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Abstract

Bridging Demonstrations and Decisions:
Theory and Algorithms for Provable Imitation Learning

by

Nived Rajaraman

Doctor of Philosophy in Engineering- Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Kannan Ramchandran, Co-Chair

Assistant Professor Jiantao Jiao, Co-Chair

Classical supervised learning paradigms typically assume that training data samples are
independently drawn from a target distribution. However, real-world scenarios frequently
violate this assumption, presenting data that are temporally correlated, dynamically evolving,
or a result of strategic interaction. Learning in these settings is often significantly more
challenging both from a theoretical and a practical point of view for these reasons. Recent
advances in reinforcement learning (RL) have shown that it is possible to train agents
which can operate and generalize in settings where the number of possible outcomes is huge.
However, there are a number of challenges with running RL algorithms: these approaches
rely on collecting a large amount of “exploration” data, resulting from interaction with a
dynamic environment. This form of active data collection is often prohibitively expensive in
practice, making mistakes may be costly, such as in settings involving human interaction,
and this form of data collection may be hard to reuse. Mitigating these concerns requires
developing new frameworks for RL.

In this dissertation, we develop algorithms and analyses for an alternate learning paradigm
that aims to utilize static datasets generated by a demonstrator for training policies. This
paradigm broadens the applicability of RL to a variety of decision-making problems where
historical datasets already exist or can be collected via domain-specific strategies, and which
are infinitely reusable. It also brings the scalability and reliability benefits that modern
supervised and unsupervised ML methods enjoy into RL. That said, instantiating this
paradigm is challenging as it requires reconciling the static nature of learning from offline
datasets (against a fixed distribution of problem instances) with the traditionally interactive
nature of RL. A major part of this thesis is geared toward addressing precisely how much of
a price one must pay to forgo the power of environment interaction.
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Imitation Learning (IL) techniques have found a home in several areas, from policy initializa-
tion in game-solving agents like AlphaGo [86], and more recently as a fine-tuning backbone
in the form of supervised fine-tuning (SFT) for large language models (LLMs) [16]. The
key challenge in all these domains is obtaining sufficiently large, diverse, and high-quality
demonstration datasets. While more data typically yields better performance, expert data
can be expensive to collect. We see this challenge manifest in several forms: in robotics
and control, acquiring teleoperated or human-guided trajectories often requires specialized
hardware (e.g. motion-capture rigs or force-feedback devices) and careful calibration, limiting
the scale of dataset collection [4, 78]. In autonomous driving, critical “edge-case” scenarios
(e.g. collision avoidance in unusual weather) are inherently rare, yet essential for safety;
collecting them either in simulation or on-road is time-consuming and costly [22, 23]. On the
other hand, for training LLMs: fine-tuning large language models relies on human-annotated
data, which is hard to parallelize and incurs substantial annotation time [89].

Thus, it is pertinent to understand how best to utilize the dataset and leverage favorable
properties of the environment and demonstrator. In this thesis, we will build an understanding
of these questions by studying Imitation Learning from a theoretical point of view. We will
formulate a statistical question and analyze the best achievable error that algorithms can
achieve in various models of feedback. We will scale up these algorithmic insights and leverage
the expressivity and representation power offered by modern function approximators to
develop performant, practical algorithms. Along the way, we will develop various insights into
the landscape of the IL problem, and build a comprehensive understanding and unification of
algorithms that have already been successfully deployed in practice, such as Behavior Cloning
[65, 74] and GAIL [44] and provide principled improvements to these approaches.

Overview

This thesis is organized into seven chapters in addition to several appendices, each addressing
a different aspect of Imitation Learning under the Markov decision process framework:

Chapter 1. We provide a gentle introduction to IL. After reviewing the standard episodic
Markov decision process model (Section 1.1), we define the Imitation Learning problem
(Section 1.2) and introduce a statistical framework that will underpin the analysis in the
remainder of the thesis (Section 1.3).

Chapter 2. This chapter focuses on Imitation Learning in tabular MDPs. We begin with
an introduction to the Behavior Cloning (BC) algorithm (Section 2.1), derive worst-case
statistical lower bounds on the optimal imitation gap showing optimality of BC (Section 2.2),
and extend our analysis of this approach to when the expert is stochastic (Section 2.3).
We then consider the setting where the transition dynamics are known, and propose a new
algorithm known as Mimic-MD (Section 2.4).
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Chapter 3. We will build up our understanding of the Mimic-MD algorithm through the
lens of value function estimation. We will introduce and motivate the expert value estimation
problem (Section 3.2) and reinterpret Mimic-MD through this lens, which will enable us to
prove its statistical optimality (Section 3.3).

Chapter 4. In this chapter we will dive deep into understanding what happens when
demonstrations are generated by an agent which carries out the task near optimally. We will
revisit some of the hard instances we considered in Section 2.2 in this context (Section 4.1),
and analyze the case of mimicking the behavior of the expert in reaching a single target
state (Section 4.2), and conclude with some conjectures about the optimal expert setting
(Section 4.3).

Chapter 5. Here we will explore Imitation Learning in the setting with active interaction,
where the learner may query the expert in an adaptive manner to reduce uncertainty and
improve performance. We will establish a provable benefit to interactivity in MDPs where
“mistakes” can be recovered from, defined in a formal sense.

Chapter 6. In this chapter, we will build upon the insights we described in Chapters 2
and 3 to develop a practical algorithm. We first provide insights into the suboptimality of
methods which are deployed most commonly in practice (Section 6.1), introduce the Replay
Estimator (Section 6.2), and then present a full algorithmic recipe (Section 6.3), supported
by empirical results (Section 6.4).

Chapter 7. Here, we will extend our study of IL to settings with function approximation,
extending beyond tabular MDPs. We will analyze settings with linear representations
(Section 7.1), consider known-transition settings (Section 7.2), interpret the main theoretical
guarantee (Section 7.3), and discuss open problems (Section 7.4).

Each chapter builds upon the previous ones to present a coherent theory and methodology
for effective Imitation Learning across a number of settings and abstractions.
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Chapter 1

A gentle introduction to Imitation
Learning (IL)

Imitation learning or apprenticeship learning is the study of learning from demonstrations in
a sequential decision-making framework in the absence of reward feedback. The Imitation
Learning problem differs from the typical setting of reinforcement learning in that the learner
no longer has access to reward feedback to learn a good policy. In contrast, the learner is
given access to expert demonstrations, with the objective of learning a policy that performs
comparably to the expert’s with respect to the unobserved reward function. This is motivated
by the fact that the desired behavior in typical reinforcement learning problems is easy
to specify in words, but hard to capture accurately through manually-designed rewards.
For instance, in autonomous driving it is easy to state the reward function in English as,
“drive safely”, but it is challenging to write down a specific reward function capturing this
target mathematically [2]. This is especially important in safety-critical applications, where
misspecified rewards can lead to unpredictable behavior.

In practice, the reward function is sometimes manually refined [59, 10] until the learner
demonstrates satisfactory behavior. In contrast, the Imitation Learning (IL) approach posits
to learn directly from expert demonstrations in the absence of reward feedback, and without
learning an explicit reward model. Imitation learning has shown remarkable success in
practice over the last decade - the work of [3] showed that using pilot demonstrations to
learn the dynamics and infer rewards can significantly improve performance in autonomous
helicopter flight. More recently, the approach of learning from demonstrations has shown to
improve the state-of-the-art in numerous areas: autonomous driving [43, 63], robot control
[5], game AI [46, 38] and motion capture [56] among others. To build up a framework to
understand, compare and build upon these methods, we will first begin by introducing an
abstraction for the decision making problems these approaches are designed to solve.

Notation. Throughout this thesis, we will use big O notation, i.e., O/Θ/Ω and their
upto-polylogarithmic-factor counterparts Õ/Θ̃/Ω̃. In particular, f(n) = Õ(g(n)) when
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a = O(f(n) · max(1, polylog(n))) (with Θ̃ and Ω̃ defined analogously). We will also use
the notation f(n) ≲ g(n) when f(n) = O(g(n)), f(n) ≳ g(n) when f(n) = Ω(g(n)) and
f(n) ≍ g(n) when f(n) = Θ(g(n)). The set of integers {1, . . . , n} is denoted as [n]. For a
(potentially uncountably infinite) set S, the set of all measures over S is given by ∆(S).

1.1 Markov Decision Processes
In this thesis, we will introduce IL through the framework of Markov Decision Processes
(MDPs). The MDP abstraction has been widely adopted in the RL literature for its simplicity
and generality. At a high level, an MDP is defined by four components: a set of states
that describe every possible configuration of the environment; a set of actions available
to the learner; a transition mechanism that specifies, for each state and action, how the
environment evolves to a next state; and a reward signal that quantifies the immediate merit
of each state–action pair. The cumulative reward collected by an agent is a measure of its
performance. We will introduce the notion of non-stationary episodic MDPs below, and
introduce more specific/general settings later on in the thesis.

Definition 1.1.1 (Episodic Markov Decision Process). An episodic Markov Decision Process
M is a tuple,

M = (S,A, P, r, ρ,H) ,

where,

• S is the state space,

• A is the action space,

• for each t = 1, . . . , H,

P = {Pt}Ht=1, where, Pt : S ×A → ∆(S) and,
r = {rt}Ht=1, where, rt : S ×A → [0, 1],

are the transition kernel and reward function at time t,

• ρ is an initial distribution over states,

• H ∈ N is the (finite) horizon.

Starting from an initial state s1 ∈ S drawn from ρ, an episode proceeds for t = 1, 2, . . . , H as
follows:

at ∈ A, rt = rt(st, at), st+1 ∼ Pt ( · | st, at) . (1.1)

The process terminates after H steps.
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Interaction with the MDP, i.e., the environment, is carried out in episodes. The learner
iteratively chooses actions, receives rewards (which lie in [0, 1]) and transitions to new states.
The objective we will study throughout this thesis is that of maximizing the “expected
cumulative reward”. In order to be able to define this quantity, we will first have to define
the decision rule by means of which a learner acts in the environment. This is known as a
policy: a (possibly stochastic) map which specifies how a learner plays actions at states.

Definition 1.1.2 (Policy). A policy in an episodic MDP is a sequence of decision rules

π = {πt}Ht=1, πt : S → ∆(A), (1.2)

where πt(a | s) is the probability of choosing action a ∈ A when in state s ∈ S at time t.
A policy π is said to be deterministic if πt(·|s) is a delta function for all (s, t) ∈ S × [H].

It may be apparent from the definition above, but our focus will be on Markovian policies,
where the decision rule does not depend on the entire history of interaction, but only on the
current (observable) state which the learner is at. We will introduce the following notation
to write down expectations with respect to random trajectories drawn from a policy π more
succinctly. Define,

Eπ[·] ≡ E S1∼ρ,
∀t∈[H], At∼πt(·|St)
St+1∼Pt(·|St,At)

[·]. (1.3)

Namely, this is an expectation computed with respect to the distribution over trajectories
{(S1, A1), · · · , (SH , AH)} induced by rolling out the policy π. With this, we are ready to
introduce the learning objective.

Definition 1.1.3 (Reward Maximization Objective). The reward maximization objective is
to find a policy π = {πt}Ht=1 that maximizes the expected cumulative reward over the horizon
H,

J(π) = Eπ

[
H∑
t=1

rt(st, at)

]
. (1.4)

J(π) is also known as the “value” of the policy π. Where necessary, we will denote the value
of a policy by JM(π) or Jr(π) to indicate the underlying MDP M or reward function r.
Furthermore, define an arbitrary optimizer of eq. (1.4) as,

π⋆ ∈ argmax
π

J(π). (1.5)

1.2 Imitation Learning
Imitation Learning (IL) can be viewed as a variant of the typical Reinforcement Learning
formulation where the interaction model is assumed to be slightly different. Recall the



CHAPTER 1. A GENTLE INTRODUCTION TO IMITATION LEARNING (IL) 4

episodic MDP formulation in Definition 1.1.1, where in a single interaction, upon playing an
action at a state, the learner observes a (potentially noisy) reward for picking this action and
transitions to a new state. In many practical domains, however, the true reward function
is either unavailable, difficult to specify by hand, or too expensive to evaluate online. For
example, in autonomous driving it is hard to write down a scalar rt(st, at) that simultaneously
captures safety, comfort, and legality; in robotic manipulation the “correct” reward may
depend on subtle human preferences that are hard to encode; and in healthcare applications,
any trial-and-error to recover rt directly can be dangerous or unethical. In such settings we
often instead have access to one or more expert demonstrations, i.e., trajectories collected by
a human or a pre-trained controller, without explicit reward labels. In this thesis, we will
model these demonstrations as being generated by a single unknown policy.

Definition 1.2.1 (Imitation Learning). In this setting, we will assume the existence of an
“expert” policy πexp. Furthermore, when interacting with the MDP, the learner no longer
receives any reward feedback from the MDP. Namely, at the state st, playing the action at
only transitions the learner to st+1 ∼ Pt(· | st, at) and the learner does not observe rt(st, at).

While the Imitation Learning setting specifies the existence of an expert which generates
demonstrations, we will introduce specific models of interaction with the MDP and with πexp

later on (notably in Definition 1.2.3, Definition 1.2.4 and Definition 1.2.5).
In this setting, the first question that comes to mind is: what is the best possible value
achievable by a learner? Indeed, in the case where the expert policy πexp is fully observed,
say, via having infinitely many demonstrations, it is possible to achieve a value of at least
Jr(π

exp) even with no knowledge of the ground truth reward function r. And with a bit
more thought, it should become clear that the fact that the fact that the reward function
is completely unobserved is a barrier to improving beyond this. It is an exercise left to the
reader to show that it is possible to construe a reward function r such that Jr(πexp)− Jr(π)
is always non-positive.

Theorem 1.2.1. A class of reward functions R ⊆ [0, 1]S×A×[H] is said to be symmetric if
r ∈ R ⇐⇒ 1−r ∈ R, where r′ = 1−r =⇒ r′t(s, a) = 1−rt(s, a) for all (s, a, t) ∈ S×A×[H].
For any learner policy π, expert policy πexp, and symmetric reward class R and, it is possible
to find a reward function r ∈ R such that Jr(πexp)− Jr(π) ≤ 0.

A hint toward proving this statement is the observation that Jr(π
exp) − Jr(π) = Jr′(π) −

Jr′(π
exp) for r′ = 1− r ∈ R.

It is worth mentioning that while the gold standard for the best achievable value is ideally
Jr(π

⋆), the value of the optimal policy, this is not achievable in the absence of any reward
feedback. Thus, with imitation feedback, the learner is forced to readjust its target to be the
value of the expert policy Jr(π

exp). This fact leads us to formulate the reward maximization
objective in terms of the “imitation gap”, which is the gap in the value achieved by the expert
policy and the learner’s policy.
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Definition 1.2.2. The imitation gap of the learner’s policy π is defined as,

Gap(π) = J(πexp)− J(π̂).

While it is apparent that the imitation gap can be made zero when πexp is specified exactly
to the learner, in practice the learner only observes the expert through a finite set of
demonstrations. This hints at the key statistical question which will be studied through many
parts of this thesis - how do we minimize the imitation gap as best as possible when the learner
only has a few demonstrations from the expert policy. To begin to formulate this question, we
first need to specify how the learner interacts with the expert policy (i.e., how demonstrations
are collected) and the MDP conjunctively. There are several interesting models to consider,
inspired by practical considerations, and we spend the next few subsections discussing them.

Models of expert interaction

In this section, we introduce several models we consider in how the learner can interact with
the expert within the Imitation Learning framework. The simplest model is discussed first.

Definition 1.2.3 (No-interaction IL). The learner is provided a dataset of N trajectories
drawn by independently rolling out the expert policy πexp through the MDP. Each trajectory is
of the form {(st, at)}Ht=1, the states visited and actions played by the expert across time. In
the no-interaction setting, the learner is not allowed to roll out policies on the MDP.

The no-interaction setting models the case where demonstrations of an expert policy in the
environment are available, but it is otherwise too challenging, or cost-ineffective for the learner
to roll out other policies and interact with the environment. This model is also of course the
most restrictive for the same reason. However, it is an interesting model, since a number of
practical algorithms, such as Behavior Cloning (BC) [65], fall within this framework.
While the no-interaction setting posits that the learner cannot explore within the environment,
may also consider another extreme where the learner is able to interact with the environment
infinitely. In the limit, the learner is thereby able to learn the transition structure of the MDP
exactly; however it is worth noting that the reward function is still completely unknown, cf.
Definition 1.2.1. This is referred to as the known-transition setting, and is defined below.

Definition 1.2.4 (Known-transition IL). The learner is provided a dataset of N trajectories
drawn by independently rolling out the expert policy πexp through the MDP. In the known-
transition setting, the learner is assumed to know the MDP transition {Pt}Ht=1 exactly.

The no-interaction and known-transition IL settings are two extremes of a spectrum where
the learner is provided a dataset of N trajectories from the expert policies, and also allowed
to interact with the MDP (using any sequence of policies of its choice) for M episodes. These
settings respectively correspond to the case of M = 0 and M → ∞. Understanding the
statistical learning problem for the general case M has been the subject of follow up works to
some portions of this thesis, such as [104]. We will avoid discussing these results or introducing
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this setting here, and instead introduce a third interaction model which corresponds to a
setting where the expert can actively be queried while the learner interacts with the MDP.
This “active-interaction” setting models settings like teleoperation, where the expert can
intervene to correct the behavior of a policy learning in the environment, in the process
minimizing redundant interaction with the expert.

Definition 1.2.5 (Active-interaction IL). In this setting, the learner is not given access to a
dataset of expert demonstrations in advance. However, the learner is allowed to interact with
the MDP for N episodes while actively querying the expert policy; at any time t, the learner
may query the expert policy πexp to receive an action recommendation a⋆t ∼ πexp

t (· | st) at the
visited state st. The learner may choose to follow this recommendation, or play any other
action.

It is worth pointing out that the active setting gives the learner more flexibility than the
no-interaction setting: following the expert’s recommended action at each time results in
the same interaction model as as the no-interaction setting (Definition 1.2.3). However, the
learner is instead also allowed to actively design a new exploratory policy on the fly based
on expert feedback thus far, which is then used to interact with the MDP. Two popular
approaches, Dagger [79] and AggraVaTe [77] are IL algorithms which operate in the
active-interaction setting.

1.3 A statistical framework for IL
Having established the foundations of IL and modes of interaction with the expert policy, we
are ready to formulate the statistical learning problem corresponding to IL below. We use
the Probably-Approximately Correct (PAC) learning framework [99].

Definition 1.3.1 (Demonstration dataset and learning rules). Let D be the random dataset
obtained as either (i) N rollouts of πexp in the no-interaction or known-transition IL settings
(resp. Definitions 1.2.3 and 1.2.4), or (ii) that collected by the learner’s interactions with
the MDP in the active-interaction IL setting (Definition 1.2.5). D is referred to as the
“demonstration dataset”.

A “learning rule” Alg(·) is any algorithm which ingests D (and additionally P = {Pt}Ht=1 and
ρ in the known-transition setting) and returns a possibly randomized learner policy π̂.

Definition 1.3.2 (PAC guarantees for IL). Given a collection of IL instances Z, we say
that a learning rule Alg(·) solves the Imitation Learning problem (in the no-interaction /
known-transition / active-interaction setting) with confidence 1− δ and imitation gap ε over
a class of IL instances Z, if for any instance Z ∈ Z, we have

Pr (Gap(π̂) ≥ ε) ≤ δ, (1.6)
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Where, recall that Gap(π̂) = J(πexp) − J(π̂) is computed under the reward function and
distribution over trajectories induced by rolling out πexp and π̂ on the underlying MDP in the
instance Z, and the probability Pr(·) is computed over the randomness of the demonstration
dataset D as well as the internal randomness used by Alg(·).

We will also define the IL problem with expected error guarantees.

Definition 1.3.3 (Expected error guarantees for IL). A learning rule Alg(·) is said to solve
the Imitation Learning problem (in the no-interaction / known-transition / active-interaction
setting) with expected imitation gap ε over a class of IL instances Z, if for any such instance
Z ∈ Z, we have

E[Gap(π̂)] ≤ ε. (1.7)

Note once again, that Gap(π̂) = J(πexp)− J(π̂) is computed under the reward function and
distribution over trajectories induced by rolling out πexp and π̂ on the dynamics in the instance
Z, and the expectation E[·] is computed over the randomness of the demonstration dataset D
as well as the internal randomness used by Alg(·).

While for a large collection of statistical learning problems, PAC error guarantees and expected
error guarantees can be translated from one to another at the cost of additional polynomial
(and often logarithmic) factors in the inverse of the confidence parameter, δ, via integrating
the PAC error over δ ( =⇒ ) or via an application of Markov’s inequality to the expected error
(⇐= ). While these generic reductions often result in loose dependency on the confidence
parameter δ, and can be improved by tailored analysis to the respective setting, there is a
more important reason because of which we define and treat IL with PAC error guarantees and
expected error guarantees separately. This observation is special to the IL learning objective,
and one often not shared by other statistical learning settings, such as classification under
0-1 loss or regression settings: the imitation gap Gap(π) is not always a non-negative loss
when the underlying MDP is fixed. This subtle observation will have interesting implications
later on (cf. Chapter 4).

Across both of the statistical learning settings considered previously, Definition 1.3.2 and
Definition 1.3.3, our goal will be to study how small ε can be made as a function of N , the
number of episodes of demonstrations from the expert / episodes of active interaction. Of
course, across the three interaction models, the learner’s has access to different modes of
feedback and thereby, the best achievable imitation gap as a function of N is expected to
behave quite differently. Below we formalize this definition.

Definition 1.3.4 (Worst-case optimal imitation gap). Given a collection of IL instances Z, the
minimax optimal imitation gap (in the no-interaction / known-transition / active-interaction
setting) is defined as,

ε⋆(N ;Z) = inf {ε ≥ 0 : ∃Alg(·) such that ∀Z ∈ Z, E[Gap(π̂)] ≤ ε} .
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Similarly, the PAC optimal imitation gap is defined as,

ε⋆(N, δ;Z) = inf {ε ≥ 0 : ∃Alg(·) such that ∀Z ∈ Z, Pr(Gap(π̂) ≥ ε) ≤ δ} .

In both definitions, Alg(·) is a learning rule which ingests the demonstration dataset D (and
additionally P = {Pt}Ht=1 in the known-transition setting) and returns a possibly randomized
learner policy π̂.

Remark 1.3.1. Note that for a class of IL instances Z, both ε⋆(N ;Z) and ε⋆(N, δ;Z) are
functions of N , which is the number of episodes of expert demonstrations / active interactions
in the dataset D.

With this, we round out the discussion introducing IL within the MDP formulation, the
learning objective, different modes of receiving feedback from an expert, and finally, a
statistical framework for this problem. In the next section, we discuss the different modes of
interaction with the expert in greater detail and present some results for the corresponding
statistical learning problems.

1.4 Related Work
Imitation learning (IL) has a rich history, encompassing a multitude of different algorith-
mic approaches and observation models. This section broadly discusses prior work in the
area, spanning methods which fall into the bucket of classical “inverse-reinforcement” style
approaches, reduction-based analyses, and active-query methods.

Classical IL via Inverse Reinforcement and Reduction. Early work framed IL as
inverse reinforcement learning, where the learner recovers a reward function that explains
expert behavior [60, 2, 72, 95, 110, 102, 41, 35, 73], which is then utilized for policy learning.
These algorithms assume the principle that a reward function (learned from observations)
may generalize better across across environments. A comprehensive survey of these methods
is discussed in [7]. In the training of large language models (LLMs), several recent works
have also used reward models learned from offline preference data, also known as verifier
models [45]: the LLM is perceived as a policy and optimized by carrying out RL on the
learned rewards. Several works also carry out search at test-time [101, 19] against these learn
reward models. Several works also learn process reward models which give denser feedback
along the generation trajectory, akin to value functions [66, 107, 87, 83].

Reduction-based analyses of IL The reduction paradigm attempts to cast IL as a
sequence of supervised learning problems under different notions of loss, and arguing about
how the generalization ability of solving the underlying supervised learning task translates to
the performance of the resulting policy [30, 9]. In particular, the authors of [78, 77] introduced
algorithms (Dagger, AggreVaTe) and corresponding analyses to bound compounding
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errors by iteratively mixing expert and learner data. The authors of [14] analyzed disagreement-
regularized reductions for tighter guarantees. However, this line of literature does not focus
on whether the obtained guarantees are (statistically) tight, since any particular reduction
may be sufficient, but not necessary to solve the IL problem.

Imitation via active expert queries While classical IL algorithms learn from a purely
offline dataset, in settings like robotics or game solving, it is possible to learn from an
expert via teleoperation or human intervention. In these settings, the learner largely operates
autonomously within the environment, but a supervising demonstrator may choose to intervene
to course-correct the learner. In the process, the expert is only utilized sparsely, and the
learner may be “taught” how to learn to recover when it strays from the desired behavior path.
In this vein, several algorithms were proposed which actively query an expert during training.
DAgger gathers corrective labels on states encountered by the learner [78], AggreVaTe
generalizes this to cost-to-go queries [77], and AggreVaTeD applies the same idea in a
stochastic policy gradient framework [91]. Complementary dynamic-regret analyses were
developed in [20, 51], while Loki bootstraps IL into on-policy gradient methods [21].

Divergence minimization and Moment Matching based approaches. Beyond pure
behavior cloning, value-based approaches self-correct by estimating cost-to-go functions [52]
and provably reduce compounding error. A parallel thread of work formulates the algorithmic
problem of IL as that of minimizing an f -divergence between the state–action distributions
of the expert and the learner [44, 47, 108, 88, 49, 94], also known as moment matching.
These algorithms are often based on solving minmax optimization problems (such as via
Generative-Adversarial Networks [37]), where the minimizer aims to find a good policy which
matches the visitation distributions to that in the training dataset, while the maximizer tries
to learn a discriminator which distinguishes between trajectories generated by the learner
and the expert. There are also off-policy extensions of this class of approaches, such as
ValueDICE and SoftDICE [49, 90].

Function Approximation and Representation Learning. Most tabular-MDP guaran-
tees do not immediately extend to large-scale settings. Apprenticeship IL with linear function
approximation was pioneered in [1, 96]. More recently there have been a number of different
approaches across different settings, enabling provable sample-efficient IL in high-dimensional
spaces such as in [6, 103]. The recent work of [34] is also notable, extending analyses of
algorithms for IL to settings where the expert belongs to general function classes. Since this
body of work will be closest related to the contents of this thesis, more relevant work will be
introduced and discussed in later chapters.

Alternate observation models. Often in IL settings, the actions made by an expert are
not explicitly observable, or do not translate to the actions taken by a learner operating in the
environment. A good example is that of training autonomous driving agents through video:
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here the task is to learn how to carry out the task when given access to video demonstrations
of it being carried out, which may have been collected by rolling out a different agent, or
even by a human. When only expert state trajectories are available, one must infer latent
actions [58, 98, 92, 6], which is often significantly more challenging. Although promising,
there are some fundamental questions about statistical identifiability in these settings.

Applications. There is an extremely rich body of work integrating IL approaches into the
end-to-end RL pipeline. Early works have used it to design initialization policies from offline
data, such as in game solving, with AlphaGo [86] and StarCraft [38], among other games
[46]. These techniques have also been used widely in settings where the reward is hard to
specify such as in autonomous driving [62, 43] and motion capture [56]. IL has also found
wide application in robotics [3, 50, 109, 33, 32] and in the pre-training and fine-tuning of
LLMs, such as in the form of supervised finetuning (SFT) [16]. LLMs for reasoning tasks are
often finetuned on search traces [36, 61] or responses from larger models, [82] A good survey
of early works in the field is [4], and in the context of robotics [18].
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Chapter 2

Imitation Learning in Tabular MDPs

In this chapter, we initiate the study of IL, focusing on the setting of tabular MDPs, where
the state space S and action space A are assumed to be finite. This is arguably the simplest
setting of IL, where there are no additional structures imposed on the instances under
consideration, or the nature of the expert policy.

From a technical point of view, we aim to characterize the optimal imitation gap ε⋆(N, δ;Z)
where Z is the set of IL instances induced by tabular MDPs. To build some intuition, we will
first consider the case where the expert policy πexp is deterministic (Definition 1.1.2). Let’s
introduce some notation first.

Notation. Since we will first study the case where the expert policy is deterministic, define
Πdet as the set of all deterministic policies, and Ztabular(S,A,H) is the set of all tabular
(i.e., unconstrained) MDPs over the state space S, action space A and horizon H. We will
abbreviate Ztabular(S,A,H) simply as Ztabular where its arguments are clear from context.

Let us take a step back and think about the no-interaction setting. Recall that in the
no-interaction setting, the learner is provided a dataset of N demonstrations obtained by
rolling out the expert policy πexp. In the tabular setting, this dataset is easy to interpret. At
time t, at any state s which is visited in D (i.e., in some trajectory, the state at time t is
s), then the demonstration dataset exactly reveals the expert policy at this state, namely
πexp
t (·|s). On the other hand, at any state which was never visited in D at time t, the learner

has no information about which action was played by πexp. Thus, a simple learning rule
is one which simply mimics the expert policy at those states visited in the demonstration
dataset at any time, and plays arbitrarily at the remaining states. It turns out that this
simple algorithm is surprisingly powerful, and is a special case of an approach known as
Behavior Cloning (BC) [65].
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2.1 Behavior Cloning
Following the approach pioneered by [11], the authors of [74] show that carrying out supervised
learning to learn a policy provides black box guarantees on the performance of the learner, in
effect “reducing” the IL problem to supervised learning. This approach is known as behavior
cloning.
A more general way of viewing the above approach of mimicking the deterministic expert at
those states visited in the dataset, is that of training a classifier. Formally, a deterministic
policy π can be treated as a classifier from S × [H]→ A. Define the population 0-1 risk of a
deterministic policy as the risk under 0-1 loss of the corresponding classifier,

L0 -1(π) = Et∼Unif([H])

[
Eπexp

[
EA′

t∼πt(·|St)

[
1(A′

t ̸= At)
]]]

. (2.1)

We may also define the empirical 0-1 loss computed on a dataset of demonstrations D by,

L0 -1(π;D) = Et∼Unif([H])

[
ESt∼f t

D

[
EA′

t∼πt(·|St)

[
1(A′

t ̸= πexp
t (St))

]]]
. (2.2)

Here f t
D is the empirical distribution over states at time t averaged across trajectories in D

and πexp
t (St) overloads notation to indicate the action played by the deterministic expert at

the state St at time t. Note that any policy which minimizes the empirical 0-1 risk to 0 in fact
mimics the expert at all states observed in D. We define ΠBC

det(D) as the set of all candidate
deterministic policies that minimize the empirical 0-1 risk to zero, namely the set of ERMs.

ΠBC
det(D) ≜

{
π ∈ Πdet : L0 -1(π;D) = 0

}
(2.3)

Definition 2.1.1 (Tabular BC with a deterministic expert). In the tabular setting under a
deterministic expert policy, BC returns an arbitrary π̂BC ∈ ΠBC

det(D).

Behavior Cloning is an algorithm which has been very well studied in the literature. Indeed,
since it is quite close to classification, it is natural to ask whether the imitation gap of
the policy learned by BC can be bounded in terms of the performance of the corresponding
classifier. The authors of [74] answer this question in the affirmative, and show that if the
expert policy is deterministic, any policy π̂ that incurs small population 0-1 loss in the sense
of eq. (2.1) also incurs small imitation gap.

Theorem 2.1.1 (Theorem 2.1 in [74]). Consider any policy π such that L0 -1(π) ≤ ϵ. Then
Gap(π) ≤ min{H,H2ϵ}.

It is apparent that when L0 -1(π) = 0, this must mean that πt(·) = πexp
t (·) almost everywhere.

By extension, this implies that Gap(π) = 0. On the other hand, the H2 factor can intuitively
be understood as the inability of the learner to get back on track once a mistake is made.
This is known as error compounding.
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Error compounding

To get a better understanding of where this quadratic H factor appears, consider a simplified
model where the probability of error of a learner’s policy in guessing the deterministic
expert’s action at each state is ϵ. Indeed, the probability of making the first error at
time t is ϵ(1 − ϵ)t−1, and if the learner gets completely lost thereafter the learner fails to
collect up to H − t + 1 units of reward. The imitation gap can therefore be bounded as
Hϵ + (H−1)ϵ(1−ϵ) + · · · + ϵ(1−ϵ)H−1 ≍ min{H,H2ϵ}. This dependency is referred to as
error compounding, and for a more rigorous analysis we refer the reader to [74]. We also
provide a slight generalization of this result in Section 2.3. At a higher level, the issue of error
compounding can be interpreted as resulting from a “covariate shift problem”: the actual
performance of learner depends on the states it encounters under its own rollout distribution;
whereas these offline training methods match distributions with respect to the expert’s state
distribution.

While it remains unclear whether this reduction is optimal, it provides a simple mechanism
by which to analyze the performance of BC and understand how the classification error decays
as a function of N , the number of demonstrations the learner has access to. In the tabular
setting, we next establish a generalization bound for the population 0-1 risk.

Lemma 2.1.2 (Population 0-1 risk of BC). Consider the no-interaction setting, and assume
the expert’s policy πexp is deterministic. Consider any policy π̂BC ∈ ΠBC

det(D) (defined in
eq. (2.3)) which is the set of policies that carry out BC. Then, the expected population 0-1 risk
of π̂BC (defined in eq. (2.1)) is bounded by,

E
[
L0 -1(π̂

BC)
]
≲ min

{
1,
|S|
N

}
.

Proof Sketch. The bound on the population 0-1 risk of BC relies on the following observation:
at each time t, the learner exactly mimics the expert on the states that were visited in the
demonstration dataset at least once. Therefore the contribution to the population 0-1 risk
only stems from states that were never visited at time t in any trajectory in D. We identify
that for each t, the probability mass contributed by such states has expected value upper
bounded by |S|/N . Plugging this back into the definition of the population 0-1 risk completes
the proof.

With this result, invoking [74, Theorem 2.1] immediately results in the upper bound on the
expected imitation gap of a learner carrying out BC in Eq. (2.1.3.1). Furthermore, we use a
similar approach to establish a high probability bound on the population 0-1 risk of BC.

Theorem 2.1.3 (Upper bounding imitation gap of BC). Consider any policy π̂BC ∈ ΠBC
det(D).

Then,

1. The expected imitation gap of π̂BC is upper bounded by,

E
[
Gap(π̂BC)

]
≲ min

{
H,
|S|H2

N

}
. (2.1.3.1)
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2. For any δ ∈ (0,min{1, H/10}], with probability at least 1− δ, the imitation gap of π̂ is
bounded by,

Gap(π̂BC) ≲
|S|H2

N
+

√
|S|H2 log(H/δ)

N
. (2.1.3.2)

Proof Sketch. To establish the high probability bound on the population 0-1 risk of BC,
we utilize the key observation in the proof of Lemma 2.1.2: for each t = 1, · · · , H, the
contribution to the population 0-1 risk in eq. (2.1) stems only from states that were never
visited at time t in any trajectory in D. For each t, we show that the mass contributed by

such states up to constants does not exceed |S|
N

+

√
|S| log(H/δ)

N
with probability ≥ 1 − δ/H.

Summing over t = 1, · · · , H results in an upper bound on the population 0-1 loss that holds
with probability ≥ 1− δ (by the union bound). Invoking [74, Theorem 2.1] implies the high
probability bound on Gap(π̂BC).

Remark 2.1.1. It is worth pointing out that in the deterministic expert setting, Eq. (2.1.3.1)
shows that the imitation gap incurred by BC is ≲ |S|H2/N which is interesting in two ways:
(i) it is independent of |A|, and (ii) the imitation gap scales inversely in the size of the
demonstration dataset N , and not as 1/

√
N . Both observations are consequences of the

determinism of the expert: at the states where BC is able to guess the expert’s action better
than a random guess, BC incurs no suboptimality.

Is error compounding inevitable or is it just a consequence of the Behavior Cloning algorithm?
In the next section, we will argue that error compounding is fundamental to the Imitation
Learning problem in the no-interaction or active-interaction settings without any further
assumptions. Even if the expert is deterministic, no algorithm can beat the H2 barrier.

2.2 Statistical lower bounds on the optimal imitation gap
In this section we discuss lower bounds on the optimal imitation gap in the active-interaction
setting, which will imply lower bounds for the no-transition setting as well. Our main result
is the following lower bound.

Theorem 2.2.1. For any learning rule Alg(·) which operates in the active-interaction setting,
there exists a tabular MDP M∈ Ztabular and a deterministic expert policy πexp such that the
expected imitation gap of the policy π̂ returned by the learning rule Alg(·) is lower bounded by,

E[Gap(π̂)] ≳ min
{
H, |S|H2/N

}
.

Where Gap(·) is computed under the dynamics and rewards induced by the MDP M. This
lower bound continues to hold even under the constraint that πexp must be an optimal policy
on M.

We construct the worst case MDP templates for the active-interaction setting in Figure 2.1a
and defer the formal analysis to the appendix. The key intuition behind this result is to
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1

∼ρ

· · · |S|−1

∼ρ

b

(a) MDP template when in the no-interaction set-
ting,
Upon playing the expert’s action at any state
except b, learner is renewed in the initial dis-
tribution,
ρ = {ζ, · · ·, ζ, 1−(|S|−2)ζ, 0} where ζ = 1

N+1

1 · · · |S|

(b) MDP template in the known-transition set-
ting,
Each state is absorbing, initial distribution is
given by {ζ, · · ·, ζ, 1− (|S|−1)ζ} where ζ = 1

N+1

Figure 2.1: MDP templates for lower bounds under different settings: green arrows indicate
state transitions under the expert’s action, red arrows indicate state transitions under other
actions

identify that at states which were never visited during the learner’s interactions with the
MDP, the learner has no prior knowledge about the expert’s policy. Furthermore, at such
states the learner also has no knowledge about what state transitions are induced under
different actions. With no available information, the learner is essentially forced to play an
arbitrary policy on these states. A careful construction of the underlying MDP ultimately
forces the learner to incur compounding errors when such states are visited, resulting in the
lower bound.

To build upon this intuition a bit further, consider the special case of the no-interaction setting.
In Figure 2.1a, at any state of the MDP, except one, every other action, moves the learner to
the absorbing state b. Suppose a learner independently plays an action different from the
expert at a state with probability ϵ. Upon making a mistake, the learner is transferred to b
and collects no reward for the rest of the episode. Thus the imitation gap of the learner is
≥ Hϵ+ (H − 1)ϵ(1− ϵ) + · · ·+ (1− ϵ)H ≳ min{H,H2ϵ}. By construction of ρ, we identify
that any learner must make a mistake with probability ϵ ≳ |S|/N , resulting in the claim. It
is interesting to observe that this argument closely resembles the intuition mentioned in the
introduction for the ≲ ϵH2 bound on imitation gap that the reduction to supervised learning
guarantees. In the following remark, we provide some more reasons as to why to expect that
the same lower bound construction carries over to the active-interaction setting.

Remark 2.2.1. The lower bound construction in Figure 2.1a applies even if the learner can
actively query the expert while interacting with the MDP. If the expert’s queried action is
not followed at any state, the learner is transitioned to b with probability 1. Upon doing so,
the learner no longer can get any meaningful information about the expert’s policy at states
for the rest of the episode. Seeing that the “most informative” dataset the learner can collect
involves following the expert at each time, it is no different had an demonstration dataset of
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N trajectories been provided in advance. This reduces the active case to the no-interaction
case for which the existing construction applies.

Remark 2.2.2. In the active-interaction setting, Theorem 2.2.1 in conjunction with Eq. (2.1.3.1)
shows that when the expert plays a deterministic policy, BC achieves the optimal expected
imitation gap of |S|H2

N
for Imitation Learning. Furthermore, this shows the optimality of BC

even in the no-interaction setting as well. The ability to actively query the expert does not
improve the sample complexity of Imitation Learning when the expert is deterministic. An
important implication of this result is that Dagger [74] and other algorithms that actively
query an expert, cannot improve over BC in the worst case.

Lower bounds in the known-transition setting

Looking at the lower bound construction in the active-interaction setting, we see that the
hardness of learning comes from the following property: at states which were never visited
in the demonstration dataset, and where the learner has no idea about the transition of
the MDP, the best a learner can do is pick an action at random. This is because of the
fact that the learner cannot distinguish between actions at all. But in case the learner is
able to make observations about the MDP transition (i.e., distinguish between actions), this
property breaks down. In this section, we lower bound the worst-case optimal imitation gap
incurred in the known-transition setting. By virtue of the above discussion, we arrive at a
lower bound which is weaker than the bound in the active-interaction setting, and suggests
no error compounding (i.e., no quadratic dependency on H).

Theorem 2.2.2. In the known-transition setting, for any learning rule π̂ ← Alg(D,P, ρ),
there exists a tabular MDP M ∈ Ztabular and a deterministic expert policy πexp such that
the expected imitation gap of the learner is lower bounded by, E[Gap(π̂)] ≳ min {H, |S|H/N},
where Gap(·) is computed under the dynamics and rewards induced by M.

The lower bound instance in this construction is provided in Figure 2.1b. In these MDPs,
each state is absorbing so a policy only stays at a single state for the whole episode. If the
initial state of the MDP was not visited in the dataset, the learner does not see the expert’s
actions for the rest of the episode which is the only one at each state to offer non-zero reward.
Conditioned on being initialized at such a state, the expected imitation gap is ≳ H. By
construction of ρ, we determine that probability of the learner starting in such a state is
≳ |S|/N in expectation over the demonstration dataset D, resulting in the claim.

Remark 2.2.3. The lower bounds on the optimal imitation gap we arrive at in Theorem 2.2.1
for the no-interaction / active-interaction settings and Theorem 2.2.2 for the known-transition
setting are universal - they apply for any learning rule Alg(·). In contrast, the lower bound
example in [74] (see Figure 1 and related discussion in their paper) applies only for supervised
learning and is not universal. They construct a particular MDP and show that there exists a
particular learner policy which (i) plays an action different than the expert with probability
ϵ, and (ii) imitation gap ≳ H2ϵ. In fact on this example, the imitation gap of BC is exactly 0
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if the learner is provided even a single expert trajectory. Thus their example does not provide
a lower bound on the imitation gap of all learner algorithms as a function of the size of the
dataset, N . In particular, even BC performs well on their example.

2.3 Imitating a stochastic expert
Prompted by the success of BC in the setting where the expert policy is deterministic, it is
natural to ask whether it continues to remain a good approach when the expert is a stochastic
policy. The version of BC we presented earlier, of training a classifier to minimize the empirical
0-1 risk, must be modified slightly to account for the expert’s stochasticity.
Define the population risk under log-loss of a policy as the risk under log-loss of the corre-
sponding classifier,

Llog(π) = Et∼Unif([H])

[
Eπexp

[
log

(
πexp
t (· | St)

πt(· | St)

)]]
. (2.4)

We may also define the empirical log-loss computed on a dataset of demonstrations D by,

Llog(π;D) = Et∼Unif([H])

[
ESt∼f t

D

[
log

(
πexp
t (· | St)

πt(· | St)

)]]
. (2.5)

Finally, define ΠBC(D) as the set of all policies that minimize the empirical risk under log-loss
to zero. Namely,

ΠBC(D) ≜
{
π ∈ Π : Llog(π;D) = 0

}
(2.6)

Definition 2.3.1 (Tabular BC with a stochastic expert / log-loss BC). In the tabular setting
under a stochastic expert policy, BC returns an arbitrary πBC ∈ π̂BC(D).

Within the confines of this section, we will abbreviate the version of Behavior Cloning
in Definition 2.3.1 simply as “log-loss BC”. Note that minimizing the empirical risk under
log-loss, precisely translates to the learner playing the empirical expert policy distribution at
states observed in the demonstration dataset. This viewpoint will be important later on, in
motivating why the log-loss is the “correct” notion of error to consider in the stochastic setting.
Furthermore, it is interesting to note that when the expert is deterministic, BC indeed still
minimizes the empirical 0-1 risk to 0 and falls back to the version of the algorithm discussed
in Definition 2.1.1.

In the deterministic expert setting, the reduction of [74] shows that it suffices for a policy
to achieve low supervised learning loss (i.e., population risk under 0-1 loss) to achieve low
imitation gap. Motivated by the reduction in [74], a natural question to ask is whether
a similar reduction to supervised learning applies when the expert can be stochastic. We
will show that when the expert plays a general policy, any learner which minimizes the
TV distance to the expert’s policy at states drawn by rolling out the expert achieves small
imitation gap.
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Algorithm 1 BC in the stochastic expert setting (tabular MDPs), i.e., log-loss BC
1: Input: Demonstration dataset D
2: for t = 1, 2, · · · , H do
3: for s ∈ S do
4: if s ∈ St(D) then ▶ St(D): states visited by trajectories in D at time t
5: π̂t(·|s) = πD

t (·|s) ▶ πD
t (·|s): empirical estimator of πexp

t (·|s) in D
6: else
7: π̂t(·|s) = Unif(A).
8: end if
9: end for

10: end for
11: Return π̂

Reduction of IL to prediction under TV distance

Recall that [74, Theorem 2.1] show that if the expert’s policy is deterministic, and the
time-averaged probability of the learner π̂ correctly guessing the expert’s action at each
state is ϵ, then Gap(π̂) ≤ min{H, ϵH2}. In this section we prove a generalization of this
result which applies even if the expert plays a stochastic policy. In particular, we consider a
supervised learning reduction from Imitation Learning to matching the expert’s policy in
total variation (TV) distance. To this end, we first introduce the population TV risk,

LTV(π̂) = Et∼Unif([H])

[
Eπexp

[
DTV (π̂t(·|St), π

exp
t (·|St))

]]
. (2.7)

We show that if the learner minimizes the population TV risk to be ≤ ϵ then the expected
imitation gap of the learner is ≲ min{H,H2ϵ}. The population TV risk of a learner is a
generalization of the population 0-1 risk to the case where the expert’s policy is stochastic.
We formally state the reduction below.

Lemma 2.3.1. Consider any policy π̂ such that LTV(π̂) ≤ ϵ. Then, Gap(π̂) ≤ min{H,H2ϵ}.

Remark 2.3.1. When the expert is deterministic, the definition of LTV(·) matches that of
L0 -1(·) (eq. (2.1)) recovering the guarantee in [74, Theorem 2.1]. Thus, Lemma 2.3.1 strictly
generalizes the supervised learning reduction for BC, Theorem 2.1.1.

While the reduction approach seems promising at first, there is a catch - the population TV
risk in fact converges very slowly to 0. Since it corresponds to the rate at which the empirical
action distribution approaches the population distribution in TV distance, the convergence
rate is ≍

√
|A|/N even if |S| = 1. In the same setting, the population 0-1 risk which is

the counterpart in the deterministic expert setting converges at a much faster ≲ 1/N rate
(Theorem 2.1.2).

This analysis seems to suggest that (no-interaction) IL may be a harder problem to tackle
in the setting where the expert is a stochastic policy. However, we will prove a surprising
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result in the next section. By circumventing the reduction framework, we will show in
Theorem 2.3.2 that the expected imitation gap achieved by log-loss BC achieves the same 1/N
rate of convergence (up to logarithmic factors) even when the expert is stochastic.

Circumventing the reduction approach: log-loss BC

In this section, we consider log-loss BC (Algorithm 1). Via the lower bound we prove in
Theorem 2.2.1 the guarantees on expected imitation gap of this policy is statistically optimal
up to logarithmic factors. Note that the approach of playing the expert’s empirical action
distribution at states observed in the demonstration dataset in fact corresponds to minimizing
the empirical risk under log-loss.

There is a critical difference between the stochastic expert and deterministic expert settings.
In contrast to latter, it is no longer true that BC exactly mimics the expert policy at states
which were visited in the demonstration dataset. However, by virtue of playing an empirical
estimate of the expert’s policy at these states it is plausible the expected imitation gap
of the learner is still 0. However, a proof of this claim is not straightforward since the
empirical distribution played by the learner at different states is not independent across time
as functions of the dataset D.

To circumvent this technical challenge, we constructing a coupling between the dataset drawn
from the expert policy, and policy of the learner. Under the coupling it turns out the expected
reward gap of the learner will in fact be 0 when the visited states are all observed in the
dataset. The remaining task is to bound the probability that at some point in the episode
the learner visits a state unobserved in the demonstration dataset. A careful analysis of this
probability term shows that it is bounded by ≲ |S|H log(N)/N under the coupling.

Theorem 2.3.2. In the no-interaction setting, the learner’s policy π̂BC returned by log-loss
BC with a stochastic expert (Algorithm 1 / Definition 2.3.1) has expected imitation gap upper
bounded by,

E
[
Gap(π̂BC)

]
≲ min

{
H,
|S|H2 log(N)

N

}
,

2.4 Known-transition setting
In this section, we discuss the setting where the learner is not only provided expert demon-
strations, but the state transitions of the MDP are known exactly. The learning setting
appears frequently in applications like robotic manipulation [109] or game solving [80], where
the learner has access to accurate models / simulators representing the dynamics of the
system, but where the reward corresponding to the task to be acomplished may be difficult to
construct or write down. In this section, we analyze the optimal imitation gap in this setting
and surprisingly show that it is possible to break the lower bound in Theorem 2.2.1 and
suppress the issue of error compounding. In the known-transition setting, the learning rules
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we will consider (in the sense of Definition 1.3.1), Alg(·), will be measurable functions of the
MDP transition P = {Pt}Ht=1, initial state distribution ρ, and the demonstration dataset D.

It is worth that several prior works such as that of [14] proposed algorithms that claimed to
bypass the covariate shift problem, however at the time, we will present the first result to
provably do so in the general tabular MDP setting without additional assumptions.

In the known-transition setting, mimicking the expert on states where the expert’s policy
is known is still a good approach, since there is no contribution to the learner’s imitation
gap as long as the learner only visits such states in an episode. However compared to the
no-interaction setting, with the additional knowledge of P and ρ, the learner can potentially
do better on states that are not visited in the demonstrations, and correct its mistakes even
after it takes a wrong action, to avoid the error compounding problem. The algorithm we
propose is known as Mimic-MD and introduced next.

Circumventing the error compounding barrier: Mimic-MD

Mimic-MD can be viewed as a hybrid approach which mimics the expert on some states,
and uses a minimum distance (MD) functional [105, 31] to learn a policy on the remaining
states. The idea of using minimum distance functionals was considered in [92], proposing to
sequentially learn a policy by approximately minimizing a notion of discrepancy between the
learner’s state distribution and the expert’s empirical state distribution. However, we remark
that our approach is fundamentally different from matching the state distributions under
the expert’s and learner’s policy: it crucially relies on mimicking the expert actions on some
states, and only applying the MD functional approach on the remaining states.
The main guarantee we will establish for this algorithm is the following result.

Theorem 2.4.1. Consider the learner’s policy π̂ returned by Mimic-MD (Algorithm 2). When
the expert policy πexp is deterministic, in the known-transition setting,

1. The expected imitation gap of the learner is upper bounded by,

E [Gap(π̂)] ≲ min

{
H,

√
|S|H2

N
,
|S|H3/2

N

}
. (2.4.1.1)

2. For any δ ∈ (0,min{1, H/5}), with probability ≥ 1− δ, the imitation gap of the learner
satisfies,

Gap(π̂) ≲
|S|H3/2

N
log

( |S|H
δ

)
. (2.4.1.2)

Mimic-MD improves the quadratic dependence on H of the imitation gap incurred by BC
(Theorem 2.1.3) by at least a

√
H factor while preserving the dependence of on |S| and N .
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Algorithm 2 Mimic-MD on tabular MDPs
1: Input: Demonstration dataset D.
2: Let D1 be N/2 trajectories drawn uniformly without replacement from D.

Let D2 = D \D1.
3: For each (s, a) ∈ S ×A, define,

T D1
t (s, a) ≜

{
{(st′ , at′)}Ht′=1

∣∣∣ st = s, at = a, ∃τ ≤ t : sτ ̸∈ Sτ (D1)
}
.

▶ Set of trajectories that visit (s, a) at time t, and at some time τ ≤ t
visit a state unvisited at time τ in any trajectory in D1.

4: Define the following optimization problem:

min
π∈ΠBC

det(D1)

H∑
t=1

∑
(s,a)∈S×A

∣∣∣∣∣Prπ [T D1
t (s, a)

]
−
∑

tr∈D2
1
(
tr ∈ T D1

t (s, a)
)

|D2|

∣∣∣∣∣ (OPT-MD)

Choose π̂ as any optimizer of (OPT-MD).
▶ ΠBC

det(D1) is defined in (Eq. (2.3))
5: Return π̂.

Proof sketch of Theorem 2.4.1 and interpreting Mimic-MD

Eq. (2.4.1.1) shows that Mimic-MD (Algorithm 2) breaks the |S|H2/N imitation gp compound-
ing barrier which is not possible in the no-/active-interaction setting, as in Theorem 2.2.1.
Mimic-MD inherits the spirit of mimicking the expert by exactly copying the expert actions in
dataset D1: as a result, the learner only incurs imitation gap upon visiting a state unobserved
in D1 at some point in an episode. Let E≤t

D1
be the event that the learner visits a state at

some time τ ≤ t which has not been visited in any trajectory in D1 at time τ . In particular,
for any policy π̂ which mimics the expert on D1, we show,

Gap(π̂) ≤
∑
s∈S

∑
a∈A

∑H

t=1

∣∣∣Pr
πexp

[
E≤t
D1
, st = s, at = a

]
− Pr

π̂

[
E≤t
D1
, st = s, at = a

]∣∣∣ . (2.8)

In the known-transition setting the learner knows the transition functions {Pt : 1 ≤ t ≤ H}
and the initial state distribution ρ, and can exactly compute the probability Prπ[E≤t

D1
, st =

s, at = a] for any known policy π. However, unfortunately the learner cannot compute
Prπexp [E≤t

D1
, st = s, at = a] given only D1. This is because the expert’s policy on states

unobserved in D1 is unknown and the event ED1 ensures that such states are necessarily
visited. Here we use the remaining trajectories in the dataset, D2 to compute an empirical
estimate of Prπexp [E≤t

D1
, st = s, at = a]. The form of eq. (2.8) exactly motivates Algorithm 2,

which replaces the population term Prπexp [E≤t
D1
, st = s, at = a] by its empirical estimate in the

MD functional.
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Remark 2.4.1. In the known-transition setting, the maximum likelihood estimate (MLE) for
πexp does not achieve the optimal sample complexity. When the expert is deterministic, all
policies in ΠBC

det(D) have equal likelihood given D. This is because the probability of observing
a trajectory does not depend on the expert’s policy on the states it does not visit. From
Eq. (2.1.3.1) and Theorem 2.2.1 the expected imitation gap of the worst policy in ΠBC

det(D)
is ≍ |S|H2/N . Since the MLE does not give a rule to break ties, this implies that it is not
optimal.
Remark 2.4.2. The standard analysis of conventional minimum distance functional / distribu-
tion matching approaches rely on convergence of the empirical distribution to the population
in the corresponding distance functional. For most non-trivial choices of the distance func-
tional, this convergence rate is slow and is ≳ 1/

√
N , given N samples. At a technical level,

the state distributions are matched only at states unvisited in the demonstration dataset. In
particular, 1/N rate of convergence of Mimic-MD relies on the fact that the effective mass of
the distributions being matched shrinks from 1 to |S|H/N .
Remark 2.4.3. Although data splitting may not be necessary, we conjecture that the con-
ventional minimum distance functional approach, which matches the empirical distribution
of either states or state-action pairs does not achieve the rate in Eq. (2.4.1.1) since it does
not necessarily exactly mimic the expert on the observed demonstrations. In particular,
conventional distribution matching approaches do not take into account the fact that the
expert’s action is known at every state visited in the dataset. These policies may choose to
play a different action at a state, even if the expert’s action is observed in the dataset. In
contrast, Mimic-MD returns a policy that is constrained to mimic the expert at states visited
in the demonstration dataset, avoiding this issue.
Remark 2.4.4. The optimization problem OPT-MD solved by Mimic-MD is over multivariate
degree-H polynomials in {π1(·|·), · · · , πH(·|·)}. As such, it is not possible to solve this
optimization problem in polynomial (in H) time, however in the next section, we will discuss
how to view this algorithm from a different lens which will enable it to be computed efficiently.
We will appeal to the fact that the polynomial is sparse having at most N non-zero coefficients.
Moreover, our analysis does not require that the optimization problem OPT-MD be solved
exactly, which we discuss in Corollary 2.4.1 and remark 2.4.5.
We also provide a guarantee when the learner solves the optimization problem in OPT-MD
to an accuracy of ε. The guarantee on imitation gap admit by Mimic-MD in Eq. (2.4.1.1) is
recovered taking ε = 0.

Corollary 2.4.1. Consider any policy π̂ that minimizes the optimization problem OPT-MD
to an additive error of ε. Then, the expected imitation gap of the learner is upper bounded by,

E [Gap(π̂)] ≲ min

{
H, H

√
|S|
N

+ ε,
|S|H3/2

N
+ ε

}
. (2.9)

Remark 2.4.5. Corollary 2.4.1 shows that Mimic-MD is amenable in the following settings and
combinations thereof.
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1. As discussed in Remark 2.4.4, optimization problems over multivariate degree H
polynomials (as in OPT-MD) in general are not exactly solvable in polynomial time.
Corollary 2.4.1 shows that it suffices to solve OPT-MD approximately to result in a
policy with small imitation gap.

2. This approach applies in the approximate transition setting, where the transition
functions are not known exactly but are known approximately. In particular, suppose
the learner’s policy π̂ solves OPT-MD exactly when the probabilities Prπ[·] are computed
using the approximate transition functions. By the smoothness of Prπ[·] one can bound
the imitation gap of π̂ on OPT-MD when the probabilities are instead computed using
exact transition functions. Applying Corollary 2.4.1 for this ε controls the imitation
gap of the resulting policy.

Remark 2.4.6. In the known-transition setting, in conjunction with eq. (2.4.1.1), this lower
bound shows that when the expert is deterministic, then Mimic-MD (Algorithm 2) is optimal in
the dependence on |S| and N and is suboptimal by a factor of at most

√
H in its dependence

on the episode length.
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Chapter 3

Understanding Mimic-MD

In the previous section, we established that with the power of environment interaction, (i.e.,
in the known-transition setting), it is possible to arrive at an upper bound of Õ(|S|H3/2/N)
for the imitation gap of the Mimic-MD algorithm. In this chapter, we dig deeper into two
questions,

1. Is this dependency on H optimal? Can we really hope to get imitation gap scaling
linearly-in-H as Theorem 2.2.2 suggests?

2. The Mimic-MD algorithm is an optimization problem over degree-H multivariate poly-
nomials (cf. the training objective (OPT-MD)). Can it be implemented efficiently? Is
there a statistical-computational gap in breaking past the quadratic error compounding
barrier?

3. How can we connect Mimic-MD to practical Imitation Learning algorithms? What
insights do these theoretical analyses provide?

We will address all three problems in this chapter by presenting an alternate view of Mimic-MD
via a two-way reduction to the “value estimation problem” of the unknown expert policy,
which will be defined in due time.

We will also show that under the additional assumption that the expert is optimal for the
true reward function, there exists an efficient algorithm, which we term as Mimic-Mixture,
that provably achieves imitation gap Õ(1/N) for arbitrary 3-state MDPs with rewards only
at the terminal layer. In contrast, we will show that no algorithm can achieve imitation gap
scaling as Õ(

√
H/N) with high probability if the expert is not constrained to be optimal.

While the optimal expert setting does not help in the no-interaction setting as discussed in
Theorem 2.2.1, these results formally establish its benefit in the known transition setting.
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3.1 Introduction
As introduced previously, the no-interaction setting precludes the learner from interacting with
the environment. While we establish that there is a provable benefit to having information
about the MDP transition in the previous chapter, it’s worth recalling what the bottleneck
in the no-interaction setting is, and why error compounding must be incurred. No algorithm
can beat the Ω̃(|S|H2/N) lower bound on the imitation gap in this setting. In a nutshell,
the idea is that with no information about the MDP transition, the learner cannot recover
after making a “mistake”, playing an action different from the expert’s action at some state.
Concretely, at each time t, any learner has an Ω(|S|/N) probability of making a mistake due
to not having observed the expert action at this time step1. The probability that the learner
has made a mistake (i.e., deviated from the expert policy) at some point up to time t in
an episode can be forced to be ≍ |S|t/N since the union bound is approximately tight in
the lower bound instance, and under this event the learner incurs imitation gap of 1. The
expected imitation gap of the learner is therefore,

∑H
t=1 |S|t/N ≍ |S|H2/N .

To break this quadratic H dependency (under additional assumptions, such as having access
to the MDP transition), the above analysis suggests that one needs to beat the union bound
in the probability of making a mistake at time t, which implies that one needs to conduct
long-range planning. The error events of making a mistake at each time t should be made
negatively correlated with each other, in the sense that we can quickly recover from the
mistakes made in the past. This is enabled when the learner has knowledge of the MDP
transition function and is the key idea behind the Mimic-MD algorithm (Algorithm 2), which
has imitation gap upper bounded by O(|S|H3/2/N).

There is also the question of whether Mimic-MD is an efficient algorithm. It is a-priori unclear
how to implement the version in Algorithm 2 efficiently, since it is a complicated optimization
problem and even the description of the learning objective involves a combinatorially large
marginalization over all possible trajectories. In the next section, we will introduce a reduction
of the IL problem in the known-transition setting to a different one we refer to as “expert
value estimation”. This reduction will enable us to address both the questions of efficiency as
well as statistical lower bounds in the known-transition setting.

3.2 Expert value estimation
In this section, we begin with a few definitions, and formally introduce an equivalence between
Imitation Learning in the known-transition setting and the expert value estimation problem.
At a high level, the expert value estimation problem entails that the learner is able to estimate
the value of the expert’s policy under the unknown ground truth reward with high probability.

1The term |S|/N comes from the missing mass in sampling [54], which can also be understood as the
V/N regret in binary classification with zero oracle error, where V = |S| is the VC-dimension when |A| = 2.
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Definition 3.2.1 (Expert value estimation). Given a collection of tuples of MDP instances
and expert policies, denoted Z = {Z} = {(S,A, P, r, ρ,H, πexp)}, we say that an estimator
J̃r(π

exp) is a expert value estimator for Jr(π
exp) with confidence 1− δ and error ϵ if for any

such instance Z = (S,A, P, r, ρ,H, πexp), we have,

Pr(|Jr(πexp)− J̃r(π
exp)| ≥ ϵ) ≤ δ. (3.1)

where the estimator J̃ is a function of all information available in the known-transition
setting, and the candidate reward r. Namely, J̃ is a measurable function of ρ, P , r and a
demonstration dataset D (Definition 1.3.1) of expert trajectories, but not the expert πexp

directly. The probability in eq. (3.1) is computed over the randomness of D and the internal
randomness of J̃ .

The related problem of uniform expert value estimation is defined as estimating the value of
the expert policy uniformly on some class of reward functions, rather than just the ground
truth reward, with high probability.

Definition 3.2.2 (Uniform expert value estimation). Given a collection of IL instances
Z = {Z} = {(S,A, P, r, ρ,H, πexp)}, we say that an estimator J̃r(π

exp) is a “uniform expert
value estimator” for Jr(π

exp) on RD with confidence 1− δ and error ϵ if for any such instance
Z = (S,A, P, r, ρ, πexp), we have

Pr

(
sup

r′∈RD

|Jr′(πexp)− J̃r′(π
exp)| ≥ ϵ

)
≤ δ,

where the estimator J̃ is a measurable function of ρ, P , r, and a demonstration dataset D,
and an input set of reward functions, RD, which contains the true reward r, but not the
expert πexp directly. We add the subscript D to emphasize that RD is allowed to depend on
the demonstration dataset, but we may omit the subscript when clear from context.

The quantity supr′∈RD
|Jr′(πexp)− J̃r′(π

exp)| is referred to as the “uniform expert value esti-
mation error”.

Out first contribution is to propose a general formulation which reduces IL (Definition 1.3.2)
to uniform expert value estimation (Definition 3.2.2) with known transitions. Define the
learner policy π̂ as the solution to the following minimax optimization problem:

π̂ ← argmin
π

max
r∈RD

J̃r(π
exp)− Jr(π), (OPT)

where RD is the same as that in Definition 3.2.2. The next result shows reductions between
IL and expert value estimation when transitions are known.

Theorem 3.2.1 (Reductions between IL and expert value estimation with known transitions).
Consider the following two cases of RD:
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(i) Symmetric class: for any IL instance Z = (S,A, P, r, ρ,H, πexp) we consider, r ∈ RD,
and in addition, (1 − r) ∈ RD is also in the set. A notable special case is when we
consider all possible reward functions bounded between zero and one;

(ii) Optimal expert: for each IL instance, Z = (S,A, P, r, ρ,H, πexp), πexp is an optimal
policy for M = (S,A, P, r, ρ,H).

Then, under both cases,

(i) If π̂ admits PAC guarantees for the IL problem (Definition 1.3.2) with confidence
1− δ and error ϵ, then Jr(π̂) solves the expert value estimation (Definition 3.2.1) with
confidence 1− 2δ and error ϵ;

(ii) if J̃r(πexp) solves uniform expert value estimation (Definition 3.2.2) with confidence
1− δ and error ϵ, then the minimax algorithm in (OPT) solves IL (Definition 1.3.2)
with confidence 1− δ and error 2ϵ.

Proof. The proof proceeds in two parts,

(i) IL =⇒ expert value estimation. Consider the expert value estimator Jr(π̂). For the
case when the reward function is symmetric, by choosing two MDPs differing in their
reward functions, as r (the ground truth reward) and 1 − r in eq. (1.6) and union
bounding, we have the desired result. For the optimal expert case, we can save one δ
factor since we know |Jr(πexp)− Jr(π̂)| = Jr(π

exp)− Jr(π̂).

(ii) Uniform expert value estimation =⇒ IL. To analyze the imitation gap of the learner
in (OPT), observe that,

Jr(π
exp)− Jr(π̂) ≤ max

r′∈RD

Jr′(π
exp)− J̃r′(π

exp) + max
r′∈RD

J̃r′(π
exp)− Jr′(π̂)

(i)

≤ max
r′∈RD

|Jr′(πexp)− J̃r′(π
exp)|+ max

r′∈RD

J̃r′(π
exp)− Jr′(π

exp)

≤ 2ϵ.

where (i) uses the fact that πexp is a feasible policy to the optimization problem (OPT).

Next we instantiate this framework to establish minimax upper and lower bounds for Imitation
Learning. We begin with the setting where the expert policy could be arbitrary.
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3.3 Mimic-MD through the lens of expert value estimation
For brevity let R denote the set of all reward functions such that rt(s, a) ∈ [0, 1] for all
(s, a) ∈ S×A. Recall the conclusion of Section 3.2: in the known-transition setting, it suffices
to construct a uniform expert value estimator such that supr∈R |Jr(πexp)− J̃r(π

exp)| is small,
to ensure that the IL problem can be solved.
In the known-transition setting, the learner collects N demonstrations from the expert policy.
Thus, a natural and unbiased estimator of Jr(πexp) is the average reward r collected by the
trajectories in D, an empirical estimate. This idea can be generalized. Let fπ

t denote the
marginal state-action distribution induced at time t by the policy π. Rolling out the policy
πexp, we may rewrite,

Jr(π
exp) =

H∑
t=1

E(s,a)∼fπexp
t

[rt(s, a)]

This motivates us to estimate Jr(π
exp) using a generic estimator of the form,

H∑
t=1

E(s,a)∼f̂πexp
t

[rt(s, a)],

where f̂πexp

t is some estimator of fπexp

t . In this case, the uniform expert value estimation error
over reduces to the sum of total variation distances

∑H
t=1DTV

(
fπexp

t , f̂πexp

t

)
, where we used

the variational representation, DTV (P,Q) = supr∈[0,1]S×A EP [r]− EQ[r].

As discussed previously, for each t, we obtain N i.i.d. samples from distribution fπexp

t via
the demonstration dataset, and therefore it is natural to use the empirical distribution as
the estimator f̂πexp

t . It then follows from standard results [42] that with probability at least
1− δ, we have 2

H∑
t=1

DTV

(
fπexp

t , f̂πexp

t

)
≲ H

√
|S|+ log(H/δ)

N
. (3.2)

Although (3.2) seems to suggest that the imitation gap error now grows linear in H, there is
a catch: the dependence on N has degraded to N−1/2, and this bound becomes even worse
than the behavior cloning bound of Õ(|S|H2/N) when N is large.

We will show that the Mimic-MD algorithm (Algorithm 2) can be interpreted as constructing
an improved estimator for fπexp

t that achieves smaller TV loss in eq. (3.2) than the empirical
estimator. This is surprising at first glance, but there is a good reason for why this is
possible. Indeed, the empirical distribution f̂πexp

t does not utilize any information about the
transition kernel, which the learner has access to. Intuitively, given the MDP transition, one

2Note that we have assumed the expert policy is deterministic, so the support of fπexp

t is at most |S|.
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can potentially simulate many new trajectories and view them as new datapoints in order
to improve statistical efficiency. The only case where simulation fails is when the learner
encounters a state where we have not visited in the dataset; but the probability of seeing an
unseen state within the first t steps is at most ≲ |S|t/N by a union bound, and hence the total
variation loss in estimating fπexp

t can be improved to be ≲
√
|S|/N

√
|S|t/N = |S|

√
t/N .3

Summing up over t ∈ [H], the overall
∑H

t=1 |S|
√
t/N ≲ |S|H3/2/N . The following theorem

summarizes the performance of Mimic-MD, which is the specific instantiation of (OPT) when
we consider all possible rewards and the improved value estimator mentioned above.

It turns out that optimization problem (OPT-MD) can be formulated as a convex optimization,
implying that Mimic-MD can be solved efficiently approximately (which suffices to recover
the statistical guarantees). In particular, in the space of joint state-action probabilities,
{fπ

t (st, at)}t∈[H],st∈S,at∈A, the objective can be represented as a convex program. The learner’s
policy at each time t can be extracted from this representation using,

πt(a|s) =
fπ
t (s, a)∑

ã∈A fπ
t (s, ã)

.

The convexity of the objective stems from the convexity of the TV distance eq. (3.2) when
parameterized by the joint state-action probabilities. Below we present the main result
establishing these properties of Mimic-MD, which is essentially a refinement of Theorem 2.4.1.

Theorem 3.3.1. The optimization problem (OPT-MD) in Mimic-MD can be formulated as a
convex program with poly(|S|, |A|, H) variables and linear constraints. Moreover, its solution
π̂ achieves expected imitation gap,

E[Gap(π̂)] ≲

{
H logH/N |S| = 2

|S|H3/2/N |S| ≥ 3

for all IL instances in Ztabular, the set of IL instances over tabular MDPs and with no
constraint on the expert policy.

A formal proof of this result is deferred to Appendix B.1. The proof will follow the same
outline as that of Theorem 2.4.1. This refinement shows that when |S| = 2, the expected
imitation gap achieved by Mimic-MD is in fact nearly linear in H, which nearly matches the
lower bound in Chapter 2 (Theorem 2.2.2) 4.

3Precisely, the TV error of estimating a discrete distribution (p1, p2, . . . , pk) from N i.i.d. samples is
upper bounded by

∑
i∈[k]

√
pi

N ≤
√
k/N where the worst case is attained when pi ≡ 1/k. In Mimic-MD, we

are reducing the effective probability mass from 1 to |S|t
N , so the problem is reduced to upper bounding

sup
pi≥0,

∑
i∈[k] pi≤ |S|t

N

∑
i

√
pi

N =
√

k
N

√
|S|t
N .

4Indeed, whenever we have an unseen state for a distribution with binary values, the total variation
distance between the empirical distribution and the real distribution is of order Õ(1/N). However, it is not
true for distributions with |S| ≥ 3 in general: for example, if p = (1/2, 1/2− 1/N, 1/N), then with constant
probability we will not see the third state in the dataset, but the total variation distance between empirical
distribution and true distribution scales as O(1/

√
N).
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Algorithm 3 Alternate view of Mimic-MD (Algorithm 2)
1: Input: Expert dataset D.
2: Let D1 be N/2 trajectories drawn uniformly without replacement from D.

Let D2 = D \D1.
3: Define,

T D1
t (s, a) ≜ {{(st′ , at′)}Ht′=1|st = s, at = a, ∃τ ≤ t : sτ ̸∈ Sτ (D1)}

▶ Set of trajectories that visit (s, a) at time t, and at some time τ ≤ t
visit a state unvisited at time τ in any trajectory in D1.

4: (Original view) Return π̂ as any optimizer of the following program:

π̂ ← argmin
π∈ΠBC

det(D1)

H∑
t=1

∑
(s,a)∈S×A

∣∣∣∣∣Prπ [T D1
t (s, a)

]
− 1

|D2|
∑
tr∈D2

1
(
tr ∈ T D1

t (s, a)
)∣∣∣∣∣ . (OPT-MD)

▶ ΠBC
det(D1) is defined in eq. (2.3)

5: (Alternate view) Equivalently, it suffices to output the policy π̂ as the solution to the
following minmax optimization problem,

π̂ ← argmin
π

sup
r∈R

J̃r(π
exp)− Jr(π) (OPT-MD-value)

where R is the set of all reward functions and the value estimator J̃ is defined as,

J̃r(π
exp) =

H∑
t=1

∑
(s,a)∈S×A

rt(s, a)f̂t(s, a),

where, for any tuple (s, a, t) ∈ S ×A× [H],

f̂t(s, a) = Pr
πexp

[
¬T D1

t (s, a)
]
+ Pr

Unif(D2)

[
T D1
t (s, a)

]
. (3.3)

6: Return π̂.

Statistical lower bounds in the known-transition setting

While Theorem 3.3.1 resolves the case of |S| = 2 showing a matching upper and lower bound
on the imitation gap in , it still leaves open the possibility of improving the H dependency
beyond H3/2 when |S| ≥ 3. In the following result, we show that this is no coincidence.
H3/2/N is a statistical barrier on the imitation gap of any learner in the known-transition
setting.

Theorem 3.3.2. Suppose H ≥ 2 and N ≥ 7. If N ≥ 6H, for every learning rule Alg(·) in
the known-transition setting (returning policy π̂), there exists an MDP M on 3 states such
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1 2 3 4

1 2 3 4

1− 1
N

1
N

Figure 3.1: The 4-state MDP transition: The states 1, 3 and 4 have a single action, with the
transition probabilities indicated above the arrow. On the other hand, state 2 has 2 actions:
with probability 1, the red action transitions the learner to state 3 while the blue action
transitions the learner to state 4.

that,

Pr

(
Gap(π̂) ≥ cH3/2

N

)
≥ c′,

for some constants c, c′ > 0, and where Gap(·) is computed under the dynamics induced by
M. Here the probability is computed over the randomness of the demonstration dataset D as
well as the internal randomness employed by the learning rule Alg(·).

To best illustrate the insights behind the lower bound construction, we construct a particular
lower bound instance, which we name 4-state MDP, and describe informally the main ideas.
In Appendix B.2, we formally prove the lower bound for |S| = 3 as well by essentially
combining the state labelled 1 with 3.

The 4-state MDP

Since Theorem 3.2.1 shows that the expert value estimation problem is not harder than IL, it
suffices to show that the value estimation error is at least H3/2/N . Concretely, the 4-state
MDP in Figure 3.1 is time-invariant with the states labelled 1, 2, 3 and 4. All states besides
2 are trivial and without loss of generality have only a single action. The state 2 has exactly
2 actions, one leading deterministically to state 3 and the other to state 4. Furthermore, the
reward function of the MDP is all 1 on the state 3 (recall there is only a single action at this
state). We assume the initial distribution is (1− 1/N, 1/N, 0, 0).
Define variables

Ui =

{
1 if πexp

i (red | 2) = 1

0 if πexp
i (blue | 2) = 1

Note that the marginal distribution at state 1 at time t is independent of expert policy
and equal to (1 − 1/N)t, and the marginal distribution of state 2 at time t is always
wt ≜ (1− 1/N)t−1/N . Consider the case that N ≳ H, in this case the marginal probability
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of state 2 for every time step is wt ≍ 1/N . We say that the contribution of time t to final
expert value is vt =

∑t−1
i=1 wiUi, and the final expert value V ⋆ is given by

V ⋆ =
H∑
t=1

vt, (3.4)

and we aim to show the estimation error of V ⋆ is at least ≍ H3/2/N .
The major step towards the final lower bound is to show that the estimation error of vH ,
which is the contribution to the final value from the last layer, is at least

√
H/N . This

dependence on the time horizon would then accumulate to achieve the H3/2 result. Note
that vH =

∑H−1
t=1 wtUt, can be viewed as the weighted combination of parameters Ui, but

since the marginal probability of state 2 is about 1/N , in total N trajectories there will be a
constant fraction of state 2’s across time steps that are not observed in the dataset. If we
impose a uniform prior on Ui ∼ Bern(1/2), then the posterior variance of vH is at least a
constant fraction of the prior variance of vH , which is

Var(vH) =
H−1∑
t=1

w2
t

4
≍ H

N2
,

which implies that the posterior standard deviation of vH is at least of order
√
H/N . Then,

we can combine this lower bound with (3.4) to show that the overall estimation error of V ⋆

is at least
∑H

t=1

√
t/N ≍ H3/2/N . This result implies that Mimic-MD indeed achieves the

optimal dependence on the MDP horizon H, growing as H3/2.
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Chapter 4

Learning an optimal expert

The previous chapter assumes that the learner operates in the known-transition setting, but
imposes no assumptions on the nature of the expert. Indeed, the expert policies considered
in the 4-state instances invoked in the proof of the lower bound Theorem 3.3.2 are really far
from being optimal on the underlying MDP. In practice, however experts often are often not
pathological /worst-case policies and may even achieve near optimal performance. Indeed it
only makes sense to carry out Imitation Learning when the expert carries out the underlying
task well. In this chapter, we study Imitation Learning under the known-transition setting,
under the assumption that the expert is an optimal policy on the underlying (unknown)
reward function r. This will turn out to be a really hard setting, which we make partial
progress toward understanding. A natural first question is whether the lower bound in
Theorem 3.3.2 still holds when we impose the additional assumption that the expert policy
πexp is the optimal policy for the true reward function r.

4.1 Revisiting the 4-state MDP instances
In the previous chapter, we constructed a special class of MDPs on 4-states under which a
statistical lower bound on the imitation gap can be established. Attempting to deploy the
same construction, but with the additional assumption that the expert policy is optimal, we
encounter the following difficulties:

(i) If we follow the proof and only put rewards on state 3, then the optimal policy would
be only choosing the red action, hence the posterior uncertainty of vH would not scale
with H since with a single action at state 2 would reveal the whole policy πexp;

(ii) If we place rewards on the links from 2 to 3 if Ui = 1 and from 2 to 4 if Ui = 0, then
we can still impose the uniform Bernoulli priors on {Ui}Hi=1, but the posterior standard
deviation of vH would still be 1/N since in this case only state 2 would contribute to
the value but its marginal probability is independent of πexp and always ≍ 1/N .
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These two difficulties beg the question: can we formally prove that for the 4-state MDP
instance, and assuming that the expert policy πexp is optimal on the underlying reward
function r, can we show that the imitation gap Gap(π̂) ≲ Õ(H/N) with high probability?

The crucial observation we make here, is that it suffices to find a policy π̂ such that its
expected imitation gap is small to guarantee imitation gap small with constant probability.
Indeed, if we can show E[Gap(π̂)] is small, it immediately implies a concentration bound on
Gap(π̂) by an application of Markov’s inequality, using the assumption that πexp is optimal
on the underlying reward function r. This is not possible when the expert is an arbitrary
policy, since Gap(·) is not a non-negative random variable.

To achieve small expected imitation gap, since r is deterministic, it suffices to find some
policy π̂ whose expected state-action occupancy measure is close to that of the expert policy.
We remark that the unbiased estimation of the probability Prπexp(sH = s⋆) is in fact trivial
and achieved by the empirical distribution of the state s⋆; however, our target of realization of
this estimated distribution is much more difficult since this requires showing the existence of
a policy π̂ with small bias. For example, one of the key challenges in proving Theorems 4.1.1
and 4.2.1 is that the empirical distribution of the state s⋆ may not be achievable by any
policy owing to the possibly limited approximation power of the MDP. The next theorem
shows we can solve the 4-state MDP instance with nearly linear dependence on H.

Theorem 4.1.1. In the known-transition setting, there exists an efficient learning rule
(returning policy π̂) such that for the family of 4-state MDP instances,

Gap(π̂) ≲
H log(NH)

N
(4.1)

with probability 0.99 for any ground truth reward r such that πexp is optimal.

We defer the proof of Theorem 4.1.1 to Appendix C.1, but present the explicit policy
construction for the single state 3 at layer H here, which conveys the key insights of the
algorithm. Let Xt be the number of trajectories in which the expert visits state 2 at time t
in the dataset; the Xt’s jointly follow a multinomial distribution. Consider the learning rule
which returns the policy π̂ with,

π̂t(red | 2) =
{∑H−1

i=1 XiUi∑H−1
i=1 Xi

, if
∑H−1

i=1 Xi > 0,

1, otherwise.
(4.2)

Note that this policy can be computed since at any time t at which state 2 was not visited in
the dataset (i.e. Ut is unknown), Xt = 0. Let’s work assuming the size of the demonstration
dataset n ∼ Poi(N/2), a trick referred to as Poissonization, which enables certain random
variables in the analysis to effectively be decoupled. This is permissible since n ≤ N with
very high probability (≥ 1 − e−3N/16 using Poisson tail bounds). Under this assumption,



CHAPTER 4. LEARNING AN OPTIMAL EXPERT 35

Xt’s are distributed independently as Poi
(
N
2
Prπexp(st = 2)

)
. Using the property that for

X ∼ Poi(µ) and independent Y ∼ Poi(λ), E [X/(X + Y ) | X + Y > 0] = µ/(µ+ λ), we have

E

[∑H−1
t=1 XtUt∑H−1
t=1 Xt

∣∣∣∣ H∑
t=1

Xt > 0

]
=

∑H−1
t=1 Prπexp(st = 2)Ut∑H−1
t=1 Prπexp(st = 2)

,

Finally, observe that Prπexp(
∑H−1

t=1 Xt = 0) =
∏H−1

t=1 Prπexp(Xt = 0) = e−
N
2

∑H−1
t=1 Prπexp (st=2).

Therefore,

∣∣∣Pr
πexp

(sH = 3)− E
[
Pr
π̂
(sH = 3)

]∣∣∣ ≤ Pr
πexp

(
H−1∑
t=1

Xt = 0

)
H−1∑
t=1

Pr
πexp

(st = 2) ≲
1

N
,

since supx xe
−tx = 1/(et) for any t > 0.

We remark that (4.2) is carefully constructed such that π̂t(red | 2) ∈ [0, 1] almost surely to
guarantee it is a valid policy, and many natural approaches such as replacing the denominator
with the expectation of

∑H−1
t=1 Xt does not achieve this goal.

4.2 Matching a single state with no error compounding
The proof of Theorem 4.1.1 crucially relies on obtaining a policy whose expected state
visitation probability at state 3 of the terminal layer is nearly the same as that of the expert.
Can we generalize it to arbitrary MDPs and an arbitrary target state? The following theorem
answers this question affirmatively.

Theorem 4.2.1. In the known-transition setting, fix any state s⋆ at time t of any MDP
M. Consider a deterministic expert policy πexp, a demonstration dataset D of N trajectories
drawn from the expert policy, and any subset S0 ⊆ ∪Ht=1St of states at which the expert actions
are known. Let ΠBC(S0) ⊇ ΠBC(D) be the set of policies that mimic the expert action on all
states of S0, there exists a learning rule Alg(·) (Algorithm 4) returning policies π̂ ∈ ΠBC(S0)
such that

|E[Pr
π̂
(st = s⋆)]− Pr

πexp
(st = s⋆)| ≲ 1

N
.

The main message of Theorem 4.2.1 is that, in the known transition setting, there is no error
compounding for achieving a near-unbiased realization of the probability of any single state.
Specifically, the upper bound O(1/N) in Theorem 4.2.1 crucially does not depend on H, which
is in sharp contrast to the unknown transition setting where the error is Θ(H/N), as well as
the known transition setting but with an absolute error Θ(

√
H/N). The construction of the

policy π̂ relies on a mixture of two deterministic policies inside ΠBC(S0), where the choice
of the mixing coefficient is much more complicated than that in the proof of Theorem 4.1.1
requires a careful inductive procedure detailed later. We also note that the choice of the
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subset S0 is arbitrary, and Theorem 4.2.1 holds even if S0 = ∅; the reason why we introduce
S0 is to show that the near-unbiased realization does not require a costly coordination among
all states, and it could always be achieved by properly specifying the actions for a possibly
small number of unvisited states.

Algorithm 4 Mimic-Mixture
1: Input: Demonstration dataset D, states S0 with known expert action, target state s⋆ at

time t
2: Compute the following two policies πL and πS based on the known transitions:

πL = argmax
π∈ΠBC(S0)

Pr
π
(st = s⋆), πS = argmin

π∈ΠBC(S0)

Pr
π
(st = s⋆). (4.3)

3: Draw n ∼ Poi(N/2), and return an arbitrary policy π̂ if n > N .
4: For every possible trajectory tr = (s1, · · · , sH) ∈ SH , count its number of appearances

X(tr) from the first n trajectories in the demonstration dataset.
5: For each tr ∈ SH , compute βL(tr), βS(tr) and β⋆(tr) according to Lemma 4.2.2.
6: Subsample each X(tr) independently with probability βL(tr)− βS(tr) to obtain Y (tr).
7: Subsample each Y (tr) independently with probability (β⋆(tr)− βS(tr))/(βL(tr)− βS(tr))

to obtain Z(tr).
8: Compute the mixing coefficient

α̂ =

∑
tr∈SH Z(tr)∑
tr∈SH Y (tr)

. (4.4)

If the denominator is zero, return any α̂ ∈ [0, 1].
9: Return a randomized policy π̂ = α̂πL + (1− α̂)πS.

The construction of the learner’s policy π̂ is summarized by Mimic-Mixture in Algorithm 4.
The idea is to find two extremal policies, i.e. policies πL and πS which maximize and minimize
the induced probability of the target state s⋆ among all policies in ΠBC(S0), respectively (cf.
eq. (4.3)), and choose the learner’s policy π̂ as a proper mixture of these extremal policies,
i.e. π̂ = α̂πL + (1− α̂)πS. Since πL, πS ∈ ΠBC(S0), it is clear that the mixture π̂ also belongs
to ΠBC(S0). As the learner’s target is to match the expert probability Prπexp(st = s⋆), the
ideal choice of α̂ would be

α⋆ =
Prπexp(st = s⋆)− PrπS(st = s⋆)

PrπL(st = s⋆)− PrπS(st = s⋆)
, (4.5)

which by definition of πL, πS always lies in [0, 1]. Note that the only unknown quantity in
eq. (4.5) is the probability Prπexp(st = s⋆) induced by the unknown expert policy, we need
to replace this probability by a proper estimator. The most natural approach is to use the
empirical version of Prπexp(st = s⋆), which is an unbiased estimator. However, plugging this
empirical version into eq. (4.5) may make the final ratio α⋆ outside [0, 1], giving an invalid
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mixture policy π̂; a naïve truncation of α⋆ to [0, 1] will also incur a too large bias (of the
order Ω(

√
H/N)), for the truncation operation is similar in spirit to the minimum distance

projection used in Mimic-MD.

To circumvent this difficulty, our idea is to replace all probabilities Prπexp(st = s⋆), PrπL(st =
s⋆), PrπS(st = s⋆) in eq. (4.5) by appropriate estimates such that the ratio lies in [0, 1] almost
surely, even if the latter two probabilities are in fact perfectly known and thus do not require
any estimation in principle. To construct these estimators, we consider a Poissonized sampling
model as follows: draw an independent Poisson random variable n ∼ Poi(N/2), which does
not exceed N with probability at least 1− e−Ω(N) by the Chernoff bound. For each possible
state trajectory tr = (s1, · · · , sH) ∈ SH , define X(tr) to be the total count of this trajectory
in the first n trajectories of D:

X(tr) =
n∑

i=1

1(tri = tr).

Note that the sample size in the above count is a Poisson random variable n ∼ Poi(N/2),
instead of the fixed number N . The advantage of the Poisson sampling is that, the above
count X(tr) exactly follows a Poisson distribution Poi(N/2 · Prπexp(tr)), and these counts
{X(tr)} for different trajectories are mutually independent. We apply the following linear
estimators for the probabilities in eq. (4.5):

P̂rπexp(st = s⋆) ≜
2

N

∑
tr∈SH

β⋆(tr) ·X(tr), P̂rπL(st = s⋆) ≜
2

N

∑
tr∈SH

βL(tr) ·X(tr),

P̂rπS(st = s⋆) ≜
2

N

∑
tr∈SH

βS(tr) ·X(tr),
(4.6)

where β⋆(tr), βL(tr), βS(tr) ∈ [0, 1] are appropriate coefficients to be specified later. We
require the following three properties for these coefficients:

1. Unbiasedness. the coefficients should be chosen so that the estimators in eq. (4.6) are
unbiased in estimating the corresponding true probabilities. Mathematically, we require
that

∑
tr∈SH β†(tr) · Prπexp(tr) = Prπ†(st = s⋆), † ∈ {∗,L, S}.

2. Order. for every trajectory tr ∈ SH , it holds that βS(tr) ≤ β⋆(tr) ≤ βL(tr). This
requirement ensures that plugging eq. (4.6) into eq. (4.5) always gives a ratio in [0, 1].

3. Feasibility. this requirement is a bit subtle. We require that all coefficients β⋆(tr),
βL(tr), and βS(tr) only depend on public information (known transition probabilities,
initial distribution, expert actions at states in S0, policies πL, πS, and s⋆) and the
private information associated with tr (expert actions at states visited in trajectory
tr). Importantly, these coefficients cannot depend on expert actions not in S0 ∪ tr, as
those actions may not be observable to the learner, leaving the coefficients not always
well-defined. In contrast, dependence on the expert actions at states in tr is feasible, for
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these actions are observed if X(tr) > 0, and the coefficients could be arbitrarily chosen
with β†(tr) ·X(tr) ≡ 0 if X(tr) = 0, for † ∈ {∗,L, S}.

The following lemma shows that we can indeed construct coeffs. {β⋆(tr)}, {βL(tr)}, {βS(tr)}
satisfying the above three requirements, and they can be used to construct a policy such that
Theorem 4.2.1 holds.

Lemma 4.2.2. There exist coefficients β⋆(tr), βL(tr), βS(tr) ∈ [0, 1] such that all of the
unbiasedness, order, and feasibility properties hold. Furthermore, given any such coefficients,
one can efficiently construct a policy π̂ such that Theorem 4.2.1 holds.

The proof of Lemma 4.2.2 is via a careful inductive argument and is deferred to Appendix C.3.
Armed with the result of Theorem 4.2.1, we can prove an improved imitation gap bound in
3-state MDPs when rewards are only present in the last layer.

Corollary 4.2.1. Suppose |S| = 3 and rt ≡ 0 for all t = 1, 2, . . . , H − 1, rH ∈ [0, 1], πexp is
optimal for r, and the transitions are known. Then, there exists an efficient algorithm based
on Mimic-MD and Mimic-Mixture such that the imitation gap is upper bounded by Õ(1/N)
with probability 0.99.

4.3 Conjectures for the optimal expert setting
Corollary 4.2.1 shows that in case the reward is only on the terminal state for MDPs on 3
states, the optimal imitation gap scales as Θ̃(1/N) when the expert is an optimal policy. In
case the expert is not optimal, the rate degrades to Õ(

√
H/N) using the same analysis as in

Theorem 3.3.1. In this section, we conjecture an optimal algorithm for Imitation Learning
with an optimal expert policy, which is based on using Inverse Reinforcement Learning (IRL)
to instantiate the reward family RD in (OPT). In particular, we instantiate RD as,

Ropt(D) = {r : ∃π ∈ ΠBC
det(D)such that π is optimal on r}, (4.7)

as the set of rewards which induce an optimal policy consistent with what is observed of the
expert policy. The natural value estimator, J̃r(πexp) is to choose the value of the optimal
policy on a given reward r.
In this section we will conjecture an approach (Algorithm 5) for the optimal expert setting
which achieves imitation gap bounded by Õ(H/N). While proving this result in its full
generality turns out to be quite challenging, we will establish it on a significant generalization
of the hard 4-state MDP instances considered in the previous chapter. Our proof relies on
proving certain structural properties of the optimal expert policy on these MDP instances.
Showing these properties hold for arbitrary MDPs would resolve a major open problem.

The remainder of this section is dedicated to providing evidence that this algorithm in
fact might achieve the conjectured statistical guarantee of Õ(H/N). In particular, we
consider a family of 4-state MDPs which generalize the one considered in the lower bound in
Theorem 3.3.2 and show that Algorithm 5 in fact achieves this guarantee.
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Algorithm 5 Conjectured Optimal Algorithm
1: Input: Expert dataset D,
2: Define ΠBC

det(D) as in Eq. (2.6) ▶ Policies which mimics expert on states visited in D
3: Define Ropt(D) as in eq. (4.7) ▶ Set of rewards such that there exists an optimal

policy on this reward belonging to ΠBC
det(D). This

corresponds to Inverse Reinforcement Learning.
4: Define the learner’s policy as the solution to the minimax optimization problem,

π̂ = min
π∈ΠBC

det(D)
max

r∈Ropt(D)

(
max
π′

Jr(π
′)
)
− Jr(π) (4.8)

▶ This corresponds to using the value estimation frame-
work in (OPT) with J̃r(π

exp) = maxπ′ Jr(π
′).

A generalized family of 4-state MDPs

Consider a family of MDPs on 4 states structured as in fig. 4.1. This is an extension of the
4-state MDP in fig. 3.1 with the probability 1/N of transitioning from state 1 to 2 changed
to an arbitrary time-varying pt > 0, as well as with the two actions at state 2, a+ and a−
inducing a general next state distribution supported on states 3 and 4. Likewise, the singular
action at states 3 and 4 induces an arbitrary distribution supported on states 3 and 4. The
reward function for this MDP is completely arbitrary.

Theorem 4.3.1. On the family of MDPs depicted in fig. 4.1, Algorithm 5 achieves expected
imitation gap upper bounded by Õ(H/N).

The key idea behind analyzing the conjectured optimal algorithm is to show how to construct
a reference policy such that its imitation gap on all feasible rewards in Ropt(D) as compared
against any policy in ΠBC

det(D) is bounded. First we bound the learner’s imitation gap in the
following lemma.

Lemma 4.3.2. The imitation gap of the conjectured optimal algorithm in Algorithm 5 is
bounded by,

Gap(π̂) ≤ max
r∈Ropt(D)

(
max

π′∈ΠBC
det(D)

Jr(π
′)

)
− Jr(πref) (4.9)

for any reference policy πref ∈ ΠBC
det(D).
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Proof. Observe that since the ground truth reward r ∈ Ropt(D),

Gap(π̂) ≤ max
r∈Ropt(D)

Jr(π
exp)− Jr(π̂)

≤ max
r∈Ropt(D)

(
max

π′∈ΠBC
det(D)

Jr(π
′)

)
− Jr(π̂)

≤ max
r∈Ropt(D)

(
max

π′∈ΠBC
det(D)

Jr(π
′)

)
− Jr(πref)

where the second inequality uses the definition of Ropt(D), and the last inequality uses the
fact that π̂ is the minimizer of the objective in eq. (4.8).

In order to use this inequality, we show how to construct a reference policy such that
on any reward r ∈ Ropt(D), the value achieved by this policy, in expectation, is at most
Õ(H/N) suboptimal compared to the optimal policy on that reward function. The key idea
in constructing this reference policy is to notice that whenever the next-state distribution at
a state can vary significantly across actions, observing the action at that state provides a lot
of information to the learner about value functions across various actions. However, picking
the wrong action at these states might also induce suboptimality. On the other hand, when
the next-state distribution at a state does not vary significantly across actions, the opposite
happens - playing the wrong action at this state does not significantly hurt the learner, but
observing the action at this state is also not very informative. Therefore, the strategy to
construct the reference policy will be to combine information across various actions at the
same level of “informativeness” to balance the risk of picking wrong actions. For the family of
instances we consider, the informativeness of state 2 at any time is evaluated using the metric
|Pt(3|2, a+) − Pt(3|2, a−)|, which is the TV distance between the next-state distributions
induced by a+ and a− at state 2 at time t.

1 2 3 4

1 2 3 4 3 3

1− pt pt
a+ a−

Figure 4.1: The generalized 4-state MDPs : The states 1, 3 and 4 have a single action. On the
other hand, state 2 has 2 actions, {a−, a+} with next state distribution supported on states 3
and 4. Likewise, states 3 and 4 with next state distribution also supported on states 3 and 4.
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Chapter 5

Imitation Learning with active interaction

In this section, we will revisit the topic of IL with active interaction, which we introduced in
Chapter 1 and prove a statistical lower bound for in Section 2.2. There, we showed that in
the absence of any assumptions there is no statistical benefit to active interaction, compared
to algorithms which learn from a static dataset of demonstrations. It begs the question as to
why approaches such as Dagger [74] and AggreVaTe [77] which actively query the expert
often perform better than BC in practice. To explain this gap our previous results imply that
additional assumptions must be imposed.

To motivate this assumption, we turn to the statistical lower bound we prove in Section 2.2
in the active-interaction setting. The key idea in the lower bound is to include an absorbing
“bad” state in the MDP which is never visited in the demonstration dataset and offers no
reward. Any policy which visits this state is doomed to incur a large reward gap - in the
absence of full information, the learner is forced to visit this state often. The lower bound
instance is pathological in the sense that even if the expert itself visits the bad state, it is
never able to “recover” and return to the remaining states. Indeed in practical situations
such as driving a car, experts often can recover and collect a high reward even if a mistake is
made locally. The authors of [74] introduce an assumption to this effect, which we refer to as
µ-recoverability.

Definition 5.0.1 (µ-recoverability). An IL instance is said to satisfy µ-recoverability if
for each t ∈ [H] and s ∈ S, Ea∼πexp

t (·|s)
[
Qπexp

t (s, a)
]
−Qπexp

t (s, a) ≤ µ for all actions a ∈ A.
Informally, if the expert plays an “incorrect” action at any state s at a single time t and goes
back to choosing the correct actions afterwards, the expected reward collected is less by at most
µ.

The µ-recoverability assumption captures the ability of an expert to recover and collect a
high reward at a state even upon locally deviating from its action distribution at states.
The reduction in [78, Theorem 2] shows that under µ-recoverability, a learner policy π̂
which minimizes the 0-1 loss with respect to the expert’s policy under the learner’s own
state distribution. We will define the loss under a generic sequence of state distributions
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f = (f1, · · · , fH),

L0 -1(π̂; f) ≜
1

H

∑H

t=1
Es∼ft

[
Ea∼π̂t(·|s) [1(a ̸= πexp

t (s)]
]
. (5.1)

And the reduction argues that if L0 -1(π̂; f
π̂) ≤ ϵ, then Gap(π̂) ≤ µHϵ. However, it is a-priori

unclear how small ϵ can be made as a function of the number of the size of demonstration
dataset / number of MDP interactions, N in the no-interaction / active-interaction settings.
This is a drawback of the reduction approach followed by [74, 78] since it cannot distinguish
between the power of learners in different interaction models. Indeed one challenge for a
learner to minimize the 0-1 under its own state distribution is that the learner’s policy changes
over the course of optimization.

In this chapter, we will propose a learner in the active-interaction setting with expected
0-1 loss under the learner’s own state distribution bounded by |S|/N . This “completes” the
reduction in a sense, and establishes imitation gap bounds for the active setting as an explicit
function of the number of states |S|, interactions N and horizon H.

Theorem 5.0.1. In the active-interaction setting there exists a learning rule such that the
resulting policy π̂ satisfies, E[L0 -1(π̂; f

π̂)] ≲ |S|/N . Furthermore, under µ-recoverability,
E[Gap(π̂)] ≲ µ|S|H/N .

The proof of this result utilizes the no-regret reduction of [78]. Indeed, observe that it suffices
for the learner to find a sequence of policies π̂1, · · · , π̂T such that the online-learning regret,
defined as,

1

N

∑N

i=1
L0 -1(π̂

i; f π̂i

)−min
π

1

N

∑N

i=1
L0 -1(π; f

π̂i

) ≲
|S|
N

. (5.2)

is sufficiently small. Note that in eq. (5.2), the oracle loss minπ
1
N

∑N
i=1 L0 -1(π; f

π̂i
) is in fact

0, achieved by π = πexp, and so, the mixture policy over the learner’s policies, 1
N

∑N
i=1 π̂

i

satisfies,

L0 -1
(
π̂; f π̂

)
≲
|S|
N

.

Note that while the regret being minimized in eq. (5.2) involves losses not observable without
full knowledge of πexp, it is possible to compute an unbiased estimate of L0 -1

(
π̂i; f π̂i) by

rolling out just a single trajectory. This is only enabled in the active-interaction model, and
is not possible given just a fixed dataset of demonstrations.

Toward this end, suppose for each i, the learner rolls out a single trajectory according to π̂i

and denote the resulting empirical state visitation distribution f̂ i = (f̂ i
1, · · · , f̂ i

H) where f̂ i
t is

the empirical distribution at time t. Observe that,

1

N

N∑
i=1

L0 -1(π̂
i; f̂ i)
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is an unbiased estimate of 1
N

∑N
i=1 L0 -1(π̂

i; f π̂i
) if π̂i is a measurable function the first i− 1

rolled out trajectories (according to π̂1, · · · , π̂i−1), and concentrates around this via mar-
tingale concentration arguments. Thus, it will suffice for the learner to find a sequence of
policies π̂1, · · · , π̂T which minimize the empirical online-learning regret : 1

N

∑N
i=1 L0 -1(π̂

i; f̂ i)−
minπ

1
N

∑N
i=1 L0 -1(π; f̂

i) to be ≲ |S|
N

. As we discuss in more detail later in the full proof of this
result, it is possible to construct a sequence of policies π̂1, · · · , π̂N using entropy-regularized
mirror descent [85] which minimizes the empirical online-learning regret to be ≲ |S|/N .
The resulting policy π̂ = 1

N

∑N
i=1 π̂

i minimizes the expected 0-1 loss under its own state
distribution to be ≲ |S|/N in expectation. The guarantee on the expected imitation gap of
this policy directly follows from [78, Theorem 2] under µ-recoverability.

This guarantee on the imitation gap is optimal for any learner in the active-interaction setting
assuming µ-recoverability. Optimality essentially follows from the lower bound we proved in
the active interaction setting in Theorem 2.2.1, where if N ≥ |S|H, the expected imitation
gap incurred is ≳ |S|H2

N
. By scaling each reward by a factor of µ/H, the same family of IL

instances now satisfies µ-recoverability and results in the lower bound for active learners.

Theorem 5.0.2 (Corollary of Theorem 2.2.1). Suppose N ≥ |S|H. For every learning rule
in the active-interaction setting, there exists an IL instance such that the resulting policy π̂
incurs expected imitation gap E[Gap(π̂)] ≳ min{µ, µ|S|H/N} under some worst-case tabular
IL instance.

Now, under the same µ-recoverability assumption, we study learners in the no-interaction
setting. We prove a lower bound that in the worst case, showing that even though there
exist actions that allow a learner to recover at pathological states, error compounding is
unavoidable for such learners.

Theorem 5.0.3. Suppose |S| ≥ 3 and |A| ≥ H. For any learning rule in the no-interaction
setting, there exists an IL instance which satisfies µ-recoverability for µ ≥ 1, and such
that the resulting policy π̂ incurs expected imitation gap lower bounded by, E [Gap(π̂)] ≳
min {H, |S|H2/N}.

This is the first result to establish a clear separation in the statistical minimax rate of the
imitation gap incurred by learners in the no-interaction setting such as BC, and learners which
can interact with the MDP, such as Dagger [78] and AggraVaTe [77]. The instances we
construct in this lower bound are a modification of those considered in Theorem 2.2.1. There,
the MDPs considered have a “bad” state in the MDP never visited by the expert. We modify
the instance to add a single “recovery” action at the bad state; the instance now satisfies
µ-recoverability for any µ ≥ 1. If the number of actions are large |A| ≥ H, any no-interaction
learner still fails to identify the recovery action with constant probability. In essence this
reduces the instance to the lower bound considered in Theorem 2.2.1 and any no-interaction
learner is forced to incur expected imitation gap ≳ min{H, |S|H2/N}.
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Chapter 6

Toward a practical algorithm

Many practically performant algorithms in the IL literature fall under the empirical moment
matching framework (e.g. GAIL [44], MaxEnt IRL [110]); see Table 3 of [93] for more
examples. Reward moment matching corresponds to finding a policy which best matches the
state-action visitation measure of πexp, in the sense of minimizing an Integral Probability
Metric (IPM) [57]. Formally, the learning rule takes the form,

min
π∈Π

sup
f∈F

Eπ[f ]− Eπexp [f ], (6.1)

f is referred to as the “moment” here, and is simply a discriminator which tries to distinguish
between rollouts under π and πexp.
This formulation is void of any statistical considerations, indeed it invokes the expectation
Eπexp [f ] which cannot be computed by the learner. This includes the algorithm we discuss in
Chapter 3, namely (OPT), which reduces the IL problem in the known-transition setting to
the uniform expert value estimation problem (Definition 3.2.2). Recall, which is defined as
returning any minimizer of

min
π

max
r∈RD

J̃r(π
exp)− Jr(π).

This is but a finite sample implementation of eq. (6.1), where f is the cumulative reward of
trajectory, and we replace Eπexp [f ] by an estimator J̃r(π

exp). The simplest approach toward
writing down a D-measurable optimization problem is to replace E[f ] by an empirical estimate
ED[f ], where ED[·] indicates an expectation computed over a random trajectory drawn from
the demonstration dataset D.

Definition 6.0.1. The empirical moment matching learner πMM attempts to best match the
empirical state-visitation measure under a set of discriminators F . Namely,

πMM ∈ argmin
π∈Π

sup
f∈F

Eπ

[∑H
t=1 ft(st, at)

H

]
−ED

[∑H
t=1 ft(st, at)

H

]
. (6.2)
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s1 s1s1
s2 s2s1
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s2 s2

s1

sampling moment matching

replay estimation new data s1 s2s1
s2 s1s1

Figure 6.1: Top: Attempting to exactly match a finite-sample approximation of expert
moments can cause a learner to reproduce chance occurrences (e.g. the relatively unlikely
flight through the trees). This can lead to policies that perform poorly at test time (e.g.
because the learner flies through the trees relatively often). Bottom: Replay estimation
reduces the empirical variance in expert demonstrations by repeatedly executing observed
expert actions in a stochastic simulator. By generating new trajectories (e.g. s1 → s1 → s2 on
the right) that are consistent with expert actions, one can augment the original demonstration
set and compute expert moments more accurately.

When a small set of demonstrations are used within the trained objective, the learner may
choose to take incorrect actions in order to match the noisy moments estimated from the
dataset, leading to policies that perform poorly at test-time.

One solution to this problem is to query the expert to generate more demonstrations in an
online / interactive fashion, as discussed in Chapter 2 [76]. However, when we are unable to
do so, we still have to grapple with the practical question of “how can we smooth out a noisy
empirical estimate of moments f? ”

In this chapter, we propose a practical algorithm, Replay Estimation (RE) which builds upon
the ideas in eq. (OPT) and Algorithm 2 to result in a performant algorithm for IL when given
access to a simulator. In its most basic form, RE consists of repeatedly executing observed
expert actions within a stochastic simulator, terminating rollouts whenever one ventures out
of the support of the expert demonstrations. Effectively, this approach stitches together parts
of different trajectories to generate a smoothed estimate of expert moments. By using the
simulator where we know the expert’s actions, we can generate more diverse training data
that is nevertheless consistent with the expert demonstrations.

6.1 Suboptimality of MM and BC

In this section, we will do a deeper dive into the suboptimality of BC and the empirical
moment matching (MM) introduced previously. We begin with a vignette to illustrate some
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key issues in greater detail.

Suboptimality of MM Consider the MDP in Figure 6.2b, where the expert always takes
the green action. Doing so puts them in s1 or s2 with equal probability. Given that the
expert is deterministic and there are few states, BC could easily recover the expert’s policy by
learning to simply output the observed green action on both states, even when there are very
few demonstrations.

Now, what would happen if we tried to match moments of the expert’s state-action visitation
distribution for this problem? It is rather unlikely that we see exactly equal probabilities for
both states in the observed data. If by chance we see s2 more than we see s1, the learner
might realize that the only way to match the observed state distribution (a prerequisite for
matching the observed state-action distribution) is to occasionally take the red action at s2.
In general, this could cause the learner to spend an unnecessary amount of time in s2 which
may be undesirable (e.g. if s2 corresponds to the tree-filled area in Figure 6.1 (top)). The core
issue we hope to illustrate in this example is that by treating the empirical estimate of the
expert’s behavior as perfectly accurate, distribution matching can force the learner to take
incorrect actions to minimize training error, leading to test-time performance degradation.
This can lead to slow statistical rates ∝ H/

√
N .

Theorem 6.1.1. If H ≥ 4, there is a tabular IL instance on an MDP with 2 states and actions
on which with constant probability, the empirical moment matching learner (Definition 6.0.1)
incurs, Gap(πMM) ≳ H/

√
Nexp.

The proof of this result is deferred to appendix E.2. The proof of this lower bound exploits the
fact that the data generation process in the dataset is inherently random. Consider a slight
modification of the MDP instance shown in fig. 6.2b, where the reward function is 0 for t = 1.
For t ≥ 2, the transition function is absorbing at both states; the reward function equals 1 at
the state s1 for any action and is 0 everywhere else. Then, the expert state distribution at
time 2 and every time thereon is in uniform across the two states, {1/2, 1/2}. However, in
the dataset D, the learner sees a noisy realization of this distribution in the dataset of the
form {1/2− δ, 1/2 + δ} for |δ| ≈ ±1/

√
Nexp. Because of this noise, the empirical moment

matching learner may be encouraged to deviate from the expert’s observed behavior and
pick the red action at s2 as this results in a better match to the empirical state visitation
measures at every point in the rest of the episode - a prerequisite to matching the empirical
state-action visitation measure. The learner is willing to pick an action different from what the
expert played in order to better match the inherently noisy empirical state-action visitation
distribution.

Remark 6.1.1. Theorems 2.2.1 and 6.1.1 are separate lower bound IL instances against
the performance of BC and empirical moment matching. On the uniform mixture of the
two MDPs (i.e. deciding the underlying MDP based on the outcome of a fair coin), with
constant probability, both Gap(πBC) ≳ |S|H2/Nexp and Gap(πMM) ≳ H/

√
Nexp. On this
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mixture instance, training both BC and empirical moment matching and choosing the better
of the two is also statistically suboptimal.

Suboptimality of BC. Because it does not account for the covariate shift that results from
policy action choices, behavioral cloning can lead to a quadratic compounding of errors and
poor test time performance [76]. Consider, for example, the MDP in Figure 6.2a.

s1 s2 sn. . .

sx

Unif({s1, . . . , sn})

s1

expert
empirical
replay

s2 s3…

(a) The expert always takes the green action, which
places it in a uniform distribution over s1, . . . , sn. At
states where we have demonstrations (e.g. s1, s2),
both BC and MM will take the same, correct action.
However, at states where we have no demonstrations
(e.g. s3), MM will correctly take the green action to
get back to states with demonstration support, while
BC might not.

s1 s2

Unif({s1, s2})

s1

expert
empirical
replay

s2
(b) An MDP where the expert always takes
the green action that puts them in the uni-
form distribution over s1 and s2. Because of
full expert support, BC will learn to always
take this action at both states. However, if
the empirical state distribution is more tilted
towards s2, MM will take the incorrect red ac-
tion.

Figure 6.2: A deeper dive into the suboptimality of BC and MM

Let us assume that the expert always takes the green action, dropping them in a state in
the top row with uniform probability. In a small demonstration set, we might not see expert
actions at some states in the top row. At all such states, BC will have no idea of what to
do. In contrast, MM will take the green action as doing so might send the learner back to a
state with positive demonstration support. Thus for this problem, MM will recover the optimal
policy while BC will not. As we saw in Chapter 2, this leads to errors ∝ H2/N in the worst
case.

6.2 The Replay Estimator
The previous two examples show us that there exist simple MDPs for which BC or MM will not
recover the expert’s policy. This begs the question: is it possible to do better than both worlds
and recover the optimal policy on both problems with a single algorithm? We answered this
question in the tabular setting in Theorem 2.4.1 via Mimic-MD (Algorithm 2) which achieves
better performance than BC. We will establish a result showing that it outperforms MM later in
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this section. This improvement is possible because BC does not use any dynamics information
and MM does not leverage the knowledge of where expert actions are known. However, it is
unclear how to extend this approach beyond the tabular setting as the algorithm relies on a
large measure of states being visited in the demonstrations.

It turns out it is indeed possible to do so, via the technique of replay estimation (RE). In
its simplest form, RE builds on top of the insights of Mimic-MD (Algorithm 2) and involves
exploring in the environment by playing a cached expert’s action whenever possible and
re-starting the rollout if one ventures out of the support of the demonstration dataset. Then,
one appends these rollouts to the demonstration set, treating them as additional training
data – while biased, they are consistent with observed expert behavior. Intuitively, repeated
simulation has a smoothing effect on the training data as doing so marginalizes out the
statistical error that comes from the stochasticity of the dynamics. We can see this point
more explicitly by considering the above two MDP examples: in Figure 6.2b, repeatedly
playing the green action and appending these rollouts to the demonstration dataset would
bring us much closer to a uniform distribution over s1 and s2. Similarly, in Figure 6.2a, replay
estimation would bring us toward a uniform distribution over the states {s1, · · · , sn} in the
expert demonstrations.

We could then plug in this improved distribution estimate into the MM procedure eq. (6.1).
Notice how doing so would cause MM to be highly likely to recover the optimal policy
on both MDPs. For example, in Figure 6.2b, replay estimation would make the learner
much less likely to play the red action in s2. This fact is sufficient to establish statistical
optimality in the tabular setting and with linear function approximation, with an error rate
∝ min(H3/2/N,H/

√
N). In short, replay estimation is a practical technique for reducing

some of the finite-sample variance in expert demonstrations that enables MM to perform
optimally in the finite sample regime. We now provide some intuition on how to generalize
this approach to beyond the tabular setting.

Leaving the Tabular Setting. Mimic-MD was introduced in the tabular setting; this
characteristic property of the setting makes it easy to answer the question of “on what states
do we know the expert’s action? ”, since one can enumerate over all states efficiently. To enable
us to answer this question in more general settings (with infinite state spaces), we introduce
the notion of a membership oracle MEM : S → {0, 1}. Explicitly, MEM(s) = 1 for states where
we know the expert’s action well (e.g. states where we have lots of similar demonstrations)
and MEM(s) = 0 otherwise. We can then compute expert moments by splitting on the output
of the membership oracle:

Eπexp [f(s, a)] = Eπexp [f(s, a)1(MEM(s) = 1)]︸ ︷︷ ︸
(i)

+Eπexp [f(s, a)1(MEM(s) = 0)]︸ ︷︷ ︸
(ii)

(6.3)

Note that the indicators in (i) and (ii) are complements of each other, rendering the above
sum a valid estimate of the expert moment. As we know the expert action well wherever
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MEM(s) = 1, simulated rollouts of the BC policy approximates (i) well; on the other hand we
resort to a naive empirical estimate to approximate (ii), as we do not know enough about
the expert’s action at these states to accurately generate additional demonstrations via BC
rollouts. In general, we relax MEM to a soft membership oracle [106], in order to handle
uncertainty in how well we know the expert’s action at a given state. We proceed by first
analyzing the statistical properties of applying MM to this bipartite estimator before discussing
practical constructions of performant membership oracles.

Algorithm 6 Replay Estimation (RE)

1: Input: Expert demonstrations D, policy class Π, moment class F =
⊕H

t=1Ft, simulator
SIM, TRAIN which returns a membership oracle given a dataset

2: Partition the dataset D into D1 and D2

3: Using TRAIN, learn a membership oracle MEM on D1

4: Train πBC using behavior cloning on D1

5: Roll out πBC in SIM Nreplay times to construct a new dataset, Dreplay

6: Define prefix weights P(s1...t−1) =
∏t−1

t′=1 MEM(st′ , t
′)

7: Define,

Ê(f) = EDreplay

[
1

H

∑H

t=1
ft(st, at) (P(s1...t))

]
+ ED2

[
1

H

∑H

t=1
ft(st, at) (1− P(s1...t))

]
.

8: Return: πRE, a solution to the moment-matching problem:

argmin
π∈Π

sup
f∈F

Eπ

[
1

H

∑H

t=1
ft(st, at)

]
− Ê(f) (6.4)

To handle this challenge, we introduce the notion of a soft membership oracle [106], MEM :
S × [H]→ [0, 1] which captures the learner’s inherent uncertainty in the expert’s actions at a
state at each point in an episode. The soft membership oracle assigns high weight to a state
if BC is likely to closely agree with the expert policy and gives a lower weight to states where
BC is likely to be inaccurate. By this definition, if the membership oracle is consistently large
at all the states visited in a trajectory, we can be confident that a trajectory generated by BC
is as though it was a rollout from the expert policy. Formally, for any function g and time
t = 1, · · · , H, we have the decomposition,

Eπexp [g(st, at)] = Eπexp [g(st, at)P(s1···t)]︸ ︷︷ ︸
(i)

+Eπexp [g(st, at) (1− P(s1···t))]︸ ︷︷ ︸
(ii)

(6.5)

where P(s1···t) is defined as the prefix weight
∏t

t′=1 MEM(st′ , t
′). We need to use prefix weights

instead of the single-sample weights sketched in the previous section to account for the
probability of BC getting to the current state in the same manner the expert would have.
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Because of the high accuracy of BC on segments with high prefix weights, in eq. (6.5), (i)
can be approximated by replacing the expectation over πexp by that over πBC, i.e. replay
estimation. On the other hand, since the prefix weight is low on the remaining trajectories
in (ii), we know that BC is inaccurate, so we resort to using a simple empirical estimate to
estimate this term.

While we leave the particular choice of the soft membership oracle flexible, intuitively, states
at which BC closely agrees with the expert policy should be given high weight while where
those where BC is inaccurate should be weighted lower. In Section 6.3, we discuss several
practical approaches to designing such a soft membership oracle. We first prove a generic
policy performance guarantee for the outputs of our algorithm as a function of the choice of
MEM.

Theorem 6.2.1. Consider the policy πRE returned by Algorithm 6. Assume that πexp ∈ Π and
the ground truth reward function rt ∈ Ft, which is assumed to be symmetric (ft ∈ Ft ⇐⇒
−ft ∈ Ft) and bounded (For all ft ∈ Ft, ∥ft∥∞ ≤ 1). Choose |D1|, |D2| = Θ(N) and suppose
Nreplay →∞. With probability ≥ 1− 3δ,

Gap(πRE) ≲ L1 + L2 +
log (FmaxH/δ)

N
(6.6)

where Fmax ≜ maxt∈[H] |Ft|, and,

L1 ≜ H2 Eπexp

[∑H
t=1 MEM(st, t)DTV (πexp

t (·|st), πBC
t (·|st))

H

]
, (6.7)

L2 ≜ H3/2

√
log (FmaxH/δ)

N

∑H
t=1 Eπexp [1− MEM(st, t)]

H
.

We discuss a proof of this result in Appendix E.3 and include bounds when Nreplay is finite.

Remark 6.2.1. Note that Theorem 6.2.1 can be extended to infinite function families using
the standard technique of replacing |Ft| by, N (Ft, ξ, ∥ · ∥∞) the ξ log-covering number (metric
entropy) of Ft in the L∞ norm, for ξ = 1

NH
. Likewise, we may appropriately replace Fmax by

Nmax ≜ maxt∈[H]N (Ft,
1

NH
, ∥ · ∥∞). For ease of exposition here, we stick to the case where

Ft is finite.

The term L1 measures how accurate BC is on states from expert trajectories where MEM(st, t)
is large. Intuitively, if we set MEM(st, t) = 1 on states where BC is accurate and MEM(st, t) = 0
elsewhere, we would expect this term to be small. L2 can be thought of a measure of BC’s
coverage: it tells us how much of the expert’s visitation distribution we believe BC to be
inaccurate on. If BC has good coverage (i.e. 1− MEM(st, t) is small on expert trajectories), we
expect this term to be small.
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Prima facie, one might think that because L1 resembles the imitation gap of BC and L2

resembles that of MM, RE can only perform as well as the best of BC (∝ H2/N) and MM
(∝ H/

√
N) on a given instance. However, with a careful choice of MEM, one can achieve “better

than both worlds” statistical rates. In particular, since RE is a generalization of Mimic-MD of
[71], in the tabular setting, an appropriately initialized version of RE achieves the optimal
imitation gap of

min

{
|S|H3/2

N
,H

√
|S|
N

}
log

( |S|H
δ

)
and strictly improves over both BC and MM.

6.3 Practical Algorithm
When considering the implementation of RE (Alg. 6) in practice, two main questions arise:

1. How does one construct a membership oracle in practice, especially when action spaces
may be continuous?

2. How does one design good solvers for the moment matching problem in eq. (6.4)?

We now provide potential answers to both of these questions.

Membership Oracle. Recall from the interpretation of Theorem 6.2.1 that the member-
ship oracle MEM intuitively should capture how uncertain BC is about the expert’s action at a
state. For continuous action spaces, ideally one would assign the membership oracle at that
state based on an appropriate notion of distance between the action played by BC and that
played by the expert. For example, for a sigmoid function σ and constants µ, β,

MEMEXP(s, t) = σ

(
µ− ∥πBC(s)− πexp(s)∥2

β

)
, (6.8)

However, in the non-interactive setting where the demonstrator cannot be queried at states,
we can only approximate this quantity. The first approximation we propose is inspired by
Random Network Distillation (RND) [17], used by [100] to estimate the support of the expert
policy. We instead propose to use RND as a measure of the epistemic uncertainty of BC
about expert actions. That is,

MEMRND(s, t) = σ

µ−
∥∥∥πBC(s)− π̂BC(s)

∥∥∥
2

β

 , (6.9)

where π̂BC is a network trained to imitate the output of the classifier πBC on the states
observed in the demonstration dataset. To train π̂BC, we evaluate πBC on states observed in
the demonstration dataset, and plug this new dataset into the standard BC pipeline.
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Figure 6.3: Left: All variants of RE are able to nearly match expert performance while MM
struggles to make any progress. Center: We add i.i.d. noise to the environment to make the
control problem more challenging. RE is still able to match expert performance, unlike MM.
Right: We compute correlations between the idealized prefix weights of MEMEXP and the other
oracles and see MEMMAX correlate most.

We can also utilize other uncertainty measures like the disagreement of an ensemble to
measure epistemic uncertainty, which has previously shown success on various simulated
sequential decision making tasks [64]. Past work by [15] proposes to regularize the standard
BC (classification) error, by the variance of an ensemble of independently trained BC learners
at the states visited by the learner’s policy. This encourages the learner to mimic BC on the
states where the action predicted by all the policies in the ensemble are similar, and avoid
states where they are different (i.e. the variance at these states is high). In contrast, we
define,

MEMVAR(s, t) = σ

(
µ− Var(πBC(1)(s), . . . , πBC(k)(s))

β

)
, (6.10)

where {πBC(1), · · · , πBC(k)} are BC policies trained with different initializations, which produces
sufficient diversity when using deep networks as function approximators. Lastly, we can also
use the maximum difference across the ensemble as a measure of uncertainty:

MEMMAX(s, t) = σ

(
µ−maxi,j∈[k]

∥∥πBC
i (s)− πBC

j (s)
∥∥
2

β

)
, (6.11)

as suggested by the work of [48]. We compare these four choices below. For computing prefix
weights, we use the average of distances up till the current timestep. This modification serves
to improve the numerical stability of our method.

Empirical Moment Matching. We implement approximate Nash equilibrium computa-
tion of eq. (6.4) by running a no-regret learner against a best-response counterpart [93]. Our
approach is related to the GAIL algorithm of [44] which we improve in 4 ways: (i) we use
a general Integral Probability Metric [57] instead of the Jensen-Shannon Divergence used
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Figure 6.4: We see RE with MEMMAX improve the performance of MM on the Noisy
Walker2DBulletEnv and HopperBulletEnv tasks. We see RE (and MM) out-perform BC on the
initial-state-perturbed Walker2DBulletEnv and HopperBulletEnv tasks .

in the original paper which improves the representation power of the the discriminator, (ii)
we add in gradient penalties to the discriminator, which improves convergence rates [39],
(iii) we solve the entropy-regularized forward problem via Soft-Actor Critic [40] as the policy
optimizer, for improved sample efficiency, and (iv) we use optimistic mirror descent instead of
gradient descent as our optimization algorithm for both players, giving us faster convergence
to Nash equilibria, both in theory [97] and in practice [29]. Together, these changes lead to
an implementation which significantly out-performs the original, giving us a strong baseline
to compare against. We include an ablation to confirm this fact in Section 6.4. We emphasize
that the RE technique can be used to improve any online moment matching algorithm.

6.4 Experimental Results
We now quantify the empirical benefits of RE on several continuous control tasks from the
the PyBullet suite [24]. All the task we consider have long horizons (H ≈ 1000) and we
use relatively few demonstrations. (N ≤ 20). We set Nreplay as 100 BC rollouts (Line 4 of
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Algorithm 6). We test all four membership oracles from the previous section (MEMEXP as an
idealized target, MEMRND, MEMVAR, and MEMMAX as practical solutions). In Figure 6.3 (left), we
see that with only twelve trajectories, RE is able to reliably match expert performance for
all oracles considered, while MM is not. The environment considered in this experiment is
nearly deterministic, indicating that RE can help even when the environment is not stochastic.
We hypothesize that the randomness in the initial state is sufficient for replay estimation
to generate a significant improved estimate of the state-action visitation measure. This
improvement is especially interesting considering both of the hard examples we studied for
MM and BC in Section 6.1 were heavily stochastic.

Performance under perturbations. In Figure 6.3 (center), we add in i.i.d. noise to
the environment dynamics at each timestep, making it stochastic. This makes the problem
significantly more challenging than the standard version of the Walker task. RE is still able
to match expert performance, with MEMMAX working notably well. The correlation plot in
Figure 6.3 (right) shows us MEMMAX appears to be best correlated with the idealized prefix
weights, MEMEXP under the state distribution induced by BC. Because of its superior performance,
we use MEMMAX for the rest of our experiments. In the left half of Figure 6.4, we see RE improve
the performance of MM. In the right half, we see RE out-perform BC in responding to an
extremely tiny amount of noise added to the initial velocity of the agent (similar to the
experiments of [73]).

Prefix weight distributions. In fig. 6.5, we plot the distributions of the prefix weights
generated by each membership oracle on simulated BC rollouts on WalkerBulletEnv. Note
that MEMVAR is significantly overconfident in prefix weights compared to MEMEXP, as indicated by
the heavier right-tail. On the other hand, MEMRND and MEMMAX are less overconfident and better
overlap with the idealized prefix weights induced by MEMEXP. This aligns with the correlation
plot between the various membership oracles in Figure 6.3. Moreover, in terms of policy
performance, this further justifies the superior behavior of MEMMAX compared to MEMVAR.

Ablations

In Figure 6.6, we consider how each of the changes we described earlier in this chapter, lead
to improved performance of our RE baseline. The first, using a Wasserstein distance, leads to
lower expected return but is required for solving the full moment-matching problem – see
[93] for more details. Switching from PPO to the more sample-efficient SAC [40] leads to fast
learning. Adding in gradient penalties for discriminator stability [93, 39] also improves final
performance and learning speed. The last change we employ, using Optimistic Mirror Descent
[29] in both the discriminator and RL algorithm also (slightly) improves performance. To our
knowledge, we are the first to utilize this technique in the Imitation Learning literature and
reccomend it as best practice for future moment-matching algorithms. We refer interested
readers to the work of [97] for theoretical details of why OMD enables superior performance.
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Figure 6.6: We ablate the four key changes we made to off-the-shelf GAIL to improve
performance / theoretical guarantees. We see that each improved performance, with MM
significantly out-performing options with fewer changes. Our improvements upon MM with
the Replay Estimation technique are therefore improving upon an already strong baseline.

Experimental Setup

We begin with the hyperparameters for our Standard Bullet and Noisy Bullet experiments.

Expert

We use the Stable Baselines 3 [68] implementation of PPO [81] or SAC [40] to train experts
for each environment. For the most part, we use already tuned hyperparameters from [67] in
the implementation. The modifications we used are are shown in table 6.1.
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Parameter Value

buffer size 300000
batch size 256
γ 0.98
τ 0.02
Training Freq. 64
Gradient Steps 64
Learning Rate Lin. Sched. 7.3e-4
policy architecture 256 x 2
state-dependent exploration true
training timesteps 1e6

Table 6.1: Expert hyperparameters for Walker Bullet Task and Hopper Bullet Task

Noisy Experts

In addition to the default Bullet Tasks, we test performance of algorithms on noisy environ-
ments. Namely, we generate noisy expert data by re-training expert policies with Gaussian
noise added to the actions of the expert during the exploration phase while training. We then
re-generate expert data by sampling from the expert policies trained on noisy data to analyze
the performance of our method under stochasticity. Table 6.2 lists the standard deviation of
the (i.i.d.) noise we applied to the actions in the different environments.

env. Noise Distribution.

hopper N (0, 0.1)
walker N (0, 0.5)

Table 6.2: Noise we applied to all policies in each environment.

Baselines

We average over 5 runs and use a common architecture of 256 x 2 with ReLU activations
for both our method and the MM baseline we compare against. For each datapoint, the
cumulative reward is averaged over 10 trajectories. For all tasks, we train on {6, 12, 18}
expert trajectories with a maximum of 400k iterations of the optimization procedure. Table
6.3 shows the hyperparameters we used for MM. Empirically, smaller learning rates, large batch
sizes, and gradient penalties were critical for the stable convergence of our method.
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Parameter Value

Batch Size 2048*
Learning Rate Linear Schedule of 8e-3*
f Update Freq. 5000
f gradient target 0.4
f gradient penalty weight 10

Table 6.3: Learner hyperparameters for MM. * indicates the parameter was different for
the Hopper Initial State shift experiments (4096 for batch size and Linear Schedule of 8e-4,
respectively.).

We note that MM requires careful tuning of f Update Freq. for strong performance. We
searched over step sizes of {1250, 2500, 5000} and selected the one which achieved the most
stable updates. In practice, we recommend evaluating a trained policy on a validation set to
set this parameter. We also used similar parameters for training SAC, also from the Stable
Baselines 3 [68] implementation, as we did for training the expert policy. Table 6.4 shows
the choice of hyperparmeters we used for training SAC. We directly added in the optimistic
mirror descent optimizers [29] for both the critic and actor objectives of SAC. Table 6.5 shows
the learning hyperparameters for any BC policies used for generating simulated data for the
membership oracles. Table 6.6 shows the number of training steps per task we used for both
the baseline and our method.

Parameter Value

γ 0.98
τ 0.02
Training Freq. 64
Gradient Steps 64
Learning Rate Linear Schedule of 7.3e-4
policy architecture 256 x 2

Table 6.4: Leaning hyperparameters for the SAC component of MM

Algorithm hyperparameters

In this section, we use bold text to highlight sensitive hyperparameters. We use the same
network architecture choices as the MM baseline. For all environments, we generated 100
trajectories of simulated behavior cloning data to use with our method.



CHAPTER 6. TOWARD A PRACTICAL ALGORITHM 58

Parameter Value

entropy weight 0
l2 weight 0
training timesteps 1e5

Table 6.5: Learner hyperparameters for Behavioral Cloning

env. training steps

walker (no noise) 400000
walker (with noise) 400000
hopper (no noise) 400000
hopper (with noise) 400000

Table 6.6: Number of training steps for the different tasks

For all tasks, we rolled out 100 trajectories from a BC trained network to use with our
membership oracle. Table 6.7 shows how we partitioned our dataset between the BC training
set and the expert membership oracle dataset. We also use the full dataset for moment
matching, not just D2, as we found this lead to slightly better performance.

Expert Size D1 D2

6 trajs 4 2
12 trajs 10 2
18 trajs 16 2

Table 6.7: Partition of D into D1 and D2 based on the number of expert trajectories provided.
For the Noisy Walker experiments, we used 5, 10, 14 trajectories for D1 instead of the above.

Membership Oracle hyperparameters

For both MEMVAR and MEMMAX, we use 5 BC networks in the ensemble. We followed the exact
same parameters in Table 6.5 to train each BC imitator. Table 6.8 shows the choice of µ and
β values we used for each membership oracle.
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env parameter MEMEXP MEMRND MEMVAR MEMMAX
walker β 0.1 0.1 0.01 0.1
walker µ 0.33 0.22 0.015 0.35
hopper β 0.8 0.25 0.08 0.1
hopper µ 0.68 0.4 0.05 0.25

Table 6.8: Membership oracle hyperparameters across different environments

env parameter MEMMAX

walker β 0.01
walker µ 0.0001
hopper β 0.01
hopper µ 0.0001

Table 6.9: Membership oracle hyperparameters across different initial state shift environments.

Initial State Shift Experiments

We use demonstrations generated by an expert trained on the standard Bullet tasks but
subject the learner (both at train and test time) to a initial velocity perturbation of a
zero-mean Gaussian with variance (σ = 1e − 7). We refer interested readers to our code
for our precise method of injecting noise as we believe it might be of interest for future
experiments. In all demonstrations, the expert starts from rest. Despite this relatively small
shift, we see BC performance drop significantly, as is characteristic of real-world problems
where it significantly under-performs on-policy IL methods. All results are averaged over five
seeds and for all environments, we train BC for 1e5 steps (as well as for the query policies for
RE). For RE, we train 5 policies and use the MEMMAX approximate membership oracle. We use
the above parameters for MM for our base moment-matcher.
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Chapter 7

IL with parametric function
approximation

In practical settings, RL algorithms are deployed in state and action spaces which are
often continuous or unbounded. Carrying out IL efficiently requires imposing additional
assumptions. In this chapter, we go beyond the tabular setting and study IL in the presence
of function approximation. We will begin with the linear-expert setting (Definition 7.1.1)
where S and A may be unbounded, but the learner is provided a set of feature representations
of state-actions, and the expert policy is constrained to be realizable by a unknown linear
(in the feature representations) classifier. We will then extend these ideas to the setting of
general function approximation, extending beyond the linear setting.

7.1 Linear function approximation
In this section we study IL with linear function approximation. We first formally introduce
the linear-expert setting and show that it generalizes several settings which are interesting
and practically relevant.

Definition 7.1.1 (Linear-expert setting). In this setting, for each (s, a, t) tuple, the learner
is provided a feature representation ϕt(s, a) ∈ Rd. For each t ∈ [H] there exists an unknown
vector θ⋆t ∈ Rd such that ∀s ∈ S, πexp

t (s) = argmaxa∈A⟨θ⋆, ϕt(s, a)⟩.

Remark 7.1.1. The linear-expert setting (Definition 7.1.1) generalizes the linear-Q⋆ setting
with an optimal expert. Under this assumption, the optimal expert policy plays actions
according to π⋆

t (s) = argmaxa∈AQ⋆
t (s, a) = argmaxa∈A⟨θ⋆t , ϕt(s, a)⟩ for an unknown θ⋆t ∈ Rd.

Thus the expert policy is realizable by a linear multi-class classifier. Since the tabular setting
is a special case of the linear-Q⋆ setting with d = |S||A|, with features for each t chosen as
the standard basis vectors in Rd, the linear-expert setting with d = |S||A| generalizes the
tabular setting with an optimal expert.
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In the tabular setting, we showed in Theorem 2.1.3 that the expected imitation gap of BC is
O (|S|H2/N) which is also optimal in the no-interaction setting. We first introduce a version
of BC for the linear-expert setting.

Definition 7.1.2 (BC in the linear-expert setting). For t = 1, · · · , H, denote (D)t as a
collection of N state-action pairs visited at time t across trajectories in D. In the linear-expert
setting BC trains a policy π̂ as follows: for each t = 1, · · · , H, the learner trains a linear
multi-class classifier ĥt : S → A on the dataset (D)t using the algorithm of [25] and plays the
policy π̂t(s) = ĥt(s).

We next establish an upper bound on the imitation gap incurred by BC in the linear-expert
setting.

Theorem 7.1.1. In the linear-expert setting, with probability 1− δ, the imitation gap of the
policy π̂ output by BC in the linear-expert setting (Definition 7.1.2) is upper bounded with
probability 1− δ by Gap(π̂) ≲ H2(d+log(1/δ)) log(N)

N
.

Linear function approximation with parameter sharing

Definition 7.1.3 (Linear-expert setting with parameter sharing). This is a special case of
the linear-expert setting where θ⋆t is the same across t ∈ [H].

Remark 7.1.2. Linear-expert setting with dimension d is a special case of the linear-expert
setting with parameter sharing, with dimension dH. Define θ⋆ = (θ⋆1, · · · , θ⋆H) ∈ RdH and
ϕ′
t(s, a) = (0d, · · · , ϕt(s, a), · · · , 0d) ∈ RdH where ϕt(s, a) is embedded in the coordinates td+1

to (t + 1)d. Then, πexp
t (s) = argmaxa∈A⟨θ⋆t , ϕt(s, a)⟩ = argmaxa∈A⟨θ⋆, ϕ′

t(s, a)⟩, satisfying
Definition 7.1.1.

Our main contribution is to show that in the linear-expert setting with parameter sharing,
where the expert plays actions according to the same linear classifier at each time in an
episode, the imitation gap incurred by BC is Õ(dH

N
), breaking the quadratic dependence on H

suffered more generally (cf. Theorem 2.2.1). With such a parameter sharing assumption on
the expert, intuitively, each trajectory now provides H training examples to learn a single
classifier capturing the learner’s policy. This setting is motivated by the fact that often in
practice, BC is are implemented to learn a single classifier across the episode [23].
The proof of this result is derived by a supervised learning reduction of IL to sequence multi-
class linear classification where we learn linear classifiers from SH → AH . The supervised
learning reduction of [74] posits to learn separate classifiers from S → A or S × [H]→ A:
this fails to account for the shared parameter θ⋆ across time. While in both cases the resulting
policy is an ERM classifier, the imitation gap grows quadratically in H using the supervised
learning reduction. In contrast, using the multi-class classification algorithm of [25], we also
provide an algorithm π̂ with imitation gap growing linearly in H. To begin with, define Θ as
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the set of linear multi-class classifiers for sequences, of the form,

SH ∋ (s1, · · · , sH) 7→ argmax
a1,··· ,aH∈A

〈
θ,
∑H

t=1
ϕt(st, at)

〉
∈ AH . (7.1)

for θ ∈ Rd. Note that under the linear-expert assumption with parameter sharing, the expert’s
policy can be identified as a classifier in the family described above. At each state s, the
expert plays the action according to argmaxa∈A⟨θ⋆, ϕt(s, a)⟩ at time t. Summing over any
sequence of states s1, · · · , sH , the expert’s policy therefore satisfies (πexp

1 (s1), · · · , πexp
H (sH)) =

argmaxa1,··· ,aH ⟨θ⋆,
∑H

t=1 ϕt(st, at)⟩. This can be interpreted as a multi-class linear classifier
from SH → AH , in contrast to the usual implementation of BC which learns a sequence of clas-
sifiers from S → A. In particular, for each input sequence of states (s1, s2, · · · , sH) the expert
“classifier” outputs the label, which is a sequence of actions (πexp

1 (s1), π
exp
2 (s2), · · · , πexp

H (sH)).

Note that classifiers of the form eq. (7.1) indeed correspond to meaningful (Markovian)
policies which drawn actions at from a policy which is a function of only the current state
st. Indeed the map in eq. (7.1) is separable as

∑H
t=1 argmaxat∈A⟨θ, ϕt(st, at)⟩ where we carry

out the optimization for each variable a1, · · · , aH separately. By contradiction, the action
played by the classifier at any state st at time t must be argmaxat∈A⟨θ, ϕt(st, at)⟩ which is
Markovian. More importantly, such classifiers can be learned from the demonstration dataset
which essentially contains N i.i.d. examples of input-label pairs drawn from a “ground-truth”
classifier (i.e., πexp).

Based on these insights, we prove a bound on the imitation gap of the policy induced by BC
via the reduction of Theorem 2.1.1 [76]. The intuition is that in any trajectory where the
learner’s actions exactly match the expert’s actions, no suboptimality is incurred. In contrast,
in any trajectory where the learner plays an action different from the expert at some time,
the reward gap incurred is H.

Lemma 7.1.2. Consider any linear multi-class classifier θ̂ : SH → AH (in eq. (7.1))
with expected 0-1 loss, Eπexp [1(θ̂(s1, · · · , sH) ̸= (a1, · · · , aH))] ≤ γ. Then, the policy π̂

corresponding to the linear classifier θ̂, satisfies Gap(π̂) ≤ Hγ.

[25] provide a compression based algorithm for linear multi-class classification in the realizable
setting. Indeed, invoking [25, Theorem 5], it is possible to learn a linear classifier θ̂ ∈ Θ

such that the expected 0-1 loss of the classifier is upper bounded by (d+log(1/δ)) log(N)
N

given N
expert trajectories. In conjunction with Lemma 7.1.2 this results in an upper bound on the
imitation gap of the resulting policy.

Theorem 7.1.3. Consider a learner which uses BC (Definition 7.1.2) instantiated with the
compression based linear classification subroutine of [25]. Under the linear-expert assumption
with parameter sharing (Definition 7.1.3), with probability ≥ 1− δ, the imitation gap of the
learned policy π̂ satisfies,

Gap(π̂) ≲
H(d+ log(1/δ)) log(N)

N
.



CHAPTER 7. IL WITH PARAMETRIC FUNCTION APPROXIMATION 63

Remark 7.1.3. The linear dependence on the horizon can be interpreted in a different way:
with parameter sharing, the learner can aggregate information across time steps in an episode
to learn a single linear classifier with improved guarantees. The amount of training data the
learner has access to is effectively larger by a factor of H since each trajectory provides H
samples of data for learning a single classifier common across time. The reduction analysis of
[74] shows an imitation gap gap of H2ϵ for learners with expected 0-1 loss under the expert
state distribution upper bounded by ϵ. If data can be aggregated across time to learn a single
parameter, the expected 0-1 loss can be brought down by a factor of H, showing that it is
possible to achieve imitation gap scaling linearly on the length of the horizon.

The results in this section can also be extended to more general forms of function approxima-
tion, such as bounded Natarajan dimension classes, as considered in [28]. We will skip past
this discussion and move on to studying the known-transition setting.

7.2 Function approximation with known transitions
In this section, we will study IL in the known-transition setting with general forms of function
approximation. Our discussion in Chapter 2 proposes the Mimic-MD approach which in effect
can be thought of as “simulating artificial trajectories” to improve the estimation power of
the learner. This connection is reminded to the reader below through the lens of uniform
expert value estimation introduced in Chapter 3: the problem of estimating what the value of
the unknown expert policy πexp is simultaneously under all reward functions belonging to
some class. Given a uniform expert value estimator J̃r(π

exp), which with probability 1− δ
(over the demonstration dataset and external randomness) for all reward functions r, satisfies
|Jr(πexp)− J̃r(π

exp)| ≤ ϵ, then the policy π̂ output by the following optimization problem (a
restatement of eq. (OPT)),

π̂ ← argmin
π

max
r

J̃r(π)− Jr(π) (OPT)

incurs imitation gap Gap(π̂) ≤ 2ϵ with the same probability 1− δ. [69] also show that this
objective is a convex program and can be approximately solved in an efficient manner in the
tabular setting. In this context, to execute the approach of simulating artificial trajectories,
observe that a learner can construct a good estimate of the expert’s value under some reward
function r by decomposing it as the sum of two parts:

J1
r (π

exp) = Eπexp

[∑H

t=1
rt(st, at)1(E)

]
, and J2

r (π
exp) = Eπexp

[∑H

t=1
rt(st, at)1(Ec)

]
. (7.2)

where E is the event that the all the states (s1, · · · , sH) visited in the trajectory are observed
in the demonstration dataset. The first term, J1

r , can be estimated to an arbitrary level
of accuracy for any reward function r by rolling out many artificial trajectories using πexp,
known at all states observed in the dataset. The remaining term, J2

r can be tackled using
a simple empirical estimate, as explained below. The event Ec guarantees that states in a
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trajectory are visited are observed in the dataset D (where the expert’s policy is known).
Therefore, by holding out some trajectories in the dataset, the learner may carry out an
empirical estimate of J2

r (π
exp) using these trajectories. The error in uniform value estimation

precisely stems from the error incurred by the empirical estimate, which is shown to be
O(|S|H3/2/N) in [70], translating to the imitation gap of the policy π̂ in (OPT).

It is a natural question to ask whether this approach of simulating artificial trajectories
can be applied when state and action spaces may be unbounded, such as with function
approximation. To effectively use such an approach, the learner should be able to infer the
expert’s action at a large fraction of states in spite of observing the expert’s actions only on a
measure-0 subset of states. This will be the critical discussion of this section, but prior to
jumping in, we will set up the formulation we consider.

Definition 7.2.1 (IL with function-approximation). In this setting, for each t ∈ [H], there
is a parameter class Θt ⊆ Bd

2, the unit L2 ball in d dimensions, and an associated function
class {fθt : θt ∈ Θt}. For each t ∈ [H] there exists an unknown θEt ∈ Θt such that ∀s ∈ S,

πexp
t (s) = argmax

a∈A
fθEt (s, a). (7.3)

Lipschitz parameterization

We impose a condition on the nature of the parameterization of the function classes. The
“Lipschitz parameterization” condition can be interpreted as saying that a small change to
the underlying classifier does not all of a sudden change the label of a large mass of points.
In particular, points which are classified with a large enough “margin” continue to stay in the
same class even if the underlying classifier/parameter is perturbed.

Definition 7.2.2 (Lipschitz parameterization). A function class G = {gθ : θ ∈ Θ} where
gθ(·) : X → R is said to satisfy L-Lipschitz parameterization if, ∥gθ(·)−gθ′(·)∥∞ ≤ L∥θ−θ′∥2.
In other words, for each x ∈ X , gθ(x) is an L-Lipschitz function in θ, in the L2 norm.

Assumption 7.2.1. For each t, the class {fθt : θt ∈ Θt} is L-Lipschitz in its parameterization,
θt ∈ Θt.

Recall that BC essentially trains an offline classification algorithm on the demonstration
dataset to predict actions. Moreover, the reduction of [76] (i.e., Theorem 2.1.1) bounds
the imitation gap of the resulting policy in terms of the 0-1 generalization error of the
learned classifier. In order to extend RE (which uses the transition of the MDP) to deal with
parametric function approximation, and show error guarantees which surpass that achieved
by BC, we assume that the learner has access to a slightly stronger offline classification oracle,
which, given access to a dataset of classification examples, returns an approximate version of
the underlying ground truth parameter. More formally,
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Assumption 7.2.2 (Offline classification oracle). We assume that the learner has access
to a multi-class classification oracle, which given n examples of the form, (si, ai) where
si

i.i.d.∼ D and ai = argmaxa∈A fθ⋆(s
i, a), returns a θ̂ ∈ Θ such that, with probability ≥ 1− δ,

∥θ̂ − θ⋆∥2 ≤ EΘ,n,δ.

Remark 7.2.1. We will assume that a classification oracle satisfying Assumption 7.2.2 (trained
on a slice of the demonstration dataset at each time t) is used by RE to train the BC policy in
Line 3 of Algorithm 6. We denote the resulting offline classifiers as θ̂BC = (θ̂BC

1 , · · · , θ̂BC
H ).

A careful reader might note that Assumption 7.2.2 asks for a slightly stronger requirement than
just finding a classifier with small generalization error (which need not be close to the ground
truth θ⋆). The generalization error, i.e. Prs∼D

[
argmaxa∈A fθ⋆(s, a) ̸= argmaxa∈A fθ̂(s, a)

]
in

the notation of Assumption 7.2.2, was previously studied in [27] for multi-class classification.
The authors show that up to log-factors in the number of classes (i.e. the number of actions),
the Natarajan dimension characterizes the generalization error of the best learner, which
scales as Θ(1/n) given n classification examples. Under certain assumptions on the input
distribution and the function family (e.g. for linear families, which we study in Section 7.3),
we later show that the generalization error guarantee can be extended to approximately
learning the parameter as well (up to problem dependent constants).
We are now ready to define the membership oracle under which we study RE below,

MEM(s, t) =

{
+1 if ∃a ∈ A such that, ∀a′ ∈ A, fθ̂BC

t
(s, a)−fθ̂BC

t
(s, a′) ≥ 2LEΘt,N,δ/H

0 otherwise.
(7.4)

The intuitive interpretation of MEM is that, state which are classified by BC as some action
with a significant margin are assigned as +1, and the remaining states are assigned as 0 by
the membership oracle.
Finally, we impose an assumption on the IL instances we study. We assume that the
classification problems solved by BC at each t ∈ [H] satisfy a margin condition.

Assumption 7.2.3 (Weak margin condition). For t ∈ [H] and θ ∈ Θt, define aθs =
argmaxa∈A fθ(s, a) as the classifier output on the state s. The weak margin condition with
parameter µ > 0 assumes that for each t, there is no classifier θ ∈ Θt such that for a large
mass of states, fθ(st, aθst)−maxa̸=aθst

fθ(st, a), i.e. the “margin” from the nearest classification
boundary, is small. Formally, the weak-margin condition with parameter µ states that for any
η ≤ 1/µ,

∀θ ∈ Θt, Pr
πexp

(
fθ(st, a

θ
st)− max

a̸=aθst

fθ(st, a) ≥ η

)
≥ e−µη. (7.5)

The weak margin condition only assumes that there is at least an exponentially small (in η)
mass of states with margin at least η. A smaller µ indicates a larger mass away from any
decision boundary.
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Remark 7.2.2. Note that the weak margin condition is the multi-class extension of the
Tsybakov margin condition of [53, 8] defined for the binary case. In particular, in eq. (7.5),
we may replace the RHS by 1 − µη, or 1 − (µη)α for α > 0 to get different analogs of the
margin condition and the main guarantee, Theorem 7.2.1, as we discuss in Appendix F.2.
Remark 7.2.3. It suffices to assume that for each t, eq. (7.5) is only true for the singular
choice θ = θ̂BC

t ∈ Θt, for our main guarantee (Theorem 7.2.1) to hold.
Under the previously discussed assumptions, we provide a strong guarantee for RE which
uses the classification oracle in Assumption 7.2.2 to define BC, and the membership oracle as
defined in eq. (7.4).

Theorem 7.2.1. For IL with parametric function approximation, under Assumptions 7.2.1
to 7.2.3, appropriately instatiating RE ensures that with probability ≥ 1− 4δ,

Gap(πRE) ≲ H3/2

√
µL log (FmaxH/δ)

N

∑H
t=1 EΘt,N,δ/H

H
+

log (FmaxH/δ)

N
. (7.6)

where Fmax = maxt∈[H] |Ft| is as defined in Theorem 6.2.1.
Note that we impose the same assumptions on the policy and discriminator classes employed
by RE as in Theorem 6.2.1. Namely, (i) πexp ∈ Π, and for each t ∈ [H], (ii) the ground truth
reward function rt ∈ Ft, (iii) Ft is symmetric, i.e. ft ∈ Ft ⇐⇒ −ft ∈ Ft, and (iv) Ft is
1-bounded, i.e. for all ft ∈ Ft, ∥ft∥∞ ≤ 1.

As discussed later in Remark 6.2.1, this result can be extended to infinite discriminator
families by replacing |Ft| by the appropriate log-covering number of Ft in L∞ norm.
The intuition behind the result is as follows. By Assumption 7.2.2, the learner is able
to approximately learn θ̂BC

t ≈ θ⋆t at each time t. Since the discriminator functions are
Lipschitz (Assumption 7.2.1) and there are not too many states classified with small margin
(Assumption 7.2.3), this means that the states classified with large margin by θ̂BC

t are correctly
classified by θEt , while the states which are close to a decision boundary (induced by BC) may
be misclassified by BC. Therefore, we may set the membership oracle as +1 on states classified
by BC with a large margin, and 0 on states classified with small margin. In particular, the
membership oracle considered in eq. (7.4) ensures that on states at which MEM(s, t) > 0,
πexp
t (·|s) = πBC

t (·|s). Likewise, the states at which MEM(s, t) = 0 correspond to the states
which are classified by BC with a small margin (i.e. are close to a decision boundary), the
probability mass of which is bounded by the weak margin condition, Assumption 7.2.3. All in
all, in the language of Theorem 6.2.1, these results ensure that L1 = 0 and L2 is significantly
smaller than H3/2

√
log(FmaxH/δ)/N which essentially results in the proof of Theorem 7.2.1.

7.3 Interpretations of Theorem 7.2.1
In order to interpret Theorem 7.2.1, we draw the connection back with BC and MM. As
discussed earlier, [76] prove the best known general statistical guarantee for BC in terms of
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the generalization error of the underlying classifiers. In particular, with probability ≥ 1− δ,

Gap(πBC) ≲ Gap(πBC) ≜ H2

∑H
t=1 Eclass

Θt,N,δ/H

H
(7.7)

Here, Eclass
Θ,n,δ denotes the best achievable 0-1 generalization error for multi-class classification:

in the notation of Assumption 7.2.2, there exists a learner θ̂, such that on any classification
instance Es∼D[maxa∈A fθ̂(s, a) ̸= maxa∈A fθ⋆(s, a)] ≤ Eclass

Θ,n,δ with probability ≥ 1− δ. On the
other hand, the best general statistical guarantee for MM is,

Gap(πMM) ≲ Gap(πMM) ≜ H

√
log (FmaxH/δ)

N
(7.8)

(we can extend to infinite classes using the covering number argument in Remark 6.2.1).

Now, whenever the statistical error for parameter estimation matches with the best statistical
error for generalization in offline classification, namely, EΘ,n,δ ≍ Eclass

Θ,n,δ up to problem dependent
constants, the guarantee in Theorem 7.2.1 can be reinterpreted as,

Gap(πRE) ≲ Gap(πMM)

√
Gap(πBC)

H
. (7.9)

The interpretation of this result is that, whenever BC admits a non-trivial gap on the imitation
gap, namely Gap(πBC)≪ H, the performance gap in eq. (7.9) is ≪ Gap(πMM). Furthermore,
from [27], for multi-class classification,

Eclass
Θ,n,δ ≲

(nΘ + log(1/δ)) log(n) log |A|
n

where nΘ denotes the Natarajan dimension of the function class {fθ : θ ∈ Θ} and A denotes
the set of labels (which here, are the set of actions). Therefore, from eq. (7.9), we get the
guarantee,

Gap(πRE) ≤ Õ

H3/2

N

(
log(Fmax)×

∑H
t=1 nΘt

H

)1/2
 , (7.10)

whenever the underlying classification problem allows Eclass
Θ,n,δ ≍ EΘ,n,δ up to problem dependent

constants. Note that the polylogarthmic factors in eq. (7.10) are in |A|, N and 1/δ. Under
these conditions, we essentially recover a performance guarantee for RE which scales as
H3/2/N . This improves on the quadratic H dependence incurred by BC, and is optimal in the
worst case, even in the tabular setting with just 3 states, as shown in [69]. This guarantee
also suggests a natural measure of complexity for IL - the average Natarajan dimension,∑H

t=1 nΘt

H
multiplied by the maximum log-covering number of the discriminator (or reward)

class, log(Fmax).
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From this discussion, an important problem stands out: For what kind of classification
problems is EΘ,n,δ ≍ Eclass

Θ,n,δ? While we do not answer this question in its full generality,
focusing on the special case of linear classification and provide a set of sufficient conditions
under which EΘ,n,δ ≍ Eclass

Θ,n,δ up to problem dependent constants. In conjunction with eq. (7.10),
this results in a novel guarantee for IL with linear function approximation, under significantly
weaker conditions compared to prior work.

Revisiting the linear-expert setting: known transitions

In this section, we provide an upper bound on the imitation gap of RE in the presence of linear
function approximation, which we defined previously in Definition 7.1.1 as the linear-expert
setting. This setting will turn out to be a special case of the case of IL under parametric
function approximation with Lipschitzness. In this section, we will make the additional
assumption that the the reward function admits a linear parameterization.

Definition 7.3.1 (Policy induced by a linear classifier). Consider a set of vectors θ =
{θ1, · · · , θH} where each θt ∈ Rd. A policy πθ is said to be induced by the set of linear
classifiers defined by θ if for all s ∈ S and t ∈ [H],

πθ
t (s) = argmax

a∈A
⟨θt, ϕt(s, a)⟩. (7.11)

By this definition, πexp = πθE .

Definition 7.3.2 (Linear reward setting). Define Rlin,t as the family of linear reward functions
(defined at the single time-step t) which takes the form of an unknown linear function of a
set of the features,

Rlin,t =
{
{rt(s, a) = ⟨ω, ϕt(s, a)⟩ : s ∈ S, a ∈ A} : ω ∈ Rd, ∥ω∥2 ≤ 1

}
. (7.12)

For the rewards to be 1-bounded, we assume the features satisfy ∥ϕt(s, a)∥2 ≤ 1. Define
Rlin = ⊗H

t=1Rlin,t. The linear reward setting assumes the true reward function of the MDP,
r ∈ Rlin.

Remark 7.3.1. Note that our guarantees in Theorem 7.3.1 hold even if the set of features in
the definition of Rlin,t in Definition 7.3.2 differ from those used to define the expert classifier
Assumption 7.2.2. Regardless, we assume that both sets of features are known to the learner.

In the case of parametric function approximation with Lipschitzness, note that we assume
both the weak margin condition (Assumption 7.2.3), as well as the existence of a linear
classification oracle (Assumption 7.2.2). Below, in the linear expert case, we show a sufficient
condition which implies both of these conditions. In particular, define the positive hemisphere
with pole at θ, i.e. {x : Bd

2 : ⟨θ, x⟩ ≥ 0} as Hd
θ. We abbreviate Hd

θEt
as Hd

t .
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Assumption 7.3.1 (Bounded density assumption). For each time t ∈ [H], state s ∈ S, action
a ∈ A and θ ∈ Θt, define ϕt(s, a) = ϕt(s, a

θ
s)− ϕt(s, a) where aθs = argmaxa′∈A⟨θ, ϕt(s, a

′)⟩.
Consider the measure Prπexp

(
∃a ̸= aθst : ϕt(st, a) ∈ ·

)
. Let d

E

t represent the Radon-Nikodym
derivative of this measure against the uniform measure on Hd−1

t . The bounded density
assumption states that for each t ∈ [H] there are constants cmin > 0 and cmax <∞ such that
for all x ∈ Hd

t ,

cmin ≤ d
E

t (x) ≤ cmax. (7.13)

We now state the main result we prove for IL in the linear setting.

Theorem 7.3.1. Assuming the linear-expert and linear reward setting (Definitions 7.1.1
and 7.3.2) and under the bounded density assumption (Assumption 7.3.1), appropriately
instantiating RE ensures that with probability ≥ 1− δ,

Gap(πRE) ≲

√
cmax

cmin

H3/2d5/4 log
3
2 (NdH/δ)

N
.

7.4 Discussion and open problems
In this chapter we proved a general meta theorem (Theorem 6.2.1) bounding the imitation
gap of the policies produced by the algorithm in terms of the parameter estimation error
in offline classification. This results in a guarantee for IL with the optimal dependence on
the horizon, H, and number of expert rollouts available, N , under the assumption that the
parameter estimation guarantee matches the generalization guarantee for the underlying
offline classification problem. Under these conditions, the analysis also suggests a natural
measure of complexity for IL depending on the average Natarajan dimension and log-covering
number (metric entropy) of the discriminator class. It is a significant open question to
extend the analysis of RE to depend on less stringent classification oracles, and only require
constructing learners with bounded generalization error, as required by BC. There are reasons
this may not generically be possible for classes with bounded VC dimension, but it is plausible
that such guarantees can be extended under stronger assumptions. We motivate this briefly
below.

Drawbacks of the offline classification oracle (Assumption 7.2.2). Note that the
offline classification oracle we consider in Assumption 7.2.2 requires a learner with bounded
parameter estimation error, compared to one with bounded generalization error which is
typically studied in practice [27]. While under certain conditions, both measures of error
have the same asymptotic scaling in n and the Natarajan dimension nΘ, in general they
can be different. For instance, consider the case of linear (binary) classification under very
poor coverage: denoting the true classifier as θ⋆ ∈ Rd, and with the input distribution as
s ∼ Unif({e1,−e1}) where e1 = (1, 0, · · · , 0) ∈ Rd. Then, given n = Ω(log(1/δ)) samples,
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there exists a learner which with probability 1− δ learns a classifier with 0 generalization
error. However, regardless of the number of samples n, no learner can guarantee to learn
θ⋆, since the remaining d− 1 coordinates of θ⋆ aside from θ⋆1 do not affect the labels of the
inputs, which are what are observed by a learner. Thus, under poor coverage, the parameter
θ⋆ cannot be learned consistently even though there exists a trivial classifier with bounded
generalization error.

Designing practical algorithms which do not require parameter tuning. The
membership oracle resulting from the analysis in theory (eq. (7.4)) as well as those implemented
in practice (eqs. (6.8) to (6.11)) require tuning either the margin threshold 2LEΘt,N,δ/H , or
the scale parameters µ and β. An interesting next direction would be to develop an algorithm
which uses data dependent scales (e.g. [40]) to reduce the effort required to fine-tuning these
parameters.
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Appendix A

Proof of main results in Chapter 2

We provide proofs for the theorems introduced in Chapter 2 within this appendix. We push
the proofs of some of the results invoked in the first few sections later on to Appendices A.3
to A.7.

A.1 No-interaction setting with a determinstic expert
In this section, we discuss the no-interaction setting where the learner is provided access to a
dataset D of N trajectories generated by rolling out the expert’s policy πexp, and is otherwise
not allowed to interact with the MDP. Our goal is to provide guarantees on the expected
imitation gap of a policy that carries out BC when the expert’s policy is deterministic. As
stated previously, we realize this guarantee by first bounding the population 0-1 risk of BC
(Theorem 2.1.2) and then invoking the black box reduction guarantee from [74].

Analysis of expected imitation gap of BC

We first discuss the proof of Lemma 2.1.2 and Eq. (2.1.3.1), which bounds the expected
imitation gap of a policy carrying out BC, assuming the expert’s policy is deterministic.
Recall that the population 0-1 loss is defined as,

L0 -1(π̂) =
1

H

∑H

t=1
Est∼f t

πexp

[
Ea∼π̂t(·|st)

[
1(a ̸= πexp

t (s))
]]
. (A.1)

where f t
πexp is the state distribution induced at time t rolling out the expert’s policy πexp. We

consider a learner π̂ that carries out BC given the demonstration dataset D in advance. In
particular, the learner’s policy π̂ is a member of ΠBC

det(D) since it exactly mimics the expert
on the states that were visited at each time in some trajectory in the demonstration dataset.
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Thus the contribution to the population 0-1 risk comes from the remaining states s ∈ St(D),

L0 -1(π̂) ≤
1

H

∑H

t=1
Est∼f t

πexp

[
1(st ̸∈ St(D))

]
, (A.2)

=
1

H

∑H

t=1

∑
s∈S

Pr
πexp

[st = s]1(s ̸∈ St(D)). (A.3)

Taking expectation on both sides gives,

E [L0 -1(π̂)] ≤
1

H

∑H

t=1

∑
s∈S

Pr
πexp

[st = s] Pr(s ̸∈ St(D)). (A.4)

In Lemma A.1.1 we show that this expression is bounded by ≲ |S|/N , which completes the
proof of the population 0-1 risk bound of BC in Theorem 2.1.2.

Lemma A.1.1. E
[∑H

t=1

∑
s∈S Prπexp [st = s] Pr[s ̸∈ St(D)]

]
≤ 4

9
|S|H
|D| .

As stated previously, we subsequently invoke the supervised learning reduction in [74, Theorem
2.1] to upper bound the expected imitation gap of a learner carrying out BC in Theorem 2.1.3.1.
The previous discussion is also amenable for establishing a high probability bound on the
expected imitation gap of BC. Indeed, consider the upper bound on the population 0-1 risk
of BC in eq. (A.3), which is a function of the demonstration dataset D. It captures the
probability mass under the expert’s state distribution contributed by states unobserved in
the demonstration dataset.

High probability bounds on BC

It turns out that the contribution to the upper bound on population 0-1 risk of BC in eq. (A.3)
is captured by the notion of “missing mass” of the time-averaged state distribution under
the expert’s policy. The high probability result for BC (Theorem 2.1.3.2) follows shortly by
invoking existing concentration bounds for missing mass.

Definition A.1.1 (Missing mass). Consider some distribution ν on X , and let XN i.i.d.∼ ν
be a dataset of N samples drawn i.i.d. from ν. Let nx(X

N) =
∑N

i=1 1(Xi = x) be the
number of times the symbol x was observed in XN . Then, the missing mass m0(ν,X

N) =∑
x∈X ν(x)1(nx(X

N) = 0) is the probability mass contributed by symbols never observed in
XN .

It turns out that the missing mass of an arbitrary discrete distribution admits sub-Gaussian
concentration. Invoking [54, Lemma 11] establishes the following concentration guarantee for
missing mass. A proof of the result is provided in Appendix A.3.

Theorem A.1.2. Consider an arbitrary distribution ν on X , and let XN i.i.d.∼ ν be a dataset
of N samples drawn i.i.d. from ν. Consider any δ ∈ (0, 1/10]. Then,

Pr

(
m0(ν,X

N)− E[m0(ν,X
N)] ≥ 3

√
|X | log(1/δ)

N

)
≤ δ. (A.5)
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Consider the upper bound to the population 0-1 loss in eq. (A.4). Observe that for each fixed
τ ∈ [H],

∑
s∈S Prπexp [sτ = s]1(s ̸∈ Sτ (D)) is the missing mass of f τ

πexp , given N samples from
the distribution. Recall that f τ

πexp is the distribution over states at time τ rolling out πexp.
Thus we can invoke the concentration bound from Theorem A.1.2 to prove that the upper
bound on 0-1 loss in eq. (A.4) concentrates. We formally state this result in Lemma A.1.3.

Lemma A.1.3. For any δ such that δ ∈ (0,min{1, H/10}], with probability ≥ 1− δ over the
randomness of the demonstration dataset D,

1

H

∑H

τ=1

∑
s∈S

Pr
πexp

[sτ = s]1(s ̸∈ Sτ (D)) ≤ 4|S|
9N

+
3
√
|S| log(H/δ)

N
. (A.6)

Plugging this result into eq. (A.4) provides an upper bound on the population 0-1 risk of BC.
Subsequently invoking [74, Theorem 2.1], we arrive at the high probability bound on Gap(π̂)
for BC in Eq. (2.1.3.2).

A.2 No-interaction setting with a stochastic expert
In this section we continue to discuss the no-interaction setting, but drop the assumption
that the expert plays a deterministic policy. We assume the expert plays a general stochastic
policy.

Analyzing expected imitation gap of Mimic-MD

In this section we discuss the proof of Theorem 2.3.2 which bounds the expected imitation
gap of Mimic-MD. Recall that the objective is to upper bound E[Gap(π̂)] when the learner
carries out Mimic-MD. The outline of the proof is to construct two policies πfirst and πorc−first

that are functions of the dataset D.
The policy πfirst is easy to describe: order the demonstration dataset arbitrarily, and at a state,
play the action in the first trajectory in D that visits it, if it exists. If no such trajectories
exist, the policy plays Unif(A). In particular, we show that the value of πfirst and Mimic-MD
are the same, taking expectation over the demonstration dataset D (Lemma A.2.1).
On the other hand, we consider an oracle policy πorc−first which is very similar. Indeed,
πorc−first first orders the demonstration dataset in the same manner as πfirst. At any state,
it too plays the action in the first trajectory in D that visits it, if it exists. However, if
such a trajectory does not exist, πorc−first simply samples an action from the expert’s action
distribution and plays it at this state. This explains the namesake of the policy, since it
requires oracle access to the expert’s policy. By virtue of choosing actions this way, we show
that the value of πorc−first in expectation equals J(πexp) (Lemma A.2.3).
At an intuitive level the elements of the proof seem to be surfacing: πorc−first matches πexp in
value, but is not available to the learner. However, it shares a lot of similarity to πfirst, which
in expectation matches π̂ in value, the policy we wish to analyze. Informally,

π̂ ⇐⇒ πfirst ≈ πorc−first ⇐⇒ πexp. (A.7)
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Thus to establish the bound, we carry out an analysis of J(πorc−first)− J(πfirst). Indeed we
show that since the two policies are largely the same, the learner is suboptimal only on the
trajectories where at some point a state is visited where the policies do not match. The final
element of the proof is to show that this event in fact occurs with low probability given an
demonstration dataset of sufficiently large size.
Before delving into the formal definitions of πfirst and πorc−first and other elements of the
proof, we introduce a modicum of relevant notation.

Notation. Let the trajectories in the demonstration dataset D be ordered arbitrarily as
{tr1, · · · , trN}. In addition, we denote each trajectory trn explicitly as {(sn1 , an1 ), · · · , (snH , anH)}.
For each state s ∈ S we define,

Nt,s = {n ∈ [N ] : snt = s} , (A.8)

as the (totally) ordered set of indices of trajectories in D which visit the state s at time t.
The policy π̂ returned by Mimic-MD samples an action from the empirical estimate of the
expert’s policy at each state wherever available. On the remaining states, the learner plays
the distribution Unif(A).
Given the ordered dataset D, we define the policy πfirst(D) as,

πfirst
t (·|s) =

{
δant if |Nt,s| ≥ 1, where n = min(Nt,s),

Unif(A) otherwise.
(A.9)

That is, πfirst(D) plays the action in the first trajectory that visits the state s at time t.

In order to analyze the expected imitation gap of π̂(D), we first show that π̂(D) and πfirst(D)
have the same value in expectation, and instead study the policy πfirst(D).

Lemma A.2.1. E[J(π̂(D))] = E[J(πfirst(D))].

With this result, we can write the expected imitation gap of the learner π̂ as,

E[Gap(π̂)] = J(πexp)− E[J(πfirst(D))]. (A.10)

We next move on to the discussion of πorc−first which is an oracle version of πfirst. Informally,
at any state πorc−first plays the action from the first trajectory that visits it in D, if available.
However on the remaining states instead of playing Unif(A), πorc−first samples an action from
the expert’s action distribution and plays it at this state. Thus, πorc−first is coupled with the
demonstration dataset D.

Prior to discussing πorc−first in greater depth, we first introduce some preliminaries. In
particular, we adopt an alternate view of the process generating the demonstration dataset D
which will play a central role in formally defining πorc−first. We mention that this approach is
inspired by the alternate view of Markov processes in [12].

To this end, we first define an “expert table” which is a fixed infinite collection of actions at
each state and time which the expert draws upon while generating the trajectories in D.
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Definition A.2.1 (Expert table). The expert table, T⋆ is a collection of random variables
T⋆

t,s(i) indexed by t ∈ [H], s ∈ S and i = 1, 2, · · · . Fixing s ∈ S and t ∈ [H], for i = 1, 2, · · · ,
each T⋆

t,s(i) is drawn independently ∼ πexp
t (·|s).

In a sense, the expert table fixes the randomness in the expert’s non-determinstic policy. As
promised, we next present the alternate view of generating the demonstration dataset D,
where the expert sequentially samples actions from the expert table at visited states.

Lemma A.2.2 (Alternate view of generating D). Generate a dataset D of N trajectories as
follows: For the nth trajectory trn, the state sn1 is drawn independently from ρ. The action
an1 is assigned as the first action from T⋆

1,sn1
(·) that was not chosen in a previous trajectory.

Then the MDP independently samples the state sn2 ∼ P1(·|sn1 , an1 ). In general, at time t the
action ant is drawn as the first action in T⋆

t,snt
(·) that was not chosen at time t in any previous

trajectory n′ < n. The subsequent state snt+1 is drawn independently ∼ Pt+1(·|snt , ant ).
The probability of generating a dataset D = {tr1, · · · , trN} by this procedure is =

∏N
n=1 Prπexp [trn].

This is the same as if the trajectories were generated by independently rolling out πexp for N
episodes.

Proof. Starting from the initial state sn1 ∼ ρ, the probability of trn = {(s1, a1), · · · , (sH , aH)}
is,

Pr
(
trn = {(s1, a1), · · · , (sH , aH)}

)
= ρ(s1)

(∏H−1

t=1
πexp
t (at|st)Pt(st+1|st, at)

)
πexp
H (aH |sH).

This relies on the fact that each action in T⋆
t,s(·) is sampled independently from πexp

t (·|s).
Carrying out the same calculation for the n trajectories jointly (which we avoid to keep
notation simple) results in the claim. The important element remains the same: each action
in T⋆

t,snt
(·) is sampled independently from πexp

t (·|snt ).

Note that the process in Lemma A.2.2 generates a dataset having the same distribution as if
the trajectories were generated by independently rolling out πexp for N episodes. Without
loss of generality we may therefore assume that the expert generates D this way. We adopt
this alternate view to enable the coupling between the expert’s and learner’s policies.

Remark A.2.1. We emphasize that the infinite table T⋆ is not known to the learner and is
only used by the expert to generate the dataset D. However, by virtue of observing the
trajectories in D the learner is revealed some part of T⋆. In particular at the state s and
time t, the first |Nt,s| actions in T⋆

t,s are revealed to the learner.

Recall that πfirst
t (·|s) defined in eq. (A.9) deterministically plays the action in the first

trajectory in D that visits a state s at time t, if available, and otherwise plays the uniform
distribution Unif(A).
Using the alternate view of generating D in Lemma A.2.2, this policy can be equivalently
defined as one which plays the action at the first position in the table T⋆ if observed, and
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otherwise plays the uniform distribution.

πfirst
t (·|s) =

{
δT⋆

t,s(1)
if |Nt,s| > 0,

Unif(A), otherwise.
(A.11)

We now define the oracle policy πorc−first, which plays the first action at each time t ∈ [H] at
each state s ∈ S. That is,

πorc−first
t (·|s) = δT⋆

t,s(1)
. (A.12)

With this definition, we first identify that the expected value of πorc−first equals J(πexp).

Lemma A.2.3. J(πexp) = E
[
J(πorc−first)

]
.

Plugging this into eq. (A.10), we see that,

E[Gap(π̂)] = E
[
J(πorc−first)− J(πfirst)

]
. (A.13)

Observe that πorc−first and πfirst are in fact identical on all the states that were visited at least
once in the demonstration dataset (i.e. having |Nt,s| > 0). Therefore, as long as the state s
visited at each time t in an episode has |Nt,s| > 0, both policies collect the same cumulative
reward.

Lemma A.2.4. Fix the expert table T⋆ and the demonstration dataset D. Define Ec as the
“good” event that the trajectory under consideration only visits a state st at each time t ∈ [H]
such that |Nt,st | > 0, i.e. states that have been observed in the demonstration dataset D at
time t. Then,

Eπfirst

[(∑H

t=1
rt(st, at)

)
1 (Ec)

]
= Eπorc−first

[(∑H

t=1
rt(st, at)

)
1 (Ec)

]
. (A.14)

Proof. Both policies are identical on the states such that |Nt,s| > 0. The event Ec guarantees
that only such states are visited in a trajectory. Therefore both expectations are equal.

With these preliminaries, we have most of the ingredients to prove the bound on the expected
imitation gap of Mimic-MD. To this end, from eq. (A.13) we see that,

Gap(π̂) = Eπorc−first

[∑H

t=1
rt(st, at)

]
− Eπfirst

[∑H

t=1
rt(st, at)

]
. (A.15)

Subsequently invoking Lemma A.2.4, we see that

Gap(π̂) = Eπorc−first

[(∑H

t=1
rt(st, at)

)
1 (E)

]
− Eπfirst

[(∑H

t=1
rt(st, at)

)
1 (E)

]
,

≤ Eπorc−first

[(∑H

t=1
rt(st, at)

)
1 (E)

]
, (A.16)

≤ H Pr
πorc−first

[E ] , (A.17)
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where in the last inequality we use the fact that pointwise 0 ≤ rt ≤ 1 for all t ∈ [H]. Taking
expectation gives the inequality,

E[Gap(π̂)] ≤ HE[ Pr
πorc−first

[E ]]. (A.18)

In Lemma A.2.5 we show that E[Prπorc−first [E ]] is upper bounded by |S|H ln(N)/N , which
completes the proof.

Lemma A.2.5. E [Prπorc−first [E ]] ≤ |S|H ln(N)
N

.

Although the oracle policy πorc−first and the dataset D are coupled, the key intuition behind
showing that the event E occurs with low probability is that: it is not possible that, in
expectation πorc−first visits some state s with high probability, but the same state s visited in
the dataset D with low probability. This is by virtue of the fact that in expectation πorc−first

matches πexp which is the policy that generates D.

Known-transition setting under deterministic expert policy

In this section, we describe the proof of Eq. (2.4.1.1) which upper bounds the expected
imitation gap of Mimic-MD (Algorithm 2).
Recall that Mimic-MD, true to its name, mimics the expert on the states observed in half the
dataset D1. By virtue of the learner mimicking the expert on states visited in D1, we show
that the learner is suboptimal only upon visiting a state unobserved in D1 at some point in
an episode.

Lemma A.2.6. Define E≤t
D1

= {∃τ < t : st ̸∈ St(D1)} as the event that the policy under
consideration visits some state at time t that no trajectory in D1 has visited at time t. Fixing
the expert datset D, for any policy π̂BC ∈ ΠBC

det(D1),

Gap(π̂BC) =
∑H

t=1

{
Eπexp

[
1(E≤t

D1
)rt(st, at)

]
− Eπ̂(D)

[
1(E≤t

D1
)rt(st, at)

] }
. (A.19)

Simplifying this result further using the fact that the reward function is bounded in [0, 1]
results in eq. (2.8), recall which we used as a basis for motivating the design of Mimic-MD in
Section 2.4. In particular, any policy π̂BC that exactly mimics the expert on states observed
in D1 has imitation gap bounded by,

Gap(π̂BC) ≤
∑
s∈S

∑
a∈A

∑H

t=1

∣∣∣Pr
πexp

[
E≤t
D1
, st = s, at = a

]
− Pr

π̂

[
E≤t
D1
, st = s, at = a

]∣∣∣ .
The minimum distance functional considered in Mimic-MD simply replaces the population
term Prπexp [E≤t

D1
, st = s, at = a] by its empirical estimate computed using the dataset D2.

We follow the standard analysis of minimum distance function estimators using the triangle
inequality, which in effect reduces the analysis to a question of convergence of the empirical
estimate of Prπexp [E≤t

D1
, st = ·, at = ·] to the population in ℓ1 distance.
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Before stating the formal lemma, recall that

T D1
t (s, a) ≜

{
{(s1, a1), · · · , (sH , aH)}

∣∣∣st = s, at = a, ∃τ < t : sτ ̸∈ Sτ (D1)
}
. (A.20)

is defined as the set of trajectories that (i) visits the state s at time t, (ii) plays the action a
at this time, and (iii) at some time τ ≤ t visits a state unobserved in D1.

Lemma A.2.7. Consider any policy π̂ε which solves the optimization problem in (OPT-MD)
to an additive error of ε. Fixing the demonstration dataset D,

Gap(π̂ε) ≤ 2
∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣∣∣Prπexp

[
E≤t
D1
, st = s, at = a

]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

∣∣∣∣∣+ ε.

We emphasize here that
∑

tr∈D2
1(tr∈T D1

t (s,a))

|D2| is the empirical estimate of Prπ̂
[
E≤t
D1
, st = s, at = a

]
computed using the trajectories in the dataset D2.

Remark A.2.2. Taking ε = 0 in Lemma A.2.7 captures the case where π̂ε is the policy returned
by Mimic-MD.

The last remaining ingredient in proving the guarantee on the expected imitation gap of
Mimic-MD in Eq. (2.4.1.1) is to bound the convergence rate of the expectation of the RHS of
Lemma A.2.7. We carry out this analysis roughly in two parts:

(i) fixing the dataset D1, for each t ∈ [H] we bound the convergence rate of the empirical
distribution estimate (computed using D2) of Prπ̂[E≤t

D1
, st = s, at = a] to the population

in ℓ1 distance, and

(ii) we show that the resulting bound (which is a function of D1) has small expectation
and converges to 0 quickly.

This establishes the following bound on the expected imitation gap incurred by Mimic-MD.

Lemma A.2.8.

∑
s∈S

∑
a∈A

H∑
t=1

E

[∣∣∣∣∣Prπexp

[
T D1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

∣∣∣∣∣
]
≤ min

{√
8|S|H2

N
,
8

3

|S|H 3
2

N

}
.

(A.21)

In conjunction with Lemma A.2.7 this completes the proof of Eq. (2.4.1.1) (by plugging in
ε = 0 and noting Remark A.2.2) and also Corollary 2.4.1.
To show the high probability guarantee on Mimic-MD in Eq. (2.4.1.2), the key approach is
similar. However, we instead

(i) fix D1 and use sub-Gaussian concentration [13] to establish high probability deviation
bounds on the empirical estimate of Prπ̂[E≤t

D1
, st = s, at = a], and
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(ii) use missing mass concentration (Theorem A.1.2) to show that the resulting deviations
(which are a function of D1) concentrate.

Lemma A.2.9. Fix δ ∈ (0,min{1, H/5}). Then, with probability ≥ 1− δ,

∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣∣∣Prπexp

[
T D1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

∣∣∣∣∣
≲
|S|H3/2

N

(
1 +

3 log(2|S|H/δ)√
|S|

)1/2√
log(2|S|H/δ). (A.22)

The high probability guarantee for Mimic-MD follows suit by invoking Lemma A.2.7 with
ε = 0 and Lemma A.2.9.

Proof of lower bounds

In this section we discuss lower bounds on the expected imitation gap of any algorithm in
the no-interaction, active and known-transition settings.

Active and no-interaction settings

In this section we discuss the proof of the lower bound in Theorem 2.2.1 which applies in
the no-interaction and active settings. We emphasize that the active setting is strictly a
generalization of the no-interaction setting: they are no different if the learner queries and
plays the expert’s action at each time while interacting with the MDP.
Formally, in the active setting, we assume the learner sequentially rolls out policies π1, · · · πN

to generate trajectories tr1, · · · , trN . The learner is aware of the expert’s action at each state
visited in each trajectory trn, however may or may not choose to play this action while rolling
out πn. We assume that the policy πn is learned causally, and can depend on all the previous
information collected by the learner: the trajectories tr1, · · · , trn−1, as well as the expert’s
policy at each state visited in these trajectories.

Notation. We use D = tr1, · · · , trn to denote the trajectories collected by the learner by
rolling out π1, · · · , πN . In addition the learner exactly knows the expert’s policy πexp

t (·|s)
at all states s ∈ St(D). We also define A = {πexp

t (·|s) : t ∈ [H], s ∈ St(D)} as the expert’s
policy at states visited in D, which is also known to the learner by virtue of actively querying
the expert.

The expert policy is deterministic in the lower bound instances we construct. Therefore,
we define ΠBC

det(D,A) (similar to ΠBC
det(D) in eq. (2.3)) as the family of deterministic policies

which mimics the expert on the states visited in D. Namely,

ΠBC
det(D,A) ≜

{
π ∈ Πdet : ∀t ∈ [H], s ∈ St(D), πt(s) = πA

t (s)
}
, (A.23)
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where δπA
t (s) is the policy observed by the learner upon actively querying the expert in a

trajectory that visits s at time t. Informally, ΠBC
det(D,A) is the family of expert policies which

are “compatible” with the dataset (D,A) collected by the learner.
Define MS,A,H as the family of MDPs over state space S, action space A and epsiode length
H. In order to prove the lower bound on the worst-case expected imitation gap of any learner
π̂(D,A), it suffices to lower bound the Bayes expected imitation gap. Namely, it suffices to
find a joint distribution P over MDPs and expert policies supported on MS,A,H × Πdet−exp

such that,

E(M,πexp)∼P

[
JM(πexp)− E [JM(π̂)]

]
≳ min

{
H,
|S|H2

N

}
. (A.24)

Construction of P. First we choose the expert’s policy uniformly from Πdet. That is, for
each t ∈ [H] and s ∈ S, πexp

t (s) ∼ Unif(A). Conditioned on πexp, the distribution over MDPs
induced by P is deterministic and given by the MDPM[πexp] in fig. A.1. M[πexp] is defined
with respect to a fixed initial distribution over states ρ = {ζ, · · · , ζ, 1−(|S|−2)ζ, 0} where
ζ = 1

N+1
. In addition, there is a special state b ∈ S which we refer to as the “bad state”. At

each state s ∈ S \ {b}, choosing the expert’s action renews the state in the initial distribution
ρ and dispenses a reward of 1, while any other choice of action deterministically transitions
to the bad state and offers no reward. In addition, the bad state is absorbing and dispenses
no reward irrespective of the choice of action. That is,

Pt(·|s, a) =
{
ρ, s ∈ S \ {b}, a = πexp

t (s)

δb, otherwise,
(A.25)

and the reward function of the MDP is given by,

rt(s, a) =

{
1, s ∈ S \ {b}, a = πexp

t (s)

0, otherwise.
(A.26)

We first state a simple consequence of the construction of the MDP instances and P .

Lemma A.2.10. Consider any policy πexp ∈ Πdet. Then, the value of πexp on the MDP
M[πexp] is H.

Proof. Playing the expert’s action at any state in S \ {b} is the only way to accrue non-zero
reward, and in fact accrues a reward of 1. In addition, note that the expert never visits the
bad state b by virtue of the distribution ρ placing no mass on b. Therefore, the value of πexp

on the MDPM[πexp] is H.

The intuition behind the lower bound construction is as follows. Although the learner can
actively query the expert, at the states unvisited in the dataset D, the learner has no idea
about the expert’s policy or the transitions induced under different actions. Intuitively it is
clear that the learner cannot guess the expert’s action with probability ≥ 1/2 at such states,
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1

∼ρ

· · · |S|−1

∼ρ

b

Figure A.1: MDP template when Nsim = 0: Upon playing the expert’s (green) action at
any state except b, learner is renewed in the initial distribution ρ = {ζ, · · ·, ζ, 1−(|S|−2)ζ, 0}
where ζ = 1

N+1
. Any other choice of action (red) deterministically transitions the state to b.

a statement which we prove by leveraging the Bayesian construction. In turn, the learner
is forced to visit the bad state b at the next point in the episode, and then on collects no
reward.

Therefore, to bound the expected reward collected by a learner, it suffices to bound the
probability that a learner visits a state unvisited in the demonstration dataset. The remainder
of the proof is in showing that in this MDP construction, in expectation any learner visits
such states with probability ϵ ≳ |S|/N at each point in an episode. Moreover, conditioned on
the dataset D, these events occur independently across time. Thus informally, the expected
imitation gap of a learner is lower bounded by,

Hϵ+ (H − 1)ϵ(1− ϵ) + · · ·+ (1− ϵ)H ≳ min{H,H2ϵ}. (A.27)

where ϵ = |S|/N .

We return to a more formal exposition of the proof of the lower bound. Recall that our
objective is to lower bound the Bayes expected imitation gap of π̂. Invoking Lemma A.2.10,
the objective is to lower bound

E(M,πexp)∼P

[
H − E

[
JM(π̂(D,A))

]]
. (A.28)

To this end, we first try to understand the conditional distribution of the expert’s policy given
the dataset (D,A) collected by the learner. Recall that the dataset D contains trajectories
generated by rolling out a sequence of policies π1, · · · , πn, and A captures the expert’s policy
at states visited in D.

Lemma A.2.11. Conditioned on the dataset (D,A) collected by the learner, the expert’s
deterministic policy πexp is distributed ∼ Unif(ΠBC

det(D,A)). In other words, at each state
visited in the demonstration dataset, the expert’s choice of action is fixed as the one returned
when the expert was actively queried at this state. At the remaining states, the expert’s choice
of action is sampled uniformly from A.

Definition A.2.2. Define P(D,A) as the joint distribution of Z = (M, πexp) conditioned
on the dataset (D,A) collected by the learner. In particular, πexp ∼ Unif(ΠBC

det(D,A)) and
M =M[πexp].
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From Lemma A.2.11 and the definition of P(D,A) in Definition A.2.2, applying Fubini’s
theorem gives,

E(M,πexp)∼P

[
H − E [JM(π̂)]

]
= E

[
E(M,πexp)∼P(D,A) [H − JM(π̂(D,A))]

]
. (A.29)

Next we relate this to the first time the learner visits a state unobserved in D.

Lemma A.2.12. Define the stopping time τ as the first time t that the learner encounters a
state st ̸= b that has not been visited in D at time t. That is,

τ =

{
inf{t : st ̸∈ St(D) ∪ {b}} ∃t : st ̸∈ St(D) ∪ {b}
H otherwise.

(A.30)

Then, conditioned on the dataset (D,A) collected by the learner,

E(M,πexp)∼P(D,A)

[
J(πexp)− E [J(π̂)]

]
≥
(
1− 1

|A|

)
E(M,πexp)∼P(D,A)

[
Eπ̂(D,A) [H − τ ]

]
(A.31)

Plugging the result of Lemma A.2.12 into eq. (A.29), we have that,

E(M,πexp)∼P

[
J(πexp)− E [J(π̂)]

]
≥
(
1− 1

|A|

)
E
[
E(M,πexp)∼P(D,A) [Eπ̂ [H − τ ]]

]
, (A.32)

(i)

≥
(
1− 1

|A|

)
H

2
E
[
E(M,πexp)∼P(D,A)

[
Pr
π̂

[
τ ≤ ⌊H/2⌋

]]]
,

(A.33)

=

(
1− 1

|A|

)
H

2
E(M,πexp)∼P

[
E
[
Pr
π̂

[
τ ≤ ⌊H/2⌋

]]]
, (A.34)

where (i) uses Markov’s inequality and the last equation uses Fubini’s theorem.
The last remaining element of he proof is to indeed bound the probability that the learner
visits a state unobserved in the dataset before time ⌊H/2⌋. In Lemma A.2.13 we prove that
for any learner π̂, E(M,πexp)∼P [E [Prπ̂ [τ ≤ ⌊H/2⌋]]] is lower bounded by ≳ min{1, |S|H/N}.
Therefore,

E(M,πexp)∼P

[
J(πexp)− E [J(π̂)]

]
≳

(
1− 1

|A|

)
H

2
min

{
1,
|S|H
N

}
. (A.35)

Since
(
1− 1

|A|

)
is a constant for |A| ≥ 2 the statement of Theorem 2.2.1 follows.

Lemma A.2.13. For any learner policy π̂,

E(M,πexp)∼P

[
E
[
Pr
π̂

[
τ ≤ ⌊H/2⌋

]]]
≥ 1−

(
1− |S| − 2

e(N + 1)

)⌊H/2⌋

≳ min

{
1,
|S|H
N

}
. (A.36)
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1 · · · |S|

Figure A.2: MDP template when Nsim →∞, Each state is absorbing, initial distribution is
given by {ζ, · · ·, ζ, 1− (|S|−1)ζ} where ζ = 1

N+1

Known-transition setting

As in the proof of Theorem 2.2.1, in order to prove the lower bound on the expected
imitation gap of any learner π̂(D,A), it suffices lower bound the Bayes expected imitation gap.
Namely, it suffices to find a joint distribution P over MDPs and expert policies supported on
MS,A,H × Πdet−exp such that,

E(M,πexp)∼P

[
J(πexp)− E [J(π̂(D,P ))]

]
≳ min

{
H,
|S|H
N

}
. (A.37)

Construction of P As in the proof of Theorem 2.2.1, we first sample the expert’s policy
uniformly from Πdet. That is, for each t ∈ [H] and s ∈ S, the action πexp

t (s) is drawn uniformly
from A. Conditioned on πexp, the distribution over MDPs induced by P is deterministic and
given by the construction M[πexp] in fig. A.1. M[πexp] is defined with initial distribution
over states ρ = {ζ, · · · , ζ, 1−(|S|−1)ζ} where ζ = 1

N+1
. Each state s ∈ S is absorbing in

M[πexp]. Formally, for each s ∈ S the transition function ofM[πexp] is,

Pt(·|s, a) = δs. (A.38)

At any state s, choosing the expert’s action πexp
t (s) returns a reward of 1, while any other

choice of action offers 0 reward.

rt(s, a) =

{
1, a = πexp

t (s)

0, otherwise.
(A.39)

Note that all the MDPsM[πexp] for πexp ∈ Πdet share a common set of transition functions and
initial state distribution. Therefore, fixing P and ρ, we define P ′ to be the joint distribution
over expert policies and reward functions induced by P . Then the objective is to lower bound
the Bayes expected imitation gap,

E(πexp,r)∼P ′

[
Jr(π

exp)− E [Jr(π̂(D,P ))]
]
. (A.40)

In this construction, it is yet again the case that the expert’s policy πexp collects maximum
reward H onM[πexp].
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Lemma A.2.14. Consider any policy πexp ∈ Πdet. Then, the value of πexp on the MDP
M[πexp] is H.

Proof. At each state visited πexp plays the only action which accrues a reward of 1. By
accumulating a local reward of 1 at each step, πexp has value equal to H on the MDP
M[πexp].

With this explanation, invoking Lemma A.2.14 shows that out objective is to now lower
bound,

E(πexp,r)∼P ′ [H − E [Jr(π̂(D,P ))]] . (A.41)

Similar to Lemma A.2.11, we can compute the conditional distribution of the expert’s policy
(which marginally follows the uniform prior) given the demonstration dataset D.

Lemma A.2.15. Conditioned on D, the distribution of the expert policy πexp is uniform
over the family of deterministic policies ΠBC

det(D) (as defined in eq. (2.3)).

For brevity of notation, we define this conditional distribution of the expert policy given the
dataset D by P ′(D).

Definition A.2.3. Define P ′(D) as the joint distribution of (πexp, r) conditioned on the
demonstration dataset D. In particular, πexp ∼ Unif(ΠBC

det(D)) and r = r[πexp].

From Lemma A.2.15 and Definition A.2.3 and applying Fubini’s theorem,

E(πexp,r)∼P ′ [E [H − Jr(π̂(D,P ))]] = E
[
E(πexp,r)∼P ′(D) [H − Jr(π̂(D,P ))]

]
. (A.42)

Fixing the demonstration dataset D, we subsequently show that the imitation gap of the
learner is Ω(H) if initialized in a state unobserved in the demonstration dataset D. The key
intuition is to identify that here the learner’s knowledge of the transition function plays no
role as each state in the MDP is absorbing. Therefore, once again at states unvisited in the
demonstration dataset, the learner cannot guess the expert’s action with high probability at
states, leading to errors that grow linearly in H.

Lemma A.2.16. For any learner’s policy π̂ conditioned on the demonstration dataset D,

E(πexp,r)∼P ′(D) [H − Jr(π̂(D,P ))] ≥ H

(
1− 1

|A|

)(
1− ρ(S1(D))

)
. (A.43)

Therefore, from Lemma A.2.16 and eq. (A.42),

E(πexp,r)∼P ′ [E [H − Jr(π̂(D,P ))]] ≥ H

(
1− 1

|A|

)
E
[
1− ρ(S1(D))

]
. (A.44)

The last ingredient left to show is that the probability mass on states unobserved in the
demonstration dataset, 1−ρ(S1(D)), is not too small in expectation. Here we realize that this
boils down to calculating the expected missing mass of the distribution ρ given N samples
drawn independently. By construction of ρ, we show that this is ≳ |S|/N in expectation.
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Lemma A.2.17. E[1− ρ(S1(D))] ≥ |S|−1
e(N+1)

.

Plugging Lemma A.2.17 back into eq. (A.44) certifies a lower bound on the Bayes expected
imitation gap of any learner π̂. This implies the existence of an MDP on which the learner’s
expected imitation gap is ≳ |S|H/N .
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A.3 Missing proofs in the analysis of BC

Proof of Lemma A.1.1

Since the expert dataset D is composed of trajectories generated by i.i.d. rollouts of πexp, we
have that Pr[s ̸∈ Sτ (D)] = (1− Prπexp [sτ = s])|D|. Therefore,

H∑
t=1

∑
s∈S

Pr
πexp

[st = s] Pr[s ̸∈ St(D)] ≤
H∑
τ=1

∑
s∈S

Pr
πexp

[sτ = s]
(
1− Pr

πexp
[sτ = s]

)|D|
. (A.45)

Noting that maxx∈[0,1] x(1− x)N = 1
N+1

(
1− 1

N+1

)N ≤ 4
9N

, from eq. (A.45),

H∑
τ=1

∑
s∈S

Pr
πexp

[sτ = s]
(
1− Pr

πexp
[sτ = s]

)|D|
≤

H∑
τ=1

∑
s∈S

4

9|D| ≤
4

9

|S|H
|D| . (A.46)

Proof of Theorem A.1.2

To prove this theorem, we invoke a result of [54] on the concentration of missing mass.

Theorem A.3.1 (Concentration of missing mass [54]). Consider an arbitrary distribution
ν on X , and let XN i.i.d.∼ ν be a dataset of N samples drawn i.i.d. from ν. Let β ≥ 0 and
σ ≥ 0 be constants such that

∑
x∈X (ν(x))

2e−(N−β)ν(x) ≤ σ2. For any 0 ≤ ε ≤ βσ2, we have
the following,

Pr
(
m0(ν,X

N)− E[m0(ν,X
N)] ≥ ε

)
≤ exp

(
− ε2

2σ2

)
. (A.47)

We prove Theorem A.1.2 by an appropriate choice of parameters β, σ2 and ϵ (as functions of
the confidence parameter δ). In particular, choose β = N − N√

log(1/δ)
≥ N

3
. For this choice of

β, ∑
x∈X

(ν(x))2e−(N−β)ν(x) =
∑
x∈X

(ν(x))2e
− N√

log(1/δ)
ν(x)

, (A.48)

≤ |X | sup
ν∈[0,1]

ν2e
− N√

log(1/δ)
ν
, (A.49)

(i)
= |X |

(
4e−2 log(1/δ)

N2

)
. (A.50)

where (i) involves computing the supremum explicitly by differentiation. Therefore, for β =
N− N√

log(H/δ)
, a feasible choice of σ2 in Theorem A.3.1 that upper bounds

∑
x∈X (ν(x))

2e−(N−β)ν(x)

is 3|X | log(1/δ)
N2 . Choose ε =

3
√

|X | log(1/δ)
N

(note that this choice satisfies ε ≤ βσ2 since β ≥ N/3
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and σ2 = 9|X | log(1/δ)
N2 ). Invoking Theorem A.3.1 with this choice of β, σ2 and ϵ,

Pr

(
m0(ν,X

N)− E[m0(ν,X
N)] ≥ 3

√
|X | log(1/δ)

N

)
≤ exp

−
(
3
√
|X |N−1 log(1/δ)

)2
9|X |N−2 log(1/δ)

 = δ.

(A.51)
This proves Theorem A.1.2.

Proof of Lemma A.1.3

We decompose
∑H

τ=1

∑
s∈S Prπexp [sτ = s]1(s ̸∈ Sτ (D)) as

∑
τ Zτ where Zτ =

∑
s∈S Prπexp [sτ =

s]1(s ̸∈ Sτ (D)). Observe that for each fixed τ , Zτ is in fact the missing mass of the distribu-
tion over states at time τ rolling out πexp, given N samples from the distribution. Applying
the missing mass concentration inequality from Theorem A.1.2, with probability ≥ 1− δ/H,

Zτ − E[Zτ ] ≤
3
√
|S| log(H/δ)

N
. (A.52)

Therefore, by union bounding, with probability ≥ 1− δ,

H∑
τ=1

Zτ ≤
H∑
τ=1

E[Zτ ] +H · 3
√
|S| log(H/δ)

N
. (A.53)

Using
∑H

τ=1 Zτ =
∑H

τ=1

∑
s∈S Prπexp [sτ = s]1(s ̸∈ Sτ (D)) and applying Lemma A.1.1 to

claim that
∑H

τ=1 E[Zτ ] ≤ 4|S|H/9N completes the proof.

A.4 Reduction of IL → TV matching
In this section we will prove Lemma 2.3.1. For each τ ∈ [H], define the policy π̃τ =
{πexp

1 , · · · , πexp
τ , π̂τ+1, · · · , π̂H} with π̃0 = π̂. The policy π̃τ plays the expert’s policy till time

τ and the learner’s policy for the remainder of the episode. Then,

Gap(π̂) =
∑H

τ=1
J(π̃τ )− J(π̃τ−1). (A.54)

For any fixed τ ∈ [H], observe that π̃τ and π̃τ−1 roll out the same policy till time τ − 1.
Therefore the expected reward collected until time τ − 1 for both policies is the same. By
linearity of expectation,

J(π̃τ )− J(π̃τ−1) =
∑H

t=τ
Eπ̃τ [rt(st, at)]− Eπ̃τ−1 [rt(st, at)] . (A.55)
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Now fix some t ≥ τ and consider Eπ̃τ [rt(st, at)]− Eπ̃τ−1 [rt(st, at)]. First observe that,

Eπ̃τ−1 [rt(st, at)] = E sτ∼fτ
πexp

aτ∼π̂τ (·|sτ )
[ Eπ̃τ−1 [rt(st, at)|sτ , aτ ] ] , (A.56)

=
∑
s∈S

∑
a∈A

f τ
πexp(s) π̂τ (a|s) Eπ̃τ−1 [rt(st, at)|sτ = s, aτ = a] , (A.57)

=
∑
s∈S

∑
a∈A

f τ
πexp(s) π̂τ (a|s) Eπ̂ [rt(st, at)|sτ = s, aτ = a] . (A.58)

where in the last equation we use the fact that π̃τ−1 rolls out π̂ time τ onwards, and the fact
that we condition on the state visited and action played at time τ . Moreover, we also use
the fact that rt(st, at) only depends on (st, at) which appears at time t ≥ τ . Noting that
π̃τ = (πexp

1 , · · · , πexp
τ , π̂τ+1, · · · , π̂H), a similar decomposition gives,

Eπ̃τ [rt(st, at)] =
∑
s∈S

∑
a∈A

f τ
πexp(s) πexp

τ (a|s) Eπ̃τ [rt(st, at)|sτ = s, aτ = a] , (A.59)

=
∑
s∈S

∑
a∈A

f τ
πexp(s) πexp

τ (a|s) Eπ̂ [rt(st, at)|sτ = s, aτ = a] , (A.60)

where in the last equation we similarly use the fact that π̃τ rolls out π̂ time τ + 1 onwards,
and the fact that we condition on the action played at time τ . Subtracting eq. (A.58) from
eq. (A.60),

Eπ̃τ [rt(st, at)]− Eπ̃τ−1 [rt(st, at)]

≤
∑
s∈S

f τ
πexp(s)

∑
a∈A

Eπ̂ [rt(st, at)|sτ = s, aτ = a]
(
πexp
τ (a|s)− π̂τ (a|s)

)
. (A.61)

Observe that Eπ̂ [rt(st, at)|sτ = s, aτ = a] is a function of (s, a) and is bounded in [0, 1] (since
pointwise 0 ≤ rt ≤ 1). Therefore,

Eπ̃τ [rt(st, at)]− Eπ̃τ−1 [rt(st, at)] ≤
∑
s∈S

f τ
πexp(s) sup

g:A→[0,1]

∑
a∈A

g(a)
(
πexp
τ (a|s)− π̂τ (a|s)

)
,

(A.62)
(i)
=
∑
s∈S

f τ
πexp(s)DTV (πexp

τ (a|s), π̂τ (a|s)) (A.63)

= Es∼fτ
πexp

[DTV (πexp
τ (a|s), π̂τ (a|s))] . (A.64)

where (i) uses the dual representation of TV distance. Summing over t ≥ τ and τ ∈ [H] and
invoking eqs. (A.54) and (A.55) we get,

Gap(π̂) ≤ H
H∑
τ=1

Es∼fτ
πexp

[DTV (πexp
τ (a|s), π̂τ (a|s))] . (A.65)

Using the definition of L0 -1(·) (eq. (2.7)) completes the proof.
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A.5 Missing proofs in the analysis of log-loss BC

We will produce the proofs excluded in the analysis of BC in the stochastic expert setting,
namely, Theorem 2.3.2.

Proof of Lemma A.2.1

Recall that we assume that the trajectories in the expert dataset are ordered arbitrarily as
{tr1, · · · , trN} where trn = {(sn1 , an1 ), · · · , (snH , anH)}. Nt,s = {n ∈ [N ] : snt = s} as defined in
eq. (A.8) is the set of indices of trajectories in D that visit the state s at time t. In order to
prove this result, suppose the learner’s policy π̂
With this, we define the randomized stochastic policy Xunif(D) as,

Xunif
t (·|s) =

{
δ
a
n(t,s)
t

if |Nt,s| ≥ 1,

Unif(A) otherwise.
(A.66)

where each n(t, s) is a random variable independently sampled from Unif(Nt,s) whenever
Nt,s ̸= ∅. Note that fixing D and n(t, s) for all t, s such that Nt,s ̸= ∅, the random variable
Xunif is a fixed stochastic policy.
The policy Xunif(D) in a sense corresponds to just extracting the randomness in the actions
chosen at visited states in the policy π̂(D) returned by Mimic-MD.
In particular, it is a short proof to see that the random variables J(Xunif(D)) and J(π̂(D))
have the same expectation.

Lemma A.5.1. E[J(π̂(D))] = E[J(Xunif(D))].

Proof. Consider some trajectory tr = {(s1, a1), · · · , (sH , aH)}. Fixing the expert dataset D,

E
[

Pr
Xunif(D)

[tr]
∣∣∣D] = E

[
ρ(s1)

(∏H−1

t=1
Xunif

t (at|st)Pt(st+1|st, at)
)
Xunif

t (aH |sH)
]
. (A.67)

From eq. (A.66) and Algorithm 1, observe that X
unif(·|s)
t = π̂(·|s) = Unif(A) at states

s : Nt,s = ∅ (i.e. which were not visited in the expert dataset). Moreover, on the remaining
states Xunif

t (at|st) is independently sampled from the empirical distribution over states at
time t. In particular, this means that E[Xunif

t (at|st)] = π̂t(at|st). Plugging this in gives,

E[ Pr
Xunif(D)

[tr]] = Pr
π̂(D)

[tr]. (A.68)

Multiplying both sides by
∑H

t=1 rt(st, at), summing over all trajectories tr and taking expec-
tation with respect to the expert dataset D completes the proof.

First we provide an auxiliary result that is critical to showing that the policies J(Xunif(D))
and πfirst(D) have the same value in expectation.
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To this end, first define D≤τ,<τ = {((sn1 , an1 ), · · · , (snτ−1, a
n
τ−1), s

n
τ ) : n ∈ [N ]} to be the

truncation of the expert dataset D till time τ , excluding the actions played at this time.
D≤τ,≤τ and other similar notations are defined analogously.

Lemma A.5.2. Condition on D≤τ,<τ which represents the truncation of trajectories in the
expert dataset D till the state visited at time τ . At any state s that is visited at least once in
D at time τ (namely with |Nτ,s| > 0), the actions {anτ : n ∈ Nτ,s} played at trajectories that
visit the state s at time τ are drawn independently and identically ∼ πexp

τ (·|s).

Proof. Recall that we condition on D≤τ,<τ which captures trajectories in the expert dataset
truncated till the state visited at time τ . Since each trajectory trn ∈ [N ] is rolled out
independently, the action anτ in each trajectory trn is drawn independently from πexp

τ (·|snτ ).
More importantly, conditioned on D≤τ,<τ the states snτ visited in different trajectories is
determined. This implies that Nτ,s for s ∈ S is a measurable function of D≤τ,<τ .
These two statements together imply that states s ∈ S having Nτ,s > 0 (which is a measurable
function of D≤τ,<τ ) are such that all the actions {anτ : n ∈ Nτ,s} are independent.

Proof of Lemma A.2.1. In order to prove this result, we use an inductive argument. The
induction hypothesis is that the expected value of Xunif(D) and πfirst(D) are the same,
conditioned on the expert dataset till time t and the actions from the empirical distribution
sampled by Xunif(D) at different states till time t. We formalize this hypothesis in equations
after first proving the base case. To recognize the fact that we prove the statement starting
from t = H, we define HH as the base case, and inductively prove Ht−1 assuming the
hypothesis Ht.
First observe that,

E
[
J(Xunif(D))

∣∣∣D≤H,<H ,
{
n(t, s)

∣∣∣ t ≤ H, s : Nt,s > 0
}]

= E
[
J(πfirst(D))

∣∣∣D≤H,<H

]
. (A.69)

This is because conditioned on D≤H,<H , the only randomness is in the actions that are played
in the different trajectories at time H. By Lemma A.5.2 these are distributed i.i.d. ∼ πexp

t (·|s).
Taking expectation with respect to {nH,s|s : Nt,s > 0}, results in proof of the base case for
t = H,

HH : E
[
J(Xunif(D))

∣∣∣D≤H,<H ,
{
n(t, s)

∣∣∣ t < H, s : Nt,s > 0
}]

= E
[
J(πfirst(D))

∣∣∣D≤H,<H

]
.

In general consider the hypothesis Hτ ,

Hτ : E
[
J(Xunif(D))

∣∣∣D≤τ,<τ ,
{
n(t, s)

∣∣∣ t < τ, s : Nt,s > 0
}]

= E
[
J(πfirst(D))

∣∣∣D≤τ,<τ

]
.

Taking expectation with respect to {snτ : n ∈ [N ]}, where conditionally snτ ∼ Pτ (·|snτ−1, a
n
τ−1),

E
[
J(Xunif(D))

∣∣∣D<τ,<τ ,
{
n(t, s)

∣∣∣ t < τ, s : Nt,s > 0
}]

= E
[
J(πfirst(D))

∣∣∣D<τ,<τ

]
. (A.70)
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Next we take expectation with respect to the actions {anτ : n ∈ [N ]} where each anτ is drawn
independently from πexp

t (·|snτ ). This results in,

E
[
J(Xunif(D))

∣∣∣D<τ,<τ−1,
{
n(t, s)

∣∣∣ t < τ, s : Nt,s > 0
}]

= E
[
J(πfirst(D))

∣∣∣D<τ,<τ−1

]
.

(A.71)
Note that on both sides we condition on D<τ,<τ−1 which is the set of partial trajectories
in the expert dataset till time τ − 1 (excluding the action at this time). In particular, this
conditioning determines the set of states visited at time τ − 1 in the expert dataset. Consider
any state s ∈ S:

(i) If s was not observed in the dataset D at time τ − 1, then with probability 1 over the
randomness of Xunif , both the policies Xunif and πfirst play the policy Unif(A);

(ii) On the other hand, if s was observed in the dataset D in some trajectory at time τ − 1,
then Xunif samples from an empirical distribution over actions played at the state s
in the dataset at time τ − 1, which by Lemma A.5.2 are drawn independently from
πexp
τ−1(·|s). On the other hand, the action played by πfirst is also drawn independently

from πexp
τ−1(·|s). This shows that the expectation on the LHS does not depend on the

choice of n(τ − 1, s) for any state s ∈ S.

Thus in both cases, the expectation of the random variable on the RHS does not depend on
{n(τ − 1, s)|s ∈ S}. Therefore, we can drop the conditioning on this random variable to give,

E
[
J(Xunif(D))

∣∣∣D<τ,<τ−1,
{
n(t, s)

∣∣∣ t < τ − 1, s : Nt,s > 0
}]

= E
[
J(πfirst(D))

∣∣∣D<τ,<τ−1

]
(A.72)

This proves the induction hypothesis Hτ−1 and consequently the hypothesis H1. Taking
expectation on both sides of H1 with respect to sn1

i.i.d.∼ ρ proves the claim.

Proof of Lemma A.2.3

Fixing the table T⋆, the probability of observing the trajectory tr = {(s1, a1), · · · , (sH , aH)}
under the deterministic policy πorc−first is,

Pr
πorc−first

(tr) = ρ(s1)

(
H−1∏
t=1

1
(
at = T⋆

t,st(1)
)
Pt(st+1|st, at)

)
1
(
aH = T⋆

H,sH
(1)
)
. (A.73)

Since the actions T⋆
t,st(1) are independently drawn from πexp

t (·|st), taking expectation, we see
that

E

[
Pr

πorc−first
(tr)
]
= ρ(s1)

(
H−1∏
t=1

πexp
t (at|st)Pt(st+1|st, at)

)
πexp
H (aH |sH) = Pr

πexp
(tr). (A.74)

Multiplying both sides by
∑H

t=1 rt(st, at) and summing over all trajectories completes the
proof.
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Proof of Lemma A.2.5

Recall that the “failure” E is defined as the event that at some time t ∈ [H], a state st
is visited such that |Nt,st | = 0, i.e. that was not visited in the expert dataset. By union
bounding,

E

[
Pr

πorc−first
[E ]
]
≤

H∑
t=1

∑
s∈S

E

[
Pr

πorc−first
[Es,t]

]
, (A.75)

where Es,t is the event that a failure occurs at the state s at time t, i.e. the state s is visited
at time t and |Nt,s| = 0. Es,t is the intersection of two events. Therefore we have the upper
bound,

E

[
Pr

πorc−first
[Es,t]

]
≤ min

{
E

[
Pr

πorc−first
[st = s]

]
,E

[
Pr

πorc−first
[|Ns,t| = 0]

]}
. (A.76)

Observe that these two terms in the minimum are easy to compute. Firstly, using eq. (A.74),
we have that,

E

[
Pr

πorc−first
[st = s]

]
= Pr

πexp
[st = s]. (A.77)

On the other hand,

E

[
Pr

πorc−first
[|Ns,t| = 0]

]
= E[1(|Ns,t| = 0)] = (1− Pr

πexp
[st = s])N (A.78)

where the last equation uses Lemma A.2.2. Putting together eqs. (A.77) and (A.78) with
eq. (A.76),

E

[
Pr

πorc−first
[Es,t]

]
≤ min

{
Pr
πexp

[st = s],
(
1− Pr

πexp
[st = s]

)N}
. (A.79)

In Lemma A.5.3 we show that the RHS is upper bounded by log(N)/N . Therefore,

E

[
Pr

πorc−first
[Es,t]

]
≤ logN

N
. (A.80)

Plugging back into eq. (A.75) completes the proof.

Lemma A.5.3. For any x ∈ [0, 1] and N > 1, min{x, (1− x)N} ≤ logN
N

.

Proof. x is an increasing function, while (1− x)N is decreasing. For x = logN
N

,

(1− x)N =

(
1− logN

N

)N

≤ e− logN ≤ N−1 (A.81)

Therefore for x ≥ log(N)
N

, min{x, (1− x)N} ≤ 1
N

. Therefore min{x, (1− x)N} ≤ logN
N

.
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A.6 Missing proofs in the analysis of Mimic-MD

In this section we will provide proofs of the results excluded in the proof of Theorem 2.4.1.

Proof of Lemma A.2.6

Observe that the complement
(
E≤t
D1

)c
is the event that the policy under consideration until

(and including) time t− 1, only visits states that were visited in at least one trajectory in the
expert dataset.
First observe that, fixing the expert dataset D,

Gap(π̂) (A.82)

= Eπexp

[∑H

t=1
rt(st, at)

]
− Eπ̂

[∑H

t=1
rt(st, at)

]
(A.83)

=
∑H

t=1
Eπexp

[(
1

((
E≤t
D1

)c)
+ 1

(
E≤t
D1

))
rt(st, at)

]
− Eπ̂

[(
1

((
E≤t
D1

)c)
+ 1

(
E≤t
D1

))
rt(st, at)

]
.

(A.84)

Indeed, to prove the statement it suffices to prove that,∑H

t=1
Eπexp

[
1

((
E≤t
D1

)c)
rt(st, at)

]
=
∑H

t=1
Eπ̂

[
1

((
E≤t
D1

)c)
rt(st, at)

]
. (A.85)

Recall that the learner π̂ mimics the expert at all the states observed in the dataset D1, i.e.
having |Nt,s| > 0. Observe that when the event

(
E≤t
D1

)c
occurs, all the states visited in a

trajectory have |Nt,s| > 0. Thus, both expectations are carried out with respect to the same
policy and are hence equal. More precisely, for any t ∈ [H],

Eπ̂

[
1

((
E≤t
D1

)c)
rt(st, at)

]
= E

s1∼ρ, τ≤t,
aτ∼π̂τ (·|sτ )

sτ+1∼P (·|sτ ,aτ )

[
1

((
E≤t
D1

)c)
rt(st, at)

]
(A.86)

(i)
= E

s1∼ρ, τ≤t,
aτ∼π⋆

τ (·|sτ )
sτ+1∼P (·|sτ ,aτ )

[
1

((
E≤t
D1

)c)
rt(st, at)

]
(A.87)

= Eπexp

[
1

((
E≤t
D1

)c)
rt(st, at)

]
(A.88)

where (i) uses the fact that when sτ ∈ St(D1) (as implied by
(
E≤t
D1

)c
for each τ ≤ t), then,

πexp
τ (·|sτ ) = π̂τ (·|sτ ). Moreover.
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Proof of Lemma A.2.7

First observe that we can write the reward rt(st, at) accrued in some trajectory at time t
equals

∑
s∈S
∑

a∈A rt(s, a)1((st, at) = (s, a)). Therefore, from Lemma A.2.6,

Gap(π̂ε) =
∑
s∈S

∑
a∈A

H∑
t=1

rt(s, a)
(
Pr
πexp

[
E≤t
D1
, st = s, at = a

]
− Pr

π̂

[
E≤t
D1
, st = s, at = a

])
≤
∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣Pr
πexp

[
E≤t
D1
, st = s, at = a

]
− Pr

π̂

[
E≤t
D1
, st = s, at = a

]∣∣∣
=
∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣Pr
πexp

[
T D1
t (s, a)

]
− Pr

π̂

[
T D1
t (s, a)

]∣∣∣ (A.89)

where the inequality follows from the assumption that 0 ≤ rt(s, a) ≤ 1 and the last equation
follows from the definition T D1

t (s, a) = {{(sτ , aτ )}Hτ=1|st = s, at = a, ∃τ∈[H] : sτ ̸∈ Sτ (D1)}
is the set of trajectories that visit (s, a) at time t and at some point t′ in the episode visit
a state not visited in any trajectory at time t′ in D1. Using the definition of the learner’s
policy π̂ in the optimization problem (OPT-MD) and applying the triangle inequality,

Gap(π̂ε) ≤
∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣∣∣Prπexp

[
T D1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

∣∣∣∣∣
+

∣∣∣∣∣
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|
− Pr

π̂

[
T D1
t (s, a)

]∣∣∣∣∣ . (A.90)

Observe that the expert’s policy πexp is a feasible policy to the optimization problem
(OPT-MD). Since π̂ solves (OPT-MD) up to an additive error of ε, we have the upper
bound,

Gap(π̂ε) ≤ 2
∑
s∈S

∑
a∈A

H∑
t=1

∣∣∣∣∣Prπexp

[
T D1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

∣∣∣∣∣+ ε. (A.91)

Proof of Lemma A.2.8

Recall that we carry out sample splitting in Algorithm 2 to give datasets D1 and D2. We
first fix the trajectories in D1 and compute the expectation with respect to the dataset D2.
Sample splitting implies that, conditioned on D1, the trajectories in D2 are still generated by
independently rolling out πexp. By Jensen’s inequality, we can upper bound by the quadratic
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deviation,

∑
s∈S

∑
a∈A

H∑
t=1

E

[∣∣∣∣∣Prπexp

[
T D1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

∣∣∣∣∣
]

≤
∑
s∈S

∑
a∈A

H∑
t=1

E

(Pr
πexp

[
T D1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

)2
1/2

(A.92)

Observe that each trajectory tr ∈ D2 is generated by independently rolling out πexp. Therefore,
1

|D2|
∑

tr∈D2
1(tr ∈ T D1

t (s, a)) is an unbiased estimate of Prπexp [T D1
t (s, a)]. Therefore the

expectation term in eq. (A.92) is nothing but the variance: letting tr1 be an arbitrary
trajectory in D2,

∑
s∈S

∑
a∈A

H∑
t=1

E

[∣∣∣∣∣Prπexp

[
T D1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

∣∣∣∣∣
]

≤
∑
s∈S

∑
a∈A

H∑
t=1

(
1

|D2|
Var

[
1(tr1 ∈ T D1

t (s, a)
])1/2

(A.93)

≤
∑
s∈S

∑
a∈A

H∑
t=1

(
1

|D2|
Pr
πexp

[
T D1
t (s, a)

])1/2

(A.94)

where the last inequality uses the fact that the variance of an indicator function is at most
its mean, and that each tr ∈ D2 is independently drawn by rolling out πexp. Now, taking
expectation with respect to the dataset D1, and by another application of Jensen’s inequality,

∑
s∈S

∑
a∈A

H∑
t=1

E

[∣∣∣∣∣Prπexp

[
T D1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

∣∣∣∣∣
]

≤
∑
s∈S

∑
a∈A

H∑
t=1

1

|D2|1/2
(

E
[
Pr
πexp

[
T D1
t (s, a)

]])1/2
(A.95)

=
∑
s∈S

H∑
t=1

1

|D2|1/2
(

E
[
Pr
πexp

[
E≤t
D1
, st = s, at = πexp

t (st)
]])1/2

, (A.96)
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where in the last equation, we use the definition of T D1
t (·, ·). By an application of the Cauchy

Schwarz inequality,

∑
s∈S

∑
a∈A

H∑
t=1

E

[∣∣∣∣∣Prπexp

[
T D1
t (s, a)

]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, a))

|D2|

∣∣∣∣∣
]

≤
H∑
t=1

|S|1/2
|D2|1/2

(∑
s∈S

E
[
Pr
πexp

[
E≤t
D1
, st = s, at = πexp

t (s)
]])1/2

(A.97)

≤
H∑
t=1

|S|1/2
|D2|1/2

(
E
[
Pr
πexp

[
E≤t
D1

]])1/2
. (A.98)

Therefore, to prove the result it suffices to bound E
[
Prπexp

[
E≤t
D1

]]
, which we carry out in

Lemma A.6.1. Here we show that it is upper bounded by ≲ 1 ∧ |S|H/|D1|. Subsequently
using |D1| = |D2| = N/2 completes the proof.

Lemma A.6.1. For any t ∈ [H], the probability of failure under the expert’s policy is upper
bounded by,

E
[
Pr
πexp

[
E≤t
D1

]]
≤ 4

9

|S|H
|D1|

(A.99)

Proof. Conditioned on D1, we decompose based on the first failure time (i.e. the first time
the event E≤t

D1
is satisfied),

Pr
πexp

[
E≤t
D1

∣∣∣D1

]
= Pr

πexp

[
∃τ ≤ t : sτ ̸∈ Sτ (D1)

∣∣∣D1

]
, (A.100)

=
∑t

τ=1
Pr
πexp

[
∀τ ′ < τ, sτ ′ ∈ Sτ ′(D1), sτ ̸∈ Sτ (D1)

∣∣∣D1

]
(A.101)

≤
∑t

τ=1
Pr
πexp

[
sτ ̸∈ Sτ (D1)

∣∣∣D1

]
(A.102)

=
∑t

τ=1

∑
s∈S

Pr
πexp

[sτ = s]1(s ̸∈ Sτ (D1)) (A.103)

≤
∑H

τ=1

∑
s∈S

Pr
πexp

[sτ = s]1(s ̸∈ Sτ (D1)) (A.104)

Taking expectation with respect to the expert dataset,

E
[
Pr
πexp

[
ED1

∣∣∣D1

]]
≤
∑H

τ=1

∑
s∈S

Pr
πexp

[sτ = s] Pr[s ̸∈ Sτ (D1)] (A.105)

The proof of the claim immediately follows by invoking Lemma A.1.1.
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Proof of Lemma A.2.9

Starting from the bound in Lemma A.2.7 and using the fact that at each state s the expert
plays a fixed action πexp

t (s) at time t,

Gap(π̂) ≤ 2
∑
s∈S

H∑
t=1

∣∣∣∣∣Prπexp

[
T D1
t (s, πexp

t (s))
]
−
∑

tr∈D2
1(tr ∈ T D1

t (s, πexp
t (s)))

|D2|

∣∣∣∣∣ (A.106)

Observe that 1(tr ∈ T D1
t (s, πexp

t (s))) is a sub-Gaussian random variable with variance bounded
by its expectation. Therefore, by sub-Gaussian concentration [13], for each s ∈ S and t ∈ [H],
conditioned on D1, with probability ≥ 1− δ

2|S|H ,∣∣∣∣∣
∑

tr∈D2
1(tr ∈ T D1

t (s, πexp
t (s)))

|D2|
− Pr

πexp

[
T D1
t (s, πexp

t (s))
]∣∣∣∣∣

≤
(
Pr
πexp

[
T D1
t (s, πexp

t (s))
])1/2√2 log(2|S|H/δ)

|D2|
(A.107)

By union bounding over s ∈ S and t ∈ [H], conditioned on D1 with probability ≥ 1− δ
2
,

H∑
t=1

∑
s∈S

∣∣∣∣∣
∑

tr∈D2
1(tr ∈ T D1

t (s, πexp
t (s)))

|D2|
− Pr

πexp

[
T D1
t (s, πexp

t (s))
]∣∣∣∣∣

≤
H∑
t=1

(∑
s∈S

Pr
πexp

[
T D1
t (s, πexp

t (s))
])1/2√

2 log(2|S|H/δ)

|D2|
(A.108)

≤ H|S|1/2
(
Pr
πexp

[
ED1

])1/2√2 log(2|S|H/δ)

|D2|
(A.109)

Applying Lemma A.1.3, with probability ≥ 1− δ/2,

Pr
πexp

[ED1 ] ≤
4|S|H
9|D1|

+
3H
√
|S| log(2H/δ)

|D1|
. (A.110)

Therefore union bounding the events of eqs. (A.109) and (A.110), with probability ≥ 1− δ,

H∑
t=1

∑
s∈S

∣∣∣∣∣
∑

tr∈D2
1(tr ∈ T D1

t (s, πexp
t (s)))

|D2|
− Pr

πexp

[
T D1
t (s, πexp

t (s))
]∣∣∣∣∣

≤ H|S|1/2
(
4|S|H
9|D1|

+
3H
√
|S| log(2H/δ)

|D1|

)1/2√
2 log(2|S|H/δ)

|D2|
(A.111)

≲
|S|H3/2

N

(
1 +

3 log(2|S|H/δ)√
|S|

)1/2√
log(2|S|H/δ). (A.112)
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A.7 Lower bound in the active-interaction setting
In this section we will prove auxiliary results used in the proof of Theorem 2.2.1.

Proof of Lemma A.2.11

Fix some policy π ∈ Πdet. Consider any time t ∈ [H] and state s ∈ St(D) which is visited in
some trajectory in the dataset at time t. If πt(s) does not match the action πA

t (s) revealed
by actively querying the expert in a trajectory in D that visits s at time t, the likelihood of
π given D is exactly 0 (since the expert is deterministic). On the other hand, the conditional
probability of observing (D,A) does not depend on the expert’s action on the states that
were not observed in D, since no trajectory visits these states. Since on these states the
expert’s action marginally follows the uniform distribution over A, the result immediately
follows.

Proof of Lemma A.2.12

In order to prove this result, define the auxiliary random time τb to be the first time the learner
first encounters the state b while rolling out a trajectory. If no such state is encountered, τ is
defined as H + 1. Formally,

τb =

{
inf{t : st = b} ∃t : st = b

H + 1 otherwise.

Conditioning on the learner’s dataset (D,A), first observe that

H − E(M,πexp)∼P(D,A) [J(π̂)] = H − E(M,πexp)∼P(D,A)

[
Eπ̂

[∑H

t=1
rt(st, at)

]]
(A.113)

≥ E(M,πexp)∼P(D,A) [Eπ̂ [H − τb + 1]] (A.114)

where the last inequality follows from the fact that r is bounded in [0, 1], and the state b is
absorbing and offers 0 reward irrespective of the choice of action. Fixing the dataset (D,A) and
the expert’s policy πexp (which determines the MDPM[πexp]), we study Eπ̂(D,A) [H − τb + 1]
and try to relate it to Eπ̂(D,A) [H − τ ].

To this end, first observe that for any t ≤ H − 1 and state s ∈ S,

Pr
π̂
[τb = t+ 1, τ = t, st = s] = Pr

π̂
[τb = t+ 1|τ = t, st = s] Pr

π̂
[τ = t, st = s] (A.115)

=
(
1− π̂t(π

exp
t (s)|s)

)
Pr
π̂
[τ = t, st = s] . (A.116)

where in the last equation, we use the fact that the learner must play an action other than
πexp
t (st) to visit b at time t+ 1. Next we take expectation with respect to the randomness

of πexp which conditioned on (D,A) is drawn from Unif(ΠBC
det(D,A)) which also specifies the
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underlying MDPM[πexp]. Observe that the dependence of the second term Prπ̂ [τ = t, st = s]
on πexp comes from the probability computed with the underlying MDP chosen asM[πexp].
However observe that it only depends on the characteristics ofM[πexp] till time t−1 which are
determined by πexp

1 , · · · , πexp
t−1. On the other hand, the first term (1− π̂t(π

exp
t (s)|s)) depends

only on πexp
t . As a consequence the two terms depend on a disjoint set of random variables,

which are independent (since conditionally πexp ∼ ΠBC
det(D,A) defined in eq. (A.23))

Therefore taking expectation with respect to the randomness of πexp ∼ Unif(ΠBC
det(D,A)) and

M =M[πexp] (which defines the joint distribution P(D,A) in eq. (A.23)),

E(M,πexp)∼P(D,A)

[
Pr

π̂(D,A)
[τb = t+ 1, τ = t, st = s]

]
= E(M,πexp)∼P(D,A)

[
1− π̂t(π

exp
t (st)|st)

]
E(M,πexp)∼P(D,A)

[
Pr
π̂
[τ = t, st = s]

]
(A.117)

(a)
=

(
1− 1

|A|

)
E(M,πexp)∼P(D,A)

[
Pr
π̂
[τ = t, st = s]

]
(A.118)

where in (a), conditioned on (D,A) we use the fact that either (i) s = b, in which case τ ̸= t and
both sides are 0, or (ii) if s ̸= b, then τ = t implies that the state s visited at time t must not
be observed in D, so πexp

t (s) ∼ Unif(A). Using the fact that Prπ̂ [τb = t+ 1, τ = t, st = s] ≤
Prπ̂ [τb = t+ 1, st = s] and summing over s ∈ S results in the inequality,

E(M,πexp)∼P(D,A)

[
Pr
π̂
[τb = t+ 1]

]
≥
(
1− 1

|A|

)
E(M,πexp)∼P(D,A)

[
Pr
π̂
[τ = t]

]
(A.119)

Multiplying both sides by H − t and summing over t = 1, · · · , H,

E(M,πexp)∼P(D,A)

[
Eπ̂ [H − τb + 1]

]
≥
(
1− 1

|A|

)
E(M,πexp)∼P(D,A)

[
Eπ̂ [H − τ ]

]
(A.120)

here we use the fact that the initial distribution ρ places no mass on the bad state b. Therefore,
Prπ̂(D) [τb = 1] = ρ(b) = 0. This equation in conjunction with eq. (A.114) completes the proof.

Proof of Lemma A.2.13

Firstly, in Lemma A.7.2 we show that E
[
Prπ̂(D,A)[τ ≤ ⌊H/2⌋]

]
≥ 1− (1− γ)⌊H/2⌋ where γ is

defined as
∑

s∈S ρ(s)(1 − ρ(s))N . Subsequently, in Lemma A.7.3 we show that γ ≳ |S|/N .
Putting these two results together proves the statement of Lemma A.2.13.
Along the way to proving Lemma A.7.2, we introduce an auxiliary result.

Lemma A.7.1. Fix the dataset (D,A) collected by the learner, and any policy πexp ∈
ΠBC

det(D,A) (as defined in eq. (A.23)). Recall that τ as defined in Lemma A.2.12 is the first
time t that the learner encounters a state st ̸= b that has not been visited in D at time t.
For some t ∈ [H], consider Prπ̂(D) [τ = t] computed with the underlying MDP as M[πexp].
Then,

Pr
π̂(D,A)

[τ = t] = (1− ρ (St(D) \ {b}))
∏t−1

t′=1
ρ
(
St′(D) \ {b}

)
(A.121)
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Proof. First observe that, the event {τ = t} implies that the learner only visits states in
St′(D) ∪ {b} till time t′ < t, and visits a state in Sτ (D) ∪ {b} at time t. That is,

Pr
π̂
[τ = t] = Pr

π̂

[
st ̸∈ St(D) ∪ {b}, ∀t′ < t, st′ ∈ St′(D) ∪ {b}

]
(A.122)

= Pr
π̂

[
st ̸∈ St(D) ∪ {b}, ∀t′ < t, st′ ∈ St′(D) \ {b}

]
(A.123)

where in the last equation, we use the fact that by construction of M[πexp], the learner is
forced to visit the state b at time t if the state b is visited at any time t′ < t.
Moreover, since the learner never visits b till time t− 1, this implies that the learner must
play the expert’s action at each visited state until time t− 1 (otherwise the state b is visited
with probability 1 at time t). Therefore,

Pr
π̂
[τ = t] = Pr

πexp

[
st ̸∈ St(D) ∪ {b}, ∀t′ < t, st′ ∈ St′(D) \ {b}

]
. (A.124)

Since under the policy πexp rolled out onM[πexp], the distribution over states induced is i.i.d.
across time and drawn from ρ, we have that,

Pr
π̂
[τ = t] = (1− ρ (St(D) ∪ {b}))

∏t−1

t′=1
ρ(St′(D) \ {b}) (A.125)

However the distribution ρ has no mass on the state b. Therefore ρ (St(D) ∪ {b}) =
ρ (St(D) \ {b}) and the proof concludes.

Corollary A.7.1. Prπ̂(D,A)[τ ≤ ⌊H/2⌋] = 1−∏⌊H/2⌋
t=1 ρ

(
St(D) \ {b}

)
.

Lemma A.7.2. Fix some policy πexp ∈ ΠBC
det(D,A) and the MDP as M[πexp]. Then,

E

[
Pr

π̂(D,A)
[τ ≤ ⌊H/2⌋]

]
≥ 1− (1− γ)⌊H/2⌋ (A.126)

where γ =
∑

s∈S ρ(s)(1− ρ(S))N .

Proof. Recall that the learner rolls out policies π1, · · · , πN to generate trajectories tr1, · · · , trN .
First observe that, conditioned on the learner’s dataset truncated till the states visited at
time t,

E
[∏τ

t=1
ρ
(
St(D) \ {b}

)]
− E

[∏τ+1

t=1
ρ
(
St(D) \ {b}

)]
= E

[∏τ

t=1
ρ
(
St(D) \ {b}

)(
1− E

[
ρ (Sτ+1(D) \ {b})

∣∣∣D≤τ,<τ

] )]
(A.127)

where in the last equation we use the fact St(D) for all t ≤ τ is a measurable function of
D≤τ,<τ . Conditioned on D≤τ,<τ , consider the distribution over actions anτ played by the learner
in different trajectories. If anτ = πexp

t (snτ ), the state snτ+1 is renewed in the distribution ρ. If
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anτ is any other action, snτ+1 = b with probability 1, and does not provide any contribution to
ρ (Sτ+1(D) \ {b}). Let the random variable N ′ denote the number of trajectories that have
already visited b prior to time τ or play an action other than the expert’s action at time τ .
By linearity of expectation,

1− E
[
ρ (Sτ+1(D) \ {b})

∣∣∣D≤τ,<τ

]
= E

[∑
s∈S\{b}

ρ(s) (1− ρ(s))N
′
∣∣∣∣D≤τ,<τ

]
(A.128)

≥
∑

s∈S\{b}
ρ(s) (1− ρ(s))N (A.129)

Recalling that γ is defined as the constant
∑

s∈S ρ(s) (1− ρ(s))N and ρ(b) = 0, from
eqs. (A.127) and (A.129),

E
[∏τ+1

t=1
ρ
(
St(D) \ {b}

)]
≥ (1− γ)E

[∏τ

t=1
ρ
(
St(D) \ {b}

)]
(A.130)

We also have that E[ρ(S1(D) \ {b})] = 1−∑s∈S\{b} ρ(s)(1− ρ(s))N = 1− γ since the initial
state s in each trajectory in D is sampled independently and identically from ρ. Using this
fact and recursing eq. (A.130) over τ = 1, · · · , ⌊H/2⌋ − 1 gives,

E

[∏⌊H/2⌋

t=1
ρ
(
St(D) \ {b}

)]
≥ (1− γ)⌊H/2⌋. (A.131)

Invoking Corollary A.7.1 completes the proof.

Lemma A.7.3. γ, defined in Lemma A.7.2 as
∑

s∈S ρ(s)(1− ρ(s))N is ≥ |S|−2
e(N+1)

.

Proof. By the definition of ρ, we have that,

γ =
∑
s∈S

ρ(s)(1− ρ(s))N
(i)

≥ |S| − 2

N + 1

(
1− 1

N + 1

)N

≥ |S| − 2

e(N + 1)
. (A.132)

where in (i) we lower bound by only considering the |S| − 2 states having mass = 1
N+1

under
ρ.

Lower bound in the known-transition setting

Proof of Lemma A.2.15

The proof of this result closely follows that of Lemma A.2.11. Fix some policy π ∈ Πdet.
Consider any time t ∈ [H] and state s ∈ St(D) which is visited in some trajectory in the
dataset at time t. If πt(s) does not match the unique action a⋆t (s) played at time t in any
trajectory in D that visits s at this time, the likelihood of π given D is exactly 0 (recall we
assume that the expert’s policy is deterministic). On the contrary, the conditional probability
of observing the expert dataset D does not depend on the expert’s action on the states that
were not observed in D, since no trajectory visits these states. On these states the expert’s
action marginally follows the uniform distribution over A. Thus the result follows.
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Proof of Lemma A.2.16

Observe that,

E(πexp,r)∼P ′(D) [H − Jr(π̂)]

= E(πexp,r)∼P ′(D)

[
Eπ̂

[∑H

t=1
1− rt(st, at)

]]
(A.133)

≥
∑H

t=1
E(πexp,r)∼P ′(D)

[
Eπ̂

[
1(s1 ̸∈ S1(D))

(
1− rt(st, at)

)]]
(A.134)

By construction of the M[πexp] and P each state s ∈ S is absorbing. Therefore, s1 ̸∈
S1(D) ⇐⇒ {∀t ∈ [H], st ̸∈ St(D)}. By the structure of the reward function r[πexp], the
learner accrues a reward of 1 at some state if and only if the learner plays the expert’s action
at this state. Therefore, rt(st, at) = 1(at = πexp

t (st)) and,

E(πexp,r)∼P ′(D)

[
Eπ̂

[
rt(st, at)

∣∣∣s1 ̸∈ S1(D)
]]

= E(πexp,r)∼P ′(D)

[
Eπ̂

[
1(at = πexp

t (st))
∣∣∣s1 ̸∈ S1(D)

]]
(A.135)

From Lemma A.2.15 observe that conditioned on D, the expert’s policy πexp is sampled
uniformly from ΠBC

det(D). Since we condition on s1 ̸∈ S1(D) ⇐⇒ st ̸∈ St(D) the state st is
not visited in any trajectory in D at time t. This implies that the expert’s action πexp

t (st) is
uniformly sampled from A. Therefore,

Eπ̂

[
E(πexp,r)∼P ′(D)

[
1(at = πexp

t (st))
∣∣∣s1 ̸∈ S1(D)

]]
=

1

|A|
∑
a∈A

Eπ̂

[
1(at = a)

∣∣∣s1 ̸∈ S1(D)
]
=

1

|A| .

Plugging this into eq. (A.135) and subtracting 1 from both sides we get that,

E(πexp,r)∼P ′(D)

[
Eπ̂(D,P,ρ)

[
1− rt(st, at)

∣∣∣s1 ̸∈ S1(D)
]]

= 1− 1

|A| . (A.136)

Plugging this back into eq. (A.134) we get that,

E(πexp,r)∼P ′(D) [H − Jr(π̂)] ≥ H

(
1− 1

|A|

)
Pr
π̂
[s1 ̸∈ S1(D)] (A.137)

Since s1 is sampled independently from ρ, the proof of the result concludes.

Proof of Lemma A.2.17

Note that the dataset D follows the posterior distribution generated by rolling out πexp for
N episodes when πexp is drawn from the uniform prior Unif(Πdet). Irrespective of the choice
of πexp, note that the initial distribution over states is still ρ. Therefore,

E[1− ρ(S1(D)] =
∑
s∈S

ρ(s)(1− ρ(s))N (A.138)

(i)

≥ |S| − 1

N + 1

(
1− 1

N + 1

)N

≥ |S| − 1

e(N + 1)
(A.139)
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where in (i) we lower bound by considering only the |S| − 1 states having mass 1
N+1

under ρ.
Plugging this back into eq. (A.44) completes the proof of the theorem.
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Appendix B

Proofs of Results in Chapter 3

We provide proofs for the theorems introduced in Chapter 3 within this appendix.

B.1 Computational and sample efficiency of (OPT-MD)
In this section we will prove Theorem 3.3.1. We show that solving the objective (OPT-MD)
in Mimic-MD can be posed as a convex program and is thus computationally tractable.
Specifically, any learner’s policy π can be represented by a set of joint state-action probabilities
{fπ

t (st, at)}t∈[H],st∈S,at∈A ∈ Ω, where Ω is the feasible set of all possible {qt(st, at)} such that
the following constraints hold:∑

st∈S

∑
at∈A

qt(st, at)Pt(st+1 | st, at) =
∑

at+1∈A

qt+1(st+1, at+1), ∀t ∈ [H − 1], st+1 ∈ S; (B.1)

∑
a1∈A

q1(s1, a1) = ρ(s1), ∀s1 ∈ S; (B.2)

qt(st, at) = 0, ∀t ∈ [H], st ∈ St(D1) and at ̸= πexp(st); (B.3)
qt(st, at) ≥ 0, ∀t ∈ [H], st ∈ S, at ∈ A. (B.4)

These constraints impose that fπ
t (st, at) is a feasible distribution which is consistent under

the MDP transition {Pt}. Given a feasible solution {qt(st, at)} satisfying eqs. (B.1) to (B.4),
the learner’s policy π̂ is constructed via Pr(π̂(st) = at) = qt(st, at)/

∑
ãt∈A qt(st, ãt). We

prove that π̂ ∈ ΠBC
det(D1) and qt(s, a) = Prπ̂[st = s, at = a] for t ∈ [H], s ∈ S, a ∈ A, thereby

establish a one-to-one correspondance between all feasible policies ΠBC
det(D1) and the feasible

set Ω. First, the non-negativity constraint eq. (B.4) implies that π̂ is a valid randomized
policy, and eq. (B.3) shows that π̂ mimics the expert policy on D1, i.e. π̂ ∈ ΠBC

det(D1). Second,
for t = 1, the identity eq. (B.2) implies that,

Pr
π̂
[s1 = s, a1 = a] = ρ(s1) ·

q1(s, a)∑
ã∈A q1(s, ã)

= ρ(s1) ·
q1(s, a)

ρ(s1)
= q1(s, a),
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as claimed. Finally, suppose that qt(s, a) = Prπ̂[st = s, at = a] holds for some t ∈ [H − 1],
then for time t+ 1, the compatibility condition eq. (B.1) gives that

Pr
π̂
[st+1 = s, at+1 = a] = Pr

π̂
[st+1 = s] · qt+1(s, a)∑

ã qt+1(s, ã)

=

(∑
s′∈S

∑
a′∈A

Pr
π̂
[st = s′, at = a′] · Pt(s | s′, a′)

)
· qt+1(s, a)∑

ã∈A qt+1(s, ã)

=

(∑
st∈S

∑
at∈A

qt(st, at) · Pt(s | st, at)
)
· qt+1(s, a)∑

ã∈A qt+1(s, ã)

= qt+1(s, a).

Therefore by induction, we conclude that any element of the feasible set Ω gives rise to a
feasible policy π̂ ∈ ΠBC

det(D1), and the reversed direction is obvious. Consequently, given the
feasible set Ω, the Mimic-MD objective (OPT-MD) solves the following convex program:

minimize
H∑
t=1

∑
(s,a)∈S×A

∣∣∣∣∣qt(s, a)− 1

|D2|
∑
tr∈D2

1 (tr(st, at) = (s, a))

∣∣∣∣∣ ,
subject to {qt(st, at)}t∈[H],s∈S,a∈A ∈ Ω.

(B.5)

It is clear that the convex program eq. (B.5) has O(|S||A|H) variables and O(|S||A|H) linear
constraints, and therefore Mimic-MD can be solved approximately in poly(|S|, |A|, H) time.
Now we show the upper bound when |S| = 2. The case for |S| ≥ 3 was discussed in Chapter 2.
Let Et be the event that there exists one state at time t that has not been visited in the N
expert trajectories. Note that we know the policy πexp

t exactly if both states at time t have
been visited: it implies that given an estimator f̂πexp

t for fπexp

t , if we have seen both states for
t′ = t+ 1, t+ 2, . . . , t+m, we can estimate fπexp

t′ via computing the marginal distributions
at these time steps t′ since we know the conditional distributions exactly, and we consider
this estimate in eq. (3.3) in Mimic-MD. Using the data processing inequality (Lemma B.1.1)
below, we know that DTV

(
fπexp

t′ , f̂πexp

t′

)
≤ DTV

(
fπexp

t , f̂πexp

t

)
. Hence, we have

H∑
t=1

DTV

(
fπexp

t , f̂πexp

t

)
≤ H max

t:Et holds
DTV

(
fπexp

t , f̂πexp

t

)
. (B.6)

It follows from the Binomial distribution formula that the marginal probability for the
unseen states for each Ei is at most log(H/δ)/N with probability at least 1− δ/H for each
i. By union bounding, with probability at least 1 − δ, for all time steps t such that Et

is true, the unseen state has marginal probability ≲ log(H/δ)/N . In other words, with
high probability, the state distribution at each time t with an unobserved is of the form
(p, 1− p) where p ≲ log(H/δ)/N . For such a distribution, using [42, Lemma 4], the empirical
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distribution achieves TV error ≲
√

p
N

≲
√

log(H/δ)/N for each t, which results in the final

H ×
√
log(H/δ)/N bound on

∑H
t=1 DTV

(
fπexp

t , f̂πexp

t

)
. Finally, observe that the imitation

gap of Mimic-MD is upper bounded by this quantity, since Gap(π̂) =
∑H

t=1 Eπexp [rt(st, at)]−
Eπ̂ [rt(st, at)] =

∑H
t=1DTV

(
fπexp

t , f π̂
t

)
≤ 2

∑H
t=1DTV

(
fπexp

t , f̂πexp

t

)
using the definition of

Mimic-MD. The expected imitation gap bound directly follows from integrating the high
probability bound using E[X] =

∫∞
0

Pr(X > t)dt for nonnegative random variables.

Lemma B.1.1. Consider any distributions p, q supported on [n]. Let P be any Markov kernel
from [n]→ ∆([n]). Then DTV (P ◦ p, P ◦ q) ≤ DTV (p, q).

Proof. By definition,

DTV (P ◦ p, P ◦ q) = 1

2

n∑
j=1

∣∣∣∣∣∑
i∈n

piPij −
∑
i∈n

qiPij

∣∣∣∣∣
=

1

2

n∑
j=1

∣∣∣∣∣∑
i∈n

(pi − qi)Pij

∣∣∣∣∣
≤ 1

2

n∑
j=1

∑
i∈n

|pi − qi|Pij

=
1

2

n∑
i=1

|pi − qi| = DTV (p, q)

B.2 Statistical lower bounds in the known-transition
setting

In this section we will prove the lower bound in Theorem 3.3.2. The first key observation is
first that in order to establish a lower bound on the one-sided error probability Pr(JM(πexp)−
JM(π̂) ≥ H3/2/N) for any learner π̂, it suffices to lower bound the two-sided error probability
Pr(|JM(πexp)− JM(π̂)| ≥ H3/2/N). Intuitively this is because the learner gets no reward
feedback - a learner which has small one-sided error probability on some MDPM = (P, r)
can potentially have large one-sided error probability on the MDPM = (P, 1− r). In the
absence of reward feedback, the learner cannot distinguish between these two cases. The only
option for the learner is to guarantee small two-sided error probability on all IL instances
to ensure a uniform bound on the one-sided error probability. In particular, we show the
following result.
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Lemma B.2.1. Suppose there exists an MDP M with |S| = 3 such that,

Pr

(
|JM(πexp)− JM(π̂(D))| ≳ H3/2

N

)
≥ c′,

for some constant 0 < c′ ≤ 1. Then there exists an MDP M′ with |S| = 3 such that,
Pr
(
JM′(πexp)− JM′(π̂(D)) ≳ H3/2

N

)
≥ c′/2.

Proof. Suppose for every MDPM, there exists a learner π̂ such that,

Pr

(
JM(πexp)− JM(π̂(D)) ≳

H3/2

N

)
<

c′

2
. (B.7)

This implies that for every MDPM,

Pr

(
JM(π̂(D))− JM(πexp) ≳

H3/2

N

)
<

c′

2
. (B.8)

This follows from the fact that for any MDPM = (P, r) we can consider an MDPM′ = (P, r′)
where r′t = 1− rt. As a consequence JM′(π) = H − JM(π) for any policy π which gives the
equation. By adding together eqs. (B.7) and (B.8) we see that for every MDPM, π̂ satsifies
the property that

Pr

(
|JM(π̂(D))− JM(πexp)| ≳ H3/2

N

)
< c′. (B.9)

Taking the contrapositive, this implies the required statement.

In order to furnish the lower bound, we will consider a Bayes IL problem, where the expert’s
policy πexp and the underlying MDP are sampled from some distribution D.
In order to prove this result, we assume that the underlying MDPM and the expert policy
πexp are jointly sampled from a distribution D and show that there is a constant c′ such that

E(πexp,M)∼D

[
E

[
1

(
|JM(πexp)− JM(π̂)| ≲ H3/2

N

)]]
< c′. (B.10)

This implies the existence of an MDPM and expert policy πexp with the required property.
Next, we use a symmetrization argument to upper bound the LHS of the above formula.

Lemma B.2.2. For any constant C > 0,

Pr

(
|JM(πexp)− JM(π̂)| ≤ CH3/2

N

)
≤ 1

2
+
1

2
E

[
Pr

(
|JM(πexp

1 )− JM(π⋆
2)| ≤

CH3/2

N

∣∣∣∣M, D

)]
(B.11)

where πexp
1 and πexp

2 are independent copies of the expert’s policy drawn from the posterior
distribution conditioned on the demonstration dataset D and MDP M.
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1 2 3

1 2 3
2
N

2
N

Figure B.1: Lower bound instance for |S| = 3. The dotted transitions offer no reward and
solid transitions offer reward 1. State 1 is the only one with 2 actions: red leading to state 2
and blue leading to state 3. The action at state 2 and 3 transitions the learner to state 1
with probability 1

N
and leaves it unchanged otherwise. The initial distribution is at state 2

with probability 1

Proof. By definition,

2Pr

(
|JM(πexp)− JM(π̂)| ≤ CH3/2

N

)
(i)
= E

[
Pr

(
|JM(πexp

1 )− JM(π̂)| ≤ CH3/2

N

∣∣∣∣M, π̂

)]
+ E

[
Pr

(
|JM(πexp

2 )− JM(π̂)| ≤ CH3/2

N

∣∣∣∣M, π̂

)]
(ii)

≤ 1 + E

[
Pr

(
|JM(πexp

1 )− JM(π̂)|+ |JM(πexp
2 )− JM(π̂)| ≤ CH3/2

N

∣∣∣∣M, π̂

)]
(iii)

≤ 1 + E

[
Pr

(
|JM(πexp

1 )− JM(πexp
2 )| ≤ CH3/2

N

∣∣∣∣M, π̂

)]
= 1 + E

[
Pr

(
|JM(πexp

1 )− JM(πexp
2 )| ≤ CH3/2

N

∣∣∣∣M, D

)]
where in (i), πexp

1 and πexp
2 are as defined in the theorem statement. (ii) uses the fact that

1(x ≤ a) + 1(y ≤ b) ≤ 1 + 1(x + y ≤ a + b) and (iii) follows by triangle inequality. The
last inequality follows from the fact that the expert policy is independent of any external
randomness employed by π̂.

Lower bound instance for known transition tabular setting

In this section, we describe the prior distribution D jointly over expert policies and MDPs.
The MDP is time invariant. We first describe the transition structure of the MDP. We assume
that N ≥ max{7, H} and |S| ≥ 3.
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MDP transition structure. We prove the lower bound for the case of |S| = 3. The
transition of the MDP is depicted in fig. B.1. The initial distribution of the MDP is at state
2 with probability 1. We assume that |A| = 2 and furthermore that the states 2 and 3 only
have a single action. This is without loss of generality, by assuming that the two actions
induce the same distribution over states and constraining the reward to be the same.
At states 2 and 3, playing either action transitions the learner to state 1 with probability 1/N
and stays put with the remaining probability. On the other hand, at state 1, picking action
a1 deterministically transitions the learner to state 2 while picking actions a2 transitions the
learner to state 3. State 1 is the only one where the choice of action is relevant so we specify
a policy by only mentioning the action distribution at state 1 in each group at each time in
the episode.

MDP reward structure. In each group g, the reward function of the MDP is chosen to
be 1 for the action at state g2 and 0 for every other state-action combination.

Expert policy. The expert policy is time variant. Recall that state g1 in each group g is
the only state where the choice of action plays a non-trivial role. Define Πdet as the set of all
time-variant deterministic policies. Recall the assumption that in each group g, states g2 and
g3 have only a single action.

To finally obtain the lower bound, we simply invoke the symmetrization argument in
Lemma B.2.2. First, conditioned on the dataset D, we compute the posterior distribu-
tion of the expert policy. To this end, recall the definition of ΠBC(D) (cf. eq. (2.3)), the set of
deterministic policies which are “consistent” with the dataset D and at each state visited in
D play the same action as observed in D. Namely,

ΠBC
det(D) ≜

{
π ∈ Πdet : ∀t ∈ [H], s ∈ St(D), πt(·|s) = δπexp

t (s)

}
,

where St(D) denotes the set of states visited at time t in some trajectory in D, and πexp
t (s) is

the unique action played by the expert at time t in any trajectory in D that visits the state
s at time t. Invoking [70, Lemma A.14], it follows that:

Lemma B.2.3. Conditioned on the demonstration dataset D, the expert policy is distributed
as Unif(ΠBC

det(D)). In other words, at each time t such that state 1 is unvisited in any trajectory
in the demonstration dataset, πexp

t (a1|1) ∼ Unif({0, 1}).
Finally, consider πexp

t (a1|1), which is an indicator random variable for the event that the
expert plays action a1 at the state 1 at time t. With this notation, we can compute the total
reward collected by the expert policy.

Lemma B.2.4. Consider the expert policy πexp. Then,

JM(πexp) =
H−1∑
t=1

(
H∑

t′=t+1

(
1− 1

N

)H−t′
)
Pr(st = 1)πexp

t (a1|g1) +
H∑
t=1

(
1− 2

N

)t−1

.
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Proof. Fixing the expert policy πexp, the probability that the expert visits the state 1 at time
2 satisfies the condition:

Pr
πexp

(st = 1) =
2

N

(
Pr
πexp

(st−1 = 2) + Pr
πexp

(st−1 = 3)
)

=⇒ Pr
πexp

(st = 1) =
2

N
(1− Pr(st−1 = 1)).

With the initial condition Prπexp(s1 = 1) = 0, the solution to the recurrence relation is,
Prπexp(st = 1) = 1

(N/2)+1

(
1− 1

(−N/2)t−1

)
. Note that this probability is independent of the

actions chosen by the expert at state 2 so henceforth we denote it by Pr(st = 1). Moreover
for t > 1,

2(N − 2)

N2
≤ Pr(st = 1) ≤ 2

N
(B.12)

with the upper bound for t = 2 and the lower bound for t = 3. Next observe that,

Pr
πexp

(st = 2) =

(
1− 2

N

)
Pr
πexp

(st−1 = 2) + Pr (st−1 = 1)πexp
t (a1|1) (B.13)

observe that πexp
t (a1|1) is a Bern(1/2) random variable indicating whether the expert picks

the action a1 at state 1 at time t. Finally,

J(πexp) =
H∑
t=1

Pr
πexp

(st = 2)

=
H−1∑
t=1

(
H∑

t′=t+1

(
1− 2

N

)H−t′
)
Pr(st = 1)πexp

t (a1|1) +
H∑
t=1

(
1− 2

N

)t−1

.

where the last equation uses the recursion for Prπexp(st = 2) in eq. (B.13).

Lemma B.2.5. Conditioned on the demonstration dataset D, sample two instances of the
expert policy πexp

1 and πexp
2 . Then,

JM(πexp
1 )− JM(πexp

2 ) =
H−1∑
t=1

(
H∑

t′=t+1

(
1− 2

N

)H−t′
)
Pr(st = 1)Xt1(1 ∈ St(D)).

where recall that St(D) is the set of states visited in some trajectory in the dataset D at time
t, and Xt are i.i.d. random variables distributed as:

Xt(i) =


−1, w.p. 1

4

0, w.p. 1
2

+1, w.p. 1
4



APPENDIX B. PROOFS OF RESULTS IN CHAPTER 3 119

Proof. Invoking Lemmas B.2.3 and B.2.4 for πexp
1 and π⋆

2, the statement follows immediately.

Lemma B.2.6. There exists a constant C > 0 such that, if N ≥ max{7, H},

E

[
Pr

(
|JM(πexp

1 )− JM(πexp
2 )| ≤ CH3/2

N

∣∣∣∣D)] ≤ 0.9.

Proof. Define the zero-mean random variable, ZD = J(πexp
1 ) − J(πexp

2 ) where πexp
1 and π⋆

2

are sampled from the posterior distribution conditioned on the demonstration dataset D.
From Lemma B.2.5, observe that ZD =

∑H−1
t=1 κtXt where κt =

∑H
t′=t+1

(
1− 2

N

)H−t′
Pr(st =

1)1(1 ∈ St(D)). By the Paley Zygmund inequality, for 0 ≤ θ ≤ 1,

Pr
(
Z2

D ≥ θVar(ZD)
∣∣D) ≥ (1− θ)2

E [Z2
D|D]

2

E [Z4
D|D]

. (B.14)

Then, Var(ZD) = E [Z2
D|D] = 1

2

∑H
t=1 κ

2
t . Furthermore, E[Z4

D] ≤ 3
4

∑
t1 ̸=t2∈[H] κ

2
t1
κ2
t2
+

1
2

∑H
t=1 κ

4
t ≤ 3

4
(
∑H

t=1 κ
2
t )

2. Therefore, with θ = 1
10

,

Pr

(
Z2

D ≥
1

10
E
[
Z2

D

∣∣D]∣∣∣∣D) ≥ 99

100

1/4

3/4
=

33

100
. (B.15)

Now it remains to bound E[Z2
D|D]. In the sequel we will apply the second moment method yes

again to show a lower bound with constant probability. We first lower bound E[Z2
D] ≳ H3/N2,

and also upper bound Var(E[Z2
D|D]) ≤ cE[Z2

D] for a small constant c > 0. Together, with
another application of the second moment method, this implies that E[Z2

D|D] ≥ E[Z2
D] ≳

H3/2/N with constant probability.

Lemma B.2.7. E[Z2
D] ≳

H3

N2 .

Proof. By definition,

E
[
Z2

D

∣∣D] = 1

2

H∑
t=1

κ2
t

=
1

2

H∑
t=1

(
H∑

t′=t+1

(
1− 2

N

)H−t′
)2

(Pr(st = 1))2 1(1 ∈ St(D))

Taking an expectation over D on both sides and simplifying,

E
[
Z2

D

]
=

1

2

H−1∑
t=1

(
H∑

t′=t+1

(
1− 2

N

)H−t′
)2

(Pr(st = 1))2 Pr(1 ∈ St(D))

(i)

≳
H−1∑
t=1

(H − t)2 (Pr(st = 1))2 Pr(1 ∈ St(D))

(ii)

≳
H3

N2
, (B.16)
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Note that (i) follows from the fact that
∑H

t′=t+1

(
1− 1

N

)H−t′
≳ H − t since N ≥ |S|H,

while (ii) follows from Eq. (B.12) which shows that Pr(st = 1) ≳ 1
N

and the fact that
Pr(1 ∈ St(D)) = 1− (1− Pr(st = 1))N ≥ 1−

(
1− 2

N

)N ≥ 4/5 for N ≥ 7.

Lemma B.2.8. Var (E [Z2
D|D]) ≤

√
99/100 · E[Z2

D]

Proof. Observe that, √
Var (E [Z2

D|D])
(i)

≤ 1

2

H−1∑
t=1

√
Var(κ2

t )

≤ 1

2

H−1∑
t=1

√
E [κ4

t ]

(ii)

≤ 1

2

H−1∑
t=1

E[κ2
t ]√

4/5
≤ E[Z2

D]√
4/5

. (B.17)

In (i), we use the definition E [Z2
D|D] = 1

2

∑H−1
t=1 κ2

t . In (ii), we use the fact that E[κ4
t ] is a scaled

indicator random variable. Therefore, E[κ4
t ] =

E[κ2
t ]

2

Pr(κt>0)
≤ E[κ2

t ]
2

4/5
. Here, the last inequality uses

the fact that Pr(κt > 0) = Pr(1 ∈ St(D)) ≥ 1− (1−Pr(st = 1))N ≥ 1−
(
1− 2(N−1)

N2

)N
≥ 4/5

for N ≥ 7.

Finally, we are ready to establish a lower bound on E[Z2
D|D]. By an application of the second

moment method,

Pr

(
E
[
Z2

D

∣∣D] ≥ 1

10
E
[
Z2

D

])
≥ 99E[Z2

D]
2

100Var (E [Z2
D|D])

≥ 99

100
· 4
5
. (B.18)

Putting this together with eq. (B.15), conditioning on the event E =
{

E [Z2
D|D] ≥ 1

10
E[Z2

D]
}
,

which is a measurable function of the dataset D and occurs with large constant probability
from eq. (B.18)),

E

[
Pr

(
Z2

D ≥
E [Z2

D]

100

∣∣∣∣D)] ≥ Pr(E)E
[
Pr

(
Z2

D ≥
E[Z2

D]

100

∣∣∣∣E , D)]
(i)

≥ 99

100
· 4
5

E

[
Pr

(
Z2

D ≥
E[Z2

D|D]

10

∣∣∣∣E , D)]
≥ 99

100
· 4
5
· 33
100

> 0.1

where (i) uses the definition of E and the last equation follows by eq. (B.14). In particular,

E

[
Pr

(
Z2

D ≤
E[Z2

D]

100

)]
< 0.9

Finally, we invoke the lower bound on E[Z2
D] ≳

H3/2

N
from Lemma B.2.7 and use the fact that

ZD = J(πexp
1 )− J(π⋆

2) to complete the proof.
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Proof of Theorem 3.3.2 From Lemma B.2.5, there exists a constant C > 0 such that,

E

[
Pr

(
|JM(πexp

1 )− JM(πexp
2 )| ≤ CH3/2

N

∣∣∣∣D)] ≤ 0.9.

Therefore, from Lemma B.2.1 and Lemma B.2.2, we conclude there exists an MDPM such
that for any learner π̂,

Pr

(
JM(πexp)− JM(π̂) ≥ CH3/2

N

)
≥ 1− 0.95

2
= 0.025.
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Appendix C

Proofs of results in Chapter 4

C.1 Proof of Theorem 4.1.1
Consider a Poissonized setting where we receive Poi(N) trajectories1. Let Xt represent the
number of trajectories in which the expert visits state 2 at time t in the dataset. Under the
Poisson setting, {Xt : 1 ≤ t ≤ H} are mutually independent with each following distribution
Poi(Nwt), where wt = (1 − 1/N)t−1/N = Prπexp(st = 2) since this probability does not
depend on what πexp is.

Let ∆ = ⌊c log(NH)⌋, where c > 0 is some constant to be determined later. Given random
observations {Xt : 1 ≤ t ≤ H}, the policy we output is:

π̂t(red | 2) =


∑k∆

i=(k−1)∆+1 XiUi∑k∆
i=(k−1)∆+1 Xi

if (k − 1)∆ < t ≤ k∆

1
∑k∆

i=(k−1)∆+1Xi = 0

At any time t, the expert has marginal probability on state 3, Prπexp(st = 3) =
∑t−1

i=1 wiUi,
while our policy π̂ has expected marginal probability E[Prπ̂(st = 3)] =

∑t−1
i=1 wiE[π̂t(red | 2)].

We aim to show that
H∑
t=1

|
t−1∑
i=1

wiE[π̂t(red | 2)]−
t−1∑
i=1

wiUi| ≲
H log(HN)

N
. (C.1)

Using the property that for X ∼ Poi(µ) and independent Y ∼ Poi(λ), E
[

X
X+Y

∣∣X + Y > 0
]
=

µ
µ+λ

, we know that if (k − 1)∆ < t ≤ k∆,∣∣∣∣∣E[π̂t(red | 2)]−
∑k∆

i=(k−1)∆+1wiUi∑k∆
i=(k−1)∆+1wi

∣∣∣∣∣ ≤ Pr

 k∆∑
i=(k−1)∆+1

Xi = 0

 ≲
1

N2H2
(C.2)

1We can always simulate Poisson sampling with Poi(N/2) trajectories based on N trajectories sampled
based on the multinomial distribution, and the failure probability is exponentially small.
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if we take c to be large enough constant. Clearly∣∣∣∣∣
(

t−1∑
i=1

wi

)∑∆
i=1wiUi∑∆
i=1wi

−
t−1∑
i=1

wiUi

∣∣∣∣∣ ≲ log(HN)

N
,

for 1 ≤ t ≤ ∆, where we used the fact that each 0 ≤ wi ≲ 1/N . Indeed, now the total bias is
upper bounded by H log(HN)

N
+ 1

N2H2H
2 ≲ H log(HN)

N
once we combine it with (C.2).

Since the marginal distributions of states 1 and 2 do not depend on the policy, we have just
shown that for every time t and every state s,

|E[Pr
π̂
(st = s)]− Pr

πexp
(st = s)| ≲ log(NH)

N
,

which implies the final result.

C.2 Proof of Corollary 4.2.1
We use sample splitting and cut N trajectories into two halves. We construct the states S0
required by the Mimic-Mixture algorithm to be the states that are visited in the first half
of the dataset, so we know the expert actions there. Then, we search from the last layer
backwards for the first time that there exists one state that was not observed in the first half
of the dataset. Denote that time as t0. If there are two states in time t0 that are unseen,
then following the arguments in the binary state case in the proof of Theorem 3.3.1, we know
that Mimic-MD already works; if there exists only one state that is unseen at time t0, we
use Mimic-Mixture to construct the nearly unbiased estimator of the state-action marginal
distribution for one of the other two states.

The final result can be proved upon noticing the following two observations. First, by the data
processing inequality (Lemma B.1.1), if we have nearly unbiased estimator at time t0, we have
nearly unbiased estimator at time H. Second, the unseen state at time t0 must have marginal
probability at most Õ(1/N) due Binomial concentration, which implies that once we construct
the πL and πS policies in Mimic-Mixture as the two policies that maximize/minimize the
marginal probability of the target state while guaranteeing this unseen state has expected
visitation probability at most Õ(1/N), the overall imitation gap at time H is at most Õ(1/N).

C.3 Proof of Lemma 4.2.2
We first show that if the coefficients β⋆(tr), βS(tr), βL(tr) ∈ [0, 1] such that all the unbiasedness,
order, and feasibility properties hold, then we can construct a policy π̂ such that whose
expected state visitation probability at the terminal state s⋆ is close to that of the expert up
to O(1/N).
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The choice of the mixing coefficient α̂ is slightly different from the approach of plugging
eq. (4.6) into eq. (4.5): for each tr, we subsample the Poisson random variable X(tr) using the
subsampling probability βL(tr)− βS(tr) ∈ [0, 1] to arrive at another Poisson random variable
Y (tr), and further subsample Y (tr) with probability (β⋆(tr)−βS(tr))/(βL(tr)−βS(tr)) ∈ [0, 1]
to obtain a third Poisson random variable Z(tr). The subsamplings for different tr are
mutually independent. Then we construct the mixing coefficient by taking ratios as in
eq. (4.4).

By the subsampling property of Poisson random variables and the mutual independence
of {X(tr)}, the Poisson random variables Z(tr) ∼ Poi(N/2 · (β⋆(tr)− βS(tr)) Prπexp(tr)) and
Y (tr)−Z(tr) ∼ Poi(N/2 · (βL(tr)− β⋆(tr)) Prπexp(tr)) are independent. Since for independent
X ∼ Poi(λ), Y ∼ Poi(µ), it holds that

E

[
X

X + Y

∣∣∣∣ X + Y ̸= 0

]
=

λ

λ+ µ
,

it is clear that the mixing coefficient α̂ constructed in eq. (4.4) satisfies

E

[
α̂

∣∣∣∣ ∑
tr

Y (tr) ̸= 0

]
= E

[∑
tr Z(tr)∑
tr Y (tr)

∣∣∣∣ ∑
tr

Y (tr) ̸= 0

]

=

∑
tr(β

⋆(tr)− βS(tr)) Prπexp(tr)∑
tr(β

L(tr)− βS(tr)) Prπexp(tr)

(i)
=

Prπexp(st = s⋆)− PrπS(st = s⋆)

PrπL(st = s⋆)− PrπS(st = s⋆)
= α⋆,

where (i) is due to the unbiasedness requirement for the coefficients. Consequently,

|E[α̂]− α⋆| ≤ Pr

(∑
tr

Y (tr) = 0

)
= exp

(
−N

2

∑
tr

(βL(tr)− βS(tr)) Pr
πexp

(tr)

)

= exp

(
−N

2
(Pr
πL
(st = s⋆)− Pr

πS
(st = s⋆))

)
. (C.3)

Using eq. (C.3) and the definition of π̂ = α̂πL + (1− α̂)πS, the bias in Theorem 4.2.1 satisfies

|E[Pr
π̂
(st = s⋆)]− Pr

πexp
(st = s⋆)|

= |E[α̂](Pr
πL
(st = s⋆)− Pr

πS
(st = s⋆))− ( Pr

πexp
(st = s⋆)− Pr

πS
(st = s⋆))|

= |E[α̂]− α⋆| · (Pr
πL
(st = s⋆)− Pr

πS
(st = s⋆))

≤ exp

(
−N

2
(Pr
πL
(st = s⋆)− Pr

πS
(st = s⋆))

)
· (Pr

πL
(st = s⋆)− Pr

πS
(st = s⋆))

≤ 2

eN
, (C.4)
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where the last inequality is due to supx xe
−tx = 1/(et) for any t > 0. According to eq. (C.4),

the claimed bias upper bound in Theorem 4.2.1 is proved.
We introduce several useful notations for the proof. Although the state space S is shared
among all times t ∈ [H], we use the notation St to denote the state space at time t. Given
a policy π, for t1 < t2 and states st1 ∈ St1 , st2 ∈ St2 , we use Prπ(st1 → st2) to denote the
probability of reaching st2 from st1 through only the states in S0 under the policy π; in other
words,

Pr
π
(st1 → st2) ≜ E

 ∑
st1+1∈St1+1∩S0

· · ·
∑

st2−1∈St2−1∩S0

t2−1∏
t=t1

Pt(st+1 | st, π(st))

 , (C.5)

where the expectation is taken with respect to the possible randomness in the policy π. When
we start from the initial state distribution ρ, we also write Prπ(s→ st) to denote

Pr
π
(s→ st) =

∑
s1∈S1∩S0

ρ(s1) · Pr
π
(s1 → st), (C.6)

where s denotes “start”. Similarly, we also define the probability from st to the end by

Pr
π
(st → f) =

∑
sH∈SH

Pr
π
(st → sH), (C.7)

where f denotes “finish”. Note the following difference between eq. (C.6) and our usual
notation Prπ(st = s): the latter quantity does not require that the trajectory to st only
consists of states in S0. The main motivation behind eq. (C.5), eq. (C.6), and eq. (C.7) is
that Prπexp(ρ→ st) is known to the learner solely based on the publicly known expert actions
at states S0, and the probabilities Prπexp(st1 → st2) and Prπexp(st1 → f) are known as long as
the learner knows the first action πexp(st1).
We also combine and partition all trajectories tr ∈ SH into several disjoint groups. For a
given trajectory tr = (s1, · · · , sH), we define the following notations:

1. The characteristic of tr, or c(tr), is the set of all times (except for t = H) and the
corresponding states in the trajectory which are not in S0. Mathematically, c(tr) =
{(t, st) : t ∈ [H − 1], st /∈ S0}.

2. The starting point of c, or tℓ(c), is defined to be the smallest t ∈ [H] with (t, st) ∈ c for
some st ∈ St. If c = ∅, we define tℓ(c) = ⊥.

3. The ending point of c, or tr(c), is defined to be the largest t ∈ [H] with (t, st) ∈ c for
some st ∈ St. If c = ∅, we define tr(c) = ⊥.

4. For each possible characteristic c, let the c-group, or Tc, be the set of all trajectories tr
with c(tr) = c.
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5. For each possible pair (t, st) with t ∈ [H − 1], st ∈ St\S0, let Gt,st be the set of all
characteristics c such that tℓ(c) = t and (t, st) ∈ c. The set G⊥ is defined analogously.

The main idea behind the above notations is that we require the dependence of coefficients
β†(tr) on tr only through c(tr), for all † ∈ {∗,L, S}, and therefore we only need to specify
the coefficients for every c-group. Consequently, we denote by β†(Tc) the common coefficient
β†(tr) for all tr ∈ Tc, and also by X(Tc) =

∑
tr∈Tc X(tr) the total Poisson count for Tc. It is

clear that for c = {(ti, sti) : i ∈ [m]}, we have

Pr
π
(Tc) = Pr

π
(s→ st1) ·

m−1∏
j=1

Pr
π
(stj → stj+1

) · Pr
π
(stm → f), (C.8)

and X(Tc) ∼ Poi(N/2 · Prπexp(Tc)). Note that the first probability term Prπ(s → st1) of
eq. (C.8) in fact does not depend on π, in the sequel the following notation will also be useful:

P̃rπ(Tc) =
m−1∏
j=1

Pr
π
(stj → stj+1

) · Pr
π
(stm → f). (C.9)

The starting point tℓ(c), as well as the group Gt,st , is used for further partitioning the c-groups.
Specifically, we sequentially assign the coefficients β†(Tc) to all characteristics in each group
G via an appropriate order, and aim to show that the following three conditions hold for each
G ∈ {Gt,st : t ∈ [H], st ∈ St\S0} ∪ {G⊥} (without loss of generality we assume that the target
state s⋆ belongs to the last layer, i.e. s⋆ ∈ SH):

1. Unbiasedness: for G ≠ G⊥, it holds that∑
c∈G

β†(Tc) · P̃rπexp(Tc) =
∑
c∈G

P̃rπ†(Tc) ·
Prπ†(str(c) → s⋆)

Prπ†(str(c) → f)
, † ∈ {∗,L, S}, (C.10)

where we recall that tr(c) is the ending point of c. For G = G⊥ and c = ∅, the condition
eq. (C.10) is replaced by

β†(T∅) · Pr
πexp

(T∅) = Pr
π†
(s→ s⋆). (C.11)

2. Order: it always holds that 0 ≤ βS(Tc) ≤ β⋆(Tc) ≤ βL(Tc) ≤ 1 for all c ∈ G.

3. Feasibility: for † ∈ {∗,L, S}, the coefficient β†(Tc) only depends on the public informa-
tion and {πexp(stj)}j∈[m], where c = {(tj, stj) : j ∈ [m]}.

Note that the order and feasibility conditions are the same as original ones, and below we
show that the above unbiasedness condition implies the original unbiasedness property. For
a given G ≠ G⊥, we must have G = Gt,st for some t ∈ [H], st ∈ St\S0. Now multiplying
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Prπexp(s→ st) = Prπ†(s→ st) to both sides of eq. (C.10), and also using eq. (C.8), eq. (C.9),
we arrive at∑

c∈G

β†(Tc) · Prπexp(Tc) =
∑
c∈G

Prπ†(Tc) ·
Prπ†(str(c) → s⋆)

Prπ†(str(c) → f)
, † ∈ {∗,L, S}. (C.12)

Using eq. (C.11) and eq. (C.12), we have∑
tr

β†(tr) · Pr
πexp

(tr)

= β†(T∅) · Pr
πexp

(T∅) +
∑
G≠G⊥

∑
c∈G

β†(Tc) · Pr
πexp

(Tc)

= Pr
π†
(s→ s⋆) +

∑
c ̸=∅

Pr
π†
(Tc) ·

Prπ†(str(c) → s⋆)

Prπ†(str(c) → f)

= Pr
π†
(s→ s⋆) +

∑
c={(tj ,stj ):j∈[m]}

Pr
π†
(s→ st1) ·

m−1∏
j=1

Pr
π†
(stj → stj+1

) · Pr
π†
(stm → s⋆)

= Pr
π†
(sH = s⋆),

where the last identity follows from the partition of all trajectories to s⋆ into disjoint
characteristics. This is exactly the original unbiasedness property.
Next we show that for each G we could fulfill the above conditions. We will first deal
with the group G⊥ in a special way, and then handle other groups Gt,st by induction on
t = H − 1, H − 2, · · · , 1.
Remark C.3.1. Note that the condition eq. (C.10) cannot be replaced by eq. (C.12) in general,
as it might happen that Prπ†(Tc) = 0 while P̃rπ†(Tc) > 0. For example, in the special case of
S0 = ∅, the condition eq. (C.12) is totally non-informative for G = Gt,st with t ≥ 2.
We also remark that the coefficient β†(Tc) must be constructed for every characteristic c,
even if for certain S0 there does not exist a trajectory tr such that c = c(tr) (e.g. consider
S0 = ∅). This is because our construction is sequentially inductive, and therefore must be
done step after step.

Edge case: G = G⊥. In this case, the only element of G⊥ is c = ∅, and we have

Pr
πexp

(T∅) = Pr
πexp

(s→ f) = Pr
πL
(s→ f) = Pr

πS
(s→ f)

Pr
πexp

(s→ s⋆) = Pr
πL
(s→ s⋆) = Pr

πS
(s→ s⋆),

and all above quantities are publicly known. By eq. (C.11), all three conditions are fulfilled
by choosing

β⋆(T∅) = βL(T∅) = βS(T∅) =
Prπexp(s→ s⋆)

Prπexp(s→ f)
∈ [0, 1].
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Base step of induction: G = GH−1,sH−1
for some sH−1 ∈ SH−1. In this case, the set

GH−1,sH−1
has a unique element c = {(H−1, sH−1)}, and the condition eq. (C.10) is equivalent

to

β†(Tc) = Pr
π†
(sH−1 → s⋆), † ∈ {∗,L, S}, (C.13)

as P̃rπexp(Tc) = P̃rπ†(Tc) = Prπ†(sH−1 → f) = 1. By definition of the extremal policies πL and
πS, Lemma C.3.1 at the end of the section shows that the choice in eq. (C.13) also satisfies
the order condition. Finally, the probability in eq. (C.13) for † ∈ {L, S} is determined by
the known transition and extremal policies, while for † = ∗, the coefficient only requires the
additional information πexp(sH−1). As the characteristic c is {(H − 1, sH−1)}, the choice of
eq. (C.13) also satisfies the feasibility condition.

Inductive step: G = Gt,st after handling all Gt′,st′ for t′ > t. We choose the coefficients
β†(Tc) with Tc ∈ Gt,st for each † ∈ {∗,L, S}, respectively.
The choice for † = ∗ is the simplest, and is given by

β⋆(Tc) ≜
Prπexp(str(c) → s⋆)

Prπexp(str(c) → f)
∈ [0, 1], ∀c ∈ Gt,st . (C.14)

Plugging eq. (C.14) into eq. (C.10), it is clear that the unbiased condition holds for † = ∗.
Moreover, both the numerator and the denominator in eq. (C.14) only require the additional
information πexp(str(c)), and thus β⋆ satisfies the feasibility condition.
Next we construct βL(Tc) such that the unbiased and feasibility conditions hold, with
βL(Tc) ∈ [β⋆(Tc), 1]. An entirely symmetric argument also leads to the claimed construction
of βS(Tc). For every c ∈ Gt,st , the coefficient βL(Tc) is chosen to be

βL(Tc) = (1− α)βL
0 (Tc) + αβL

1 (Tc), (C.15)

with some scalar α ∈ [0, 1] independent of c, and the candidate coefficients βL
0 , β

L
1 are defined

as

βL
0 (Tc) ≡ 1, βL

1 (Tc) =
{
β⋆(Tc) if c = {(t, st)},
βL(Tc\{(t,st)}) otherwise.

We first show that both βL
0 , β

L
1 satisfy the feasibility condition. This result is trivial for the

constant βL
0 ; the coefficient βL

1 is also feasible, for both coefficients β⋆(Tc) in eq. (C.14) and
βL(Tc\{(t,st)}) in the inductive hypothesis are feasible. Moreover, whenever c ∈ Gt,st is not a
singleton, by the inductive hypothesis and eq. (C.14) we have

β⋆(Tc) =
Prπexp(str(c) → s⋆)

Prπexp(str(c) → f)
=

Prπexp(str(c\{(t,st)}) → s⋆)

Prπexp(str(c\{(t,st)}) → f)
= β⋆(Tc\{(t,st)}) ≤ βL(Tc\{(t,st)}) ≤ 1.
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Consequently, we always have βL
0 , β

L
1 ∈ [β⋆, 1], therefore the order condition βL ∈ [β⋆, 1] holds

for any mixture in eq. (C.15).
Now it remains to show that there exists α ∈ [0, 1] such that the mixture βL in eq. (C.15)
satisfies the condition eq. (C.10) for † = L, and that this common value α is feasible with
respect to all c ∈ Gt,st . For the first claim, it suffices to prove that

A ≜
∑

c∈Gt,st

βL
0 (Tc) · P̃rπexp(Tc) ≥

∑
c∈Gt,st

P̃rπL(Tc) ·
PrπL(str(c) → s⋆)

PrπL(str(c) → f)
≜ C, (C.16)

B ≜
∑

c∈Gt,st

βL
1 (Tc) · P̃rπexp(Tc) ≤

∑
c∈Gt,st

P̃rπL(Tc) ·
PrπL(str(c) → s⋆)

PrπL(str(c) → f)
= C. (C.17)

Given eq. (C.16) and eq. (C.17), the parameter α ∈ [0, 1] to fulfill the unbiased condition
eq. (C.10) is

α =
A− C

A−B
. (C.18)

To establish eq. (C.16), eq. (C.17) and show that the parameter α in eq. (C.18) is feasible,
we will find simplified expressions for A,B, and C. First we claim that

A = 1, (C.19)
C = Pr

πL
(sH = s⋆ | st). (C.20)

To show eq. (C.19), consider all possible trajectories starting from st at time t. Partition the
trajectories into disjoint sets labeled by different characteristics c, i.e. when and on which
states the trajectory hits S0. It is clear by eq. (C.9) that the probability of the set labeled by
c, conditioned on starting from st at time t, is precisely P̃rπexp(Tc) under the expert policy
πexp. Summing them up gives A = 1. The identity eq. (C.20) could be established in a similar
way.
The quantity B is more complicated to deal with, where a key observation is that Gt,st\{(t, st)} =
G⊥ ∪ (∪t′>t,st′∈St′\S0Gt′,st′ ). Using the definition of βL

1 (Tc), we have

B = β⋆(T{(t,st)}) · Pr
πexp

(st → f) +
∑
t′>t

∑
st′∈St′\S0

∑
c′∈Gt′,st′

βL(Tc′) · Pr
πexp

(st → st′) · P̃rπexp(Tc′)

(i)
= Pr

πexp
(st → s⋆) +

∑
t′>t

∑
st′∈St′\S0

Pr
πexp

(st → st′)
∑

c′∈Gt′,st′

βL(Tc′) · P̃rπexp(Tc′)

(ii)
= Pr

πexp
(st → s⋆) +

∑
t′>t

∑
st′∈St′\S0

Pr
πexp

(st → st′)
∑

c′∈Gt′,st′

P̃rπL(Tc′) ·
PrπL(str(c′) → s⋆)

PrπL(str(c′) → f)

(iii)
= Pr

πexp
(st → s⋆) +

∑
t′>t

∑
st′∈St′\S0

Pr
πexp

(st → st′) · Pr
πL
(sH = s⋆ | st′),
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where (i) follows from the definition of β⋆ in eq. (C.14), (ii) uses the inductive hypothesis
eq. (C.10) for Gt′,st′ , and (iii) follows from eq. (C.20). In other words, we have

B = Pr
πexp→πL

(sH = s⋆ | st), (C.21)

where the new policy πexp → πL means that starting from st, the learner initially adopts the
policy πexp and switches to πL once he visits a state not in S0. The expression eq. (C.21) is
obtained by distinguishing the first state not in S0 visited by the learner starting from st.
By eq. (C.19), eq. (C.20) and eq. (C.21), it is clear from Lemma C.3.1 that A ≥ C ≥ B.
Regarding the feasibility, it is clear that A and C are both publicly known, and B only
requires the knowledge of πexp(st), which is shared among all c ∈ Gt,st . Therefore we have
completed the inductive step and and the proof of Lemma 4.2.2.

Lemma C.3.1. For every t ∈ [H] and s ∈ St, (proper versions of) the extremal policies
πL, πS satisfy

πL ∈ argmax
π∈ΠBC

det(S0)

Pr
π
(sH = s⋆ | st = s),

πS ∈ argmin
π∈ΠBC

det(S0)

Pr
π
(sH = s⋆ | st = s).

Proof. By symmetry we only prove the first claim, and we induct on t = H − 1, H − 2, · · · , 1.
For the base case t = H − 1, the definition of πL implies that changing the action πL(s)
to any π(s) cannot decrease Pr(sH = s⋆), and therefore the statement holds provided that
PrπL(sH−1 = s) > 0; moreover, in the edge case PrπL(sH−1 = s) = 0 we may choose πL(s)
arbitrarily, so a proper version of πL would work. For the induction step, the same local
adjustment argument yields to

Pr
πL
(sH = s⋆ | st = s) ≥

∑
s′∈St+1

Pr
π
(st+1 = s′ | st = s) · Pr

πL
(sH = s⋆ | st+1 = s′)

≥
∑

s′∈St+1

Pr
π
(st+1 = s′ | st = s) · Pr

π
(sH = s⋆ | st+1 = s′)

= Pr
π
(sH = s⋆ | st = s)

provided that PrπL(st = s) > 0, where the second inequality makes use of the induction
hypothesis. The edge case is again handled by considering a proper version of πL.

C.4 Proof of Theorem 4.3.1
Notation. Since states 1, 3 and 4 have a singular action, we can identify the expert’s policy
by the action distribution at state 2 at each time t. For simplicity of presentation we assume
that state 2 only has 2 actions, i.e. A = {a−, a+}, although this can easily be extended to
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larger action spaces. Order the two actions at each time t as a− being the one which places
the largest mass on state 3 and a+ being the one which places the largest mass on state 4.
In the sequel, we will first prove Theorem 4.3.1 for the case where states 3 and 4 of the MDP
are absorbing. The extension to the more case where the action at these states induces an
arbitrary next-state distribution on state 3 and 4 is deferred to later.

Constructing a reference policy For i ∈ [2 log(NH)], define

Ti =
{
t ∈ [H] :

1

2i+1
< Pt(3|2, a−)− Pt(3|2, a+) ≤

1

2i

}
(C.22)

as a partitioning of the timesteps in [H] depending on the range of the probabilities of
visiting state 3 across actions. It is not necessary to partition beyond i = 2 log(NH) since
for any state where Pt(3|2, a−)− Pt(3|2, a+) ≤ 1/H2N2, picking the wrong action at these
states incurs suboptimality which, in total, amounts to at most 1/N2. Intuitively, timesteps
belonging to Ti for small values of i are very informative - knowing the expert’s action at this
state reveals a lot about the expert’s value function, since the alternative action induces a
next-state distributions very different from that of the expert’s action. However, for the same
reasons, picking the wrong action, which might happen if the states were not seen in the
dataset, could incur a large penalty in value. In contrast, timesteps belonging to Ti for large
values of i are not informative about the ground truth reward since all the actions induce
nearly the same next-state distributions. For the same reasons, this also means that picking
the wrong action at these states is not bound to incur a significant penalty. We will formalize
this trade-off between “informativeness” vs. “risk” in the following sections.
The learner’s policy can be defined as follows: for any time t ∈ Ti for some i, let ∆ ≥ 0 be
the smallest value such that t+∆ ∈ Ti and state 2 was observed in the dataset D at this
time. The reference policy is defined as,

πref(·|2) = δa, where a = πexp
t+∆(2) (C.23)

In other words, the learner looks at the next time belonging to the same bucket Ti, t+∆,
at which state 2 was observed in the dataset, and mimics the same action at time t. The
intuition is that the learner partitions the states according to their informativeness (defined
by the bucket Ti), and tries to follow the next observed action within the same bucket to
balance its risk.
First we characterize what it means for a state to be informative. Indeed, consider any time
t ∈ Ti where the expert’s action was observed at state 2, and suppose this action was a−
(a similar argument applies when the action was a+). By optimality of the expert’s policy,
consider any policy π̃ ∈ ΠBC

det(D) which agrees with πexp on the states observed in the dataset
and any reward function r̃ ∈ Ropt(D) on which this policy is optimal. Since π̃ and πexp agree
on the states observed in the dataset, on the reward function r̃, the value-to-go of π̃ under
the action played by the expert, a− is at least as much as the value under the alternative
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choice, a+. Namely,

P (3|2, a−)Ṽt+1(3) + (1− P (3|2, a−))Ṽt+1(4) + rt+1(2, a−) (C.24)

≥ P (3|2, a+)Ṽt+1(3) + (1− P (3|2, a+))Ṽt+1(4) + rt+1(2, a+)

=⇒ (Ṽt+1(3)− Ṽt+1(4))(P (3|2, a−)− P (3|2, a+)) ≥ −1

=⇒ (Ṽt+1(3)− Ṽt+1(4)) ≥ −
1

(P (3|2, a−)− P (3|2, a+))
≥ −2i+1 (C.25)

where the last inequality uses the definition of t ∈ Ti.
The lower bound in eq. (C.25) serves as a certificate showing that the action expert’s action
(assumed to be a−) is not significantly worse than the alternative action (a+) at time t. If i
is large, the RHS is smaller and the time-step is less “informative” (i.e. a weaker inequality).
If i is small, the RHS is larger and the time-step is more informative. This will play a crucial
role in bounding the imitation gap of the learner.
In order to bound the imitation gap of the reference policy, we will decompose it across the
imitation gap incurred across all the timesteps belonging to the same bucket Ti for some
i ∈ [2 log(NH)]. Let t1, · · · , tk denote the time-steps belonging to Ti. Consider any j ∈ [k]
and let ∆j ≥ 0 be the smallest value such that the state 2 was observed at time tj+∆j

(if no
such time exists, define tj+∆j

= H). By eq. (C.25), at time tj +∆j, assuming the action a−
was played by π̃,

Ṽtj+∆j
+1(3)− Ṽtj+∆j

+1(4) ≥ −2i+1 (C.26)

Recall that states 3 and 4 are absorbing, so we can write the inequality,

Ṽtj+1(3)− Ṽtj+1(4) ≥ −2i+1 − (tj+∆j
− tj). (C.27)

Recall that the learner matches the expert’s action played at the time tj+∆j
, and therefore

the action a− is played at time tj. If the expert played the same action at time tj, then
the learner incurs no suboptimality. In case π̃ plays the action a+, we can lower bound the
imitation gap of the reference policy as follows,

Ṽtj(2)− V πref
tj (2) ≤

(
Q⋆

tj
(2, a+)− V πref

tj (2)
)

=
(
Ptj(3|2, a+)− Ptj(3|2, a−)

) (
V ⋆
tj+1(3)− V ⋆

tj+1(4)
)

(i)

≤ 1

2i
(
2i+1 + (tj+∆j

− tj)
)

= 2 +
tj+∆j

− tj

2i
,

where (i) uses eq. (C.25) and the fact that tj ∈ Ti.



APPENDIX C. PROOFS OF RESULTS IN CHAPTER 4 133

Denoting qt = pt
∏

s<t(1− ps), the overall imitation gap of the reference policy is,

Jr̃(π̃)− Jr̃(πref) =
H−1∑
t=1

qt

(
Ṽt(2)− V πref

t (2)
)

=
∑

i∈[2 log(NH)]

∑
tj∈Ti

qtj

(
Ṽtj(2)− V πref

tj (2)
)

≤
∑

i∈[2 log(NH)]

k∑
j=1

qtj

(
2 +

tj+∆j
− tj

2i

)
I(∆j > 0), (C.28)

where the last inequality follows from eq. (C.27) and the fact that if ∆j = 0, the expert’s and
learner’s policies match at time tj, so no imitation gap is incurred.
Note that ∆j is a random variable is defined as the interval to the smallest time such that
state 2 was observed at time tj+∆j

. Consider the set of times in {t1, t2, · · · , tk} ∈ Ti and
define tk+1 = H + 1. Then, P (∆j = ℓ) is upper bounded by the probability that state 2 was
never observed in the dataset at time tj, tj+1, tj+2, · · · , tj+ℓ−1 and that state 2 was observed
at time tj+ℓ. Indeed, for ℓ = 0,

P (∆j = 0) = 1− (1− qtj)
N ≤ Nqtj

Likewise, note that ∆j = ℓ is the event that state 2 is seen in dataset at time tj+ℓ in at least
one trajectory, but not at time tj, tj+1, · · · , tj+ℓ−1 in any trajectory. By union bounding over
the index of the trajectory in which state 2 was observed at time tj+ℓ,

P (∆j = ℓ) ≤ Nqtj+ℓ

(
1−

ℓ−1∑
ℓ′=0

qtj+ℓ′

)N−1

Therefore,

E

∑
tj∈Ti

qtj
(
tj+∆j

− tj
) =

k∑
j=1

qtj

k−j+1∑
ℓ=0

(tj+ℓ − tj)Nqtj+ℓ

(
1−

ℓ−1∑
ℓ′=0

qtj+ℓ′

)N−1

=
k∑

j=1

qtj

k+1∑
ℓ=j

(tℓ − tj)Nqtℓ

(
1−

ℓ−1∑
ℓ′=j

qtℓ′

)N−1

(C.29)

For each l ≤ k, define θl = tl+1 − tl (with θk = H − tk) as the gap between consecutive
time-steps in the bucket Ti. Noting that tℓ − tj =

∑ℓ−1
l=j θl, eq. (C.29) can be rearranged as,

E

∑
tj∈Ti

qtj
(
tj+∆j

− tj
) = N

k−1∑
l=1

θl

l∑
j=1

qtj

k+1∑
ℓ=l+1

qtℓ

(
1−

ℓ−1∑
ℓ′=j

qtℓ′

)N−1

= N
k−1∑
l=1

θl

l∑
j=1

qtj

k+1∑
ℓ=l+1

qtℓ

(
1−

l∑
ℓ′=j

qtℓ′ −
ℓ−1∑

ℓ′=l+1

qtℓ′

)N−1

.
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Let jmin be the smallest value of j such that
∑l

ℓ′=j qtℓ′ ≤ 2 log(NH)/N , and likewise ℓmax

be the largest value of ℓ′ such that
∑ℓ−1

ℓ′=l+1 qtℓ′ ≤ 2 log(NH)/N . Note that for each l, we
can effectively truncate the sum over j ∈ {1, · · · , l} to j ∈ {jmin, · · · , l} and the sum over
ℓ ∈ {l + 1, · · · , k} to ℓ ∈ {l + 1, · · · , ℓmax} at the cost of an additive 1/NH error. This is
because for all terms involving a value of j or ℓ lying outside this range, (1 −∑l

ℓ′=j qtℓ′ −∑ℓ−1
ℓ′=l+1 qtℓ′ )

N−1 ≤ 1/H2N2 and the overall sum over ℓ, j for such terms evaluates to at most
1/N2. Therefore, we have,

E

∑
tj∈Ti

qtj
(
tj+∆j

− tj
) ≤ N

k−1∑
l=1

θl

l∑
j=jmin

qtj

ℓmax∑
ℓ=l+1

qtℓ

(
1−

l∑
ℓ′=j

qtℓ′ −
ℓ−1∑

ℓ′=l+1

qtℓ′

)N−1

+
H

N

≤ N
k−1∑
l=1

θl

l∑
j=jmin

qtj

ℓmax∑
ℓ=l+1

qtℓ +
H

N

(i)

≲
log2(NH)

N

k−1∑
l=1

θl +
H

N

≲
H log2(NH)

N
.

where (i) uses the definition of ℓmax and jmin and the last inequality uses the fact that∑k−1
l=1 θk = H − t1 ≤ H.

Combining with eq. (C.28) proves that the reference policy πref satisfies the condition that,

Jr̃(π̃)− Jr̃(πref) ≲
H log2(NH)

N
. (C.30)

Combining with Lemma 4.3.2 and noting that π̃ ∈ ΠBC
det(D) and r̃ ∈ Ropt(D) are arbitrary

completes the proof.

Arbitrary next-state distributions at state 3 and 4 Note that in the previous section,
we assume that the states 3 and 4 are absorbing. It remains to prove Theorem 4.3.1 in the
case where the next-state distributions under the action at this state follow an arbitrary
distribution supported on the same two states. This can be proved with a small modification
to the reference policy defined in eq. (C.23). As before, for any time t ∈ Ti for some i, with
∆ ≥ 0 being the smallest value such that t+∆ ∈ Ti, and such that state 2 was observed in
the dataset D at this time. Recall that a− is defined as the action at state 2 which places
maximum mass on state 3. Define ã as the action at state 2 at time t which induces the
distribution with maximum mass on the state 3 at time t+∆.

ã = argmax
a∈{a+,a−}

P (st+∆ = 3|st = 2, at = a)
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With this definition, we play the reference policy which picks the action with highest
probability of visiting the state 3 if the expert was observed to pick the action a− at time
t+∆ (i.e. the action which also maximizes the probability of visiting the state 3). Namely,

πref(·|2) =
{
δã, if πexp

t+∆(2) = a−

1− δã, otherwise.
(C.31)

When states 3 and 4 are absorbing, this reference policy matches that defined in eq. (C.23).
Under this new reference policy, the previous proof largely carries through, with the exception
of eq. (C.27), where the instead get the inequality,

Ṽtj+1(s)− Ṽtj+1(s
′) ≥ −2i+1 − (tj+∆j

− tj) (C.32)

where {s, s′} = {3, 4} and s is the state having higher probability of reaching state 3 at
time tj +∆j under the MDP transition. This inequality follows by noting that the action
at s and s′ induce a mixture distribution on states 3 and 4 at time t (with s having the
larger component on state 3, by definition). By another application of the data-processing
inequality in Lemma B.1.1, the largest value gap at time tj is achieved when the dynamics at
states 3 and 4 are deterministic, at which point it is lower bounded by the value gap at time
tj +∆j + 1 up to an additive error of 2i+1.
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Appendix D

Proof of main results in Chapter 5

Supplementary notation. Within this appendix, we will use ≪ and ≫ to indicate
the partial ordering on vectors where a ≪ b if a is not larger than b co-ordinate wise (≫
is defined analogously). We also use 0 to denote the all 0’s vector and 1 denote the all
1’s vector (where the dimension is inferred from context). For a vector 0 ≪ w ∈ Rd, the
norm ∥x∥2w ≜

∑d
i=1wix

2
i is the weighted-L2 norm. For a function g : X → R, the norm

∥g∥∞ ≜ supx∈X |g(x)|.

D.1 Proofs of results invoked in Theorem 5.0.1
Recall from eq. (5.1), the population expected 0-1 loss of a policy π is defined as

L0 -1(π; f
π) =

1

H

H∑
t=1

ESt∼fπ
t (·)

[
Ea∼π̂t(·|s) [1(a ̸= πexp

t (s)]
]
.

Lemma D.1.1. Suppose there exists an online learning algorithm which outputs policies
{π̂1, · · · , π̂N} sequentially, according to any procedure where the learner samples the policy
π̂i from some distribution conditioned on tr1, · · · , tri−1, subsequently samples a trajectory tri
by rolling out π̂i, repeating this process for N iterations. Denote f̂ i = {f̂ i

1, · · · , f̂ i
H} where f̂ i

t

denotes the empirical distribution over states at time t induced by the single trajectory tri
drawn from π̂i. Denote π̂ = 1

N

∑N
i=1 π̂

i as the mixture policy. Then,

E
[
L0 -1(π̂; f

π̂)
]
=

1

N

N∑
i=1

E
[
L0 -1(π̂

i; f̂ i)
]
.

Proof. Since the trajectory tri is rolled out using π̂i, conditioned on π̂i, f̂ i is conditionally
unbiased and in expectation equal to f π̂i (conditioned on π̂i). Therefore, for each i, since
L0 -1(π̂; f) is a linear function in f ,

E
[
L0 -1(π̂

i; f̂ i)
∣∣∣π̂i
]
= L0 -1(π̂

i; f π̂i

).
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Summing across i = 1, · · · , N and using the fact that L0 -1(π̂; f
π̂) = 1

N

∑N
i=1 L0 -1(π̂

i; f π̂i
) and

taking expectation completes the proof.

The conclusion of this lemma is that is it suffices to minimize the empirical 0-1 loss under
the learner’s own one-trajectory empirical state distribution 1

N

∑N
i=1 L0 -1(π̂

i; f̂ i). Note that
for any policy π, the loss

L0 -1(π; f̂
i) =

1

H

H∑
t=1

∑
s∈S

〈
πt(·|s), zit(s)

〉
(D.1)

where zit(s) =
{
f̂ i
t (s)(1− πexp(a|s))

}
a∈A
∈ ∆1

A is a linear function in the policy π. The

constraint on the policy variable π is that for each t ∈ [H] and s ∈ S, πt(·|s) ∈ ∆1
A.

Define the loss ℓi,s,t(π) =
∑

s∈S

〈
πt(·|s), zit(s)

〉
. Then the variable πt(·|s) lies in the simplex

∆1
A and the vector zit(s) is co-ordinate wise ≥ 0 and ≤ 1.

To learn the sequence of policies returned by the learner, we use the normalized-EG algorithm
of [84] which is also known as Follow-the-regularized-leader / Online Mirror Descent with
entropy regularization for online learning. Formally, the online learning problem and the
algorithm are as defined in Section 2 of [84].

Theorem D.1.2 (Adapted from Theorem 2.22 in [84]). Assume that the normalized EG
algorithm is run on a sequence of linear loss functions {⟨zi, ·⟩ : i = 1, · · · , T}, with η = 1/2
to return a sequence of distributions w1, · · · , wT ∈ ∆1

A. Assume that for all t ∈ [H], 0 ≪
zt ≪ 1. For any u such that

∑T
i=1⟨zi, u⟩ = 0,

T∑
t=1

⟨wi − u, zi⟩ ≤ 4 log(|A|).

This result is adapted from Theorem 2.22 in [84] by invoking the condition that 0 ≪ zt ≪ 1,
so the local norm ∥zt∥2wt

can be upper bounded by ⟨zt, wt⟩. Choosing η = 1
2
, using the

assumption that
∑T

i=1⟨zi, u⟩ = 0 and simplifying results in the statement of Theorem D.1.2.
Suppose the learner returns the sequence of policies π̂i, · · · , π̂N by running the normalized
EG algorithm on the sequence of losses ℓ1,s,t, · · · , ℓN,s,t for each s ∈ S and t ∈ [H] to return
a sequence of distributions π̂1

t (·|s), · · · , π̂N
t (·|s) ∈ ∆1

A. Finally, for i = 1, · · · , N , the learner
returns the policy π̂i as {{π̂i

t(·|s) : s ∈ S} : t ∈ [H]}.
Invoking the guarantee in Theorem D.1.2 for the sequence of policies π̂1

t (·|s), · · · , π̂N
t (·|s)

returned by a single instance of the normalized-EG algorithm,

T∑
i=1

⟨zit(s), π̂i
t(·|s)⟩ ≤ 4 log(|A|)
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Averaging across t ∈ [H], summing across s ∈ S and recalling the definition of L0 -1(π; f) in
eq. (D.1) results in the bound,

1

N

N∑
i=1

L0 -1(π̂
i; f̂ i) ≤ 4|S| log(|A|)

N
.

Finally invoking Lemma D.1.1 shows that the resulting sequence of policies π̂1, · · · , π̂N and
their mixtures 1

N

∑N
i=1 π̂

i satisfies,

E
[
L0 -1(π̂; f

π̂)
]
≤ 4|S| log(|A|)

N
.

Invoking [78, Theorem 2], under µ-recoverability shows that the resulting policy π̂ satisfies,

E[Gap(π̂)] ≤ 4|S| log(|A|)
N

.

This completes the proof of Theorem 5.0.1.

D.2 Proof of Theorem 5.0.2
For each active learner π̂ and the worst-case IL instance (πexp,M) considered in the lower
bound in the active-interaction setting (Theorem 2.2.1), consider the IL instance (πexp,Mµ)
where the only difference between M and Mµ is that each reward is scaled by a factor of
µ/H ≤ 1. Note thatMµ satisfies µ-recoverability. Indeed, consider any state s. Since the
rewards inMµ are in the interval [0, µ/H], the total reward of any trajectory inMµ lies in
the interval [0, µ]. Therefore, trivially, for each (s, a, t) ∈ S×A× [H] tuple, Qπexp

t (s, πexp
t (s))−

Qπexp

t (s, a) ≤ µ − 0 = µ and the IL instance satisfies µ-recoverability. More importantly
the imitation gap of π̂ on the IL instance (πexp,Mµ) is µ

H
times the imitation gap under

(πexp,M). In other words,

E
[
JMµ(π

exp)− JMµ(π̂)
]
=

µ

H
E [JM(πexp)− JM(π̂)]

≳
µ

H
min

{
H,
|S|H2

N

}
= min

{
µ,

µ|S|H
N

}
,

where the last inequality uses [70, Theorem 6.1]. This concludes the proof of Theorem 5.0.2.

D.3 Proof of Theorem 5.0.3
Define St(D) as the set of states observed in at least one trajectory at time t in the
demonstration dataset D. In particular, the learner exactly knows the expert’s policy
πexp
t (·|s) at all states s ∈ St(D) for each t = 1, · · · , H.
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The expert policy is deterministic in the lower bound instances we construct. As originally
defined in Eq. (2.3), define ΠBC

det(D) as the family of policies which mimics the expert on the
states visited in D. Namely,

ΠBC
det(D) ≜

{
π : ∀t ∈ [H], s ∈ St(D), πt(·|s) = πexp

t (·|s)
}
,

ΠBC
det(D) is the family of policies which are consistent with the demonstration dataset D.

In order to prove the lower bound on the worst-case expected imitation gap of any learner
π̂(D), it suffices to lower bound the Bayes expected imitation gap and find a joint distribution
P over MDPs and expert policies satisfying µ-recoverability, such that,

E(πexp,M)∼P

[
JM(πexp)− E [JM(π̂(D))]

]
≳ min

{
H,
|S|H2

N

}
.

Construction of P. First the expert’s policy is sampled uniformly from Πdet: for each
t ∈ [H] and s ∈ S, πexp

t (s) ∼ Unif(A). Conditioned on πexp, the distribution over MDPs
induced by P is deterministic and given by the MDP M[πexp] in fig. D.1. M[πexp] has a
fixed initial distribution over states ρ = {ζ, · · · , ζ, 1−(|S|−2)ζ, 0} where ζ = 1

N+1
. There is a

special state b ∈ S in the MDP which has behavior different from the remaining states. At
each state s ∈ S, choosing the expert’s action renews the state in the initial distribution ρ
providing a reward of 1 (except at state b it provides a reward of 0), while every other action
deterministically transitions the learner to the bad state and provides no reward. That is,

Pt(·|s, a) =
{
ρ, s ∈ S, a = πexp

t (s)

δb, otherwise,

and the reward function of the MDP is given by,

rt(s, a) =

{
1, s ∈ S \ {b}, a = πexp

t (s)

0, otherwise.

We first state a simple consequence of the construction of the MDP instances and P. Note
that the expert never visits the bad state b by virtue of the distribution ρ placing no mass on
b. Therefore, the value of πexp on the MDPM[πexp] is H.

Lemma D.3.1. The value of πexp on the MDP M[πexp] is H. Namely JM[πexp](π
exp) = H.

Proof. Playing the expert’s action at any state in S is the only way to accrue non-zero reward,
and in fact accrues a reward of 1. Thus the expert collects a reward of 1 at each time in any
trajectory.
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1

∼ρ

· · · |S|−1

∼ρ

b

∼ρ

Figure D.1: Upon playing the expert’s (green) action at any state, the learner is renewed
in the initial distribution ρ = {ζ, · · ·, ζ, 1−(|S|−2)ζ, 0} where ζ = 1

N+1
. Any other choice of

action (red) deterministically transitions the learner to b.

At the states unvisited in the dataset D, the learner cannot infer the expert’s policy or
even the transitions induced under different actions. Intuitively, the learner cannot guess
the expert’s action with probability ≥ 1/|A| at such states, a statement which we prove by
leveraging the Bayesian construction. In turn, the learner is forced to visit the bad state b
at the next point in the episode. Since the bad state is never observed in the dataset, the
learner is forced to guess the expert’s action to be able to recover in the distribution ρ over
the remaining states (lest it collects a reward of 0 for the rest of the episode). However by
making |A| large (≳ H), any learner, with constant probability fails to guess the expert’s
action at b at at least a constant fraction of the episode.

Using Lemma A.2.11 the conditional distribution of the expert’s policy given the demonstration
dataset D can be characterized, and is distributed ∼ Unif(ΠBC

det(D)).

Definition D.3.1. Define P(D) as the joint distribution of (πexp,M) conditioned on the
demonstration dataset D. Conditionally, πexp ∼ Unif(ΠBC

det(D)) and M =M[πexp].

From Lemma A.2.11 and the definition of P(D) in Definition D.3.1, applying Fubini’s theorem
gives,

E(πexp,M)∼P

[
JM(πexp)− E [JM(π̂)]

]
= E

[
E(πexp,M)∼P(D) [H − JM(π̂(D))]

]
. (D.2)

Next we relate this to the first time the learner visits a state unobserved in D.

Lemma D.3.2. Define the stopping time τ as the first time t that the learner encounters a
state st ̸= b that has not been visited in D at time t. That is,

τ =

{
inf{t : st ̸∈ St(D) ∪ {b}} ∃t : st ̸∈ St(D) ∪ {b}
H + 1 otherwise.

Then, conditioned on the demonstration dataset D,

E(πexp,M)∼P(D)

[
J(πexp)− E [J(π̂)]

]
≥
(
1− 1

|A|

)H+1

E(πexp,M)∼P(D)

[
Eπ̂(D) [H − τ ]

]
.

We defer the proof of this result to the end of this section.
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Finishing proof of Theorem 5.0.3. Plugging the result of Lemma D.3.2 into eq. (D.2),
and recalling the assumption that |A| ≥ H + 1,

E(πexp,M)∼P

[
J(πexp)− E [J(π̂)]

]
≥ 1

4
E
[
E(πexp,M)∼P(D) [Eπ̂ [H − τ ]]

]
,

(i)

≥ H

8
E
[
E(πexp,M)∼P(D)

[
Prπ̂

[
τ ≤ ⌊H/2⌋

]]]
,

=
H

8
E(πexp,M)∼P

[
E
[
Prπ̂

[
τ ≤ ⌊H/2⌋

]]]
,

where (i) uses Markov’s inequality, and the last equation uses Fubini’s theorem.
The last remaining element of he proof is to indeed bound the probability that the learner
visits a state unobserved in the dataset before time ⌊H/2⌋ which immediately follows from
Lemma A.2.13 shows that for any learner π̂, E(πexp,M)∼P [E [Prπ̂ [τ ≤ ⌊H/2⌋]]] is lower bounded
by ≳ min{1, |S|H/N}. Therefore,

E(πexp,M)∼P

[
J(πexp)− E [J(π̂)]

]
≳ Hmin

{
1,
|S|H
N

}
.

as long as |A| ≥ H + 1. This completes the proof.

Finally, we prove Lemma D.3.2.

Proof of Lemma D.3.2. Define the random time τb to be the first time the learner encounters
the state b while rolling out a trajectory. Formally,

τb =

{
inf{t : st = b} ∃t : st = b

H + 1 otherwise.

Furthermore, define Γb as the random variable which counts the number of time steps the
trajectory stays in the state b after visiting it for the first time. Namely,

Γb =

{
inf{∆ ≥ 0 : sτb+∆+1 ̸= b} τb ≤ H

0 otherwise.

Since the state b always dispenses 0 reward and since r is bounded in [0, 1], conditioned on
the demonstration dataset D,

H − E(πexp,M)∼P(D) [J(π̂)] = H − E(πexp,M)∼P(D)

[
Eπ̂

[∑H

t=1
rt(st, at)

]]
≥ E(πexp,M)∼P(D) [Eπ̂ [Γb]]

Fixing the demonstration dataset D and the expert’s policy πexp (which determines the MDP
M[πexp]), we under the distribution of Γb.
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To this end, first observe that for any t ≤ H − 1 and state s ∈ S,

Prπ̂ [Γb ≥ ∆+ 1,Γb ≥ ∆, τb = t]

= Prπ̂ [Γb ≥ ∆+ 1|Γb ≥ ∆, τb = t] Prπ̂ [Γb ≥ ∆, τb = t]

=
(
1− π̂t+∆(π

exp
t+∆(b)|b)

)
Prπ̂ [Γb ≥ ∆, τb = t] .

where in the last equation, we use the fact that the learner must play an action other than
πexp
t+∆(b) to stay in state b at time t + ∆. Next, we take expectation with respect to the

randomness of πexp. Conditioned on D, πexp is sampled uniformly from the set of policies
ΠBC

det(D) (Lemma A.2.11). In particular, conditioned on D, the expert policy is sampled
independently at states. Conditioned on πexp, the underlying MDP is M[πexp]. Observe
that the dependence of the second term Prπ̂ [τ = t, st = s] on πexp comes from the probability
computed with the underlying MDP chosen as M[πexp]. Observe that it only depends on
the characteristics ofM[πexp] till time t− 1 which are determined by πexp

1 , · · · , πexp
t+∆−1. On

the other hand, the first term
(
1− π̂t(π

exp
t+∆(b)|b)

)
depends only on the random variable πexp

t+∆.
As a consequence, the two terms depend on a disjoint set of random variables which are
independent.
Taking expectation with respect to the randomness of πexp ∼ Unif(ΠBC

det(D)) andM =M[πexp]
(together which define the joint distribution P(D)), for 0 ≤ ∆ ≤ H − t and t ∈ [H],

E(πexp,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆+ 1,Γb ≥ ∆, τb = t]

]
= 1(t+∆ ≤ H) · E(πexp,M)∼P(D)

[
1− π̂t+∆(π

exp
t+∆(b)|b)

]
E(πexp,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆, τb = t]

]
= 1(t+∆ ≤ H) ·

(
1− 1

|A|

)
E(πexp,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆, τb = t]

]
,

where in the last equation we use the fact that the state b is never observed in the demonstration
dataset. So conditioned on D, πexp

t+∆(b) is sampled uniformly from A. By upper bounding
Prπ̂ [Γb ≥ ∆+ 1,Γb ≥ ∆, τb = t] ≤ Prπ̂ [Γb ≥ ∆+ 1, τb = t] results in the inequality,

E(πexp,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆+ 1, τb = t]

]
≥ 1(t+∆ ≤ H) ·

(
1− 1

|A|

)
E(πexp,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆, τb = t]

]
Unrolling the equation, for each ∆ = 0, 1, · · · , H − t+ 1 we have,

E(πexp,M)∼P(D)

[
Prπ̂ [Γb ≥ ∆, τb = t]

]
≥
(
1− 1

|A|

)∆

E(πexp,M)∼P(D)

[
Prπ̂ [τb = t]

]
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Summing up over ∆ = 0, 1, · · · , H − t+ 1,

E(πexp,M)∼P(D)

[
Eπ̂ [Γb1(τb = t)]

]
≥

H−t+1∑
∆=0

(
1− 1

|A|

)∆

E(πexp,M)∼P(D)

[
Prπ̂ [τb = t]

]
≥ (H − t+ 1)

(
1− 1

|A|

)H

E(πexp,M)∼P(D)

[
Prπ̂ [τb = t]

]
.

Finally summing across t = 1, · · · , H + 1,

E(πexp,M)∼P(D)

[
Eπ̂ [Γb]

]
≥
(
1− 1

|A|

)H

E(πexp,M)∼P(D) [Eπ̂ [H − τb + 1]] .

Finally, we invoke the same inequality used in the proof of Lemma A.2.12 (specifically,
eq. (A.120)) to arrive at the desired bound,

E(πexp,M)∼P(D)

[
Eπ̂ [Γb]

]
≥
(
1− 1

|A|

)H+1

E(πexp,M)∼P(D) [Eπ̂ [H − τ ]]

Note that although the MDP family considered in Lemma A.2.12 is different, until the state b
is visited the two MDPs are identical and therefore τ and τb are distributed identically under
either MDP family for the same policy.
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Appendix E

Proofs of results in Chapter 6

E.1 Imitation gap of Empirical Moment Matching
Below we state an upper bound on the imitation gap of MM and provide a proof of this result.

Definition E.1.1 (Instantiation of F in MM). In the tabular setting, we instantiate the
discriminator class as Ft = {ft : ∥ft∥∞ ≤ 1} for each t, as the set of all 1-bounded functions,
and the policy class Π as the set of all tabular policies. eq. (6.2) corresponds to finding a
policy which best matches the empirical state-action visitation measure observed in the dataset
D in total variation (TV) distance.

Theorem E.1.1. The policy πMM returned by empirical moment matching (Definition 6.0.1)
satisfies the following upper bound on its imitation gap in the tabular setting,

E[Gap(πMM)] ≲ H

√
|S|
N

.

The key observation is that since the learner πMM best matches the empirical distribution
in the dataset, which is in turn close to the population visitation measure induced by πexp,
we can expect the visitation measure induced by πexp and πMM to be close. This in turns
implies that both policies will collect a similar value under any reward function. Precisely
characterizing the rates at which these distributions converge to one another results in the
final bound.

Proof. Recall that the learner πMM is the solution to the following optimization problem,

argmin
π

sup
f∈F

{
Eπ

[∑H
t=1 ft(st, at)

H

]
− ED

[∑H
t=1 ft(st, at)

H

]}

Exchanging the summation and maximization operators and recalling from Definition E.1.1
that in the tabular setting, the discriminator class F is instantiated as the set of all 1-bounded
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functions
⊕H

t=1{ft : ∥ft∥∞ ≤ 1}, πMM is a solution to

argmin
π

1

H

H∑
t=1

(
sup

f :∥f∥∞≤1

Eπ [ft(st, at)]−ED [ft(st, at)]
)
= argmin

π

1

H

H∑
t=1

DTV

(
dπt , d

D
t

)
(E.1)

where the equation follows by the variational definition of the total variation distance, and
where dπt is the state-action visitation measure induced by πexp and dDt is the empirical
state-action visitation measure in the dataset D. The imitation gap of this policy can be
upper bounded by,

Gap(πMM) = Eπexp

[
H∑
t=1

rt(st, at)

]
− EπMM

[
H∑
t=1

rt(st, at)

]
(i)

≤
H∑
t=1

sup
rt:∥rt∥∞≤1

(
Eπexp [rt(st, at)]− EπMM [rt(st, at)]

)
(ii)
=

H∑
t=1

DTV

(
dπ

exp

t (·, ·), dπMM

t (·, ·)
)

where (i) maximizes over the reward function which is assumed to lie in the interval [0, 1]
pointwise. (ii) again follows from the variational definition of total variation distance. This
goes to show that in the tabular setting, MM is equivalent to finding the policy which best
matches (in TV-distance) the empirical state-action distribution observed in the dataset.
By an application of triangle inequality,

Gap(πMM) ≤
H∑
t=1

DTV

(
dπ

exp

t (·, ·), dDt (·, ·)
)
+DTV

(
dDt (·, ·), dπ

MM

t (·, ·)
)

≤ 2
H∑
t=1

DTV

(
dπ

exp

t (·, ·), dDt (·, ·)
)

(E.2)

where (i) follows from eq. (E.1) which shows that πMM is the policy which best approxi-
mates the empirical state-action visitation measure in total variation distance, and therefore
DTV

(
dπ

MM

t (·, ·), dDt (·, ·)
)
≤ DTV

(
dπ

exp

t (·, ·), dDt (·, ·)
)
. The final element is to identify the rate of

convergence of the empirical visitation measure dDt , to the population dπ
exp

t in total variation
distance. This result is known from Theorem 1 of [42], which shows that,

E
[
DTV

(
dπ

exp

t (·, ·), dDt (·, ·)
)]

≲

√
|S|
N

,

noting that dπexp

t is a distribution with support size |S| since πexp is deterministic. Putting it
together with eq. (E.2) after taking expectations on both sides gives,

Gap(πMM) ≲
H∑
t=1

√
|S|
N

= H

√
|S|
N

.

This completes the proof of the result.
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E.2 Lower bounding the imitation gap of MM

In this section, we show that in the tabular setting, empirical moment matching is suboptimal
compared for Imitation Learning in the worst-case. The main result we prove in this section
is Theorem 6.1.1.

First note that the learner πMM carries out empirical moment matching (eq. (6.2)), with the
discriminator class F as initialized in Definition E.1.1. As shown in eq. (E.1), the empirical
moment matching learner can be redefined as the solution to a distribution matching problem,

argmin
π

1

H

H∑
t=1

DTV

(
dπt (·, ·), dDt (·, ·)

)
(E.3)

Consider an MDP instance with 2 states and 2 actions with a non-stationary transition and
reward structure as described in Figure fig. E.1. State 1 effectively has a single action (i.e.
two actions, a1 and a2 with both inducing the same next-state distribution and reward). One
of the actions at state 2 induces the uniform distribution over next states. The other action
deterministically keeps the learner at state 2. The reward function is 0 at t = 1, and the
action a2 at state 2 is the only one which offers a reward of 1. The initial state distribution
is highly skewed toward the state s = 1 and places approximately 1/

√
N mass on s = 2 and

the remaining on s = 1.

s1 Unif(S) s2

Figure E.1: MDP instance which shows that L1 distribution matching is suboptimal. Here
the transition structure is illustrated for t = 1. Both states have one action which reinitializes
in the uniform distribution. State 2 has an additional action which keeps the state the same.
The reward function is 0 for t = 1. For t ≥ 2 the transition function is absorbing at both
states; the reward function equals 1 at the state s = 1 for any action and is 0 everywhere else.

MDP transition. The state 2 is the only one with two actions. Action a1 induces the
uniform distribution over states, while action a2 transitions the learner to state 2 with
probability 1. Namely,

P1(·|s = 1, a) = Unif(S) for all a ∈ A
P1(·|s = 2, a1) = Unif(S)
P1(·|s = 2, a2) = δ2

From time t = 2 onward, the actions are all absorbing. Namely, for all t ≥ 2, s ∈ S and
a ∈ A,

Pt(·|s, a) = δs.



APPENDIX E. PROOFS OF RESULTS IN CHAPTER 6 147

Initial state distribution. The initial state distribution ρ =
(
1− 1√

N
, 1√

N

)
.

MDP reward function. The reward function of the MDP encourages the learner to stay
at the state s = 1 from time t = 2 onward. Namely,

rt(s, a) =

{
1, if t ≥ 2 and s = 1

0, otherwise.
(E.4)

Expert policy. At both states in the MDP, the expert picks the action a1 to play, which
induces the uniform distribution over actions at the next state. Namely, for each t ∈ [H] and
s ∈ S,

πexp
t (·|s) = δa1

The intuition behind the lower bound is as follows. The only action which affects the value
of a policy is the choice made at s = 2 at time t = 1. At all other states, we may assume
that there is effectively only a single action.
By the absorbing nature of states for t ≥ 2, it turns out that if the observed empirical
distribution in the dataset at time 2 is skewed toward state 2 (which is possible because of
the inherent randomness in the data generation process), the learner’s behavior at time 1
may be to ignore the expert’s action observed at state s = 2, and instead pick the action a2
which moves the learner to the state s = 2 deterministically. The learner is willing to choose
a different action because the loss function eq. (E.3) encourages the state-action distribution
at time t = 2 also to be well matched with what is observed in the dataset. Even if it comes
at the cost of picking an action different from what the expert plays. By exploiting this fact,
we are able to show that the error incurred by a learner which solves eq. (E.3) in this simple
2 state example must be Ω(H/

√
N).

Formally, we define 3 events,

1. E1: All states in the MDP are visited in the dataset at each time t = 1, 2, · · · , H.

2. E2: State 2 is visited at most
√
N times at time 1 in the dataset D. In other words,

dD1 (s = 2) = δ′ where δ′ ≤ 1√
N

.

3. E3: At time 2 in the dataset D, the empirical distribution over states is of the form(
1
2
− δ, 1

2
+ δ
)

for some δ ≥ 2√
N

.

Lemma E.2.1. Jointly, the events E1, E2 and E3 occur with at least constant probability.

Pr(E1 ∩ E2 ∩ E3) ≥ C,

for some constant C > 0.
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Proof. By the absorbing nature of states for t ≥ 2, it suffices for both states of the MDP
to be visited in the dataset at time t = 1, 2. At time t = 2, the marginal state distribution
under πexp is the uniform distribution. By binomial concentration, both states are observed
in the dataset at time t = 2 with probability ≥ 1− e−C1N for some constant C1 > 0. On the
other hand, at time t = 1, the marginal state distribution is ρ =

(
1− 1√

N
, 1√

N

)
. Yet again,

by binomial concentration, both states are observed with probability ≥ 1− e−C2

√
N for some

constant C2 > 0. By union bounding,

Pr(E1) ≥ 1− e−C1N − e−C2

√
N .

Next we study E2 and E3 together. First of all, note that the state observed at t = 1 and
t = 2 in a rollout of the expert policy are independent. This is because at both states at
t = 1, the next state distribution under πexp is uniform. Because of this fact, E2 and E3 are
independent. Next we individually bound the probability of the two events.
E2: The number of times s = 2 is the initial state in trajectories the dataset D is distributed
as a binomial random variable with distribution Bin(N, q) with q = ρ(s = 2) = 1√

N
. A

median of a binomial random variable is Nq =
√
N (in fact any number in the interval

[⌊Nq⌋, ⌈Nq⌉] is a median). Therefore, the probability that s = 2 is visited ≤
√
N times in

the dataset at time 1 is at least 1/2. In summary,

Pr(E2) ≥
1

2
E3: The marginal distribution over states at time 2 in the dataset is uniform. Therefore, we
expect the states 1 and 2 to be visited roughly N/2 times each in the dataset, but with a
random variation of ≈

√
N around this average. In other words, the empirical distribution

fluctuates as
(
1
2
− δ, 1

2
+ δ
)

with δ ≥ 2√
N

with constant probability.
By the independence of E2 and E3 and union bounding to account for E1, the statement of
the lemma follows.

Lemma E.2.2. For each t ≥ 2,

DTV

(
dπt (·, ·), dDt (·, ·)

)
≥ DTV

(
dπ2 (·), dD2 (·)

)
(E.5)

The RHS is the TV distance between the state-visitation measure at time t = 2 under π and
that empirically observed in the dataset D. Conditioned on the events E1, E2 and E3 occuring,
equality is met in eq. (E.5) if any only if πt(·|s) = πexp

t (·|s) for all states s ∈ S.
Proof. For any state s ∈ S and t ≥ 2, observe that,∑

a∈A

∣∣dπt (s, a)− dDt (s, a)
∣∣

= dπt (s)(1− πt(a
⋆|s)) +

∣∣dπt (s)πt(a
⋆|s)− dDt (s, a

⋆)
∣∣ , where a⋆ = πexp

t (s),

(i)
= dπ2 (s)(1− πt(a

⋆|s)) +
∣∣dπ2 (s)πt(a

⋆|s)− dD2 (s, a
⋆)
∣∣

(ii)

≥
∣∣dπ2 (s)− dD2 (s)

∣∣ ,
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where (i) follows by the fact that the states of the MDP are absorbing under π for t ≥ 2. (ii)
follows by triangle inequality and using the fact that πexp is deterministic, so dDt (s, a

⋆) = dDt (s).
Equality is met only if πt(a

⋆|s) = 1 (since dDt (s, a
⋆) > 0 conditioned on E1).

The above lemma asserts the behavior of πMM in eq. (E.3) for t ≥ 2. Namely, conditioned on
the event E1 which happens with very high probability, all states are visited in the MDP and
therefore, πMM

t (·|s) = πexp
t (·|s) for each state s ∈ S and time t ≥ 2.

The only thing left to study is the MM learner’s behavior at t = 1. We wish to show that with
constant probability, the learner may choose to deviate from the expert policy in order to
better match empirical state-action visitation measures. Conditioned on E1, the learner’s
policy at time t = 1 can be computed by solving the following optimization problem,

DTV ((, d)π1 (·, ·), dD1 (·, ·)) + (H − 1)DTV

(
dπ2 (·), dD2 (·)

)
.

This follows directly by simplifying the learner’s objective using Lemma E.2.2.
Now, conditioned on the event E1, at time t = 1, the learner policy only needs to be optimized
at the state s = 2. At the state s = 1, we may assume that the learner picks the expert’s
action πexp

1 (s = 1). To this end, suppose the learner picks the action a1 with probability p
and the action a2 with probability 1− p.

DTV

(
dπ1 (·, ·), dD1 (·, ·)

)
=
∑
a∈A

∣∣dπexp

1 (s = 2, a)− dD1 (s = 2, a)
∣∣

= |ρ(2)p− δ′|+ |ρ(2)(1− p)− 0|

=

∣∣∣∣ p√
N
− δ′

∣∣∣∣+ 1− p√
N

. (E.6)

which follows by plugging in ρ(2) = 1√
N

. And,

DTV

(
dπ2 (·), dD2 (·)

)
=

∣∣∣∣(1

2
− δ

)
− ρ(1)

2
− ρ(2)

p

2

∣∣∣∣+ ∣∣∣∣(1

2
+ δ

)
− ρ(1)

2
− ρ(2)

(
(1− p) +

p

2

)∣∣∣∣ .
(E.7)

Plugging in ρ(2) = 1√
N

and ρ(1) = 1− 1√
N

, we get,

DTV

(
dπ2 (·), dD2 (·)

)
=

∣∣∣∣ 1

2
√
N
− δ − p

2
√
N

∣∣∣∣+ ∣∣∣∣ p

2
√
N
− 1

2
√
N

+ δ

∣∣∣∣ . (E.8)

Summing up eqs. (E.6) and (E.8), p minimizes,∣∣∣∣ p√
N
− δ′

∣∣∣∣+ 1− p√
N︸ ︷︷ ︸

(i)

+(H − 1)

(∣∣∣∣ p

2
√
N

+ δ − 1

2
√
N

∣∣∣∣+ ∣∣∣∣ 1

2
√
N
− δ − p

2
√
N

∣∣∣∣)︸ ︷︷ ︸
(ii)

. (E.9)
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Intuitively, term (i) captures the error incurred by the learner in the loss eq. (E.3) by
deviating from πexp at the first time step. Term (ii) captures the decrease in the error at
every subsequent time step because of the same deviation, since the learner is able to better
match the state distribution at future time steps. In the next lemma we show that under
events that hold with at least constant probability, the empirical moment matching learner
chooses to play the wrong action at time t = 1 at the state s = 2.

Lemma E.2.3. Conditioned on the events E2 and E3, for H ≥ 4, the unique minimizer of
eq. (E.9) for p ∈ [0, 1] is p = 0.

Proof. The first term of eq. (E.9) is
∣∣p/√N − δ′

∣∣+ (1− p)/
√
N , the error from not picking

the expert’s action at state 1 at time 1 decreases at most linearly with a slope of 2/
√
N .

Conditioned on the event E3, δ ≥ 2/
√
N . Therefore,

∣∣p/2√N + δ − 1/2
√
N
∣∣ = p/2

√
N + δ −

1/2
√
N . Therefore, the decrease in error at future steps by deviating from πexp at the time

t = 1, term (ii) in eq. (E.9) is,

2(H − 1)

(
p

2
√
N

+ δ − 1

2
√
N

)
(E.10)

which is an increasing function of p with slope H−1√
N

. For H ≥ 4 and the argument from the
previous paragraph, this implies that term (ii) increases more rapidly in p than the rate at
which term (i) decreases. Therefore, the minimizer must be p = 0.

Thus, we conclude from Lemmas E.2.2 and E.2.3 that conditioned on the events E1, E2 and
E3, the learner πMM perfectly mimics πexp at each time t ≥ 2, but deviates from the action
played by πexp at the state s = 1 at time t = 1. Finally, we bound the difference in value
between πexp and πMM induced because of this deviation under the reward eq. (E.4).

Lemma E.2.4. Under the events E1, E2 and E3, under the reward eq. (E.4), the empirical
moment matching learner πMM incurs imitation gap,

Gap(πMM) =
H

2
√
N
.

Proof. Recall that under the events E1, E2 and E3, the learner πMM is identical to πexp except
at the state s = 2 where they perfectly deviate from each other. The state distribution
induced by πexp at each time t ≥ 2 is the uniform distribution over states

(
1
2
, 1
2

)
. On

the other hand, for t ≥ 2, the state distribution induced by πMM at each time t ≥ 2 is(
ρ(1)1

2
, ρ(1)1

2
+ ρ(2)

)
=
(

1−1/
√
N

2
, 1+1/

√
N

2

)
. Since the reward function is 1 on state 1, the

difference in value between the expert and learner policy is,

Gap(πMM) =
H

2
−H

(
1− 1/

√
N

2

)
=

H

2
√
N
.

This completes the proof.
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Since E1, E2 and E3 jointly occur with constant probability by Lemma E.2.1, this completes
the proof of Theorem 6.1.1.

E.3 Imitation gap of RE: Proof of Theorem 6.2.1
In this section, we discuss a proof of a more general version of Theorem 6.2.1, where Nreplay

can be finite. We prove the following result,

Theorem E.3.1. Consider the policy πRE returned by Algorithm 6. Assume that πexp ∈ Π and
the ground truth reward function rt ∈ Ft, which is assumed to be symmetric (ft ∈ Ft ⇐⇒
−ft ∈ Ft) and bounded (For all ft ∈ Ft, ∥ft∥∞ ≤ 1). Choose |D1|, |D2| = Θ(N). With
probability ≥ 1− 3δ,

Gap(πRE) ≲ L1 + L2 + L3 +
log (FmaxH/δ)

N

where Fmax ≜ maxt∈[H] |Ft|, and,

L1 ≜ H2 Eπexp

[∑H
t=1 MEM(st, t)DTV (πexp

t (·|st), πBC
t (·|st))

H

]
,

L2 ≜ H3/2

√
log (FmaxH/δ)

N

∑H
t=1 Eπexp [1− MEM(st, t)]

H
,

And,

L3 ≜ H

√
log(FmaxH/δ)

Nreplay

+
H log(FmaxH/δ)

Nreplay

.

Recall that the learner carrying out replay estimation returns the policy which minimizes
the loss supf∈F Jf(π) − Ê(f) over policies π, where Jf(π) ≜ Eπ

[
1
H

∑H
t=1 ft(st, at)

]
where

f = (f1, · · · , fH). Note that,

Gap(πRE)
(i)

≤ sup
f∈F

Jf (π
exp)− Jf (π

RE)

≤ sup
f∈F

∣∣∣Jf (πexp)− Ê(f)
∣∣∣+ sup

f∈F

∣∣∣Ê(f)− Jf (π
RE)
∣∣∣

(ii)

≤ 2 sup
f∈F

∣∣∣Jf (πexp)− Ê(f)
∣∣∣ . (E.11)

where (i) uses the realizability assumption that the ground truth reward lies in F , and (ii)
uses the fact that πRE is a minimizer of eq. (6.4) and the fact that F is symmetric (this
implies that supf∈F Jf (π

exp)− Ê(f) = supf∈F

∣∣∣Jf (πexp)− Ê(f)
∣∣∣).
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Note that Ê(f) can be decomposed into a sum of two parts,

Ê(1)(f) = EDreplay

[
1

H

H∑
t=1

ft(st, at) (1− P(s1...t−1))

]
, and,

Ê(2)(f) = ED2

[
1

H

H∑
t=1

ft(st, at) (1− P(s1...t−1))

]

Likewise, we can decompose Jf (π
exp) into two terms,

J
(1)
f (πexp) ≜ Eπexp

[
H∑
t=1

ft(st, at)P(s1...t−1)

]
, and

J
(2)
f (πexp) ≜ Eπexp

[
H∑
t=1

ft(st, at) (1− P(s1...t−1))

]

Then, from eq. (E.11),

J(πexp)− J(πRE) ≤ 2 sup
f∈F

∣∣∣Jf (πexp)− Ê(f)
∣∣∣

≤ 2 sup
f∈F

∣∣∣J (1)
f (πexp)− E

[
Ê(1)(f)

∣∣∣D1

]∣∣∣︸ ︷︷ ︸
(I)

+2 sup
f∈F

∣∣∣E [Ê(1)(f)
∣∣∣D1

]
− Ê(1)(f)

∣∣∣︸ ︷︷ ︸
(II)

+ 2 sup
f∈F

∣∣∣J (2)
f (πexp)− Ê(2)(f)

∣∣∣︸ ︷︷ ︸
(III)

. (E.12)

where the last line follows by triangle inequality. We bound each of these terms in the next 3
lemmas, starting with (I).

Lemma E.3.2 (Bounding term (I)).

sup
f∈F

∣∣∣J (1)
f (πexp)− E

[
Ê(1)(f)

∣∣∣D1

]∣∣∣ ≤ H
H∑

h=1

Eπexp

[
MEM(sh, h)DTV

(
πexp
h (·|sh), πBC

h (·|sh)
)]
(E.13)

Proof. The proof of this result closely follows the supervised learning reduction of BC (cf.
[75]). Note that,

E
[
Ê(1)(f)

∣∣∣D1

]
− J

(1)
f (πexp) =

H∑
t=1

EπBC [ft(st, at)P(s1···t−1)]− Eπexp [ft(st, at)P(s1···t−1)] .

(E.14)
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Define π(h) as the policy which plays πexp until (and including) time h and πBC after time h.
Then, by cascading,

EπBC [ft(st, at)P(s1···t−1)]− Eπexp [ft(st, at)P(s1···t−1)]

=
t−1∑
h=0

Eπ(h) [ft(st, at)P(s1···t−1)]− Eπ(h+1) [ft(st, at)P(s1···t−1)] (E.15)

Define, the uncertainty weighted state visitation measure dMEM and the uncertainty weighted
look-forward reward ρMEM as follows,

dMEMh+1(s
′) ≜ Eπexp

[
1(sh+1 = s′)

h∏
t′=1

MEM(st′ , t′)

]

ρMEMh+1(s
′, a′) ≜ EπBC

[
ft(st, at)

t∏
t′=h+2

MEM(st′ , t′)

∣∣∣∣∣sh+1 = s′, ah+1 = a′

]

By decomposing expectations along trajectories, using the fact that P(s1···t−1) =
∏H

t′=1 MEM(st′ , t
′)

some simplification results in the following equation,

|Eπ(h) [ft(st, at)P(s1···t−1)]− Eπ(h+1) [ft(st, at)P(s1···t−1)]|

=

∣∣∣∣∣∑
s′∈S

∑
a′∈A

dMEMh+1(s
′)MEM(s′, h+ 1)

(
πexp
h+1(a

′|s′)− πBC
h+1(a

′|s′)
)
ρMEMh+1(s

′, a′)

∣∣∣∣∣
(i)

≤
∑
s′∈S

dMEMh+1(s
′)MEM(s′, h+ 1)DTV

(
πexp
h+1(·|s′), πBC

h+1(·|s′)
)

= Eπexp

[
MEM(sh+1, h+ 1)DTV

(
πexp
h+1(·|sh+1), π

BC
h+1(·|sh+1)

)]
.

where (i) uses the fact that the membership oracle is a function ∈ [0, 1] and f is bounded
and lies in the interval [0, 1] (which implies that ρMEM also lies in [0, 1] pointwise). Plugging
into eq. (E.15) and subsequently into eq. (E.14) completes the proof.

Next we bound the 3rd term, (III). This follows by an application of Bernstein’s inequality.

Lemma E.3.3 (Bounding term (III)). With probability ≥ 1− δ,

sup
f∈F

∣∣∣J (2)
f (πexp)− Ê(2)(f)

∣∣∣ ≤ H

√
log(FmaxH/δ)

∑H−1
t=1 Eπexp [1− MEM(st, t)]

N
+

H log(FmaxH/δ)

N

Proof. First observe that,

J
(2)
f (πexp)− Ê(2)(f)

=
H∑
t=1

Etr∼Unif(D2) [ft(st, at) (1− P(s1···t−1))]− Eπexp [ft(st, at) (1− P(s1···t−1))] (E.16)
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For each t, note that ft(st, at) (1− P(s1···t−1)) is bounded in the range [0, 1]. Therefore,
invoking Bernstein’s inequality, with probability ≥ 1− δ,∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− Eπexp [ft(st, at) (1− P(s1···t−1))]

∣∣
≲

√
Varπexp(ft(st, at) (1− P(s1···t−1))) log(1/δ)

N
+

log(1/δ)

N

≤
√

Eπexp [(ft(st, at) (1− P(s1···t−1)))2] log(1/δ)

N
+

log(1/δ)

N
(i)

≤
√

Eπexp [ft(st, at) (1− P(s1···t−1))] log(1/δ)

N
+

log(1/δ)

N
(ii)

≤
√

Eπexp [1− P(s1···t−1)] log(1/δ)

N
+

log(1/δ)

N
(E.17)

where (i) uses the fact that ft(st, at) (1− P(s1···t−1)) is bounded in the range [0, 1], and (ii)
uses the fact that 0 ≤ ft(st, at) ≤ 1. Assuming 0 ≤ xi ≤ 1 for all i ∈ [n], we have the
inequality,

1−
n∏

i=1

xi ≤
n∑

i=1

1− xi (E.18)

Applying this to eq. (E.17) for 1− P(s1···t−1) = 1−∏t−1
t′=1 MEM(st′ , t

′), we have,∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− Eπexp [ft(st, at) (1− P(s1···t−1))]
∣∣

≤

√∑t−1
t′=1 Eπexp [1− MEM(st′ , t′)] log(1/δ)

N
+

log(1/δ)

N
(E.19)

Therefore, by union bounding, with probability ≥ 1− δ/H, simultaneously for every ft ∈ Ft,∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− Eπexp [ft(st, at) (1− P(s1···t−1))]
∣∣

≲

√
log(|Ft|H/δ)

∑t−1
t′=1 Eπexp [1− MEM(st′ , t′)]

N
+

log(|Ft|H/δ)

N
. (E.20)

This implies that the maximum over ft of the LHS is upper bounded by the RHS. Union
bounding over t = 1, · · · , H and plugging into eq. (E.16), we have that with probability
≥ 1− δ,

sup
f∈F

∣∣∣J (2)
f (πexp)− Ê(2)(f)

∣∣∣
≤

H∑
t=1

∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− Eπexp [ft(st, at) (1− P(s1···t−1))]
∣∣ (E.21)

≲ H

√
log(FmaxH/δ)

∑H−1
t=1 Eπexp [1− MEM(st, t)]

N
+

H log(FmaxH/δ)

N
.
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Finally, we are ready to bound term II.

Lemma E.3.4 (Bounding term (II)). With probability ≥ 1− δ,

sup
f∈F

∣∣∣E [Ê(1)(f)
∣∣∣D1

]
− Ê(1)(f)

∣∣∣ ≲ H

√
log(FmaxH/δ)

Nreplay

+
H log(FmaxH/δ)

Nreplay

.

Proof. The proof follows essentially the same structure as Lemma E.3.3 by decomposing
Ê(1)(f) into a sum of H terms of the form ft(st, at)P(s1···t−1), applying Bernstein’s inequality
to bound the deviation of each term from its mean and finally union bounding over the
rewards ft ∈ Ft to get the uniform bound over all discriminators f ∈ F .

Putting together Lemmas E.3.2 to E.3.4 with eq. (E.12) completes the proof of Theorem 6.2.1.

Recovering bounds in the tabular setting

In this section, we provide an upper bound on the imitation gap of RE in the tabular setting
when the expert is a deterministic policy. This recovers the bound on the imitation gap for
RE we proved in Chapter 2.

Theorem E.3.5. Consider an appropriately initialized version of RE, and let the size of
the replay dataset Nreplay →∞. For any tabular IL instance with H ≥ 10, with probability
≥ 1− 3δ,

Gap(πRE) ≲ min

{
|S|H3/2

N
,H

√
|S|
N

}
log

( |S|H
δ

)
.

Below we describe the implementation of RE corresponding to Theorem E.3.5 in more detail.
The membership oracle we use in this setting for RE is defined below,

MEM(s, t) =

{
1 if s is visited in D1 at time t

0 otherwise.
(E.22)

The function class F which we use is identical to that for empirical moment matching, which
is described in Definition E.1.1.

Note that in the tabular setting, BC simply mimics the deterministic expert’s actions at
states visited in the dataset D1 and plays an arbitrary deterministic action on the remaining
states. As a consequence of this definition, if MEM(s, t) = 1 ⇐⇒ πBC

t (·|s) = πexp
t (·|s) and

MEM(s, t) = 0 otherwise. We instantiate the family of discriminators as in Definition E.1.1, as
F =

⊕H
t=1{ft : ∥ft∥∞ ≤ 1} and the set of policies Π optimized over is chosen as the set of all

deterministic policies. While the guarantee of Theorem 6.2.1 depends on Fmax = maxt∈[H] |Ft|
which is unbounded (or exp(|S||A|) by using a discretization of the reward space), note that
we can improve the guarantee to effectively have Fmax ≈ exp(|S|) noting the structure of the
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set of discriminators. Looking into the proof of Theorem 6.2.1 we bring out this dependence
below. We note that there are many ways of bringing out this dependence, including a careful
net argument directly on top of the guarantee of Theorem 6.2.1. We simply present one such
argument below.

The critical step where the finiteness of the set of discriminators F is used, is in union bounding
the gap between the population and the empirical estimate of ft(st, at) (1− P(s1···t−1)) in
eq. (E.19).∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− Eπexp [ft(st, at) (1− P(s1···t−1))]

∣∣ (E.23)

In the next step of the proof of Theorem 6.2.1, we union bound over all ft ∈ Ft. However,
note that for Ft = {ft : ∥ft∥∞ ≤ 1}, we have that,

sup
ft:∥ft∥∞≤1

∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− Eπexp [ft(st, at) (1− P(s1···t−1))]
∣∣

(i)
=
∑
s∈S

∑
a∈A

∣∣EUnif(D2) [I(st = s, at = a) (1− P(s1···t−1))]− Eπexp [I(st = s, at = a) (1− P(s1···t−1))]
∣∣

(ii)
=
∑
s∈S

∣∣EUnif(D2) [I(st = s) (1− P(s1···t−1))]− Eπexp [I(st = s) (1− P(s1···t−1))]
∣∣

(iii)

≤
∑
s∈S

∣∣EUnif(D2) [I(st = s) (1− P(s1···t−1))]− Eπexp [I(st = s) (1− P(s1···t−1))]
∣∣ (E.24)

where (i) follows similar to the equivalence between the variational representation of TV
distance (DTV ((, P ) , Q) = 1

2
supf :∥f∥∞≤1 EP [f ]−EQ[f ]) and the relationship to the L1 distance,

DTV ((, P ) , Q) = 1
2
L1(P,Q). On the other hand, (ii) follows by noting that the expert is a

deterministic policy (and D2 is generated by rolling out πexp). (iii) follows by an application
of Holder’s inequality. By subgaussian concentration, for each s ∈ S, with probability
≥ 1− δ

|S|H ,∣∣EUnif(D2) [I(st = s) (1− P(s1···t−1))]− Eπexp [I(st = s) (1− P(s1···t−1))]
∣∣

≲

√√√√Varπexp (I(st = s) (1− P(s1···t−1))) log
(

|S|H
δ

)
|D2|

+
log
(

|S|H
δ

)
|D2|

(i)

≤

√√√√Eπexp [I(st = s) (1− P(s1···t−1))] log
(

|S|H
δ

)
|D2|

+
log
(

|S|H
δ

)
|D2|

where (i) uses the fact that 0 ≤ I(st = s) (1− P(s1···t−1)) ≤ 1. Combining with eq. (E.24),



APPENDIX E. PROOFS OF RESULTS IN CHAPTER 6 157

union bounding and applying Cauchy Schwarz inequality, with probability ≥ 1− δ
H

,

sup
ft:∥ft∥∞≤1

∣∣EUnif(D2) [ft(st, at) (1− P(s1···t−1))]− Eπexp [ft(st, at) (1− P(s1···t−1))]
∣∣

≲
√
|S|

√√√√√∑
s∈S

Eπexp [I(st = s) (1− P(s1···t−1))] log
(

|S|H
δ

)
|D2|

+
|S| log

(
|S|H
δ

)
|D2|

=
√
|S|

√√√√Eπexp [1− P(s1···t−1)] log
(

|S|H
δ

)
|D2|

+
|S| log

(
|S|H
δ

)
|D2|

(i)

≤ min


√√√√ |S| log ( |S|H

δ

)
|D2|

,

√√√√|S|∑H−1
t=1 Eπexp [1− MEM(st, t)] log

(
|S|H
δ

)
|D2|

+
|S| log

(
|S|H
δ

)
|D2|

(E.25)

where (i) follows by the same simplification as in eq. (E.18). Comparing with eq. (E.20), this
roughly corresponds to setting Fmax ≈ exp(|S|). All in all, summing eq. (E.25) over t ∈ [H]
and plugging into eq. (E.21), with probability ≥ 1− δ,

sup
f∈F

∣∣∣J (2)
f (πexp)− Ê(2)(f)

∣∣∣
≲ H


√√√√ |S| log ( |S|H

δ

)
|D2|

,

√√√√|S|∑H−1
t=1 Eπexp [1− MEM(st, t)] log

(
|S|H
δ

)
|D2|

+
|S| log

(
|S|H
δ

)
|D2|

Finally, we plug this into eq. (E.12), which is restated below,

Gap(πRE) ≤ 2 sup
f∈F

∣∣∣Jf (πexp)− Ê(f)
∣∣∣

≤ 2 sup
f∈F

∣∣∣J (1)
f (πexp)− E

[
Ê(1)(f)

∣∣∣D1

]∣∣∣︸ ︷︷ ︸
(I)

+2 sup
f∈F

∣∣∣E [Ê(1)(f)
∣∣∣D1

]
− Ê(1)(f)

∣∣∣︸ ︷︷ ︸
(II)

+ 2 sup
f∈F

∣∣∣J (2)
f (πexp)− Ê(2)(f)

∣∣∣︸ ︷︷ ︸
(III)

.

For the chosen membership oracle in eq. (E.22), the term (I) is 0, since by Lemma E.3.2 it
is upper bounded by H

∑H
h=1 Eπexp [MEM(sh, h)DTV (πexp

h (·|sh), πBC
h (·|sh))]. This is equal to 0

since MEM(s, t) = 0 wherever πexp
t (·|s) ̸= πBC

t (·|s). On the other hand, Nreplay → ∞ ensures
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that the term (III) goes to 0 by the strong law of large numbers. Therefore, with probability
≥ 1− 2δ,

Gap(πRE)

≤ 2 sup
f∈F

∣∣∣E [Ê(1)(f)
∣∣∣D1

]
− Ê(1)(f)

∣∣∣
≲ H


√√√√ |S| log ( |S|H

δ

)
|D2|

,

√√√√|S|∑H−1
t=1 Eπexp [1− MEM(st, t)] log

(
|S|H
δ

)
|D2|

+
|S|H log

(
|S|H
δ

)
|D2|

(E.26)

Finally, we bound Eπexp [1− MEM(st, t)] for the membership oracle defined in eq. (E.22). By
definition, this quantity is the same as Prπexp (st not visited in D1 at time t ). This is the
probability that given N samples from a distribution (the state visited at time t in an expert
rollout), the probability that a new sample from the same distribution is not in the support
of the observed samples. This is known as the missing mass [55]. In Lemma A.3 [71] it is
shown that with probability ≥ 1− δ,

H−1∑
t=1

Pr
πexp

(st not visited in D1 at time t ) ≲
|S|H
|D1|

+

√
|S|H log

(
|S|H
δ

)
|D1|

Finally, combining with eq. (E.26) and using the fact that that |D1|, |D2| = Θ(N), with
probability ≥ 1− 3δ,

Gap(πRE) ≲ min

H

√√√√ |S| log ( |S|H
δ

)
N

,
|S|H3/2

N
log

( |S|H
δ

) .

This completes the proof of Theorem E.3.5.
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Appendix F

Proofs of results in Chapter 7

Notation

In this section, we use the notation dπt (·, ·) to indicate the state-action visitation measure
induced by the policy π at time t. We overload the notation dπt (·) to denote the state-visitation
measure induced by the policy π at time t. Likewise, the notations dDt (·, ·) and dDt (·) indicate
the empirical visitation measures in the dataset D.

F.1 IL in the linear-expert setting: Proofs of
Theorems 7.1.1 and 7.1.3

Proof of Lemma 7.1.2. Conditioned on the expert and the learner playing the same actions
in the state, the error of the learner is exactly 0 since in such trajectories both policies collect
the same reward. On the other hand, when the learner plays an action different from the
expert at a visited state (and thus the 0-1 loss for this trajectory is 1), the maximum error
the learner can incur is H.

Proof of Theorem 7.1.3. Consider the compression based multi-class linear classification
algorithm of [25]. This algorithm admits the following guarantee for multi-class sequence
classification.

Theorem F.1.1 (Theorem 5 in [25]). Consider any linear multi-class classification problem
with features ϕ : X × Y → R. The learner is provided samples D = {(x1, y1), · · · , (xn, yn)}:
each xi is sampled from an unknown distribution ρ and with label yi = argmaxy∈Y ⟨ϕ(x, y), θ⋆⟩
for an unknown θ⋆ ∈ Rd. Then, if n ≥ d log(1/ϵ)+log(1/δ)

ϵ
, with probability ≥ 1−δ the compression

algorithm of [25] returns a linear function θ̂ ∈ Rd such that, the expected 0-1 loss is bounded
by ϵ. Namely,

Ex∼ρ

[
1

(
argmax

y∈Y

〈
ϕ(x, y), θ̂

〉
̸= argmax

y∈Y
⟨ϕ(x, y), θ⋆⟩

)]
≤ ϵ
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Consider the dataset as tuples of sequences of states and sequences of actions SH → AH . In
addition, the expert policy can be thought of as a classifier which takes sequences and outputs
sequences. Namely, it is a mapping from SH → AH , in the sense: for SH ∋ (s1, · · · , sH) 7→
(πexp

1 (s1), · · · , πexp
H (sH)) ∈ AH . For θ ∈ Rd, the corresponding linear sequence classifier is

(s1, · · · , sH) 7→ argmax
a1,··· ,aH∈A

θ 7→
〈
θ,

H∑
t=1

ϕt(st, at)

〉
.

Define the set of linear sequence classifiers corresponding to θ ∈ Rd. Then, the following two
propositions are true:

1. The expert policy πexp is a linear sequence classifier under the linear-expert assumption.
At any time t and state st, the expert chooses the action at = argmaxa∈A⟨θ⋆t , ϕt(s, a)⟩.
Summing across any sequence of states (s1, · · · , sH) shows that the sequence of actions
played by the expert satisfies: (a1, · · · , aH) = argmaxa′1,··· ,a′H∈A⟨θ, ϕt(st, at)⟩ which
proves the claim.

2. Every sequence linear classifier corresponds to a meaningful Markovian policy. Indeed,
for some θ ∈ Rd, consider the sequence linear classifier corresponding to θ. If at a state st
at time t, the classifier does not choose the action at = argmaxa∈A⟨θ, ϕt(st, a)⟩, then on
any sequence that visits the state st at time t, (a1, · · · , aH) ̸= argmaxa′1,··· ,a′H∈A⟨θ, ϕt(st, a

′
t)⟩

which leads to a contradiction. Therefore, the sequence linear classifier plays the action
at = argmaxa∈A⟨θ, ϕt(st, a)⟩ at each state st at each time t. It is therefore a Markovian
policy.

The implication of these two points is that it suffices to find a sequence linear classification
algorithm from SH → AH with small expected 0-1 error, given a dataset of trajectories from
the expert policy. Invoking the algorithm of [25] for linear multi-class classification and
Theorem F.1.1 completes the proof shows that indeed there is a linear sequence classifier
with expected 0-1 loss upper bounded by (d+log(1/δ) log(N)

N
which completes the proof, invoking

Lemma 7.1.2.

The proof of Theorem 7.1.1 follows immediately as a corollary of Theorem 7.1.3, by invoking
Remark 7.1.2.

F.2 Parametric function approximation under
Lipschitzness

In this section, we provide an upper bound on the imitation gap of RE in the presence of
parametric function approximation under a Lipschitzness assumption on the function classes,
and assuming access to a parameter estimation oracle for offline classification. To aid in
our presentation, we will define concretely the notion of a policy “induced” by a multi-class
classifier.
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Definition F.2.1 (Policy induced by a classifier). Consider a set of parameters θ =
{θ1, · · · , θH} where θt ∈ Θt for each t. A policy πθ is said to be induced by the set of
classifiers defined by θ if for all s ∈ S and t ∈ [H],

πθ
t (s) = argmax

a∈A
fθt(s, a).

By this definition, πexp = πθE where θE = {θE1 , · · · , θEH}.

In order to prove the main result we establish in this setting (Theorem 7.2.1), we first discuss
the implementation of RE.

Implementation of RE (Algorithm 6) We discuss the instantiation of RE in the Lipschitz
parameterization setting below. The underlying function class F is chosen arbitrarily (note
that the guarantee we prove depends on this function class, and the only constraints on F are
those in Theorem 6.2.1 - the ground truth reward must belong in F = ⊗H

t=1Ft, the function
class is symmetric, i.e., ft ∈ Ft ⇐⇒ −ft ∈ Ft for each t and for all ft ∈ Ft, ∥ft∥∞ ≤ 1) This
requires specifying the choice of the membership oracle MEM and describing the instantiation
of BC.

Implementation of BC. Recall that in Algorithm 6, the learner trains BC on the dataset D1.
In particular, under the offline classification oracle condition, Assumption 7.2.2, the learner
trains H classifiers, one for each t, trained on the state-action pairs (i.e. state is the input,
and the action at this state is the corresponding class) observed in the demonstration dataset
at time t using the offline classifier in Assumption 7.2.2. We assume that each classifier is
trained with the failure probability chosen as δ/H. Denoting the resulting set of H classifiers
as,

θ̂BC =
{
θ̂BC
1 , · · · , θ̂BC

H

}
,

this corresponds to a policy πBC = πθ̂BC induced by the classifier θ̂BC (in the sense of
Definition F.2.1). In particular, by a union bound, the classifiers θ̂BC satisfy with probability
≥ 1− δ simultaneously for each time t ∈ [H],

∥θEt − θ̂t∥2 ≤ EΘt,N,δ/H . (F.1)

Membership oracle. Fix a time-step t ∈ [H]. The membership oracle MEM is defined in
eq. (7.4) as,

MEM(s, t) =

{
+1 if ∃a ∈ A such that, ∀a′ ∈ A, fθ̂BC

t
(s, a)− fθ̂BC

t
(s, a′) ≥ 2LEΘt,N,δ/H

0 otherwise.

We first show that on the states such that the membership oracle is 1, the expert policy
perfectly matches the learner’s policy.
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Lemma F.2.1. At every state s such that MEM(s, t) = +1, πexp
t (s) = πBC

t (s).

Proof. Note that θEt satisfies ∥θEt − θ̂BC
t ∥2 ≤ EΘt,N,δ/H with probability 1− δ. Consider the

action a played by the learner, for any a′ ∈ A,

fθEt (s, a)− fθEt (s, a
′) ≥ fθ̂BC

t
(s, a)− EΘt,N,δ/HL− fθ̂BC

t
(s, a′)− EΘt,N,δ/HL

≥ 0

where the first inequality follows by Lipschitzness of f·(s, a) and the last inequality follows
by definition of the set of states where MEM(s, t) = +1: ∀a′ ∈ A, fθ̂BC

t
(s, a) − fθ̂BC

t
(s, a′) ≥

2EΘt,N,δ/HL.

Since for this action a, fθEt (s, a)− fθEt (s, a
′) ≥ 0 for all other actions a′ ∈ A, a must be the

action played by the expert policy. This completes the proof.

Note that πBC always matches πexp wherever the membership oracle MEM is non-zero. We run
Algorithm 6. Therefore, from Theorem 6.2.1, with probability ≥ 1− 4δ, the imitation gap of
the learner is bounded by,

Gap(πRE) ≲ H3/2

√
log (FmaxH/δ)

N

∑H
t=1 Eπexp [1− MEM(st, t)]

H
+

log (FmaxH/δ)

N
. (F.2)

To complete the proof, we must bound Eπexp [1− MEM(st, t)], which is the measure of states s
such that ∀a ∈ A,∃a′ ∈ A : fθ̂t(s, a)− fθ̂t(s, a

′) ≤ 2LEΘt,N,δ/H , i.e. the mass of states which
are very close to a decision boundary. The probability of this set of states is upper bounded
by the weak margin condition. Indeed, for each t ∈ [H], defining a⋆s = argmaxa∈A fθ̂BC

t
(s, a),

Pr
πexp

(
fθ̂BC

t
(st, a

⋆
st)− max

a̸=a⋆st

fθ̂BC
t
(st, a) ≥ 2LEΘt,N,δ/H

)
≥ e−µLEΘt,N,δ/H

≥ 1− µLEΘt,N,δ/H . (F.3)

Therefore,

Eπexp [1− MEM(st, t)] ≲ µLEΘt,N,δ/H .

Putting it together with eq. (F.2), and simplifying, with probability ≥ 1− 4δ,

Gap(πRE) ≲ H3/2

√
µL log (FmaxH/δ)

N

∑H
t=1 EΘt,N,δ/H

H
+

log (FmaxH/δ)

N
.

Note that in Eq. (F.3), we only use the fact that the probability mass of states which are
η-close to any decision boundary is not too high. Similar to [8], we may consider relaxations
of the weak margin condition, as below.
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Assumption F.2.1 (α-weak margin condition). Consider any t ∈ [H] and θ ∈ Θt. For each
s ∈ S, define a⋆s = argmaxa∈A fθ(s, a) as the classifier output under fθ. The α weak margin
condition with parameter µ assumes that, for any η ≤ 1/µ,

∀θ ∈ Θt, Pr
πexp

(
fθ(st, a

⋆
st)− max

a̸=a⋆st

fθ(st, a) ≥ η

)
≥ 1− (µη)α. (F.4)

When α = 1, this condition is effectively equivalent to the weak margin condition in Assump-
tion 7.2.3.

Following the proof of Theorem 7.2.1, we may obtain the following result under the α weak
margin condition for α ̸= 1.

Theorem F.2.2. For IL with parametric function approximation, under Assumptions 7.2.1,
7.2.2 and F.2.1, appropriately instatiating RE ensures that with probability ≥ 1− 4δ,

Gap(πRE) ≲ H3/2

√
(µL)α log (FmaxH/δ)

N

∑H
t=1(EΘt,N,δ/H)α

H
+

log (FmaxH/δ)

N
. (F.5)

Once again, we assume the same conditions on F as required in Theorem 6.2.1.

Extension to unbounded discriminator families

Note that when the family of discriminators F does not have finite cardinality, it in fact
suffices to just bound the imitation gap against a finite covering of F . We spell out the
details explicitly below.

In particular, we can replace Fmax by maxt∈[H]N (Ft, 1/N, ∥ · ∥∞), where N (G, ξ, ∥ · ∥) denotes
the covering number of G in the norm ∥ · ∥ as defined below.

Definition F.2.2 (Covering number). For a function class G, tolerance ξ and norm ∥ · ∥,
the covering number N (G, ξ, ∥ · ∥) is defined as the cardinality of the smallest set of functions
Gξ such that for each g ∈ G, there exists a g′ ∈ Gξ,

∥g − g′∥ ≤ ξ.

Corollary F.2.1. When G is chosen as the set of 1-bounded linear functions, G = {{⟨x, θ⟩ :
x ∈ Bd

2} : θ ∈ Bd
2}, where Bd

2 denotes the L2 unit ball in Rd, N (G, ξ, ∥ · ∥∞) ≤
(

2
√
d

ξ
+ 1
)d

.

Proof. For any g, g′ ∈ G, where g and g′ correspond to parameters θ, θ′ ∈ Bd
2,

∥g − g∥∞ ≤ max
x∈X
⟨x, θ − θ′}

≤ ∥x∥2∥θ − θ′∥2
≤ ∥θ − θ′∥2.
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Since the L2 covering number of Bd
2 is bounded by

(
2
√
d/ξ + 1

)d
, the result immediately

follows by defining the covering of G as {⟨θ, ·⟩ : θ ∈ K} where K is the optimal covering of Bd
2

in L2 norm.

Definition F.2.3 (Discretization of discriminator space). Define F ξ
t as the optimal cover-

ing of Ft under the L∞ norm in the sense of Definition F.2.2. The discretized family of
discriminators we consider is, F ξ = ⊗H

t=1F ξ
t .

Lemma F.2.3. Suppose for all functions f ′ ∈ F ξ1/H
t , simultaneously Jf ′(πexp)−Jf ′(πRE) ≤ ξ2.

Then, for all discriminators f ∈ F , Jf (πexp)− Jf (π
RE) ≤ 2ξ1 + ξ2.

Proof. Consider any discriminator f ∈ F . By construction, there exists an f ′ ∈ F ξ1/H such
that,

∥f − f ′∥∞ ≤ ξ1/H.

Since for any policy π, the value Jf (π) under a discriminator f ∈ F is an H-Lipschitz function
of f , we can make a statement about how well Jf ′(π) approximates Jf (π) for an appropriately
chosen f ′ ∈ F ξ1/H . In particular, the nearest (in L∞ norm) f ′ ∈ F ξ1/H to f ∈ F satisfies
that for any policy π,

|Jf (π)− Jf ′(π)| ≤ H × ξ1
H
.

As a consequence, for any discriminator f ∈ F ,

Jf (π
exp)− Jf (π

RE) ≤ |Jf (πexp)− Jf ′(πexp)|+ Jf ′(πexp)− Jf ′(πRE) + |Jf ′(πRE)− Jf (π
RE)|

≤ ξ1 + ξ2 + ξ1 = 2ξ1 + ξ2.

In particular, this means that if we minimize Jf ′(πexp) − Jf ′(πRE) ≤ ξ2 for all f ′ ∈ F1/NH ,
then we can ensure that for all f ∈ F ,

Jf (π
exp)− Jf (π

RE) ≤ 2

N
+ ξ2.

This implies the following theorem,

Theorem F.2.4. Consider the policy πRE returned by Algorithm 6 where F is instead chosen
as F 1

HN (as defined in Definition F.2.3). Assume that πexp ∈ Π, the ground truth reward
function rt ∈ Ft which is assumed to be bounded (For all ft ∈ Ft, ∥ft∥∞ ≤ 1). Choose
|D1|, |D2| = Θ(N) and suppose Nreplay →∞. With probability ≥ 1− 3δ,

Gap(πRE) ≲ L1 + L2 +
log (NmaxH/δ) + 1

N
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where Nmax ≜ maxt∈[H]N (Ft, 1/HN, ∥ · ∥∞) corresponds to the maximal covering number of
the function classes Ft, and,

L1 ≜ H2 Eπexp

[∑H
t=1 MEM(st, t)DTV (πexp

t (·|st), πBC
t (·|st))

H

]
,

L2 ≜ H3/2

√
log (NmaxH/δ)

N

∑H
t=1 Eπexp [1− MEM(st, t)]

H
.

Remark F.2.1. Note that this line of reasoning can be extended to Theorem 7.2.1 and
Theorem F.2.2 to show that the same guarantees as eq. (7.6) and eq. (F.5) respectively hold,
but with Fmax replaced by Nmax.

F.3 Bounds on RE in the linear-expert setting
Next we switch tracks and look at the known-transition setting and prove the upper bound
on the imitation gap of RE established in Theorem 7.3.1. At a high level, the proof will follow
by showing that under Assumption 7.3.1, both the weak margin condition (Assumption 7.2.3)
is satisfied, and the classification oracle (Assumption 7.2.2) can be constructed. We begin by
showing the former.

Lemma F.3.1. Under Assumption 7.3.1, the α-weak margin condition is satisfied with α = 1
and µ = 2cmax

√
d. In particular, for all θ ∈ Sd−1,

Pr
πexp

(
⟨θ, ϕt(s, a

θ
st)⟩ − max

a̸=aθst

⟨θ, ϕt(s, a)⟩ ≥ η

)
≥ 1−

(
2cmax

√
d
)
η.

where aθst ≜ argmaxa∈A⟨θ, ϕt(s, a)⟩.

Proof. Observe that,

Pr
πexp

(
∃a ̸= aθst : ⟨θ, ϕt(st, a

θ
st)⟩ − ⟨θ, ϕt(st, a)⟩ ≤ η

)
= Pr

πexp

(
∃a ̸= aθst : ϕt(st, a

θ
st)− ϕt(st, a) ∈ {x ∈ Hd

θ : ⟨x, θ⟩ ≤ η}
)

(i)
= Pr

πexp

(
∃a ̸= aθst : ϕt(st, a) ∈ {x ∈ Hd

θ : ⟨x, θ⟩ ≤ η}
)

(ii)

≤ cmax Pr(⟨U, θ⟩ ≤ η) (F.6)

where in (i), ϕt is as defined in Assumption 7.3.1 and in (ii), U is uniformly distributed
on the unit hemisphere, Hd

θ. Note that (ii) follows from the bounded density condition,
Assumption 7.3.1. Note that the RHS essentially corresponds to the volume (probability
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Figure F.1: If at any time t ∈ [H] and state s, ϕt(s, π
exp
t (s))− ϕt(s, a) lies in the red shaded

region for some action a, then, the action played by πBC and πexp at this state are different.

measure) of a disc of height η cut out of a sphere from the center. Up to normalization
factors, this can be upper bounded by the surface area of the base of the disc, multiplied by
the height of the disc. Namely,

η × π
d−1
2

Γ( d−1
2

+1)

1
2

π
d
2

Γ( d
2
+1)

Using Gautschi’s inequality, for any x ≥ 0 and ℓ ∈ (0, 1) x1−ℓ ≤ Γ(x+1)
Γ(x+ℓ)

≤ (1 + x)1−ℓ. With

ℓ = 1
2
, Γ( d

2
+1)

Γ( d+1
2

)
≤
√
d. Combining with eq. (F.6) results in,

Pr
πexp

(
∃a ̸= aθst : ⟨θ, ϕt(st, a

θ
st)⟩ − ⟨θ, ϕt(st, a)⟩ ≤ η

)
≤ 2cmax

√
dη

Therefore the probability of the complement event is lower bounded by 1 − 2cmax

√
dη,

completing the proof.

The final thing to show is that the bounded density assumption can also be used to construct
a classification oracle in the sense of Assumption 7.2.2. In particular, we will that under this
assumption, any algorithm which achieves low test error can be used to construct a classifica-
tion oracle in this sense. The compression based algorithm of [26] provides a guarantee on the
generalization error. From Theorem 5 of [26], in the realizable setting, for linear classification,
the resulting classifier θ̂ has expected 0-1 loss upper bounded by (d + log(1/δ)) log(n)/n,
given n classification examples. Namely, in the notation of Assumption 7.2.2, the resulting
classifier θ̂ satisfies with probability ≥ 1− δ,

Pr
s∼D

(
argmax

a∈A
fθ⋆(s

i, a) ̸= argmax
a∈A

fθ̂(s
i, a)

)
≤ (d+ log(1/δ) log(n)

n
. (F.7)
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Next we show that under Assumption 7.3.1, this equation can be used to bound the error
in the parameter space, ∥θ⋆ − θ̂∥2. Namely, in Assumption 7.2.2, we may choose EBd

2,n,δ
as

≍ (d+log(1/δ) log(n)
n

, up to constants depending on cmin.

Lemma F.3.2. Consider the compression based learner θ̂BC
t = θ̂t of [26] for multi-class linear

classification. Then, under Assumption 7.3.1, with probability ≥ 1− δ,

∥θ̂BC
t − θ⋆t ∥2 ≤

2π

cmin

(d+ log(1/δ) log(N)

N

Proof. Fix t ∈ [H]. The generalization error of θ̂BC
t = θ̂t can be written as,

Pr
πexp

(
argmax

a∈A
⟨θ⋆t , ϕt(st, a)⟩ ≠ argmax

a∈A
⟨θ̂BC

t , ϕt(st, a)⟩
)

= Pr
πexp

(∃a ̸= πexp
t (st) : ϕt(st, π

exp
t (st))− ϕt(st, a) ∈ C) , (F.8)

where C is illustrated in fig. F.1 and is formally defined as,

C ≜ {x ∈ Hd
t : ⟨x, θ̂BC

t ⟩ ≤ 0}.

On the states which “belong” to C (i.e. at those states s where ∃a ̸= πexp
t (st) : ϕt(s, π

exp
t (st))−

ϕt(s, a) ∈ C), there exists an action a such that θ̂BC
t is better correlated with this action than

a⋆s. In other words, θ̂BC
t and θ⋆ play different actions at this state. Note that C is essentially

the set difference of two hemispheres with different poles. By the bounded density condition,
Assumption 7.3.1, and eq. (F.8),

Pr
πexp

(
πexp
t (st) ̸= argmax

a∈A
⟨θ̂BC

t , ϕ(s, a)⟩
)
≥ cmin Pr (U ∈ C) , (F.9)

where U is uniformly distributed over Hd
θ. Referring to fig. F.1, we have that,

Pr (U ∈ C) = α

π

where α is the angle between θ̂BC
t and θEt . In particular, from eq. (F.9),

Pr
πexp

(
a⋆s ̸= argmax

a∈A
⟨θ̂BC

t , ϕ(s, a)⟩
)
≥ cmin

α

π
≥ cmin

∥θ⋆ − θ̂BC
t ∥2

π
,

where in the last inequality, we use the fact that ∥θ⋆∥2 = ∥θ̂BC
t ∥2 = 1 without loss of generality.

By the generalization error bound on θ̂BC
t = θ̂t in eq. (F.7), with probability ≥ 1− δ,

∥θ⋆ − θ̂BC
t ∥2 ≤

π

cmin

(d+ log(1/δ) log(N)

N
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Lemma F.3.2 shows that under the bounded density condition Assumption 7.3.1, the compres-
sion based learner θ̂ of [26] essentially induces a classification oracle for linear classification
with EBd

2,n,δ
= π

cmin

(d+log(1/δ) log(n)
n

. Finally, from Corollary F.2.1, we have a bound on the
covering number of linear families. Putting together all of these results with Theorem 7.2.1
(noting that we can replace Fmax by Nmax from Remark F.2.1) results in Theorem 7.3.1.
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