(t) =

gia + ∑
â∈A−

ia

wâ(t)

 · ξ̇a + ∑
â∈A−

ia

ẇa′ · ξa

=

gia + ∑
â∈A−

ia

wâ(t)

 ·Kia

−ξa + exp(−βza(w(t)))∑
a′∈A+

ia
exp(−βza′(w(t)))

+
∑
â∈A−

ia

ẇa′ · ξa

Fix any node i ∈ I in the Condensed DAG, and consider the sum of the above equation over
the arc subset A+

i : ∑
a′∈A+

i

ẇa′(t) =
∑
â∈A−

i

ẇâ(t).

Since w(0) ∈ W by assumption, we have the initial condition (
∑
â∈A+

i
wâ −

∑
a′∈A−

ia
wa′ −

gi)(0) = 0 for the above linear time-invariant differential equation. We thus conclude that,
for each t ⩾ 0: ∑

â∈A+
i

wâ(t)−
∑

a′∈A−
ia

wa′(t)− gi = 0.

Since this holds for any arbitrary node i ∈ I, we have w(t) ∈ W for all t ⩾ 0.

Verifying (G.9) = (G.10) We will show that:

ΠWs

(ℓ[a](w[a](t))
)
a∈A

+∇χβ
gia + ∑

a′∈A−
ia

wa′(t)

 · exp(−βza(w(t)))∑
ā∈A+

i
exp(−βzā(w(t)))


a∈A


(G.15)

= 0, (G.16)

which would a fortiori establish the desired claim (G.9) = (G.10). To do so, first note that,
for each i ̸= d, a ∈ A+

i :

∂χβ

∂wa
(w) =

1
β
·

 lnwa + 1− ln

 ∑
a∈A+

i

wa

− 1
 =

1
β

ln
 wa∑

a∈A+
i
wa

 . (G.17)
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Thus, we have:

∂χβ

∂wa

gia + ∑
a′∈A−

ia

wa′

 · exp(−βza(w))∑
ā∈A+

ia
exp(−βzā(w))


a∈A



=
1
β

ln
 exp(−βza(w))∑

ā∈A+
i

exp(−βzā(w))


= − za(w)−

1
β

ln

 ∑
ā∈A+

ia

exp(−βzā(w))


= − za(w) + φia(w).

Concatenating these partial derivatives to form the gradient, we can now verify (G.15) by
observing that:

ΠWs

(ℓ[a](w[a])
)
a∈A

+∇χβ
gia + ∑

a′∈A−
ia

wa′

 · exp(−βzâ(w))∑
ā∈A+

i
exp(−βzā(w))


â∈A


a∈A


=ΠWs

(
ℓ[a](w[a])− za(w) + φia(w)

)
a∈A

=ΠWs

(
φia(w)− φja(w)

)
a∈A

=ΠWs

 ∑
a∈A

φia(w)ea −
∑
a∈A

φja(w)ea


=ΠWs

− ∑
â∈A−

d

φjâ(w)eâ +
∑

a′∈A+
o

φia′ (w)ea′

+
∑

i̸={o,d}

 ∑
a′∈A+

i

φi(w)ea′ −
∑
â∈A−

i

φi(w)eâ



=ΠWs

0 + φo(w)eA+
o
+

∑
i ̸={o,d}

φi(w)
(
eA−

i
− eA+

i

)
=0,

where the last equality follows by definition of ΠWs .

Verifying (G.10) = (G.11) We will show that:

∇χβ(w) = ∇χβ

1−

∑
a′∈A−

ia
ẇa′

Kia ·
∑
â∈A+

ia
wâ

 ·wa

a∈A

 ,



APPENDIX G. APPENDIX FOR CHAPTER 8 387

which is equivalent to showing that (G.10) = (G.11). From (G.17), we have for each a ∈ A:

∂χβ

∂wa


1−

∑
a′∈A−

ia
ha′(w)

Kia ·
∑
â∈A+

ia
wâ

 ·wa

a∈A



=
1
β

ln



1−
∑

a′∈A−
ia

ha′ (w)

Kia ·
∑

â∈A+
ia

wâ

wa
∑
ā∈A+

ia

1−
∑

a′∈A−
iā

ha′ (w)

Kia ·
∑

â∈A+
iā

wâ

wā



=
1
β

ln



1−
∑

a′∈A−
ia

ha′ (w)

Kia ·
∑

â∈A+
ia

wâ

wa1−
∑

a′∈A−
ia

ha′ (w)

Kia ·
∑

â∈A+
ia

wâ

 ·∑ā∈A+
ia
wā


=

1
β

ln
 wa∑

ā∈A+
ia
wā


=
∂χβ

∂wa
(w).

The second equality above follows because, for each ā ∈ A+
ia , we have iā = ia. This verifies

that (G.10) = (G.11).

Verifying (G.12) < (G.14),∀w ̸= w̄β Suppose d
dt(F ◦ w) = 0 at some w̃ ∈ W . From

(G.12), and by the definition of the convex function χ:

0 =
d

dt
(F ◦w)

=
∑

i∈I\{d}

−
1−

∑
â∈A−

ia
hâ(w)

Kia ·
∑
a′∈A+

ia
w̃a′

w̃a +
gia + ∑

a′∈A+
ia

w̃a′

 exp(−β · za(w̃))∑
a′∈A+

ia
exp(−β · za′(w̃))


a∈A

⊤

· 1
β

∇χβi
1−

∑
â∈A−

ia
hâ(w̃)

Kia ·
∑
a′∈A+

ia
w̃a′

w̃a

a∈A


−∇χβi

gia + ∑
a′∈A+

ia

w̃a′

 · exp(−β · za(w̃))∑
a′∈A+

ia
exp(−β · za′(w̃))


a∈A

,

where, for each i ∈ I\{d}, the convex map χβi : R|A+
i | → R is defined by:

χβi ({wa : a ∈ A+
i }) =

∑
a∈A+

i

wa lnwa −
 ∑
a∈A+

i

wa

 ln
 ∑
a∈A+

i

wa

.
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The convexity of each χβi implies that each of the above summands must be non-positive;
since they sum to 0, each summand must be 0. (By assumption, Kia > (go/Cw)max{Kiâ :
â ∈ A−

ia}, so the input arguments to th ∇χi(·) maps are all strictly positive.)
Now, for each i ∈ I\{d} and each w ∈ RA+

i , we have N(∇2χβi (w)) = span{w}. In
words, χβi increases linearly only along rays emanating from the origin. In the context of the
above summands, this implies that, for each i ∈ I\{d}, there exists constants Qi ∈ R such
that, for each a ∈ A+

i :

Qi

1−
∑
â∈A−

ia
hâ(w)

Kia ·
∑
a′∈A+

ia
wa′

wa =
gia + ∑

a′∈A+
ia

wa′

 · exp(−β · za(w))∑
a′∈A+

ia
exp(−β · za′(w))

.

By definition of h :W → R|A|, for each a ∈ A+
o :

ha(w) = −w̃a + go ·
exp(−βza(w))∑

a′∈A+
o

exp(−βza′(w))
= (Qo − 1)wa

and for each a ∈ A+
i with i ̸= o:

ha(w) := −

1−
∑
â∈A−

ia
hâ(w)∑

a′∈A+
ia
wa′

wa + ∑
a′∈A−

ia

wa′ · exp(−βza(w))∑
a′∈A+

o
exp(−βza′(w))

= (Qo − 1)
1−

∑
â∈A−

ia
hâ(w)∑

a′∈A+
ia
wa′

wa.
By the flow continuity equations:

0 =
∑

a′∈A+
o

ha′(w) = (Qo − 1) ·
∑

a′∈A+
i

wa′ = (Qo − 1)go,

so Qo = 1, and thus ha(w) = 0 for each a ∈ A+
o . Now, suppose there exists some depth

ℓ ∈ [ℓ(G)− 1] such that ℓa(w) = 0 for each a ∈ A such that ℓa ⩽ ℓ. Then, for each a ∈ A
such that ℓa = ℓ+ 1, the flow continuity equations give:

0 =
∑

a′∈A+
i

ha′(w)−
∑
â∈A−

i

hâ(w) =
∑

a′∈A+
i

ha′(w) = (Qia − 1) ·
∑

a′∈A+
ia

wa′ .

Thus, Qia = 1, so ha(w) = 0. This completes the recursion step, and shows that h(w) = 0,
i.e., w = w̄β.

In summary, we established that the map F strictly decreases along any trajectory that
starts in W\{w̄β} and follows the best-response dynamics (G.6). The convergence of the
dynamics (G.6) to the Condensed DAG equilibrium (8.2.1) now follows by invoking either
Sandholm, Corollary 7.B.6 [362], or Sastry, Proposition 5.22 and Theorem 5.23 (LaSalle’s
Principle and its corollaries) [365].
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Proof of Lemma 8.3.2 To prove Lemma 8.3.2, we require the following results. We first
establish bounds on the trajectory of discrete-time and continuous-time traffic flow dynamics.
Lemma G.3.1.

1. Consider the discrete-time dynamics:

Y [n+ 1] = (1− δ[n])Y [n] + δ[n]F [n],

where, for each n ⩾ 0, we have δ[n] ∈ (0, 1) and Y [0],F [n] ∈ [a, b] for some a, b ∈ R

satisfying a < b. Then Y [n] ∈ [a, b] for each n ⩾ 0.

2. Consider the continuous-time dynamics:

ẏ(t) = K(−y(t) + f(t)),

where K > 0 and, for each t ⩾ 0, we have y(0), f(t) ∈ [a, b] for some a, b ∈ R

satisfying a < b. Then y(t) ∈ [a, b] for each t ⩾ 0.

Proof.

1. Suppose there exists some N ⩾ 0 such that Y [n] ∈ [a, b] for each n ⩽ N . (Since
Y [0] ∈ [a, b] by assumption, this is certainly true for n = 0). Then:

Y [n+ 1] = (1− δ[n])Y [n] + δ[n]F [n]

∈ [(1− δ[n]) · a+ δ[n] · a, (1− δ[n]) · b
+ δ[n] · b]

= [a, b].

This completes the induction step, and thus the proof of this part of the lemma.

2. We compute:

d

dt
(eKty(t)) = eKt

(
ẏ(t) + ay(t)

)
= aeKtf(t).

Integrating from time 0 to time t, we have, for each t ⩾ 0:

eKty(t)− y(0) =
∫ t

0
aeKτf(τ )dτ .

Rearranging terms, we obtain, for each t ⩾ 0:

y(t) = e−Kty(0) + e−Kt
∫ t

0
aeaτf(τ )dτ

∈
[
e−Kta+ (1− e−Kt)a, e−Ktb+ (1− e−Kt)b

]
= [a, b].
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Before proceeding, we rewrite the discrete ξ-dynamics (PBR) as a Markov process with
a martingale difference term:

ξa[n+ 1] = ξa[n] + µ

Kia

− ξa[n] + exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

+Ma[n+ 1]
,

with:

Ma[n+ 1] :=
(

1
µ
ηia [n+ 1]− 1

)
·Kia

− ξa[n] + exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

.

The following lemma bounds the magnitude of the discrete-time flow W [n] ∈ R|w| and the
martingale difference terms M [n] ∈ R|w|.
Lemma G.3.2. The discrete-time dynamics (PBR) and (8.12) satisfy:

1 For each a ∈ A: {Ma[n+ 1] : n ⩾ 0} is a martingale difference sequence with respect
to the filtration Fn := σ

(
∪a∈A (Wa[1], ξ[1], · · · ,Wa[n], ξ[n])

)
.

2 There exist Cw,Cm > 0 such that, for each a ∈ A and each n ⩾ 0, we have:

Wa[n] ∈ [Cw, go],
|Ma[n]| ⩽ Cm.

The continuous-time dynamics (8.13) and (8.14) satisfy:

3 For each a ∈ A, n ⩾ 0: wa(t) ∈ [Cw, go].

Proof.

1. We have:

E[Ma[n+ 1]|Fn]

=

(
1
µ

E[ηia [n+ 1]]− 1
)
·Kia

−ξa[n] + exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)


=0.

2. We separate the proof of this part of the lemma into the following steps.
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• First, we show that for each a ∈ A, n ⩾ 0, we have ξa[n] ∈ (0, 1].
Fix a ∈ A arbitrarily. Then ξa[0] ∈ (0, 1] by assumption, and for each n ⩾ 0:

exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)
∈ (0, 1],

since the exponential function takes values in (0,∞). Thus, by Lemma G.3.1, we
have ξa[n] ∈ (0, 1] for each n ⩾ 0.

• Second, we show that for each a ∈ A, n ⩾ 0, we have Wa[n] ∈ (0, go].
Note that (8.12), together with the assumption that W [0] ∈ W , implies that

W [n] ∈ W for each n ⩾ 0. Now, fix a ∈ A, n ⩾ 0 arbitrarily. Let R(a) ⊆ R
denote the set of all routes passing through a, and for each r ∈ R(a), let ar,k
denote the k-th arc in r. Then, by the conservation of flow encoded in R:

Wa[n] = go ·
∑

r∈R(a)

|r|∏
k=1

ξar,k

⩽ go ·
∑
r∈R

|r|∏
k=1

ξar,k

= go.

Similarly, since ξa[n] ∈ (0, 1] for each a ∈ A, n ⩾ 0, we have:

Wa[n] = go ·
∑

r∈R(a)

|r|∏
k=1

ξar,k > 0.

• Third, we show that there exists Cz > 0 such that |za(W [n])| ⩽ Cz for each
a ∈ A, n ⩾ 0. Fix a ∈ A−

d = {a ∈ A : ma = 1} arbitrarily. Then, from (8.6):

za(w) = ℓ[a](w[a]) ∈ [0, ℓ[a](go)],
=⇒ |za(w)| ⩽ ℓ[a](go) := Cz,1.

Now, suppose that at some height k ∈ [m(G)− 1], there exists some Cz,k > 0
such that, for each n ⩾ 0, and each a ∈ A satisfying ma ⩽ k and each n ⩾ 0, we
have |za(w)| ⩽ Cz,k. Then, for each n ⩾ 0, and each a ∈ A satisfying ma = k+ 1
(at least one such a ∈ A must exist, by Proposition G.1.2, Part 4):

za(w) = ℓ[a](w[a])−
1
β

ln
 ∑
a′∈A+

ja

e−β·za′ (w)


⩽ ℓ[a](go)−

1
β

ln
(
|A+

ja|e
−β·Cz

)
= ℓ[a](go) +Cz,
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and:

za(w) = ℓ[a](w[a])−
1
β

ln
 ∑
a′∈A+

ja

e−β·za′ (w)


⩾ 0 + 0− 1

β
ln
(
|A+

ja|e
β·Cz

)
= − 1

β
ln |A| −Cz,

from which we conclude that:

|za(w)| ⩽ max
{
ℓ[a](go) +Cz,

1
β

ln |A|+Cz

}
:= Cz,k+1,

with Cz+1 ⩾ Cz. This completes the induction step, and the proof is completed
by taking Cz := Cz,m(G).

• Fourth, we show that there exists some Cξ > 0 such that ξa[n] ⩾ Cξ for each
a ∈ A, n ⩾ 0.

Define:

Cξ := min
{

min
a′∈A

ξa′ [0], 1
|A|

e−2βCz

}
∈ (0, 1).

By definition of Cξ, we have ξa[0] ⩾ Cξ. Moreover, for each n ⩾ 0, we have:

exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

⩾
e−βCz

|A+
ia| · eβCz

⩾
1
|A|

e−2βCz

⩾Cξ.

Thus, by Lemma G.3.1, ξa[n] ⩾ Cξ for each n ⩾ 0.
• Fifth, we show that there exists Cw > 0 such that, for each a ∈ A, n ⩾ 0, we

have Wa[n] ⩾ Cw.
Fix a ∈ A, n ⩾ 0. Let R(a) denote the set of all routes in the Condensed DAG

containing a, and let r ∈ R(a) be arbitrarily given. By unwinding the recursive
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definition of Wa[n] from the flow dispersion probability values {ξa[n] : a ∈ A,n ⩾
0}, we have:

Wa[n] = go ·
∑
r′∈R
a∈r′

∏
a′∈r′

ξa′ [n]

⩾ go ·
∏
a′∈r

ξa′ [n]

⩾ go · (Cξ)|r|

⩾ go · (Cξ)ℓ(G)

:= Cw.

• Sixth, we show that there exists Cm > 0 such that, for each a ∈ A, n ⩾ 0, we
have Ma[n] ⩾ Cm.

Define, for convenience, Cµ := max{µ− µ,µ− µ}. Since ηia [n] ∈ [µ,µ], we
have from (8.16) that for each a ∈ A, n ⩾ 0:

Ma[n+ 1]

:=
( 1
µ
ηia [n+ 1]− 1

)

·Kia

− ξa[n] + exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

.

Thus, by the triangle inequality:

|Ma[n+ 1]| ⩽ 1
µ
CµKia · (1 + 1)

⩽
2
µ
Cµ · max

i∈I\{d}
Ki

:= Cm.

3. We separate the proof of this part of the lemma into the following steps.

• First, we show that for each a ∈ A, t ⩾ 0, we have ξa(t) ∈ (0, 1].
Fix a ∈ A. By assumption, ξa(0) ∈ (0, 1], and at each t ⩾ 0:

exp(−βza(w))∑
a′∈A+

ia
exp(−βza′(w))

∈ (0, 1].

Thus, by Lemma G.3.1, we conclude that ξa(t) ∈ (0, 1] for each t ⩾ 0.
• Second, we show that wa(t) ∈ [0, go] for each t ⩾ 0.

The proof here is nearly identical to the proof that Wa[n] ∈ (0, go) in the
second bullet point of the second part of this lemma, and is omitted for brevity.
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• Third, we show that |za(wa(t))| ⩽ Cz for each t ⩾ 0.
The proof here is nearly identical to the proof that |za(Wa[n])| ⩽ Cz in the

fourth bullet point of the second part of this lemma, and is omitted for brevity.
• Fourth, we show that there exists some Cξ > 0 such that ξa(t) ⩾ Cξ for each
a ∈ A, t ⩾ 0.

Define:

Cξ := min
{

min{ξa′(0) : a′ ∈ A}, 1
|A|

e−2βCz

}
∈ (0, 1).

By definition of Cξ, we have ξa(0) ⩾ Cξ. Moreover, for each n ⩾ 0, we have:

exp(−β
[
za(W [n])

]
)∑

a′∈A+
ia

exp(−β
[
za′(W [n])

]
)

⩾
e−βCz

|A+
ia| · eβCz

⩾
1
|A|

e−2βCz

⩾Cξ.

Thus, by Lemma G.3.1, we have ξa(t) ⩾ Cξ for each t ⩾ 0.
• Fifth, we show that there exists Cw > 0 such that, for each a ∈ A, t ⩾ 0, we have
wa(t) ⩾ Cw.

The proof here is nearly identical to the proof that Wa[n] ⩾ Cw in the fourth
bullet point of the second part of this lemma, and is omitted for brevity.

Remark G.3.1. Crucially, the constants introduced and used in the above proof, i.e.,

Cw,Cm,Cξ

(and naturally, go), do not depend on the node-dependent update rates Ki. This is a critical
observation, since each Ki must be chosen to be large enough such that the term:

1−
∑
a′∈A−

ia
ha′(w(t))

Kia ·
∑
â∈A+

ia
wâ(t)
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which appears in (G.12), is always strictly positive, i.e., that:

Kia >

∑
â∈A+

ia
wâ(t)∑

a′∈A−
ia
ha′(w(t))

(G.18)

for all t ⩾ 0, regardless of the initial value of w(0) ∈ W. The numerator in the right-
hand-side expression of (G.18) can be straightforwardly (if loosely) upper bounded by |A|go.
However, the denominator in the right-hand-side expression of (G.18) must be lower-bounded
recursively in increasing order of depth, which requires Kia to depend on {Ki : i ∈ I, ℓi < ℓia},
as well as on the constants Cw,Cm,Cξ, and go. Thus, the fact that Cw,Cm,Cξ, and go are
established independently of the values of Ki allows circular reasoning to be avoided.

The lemma below establishes the final part of Lemma 8.3.2. Below, we restrict the
domains of the maps ξ̄β and za to reflect the bounds of the traffic flow trajectory w established
in the above lemma, i.e., ξ̄β, za :W ′ → R, with the flow restricted to:

W ′ :=W ∩ [Cw, go]|A|

and the toll restricted to [0,Cp]|AO|.
Lemma G.3.3. The continuous-time dynamics (G.6) satisfies:

1. For each a ∈ A, the restriction of the latency-to-go map za : W → R|AO| → R to W ′

is Lipschitz continuous.

2. The map from the probability transitions ξ ∈ ∏
i∈I\{d} ∆(A+

i ) and the traffic flows
w ∈ W is Lipschitz continuous.

3. For each a ∈ A, the restriction of the continuous dynamics transition map ρa : R|A| ×
R|AO| → R|A|, defined recursively by:

ρa(ξ) := Kia

−ξa + exp(−βza(w))∑
a′∈A+

ia
exp(−βza′(w))


to W ′ is Lipschitz continuous.

Proof.

1. We shall establish the Lipschitz continuity of za, for each a ∈ A, by providing uniform
bounds on its partial derivatives across all values of its arguments w ∈ W ′.

The proof follows by induction on the height index k ∈ [m(G)]. For each a ∈ A,
let z̃a : R|A| → R be the continuous extension of za : W → R to the Euclidean space
R|A| containing W . By definition of Lipschitz continuity, if z̃a is Lipschitz for some
a ∈ A, then so is za. For each a ∈ A−

d = {a ∈ A : ma = 1} and any w ∈ R|A|:

z̃a(w) = ℓ[a](w[a]).
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Thus, for any â ∈ A, and any w ∈ R|A|, p ∈ R|AO|:

∂z̃a
∂wâ

(w) =
dℓ[a]
dw

(w[a]) · 1{â ∈ [a]} ∈ [0,Cds].

We set Cz,1 := Cds.
Now, suppose that there exists some depth k ∈ [m(G) − 1] and some constant

Cz,k > 0 such that, for any a ∈ A satisfying ma ⩽ k, and any w ∈ W , n ⩾ 0, the map
z̃a : R|A| → R is continuously differentiable, with:∣∣∣∣∣ ∂z̃a∂wâ

(w)

∣∣∣∣∣ ⩽ Cz,k.

Continuing with the induction step, fix a ∈ A such that ma = k + 1 (there exists at
least one such link, by Proposition G.1.1, Part 4). From Proposition G.1.1, Part 2, we
have ma′ ⩽ k for each a′ ∈ A+

ia . Thus, the induction hypothesis implies that, for any
â ∈ A:

z̃a(w) = ℓ[a](w[a])−
1
β

∑
a′∈A+

ja

e−βza′ (w).

Computing partial derivatives with respect to each component of w, we obtain:

∂z̃a
∂wâ

(w) =
dℓ[a]
dw

(w[a]) · 1{â ∈ [a]}

+
∑

a′∈A+
ja

e−βz̃a′ (w) · ∂z̃a
′

∂wâ
(w),

=⇒
∣∣∣∣∣ ∂z̃a∂wâ

(w)

∣∣∣∣∣ ⩽ Cds + |A| ·Cz,k.

We can complete the induction step by taking Cz,k+1 := Cds + |A| ·Cz,k.
This establishes that, for each a ∈ A, the map za is continuously differentiable,

with partial derivatives uniformly bounded by a uniform constant, Cz := Cz,m(G).
This establishes the Lipschitz continuity of the map za for each a ∈ A, and thus proves
this part of the proposition.

2. Recall that the map from traffic distributions probabilities (ξ) to traffic flows (w) is
given as follows, for each a ∈ A. Recall that R(a) denotes the set of all routes in the
Condensed DAG that contain the arc a:

wa =

gia + ∑
â∈A−

i

wa

 · ξa = go ·
∑

r∈R(a)

|r|∏
k=1

ξar,k ,
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where ar,k denotes the k-th arc along a given route r ∈ R, for each k ∈ |r|. Thus,
the map from ξ to w is continuously differentiable. Moreover, the domain of this map
is compact; indeed, for each a ∈ A, we have ξa ∈ [0, 1], and for each non-destination
node i ̸= d, we have ∑a∈A+

i
ξa = 1. Therefore, the map ξ 7→ w has continuously

differentiable derivatives with magnitude bounded above by some constant uniform in
the compact set of realizable probability distributions ξ. This is equivalent to stating
that the map ξ 7→ w is Lipschitz continuous.

3. Above, we have established that the maps za and ξ 7→ w are Lipschitz continuous.
Since the addition and composition of Lipschitz maps is Lipschitz, it suffices to verify
that the map ρ̂ : R|A| → R|A|, defined element-wise by:

ρ̂a(z) :=
e−βza∑

a′∈A+
ia
e−βza′

, ∀a ∈ A

is Lipschitz continuous. We do so below by computing, and establishing a uniform
bound for, its partial derivatives. For each â ∈ A:

∂ρ̂a
∂zā

=

∑
a′∈A+

ia
e−βza′ · (−β)e−βza · ∂za

∂zā
− e−βza ·∑a′∈A+

ia
(−β)e−βza′ ∂za′

∂zā


(
∑
a′∈A+

ia
e−βza′ )2

= − e−βza∑
a′∈A+

ia
e−βza′

· β · ∂za
∂zâ

+
βe−βza

(
∑
a′∈A+

ia
e−βza′ )2 ·

∑
a′∈A+

ia

e−βza′ ∂za′

∂zā
.

Observe that:
∑

a′∈A+
ia

e−βza′ ∂za′

∂zā
=

∑
a′∈A+

ia

e−βza′ · 1{a′ = â}

⩽ max
a′∈A+

ia

e−βza′ .

This, together with triangle inequality, then gives:∣∣∣∣∣∂ρ̂a∂zā

∣∣∣∣∣ = β + β = 2β.

This concludes the proof for this part of the proposition.
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We present the proof of Theorem 8.3.1, restated as follows: For any δ > 0:

lim sup
n→∞

E
[
∥ξ[n]− ξ̄β∥22

]
⩽ O(µ),

lim sup
n→∞

P
(
∥ξ[n]− ξ̄β∥22 ⩾ δ

)
⩽ O

(
µ

δ

)
.

Proof of Theorem 8.3.1 Here, we conclude the proof of Theorem 8.3.1.

Proof. (Proof of Theorem 8.3.1) Lemma G.3.2 asserts that M [n] is bounded (uniformly in
n ⩾ 0), while Lemma G.3.3 establishes that ρ : R|A| → R is Lipschitz continuous. The proof
of Theorem 8.3.1 now follows by applying the stochastic approximation results in Borkar
[57], Chapters 2 and 9.
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Appendix H

Appendix for Chapter 9

H.1 Calibration of Latency Functions
Here, we present the methodology used to compute the latency function of all freeways
in Figure 9.3. Recall from Section 9.3, we need to compute the average travel time and
average flow on every edge for every day. To achieve this goal, we utilize morning rush
hour data from the PeMS dataset, spanning from January 2019 to June 2019. Let’s denote
the set of all weekdays in this time-frame by T . For every edge e ∈ E and day t ∈ T ,
let’s denote the average travel time by ℓ̂te and the average edge flow by ŵte. In order to
estimate these quantities, we use PeMS data during the morning rush hours H = [6am−
7am, 7am − 8am, 8am − 9am, 9am − 10am, 10am − 11am, 11am − 12noon]. Let Se be the
number of sensors fitted on edge e ∈ E which provide average hourly flow and average speed
information.

First, we demonstrate how to use the raw data from sensors to compute the average
travel time on every edge. We compute an estimate of the time required to travel the edge e
at hour h by accumulating the average time required to travel between sensors on that link
as follows:

ℓ̂hte =
Se−1∑
s=1

Lse
vshte

, ∀ e ∈ E,h ∈ H, t ∈ T , (H.1)

where Lse is the distance between sensor s and s+ 1 on edge e ∈ E and vshte is the average
speed of traffic passing over the sensor s on edge e during hour h on day t. Next, we compute
the average hourly flow on an edge as follows:

ŵhte =

∑Se−1
s=1 Lsew̃

sht
e∑Se−1

s=1 Lse
, ∀ e ∈ E,h ∈ H, t ∈ T ,

where w̃shte is the hourly average flow of traffic passing over sensor s on edge e during hour
h on day t. We use the hourly average edge flows ŵhte and the hourly average travel times



APPENDIX H. APPENDIX FOR CHAPTER 9 400

ℓ̂hte to compute the average travel time on any edge e ∈ E as follows:

ℓ̂te =

∑
h∈H ŵhte ℓ̂

ht
e∑

h∈H ŵhte
, e ∈ E, t ∈ T .

Similarly, we compute the average of the hourly flows as follows:

ŵte =
1
|H|

∑
h∈H

ŵhte , t ∈ T , e ∈ E.

H.2 Calibration of User Demand
We outline our method for calculating the daily demand of travelers moving between various
origin-destination pairs from January 2019 to June 2019. Our approach involves three main
steps:

Step 1: Estimating relative demand between nodes using the Safegraph dataset:
We leverage the Safegraph dataset to obtain the relative demand of travelers traveling be-
tween different nodes in the Bay Area. Specifically, the Neighborhood Patterns dataset from
Safegraph provides the average daily count of mobile devices moving between different cen-
sus block groups (CBGs) on workdays for each month. This is then aggregated over the set
of nodes after adjusting for sampling bias.

More formally, let’s denote the set of CBGs in the Bay Area by C. The SafeGraph dataset
provides the average daily count of travelers N cc′ traveling from CBG c to c′. However, the
SafeGraph dataset exhibits sampling bias1 because different CBGs are sampled at different
rates. We correct for sampling bias in this data by modifying the counts N cc′ using the
population data provided by the ACS. That is, we compute the corrected count of travelers
traveling from CBG c to c′ as follows

Ñ cc′
= N cc′ Rc∑

c∈C Rc
·
∑
c∈C

∑
c′∈C N

cc′∑
c′∈C N cc′ ,

where Rc is the number of residents in CBG c as reported by the ACS dataset.

Step 2: Calibrating type-specific demands with ACS dataset. Given the the ad-
justed count of travelers we compute the demand of travelers from o-d pair k ∈ K by
aggregating the demand over set of nodes as follows

D̃k =
∑
c∈ko

∑
c′∈kd

Ñ cc′
C ,

1as referred in https://colab.research.google.com/drive/1u15afRytJMsizySFqA2EPlXSh3KTmNTQ

https://colab.research.google.com/drive/1u15afRytJMsizySFqA2EPlXSh3KTmNTQ
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where ko, kd ∈ N are the origin and destination nodes of the o-d pair k ∈ K. To obtain the
demand in terms of units of flow we compute

Dik =
D̃k∑

k′∈K D̃k′
1(k′

o = ko)

Aiko

|H|
,

where Aiko is the total driving population of type i at node ko as given by the ACS dataset
and |H| is the number of hours in morning rush hours (6 am to 12 noon).

Step 3: Incorporating daily variability with the PeMS dataset. We convert the
monthly demand estimates obtained in Step 2 into daily demand data by scaling it propor-
tional to the total daily flow from PeMS dataset. More formally, we compute the average
total edge load over all workdays from January 2019 to June 2019 as follows

w =
1
|T |

∑
t∈T

∑
e∈E

ŵte, (H.2)

where ŵte is the average edge load on day t on edge e, which is obtained in Appendix B using
PeMS data. Next, to obtain the daily demand, we scale the monthly demand obtain in Step
2 as follows:

Dik
t =

∑
e∈E ŵ

t
e

w
·Dik, ∀ t ∈ T , i ∈ I, k ∈ K. (H.3)

H.3 Computing Pricing Schemes Lying on the Pareto
Curve in Figure 9.11

Here, we provide a method to compute the Pareto efficient congestion pricing schemes that
trade-off between minimizing average travel time and optimizing the equity objective (as in
(9.8)).

Before presenting our method to compute Pareto front, we recap the methodology de-
lineated in Section 9.2. On a high level, the procedure in Section 9.2 comprises of two
steps:

• Step 1: Characterize the set of tolls that will implement the best possible average
travel time S(w†)

• Step 2: On the set of tolls characterized in Step 1, compute the tolls that optimize
the joint equity-welfare objective.

However, the above methodology does not provide a way to compute pricing schemes that
trade-off some amount of average travel time in order to improve on equity. Particularly, for
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any S∗ < S(w†) there is no direct method to characterize the set of pricing schemes that
will implement an edge flow vector that would result in average travel time of S∗ (as in Step
1 above). We provide a new procedure that builds up on the tools presented in Section 9.2
to estimate this set of tolls which can be use to the tolls that optimize the equity-welfare
objective as in Step 2.

Our approach is stated below:

• Sample N vectors {γi}i∈[N ] ⊂ R|E| such that for every i ∈ [N ], γi ∼ Unif([0, 1]|E|).

• For each i ∈ [N ], solve the following weighted average time minimization problem

min
w∈W

∑
e∈E

γieweℓe(we),

where W is the set of all feasible edge flows given demand D as highlighted below

W = {w ∈ R|E| : ∃ q ∈ Q(D) s.t. we =
∑
i∈I

f ie(q)}.

Let’s denote w†γi to be the optimal value of the above optimization problem.

• For each i ∈ [N ], use w†γi in place of w† in the optimization process to compute hom
and het pricing schemes (as highlighted in Section 9.2).

• Compute the average travel time and equity objective corresponding to each of w†γi

and compute the Pareto efficient solutions amongst these N solutions.

In Figure 9.11), the blue triangles are Pareto efficient solutions obtained by taking N =
100 in the above procedure.
Remark H.3.1. Note that this procedure only provides an estimate of Pareto front and not
the exact Pareto front. This is because by definition S∗

γi := S(w†γi
) ⩽ S(w†). Following

similar analysis as in Proposition 9.2.2, we can compute the set of pricing schemes that will
implement w†γi on the transportation network. Unlike S(w†), the set of edge flow vectors
that result in the average travel time of S∗

γi is not unique, we cannot characterize the entire
set of tolls that could result in average travel time S∗

γi. Thus, our procedure relies on taking
large values of N so that we can get better estimate of this set. s Extending our approach to
derive better estimates of Pareto front is an interesting direction of future research that is
bound to help planner in making important design decisions about congestion pricing.

H.4 Proofs for Section 9.2
Proof of Proposition 1.
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(1) To establish this result, we first show that for any given set of tolls p, the optimization
problem (9.6) is a convex optimization problem. Next, using KKT conditions for
optimality we show that the optimal solution to (9.6) satisfy the requirements of Nash
equilibrium posited in Definition 9.1.1.
To show that the (9.6) is a convex optimization problem, we note that the constraint
set is convex as it is a product simplex which is a convex set. Next, we show that
the objective function is convex. Since the objective is differentiable, it is sufficient to
show that

∑
i∈I

∑
k∈K

∑
r∈Rk

(
∂Φ(q, p)
∂qikr

− ∂Φ(q̃, p)
∂qikr

)(
qikr − q̃ikr

)
⩾ 0 ∀ q, q̃ ∈ Q, q ̸= q̃. (H.4)

To see this, we note that

∂Φ(q, p)
∂qikr

=
∑
e∈E

ℓe(we(q))
∂we(q)

∂qikr
+
∑
i∈I

∑
e∈E

(pie + ge)

θi
∂wie(q)

∂qikr

=
∑
e∈E

ℓe(we(q))1(e ∈ r) +
∑
e∈E

(pie + ge)

θi
1(e ∈ r) = cir(q, p).

Consequently, for any q, q̃ ∈ Q such that q ̸= q̃ it holds that

∑
i∈I

∑
k∈K

∑
r∈Rk

(
∂Φ(q, p)
∂qikr

− ∂Φ(q̃, p)
∂qikr

)(
qikr − q̃ikr

)

=
∑
i∈I

∑
k∈K

∑
r∈Rk

∑
e∈E

(ℓe(we(q))− ℓe(we(q̃)))1(e ∈ r)

(qikr − q̃ikr ) ,

=
∑
e∈E

(ℓe(we(q))− ℓe(we(q̃)))
∑
i∈I

∑
k∈K

∑
r∈Rk

1(e ∈ r)
(
qikr − q̃ikr

)
,

=
∑
e∈E

(ℓe(we(q))− ℓe(we(q̃))) (we(q)−we(q̃)) ⩾ 0.

where the last inequality follows because ℓe is strictly increasing function. Thus, we
have established the (9.6) is convex optimization problem.
Next, we analyze the KKT conditions associated with (9.6). Define the Lagrangian

L(q,λ,µ; p) = Φ(q, p) +
∑
i∈I

∑
k∈K

λik(Dik −
∑
r∈Rk

qikr )−
∑
i∈I

∑
k∈K

∑
r∈Rk

µikr q
ik
r .

Since (9.6) is a convex optimization problem and the strong form of Slater’s condi-
tions hold as the feasible set is a product-simplex, we obtain the following first-order
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necessary and sufficient condition of optimality:

∂L(q∗(p),λ∗,µ∗; p)
∂qikr

= 0 ∀ i ∈ I, k ∈ K, r ∈ Rk, (C1)∑
r∈Rk

q∗ik
r (p) = Dik ∀ i ∈ I, k ∈ K, (C2)

µ∗ik
r q∗ik

r (p) = 0 ∀ i ∈ I, k ∈ K, r ∈ Rk, (C3)
µ∗ik
r ⩾ 0, q∗ik

r (p) ⩾ 0 ∀ i ∈ I, k ∈ K, r ∈ Rk. (C4)

Note that (C1) can be equivalently written as

0 =
∂L(q∗(p),λ∗,µ∗; p)

∂qikr
=
∂Φ(q∗(p), p)

∂qikr
− λik − µikr = cir(q

∗(p), p)− λik − µikr

Additionally, using (C4) we obtain that cir(q∗(p), p) ⩾ λik, for every i ∈ I, k ∈ K, r ∈
Rk. Furthermore, from (C3) we obtain that if for some i ∈ I, k ∈ K, r ∈ Rk, q∗ik

r > 0
then cir(q

∗(p), p) = λik. This is precisely the conditions stated in Definition 9.1.1.

(2) Using the first-order necessary conditions for constrained optimality, we observe that,

∑
i∈I

∑
k∈K

∑
r∈Rk

∂S(q†)

∂qikr

(
q̃ikr − q†,ik

r

)
⩾ 0 ∀ q̃ ∈ Q. (H.5)

Similarly, it holds that

∑
i∈I

∑
k∈K

∑
r∈Rk

∂S(q̄†)

∂qikr

(
q̃ikr − q̄†,ik

r

)
⩾ 0 ∀ q̃ ∈ Q. (H.6)

Selecting q̃ = q̄† in (H.5), and selecting q̃ = q† in (H.6) and substracting the resulting
inequality we obtain

∑
i∈I

∑
k∈K

∑
r∈Rk

(
∂S(q†)

∂qikr
− ∂S(q̄†)

∂qikr

)(
q†,ik
r − q̄†,ik

r

)
⩽ 0. (H.7)

Suppose there exists q†, q̄† ∈ Q† such that there exists e ∈ E such that we(q†) ̸= we(q̄†).
Then we will show that (H.7) is violated.
Note that for any q ∈ Q,

∂S(q)

∂qikr
=
∑
e∈E

∂we(q)

∂qikr
ℓe(we(q)) +

∑
e∈E

we(q)∇ℓe(we(q))
∂we(q)

∂qikr

=
∑
e∈E

1(e ∈ r)ℓe(we(q)) +
∑
e∈E

we(q)∇ℓe(we(q))1(e ∈ r).
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Using this, we compute the left-hand side of (H.7),

∑
i∈I

∑
k∈K

∑
r∈Rk

(
∂S(q†)

∂qikr
− ∂S(q̄†)

∂qikr

)(
q†,ik
r − q̄†,ik

r

)
=
∑
i∈I

∑
k∈K

∑
r∈Rk

∑
e∈E

1(e ∈ r)(ℓe(we(q†))− ℓe(we(q̄†)))
(
q†,ik
r − q̄†,ik

r

)
+
∑
i∈I

∑
k∈K

∑
r∈Rk

∑
e∈E

(we(q
†)∇ℓe(we(q†))−we(q̄†)∇ℓe(we(q̄†)))1(e ∈ r)

(
q†,ik
r − q̄†,ik

r

)
=
∑
e∈E

(ℓe(we(q
†))− ℓe(we(q̄†)))

∑
i∈I

∑
k∈K

∑
r∈Rk

1(e ∈ r)
(
q†,ik
r − q̄†,ik

r

)
+
∑
e∈E

(we(q
†)∇ℓe(we(q†))−we(q̄†)∇ℓe(we(q̄†)))

∑
i∈I

∑
k∈K

∑
r∈Rk

1(e ∈ r)
(
q†,ik
r − q̄†,ik

r

)
=
∑
e∈E

(ℓe(we(q
†))− ℓe(we(q̄†)))

(
we(q

†)−we(q̄†)
)

+
∑
e∈E

(we(q
†)∇ℓe(we(q†))−we(q̄†)∇ℓe(we(q̄†)))

(
we(q

†)−we(q̄†)
)

Note that ∑e∈E(ℓe(we(q
†)) − ℓe(we(q̄†)))

(
we(q†)−we(q̄†)

)
⩾ 0, due to the mono-

tonicity of latency function. Moreover, note that∑
e∈E

(we(q
†)∇ℓe(we(q†))−we(q̄†)∇ℓe(we(q̄†)))

(
we(q

†)−we(q̄†)
)

=
∑
e∈E

(we(q
†)∇ℓe(we(q†))−we(q̄†)∇ℓe(we(q†))

+we(q̄
†)∇ℓe(we(q†))−we(q̄†)∇ℓe(we(q̄†))) · ·

(
we(q

†)−we(q̄†)
)

=
∑
e∈E
∇ℓe(we(q†))(we(q

†)−we(q̄†))2 +
∑
e∈E

we(q̄
†)(∇ℓe(we(q†))

−∇ℓe(we(q̄†)))
(
we(q

†)−we(q̄†)
)

.

Note that ∑e∈E ∇ℓe(we(q†))(we(q†)−we(q̄†))2 > 0 due to the hypothesis that there
exists at least one edge where we(q†) ̸= we(q̄†) and the fact that the latency function
is strictly increasing. Moreover,∑

e∈E
we(q̄

†)(∇ℓe(we(q†))−∇ℓe(we(q̄†)))
(
we(q

†)−we(q̄†)
)
⩾ 0

as ℓe(·) is assumed to be convex. Thus, we obtain

∑
i∈I

∑
k∈K

∑
r∈Rk

(
∂S(q†)

∂qikr
− ∂S(q̄†)

∂qikr

)(
q†,ik
r − q̄†,ik

r

)
> 0,

which contradicts (H.7).
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□
Proof of Proposition 9.2.2.
(1) First, we prove that given any optimal solution (p†, z†) of (Phom), p† induces the

socially optimal edge flow vector w†. Consider any optimal solution of (Dhom), denoted
as q†. From strong duality theory, we know that (p†, z†, q†) must satisfy complementary
slackness conditions associated with the constraints in (Phom) and (Dhom). In particular, the
complementary slackness condition for (Phom)-(Dhom) indicates that for any i ∈ I, k ∈ K,
and r ∈ Rk,

q†ik
r > 0, ⇒ z†ik = θiℓr(w

†) +
∑
e∈r

(p†
e + ge) = θicir(q

†, p†).

Additionally, from (Phom), we have for all i ∈ I, k ∈ K, r′ ∈ Rk,

z†ik ⩽ θiℓr′(w†) +
∑
e∈r′

(p†
e + ge) = θicir′(q†, p†).

Consequently,

∀i ∈ I, k ∈ K, r ∈ Rk, q†ik
r > 0, ⇒ cir(q

†, p†) ⩽ cir′(q†, p†), ∀r′ ∈ Rk. (H.8)

That is, the flow vector q† only takes routes with the minimum cost given the socially optimal
edge flow vector w†. We next prove that w† is indeed induced by q†, i.e. constraint (Dhom.a)
is tight with the optimal solution.

For notational brevity, we denote ŵe =
∑
i∈I

∑
k∈K

∑
r∈{Rk|r∋e} q

†ik
r as the edge flow

induced by q†. Suppose for the sake of contradiction that for some non-empty subset of
edges E† ⊆ E,

∀ e ∈ E†, ŵe =
∑
i∈I

∑
k∈K

∑
r∈{Rk|r∋e}

q†ik
r < w†

e,

∀ e ∈ E\E†, ŵe =
∑
i∈I

∑
k∈K

∑
r∈{Rk|r∋e}

q†ik
r = w†

e.

Then, ∑
e∈E

ŵeℓe(ŵe) =
∑
e∈E†

ŵeℓe(ŵe) +
∑

e∈E\E†
ŵeℓe(ŵe)

<
∑
e∈E†

w†
eℓe(w

†
e) +

∑
e∈E\E†

w†
eℓe(w

†
e) =

∑
e∈E

w†
eℓe(w

†
e),

where the inequality is due the the fact that ℓe is a strictly increasing function. This con-
tradicts with the fact that w† minimizes the social cost function. Therefore, we must have
ŵe =

∑
i∈I

∑
k∈K

∑
r∈{Rk|r∋e} f

†ik
r = w†

e, for every e ∈ E.
Following from the fact that q† satisfies (H.8) and induces the socially optimal edge flow

vector w†, we can conclude that w† is an equilibrium edge flow vector induced by the flow
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vector q† associated under the toll price p†. Hence, the optimal solution p† of (Phom) indeed
implements the socially optimal edge flow.

We now prove the other direction. Suppose that there exists a hom toll vector p̃ that
induces the socially optimal edge flow w† in equilibrium, then there exists z̃ such that (z̃, p̃)
is an optimal solution to (Phom). We denote q̃ as a Nash equilibrium strategy distribution
given toll p̃. Then, such q̃ is a feasible solution of (Dhom), and (Dhom.a) holds with equality.

Next, we define z̃ik = minr∈Rk θiℓ̃r(w†) +
∑
e∈r(p̃e + ge). This ensures that

z̃ik ⩽ θiℓ̃r(w
†) +

∑
e∈r

(p̃e + ge), ∀k ∈ K, r ∈ Rk, i ∈ I.

Therefore, (p̃, z̃) is a feasible solution of the primal problem (Phom). Moreover, we note that
(p̃, z̃, q̃) satisfies the complementary slackness condition associated with (Phom) and (Dhom).
Thus, (p̃, z̃) is an optimal solution to (Phom) and q̃ is an optimal solution to (Dhom).

(2) The proof of this part follows an analogous procedure as that in part (1). We denote
an optimal solution of (Phet) as (p†, z†), and an optimal solution of (Dhet) as q†. From the
complementary slackness condition associated with (Phet)-(Dhet), we know that if q†ik

r > 0 for
some i ∈ I, k ∈ K, r ∈ Rk, then z†ik = θiℓ̃r(w†) +

∑
e∈r(p

†i
e + ge) = θicir(q

†, p†). Moreover,
we know that for every i ∈ I, k ∈ K, r′ ∈ Rk,

z†ik ⩽ θiℓ̃r′(w†) +
∑
e∈r′

(p†i
e + ge) = θicir′(q, p†),

which implies that cir(q†, p†) ⩽ cir′(q†, p†), i.e. q† sends flow on routes with the minimum cost
associated with the heterogeneous toll p† and the socially optimal edge flow w†. Moreover,
following the same procedure as that in the hom case, we can argue that q† induces the
socially optimal edge flow f † (i.e. (Dhet.a) is tight), otherwise we arrive at a contradiction
that f † is not socially optimal. Therefore, we can conclude that q† is an equilibrium strategy
distribution that induces the socially optimal (type-specific) edge flow f † given the het toll
vector p†.

On the other hand, suppose that there exists a het toll vector p̃ that induces the socially
optimal edge flow w†in equilibrium, then we define z̃ik = minr∈Rk θiℓr(w†) +

∑
e∈r(p̃

i
e + ge)

for all k ∈ K, r ∈ Rk, and i ∈ I. Analogous to the case with hom toll, we can argue that
(p̃, z̃) (resp. q̃ ) is a feasible solution of (Phet) (resp. (Dhet)), and satisfies complementary
slackness conditions. Consequently, we know that (p̃, z̃) (resp. q̃ ) is an optimal solution of
(Phet) (resp. (Dhet)). □
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Appendix I

Appendix for Chapter 10

I.1 Technical Results in the Proof of Theorem 10.4.1
First, we list some fundamental facts regarding projections onto convex, compact subsets of
an Euclidean space. Below, for any fixed convex, compact subset Ω ⊂ Rd, we denote the
projection operator onto Ω by PΩ(x) := argminz∈Ω∥x− z∥2 for each x ∈ Rd. Note that
PΩ(x) is well-defined (i.e., exists and is unique) for each x ∈ Rd, if Ω ⊂ Rd were convex
and compact.
Proposition I.1.1. Let Ω ⊂ Rd be compact and convex, and fix x, y ∈ Rd arbitrarily. Then:∥∥∥PΩ(x)−PΩ(y)

∥∥∥2
2
⩽
(
PΩ(x)−PΩ(y)

)⊤
(x− y),

∥PΩ(x)−PΩ(y)∥2 ⩽ ∥x− y∥2.

Proof. From [314], Lemma 3.1.4 (see also [349], Lemma 7.4), we have:(
PΩ(x)−PΩ(y)

)⊤(
x−PΩ(x)

)
⩾ 0,(

PΩ(y)−PΩ(x)
)⊤(

y−PΩ(y)
)
⩾ 0.

Adding the two expressions and rearranging terms, we obtain:(
PΩ(x)−PΩ(y)

)⊤(
(x− y)− (PΩ(x)−PΩ(y))

)
⩾ 0,

⇒∥PΩ(x)−PΩ(y)∥22 ⩽
(
PΩ(x)−PΩ(y)

)⊤
(x− y),

as given in the first claim. The Cauchy Schwarz inequality then implies:

∥PΩ(x)−PΩ(y)∥22 ⩽
(
PΩ(x)−PΩ(y)

)⊤
(x− y)

⩽ ∥PΩ(x)−PΩ(y)∥2 · ∥x− y∥2.

If PΩ(x) = PΩ(y), then the second claim becomes 0 ⩽ ∥x− y∥2, which is clearly true.
Otherwise, dividing both sides above by ∥PΩ(x)−PΩ(y)∥2 gives the second claim.
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Lemma I.1.2. Let Ω ⊂ Rd be a compact, convex subset of Rd, and consider the update
zk+1 = PΩ(zk − ηF (zk+1) + γk), where zk, zk+1, γk ∈ Rd. Then, for each z ∈ Ω:

⟨F (zk+1), zk+1 − z⟩

⩽
1
2η∥zk − z∥

2 − 1
2η∥zk+1 − z∥2 −

1
2η∥zk+1 − zk∥2 +

1
η
⟨γk, zk+1 − z⟩ .

Proof. Note that:

∥zk+1 − z∥2 = ∥zk+1 − zk + zk − z∥2

= ∥zk+1 − zk∥2 + ∥zk − z∥2 + 2 ⟨zk+1 − zk, zk − z⟩
= ∥zk+1 − zk∥2 + ∥zk − z∥2 + 2 ⟨zk+1 − zk, zk − zk+1 + zk+1 − z⟩
= ∥zk − z∥2 − ∥zk+1 − zk∥2 + 2 ⟨zk+1 − zk, zk+1 − z⟩

By definition of zk+1, and optimality conditions for the projection operator:

⟨zk+1 − z, zk+1 − zk + ηF (zk+1)− γk⟩ ⩽ 0,
=⇒ ⟨zk+1 − zk, zk+1 − z⟩ ⩽ ⟨γk, zk+1 − z⟩ − η · ⟨F (zk+1), zk+1 − z⟩ .

Substituting back, we obtain:

∥zk+1 − z∥2 = ∥zk − z∥2 − ∥zk+1 − zk∥2 + 2 ⟨zk+1 − zk, zk+1 − z⟩
⩽ ∥zk − z∥2 − ∥zk+1 − zk∥2 + 2 ⟨γk, zk+1 − z⟩ − 2η · ⟨F (zk+1), zk+1 − z⟩ .

Rearranging and dividing by η gives the claim in the lemma.

Next, we state the properties of the mean and variance of the zeroth-order gradient
estimator defined in Section 10.4 ([66], Lemma C.1). Below, we define the δ-smoothed loss
function Lδ : Rd → R by Lδ(u) := Ev∼Unif(Bd)[L(u+ δv)], where Sd−1 denotes the (d− 1)-
dimensional unit sphere in Rd, Bd denotes the d-dimensional unit open ball in Rd, and Unif(·)
denotes the continuous uniform distribution over a set. Similarly, we define Lδi : Rd → R

by Lδi (u) := Ev∼Unif(Bd)[Li(u + δv)], for each i ∈ [n] := {1, · · · ,n}. We further define
δ · Sd−1 := {δv : v ∈ Sd−1} and δ ·Bd := {δv : v ∈ Bd}. Finally, we use vold(·) to denote
the volume of a set in d dimensions.
Proposition I.1.3. Let F̂ (u; δ, v) = d

δ ·L(u+ δv)v and F (u) = ∇L(u). Then the following
holds:

Ev∼Unif(Sd−1)

[
F̂ (u; δ, v)

]
= ∇Lδ(u), (I.1)

∥∇Lδ(u)− F (u)∥2 ⩽ ℓδ, (I.2)

∥F̂ (u; δ, v)∥2 ⩽ dG+
dML

δ
, (I.3)

∥F̂ (u; δ, v)− F (u)∥ ⩽ min
(d+ 1)G+

dML

δ
, ℓδ + 2dG+

2dML

δ

. (I.4)
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Proof. First, to establish (I.1), observe that since Lδ(u) = Ev∼Unif(Bd)[L(u + δv)] and
F̂ (u; δ, v) = d

δ ·L(u+ δv)v for each u ∈ Rd, δ > 0, and v ∈ Sd−1:

∇Lδ(u) = ∇Ev∼Unif(Bd)

[
L(u+ δv)

]
= ∇Ev∼Unif(δ·Bd)

[
L(u+ v)

]
=

1
vold(δ ·Bd)

· ∇
(∫

δ·Bd
L(u+ v)dv

)
=

1
vold(δ ·Bd)

·
∫
δ·Sd−1

L(u+ v) · v

∥v∥2
dv, (I.5)

Ev∼Unif(Sd−1)

[
F̂ (u; δ, v)

]
=
d

δ
·Ev∼Unif(Sd−1)

[
L(u+ δv)v

]
=
d

δ
·Ev∼Unif(δ·Sd−1)

L(u+ v) · v

∥v∥2


=
d

δ
· 1

vold−1(δ · Sd−1)
·
∫
δ·Sd−1

L(u+ v) · v

∥v∥2
dv,

where (I.5) follows because Stokes’ Theorem (see, e.g., Lee, Theorem 16.11 [236]) implies
that:

∇
∫
δ·Bd

L(u+ v)dv =
∫
δ·Sd−1

L(u+ v) · v

∥v∥2
dv.

The equality (I.1) now follows by observing that the surface-area-to-volume ratio of δ ·Bd is
d/δ.

Next, to establish (I.2), we note that:

∥∇Lδ(u)− F (u)∥2 =
∥∥∥∇Ev∼Unif(Bd)

[
Lδ(u)−L(u)

]∥∥∥
2

=
1

vold(Bd)
·

∥∥∥∥∥∥∇
∫

Bd

[
L(u+ δv)−L(u)

]
dv

∥∥∥∥∥∥
2

⩽
1

vold(Bd)
·

∥∥∥∥∥∥
∫
Bd

[
F (u+ δv)− F (u)

]
dv

∥∥∥∥∥∥
2

(I.6)

⩽
1

vold(Bd)
·
∫
Bd

∥∥∥F (u+ δv)− F (u)
∥∥∥

2
dv

⩽
1

vold(Bd)
·
∫
Bd
ℓδ · ∥v∥2 dv

⩽ ℓδ,

where (I.6) follows by differentiating under the integral sign (see, e.g., Rudin, Theorem 9.42
[356]), and the remaining inequalities follow from the fact that F is ℓ-Lipschitz.
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Next, we establish (I.3) by using the triangle inequality and the ML-boundedness of L(·)
on X ×Y , and the G-Lipschitzness of L(·):

|F̂ (u; δ, v)| = d

δ
|L(u+ δv)| · ∥v∥2

⩽
d

δ
·
(
|L(u)|+ |L(u+ δv)−L(u)|

)
· 1

⩽
d

δ
· (ML + δG).

We can then use (I.3) to establish (I.4) by observing that:

|F̂ (u; δ, v)− F (u)| ⩽ |F̂ (u; δ, v)|+ |F (u)| ⩽ (d+ 1)G+
dML

δ
.

and, from (I.3):
|F̂ (u; δ, v)− F (u)|

⩽
∣∣∣F̂ (u; δ, v)−Ev[F̂ (u; δ, v)|u]

∣∣∣+ ∣∣∣Ev[F̂ (u; δ, v)|u]− F (u)
∣∣∣

⩽
∣∣∣F̂ (u; δ, v)−Ev[F̂ (u; δ, v)|u]

∣∣∣+ ∣∣∣∇Lδ(u)− F (u)∣∣∣
⩽2

(
dG+

dML

δ

)
+ ℓδ.

This concludes the proof.

Below, we present technical lemmas that allow us to analyze the convergence rate of the
correlated iterates {uti} in our random reshuffling-based OGDA Algorithm (Algorithm 9).

Let σ0, · · · ,σt−1 denote the permutations drawn from epoch 0 to epoch t− 1, and let
{uti(σt)}1⩽i⩽n and {uti(σ̃t)}1⩽i⩽n denote the iterates obtained at epoch t, when the per-
mutations σt and σ̃t are used for the epoch t, respectively. Moreover, let Di,t denote the
distribution of {uti(σt)}1⩽i⩽n under σt, and for 1 ⩽ r ⩽ n let D(r)

i,t denote the distribution
of {uti(σt)}1⩽i⩽n with σt conditioned on the event {σti−1 = r}.

We use the p-Wasserstein distance between probability distributions on Rd, defined below,
to characterize the distance between Di,t and D(r)

i,t . This is used in the coupling-based tech-
niques employed to establish non-asymptotic convergence results for our random reshuffling
algorithm. Note the difference between the p-Wasserstein distance for probability distribu-
tions on Rd, and the Wasserstein distance on Z := Rd×{+1,−1} associated with a metric
c : Z ×Z → [0,∞), defined in Chapter 10.3 (Definition 10.1.1).
Definition I.1.1 (p-Wasserstein distance between distributions on Rd). Let µ, ν be
probability distributions over Rd with finite p-th moments, for some p ⩾ 1, and let Π(µ, ν)
denote the set of all couplings (joint distributions) between µ and ν. The p-Wasserstein
distance between µ and ν, denoted Wp(µ, ν), is defined by:

Wp(µ, ν) = inf
(X,X ′)∼π∈Π(µ,ν)

(
Eπ

[
∥X −X ′∥p

])1/p
.
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The following proposition characterizes the 1-Wasserstein distance as a measure of the
gap between Lipschitz functions of random variables.
Proposition I.1.4 (Kantorovich Duality). If µ, ν are probability distributions over Rd

with finite second moments, then:

W1(µ, ν) = sup
g∈Lip(1)

EX∼µ[g(X)]−EY∼ν [g(Y )],

where Lip(1) := {g : Rd → R : g is 1-Lipschitz}.
Using [442, Lemma C.2], we now bound the difference between the unbiased gap E[∆(uti)]

and the biased gap E[Lσt
i
(xti+1, y⋆)−Lσt

i
(x⋆, yti+1)] using the Wasserstein metric.

Lemma I.1.5. Let u⋆ := (x⋆, y⋆) ∈ Rdx ×Rdy = Rd denote a saddle point of the min-
max optimization problem (10.9). Then, for each t ∈ [T ] and i ∈ [n], the iterates {uti} =
{(xti, yti)} of the OGDA-RR algorithm satisfy:

∣∣∣∣E[∆(uti+1)]−E
[
Lσt

i
(xti+1, y⋆)−Lσt

i
(x⋆, yti+1)

]∣∣∣∣ ⩽ G

n

n∑
r=1
W2

(
Di+1,t,Dri+1,t

)
.

Proof. Since σt and σ̃t are independently generated permutations of [n], the iterates

{uti}1⩽i⩽n = {uti(σt)}1⩽i⩽n

and
{uti(σ̃t)}1⩽i⩽n

are i.i.d. Thus, we have:

E[∆(uti+1)] = E
[
Lσt

i
(xti+1(σ̃

t), y⋆)−Lσt
i
(x⋆, yti+1(σ̃

t))
]
,
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and thus:∣∣∣∣E[∆(uti+1)]−E
[
Lσt

i
(xti+1, y⋆)−Lσt

i
(x⋆, yti+1)

]∣∣∣∣
=
∣∣∣∣E[Lσt

i
(xti+1(σ̃

t), y⋆)−Lσt
i
(x⋆, yti+1(σ̃

t))
]
−E

[
Lσt

i
(xti+1, y⋆)−Lσt

i
(x⋆, yti+1)

]∣∣∣∣
=

∣∣∣∣∣∣ 1n
n∑
r=1

E
[
Lr(x

t
i+1(σ̃

t), y⋆)−Lr(x⋆, yti+1(σ̃
t))
]

(I.7)

− 1
n

n∑
r=1

E
[
Lr(x

t
i+1, y⋆)−Lr(x⋆, yti+1)

∣∣∣σti = r
]∣∣∣∣∣∣

⩽
1
n

n∑
r=1

∣∣∣∣E[Lr(xti+1(σ̃
t), y⋆)−Lr(x⋆, yti+1(σ̃

t))
]
−E

[
Lr(x

t
i+1, y⋆)−Lr(x⋆, yti+1)

∣∣∣σti = r
]∣∣∣∣

⩽
1
n

n∑
r=1

sup
g∈Lip(G)

(
E
[
g(xti+1(σ̃

t), yti+1(σ̃
t))
]
−E

[
g(xti+1, yti+1)|σti = r

])
(I.8)

⩽
1
n

n∑
r=1

G · W1(Di+1,t,D(r)
i+1,t) (I.9)

⩽
1
n

n∑
r=1

G · W2(Di+1,t,D(r)
i+1,t), (I.10)

where (I.7) follows by properties of the conditional expectation on {σti = r} and the fact
that σt and σ̃t are independent, (I.8) follows from the fact that L is Lipschitz, (I.9) follows
from Proposition I.1.4, and (I.10) follows from the fact that W1(µ, ν) ⩽ W2(µ, ν) for any
two probability distributions µ, ν.

The next lemma bounds the difference in the iterates {uti(σt)} and {uti(σ̃t)} (assuming,
as before, that σ0, · · · ,σt−1 were fixed and identical for both sequences.)
Lemma I.1.6. Denote, with a slight abuse of notation, uti := uti(σ

t) and ũti := uti(σ̃
t).

Then:

∥uti+1 − ũti+1∥2 ⩽

6nd+ 14n+ 2 ·
n∑
i=1

1{σti ̸= σ̃ti}

G · ηt + 6ndML ·
ηt

δt
.

Proof. Our proof strategy is to bound the differences between zeroth-order and first-order



APPENDIX I. APPENDIX FOR CHAPTER 10 414

OGDA updates, and between the OGDA and proximal point updates. To this end, we define:

uti+1 = PX ×Y

(
uti − ηtF̂σt

i
(uti; δt, vti)− ηtF̂σt

i−1
(uti; δt, vti) + ηtF̂σt

i−1
(uti−1; δt, vti−1)

)
,

ũti+1 = PX ×Y

(
ũti − ηtF̂σ̃t

i
(ũti; δt, vti)− ηtF̂σ̃t

i−1
(ũti; δt, vti) + ηtF̂σ̃t

i−1
(ũti−1; δt, vti−1)

)
,

vti+1 = PX ×Y

(
uti − ηtFσt

i
(uti)− ηtFσt

i−1
(uti) + ηtFσt

i−1
(uti−1)

)
,

ṽti+1 = PX ×Y

(
ũti − ηtFσ̃t

i
(ũti)− ηtFσ̃t

i−1
(ũti) + ηtFσ̃t

i−1
(ũti−1)

)
,

wti+1 = PX ×Y

(
uti − ηtFσt

i
(wti+1)

)
,

w̃ti+1 = PX ×Y

(
ũti − ηtFσ̃t

i
(w̃ti+1)

)
.

By the triangle inequality:

∥uti+1 − ũti+1∥2 ⩽ ∥uti+1 − vti+1∥2 + ∥vti+1 −wti+1∥2 + ∥wti+1 − w̃ti+1∥2 (I.11)
+ ∥w̃ti+1 − ṽti+1∥2 + ∥ṽti+1 − ũti+1∥2.

Observe that bounding the fourth term is equivalent to bounding the second term, and
bounding the fifth term is equivalent to bounding the first term.

To bound the first term on the right hand side, we use Proposition I.1.3 to conclude that:

∥uti+1 − vti+1∥2 ⩽ ηt · ∥F̂σt
i
(uti; δt, vti)− Fσt

i
(uti)∥+ ηt · ∥F̂σt

i−1
(uti; δt, vti)− Fσt

i−1
(uti)∥

+ ηt · ∥F̂σt
i−1

(uti−1; δt, vti−1)− Fσt
i−1

(uti−1)∥

⩽ 3(d+ 1)Gηt + 3dML ·
ηt

δt
(I.12)

For the second term, we use the G-Lipschitzness of Lr, for each r ∈ [n] to conclude that:

∥vti+1 −wti+1∥2 ⩽ ηt · |Fσt
i
(uti)|+ ηt · |Fσt

i−1
(uti)|+ ηt · |Fσt

i−1
(uti−1)|+ ηt · |Fσt

i
(wti+1)|

⩽ 4G · ηt. (I.13)

For the third term, we observe that if σti ̸= σ̃ti , then:

∥wti+1 − w̃ti+1∥2 ⩽ ∥uti − ũti∥2 + ηt · ∥Fσt
i
(wti+1)− Fσ̃t

i
(w̃ti+1)∥2

⩽ ∥uti − ũti∥2 + 2G · ηt. (I.14)

On the other hand, if σti = σ̃ti , then:

wti+1 = PX ×Y

(
uti − ηtFσt

i
(wti+1)

)
,

w̃ti+1 = PX ×Y

(
ũti − ηtFσt

i
(w̃ti+1)

)
,
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so we have:

∥wti+1 − w̃ti+1∥22
⩽ (wti+1 − w̃ti+1)

⊤
(
(uti − η · Fσt

i
(wti+1))− (ũti − η · Fσt

i
(w̃ti+1))

)
(I.15)

=(wti+1 − w̃ti+1)
⊤(uti − ũti)− η(wti+1 − w̃ti+1)

⊤
(
Fσt

i
(wti+1))− Fσt

i
(w̃ti+1))

)
⩽ (wti+1 − w̃ti+1)

⊤(uti − ũti) (I.16)
⩽∥wti+1 − w̃ti+1∥2 · ∥uti − ũti∥2, (I.17)

so ∥wti+1 − w̃ti+1∥2 ⩽ ∥uti − ũti∥2. Here, (I.15) follows from the definitions of wti+1 and w̃ti+1,
as well as Proposition I.1.1, while (I.16) holds because the monotonicity of Fi, for each
i ∈ [n], implies that (wti+1 − w̃ti+1)

⊤
(
Fσt

i
(wti+1)− Fσt

i
(w̃ti+1)

)
⩾ 0. Putting together (I.12),

(I.13), (I.14), (I.17), we have:

∥uti+1 − ũti+1∥2 ⩽ ∥uti − ũti∥2 + (6d+ 14)G · ηt + 6dML ·
ηt

δt

+ 2G · 1{σti ̸= σ̃ti} · ηt,

where the indicator 1(A) returns 1 if the given event A occurs, and 0 otherwise.
Since ut0 = ũt0, we can iteratively apply the above inequality to obtain that, for any and

epoch t and i ∈ [n]:

∥uti+1 − ũti+1∥2 ⩽ (6d+ 14)nG · ηt + 6ndML ·
ηt

δt
+ 2ηtG ·

n∑
i=1

1{σti ̸= σ̃ti}.

Remark I.1.1. In the theorems and lemmas below, we will be concerned with the case where
σt and σ̃t have the following specific relationship. Let Rn denote the set of all random
permutations over the set [n]. For each l,m ∈ [n], let Sl,m : Rn → Rn denote the map that
swaps, for each input permutation σ, the l-th and m-th entries. For each r, i ∈ [n], define
the map ωr,i : Rn → Rn as follows:

ωr,i(σ) =

σ, if σi−1 = r,
Si−1,j(σ), if σj = r and j ̸= i− 1.

.

Intuitively, ωr,i performs a single swap such that the (i− 1)-th position of the permutation
is r. Clearly, if σt is a random permutation (i.e., selected from a uniform distribution over
Rn), then ωr,i(σs) has the same distribution as σt|(σti−1 = r). Based on this construction,
we have ui(σt) ∼ Di,t and ui(ωr,i(σt)) ∼ D(r)

i,t . This gives a coupling between Ds,t and D(r)
s,t .
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Since σt and σ̃t differ by at most two entries, by iteratively applying Lemma I.1.6, we have:

∥uti+1 − ũti+1∥2 ⩽ n

(6d+ 14)G · ηt + 6dML ·
ηt

δt

+ 4G · ηt

= (6nd+ 14n+ 4)G · ηt + 6ndML ·
ηt

δt
,

as claimed.
Lemma I.1.7. If ηt ⩽ 1/(2ℓ) for each t ∈ {0, 1, · · · ,T − 1}, the iterates {uti} = {(xti, yti)}
of the OGDA-RR algorithm satisfy, for each u ∈ X ×Y:

2ηt ·E
[〈
Fσt

i
(uti+1),uti+1 − u

〉]
⩽E

[
∥uti − u∥22

]
−E

[
∥uti+1 − u∥22

]
− 1

2E
[
∥uti+1 − uti∥22

]
+

1
2E

[
∥uti − uti−1∥22

]
+ 2ηt ·E

[〈
Fσt

i
(uti+1)− Fσt

i
(uti),uti+1 − u

〉]
− 2ηt ·E

[〈
Fσt

i−1
(uti)− Fσt

i−1
(uti−1),uti − u

〉]
+ 6C1 ·

(
ηtδt + (ηt)2δt + (ηt)2 +

(ηt)2

δt
+

(ηt)2

(δt)2

)
,

where C1 := d2 max
{

6GℓD, 18G2 + 6MLℓD, 30MLG, 12M2
L

}
is a constant independent of

the sequences {ηt} and {δt}.

Proof. The iterates of the OGDA-RR algorithm are given by:

uti+1 = PX ×Y

(
uti − ηtF̂σt

i
(uti; δt, vti)− ηtF̂σt

i−1
(uti; δt, vti)

− ηtF̂σt
i−1

(uti−1; δt, vti−1)
)

= PX ×Y

(
uti − ηtFσt

i
(uti+1) + ηt

(
γti +Eti,1 +Eti,2 +Eti,3

))
, (I.18)

where we have defined:

γti := Fσt
i
(uti+1)− Fσt

i
(uti)− Fσt

i−1
(uti) + Fσt

i−1
(uti−1),

Eti,1 := Fσt
i
(uti)− F̂σt

i
(uti; δt, vti),

Eti,2 := Fσt
i−1

(uti)− F̂σt
i−1

(uti; δt, vti),

Eti,3 := Fσt
i−1

(uti−1)− F̂σt
i−1

(uti−1; δt, vti−1).
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First, by applying Lemma I.1.2 we have:

2ηt ·E
[〈
Fσt

i
(uti+1),uti+1 − u

〉]
(I.19)

⩽E
[
∥uti − u∥22

]
−E

[
∥uti+1 − u∥22

]
−E

[
∥uti+1 − uti∥22

]
+ 2ηt ·E

[〈
γti ,uti+1 − u

〉]
+

3∑
k=1

2ηt ·E
[〈
Eti,k,uti+1 − u

〉]
.

Below, we proceed to bound the inner product terms on the right-hand-side of (I.19). First,
we bound

〈
γti ,uti+1 − u

〉
:〈

γti ,uti+1 − u
〉
=
〈
Fσt

i
(uti+1)− Fσt

i
(uti),uti+1 − u

〉
−
〈
Fσt

i−1
(uti)− Fσt

i−1
(uti−1),uti+1 − u

〉
=
〈
Fσt

i
(uti+1)− Fσt

i
(uti),uti+1 − u

〉
−
〈
Fσt

i−1
(uti)− Fσt

i−1
(uti−1),uti − u

〉
−
〈
Fσt

i−1
(uti)− Fσt

i−1
(uti−1),uti+1 − uti

〉
⩽
〈
Fσt

i
(uti+1)− Fσt

i
(uti),uti+1 − u

〉
(I.20)

−
〈
Fσt

i−1
(uti)− Fσt

i−1
(uti−1),uti − u

〉
+

1
2ℓ · ∥u

t
i − uti−1∥22 +

1
2ℓ · ∥u

t
i+1 − uti∥22.

Note that the final inequality follows by applying Young’s inequality, and noting that F is
ℓ-Lipschitz. Next, we bound ⟨Eti,1,uti+1 − u⟩:

E
[
⟨Eti,1,uti+1 − u⟩

]
=E

[〈
Fσt

i
(uti)− F̂σt

i
(uti, δt, vti),uti+1 − u

〉]
=E

[〈
Fσt

i
(uti)−∇Lδ

t

σt
i
(uti),uti+1 − u

〉]
+ E

[〈
E
[
F̂σt

i
(uti; δt, vti |uti

]
− F̂σt

i
(uti, δt, vti),uti+1 − u

〉]
=E

[〈
Fσt

i
(uti)−∇Lδ

t

σt
i
(uti),uti+1 − u

〉]
(I.21)

+ E

[〈
Ev

[
F̂σt

i
(uti; δt, v|uti

]
− F̂σt

i
(uti, δt, vti),uti − u

〉]
+ E

[〈
Ev

[
F̂σt

i
(uti; δt, v|uti

]
− F̂σt

i
(uti, δt, vti),uti+1 − uti

〉]
,
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where the first equality above follows by applying Proposition I.1.3, (I.1), and we have used
the shorthand Ev := Ev∼Unif(Sd−1). (Recall that Lδ(u) := Ev∼Unif(Sd−1)

[
L(u+ δv)

]
) Next,

we upper bound each of the three quantities in (I.21). First, by Proposition I.1.3, (I.2), we
have:

E

[〈
Fσt

i
(uti)−∇Lδ

t

σt
i
(uti),uti+1 − u

〉]
⩽E

[
∥Fσt

i
(uti)−∇Lδ

t

σt
i
(uti)∥2 · ∥uti+1 − u∥2

]
⩽ℓD · δt, (I.22)

with C1 > 0 as given in Lemma I.1.7. Meanwhile, the law of iterated expectations can be
used to bound the second quantity:

E

[〈
Ev

[
F̂σt

i
(uti; δt, v)|uti

]
− F̂σt

i
(uti, δt, vti),uti − u

〉]
=E

[
Ev

[〈
F̂σt

i
(uti, δt, vti),uti − u

〉∣∣∣uti]]−E

[〈
F̂σt

i
(uti, δt, vti),uti − u

〉]
=0, (I.23)

and we can upper-bound the third quantity as shown below. By using the compactness of
X ×Y and the continuity of L, we have:

E

[〈
Ev

[
F̂σt

i
(uti; δt, v)|uti

]
− F̂σt

i
(uti, δt, vti),uti+1 − uti

〉]
⩽
(∥∥∥Ev

[
F̂σt

i
(uti; δt, v)|uti

]∥∥∥
2
+ ∥F̂σt

i
(uti, δt, vti)∥

)
· ∥uti+1 − uti∥2

⩽2 · d
δt
· sup

u∈X ×Y
v∼Unif(Sd−1)

|L(uti + δtv)| · ∥uti+1 − uti∥2,

⩽2 · d
δt
· (ML + δtG) · ∥uti+1 − uti∥2, (I.24)

and using (I.22) and the bound for each ∥F̂σt
i
∥2 given in (I.24), we have:

∥uti+1 − uti∥2
⩽ηt · ∥F̂σt

i
(uti; δt, vti) + F̂σt

i−1
(uti; δt, vti)− F̂σt

i−1
(uti−1; δt, vti−1)∥

⩽ηt · ∥Fσt
i
(uti) + Fσt

i−1
(uti)− Fσt

i−1
(uti−1)∥2

+ ηtd · ∥F̂σt
i
(uti; δt, vti)− Fσt

i
(uti)∥2

+ ηtd · ∥F̂σt
i−1

(uti; δt, vti)− Fσt
i−1

(uti)∥2
+ ηtd · ∥F̂σt

i−1
(uti−1; δt, vti−1)− Fσt

i−1
(uti−1)∥2

⩽3Gηt + 3ηtd ·
2(ML +Gδt) · 1

δt
+ ℓD · δt

. (I.25)
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Substituting (I.25) back into (I.24), we have:

E

[〈
Ev

[
F̂σt

i
(uti; δt, v)|uti

]
− F̂σt

i
(uti, δt, vti),uti+1 − uti

〉]
⩽d2ℓD6ηtG · δt + 6d2ηt(3G2 +MLℓD) + 30d2ηtMLG ·

1
δt

+ 12d2ηtM2
L ·
( 1
δt

)2

⩽C1 ·
(
ηtδt + ηt +

ηt

δt
+

ηt

(δt)2

)
, (I.26)

where C1 := d2 ·max
{

6GℓD, 18G2 + 6MLℓD, 30MLG, 12M2
L

}
is a constant independent of

the sequences {ηt} and {δt}. The quantities E
[
⟨Eti,2,uti+1− u⟩

]
and E

[
⟨Eti,3,uti+1− u⟩

]
can

be similarly bounded. Substituting (I.22), (I.23), (I.26) back into (I.21), and substituting
(I.21) and (I.20) into (I.19), we find that:

2ηt ·E
[〈
Fσt

i
(uti+1),uti+1 − u

〉]
=E

[
∥uti − u∥22

]
−E

[
∥uti+1 − u∥22

]
−E

[
∥uti+1 − uti∥22

]
+ 2ηt ·E

[〈
γti ,uti+1 − u

〉]
+ 2ηt ·

3∑
k=1

E

[〈
Eti,k,uti+1 − u

〉]
⩽E

[
∥uti − u∥22

]
−E

[
∥uti+1 − u∥22

]
−E

[
∥uti+1 − uti∥22

]
+ 2ηt ·E

[〈
Fσt

i
(uti+1)− Fσt

i
(uti),uti+1 − u

〉]
− 2ηt ·E

[〈
Fσt

i−1
(uti)− Fσt

i−1
(uti−1),uti − u

〉]
+ ηtℓ ·E

[
∥uti − uti−1∥22

]
+ ηtℓ ·E

[
∥uti+1 − uti∥22

]
+ 6C1 ·

(
ηtδt + (ηt)2δt + (ηt)2 +

(ηt)2

δt
+

(ηt)2

(δt)2

)
,

In particular, since by assumption ηt ⩽ 1/(2ℓ) for each t ∈ {0, 1, · · · ,T − 1}, then:

2ηt ·E
[〈
Fσt

i
(uti+1),uti+1 − u

〉]
⩽E

[
∥uti − u∥22

]
−E

[
∥uti+1 − u∥22

]
− 1

2E
[
∥uti+1 − uti∥22

]
+

1
2E

[
∥uti − uti−1∥22

]
+ 2ηt ·E

[〈
Fσt

i
(uti+1)− Fσt

i
(uti),uti+1 − u

〉]
− 2ηt ·E

[〈
Fσt

i−1
(uti)− Fσt

i−1
(uti−1),uti − u

〉]
+ 6C1 ·

(
ηtδt + (ηt)2δt + (ηt)2 +

(ηt)2

δt
+

(ηt)2

(δt)2

)
,
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Finally, to bound the step size terms above, we require the following lemma, which follows
from standard calculus arguments.
Lemma I.1.8.

T∑
t=1

t−β ⩾
1

1− βT
1−β, ∀β < 1,

T∑
t=1

t−(1+β) ⩽
1
β
+ 1, ∀β > 0.

I.2 Proof of Theorem 10.4.1
By applying Lemma I.1.7 (note that ηt ⩽ η0 ⩽ 1

2ℓ , for each t ∈ {0, 1, · · · ,T − 1}) and using
convex-concave nature of Lr (refer Proposition 1 in [304]), for each r ∈ {1, · · ·n}, we have:

2ηt ·E
[
Lσt

i
(xti+1, y⋆)−Lσt

i
(x⋆, yti+1)

]
⩽2ηt ·E

[〈
Fσt

i
(uti+1),uti+1 − u⋆

〉]
⩽E

[
∥uti − u⋆∥22

]
−E

[
∥uti+1 − u⋆∥22

]
− 1

2E
[
∥uti+1 − uti∥22

]
+

1
2E

[
∥uti − uti−1∥22

]
+ 2ηt ·E

[〈
Fσt

i
(uti+1)− Fσt

i
(uti),uti+1 − u⋆

〉]
− 2ηt ·E

[〈
Fσt

i−1
(uti)− Fσt

i−1
(uti−1),uti − u⋆

〉]
+ 6C1 ·

(
ηtδt + (ηt)2δt + (ηt)2 +

(ηt)2

δt
+

(ηt)2

(δt)2

)
. (I.27)

Meanwhile, Lemma I.1.5, Proposition I.1.4 (Kantorovich Duality), and Lemma I.1.6 imply
that: ∣∣∣∣E[∆(uti+1)]−E

[
Lσt

i
(xti+1, y⋆)−Lσt

i
(x⋆, yti+1)

]∣∣∣∣ ⩽ G

n

n∑
r=1
W2

(
Di+1,t,Dri+1,t

)

⩽
G

n

n∑
r=1

√
E
[∥∥∥uti+1(σ

t)− uti+1(σ̃
t)
∥∥∥2

2

]

⩽ G ·

(6nd+ 14n+ 4)G · ηt + 6ndML ·
ηt

δt

.
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Substituting back into (I.27), we have:

2ηt ·E
[
∆(uti)

]
⩽2ηt ·E

[
Lσt

i
(xti+1, y⋆)−Lσt

i
(x⋆, yti+1)

]
+G ·

(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·
(ηt)2

δt


⩽E

[
∥uti − u⋆∥22

]
−E

[
∥uti+1 − u⋆∥22

]
− 1

2E
[
∥uti+1 − uti∥22

]
+

1
2E

[
∥uti − uti−1∥22

]
+ 2ηt ·E

[〈
Fσt

i
(uti+1)− Fσt

i
(uti),uti+1 − u

〉]
− 2ηt ·E

[〈
Fσt

i−1
(uti)− Fσt

i−1
(uti−1),uti − u

〉]
+ 6C1 ·

(
ηtδt + (ηt)2δt + (ηt)2 +

(ηt)2

δt
+

(ηt)2

(δt)2

)

+G ·

(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·
(ηt)2

δt

. (I.28)

We can now sum the above telescoping terms across the t-th epoch, as shown below:

2 ·
n∑
i=1

ηt ·E
[
∆(uti)

]
⩽E

[
∥ut1 − u⋆∥22

]
−E

[
∥ut+1

1 − u⋆∥22
]
+

1
2E

[
∥ut1 − ut0∥22

]
− 1

2E
[
∥ut+1

1 − ut+1
0 ∥22

]
+ 2ηt ·E

[〈
Fσt

0
(ut1)− Fσt

0
(ut0),ut1 − u⋆

〉]
− 2ηt ·E

[〈
Fσt+1

0
(ut+1

1 )− Fσt+1
0

(ut+1
0 ),ut+1

1 − u⋆
〉]

+ 6nC1 ·
(
ηtδt + (ηt)2δt + (ηt)2 +

(ηt)2

δt
+

(ηt)2

(δt)2

)

+ nG ·

(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·
(ηt)2

δt

.
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Meanwhile, we have for each t = 0, 1, · · · ,T − 1, i ∈ [n]:

E

[〈
Fσt

i
(uti+1)− Fσt

i
(uti),uti+1 − u⋆

〉]
⩽E

[∥∥∥Fσt
i
(uti+1)− Fσt

i
(uti)

∥∥∥ · ∥∥∥uti+1 − u⋆
∥∥∥]

= ℓ ·E
[
∥uti+1 − uti∥

]
·D

⩽ℓD ·E
[∥∥∥− ηtF̂σt

i
(uti; δt, vti)− ηtF̂σt

i−1
(uti; δt, vti) + ηtF̂σt

i−1
(uti−1; δt, vti−1)

∥∥∥]

⩽3ℓD · ηt ·
dG+

dML

δt


=3ℓDdG · ηt + 3ℓDdML ·

ηt

δt
,

where the final inequality follows from Proposition I.1.3, (I.3). We can upper bound

E

[〈
Fσt

i−1
(uti)− Fσt

i−1
(uti−1),uti − u

〉]
in a similar fashion. Substituting back into (I.28), we have:

2 ·
n∑
i=1

ηt ·E
[
∆(uti)

]
⩽E

[
∥ut1 − u⋆∥22

]
−E

[
∥ut+1

1 − u⋆∥22
]
+

1
2E

[
∥ut1 − ut0∥22

]
− 1

2E
[
∥ut+1

1 − ut+1
0 ∥22

]
+ 6nC1 ·

(
ηtδt + (ηt)2δt + (ηt)2 +

(ηt)2

δt
+

(ηt)2

(δt)2

)

+ nG ·

(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·
(ηt)2

δt


+ 6ℓDdG · (ηt)2 + 6ℓDdML ·

(ηt)2

δt

⩽E
[
∥ut1 − u⋆∥22

]
−E

[
∥ut+1

1 − u⋆∥22
]
+

1
2E

[
∥ut1 − ut0∥22

]
− 1

2E
[
∥ut+1

1 − ut+1
0 ∥22

]
(I.29)

+ 2C ·
(
ηtδt + (ηt)2δt + (ηt)2 +

(ηt)2

δt
+

(ηt)2

(δt)2

)
,

where C := max{3nC1, (6nd+ 14n+ 4)nG, 6ndML, 3ℓDdG, 3ℓDdML}.
Finally, summing the above telescoping terms over i ∈ [n] and t ∈ {0, 1, · · · ,T − 1}, and
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removing non-positive terms, we obtain:
∑T−1
t=0

∑n
i=1 η

t ·E
[
∆(uti)

]
∑T−1
t=0

∑n
i=1 η

t

⩽
1

2 ·∑T−1
t=0

∑n
i=1 η

t

∥u0
0 − u⋆∥2 −E

[
∥uT−1

n − u⋆∥2
]
+

1
2∥u

0
1 − u0

0∥2 −
1
2E

[
∥uT−1

n − uT−1
n−1∥2

]
+C · 1∑T−1

t=0
∑n
i=1 η

t
·
T−1∑
t=0

(
ηtδt + (ηt)2δt + (ηt)2 +

(ηt)2

δt
+

(ηt)2

(δt)2

)

⩽
1∑T−1

t=0 η
t
· 3D4n +C · 1

n
∑T−1
t=0 η

t
·
T−1∑
t=0

(
ηtδt + (ηt)2δt + (ηt)2 +

(ηt)2

δt
+

(ηt)2

(δt)2

)
, (I.30)

By definition, ηt = η0 · (t+ 1)−3/4−χ and δt = δ0 · (t+ 1)−1/4, so by Lemma I.1.8, we have:

T−1∑
t=0

ηt = η0 ·
T∑
t=1

t−3/4−χ ⩾ 4η0 · T 1/4−χ,

T−1∑
t=0

ηtδt = η0δ0 ·
T∑
t=1

t−(1+χ) ⩽ η0δ0 ·

1 + 1
χ

,

T−1∑
t=0

(ηt)2 = (η0)2 ·
T∑
t=1

t−3/2−2χ ⩽ (η0)2 ·

1 + 1
1
2 + 2χ

 ⩽ 3 · (η0)2,

T−1∑
t=0

(ηt)2δt = (η0)2δ0 ·
T∑
t=1

t−7/4−2χ ⩽ (η0)2δ0 ·

1 + 1
3
4 + 2χ

 ⩽
7
4 · (η

0)2ϵ0,

T−1∑
t=0

(ηt)2

δt
=

(η0)2

δ0 ·
T∑
t=1

t−5/4−2χ ⩽
(η0)2

δ0 ·

1 + 1
1
4 + 2χ

 ⩽ 5 · (η
0)2

ϵ0
,

T−1∑
t=0

(ηt)2

(δt)2 =
(η0)2

(δ0)2 ·
T∑
t=1

t−1−2χ ⩽
(η0)2

(δ0)2 ·

1 + 1
2χ

.
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Substituting back into (I.30) and using the convexity of the gap function ∆(·), we have:

E
[
∆(uT )

]
⩽

∑T−1
t=0

∑n
i=1 η

t ·E
[
∆(uti)

]
∑T−1
t=0

∑n
i=1 η

t

⩽
1∑T−1

t=0 η
t
· 3

4nD+C · 1∑T−1
t=0 η

t
·
T−1∑
t=0

(
ηtδt + (ηt)2δt + (ηt)2 +

(ηt)2

δt
+

(ηt)2

(δt)2

)

⩽

 3
16nD+

47
4n ·C max

{
δ0, η0, η0δ0, η

0

δ0 , η0

(δ0)2

}(
1 + 1

χ

)T−1/4+χ

⩽δ.

where the final inequality follows by definition of T .

I.3 Additional Details on the Experimental Study

Algorithms
In our experiments, we compare the OGDA-RR algorithm (Algorithm 9) with three other
zeroth-order algorithms—Optimistic Gradient Descent Ascent with Sampling with Replace-
ment (OGDA-WR), Stochastic Gradient Descent Ascent with Random Reshuffling (SGDA-
RR), and Stochastic Gradient Descent Ascent with Sampling with Replacement (SGDA-
WR)—characterized by the update equations (I.32), (I.33), (I.34), respectively. For con-
venience, we have reproduced (10.13), the update equation for the OGDA-RR algorithm
(Algorithm 9), as (I.31) below:

uti+1 = PX ×Y

(
uti − ηtF̂σt

i
(uti; δt, vti)− ηtF̂σt

i−1
(uti; δt, vti) + ηtF̂σt

i−1
(uti−1; δt, vti−1)

)
, (I.31)

uti+1 = PX ×Y

(
uti − ηtF̂jt

i
(uti; δt, vti)− ηtF̂jt

i−1
(uti; δt, vti) + ηtF̂jt

i−1
(uti−1; δt, vti−1)

)
, (I.32)

uti+1 = PX ×Y

(
uti − ηtF̂σt

i
(uti; δt, vti)

)
, (I.33)

uti+1 = PX ×Y

(
uti − ηtF̂jt

i
(uti; δt, vti)

)
, (I.34)

where the indices σti and jti are as defined in Algorithms 17, 18, and 19.

Additional Experimental Results
In this section, we present more experimental findings, on both synthetic and real-world
datasets, that reinforces the utility of the proposed algorithm. In all experimental results
throughout this subsection, we take δ = 0.4, κ = 0.5 and ζ = 0.05.
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Algorithm 17 OGDA-WR Algorithm

Require: Stepsizes ηt, δt, data points {(xi, yi)}ni=1 ∼ D, initial value u(0)0 , time horizon T
1: for t = 0 to T − 1 do
2: for i = 0 to n− 1 do
3: Sample jti ∼ Unif({1, · · · ,n})
4: Sample vti ∼ Unif(Sd−1)
5: uti+1 ← update from equation (I.32)
6: end for
7: u

(t+1)
0 ← utn

8: u
(t+1)
−1 ← utn−1

9: end for
Ensure: ũT := 1

n·
∑T −1

t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti

Algorithm 18 SGDA-RR Algorithm

Require: Stepsizes ηt, δt, data points {(xi, yi)}ni=1 ∼ D, initial value u(0)0 , time horizon T
1: for t = 0 to T − 1 do
2: for i = 0 to n− 1 do
3: Sample jti ∼ Unif({1, · · · ,n})
4: Sample vti ∼ Unif(Sd−1)
5: uti+1 ← update from equation (I.33)
6: end for
7: u

(t+1)
0 ← utn

8: u
(t+1)
−1 ← utn−1

9: end for
Ensure: ũT := 1

n·
∑T −1

t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti

Experimental Study On Synthetic Datasets

Figure I.1 compares the performance of 1-4 on a synthetic dataset (whose generating process
is the same as that described in Section 10.5), with 4000 training points and 800 test points.
Our proposed algorithm performs better empirically compared to most of its counterparts.
Moreover, the proposed classifier, 1, is significantly more robust than a classifier obtained
without considering adversarial perturbations. Note, however, that we cannot make any
conclusive claims yet, because of the inherent randomness in these algorithms. Indeed, even
if we fix the initialization, then there are two sources of randomness—the construction of the
zeroth-order gradient estimator, and the sampling process that generates the data points.

To illustrate the variability in these algorithms’ performance, we run each algorithm
repeatedly on a data set with 500 synthetically generated data points, using the same ini-
tialization, and present confidence interval plots with±2 standard deviations for the resulting
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Algorithm 19 SGDA-WR Algorithm

Require: Stepsizes ηt, δt, data points {(xi, yi)}ni=1 ∼ D, initial value u(0)0 , time horizon T
1: for t = 0 to T − 1 do
2: σt = (σt1, · · · ,σtn)← a random permutation of the set [n]
3: for i = 0 to n− 1 do
4: Sample vti ∼ Unif(Sd−1)
5: uti+1 ← update from equation (I.34)
6: end for
7: u

(t+1)
0 ← utn

8: u
(t+1)
−1 ← utn−1

9: end for
Ensure: ũT := 1

n·
∑T −1

t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti

Figure I.1: Experimental results for a synthetic dataset with n = 4000. (Left pane)) Subopti-
mality iterates generated by the four algorithms 1, 2, 3, 4, respectively denoted as Z-OGDA
w RR, Z-OGDA w/o RR, Z-SGDA w RR, Z-SGDA w/o RR. (Right pane ) Comparison
between decay in accuracy of strategic classification with logistic regression (trained with
ζ = 0.05) and Algorithm 1 with changes in perturbation.

performance (Figure I.2). On average, our proposed algorithm 1 outperforms the other al-
gorithms 2-4. It is also interesting to point out that the performance of algorithms with
random reshuffling is generally higher, and fluctuate less, compared to the performance of
algorithms without random reshuffling.

We now illustrate the performance of our algorithm on two real-world data sets—the
GiveMeSomeCredit dataset 1, and the Porto Bank data set2.

1This dataset can be found at https://www.kaggle.com/c/GiveMeSomeCredit
2This dataset can be found at https://archive.ics.uci.edu/ml/datasets/bank+marketing

https://www.kaggle.com/c/GiveMeSomeCredit
https://archive.ics.uci.edu/ml/datasets/bank+marketing
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Figure I.2: Experimental results for a synthetic dataset with n = 500. Suboptimality iterates
generated by the four algorithms 1, 2, 3, and 4 are respectively denoted as Z-OGDA w RR,
Z-OGDA w/o RR, Z-SGDA w RR, and Z-SGDA w/o RR.

Experimental Study on Credit Dataset

In modern times, banks use machine learning to determine whether or not to finance a
customer. This process can be encoded into a classification framework, by using features
such as age, debt ratio, monthly income to classify a customer as either likely or unlikely
to default. However, those algorithms generally do not account for strategic or adversarial
behavior on the part of the agents.

To illustrate the effect of our algorithm on datasets of practical significance, we deploy our
algorithms on the GiveMeSomeCredit(GMSC) dataset, while assuming that the underlying
features are subject to strategic or adversarial perturbations. We use a subset of the dataset
of size 2000 with balanced labels. In Figure I.3, we compare the empirical performance of
our algorithm 1 with that of 2-4. The left pane shows that 1 performs well, and the right
pane illustrates that our classifier is significantly more robust to adversarial perturbations in
data, compared to the strategic classification-based logistic regression algorithm developed
recently in the literature [124].

Experimental Study on Porto-Bank Dataset

Next, we present empirical results obtained by applying our algorithm to the Porto-Bank
dataset, which describes marketing campaigns of term deposits at Portuguese financial in-
stitutions. The classification task in this scenario aims to predict whether a customer with
given features (eg. age, job, marital status etc.) would enroll for term deposits.
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Figure I.3: Experimental results for a balanced GiveMeSomeCredit dataset with n = 2000.
(Left pane) Suboptimality iterates generated by the four algorithms 1, 2, 3, 4, respectively
denoted as Z-OGDA w RR, Z-OGDA w/o RR, Z-SGDA w RR, Z-SGDA w/o RR. (Right
pane) Comparison between decay in accuracy of strategic classification with logistic regres-
sion (originally trained with ζ = 0.05) and Algorithm 1 with changes in perturbation.

In Figure I.4, we present the performance of our proposed algorithm 1 on the Porto-Bank
dataset. For ease of illustration, we consider a subset of the dataset with 2000 training data
points, 800 test data points, and balanced labels. In Figure I.4, we compare the empirical
performance of our Algorithm 1 with that of Algorithms 2-4. The left pane shows that
Algorithm 1 performs well, while the right pane illustrates that our classifier is significantly
more robust to adversarial perturbations in data, compared to the strategic classification-
based logistic regression developed recently in the literature [124].

Effect of n, d on sample complexity

In this part, we demonstrate the empirical results that corroborates the theoretical depen-
dence of sample complexity on n, d. For this purpose, we use synthetic dataset which is
generated as per the method described in Section 6.1. Here we work in the setting where
n ∈ {500, 1000, 1500, 2000} and d ∈ {10, 15, 20, 25}. We fix the suboptimality to ϵ = 0.1
and compute the number of samples required in each of the settings of n and d so that the
iterates reach the ϵ−suboptimality. We present the results in Figure I.5.

I.4 Logistic regression as a Generalized linear model
The goal in logistic regression is to maximize the log-likelihood of the conditional probability
of y (the label) given x (the feature). In this model, it is assumed that:

P (Y = 1|x, θ) = 1
1 + exp(−⟨x, θ⟩) .
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Figure I.4: Experimental results for a balanced PortoBank dataset with n = 2000. (Left
pane) Suboptimality iterates generated by the four algorithms 1, 2, 3, 4, respectively denoted
as Z-OGDA w RR, Z-OGDA w/o RR, Z-SGDA w RR, Z-SGDA w/o RR. (Right pane)
Comparison between decay in accuracy of strategic classification with logistic regression
(originally trained with ζ = 0.05) and Algorithm 1 with change in perturbation.

Figure I.5: Experimental results presenting the number of samples required to reach ϵ−
suboptimality, with ϵ = 0.1, for our algorithm 1 on synthetic dataset with varying values of
n ∈ {500, 1000, 1500, 2000} and d ∈ {10, 15, 20, 25}.
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This implies that:
P (Y = −1|x, θ) = exp(−⟨x, θ⟩)

1 + exp(−⟨x, θ⟩) .

Given a data point (x, y) the logistic loss is log-likelihood of observing y given x. For
any θ and y ∈ {−1, 1}:

P (Y = y|x; θ) = (P (Y = 1|x, θ))
1+y

2 (P (Y = −1|x, θ))
1−y

2 .

Now, the log-likelihood is given by:

L(x, y; θ) = log(P (Y = y|x; θ))

=
1 + y

2 log
(

1
1 + exp(−⟨x, θ⟩)

)
+

1− y
2 log

(
exp(−⟨x, θ⟩)

1 + exp(−⟨x, θ⟩)

)

= −1− y
2 ⟨x, θ⟩+

(1 + y

2 +
1− y

2

)
log

(
1

1 + exp(−⟨x, θ⟩)

)

= −1− y
2 ⟨x, θ⟩ − log(1 + exp(−⟨x, θ⟩))

=
y

2 ⟨x, θ⟩ − 1
2 ⟨x, θ⟩+ ⟨x, θ⟩ − log(1 + exp(⟨x, θ⟩))

=
y

2 ⟨x, θ⟩+ 1
2 ⟨x, θ⟩ − log(1 + exp(⟨x, θ⟩)).

The goal is to maximize the log likelihood, which is equivalent to minimizing the negative
log likelihood. Thus the logistic regression minimizes the following loss:

L̃(x, y; θ) = −L(x, y; θ) = −y2 ⟨x, θ⟩+ ϕ(⟨x, θ⟩),

where ϕ(β) = log(1 + exp(β))− β
2 . If y = 1, then the above loss becomes:

log(1 + exp(⟨x, θ⟩))− ⟨x, θ⟩ = log(1 + exp(−⟨x, θ⟩)).

Otherwise, if y = −1, then the above loss becomes log(1 + exp(⟨x, θ⟩)). Thus, the above
loss is equivalent to log(1 + exp(−y ⟨x, θ⟩)).
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Appendix J

Appendix for Chapter 11

J.1 Technical Results
Properties of zeroth-order gradient estimator. In this section, we state relevant prop-
erties of the zeroth-order gradient estimator used in the proposed algorithm. Define the
δ-smoothed loss function f̃δ : Rd → R by f̃δ(x) := Ev∼Unif(Bd)[f̃(x+ δv)], where B(Rd)

denotes the d-dimensional unit open ball in Rd. We further define δ · S(Rd) := {δv : v ∈
S(Rd)} and δ · B(Rd) := {δv : v ∈ B(Rd)}. Finally, we use vold(·) to denote the volume of
a set in d dimensions.
Lemma J.1.1 ([395, 140, 268] ). Let F̃ (x; δ, v) = d

δ ·
(
f̃(x̂)− f̃(x)

)
v where x̂ = x+ δv and

F (x) = ∇f̃δ(x). Then the following holds:

Ev∼Unif(S(Rd))

[
F̃ (x; δ, v)

]
= ∇f̃δ(x). (J.1)

Proof. Observe that f̃δ(x) = Ev∼Unif(Bd)[f̃(x̂)] where x̂ = x + δv and F̃ (x; δ, v) =
d
δ ·
(
f̃(x+ δv)− f̃(x)

)
v for each x ∈ Rd, δ > 0, and v ∈ S(Rd). We compute

∇f̃δ(x) = ∇Ev∼Unif(B(Rd))

[
f̃(x+ δv)

]
= ∇Ev∼Unif(δ·B(Rd))

[
f̃(x+ v)

]
=

1
vold(δ · B(Rd))

· ∇
(∫

δ·Bd
f̃(x+ v)dv

)
=

1
vold(δ · B(Rd))

·
∫
δ·Sd−1

f̃(x+ v) · v

∥v∥2
dv, (J.2)

where (J.2) follows by Stokes’ Theorem [236] which implies that

∇
∫
δ·B(Rd)

f̃(x+ v)dv =
∫
δ·S(Rd)

f̃(x+ v) · v

∥v∥2
dv.
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Next note that

Ev∼Unif(Sd−1)

[
F̃ (x; δ, v)

]
=
d

δ
·Ev∼Unif(S(Rd))

[(
f̃(x+ δv)− f̃(x)

)
v
]

=
d

δ
·Ev′∼Unif(δ·S(Rd))

f̃(x+ v′) · v′

∥v′∥2


=
d

δ
· 1

vold−1(δ · S(Rd))
·
∫
δ·S(Rd)

f̃(x+ v) · v

∥v∥2
dv,

The equality (J.1) now follows by observing that

vold−1(δ · S(Rd))

vold(δ · B(Rd))
=
d

δ
.

That is, surface-area-to-volume ratio of sphere in Rd or radius δ is d/δ. This concludes the
proof.

Discrete-Gronwall Inequality.

Lemma J.1.2 ([60]). For a non-negative sequence (sn) such that

sn+1 ⩽ C + L

(
n∑

m=0
sm

)
, (J.3)

the following inequality holds: sn+1 ⩽ C̃ exp(Ln) where C̃ = max{s0,C}.
Proof. The proof is taken from [60]. We provide details here for the sake of completeness.
Define Sn =

∑n
m=0 sm. Then (J.3) can be equivalently written as

Sn+1 − Sn ⩽ C̃ + LSn,

where C̃ = max{s0,C}. Thus, it follows that

Sn+1 ⩽ (1 + L)Sn + C̃

⩽ (1 + L)n+1S0 +
n∑
k=0

C̃(1 + L)n−k

⩽ C̃
n+1∑
k=0

(1 + L)n+1−k

⩽ C̃
n+1∑
k=0

exp(L(n+ 1− k))

⩽ C̃
∫ n+1

0
exp(L(n+ 1− τ ))dτ

=
C̃

L
(exp(L(n+ 1))− 1) .
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Substituting this in (J.3) we obtain
xn+1 ⩽ C̃ + LSn ⩽ C̃ + C̃ (exp(L(n+ 1))− 1) = C̃ exp(L(n+ 1)).

This concludes the proof.

J.2 Proof of Lemmas
Lemma 1 (Restated). If η̄ ⩽ d/(2ℓ̃) then

E
[
f̃(xt+1)

]
(J.4)

⩽ E
[
f̃(xt)

]
− ηt

2 E
[
∥∇f̃(xt)∥2

]
+ ηtE

[
∥E (1)t ∥2

]
+ ηtE

[
∥E (3)t ∥2

]
+ ℓ̃η2

tE

[
∥E (2)t ∥2

]
.

Proof. Note that by smoothness of f̃ function

f̃(xt+1) ⩽ f̃(xt) +
〈
∇f̃(xt),xt+1 − xt

〉
+
ℓ̃

2∥xt+1 − xt∥2

= f̃(xt)− ηt
〈
∇f̃(xt), F̂ (xt; δ, vt)

〉
+
ℓ̃η2
t

2 ∥F̂ (xt; δt, vt)∥
2

= f̃(xt)− ηt
〈
∇f̃(xt),∇f̃(xt) + E (1)t + E (2)t + E (3)t

〉
+
ℓ̃η2
t

2 ∥∇f̃(xt) + E
(1)
t + E (2)t + E (3)t ∥2,

(J.5)
where we define

E (1)t := ∇f̃δ(xt)−∇f̃(xt)

E (2)t :=
d

δt
(f̃(x̂t)− f̃(xt))vt −∇f̃δt(xt)

E (3)t :=
d

δt

(
(f(x̂t, y(K)

t )vt − f̃(x̂t)vt)− (f(xt, ỹ(K)
t )vt − f̃(xt)vt)

)
.

Taking expectation on both sides of (J.5) we obtain

E
[
f̃(xt+1)

]
⩽ E

[
f̃(xt)

]
− ηtE

[〈
∇f̃(xt),∇f̃(xt) + E (1)t + E (2)t + E (3)t

〉]
+
ℓ̃η2
t

2 E

[
∥∇f̃(xt) + E

(1)
t + E (2)t + E (3)t ∥2

]
= E

[
f̃(xt)

]
− ηtE

[〈
∇f̃(xt),∇f̃(xt) + E (1)t + E (3)t

〉]
+
ℓ̃η2
t

2 E

[
∥∇f̃(xt) + E

(1)
t + E (2)t + E (3)t ∥2

]
⩽ E

[
f̃(xt)

]
− ηtE

[〈
∇f̃(xt),∇f̃(xt) + E (1)t + E (3)t

〉]
+ ℓ̃η2

t

(
E

[
∥∇f̃(xt) + E

(1)
t + E (3)t ∥2

]
+ E

[
∥E (2)t ∥2

])
,
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where the first equality and last inequality follows by noting that E

[
E (2)t |xt

]
= 0 from

Lemma 10. Next, choosing ηt ⩽ 1
2ℓ̃ we obtain

E
[
f̃(xt+1)

]
⩽ E

[
f̃(xt)

]
− ηt

2

(
2E

[〈
∇f̃(xt),∇f̃(xt) + E (1)t + E (3)t

〉]

−E

[
∥∇f̃(xt) + E

(1)
t + E (3)t ∥2

] )
+ ℓ̃η2

t

(
E

[
∥E (2)t ∥2

])
= E

[
f̃(xt)

]
− ηt

2

(
E
[
∥∇f̃(xt)∥2

]
−E

[
∥E (1)t + E (3)t ∥2

])
+ ℓ̃η2

tE

[
∥E (2)t ∥2

]
,

where the equality follows by completing the squares.

Lemma 2 (Restated). The errors E

[
∥E (i)t ∥2

]
for i ∈ {1, 2, 3} are bounded as follows

E

[
∥E (1)t ∥2

]
⩽
ℓ̃2δ2

t d
2

4 , E

[
∥E (2)t ∥2

]
⩽ 4d2L̃2,

E

[
∥E (3)t ∥2

]
⩽
d2

δ2
t
L2

2

2αte0 + 2C6
t−1∑
k=0

αt−kη2
k +C4

t−1∑
k=0

αt−kδ2
k

 .
(J.6)

Proof. We begin with bounding the terms E

[
∥E (i)t ∥2

]
for i ∈ {1, 2, 3}. We note that

E

[
∥E (1)t ∥2

]
= E

[
∥∇f̃δt(xt)−∇f̃(xt)∥

2
]

= E

∥∥∥∥∥E
[
d

δt
(f̃(x̂t)− f̃(xt))vt −∇f̃(xt)

∣∣∣∣∣xt
] ∥∥∥∥∥

2
=
d2

δ2
t

E

∥∥∥∥∥E
[
(f̃(x̂t)− f̃(xt))vt − δtE[vtv

⊤
t ]∇f̃(xt)

∣∣∣∣∣xt
] ∥∥∥∥∥

2
=
d2

δ2
t

E

∥∥∥∥∥E
[
vt
(
f̃(x̂t)− f̃(xt)− δtv⊤

t ∇f̃(xt)
) ∣∣∣∣∣xt

] ∥∥∥∥∥
2

⩽
d2

δ2
t

E
[
∥f̃(x̂t)− f̃(xt)− δtv⊤

t ∇f̃(xt)∥2
]

⩽
d2

δ2
t

ℓ̃2δ4
t

4 =
ℓ̃2δ2

t d
2

4 , (J.7)

where the first inequality is due to Jensen’s inequality and the last inequality is due to
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ℓ̃−smoothness of f̃ . Next, we bound ∥E (2)t ∥ as follows

∥E (2)t ∥ =
∥∥∥∥∥ dδt (f̃(x̂t)− f̃(xt))vt −∇f̃δt(xt)

∥∥∥∥∥ (J.8)

⩽

∥∥∥∥∥ dδt (f̃(x̂t)− f̃(xt))vt
∥∥∥∥∥+

∥∥∥∥∥E
[
d

δt
(f̃(x̂t)− f̃(xt))vt

∣∣∣∣xt
] ∥∥∥∥∥

⩽ 2
∥∥∥∥∥ dδt (f̃(x̂t)− f̃(xt))vt

∥∥∥∥∥ ⩽ 2 d
δt
L̃∥x̂t − xt∥ ⩽ 2dL̃.

Finally, we bound ∥E (3)t ∥. Note that

∥E (3)t ∥2 =

∥∥∥∥∥ dδt
(
(f(x̂t, y(K)

t )vt − f̃(x̂t)vt)− (f̃(xt, ỹ(K)
t )vt − f̃(xt)vt)

)∥∥∥∥∥
2

⩽ 2d
2

δ2
t

(∥∥∥∥∥f(x̂t, y(K)
t )− f̃(x̂t, br(x̂t))

∥∥∥∥∥
2
+

∥∥∥∥∥f(xt, ỹ(K)
t )− f̃(xt, br(xt))

∥∥∥∥∥
2)

⩽ 2d
2

δ2
t
L2

2

∥y(K)
t − br(x̂t)∥2︸ ︷︷ ︸

Term A

+ ∥ỹ(K)
t − br(xt)∥2︸ ︷︷ ︸

Term B

 . (J.9)

Recall, from Assumption 11.3.2 it holds that

Term A = ∥y(K)
t − br(x̂t)∥2 ⩽ α∥y(0)t − br(x̂t)∥2

= α∥ỹ(K)
t−1 − br(x̂t)∥2 = α∥ỹ(K)

t−1 − br(xt−1) + br(xt−1)− br(x̂t)∥2

= 2α(∥ỹ(K)
t−1 − br(xt−1)∥2 + LS∥x̂t − xt−1∥2)

⩽ 2α(∥ỹ(K)
t−1 − br(xt−1)∥2 + 2LS∥xt − xt−1∥2 + 2LS∥δtvt∥2)

⩽ 2α(∥ỹ(K)
t−1 − br(xt−1)∥2 + 2LS∥δtvt∥2

+ 2LSη2
t−1

d2

δ2
t−1
∥f(x̂t−1, y(K)

t−1 )− f(xt−1, ỹ(K)
t−1 )∥2)

⩽ 2α(∥ỹ(K)
t−1 − br(xt−1)∥2 + 2LSδ2

t−1

+ 2LSη2
t−1

d2

δ2
t−1
∥f(x̂t−1, y(K)

t−1 )− f(xt−1, ỹ(K)
t−1 )∥2︸ ︷︷ ︸

Term C

), (J.10)

where the last inequality follows by noting that (δt) is a decreasing sequence.
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Similarly, we note that

Term B = ∥ỹ(K)
t − br(xt)∥2 ⩽ α∥ỹ(K)

t−1 − br(xt)∥2

= α∥ỹ(K)
t−1 − br(xt−1) + br(xt−1)− br(xt)∥2

= 2α(∥ỹ(K)
t−1 − br(xt−1)∥2 + LS∥xt − xt−1∥2)

⩽ 2α
(
∥ỹ(K)
t−1 − br(xt−1)∥2

+ LSη
2
t−1

d2

δ2
t−1
∥f(x̂t−1, y(K)

t−1 )− f(xt−1, ỹ(K)
t−1 )∥2︸ ︷︷ ︸

Term C

)
. (J.11)

To finish the bounds for Term A and Term B, we need to bound Term C

Term C = ∥f(x̂t−1, y(K)
t−1 )− f(xt−1, ỹ(K)

t−1 )∥2

= ∥f(x̂t−1, y(K)
t−1 )− f(xt−1, y(K)

t−1 ) + f(xt−1, y(K)
t−1 )− f(xt−1, ỹ(K)

t−1 )∥2

⩽ 2(∥f(x̂t−1, y(K)
t−1 )− f(xt−1, y(K)

t−1 )∥2 + ∥f(xt−1, y(K)
t−1 )− f(xt−1, ỹ(K)

t−1 )∥2)

= 2(L2
1∥x̂t−1 − xt−1∥2 + L2

2∥y
(K)
t−1 − ỹ

(K)
t−1 ∥2)

= 2(L2
1δ

2
t−1 + L2

2 ∥y
(K)
t−1 − ỹ

(K)
t−1 ∥2︸ ︷︷ ︸

Term D

). (J.12)

Note that from Assumption 11.3.1 it follows that Term D ⩽ C2δ2
t−1. Consequently, we

obtain the following bound

Term C = ∥f(x̂t−1, y(K)
t−1 )− f(xt−1, ỹ(K)

t−1 )∥2

⩽ 2(L2
1δ

2
t−1 +C2

1δ
2
t−1), (J.13)

where C1 := L2
2C

2. Consequently, we can bound (J.10) as

∥y(K)
t − br(x̂t)∥2 ⩽ 2α

(
∥ỹ(K)
t−1 − br(xt−1)∥2

+ LSη
2
t−1

d2

δ2
t−1

(
2(L2

1δ
2
t−1 +C1δ

2
t−1)

)
+ 2LSδ2

t−1

)

= 2α
(
∥ỹ(K)
t−1 − br(xt−1)∥2 + 2LSη2

t−1d
2(L2

1 +C1) + 2LSδ2
t−1

)

Define et = ∥y(K)
t − br(x̂t)∥2, ẽt = ∥ỹ(K)

t − br(x̂t)∥2. Then we have

et ⩽ ᾱ
(
ẽt−1 +C2d

2η2
t−1 +C3d

2η2
t−1 +C4δ

2
t−1
)

, (J.14)

ẽt ⩽ ᾱ
(
ẽt−1 +C2d

2η2
t−1 +C3d

2η2
t−1
)

, (J.15)
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where ᾱ = 2α,C2 = 2LSL2
1,C3 = 2LSC1, C4 = 4LS and C5 = 2LS . Consequently, it holds

that

ẽt ⩽ ᾱ
(
ẽt−1 +C2d

2η2
t−1 +C3d

2η2
t−1
)

⩽ ᾱtẽ0 +
t−1∑
k=0

ᾱt−k
(
C2d

2η2
k +C3d

2η2
k

)

⩽ ᾱtẽ0 +C6d
2
t−1∑
k=0

ᾱt−kη2
k, (J.16)

where C6 = C2 +C3. Moreover, we also note that

et ⩽ ᾱ(ẽt−1 +C2d
2η2
t−1 +C3d

2η2
t−1 +C4δ

2
t−1)

⩽ ᾱ(ᾱt−1ẽ0 +C6d
2
t−2∑
k=0

ᾱt−1−kη2
k +C6d

2η2
t−1 +C4δ

2
t−1)

⩽ ᾱtẽ0 +C6d
2
t−1∑
k=0

ᾱt−kη2
k + ᾱC4δ

2
t−1. (J.17)

Combining (J.17) and (J.16) in (J.9). We obtain that

∥E (3)t ∥2 ⩽
d2

δ2
t
L2

2

2ᾱte0 + 2C6
t−1∑
k=0

ᾱt−kη2
k +C4

t−1∑
k=0

ᾱt−kδ2
k

 . (J.18)

Lemma 3 (Restated). The trajectory zs(·) is an asymptotic pseudotrajectory of (UL). That
is, for any positive integer S

lim
t→∞

sup
s∈[0,S]

E
[
∥xt+s − zs(x̂t)∥2

]
= 0

Proof. For any t, we see that

∥xt+s+1 − zs+1(xt)∥2 = ∥xt+s − ηt+sF̂ (xt, δt, vt)− zs(x̂t) + ηt+s∇f̃(zs(x̂t))∥2

⩽ 2∥xt+s − zs(x̂t)∥2 + 2η2
t+s∥F̂ (xt+s, δt+s, vt+s)−∇f̃(zs(x̂t))∥2

= 2∥xt+s − zs(x̂t)∥2 + 2η2
t+s∥F̂ (xt+s, δt+s, vt+s)−∇f̃(xt+s) +∇f̃(xt+s)−∇f̃(zs(x̂t))∥2

⩽ 2(1 + 4η2
t+sℓ̃

2)∥xt+s − zs(x̂t)∥2 + 4η2
t+s∥F̂ (xt+s, δt+s, vt+s)−∇f̃(xt+s)∥2

= C1∥xt+s − zs(x̂t)∥2 +C2η
2
t+s∥F̂ (xt+s, δt+s, vt+s)−∇f̃(xt+s)∥2

⩽ Cs1∥xt − z0(x̂t)∥2 +
s∑

k=1
C2C

k
1 η

2
t+s−k∥F̂ (xt+s−k, δt+s−k, vt+s−k)−∇f̃(xt+s−k)∥2

where C1 = 2(1 + 4(η̄2/d2)ℓ̃2),C2 = 4. Next we note that xt = z0(xt). Consequently,

E
[
∥xt+s+1 − zs+1(x̂t)∥2

]
⩽

s∑
k=1

Cs−k1 η2
t+k

(
E

[
∥E (1)t+k∥

2 + ∥E (2)t+k∥
2 + ∥E (3)t+k∥

2
])

.
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Therefore,

sup
s∈[0,S]

E
[
∥xt+s+1 − zs+1(x̂t)∥2

]

⩽ CS1

S∑
k=1

η2
t+k

D1δ
2
t+k +D2

+
d2

δ2
t+k

L2
2

(
2αt+ke0 + 2C6

t+k−1∑
p=0

αt+k−pη2
p +C4

t+k−1∑
p=0

αt+k−pδ2
p

)
⩽ O

CS1
(
η2
t δ

2
t S + η2

t S + ηtα
tS + ηt

S∑
k=1

ηt+k
δ2
t+k

t+k−1∑
p=0

αt+k−pη2
p︸ ︷︷ ︸

Term A

+ ηt
S∑
k=1

ηt+k
δ2
t+k

t+k−1∑
p=0

αt+k−pδ2
p︸ ︷︷ ︸

Term B

).

Next, we analyze Term A and Term B by substituting ηt = η̄(t+ 1)−1/2d−1, δt = δ̄(t+
1)−1/4d−1/2. First, we see that

Term A = ηt
S∑
k=1

ηt+k
δ2
t+k

t+k−1∑
p=0

αt+k−pη2
p

=
η̄

δ̄2ηt
S∑
k=1

t+k−1∑
p=0

αt+k−pη2
p

⩽
η̄

δ̄2ηtα
t
S∑
k=1

αk
t+k−1∑
p=0

η2
p

⩽
η̄3

d2δ̄2ηtα
t
S∑
k=1

αk
√
t+ k

⩽
η̄3

d2δ̄2ηt
αt+1

1− α
√
t+ S.
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Next, we analyze Term B

Term B = ηt
S∑
k=1

ηt+k
δ2
t+k

t+k−1∑
p=0

αt+k−pδ2
p

=
η̄

δ̄2ηt
S∑
k=1

t+k−1∑
p=0

αt+k−pδ2
p

⩽
η̄

δ̄2ηtα
t
S∑
k=1

αk
t+k−1∑
p=0

δ2
p

⩽
η̄

d
ηtα

t
S∑
k=1

αk (t+ k)3/4

⩽
η̄3

d2δ̄2ηt
αt+1

1− α (t+ S)3/4 .

To summarize, we obtain

sup
s∈[0,S]

E
[
∥xt+s+1 − zs+1(x̂t)∥2

]
⩽ O

(
CS1

(
η2
t δ

2
t S + η2

t S + ηtα
tS + ηtα

t+1√t+ S + ηtα
t+1 (t+ S)3/4))

= O

CS1
 S

(t+ 1)3/2 +
S

(t+ 1) +
αtS√
t+ 1

+

√
t+ S√
t+ 1

αt+1 +
(t+ S)3/4
√
t+ 1

αt+1

 .

Taking limit t→∞ we obtain the desired conclusion.

When does Assumption 11.3.1 hold?
Consider the scenario of bi-level optimization when the lower level problem is just a convex
optimization problem with objective function g(x, ·) a popular choice of H is projected
gradient descent:

y(k+1)(x) = H(y(k);x) = PY (y(k)(x)− γ∇yg(x, y(k)(x)). (J.19)

Proposition 4. Consider the bilevel optimization problem with convex-lower level optimiza-
tion problem (J.19). Then for any x ∈ X the difference between y(K)(x) and ỹ(K)(x) is
bounded as

∥y(K)(x̂)− y(K)(x)∥ ⩽ KL3γδt exp(γL4K) (J.20)
Proof. We note that for any k ∈ [K]

y(k)(x̂) = PY
(
y(k−1)(x̂)− γ∇g(x̂, y(k−1)(x̂))

)
,

y(k)(x) = PY
(
y(k−1)(x)− γ∇g(x, y(k−1)(x))

)
,
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where we impose that y(0)(x) = y(0)(x̂) due to Algorithm 10. Then

∥y(k)(x̂)− y(k)(x)∥
= ∥PY (y(k−1)(x̂)− γ∇g(x̂, y(k−1)(x̂)))−PY (y(k−1)(x)− γ∇g(x, y(k−1)(x))∥

⩽ ∥y(k−1)(x̂)− y(k−1)(x)∥+ γ∥∇g(x̂, y(k−1)(x̂))−∇g(x, y(k−1)
t (x))∥

⩽ γ
k−1∑
ℓ=0
∥∇g(x̂, y(ℓ)(x̂))−∇g(x, y(ℓ)(x))∥

⩽ γ
k−1∑
ℓ=0

(
∥∇g(x̂, y(ℓ)(x̂))−∇g(x̂, y(ℓ)(x))∥+ ∥∇g(x̂, y(ℓ)(x))−∇g(x, y(ℓ)(x))∥

)

⩽ γkL3δ + γL4
k−1∑
ℓ=0
∥yℓ(x̂)− yℓ(x)∥

⩽ KL3γδ + γL4
k−1∑
ℓ=0
∥yℓ(x̂)− yℓ(x)∥

By discrete Gronwall inequality stated in Lemma J.1.2 we obtain

∥y(k)(x̂)− y(k)(x)∥ ⩽ KL3γδ exp(γL4k), ∀ k ∈ [K].

J.3 Proof of Main Results
The following appendices contain the proofs of the main two theorems.

Proof of Theorem 11.3.1
From Lemma 1, we know that f̃(·) approximately decreases along the trajectory of (UL).
That is,

E
[
f̃(xt+1)

]
⩽ E

[
f̃(xt)

]
− ηt

2 E
[
∥∇f̃(xt)∥2

]
+ ηtE

[
∥E (1)t ∥2

]
+ ηtE

[
∥E (3)t ∥2

]
+ ℓ̃η2

tE

[
∥E (2)t ∥2

]
(J.21)

Using the bounds on error terms from Lemma 2, we obtain

E
[
f̃(xt+1)

]
⩽ E

[
f̃(xt)

]
− ηt

2 E
[
∥∇f̃(xt)∥2

]
+ ηt

ℓ̃2δ2
t d

2

4

+ ηt

d2

δ2
t
L2

2

2αte0 + 2C6d
2
t−1∑
k=0

αt−kη2
k +C4

t−1∑
k=0

αt−kδ2
k

+ 4d2L̃2ℓ̃η2
t .
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Re-arranging the terms and adding and subtracting the term f̃(x∗) = minx f̃(x) we obtain

ηt
2 E

[
∥∇f̃(xt)∥2

]
⩽ E

[
f̃(xt)

]
− f̃(x∗)−

(
E
[
f̃(xt+1)

]
− f̃(x∗)

)
+ ηt

ℓ̃2δ2
t d

2

4

+ ηt
d2

δ2
t
L2

2

2αte0 + 2C6d
2
t−1∑
k=0

αt−kη2
k +C4

t−1∑
k=0

αt−kδ2
k

+ 4d2L̃2ℓ̃η2
t .

Summing the previous equation over time step t, we obtain

∑
t∈[T ]

ηtE
[
∥∇f̃(xt)∥2

]
⩽
(
f̃(x0)− f̃(x∗)

)
+
ℓ̃2d2

4
∑
t∈[T ]

ηtδ
2
t + 2e0d

2L2
2
∑
t∈[T ]

ηt
δ2
t
αt

+ 2C6d
4L2

2
∑
t∈[T ]

ηt
δ2
t

t−1∑
k=0

αt−kη2
k

︸ ︷︷ ︸
Term E

+C4L
2
2d

2 ∑
t∈[T ]

ηt
δ2
t

t−1∑
k=0

αt−kδ2
k

︸ ︷︷ ︸
Term F

+4d2L̃2ℓ̃
∑
t∈[T ]

η2
t . (J.22)

Setting ηt = η0(t+ 1)−1/2d−1 and δt = δ0(t+ 1)−1/4d−1/2 we obtain

1∑
t∈[T ] ηt

∑
t∈[T ]

ηtE
[
∥∇f̃(xt)∥2

]
⩽

d

η0
√
T

(
f̃(x0)− f̃(x∗)

)
+
ℓ̃d log(T )δ2

0
4
√
T

+
2e0d3L2

2α

(1− α)η0
√
T

+
1∑

t∈[T ] ηt
2C6d

4L2
2
∑
t∈[T ]

ηt
δ2
t

t−1∑
k=0

αt−kη2
k

︸ ︷︷ ︸
Term E

+
1∑

t∈[T ] ηt
C4L

2
2d

2 ∑
t∈[T ]

ηt
δ2
t

t−1∑
k=0

αt−kδ2
k

︸ ︷︷ ︸
Term F

+
4L̃2ℓ̃2η0 log(T )d√

T
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Let’s consider the following term by defining C7 = 2C6L2
2,C8 = C4L2

2

Term E + Term F =
T∑
t=1

ηt
δ2
t

t−1∑
k=0

αt−k
(
C7d

4η2
k +C8d

2δ2
k

)

=
η0
δ2

0

T∑
t=1

t−1∑
k=0

αt
Θk

αk

=
η0
δ2

0

T−1∑
k=0

Θk

αk

T∑
t=k+1

αt

⩽
η0
δ2

0

T−1∑
k=0

Θk

αk
αk+1

1− α

=
η0
δ2

0

α

1− α

T−1∑
k=0

Θk

=
η0
δ2

0

α

1− α
(
C7d

2η2
0 log(T ) +C8d

2δ2
0
√
T
)

,

where in second equality Θk := (C7d4η2
k +C8d2δ2

k).
Thus from (J.22) we obtain

1∑
t∈[T ] ηt

∑
t∈[T ]

ηtE
[
∥∇f̃(xt)∥2

]
⩽

d

η0
√
T

(
f̃(x0)− f̃(x∗)

)
+
ℓ̃d log(T )δ2

0
4
√
T

+
2e0d3L2

2α

(1− α)η0
√
T
+

d

δ2
0
√
T

α

1− α
(
C7d

2η2
0 log(T ) +C8d

2δ2
0
√
T
)

+
4L̃2ℓ̃2η0 log(T )d√

T
.

Thus, overall we obtain

1∑
t∈[T ] ηt

∑
t∈[T ]

ηtE
[
∥∇f̃(xt)∥2

]
⩽ Õ

(
d√
T
+

α

1− αd
3
)

.

Proof of Theorem 11.3.2
The proof follows by contradiction. Suppose there exists a saddle point x∗ such that

lim
t→∞

E
[
∥xt − x∗∥2

]
= 0.

This implies that for any ϵ > 0 there exists an integer Tϵ such that for all t ⩾ Tϵ it holds
that

E
[
∥xt+s − x∗∥2

]
⩽ ϵ/4 ∀s ⩾ 0.
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Moreover, from Lemma 11.3.3 we know that for any S there exists T̃ϵ,S such that

sup
s∈[0,S]

E
[
∥zs(x̂t)− xt+s∥2

]
⩽ ϵ/4 ∀ t ⩾ T̃ϵ,S .

Finally, note that

∥zs(x̂t)− x∗∥2 ⩽ 2∥zs(x̂t)− xt+s∥2 + 2∥xt+s − x∗∥2.

Therefore, for any S and t ⩾ max{Tϵ,Tϵ,S}

∥zs(x̂t)− x∗∥2 ⩽ ϵ, ∀ s ∈ [0,S].

But from [235] we know that for gradient descent with random initialization1 there exists
Sϵ such that for all s ⩾ Sϵ it holds that

∥zs(x̂t)− x∗∥2 ⩾ 2ϵ.

This establishes contradiction.

1Specifically, we use the results from [235, Proposition 8]. Even though the results in [235, Proposition
8] hold for gradient descent update with constant step-size, we can use this result for decaying step size as
well. This is because the proof of [235, Proposition 8] only requires each step of the gradient update to be
diffeomorphism, which holds in our setting as the step-sizes are constantly decaying.
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Appendix K

Appendix for Chapter 12

K.1 Counter-example.
In this section, we present a non-atomic game, where the standard gradient-based incen-
tive design approach would fail. Specifically, we will show that the gradient of equilibrium
strategy with respect to incentive is singular and the equilibrium social cost function is non-
convex in the incentive. Furthermore, we show that the fixed points of the gradient-based
incentive update is non-unique, and almost all fixed points fail to induce a socially efficient
outcome. In contrast, the fixed point of our externality-based incentive update is unique and
results in a socially optimal outcome.

Consider a non-atomic routing game, comprising of two nodes and two edges connecting
them. This network is used by one unit of travelers traveling from the source node S to the
destination node D. The latency function of two edges are denoted in Figure K.1. In this

S D

c1(x̃, p̃) = x̃1 + p̃1

c2(x̃, p̃) = x̃2 + p̃2

Figure K.1: Two-link routing game.

game, the strategy set is X̃ = {x̃ ∈ R2 : x̃1 + x̃2 = 1}. The equilibrium congestion levels on
the two edges is obtained by computing the minimizer of the following function [435]:

Φ(x̃, p̃) = 1
2 x̃

2
1 +

1
2 x̃

2
2 + p̃1x̃1 + p̃2x̃2.

Thus, for any toll vector p̃, the Nash equilibrium x̃∗(p̃) = arg minx̃∈X̃ Φ(x̃, p̃) satisfies
x̃∗

1(p̃) = P[0,1]
(
p̃2−p̃1+1

2

)
, x̃∗

2(p̃) = P[0,1]
(
p̃1−p̃2+1

2

)
, where for any scalar x ∈ R, P[0,1](x)
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denotes its projection onto the line segment [0, 1]. The gradient of equilibrium strategy
with respect to incentive is a singular matrix for all incentives p̃ = (p̃1, p̃2) ∈ R2 such that
|p̃1 − p̃2| > 1.

The equilibrium social cost function is:

Φ̃(x̃∗(p̃)) = x̃∗
1(p̃)ℓ̃1(x̃

∗
1(p̃)) + x̃∗

2(p̃)ℓ̃2(x̃
∗
2(p̃))

=


(p̃1−p̃2)

2+1
2 , if |p̃1 − p̃2| ⩽ 1,

1, otherwise.

Note that the equilibrium social cost function Φ̃(x̃∗(p̃)) is non-convex in p̃, which contradicts
the assumption commonly adopted in gradient-based incentive learning literature [253, 243,
302]. Furthermore, the gradient-based update1 for this function takes the following form:

p̃k+1 = p̃k − βk∂Φ(x̃∗(p̃k)),

where

∂Φ(x̃∗(p̃)) ∈




p̃1 − p̃2

p̃2 − p̃1

 , if |p̃1 − p̃2| < 1,

conv


±1
∓1

 ,
0

0

 , if p̃1 − p̃2 = ±1,
0

0

 , otherwise.

Consequently, the set of fixed points for the gradient-based incentive update (i.e., where the
gradient is zero) is given by:

{(p̃1, p̃2) ∈ R2 : |p̃1 − p̃2| ∈ {0} ∪ {[1,∞)}}. (K.1)

On the other hand, the set of socially optimal tolls that minimize Φ̃(x̃∗(p̃)) is given by
{(p̃1, p̃2) ∈ R2 : p̃1 = p̃2}, which has measure zero within the set of fixed points of the
gradient-based update (K.1).

In contrast, the fixed point of our externality-based incentive mechanism (cf. (12.10)) is
unique p̃†

1 = p̃†
2 = 1/2 and minimizes the social cost.

K.2 Proofs and Additional Results on Aggregative
Game in Section 12.3

In this section, we present the proofs of Propositions 12.3.1 and 12.3.2. Additionally, we
introduce a generalization of the results in Section 12.3.

1Since this function is non-differentiable, it is common to use Clarke’s subdifferential to study gradient-
based updates [99].
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Proof of Proposition 12.3.1
First, we show that x∗(p) = −M−1p for any p ∈ R|I|. Note that the cost function
ci(xi,x−i, p) is strongly convex in xi and that the strategy space Xi is unconstrained, en-
suring that the game is strongly convex game. Therefore, x∗(p) is Nash equilibrium if and
only if ∇xici(x

∗(p), p) = 0, for every i ∈ I. Consequently, using (12.29), we obtain

qix
∗
i (p) + α(Ax∗(p))i + pi = 0, ∀i ∈ I. (K.2)

Stacking (K.2) in vector form yields Mx∗(p) = −p.
Next, we show that P † is a singleton set. Note that

P † = {p† ∈ R|I| : x∗
i (p

†) = ζi, ∀ i ∈ I}. (K.3)

The proof concludes by noting that x∗(p) = −M−1p.

Proof of Proposition 12.3.2
Here, we verify the requirements (R1’) and (R2) of Proposition 12.2.3. We start with ver-
ifying (R1’). We define a Lyapunov function candidate V (p) = (p− p†)⊤M−⊤(p− p†) for
the dynamical system (12.20). Note that V (p†) = 0 and V (p) > 0 for all p ̸= p†. Next, we
show that ∇V (p)⊤(e(x∗(p))− p) < 0, for every p ̸= p†. Indeed,

∇V (p)⊤(e(x∗(p))− p) = 2(p− p†)⊤M−⊤(x∗(p)− ζ)
= −2(x∗(p)− x∗(p†))(x∗(p)− x∗(p†)) < 0, ∀ p ̸= p†.

This shows that p† is globally asymptotically stable for (12.20).
Next, for requirement (R2) of Proposition 12.2.3, we verify sufficient conditions for the

boundedness of iterates in two-timescale approximation theory [225]. In particular, using
[225, Theorem 10], it is sufficient to show that the following two conditions are satisfied:

(a) The function fc(x, p) := 1
c (f(cx, cp) − cx) satisfies fc → f∞ as c → ∞, uniformly

on compact sets, for some f∞. Also, for every incentive vector p ∈ R|I|, x∗(p) is the
globally asymptotically stable fixed point of the following continuous-time dynamical
system:

ẋ(t) = f∞(x(t), p). (K.4)

Furthermore, x∗(0) = 0, and the system ẋ(t) = f∞(x(t), 0) has the origin as its
globally asymptotically stable fixed point.

(b) The function hc(p) := 1
c (e(cx

∗(p))− cp) satisfies hc → h∞ as c → ∞, uniformly on
compact sets, for some h∞. Also, the origin is a globally asymptotically stable fixed
point of the dynamical system:

ṗ(t) = h∞(p(t)). (K.5)
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Condition (a) is satisfied due to Proposition 12.3.2-(ii) and the fact that x∗(p) = −M−1p in
the atomic aggregative game. Condition (b) holds since h∞(p) = −(Q+ αA)p. Moreover,
since Q+ αA is symmetric positive definite, the origin is a globally asymptotically stable
fixed point of (K.5).

Additional Results
Here, we consider a more general social cost function than (12.30). Specifically, we consider

Φ(x) =
∑
i∈I

hi(xi), (K.6)

where, for every i ∈ I, the function hi : R→ R satisfies the following assumption:
Assumption K.2.1. For every i ∈ I, hi(·) is a strictly convex function with a Lipschitz
continuous gradient. Furthermore, we assume the existence of y† ∈ R|I| such that ∇hi(y†

i ) =
0 for every i ∈ I.
Proposition K.2.1. Suppose that Assumption K.2.1 holds and M := Q+ αA is invertible.
Then, the Nash equilibrium x∗(p) = M−1p for any p ∈ R|I|. Furthermore, the set P † is
singleton.

Proof. The proof that x∗(p) = −M−1p follows exactly as in Proposition 12.3.2. Next, we
show that P † is a singleton. Using (12.8a), (12.29), and (K.6), the externality is given by

ei(x) = ∇hi(xi)− qixi − α
∑
j∈I

Aijxj , ∀i ∈ I. (K.7)

Combining (K.2) and (K.7), we obtain

ei(x
∗(p)) = ∇hi(x∗

i (p)) + pi, ∀i ∈ I. (K.8)

Consequently, using (12.10), we have

P † = {p† ∈ R|I| : ∇hi(x∗
i (p

†)) = 0, ∀i ∈ I}. (K.9)

Since hi is strictly convex, it follows from Assumption K.2.1 that there exists a unique y†

such that ∇hi(y†
i ) = 0 for every i ∈ I. Therefore, for every p† ∈ P †, it must hold that

x∗(p†) = y†. Since x∗(p) = −M−1p, it follows that p† = −My†, establishing the uniqueness
of P †.

Next, we provide sufficient conditions to ensure the convergence of (x-update)-(p-update)
to the fixed points. In particular, we present two sets of conditions: the first set establishes
global convergence guarantees, while the second set ensures local convergence guarantees.
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Proposition K.2.2. Consider the updates (x-update)-(p-update) associated with the ag-
gregative game G. Suppose that Assumptions 12.2.1, 12.2.2, and K.2.1 hold, and that

sup
k∈N

(∥xk∥+ ∥pk∥) < +∞.

Additionally,

(i) If M := Q+ αA is symmetric positive definite, then the discrete-time updates
(x-update) and (p-update) globally converge to the fixed point (x†, p†) in the sense of
Definition 12.2.2.

(ii) If M := Q+ αA is invertible with non-negative entries, M−1 has strictly negative off-
diagonal entries, and there exists a vector y† ∈ R

|I|
− such that ∇hi(y†

i ) = 0 for every
i ∈ I 2 then the discrete-time updates (x-update) and (p-update) locally converge to
the fixed point (x†, p†) in the sense of Definition 12.2.2.

Propositions K.2.2-(i) and 12.3.2 are related but differ in two key aspects. First, the social
cost function in Proposition 12.3.2 is a special case of the more general function in (K.6). Sec-
ond, Proposition K.2.2-(i) directly assumes boundedness of iterates, supk∈N(∥xk∥+ ∥pk∥) <
+∞, whereas Proposition 12.3.2 instead relies on the global convergence of the limiting dy-
namical system associated with strategy updates (cf. (12.31)). The simpler social cost
function (12.30) in Proposition 12.3.2 allows us to use stability results from two-timescale
approximation theory [225, Theorem 10] to establish boundedness. Extending this approach
to Proposition K.2.2 would require imposing global convergence of suitably defined limiting
dynamical systems (cf. (K.4)-(K.5)). To maintain clarity, we impose supk∈N(∥xk∥+ ∥pk∥) <
+∞ directly in Proposition K.2.2.

The conditions imposed on the matrix M in Proposition K.2.2-(i) and (ii) are not directly
comparable; neither necessarily implies the other 3.

Proof of Proposition K.2.2: We prove Proposition K.2.2(i)-(ii) in order.

(a) Proposition K.2.2-(i) follows by verifying the requirements (R1’)-(R2) of Proposi-
tion 12.2.3. We only need to verify (R1’) as (R2) is satisfied due to the assump-
tion that supk ∥xk∥+ ∥pk∥ < ∞. We define a Lyapunov function candidate V (p) =

2A similar statement can be obtained for the case when y† ∈ R
|I|
+ , but we omit it for brevity.

3For example, consider aggregative games with parameters (Q1,A1) and (Q2,A2) such that M1 =
Q1 + αA1, M2 = Q2 + αA2 and

M1 =

1 0.1
1 1

 , M2 =

 1 −0.1
−0.1 1

 .

The matrix M1 satisfies the conditions in Proposition K.2.2-(ii) but does not satisfy the conditions in Propo-
sition K.2.2-(i). On the other hand, the matrix M2 satisfies the conditions in Proposition K.2.2-(i) but does
not satisfy the conditions in Proposition K.2.2-(ii).
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(p− p†)⊤M−⊤(p− p†) for the dynamical system (12.20). Note that V (p†) = 0 and
V (p) > 0 for all p ̸= p†. Next, we show that ∇V (p)⊤(e(x∗(p))− p) < 0 for every
p ̸= p†. Indeed,

∇V (p)⊤(e(x∗(p))− p) = 2(p− p†)⊤M−⊤∇h(x∗(p))

= −2(x∗(p)− x∗(p†))∇h(x∗(p))

(K.9)
= −2(x∗(p)− x∗(p†))

(
∇h(x∗(p))−∇h(x∗(p†))

)
= −2(x∗(p)− x∗(p†))

(
∇h(x∗(p))−∇h(x∗(p†))

)
< 0, ∀ p ̸= p†,

where the last equality follows from the strict convexity of hi for each i ∈ I, completing
the proof.

(b) Proposition K.2.2-(ii) follows by verifying conditions (R1) and (R2) of Proposition
12.2.3. Given that supk ∥xk∥+ ∥pk∥ <∞, it suffices to verify (R1). This follows since
condition (C1) in Lemma 1 holds under Proposition 12.3.2-(ii) and Assumption K.2.1.
First, we show that for i, j ∈ I with i ̸= j, it holds that ∂ei(x

∗(p))
∂pj

> 0. Indeed,

∂ei(x∗(p))

∂pj
= ∇2hi(x

∗
i (p))

∂x∗
i (p)

∂pj

= ∇2hi(x
∗
i (p))(−M−1)ij > 0,

where the inequality follows from the strict convexity of hi and the fact that (M−1)ij <
0. Second, we show that condition (C1)-(i) in Lemma 1 holds. First, we establish that
ei(x∗(0)) ⩾ 0 for every i ∈ I. From (K.8), we note that ei(x∗(0)) = ∇hi(0) for every
i ∈ I. Therefore, it suffices to show that ∇hi(0) ⩾ 0 for all i ∈ I. By Assumption
K.2.1, ∇hi(·) is strictly increasing, and for each i ∈ I, there exists a unique y†

i ⩽ 0
such that ∇hi(y†

i ) = 0. This implies that ∇hi(0) ⩾ 0, for every i ∈ I. Next, we
verify that p† ∈ R

|I|
+ . From Proposition K.2.1, p† = −My†. Since M has non-negative

entries and y† ∈ R
|I|
− , it follows that p† ∈ R

|I|
+ . Finally, we show the other condition in

(C1)-(i) in Lemma 1, which requires that for any p ∈ R
|I|
+ , there exists p′ ∈ R

|I|
+ such

that for every i ∈ I, p′
i > pi and ei(x∗(p′))− p′

i ⩽ 0, for all i ∈ I. To show this, we
define pϵ = −(1+ ϵ)My† for every ϵ > 0. Note that pϵ ∈ R

|I|
+ and for any p ∈ R

|I|
+ , we

can select ϵ > 0 such that pϵi > pi for every i ∈ I. Therefore, we show that for every
ϵ > 0,

ei(x
∗(pϵ))− pϵ ⩽ 0, ∀i ∈ I. (K.10)

From (K.8), we note that ei(x∗(pϵ))− pϵ = ∇hi(x∗
i (p

ϵ)), for every i ∈ I. Therefore, to
show (K.10), it is sufficient to show that

∇hi(x∗
i (p

ϵ)) ⩽ 0, ∀i ∈ I, ϵ > 0. (K.11)
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Indeed, for every i ∈ I and ϵ > 0,

0 < (∇hi(x∗
i (p

ϵ))−∇hi(y†
i ))(x

∗
i (p

ϵ)− y†
i )

= ∇hi(x∗
i (p

ϵ))ϵy†
i ,

where we note that x∗(pϵ) = (1 + ϵ)y†. To conclude, (K.11) follows because y†
i ⩽ 0

and ϵ > 0.

K.3 Proofs of Results in Section 12.3

Proof of Proposition 12.3.3.

First, we show that P̃† is non-empty. This can be shown analogously to the proof of existence
in Proposition 12.2.1 by using the Schauder fixed-point theorem and the continuity of the
function w̃∗(·). We omit the details of this proof for the sake of brevity.

Next, we show that any p† ∈ P̃† aligns the Nash equilibrium with social optimality, i.e.
w̃(p†) = w†. For any p† ∈ P̃†, we have p̃†

a = w̃∗
a(p̃

†)∇la(w̃∗
a(p̃

†)) for every a ∈ Ẽ . This
implies, for every a ∈ Ẽ ,

∂

∂w̃a

(
w̃a(p̃

†)la(w̃a(p̃
†))
)
= la(w̃a(p̃

†)) + p̃†
a. (K.12)

Note that for any arbitrary edge toll p̃ ∈ R|Ẽ |, w̃∗(p̃) is the unique solution to the following
strictly convex optimization problem [361].

min
w̃∈W̃

T̃ (w̃) =
∑
a∈Ẽ

∫ w̃a

0
la(τ ) dτ +

∑
a∈Ẽ

p̃aw̃a. (K.13)

Therefore, w̃∗(p̃) is a Nash equilibrium if and only if
∑
a∈Ẽ

(
la
(
w̃a(p̃) + p̃a

)(
w̃a − w̃a(p̃)

))
⩾ 0, ∀ w̃ ∈ W̃ . (K.14)

Combining (K.12) and (K.14), we conclude that for every w̃ ∈ W̃ ,
∑
a∈Ẽ

∂

∂w̃a
(w̃a(p̃

†)la(w̃a(p̃
†)))(w̃a − w̃∗

a(p̃
†)) ⩾ 0. (K.15)

Further, from the first-order conditions of optimality for the social cost function, we know
that x̃† is socially optimal if and only if, for every x̃ ∈ X̃,

∑
i∈Ĩ

∑
j∈Ri

∂Φ(x̃†)

∂x̃ji
(x̃ji − x̃

†j
i ) ⩾ 0. (K.16)
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Using Lemma 3 in Chapter K.4, we can equivalently write (K.16) in terms of edge flows as
follows

∑
a∈Ẽ

∂

∂w̃a
(w̃†

ala(w̃
†
a))(w̃a − w̃†

a) ⩾ 0 ∀ w̃ ∈ W̃ , (K.17)

where w† is the edge flow corresponding to the route flow x†. Comparing (K.15) with (K.17),
we note that w̃∗(p†) is the minimizer of social cost function Φ̃. Therefore, w̃∗(p̃†) = w̃†.

The proof that P̃† is a singleton follows by contradiction, which is analogous to that in
Proposition 12.2.1. We omit the details for the sake of brevity.

Proof of Proposition 12.3.4
The proof follows by verifying the requirements (R1)-(R2) in Proposition 12.2.3. Require-
ment (R2) holds since the strategy space is a compact set. It suffices to show that require-
ment (R1) holds. Towards this goal, we define a Lyapunov function candidate V (p̃) =

(p̃− p̃†)⊤∆(p̃− p̃†) for the dynamical system (12.38), where ∆ ∈ R|Ẽ |×|Ẽ| is a diagonal ma-
trix defined in (12.37). Due to the strict monotonicity and convexity of la(·), it follows that
∆a,a > 0 for every a ∈ Ẽ . Consequently, the Lyapunov function candidate is positive definite.

We show that there exists a positive scalar r such that for any p̃ ∈ Br(p̃†), the following
holds: ∑

a∈Ẽ
∇p̃aV (p̃)

⊤ (w̃∗
a(p̃)∇la(w̃∗

a(p̃))− p̃a) < −2V (p̃). (K.18)

Indeed, we note that∑
a∈Ẽ
∇p̃aV (p̃) (w̃

∗
a(p̃)∇la(w̃∗

a(p̃))− p̃a)

= 2
∑
a∈Ẽ

∆a,a(p̃a − p̃†
a) (w̃

∗
a(p̃)∇la(w̃∗

a(p̃))− p̃a)

= 2
∑
a∈Ẽ

∆a,a(p̃a − p̃†
a)
(
w̃∗
a(p̃)∇la(w̃∗

a(p̃))− p̃†
a + p̃†

a − p̃a
)

= −2V (p̃) + 2
∑
a∈Ẽ

∆a,a(p̃a − p̃†
a)
(
ϕa(p̃)− ϕa(p̃†)

)
,

where for every a ∈ Ẽ , ϕa(p̃) := w̃∗
a(p̃)∇la(w̃∗

a(p̃)). Thus, to show local convergence, it
suffices to show that there exists r > 0 such that∑

a∈Ẽ
∆a,a(p̃a − p̃†

a)
(
ϕa(p̃)− ϕa(p̃†)

)
⩽ 0, ∀p̃ ∈ Br(p̃†).
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To show this, we note that due to condition (12.36), the function ϕ is differentiable in a
neighborhood of p̃† (cf. [435, Chapter 4]). Consequently, using Lemma 5 in Chapter K.4, it
is sufficient to show that ∑

a,a′∈Ẽ
za∆a,a

∂ϕa(p̃†)

∂p̃a′
za′ ⩽ 0, ∀ z ∈ R|Ẽ |. (K.19)

Indeed, by the design of ∆, it holds that

∆a,a
∂ϕa(p̃†)

∂p̃a′
=
∂w̃∗

a(p̃
†)

∂p̃a′
, ∀ a, a′ ∈ Ẽ . (K.20)

Furthermore, Lemma 4 and Lemma 5 in Chapter K.4 guarantee that
∑

a,a′∈Ẽ
za
∂w̃∗

a(p̃
†)

∂p̃a′
za′ ⩽ 0, ∀ z ∈ R|Ẽ |. (K.21)

The proof concludes by noting that (K.20) and (K.21) imply (K.19).

K.4 Auxiliary Results
Lemma 1. Requirement (R1) of Proposition 12.2.3 is satisfied if either one of the following
conditions holds:

(C1) ∂ei(x
∗(p))

∂pj
> 0 for all p ∈ Rn and all i ̸= j, and at least one of the following conditions

holds:

(i) ei(x∗(0)) ⩾ 0 for every i ∈ I, p† ∈ R
|I|
+ , and for any p ∈ R

|I|
+ , there exists

p′ ∈ R
|I|
+ such that p′

i > pi and ei(x∗(p′)) − p′
i ⩽ 0 for every i ∈ I. Moreover,

x0 ∈ X, p0 ∈ R
|I|
+ .

(ii) ei(x∗(0)) ⩽ 0 for every i ∈ I, p† ∈ R
|I|
− , and for any p ∈ R

|I|
− , there exists

p′ ∈ R
|I|
− such that p′

i < pi and ei(x∗(p′)) − p′
i ⩾ 0 for every i ∈ I. Moreover,

x0 ∈ X, p0 ∈ R
|I|
− .

(C2) There exists a set dom(V ) ⊂ R|I| and a continuously differentiable function V :
dom(V ) → R+ such that V (p†) = 0 and V (p) > 0 for all p ̸= p†. Moreover, for
every p ̸= p†, ∇V (p)⊤ (e(x∗(p))− p) < 0.

Proof. Conditions (C1) and (C2) above are based on results from non-linear dynamical
systems which ensure convergence of (12.19). In particular, (C1)-(i) (resp. (C1)-(ii)) builds
on cooperative dynamical systems theory [181], which ensures that R

|I|
+ (resp. R

|I|
− ) is

positively invariant for (12.19) and p† ∈ R
|I|
+ (resp. p† ∈ R

|I|
− ) is asymptotically stable. On

the other hand, condition (C2) ensures the existence of a Lyapunov function that is strictly
positive everywhere except at p† and decreases along any trajectory of (12.19) (cf. [366]).
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Lemma 2. For every i ∈ Ĩ, j ∈ Ri, ẽji (x̃) =
∑
a∈j w̃a∇la(w̃a).

Proof. Using (12.34), we note that

ẽji (x̃) =
∑
i′∈Ĩ

∑
j′∈Ri

x̃j
′

i′
∂ℓ̃j

′

i′ (x̃)

∂x̃ji

(a)
=
∑
i′∈Ĩ

∑
j′∈Ri

x̃j
′

i′
∑
a∈Ẽ

1(a ∈ j′)∇la(w̃a)
∂w̃a

∂x̃ji
(b)
=
∑
i′∈Ĩ

∑
j′∈Ri

x̃j
′

i′
∑
a∈Ẽ

1(a ∈ j′)∇la(w̃a)1(a ∈ j)
(c)
=
∑
a∈j
∇la(w̃a)w̃a,

where (a) follows by expanding out the expression of route costs in terms of edge costs and
using the chain rule, (b) follows by the definition of edge flows, and (c) follows by changing
the order of summations and using the definition of edge flows. This completes the proof.

Lemma 3. x† that satisfies (K.16) if and only if (K.17).

Proof. First, we show that Φ(x̃) =
∑
a∈Ẽ w̃ala(w̃a).

Φ(x̃)
(12.33)
=

∑
i∈Ĩ

∑
j∈Ri

x̃ji ℓ̃
j
i (x̃) =

∑
i∈Ĩ

∑
j∈Ri

x̃ji
∑
a∈Ẽ

1(a ∈ j)la(w̃a) =
∑
a∈Ẽ

la(w̃a)w̃a.

Next, observe that

∑
i∈Ĩ

∑
j∈Ri

∂Φ(x̃†)

∂x̃ji
(x̃ji − x̃

†j
i ) =

∑
i∈Ĩ

∑
j∈Ri

∑
a∈Ẽ

∂

∂x̃ji
(w̃ala(w̃a)) (x̃

j
i − x̃

†j
i )

=
∑
i∈Ĩ

∑
j∈Ri

∑
a∈Ẽ

∂

∂w̃a
(w̃ala(w̃a)) 1(a ∈ j)(x̃ji − x̃

†j
i ) =

∑
a∈Ẽ

∂

∂w̃a
(w̃ala(w̃a)) (w̃a − w̃†

a).

This concludes the proof.

Lemma 4. Following inequality holds:∑
a∈Ẽ

(p̃a − p̃′
a)
(
w̃∗
a(p̃a)− w̃∗

a(p̃
′
a)
)
⩽ 0, ∀ p̃, p̃′ ∈ R|Ẽ |. (K.22)

Proof. To prove this result, we first show that∑
i∈Ĩ

∑
j∈Ri

(P̃ ji − P̃
′j
i )(x̃∗j

i (P̃ )− x̃∗j
i (P̃ ′)) ⩽ 0, (K.23)

where P̃ and P̃ ′ are the route tolls associated with edge tolls p̃ and p̃′, respectively, through
(12.32). Let the feasible set of route flows in the optimization problem (K.13) be denoted
by F . Using the first-order conditions of optimality for the strictly convex optimization
problem (K.13), we obtain:∑

i∈Ĩ

∑
j∈Ri

(
c̃ji (x̃

∗(P̃ ), P̃ )
)
·
(
ỹji − x̃

∗j
i (P̃ )

)
⩾ 0,∀ ỹ ∈ F , (K.24)
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where P̃ is the route toll associated with edge toll p̃. Rewriting (K.24) for edge tolls p̃′ we
obtain ∑

i∈Ĩ

∑
j∈Ri

(
c̃ji (x̃

∗(P̃ ′), P̃ ′)
)
·
(
ỹ

′j
i − x̃

∗j
i (P̃ ′)

)
⩾ 0,∀ ỹ′ ∈ F , (K.25)

where P̃ ′ is the route toll associated with edge toll p̃′.
Next, we prove (K.23). Note that
∑
i∈Ĩ

∑
j∈Ri

(P̃ ji − P̃
′j
i )(x̃∗j

i (P̃ )− x̃∗j
i (P̃ ′))

(a)

⩽
∑
i∈Ĩ

∑
j∈Ri

(ℓ̃ji (x̃
∗(P̃ ′))− ℓ̃ji (x̃

∗(P̃ )))(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′))

(b)
=
∑
i∈Ĩ

∑
j∈Ri

(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′)) ·
∑
a∈Ẽ

(la(w̃
∗
a(p̃

′))− la(w̃∗
a(p̃)))1(a ∈ j)

(c)
=
∑
a∈Ẽ

(la(w̃
∗
a(p̃

′))− la(w̃∗
a(p̃))) ·

∑
i∈Ĩ

∑
j∈Ri

(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′))1(a ∈ j)

(d)
=
∑
a∈Ẽ

(la(w̃
∗
a(p̃

′))− la(w̃∗
a(p̃)))(w̃

∗
a(p̃)− w̃∗

a(p̃
′))

(e)

⩽ 0,

where we obtain (a) by adding (K.24), evaluated at ỹ = x̃∗(P̃ ′), and (K.25), evaluated at
ỹ′ = x̃∗(P̃ ), (b) holds by the definition of the route loss function, (c) holds by interchange of
summation, (d) holds by the definition of edge flows, and (e) holds due to the monotonicity
of edge latency functions. This proves (K.23).

Finally, we prove (K.22). Note that
∑
a∈Ẽ

(p̃a − p̃a′)(w̃∗
a(p̃)− w̃∗

a(p̃
′))

(a)
=
∑
a∈Ẽ

(p̃a − p̃a′)
∑
i∈Ĩ

∑
j∈Ri

(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′))1(a ∈ j)

(b)
=
∑
i∈Ĩ

∑
j∈Ri

(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′))
∑
a∈Ẽ

(p̃a − p̃a′)1(a ∈ j)

(c)
=
∑
i∈Ĩ

∑
j∈Ri

(x̃∗j
i (P̃ )− x̃∗j

i (P̃ ′))(P̃ ji − P̃
′j
i )

(d)
⩽ 0,

where (a) holds due to the definition of edge flows, (b) holds due to interchange of summation,
(c) holds due to the definition of route tolls, and (d) holds due to (K.23). This concludes
the proof.

Lemma 5 ([135]). For any fixed p′ and continuously differentiable function ϕ : Re → RẼ ,
the condition

⟨ϕ(p)− ϕ(p′), p− p′⟩ ⩽ 0 ∀ p ∈ Br(p′)

for some r > 0, holds if and only if
∑

i,j∈|Ẽ|
zizj

∂ϕi(p′)

∂pj
⩽ 0, ∀ z ∈ R|Ẽ |.
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Appendix L

Appendix for Chapter 14

Section L.1 presents a simple example to illustrate the time-extended graph and other con-
straints in the optimization problems discussed in Chapter 14. Section L.2 contains the
proofs of all theoretical results discussed in Chapter 14. A detailed explanation of the
ADMM formulation is provided in Section L.3. Section L.4 explores an additional AAM
scenario involving vertiport reservation for air-taxi services in Northern California.

L.1 A Simple Example
In this section, we explain the time-extended graph (Definition 14.1.1) along with constraints
(14.2b)-(14.2c) through a simple example comprising of 3 regions, denoted by {A,B,C}.

Time-extended graph The time-extended graph (for T = 5) corresponding to our sce-
nario is shown in Figure L.1. In the time-extended graph G̃ = (R̃, Ẽ), at every time t each
region r is replicated into three regions t : v(r, t), varr(r, t), vdep(r, t). For conciseness, we
will only discuss one edge corresponding to each of the four types Ẽ (1), Ẽ (2), Ẽ (3), Ẽ (4). The
(red) edge (varr(B, 2), v(B, 2)) is an edge of type Ẽ (1). The (red) edge (v(A, 1), vdep(A, 1))
is an edge of type Ẽ (2). The (black) edge (v(A, 1), v(A, 2)) is an edge of type Ẽ (3). The
(green) edge (vdep(A, 2), varr(B, 3)) is an edge of type Ẽ (4).

Constraint (14.2b)-(14.2c) Here, we illustrate the constraints (14.2b)-(14.2c) through an
example. Consider an AAM vehicle u that wants to travel from region A to region C. Suppose
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Figure L.1: Time Extended Graph: From left to right, we show a sequence of time steps
and different color-coded trajectories that an AAM vehicle can request. The red trajectory
shows an AAM vehicle traveling from region A to C while transiting from region B. The
green trajectory represents the same trajectory as the red path but is delayed by one unit
of time. The black trajectory denotes an option where the AAM vehicle stays parked at the
origin region. To simplify the visualization, we have not shown all possible edges on this
time-extended graph.

the menu of that AAM vehicle is comprised of the routes s1, s2, s3, as described below:

s1 = {(v(A, 1), v(A, 2)), (v(A, 2), v(A, 3)), (v(A, 3), v(A, 4)), (v(A, 4), v(A, 5))}
Black-path in Fig. L.1

s2 = {(v(A, 1), vdep(A, 1)), (vdep(A, 1), varr(B, 2)), (varr(B, 2), v(B, 2)), (v(B, 2), v(B, 3)),
(v(B, 3), v(B, 4)), (v(B, 4), vdep(B, 4)), (vdep(B, 4), varr(C, 5)),

(varr(C, 5), v(C, 5))}Red-path in Fig. L.1

s3 = {(v(A, 1), v(A, 2)), (v(A, 2), vdep(A, 2)), (vdep(A, 2), varr(B, 3)), (varr(B, 3), v(B, 3)),
(v(B, 3), v(B, 4)), (v(B, 4), v(B, 5)), (v(B, 5), vdep(B, 5)), (vdep(B, 5), varr(C, 6))}

Green-path in Fig. L.1

Here
e∗(s1) = (v(A, 1), v(A, 2)),

e∗(s2) = (v(A, 1), v(A, 1)dep), e∗(s3) = (v(A, 2), vdep(A, 2)).
The menu Mu of AAM vehicle u is given by Mu = {s1, s2, s3,∅}.

Consequently, the constraint (14.2b) for this AAM vehicle is given by xu,e∗(s1)+xu,e∗(s2)+
xu,e∗(s3) + xu,∅ = 1. Additionally, the constraint (14.2c) for this AAM vehicle contains two
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types of constraints: (1) the flow balance constraints:

xu,(v(A,1),v(A,2)) = xu,(v(A,2),vdep(A,2)) + xu,(v(A,2),v(A,3))

xu,(v(A,2),v(A,3)) = xu,(v(A,3),v(A,4))

xu,(v(A,3),v(A,4)) = xu,(v(A,4),v(A,5))

xu,(v(A,2),vdep(A,2)) = xu,(vdep(A,2),varr(B,3)

xu,(vdep(A,2),varr(B,3) = xu,(varr(B,3),v(B,3))

xu,(varr(B,3),v(B,3)) + xu,(v(B,2),v(B,3)) = xu,(v(B,3),v(B,4))

xu,(v(B,3),v(B,4)) = xu,(v(B,4),v(B,5)) + xu,(v(B,4),vdep(B,4))

xu,(v(B,4),v(B,5)) = xu,(v(B,2),vdep(B,5))

xu,(v(B,4),vdep(B,4)) = xu,(vdep(B,4),varr(C,5))

xu,(vdep(B,4),varr(C,5)) = xu,(varr(C,5),v(C,5))

xu,(vdep(A,1),varr(B,2)) = xu,(varr(B,2),v(B,2))

xu,(varr(B,2),v(B,2)) = xu,(v(B,2),v(B,3)).

and (2) additional constraints:

xu,(v(A,1),vdep(A,1)) = xu,(vdep(B,4),varr(C,5))

xu,(v(A,2),vdep(A,2)) = xu,(vdep(B,5),varr(C,6)).

These constraints ensure that the path flows allocated on the departing edge, as per (14.2b),
result in unique edge flows on the entire network.

L.2 Proof of Theoretical Results

Proof of Proposition 14.3.1
Before presenting the proof, let us recall some important mathematical definitions and results
which are crucial for the proof. First, we recall the definition of upper semicontinuous and
lower semicontinuous correspondences.
Definition L.2.1. A correspondence f : X ⇒ Y is upper semicontinuous if for every
sequence xn ∈ X (with limit x) and the sequence yn ∈ f(xn) which has a limit, then there
exists y ∈ f(x) such that y = limn yn.
Definition L.2.2. A correspondence f : X ⇒ Y is lower semicontinuous if for every
sequence xn ∈ X (with limit x) and y ∈ f(x), then there exists a convergent sequence
yn ∈ f(xn) with limit y.

Next, we recall the Kakutani fixed point theorem.
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Theorem L.2.1 (Kakutani Fixed Point Theorem). Suppose X is a non-empty, convex, and
compact subset of Rn and f : X ⇒ X is a non-empty, closed-valued, convex-valued, and
upper semicontinuous correspondence. Then f has a fixed point.

Finally, we recall Berge’s maximum theorem.
Theorem L.2.2 (Berge’s Maximum Theorem). Consider the optimization problem

max
x∈A(θ)

F (x, θ).

Let X(θ) be the set of solutions of the preceding problem. If F is continuous in (x, θ) and
θ ⇒ A(θ) is a non-empty, compact-valued, and continuous correspondence, then X(θ) is a
non-empty, compact-valued, and upper semicontinous correspondence.

Proof of Proposition 14.3.1. The proof builds on a result about the existence of a competitive
equilibrium in Fisher markets with auxiliary inequality constraints [193]. Particularly, our
proof accounts for auxiliary equality constraints (resulting due to (14.2b)-(14.2c)).

In this result, we consider a relaxation of (14.2), by converting the integrality constraint
to the positivity constraint. Consider the relaxed individual optimization problem of every
agent stated below:

max
x̄u

fu(x̄u) (L.1a)

s.t. p⊤xu + poxu,o = wu (L.1b)
ã⊤
u xu + xu,∅ = 1 (L.1c)

Ãuxu = 0 (L.1d)
xu,o ⩾ 0,xu,∅ ⩾ 0,xu,e ⩾ 0 ∀e ∈ Ẽ . (L.1e)

To prove the existence result, we scale the problem such that the total budget of all
agents is 1 and the capacity of each good is 1. To do this, for every e ∈ Ẽ ,u ∈ U , we
scale any allocation xu,e to xu,e/ℓe, scale ãu,e to ãu,e · ℓe, scale Ãu[:, e] to Ãu[:, e] · ℓe, pe to
peℓe/W , and wu to wu/W , where W =

∑
uwu. Note that under this change the solution

of (L.1) does not change. Furthermore, due to the condition that vu,o ⩾ 0 and the variable
xu,o does not enter in the constraint (L.1c)-(L.1d), it is ensured that the budget constraint
(L.1b) hold with equality.

Define ∆|Ẽ | = {p ∈ R|Ẽ | :
∑
e∈Ẽ pe = 1, pe ⩾ 0 ∀e ∈ Ẽ}. Moreover, for every UAV u,

define Yu = {x̄u ∈ R
|Ẽ |+2
⩾0 : ã⊤

u xu+ xu,∅ = 1, Āuxu = 0}, and Qu = {x̄u ∈ R
|Ẽ |+2
⩾0 : xu,r ⩽

Ω, ∀ r ∈ Ẽ ∪ {o,∅}} for some Ω > 1. Define X = Πu∈UQu.
Define Bu(p) = {x̄u ∈ Yi : p⊤xu + poxu,o = wu}. Note that this set is non-empty, so

we can always choose xu,∅ to ensure that xu = 0 and spend all the budget in the outside



APPENDIX L. APPENDIX FOR CHAPTER 14 459

option o. Define

x̃u(p) = arg max
x̄u∈Qu∩Bu(p)

fu(x̄u), (L.2)

p̃(x) = arg max
p∈∆|Ẽ|

p⊤

∑
u∈U

xu − 1

 . (L.3)

Using the above definitions, define a correspondence h(x, p) = ((x̃u(p))u∈U , p̃(x)). We shall
show that a fixed point of this mapping exists and is a fractional competitive equilibrium.

Existence of a Fixed Point We show that h satisfies the condition of the Kakutani fixed
point theorem (cf. Theorem L.2.1), which ensures the existence of a fixed point. First, note
that the domain of h, i.e. X × ∆|Ẽ |, is non-empty, compact and convex.

Next, we show that h is a non-empty, closed-valued, convex-valued, and upper semi-
continuous correspondence. It is enough to show that x̃u(p) and p̃(x) are non-empty,
convex-valued and upper semicontinuous correspondences.

From (L.3), we observe that p̃(x) is non-empty and convex-valued and is an optimal
solution to a linear program with a non-empty, convex, and compact feasible set. All condi-
tions for Berge’s maximum theorem (cf. Theorem L.2.2) are satisfied, and therefore p̃(x) is
also compact-valued and upper semicontinuous.

Next, we show that x̃u(p) is non-empty and convex-valued as it is the optimizer of a linear
function on a non-empty, convex, and compact set. Next, we leverage Theorem L.2.2 to show
that this map is compact-valued and upper semicontinuous. First, we need to show that the
correspondence gu : p ⇒ Qu ∩Bu(p) is a compact-valued and continuous correspondence.
Compactness follows by construction, so the only thing remaining to show is continuity. To
show continuity, it is enough to show that the mapping is upper semicontinuous and lower
semicontinuous.

To show gu is upper semicontinuous, consider a sequence (x̄nu, pn) such that x̄nu ∈ Qu ∩
Bu(pn), which has limit (x̄u, p). Then, it is sufficient to establish that x̄u ∈ Qu ∩Bu(p).
Note that Qu is compact, so if x̄nu ∈ Qu, for every n ∈ N, it follows that x̄u ∈ Qu.
Furthermore, since x̄nu ⩾ 0, for every n ∈ N, it follows that x̄u ⩾ 0. Additionally, for every
n ∈ N, ã⊤

u xnu + xnu,∅ = 1, Ãuxnu = 0, it follows that ã⊤
u xu + xu,∅ = 1, Āuxu = 0.

Moreover, the continuity of product ensures that pn⊤xnu + poxnu,o = wu, for every n ∈ N,
implies p⊤xu + poxu,o = wu. This ensures that gu is upper semicontinuous.

Next, we show that gu is lower semicontinuous. To show this, it is sufficient to show
that for any sequence pn with limit p and any point x̄u ∈ Qu ×Bu(p) there is a sequence
x̄nu ∈ Qu ∩Bu(pn) such that limn→∞ x̄nu = x̄u. Towards this goal, for every u ∈ U , e ∈ Ẽ ,
we define x̄n such that

xnu,e = min
{

1, wu
pn⊤xu + poxu,o

}
xu,e, xnu,∅ = 1− ã⊤

u xnu, xnu,o =
1
po

(
wu − pn⊤xnu

)
.
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It is easy to check that the limn→∞ x̄nu = x̄u. It remains to demonstrate that x̄nu ∈ Qu ∩
Bu(pn). First, note that ã⊤

u xnu + xnu,∅ = 1 follows by construction. Next, we show that
xnu,∅ ⩾ 0. This is because

ã⊤
u xnu = min

{
1, wu

pn⊤xu + poxu,o

}
ã⊤
u xu ⩽ ã⊤

u xu = 1− xu,∅

=⇒ xnu,∅ = 1− ã⊤
u xnu ⩾ xu,∅ ⩾ 0,

where the inequality follows as ãu,e ⩾ 0,xnu,e ⩾ 0. Similarly, one can show that Ãuxnu = 0.
Next, we note that budget constraints are satisfied by the construction of xnu,o. Finally, we
show that xnu,o ⩾ 0. Indeed,

pn⊤xnu = min
{

1, wu
pn⊤xu + poxu,o

}
pn⊤xu ⩽ wu.

Thus, we conclude that gu is a compact-valued continuous correspondence. Thus, from
Theorem L.2.1, we conclude that there exists (x̄∗, p∗) such that x̄∗

u = x̃u(p∗), p∗ =
p̃(x̄∗), ∀ u ∈ U .

Existence of a Fractional Competitive Equilibrium We show that any fixed point
corresponds to a fractional competitive equilibrium. First, using (L.2), we conclude that x̄∗

u

is an optimal solution to (L.1). Second, note that p∗ ∈ R
|Ẽ |
⩾0 by construction. Next, we show

that the capacity constraints are satisfied. We show this by contradiction. Suppose there
exists an edge e′ ∈ Ẽ such that ∑u∈U x

∗
u,e′ > 1. Then by (L.3), it must hold that

∑
e∈Ẽ

p∗
e

∑
u∈U

x∗
u,e − 1

 ⩾
∑
e∈Ẽ

pe

∑
u∈U

x∗
u,e − 1

 , ∀ p ∈ ∆|Ẽ |.

We claim that ∑e∈Ẽ p
∗
e(
∑
u∈U x

∗
u,e − 1) = 0. Indeed,∑

e∈Ẽ
p∗
e(
∑
u∈U

x∗
u,e − 1) =

∑
u∈U

∑
e∈Ẽ

p∗
ex

∗
e,u −

∑
e∈Ẽ

p∗
e =

∑
u∈U

wu − 1 = 0.

Thus, we conclude that

0 ⩾
∑
e∈Ẽ

pe

∑
u∈U

x∗
u,e − 1

 , ∀ p ∈ ∆|Ẽ |. (L.4)

Since ∑u∈U x
∗
u,e′ > 1, we can select pe′ = 1 and 0 otherwise, which would violate the above

inequality, a contradiction.
Next, we show that if p∗

e > 0 then ∑
u∈U x

∗
u,e = 1. This follows immediately from the

fact that capacity constraints are satisfied and the fact that ∑e∈Ẽ p
∗
e(
∑
u∈U x

∗
u,e − 1) = 0.

This completes the proof.



APPENDIX L. APPENDIX FOR CHAPTER 14 461

Proof of Proposition 14.3.3
Observe that for any fixed value of ω ∈ R|U |, the optimization problem (14.3) is a convex
optimization problem. Define the Lagrangian as follows.

LP =
∑
u∈U

(wu + ωu) log (fu(x̄u))−
∑
u∈U

poxu,o − p⊤

∑
u∈U

xu − ℓ


−
∑
u∈U

λu(ã⊤
u xu + xu,∅ − 1)−

∑
u∈U

κ⊤
u Ãuxu +

∑
u∈U

µ⊤
u x̄u,

where p ∈ R
|Ẽ |
⩾0 is the Lagrange multiplier corresponding to constraint (14.3b), λ = (λu)u∈U ∈

R|U | is the Lagrange multiplier corresponding to (14.3c), κ = (κu)u∈U ∈ RK|U | is the La-
grange multiplier corresponding to (14.3d), and µ = (µu)u∈U ∈ R

|U ||Ẽ |
⩾0 is the Lagrange

multiplier corresponding to (14.3e).
We observe that, for a given ω, any optimal solution x̄† of (14.3) with optimal dual

multipliers (p†,λ†,κ†,µ†) will satisfy the following first order conditions of optimality.

0 ⩾



(wu+ωu)

fu(x̄†
u)
vu,e − p†

e − ãu,eλ†
u − (Ã⊤

u κ
†
u)e if e ∈ Ẽ

(wu+ωu)

fu(x̄†
u)
vu,o − po if e = o

(wu+ωu)

fu(x̄†
u)
vu,∅ − λ†

u if e = ∅.

(L.5)

Furthermore, the complementary slackness conditions are given by

0 =



(wu+ωu)

fu(x̄†
u)
vu,ex†

u,e − p†
ex

†
u,e − ãu,ex†

u,eλ
†
u − (Ã⊤

u κ
†
u)ex

†
u,e if e ∈ Ẽ

(wu+ωu)

fu(x̄†
u)
vu,ox

†
u,o − p†

ox
†
u,o if e = o

(wu+ωu)

fu(x̄†
u)
vu,∅x

†
u,∅ − λux

†
u,∅ if e = ∅

,

0 = p†
e(
∑
u∈U

x†
u,e − ℓe), ∀ e ∈ Ẽ .

(L.6)

Similarly, the Lagrangian of the (relaxed) individual optimization problem (L.1) is given
by

LI = fu(x̄u)− ω̃u
(
p⊤xu + poxu,o −wu

)
− λ̃u(ã⊤

u xu + xu,∅ − 1)−
∑
u∈U

κ̃⊤
u Ãuxu + µ̃⊤

u x̄u,

where ω̃u ∈ R is the Lagrange multiplier corresponding to the budget constraint, λ̃u ∈ R

is the Lagrange multiplier corresponding to (L.1c), κ̃u ∈ RK is the Lagrange multiplier
corresponding to (L.1d), and µ̃u ∈ R

|Ẽ |
⩾0 is the Lagrange multiplier corresponding to the

positivity constraint (L.1e).
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We observe that, for a given p, any optimal solution x̄‡ of (L.1) with optimal dual
multipliers (ω̃‡, λ̃‡, κ̃‡, µ̃‡) satisfies the following first order conditions of optimality.

0 ⩾


vu,e − ω̃‡

upe − λ̃‡
uãu,e − (Ã⊤

u κ̃
‡
u)e if e ∈ Ẽ

vu,o − ω̃‡
upo if e = o

vu,∅ − λ̃‡
u if e = ∅.

(L.7)

Furthermore, using the complementary slackness condition, we obtain

0 =


vu,ex‡

u,e − ω̃‡
upex

‡
u,e − λ̃‡

uãu,ex‡
u,e − (Ã⊤

u κ̃
‡
u)ex

‡
u,e if e ∈ Ẽ

vu,ox
‡
u,o − ω̃‡

upox
‡
u,o if e = o

vu,∅x
‡
u,∅ − λ̃‡

ux
‡
u,∅ if e = ∅.

(L.8)

In order to prove Proposition 14.3.3, we show that if there exists ω∗ such that ω∗ = λ†(ω∗)
then (x̄†(ω∗), p†(ω∗)) is a fractional-competitive equilibrium. It is sufficient to verify the
following:

(i) By fixing the prices to p†(ω∗), x̄†
u(ω

∗) is an optimal solution of (L.1), for every u ∈ U ;

(ii) the capacity constraints are satisfied at every resource;

(iii) p†
e(ω

∗) ⩾ 0 for every e ∈ Ẽ ; and

(iv) if p†
e(ω

∗) > 0 for some e ∈ Ẽ , then ∑u∈U x
†
u,e(ω

∗) = ℓe.

It is immediate to note that (ii) − (iv) are satisfied due to dual and primal feasibility
conditions of (14.3). It only remains to show (i).

To show (i), it is sufficient to show that the there exists ω̃‡
u, λ̃‡

u, κ̃‡
u such that the tuple

(x̄†
u(ω

∗), ω̃‡
u, λ̃‡

u, κ̃‡
u) satisfies the conditions (L.7)-(L.8), and the budget constraint in (L.1b)

holds.
Setting the optimal Lagrange variable of (14.3b) with ωu = λu then the optimal solution

x∗ of (14.3) is the solution of individual optimization problem for all players with price p∗.
By primal optimality conditions in (L.5), we obtain

0 ⩾


vu,e − fu(x̄†

u)
(wu+ω∗

u)
p†
e −

fu(x̄†
u)

(wu+ω∗
u)
ãu,eλ†

u −
fu(x̄†

u)
(wu+ω∗

u)
(Ã⊤

u κ
†
u)e if e ∈ Ẽ

vu,o − fu(x̄†
u)

(wu+ω∗
u)
po if e = o

vu,∅ − fu(x̄†
u)

(wu+ω∗
u)
λ†
u if e = ∅.

(L.9)

The preceding equation is equivalent to the primal optimality condition of individual opti-
mization problem in (L.7) if we select λ̃‡

u =
fu(x̄†

u)
(wu+ω∗

u)
λ†
u, ω̃u = fu(x̄†

u)
(wu+ω∗

u)
and κ̃‡

u =
fu(x̄†

u)
(wu+ω∗

u)
κ†
u.
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Similarly, (L.8) is also satisfied with the same choice. Finally, we show that individual bud-
get constraint (L.1b) holds. For this we use the complementary slackness condition in (L.6)
by summing all three cases in (L.6). For every u ∈ U , we obtain

0 =
(wu + ω∗

u)

fu(x̄†
u)

fu(x̄†
u)− p†⊤x†

u − pox†
u,o − λ†

u(ã⊤
u x†

u + x†
u,∅)− κ†

u
⊤Ã⊤

u x†
u.

Consequently, using (14.3c)-(14.3d) we obtain

0 = (wu + ω∗
u)− p†⊤x†

u − pox
†
u,o − λ†

u

= wu − p†⊤x†
u − pox

†
u,o,

where in the last equation we used the fact that ω∗ = λ†. This completes the proof.

L.3 Derivation of Inner Loop Updates in Algorithm
11

The updates in the inner loop in Algorithm 11 is derived based on ADMM updates for (14.4).
We review the basic structure of the ADMM algorithm in Section L.3 and then derive the
inner loop updates in Section L.3.

Review of ADMM algorithm
The Alternative Direct Method of Multipliers (ADMM) is a distributed convex optimization
algorithm that decomposes a problem into smaller subproblems, solves them in parallel, and
coordinates to find a global solution via dual updates [63, 62]. It is built on dual ascent and
augmented lagrangian methods.

Consider the following optimization problem with separable cost structure:

max
x∈X,y∈Y

h(x, y) = h1(x) + h2(y)

s.t. Ax +By = c,
(L.10)

where

(i) X ⊂ Ra,Y ⊂ Rb are closed convex sets,

(ii) h1 : Ra → R,h2 : Rb → R,

(iii) A ∈ Rs×a,B ∈ Rs×b, c ∈ Rs.
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Let µ ∈ Rs be the dual multiplier of constraint in (L.10). Consider the following aug-
mented Lagrangian function for (L.10) for some parameter β > 0

Lβ(x, y) = h1(x) + h2(y)− µ⊤(Ax +By− c)− β

2 ∥Ax +By− c∥2.

The ADMM algorithm is a discrete-time algorithm, indexed by k, given as follows

x(n+1) = arg max
x∈X

Lβ(x, y(n))

y(n+1) = arg max
y∈Y

Lβ(x(n+1), y)

µ(n+1) = µ(n) + β(Ax(n+1) +By(n+1) − c).

(L.11)

The parameter β is also referred to as the step-size parameter for the ADMM algorithm.

ADMM Updates for Inner Loop Solving
The inner loop in Algorithm 11 is nothing but the ADMM algorithm applied to (14.4).

For any β > 0, we form the augmented Lagrangian L(x̄, y, z,λ, p, p̃) for (14.4) as follows

Lβ(x̄, y, z,λ, p, p̃) =
∑
u∈U

(wu + ωu) log(fu(x̄u))−
∑
u∈U

poxu,o

−
∑
u∈U

p̃⊤
u (xu − yu)− p⊤

∑
u∈U

yu + z− ℓ

− ∑
u∈U

λu(ã⊤
u xu + xu,∅ − 1)

− β

2
∑
u∈U
∥xu − yu∥2 −

β

2

∥∥∥∥∥∥
∑
u∈U

yu + z− ℓ

∥∥∥∥∥∥
2

. (L.12)
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The ADMM algorithm (as per (L.11)) are given as follows:

x̄(n+1) = arg max
x̄, s.t. (14.3d)−(14.3e) hold

Lβ(x̄, y(n), z(n),λ(n), p(n), p̃(n))

= arg max
x̄, s.t. (14.3d)−(14.3e) hold

∑
u∈U

(wu + ωu) log(fu(x̄u))−
∑
u∈U

poxu,o

−
∑
u∈U

p̃(n)
u

⊤(xu − y(n)
u )−

∑
u∈U

λ(n)u (ã⊤
u xu + xu,∅ − 1)

− β

2
∑
u∈U
∥xu − y(n)

u ∥2 (L.13a)

(y(n+1), z(n+1)) = arg max
y∈RU×|Ẽ|, z∈R

|Ẽ|
+

Lβ(x̄(n+1), y, z,λ(n), p(n), p̃(n))

= arg max
y∈RU×|Ẽ|, z∈R

|Ẽ|
+

−
∑
u∈U

p̃(n)
u

⊤(x(n+1)
u − yu)− p(n)⊤

∑
u∈U

yu + z− ℓ



− β

2
∑
u∈U
∥x(n+1)

u − yu∥2 −
β

2

∥∥∥∥∥∥
∑
u∈U

yu + z− ℓ

∥∥∥∥∥∥
2

(L.13b)

λ(n+1)
u = λu + β(ã⊤

u x(n+1)
u + x

(n+1)
u,∅ − 1), ∀ u ∈ U (L.13c)

p(n+1) = p(n)
u + β(

∑
u∈U

y(n+1)
u + z(n+1) − ℓ) (L.13d)

p̃(n+1)
u = p̃(n)

u + β(x(n+1)
u − y(n+1)

u ), ∀ u ∈ U . (L.13e)

First, we claim the if p(0) = p̃(0)
u for every u ∈ U , then p(n) = p̃

(n)
u for every u ∈ U

and n ∈ N. We prove this by induction. Suppose for some n, p(n) = p̃
(n)
u for every u ∈ U

then we show that p(n+1) = p̃
(n+1)
u for every u ∈ U . To see this, note from the first-order

conditions of optimality for (L.13b) with respect to y, we obtain

p̃(n)
u − p(n)

u + β(x(n+1)
u − y(n+1))− β(

∑
u∈U

y(n+1)
u + z(n+1) − ℓ) = 0. (L.14)

Using preceding equation, we obtain

p̃(n+1)
u =

(L.13e)
p̃(n)
u + β(x(n+1)

u − y(n+1)) =
(L.14)

p(n)
u + β(

∑
u∈U

y(n+1)
u + z(n+1) − ℓ)

=
(L.13d)

p(n+1)
u .

This concludes our claim. Therefore, we get rid of notation p̃ and work only with p.
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Finally, note that (L.13a) is separable in x̄u for every u ∈ U . Against the preceding
backdrop, (L.13) can be re-written as

x̄(n+1)
u = arg max

x̄u, s.t. (14.3d)−(14.3e) hold
(wu + ωu) log(fu(x̄u))− poxu,o − p(n)

u
⊤xu

− λ(n)u (ã⊤
u xu + xu,∅ − 1)− β

2 ∥xu − y(n)
u ∥2 (L.15a)

(y(n+1), z(n+1)) = arg max
y∈RU×|Ẽ|, z∈R

|Ẽ|
+

−p(n)⊤z− β

2
∑
u∈U
∥x(n+1)

u − yu∥2 −
β

2

∥∥∥∥∥∥
∑
u∈U

yu + z− ℓ

∥∥∥∥∥∥
2

(L.15b)

λ(n+1)
u = λu + β(ã⊤

u x(n+1)
u + x

(n+1)
u,∅ − 1), ∀ u ∈ U (L.15c)

p(n+1) = p(n)
u + β(

∑
u∈U

y(n+1)
u + z(n+1) − ℓ). (L.15d)

Updates (L.15) correspond to the inner loop updates in Algorithm 11, where (L.15a)
is implemented locally by different AAM vehicles and (L.15b)-(L.15d) are implemented by
service provider.

L.4 Vertiport Reservation Mechanism in Northern
California

In this section, we study a scenario of vertiport reservation for (hypothesized) air taxi services
in Northern California. We simulate a scenario where different air taxis request access to air
routes to transport people at an urban and regional level. The vertiports in this simulation
are located in various cities in Northern California as shown in the map in Fig. L.2. For
simplicity, we are modeling linear trajectories and assuming a maximum travel range of 100
miles.

In this example, 20 air taxis request a departure, air route, and landing clearances among
seven vertiport destinations during a 10-minute auction window. The requests by the air
taxis, the final allocation of routes, and payments to the SP are presented in Table L.4.1
along with the maximum capacity in every segment of the desired routes, the utility of the
air taxis for a given path, and their initial air credits. We set β = 50, po = 10, vu,o =
1, vu,∅ = 1,N = 2, tol = 1× 10−4. The Maximum Capacity column in Table L.4.1 specifies
the maximum number of vehicles that can traverse a travel segment at any given time. These
values help the reader identify contested travel segments and understand why certain agents
must compete for access. In these tables, air taxis sharing the same color represent those
that simultaneously requested the same trajectory slot, leading to a constraint violation. As
a result, only a subset of these air taxis were granted their preferred route, while the others
were denied access. We also present the rank number of these agents representing the order
in which each agent computed their integral allocation, as outlined in Algorithm 2.



APPENDIX L. APPENDIX FOR CHAPTER 14 467

Figure L.2: Northern California Vertiport Map. This map, adapted from a Google Maps
image, highlights seven distinct vertiports using unique color codes and displays the example
routes as red lines.

Below, we highlight the main observations from our numerical study.

(i) At time step 16, AC003, AC004, and AC015 request departure from V002, which has a
departure capacity constraint of one. Consequently, only AC004 is allocated to depart
at this time step due to its higher air credits, while AC003 and AC015 are delayed.
Naturally, these air taxis would prefer to depart at the next time step; however, they
now compete for departure from V002 with AC013 and AC018 at time steps 17 and 18,
respectively. Notably, Algorithm 12 prioritizes AC013 and AC018, resulting in further
delays for AC003 and AC015. At time step 19, AC003 and AC015 compete again, with
AC003 receiving priority due to its higher air credits in Algorithm 12.

(ii) AC002 and AC011 request landing slots at V004 at the same time, which results in
delay for AC011. This is because AC011 has both a lower budget and lower utility in
comparison to AC002.

(iii) AC009 and AC010 request departure from V001 at the same time, which results in delay
for AC009. This is because AC010 has a significantly higher budget than AC009.

(iv) Air taxis that are delayed are charged less than those who are allocated their preferred
routes.
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Table L.4.1: Results of the allocation of air taxis to the desired routes, payments to the SP,
utility, initial air credits, and maximum capacity in the en-route travel segment

Aircraft Req. Route
(Orig., Dest.)

Req. Time
(Arr, Dep)

Max. Capacity
(Dep, Route, Arr)

Allocated
Time

(Arr, Dep)
Status Price

($)

Initial
Air

Credits
Utility Rank

AC001 (V007, V002) (16, 54) (2,4,1) (16, 54) on-time 0.0 125 118 6
AC002 (V005, V004) (19, 47) (4,5,1) (19, 47) on-time 5.73 90 171 7
AC011 (V006, V004) (19, 47) (1,2,1) (20, 48) delayed 1.53 78 135 19
AC003 (V002, V001) (16, 21) (1,1,2) (19, 24) delayed 3.71 135 172 18
AC004 (V002, V001) (16, 21) (1,1,2) (16, 21) on-time 20.36 154 133 13
AC015 (V002, V001) (16, 21) (1,1,2) (20, 25) delayed 0.86 65 194 20
AC013 (V002, V006) (17, 41) (1,4,3) (17, 41) on-time 11.11 55 147 16
AC018 (V002, V007) (18, 56) (1,2,3) (18, 56) on-time 8.46 103 165 8
AC005 (V003, V002) (11, 19) (1,5,1) (11, 19) on-time 0.0 83 177 4
AC006 (V005, V007) (18, 68) (4,3,3) (18, 68) on-time 0.0 199 148 15
AC007 (V003, V002) (15, 23) (1,5,1) (15, 23) on-time 0.0 100 183 5
AC008 (V007, V001) (12, 54) (2,3,2) (12, 54) on-time 0.0 104 155 10
AC009 (V001, V005) (13, 34) (5,1,2) (14, 35) delayed 2.10 67 189 17
AC010 (V001, V005) (13, 34) (5,1,2) (13, 34) on-time 5.75 114 163 3
AC012 (V005, V001) (16, 37) (4,3,2) (16, 37) on-time 0.0 90 124 12
AC014 (V001, V002) (11, 24) (5,2,1) (11, 24) on-time 0.0 64 174 9
AC016 (V007, V005) (17, 67) (2,5,2) (17, 67) on-time 0.0 109 189 14
AC017 (V004, V006) (16, 44) (5,3,3) (16, 44) on-time 0.0 155 149 11
AC019 (V004, V002) (16, 35) (5,5,2) (16, 35) on-time 0.0 104 147 1
AC020 (V003, V006) (16, 38) (1,2,3) (16, 38) on-time 0.11 96 146 2
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