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Abstract: Imitation learning is a promising approach for training autonomous ve-
hicles (AV) to navigate complex traffic environments by mimicking expert driver
behaviors. While existing imitation learning frameworks focus on leveraging ex-
pert demonstrations, they often overlook the potential of additional complex driv-
ing data from surrounding traffic participants. In this paper, we propose a data
augmentation strategy that enhances imitation learning by leveraging the observed
trajectories of nearby vehicles, captured by the AV’s sensors, as additional expert
demonstrations. We introduce a vehicle selection sampling strategy that priori-
tizes informative and diverse driving behaviors, contributing to a richer and more
diverse dataset for training. We evaluate our approach using the state-of-the-art
learning-based planning method PLUTO on the nuPlan dataset and demonstrate
that our augmentation method leads to improved performance in complex driving
scenarios. Specifically, our method reduces collision rates and improves safety
metrics compared to the baseline. Notably, even when using only 10% of the orig-
inal dataset, our method matches or exceeds the performance of the full dataset,
with improved collision rates. Our findings highlight the importance of leveraging
diverse real-world trajectory data in imitation learning and provide insights into
data augmentation strategies for autonomous driving.

Keywords: Autonomous driving, imitation learning, planning

1 Introduction

By learning from expert demonstrations, imitation learning enables autonomous vehicles (AVs) to
develop policies that mimic human-like driving behavior. Recently, imitation learning models [1, 2]
have started to outperform traditional rule-based methods [3] on benchmarks with large-scale real-
world data such as nuPlan [4], indicating the increasing viability of imitation learning for real-world
deployment. However, imitation learning also suffers from three major challenges. First, recent
studies demonstrate that imitation learning models can learn shortcuts from data [5], leading to un-
desired behaviors. For example, it has been demonstrated that models with historical AV motion
data excel in open-loop evaluation but underperform in closed-loop metrics, likely due to learning
shortcuts [6]. Second, imitation learning suffers from the distribution shift problem, where the train-
ing and test sets have different distributions due to the nature of the problem, such as learning from
data collected in one location and deploying elsewhere. To address this challenge, Several studies
suggest that imitation learning benefits from reinforcement learning refinements [7]. Lastly, imita-
tion learning suffers from causal confusion [8] when a model learns spurious correlations instead
of true causal relationships between actions and outcomes. Since imitation learning relies on mim-
icking expert demonstrations, the model may pick up on irrelevant features or unintended cues that
correlate with successful behavior but do not actually cause it.

Addressing these challenges through effective data augmentation, model architecture, and loss
choices is crucial for improving real-world performance. As such, it is crucial to maximize the
utility of the data collected through various means. Despite the availability of large datasets, simu-
lators, and benchmarks (e.g., [4, 9, 10]), effectively utilizing this data for imitation learning remains
a challenge. Different datasets capture driving information at varying levels of abstraction, ranging
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Figure 1: Data augmentation framework illustrated for a traffic scenario: (1) The expert driver re-
mains stationary at a red light while surrounding vehicles follow diverse trajectories. (2) A suitable
surrounding vehicle i

⇤ (shown with a blue circle) is sampled from the weighted categorical distri-
bution defined in Eq. 3, where darker circles represent higher selection probabilities and h is the
vector of sum of absolute heading deviations for all vehicles I . (3) A reference frame transformation
generates features from the perspective of the new ego vehicle.

from object-level annotations to raw sensor images. Furthermore, recent studies have indicated that
simply increasing the volume of training data does not necessarily result in improved model perfor-
mance. For example, [11] highlights that the addition of more data may not always translate to better
outcomes, suggesting that other factors, such as data quality and relevance, play a more significant
role in model effectiveness.

In this paper, we propose a data augmentation technique that enhances imitation learning by incor-
porating trajectories beyond those of expert drivers in driving datasets. Specifically, we build on the
success of PLUTO [1] and introduce a new training methodology that harnesses trajectory data from
nearby vehicles as expert demonstrations. To this end, we introduce a traffic participant selection
criterion that prioritizes informative and diverse driving trajectories from observed vehicles. We val-
idate our method through ablation studies using state-of-the-art imitation learning models, including
PLUTO [1] and the nuPlan benchmark [4], demonstrating the effectiveness of our augmentation
strategy in improving autonomous driving. The main contributions of this work are:

• We introduce a vehicle selection mechanism for data augmentation based on heading de-
viation using a softmax-weighted sampling strategy to focus on dynamic and contextually
rich scenarios.

• We propose a dynamic behavior-driven data augmentation technique for object-based ex-
pert driving datasets, prioritizing informative and diverse driving trajectories to demon-
strate that augmenting the dataset with trajectories from surrounding agents improves per-
formance, particularly in low-data regimes, achieving competitive performance with only
10% of the original dataset.

• We perform experiments using the state-of-the-art PLUTO planner and the nuPlan dataset,
including ablation studies on dataset size, the number of augmented vehicles, and the im-
pact of different sampling temperatures.

2 Related Work

Datasets for autonomous driving: Although traffic data is tedious and costly to collect, there is an
increasing amount of open-source datasets for autonomous driving research. These datasets can be
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broadly categorized into perception (i.e., sensor-based [12, 13, 14]) and motion planning (i.e., object-
based [15, 16, 4, 17]) datasets. Since imitation learning is commonly used for motion planning tasks,
we focus on object-based datasets, which have the additional advantage of allowing for interpretable
and complete data augmentation. The object-based dataset NGSIM [18] is one of the earlier large
datasets initially published in 2006. Since then many new datasets with increasing size and traffic
complexity have been published. In particular, the nuPlan benchmark [19, 4] consists of real-world
autonomous driving datasets and evaluation frameworks. nuPlan offers a comprehensive dataset for
both prediction and planning, with 1282 hours of driving data from four cities, and introduces a
taxonomy of driving scenarios. Due to these features, nuPlan has been used to compare various
planning approaches in the literature such as [20, 3, 21].

Data augmentation for autonomous driving: Although above datasets are of increasing size, data
augmentation can significantly enhance their value. For example, Guo et al. [22] develops context-
aware data augmentation for imitation learning that is based on a variational autoencoder. Another
interesting approach for sensor-based datasets is proposed by Chen and Krähenbühl [23]. By learn-
ing from the trajectories of all vehicles observed by the ego-vehicle, the system effectively increases
sample efficiency and exposes the model to a wider variety of safety-critical and complex driving
scenarios. A key challenge in this approach is the partial observability of surrounding vehicles. This
is solved by a perception module that generates a viewpoint-invariant 2D top-down representation of
the scene, helping the motion planner generalize across different vehicles. In contrast, we propose a
data augmentation for object-based datasets that uses the more complex trajectories of other drivers
by introducing a biased sampling criteria and data augmentation. PLUTO [1] employs contrastive
imitation learning (CIL) to address distribution shift by applying both positive and negative data aug-
mentations, where positive augmentations agree with the ground truth and negative augmentations
intentionally disagree.

Imitation learning for autonomous driving: The two main learning approaches for autonomous
driving are reinforcement learning and imitation learning. Reinforcement learning usually relies
on a realistic simulation environment and significant reward-shaping to achieve performant driving
policies [24]. Imitation learning is usually easier to tune but requires a diverse and large dataset
of driving trajectories to achieve expert-like driving behavior [25, 26]. Leading companies in au-
tonomous driving, such as Tesla and Waymo [27, 7], as well as open-source projects like OpenPilot
[28], leverage imitation learning to train models by mimicking expert driving behavior. A recent
example is the work by Zheng et al. [2], who propose a transformer-based Diffusion Planner for
closed-loop planning, capable of modeling multi-modal driving behavior. Another notable frame-
work in imitation learning is PLUTO [1], which introduces key innovations for more efficient driv-
ing behavior generation: a longitudinal-lateral aware transformer architecture, contrastive learning
to mitigate causal confusion and distribution shift, and ego-related data augmentation. In this study,
we use PLUTO as a baseline and perform ablation studies on the nuPlan dataset.

3 Methodology

3.1 Problem Formulation

Our method is a general data augmentation approach applicable to object-based planning frame-
works. In this study, we integrate our augmentation into PLUTO [1], a state-of-the-art learning-
based planning method, to demonstrate its effectiveness. Below, we briefly formulate the planning
problem from the perspective of PLUTO.

As in PLUTO [1], we consider an AV, NA dynamic agents, NO static obstacles, a high-definition
map M , and traffic context information C (e.g., traffic light status). The feature set for dynamic
agents is denoted as A = A0:NA , where A0 represents the AV, and the static obstacle set is O =
O1:NO . The future state of agent a at time t is denoted as yt

a, with historical and future horizons of
TH and TF , respectively. PLUTO generates NT multi-modal planning trajectories for the AV along
with predictions for each dynamic agent. The final trajectory ⌧

⇤ is selected via a scoring module S,
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which integrates these outputs with the scene context. The overall formulation is given as:

(T0,⇡0),P1:NA = f(A,O,M,C | �) (1)

(⌧⇤,⇡⇤) = argmax
(⌧,⇡)2(T0,⇡0)

S(⌧,⇡,P1:NA ,O,M,C), (2)

where f represents PLUTO’s neural network, � are the model parameters, (T0,⇡0) = {(y1:TF
0,i ,⇡i) |

i = 1, . . . , NT } are the generated planning trajectories with confidence scores, and P1:NA =
{y1:TF

a | a = 1, . . . , NA} are the predicted future states of dynamic agents.

Agent History Encoding: PLUTO represents each agent’s state at time t as sti = (pt
i, ✓

t
i ,v

t
i ,b

t
i, I

t
i ),

where pt
i 2 R2 and ✓

t
i 2 R denote position and heading, vt

i 2 R2 represents velocity, and bt
i 2 R2

and I
t
i 2 {0, 1} correspond to the bounding box dimensions and observation status, respectively.

The temporal evolution of agent states is captured by computing differences between consecutive
timesteps, resulting in a feature matrix FA 2 RNA⇥(TH�1)⇥8.

Static Obstacles Encoding: Static obstacles in the drivable area are encoded as oi = (pi, ✓i,bi),
producing a feature matrix FO 2 RNO⇥5.

AV’s State Encoding: Imitation learning models often develop shortcuts based on historical states,
which can degrade performance [6, 29]. To mitigate this, only the current state of the AV is used as
input features without using the history. These include the AV’s position, heading angle, velocity,
acceleration, and steering angle, represented as FAV 2 R1⇥8.

Vectorized Map Encoding: The map consists of Np polylines, each undergoing an initial sub-
sampling step to standardize the number of points. Feature vectors are then computed for each
polyline point. Specifically, for the i-th point of a polyline, the feature vector consists of⇣
pi � p0, pi � pi�1, pi � pleft

i , pi � pright
i

⌘
where p0 is the initial point of the polyline,

and pleft
i and pright

i represent the left and right lane boundary points, respectively. The final represen-
tation of the polyline features is FP 2 RNP⇥np⇥8, where np is the number of points per polyline.

Scene Encoding: To capture interactions between dynamic agents, static obstacles, polylines, and
the autonomous vehicle, these inputs are concatenated and processed through transformer encoders,
with Fourier-based positional embeddings and learnable semantic attributes compensating for the
loss of global positional information.

Trajectory Planning and Post-processing: The model generates multimodal trajectories with
confidence scores and employs an additional rule-based post-processing module to ensure safe and
robust selection. Forward simulation utilizing a linear quadratic regulator for trajectory tracking
and a kinematic bicycle model for state updates assesses rollouts based on different metrics such as
driving comfort, traffic rule adherence, and time-to-collision. The final trajectory is selected by com-
bining learning-based confidence scores with rule-based evaluations, balancing data-driven learning
with human-like decision-making. This approach enhances interpretability and safety without mod-
ifying the originally planned trajectory.

3.2 Learning From Surrounding Traffic

Many real-world driving scenarios are inherently dynamic, with multiple interacting agents. While
some situations may involve routine behaviors such as lane-keeping or waiting at a red light, even
in these types of scenarios usually there is at least one vehicle exhibiting complex or “interesting”
behaviors in the surrounding traffic. Examples include lane changes, turning at intersections, yield-
ing to pedestrians, or reacting to bicycles. These nuanced interactions provide a rich source of data
for understanding diverse driving behaviors and the decision-making processes of road users. Our
approach capitalizes on this by augmenting the imitation learning dataset with estimated trajectories
of selected agents from the surrounding traffic.
The key advantages of our approach are:
1- Diverse Behavioral Representation: Incorporating trajectories from surrounding vehicles en-
hances dataset diversity by introducing a broader range of driving behaviors. This diversity helps
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Figure 2: Histogram of the sum of absolute heading deviations hi for observed vehicles in the
dataset. The blue plot represents the original data, while the orange plot corresponds to vehicles
sampled using the softmax distribution defined in Equation 3. The histogram is presented on a
logarithmic scale to account for the large differences in probabilities.

mitigate model bias toward a limited subset of driving styles, improving the model’s ability to gen-
eralize across varied real-world scenarios. Prior research in imitation learning and reinforcement
learning has shown that exposure to diverse state-action distributions reduces overfitting and im-
proves robustness in novel environments [30, 31].
2- Contextual Interaction Learning: Learning from surrounding agents enables the model to cap-
ture multi-agent interactions, improving its ability to anticipate and respond to dynamic traffic sce-
narios. For example, Zhang et al. [32] shows that incorporating contextual interactions enhances
decision-making and overall driving performance.
3- Focus on Dynamic Scenarios: Rather than relying only on the AV’s ground truth, which may of-
ten reflect relatively static or routine behaviors, our approach prioritizes learning from more dynamic
and contextually rich scenarios, which are shown to increase the performance [11]. The distribution
of the sum of absolute heading angle deviations, illustrated in Figure 2, further supports this point.
The blue histogram indicates that the majority of observed vehicle data consists of minimal devia-
tion movements, such as lane-keeping, simple acceleration, and deceleration, highlighting the need
for incorporating more diverse motion patterns.

3.3 Vehicle Selection Criteria

Most simulation scenarios have many vehicles present, but it is infeasible to augment the dataset
with all of them. Many of these vehicles may exhibit little to no interesting behavior, and including
them would unnecessarily increase the computation and contribute little to the learning process.
Prior research has shown that treating all training data equally can lead to suboptimal performance,
especially in safety-critical situations, and that prioritizing more informative samples can improve
robustness while reducing data requirements. For instance, [11] demonstrated that an imitation-
learning-based planner trained on only 10% of a dataset—carefully curated using a trained scenario
difficulty predictor—performed as well as one trained on the full dataset while significantly reducing
collisions and improving route adherence. Therefore, vehicle selection criteria are essential to ensure
the dataset contains the most beneficial scenarios.

To ensure the quality and consistency of the augmented data, we first apply a series of filtering
steps to discard unsuitable candidate vehicles. Specifically, any vehicle that does not appear in all
timesteps of a given scenario is removed, as its absence could be due to partial observability or
sensor noise, introducing inconsistencies in the training data. Next, we discard vehicles that do not
remain within a fixed radius of the AV, set at r = 50m, across all timesteps. This constraint ensures
that only vehicles that have reliable sensory measurements are considered, as distant vehicles are
usually more noisy. Additionally, vehicles identified as being outside the drivable area—such as
parked cars in driveways—are excluded, as their trajectories do not contribute to meaningful driving
interactions. For the remaining pool of vehicles, we assign a weight hi based on their sum of
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absolute heading angle deviation over time. This deviation serves as a proxy for dynamic behaviors
such as turns, lane changes, and parking maneuvers, which are crucial for learning diverse driving
interactions. However, such behaviors are relatively rare, as illustrated in Figure 2. To sample from
this distribution more effectively, we apply a softmax function:

hi =
X

t

|✓
t
i � ✓

t�1
i |, Softmax(i) =

exp(hi/⌧)P
j exp(hj/⌧)

(3)

where hi represents the weight for vehicle i, Softmax(i) is its assigned probability, and ⌧ is the
temperature parameter that controls the sharpness of the weight distribution. A lower ⌧ makes the
selection more focused on vehicles with higher deviations, while a higher ⌧ results in a more uniform
weighting across all vehicles. Using these weights, we sample Ns distinct scenarios for each ego
vehicle scenario, augmenting the dataset by incorporating the selected vehicles. This ensures that
the dataset is both realistic and diverse, improving the robustness of the learned model.

Since certain vehicle-specific parameters, such as wheelbase and center of gravity, are typically
unobserved in object-based datasets, we estimate these values using empirically derived approxima-
tions available in the implementation. Once a vehicle is selected, all scene features—including the
positions of other objects, map polylines, and lane boundaries—are transformed into the reference
frame of the selected vehicle, generating a new augmented feature representation x̃ as in Figure 1.

4 Experiments

We train the baseline PLUTO planner using varying numbers of scenarios extracted from the nuPlan
dataset. For each scenario, we generated NS additional scenarios by leveraging trajectories from
other vehicles. However, in some cases, no suitable vehicles were consistently observable across all
time steps due to partial observability, and augmentation was not applied in those instances. Both
the baseline and augmented models were trained to convergence, monitored using validation error.
We used the hyperparameters reported in the original PLUTO implementation.

For evaluation, we evaluated both methods on the test14-hard benchmark, which is collected by
executing 100 scenarios for each of 14 scenario types then 20 lowest-performing instances per type
selected for evaluation using the state-of-the-art rule-based planner PDM-Closed [3]. We did not re-
peat experiments on the val14 benchmark, which consists of uniformly sampled nuPlan scenarios, as
prior studies indicate a strong correlation between learning-based methods’ performance on test14-
hard and val14 as seen in Figure 5 in the Appendix B and computation time for val14 is much higher
than test14-hard. The test14-hard dataset captures the most challenging and informative scenarios.

The nuPlan framework provides a comprehensive evaluation score for each simulation, incorpo-
rating key metrics such as (1) No Ego At-Fault Collisions, where only AV-initiated collisions are
considered; (2) TTC (Time-to-Collision) Compliance, ensuring time-to-collision remains above
a threshold; (3) Drivable Area Compliance, requiring the AV to stay within road boundaries;
(4) Comfort, assessed via acceleration, jerk, and yaw dynamics within empirical thresholds; (5)
Progress, measured as the AV’s traveled distance relative to the expert driver. We use the non-
reactive closed-loop score as our performance evaluation metric.

We conducted experiments across datasets of varying sizes, specifically with 1K, 10K, and 100K
scenarios. As shown in Table 1, our data augmentation method consistently outperforms the base-
line across all dataset sizes, achieving performance improvements of 7.13%, 10.22%, and 2.57%,
respectively. A deeper analysis of individual metrics reveals the most significant enhancements in
collision and time-to-collision (TTC), indicating that our method substantially reduces the likeli-
hood of collisions and enhances safety. Notably, even when using only 10% of the original dataset,
our augmented approach achieves performance comparable to using the full dataset, while outper-
forming the baseline in terms of both collision rate and TTC. This highlights the efficiency and
effectiveness of our data augmentation strategy in improving both safety and model performance.

This improvement is exemplified in a challenging scenario depicted in Figure 3, where a vehicle
attempts to merge onto the road from the right. The baseline model exhibits hesitation, waiting for
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Scenarios Planner Score Collisions TTC Drivable Comfort Progress
1K PLUTO (Baseline) 58.60 83.02 76.23 92.45 70.94 71.20

PLUTO (Ours, ⌧ = 0.5, Ns = 2) 65.73 89.84 82.52 93.90 71.54 75.20
10K PLUTO (Baseline) 61.95 83.90 74.91 93.26 76.03 78.72

PLUTO (Ours, ⌧ = 0.5, Ns = 1) 72.17 91.29 82.58 95.08 80.68 80.61
100K PLUTO (Baseline) 74.81 91.23 83.96 97.01 86.57 78.64

PLUTO (Ours, ⌧ = 0.5, Ns = 1) 77.38 93.75 84.09 96.97 87.88 80.47
Table 1: Performance comparison of PLUTO planner under base and augmented datasets with vary-
ing number of scenarios (1K, 10K, 100K) and different parameters. The Test14-hard dataset is used
for evaluation. All scores are between 0 and 100, where the higher the score, the better. More results
are available in Appendix C.

the merging vehicle to proceed. However, this indecisiveness results in a collision, as the baseline
fails to anticipate the interaction effectively. In contrast, our augmented model demonstrates a more
confident decision-making process, correctly interpreting the traffic dynamics to take the lead while
adhering to traffic regulations. This underscores the effectiveness of our approach in improving
driving performance, particularly in high-stakes situations that demand adaptive behavior.

4.1 Ablation Studies

Effect of Dataset Size: We conducted ablation studies on dataset sizes of 1K, 10K, and 100K
scenarios, as shown in Figure 4. The results indicate that increasing the dataset size improves per-
formance for both the baseline and our proposed method. Notably, the data augmentation method
consistently enhances performance across all dataset sizes, with the most significant gains observed
at 10K scenarios. This trend aligns with the expectation that larger datasets generally lead to better
generalization and improved model robustness.

Impact of the Number of Selected Vehicles Ns: To analyze the effect of augmenting with multiple
vehicles, we experimented with selecting 1 or 2 additional vehicles per AV scenario and compared
the results against the baseline (no augmentation). In the 1K scenario setting, performance improved
when augmenting with 2 vehicles, whereas in the 10K scenario dataset, the best performance was
achieved with Ns = 1. This suggests that while data augmentation is beneficial, excessive aug-
mentation beyond a certain point does not provide further improvements. The results indicate that

t = 0s
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e

t = 5s t = 10s t = 15s
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s

Figure 3: Comparison of the baseline and our method in a merging scenario. The baseline hesitates
and collides, while our method confidently avoids the collision.
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Figure 4: Ablation experiments. (1) Dataset size. (2) Number of selected vehicles Ns. (3) Temper-
ature parameter ⌧ .

in low-data regimes, increasing the amount of augmented data is advantageous, but as dataset size
grows, additional augmentation yields diminishing improvements.

Influence of the Temperature Parameter ⌧ : The temperature parameter ⌧ in the softmax distri-
bution controls sampling bias toward vehicles with higher heading deviations. Lower ⌧ focuses on
dynamic vehicles, while higher ⌧ leads to more uniform sampling. We tested ⌧ = 0.1, ⌧ = 0.5, and
uniform sampling (⌧ ! 1). In the 1K dataset, ⌧ = 0.5 outperformed others and even exceeded the
10K baseline only using 10% of it, highlighting the benefit of selective augmentation with limited
data. However, uniform sampling degraded performance. For 10K and 100K datasets, all ⌧ val-
ues performed similarly, though higher ⌧ was slightly better for 10K and ⌧ = 0.5 for 100K. This
suggests ⌧ selection is crucial in low-data regimes but less impactful with larger datasets.

5 Conclusion

We proposed a novel data augmentation strategy for imitation learning in autonomous driving by
leveraging the observed trajectories of surrounding traffic participants as additional expert demon-
strations. Our approach introduces vehicle selection criteria based on heading deviation, prioritizing
dynamic and contextually rich driving behaviors to enrich the training dataset.

We evaluated our method using the PLUTO planner and the nuPlan dataset, demonstrating that
the augmentation strategy consistently outperforms the baseline across varying dataset sizes. In
particular, we observed substantial improvements in safety-critical metrics such as collision rates
and time-to-collision (TTC), especially in low-data regimes, where our method achieved competitive
or superior performance using only 10% of the original dataset. We further conducted ablation
experiments to investigate the effects of different parameters.

Beyond autonomous driving, the underlying principle of leveraging observed agent interactions for
improved decision-making could extend to other robotics tasks and less structured multi-agent envi-
ronments, such as aerial traffic or maritime navigation, where large-scale expert demonstrations are
difficult to obtain. Our results reinforce the importance of exploiting diverse real-world trajectory
data in imitation learning and offer a promising direction for enhancing data efficiency and safety in
autonomous decision-making.

6 Limitations

While our approach shows strong improvements, several limitations remain. First, our method as-
sumes that all selected vehicles provide valuable learning signals. However, some observed agents
may exhibit suboptimal or unsafe driving behaviors, potentially introducing noise into the training
data. Future work could explore sophisticated driver classification techniques, such as temporal
logic-based filtering [33], to prioritize learning from high-quality expert-like demonstrations while
filtering out unsafe behaviors.
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Second, although we demonstrated the effectiveness of our approach on the highly diverse nu-
Plan dataset, further investigation is needed across other datasets and planning algorithms to assess
the generalizability of the observed performance gains. Applying our method to perception-based
datasets would also require an additional preprocessing step to generate object-level representa-
tions [34, 35], which may introduce new challenges related to sensor noise and partial observability.

Lastly, the benefits of our method might vary depending on the baseline model architecture and
the specific augmentation parameters, such as the vehicle sampling strategy and softmax tempera-
ture. Exploring adaptive augmentation policies and dataset curation strategies could further improve
robustness and scalability in future work.
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A Implementation Details

• The cost map (auxiliary loss) is not used, as it requires the vehicle’s dimensions during loss
computation and provides minimal benefit [1].

• Training is conducted on four Nvidia RTX A5000 GPUs with a batch size of 32. For 100K
scenarios, training takes approximately three days.

• Some scenarios fail during evaluation; failed tests are discarded to ensure a fair calculation.

• Due to augmentation constraints, some features cannot be computed. On average, for Ns =
1, we obtain 0.75 augmented samples per scenario.

• The same hyperparameters as for PLUTO are used for training, as shown in Table 2

• Heading deviations exceeding ⇡
4 that corresponds to noisy observations are discarded.

• During the feature computation for augmented vehicles, certain vehicle parameters are ap-
proximated. Further details are available in the code.

Notation Parameters Values
TH Historical timesteps 20
TF Future timesteps 80
D Hidden dimension 128

Lenc Num. encoder layers 4
Ldec Num. decoder layers 4
NL Num. lon. queries 12
↵ Score weight 0.3
� Temperature parameter 0.1
Table 2: Parameters used in PLUTO

B Test14-hard vs. Val14 Sets

We conducted our evaluation using only the test14-hard set due to the strong correlation observed
between val14 and test14-hard results for learning-based planners (see Figure 5). The computational
demands of PLUTO evaluation are significant—test14-hard requires 5 hours using 4 Nvidia RTX
A5000 GPUs, while val14 would require approximately 24 hours on the same hardware.

Figure 5: Correlation between test14-hard and val14 results for learning based planners
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C Experiment Results

Here we present more detailed experiment results in Table 3.

Planner Score Collisions TTC Drivable Comfort Progress
1K Scenarios

PLUTO (Baseline) 58.60 83.02 76.23 92.45 70.94 71.20
PLUTO (Ours, ⌧ = 0.5, Ns = 1) 60.31 82.76 75.48 92.34 68.20 74.66
PLUTO (Ours, ⌧ = 0.1, Ns = 1) 57.19 85.85 75.85 83.01 67.92 73.41
PLUTO (Ours, ⌧ = 0.5, Ns = 2) 65.73 89.84 82.52 93.90 71.54 75.20
PLUTO (Ours, ⌧ = 1, Ns = 1) 49.57 76.28 66.01 91.70 66.40 71.73

10K Scenarios
PLUTO (Baseline) 61.95 83.90 74.91 93.26 76.03 78.72

PLUTO (Ours, ⌧ = 0.5, Ns = 1) 72.17 91.29 82.58 95.08 80.68 80.61
PLUTO (Ours, ⌧ = 0.1, Ns = 1) 71.08 90.94 83.02 95.09 79.24 76.62
PLUTO (Ours, ⌧ = 0.5, Ns = 2) 66.70 85.23 78.03 93.56 77.27 82.35
PLUTO (Ours, ⌧ = 1, Ns = 1) 72.54 92.45 83.77 94.72 78.49 78.61

100K Scenarios
PLUTO (Baseline) 74.81 91.23 83.96 97.01 86.57 78.64

PLUTO (Ours, ⌧ = 0.5, Ns = 1) 77.38 93.75 84.09 96.97 87.88 80.47
PLUTO (Ours, ⌧ = 0.1, Ns = 1) 76.28 93.04 84.21 96.62 83.83 80.78
PLUTO (Ours, ⌧ = 1, Ns = 1) 75.37 92.48 84.21 95.86 81.58 83.75

Table 3: Performance comparison of PLUTO planner under base and augmented datasets with vary-
ing number of scenarios (1K, 10K, 100K) and different parameters. Test14-hard dataset is used for
evaluation. All scores are between 0 and 100 where the higher is the better.
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D Further simulation results
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Figure 6: Comparison between baseline and augmented policy outputs on a variety of scenarios.
Note that the videos will be published on the project webpage.
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