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Abstract

Visual Intelligence Beyond Human Supervision

by

XuDong Wang

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Trevor Darrell, Chair

Achieving artificial general intelligence requires developing models capable of perceiving, under-

standing, and interacting with the world across diverse sensory modalities—beyond the confines

of language alone. While self-supervised learning has enabled remarkable advances in large lan-

guage models (LLMs), replicating this success in the visual domain remains a significant chal-

lenge, largely due to the continued reliance on human-annotated data. This dissertation explores

how self-supervised learning can unlock visual intelligence beyond human supervision, enabling

models to learn directly from the inherent structure and regularities of the visual world.

The thesis presents a series of efforts aimed at advancing this vision. First, it investigates self-

supervised visual world understanding, demonstrating that models can achieve strong segmenta-

tion performance without the billions of labeled masks used in supervised approaches such as the

Segment Anything Model (SAM). Instead, our work shows that models can “segment anything” by

leveraging the rich semantics present in unlabeled data. Second, it introduces methods that unify

generative and discriminative visual models through self-supervision and synthetic data, allowing

these systems to complement one another and improve both visual understanding and generation.

Third, the dissertation examines how to build robust visual models through self-supervised debi-

ased learning, proposing techniques that mitigate bias and enhance generalization under imperfect

data conditions, within a data-centric representation learning framework.

Together, these contributions serve a common goal: building scalable, multi-modality visual intel-

ligence that learn not by mimicking human annotations, but by discovering the latent structure of

the world itself!
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plex scenes, etc. Compared to the previous state-of-the-art method, FreeSOLO [23]

with a backbone of ResNet101, CutLER with a backbone of ResNet50 provides strong
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detection and instance segmentation model without using any supervision. We first

propose MaskCut to extract initial coarse masks from the features of a self-supervised

ViT. We then learn a detector using our loss dropping strategy that is robust to objects

missed by MaskCut. We further improve the model using multiple rounds of self-
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self-supervised DINO [25] model’s features. We apply Normalized Cuts [53] to this

matrix and obtain a single foreground object mask of the image. We then mask out

the affinity matrix values using the foreground mask and repeat the process, which

allows MaskCut to discover multiple object masks in a single image. In this pipeline

illustration, we set n=3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Compared to the previous state-of-the-art [23], our CutLER can better discriminate

instances (e.g.person and skis in col. 1), discover more objects (e.g.apple and raisins in

col. 2), and produce higher quality segmentation masks even for small objects (e.g.kite

in col. 3); compared to human annotations, CutLER can locate novel instances that

are overlooked by human annotators, such as the streetlight and clock tower in col. 4.

Qualitative comparisons between previous SOTA methods (row 1) and our CutLER

(row 2) on COCO, as well as ground truth annotations by human annotators (row 3),

are visualized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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schedule as the self-supervised pretrained MoCo-v2 counterpart and report the detec-

tion and instance segmentation performance. CutLER consistently outperforms the

MoCo-v2 baseline: in the low-shot setting with 1% labels and the fully supervised set-
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3.1 VideoCutLER is a simple unsupervised video instance segmentation method (UnVIS).

We show the first competitive unsupervised results on the challenging YouTubeVIS
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models can be learned without relying on natural videos and optical flow estimates.

Row 1: We propose VideoCutLER, a simple cut-synthesis-and-learn pipeline that in-

volves three main steps. Firstly, we generate pseudo-masks for multiple objects in an

image using MaskCut [12]. Then, we convert a random pair of images in the minibatch

into a video with corresponding pseudo mask trajectories using ImageCut2Video. Fi-

nally, we train an unsupervised video instance segmentation model using these mask

trajectories. Row 2: Despite being trained only on unlabeled images, at inference time

VideoCutLER can be directly applied to unseen videos and can segment and track mul-

tiple instances across time (Fig. 3.1a), even for small objects (Fig. 3.1b), objects that

are absent in specific frames (Fig. 3.1c), and instances with high overlap (Fig. 3.1d).

Column 2: Our method surpasses the previous SOTA method OCLR [77] by a factor
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50
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3.4 We fine-tune VideoCutLER for semi-supervised video instance segmentation on the

YouTubeVIS-2019 dataset, using different percentages of labeled training data. We
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on the validation set of YouTubeVIS-2019. To establish a strong baseline, we use

the self-supervised DINO [25] model and initialize the weights of VideoMask2Former

with DINO. To ensure a fair comparison, both baselines and VideoCutLER are trained

using the same schedule and recipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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unsupervised segmentation, and delivers impressive whole image and promptable seg-

mentation results, rivaling the performance of the supervised SAM [132]. This com-
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tively merge semantically similar pixels into larger segments using various similarity

thresholds. The resulting masks at different thresholds create a hierarchy. We zoom-in

selected regions to visualize details. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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6.1 Given the cute corgi painting in the top left corner, how can we extract a visual rep-

resentation that captures semantic-level information – such as object categories and

layouts – while preserving rich visual details like image styles, textures and colors?

We introduce ViLex model that generates image representations in the text vo-

cabulary space, acting as a new visual “language”, while retaining intricate visual

details that are difficult, if not impossible, to convey in natural language. The set of

images (generated under different diffusion noises) in the 2×2 grid, which are highly

semantically and visually similar to each other, is created by using ViLex as “text”

prompts for text-to-image diffusion models. . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 top) ViLex empowers linguistic space to capture visual richness. We propose

ViLex, an image encoder that maps images into the vocabulary space, effectively pre-

serving semantic information and intricate visual details. The embeddings from ViLex

function as a Visual Lexicon that preserve semantic and intricate visual details of the

image. ViLex is trained with a frozen text-to-image diffusion model and can be uti-

lized independently as “text” tokens for image generation. bottom) Linguistic space

empowers ViLex to enjoy compositionality. ViLex can be combined with natural

language tokens for prompting a pretrained T2I diffusion models with both visual and

textual cues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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6.3 The pipeline of ViLex: We learn a Visual Lexicon from a frozen diffusion model
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visual and textual cues for multimodal image generation. . . . . . . . . . . . . . . . . 87
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visually consistent with the original input. Even models with text embeddings in a

shared language-vision space, like DALL·E 3, capable of generating semantic varia-

tions of an image, struggle to faithfully reconstruct the original appearance of the input

image. For image-guided DALL·E results, we provide the input images along with the

text prompt, “generate an image exactly the same as the input image”. For DeDiffu-

sion, we follow its official image-to-image generation pipeline and use SDXL [190] as

the T2I model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.5 ViLex can be seamlessly integrated with natural language prompts for zero-shot un-
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Chapter 1

Introduction

Large language models (LLMs) [1]–[5], exemplified by GPTs, have fundamentally reshaped how

we process and interact with information. Their breakthroughs are driven by two key factors: the

vast availability of internet-scale data and the self-supervised next-token prediction paradigm —

both operating without explicit human supervision. Yet, language is only a narrow projection of

human intelligence. Achieving true artificial general intelligence (AGI) requires models to inte-

grate richer sensory modalities — encompassing vision, physical interaction, spatial navigation,

and social dynamics — that extend far beyond text alone. Among these, visual intelligence is

essential: the ability to parse scenes, localize objects, and model compositional structure directly

from raw pixels, enabling systems to perceive and reason about the visual world with minimal

human intervention.

Unfortunately, while large language models have achieved impressive generalization by lever-

aging the compositionality and structure of language, extending these gains to the visual domain

remains a major open challenge. Unlike text, visual data is continuous and high-dimensional, lack-

ing inherent tokenization or semantic grammar. Moreover, supervised learning in vision heavily

depends on large-scale labeled datasets, which are expensive to collect and often biased in content

and distribution.

This dissertation tries to answer: Can we build general-purpose visual systems that learn from

the natural structure of visual data—with minimal or even without human supervision? I aim to

establish both theoretical foundations and practical self-supervised learning (SSL) approaches that

process diverse real-world visual data and apply them to complex downstream tasks. By enhancing

SSL techniques for multimodal models—minimizing reliance on human-annotated datasets—I

strive to develop intelligent systems that can comprehend and interact with the environment in

ways that mirror or even surpass human sensation, perception, and reaction.

Toward this goal, I explore a suite of techniques rooted in self-supervised learning to acquire

object-centric, semantic, and compositional representations directly from unlabeled images and

videos. I focus on exploiting visual inductive biases, leveraging synthetic signals for supervision,

and closing the loop between discriminative and generative models under a unified SSL frame-

work. All these contributions reflect a broader vision: visual intelligence should emerge from the

structure of data—not from the structure of labels. This perspective challenges conventional su-
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pervised paradigms and advocates for building vision systems that learn in a label-free, data-driven,

and scalable manner.

1.1 Unsupervised Visual World Understanding

“The real voyage of discovery consists not in seeking new landscapes, but in having

new eyes.”

— Marcel Proust

My research addresses the long-standing challenge of learning directly from the inherent struc-

ture and patterns of the visual world without human supervision, through three key perspectives:

1) Self-supervised representation learning: we have developed a series of self-supervised

learning algorithms [6]–[11] that extract rich and informative features from unlabeled data, elim-

inating the need for large annotated datasets. These methods uncover meaningful representations

and structural regularities, providing a strong foundation for diverse downstream tasks. 2) Seg-

ment anything without supervision. As a domain studied for decades, object localization and

segmentation lies at the heart of visual understanding and are crucial for enabling AI systems to

perceive, reason, and interact in an object-centric manner. However, existing approaches often

rely on large-scale human-labeled datasets, which constrain their scalability and often introduces

significant biases based on the annotators’ perceptions of “what constitutes an instance”. These

challenges raise a crucial question: Can we “segment anything” without supervision? In response,

we have introduced a series of research efforts–CutLER [12], U2Seg [13], VideoCutLER [14],

and UnSAM [6]–that enables both interactive and whole-image segmentation without human su-

pervision. Via automatically capturing the hierarchical structure of visual scenes with a “divide-

and-conquer” strategy for parsing complex scenes, unsupervised UnSAM [6] delivers impressive

results, rivaling the performance of the supervised SAM [15]—a foundation model trained on over

1.1 billion labeled masks—while relying only on self-supervised pseudo-masks. 3) SSL for robust

decision-making models in multimodal environments. In vision-based reinforcement learning

(RL), domain transfer remains a challenge. We decouple vision from action, extracting univer-

sal visual features while maintaining RL policy intact, enabling reliable performance in dynamic

environments [9].

1.2 Analysis-by-Synthesis: Generative Models for Visual

Scene Understanding

“To understand is to invent.”

— Jean Piaget
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Visual scene understanding improves generative models’ ability to interpret the visual world

within a compact and informative feature space. Conversely, a model capable of generating re-

alistic and meaningful content must have a deep understanding of the complex structures and

patterns in its training data. The body of research in Sec. 1.2 and Sec. 1.3 aims to bridge gen-

erative and discriminative models using synthetic data generation, allowing both models to com-

plement and enhance each other, thereby enriching both the analysis and synthesis of contents and

improving how AI systems interpret and interact with environments without human supervision.

A model capable of creating realistic and meaningful content must have a deep understanding

of the complex structures and patterns within its training data. Motivated by this, in Sec. 1.2, we

intend to answer can we learn good representations for discriminative tasks using generative mod-

els? The answer is Yes! We present VisualLexicon (or ViLex) [16], a new visual “language” learned

from text-to-image diffusion models. Using a self-supervised learning pipeline, ViLex generates

embeddings optimized for reconstructing input images through a frozen text-to-image (T2I) diffu-

sion model, preserving the detailed information necessary for high-fidelity semantic-level recon-

struction. As visual embeddings in the text space, ViLex embeddings can be used independently

as “text” tokens or combined with natural language tokens for prompting diffusion models with

both visual and textual cues for multimodal image generation. ViLex is also compatible with

downstream vision-language tasks like visual question answering, image captioning, and referring

expression segmentation, significantly enhancing performance. After training, ViLex can be di-

rectly used as a new “language”, i.e., the “text-prompt”, to a frozen text encoder like CLIP [17],

enabling the re-creation of semantically similar images without the need for actual text prompts.

We also introduce LLM-based segmentation models, including SESAME[18], HIPIE[19], and

SegLLM [20]. In particular, SegLLM reformulates visual understanding as a next-token prediction

problem, enabling segmentation models to engage in natural language dialogue and reason about

complex user intentions.

1.3 Analysis-for-Synthesis: Understanding Models for Visual

Scene Generation

“Without craftsmanship, inspiration is a mere reed shaken in the wind.”

— Johannes Brahms

Generative models learn by simulating the world — but to simulate it accurately, they must

first understand it. I introduce InstanceDiffusion [21], which injects fine-grained, object-level

control into text-to-image diffusion models using machine-generated annotations from perception

models as pseudo-labels. By pairing visual structure with natural language prompts, InstanceD-

iffusion enables precise manipulation of instance attributes, layouts, and semantics — all without

manual supervision.

While most generative models synthesize pixels from abstract embeddings, structured gener-

ation demands models capable of interpreting, controlling, and manipulating scenes at the object
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level. To this end, I develop models that produce controllable visual outputs conditioned on layout,

attributes, and spatial constraints, paving the way for grounded generation and interactive design.

Architectural innovations such as UniFusion and ScaleU allow flexible integration of diverse loca-

tion formats — including points, boxes, scribbles, and masks — into the generation pipeline. The

result is a set of systems that not only produce photorealistic images but also faithfully capture user

intent with high compositional consistency.

1.4 Self-supervised Debiased Learning

“Everything we hear is an opinion, not a fact. Everything we see is a perspective, not

the truth.”

— Marcus Aurelius

While self-supervised learning promises label-free scalability, it often inherits and amplifies

the biases embedded in real-world data. Such biases arise not only from imbalanced datasets, but

also from the intrinsic similarity structure of visual representations — causing models to favor

certain predictions even when trained on balanced inputs. This leads to shortcut learning, spurious

correlations, and poor generalization under distribution shift.

My series of research for debiasing deep learning models is based on the insight that model pre-

dictions are naturally imbalanced due to intrinsic data similarity, even when a model is trained

on balanced source data. I investigate self-supervised approaches to robustify learning from im-

perfect data. I explore this across three settings:

1) Class-imbalanced learning: To address the challenge of bias in models trained on im-

balanced data, our RIDE [22] takes a dynamic view of training data and provides a principled

bias-variance analysis as the data distribution fluctuates. We found that existing classifiers suffer

from increased variance and confusion in tail classes, even when designed for long-tailed distribu-

tions. We found that existing classifiers, even when designed for long-tailed distributions, suffer

from increased variance, and the bias gap between head and tail classes remains large, primarily

due to increased confusion with hard negatives for the tail classes. Motivated by this observation,

we propose Routing Diverse Experts (RIDE) [22]. RIDE reduces model variance by employing

multiple experts, mitigates bias with a distribution-aware diversity loss, and lowers computational

costs using a dynamic expert routing module, without relying on manual reweighting; 2) Out-of-

domain generalization: Although it is well-known that a model trained on biased data has biased

predictions, surprisingly, our DebiasPL [10] found that even CLIP’s [17] predictions are signifi-

cantly biased, despite both source and target data being class-balanced. Based on this observation,

we study the issues of naturally imbalanced pseudo-labels, which are confident predictions made

on unlabeled target data by a classifier trained on labeled source data. Our [10] proposes an adap-

tive debiasing module with counterfactual reasoning and an adaptive marginal loss, aiming at

dynamically alleviating biased pseudo labels’ influence on a student model-without leveraging any

prior knowledge on marginal class distribution; 3) Visual policy learning: Current RL models are
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highly sensitive to unexpected environmental changes, even if those changes are irrelevant to the

learning task, i.e., distractions in the background. To address this, we propose unsupervised Visual

Attention and Invariance (VAI) [9] for RL. VAI works by analyzing action videos from a training

environment and extracting foregrounds through unsupervised keypoint detection, followed by un-

supervised visual attention that generates a foreground mask for each video frame. During testing,

the learned model is used to provide distraction-free visual input to the RL policy learner. VAI

not only learns domain-invariant vision without supervision but also removes visual distractions,

enabling the RL policy to be more focused and significantly more effective.

These contributions share a common theme: debiasing should emerge from the model’s un-

derstanding of why a prediction is made — not just what the prediction is. By embedding causal

reasoning into self-supervised learning, I enable models to overcome the limitations of their train-

ing data and generalize more reliably to unseen environments and tasks.

1.5 Thesis Organization

The remainder of the dissertation is organized as follows:

• Part I focuses my body of research on unsupervised visual world understanding, proposing

scalable pipelines for extracting instance, semantic, and panoptic structures from static and

dynamic scenes.

• Part II explores analysis-by-synthesis approaches for building structured representations

using generative models aligned with visual semantics.

• Part III investigates analysis-for-synthesis with structure—developing controllable image

generation models conditioned on fine-grained object-level prompts, produced by perception

models.

• Part IV presents my research efforts for robust self-supervised learning under data imbal-

ance, noisy labels, and domain shifts.

• Part V concludes by summarizing the core insights and proposing future directions in ex-

tending visual self-supervision to broader multimodal and embodied intelligence systems.

In closing, this thesis contends that visual intelligence should arise from the intrinsic struc-

ture of data, rather than the imposed structure of labels. It advances the foundations of self-

supervised visual learning through the design of scalable, compositional, and robust systems ca-

pable of learning directly from raw, unlabeled data. Collectively, these contributions establish a

foundation for general-purpose visual intelligence — enabling both perception and interaction —

that is vital for autonomous agents operating in the open world.
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Part I

Unsupervised Visual World Understanding

“The real voyage of discovery consists not in seeking new landscapes, but in having

new eyes.”

— Marcel Proust
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Chapter 2

CutLER: Cut and Learn for Unsupervised

Instance Segmentation
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Figure 2.1: Zero-shot unsupervised object detection and instance segmentation using our CutLER

model, which is trained without human supervision. We evaluate the model using the standard detection

APbox
50 . CutLER gives a strong performance on a variety of benchmarks spanning diverse image domains -

video frames, paintings, clip arts, complex scenes, etc. Compared to the previous state-of-the-art method,

FreeSOLO [23] with a backbone of ResNet101, CutLER with a backbone of ResNet50 provides strong gains

on all benchmarks, increasing performance by more than 2× on 10 of the 11 benchmarks. We evaluate [23]

with its official code and checkpoint.

We propose Cut-and-LEaRn (CutLER), a simple approach for training unsupervised object de-

tection and segmentation models. We leverage the property of self-supervised models to ‘discover’

objects without supervision and amplify it to train a state-of-the-art localization model without any

human labels. CutLER first uses our proposed MaskCut approach to generate coarse masks for

multiple objects in an image, and then learns a detector on these masks using our robust loss func-

tion. We further improve performance by self-training the model on its predictions. Compared

to prior work, CutLER is simpler, compatible with different detection architectures, and detects

multiple objects. CutLER is also a zero-shot unsupervised detector and improves detection perfor-
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mance AP50 by over 2.7× on 11 benchmarks across domains like video frames, paintings, sketches,

etcWith finetuning, CutLER serves as a low-shot detector surpassing MoCo-v2 by 7.3% APbox and

6.6% APmask on COCO when training with 5% labels.

2.1 Introduction

Object localization is a critical task in computer vision that enables AI systems to perceive, rea-

son, plan and act in an object-centric manner. Training models for localization require special

annotations like object boxes, masks, localized points, etcwhich are both difficult and resource

intensive to collect. Without accounting for overhead, annotating ∼164K images in the COCO

dataset [24] with masks for just 80 classes took more than 28K human hours of annotation time. In

this work, we study unsupervised object detection and instance segmentation models that can be

trained without any human labels. Our key insight is that simple probing and training mechanisms

can amplify the innate localization ability of self-supervised models [25], leading to state-of-the-art

unsupervised zero-shot detectors.

Our method Cut-and-LEaRn (CutLER) consists of three simple, architecture- and data-agnostic

mechanisms. Consistent with prior self-supervised learning methods [25]–[28], CutLER is trained

exclusively on unlabeled ImageNet data without needing additional training data, but contrary to

these methods, CutLER can be directly employed to perform complex segmentation and detection

tasks over a wide range of domains. First, we propose MaskCut that can automatically produce

multiple initial coarse masks for each image, using the pretrained self-supervised features. Second,

we propose a simple loss dropping strategy to train detectors using the coarse masks while being

robust to objects missed by MaskCut. Finally, we observe that despite learning from these coarse

masks, the detectors ‘clean’ the ground truth and produce masks (and boxes) that are better than the

coarse masks used to train them. Therefore, we further show that multiple rounds of self-training

on the models’ own predictions allow it to evolve from capturing the similarity of local pixels to

capturing the global geometry of the object, thus producing finer segmentation masks.

Prior work shows that a self-supervised vision transformer (ViT) [29] can automatically learn

patch-wise features that detect a single salient object in an image [25], [30]–[33]. However, unlike

CutLER, such salient object detection methods only locate a single, usually the most prominent,

object and cannot be used for real world images containing multiple objects. While some recent

methods, e.g., FreeSOLO [23] and DETReg [34], also aim at unsupervised multi-object detection

(or multi-object discovery), they rely on a particular detection architecture, e.g., SOLO-v2 [35] or

DDETR [36], [37]. Additionally, apart from self-supervised features trained on ImageNet [38],

the current state-of-the-art methods FreeSOLO and MaskDistill [39] also require ‘in-domain’ un-

labeled data for model training.

In contrast, CutLER works with various detection architectures and can be trained solely on

ImageNet, without requiring in-domain unlabeled data. Thus, during model training, CutLER does

not see any images from any target dataset and yields a zero-shot model capable of detecting and

segmenting multiple objects in diverse domains.
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DINO LOST TokenCut FreeSOLO Ours

detect multiple objects : 6 : 6 6

zero-shot detector 6 : 6 : 6

compatible with various

detection architectures
- 6 - : 6

pretrained model for

supervised detection
6 : : 6 6

Table 2.1: We compare previous methods on unsupervised object detection, including DINO [25],

LOST [32], TokenCut [33] and FreeSOLO [23], with our CutLER in term of key properties. Our Cut-

LER is the only method with all these desired properties.

Features of CutLER. 1) Simplicity: CutLER is simple to train and agnostic to the choice of detec-

tion and backbone architectures. Thus, it can be integrated effortlessly into existing object detec-

tion and instance segmentation works. 2) Zero-shot detector: CutLER trained solely on ImageNet

shows strong zero-shot performance on 11 different benchmarks where it outperforms prior work

trained with additional in-domain data. We double the APbox
50 performance on 10 of these bench-

marks, as shown in Fig. 2.1, and even outperform supervised detectors on the UVO video instance

segmentation benchmark. 3) Robustness: CutLER exhibits strong robustness against domain shifts

when tested on images from different domains such as video frames, sketches, paintings, clip arts,

etc. 4) Pretraining for supervised detection: CutLER can also serve as a pretrained model for

training fully supervised object detection and instance segmentation models and improves perfor-

mance on COCO, including on few-shot object detection benchmarks.

2.2 Related Work

Self-supervised feature learning involves inferring the patterns within the large-scale unlabeled

data without using human-annotated labels. Contrastive learning based [26], [28], [40], [41] meth-

ods learn such representations that similar samples or various augmentations of the same instance

are close to each other, while dissimilar instances are far apart. Similarity-based self-supervised

learning methods [42], [43] learn representations via minimizing the distance between different

augmentations of the same instance and use only positive sample pairs. Clustering-based feature

learning [9], [44]–[46] automatically discovers the natural grouping of data in the latent representa-

tion space. Recently, [47], [48] have shown that masked autoencoders, which learn representations

via masking out a large random subset of image patches and reconstructing the missing pixels or

patches [47]–[50], are scalable self-supervised learners for computer vision [47].

In contrast to these unsupervised representation learning efforts, our work aims to automatically

discover natural pixel groupings and locate instances within each image.

Unsupervised object detection and instance segmentation. The main comparisons to previ-

ous works are listed in Table 2.1 and are elaborated as follows:

DINO [25] observes that the underlying semantic segmentation of images can emerge from
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Figure 2.2: Overview of CutLER. We propose a simple yet effective method to train an object detection

and instance segmentation model without using any supervision. We first propose MaskCut to extract initial

coarse masks from the features of a self-supervised ViT. We then learn a detector using our loss dropping

strategy that is robust to objects missed by MaskCut. We further improve the model using multiple rounds

of self-training.

the self-supervised Vision Transformer (ViT) [29], which does not appear explicitly in either su-

pervised ViT or ConvNets [25], [51]. Based on this observation, LOST [32] and TokenCut [33]

leverage self-supervised ViT features and propose to segment one single salient object [32], [33],

[52] from each image based on a graph that is constructed with DINO’s patch features.

These previous works either can not detect more than one object from each image, e.g., DINO

and TokenCut, or can not improve the quality of features for better transfer to downstream detection

and segmentation tasks, e.g., TokenCut and LOST. Unlike these works, CutLER can locate multiple

objects and serve as a pretrained model for label-efficient and fully-supervised learning.

FreeSOLO [23] achieves unsupervised instance segmentation by extracting coarse object masks

in an unsupervised manner, followed by mask refinement through a self-training procedure. While

FreeSOLO’s FreeMask stage can generate multiple coarse masks per image, the quality of these

masks is often rather low [23]. MaskDistill [39] distills class-agnostic initial masks from the affin-

ity graph produced by a self-supervised DINO [25]. However, it utilizes one single mask per image

in the distillation stage, which greatly limits the model’s ability to detect multiple objects.

By contrast, the initial masks generated by our MaskCut are usually better in quality and quan-

tity than the initial masks used by [23], [39]. Therefore, CutLER achieves 2×∼4× higher APbox

and APmask than FreeSOLO [23] and MaskDistill [39] on almost all experimented detection and

segmentation benchmarks, even when FreeSOLO and MaskDistill are trained and tested on the

same domain.

2.3 Method

We tackle the problem of unsupervised object detection and segmentation with a simple cut-and-

learn pipeline. Our method builds upon insights from recent work [25], [33], showing that self-

supervised representations can discover objects. While these methods often find a single object per

image, we propose a simple approach that can discover multiple objects and significantly improves

segmentation and detection performance. The overview of our cut-and-learn pipeline is illustrated
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Figure 2.3: MaskCut can discover multiple object masks in an image without supervision. We build

upon [25], [33] and create a patch-wise similarity matrix for the image using a self-supervised DINO [25]

model’s features. We apply Normalized Cuts [53] to this matrix and obtain a single foreground object mask

of the image. We then mask out the affinity matrix values using the foreground mask and repeat the process,

which allows MaskCut to discover multiple object masks in a single image. In this pipeline illustration, we

set n=3.

in Fig. 2.2. First, we propose MaskCut that generates multiple binary masks per image using self-

supervised features from DINO [25] (Sec. 2.3). Second, we show a dynamic loss dropping strategy,

called DropLoss, that can learn a detector from MaskCut’s initial masks while encouraging the

model to explore objects missed by MaskCut (Sec. 2.3); Third, we further improve the performance

of our method through multiple rounds of self-training (Sec. 2.3).

Preliminaries

Normalized Cuts (NCut) treats the image segmentation problem as a graph partitioning task [53].

We construct a fully connected undirected graph via representing each image as a node. Each

pair of nodes is connected by edges with weights Wij that measure the similarity of the connected

nodes. NCut minimizes the cost of partitioning the graph into two sub-graphs, i.e., a bipartition,

by solving a generalized eigenvalue system

(D −W )x = λDx (2.1)

for finding the eigenvector x that corresponds to the second smallest eigenvalue λ, where D is a

N×N diagonal matrix with d(i) =
∑

j Wij and W is a N×N symmetrical matrix.

DINO and TokenCut. DINO [25] finds that the self-supervised ViT can automatically learn a cer-

tain degree of perceptual grouping of image patches. TokenCut [33] leverages the DINO features

for NCut and obtaining foreground/background segments in an image. The authors use the simi-

larity of the patches in the DINO feature space as the similarity weight Wij in NCut. Specifically,

following multiple recent methods [32], [33], [39], we use the cosine similarity of ‘key’ features

from the last attention layer of DINO-pretrained model, i.e., Wij=
KiKj

∥Ki∥2∥Kj∥2
where Ki is the ‘key’

feature of patch i, and solve Eq. (2.1) for finding the second smallest eigenvector x.

A limitation of TokenCut is that it only computes a single binary mask for an image and thus

only finds one object per image. Although we can use the other N−2 smallest eigenvectors to locate
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more than one instance, this significantly degrades the performance for multi-object discovery, as

demonstrated in Sec. 2.5.

MaskCut for Discovering Multiple Objects

As we discussed in Sec. 2.3, vanilla NCut is limited to discovering a single object in an image. We

propose MaskCut that extends NCut to discover multiple objects per image by iteratively applying

NCut to a masked similarity matrix (illustrated in Fig. 2.3). After getting the bipartition xt from

NCut at stage t, we get two disjoint groups of patches and construct a binary mask M t, where

M t
ij =

{

1, if M t
ij g mean(xt)

0, otherwise.
(2.2)

To determine which group corresponds to the foreground, we make use of two criteria: 1) intu-

itively, the foreground patches should be more prominent than background patches [25], [30], [33].

Therefore, the foreground mask should contain the patch corresponding to the maximum absolute

value in the second smallest eigenvector M t; 2) we incorporate a simple but empirically effective

object-centric prior [54]: the foreground set should contain less than two of the four corners. We

reverse the partitioning of the foreground and background, i.e., M t
ij = 1−M t

ij , if the criteria 1 is

not satisfied while the current foreground set contains two corners or the criteria 2 is not satisfied.

In practice, we also set all Wij<τ ncut to 1e−5 and Wijgτ ncut to 1.

To get a mask for the (t + 1)th object, we update the node similarity W t+1

ij via masking out

these nodes corresponding to the foreground in previous stages:

W t+1

ij =
(Ki

∏t

s=1
M̂ s

ij)(Kj

∏t

s=1
M̂ s

ij)

∥Ki∥2∥Kj∥2
(2.3)

where M̂ s
ij=1−M s

ij . Using the updated W t+1

ij , we repeat Eqs. (2.1) and (2.2) to get a mask M t+1.

We repeat this process t times and set t=3 by default.

DropLoss for Exploring Image Regions

A standard detection loss penalizes predicted regions ri that do not overlap with the ‘ground-truth’.

Since the ‘ground-truth’ masks given by MaskCut may miss instances, the standard loss does not

enable the detector to discover new instances not labeled in the ‘ground-truth’. Therefore, we

propose to ignore the loss of predicted regions ri that have a small overlap with the ‘ground-truth’.

More specifically, during training, we drop the loss for each predicted region ri that has a maximum

overlap of τ IoU with any of the ‘ground-truth’ instances:

Ldrop(ri) = 1(IoUmax
i > τ IoU)Lvanilla(ri) (2.4)

where IoUmax
i denotes the maximum IoU with all ‘ground-truth’ for ri and Lvanilla refers to the

vanilla loss function of detectors. Ldrop does not penalize the model for detecting objects missed in

the ‘ground-truth’ and thus encourages the exploration of different image regions. In practice, we

use a low threshold τ IoU = 0.01.
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Multi-Round Self-Training

Empirically, we find that despite learning from the coarse masks obtained by MaskCut, detection

models ‘clean’ the ground truth and produce masks (and boxes) that are better than the initial coarse

masks used for training. The detectors refine mask quality, and our DropLoss strategy encourages

them to discover new object masks. Thus, we leverage this property and use multiple rounds of

self-training to improve the detector’s performance.

We use the predicted masks and proposals with a confidence score over 0.75−0.5t from the tth-

round as the additional pseudo annotations for the (t+1)th-round of self-training. To de-duplicate

the predictions and the ground truth from round t, we filter out ground-truth masks with an IoU

> 0.5 with the predicted masks. We found that three rounds of self-training are sufficient to obtain

good performance. Each round steadily increases the number of ‘ground-truth’ samples used to

train the model.

Implementation Details

Training data. We only use the images from the ImageNet [38] dataset (1.3 million images) for

all parts of the CutLER model and do not use any type of annotations either for training or any

supervised pretrained models.

MaskCut. We use MaskCut with three stages on images resized to 480×480 pixels and compute a

patch-wise affinity matrix using the ViT-B/8 [29] DINO [25] model. We use Conditional Random

Field (CRF) [55] to post-process the masks and compute their bounding boxes.

Detector. While CutLER is agnostic to the underlying detector, we use popular Mask R-CNN [56]

and Cascade Mask R-CNN [57] for all experiments, and use Cascade Mask R-CNN by default,

unless otherwise noted. We train the detector on ImageNet with initial masks and bounding boxes

for 160K iterations with a batch size of 16. When training the detectors with a ResNet-50 back-

bone [58], we initialize the model with the weights of a self-supervised pretrained DINO [25]

model. We explored other pre-trained models, including MoCo-v2 [27], SwAV [46], and CLD [9],

and found that they gave similar detection performance. We also leverage the copy-paste aug-

mentation [59], [60] during the model training process. Rather than using the vanilla copy-paste

augmentation, to improve the model’s ability to segment small objects, we randomly downsample

the mask with a scalar uniformly sampled between 0.3 and 1.0. We then optimize the detector

for 160K iterations using SGD with a learning rate of 0.005, which is decreased by 5 after 80K

iterations, and a batch size of 16. We apply a weight decay of 5×10−5 and a momentum of 0.9.

Self-training. We initialize the detection model in each stage using the weights from the previous

stage. We optimize the detector using SGD with a learning rate of 0.01 for 80K iterations. Since

the self-training stage can provide a sufficient number of pseudo-masks for model training, we

don’t use the DropLoss during the self-training stages.

We provide more details on model implementation and training in Sec. 2.6.
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Datasets → Avg. COCO COCO20K VOC LVIS UVO Clipart Comic Watercolor KITTI Objects365OpenImages
Metrics → AP50 AR AP50 AR AP50 AR AP50 AR AP50 AR AP50 AR AP50 AR AP50 AR AP50 AR AP50 AR AP50 AR AP50 AR

Prev.
SOTA [23]

9.0 13.4 9.6 12.6 9.7 12.6 15.9 21.3 3.8 6.4 10.0 14.2 7.9 15.1 9.9 16.3 6.7 16.2 7.7 7.1 8.1 10.2 9.9 14.9

CutLER 24.3 35.5 21.9 32.7 22.4 33.1 36.9 44.3 8.4 21.8 31.7 42.8 21.1 41.3 30.4 38.6 37.5 44.6 18.4 27.5 21.6 34.2 17.3 29.6
vs. SOTA +15.3+22.1+12.3+20.1+12.7+20.5+21.0+23.0 +4.6 +15.4+21.7+28.6+13.2+26.2+20.5+22.3+30.8+28.4+10.7+20.4+13.5+24.0 +7.4 +14.7

Table 2.2: State-of-the-art zero-shot unsupervised object detection performance on 11 different datasets

spanning a variety of domains. We report class-agnostic multi-object detection performance and the av-

eraged results for 11 datasets using APbox
50 and ARbox

100. Our CutLER is trained in an unsupervised manner

solely on ImageNet. While the previous SOTA method [23] is typically fine-tuned on extra data, e.g., ∼241k

unlabeled COCO images, CutLER significantly outperforms it. Results of [23] are produced with official

code and checkpoint.

Methods Pretrain Detector Init.
COCO 20K COCO val2017

APbox
50 APbox

75 APbox APmask
50 APmask

75 APmask APbox
50 APbox

75 APbox APmask
50 APmask

75 APmask

non zero-shot methods

LOST [32] IN+COCO FRCNN DINO - - - 2.4 1.0 1.1 - - - - - -

MaskDistill [39]IN+COCO MRCNN MoCo - - - 6.8 2.1 2.9 - - - - - -

FreeSOLO∗ [23]IN+COCO SOLOv2 DenseCL 9.7 3.2 4.1 9.7 3.4 4.3 9.6 3.1 4.2 9.4 3.3 4.3

zero-shot methods

DETReg [34] IN DDETR SwAV - - - - - - 3.1 0.6 1.0 8.8 1.9 3.3

DINO [25] IN - DINO 1.7 0.1 0.3 - - - - - - - - -

TokenCut [33] IN - DINO - - - - - - 5.8 2.8 3.0 4.8 1.9 2.4

CutLER (ours) IN MRCNN DINO 21.8 11.1 10.1 18.6 9.0 8.0 21.3 11.1 10.2 18.0 8.9 7.9

CutLER (ours) IN Cascade DINO 22.4 12.5 11.9 19.6 10.0 9.2 21.9 11.8 12.3 18.9 9.7 9.2

vs. SOTA +12.7 +9.3 +7.8 +9.9 +6.6 +4.9 +12.3 +8.7 +8.1 +9.5 +6.4 +4.9

Table 2.3: Unsupervised object detection and instance segmentation on COCO 20K and COCO

val2017. We report the detection and segmentation metrics and note the pretraining data (Pretrain), detec-

tors, and backbone initialization (Init.). Methods in the top half of the table train on extra unlabeled images

from the downstream datasets, while zero-shot methods in the bottom half only train on ImageNet. Despite

using an older detector, CutLER outperforms all prior works on all evaluation metrics. ∗: results obtained

with the official code and checkpoint. IN, Cascade, MRCNN, and FRCNN denote ImageNet, Cascade Mask

R-CNN, Mask R-CNN, and Faster R-CNN, respectively.

2.4 Experiments

We evaluate CutLER on various detection and segmentation benchmarks. In Sec. 2.4, we show

that CutLER can discover objects without any supervision on completely unseen images. Despite

being evaluated in a zero-shot manner on eleven benchmarks, CutLER outperforms prior methods

that use in-domain training data. Sec. 2.4 shows that finetuning CutLER further improves detection

performance, outperforming prior work like MoCo-V2 and FreeSOLO.

Unsupervised Zero-shot Evaluations

We conduct extensive experiments on eleven different datasets, covering various object categories,

image styles, video frames, resolutions, camera angles, etcto verify the effectiveness of CutLER
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as a universal unsupervised object detection and segmentation method. We describe the different

datasets used for zero-shot evaluation in detail in Sec. 2.6. CutLER is trained solely using images

from ImageNet and evaluated in a zero-shot manner on all downstream datasets without finetuning

on any labels or data.

Evaluating unsupervised object detectors poses two unique challenges. First, since the model

is trained without any notion of semantic classes, it cannot be evaluated using the class-aware de-

tection setup. Thus, like prior work [32], [34], [35] we use the class-agnostic detection evaluation.

Second, object detection datasets often only annotate a subset of the objects in the images. For

example, while COCO and LVIS use the same images, COCO only labels 80 object classes, and

LVIS labels 1203 object classes. In this partially labeled setup, Average Recall (AR) is a valuable

metric for unsupervised detection as it does not penalize the models for detecting novel objects

unlabeled in the dataset. Thus, we additionally report AR for all datasets.

Zero-shot detection on 11 benchmarks. We evaluate CutLER on a variety of datasets and re-

port the detection performance using APbox
50 and ARbox

100 metrics in Fig. 2.1 and Table 2.2. CutLER

uses a smaller model size and less training data than prior work. Compared to the previous SOTA

approach, FreeSOLO [23] with a backbone of ResNet101, CutLER, with the smaller ResNet50

backbone, significantly outperforms it in each of these benchmarks spanning various image dis-

tributions, more than doubling performance on 10 of them. Also note that, FreeSOLO requires

FreeMask pre-training using approximately 1.3M ImageNet images and model fine-tuning using

additional data in test benchmarks.

We observe that on different domains, e.g.watercolor or frames from videos (UVO dataset),

CutLER improves performance by over 4× and 2×, respectively. Fig. 2.1 shows some qualitative

examples of CutLER’s predictions.

Detailed comparisons on COCO20K and COCO. Table 2.3 presents detailed detection and seg-

mentation evaluations (also referred to as ‘multi-object’ discovery) on two popular benchmarks:

COCO val2017 [24] and COCO 20K, which contains a subset of 20K images of COCO [23],

[32]. CutLER consistently surpasses prior works by a large margin (often gets 2∼3× higher AP)

on both the segmentation and detection tasks. Although CutLER is not trained on any images from

COCO, it surpasses existing methods trained on COCO by more than 10% in terms of APmask
50 and

APbox
50 .

Fig. 2.4 shows the qualitative comparisons between [23] and our CutLER on COCO val2017,

along with human annotations. Surprisingly, CutLER can often detect novel instances that human

annotators miss.

We present detailed comparisons on COCO 20K, COCO val2017 and LVIS [61] benchmarks

in Sec. 2.6.

Detailed comparisons on UVO and VOC. For a comprehensive comparison with existing un-

supervised multi-object detection methods, we report the results for UVO val [66] and VOC

trainval07 [67]. Table 2.4 shows that CutLER yields significant performance gains over pre-

vious SOTA, obtaining over 3× higher AP, with the most considerable improvement coming from

APL. On UVO, Table 2.5 shows that CutLER more than quadruples the AP of previous SOTA and

almost triples the APbox
50 . Our APmask

50 is even 4.8% higher than the fully-supervised SOLOv2 [35]
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Figure 2.4: Compared to the previous state-of-the-art [23], our CutLER can better discriminate instances

(e.g.person and skis in col. 1), discover more objects (e.g.apple and raisins in col. 2), and produce higher

quality segmentation masks even for small objects (e.g.kite in col. 3); compared to human annotations,

CutLER can locate novel instances that are overlooked by human annotators, such as the streetlight and

clock tower in col. 4. Qualitative comparisons between previous SOTA methods (row 1) and our CutLER

(row 2) on COCO, as well as ground truth annotations by human annotators (row 3), are visualized.

Methods AP50 AP75 AP APS APM APL

rOSD [30] 13.1 - 4.3 - - -

LOD [31] 13.9 - 4.5 - - -

LOST [32] 19.8 - 6.7 - - -

FreeSOLO∗ [23] 15.9 3.6 5.9 0.0 2.0 9.3

CutLER (ours) 36.9 19.2 20.2 1.3 6.5 32.2

vs. prev. SOTA +17.1 +15.6 +13.5 +1.3 +4.5 +22.9

Table 2.4: Zero-shot unsupervised object detection on VOC. ∗: reproduced results with official code and

checkpoint.

trained on LVIS with 100% annotations, significantly narrowing the gap between supervised and

unsupervised learning.
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Methods APbox
50 APbox

75 APbox APmask
50 APmask

75 APmask

fully-supervised methods:

SOLO-v2 (w/ COCO)[35] - - - 38.0 20.9 21.4

Mask R-CNN (w/ COCO)[56] - - - 31.0 14.2 15.9

SOLO-v2 (w/ LVIS)[35] - - - 14.8 5.9 7.1

unsupervised methods:

FreeSOLO∗ [23] 10.0 1.8 3.2 9.5 2.0 3.3

CutLER (ours) 31.7 14.1 16.1 22.8 8.0 10.1

vs. prev. SOTA +21.7 +12.3 +12.9 +13.3 +6.0 +6.8

Table 2.5: Zero-shot unsupervised object detection and instance segmentation on the UVO val video

benchmark. CutLER outperforms prior unsupervised methods and achieves better performance than the

supervised SOLO-v2 model trained on the LVIS dataset. ∗: reproduced results with official code and check-

point.

Label-Efficient and Fully-Supervised Learning

We now evaluate CutLER as a pretraining method for training object detection and instance seg-

mentation models. While CutLER can discover objects without any supervision, finetuning it on a

target dataset aligns the model output to the same set of objects labeled in the dataset.

Setup. We use CutLER to initialize a standard Cascade Mask R-CNN [57] detector with a ResNet50 [58].

Prior work uses more advanced detectors, SOLOv2 [35] used in [23] and DDETR [37] used

in [34], that perform better. However, we choose Cascade Mask R-CNN for its simplicity and

show in Sec. 2.5 that CutLER’s performance improves with stronger detectors. We train the de-

tector on the COCO [24] dataset using the bounding box and instance mask labels. To evaluate

label efficiency, we subsample the training set to create subsets with varying proportions of labeled

images. We train the detector, initialized with CutLER, on each of these subsets. As a baseline, we

follow the settings from MoCo-v2 [27] and train the same detection architecture initialized with a

MoCo-v2 ResNet50 model, given its strong performance on object detection tasks. Both MoCo-v2

and our models are trained for the 1× schedule using Detectron2 [68], except for extremely low-

shot settings with 1% or 2% labels. Following previous works [23], when training with 1% or 2%

labels, we train both MoCo-v2 and our model for 3,600 iterations with a batch size of 16.

Results. Fig. 2.5 shows the results of fine-tuning the detector on different subsets of COCO. When

tested with low-shot settings, e.g., 2% and 5% labeled data, our approach achieves 5.4% and 7.3%

higher APbox than the MoCo-v2 baseline, respectively. Even when training with full annotations,

CutLER still consistently gives more than 2% improvements, outperforming MoCo-v2 for both

object detection and segmentation. More impressively, CutLER outperforms prior SOTA methods

- FreeSOLO [23] and DETReg [34] despite using an older detection architecture.
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Figure 2.5: Finetuning CutLER for low-shot and fully supervised detection and instance segmenta-

tion. We fine-tune a Cascade Mask R-CNN model initialized with CutLER or MoCo-v2 on varying amounts

of labeled data on the COCO dataset. We use the same schedule as the self-supervised pretrained MoCo-v2

counterpart and report the detection and instance segmentation performance. CutLER consistently outper-

forms the MoCo-v2 baseline: in the low-shot setting with 1% labels and the fully supervised setting using

100% labels. CutLER also outperforms FreeSOLO [23] and DETReg [34] on this benchmark despite using

an older detection architecture. Results with Mask R-CNN are in the appendix.

2.5 Ablations

We analyze the design decisions in CutLER. We use similar settings to Sec. 2.4 and train CutLER

only on ImageNet. We use the Cascade Mask R-CNN detection architecture and evaluate our

model primarily on the COCO and UVO unsupervised detection benchmarks. All ablation studies

are conducted without self-training unless otherwise noted.

Importance of each component. We analyze the main components of CutLER and report their

relative contribution in Table 2.6. We report results on the popular COCO [24] dataset and a

densely annotated video instance segmentation dataset UVO [66]. We also report the performance

of running TokenCut [33] on the COCO dataset. Next, we use TokenCut’s official codes to gener-

ate masks on ImageNet and use them for training a Cascade Mask R-CNN [57]. This base model

provides substantial gains over just using TokenCut on COCO. We add each of our proposed com-

ponents to this strong base model. Using MaskCut increases APmask
50 and APmask by 4.7% and

2.7%, respectively. Also, the improvements to APmask
50 is larger for densely annotated dataset UVO,

i.e.4.7% vs. 2.7%. These results prove that MaskCut’s ability to segment multiple instances per

image is vital for densely annotated datasets. Adding DropLoss brings another 1.6% and 0.9%

improvements to APmask
50 for UVO and COCO, respectively. Multi-round of self-training increases
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Methods
UVO COCO

APmask
50 APmask APmask

50 APmask

TokenCut [33] - - 4.9 2.0

Base 14.6 5.4 13.5 5.7

+ MaskCut 19.3 8.1 15.8 7.7

+ DropLoss 20.9 9.0 16.6 8.2

+ copy-paste [59], [60] 21.5 9.9 17.7 8.8

+ self-train (CutLER) 22.8 10.1 18.9 9.7

Table 2.6: Ablation study on the contribution of each component. Results reported on COCO and video

segmentation dataset UVO.

Methods APbox
50 APbox ARbox

100 APmask
50 APmask ARmask

100

TokenCut (1 eigenvec.) 5.2 2.6 5.0 4.9 2.0 4.4

TokenCut (3 eigenvec.) 4.7 1.7 8.1 3.6 1.2 6.9

MaskCut (t = 3) 6.0 2.9 8.1 4.9 2.2 6.9

CutLER 21.9 12.3 32.7 18.9 9.7 27.1

Table 2.7: CutLER achieves much higher results even when compared to a modified TokenCut that can

produce more than one mask per image. Compared to TokenCut, MaskCut gets a higher recall without

reducing precision. We report results on COCO.

Size → 240 360 480 640

APmask
50

15.1 16.6 17.7 17.9

(a) Image size

τ
ncut → 0 0.1 0.15 0.2 0.3

APmask
50

17.1 17.5 17.7 17.6 17.5

(b) τncut

N → 2 3 4

APmask
50

16.917.717.7

(c) # masks

τ
IoU → 0 0.01 0.1 0.2

APmask
50

17.4 17.7 14.4 12.7

(d) τ IoU

Table 2.8: Ablations for MaskCut and DropLoss used for training CutLER. We report CutLER’s detection

and instance segmentation performance on COCO val2017, without adding the self-training stage. (a) We

vary the size of the image used for MaskCut. (b) We vary the threshold τ
ncut in MaskCut, which controls

the sparsity of the affinity matrix used for Normalized Cuts. (c) We vary the number of masks extracted

using MaskCut and train different CutLER models. (d) We vary τ
IoU in DropLoss, i.e., the maximum

overlap between the predicted regions and the ground truth beyond which the loss for the predicted regions

is ignored. Default settings are highlighted in gray.

the quantity and quality of pseudo-masks, leading to 1.3% improvements. These results show that

each simple proposed component is critical for strong performance.

Comparison with TokenCut. TokenCut [33] is also a zero-shot segmentation method. However,

it only segments a single instance per image, as discussed in Sec. 2.3. In order to generate more

than one segmentation mask per image, we use a modified TokenCut by using more of the smaller

eigenvectors and combining all produced masks. Table 2.7 shows the object detection performance

on COCO’s validation set for vanilla TokenCut, our modified TokenCut and CutLER. Although
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UVO COCO

APmask
50 APmask APmask

75 APmask
50 APmask APmask

75

1 round 20.6 9.0 7.0 17.7 8.8 8.0

2 rounds 22.2 9.6 7.5 18.5 9.5 8.8

3 rounds 22.8 10.1 8.0 18.9 9.7 9.2

4 rounds 22.8 10.2 8.2 18.9 9.8 9.3

Table 2.9: Number of self-training rounds used in CutLER. We find that 3 rounds of self-training are

sufficient. Self-training provides larger gains for the densely labeled UVO dataset.

Mask R-CNN Cascade Mask R-CNN ViTDet

APbox
50 / APbox 20.3 / 10.6 20.8 / 11.5 21.5 / 11.8

APmask
50 / APmask 17.2 / 8.5 17.7 / 8.8 18.0 / 9.0

Table 2.10: CutLER with different detection architectures. We report results on COCO and observe

that CutLER is agnostic to the detection architecture and improves performance using stronger detection

architectures such as ViTDet with a backbone of ViT-B.

using more eigenvectors increases the recall ARbox
100, it significantly reduces the precision APbox.

CutLER not only improves the average recall ARbox
100 by 4× but also surpasses TokenCut’s average

precision APbox by 4.8×, i.e.480% relative improvements.

Design choices in MaskCut and DropLoss and their impact on the final localization performance

is presented in Table 2.8. We first study the effect of the image size used by MaskCut for gener-

ating the initial masks. As expected, Table 2.8a shows that MaskCut benefits from using higher

resolution images presumably as it provides a higher resolution similarity between pixels. We pick

a resolution of 480px for a better trade-off between the speed of MaskCut and its performance.

In Table 2.8b, we study the effect of the threshold used in MaskCut for producing a binary W

matrix (Sec. 2.3). Overall, CutLER seems to be robust to the threshold values. We understand

the impact of the number of masks per image generated by MaskCut in Table 2.8c. Increasing

the number improves the performance of the resulting CutLER models. This shows that MaskCut

generates high-quality masks that directly impact the overall performance. Finally, in Table 2.8d,

we vary the IOU threshold used for DropLoss. With a high threshold, we ignore the loss for a

higher number of predicted regions while encouraging the model to explore. 0.01 works best for

the trade-off between exploration and detection performance.

Self-training and its impact on the final performance is analyzed in Table 2.9. Self-training con-

sistently improves performance across the UVO and COCO benchmarks and all metrics. UVO,

which has dense object annotations, benefits more from the multi-round of self-training. By de-

fault, CutLER uses 3 rounds of self-training. Fig. 2.6 shows qualitative examples of how self-

training improves both the quality of predictions and the number of objects predicted.
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Figure 2.6: Multiple rounds of self-training can improve the pseudo-masks in terms of quality and quantity.

We show qualitative visualizations and the number of pseudo-masks for all three rounds.

Pre-train CutLER APbox
50 APbox

75 APbox APmask
50 APmask

75 APmask

IN1K IN1K 20.8 10.8 11.5 17.7 8.0 8.8

YFCC1M YFCC1M 19.4 10.4 10.9 16.3 7.4 8.1

IN1K YFCC1M 14.9 7.6 8.2 12.1 5.4 5.9

YFCC1M IN1K 14.8 7.2 8.0 11.8 5.2 5.8

Table 2.11: Impact of datasets used to pre-train DINO and train CutLER. CutLER’s detection performance

is similar when pretraining both DINO and CutLER with the same dataset: the object-centric ImageNet

dataset or the non-object-centric YFCC dataset.

Generalization to different detection architectures. We use different detector architectures for

training CutLER and measure their performance in Table 2.10. We observe that CutLER works

with various architectures, and its performance is improved with stronger architectures.

Impact of the pretraining dataset. We now study the impact of the dataset used for 1) pretrain-

ing the self-supervised DINO model and 2) training the CutLER model. The commonly used

ImageNet dataset has a well-known object-centric bias [38] which may affect the unsupervised

detection performance. Thus, we also use YFCC [69], a non-object-centric dataset. We control for

the number of images in both ImageNet and YFCC for a fair comparison and use them for train-

ing DINO and CutLER. As Table 2.11 shows, CutLER’s performance on COCO is robust to the

choice of object-centric or non-object-centric datasets as long as the same dataset is used to train

DINO and CutLER. This shows the generalization of CutLER to different data distributions. How-

ever, training DINO and CutLER with different data leads to worse performance, suggesting the

importance of using the same image distribution for learning both DINO and CutLER models.
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datasets domain testing data #images instance segmentation label

COCO [24] natural images val2017 split 5,000 6

COCO20K [24] natural images a subset of COCO 20,000 6

UVO [66] video frames val split 7,356 6

LVIS [61] natural images val split 19,809 6

KITTI [70] traffic images trainval split 7,521 :

Pascal VOC [67] natural images trainval07 split 9,963 :

Clipart [71] clip arts traintest split 1,000 :

Watercolor [71] paintings traintest split 2,000 :

Comic [71] sketches traintest split 2,000 :

Objects365-V2 [72] natural images val split 80,000 :

OpenImages-V6 [73] natural images val split 41,620 :

Table 2.12: Summary of datasets used for zero-shot evaluation.

2.6 Appendix

Training details

While CutLER is agnostic to the underlying detector, we use popular Mask R-CNN [56] and Cas-

cade Mask R-CNN [57] for all experiments, and use Cascade Mask R-CNN by default, unless oth-

erwise noted. We train the detector on ImageNet with initial masks and bounding boxes for 160K

iterations with a batch size of 16. When training the detectors with a ResNet-50 backbone [58],

we initialize the model with the weights of a self-supervised pretrained DINO [25] model. We

explored other pre-trained models, including MoCo-v2 [27], SwAV [46], and CLD [9], and found

that they give similar detection performance. Therefore, we initialize model weights with DINO

by default.

We also leverage the copy-paste augmentation [59], [60] during the model training process.

Rather than using the vanilla copy-paste augmentation to improve the model’s ability to segment

small objects, we randomly downsample the mask with a scalar uniformly sampled between 0.3

and 1.0. We then optimize the detector for 160K iterations using SGD with a learning rate of

0.005, which is decreased by 5 after 80K iterations and a batch size of 16. We apply a weight

decay of 5×10−5 and a momentum of 0.9.

For the multi-round of self-training, in each stage, we initialize the detection model using the

weights from the previous stage. We optimize the detector using SGD with a learning rate of 0.01

for 80K iterations. Since the self-training stage can provide a sufficient number of pseudo-masks

for model training, we don’t use the exploration loss during the self-training stage.
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Datasets APbox
50 APbox

75 APbox APbox
S

APbox
M

APbox
L

ARbox
1 ARbox

10 ARbox
100 APmask

50 APmask
75 APmask APmask

S
APmask

M
APmask

L
ARmask

1 ARmask
10 ARmask

100

COCO 21.9 11.8 12.3 3.7 12.7 29.6 6.8 19.6 32.8 18.9 9.2 9.7 2.4 8.8 24.3 5.8 16.5 27.1

COCO20K 22.4 11.9 12.5 4.1 12.7 29.5 6.8 19.7 33.1 19.6 9.2 10.0 2.8 8.9 24.3 5.8 16.6 27.4

UVO 31.7 14.1 16.1 3.7 11.3 25.3 6.8 24.5 42.5 31.6 14.1 16.1 3.7 11.3 25.3 4.6 18.0 32.2

LVIS 8.4 3.9 4.5 2.7 9.1 15.1 2.4 9.2 21.8 6.7 3.2 3.5 1.9 6.1 12.5 2.1 7.9 18.7

KITTI 18.4 6.7 8.5 0.5 5.6 19.2 6.2 16.6 27.8 - - - - - - - - -

Pascal VOC 36.9 19.2 20.2 1.3 6.5 32.2 16.5 32.8 44.0 - - - - - - - - -

Clipart 21.1 6.0 8.7 1.1 5.8 11.6 6.6 27.0 40.7 - - - - - - - - -

Watercolor 37.5 10.9 15.7 0.1 1.1 20.0 19.4 37.8 44.2 - - - - - - - - -

Comic 30.4 7.7 12.2 0.0 1.3 16.0 8.5 28.2 38.4 - - - - - - - - -

Objects365 21.6 10.3 11.4 3.0 10.4 20.4 3.0 15.4 34.2 - - - - - - - - -

OpenImages 17.3 9.5 9.7 0.4 2.3 14.9 6.5 17.6 29.6 - - - - - - - - -

Table 2.13: Detailed zero-shot evaluation results on all benchmarks used in this work.

Datasets used for zero-shot evaluation

COCO and COCO20K [24] is a large-scale object detection and instance segmentation dataset,

containing about 115K and 5K images in the training and validation split, respectively. Addition-

ally, COCO has an unannotated split of 123K images. We test our model in a class-agnostic man-

ner on COCO val2017 and COCO 20K, without fine-tuning on any images in COCO. COCO

20K is a subset of the COCO trainval2014 [24], containing 19817 randomly sampled images,

used as a benchmark in [30], [32], [33]. We report class-agnostic COCO style averaged precision

and averaged recall for object detection and segmentation tasks.

Pascal VOC [67] is another popular benchmark for object dtetection. We evaluate our model on

its trainval07 split in COCO style evaluation matrics.

UVO [66]. Unidentified Video Objects (UVO) is an exhaustively annotated dataset for video object

detection and instance segmentation. We evaluate our model on UVO val by frame-by-frame

inference and report results in COCO style evaluation matrics.

LVIS [61] collected 2.2 million high-quality instance segmentation masks for over 1000 entry-

level object categories, which naturally constitutes the long-tailed data distribution. We report

class-agnostic object detection and instance segmentation results on LVIS val split, containing

about 5K images.

CrossDomain [71] contains three subsets of watercolor, clipart, and comics, in which objects are

depicted in watercolor, sketch and painting styles, respectively. We evaluate our model on all

annotated images from these three datasets, i.e., traintest.

Objects365 V2 [72] presents a supervised object detection benchmark with a focus on diverse

objects in the wild. We evaluate CutLER on the 80K images from its val split.

OpenImages V6 [73] unifies image classification, object detection, and instance segmentation,

visual relationship detection, etcin one dataset. We evaluate CutLER on its 42K images from the

val split.

KITTI [70] presents a dataset captured from cameras mounted on mobile vehicles used for au-

tonomous driving research. We evaluate CutLER on 7521 images from KITTI’s trainval split.

We provide the summary of these datasets used for zero-shot evaluation in Table 2.12.
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Figure 2.7: Precision-recall curve for comparing selective search and CutLER on VOC07 trainval.

Additional results for zero-shot detection & segmentation

In this section, we use official COCO API and provide more results with standard COCO metrics,

including AP across various IoU thresholds - AP (averaged over IoU thresholds from 0.5 to 0.95

with a step size of 0.05), AP50 (IoU@0.5) and AP75 (IoU@0.75), and AP across scales - APS (small

objects), APM (medium objects) and APL (large objects). We provide detailed results on all these

benchmarks listed in Table 2.12 and report these results in Table 2.13. We report the performance

of object detection for all datasets. In addition, for those datasets that provide annotations for

instance segmentation, we also present the performance of the instance segmentation task. It is

worth noting that on these datasets without segmentation labels, CutLER can still predict instance

segmentation masks, but since we do not have ground truth masks to be compared, we cannot

evaluate the results.

CutLER vs. Selective Search

Selective Search [74] is a popular unsupervised object discovery method, used in many early state-

of-the-art detectors such as R-CNN [75] and Fast R-CNN [76]. However, generating possible

object locations with sliding windows greatly reduces inference speed (please refer to [74] for more

details on selective search). We compare CutLER’s performance to selective search in Fig. 2.7

and observe that CutLER provides a significant improvement in both precision and recall, which

indicates that CutLER is a better performing unsupervised method for region proposal generation

with real-time inference speed.

Training details for label-efficient and fully-supervised learning

We train the detector on the COCO [24] dataset using the bounding box, and instance mask labels.

To evaluate label efficiency, we subsample the training set to create subsets with varying propor-
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Figure 2.8: Fine-tuning on MS-COCO with various annotation ratios. We report results using Mask R-CNN

and Cascade Mask R-CNN with a backbone of ResNet-50 as the detector.

tions of labeled image We train the detector, initialized with CutLER, on each of these subsets.

As a baseline, we follow the settings from MoCo-v2 [27] and train the same detection architec-

ture initialized with a MoCo-v2 ResNet50 model, given its strong performance on object detection

tasks. MoCo-v2 and our models use the same training pipeline and hyper-parameters and are

trained for the 1× schedule using Detectron2 [68], except for extremely low-shot settings with 1%

or 2% labels. Following previous works [23], when training with 1% or 2% labels, we train both

MoCo-v2 and our model for 3,600 iterations with a batch size of 16.

Our detector weights are initialized with ImageNet-1K pre-trained CutLER, except for the

weights of the final bounding box prediction layer and the last layer of the mask prediction head,

which are randomly initialized with values taken from a normal distribution. For experiments

on COCO with labeling ratios below 50%, during model training, we use a batch size of 16,

and learning rates of 0.04 and 0.08 for model weights loaded from the pre-trained CutLER and

randomly initialized, respectively. For experiments on COCO with labeling ratios between 50%

and 100%, the learning rates of all layers decay by a factor of 2.

For a fair comparison, baselines and CutLER use the same hyper-parameters and settings.

2.7 Summary

Object localization is a fundamental task in computer vision. In this paper, we have shown that a

simple yet effective cut-and-learn approach can achieve extraordinary performance on challenging

object detection and instance segmentation tasks without needing to train with human annotations.

As a zero-shot unsupervised detector, CutLER, trained solely on ImageNet, outperforms the de-

tection performance of previous works by over 2.7× on 11 benchmarks across various domains.
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Chapter 3

VideoCutLER: Unsupervised Video

Instance Segmentation
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Figure 3.1: VideoCutLER is a simple unsupervised video instance segmentation method (UnVIS). We

show the first competitive unsupervised results on the challenging YouTubeVIS benchmark. Moreover, un-

like most prior approaches, we demonstrate that UnVIS models can be learned without relying on natural

videos and optical flow estimates. Row 1: We propose VideoCutLER, a simple cut-synthesis-and-learn

pipeline that involves three main steps. Firstly, we generate pseudo-masks for multiple objects in an image

using MaskCut [12]. Then, we convert a random pair of images in the minibatch into a video with corre-

sponding pseudo mask trajectories using ImageCut2Video. Finally, we train an unsupervised video instance

segmentation model using these mask trajectories. Row 2: Despite being trained only on unlabeled images,

at inference time VideoCutLER can be directly applied to unseen videos and can segment and track multiple

instances across time (Fig. 3.1a), even for small objects (Fig. 3.1b), objects that are absent in specific frames

(Fig. 3.1c), and instances with high overlap (Fig. 3.1d). Column 2: Our method surpasses the previous

SOTA method OCLR [77] by a factor of 10 in terms of class-agnostic APvideo
50 .

Existing approaches to unsupervised video instance segmentation typically rely on motion es-

timates and experience difficulties tracking small or divergent motions. We present VideoCutLER,

a simple method for unsupervised multi-instance video segmentation without using motion-based
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Figure 3.2: Challenges encountered by the

previous state-of-the-art OCLR: Within the

framework of OCLR [77], a method that heav-

ily relies on optical flows as model inputs, sev-

eral distinct failure cases emerge. These in-

clude situations where the method struggles to

accurately segment both moving and static ob-

jects (as demonstrated in Fig. 3.2a), struggles to

effectively track non-rigid objects as a coherent

unit (Fig. 3.2b), encounters difficulties in dis-

tinguishing overlapping instances (Fig. 3.2c),

and fails to maintain consistent predictions un-

der varying illumination conditions (Fig. 3.2d).

Nonetheless, many of these challenges can be

effectively addressed through the application of

our proposed approach, VideoCutLER, without

being reliant on the optical estimations used

by various prior works [77], [78]. We present

qualitative comparisons using the YouTubeVIS

dataset [79].

learning signals like optical flow or training on natural videos. Our key insight is that using high-

quality pseudo masks and a simple video synthesis method for model training is surprisingly suffi-

cient to enable the resulting video model to effectively segment and track multiple instances across

video frames. We show the first competitive unsupervised learning results on the challenging

YouTubeVIS-2019 benchmark, achieving 50.7% APvideo
50 , surpassing the previous state-of-the-art

by a large margin. VideoCutLER can also serve as a strong pretrained model for supervised video

instance segmentation tasks, exceeding DINO by 15.9% on YouTubeVIS-2019 in terms of APvideo.

3.1 Introduction

Video instance segmentation is vital for various computer vision applications, e.g.video surveil-

lance, autonomous driving, and video editing, yet labeled videos are costly to obtain. Hence,

there is a pressing need to devise an unsupervised video instance segmentation approach that can

comprehend video content comprehensively and operate in general domains without labels.

Prior work in this area typically relies on an optical flow network as an off-the-shelf motion

estimator [77], [78], [80]. Although optical flow can be informative in detecting pixel motion
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between frames, it is not always a reliable technique, particularly in the presence of occlusions,

motion blur, complex motion patterns, changes in illuminations, etc. As a result, models that

heavily rely on optical flow estimations may fail in several common scenarios. For example,

stationary or slowly moving objects may have flow estimates similar to the background, causing

them to be omitted in the segmentation process (e.g., the parrot with negligible motion is missed in

Fig. 3.2a). Similarly, non-rigid objects with non-consistent motions for several parts have varying

optical flows, leading to a failure in segmenting all parts cohesively as a unit if object motion is

presumed constant (Fig. 3.2b). Also, objects with similar motion patterns and high overlap are

complex for optic flow methods to accurately distinguish between them, especially in boundary

regions (Fig. 3.2c). Finally, objects with illumination changes across frames can cause optical-

flow based models to produce non-consistent and blurred segmentation masks (Fig. 3.2d). Given

the limitations above, we advocate for unsupervised video segmentation models which do not

depend on optical flow estimates. We propose a method to train a video segmentation model by

generating simple synthetic videos from individual images, without relying on explicit motion

estimates or requiring labeled natural videos.

Our method, VideoCutLER, is an unsupervised Video instance segmentation model that em-

ploys a Cut-synthesis-and-LEaRn pipeline (Fig. 3.1). First, given unlabeled images, we extract

pseudo-masks for multiple objects in an image using MaskCut [12], leveraging a self-supervised

DINO [25] and a spectral clustering method Normalized Cuts [53] (details in Sec. 3.3). Second,

given unlabeled images and their pseudo-masks in a minibatch, we propose ImageCut2Video, a

surprisingly simple video synthesis scheme that generates a video from those with corresponding

pseudo mask trajectories (details in Sec. 3.3). Finally, those mask trajectories are used to train

a video instance segmentation model, aiming to perform object segmentation with temporal con-

sistency across video frames (details in Sec. 3.3). Our model learns to segment and track object

instances based on their appearance (feature) similarities across video frames.

Despite being learned from only unlabeled images (and the temporally simple synthetic video

sequences we construct from them), VideoCutLER succeeds at multi-instance video segmentation,

achieving a new state-of-the-art (SOTA) performance of 50.7% APvideo
50 on YouTubeVIS-2019. This

result surpasses the previous SOTA [77] by substantial margins of 45.9% (50.7% vs. 4.8%). This

result also considerably narrows the performance gap between supervised and unsupervised learn-

ing, reducing it from 29.1% to 11.0% in terms of the APvideo
50 .

Moreover, most prior works on self-supervised representation learning [9], [25], [26], [28],

[42] are limited to providing initializations only for the model backbones, with the remaining

layers being randomly initialized. In contrast, our pretraining strategy takes a more comprehensive

approach that allows all model weights to be pretrained, resulting in a stronger pretrained model

better suited for supervised learning. As a result, our method outperforms DINO’s [25] APvideo on

YoutubeVIS-2019 by 15.9%.

Contributions. Insights: We found that a simple video synthesis method yield surprisingly ef-

fective results for training unsupervised multi-instance video segmentation models. This efficacy is

achieved without the necessity of explicit motion estimates or the utilization of natural videos (rely-

ing solely on unlabeled ImageNet data suffices), a novel aspect that has not been previously demon-

strated in the field. Methods: We propose a simple yet effective cut-synthesize-and-learn pipeline
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CRW DINO OCLR Ours

Segment multiple objects 6 : 6 6

Track objects across frames 6 : 6 6

No need for optical flow 6 6 : 6

No 1st-frame ground-truth : : 6 6

No human labels at any stage : : 6 6

Pretrained model for sup. learning : 6 : 6

Table 3.1: We compare previous methods on unsupervised video instance segmentation, including

CRW [86], DINO [25], and OCLR [77], with our VideoCutLER in term of key properties. Our Video-

CutLER is the only approach that fulfills all these desired properties.  : The optical flow estimator OCLR

employs (RAFT [80]) is pretrained on both synthetic data and human-annotated data like KITTI-2015 [91]

and HD1K [92].

VideoCutLER for learning video instance segmentation models, given unlabeled images. Results:

Our method shows the first successfully results on challenging unsupervised multi-instance video

segmentation benchmark YouTubeVIS, outperforming the previous SOTA model’s APvideo
50 by a

large margin.

3.2 Related Work

Unsupervised video instance segmentation (VIS) requires not only separating and tracking the

main moving foreground objects from the background, but also differentiating between different

instances, without any human annotations [81]. Previous works [33], [78], [82]–[84] on unsu-

pervised video segmentation has primarily centered on unsupervised video object segmentation

(VOS), aiming to detect all moving objects as the foreground and to generate a pixel-level bi-

nary segmentation mask, regardless of whether the scene contains a single instance or multiple

instances. Despite some works exploring unsupervised video instance segmentation (VIS), many

of these approaches have resorted to either utilizing first frame annotations [25], [85], [86] to prop-

agate label information throughout the video frames or leveraging supervised learning using large

amounts of external labeled data [87]–[90]. Furthermore, prior studies typically utilized optical

flow networks that were pretrained with human supervision using either synthetic data or labeled

natural videos [77], [78], [83], [87].

The properties deemed necessary for an unsupervised learning method to excel in video in-

stance segmentation tasks are presented and discussed in Table 3.1. Our proposed method, Video-

CutLER, is the only approach that satisfies all these properties, making it an effective and promis-

ing solution for unsupervised video instance segmentation.

Unsupervised object discovery aims to automatically discover and segment objects in an image

in an unsupervised manner [12], [23], [33], [82]. LOST [32] and TokenCut [33] focus on salient

object detection and segmentation via leveraging the patch features from a pretrained DINO [25]

model. For multi-object discovery, FreeSOLO [23] first generates object pseudo-masks for unla-
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beled images, then learns an unsupervised instance segmentation model using these pseudo-masks.

CutLER [12] presents a straightforward cut-and-learn pipeline for unsupervised detection and seg-

mentation of multiple instances. It has demonstrated promising results on more than eleven differ-

ent benchmarks, covering a wide range of domains.

In contrast to previous approaches, our unsupervised learning method focuses on simultane-

ously tracking objects in a video sequence while identifying correspondences between instances

across multiple frames.

Self-supervised representation learning generates its own supervision signal by exploiting the

implicit patterns or structures present in the input data [25], [26], [46], [47]. Unlike most previous

self-supervised learning models, which still require fine-tuning on labeled data to be operative

on complex computer vision tasks, such as detection and segmentation, VideoCutLER can tackle

these complex, challenging tasks with purely unsupervised learning methods.

3.3 VideoCutLER

We present VideoCutLER, a simple cut-synthesis-and-learn pipeline consisting of three main steps.

First, we generate pseudo-masks for multiple objects in an image using MaskCut (Sec. 3.3). Next,

we convert a random pair of images in the minibatch into a synthetic video with corresponding

pseudo mask trajectories using ImageCut2Video (Sec. 3.3). Finally, we train an unsupervised

video instance segmentation model using these mask trajectories. As the model inputs do not

contain explicit motion estimates, it learns to track objects based on their appearance similarity

(Sec. 3.3).

Single-image unsupervised segmentation

We employ the MaskCut method, introduced in the CutLER [12] method. MaskCut is an efficient

spectral clustering approach for unsupervised image instance segmentation and object detection

and can discover multiple object masks in a single image without human supervision. MaskCut

builds upon a self-supervised DINO model [36] with a backbone of ViT [29] and a cut-based

clustering method Normalized Cuts (NCut) [53]. MaskCut first generates a patch-wise affinity

matrix Wij =
KiKj

∥Ki∥2∥Kj∥2
using the ‘key’ features Ki for patch i from DINO’s last attention layer.

Subsequently, the NCut algorithm [53] is employed on the affinity matrix by solving a generalized

eigenvalue problem

(D −W )x = λDx (3.1)

where D is a diagonal matrix with d(i) =
∑

j Wij and x is the eigenvector that corresponds to the

second smallest eigenvalue λ. Then, the foreground masks M s can be extracted via bi-partitioning

x, which segments a single object within the image. To segment more than one object, Mask-

Cut uses an iterative process that masks out the values in the affinity matrix using the extracted
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foreground mask:

W t
ij=

(Ki

∏t

s=1
M s

ij)(Kj

∏t

s=1
M s

ij)

∥Ki∥2∥Kj∥2
(3.2)

and repeats the NCut algorithm. We set t=3 by default.

Although MaskCut can effectively locate and segment multiple objects in an image, it operates

only on a single image, lacking temporal consistency in the instance segmentation masks produced

across video frames.

ImageCut2Video Synthesis for Training

We propose a learning-based approach to ensuring temporal consistency in video segmentation

masks, based on generating synthetic videos from pairs of individual images and MaskCut masks.

Surprisingly, we found that an extremely simple synthetic video generation method yields suffi-

cient training data to learn a powerful video segmentation model that can operate on videos with

much greater complexity of motion than is present in the training data.

Given unlabeled images in the minibatch and their pseudo-masks, our ImageCut2Video method

synthesizes corresponding videos and pseudo-mask trajectories, thereby allowing us to train the

model in an unsupervised manner while offering the necessary supervision for simultaneous de-

tection, segmentation, and tracking of objects in videos.

First, given an image and its corresponding pseudo-masks in the mini-batch, we duplicate the

image t times and connect its MaskCut pseudo-masks to form the initial trajectories. This syn-

thetic video, however, only contains static foreground objects. To generate additional trajectories

with mobile objects, a second image is randomly selected from the mini-batch, and its objects are

cropped using its MaskCut pseudo-masks. These objects are then randomly resized, repositioned,

and augmented before being pasted onto the first image. The resulting masks are connected along

the temporal dimension to generate additional trajectories with mobile objects.

Specifically, given a target image I1, a random source image I2 in the mini-batch and its cor-

responding set of binary pseudo-masks {M1
2 , ...,M

s
2}, we first apply a transformation function

T to resize and shift these pseudo-masks randomly. This gives us a new set of pseudo-masks

{M̂1
2 , ..., M̂

s
2}, where M̂ s

2 = T (M s
2 ). Next, we synthesize a video with t frames by duplicating

image I1 for t times and pasting the augmented masks onto I1 using:

I t1=I1 × Πs
i=1(1−M̂ i

2)+I2 × (1−Πs
i=1(1− M̂ i

2)) (3.3)

where × refers to element-wise multiplication.

Video Segmentation Model

During training, the synthetic videos produced by ImageCut2Video, comprising both mobile and

stationary objects, are used as the inputs to train a video instance segmentation model. The segmen-

tation mask trajectories corresponding to each object in the video serve as ‘ground-truth’ labels.
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Methods
Training settings YouTubeVIS-2019 YouTubeVIS-2021

flow

videos

sup. AP50 AP75 AP APS APM APL AR10 AP50 AP75 AP APS APM APL AR10

MotionGroup∗ [78] 6 6 : 1.3 0.1 0.3 0.2 0.3 0.5 1.7 1.1 0.1 0.2 0.1 0.2 0.5 1.5

OCLR∗ [77] 6 6 : 4.8 0.4 1.3 0.0 1.2 5.5 11.0 4.4 0.3 1.2 0.1 1.6 7.1 9.6

CutLER! : : : 37.5 14.6 17.1 3.3 13.9 27.6 30.4 29.2 10.4 12.8 3.1 12.8 27.8 22.6

VideoCutLER : 6⋇ : 50.7 24.2 26.0 5.6 20.9 37.9 42.4 38.9 19.0 17.1 5.3 18.3 37.5 31.3

vs. prev. SOTA +12.8 +9.6 +8.9 +2.3 +7.0 +10.3 +12.0 +9.7 +8.6 +4.3 +2.2 +5.5 +9.7 +8.7

Table 3.2: Zero-shot unsupervised multi-instance video segmentation on YouTubeVIS-2019 and

YouTubeVIS-2021. We report the instance segmentation metrics (AP and AR) and training settings. ∗:

reproduced MotionGroup [78] and OCLR [77] results with the official code and checkpoints.  : the

optical flow estimator OCLR employs (RAFT [80]) is pretrained on both synthetic data [95], [96] and

human-annotated data, such as KITTI-2015 [91] and HD1K [92]. !: We train a CutLER [12] model with

Mask2Former as a detector on ImageNet-1K, following CutLER’s official training recipe, and use it as a

strong baseline. ⋇: VideoCutLER is trained on synthetic videos generated using ImageNet. Sup and flow

denote human supervision and optical flow information, respectively. We evaluate results on YouTubeVIS’s

train splits in a class-agnostic manner (note: we never train on YouTubeVIS).

We utilize VideoMask2Former [93], [94] with a backbone of ResNet50 [58] as our video in-

stance segmentation (VIS) model. It operates by attending to the 3D spatiotemporal features of our

synthetic videos and generating 3D volume predictions of pseudo-mask trajectories using shared

queries across frames. The shared queries across frames enable the model to segment and track

object instances based on their appearance (feature) similarities, making it a powerful framework

for analyzing video sequences.

Implementation Details

VideoCutLER. We first employ the MaskCut approach on images preprocessed to a resolution of

480×480 pixels. We then compute a patch-wise cosine similarity matrix using the pretrained ViT-

Base/8 DINO [25] model, which serves as input to the MaskCut algorithm for initial segmentation

mask generation. We set t = 3, which is the maximum number of masks per image. To re-

fine the segmentation masks, we employ a post-processing step using Conditional Random Fields

(CRFs) [55], which enforces smoothness constraints and preserves object boundaries, resulting in

improved segmentation masks.

Next, we use ImageCut2Video to synthetic videos given images and their pseudo-masks in a

mini-batch. We found that synthetic videos with two frames are sufficient to train a video instance

segmentation model; therefore, we use s = 2 by default. We randomly change the brightness,

contrast, and rotation of the masks to create new variations of pseudo-masks. Additionally, we

randomly resize the pseudo-masks (scale∈[0.8,1.0]), and shift their positions.

Training and test data. Our model is trained solely on the unlabeled images from ImageNet [38],

which comprises approximately 1.3 million images. Without further fine-tuning on any video

datasets, we test our model’s zero-shot unsupervised video instance segmentation performance on
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four multi-instance video segmentation benchmarks, including YouTubeVIS-2019 [79], YouTubeVIS-

2021 [79], DAVIS2017 [97], and DAVIS2017-Motion [97], [98].

YoutubeVIS-2019 and YouTube-VIS2021 contain 2,883 high-resolution YouTube videos and

3,859 high-resolution YouTube videos, respectively. We evaluate the zero-shot unsupervised learn-

ing performance on their training splits in a class-agnostic manner. For DAVIS-2017, we evaluate

our model’s performance on the 30 videos from its val set.

Training settings. 1) Unsupervised Image Model Pretraining: We first pretrain a Mask2Former [93]

model with a backbone of ResNet50 [58] on ImageNet using MaskCut’s pseudo-masks. The model

is optimized for 160k iterations, with a batch size of 16 and a learning rate of 0.00002. The learning

rate is decayed by a factor of 20 at iteration 80,000. To prevent overfitting, a dropout layer with a

rate of 0.3 is added after the self-attention layers of transformer decoders. 2) Unsupervised Video

Model Learning: We initialize the VideoMask2Former model [94] with model weights from the

previous stage, and then fine-tune it on the synthetic videos we construct from ImageNet. We train

VideoCutLER on 8 A100 GPUs for 80k iterations, using the AdamW optimizer [99]. We set the

initial learning rate to 0.000005 and apply a learning rate multiplier of 0.1 to the backbone. A

dropout layer with a rate of 0.3 is added after the self-attention layers of transformer decoders.

Evaluation metric APvideo and ARvideo: The evaluation metrics used in YouTubeVIS are Averaged

Precision (AP) and Averaged Recall (AR), which are similar to those used in COCO [24]. The

evaluation is specifically conducted at 10 intersection-over-union (IoU) thresholds ranging from

50% to 95% with a step of 5% [79]. However, unlike in image instance segmentation, each instance

in a video comprises a sequence of masks, so the IoU computation is performed not only in the

spatial domain, but also in the temporal domain by summing the intersections at every single frame

over the unions at every single frame.

Evaluation metric J and F : For DAVIS [98], we report results using their official evaluation

metrics J&F , J and F . The region measure (J ) [98] is the intersection-over-union (IoU) score

between the algorithm’s mask and the ground-truth mask. The boundary measure (F) [98] is the

average precision of the boundary of the algorithm’s mask. The evaluation metrics are computed

separately for each instance, and then the results are averaged over all instances to get the final

score. J&F is the mean of J and F .

3.4 Experiments

We evaluate the performance of VideoCutLER on several video instance segmentation bench-

marks. In Sec. 3.4, we demonstrate that our approach can effectively perform segmentation and

tracking of multiple objects in videos, even when trained on unlabeled ImageNet images without

any form of supervision. Our experimental results reveal that our method can drastically reduce

the performance gap between unsupervised and supervised learning methods for video instance

discovery and tracking. Furthermore, Sec. 3.4 demonstrates that fine-tuning VideoCutLER leads

to further performance gains in video instance segmentation, surpassing previous works such as

DINO in both fully supervised learning and semi-supervised learning tasks. In Sec. 3.4, we con-

duct an ablation study to examine the impact of key components and their hyperparameters.
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Methods
Training settings DAVIS2017 DAVIS2017-Motion

flow videos sup. training data J&F J (Mean)F(Mean) J&F J (Mean)F(Mean)

MotionGroup (sup.) [78] 6 6 : IN-1K+synthetic - - - 39.5 44.9 34.2

Mask R-CNN (w/ flow)∗ [56], [77] 6 6 : IN-1K+synthetic - - - 50.3 50.4 50.2

OCLR (w/ flow)∗ [77] 6 6 : IN-1K+synthetic 39.6 38.2 41.1 55.1 54.5 55.7

VideoCutLER : : : IN-1K 43.6 41.7 45.5 57.3 57.4 57.2

vs. prev. SOTA +4.0 +3.5 +4.4 +2.2 +2.9 +1.5

Table 3.3: Zero-shot unsupervised single/few-instance segmentation. VideoCutLER also outperforms

the previous state-of-the-arts on DAVIS2017 and DAVIS2017-Motion. Note: 12 out of 30 videos from

DAVIS2017 and 26 out of 30 videos from DAVIS2017-Motion contain only 1 moving instance. Additionally,

DAVIS datasets focus solely on the performance of moving prominent objects, even in videos where multiple

objects are present. This disadvantages our model since it can segment both static and moving objects and

has not been exposed to any downstream videos during training. ∗: utilize optical flow predictions from

RAFT [80], which is pretrained on external videos. All methods are evaluated in a zero-shot manner, i.e.no

fine-tuning on target videos.

Unsupervised Zero-shot Evaluations

In this section, we evaluate the performance of our method against previous state-of-the-art ap-

proaches on various video instance segmentation benchmarks.

Evaluating unsupervised video instance segmentation poses two main challenges. Firstly, as

unsupervised learning methods train the model without semantic classes, the class-aware video

segmentation setup cannot be used directly for an evaluation. As a result, following previous

works, we evaluate video instance segmentation results in a class-agnostic manner. Secondly,

video instance segmentation datasets often annotate only a subset of the objects in the video, which

makes Average Recall (AR) a valuable metric that does not penalize models for detecting novel

objects not labeled in the dataset [12]. Therefore, we report both AR and AP for YouTubeVIS.

Regarding DAVIS, we use the official unsupervised learning metrics J , F , and J&F . All these

metrics assess the performance of unsupervised video instance segmentation in a class-agnostic

manner. Sec. 3.3 lists more details on evaluation metrics.

Detailed comparisons on YouTubeVIS. Table 3.2 presents a summary of the results for unsu-

pervised zero-shot video instance segmentation on the YouTubeVIS-2019 and YouTubeVIS-2021

datasets. We compare our method’s results with the previous state-of-the-art methods OCLR [77]

and motion grouping [78]. We reproduce their results using their official code and checkpoints to

ensure fairness.

Although OCLR [77] is also trained on synthetic videos, it relies on the off-the-shelf opti-

cal flow estimator RAFT [80] to compute optical flows for RGB sequences. It is worth noting

that RAFT is pretrained on a combination of synthetic videos [95], [96] and human-annotated

videos such as KITTI-2015 [91] and HD1K [92]. Our approach, VideoCutLER, despite not us-

ing any optical flow estimations like many previous works on unsupervised video segmentation,

achieves over 10× higher AP50 and 18× higher AP than OCLR [77] on YouTubeVIS-2019. Ad-

ditionally, we achieve over 30% higher recall. Furthermore, unlike the previous state-of-the-art
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Time

Figure 3.3: We present qualitative visualizations illustrating the zero-shot unsupervised video instance

segmentation outcomes of VideoCutLER on YouTubeVIS dataset. It’s noteworthy that VideoCutLER is

solely pretrained on image dataset ImageNet-1K, and its evaluation is conducted directly on the video

dataset YouTubeVIS (no further fine-tuning required). The visual results provided effectively highlight

that VideoCutLER is capable of segmenting and tracking multiple instances, delivering consistent tracking

results across video frames, and successfully distinguishing between various instances, even when signifi-

cant overlapping occurs. We show more demo results in appendix.

method OCLR [77], which exhibits poor performance in segmenting small objects (with 0.0%

APS), our approach significantly outperforms it. Similar performance gains can be observed on

YouTubeVIS-2021. Finally, the performance gains to CutLER [12] demonstrates the effectiveness

of VideoCutLER in training unsupervised multi-instance video segmentation models, surpassing

CutLER by over 12.8% on YouTubeVIS-2019.

In Fig. 3.3, we present qualitative visualizations illustrating the zero-shot unsupervised video

instance segmentation outcomes of VideoCutLER on YouTubeVIS dataset.
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Methods
Training settings YouTubeVIS-2021\YouTubeVIS-2019

flow

videos

sup. training data AP50 AP75 AP APS APM APL AR100

Mask2Former [94] 6 6 : IN-1K+YT2019 48.9 22.2 24.9 - - - -

MaskTrack R-CNN∗ [79] 6 6 6 IN-1K+YT2019 32.4 13.0 15.0 8.4 24.9 39.0 20.3

MaskTrack R-CNN∗ [79] 6 6 6 IN-1K+COCO+YT2019 35.8 18.7 18.7 10.5 31.3 46.8 24.5

OCLR∗ [77] 6 6 : IN-1K+synthetic 3.3 0.2 1.0 0.3 2.7 7.5 5.4

VideoCutLER : : : IN-1K 21.4 7.1 9.0 4.9 13.3 29.6 17.1

vs. prev. SOTA +18.1 +6.9 +8.0 +4.6 +10.6 +22.1 +11.7

Table 3.4: VideoCutLER greatly narrows the gap between fully-supervised learning and unsupervised

learning for multi-instance video segmentation. Results are evaluated in a class-agnostic manner on the

relative complement of the set of videos from YouTubeVIS-2021 and the set of videos from YouTubeVIS-

2019. VideoCutLER and Mask2Former use a backbone of ResNet50. ∗: reproduced results with the official

code and checkpoints. IN-1K refers to ImageNet-1K.

Detailed comparisons on DAVIS. To provide a comprehensive evaluation and comparison with

existing unsupervised video instance segmentation approaches, we also assess the performance

of our model on the validation sets of DAVIS-2017 and DAVIS2017-Motion [77], [98]. Note

that both DAVIS2017 and DAVIS2017-Motion datasets focus only on the performance of instance

segmentation on prominent moving objects, even in videos with multiple objects. As a result, only

a single or a few objects of interest per video are annotated, which may not reflect the challenges

that arise when multiple objects are present.

Although the evaluation of DAVIS is an unfair assessment for us since VideoCutLER is sup-

posed to segment both static and moving objects, whereas DAVIS focuses on moving prominent

objects, with only a single or a few moving objects of interest per video annotated. However,

Table 3.3 shows that VideoCutLER yields approximinately 4% higher J , F , and J&F . The ad-

ditional results on DAVIS demonstrate that VideoCutLER achieves superior performance not only

on static or minimally moving objects but also on dynamic objects, where prior methods relying

on optical flow estimates can benefit from additional cues.

Comparison of supervised and unsupervised learning in object discovery and tracking abil-

ities is presented in Table 3.4. We train a supervised MaskTrack R-CNN [79] model on the

human-annotated training set of YouTubeVIS-2019 dataset, and evaluate it in a class-agnostic

manner on the videos that are not shared between YouTubeVIS-2019 and YouTubeVIS-2021

datasets [79]. Table 3.4 shows that our VideoCutLER model significantly narrows the gap be-

tween supervised learning and unsupervised learning methods in terms of the averaged precision

AP50 (gaps: 29.1%→11.0%) and the averaged recall AR100 (gaps: 14.9%→3.2%), particularly for

the AR100.

Label-Efficient and Fully-Supervised Learning

In this section, we investigate VideoCutLER as a pretraining approach for supervised video in-

stance segmentation models, and evaluate its effectiveness in label-efficient and fully-supervised

learning scenarios.
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Methods Architecture
YouTubeVIS-2019 YouTubeVIS-2021

AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

DINO [25] Mask2Former [94] 23.0 39.0 23.7 6.0 28.0 34.2 24.6 41.4 25.9 8.7 34.0 39.9

VideoCutLER Mask2Former [94] 38.9 56.7 43.3 22.1 43.1 51.8 33.4 53.8 36.3 15.7 40.9 54.8

vs. prev. SOTA +15.9 +17.7 +19.6 +16.1 +15.1 +17.6 +8.8 +12.4 +10.4 +7.0 +6.9 +14.9

Table 3.5: VideoCutLER can serve as a strong pretrained model for the supervised video instance segmen-

tation task. The video segmentation model, Mask2Former, is initialized with various pretrained models, i.e.,

DINO or VideoCutLER, and fine-tuned on the training set with human annotations. We report the instance

segmentation metrics and evaluate the model performance on the val splits.
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Figure 3.4: We fine-tune VideoCutLER for semi-supervised video instance segmentation on the

YouTubeVIS-2019 dataset, using different percentages of labeled training data. We evaluate the perfor-

mance of our method by reporting the average precision and recall on the validation set of YouTubeVIS-

2019. To establish a strong baseline, we use the self-supervised DINO [25] model and initialize the weights

of VideoMask2Former with DINO. To ensure a fair comparison, both baselines and VideoCutLER are

trained using the same schedule and recipe.

Setup. We use VideoMask2Former with a backbone of ResNet50 for all experiments in this section

unless otherwise noted. For our experiments on semi-supervised learning, we randomly sample a

subset of videos from the training split with different proportions of labeled videos. After pretrain-

ing our VideoCutLER model on ImageNet, we fine-tune the model on the YouTubeVIS-2019 [79]

dataset with its human annotations. For our experiments on the fully-supervised learning task, we

fine-tune the VideoCutLER model on all available labeled data from the training sets of YouTube-

VIS. For baselines, we initialize a VideoMask2Former model with a DINO [25] model pre-trained

on ImageNet and fine-tuned on labeled videos. Since DINO has shown strong performance in
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detection and segmentation tasks, it serves as a strong baseline for our experiments.

For semi-supervised learning, both the baselines and our models are trained for 2× schedule,

with a learning rate of 0.0001 for all model weights, except for the final classification layers, which

use a learning rate of 0.0016. We train the models using a batch size of 16 and 8 GPUs. For fully-

supervised learning, we use the 1× schedule and a learning rate of 0.0002 for the final classification

layers. We evaluate their performance on the val split of the YouTubeVIS-2019, and report results

from its official evaluation server.

Data for fully-/semi-supervised VIS. We fine-tune the pretrained VideoCutLER model on all or

a subset of the training split of YouTubeVIS-2019. We then evaluate the resulting models on the

validation set. To ensure a fair comparison, we use the same amount of human annotations to train

our model and baselines. Specifically, we initialize the baselines with the DINO-pretrained model

and fine-tune them on the training set of the respective dataset. We evaluate the model performance

on their validation sets and report results from its official evaluation server.

Results. Most prior approaches on self-supervised representation learning [9], [25], [26], [28],

[42] are limited to providing initializations only for the model backbones, with the remaining

layers, such as Mask2Former’s decoders, being randomly initialized. In contrast, VideoCutLER

takes a more comprehensive approach that allows all model weights to be pretrained, resulting in

a stronger pretrained model better suited for supervised learning. As a result, as shown in Fig. 3.4

and Table 3.5, our method outperforms these prior works significantly, offering a strong pretrained

model for fully-/semi-supervised learning tasks.

Fig. 3.4 shows that VideoCutLER consistently outperforms the strong baseline method DINO [25]

across all label-efficient learning settings with varying proportions of labeled YouTubeVIS-2019

videos. The most significant performance gains are observed when 20% labeled data is provided,

where VideoCutLER exceeds DINO by over 12% AP50 and 13.2% AR. As demonstrated in Ta-

ble 3.5, training the model with all available labeled videos from YouTubeVIS yields considerable

performance gains, surpassing DINO by more than 15.9% AP on YouTubeVIS-2019 and 8.8% on

YouTubeVIS-2021, respectively.

Ablation Study

Hyper-parameters and design choices. We present an ablation study on several key hyper-

parameters and design choices of VideoCutLER in Table 3.6. First, we analyze the impact of

varying the size of video frames used for training VideoCutLER. From Table 3.6a, we observe that

the shortest edge length of 240 pixels yields the best performance. Using a larger resolution does

not always lead to better results. Next, Table 3.6b shows the effect of the number of frames used for

training video instance segmentation models. We found that synthetic videos with three frames are

optimal for learning an unsupervised video instance segmentation model. Increasing the number

of frames does not result in a further improved performance, aligning with the findings reported

in [94]. Furthermore, Table 3.6c investigates the contribution of several augmentation methods,

including brightness, rotation, contrast, and random cropping, which are used as default during

model training. We found that compared to ImageCut2Video without any data augmentations,

adding these augmentations can bring about 3% performance gains.
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Figure 3.5: We present qualitative results on videos covering a range of out-of-domain sources, e.g.,

sketches, 3D computer-generated imagery (CGI) and hybrid (CGI + realistic). VideoCutLER can produce

high-quality segmentation and tracking results for small objects that are often difficult to distinguish from

the background, as well as for object sketches that lack textual information.

Generalizability. The results presented in Fig. 3.5 demonstrate that VideoCutLER can effectively

perform video instance segmentation on out-of-domain data sources, e.g.sketches, 3D computer-

generated imagery, and hybrid videos that combine CGI. These results shows that our model can

be applied to a broad range of videos beyond the domains it was initially trained on, i.e., ImageNet.

3.5 Summary

We presented a simple unsupervised approach to segment multiple instances in a video. Our ap-

proach, VideoCutLER, does not require labels, and does not rely on motion-based learning signals

like optical flow. In fact, VideoCutLER does not need real videos for training as we synthesize

videos using natural images from the ImageNet-1K. Despite being simpler, VideoCutLER outper-
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Size → 180 360 480

APvideo
50

49.9 50.7 50.4

(a) Frame size.

# frames → CutLER† [12] 2 3 4

APvideo
50

37.5 49.8 50.7 50.4

(b) # frames. z

Augmentations → none +bright +rotation +contrast +crop all

APvideo
50

47.8 48.1 48.9 48.3 48.7 50.7

(c) Data augmentations for ImageCut2Video.

Table 3.6: Ablations for VideoCutLER. We report video instance segmentation result APvideo
50 on

YoutubeVIS-2019. (a) The impact of varying video frame sizes on training VideoCutLER. (b) The ef-

fect of the number of frames used for model training. (c) The impact of several augmentation methods,

including brightness, rotation, contrast, and random cropping, which are used as default during model train-

ing. Default settings are highlighted in gray.

forms models that use additional learning signals or video data, achieving 10× their performance

on benchmarks like YouTubeVIS. Moreover, VideoCutLER is a strong pretrained model for su-

pervised learning. We hope that our approach enables both a wide range of applications in video

recognition, as well as its simplicity enables easy future research.

Limitations: while VideoCutLER demonstrates its capability to achieve the state-of-the-art perfor-

mance without relying on optical flow estimations, potential further improvements may be obtained

by leveraging natural videos and integrating joint training with optical flow estimations.
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Unsupervised Universal Image

Segmentation
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Figure 4.1: We present U2Seg, a unified framework for Unsupervised Universal image Segmentation that

consistently outperforms previous state-of-the-art methods designed for individual tasks: CutLER [12] for

unsupervised instance segmentation, STEGO [100] for unsupervised semantic segmentation, and the naive

combination of CutLER and STEGO for unsupervised panoptic segmentation. We visualize instance seg-

mentation results with “semantic label” + confidence score and semantic predictions with “semantic label”.

Zoom in for the best view.

Several unsupervised image segmentation approaches have been proposed which eliminate

the need for dense manually-annotated segmentation masks; current models separately handle ei-

ther semantic segmentation (e.g., STEGO) or class-agnostic instance segmentation (e.g., CutLER),

but not both (i.e., panoptic segmentation). We propose an Unsupervised Universal Segmentation

model (U2Seg) adept at performing various image segmentation tasks—instance, semantic and
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panoptic—using a novel unified framework. U2Seg generates pseudo semantic labels for these

segmentation tasks via leveraging self-supervised models followed by clustering; each cluster rep-

resents different semantic and/or instance membership of pixels. We then self-train the model on

these pseudo semantic labels, yielding substantial performance gains over specialized methods tai-

lored to each task: a +2.6 APbox boost (vs. CutLER) in unsupervised instance segmentation on

COCO and a +7.0 PixelAcc increase (vs. STEGO) in unsupervised semantic segmentation on CO-

COStuff. Moreover, our method sets up a new baseline for unsupervised panoptic segmentation,

which has not been previously explored. U2Seg is also a strong pretrained model for few-shot seg-

mentation, surpassing CutLER by +5.0 APmask when trained on a low-data regime, e.g., only 1%

COCO labels. We hope our simple yet effective method can inspire more research on unsupervised

universal image segmentation.

4.1 Introduction

The field of image segmentation has witnessed significant advancements in the recent years [15],

[36], [56], [57], [101]–[104]. Nonetheless, the effectiveness of these segmentation methods heavily

depends on the availability of extensive densely human-labeled data for training these models,

which is both labor-intensive and costly and thus less scalable. In this paper, our objective is to

explore the extent to which unsupervised image segmentation can be achieved without relying on

any human-generated labels.

Several recent works such as CutLER [12] and STEGO [100] have emerged as promising

approaches for unsupervised image segmentation. CutLER leverages the property of the self-

supervised model DINO [25] to ‘discover’ objects without supervision, and learns a state-of-the-art

localization model on pseudo instance segmentation masks produced by MaskCut [12] (based on

Normalize Cuts [53]). Similarly leveraging DINO [25], STEGO [100] introduces a novel frame-

work that distills unsupervised features into discrete semantic labels. This is achieved using a

contrastive loss that encourages pixel features to form compact clusters while preserving their

relationships across the corpora [100]. However, these methods have limitations:

• The output of unsupervised instance segmentation methods such as CutLER [12] comprises

class-agnostic segments for “things”, ignoring the “stuff” categories that represent pixel seman-

tics. Moreover, CutLER often treats several overlapping instances as one instance, especially

when these instances belong to the same semantic class.

• On the other hand, unsupervised semantic segmentation methods such as STEGO [100] fo-

cus on the segmentation of semantically coherent regions, lacking the capability to distinguish

between individual instances.

• Unsupervised panoptic segmentation has not been addressed. Supervised panoptic segmenta-

tion methods [103], [105], [106] predict both “stuff” and “things” classes simultaneously; to the

best of our knowledge there has not been work on unsupervised panoptic segmentation hereto-

fore.

To address these limitations, we propose U2Seg, a novel Unsupervised Universal image Segmentation

model. U2Seg offers comprehensive scene understanding–instance, semantic and panoptic–without
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relying on human annotations, segmenting semantically meaningful regions in the image as well

as identifying and differentiating between individual instances within those regions.

U2Seg is comprised of three steps. First, we create high-quality, discrete semantic labels for

instance masks obtained from MaskCut and DINO, by clustering semantically similar instance

masks into distinct fine-grained clusters, as in Sec. 4.3. Next, we amalgamate the semantically

pseudo-labeled “things” pixels (from the first step) with “stuff” pixels (from STEGO) to produce

pseudo semantic labels for each pixel in the image. Lastly, a universal image segmentation model

is trained using these pseudo-labels, resulting in a model capable of simultaneously predicting

pixel-level (i.e., semantic and class-agnostic instance segmentation) and instance-level semantic

labels, detailed in Sec. 4.3.

Despite the inherent noise in these pseudo-labels, self-training the model with them yields

substantial performance gains over specialized methods tailored to each task: U2Seg achieves

a +2.6 APbox boost (vs. CutLER) in unsupervised instance segmentation on COCO and a +7.0

PixelAcc increase (vs. STEGO) in unsupervised semantic segmentation on COCOStuff. Moreover,

our method sets up a new baseline for unsupervised panoptic segmentation. We also find that the

multi-task learning framework and learning unsupervised segmentor with semantic labels enable

our model to generate a more discriminative feature space, which makes it a superior representation

for downstream supervised detection and segmentation tasks. When trained on a low-data regime,

such as 1% COCO labels, U2Seg surpasses CutLER by +5.0 APmask.

Contributions. Our main contribution is the first universal unsupervised image segmentation

model that can tackle unsupervised semantic-aware instance, semantic and panoptic segmentation

tasks using a unified framework. We establish a suite of benchmarks on unsupervised semantic-

aware instance segmentation and panoptic segmentation, areas previously unexplored. Despite

using a single framework, we demonstrate that U2Seg surpasses previous methods specialized

for each task across all experimented benchmarks (instance, semantic, panoptic, etc) and datasets

(COCO, Cityscapes, UVO, VOC, etc).

4.2 Related Work

Self-supervised Representation Learning focuses on feature learning from a large amount of

unlabeled data without using human-made labels. Contrastive Learning-Based Methods [26], [28],

[40], [41] learn representation by comparing similar instances or different versions of a single

instance while separating dissimilar ones. Similarity-Based Self-Supervised Learning [42], [43]

mainly reduces differences between different augmented versions of the same instance. Clustering-

Based Feature Learning [9], [44]–[46] finds natural data groups in the hidden space. Masked

Autoencoders [47]–[49] learn by masking and then reconstructing masked parts of the image.

Unsupervised Object Detection and Instance Segmentation. DINO [25] shows that self-supervised

learning (SSL) Vision Transformers (ViT) [29] can reveal hidden semantic segmentation in im-

ages, which is not obvious in supervised counterparts [25], [51]. Extending this, LOST [32],

TokenCut [33] and MaskDistill [39] use DINO’s patch features to identify main objects in images.

FreeSOLO [23] performs unsupervised class-agnostic instance segmentation by creating coarse
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Figure 4.3: Pipeline overview for generating masks and their semantically meaningful pseudo labels in

semantic-aware instance segmentation. We first use MaskCut to generate class-agnostic instance masks,

which are then grouped into semantically meaningful clusters. These pseudo semantic labels are used for

training a semantic-aware instance segmentor.

masks first, which are later improved through self-training. Meanwhile, CutLER [107] introduces

the MaskCut method, which aims to identify multiple instances in a single image. Yet, Mask-

Cut frequently consolidates overlapping instances into a single segment and lacks the capability to

assign semantic labels to each instance.

Unsupervised Semantic Segmentation. IIC [108] maximizes mutual information for clustering,

while PiCIE [109] uses invariance to photometric effects and equivariance to geometric trans-

formations for segmentation. MaskContrast [110] learns unsupervised semantic segmentation by

contrasting features within saliency masks. STEGO [100] refines pretrained SSL visual features

to distill correspondence information embedded within these features, thereby fostering discrete

semantic clusters.

Universal Segmentation has been introduced to deliver instance, semantic and panoptic segmen-

tation tasks using a unified architecture [94], [103], [106], [111]–[117]. In this work, we propose

U2Seg to tackle this challenging task without relying on human-annotated data.

Unsupervised Image Classification methods mainly focus on providing a semantic label for each

query image that can be mapped to ground truth classes by hungarian matching. SCAN [118]

proposes a three-stage pipeline that includes representation learning, deep clustering, and self-

labeling. NNM [119] enhances SCAN by incorporating local and global nearest neighbor match-

ing. RUC [120] further improves SCAN using a robust loss as training objective. However, these

approaches only provide one classification prediction per image, whereas our method provides

classification per-instance for instance segmentation and per-pixel for semantic segmentation.
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4.3 Unsupervised Universal Segmentation

Preliminaries

We first explain the previous Unsupervised Instance Segmentation method CutLER [12], and Un-

supervised Semantic Segmentation method STEGO [100].

CutLER [12] exploits self-supervised learning models like DINO [25] to ‘discover’ objects and

train a state-of-the-art detection and segmentation model using a cut-and-learn pipeline. It first

uses MaskCut to extract multiple initial masks from DINO [25] features. MaskCut first generates

a patch-wise affinity matrix Wij=
KiKj

∥Ki∥2∥Kj∥2
using the “key” features Ki for patch i from DINO’s

last attention layer. Subsequently, the cut-based clustering method Normalized Cut [53] is em-

ployed on the affinity matrix by finding the eigenvector x that corresponds to the second smallest

eigenvalue. A foreground instance mask M s is derived through bi-partitioning of the vector x,

enabling segmentation of individual objects in the image. For multi-instance segmentation, Mask-

Cut iteratively refines the affinity matrix by masking out already segmented objects, allowing for

subsequent extractions

W t
ij=

(Ki

∏t

s=1
M s

ij)(Kj

∏t

s=1
M s

ij)

∥Ki∥2∥Kj∥2
(4.1)

and repeating above steps by N times. CutLER then refines detection and segmentation through a

loss-dropping strategy and iterative self-training.

STEGO [100] harnesses the semantically rich feature correlations produced by unsupervised

methods like DINO [25] for segmentation. It trains a segmentation head to refine these corre-

lations within an image, with its K-Nearest Neighbors (KNNs), and across randomly chosen im-

ages. Specifically, STEGO distills DINO’s unsupervised features into distinct semantic labels by

optimizing a correspondence loss. This loss function measures the feature correspondences F SC

between image feature pairs generated by DINO and the feature correspondence Shwij derived

from a trainable, lightweight segmentation head [100]:

Lcorr(x, y, b) = −
∑

hwij

(F SC
hwij − b)max(Shwij, 0) (4.2)

Unsupervised Instance Segmentation

Although CutLER [12] provides high-quality instance segmentation masks without human anno-

tations, the predicted masks are class-agnostic, and thus do not include semantic labels for each

instance. Our method addresses this issue by grouping the detected instances with a clustering

method. In this way, instances assigned to the same cluster are associated with identical or closely

related semantic information, while instances residing in separate clusters exhibit semantic dissim-

ilarity.

Pseudo Semantic Labels. To train a detection and instance segmentation model, we vector quan-

tize the model targets (pseudo semantic labels) by clustering the instance-level features of the entire
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dataset, under constraints derived from self-supervision. Specifically, our approach starts with the

generation of instance segmentation masks using MaskCut [12]. Subsequently, we utilize the effi-

cient K-Means clustering method as implemented in USL [11] to cluster all segmentation masks

into semantically meaningful clusters.

We employ K-Means clustering to partition n instances into C(f n) clusters, where each

cluster is represented by its centroid c [121], [122]. Each instance is assigned to the cluster with the

nearest centroid. Formally, we conduct a C-way node partitioning, denoted as S = S1, S2, . . . , SC ,

that minimizes the within-cluster sum of squares [123]:

min
S

C
∑

i=1

∑

V ∈Si

|V − ci|
2 = min

S

C
∑

i=1

|Si|Var(Si) (4.3)

This optimization process is carried out iteratively using the EM algorithm [124], starting from

selecting random samples as initial centroids. As a result, this process assigns pseudo semantic

labels, denoted as yi, to each instance i, with yi falling within the range of [1, C].
The resulting semantic labels serve multiple purposes: 1) Semantic-aware copy-paste aug-

mentation, which significantly improves CutLER’s capability to differentiate overlapping instances,

especially when they share similar semantic information. 2) Training instance segmentation mod-

els: They serve as pseudo ground-truth labels for training a non-agnostic instance segmentor.

Semantic-aware Copy-Paste Augmentation. In cluttered natural scenes, previous unsupervised

instance segmentation model often fail to distinguish instances from the same semantic class. This

results in multiple instances being captured in the same mask. To distinguish multiple overlapping

objects and small objects in existing unsupervised detectors, we employ semantic-aware copy-

paste augmentation, which includes several steps:

1) We begin by randomly selecting two instances, denoted as I1 and I2, both belonging to the

same pseudo-category (or group/cluster). 2) One of these instances undergoes a transformation

function T , which randomly resizes and shifts the associated pseudo-masks. 3) The resized in-

stance is then pasted onto another image, creating synthetic overlapping cases using the following

equation:

I3 = I1 · (1− T (Mc)) + I2 · T (Mc) (4.4)

where · denotes element-wise multiplication.

Learning Unsupervised Instance Segmentor. Traditionally, unsupervised segmentation com-

munity focused primarily on class-agnostic instance segmentation [12], [23], [33], whose outputs

lack class labels. However, by incorporating clustering information obtained from pseudo-labels

on ImageNet, as discussed above, our method allows the model to predict not only the location and

segmentation of an object but also its pseudo semantic labels.

As observed by [12], “ground-truth” masks may miss instances. However, a standard detection

loss penalizes predicted regions ri that do not overlap with the “ground-truth”. Therefore, follow-

ing [12], we drop the loss for each predicted region ri that has a maximum overlap of τ IoU with any

of the ‘ground-truth’ instances: Ldrop(ri) = 1(IoUmax
i > τ IoU)Lvanilla(ri), where IoUmax

i denotes the

maximum IoU with all ‘ground-truth’ for ri and Lvanilla is the vanilla loss function of detectors.

Ldrop encourages the exploration of image regions missed in the “ground-truth”.
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Task → Agn Instance Seg. Instance Seg. Semantic Seg. Panoptic Seg.
Datasets → COCO COCO VOC UVO COCO COCO Cityscapes

Metric → APbox APbox
50

APbox
50

ARbox
100

APbox
50

ARbox
100

APbox
50

ARbox
100

PixelAcc mIoU PQ SQ RQ PQ SQ RQ

FreeSOLO [23] 9.6 4.2 - - - - - - - - - - - - - -
TokenCut [33] 5.8 3.2 - - - - - - - - - - - - - -
DINO [25] - - - - - - - - 30.5 9.6 - - - - - -
PiCIE + H [109] - - - - - - - - 48.1 13.8 - - - - - -
STEGO [100] - - - - - - - - 56.9 28.2 - - - - - -
CutLER [107] 21.9 12.3 - - - - - - - - - - - - - -
CutLER+ - - 9.0 10.3 26.8 27.2 10.6 11.8 - - - - - - - -
CutLER+STEGO - - - - - - - - - - 12.4 64.9 15.5 12.4 36.1 15.2

U2Seg 22.8 13.0 11.8 21.5 31.0 48.1 10.8 25.0 63.9 30.2 16.1 71.1 19.9 17.6 52.7 21.7
vs.prev.SOTA +0.9 +0.7 +2.8 +11.2 +4.2 +20.9 +0.2 +13.2 +7.0 +2.0 +3.7 +6.2 +4.4 +5.2 +16.6 +6.5

Table 4.1: With a unified framework, U2Seg outperforms previous state-of-the-art methods tailored for

individual tasks across various datasets, including CutLER for unsupervised instance segmentation, STEGO

for unsupervised semantic segmentation, and CutLER+STEGO for unsupervised panoptic segmentation.

“Agn Instance Seg” denotes class-agnostic instance segmentation.

Unsupervised Universal Image Segmentation

Pseudo Labels for Panoptic Segmentation. For each pixel (i, j) in the image, we vector quantize

pixels with different semantics or instance membership, generating pseudo semantic labels for

panoptic segmentation. We assign each pixel a semantic label based on “stuff” or “things” identity.

This results in an instance label (I(i, j)) for “things” or a semantic label (S(i, j)) for “stuff”.

The critical challenge in this process is distinguishing between pixels associated with “things”

(countable, often foreground) and ”stuff” (uncountable, usually background) [125].

To resolve this problem, our method unfolds in three steps: 1) Semantic Labeling for “Things”:

Utilizing the class-agnostic instance segmentation capabilities of CutLER [12], we first identify

“things” within an image, generating class-agnostic instance masks. These masks then undergo

deep clustering to attribute a semantic label IC(i, j) to each instance, detailed in Sec. 4.3. 2)

Semantic Labeling for “Stuff”: For “stuff” pixels, we deploy the unsupervised semantic segmen-

tation model STEGO [100], which distills DINO’s unsupervised features into discrete semantic

labels, as outlined in 4.3. This step assigns a “stuff” semantic label to all pixels, including those

of “Things” identified earlier. 3) Integrating Labels for “Things” and “Stuff”. We determine a

pixel’s classification as “things” or “stuff” using the following logic:

I(i, j) =











IC(i, j), if IC(i, j) ̸=0

SS(i, j), if IC(i, j)=0 & SS(i, j) ̸=0

0, otherwise

(4.5)

This process merges the semantic labels, assigning priority to “things” labels over “stuff” where

applicable. We then train a universal segmentation model on these pseudo-labels for instance,

semantic and panoptic segmentation tasks.

Learning Unsupervised Universal Image Segmentor. After we obtain the pseudo labels for

panoptic segmentation, following [113], we construct an unsupervised universal image segmen-
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tation model, that has two branches: instance segmentation branch and semantic segmentation

branch, to address corresponding segmentation tasks. The model is trained jointly for both branches,

employing the following loss function: L = λi(Lc+Lb+Lm)+λsLs, where Lc represents the clas-

sification loss, Lb is the detection loss, Lm is the segmentation loss, and Ls signifies the semantic

loss. The Ls is computed as a per-pixel cross-entropy loss between the predicted and ground-truth

labels. The hyperparameters λi and λs balance these two parts.

4.4 Experiments and Results

Experimental Setup

Training Data. Our model is trained on 1.3M unlabeled images from ImageNet [126] and is eval-

uated directly across various benchmarks, unless otherwise noted. For unsupervised semantic seg-

mentation comparisons with STEGO [100], we additionally fine-tune our model using MSCOCO’s

unlabeled images, following STEGO [100].

Test Data. For unsupervised instance segmentation, we test our model on COCO val2017,

PASCAL VOC val2012 [67] and UVO val [127]. For unsupervised panoptic segmentation, we

evaluate our model on COCO val2017 and Cityscapes val [128].

Evaluation Metrics. We use AP, AP50, AP75 and AR100 to evaluate the unsupervised instance

segmentation; PixelAcc and mIoU for unsupervised semantic segmentation; PQ, RQ, SQ for un-

supervised universal image segmentation. After predicting the instance with its semantic labels,

we use Hungarian matching to map the semantic labels to class names in the real dataset (details

in 4.5). It evaluates the consistency of the predicted semantic segments with the ground truth

labels, remaining unaffected by any permutations in the predicted class labels.

Implementation Details. Following [129], we employ Panoptic Cascade Mask R-CNN [57], [129]

with a ResNet50 backbone [58]. Following CutLER’s training recipe [12], our model, initialized

with DINO pre-trained weights, is trained on unlabeled ImageNet for two epochs. It starts with

an initial learning rate of 0.01, which then decreases after the first epoch to 5 × 10−5, with a

batch size of 16 for all models. For unsupervised panoptic segmentation, we maintain the same

training schedule as unsupervised instance segmentation for zero-shot evaluation. In non-zero-

shot scenarios, the models undergo training on a combination of unlabeled COCO and ImageNet

datasets, beginning with a learning rate of 0.01 over 90k steps.

Unsupervised Universal Image Segmentation

To the best of our knowledge, U2Seg represents the first effort in addressing unsupervised semantic-

aware instance, semantic and panoptic segmentation, all unified under a single framework. Due to

the absence of benchmarks for unsupervised semantic-aware instance segmentation and panoptic

segmentation, we establish comprehensive benchmarks and baselines for both tasks.

In Table 4.1, we demonstrate that U2Seg, utilizing a unified framework, significantly outper-

forms all previous approaches across various benchmarks and datasets. For class-agnostic un-
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Metric APbox APbox
50

APbox
75

ARbox
100

APmask APmask
50

APmask
75

ARmask
100

CutLER+ 5.9 9.0 6.1 10.3 5.3 8.6 5.5 9.3

U2Seg 7.3 11.8 7.5 21.5 6.4 11.2 6.4 18.5

∆ +1.4 +2.8 +1.4 +11.2 +1.1 +2.6 +0.9 +9.2

Table 4.2: The results for zero-shot unsupervised object detection and instance segmentation on COCO

val2017. The model is trained on ImageNet with a cluster number of 800. We compare it with CutLER+,

a combination of CutLER and offline clustering.

Methods APbox APbox
50

APbox
75

ARbox
100

CutLER+ 17.1 26.8 18.1 27.2

U2Seg 19.0 31.0 19.5 48.1

∆ +1.9 +4.2 +1.4 +20.9

Table 4.3: The results for zero-shot unsupervised object detection on PASCAL VOC val2012. The

model is trained on ImageNet with a cluster number of 800. We compare it with CutLER+, a combination

of CutLER and offline clustering.

Metric APbox APbox
50

ARbox
100

APmask APmask
50

ARmask
100

CutLER+ 6.3 10.6 11.8 6.0 9.0 10.4

U2Seg 6.8 10.8 25.0 6.2 9.5 21.0

∆ +0.5 +0.2 +13.2 +0.2 +0.5 +10.6

Table 4.4: The results for zero-shot unsupervised object detection and instance segmentation on UVO

val. The model is trained on ImageNet with a cluster number of 800. We compare with CutLER+, a

combination of CutLER and offline clustering.

supervised instance segmentation, our method achieves an increase of +0.9 in APbox compared

to CutLER [12]. This improvement is largely attributed to our novel semantic-aware copy-paste

augmentation, as detailed in Sec. 4.3. For unsupervised semantic-aware instance segmentation,

we benchmark against the advanced baseline CutLER+, derived from CutLER, and record a sub-

stantial gain of over 11.2% in AR. A more comprehensive analysis of these results is provided

in Sec. 4.4. For unsupervised semantic segmentation, our approach surpasses the state-of-the-art

STEGO with impressive margins of +7.0 in PixelAcc and +2.0 in mIoU. Lastly, for unsupervised

panoptic segmentation, we compare against the strong baseline of CutLER+STEGO, a hybrid of

CutLER+ and STEGO, and observe performance gains of over 6.2% in SQ on MSCOCO and a

notable 16.6% improvement in SQ on Cityscapes. Further comparisons and discussions on this

task are elaborated in Sec. 4.4.

Unsupervised Instance Segmentation

We performed extensive experiments for zero-shot unsupervised instance segmentation. Given

that prior methods [12], [23], [31], [33] are limited to class-agnostic instance segmentation, we
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Figure 4.4: Universal image segmentation visualization in COCO val2017. We present the results with

cluster IDs predicted by U2Seg, categorizing athletes playing hockey (left columns) as “139”, those playing

badminton (middle columns) as “52” and gentlemen (right columns) as “132”. After Hungarian matching,

the IDs are automatically matched to the category “person” for quantitative evaluations.

Methods Pretrain PQ SQ RQ

zero-shot methods

U2Seg IN 15.7 46.6 19.8

non zero-shot methods

CutLER+STEGO COCO 12.4 36.1 15.2

U2Seg COCO 15.4 51.5 19.0

U2Seg COCO+IN 17.6 52.7 21.7

∆ +5.2 +16.6 +6.5

Table 4.5: Unsupervised Panoptic image segmentation on Cityscapes val. We show PQ, SQ and RQ on

zero-shot and non-zero shot settings with the cluster number of 800. We compare with CutLER+STEGO, a

combination of CutLER+ and STEGO.

developed CutLER+, a strong baseline for unsupervised semantic-aware instance segmentation,

building upon the current state-of-the-art CutLER [12]. CutLER+ operates in two steps: it first

uses the pre-trained CutLER to generate class-agnostic instance masks, and subsequently assigns

semantic labels to all instance masks through offline clustering.

Table 4.2 demonstrates that U2Seg markedly improves performance in both unsupervised

object detection and instance segmentation on MSCOCO, delivering a +2.8 boost in APbox
50

and

a +2.6 rise in APmask
50

over CutLER+. Additionally, our method sees a substantial increase of

approximately +10.0 in AR100. Results on PASCAL VOC val2012 and UVO val are detailed

in Table 4.3 and Table 4.4, respectively. Notably, we achieve gains exceeding +20% in AR for

PASCAL VOC and +10% for UVO.

Unsupervised Panoptic Segmentation

For unsupervised panoptic/universal image segmentation, our experiments span two scenarios. In

the zero-shot setting, the model is trained exclusively on unlabeled ImageNet images. For non-

zero-shot (in-domain) scenarios, we train on unlabeled COCO images or a mix of COCO and Im-

ageNet. With no existing benchmarks for unsupervised panoptic segmentation, we establish a new

baseline by integrating the state-of-the-art unsupervised semantic segmentation from STEGO [100]
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Raw Image U2Seg Ground-Truth Pseudo-Labels

Figure 4.5: Visualizations of U2Seg’s unsupervised Panoptic segmentation results on COCO val2017

(after Hungarian matching). The pseudo label is the naive combination of previous state-of-the-art in-

stance segmentation, i.e.CutLER [12], and semantic segmentation, i.e., STEGO [100], results.

Methods Pretrain PQ SQ RQ

zero-shot methods

U2Seg IN 11.1 60.1 13.7

non zero-shot methods

CutLER+STEGO COCO 12.4 64.9 15.5

U2Seg COCO 15.3 66.5 19.1

U2Seg COCO+IN 16.1 71.1 19.9

∆ +3.7 +6.2 +4.4

Table 4.6: Unsupervised Panoptic image segmentation on COCO val2017. We show PQ, SQ and RQ

on zero-shot and non-zero shot settings. We use CutLER+STEGO, a combination of CutLER+ and STEGO,

as a strong baseline.
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Raw Image U2Seg Ground-Truth Pseudo-LabelsOriginal Images Prediction Ground Truth Pseudo Label
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Figure 4.6: Qualitative results of U2Seg’s Panoptic image segmentation results on Cityscapes val (after

Hungarian matching).
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Figure 4.7: We evaluate the label-efficient learning performance on 3 different tasks: object detection (the

left), instance segmentation (the second left) and panoptic image segmentation (the last three).
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Figure 4.8: U2Seg learns features that are more discriminative than those learned by CutLER. The t-

SNE [130] visualization of the features from the model’s FC layer. We color-code each dot based on its

ground-truth category.

with semantic-aware instance segmentation from CutLER+ (discussed in Sec. 4.4), which are then

merged to create panoptic/universal segmentation outcomes, referred to as CutLER+STEGO.

Table 4.6 presents the PQ, SQ, and RQ scores of U2Seg on COCO val2017. U2Seg sur-

passes the strong baseline CutLER+STEGO with a +3.5 improvement in PQ and an increase of

over +4.0 in RQ. Qualitative results of U2Seg’s performance is provided in Fig. 4.4, with the pre-

dicted semantic labels visualized. The qualitative results suggest that an over-clustering strategy in

pseudo-label generation, e.g.setting the number of clusters to 300 or 800, leads to highly granular

model predictions. For instance, as in Fig. 4.4, the model distinctly categorizes hockey players as

“139”, badminton players as “52”, and gentlemen in suits as “132”, showcasing its potent discrim-

inative capabilities.

To quantitatively measure the quality of segmentation masks and their corresponding semantic

labels, we use Hungarian matching (detailed in Sec. 4.5) to align semantic labels with the category

names from the test dataset; for instance, all three sub-clusters depicted in Fig. 4.4 are assigned to

the ”person” category. The qualitative outcomes post-Hungarian matching are shown in Fig. 4.5,

where our model demonstrates superior panoptic segmentation mask quality. For instance, while

the baseline tends to segment parts separately (as seen with the man’s head and torso being treated
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# Cluster
COCO UVO VOC

APbox
50

ARbox
100

APbox
50

ARbox
100

APbox
50

ARbox
100

300 9.3 20.1 9.8 22.6 29.6 45.7
800 11.8 21.5 10.8 25.0 31.0 48.0
2911 13.3 22.1 15.1 25.8 31.6 48.3

Table 4.7: Over-clustering can improve the model performance. We show results on different datasets for

the unsupervised object detection using different cluster numbers.

as separate entities in the third row), our model correctly identifies them as parts of a single object.

This level of recognition is also evident with the “trunks of the motorcycle” example in the second

row. For additional results, please see Sec. 4.5. We also present results of the more challenging

dataset Cityscapes in Table 4.5 and Fig. 4.6.

Efficient Learning

Specifically, for object detection and instance segmentation, we employ our unsupervised instance

segmentation model, with cluster count set to 300, to initialize the model weights. We adopt

the recipe from [107], [131] for model fine-tuning across various annotation splits. For label-

efficient panoptic segmentation, we fine-tune the model initialized with our zero-shot unsupervised

framework on the same data splits.

The results are depicted in Fig. 4.7, where our model’s instance segmentation performance

is benchmarked against MoCo-V2, DETReg, and CutLER. Our model consistently surpasses the

state-of-the-art with consistent gains in both APbox and APmask. In scenarios with panoptic image

segmentation as the downstream task, we contrast our results with MoCo-V2 and CutLER in terms

of PQ, SQ, and RQ metrics. The results illustrate a remarkable improvement, effectively doubling

the performance boost from MoCo-V2 to CutLER, especially in few-shot contexts with limited

annotations (1% or 2% labeled samples). This highlights the practical value of our approach in

real-world unsupervised learning applications, where annotations are often scarce.

We attribute the performance gains primarily to the discriminative features our model learns,

as in Fig. 4.8, obtaining effective model initialization for few-shot learning.

Ablation Studies

In this section, we conduct ablation study on U2Seg.

Numbers of clusters. The choice of cluster quantity significantly affects the model’s representa-

tion granularity. Our ablation study on various cluster counts, as detailed in Table 4.7, reveals their

impact on model performance. Over-clustering generally leads to a finer level of detail, prompting

the model to learn more discriminative features.

Hungarian matching. As our trained model could predict the instance with corresponding seman-

tic labels, we are able to go further beyond unsupervised class-agnostic instance segmentation. To

quantitatively evaluate the performance, Hungarain matching is employed to match the predicted
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conf # matched APbox
50

ARbox
100

0.9 109 10.9 13.1
0.7 225 11.6 18.0
0.6 282 11.8 19.7
0.4 389 11.8 21.5
0.2 513 11.3 21.8
0.0 718 8.6 18.4

(a) Conf’s effect on accu-

racy.

IoU # matched APbox
50

ARbox
100

0.9 295 10.8 19.7
0.8 348 11.4 20.7
0.4 414 11.5 21.6
0.2 450 11.5 21.1
0.0 494 9.2 17.7
0.6 389 11.8 21.5

(b) IoU’s effect on accuracy.

Table 4.8: Impact of Confidence and IoU on Hungarian Matching Performance: The left table illustrates

the outcomes at a fixed IoU of 0.6 while varying the confidence scores. Conversely, the right table displays

the results with a constant confidence of 0.4, altering the IoU values. The cluster number is 800.

semantic labels to the ground-truth dataset categories. See Sec. 4.5 for details of the adopted Hun-

garian matching used in our evaluation. As shown in Table 4.8, the two parameters conf threshold

and IoU threshold also affect the precision and recall.

4.5 Appendix Materials

Datasets Domain Testing Data #Images Instance Segmentation Label

COCO [24] natural images val2017 split 5,000 6

UVO [66] video frames val split 21,235 6

PASCAL VOC [67] natural images trainval07 split 9,963 :

Cityscapes [128] urban scenes val split 500 6

Table 4.9: Summary of datasets used for evaluation.

Datasets used for Evaluation

We provide information about the datasets used in this work as shown in Table 4.9

COCO. The COCO dataset, introduced by [24], is used for object detection and instance segmen-

tation. It has 115,000 training images, 5,000 validation images, and a separate batch of 123,000

unannotated images. We test our unsupervised instance segmentation on the COCO val2017 set

with zero-shot setting. We report results using standard COCO metrics, including average preci-

sion and recall for detection and segmentation. Also, for unsupervised universal image segmenta-

tion, we test the performance on COCO val2017. We report results using panoptic segmentation

COCO metrics.

PASCAL VOC. The PASCAL VOC dataset [67] is a widely-used benchmark for object detection.

We test our model using the trainval07 split and adopt COCO-style evaluation metrics.
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UVO. The UVO dataset [66] is designed for video object detection and instance segmentation. We

test our unsupervised instance segmentation on the UVO val split, which includes 256 videos

with each one annotated at 30 fps. We remove the extra 5 non-COCO categories which are marked

as “other” in their official annotations. For evaluation, we employ COCO-style metrics.

Cityscapes. Cityscapes is a dataset dedicated to semantic urban scene understanding, focusing

primarily on semantic segmentation of urban scenes. In our research, we tested our unsupervised

universal image segmentation on the Cityscapes val splits, using COCO-stype panoptic evalua-

tion metrics.

Hungarian Matching for Unsupervised Segmentation Evaluation

In unsupervised object detection and instance segmentation, category IDs are predicted without

referencing any predefined labels. For convenience, we differentiate the predicted category ID of

U2Seg as “cluster ID” while keep the ground truth category ID as “category ID” in the following

analysis. To evaluate the segmentation performance, particularly concerning category accuracy, an

optimal correspondence between the cluster ID and the ground truth category ID is essential. We

leverage a multi-to-one Hungarian matching for evaluation of U2Seg.

Hungarain Matching. Given a set of predicted bounding boxes, masks associated with predicted

cluster IDs and the corresponding ground truth, the objective is to find the best match from “cluster

ID” to “category ID”. To do this, we first use the predicted confidence score conf as a threshold

to filter the predicted instance, removing the ones with low confidence. Then, for each predicted

instance with its cluster ID, we calculate the IoU of the predicted bounding box or mask with

all ground truth instances, then select the one whose IoU is bigger than the predefined threshold,

regarding it as the ground truth category ID for this cluster ID. After we get these cluster ID and

ground truth category ID pairs, we form a histogram for each kind of cluster ID based on its

overlap with all kinds of ground truth category ID. The ground truth category ID that appears most

frequently in this histogram becomes the mapping for this cluster ID. This process may result in

multiple predicted cluster IDs being mapped to the same ground truth category ID, leading to a

multi-to-one matching scenario.

In our experiment, the confidence score threshold conf to filter the predicted instance and the

IoU threshold to match predicted instance with its ground truth instance are both hyperparameters,

some ablations can be found in Sec. 4.6.

Evaluation Implications. The multi-to-one Hungarian matching method provides a systematic

and efficient way to assess the performance of unsupervised segmentation models. By mapping

predicted cluster ID to their most likely ground truth counterparts, the method ensures that the

evaluation reflects the true categorization capability of the model. This, in turn, allows for a fair

and consistent comparison across different unsupervised segmentation techniques.

Unsupervised Instance Segmentation

In this section, we provide complete results for the unsupervised instance segmentation of U2Seg.

The results are presented over various datasets and classes to furnish a comprehensive evaluation
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Datasets # cluster IoU Conf APbox APbox
50

APbox
75

APbox
S APbox

M APbox
L ARbox

1
ARbox

10
ARbox

100

UVO

2911 0.6 0.1 9.7 15.1 9.3 0.6 5.2 14.4 18.0 25.3 25.8

800 0.4 0.1 6.8 10.8 7.2 0.6 2.9 10.2 17.2 24.5 25.0

300 0.7 0.1 6.5 9.8 6.5 0.8 2.6 9.2 16.0 22.2 22.6

VOC

2911 0.5 0.2 19.2 31.6 19.7 1.0 6.4 26.6 28.6 44.9 48.3

800 0.8 0.2 19.0 31.0 19.5 0.6 4.8 26.6 28.8 45.2 48.1

300 0.8 0.4 18.4 29.6 18.8 0.3 3.8 26.0 27.1 41.0 42.8

COCO

2911 0.5 0.3 8.2 13.3 8.4 1.4 7.0 18.2 14.1 21.4 22.1

800 0.6 0.4 7.3 11.8 7.5 1.2 5.8 15.8 13.3 20.8 21.5

300 0.6 0.3 5.7 9.3 5.9 0.5 4.6 12.9 11.9 19.5 20.1

Table 4.10: Complete results for unsupervised object detection. We show results on UVO val, PASCAL

VOC val2012 and COCO val2017, with corresponding clustering numbers. The IoU and Conf are the

Hungarian matching parameter we use for evaluation.

Datasets # cluster IoU Conf APmask APmask
50

APmask
75

APmask
S APmask

M APmask
L ARmask

1
ARmask

10
ARmask

100

UVO

2911 0.6 0.1 8.8 13.9 8.4 0.5 6.4 14.4 16.0 21.7 22.1

800 0.4 0.1 6.2 9.5 6.0 0.5 2.1 9.8 15.7 20.6 21.0

300 0.7 0.1 6.1 9.5 5.8 0.7 1.0 8.8 14.1 19.2 19.4

COCO

2911 0.5 0.3 7.3 12.4 7.4 0.8 4.9 17.9 12.8 18.7 19.2

800 0.6 0.4 6.4 11.2 6.4 0.7 3.7 15.0 11.9 18.0 18.5

300 0.6 0.3 4.9 8.6 5.0 0.3 2.6 11.8 10.7 16.9 17.3

Table 4.11: Complete results for unsupervised instance segmentation. We show results on UVO val and

COCO val2017, with corresponding clustering numbers. The IoU and Conf is the Hungarian matching

parameter we use for evaluation.

Datasets Pretrain # Cluster PQ PQSt PQTh SQ SQTh SQSt RQ RQTh RQSt

COCO

IN 300 11.1 9.5 19.3 60.1 60.3 59.0 13.7 11.6 25.0

IN 800 11.9 10.5 19.6 65.9 67.4 58.2 14.8 12.8 25.3

COCO 300 15.3 14.2 21.6 66.5 67.2 62.4 19.1 17.5 27.5

COCO 800 15.5 14.6 20.5 69.7 71.1 62.6 19.1 17.8 26.1

IN+COCO 300 15.5 14.4 21.2 67.1 67.7 64.3 19.2 17.8 26.9

IN+COCO 800 16.1 15.1 21.2 71.1 72.5 63.8 19.9 18.6 26.8

Cityscapes

IN 300 15.3 4.1 23.4 48.8 54.7 44.6 19.5 5.4 29.7

IN 800 15.7 4.3 24.0 46.6 47.5 45.9 19.8 5.5 30.2

COCO 300 18.4 7.8 26.1 47.4 47.3 47.4 22.6 9.8 31.9

COCO 800 15.4 5.8 22.3 51.5 62.9 43.2 19.0 7.5 27.4

IN+COCO 300 16.5 6.2 24.1 44.1 45.2 43.3 20.5 7.9 29.7

IN+COCO 800 17.6 8.4 24.2 52.7 67.5 42.0 21.7 10.5 29.9

Table 4.12: Complete results for unsupervised universal image segmentation. We show results for differ-

ent models pretrained on various dataset and test on COCO val2017, Cityscapes val, with corresponding

cluster numbers.
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Model APbox APbox
50

APmask APmask
50

CutLER+ 5.9 9.0 5.3 8.6

Panoptic 6.1 9.8 5.8 9.0

Instance 7.3 11.8 6.4 11.2

Table 4.13: Limitation of U2Seg. We show the zero-shot unsupervised instance segmentation results on

COCO val2017. CutLER+ is evaluated on the combination of CutLER and offline clustering, Panoptic is

trained on both “stuff” and “things” pseudo labels, Instance is trained solely on “things” labels.

of our model’s capability.

Table 4.10 and Table 4.11 display the results for unsupervised object detection and instance

segmentation on different datasets. One trend can be observed across the different datasets: as the

number of the predicted cluster ID increases (e.g., moving from 300 to 2911), there is a consistent

increase for most of the metrics. This trend can be succinctly attributed to the intrinsic properties

of the multi-to-one Hungarian matching approach (we also show the parameter IoU and Conf

used for Hungarian matching). With an increase of the cluster numbers, the Hungarian matching

has a broader set of predictions to associate with a single label. This inherently increases the

chances of having at least one correct prediction for the given label, making the matching process

more amenable. In essence, larger cluster numbers afford easier matching, thereby boosting the

evaluation metrics.

Furthermore, the qualitative results are shown in Fig. 4.9, with the samples selected in COCO

val2017 and PASCAL VOC val2012. After Hungarian matching, we are able to get the real

categories of the predicted instances.

Unsupervised Universal Image Segmentation

Our model’s performance for unsupervised universal image segmentation closely mirrors the trends

observed in instance segmentation. Specifically, as the number of the predicted clusters increases,

the performance of the panoptic segmentation also improves. Detailed universal segmentation

results are shown in Table 4.12.

Limitation

The primary goal of our research is to develop a comprehensive model capable of excelling in

all areas of unsupervised segmentation. As shown in Table 4.13, in terms of the individual sub-

task, the universal model exhibits a slight underperformance compared to its counterpart model

trained with task-specific annotations. This suggests that U2Seg is adaptable to various tasks, yet

it requires task-specific training to achieve the best outcomes for a specific sub-task. Looking

ahead, we aim to develop a more versatile model that can be trained once to effectively handle

multiple tasks.
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Figure 4.9: Unsupervised object detection and instance segmentation visualization of COCO val2017

and PASCAL VOC val2012 (after Hungarian matching).

4.6 Summary

We present U2Seg, a novel Unsupervised Universal Image Segmentation model, adept at per-

forming unsupervised instance, semantic, and panoptic segmentation tasks within a unified frame-

work. Evaluated on extensive benchmarks, U2Seg consistently outperforms previous state-of-the-

art methods designed for individual tasks. Additionally, U2Seg achieves the new state-of-the-art

for label-efficient panoptic segmentation and instance segmentation. We anticipate that U2Seg,

free from the constraints of human annotations, will demonstrate enhanced performance when

scaled up with more training data, representing an important direction for our future research.
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Chapter 5

Segment Anything without Supervision

The Segmentation Anything Model (SAM) requires labor-intensive data labeling. We present Un-

supervised SAM (UnSAM) for promptable and automatic whole-image segmentation that does not

require human annotations. UnSAM utilizes a divide-and-conquer strategy to “discover” the hier-

archical structure of visual scenes. We first leverage top-down clustering methods to partition an

unlabeled image into instance/semantic level segments. For all pixels within a segment, a bottom-

up clustering method is employed to iteratively merge them into larger groups, thereby forming

a hierarchical structure. These unsupervised multi-granular masks are then utilized to supervise

model training. Evaluated across seven popular datasets, UnSAM achieves competitive results

with the supervised counterpart SAM, and surpasses the previous state-of-the-art in unsupervised

segmentation by 11% in terms of AR. Moreover, we show that supervised SAM can also bene-

fit from our self-supervised labels. By integrating our unsupervised pseudo masks into SA-1B’s

ground-truth masks and training UnSAM with only 1% of SA-1B, a lightly semi-supervised Un-

SAM can often segment entities overlooked by supervised SAM, exceeding SAM’s AR by over

6.7% and AP by 3.9% on SA-1B.

5.1 Introduction

Trained on massive unlabeled data using self-supervised learning methods, Large Language Mod-

els (LLMs) [2]–[4], [133]–[135] in natural language processing have revolutionized our world and

redefined human-computer interactions. In the domain of computer vision, the recent introduc-

tion of the Segment Anything Model (SAM) [132] has dramatically transformed the field with its

exceptional ability to handle diverse image segmentation tasks. However, the need for compre-

hensive manual labeling of training data—over 20 minutes per image [132]—limits SAM from

following the scaling laws that benefit LLMs [136]. As a result, despite SA-1B [132] being the

most extensive segmentation dataset available, it contains only about 11 million images. Moreover,

human-annotated data often introduces significant biases based on the annotators’ perceptions of

“what constitutes an instance”, which frequently leads to the oversight of small entities within the

images.
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Figure 5.1: UnSAM significantly surpasses the performance of the previous SOTA methods in unsuper-

vised segmentation, and delivers impressive whole image and promptable segmentation results, rivaling the

performance of the supervised SAM [132]. This comparative analysis features our unsupervised UnSAM,

the supervised SAM, and an enhanced version, UnSAM+, across a variety of datasets. The top section

displays raw images (row 1) alongside whole image segmentation outputs from UnSAM (row 3), and SAM

(row 2). The bottom section highlights our promptable segmentation results using a point prompt (i.e., the

star mark). The right panel quantitatively compares the performance across models, including metrics like

Mask AR (%) and Point IoU.

This challenge raises a crucial question addressed in this paper: Can we “segment anything”

without supervision? In response, we present UnSAM, an innovative unsupervised learning method

capable of performing both interactive and whole-image segmentation without the need for super-

vision.

How can we achieve fine-grained and multi-granular segmentation masks comparable to those

in SA-1B [132] without supervision? Insights from neuroscience suggest that the human visual

system exploits the structure of visual scenes by decomposing dynamic scenes into simpler parts

or motions. This perception of hierarchically organized structures implies a powerful “divide-and-

conquer” strategy for parsing complex scenes [137], [138]. Drawing inspiration from this, we

introduce a divide-and-conquer approach designed to generate hierarchical image segmentation
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results directly from raw, unlabeled images. The divide-and-conquer approach is a crucial element

of UnSAM, enabling it to effectively parse and segment images at multiple levels of granularity.

Our pseudo-mask generation pipeline initiates with a top-down clustering approach (i.e., the

divide stage), to extract initial semantic and instance-level masks using a Normalized Cuts-based

method CutLER [12], [53]. Subsequently, UnSAM refines these masks using a bottom-up cluster-

ing method (i.e., the conquer stage): within each mask, we iteratively merge semantically similar

pixels into larger segments based on various similarity thresholds. The resulting masks at different

thresholds in the conquer stage, along with the masks produced in the divide stage, create a hier-

archical structure. Technically, we can generate a vast range of granularities with minimal extra

cost! Furthermore, UnSAM captures more subtle details that pose challenges for human annota-

tors, significantly enriching the granularity and utility of unsupervised segmentation models.

Equipped with these sophisticated multi-granular pseudo masks as “ground-truth” labels, Un-

SAM is adeptly trained to perform both interactive and automatic whole-image segmentation,

demonstrating remarkable versatility across various segmentation scenarios. We have observed

that our UnSAM model frequently identifies objects that SAM [132] overlooks, particularly types

of objects or parts typically missed by ground-truth annotations of SA-1B [132], such as human

ears, animal tails, etc.

The capabilities of UnSAM are rigorously tested across seven major whole-entity and part

segmentation datasets, e.g., MSCOCO [24], LVIS [61], SA-1B [132], ADE [139], Entity [140],

PartImageNet [141] and PACO [142]. As illustrated in Fig. 5.1, we demonstrate some noteworthy

behaviors:

• The performance gap between unsupervised segmentation models and SAM can be significantly

reduced: By training on just 1% of SA-1B’s unlabeled images with a ResNet50 backbone,

UnSAM not only advances the state-of-the-art in unsupervised segmentation by 10% but also

achieves comparable performance with the labor-intensive, fully-supervised SAM.

• The supervised SAM can also benefit from our self-supervised labels: integrating our unsuper-

vised pseudo masks with SA-1B’s ground-truth data and retraining UnSAM on this combined

data enables UnSAM+ to outperform SAM’s AR by over 6.7% and AP by 3.9%. We observed

that UnSAM and UnSAM+ can often discover entities missed by SAM.

5.2 Related Works

Self-supervised Image Segmentation

Recent advances in unsupervised image segmentation [12], [23], [25], [30], [35], [52], [143]–[148]

have leveraged the emergent segmentation capabilities of self-supervised Vision Transformers

(ViT) [25], [29], [47] to “discover” objects within images. Initial efforts, such as TokenCut [144]

and LOST [32], have produced semantically meaningful pixel groupings for salient objects by uti-

lizing the class-attention mechanism of self-supervised ViTs. As a representative work in the unsu-

pervised segmentation domain, CutLER [12] introduced a cut-and-learn pipeline for unsupervised

object detection and image segmentation. CutLER initially generates high-quality pseudo masks
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for multiple objects using MaskCut [12], followed by learning a detector on these masks using a

loss dropping strategy. Extending this approach, VideoCutLER [14] employs a cut-synthesis-and-

learn strategy for segmenting and tracking multiple instances across video frames without super-

vision. Additionally, SOHES [145] introduced the global-local self-exploration method to cluster

image features from high to low cosine similarity, obtaining pseudo masks that cover multiple

hierarchical levels.

In contrast, UnSAM introduces a divide-and-conquer pipeline that generates more pseudo

masks per image at the same processing speed, but with enhanced quality and broader coverage

across hierarchical levels. Furthermore, UnSAM captures more subtle details that pose challenges

for human annotators, significantly enriching the granularity and utility of unsupervised segmen-

tation models.

Promptable Image Segmentation

Tradition segmentation models have focused on predicting masks for all instances or semantic

parts within a single image simultaneously. Recently, however, models have begun to interact with

users, generating segmentation masks based on user inputs such as points [132], [149]–[152], text

descriptions [153], or bounding boxes [132]. Moreover, some approaches now frame segmentation

tasks within an in-context learning framework [154], [155], utilizing in-context examples to define

distinct segmentation tasks. For example, the Segment Anything model [132] can produce masks

in a zero-shot manner based on different types of prompts. One limitation of SAM is that it only

produces three class-agnostic masks. An extension, Semantic-SAM [149], aims to segment and

recognize objects at multiple granularities through a multi-choice learning scheme, allowing each

click point to produce masks at multiple levels along with their semantic labels. Nevertheless, both

models are supervised and rely on large-scale, human-annotated data, which introduces issues of

annotator bias and scalability limitations.

In contrast, our unsupervised UnSAM and lightly semi-supervised UnSAM+ model demon-

strate superior performance in the promptable segmentation task, offering a robust alternative to

these fully-supervised approaches.

5.3 Preliminaries

Cut and Learn (CutLER) and MaskCut

CutLER [12] introduces a cut-and-learn pipeline to precisely segment instances without super-

vision. The initial phase, known as the cut stage, uses a normalized cut-based method, Mask-

Cut [12], to generate high-quality instance masks given the patch-wise cosine similarity matrix

Wij =
KiKj

|Ki|2|Kj |2
, where Ki is “key” features of patch i in the last attention layer of unsuper-

vised ViT. To extract multiple instance masks from a single image, MaskCut repeats this op-

eration but adjusts by masking out patches from previously segmented instances in the affinity

matrix: W t
ij =

(Ki

∑t
s=1

Ms
ij)(Kj

∑t
s=1

Ms
ij)

∥Ki∥2∥Kj∥2
Subsequently, CutLER’s learning stage trains a segmen-
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Figure 5.2: Our divide-and-conquer pipeline for generating the “ground-truth” pseudo masks used for train-

ing UnSAM without human supervision begins with a top-down clustering approach (i.e., the divide stage),

to extract initial semantic/instance-level masks using a Normalized Cuts [53]-based CutLER [12]. Subse-

quently, we refine these masks using a bottom-up clustering method (i.e., the conquer stage): within each

mask, we iteratively merge semantically similar pixels into larger segments using various similarity thresh-

olds. The resulting masks at different thresholds create a hierarchy. We zoom-in selected regions to visualize

details.

tation/detection model on these pseudo-masks with drop-loss. Please check Sec. 5.6 for more

details on CutLER.

Segment Anything Model (SAM) and SA-1B

Segment Anything [132] tackles the promptable segmentation task. At its core lies the Segment

Anything Model (SAM), which is capable of producing segmentation masks given user-provided

points, boxes, and masks in a zero-shot manner. One significant contribution of SAM is the release

of the SA-1B dataset [132], which comprises 11M high-resolution images and 1.1 billion segmen-

tation masks, providing a substantial resource for training and evaluating segmentation models.

While SAM significantly accelerates the labeling of segmentation masks, annotating an image still

requires approximately 14 seconds per mask. Given that each image contains over 100 masks, this

equates to more than 30 minutes per image, posing a substantial cost and making it challenging to

scale up the training data effectively. For more details on SAM and SA-1B, please check Sec. 5.6.
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Algorithm 1 Divide and Conquer

Iresized ← input image I resized to 1024× 1024
M ← {m : m ∈ CutLER(Iresized) 'mscore > τ}
for m ∈M do

Add m into S0

bbox← bounding box [x1, y1, x2, y2] of m

Ilocal ← Iresized cropped by bbox, resized to 256× 256
K ← DINO(Ilocal)
for θt ∈ θl, . . . , θ1 do

if t = l then

Initialize kt
i ← Ki, C

t
i ← pi ∀i, a← 1

where pi is corresponding patch of Ki, add pi into Sl ∀i
else

Initialize St ← St+1, k
t
i ← kt+1

i , Ct
i ← Ct+1

i ∀i
end if

while a g θt do

Identify adjacent pi, pj with i, j ← argmax
i,j

ktik
t
j

||kt
i
||2||ktj ||2

, a← max
i,j

ktik
t
j

||kt
i
||2||ktj ||2

Identify cluster Ct
m, C

t
n, where pi ∈ Ct

m, pj ∈ Ct
n

Remove Ct
m and Ct

n from St

Ct ← Ct
m ∪ Ct

n, add Ct into St

∀pz ∈ Ct, kt
z ←

amkti+ank
t
j

am+an
, where am is the size of cluster Ct

m and pi ∈ Ct
m

end while

end for

end for

5.4 UnSAM: Segment Anything without Supervision

Divide-and-Conquer for Hierarchical Image Segmentation

Our segment anything without supervision model starts by generating pseudo masks that respect

the hierarchical structure of visual scenes without supervision. This approach is motivated by

the observation that the “divide and conquer” strategy is a fundamental organizational principle

employed by the human visual system to efficiently process and analyze the vast complexity of

visual information present in natural scenes [137], [138]. Our pseudo-mask generation pipeline

divide-and-conquer, which is summarized in Alg. 1 and illustrated in Fig. 5.2, consists of two

stages:

Divide stage: we leverage a Normalized Cuts (NCuts)-based method, CutLER [12], [53], to

obtain semantic and instance-level masks from unlabeled raw images. CutLER’s cut-and-learn

pipeline and its MaskCut method are discussed in Sec. 5.3. However, the coarser-granularity masks

predicted by CutLER can be noisy. To mitigate this, we filter out masks with a confidence score
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below a threshold τ . Empirically, salient semantic and instance-level entities typically encompass

richer part-level entities (for example, a person has identifiable parts such as legs, arms, and head,

whereas a background sky contains few or no sub-level entities). To extract these part-level entities

with a hierarchical structure, we employ a conquer phase.

Conquer stage: for each instance-/semantic-level mask discovered in the previous stage, we

employ iterative merging [145], [156] to decompose the coarse-grained mask into simpler parts,

forming a hierarchical structure.

More specifically, we first crop local patches using the masks we obtained in the divide phase,

and bi-linearly interpolate local patches to the resolution of 256 × 256. We then feed them into

DINO pre-trained ViT-B/8 [25] encoder f(·), and extract ‘key’ features ki = f(pi) from the last

attention layer as patch-wise features for local patches pi. Subsequently, the conquer phase em-

ploys iterative merging [145], [156] to group patches into larger clusters, with pre-defined cosine

similarity thresholds at θ ∈ {θ1, ..., θl}, where l is the predefined granularity levels.

In iteration t, our method finds two adjacent patches (pi, pj) from two separate clusters (Ct
m, C

t
n)

with the highest cosine similarity
ktik

t
j

||kt
i
||2||ktj ||2

, merges them into one cluster, and updates kt
i and kt

j

to
amkti+ank

t
j

am+an
, where am is the number of patches in cluster Ct

m(pi ∈ Ct
m). The conquer stage

repeats this step until the maximum cosine similarity is less than θt, collects all merged clusters as

new part-level pseudo masks, and uses smaller threshold θt+1 to iterate again. Each coarse-grained

mask discovered in the divide stage can form a hierarchical structure H after the conquer stage:

H = {S0, S1, ..., St, ..., Sl},where St = {Ct
1, ..., C

t
nt
} , ni f nj if i < j (5.1)

nt is the number of clusters/masks belonging to granularity level t and n0 = 1.

Mask merging: The new part-level pseudo masks discovered in the conquer stage are added

back to the semantic and instance-level masks identified in the divide stage. We then use Non-

Maximum Suppression (NMS) to eliminate duplicates. Following previous works in unsupervised

image segmentation [12], [143], [145], we also employ off-the-shelf mask refinement methods,

such as Conditional Random Fields (CRF) [157] and CascadePSP [158], to further refine the edges

of the pseudo masks. Finally, we filter out the post-processed masks that exhibit significant differ-

ences in Intersection-over-Union (IoU) before and after refinement.

Preliminary results: The divide-and-conquer pipeline achieves a pseudo mask pool with more

entities, a broader range of granularity levels, and superior quality compared to previous work,

e.g., CutLER [12], U2Seg [143] and SOHES [145]. As shown in Table 5.3, its pseudo masks

reach 23.9% AR on 1000 randomly selected validation images from the SA-1B dataset [132],

representing a 45.7% improvement over the state-of-the-art.

Key distinctions over prior works on pseudo-mask generation: The divide-and-conquer

strategy employed by UnSAM sets it apart from previous works:

[12], [143] rely solely on top-down clustering methods, providing only instance and semantic-

level masks, and thereby missing the hierarchical structure present in complex images. In contrast,

our pipeline captures this hierarchical structure by identifying more fine-grained pixel clusters.

While [145] does incorporate some hierarchical structure through bottom-up clustering with

iterative merging, it still misses many fine-grained instances and some large-scale instance masks.
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Additionally, the iterative merging in [145] focuses on small regions below a certain mask size

threshold, primarily to refine noisy small masks, limiting its ability to detect a full range of entity

sizes. Our experimental results demonstrate qualitatively and quantitatively superior performance

compared to prior works, particularly in producing high-quality, detailed pseudo-masks that better

capture the hierarchical complexity of visual scenes.

Model Learning and Self-Training

Although the pseudo masks generated by our pipeline are qualitatively and quantitatively superior

to those from prior works, they can still be somewhat noisy. Our self-supervised pipeline has

limitations in identifying certain types of instances. For example, iterative merging sometimes

fails to correctly associate disconnected parts of the same entity. To address this, we utilize a

self-training strategy to further enhance UnSAM’s model performance. UnSAM learns an image

segmentation model using the masks discovered by the divide-and-conquer strategy. It has been

observed that self-training enables the model to “clean” the pseudo masks and predict masks of

higher quality [12]. Once we have prepared the pseudo-masks, UnSAM can be integrated with

any arbitrary whole-image or promptable image segmentation models during the model learning

or self-training stage.

Whole-image segmentation. We choose the vanilla Masked Attention Mask Transformer

(Mask2Former) [94] for simplicity. The key innovation of Mask2Former is the introduction of

a masked attention mechanism in the transformer’s cross-attention block, defined as softmax(M +

QKT )V , where the attention mask M at feature location (x, y) is given by: M(x, y) =

{

0 if M(x, y) = 1

−∞ otherwise
.

This mechanism constrains attention within the region of the predicted mask. UnSAM is then

trained using the following mask prediction loss:

L = λceLce + λdiceLdice (5.2)

whereLce andLdice is the cross-entropy and Dice loss, with λce and λdice as their respective weights.

After one round of self-training UnSAM on the pseudo-masks, we perform a second round of

self-training by merging high-confidence mask predictions (with a confidence score greater than

τself-train) as the new ‘ground-truth’ annotations. To avoid duplication, we filter out ground truth

masks that have an IoU greater than 0.5 with the predicted masks.

Promptable Image Segmentation. Similar to SAM [132], our unsupervised SAM can also

produce high-quality object masks from input prompts such as points. We utilize Semantic-

SAM [149] as the base model for predicting multiple granularity levels of masks from a single

click. During the learning process, we randomly sample points within an inner circle (radius f
0.1 ·min(Maskwidth,Maskheight)) of the mask to simulate user clicks.

UnSAM+: Improving Supervised SAM with Unsupervised Segmentation

The supervised SAM model’s [132] reliance on human-annotated data introduces a significant bias

based on the annotator’s perception of ‘what constitutes an instance’, frequently missing some
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entities within the image. In contrast, since our mask generation pipeline does not rely on hu-

man supervision, it can often identify valid objects or parts that are overlooked by SA-1B’s [132]

ground-truth annotations.

Motivated by this observation, we leverage UnSAM to improve the performance of the su-

pervised SAM [132] by implementing a straightforward yet effective strategy: merging SA-1B’s

ground-truth masks DSA-1B with our unsupervised segmentation masks DUnSAM based on the IoU,

formulated as:

Di
UnSAM+ = Di

SA-1B ∪ {∀Cm ∈ Di
UnSAM if IoUmax(Cm, ∀Cn ∈ Di

SA-1B) f τUnSAM+} (5.3)

τUnSAM+ is the IoU threshold, IoUmax is the maximum IoU between Cm and any mask Cn in Di
SA-1B,

and Di
SA-1B and Di

UnSAM+ is the set of SA-1B and unsupervised masks within image i, respec-

tively. We then train UnSAM+ on DUnSAM+ for promptable image segmentation and whole-image

segmentation. The fusion approach leverages the strengths of both supervised and unsupervised

annotations, addressing the limitations inherent in human-annotated datasets while significantly

enriching the diversity and comprehensiveness of the training data. This results in a more robust

and generalizable segmentation model UnSAM+, surpassing the performance of SAM.

5.5 Experiments

Model Training Settings

We provide a brief overview of the model training settings and include more details in Sec. 5.6.

Pseudo mask generation. In the divide stage, we set the confidence threshold τ=0.3; in

the conquer stage, we choose threshold θmerge = [0.6, 0.5, 0.4, 0.3, 0.2, 0.1]. When merging the

pseudo masks with the ground truths for training UnSAM+, we select τUnSAM+ = 0.02. Whole-

image segmentation. UnSAM picks DINO [25] pre-trained ResNet-50 [58] as the backbone and

Mask2former [94] as the mask decoder. The default learning rate is 5 × 10−5 with a batch size of

16 and a weight decay of 5× 10−2. We train the model for 8 epochs. Promptable segmentation.

UnSAM uses the self-supervised pre-trained Swin-Transformer [159] Tiny model as the backbone,

and leverages Semantic-SAM [149] as the base model. We set the number of hierarchy levels to 6,

which is also the number of predicted masks UnSAM generates per prompt during inference. One

can easily train with a different number of granularity levels as needed. For all experiments, we

train UnSAM with 1∼4% unlabeled images from SA-1B dataset [132].

Evaluation Datasets and Metrics

Whole-image segmentation. To evaluate our model’s performance, we test our models on various

datasets in a zero-shot manner to evaluate the performance of segmenting entities from all granular-

ity levels. We choose COCO [24], LVIS [61], ADE20K [139], EntitySeg [140], and SA-1B [132]

that mainly encompass semantic-/instance-level entities; PartImageNet [141] and PACO [142] that
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SA-1B’s Ground-truthRaw Images UnSAM’s Unsupervised Labels

Figure 5.3: Unsupervised pseudo-masks generated by our divide-and-conquer pipeline not only contain

precise masks for coarse-grained instances (column 5), e.g., cameras and persons, but also capture fine-

grained parts (column 3), e.g., digits and icons on a tiny camera monitor that are missed by SA-1B’s [132]

ground-truth labels.

Methods
Backbone

(#

params)

#

images
Avg.

Datasets with Whole Entities Datasets w/ Parts

COCO LVIS ADE Entity SA-1B PtIn PACO

SAM (supervised) ViT-B/8 (85M) 11M 42.1 49.6 46.1 45.8 45.9 60.8 28.3 18.1

FreeSOLO [23] RN-101 (45M) 1.3M 7.3 11.6 5.9 7.3 8.0 2.2 13.8 2.4

CutLER [12] RN-50 (23M) 1.3M 21.8 28.1 20.2 26.3 23.1 17.0 28.7 8.9

SOHES [145] ViT-B/8 (85M) 0.2M 30.1 30.5 29.1 31.1 33.5 33.3 36.0 17.1

UnSAM RN-50 (23M) 0.1M 39.2 40.5 37.7 35.7 39.6 41.9 51.6 27.5

UnSAM RN-50 (23M) 0.2M 40.4 41.2 39.7 36.8 40.3 43.6 52.1 29.1

UnSAM RN-50 (23M) 0.4M 41.1 42.0 40.5 37.5 41.0 44.5 52.7 29.7

vs. prev. SOTA +11.0 +11.5 +11.4 +6.4 +7.5 +11.2 +16.7 +12.6

Table 5.1: UnSAM achieves the state-of-the-art results on unsupervised image segmentation, using a back-

bone of ResNet50 and training with only 1% of SA-1B [132] data. We perform a zero-shot evaluation on

various image segmentation benchmarks, including whole entity datasets, e.g., COCO and ADE, and part

segmentation datasets, e.g., PACO and PartImageNet. The evaluation metric is average recall (AR).

cover part-level entities. The SA-1B test set consists of randomly selected 1000 images not in-

cluded in our training set. Notably, each dataset only covers entities from certain hierarchical

levels and certain pre-defined classes, while our model generates masks from all levels and all

classes. Hence, the COCO Average Precision (AP) metric could not reflect our model’s authentic

performance in segmenting all entities in the open-world. Following prior work [12], [145], we

mainly consider Average Recall (AR) to compare with different models.

Point-based promptable segmentation. We evaluate our point-based interactive segmenta-

tion model on MSCOCO Val2017 [24]. Following the previous work on promptable image

segmentation [132], [149], we pick two metrics for model evaluation MaxIoU and OracleIoU. For

each point prompt, UnSAM predicts 6 masks representing different granularity levels. MaxIoU

calculates the IoU between the mask with the highest confidence score among 6 masks, whereas
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SAMRaw Image UnSAM UnSAM+

Figure 5.4: UnSAM has competitive dense object segmentation results compared to the supervised SAM

[132].

OracleIoU picks the highest IoU between 6 predicted masks and the ground truth. For each mask

in a test image, we select its center as the point prompt.

Evaluation Results

Unsupervised pseudo-masks. Unsupervised pseudo-masks generated by our divide-and-conquer

pipeline not only contain precise masks for coarse-grained instances, but also capture fine-grained

parts that are often missed by SA-1B’s [132] ground-truth labels, as shown in Fig. 5.3.

Whole-image segmentation. Remarkably, UnSAM outperforms the previous state-of-the-art

methods across all evaluation datasets as summarized in Table 5.1. UnSAM demonstrates superior

performance compared to the SOTA method even when trained with only 1% SA-1B training

data and a backbone of ResNet-50 with only 23M parameters, while the SOTA utilizes twice

training data and a backbone with nearly four times the parameters. This implies that UnSAM

is a lightweight, easier to train, and less data-hungry model with better zero-shot performance in

segmenting entities in the open-world as shown in Figs. 5.4 and 5.5. On average, UnSAM surpasses

the previous SOTA by 11.0% in AR. When evaluated on PartImageNet [141] and PACO [142]

benchmarks, UnSAM exceeds the SOTA by 16.6% and 12.6 %, respectively.

When compared to the supervised SAM [132], UnSAM’s AR across all datasets is already very

close, with only a 1% difference. On PartImageNet [141] and PACO [142], UnSAM surpasses

SAM by 24.4% and 11.6%. This further demonstrates the excellent capability of our divide-and-

conquer pipeline in discovering details that human annotators tend to miss.

Furthermore, our UnSAM+, trained with integrated unsupervised pseudo masks and SA-1B [132]

ground truth, outperforms SAM’s [132] AR by over 6.7% and AP by 3.9% as shown by Table 5.2

and 5.4. UnSAM+ demonstrates superior average recall compared to SAM across all evaluation

datasets except for ADE20K [139], which is dominated by semantic-level annotations. UnSAM+’s
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Methods
Backbone

(# params)

Sup.

Labels

Unsup.

Labels

#

images
Avg.

Datasets with Whole Entities Datasets w/ Parts

COCO LVIS ADE Entity SA-1B PtIn PACO

SAM ViT-B/8 (85M) 6 : 11M 42.1 49.6 46.1 45.8 45.9 60.8 28.3 18.1

UnSAM RN-50 (23M) : 6 0.1M 39.2 40.5 37.7 35.7 39.6 41.9 51.6 27.5

UnSAM+ RN-50 (23M) 6 6 0.1M 48.8 52.2 50.8 45.3 49.8 64.8 46.0 32.3

vs. SAM +6.7 +2.6 +4.7 -0.5 +3.9 +4.0 +17.7 +14.2

Table 5.2: UnSAM+ can outperform SAM [132] on most experimented benchmarks (including SA-1B

[132]), when training UnSAM on 1% of SA-1B with both ground truth masks and our unsupervised labels.

This demonstrates that our unsupervised pseudo masks can serve as a powerful add-on to the densely anno-

tated SA-1B masks!

Raw Image Prev. Unsup. SOTA UnSAM

Figure 5.5: UnSAM not only discovers more fine-grained masks than the previous state-of-the-art unsuper-

vised segmentation method [145], but also provides segmentation masks with a wide range of granularity.

We show qualitative comparisons between UnSAM (with 3 levels of granularity) and baseline models on

SA-1B [132].

Methods AR1000 ARS ARM ARL

SOHES (CRF [157]) 12.0 3.5 9.5 20.7

SOHES (CascadePSP [158]) 16.4 6.0 15.8 22.6

UnSAM (CRF [157]) 15.3 2.3 11.9 27.7

UnSAM (CascadePSP [158]) 23.9 7.9 22.4 34.0

vs. prev. SOTA +7.5 +1.9 +6.6 +11.4

Table 5.3: Evaluation on unsupervised pseudo masks us-

ing SA-1B’s [132] ground-truth annotations.

Methods AP ARS ARM ARL AR1000

SAM 38.9 20.0 59.9 82.8 60.8

UnSAM+ 42.8 36.2 65.9 76.5 64.8

vs. sup. SAM +3.9 16.2 +6.0 -6.3 +4.0

Table 5.4: Quantitative comparisons between

our lightly semi-supervised SAM, UnSAM+,

and the fully-supervised SAM [132] on SA-

1B [132].

significantly 16.2 % higher AR on small entities further confirms that our pseudo masks can ef-

fectively complement the SA-1B datasets with more details it ignores and the UnSAM+ can often
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SAM

UnSAM

UnSAM+

Figure 5.6: Qualitative comparisons of promptable image segmentation between the fully-supervised

SAM [132], our unsupervised UnSAM, and the lightly semi-supervised UnSAM+. Both UnSAM and Un-

SAM+ consistently deliver high-quality, multi-granular segmentation masks in response to the point prompts

(i.e., the star mark).

Methods
Backbone

(# params)

Sup.

Labels

Unsup.

Labels
% of SA-1B

Point (Max) Point (Oracle)

1-IoU 1-IoU

SAM (B) ViT-B/8 (85M) 6 : 100% 52.1 68.2

UnSAM Swin-Tiny (25M) : 6 1% 40.3 59.5

UnSAM+ Swin-Tiny (25M) 6 6 1% 52.4 69.5

Table 5.5: Despite using a backbone that is 3× smaller and being trained on only 1% of SA-1B, our lightly

semi-supervised UnSAM+ surpasses the fully-supervised SAM in promptable segmentation task on COCO.

discover entities missed by SAM as demonstrated in Fig. 5.4 and Fig. 5.7.

Point-based promptable segmentation. As shown in Table 5.5, UnSAM trained with our

pseudo masks achieve 40.3% MaxIoU and 59.5% OracleIoU on COCO. Notably, we train the

model with only 1% of the data that SAM [132] uses and a backbone with 4× fewer parameters.

Moreover, the UnSAM+ trained with integrated pseudo masks and SA-1B ground truths outper-

forms SAM on both MaxIoU and OracleIoU with 0.3% and 1.3% respectively. Qualitative results

are shown in Fig. 5.6.

5.6 Appendix

Training Details

Pseudo mask preparation details. Empirically, in the divide stage, we set the confidence thresh-

old τ = 0.3; in the conquer stage, we choose threshold θmerge = [0.6, 0.5, 0.4, 0.3, 0.2, 0.1]. For

each image, the divide-and-conquer pipeline generates on average 334 pseudo masks. In the self-

training phase, the τself-train = 0.7, and each image has 448 pseudo masks per image after merging
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Figure 5.7: More visualizations on SA-1B [132]. From top to bottom are raw images, segmentation by

SAM, segmentation by UnSAM, and segmentation by UnSAM+.
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high-confidence mask predictions generated by UnSAM. When merging the pseudo masks with

the ground truths for training UnSAM+, we select τUnSAM+ = 0.02.

Whole-image segmentation. UnSAM picks DINO [25] pre-trained ResNet-50 [58] as the back-

bone and Mask2former [94] as the mask decoder. Given the abundant number of pseudo masks

generated, UnSAM augments data only by cropping a 1024×1024 region from the original image.

To cope with a large amount of ‘ground-truth’ masks per image, we find that having 2000 learnable

queries produces the best result. We randomly select at most 200 ‘ground-truth’ masks per image

to speed up the training process. The default learning rate is 5 × 10−5 with batch size equals 16

and weight decay 5× 10−2. We train the model for 8 epochs. All model training in this paper was

conducted using either 4 A100 GPUs or 8 RTX 3090 GPUs.

Promptable segmentation. We use the self-supervised pretrained Swin-Transformer, specifically

the Swin-Tiny model [159], as the backbone and leverage Semantic-SAM [149] as the base model.

Given at most 6 levels of masks corresponding to one input point in SA-1B [132], we set the

number of hierarchy levels to 6, which is also the number of predicted masks UnSAM generates

per prompt during inference. However, one can easily train with a different number of granularity

levels as needed. The default learning rate is 1 × 10−4 with a batch size of 8. The learning rate

decreases by a factor of 10 at 90% and 95% of the training iterations. We train the model for 4

epochs.

Preliminary: Cut and Learn (CutLER) and MaskCut

CutLER [12] introduces a cut-and-learn pipeline to precisely segment instances without supervi-

sion. The initial phase, known as the cut stage, uses a normalized cut-based method, MaskCut [12],

to generate high-quality instance masks that serve as pseudo-labels for subsequent learning phases.

MaskCut begins by harnessing semantic information extracted from “key” features Ki of patch i in

the last attention layer of unsupervised vision transformers. It then calculates a patch-wise cosine

similarity matrix Wij =
KiKj

|Ki|2|Kj |2
. To extract multiple instance masks from a single image, Mask-

Cut initially applies Normalized Cuts [53], which identify the eigenvector x corresponding to the

second smallest eigenvalue. The vector x is then bi-partitioned to extract the foreground instance

mask M s. Subsequent iterations repeat this operation but adjust by masking out patches from pre-

viously segmented instances in the affinity matrix: W t
ij =

(Ki

∑t
s=1

Ms
ij)(Kj

∑t
s=1

Ms
ij)

∥Ki∥2∥Kj∥2
Subsequently,

CutLER’s learning stage trains a segmentation/detection model with drop-loss, which encourages

the model to explore areas not previously identified by MaskCut. An iterative self-training phase

is employed for continuously refining the model’s performance.

Preliminary: Segment Anything Model (SAM) and SA-1B

Inspired by achievement in the NLP field, the Segment Anything project [132] introduces the novel

promptable segmentation task. At its core lies the Segment Anything Model (SAM) [132], which

is capable of producing segmentation masks given user-provided text, points, boxes, and masks

in a zero-shot manner. SAM comprises three key components: an MAE [47] pre-trained Vision
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Transformer [29] that extracts image embeddings, the prompt encoders that embed various types

of prompts, and a lightweight Transformer [160] decoder that predicts segmentation masks by

integrating image and prompt embeddings.

One significant contribution of SAM [132] is the release of the SA-1B dataset, which comprises

11 million high-resolution images and 1.1 billion segmentation masks, providing a substantial

resource for training and evaluating segmentation models. In particular, annotators interactively

used SAM to annotate images, and this newly annotated data was then utilized to iteratively update

SAM. This cycle was repeated multiple times to progressively enhance both the model and the

dataset.

While SAM [132] significantly accelerates the labeling of segmentation masks, annotating an

image still requires approximately 14 seconds per mask. Given that each image contains over 100

masks, this equates to more than 30 minutes per image, posing a substantial cost and making it

challenging to scale up the training data effectively.

Evaluation Datasets

COCO (Common Objects in Context) [24] is a widely utilized object detection and segmentation

dataset. It consists of 115,000 labeled training images, 5,000 labeled validation images, and more

than 200,000 unlabeled images. Its object segmentation covers 80 categories and is mainly on the

instance-level. We evaluate our model on COCO Val2017 with 5000 validation images without

training or fine-tuning on any images from the COCO training set. The metrics we choose are

class-agnostic COCO style averaged precision and averaged recall for the whole-image inference

task, and MaxIoU and OracleIoU for the promptable segmentation task.

SA-1B [132] consists of 11 million high-resolution (1500 on average) images and 1.1 billion

segmentation masks, approximately 100 masks per image. All masks are collected in a class-

agnostic manner with various subject themes including locations, objects, and scenes. Masks cover

a wide range of granularity levels, from large-scale objects to fine-grained details. In the whole-

image inference task, we randomly selected 1000 SA-1B images that are not used to generate

pseudo labels as the validation set.

LVIS (Large Vocabulary Instance Segmentation) [61] has 164,000 images with more than

1,200 categories and more than 2 million high-quality instance-level segmentation masks. It has a

long tail distribution that naturally reveals a large number of rare categories. In the whole-image

inference task, we evaluate our model using its 5000 validation images in a zero-shot manner.

EntitySeg [140] is an open-world, class-agnostic dataset that consists of 33277 images in total.

There are on average 18.1 entities per image. More than 80% of its images are of high resolution

with at least 1000 pixels for the width. EntitySeg also has more accurate boundary annotations. In

the whole-image inference task, we evaluate our model with 1314 low-resolution version images

(800× 1300 on average) in a zero-shot manner.

PACO (Parts and Attributes of Common Objects) [142] is a detection dataset that provides

641,000 masks for part-level entities not included in traditional datasets. It covers 75 object cate-

gories and 456 object-part categories. In the whole-image inference task, we evaluate our model

with 2410 validation images in a zero-shot manner.
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Figure 5.8: Failure cases of UnSAM. From left to right are raw images, segmentation by SAM, and seg-

mentation by UnSAM.

PartImageNet [141] is a large-scale, high-quality dataset with rich part segmentation anno-

tations on a general set of classes with non-rigid, articulated objects. It includes 158 classes and

24,000 images from ImageNet [161]. In the whole-image inference task, we evaluate our model

with 2956 validation images in a zero-shot manner.

ADE20K [139] is composed of 25,574 training and 2,000 testing images spanning 365 different

scenes. It mainly covers semantic-level segmentation with 150 semantic categories and 707,868

objects from 3,688 categories. In the whole-image inference task, we evaluate our model with

2000 testing images in a zero-shot manner.

More Visualizations

We provide more qualitative results of UnSAM and UnSAM+ in a zero-shot manner in Figure 5.9,

and Figure 5.10.

Limitations

In images with very dense fine-grained details, UnSAM tends to miss repetitive instances with

similar texture. As shown in Figure 5.8, in the first row, although UnSAM accurately segments

the leaves in the center of the picture, it misses some leaves located at the top of the image. Addi-

tionally, UnSAM occasionally over-segment images. In the second row, the right sleeve cuff of the

dancer has meaningless segmentation masks. This issue mainly arises because the unsupervised
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clustering method mistakenly considers some information, such as folds and shadows on cloth-

ing, as criteria for distinguishing different entities. In contrast, human annotators can use prior

knowledge to inform the model that such information should not be valid criteria. In this regard,

unsupervised methods still need to close the gap with supervised methods.

Ethical Considerations

We train UnSAM and UnSAM+ on ground truths of and pseudo masks generated on SA-1B [132].

SA-1B contains licensed images that are filtered for objectionable content. It is geographically

diverse, but some regions and economic groups are underrepresented. Downstream use of UnSAM

and UnSAM+ may create their own potential biases.

5.7 Summary

Image segmentation is a fundamental task in computer vision, traditionally relying on intensive

human annotations to achieve a detailed understanding of visual scenes. We propose UnSAM, an

unsupervised segmentation model that significantly surpasses the performance of previous state-

of-the-art methods in unsupervised image segmentation. Additionally, our unsupervised UnSAM

model delivers impressive results, rivaling the performance of the cutting-edge supervised SAM,

and exceeding it in certain semi-supervised settings.
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Figure 5.9: More visualizations on COCO [24]. From top to bottom are raw images, segmentation by SAM,

segmentation by UnSAM, and segmentation by UnSAM+.
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Figure 5.10: More visualizations on PACO [142]. From top to bottom are raw images, segmentation by

SAM, segmentation by UnSAM, and segmentation by UnSAM+.
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Part II

Analysis-by-Synthesis: Generative Models

for Visual Scene Understanding

“To understand is to invent.”

— Jean Piaget
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Chapter 6

Visual Lexicon: Rich Image Features in

Language Space

Figure 6.1: Given the cute corgi painting in the top left corner, how can we extract a visual representation

that captures semantic-level information – such as object categories and layouts – while preserving rich

visual details like image styles, textures and colors? We introduce ViLex model that generates image

representations in the text vocabulary space, acting as a new visual “language”, while retaining intricate

visual details that are difficult, if not impossible, to convey in natural language. The set of images (generated

under different diffusion noises) in the 2×2 grid, which are highly semantically and visually similar to each

other, is created by using ViLex as “text” prompts for text-to-image diffusion models.

We present Visual Lexicon, a novel visual language that encodes rich image information into

the text space of vocabulary tokens while retaining intricate visual details that are often challenging

to convey in natural language. Unlike traditional methods that prioritize either high-level seman-

tics (e.g., CLIP) or pixel-level reconstruction (e.g., VAE), ViLex simultaneously captures rich se-

mantic content and fine visual details, enabling high-quality image generation and comprehensive

visual scene understanding. Through a self-supervised learning pipeline, ViLex generates tokens
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optimized for reconstructing input images using a frozen text-to-image (T2I) diffusion model, pre-

serving the detailed information necessary for high-fidelity semantic-level reconstruction. As an

image embedding in the language space, ViLex tokens leverage the compositionality of natural

languages, allowing them to be used independently as “text tokens” or combined with natural lan-

guage tokens to prompt pretrained T2I models with both visual and textual inputs, mirroring how

we interact with vision-language models (VLMs). Experiments demonstrate that ViLex achieves

higher fidelity in image reconstruction compared to text embeddings—even with a single ViLex

token. Moreover, ViLex successfully performs various DreamBooth tasks in a zero-shot, unsu-

pervised manner without fine-tuning T2I models. Additionally, ViLex serves as a powerful vision

encoder, consistently improving vision-language model performance across 15 benchmarks rela-

tive to a strong SigLIP baseline.

6.1 Introduction

How should we represent an image? This is a fundamental question in computer vision. Over

decades of progress, there have been two primary approaches: representations optimized for un-

derstanding high-level semantics [17], [38], [162], or for high-fidelity image reconstruction [47],

[163], [164], often used in image generation [165], [166]. Understanding-focused models like

CLIP [17] and DINO [25] capture high-level semantics but lose pixel-level details. Conversely,

reconstruction-focused models, such as VAEs [163], retain fine visual details but lack semantic

richness, making them less effective for tasks like vision-language modeling. In this paper, we

aim to address the question: “can a single representation excel in both image reconstruction and

semantic understanding?”

To bridge this gap, we introduce ViLex that encodes images into a Visual Lexicon within

the text space. ViLex model is designed to capture both high-level semantics – such as object

categories and spatial layouts – while preserving rich visual details like styles, and textures that are

difficult or even impossible to articulate in natural language.

We achieve this, as illustrated in Fig. 6.2, by leveraging a self-supervised learning strategy

based on a frozen, pretrained text-to-image (T2I) diffusion model, which acts as the source of su-

pervisory signals. Although initially developed for generative purposes, many recent works [167]–

[170] have discovered that diffusion models [165], [171], [172] inherently capture both semantic

and detailed visual information through their denoising process.

To incorporate rich visual information into our ViLex model, we repurpose diffusion models

as decoders within an autoencoder [163], [173]–[175] framework. ViLex embeddings are mapped

into the latent space of the T2I diffusion model’s vocabulary tokens—specifically, the index-to-

embedding lookup matrix of the text encoder [17], [176], which converts text token IDs into em-

beddings. Using diffusion models as decoders for semantic-level image reconstruction, rather than

traditional VAE decoders [163] or MAE [47] designed for pixel-level reconstruction, encourages

the model to learn meaningful semantic representations that are highly transferable to diverse vi-

sual scene understanding tasks. This design enables ViLex to harness the rich visual knowledge
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Figure 6.2: top) ViLex empowers linguistic space to capture visual richness. We propose ViLex, an

image encoder that maps images into the vocabulary space, effectively preserving semantic information and

intricate visual details. The embeddings from ViLex function as a Visual Lexicon that preserve semantic

and intricate visual details of the image. ViLex is trained with a frozen text-to-image diffusion model and

can be utilized independently as “text” tokens for image generation. bottom) Linguistic space empowers

ViLex to enjoy compositionality. ViLex can be combined with natural language tokens for prompting a

pretrained T2I diffusion models with both visual and textual cues.

embedded in diffusion models while maintaining a lightweight structure, making it well-suited for

a broad range of understanding tasks beyond diffusion models’ original generative applications.

The ViLex model consists of a vision encoder that extracts visual representations from the input

image and an attention pooling layer that transforms the visual representation into visual lexicon

tokens. During training, ViLex model is optimized with an image reconstruction loss, receiving

gradients from the frozen diffusion model and its text encoder to fine-tune the visual lexicon to-

kens for accurately reconstructing images with similar appearance. Additionally, we propose the

TailDrop strategy during training, where the last k visual lexicon tokens are randomly dropped

to encourage the earlier tokens to encapsulate richer semantic information. During inference, the

number of tokens can be dynamically adjusted to meet user requirements.

Our ViLex model is designed to support both image generation and understanding tasks. For

image generation: ViLex tokens can be directly used as “text-prompts”, enabling the re-creation

of semantically and visually similar images. Experiments on COCO image reconstruction demon-
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strate that our ViLex significantly outperforms its counterparts image-guided DALL·E 3 [177] and

DeDiffusion [178] in terms of the layout, semantic, and style consistency with the input image,

based on human studies. Notably, even with just a single ViLex token, the FID score of ViLex re-

mains lower than that of DeDiffusion [178], showcasing the representational power of Visual Lexi-

con. Additionally, ViLex embeddings can seamlessly integrate with text prompts, for example, “an

image similar to [ViLex tokens], in Van Gogh style”, enabling multimodal image generation and

DreamBooth [179] tasks in a zero-shot fashion by prompting a frozen T2I model with both visual

and textual inputs. For image understanding: replacing the strong semantic-pretrained backbone

SigLIP [180] with ViLex’s vision encoder in vision-language models [181] leads to improvements

across various vision-language tasks, including image and video captioning [182], [183], visual

question answering [184], and referring segmentation [185].

The main contributions of our work are:

• We propose ViLex, an image encoder that maps images into the text space of text-to-image

diffusion models. The resulting image embeddings capture both high-level semantics and

intricate visual details that are otherwise challenging to convey in natural language.

• ViLex enables zero-shot multimodal image generation by prompting T2I models with both

ViLex tokens and text prompts, without requiring fine-tuning a T2I model or modifying

its architectures. ViLex also improves the performance of generating semantically similar

images compared to previous baselines, significantly reducing FID.

• ViLex enhances the understanding capability of the image embeddings. Replacing the image

encoder in vision-language models with ViLex yields performance gains on various visual

understanding tasks, including image/video captioning, VQA, and referring segmentation.

6.2 Related Work

Image Representation Learning is a fundamental task in computer vision. There are two popular

approaches: representing an image with features optimized for visual scene understanding [9],

[17], [38], [40], [162], [180], [186]–[188] or with features optimized for high-fidelity image

reconstruction [47], [163], [164], [189], which is often used in image generation [165], [190].

Understanding-focused representations like those in CLIP [17], SigLIP [180], DINO [25], and

DINOv2 [25], [162] capture high-level semantic information but lose pixel-level details. Con-

versely, reconstruction-focused features, commonly from AutoEncoder-based models (AEs), like

VAE [163], MAE [47], and BEiT [191], retain fine image details but often lack semantic richness,

limiting their utility in downstream tasks like vision-language modeling [181], [192]. AutoEn-

coders, while effective for pixel-level fidelity, often struggle with discriminative tasks. Their focus

on reconstructing local, semantically agnostic details leads to suboptimal performance in tasks

demanding rich, discriminative representations [191], [193], [194]. We intend to propose a new

vision encoder that provides image representations for both image understanding and generation

tasks.
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Image Inversion for Diffusion Models aims to determine the text prompt that can be used for

generating a specific source image. Prompt-inversion [195], [196] uses gradient descent to move

from the pixel space to the text-embedding space. Techniques like Dreambooth [179], [197] and

textual-inversion [198] learn special text tokens for given instances, but require gradient-based

training for each individual image, making them slow at inference time. Also, DreamBooth needs

to determine the LORA adapters for model architecture changes and is not generic for visual

understanding. Recently, DeDiffusion [178] proposed training a model to generate the inverse text

using Gumbel softmax, but the quality of reconstruction is limited by what can be represented by

text tokens. Our approach bypasses discrete language-based text representations, enabling higher-

quality reconstructions and efficient single-pass inference.

Representation Learning with Diffusion Models has been explored by several previous works [170],

[199]–[203]. l-DAE [199] uses the diffusion loss as a self-supervised learning objective, while

ODISE [170] employs diffusion-pretrained features for zero-shot panoptic segmentation. DIVA [201]

shows that finetuning a CLIP backbone [17] with gradients from diffusion models enhances local-

ization capabilities. In contrast, we harness the built-in knowledge of T2I models to learn visual

features, effectively framing the generation of text embeddings that reconstruct an image as a pow-

erful representation learning objective.

Image Tokenization, commonly associated with variational autoencoders (VAEs) [163], is cru-

cial for compressing images into a lower-dimensional space for diffusion model training. VQ-

VAEs [171], [204] utilizes a discrete codebook for quantizing latent representations, while recent

works like MagViTv2 [205], FSQ [206], and BSQ [207] improve quantization with direct binary

encoding. More recent image tokenizers [164], [208], [209] propose new encoding strategies, in-

cluding scale prediction [208], [209] and 1D compression [164]. Unlike these tokenizers, which

predict features as noise, our model predicts features conditioned on the diffusion model. Thus,

instead of aiming for lossless reconstruction, our focus is on recreating images with high semantic

fidelity.

6.3 Describe an Image with a Visual Lexicon

In this subsection, we introduce ViLex that maps images directly into the text space, while ef-

fectively preserving complex visual details that are difficult to express in natural language. Our

representation effectively acts as a new “language” for text-to-image generation and a strong vi-

sion encoder for downstream vision-language tasks.

Approach overview. ViLex aims to capture high-level semantic representations – such as object

categories and layouts – while also preserving rich visual details like styles, patterns, and textures

that are difficult or even impossible to describe in natural language.

To accomplish this, we train ViLex through a self-supervised learning pipeline, with a frozen

pretrained text-to-image (T2I) diffusion model serving as the source of supervisory signals. This

approach enables ViLex to extract visual representations that encompass both semantic-level un-

derstanding and intricate visual features. Unlike previous works that directly use diffusion models

as feature extractors [167]–[170], we take a different approach. In our framework, diffusion mod-



CHAPTER 6. VISUAL LEXICON: RICH IMAGE FEATURES IN LANGUAGE SPACE 87

Text Tokens

Diffusion

Model

Text

Encoder

ViLex Encoder

Colorful half-timbered 

houses along a canal in 

Colmar, France, adorned 

with vibrant flowers.

Reconstruction Loss         

Byte-pair (

Encoding

TailDrop

Trainable

Frozen

Color ful half -tim ber ed 

houses along a canal in Col 

mor , France ,  adorned 

with vibrant flowers

Tokenization

(index-to-embed

lookup matrix    )

learnable queires

ViT
Attention 

Pooling

Figure 6.3: The pipeline of ViLex: We learn a Visual Lexicon from a frozen diffusion model using an

image reconstruction loss. After training, ViLex can be directly used as the “text-prompt” to a frozen text

encoder, e.g., CLIP or T5, enabling the re-creation of semantically similar images without the need for

actual text prompts. In addition, during training, we implement the TailDrop strategy, where the last k

tokens are randomly dropped, encouraging earlier tokens in ViLex to carry richer semantic information.

ViLex tokens can be utilized independently as “text” tokens for image generation or combined with natural

language tokens for prompting T2I diffusion models with both visual and textual cues for multimodal image

generation.

els act as decoders in an autoencoder [163], [173]–[175] pipeline, which allows us to bake the

semantic richness learned by these models into a vision encoder. As a result, ViLex benefits from

the detailed and rich visual representations of diffusion models while being significantly more

lightweight, making it suitable for a broader range of visual scene understanding applications be-

yond diffusion models’ generative origins.

Training approach. As depicted in Fig. 6.3, we employ an autoencoder framework to learn ViLex

from a pre-trained text-to-image diffusion model. The overall approach consists of three key com-

ponents: 1) Image Encoder: A vision transformer (ViT) [210] based image encoder that extracts

visual representations from the input image. 2) Image-to-text projection: An attention pooling

module that transforms the visual representation into ViLex embeddings within the text space.

These embeddings can be independently used as inputs for the frozen text encoder and the subse-

quent diffusion model, or concatenated with text tokens derived from natural language. 3) Decoder:

A pretrained text-to-image diffusion model serves as the decoder in the autoencoder pipeline, gen-

erating images from the “text” tokens.

During training, ViLex encoder – which comprises the ViT and the attention pooling module –

is optimized via the gradients from image reconstruction loss, while the text-to-image (T2I) model

remains frozen throughout the process. After training, ViLex can function as a new “language”,

effectively serving as a “text prompt” for frozen text encoders such as CLIP [17] or T5 [176].

This enables the generation of semantically similar images without traditional text-based prompts,

capturing intricate visual details.

Represent images as text embeddings. Since ViLex is designed to serve as text tokens for text-

to-image (T2I) diffusion models, we project the k patch-level representations pi of an image i into
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Visual LexiconRaw Image DALL E 3 (Image-guided)· DeDiffusion (w/ SDXL)

Figure 6.4: ViLex retains more visual details in image-to-image generation compared to DALL·E 3 [177]

and DeDiffusion [178], accurately capturing elements such as image style (e.g., the oil painting style in

row 1), layout (e.g., the relative position of the corgi and the lighthouse), pose (e.g., the corgi’s stance),

and object shapes (e.g., the shape of Van Gogh’s hat). This enables ViLex to produce images that are both

semantically and visually consistent with the original input. Even models with text embeddings in a shared

language-vision space, like DALL·E 3, capable of generating semantic variations of an image, struggle to

faithfully reconstruct the original appearance of the input image. For image-guided DALL·E results, we

provide the input images along with the text prompt, “generate an image exactly the same as the input

image”. For DeDiffusion, we follow its official image-to-image generation pipeline and use SDXL [190] as

the T2I model.

the text space using a multi-head cross-attention layer [211], denoted as f(·). This layer contains

n learnable queries and uses the k output patch tokens from the image encoder as inputs. These k

patch tokens function as both keys and values within the cross-attention mechanism. Through this

setup, the model learns to pool the k patch tokens into ViLex embeddings, denoted as v, consisting

of n tokens such that vi = f(pi), as shown in Fig. 6.3.

To illustrate how to implicitly align ViLex embeddings v with text tokens c compatible with a

pretrained T2I model, let’s first examine how actual text prompts are tokenized. Using Byte-Pair

Encoding (BPE) [2], [212], [213] as an example – a tokenizer employed by CLIP [17] – BPE

tokenizes text into sub-word units, effectively managing large vocabularies and handling rare or

unseen words. The process has two steps: 1. Tokenization with BPE: Each input sentence is

tokenized using BPE, yielding a sequence of sub-word tokens. For instance, the phrase “hello

world” might be tokenized as: tokens = [“hel”, “lo”, “wor”, “ld”]. 2. Embedding Lookup: Each

sub-word token is mapped to a learned embedding vector via a pre-trained vocabulary lookup

matrix V . If ei denotes the embedding for token i, each sub-word token with an index ti is given

by ei = V [ti].
The ViLex embeddings v are trained to be implicitly aligned with the latent space of the lookup

matrix V , ensuring compatibility with T2I diffusion models. Before feeding ViLex embeddings v

independently or as part of the concatenated token sequence [v, c] to the T2I model, where c is the

text tokens, we add [BOS] and [EOS] tokens at the beginning and end of the sequence, respectively.

Text-free guidance for multimodal image generation. Classifier-Free Guidance (CFG) [214] has
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been a popular technique to enhance the quality of generated samples of diffusion models by con-

trolling the trade-off between adhering to a given prompt and producing diverse outputs. In CFG,

two sets of samples are generated: one conditioned on the input (e.g., text prompt) and one uncon-

ditioned, allowing flexible guidance during the sampling process. Let ϵ¹(xt, c) denote the noise

predicted by the model conditioned on a prompt c at time t, and ϵ¹(xt) denote the unconditioned

noise prediction. In CFG, the final prediction ϵguided is computed as:

ϵguided = ϵ¹(xt) + w · (ϵ¹(xt, c)− ϵ¹(xt)) (6.1)

Increasing the guidance scale w intensifies the prompt adherence, improving fidelity to c at the cost

of diversity.

Inspired by CFG, we introduce Text-Free Guidance (TFG) for our multimodal image genera-

tion, balancing the influence of a given text prompt c and ViLex embedding v. TFG controls the

trade-off by incorporating visual representations from ViLex alongside the text prompt, enabling

finer control over generated images. In TFG, we modify the noise prediction by combining the

conditioned prediction on the visual and text prompts, denoted as ϵ¹(xt, [v, c]), and the prediction

conditioned on ViLex alone, i.e.ϵ¹(xt, v). The TFG noise prediction ϵtfg is then computed as:

ϵtfg = ϵ¹(xt, v) + wtfg · (ϵ¹(xt, [v, c])− ϵ¹(xt, v)) (6.2)

where wtfg is the guidance scale, allowing us to control the impact of ViLex tokens relative to the

text prompt. TFG enables multimodal image generation by incorporating both textual and visual

cues, without requiring T2I model architectural changes or using LoRA [215] adapters.

TailDrop for dynamic visual token compression. Different images contain varying amounts of

information, this creates a trade-off between representation compactness and detail richness. We

propose a flexible token budget method using a similar masking strategy as in SoundStream [216],

which we refer to as TailDrop. Specifically, during training, we randomly drop the last k ViLex

tokens. Since the early tokens are more frequently independently used for image generation, the

earlier tokens in ViLex are encouraged to carry richer semantic information. After the model

training, during the inference time, users can dynamically adjust the number of tokens in ViLex to

suit the needs.

Training loss. We adopt the standard diffusion [172], [217], [218] training objective to optimize

ViLex, backpropagating the reconstruction loss to update its parameters. In a diffusion model, the

denoising objective aims to learn a model ϵ¹(xt, t) that predicts the noise ϵ added to data x0 at

timestep t. Given a noisy sample xt, the objective minimizes the difference between the predicted

and true noise:
Ldenoise = Ex0,ϵ,t

[

∥ϵ− ϵ¹(xt, t)∥2
]

, (6.3)

where xt =
√
³tx0+

√
1− ³tϵ, with ³t controlling the noise schedule. This loss enables the model

to reverse the diffusion process, gradually reconstructing x0 from xt.
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Figure 6.5: ViLex can be seamlessly integrated with natural language prompts for zero-shot unsupervised

image re-contextualization using a frozen text-to-image (T2I) diffusion model. Unlike DreamBooth [179],

ViLex requires no fine-tuning of the T2I model on a set of input images from the same object or modifi-

cations to the model architecture (e.g., adding a LoRA [215] adapter). Instead, ViLex is a universal model

that enables zero-shot, unsupervised re-contextualization by simply prompting the T2I model with ViLex

tokens and corresponding text prompt tokens, just like how we use real words. a) The inference pipeline

demonstrating image re-contextualization. b) Qualitative comparisons with DreamBooth, with DreamBooth

results taken from their project page.

6.4 Experiments

Technical Details

Text-to-image diffusion model. Following DeDiffusion [178], we use Imagen [165] as the base

text-to-image diffusion model, adapting the U-Net architecture from [219], [220] with 600M pa-

rameters, an embedding dimension of 256, and an input resolution of 64×64. The text encoder of

Imagen is OpenCLIP ViT-H/14 [221], [222] with a vocabulary size of 49408. The U-Net condi-

tions on text embeddings via a pooled embedding vector, which is added to the diffusion timestep

embedding. Imagen is further conditioned on the full sequence of text embeddings by incorporat-

ing cross-attention over the text embeddings at multiple resolutions.

Model architecture of ViLex. ViLex consists of two components: a ViT-based image encoder and

a transformer-based attention pooling module. Both components are unfrozen during the training

process. For the image encoder, we use a pretrained SigLIP@224 [180]. SigLIP utilizes ViT-base

as the backbone and is pretrained on the WebLI dataset [223] using a sigmoid loss and trained

on English image-text pairs, with input images resized to 224×224. Attention pooling contains

n learnable queries, where nf 75, along with [SOS] and [EOS] tokens to ensure the total token

count remains within the 77-context length limit defined by the CLIP text encoder [17], [221]. We

randomly initialize the attention pooling layer (5 transformer blocks).

Model training. The training data is obtained from WebLI [223], enabling training on either

images alone or with image-text pairs. We found that joint image-text training and our TFG are

essential for enabling multimodal image generation. However, training without text captions does
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Visual Prompt 1

Generated Images 
(Visual Prompt 1 + Text Prompt)

Text Prompt: “[ViLex Tokens] in Vincent Van Gogh’s Style”

Visual Prompt 2

Generated Images 
(Visual Prompt 2 + Text Prompt)

Figure 6.6: ViLex can also support zero-shot unsupervised art rendition via prompting T2I models with

ViLex and text prompts.

not negatively impact performance on downstream vision-language tasks. Following [165], [178],

we use Adafactor optimizer [224] and a weight decay of 0.01. Training is performed with a batch

size of 2048 over 300K steps, which takes approximately 2.5 days on 64 TPUv5 chips. The ViT

is initialized with a pretrained SigLIP model. We use learning rate 1×10−5 for the image encoder

and 3×10−4 for the attention pooling layers, with a cosine learning rate decay and a 10K-step

linear warmup. More training details are in the supplement. After training, our ViLex encoder

maps an image to ViLex representations. We next evaluate two capabilities of these frozen ViLex

representations: image generation and visual understanding.

Experiments on Image Generation

Image-to-image generation aims to generate similar images given an input image. Feeding our

extracted ViLex features on the input image to our T2I model [165] with different diffusion ran-

dom noise yields re-created images. We compare with two popular models: DALL·E 3 [177] and

DeDiffusion [178], both of which convert the input image to explicit texts. DeDiffusion [178] used
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T2I DeDiffusion
ViLex

1 4 16 75

FID (³) 6.52 3.89 3.65 2.91 2.38 2.07

IS (↑) 14.06 14.68 15.33 15.42 15.51 15.88

Table 6.1: Even when only using just one continuous token, ViLex outperform the discrete tokens from

both DeDiffusion [178] (image→text→image) and the vanilla Imagen [165] (text→image). FID scores

on MSCOCO-64×64 were used for image reconstruction comparison across various image generation

pipelines, all of which employ Imagen [165] as the base text-to-image diffusion model for fair compar-

isons. IS refers to inception score.

DeDiffusion DALL·E 3

layout semantic style layout semantic style

vs. ViLex (↑) 98% 95% 98% 91% 76% 90%

Table 6.2: Human studies on generating semantically and visually similar images using the image-to-image

pipeline. We report the percentage of ratings favoring ViLex over DeDiffusion [178] and the image-guided

DALL·E 3 [177] in terms of layout, semantic, and style consistency with the input image.

Image Captioning Visual Question Answering Image Segmentation Video

Backbone FID (³) C
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Original SigLIP 2.54 139.7 138.6 122.1 131.7 135.5 81.4 51.9 57.1 85.9 74.3 64.8 66.2 69.0 63.6 63.3 55.3 59.6 69.4

ViLex SigLIP 2.38 141.5 139.4 124.0 134.3 136.2 81.6 52.9 58.4 87.9 74.9 65.3 67.6 70.0 65.1 65.3 57.3 62.6 70.7

Table 6.3: ViLex improves both image understanding and reconstruction capabilities of vision

encoders by fine-tuning them using ViLex’s training approach. Compared with the official SigLIP

model [180], ViLex SigLIP, fine-tuned with ViLex approach, demonstrates superior image reconstruction

quality (evidenced by a lower FID score) and enhanced visual scene understanding (as shown by improved

results on numerous vision-language tasks). We utilize PaliGemma’s [181] framework for linear evaluation,

replacing the vision encoder with either the fine-tuned SigLIP in ViLex or the official one, and freeze vision

encoder and fine-tune the model on downstream tasks. We use the same hyper-parameters and model archi-

tecture for a fair comparison. RC refers to RefCOCO dataset.

exactly the same encoder architecture and T2I model as us, giving us an apple-to-apple comparison

between our ViLex feature and texts. We conducted both human studies (Table 6.2) and quanti-

tative metrics on Fréchet Inception Distance (FID) [225] and Inception Score (IS) [226] scores

(Table 6.1).

The quantitative results in Table 6.1 show that our ViLex efficiently preserves visual infor-

mation, surpassing the explicit text counterpart [178] even with only 1 token in both FID and IS

metrics. We further evaluate the effectiveness of ViLex through human assessments on image-

to-image generation tasks. Results in Table 6.2 indicate that ViLex significantly outperforms the

baselines, achieving 98% win rates in layout alignment, 95% in semantic fidelity, and 98% in style

preservation against [178]. ViLex also outperforms DALL·E 3. We present qualitative compar-
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Figure 6.7: Qualitative results of semantic-level image reconstruction with varying numbers of ViLex

tokens. ViLex tokens enable the reconstruction of semantically similar images even with a single token,

effectively capturing high-level semantics such as categories, object counts, and overall poses. As the num-

ber of tokens increases to 16, finer details begin to emerge: mid-level features like image styles, colors,

and object textures become apparent. With 75 ViLex tokens, the reconstructions achieve high appearance

fidelity, incorporating fine-grained details that blend both low-level and high-level information, such as pre-

cise object shapes, sizes, and cross-instance relationships.

isons in Fig. 6.4.
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Zero-shot unsupervised multimodal image generation with identity preserving. One advan-

tage of mapping images to the word space is to embed images directly into a sentence in an inter-

leaved way. This enables multimodal image generation using a pure text-to-image model without

finetuning. In Fig. 6.5, we demonstrate the ability of ViLex to serve as a “language” for multimodal

image generation while preserving the object identity in a given image. The conventional approach

to this task like DreamBooth [179] requires LoRA [215] adapters and a test-time finetuning with

a set of images to learn an embedding for object identity which is slow and computationally ex-

pensive, while ours directly infers the target identity feature using our encoder. Figs. 6.5 and 6.6

shows that ViLex improves the resulting images by embedding detailed semantic and visual con-

text, producing coherent multimodal results that reflect both the textual prompt and the visual cues

provided. We highlight again that our model is not finetuned for this task and does not require

a text-time-finetuning like DreamBooth, but simply prompting a standard T2I model with ViLex

embeddings and corresponding text prompts.

When do we need more ViLex tokens? Fig. 6.7 presents qualitative results of semantic-level

image reconstruction with varying numbers of ViLex tokens, illustrating the gradual refinement

of visual details as the token count increases. With just 1 token, ViLex effectively captures high-

level semantic information, such as object categories, counts, and poses. As the the token count

increases to 16, mid-level features, including image styles, colors, and textures, start to emerge,

enhancing the overall visual representation. Finally, with 75 tokens, ViLex captures fine-grained

details such as precise object shapes, sizes, and intricate cross-instance relationships. For instance,

in the third-row image, the two cats’ poses are accurately reconstructed, including their specific

positioning and interaction as they cuddle together. These results demonstrate ViLex’ adaptability,

providing users with the flexibility to balance semantic richness and visual detail based on the

application requirements.

Experiments on Image Understanding

We next verify that our frozen ViLex features can be directly used for understanding tasks, by feed-

ing them to a large language model [227]. We use PaliGemma [181] as our visual-language model

(VLM) architecture. PaliGemma [181] is an open-source VLM with a SigLIP-So400m [180] vi-

sion encoder and a Gemma-2B [227] language model. To use ViLex in PaliGemma, we replace the

SigLIP [180] vision encoder with our ViLex encoder. In all our following experiments, we don’t

finetune our ViLex encoder, and only finetune the following large language model [227] to adapt

to the tasks following the PaliGemma transfer design [181].

Improving vision encoders over SigLip. We first conduct a comparison between the visual en-

coder learned from our ViLex pretraining and the popular SigLip [180]. To ensure a fair com-

parison in terms of the architecture and the number of tokens, we use our features right after the

ViT-encoder without the pooling layer. Table 6.3 shows the results. We also show the image recon-

struction FID. The results show that ViLex feature consistently improves the strong SigLip model

by over 1 point margin on a variety number of vision-language tasks, including image captioning,

referring segmentation, and video understanding. This shows that ViLex can effectively upgrade

existing vision encoders to perform better in both reconstruction and understanding.
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VAE 61.4 15.0 12.9 33.3 82.1 19.5 12.1 13.8

ViLex SigLIP 141.5 124.0 52.9 57.5 87.9 67.2 65.3 62.6

ViLex 142.8 137.7 59.4 58.3 88.6 70.9 69.2 65.9

Table 6.4: Improving vision-language models with ViLex tokens. Concatenating ViLex tokens with

SigLIP patch tokens enhances the performance of vision-language models across diverse downstream tasks,

such as image captioning, visual question answering, and image segmentation, with a modest token increase

of only 25% (from 256 to 336). Pixel-reconstruction or semantic-reconstruction? Although VAE can

preserve pixel-level details during image reconstruction, its lack of semantic richness results in significantly

poorer performance in vision-language modeling compared to ViLex. We use PaliGemma as the base VLM

model.

Vision-language tasks. ViLex can also serve as a strong vision encoder for vision-language mod-

els. ViLex tokens are inherently ready to use for vision-language frameworks, therefore, they can

be directly utilized without requiring fine-tuning the image encoder. Despite freezing the image en-

coder—including both the ViT and attention pooling layers—we observed significant performance

improvements across various tasks, such as visual question answering, image captioning, and refer-

ring expression segmentation, as demonstrated in Table 6.4 and Table 6.5. Following prior works

like QwenVL-7B, LLaVA1.5-13B, LLaVA1.6-13B [134], [228], [229], we adopt a multi-grid in-

put strategy for extracting visual representations to ensure a fair comparison with these methods.

However, unlike these methods, which increase the overall number of tokens by 2∼5 times, we

use only 16 ViLex tokens per grid. This results in only 25% increase in token count (adding just

80 tokens) while achieving substantial performance improvements and setting new state-of-the-art

results on multiple VQA benchmarks.

Pixel-reconstruction or semantic-reconstruction? Although VAE [163], [171], [173] excels at

preserving pixel-level details during image reconstruction, its [171] lack of semantic richness leads

to substantially poorer performance (often >8 times lower) in vision-language modeling compared

to ViLex, as demonstrated in Table 6.4.

Appendix Materials

Technical Details

We introduced the main technical and implementation details of our ViLex model in the main

paper, here we provide a more comprehensive explanation.

Text-to-image diffusion model. Following DeDiffusion [178], we use Imagen [165] as the base

text-to-image diffusion model, adapting the U-Net architecture from [219], [220] with 600M pa-

rameters, an embedding dimension of 256, and an input resolution of 64×64. The text encoder of

Imagen is OpenCLIP ViT-H/14 [221], [222] with a vocabulary size of 49408. The U-Net condi-
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Model #toks V
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Freeze image encoder

PaliGemma-2B (SigLIP@224) 256 81.4 85.974.3 64.8

PaliGemma-2B (ViLex@224) 336 83.6 88.675.8 65.7

Fine-tune image encoder

LLaVA1.5-13B (CLIP@224)[228] 576 80.0∗ 71.653.6 62.0∗

VILA-13B (CLIP@336)[230] 576 80.8∗ 73.760.6 63.3∗

QwenVL-7B (CLIP@448)[134] 1024 78.8∗ 67.138.9 57.5∗

LLaVA1.5-13B (CLIP@336)HD [228] 1280 81.8∗ 71.057.5 63.3∗

LLaVA1.6-13B (CLIP@384)HD [229] 1280 81.8∗ 70.2 - 64.2∗

Table 6.5: ViLex can be a strong vision encoder for vision-language tasks. Using the lowest image

resolution, fewer tokens per image, the smallest LLM model, and without fine-tuning image encoder, our

ViLex —integrated into PaliGemma as the image encoder—achieves SOTA performance across multiple

visual question answering tasks. *: The training images from the datasets are utilized during model training

or for fine-tuning the model.

tions on text embeddings via a pooled embedding vector, which is added to the diffusion timestep

embedding. Imagen is further conditioned on the full sequence of text embeddings by incorpo-

rating cross-attention over the text embeddings at multiple resolutions. The Imagen model uses

v-prediction [231] as its objective, with a batch size of 2048, and is trained for 3 million steps. As

a baseline model, Imagen achieves an FID of 6.52 on 30K 64×64 MS-COCO 2014 validation im-

ages [165]. During image generation inference, we use a super-resolution model, such as an SDXL

upsampler, to upsample the image resolution from 64×64 to 512×512 for better visualizations.

Model architecture of ViLex. ViLex consists of two components: a ViT-based image encoder and

a transformer-based attention pooling module. Both components are unfrozen during the training

process. For the image encoder, we use a pretrained SigLIP-So400M@224 [180]. SigLIP utilizes

ViT-base as the backbone and is pretrained on the WebLI dataset [223] using a sigmoid loss and

trained on English image-text pairs, with input images resized to 224×224. The model architecture

of the ViT-base is shape-optimized on 400M training samples for improving the model efficiency

and speed. In our method, the attention pooler is implemented as a single multi-head attention

layer with learnable queries, using the encoder output as both keys and values. This allows the

attention pooling module to effectively aggregate embeddings of varying lengths. The attention

pooling module contains n learnable queries, where nf 75, along with [SOS] and [EOS] tokens

to ensure the total token count remains within the 77-context length limit defined by the CLIP text

encoder [17], [221]. The attention pooling layer comprises 5 transformer blocks, which are always

randomly initialized.

Model training. The training data is obtained from WebLI [223], enabling training on either

images alone or with image-text pairs. We found that joint image-text training and our TFG are

essential for enabling multimodal image generation. However, training without text captions does
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Original SigLIP - 139.7 138.6 122.1 131.7 135.5 81.4 51.9 57.1 85.9 74.3 64.8 66.2 69.0 63.6 63.3 55.3 59.6 69.4

ViLex SigLIP 150k 140.5 138.8 122.3 132.6 135.5 81.4 52.1 57.3 86.1 74.5 65.1 66.5 69.3 64.2 64.1 55.6 60.2 70.6

ViLex SigLIP 600k 141.5 140.0 124.0 134.3 136.1 81.8 52.7 58.3 89.3 75.0 65.4 67.5 69.7 65.6 65.2 57.2 62.6 71.4

Table 6.6: ViLex improves both image understanding and reconstruction capabilities of vision encoders by

fine-tuning them using ViLex’s training approach. Extending the fine-tuning of SigLIP with the ViLex

approach from 150k to 600k steps results in improved overall model performance across evaluated

benchmarks. We use PaliGemma’s [181] framework for linear evaluation, replacing the vision encoder with

either the fine-tuned SigLIP in ViLex or the official one, and freeze vision encoder and fine-tune the model

on downstream tasks. We use the same hyper-parameters and model architecture for a fair comparison.

not negatively impact performance on downstream vision-language tasks. Following [165], [178],

we use Adafactor optimizer [224] and a weight decay of 0.01. Training is performed with a batch

size of 2048 over 300K steps, which takes approximately 2.5 days on 64 TPUv5 chips. We found

that double the training steps (from 300k to 600k) can further improve the model performance on

increasing the performance of a pretrained vision encoder. The ViT is initialized with a pretrained

SigLIP model and the attention pooling layers are randomly initialized. We use learning rate

1×10−5 for the image encoder and 3×10−4 for the attention pooling layers, with a cosine learning

rate decay and a 10K-step linear warmup, and a weight decay of 0.01. After training, our ViLex

encoder maps an image to ViLex representations. We next evaluate two capabilities of these frozen

ViLex representations: image generation and visual understanding.

PaliGemma experiments. To evaluate the effectiveness of the proposed ViLex approach in en-

hancing a pretrained vision encoder for vision-language tasks, we integrate our vision encoder

into the PaliGemma [181] framework and replace the vision encoder with either the fine-tuned

SigLIP-So400M [180] from ViLex or the official version without model fine-tuning, freezing the

vision encoder and fine-tuning the model on downstream tasks. Following PaliGemma’s official

pipeline, we transfer the model to a variety of individual academic benchmarks using a unified

transfer approach with minimal hyperparameter tuning. To ensure fair comparison, we applied

the same hyperparameter sweeping strategy for both the baseline and our fine-tuned vision en-

coder, reporting the best results for each. This structured approach allows us to fairly assess the

impact of the proposed ViLex method on a wide range of vision-language tasks. The sweeping

parameters for these tasks are as follows: COCOCap [24] (COCO image captioning task) and

COCO-35L [232] (COCO captions translated in 35 languages): learning rate (4e-6, 5e-6, 6e-6),

epochs (5, 10), dropout (0, 0.02, 0.05). TextCaps [233] (image captioning with reading compre-

hension): learning rate (4e-6, 6e-6), and training epochs (5, 10). For SciCaps [234] (captions for

scientific figures): learning rate (6e-5, 7e-5), dropout (0.1, 0.2), and label smoothing (0.1, 0.2).

For VQAv2 [184] (visual question answering): label smoothing (0.0, 0.1), dropout (0.0, 0.1), and
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Below, you will see an input image along with two generated images, labeled as "Method A" and "Method B". Your 

task is to evaluate which image better meets specific criteria compared to the input image:

• Semantic Alignment: Which generated image more accurately captures the original content and semantic details, 

such as object categories? Note that it is less preferred if a model generates new instances or objects that were not in 

the input image or if it omits existing objects.

• Style Alignment: Which generated image better preserves the artistic style and visual aesthetics of the original?

• Layout Alignment: Which generated image maintains a composition and positioning of objects that aligns more 

closely with the input image?

For each criterion, please select the method (A or B) that you feel performs better. There are no right or wrong answers

—please base your decision on your personal preference.

Q1: Semantic Alignment


" Method A


" Method B

Q2: Style Alignment


" Method A


" Method B

Q3: Layout Alignment


" Method A


" Method B

Input Image Method A Method B

Figure 6.8: The instructions and question format used for human study.

weight decay (0, 1e-6). For TextVQA [235] (visual reasoning based on text in images): learning

rate (4e-6, 6e-6). For OKVQA [236] (outside knowledge VQA), ScienceQA [237] (science ques-

tion answering), and VizWizVQA [238] (VQA from people who are blind): learning rate (8e-6,

1e-5), and dropout (0.0, 0.02). For GQA [239] (VQA on image scene graphs): learning rate (5e-

6, 1e-5), and dropout (0.0, 0.02, 0.05). For RefCOCO [185], [240], [241] (referring expression

segmentation): label smoothing (0.1, 0.2), epochs (60, 100), and dropout (0, 0.05). For MSRVTT-

Caps [183] (open-domain short video captioning): weight decay (0, 1e-6), dropout (0, 0.2), and

epochs (20, 40).

Human Study

We conduct human studies to evaluate the quality of generated images using an image-to-image

pipeline, focusing on three criteria: Semantic Alignment, Style Alignment, and Layout Alignment.

For Semantic Alignment, participants judge which generated image more accurately captures the

original content and semantic details, such as object categories. Introducing new instances or

omitting existing ones from the input image is considered less desirable. For Style Alignment,

participants assess which generated image best retains the artistic style and visual aesthetics of

the original. For Layout Alignment, participants evaluate which generated image maintains a

composition and positioning of objects that closely matches the input image.

The results of this evaluation are reported in Table 6.2 of the main paper. Detailed instructions



CHAPTER 6. VISUAL LEXICON: RICH IMAGE FEATURES IN LANGUAGE SPACE 99

Visual LanguageRaw Image Visual LanguageRaw Image

Figure 6.9: More demo results of generating a set of images (generated under different diffusion noises),

which are highly semantically and visually similar to each other, by using ViLex tokens as “text” prompts

for text-to-image diffusion models.

and the question format for the human study are shown in Fig. 6.8.

Ablation Study

Training Steps. We observed that extending the fine-tuning steps of the vision encoder using our

ViLex pipeline leads to improved performance across nearly all evaluated benchmarks, as shown

in Table 6.6. Specifically, increasing the training steps from 150k to 300k yields significant gains.

Further extending the training to 600k steps provides marginal improvements compared to the

300k-step results. The largest improvements are observed in datasets that demand stronger spatial

understanding, such as the referring expression segmentation datasets RefCOCO/+/g.

Number of attention pooling layers. Although increasing the number of attention pooling layers

improves image reconstruction performance (as indicated by a lower FID score), it also introduces
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Generated Images 
(Visual Prompt + Text Prompt 1)

+ wearing a red hat

Visual Prompt 2

Generated Images 
(Visual Prompt + Text Prompt 3)

Generated Images 
(Visual Prompt + Text Prompt 2)

Text Prompt: + wearing sunglasses + autumn leaves

Figure 6.10: More demo results of zero-shot accessorization via prompting a frozen text-to-image genera-

tion model with our visual prompts (i.e., ViLex tokens) and text prompts from natural language.

a trade-off with image understanding capabilities. As shown in Table 6.7, we found that using

5 attention pooling layers provides the optimal balance between image generation quality and

developing an effective vision encoder for visual scene understanding.

#layers FID COCOCaps

2 2.62 140.7

5 2.58 141.5

8 2.52 141.0

Table 6.7: Ablation study on number of attention pooling layers.

Vision encoders. The ViLex approach effectively enhances various vision encoders for down-

stream visual scene understanding tasks. We initialize the vision encoder of ViLex with either

the CoCa [211] pretrained ViT or the SigLIP [180] pretrained ViT-So400M. Similar to our exper-

iments in previous sections, We observed consistent performance improvements for both image

understanding tasks, such as COCOCaps [24], and video understanding tasks, such as MSRVTT-

Caps [183]. Compared to a roughly 2% improvement for SigLIP in terms of CIDEr score on

COCOCaps, the gains for CoCa were even more substantial, reaching approximately 4%. The

flexibility to consistently improve different pretrained models demonstrates ViLex’s generalizabil-

ity across various types of vision encoders.
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Datasets CoCa F.T. w/ ViLex SigLIP F.T. w/ ViLex

COCOCaps 131.6 135.8 139.7 141.5

MSRVTTCaps 56.1 60.2 69.4 71.4

Table 6.8: Fine-tuning vision encoders with the ViLex approach enhances image understanding perfor-

mance across various pretrained models, including CoCa [211] and SigLIP [180]. F.T. denotes fine-tuning

the vision encoder, such as CoCa, during the ViLex model pretraining stage.

Demo Results

Semantic-level image reconstruction. In this section, we present additional demo results in

Fig. 6.9, showcasing a set of images generated with varying diffusion noises and different random

seeds. These images demonstrate high semantic and visual consistency, leveraging ViLex tokens

as “text” prompts for text-to-image diffusion models. However, as shown in the results, our model

occasionally misses small objects in the scene. This limitation primarily stems from using a low-

resolution text-to-image diffusion model as the base during the ViLex model’s pretraining phase.

We hypothesize that this issue could potentially be mitigated by employing a higher-resolution T2I

model as the base model.

Prompting a frozen T2I model with both visual and textual prompts. In the main paper, we

have demonstrated that ViLex tokens can serve as a novel visual “language” for multimodal image

generation. Unlike methods such as DreamBooth [179], [197] and textual inversion [198], which

require: (1) learning specialized text tokens for specific instances, (2) gradient-based training for

each individual image, and (3) the use of LORA adapters [215] to modify the model architec-

ture, DreamBooth must be fine-tuned separately for each object (or each set of images corre-

sponding to the same object). In contrast, ViLex enables several DreamBooth tasks like image

re-contextualization, artistic rendition and accessorization, as illustrated in Fig. 6.10, Fig. 6.5 and

Fig. 6.6, by simply prompting a frozen T2I model with a combination of our visual prompts (i.e.,

ViLex tokens) and natural language text prompts. This approach does not require changes to the

architecture of a pretrained text-to-image generation model or any fine-tuning of the T2I model

itself. All tasks are performed in a zero-shot and unsupervised manner.

6.5 Conclusions

We introduce ViLex, a visual lexicon that maps images directly into the text space, while ef-

fectively preserving complex visual details that are difficult to express in natural language. Our

representation can be seamlessly integrated into text prompts from natural language for both mul-

timodal image generation and downstream vision-language tasks. ViLex can also improve both

image understanding and reconstruction capabilities of pretrained vision encoders by fine-tuning

them using ViLex’s training approach.
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Part III

Analysis-for-Synthesis: Understanding

Models for Visual Scene Generation

“Without craftsmanship, inspiration is a mere reed shaken in the wind.”

— Johannes Brahms
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Chapter 7

InstanceDiffusion: Instance-level Control

for Image Generation

Image Caption: An image depicting in the morning. A brown cute teddy bear, a purple cute teddy bear, a yellow cute 
teddy bear, a blue cute teddy bear all standing side by side on a red brick road. The scene should be set in front of Pink 
Castle with clear blue sky overhead, punctuated by fluffy white clouds, and trees with green leaves. The pink castle should 
loom majestically in the background. Instance Captions: 1-4) A brown/purple/yellow/blue teddy bear; 5) a red brick road; 
6) Pink Castle; 7-8) green leaves; 9-10) fluffy white clouds

Image Caption: Craft an oil painting: Picture a seaside garden drenched in radiant hues of roses, lilies, and lavender, 
transitioning gracefully into the expansive azure ocean and blue sky. Integrate a weathered, rustic pathway with steps that 
invite viewers towards the water's edge, complemented by a prominent bouquet of flowers and plants.  
Instance Captions: 1-19) roses; 20) sky; 21) ocean; 22) pathway with steps; 23) bouquet of flowers; 24) plant; 25-26) plants
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a)  Diverse Instance Attributes and Locations b)  Dense Small Objects

c)  Various Location Conditions (box, mask, scribble, point)

Image Caption: An image of two little husky puppy in a wicker basket.  
Instance Captions: 1) a husky puppy sitting in a wicker basket + Mask. 2) a black and white husky puppy in a blue towel 
+ Box. 3) two husky puppies sitting in a wicker basket + Scribble. 4) a blue towel + Point

Hierarchy

Eagle

Head

Beak Eye

d)  Image Composition with Whole Instance, Part and Subpart

Image Caption: A golden eagle perched on a rugged rock. 
Instance Caption: 1) A golden eagle; 2) Eagle’s head; 3) Eagle’s beak; 4) Eagle’s eye

1
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1
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Figure 7.1: InstanceDiffusion’s generations using instance-level text prompts and location conditions for

image generation. Our model can respect: a) a variety of instances with diverse attributes (8 colors) and

boxes, b) densely-packed instances (>25 objects), c) mixed location conditions (such as boxes, masks,

scribbles, and points), and d) compositions with granularity spanning from entire instances to parts and

subparts. The instance inputs and their global text prompts are displayed, with the location conditions

displayed on the left image. Numbers in the box/mask/scribble/point refer to the instance id.

Text-to-image diffusion models produce high quality images but do not offer control over indi-

vidual instances in the image. We introduce InstanceDiffusion that adds precise instance-level con-

trol to text-to-image diffusion models. InstanceDiffusion supports free-form language conditions

per instance and allows flexible ways to specify instance locations such as simple single points,
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scribble, bounding boxes or intricate instance segmentation masks, and combinations thereof. We

propose three major changes to text-to-image models that enable precise instance-level control.

Our UniFusion block enables instance-level conditions for text-to-image models, the ScaleU block

improves image fidelity, and our Multi-instance Sampler improves generations for multiple in-

stances. InstanceDiffusion significantly surpasses specialized state-of-the-art models for each lo-

cation condition. Notably, on the COCO dataset, we outperform previous state-of-the-art by 20.4%

APbox
50 for box inputs, and 25.4% IoU for mask inputs.

7.1 Introduction

Image generation models [165], [166], [172], [242]–[249] trained on web-scale data have made

tremendous progress in the recent years. Notably, text conditioned diffusion models now produce

high quality images that contain the free form concepts specified in the text [165], [166], [172],

[248], [250], [251]. While text-based control is useful, it does not always allow for precise and

intuitive control over the output image. Thus, many different forms of conditioning, e.g., edges,

normal maps, semantic layouts have been proposed for better control [252]–[261]. These richer

controls enable a broader range of applications for the generative models in design, data genera-

tion [262], [263] etc. In this work, we focus on precise control over the instances in terms of their

location and attributes in the output image.

We propose and study instance-conditioned image generation whereby a user can specify every

instance in terms of its location and an instance-level text prompt to generate an image. The

location can be specified using either a bounding box, an instance mask, a single point or a scribble.

Practically, this allows for a flexible input where some instance locations maybe specified more

precisely using masks, and others less precisely using points. The per instance text prompts allow

for fine-grained control over the instance’s attributes such as color, texture, etc. Our proposed

instance-conditioned generation is a generalization of settings studied in prior work [253], [254],

[264] that consider only one location format and do not use per instance captions.

Our model presents several design choices that enable more precise yet flexible control for in-

stances in the output image. Since locations can be specified in a variety of formats, we present a

unified way to parameterize and fuse their information during the generation process. Our unified

modeling is simpler than prior work that uses separate architectures and strategies to model dif-

ferent location formats. Moreover, the unified modeling of location formats allows the model to

exploit the shared underlying structure of instance locations which improves performance.

Through comprehensive evaluations, our method InstanceDiffusion outperforms state-of-the-

art models specialized for particular instance conditions. We achieve a 20.4% increase in APbox
50

over GLIGEN [253] when evaluating with bounding box inputs on COCO [24] val. For mask-

based inputs, we obtain a 25.4% boost in IoU compared to DenseDiffusion [265] and a 17.0%

gain in APmask
50 over ControlNet [254]. As prior methods do not study point or scribble inputs

for image generation, we introduce evaluation metrics for these settings. InstanceDiffusion also

demonstrates superior ability to adhere to attributes specified by instance-level text prompts. We
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obtain a substantial 25.2 point gain in instance color accuracy and a 9.2 point improvement in

texture accuracy compared to GLIGEN.

Contributions. (1) In this paper, we propose and study instance-conditioned image generation

that allows flexible location and attribute specification for multiple instances. (2) We propose three

key modeling choices that improve results – (i) UniFusion (Sec. 7.3), which projects various forms

of instance-level conditions into the same feature space, and injects the instance-level layout and

descriptions into the visual tokens; (ii) ScaleU (Sec. 7.3), which re-calibrates the main features

and the low-frequency components within the skip connection features of UNet, enhancing the

model’s ability to precisely adhere to the specified layout conditions; (iii) Multi-instance Sampler

(Sec. 7.3), which reduces information leakage and confusion between the conditions on multiple

instances (text+layout). (3) A dataset with instance-level captions generated using pretrained mod-

els (Sec. 7.3) and a new set of evaluation benchmarks and metrics for measuring the performance

of location grounded image generation (Sec. 7.4). (4) Our unified modeling of different location

formats significantly improves results over prior work (Sec. 6.4). We also show that our findings

can be applied to previous approaches and boost their performance.

7.2 Related Work

Image Diffusion Models [172], [217], [251] learn the process of text-to-image generation through

iterative denoising steps initiated from an initial random noise map. Latent diffusion models

(LDMs) [266], [267] perform the diffusion process in the latent space of a Variational AutoEn-

coder [267], [268], for computational efficiency, and encode the textual inputs as feature vectors

from pretrained language models [17]. DALL-E 2 [166] synthesizes images using the image space

of CLIP [17]. In contrast, Imagen [165] diffuses pixels directly, without the need for latent images.

In addition, it demonstrates that generic large language models, such as T5 [176], trained solely on

text corpora, are surprisingly effective at encoding text for image generation.

Image Generation with Spatial Controls is a form of conditional image synthesis task [247],

[253]–[256], [269]–[277], which introduces spatial conditioning controls to guide the image gen-

eration process. Make-a-Scene, SpaText [264], GLIGEN [253], and ControlNet [254] add finer

grained spatial control, such as semantic segmentation masks, to large pretrained diffusion models

by allowing users to include additional images that explicitly define their desired image compo-

sition. GLIGEN [253] can also support controlled image generation using discrete conditions

such as bounding boxes. MultiDiffusion [278], DenseDiffusion [265], Attend-and-Excite [279],

ReCo [280], StructureDiffusion [281], Layout-Guidance [282], and BoxDiff [283] add location

controls to diffusion models without fine-tuning the pretrained text-to-image models. Discus-

sions. ControlNet and GLIGEN require training separate models for each type of controllable

input, which increases the overall complexity of the system and not effectively capture interactions

across various controllable inputs. Moreover, while ControlNet focuses solely on spatial condi-

tions and GLIGEN employs object category as the text prompt, the lack of training the models

with detailed instance-level prompts not only limits user control but also hinders the model from

effectively leveraging instance descriptions.
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Figure 7.2: InstanceDiffusion enhances text-to-image models by providing additional instance-level con-

trol. In additon to a global text prompt, InstanceDiffusion allows for paired instance-level prompts and

their locations to be specified when generating images. InstanceDiffusion is versatile, supporting a range

of location forms, from the simplest points, boxes, and scribbles to more complex masks, and their flexible

combinations.

7.3 Instance Diffusion

We study adding precise, versatile instance-level control for text-based image generation.

Problem definition. We aim to improve instance-level control in image generation by focusing on

two conditioning inputs for each instance, namely, its location and a text caption describing the in-

stance. More formally, we want to learn an image generation model f(cg, {(c1, l1), . . . , (cn, ln)})
that is conditioned on a global text caption cg and the per-instance conditions (ci, li) containing

caption ci and location li for n instances. This problem is similar to [264] and is a generalization

of the ‘open-set grounded text-to-image’ [253] problem which does not consider per-instance cap-

tions. Our generalization allows for a generic and flexible way to control the scene-layout in terms

of locations and attributes of the instances, as well as scene-level control via the global caption.

Approach overview

We introduce InstanceDiffusion (Fig. 7.2) for instance-conditioned image generation using a dif-

fusion model. We consider a variety of different and flexible ways to specify an object’s location,

e.g., a single point, a scribble, a bounding box, and an instance mask. Since obtaining large-scale

paired (text, image) data is much easier compared to (instance, image) data, we use a pretrained

text-to-image UNet model that is kept frozen. We add our proposed learnable UniFusion blocks

to handle the additional per-instance conditioning. UniFusion fuses the instance conditioning with

the backbone and modulate its features to enable instance-conditioned image generation. Addition-

ally, we propose ScaleU blocks that improve the UNet’s ability to respect instance-conditioning by
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Figure 7.3: UniFusion projects various forms of instance-level conditions into the same feature space,

seamlessly incorporating instance-level locations and text-prompts into the visual tokens from the diffusion

backbone.

raw image mask bounding boxscribble point

less precise

Figure 7.4: We represent different location condition formats as sets of points, with each format having

varying quantities of points. Masks are represented as sparsely sampled points within the mask and uni-

formly sampled points from boundary polygons, bounding boxes by the top-right and bottom-right corners,

and scribble are converted into uniformly sampled points.

rescaling the skip-connection and backbone feature maps produced in the UNet. At inference, we

propose Multi-instance Sampler which reduces information leakage across multiple instances.

Since obtaining a large paired (instance, image) dataset is difficult, we automatically generate

a dataset with instance-level location and text captions using state-of-the-art recognition systems.

Finally, we propose a new and comprehensive benchmark to evaluate the model’s performance for

instance-conditioned generation.
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UniFusion block

The UniFusion block, illustrated in Fig. 7.3, tokenizes the per-instance conditions (ci, li) and fuses

them with the features, i.e., visual tokens from the frozen text-to-image model. Similar to [253],

[284], the UniFusion block is added between the self-attention and cross-attention layers of the

backbone. The per-instance location li can be specified in one or more location formats such as

masks, boxes, etc. We now describe the key operations in the UniFusion block.

Location parameterization. As shown in Fig. 7.4, we convert the four location formats - masks,

boxes, scribbles, single point - into 2D points (denoted as pi= {(xk, yk)}
n
k=1 for instance i), with

each ‘format’ having varying quantities of points n. A scribble is converted into a set of uniformly

sampled points along the curve. We parameterize bounding boxes by their top-left and bottom-right

corners and convert masks into a set of points sampled from within the mask and from boundary

polygons. Prior work resizes semantic masks [253], [254] or boxes [264] into the diffusion latent

space of size 64×64. We found that this design hurts performance for overlapping instances and

small objects, and use our point-based parameterization instead.

Instance Tokenizer. We convert the 2D point coordinates pi for each location using a Fourier

mapping [285] γ(·) and encode the text prompt ci using a CLIP text encoder τ¹(·). Finally, we

concatenate the location and text embeddings and feed them to an MLP to obtain a single token

embedding gi for the instance i: gi = MLP([τ¹(ci), γ(pi)]).
We use a different MLP for each location format. Moreover, the per-instance location li can

be specified in one or more location formats. Thus, for each instance i, we obtain gmask
i , gscribble

i ,

gbox
i , and g

point
i . If an instance location is specified only using one format, e.g., a single point, we

use a learnable null token ei for the other location formats:

gi = MLP([τ¹(ci), s · γ(pi) + (1− s) · ei]) (7.1)

where s is a binary value indicating the presence of a specific location format.

Instance-Masked Attention and Fusion Mechanism. We denote the instance condition tokens,

g, per location format for all n instances by G, and the m visual tokens, v, from the backbone

as V. We apply masked self-attention (SA) to the instance condition tokens and the backbone

features
Ṽ = SAmask([V,Gmask,Gscribble,Gbox,Gpoint]) (7.2)

We consider two design choices, ablated in Table 7.5, for the location inputs in Eq. (7.2): 1)

‘Format aware’ (default) described above models each location format independently via concate-

nation. 2) ‘Joint format’ jointly models all location formats by concatenating embeddings from

each format and converting them into a single embedding (via an MLP) to use in the masked

self-attention.

We observed that vanilla self-attention, without masking, led to information leakage across

instances, e.g., color of one instance bleeding into another. Thus, we construct a mask M that

prevents such leakage across instances:

mask for vk · v
T
j : Mk,j=− inf if I

vk
̸= I

vj

mask for vk · g
T
i : Mk,m+i=− inf if I

vk
̸= i

(7.3)
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where I
vk

= i if the visual token vk falls within the region of the instance i defined by either a

bounding box or an instance segmentation mask.

Finally, the output of the masked self-attention is added back to the backbone via gated addition

V = V + tanh(ω)Ṽ[:m] (7.4)

where ω is a learnable parameter, initialized to 0, that controls the conditioning contribution of

UniFusion.

ScaleU block

In the UNet model, each block merges the main feature map Fb with the lateral skip-connection

features Fs, passing the concatenated feature to the subsequent UNet block. FreeU [286] finds that

the main backbone of UNet is critical for denoising, whereas its skip connections primarily con-

tribute high-frequency features to the decoder. Concatenating these two features directly leads to

the network neglecting the semantic content of the main features [286]. Therefore, FreeU suggests

reducing the low-frequency components of the skip features and enhancing the main features using

channel-independent and empirically-tuned values.

Our findings, however, demonstrate that for instance-conditioned image generation, a notable

improvement can be achieved by using channel-wise and learnable vectors to dynamically re-

calibrate Fb and Fs. More specifically, we introduce ScaleU, that has two learnable, channel-wise

scaling vectors: \b, \s for the main and skip-connected features, respectively. The main features

Fb are scaled by a simple channel-wise multiplication: F ′
b =Fb ¹ (tanh(\b) + 1). For the skip-

connection features, we select the low-frequency (less than rthresh) components using a frequency

mask α and scale them in the Fourier domain: F′
s= IFFT(FFT(Fs)»α). Here FFT(·) and IFFT(·)

denote the Fast-Fourier and Inverse-Fast-Fourier transforms, » is element-wise multiplication, and

α(r)=tanh(\s)+1 if r<rthresh otherwise=1, where r denotes the radius, and rthresh refers to the

threshold frequency. Both \b and \s are initially set to zero vectors.

Lightweight in parameters. The ScaleU module is incorporated into each of UNet’s decoder

blocks. It leads to a negligible (< 0.01%) overall increase in the number of parameters and brings

noticeable performance gains.

Multi-instance Sampler

To further minimize the information leakage across multiple instance conditionings, we optionally

use Multi-instance Sampler strategy during the model inference which improves the quality and

fidelity of the generated image.

Specifically, Multi-instance Sampler (cf. Fig. 7.5) involves: 1) For each of the n instances, run

a separate denoising operation for M steps (less than 10% of the overall steps) to get the instance

latents LI . Note that, since our model is trained to generate an object within the location token

specified for that object, we don’t need to explicitly require the model to update the latent rep-

resentation within the location. 2) Integrate the denoised instance latents {L1
I , · · · , L

n
I } obtained

from step (1) for each of the n objects with the global latent LG, which is derived from all instance
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Figure 7.5: Model inference with Multi-instance Sampler to minimize information leakage across multiple

instance conditionings.

tokens and text prompts, by averaging these latents together. 3) Proceed to denoise the aggregated

latent from step (2), utilizing all instance tokens and text prompts.

Data with Instance Captions

Obtaining a large-scale dataset that contains instance conditions is challenging. Standard object

detection datasets [24] only contain a sparse category label, rather than a detailed caption, per

object location. To capture more detailed information about instances and even instance parts, e.g.,

attributes, we construct a dataset by using multiple models: 1) Image-level label generation: We

employ RAM [287], a robust open-vocabulary image tagging model, to generate a list of common

image-level tags. 2) Bounding-box and mask generation: We then use Grounded-SAM [132],

[288] to produce bounding boxes and masks corresponding to these tags. These tags can at the

instance-level, e.g., a parrot, or at the part-level, e.g., a bird’s beak. 3) Instance-level text prompt

generation: To generate instance-level text prompts that include descriptions of the instances, we

crop the instances using their corresponding bounding boxes and create captions for these cropped

instances using a pretrained Vision-Language Model (VLM) BLIP-V2 [289].

Implementation Details

We describe salient implementation details and provide the full details in the supplement.

Model training. We follow the same settings as GLIGEN [253] and initialize our model with

a pretrained text-to-image model whose layers are frozen. We train the model with a batch size

of 512 for 100K steps using the Adam optimizer [290] with a learning rate that is warmed up to

0.0001 after 5000 steps. More details are in appendix materials.

Training data. We automatically generate instance-level masks, boxes and captions following Sec. 7.3.

We obtain scribble by randomly sampling points within the masks. For single-points, we randomly
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Location format input → Boxes Instance Masks Points Scribble

Method APbox APbox
50 ARbox FID (³) IoU APmask APmask

50 ARmask FID (³) PiM FID (³) PiM FID (³)

Upper bound (real images) 50.2 66.7 61.0 - - 40.8 63.5 58.0 - - - - -

GLIGEN [253] 19.6 35.0 30.7 27.0 - - - - - - - - -

GLIGEN [253]∗ 19.3 34.6 31.1 - - - - - - - - 30.2 32.4 

ControlNet [254]! - - - - - 6.5 13.8 12.9 - - - - -

DenseDiffusion [265] - - - - 35.0 / 48.6 - - - - - - - -

SpaText [264]! - - - - - 5.3 12.1 10.7 - - - - -

InstanceDiffusion 39.0 55.4 52.4 23.1 61.6 / 71.4 23.5 46.1 34.9 25.2 79.7 27.1 67.3 26.4

vs. prev. SoTA +19.4 +20.4 +21.3 -3.9 +25.4 / +22.8 +17.0 +32.3 +22.0 - - - +37.1 -6.0

Table 7.1: Evaluating different location formats as input when generating images. We measure the YOLO

recognition performance (AP, AR) for the generated image wrt the location condition provided as inputs,

and FID on the COCO val set. Most prior methods only support a handful of the location conditions. We

observe that InstanceDiffusion, while using the same model parameters, supports various location inputs.

In each setting, InstanceDiffusion substantially outperforms prior work on all metrics. *: reproduced using

official models and evaluated with YOLOv8.  : GLIGEN’s scribble-based results are derived by using

the top-right and bottom-left corners as the bounding box for the region encompassed by the scribble. We

measure the IoU using [265]’s official evaluation codes (left), and YOLOv8-Seg (right). !: ControlNet [254]

(and SpaText [264]) only supports semantic segmentation mask inputs, and do not differentiate between

instances of the same class. We assess ControlNet’s APmask using its official mask conditioned Image2Image

generation pipeline.

select a point within a circular region of radius 0.1 ·r, centered at the bounding box’s center, where

r is the length of the shortest side of the box.

7.4 Experiments

Experimental setup

Training data. Prior work, notably GLIGEN [253], relies on automatic annotations that use open-

vocabulary detection models. These do not yield per-instance captions and different location for-

mats such as scribble etc(Note: ‘mask’ conditioning in prior work [253], [264] is per-category

and not per-instance). Thus, to support the richer conditioning proposed in our work, we rely on

recognition models as described in Sec. 7.3 to generate instance-level annotations include different

location formats (masks, boxes, scribbles, single-points) and per-instance captions. To ensure fair

comparison to prior work [253], we use approximately the same number of images (5M) from an

internal licensed dataset of natural images and paired global text.

Test data. We use standard benchmarks with bounding box and instance masks: 1) COCO [24]

val with 80 classes; 2) large vocabulary instance segmentation dataset LVIS [61] val with over

1200 classes; 3) 250 selected samples (∼2 objects per image) from COCO val as in [265]. We

do not use the real images from the dataset, and only use the text and location conditions. Notably,

we also do not use any information from the train splits of the data which makes our evaluations

zero-shot.
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Image Caption:  
a yellow American robin, 
brown Maltipoo dog, a gray 
British Shorthair in a stream, 
alongside with trees and rocks 
Instance Captions:  

- a gray British Shorthair 
- a yellow American robin 
- a brown Maltipoo dog 
- a close up of a small 

waterfall in the woods

Figure 7.6: Qualitative comparison of InstanceDiffusion vs. GLIGEN conditioned on multiple instance

boxes and prompts. Prior work (bottom row) fails to accurately reflect specific instance attributes, e.g.,

colors for the flower and puppies on the left, and not depicting a waterfall on the right. The generations also

do not capture the correct instances, and are prone to information leakage across the instance prompts, e.g.,

generating two similar instances on the right. InstanceDiffusion effectively mitigates these issues.

Evaluation metrics for alignment to instance locations. We measure how well the objects in the

generated image adhere to different location formats in the input.

Bounding box. We follow prior work [253], [265], [291], [292] and use the YOLO score. Specif-

ically, we use a pretrained YOLOv8m-Det [292] detection model. We compare the model’s de-

tected bounding boxes on the generated image with the bounding boxes specified in the input

using COCO’s official evaluation metrics (AP and AR). We report APbox
l , APbox

m , and APbox
s , which

evaluate the model’s performance based on different object sizes.

Instance mask. We compare YOLOv8m-Seg [292]’s detected instance masks in the generated

image to the masks specified in the input using the COCO AP and AR metrics. To compare

with [265], we report the IOU score for the mask.

Scribble. Since prior work has not reported on alignment performance using scribble, we intro-

duced a new evaluation metric using YOLOv8m-Seg. We report “Points in Mask” (PiM), which

measures how many of randomly sampled points in the input scribble lie within the detected mask.

Single-point. Similar to scribble, the instance-level accuracy PiM is 1 if the input point is within

the detected mask, and 0 otherwise. We then calculate the averaged PiM score.

Evaluation metrics for alignment to instance prompts. We measure the alignment of the objects

in the generated image to the corresponding text and location conditions from COCO val set.

Compositional attribute binding. We measure if the generated instances adhere to the attribute

(color and texture) specified in the instance prompts. We use YOLOv8-Det to detect the bounding

boxes. We feed the cropped box to the CLIP model to predict its attribute (colors and textures),

and measure the accuracy of the prediction with respect to the attribute specified in the instance

prompt. We use 8 common colors, i.e., “black”, “white”, “red”, “green”, “yellow”, “blue”, “pink”,

“purple”, and 8 common textures, i.e., “rubber”, “fluffy”, “metallic”, “wooden”, “plastic”, “fabric”,

“leather” and “glass”.

Instance text-to-image alignment: We report the CLIP-Score on cropped object images (Local
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Methods
Color Texture Human

EvalAcccolor CLIPlocal Acctexture CLIPlocal

GLIGEN 19.2 0.206 16.6 0.206 19.7

InstDiff 54.4 0.250 25.8 0.221 80.3

∆ +35.2 +0.044 +9.2 +0.015

Table 7.2: Attribute binding. We measure whether the attributes of the generated instances match the

attributes specified in the instance captions. We observe that InstanceDiffusion outperforms prior work on

both types of attributes. Human evaluators prefer our generations significantly more than the prior work.

Methods AP AP50 APs APm APl APr APc APf

Upper bound 44.6 57.7 33.2 55.0 66.1 31.4 44.5 50.5

GLIGEN [253] 9.9 9.5 1.6 10.5 31.1 7.4 10.0 10.9

InstanceDiffusion 17.9 25.5 5.5 24.2 45.0 12.7 18.7 19.3

vs. prev. SoTA +8.0 +16.0 +3.9 13.7 +13.9 +5.3 +8.7 +8.4

Table 7.3: Box inputs on LVIS val. We evaluate using a pretrained detector (ViTDet-L [104]) and obtain

the upper bound by evaluating the detector on real images resized to 512×512. InstanceDiffusion signifi-

cantly outperforms prior work across all metrics including object sizes, and class frequencies.  : reproduced

results.

CLIP-score [17], [264]), which measures the distance between the instance text prompt’s features

and the cropped object images.

Global text-to-image alignment: CLIP-Score [17], [171] between the input text prompt and the

generated image.

Human evaluation: We evaluate both the fidelity wrt instance-level conditions (locations and text

prompts) and the overall aesthetic of the generated images. We prompt users to select results that

more closely adhere to the provided layout conditions and the accompanying instance captions.

This evaluation is conducted on 250 samples, each accompanied by instance-level captions and

bounding boxes.

Comparison with prior work

Single location format at inference. We assess the efficacy of multiple methods in generating

images under diverse location formats and report results in Table 7.1. Since our evaluation uses

recognition model (YOLO), we establish an upper bound by measuring the recognition perfor-

mance on the real dataset images corresponding to the text and location conditions. Overall, our

results show that InstanceDiffusion outperforms all prior work across various location conditions

when measured across all evaluation metrics for object location and image quality. Next, we dis-

cuss the results for each location format. Box input: InstanceDiffusion achieves the highest APbox

of 39.0 and ARbox of 55.4, outperforming the previous state-of-the-art by a significant margin,

+19.4 and +20.4 for APbox and ARbox, respectively. The reduction in FID score for InstanceD-

iffusion demonstrates its ability to produce high-quality images while adhering to the prescribed
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point box mask PiM APbox APbox
50 APmask APmask

50

6 : : 79.7 - - - -

6 6 : 86.3 39.0 55.4 - -

6 6 6 86.6 41.6 56.2 23.5 46.1

Table 7.4: Multiple location formats at inference improves performance and helps the model to better

respect location conditions.

location conditions. Instance mask input imposes stricter constraints on the instance location than

box input and is more challenging than the semantic masks studied in prior work [253], [254] that

do not distinguish individual instances. Even in this challenging setting, InstanceDiffusion out-

performs prior SOTA [265] significantly. Points and Scribble: Given the lack of prior studies that

present quantifiable results for these location inputs, we introduce these novel evaluation metrics

and benchmarks, establishing a new baseline for future research endeavors. Note that the term

‘scribble’ in ControlNet [254] refers to object boundary sketches rather than scribbles used in our

work which follows [293]–[295].

Attribute binding. In Table 7.2, we measure whether the attributes (color and texture) of the

generated instances match the attributes specified in the instance captions. We observe that attribute

binding is challenging for the prior SOTA method, GLIGEN while InstanceDiffusion significantly

improves on both color and texture binding. Adhering to texture seems to be more challenging than

colors, e.g., wooden dog vs. red dog, as reflected by the lower accuracies for all methods on

this task. We compare the generations produced by both models using human evaluators and find

that humans strongly prefer our generations over prior work (80.3% preference) confirming their

high generation quality and controllability.

Challenging box inputs. In Table 7.3, we evaluate zero-shot performance on the challenging

LVIS [61] dataset which has 15× more classes than COCO, and many more instances per sample

(∼12 objects per images). Even on this challenging dataset, InstanceDiffusion outperforms prior

work across all metrics. The gain is particularly strong on medium to large sized objects.

Multiple location formats at inference are analyzed in Table 7.4. We observe that using all

formats together provides the best performance and more precise control on the instance location.

This confirms the benefit of our design choice to model all location formats.

Qualitative results. Fig. 7.6 provides qualitative comparisons between InstanceDiffusion and the

previous SOTA method, GLIGEN [253], when given multiple instance boxes and associated text

prompts. We see that GLIGEN often misinterprets specific instance attributes; e.g., it incorrectly

renders the colors of flowers and puppies on the left, and fails to produce a waterfall in the right

images. GLIGEN also shows ‘information leakage’ across instance prompts (generating duplicate

birds for the two images on the right). In Fig. 7.7, we show more qualitative results using different

location conditions for InstanceDiffusion.



CHAPTER 7. INSTANCEDIFFUSION: INSTANCE-LEVEL CONTROL FOR IMAGE

GENERATION 115

Image Caption: Cute Corgi at table in a living room with plants. A chocolate cake is on the table. 
Instance Captions: 1) a Corgi sitting in front of a cupcake 2) Corgi's mouth and tongue 3) a white 
plate 4) a chocolate cupcake on a white plate 5) a living room with plants and a painting on the wall 
6) a white paw 7) a table

Figure 7.7: InstanceDiffusion image generation using various location conditions: points (row 1) and masks

(row 2).

Ablation study

We ablate the components in InstanceDiffusion and use the COCO val set and provide mask,

box and point location formats per-instance as input by default. Some design choices used

in our method are ablated in in Table 7.6. We compare our proposed ScaleU block with FreeU

in Table 7.6a. ScaleU leads to an improved localization AP suggesting that our learnable scaling

of the backbone features outperforms the manually tuned FreeU. The impact of the proportion of

MIS steps used in inference is explored in Table 7.6b. MIS can effectively improve the quality of

the generated images and attribute binding. Lastly, for mask-conditioned input, Tabs. 7.6c and 7.6d

show that points derived from both polygons and instance masks and using 128 points per instance

mask gives the optimal performance.

Contribution of each component in InstanceDiffusion and its effect on image generation is mea-

sured in Table 7.5. We compare using different design choices for the fusion mechanism in UniFu-

sion that fuse the location condition embeddings with the backbone text-to-image features: Format
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APmask
50 Acccolor FID (³)

1 6 6 6 6 6 46.1 55.4 23.1

2 : 6 6 6 6 40.5(5.6) 49.1(6.3) 23.4(0.3)

3 6 : 6 6 6 45.5(0.6) 53.1(2.3) 23.2(0.1)

4 6 6 : 6 6 43.7(2.4) 52.2(3.2) 23.2(0.1)

5 6 6 6 : 6 44.0(2.1) 38.2(17.2) 23.1(0.0)

6 6 6 6 6 : 46.1(0.0) 49.5(5.9) 26.6(3.5)

Table 7.5: Contribution of each component evaluated by removing or adding it and measuring the impact

of the generated image in terms of its instance location performance (AP), and instance attribute binding

(Acc), and overall image quality (FID). When Format Aware (FA) fusion mechanism is disabled, we use the

Joint format fusion mechanism instead. Top row is the default setting for InstanceDiffusion in the paper and

we report the drop in performance for each subsequent row in red.

Versions → FreeU [286] ScaleU

APbox
50

52.2 55.4

(a) ScaleU

% of Steps → 0% 5% 10% 15% 20%

FID 26.6 24.2 23.1 23.0 23.0

(b) % of MIS Steps

format → polygons polygons+inside-points

APmask
50

43.6 46.1

(c) mask parameterization

# points → 32 64 128 256

APmask
50

40.0 44.2 46.1 46.1

(d) # points per mask

Table 7.6: Ablating design choices where the default settings are indicated in gray. (a) Compared to

FreeU, our proposed ScaleU block improves the models ability to respect location conditions. (b) Multi-

instance Sampler (MIS) lowers the FID and improves overall image quality. We use 10% MIS steps for a

good tradeoff between inference speed and quality. (c) Parameterizing the instance masks using points on

their boundaries and inside is beneficial. (d) Increasing the number of points used to parameterize masks

improves performance.

GLIGEN [253] w/ MIS InstanceDiffusion w/ MIS

Acccolor 19.2 29.7 49.5 55.4

Table 7.7: Multi-instance Sampler can be adapted for previous location conditioned work, yielding notable

performance gains.

Aware fusion (row 1) or the Joint Format fusion (row 2). We find that making the fusion mecha-

nism format-aware significantly improves performance since the location formats specify varying

degrees of control on the instance location. Comparing rows 1, 3 shows that using Instance-Masked

Attention for fusing the location features helps the model focus on instance-specific regions and

thus improves attribute binding (color accuracy). Removing ScaleU (rows 1, 4) causes a signifi-

cant drop in APmask
50 and Acccolor scores. This underscores the importance of dynamically adjusting

the channel weights of both skip connected and backbone features. In row 5, we observe that our

generated instance captions are critical for learning attribute binding, as indicated by the 17% drop

in Acccolor after removing them. Finally, row 6 shows that Multi-instance Sampler (MIS) improves

the overall image quality (lower FID) and attribute binding (color accuracy).

MIS improves prior work. As shown in Table 7.7, we applied Multi-instance Sampler to other
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Image Caption: A cup of tea with tangerines, bananas, and cookies on the table. high quality. professional photo.  
Instance Captions: 1) a cup of tea on a lace doily 2) a close up of three oranges on a black background 3) oranges 
in a glass bowl on a table 4) a tray of pastries on a table with oranges 5) a close up of some cookies on a table 6) 
oranges in a glass bowl 7) oranges in a glass bowl 8) an orange that has been cut in half on a table 9) an orange is 
cut in half 10) bananas 11) a bouquet of flowers on a table 12) a bouquet of flowers on a table 13) A candle

Figure 7.8: InstanceDiffusion can also support iterative image generation. Using the identical initial noise

and image caption, InstanceDiffusion can progressively add new instances (like a bouquet of flowers in row

two and a candle in row three), while minimally altering the pre-generated instances (row one).

location-conditioned text-to-image models and observed significant gains for the attribute binding

ability of GLIGEN. These results confirm that MIS minimizes information leakage and that it can

be easily used to improve other location-conditioned models.

Application: Iterative generation. Since InstanceDiffusion allows for precise control over the

instances, we show a useful application that benefits from this property in Fig. 7.8. InstanceDiffu-

sion allows users to selectively insert objects into precise locations while preserving the integrity

of previously generated objects and the global scene. We hope that the precise control enabled by

InstanceDiffusion will lead to many other such useful applications.
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Preliminary

Diffusion Models [172], [217], [251] learn the process of text-to-image generation through iter-

ative denoising steps initiated from an initial random noise map, denoted as zT . Latent diffusion

models (LDMs) [266] perform the diffusion process in the latent space of a Variational AutoEn-

coder [268], for computational efficiency, and encode the textual inputs as feature vectors from

pretrained language models [17], [176].

Specifically, starting from a noised latent vector zt at the time step t, a denoising autoen-

coder [219], [266], denoted as ϵ¹, is trained to predict the noise ϵ that is added to the latent vector

z, conditioned on the text prompt c. The training objective is defined as:

L = E
z∼E(x),ϵ∼N (0,1),t

[
||ϵ− ϵ¹(zt, t, Ä(c))||

2
2

]
, (7.5)

where t is uniformly sampled from the set of time steps {1, ..., T}. Ä pre-process the text prompt c

into text tokens Ä(c), utilizing the pretrained CLIP text model [17].

During inference, a latent vector zT , sampled from a standard normal distribution N (0, 1) is

iterative denoised using DDIM [248] to obtain z0. Finally, the latent vector z0 is input into the

decoder of VAE to generate an image x̃.

Ablation Study

In addition to the ablation study we presented in Sec. 7.4, in this section, we also offer additional

ablations focusing on the hyper-parameters of UniFusion modules, design variations for ScaleU,

the impact of model inference with hybrid inputs, among other aspects.

Bandwidth → 4 8 16 32

APbox
50

50.8 53.9 55.4 55.3

(a) freq. bandwidth

N → 512 2048 3072 4096

APbox
50

52.9 53.5 55.4 55.4

(b) MLP dim

Table 7.8: Ablating design choices for UniFusion. Components and default settings are highlighted in

gray. (a) We vary the frequency bandwidth used in the Fourier embeddings of the point coordinates in the

UniFusion block. (b) We study the impact of the dimensionality of MLP layers in the UniFusion block.

Design choices for UniFusion. We first analyze the impact of frequency bandwidths when pro-

jecting location conditions into a higher-dimensional feature space with Fourier Transform, as

depicted in Table 7.8a. The Fourier transform process empowers a multilayer perceptron (MLP) to

grasp high-frequency functions in low-dimensional problem domains [285]. We apply the Fourier

mapping to the 2D point coordinates associated with each location to convert them into an embed-

ding. The embedding enables MLPs to better learn a high-frequency function for the coordinates.

Notably, expanding the frequency bandwidth tends to improve the performance, but a plateau is

reached once the bandwidth exceeds 16. The influence of the dimensionality (N ) of the MLP

layer within UniFusion is assessed in Table 7.8b. We find that a dimension of 3072 emerges as the
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optimal balance between model efficacy and its size. Increasing the MLP layers dimensions from

3072 to 4096 does not yield further improvements in performance. Therefore, we select N=3072
by default.

Can we use one single token for all location conditions? Actually, we can still achieve reasonable

performance using a unified tokenization function that results in a single token for all forms of

location inputs, as demonstrated in Table 7.5. However, having multiple tokens (M tokens) for

different input types (M types) leads to optimal performance. This is because these four types

of layout conditions necessitate distinct approaches to ensuring that the model respects the layout

condition appropriately. Specifically, the model needs to disseminate grounding information to

adjacent visual tokens when using point and scribble inputs. In contrast, bounding-box and mask

conditions require the model to confine the grounding information injection within the specified

box or mask.

Why not employ masks as extra channels, as seen in GLIGEN [253] and ControlNet [254]?

In these approaches, the semantic segmentation masks (do not discriminate instances in the same

class) are resized to a smaller resolution of 64×64 features. Nonetheless, our observations indicate

that when the occlusion ratio between instances is high, particularly in cases where overlapping

instances carry similar semantic information, the model’s performance is compromised a lot. Ad-

ditionally, the model encounters difficulties when generating high-quality results for very small

objects. Therefore, we convert all masks into point-based inputs. However, it is possible that

adding segmentation masks as additional input could further improve our model’s performance,

we leave it for future research.

Versions → FreeU [286] ScaleU SE-ScaleU

APbox
50

52.2 55.4 55.2

Table 7.9: We evaluate the performance of the lightweight ScaleU (Fig. 7.9 b) against the dynamically

adaptable SE-ScaleU (Fig. 7.9 c), and further compare our ScaleU with FreeU [286], a previous work that

manually tune the scaling vectors.

Design choices for ScaleU are depicted in Fig. 7.9. Beyond the standard ScaleU block described

in Sec. 7.3, which re-calibrates both main and skip-connected features before their concatenation in

the UNet model, we explored an alternative design, SE-ScaleU ( Fig. 7.9c). This variant employs

an MLP layer, similar to the Squeeze-and-Excitation module [296], for dynamically generating

scaling vectors based on each sample’s feature map. However, as demonstrated in Table 7.6a, while

SE-ScaleU offers performance on par with the light-weight ScaleU block, it requires additional

parameters in the MLP layers. Consequently, we default to using ScaleU.

Design choices for Multi-instance Sampler. There are two design strategies for Multi-instance

Sampler: crop-and-paste and instance latents averaging, with the latter being our paper’s default

approach. The crop-and-paste Multi-instance Sampler involves: 1) Running separate denoising

operations for each of the n instances over M steps to obtain instance latents LI . 2) Cropping in-

stance latents {L1
I , · · · , L

n
I } as per location conditions and pasting these cropped, denoised latents

onto the global latent LG, derived from all instance tokens and text prompts, at their respective
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Figure 7.9: Various design choices for the ScaleU block. In the UNet architecture, Fb represents the main

features, while Fs denotes the skip connected features. Typically, UNet employs skip connections as shown

in (a) to pass features from the encoder to the decoder, aiding in recovering spatial information lost in

downsampling. We introduce ScaleU (b), which re-calibrates both the main and skip-connected features

prior to their concatenation. Additionally, we implement SE-ScaleU (c), which utilizes an MLP layer—akin

to the Squeeze-and-Excitation module [296]—to dynamically produce scaling vectors conditioned on each

sample’s feature map.

crop-and-paste latents averaging

FID 23.3 bfseries 23.1

APmask
50

45.5 bfseries 46.1

Table 7.10: Model inference with Multi-instance Sampler using different Multi-instance Sampler design

variations.

locations. 3) Continuing the denoising process on the combined latent from step (2) using all in-

stance tokens, instance text prompts, and the global image prompt. This process largely mirrors

our default latent averaging Multi-instance Sampler, except for step (2)’s latent merging method.

While crop-and-paste Multi-instance Sampler matches or slightly surpasses the performance

of our default averaging approach on some testing cases, it has its limitations: 1) In step (2) of the

crop-and-paste Multi-instance Sampler, the model needs to crop instance latents according to the

bounding box or mask provided, limiting its application to bounding boxes, and instance masks.

For point inputs and scribbles, the model has to conjecture the size/shape of the instance. 2) The

presence of overlapping instances presents a challenge. The model can only preserve latents from

a single instance in these regions, resulting in blurred and diminished-quality pixels in areas of

instance overlap.

Multiple location formats at inference are analyzed in Table 7.11. It is observed that having

more location conditions provides the best performance and more precise control on the instance

location. This results in significant performance improvements, particularly for instance masks

(9.9% APmask) and scribble (16.3% PiM). Note that many of the other location formats can be

automatically derived: For image generation conditioned on instance masks, since both the box and

the central point can be inferred from the mask, our model enjoys this performance improvement
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Image Caption:  
Knitted bear in a garden with flowers 
chrysanthemums. Floral background. 
Instance Captions:  
- a small crocheted bear sits on top of 

yellow sunflowers  
- sunflower 
- yellow sunflower in a garden 
- a close up of yellow sunflowers

0.1 0.75

Figure 7.10: As the UniFusion module is integrated for an increasing proportion of timesteps (from 5%

timesteps to 75% timesteps), the model’s adherence to the instance conditions progressively improves. The

generation of the sunflower at the top left corner occurs once the UniFusion module is activated for 75% of

the total timesteps.

box point mask APbox APbox
50 point box mask PiM

6 : : 36.1 52.4 6 : : 79.7

6 6 : 39.0 55.4 6 6 : 86.3

6 6 6 bfseries 41.6 bfseries 56.2 6 6 6 bfseries 86.6

mask box point APmask APmask
50 scribble box mask PiM

6 : : 13.6 27.3 6 : : 67.3

6 6 : 20.9 40.9 6 6 : 71.8

6 6 6 bfseries 23.5 bfseries 46.1 6 6 6 bfseries 83.6

Table 7.11: Model inference with hybrid location inputs. We found that hybrid inputs can often help the

model to better respect the location conditions and lead to performance gains. Default inference setting is

colored in gray. Note: Given a box, one can always determine a point by using its center. Similarly, from a

mask, both a box and a central point can be derived without the need for extra user inputs.

without imposing extra demands on users; Likewise, for boxes, the performance gains achieved

by incorporating a point as the instance location condition can be obtained without any additional

user inputs. These derived location formats improve location conditioning without additional user

inputs.

Impact of UniFusion module. Fig. 7.10 illustrates that as the UniFusion module is applied over

a increasing percentage of timesteps (ranging from 10% to 75%), the model’s adherence to the

instance conditions progressively improves. For instance, the sunflower in the top left corner is

generated only when the UniFusion module is active for 75% of the total timesteps. Similarly,

the sunflower in the bottom right corner manifests after the module has been active for 25% of

the timesteps. Additionally, the model’s ability to accurately adhere to the teddy bear’s location

condition is enhanced as UniFusion is utilized for more extended timesteps.
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Model Training

Model training. We follow the same setup as GLIGEN [253] and initialize our model with a

pretrained text-to-image model whose layers are kept frozen. We add the learnable parameters for

instance conditioning and train the model with a batch size of 512 for 100K steps. We use the

Adam optimizer [290] with a learning rate that is warmed up to 0.0001 after 5000 iterations. We

learn the model with exponential moving average (EMA) on model parameters with a decay factor

of 0.99 and use the EMA model during the inference time. In addition, we have a 10% probability

to set all four location inputs as null tokens to support classifier-free guidance, following the ap-

proach proposed in [297]. Additionally, for the various location condition tokens, including masks,

bounding boxes, points, and scribbles, each has a 10% dropout rate. We use 64 Nvidia A100 GPUs

to train the model.

Applications and Qualitative Results

Iterative Image Generation. InstanceDiffusion’s capability for precise instance control allows

InstanceDiffusion to excel in multi-round image generation, leveraging this feature. InstanceD-

iffusion enables users to strategically place objects in specific locations while maintaining the

consistency of previously generated objects and the overall scene. We outline the process of our

iterative image generation in the following three steps:

• 1) Initially, generate images using the global image caption, all instance captions with their

respective location conditions, and random noise.

• 2) Users have the option to introduce new instances by supplying additional instance conditions,

including text prompts and locations. They can also modify existing instances by altering their

descriptions or locations.

• 3) Employ the revised set of instance conditions, the global prompt, and the same random noise

as in step 1 to create a new image.

Steps 2 and 3 can be repeated for multiple rounds until the desired outcome is achieved.

In addition to the visuals we have shown in the main paper, we provide more qualitative results

on iterative image generation in Fig. 7.11. With minimal changes to pre-generated instances and

the overall scene, users can selectively introduce new instances (as seen in row two, where “a

bouquet of flowers” and “a donut” are added to the images from row one), substitute one instance

for another (in row three, “a donut” is replaced with “a lighted candle”), reposition an instance (in

row four, “a lighted candle” is moved to the bottom right corner), or adjust the size of an instance

(in row five, the size of “a bouquet of flowers” is increased).

Hierarchical location conditioning in image composition. Our findings, illustrated in Fig. 7.12,

reveal that incorporating hierarchical location conditionings - specifically, the locations and sizes

of parts and subparts of an instance - as model inputs subtly alters the overall pose of an object

(right, left, front). This demonstrates the effective use of spatial hierarchy in visual design. We

hope that this capability could inspire more future research and applications in fine-grained control

in image generation.
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More demo results for InstanceDiffusion’s image generation are shown in Figs. 7.13 and 7.14.

7.5 Conclusions, Limitations and Future Work

We presented InstanceDiffusion which enables precise instance-level control for text-to-image gen-

eration and significantly outperforms all prior work in terms of complying with instance attributes

and accommodates a variety of location formats – masks, boxes, scribbles and points. Our studies

indicate that there is a noticeable disparity in the generation quality of small objects compared to

larger ones. We also find that texture binding for instances poses a challenge across all methods

tested, including InstanceDiffusion. Improving instance conditioning for these cases is an impor-

tant direction for future research.
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Image Caption: A cup of tea with tangerines, bananas, and cookies on the table. high quality. professional photo.  
Instance Captions: 1) a cup of tea on a lace doily 2) a close up of three oranges on a black background 3) oranges in a glass bowl on a table 4) a 
tray of pastries on a table with oranges 5) a close up of some cookies on a table 6) oranges in a glass bowl 7) oranges in a glass bowl 8) an orange 
that has been cut in half on a table 9) an orange is cut in half 10) bananas 11) a bouquet of flowers on a table

Add “a bouquet of flowers” and “A donut”

Replace “A donut” to “A lighted candle” 

Move ”A lighted candle” to the right corner

Resize ”a bouquet of flowers”

Figure 7.11: Iterative Image Generation. With minimal changes to pre-generated instances and the overall

scene, users can selectively introduce new instances (as seen in row two, where “a bouquet of flowers” and

“a donut” are added to the images from row one), substitute one instance for another (in row three, “a donut”

is replaced with “a lighted candle”), reposition an instance (in row four, “a lighted candle” is moved to the

bottom right corner), or adjust the size of an instance (in row five, the size of “a bouquet of flowers” is

increased).
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Image Caption: A cute {animal} standing in a forest at autumn, high quality, professional photo.  
Instance Captions: 1) a cute {animal} 2) head 3) Golden Retriever / British Shorthair / Red Panda: nose and mouth; Macaw: beak

Left Front Right Left Front Right

Figure 7.12: Let’s get everybody turning heads! Hierarchical location conditioning in image composition.

These results illustrate how the orientation of parts and subparts subtly influences the pose of the whole

object (right, left, front), demonstrating the application of spatial hierarchy in visual design. We anticipate

that this capability will pave the way for further research and applications in achieving more precise control

in image generation.
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Image Caption: stunning beach scene with at sunset. mountains in the distance. a turtle on the beach. Beautiful summer landscape. 
Ocean waves on beach at sunset. high quality. professional photo. 
Instance Captions: 1) sky at sunset, with blue and purple clouds, beautiful summer landscape 2) mountains at distance 3) ocean 
waves 4) beach 5) a turtle on the beach 

Image Caption: Black Easter eared rabbit sitting in wicker basket with ripe apples on pink wooden background.Thanksgiving day 
concept with funny cute hare and autumn harvest.  
Instance Captions: 1) a black rabbit 2) a wicker basket with a rabbit in it. 3) a close up of a ball of hay on the ground

Figure 7.13: More image generations with point and scribbles as model inputs, which were not supported

by previous layout conditioned text-to-image models.
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Image Caption: Cathedral of Palma de Mallorca viewed through lush greenery of the island. Vintage painting, background 
illustration, beautiful picture, travel texture 
Instance Captions: 1) a large cathedral with spires and trees in the background; 2) a cathedral with a cloudy sky 3) palm trees 4) 
palm trees 5) palm trees 6) an ornate building with a spire and a clock tower

InstanceDiffusion Standard T2I

Image Caption: Knitted toy animal in flowers chrysanthemums. Floral background. Minsk Botanical Garden 
Instance Captions: 1) sunflower; 2) a small crocheted toy sits on top of yellow flowers 3) sunflower

InstanceDiffusion Standard T2I

Figure 7.14: More demo images on image generation with point and bounding box as model inputs. The

standard Text-to-Image model refers to the pretrained text-to-image model InstanceDiffusion and GLIGEN

used. Standard T2I model uses the image caption as the model input to generates these images.
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Part IV

Self-supervised Debiased Learning

“Everything we hear is an opinion, not a fact. Everything we see is a perspective, not

the truth.”

— Marcus Aurelius
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Chapter 8

Unsupervised Visual Attention and

Invariance for Reinforcement Learning

Vision-based reinforcement learning (RL) is successful, but how to generalize it to unknown test

environments remains challenging. Existing methods focus on training an RL policy that is univer-

sal to changing visual domains, whereas we focus on extracting visual foreground that is universal,

feeding clean invariant vision to the RL policy learner. Our method is completely unsupervised,

without manual annotations or access to environment internals.

Given videos of actions in a training environment, we learn how to extract foregrounds with

unsupervised keypoint detection, followed by unsupervised visual attention to automatically gen-

erate a foreground mask per video frame. We can then introduce artificial distractors and train a

model to reconstruct the clean foreground mask from noisy observations. Only this learned model

is needed during test to provide distraction-free visual input to the RL policy learner.

Our Visual Attention and Invariance (VAI) method significantly outperforms the state-of-the-

art on visual domain generalization, gaining 15∼49% (61∼229%) more cumulative rewards per

episode on DeepMind Control (our DrawerWorld Manipulation) benchmarks. Our results demon-

strate that it is not only possible to learn domain-invariant vision without any supervision, but

freeing RL from visual distractions also makes the policy more focused and thus far better.

8.1 Introduction

Vision-based deep reinforcement learning (RL) has achieved considerable success on robot control

and manipulation. Visual inputs provide rich information that are easy and cheap to obtain with

cameras [298]–[302]. However, vision-based RL remains challenging: It not only needs to process

high-dimensional visual inputs, but it is also required to deal with significant variations in new test

scenarios (Fig. 8.1), e.g. color/texture changes or moving distractors [303], [304].

One solution is to learn an ensemble of policies, each handling one type of variations [305].

However, anticipating all possible variations quickly becomes infeasible; domain randomization
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Figure 8.1: Top) Two ways to make vision-based reinforce-

ment learning generalizable to unknown environments at test

time: existing methods aim to learn an RL policy universal

across domains, while our proposed Visual Attention and In-

variance (VAI) extracts domain-invariant visual foregrounds,

delivering clean and robust input to the RL agent.

Bottom) VAI significantly outperforms PAD (SOTA), im-

proving cumulative rewards by 49% and 61% in random

color tests (DeepMind Control) and random texture tests

(DrawWorld), respectively.
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Figure 8.2: Our VAI method has three components. 1) Unsupervised keypoint detection: Given two ad-

jacent video frames, we learn to predict keypoints and visual features from each image so that foreground

features and target keypoints can be used to reconstruct the target frame, without any manual annotations. 2)

Unsupervised visual attention: We apply causal inference to remove the model bias from the foreground

mask derived from detected keypoints. 3) Self-supervised visual invariance: We are then able to add arti-

ficial distractors and train a model to reconstruct the clean foreground observations. Keypoint and attention

modules are only used during training to extract foregrounds from videos without supervision, whereas only

the last encoder/decoder (colored in green) trained for visual invariance is used to remove distractors auto-

matically at the test time.

methods [306]–[310] apply augmentations in a simulated environment and train a domain-agnostic

universal policy conditioned on estimated discrepancies between testing and training scenarios.

Two caveats limit the appeal of a universal RL policy. 1) Model complexity. The policy learner

must have enough complexity to fit a large variety of environments. While there are universal

visual recognition and object detection models that can adapt to multiple domains [311], [312],

it would be hard to accomplish the same with a RL policy network often containing only a few

convolutional layers. 2) Training instability. RL training could be brittle, as gradients for (often
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non-differentiable) dynamic environments can only be approximated with a high variance through

sampling. Adding strong augmentations adds variance and further instability, causing inability to

converge. [313] handles instability with weaker augmentations, in turn reducing generalization.

The state-of-the-art (SOTA) approach, PAD [313], performs unsupervised policy adaption with

a test-time auxiliary task (e.g. inverse dynamic prediction) to fine-tune the visual encoder of the

policy network on the fly. However, there is no guarantee that intermediate representations would

fit the control part of the policy network. Drastic environment changes such as background texture

change from grid to marble can cause feature mismatches between adapted layers and frozen

layers, resulting in high failure rates.

Instead of pursuing a policy that is universal to changing visual domains, we propose to extract

visual foreground that is universal, and then feed clean invariant vision to a standard RL policy

learner (Fig. 8.2). As the visual observation varies little between training and testing, the RL

policy can be simplified and focused, delivering far better results.

Our technical challenge is to deliver such clean visuals with a completely unsupervised learning

approach, without mannual annotations or access to environment internals.

Given videos of actions in a training environment, we first learn how to extract visual fore-

ground with unsupervised keypoint detection followed by unsupervised visual attention to auto-

matically generate a foreground mask per video frame. We can then introduce artificial distractors

and train a model to reconstruct the clean foreground mask from noisy observations. Only this

learned model, not the keypoint or attention model, is needed during test to provide distraction-

free visual input to the RL policy learner.

Our unsupervised Visual Attention and Invariance (VAI) method has several desirable proper-

ties.

1. Unsupervised task-agnostic visual adaption training. Our foreground extraction only as-

sumes little background change between adjacent video frames, requiring no manual annota-

tions or knowledge of environment internals (e.g. get samples with altered textures). It does

not depend on the task, policy learning, or task-specific rewards associated with RL. That is, for

different tasks in the same environment, we only need to collect one set of visual observations

and train one visual adapter, which gets us a huge saving in real-world robotic applications.

2. Stable policy training, no test-time adaptation. By freeing RL from visual distractions, our

policy learning is stable and fast without being subject to strong domain augmentations, and

our policy deployment is immediate without test-time fine-tuning.

3. Clear interpretation and modularization. We extract keypoints from videos to identify fore-

ground, based on which attentional masks can be formed. This unsupervised foreground parsing

allows us to anticipate visual distractions and train a model to restore clean foregrounds. Com-

pared to existing methods that work on intermediate features, our method has clear assumptions

at each step, which can be visualized, analyzed, and improved.

We conduct experiments on two challenging benchmarks with diverse simulation environ-

ments: DeepMind Control suite [313], [314] and our DrawerWorld robotic manipulation tasks with

texture distortions and background distractions during deployment. Our VAI significantly outper-



CHAPTER 8. UNSUPERVISED VISUAL ATTENTION AND INVARIANCE FOR

REINFORCEMENT LEARNING 132

forms the state-of-the-art, gaining 15∼49% (61∼229%) more cumulative rewards per episode on

DeepMind Control (our DrawerWorld Manipulation) benchmarks.

To summarize, we make the following contributions.

1. We propose a novel domain generalization approach for vision-based RL: Instead of learning a

universal policy for varying visual domains, we decouple vision and action, learning to extract

universal visual foreground while keeping the RL policy learning intact.

2. We propose a fully unsupervised, task-agnostic visual adaptation method that removes unseen

distractions and restores clean foreground visuals. Without manual annotations, strong domain

augmentations, or test-time adaptation, our policy training is stable and fast, and our policy

deployment is immediate without any latency.

3. We build unsupervised keypoint detection based on KeyNet [315] and Transporter [316]. We

develop a novel unsupervised visual attention module with causal inference for counterfactual

removal. We achieve visual invariance by unsupervised distraction adaptation based on fore-

ground extraction. Each step is modularized and has clear interpretations and visualizations.

4. We propose DrawerWorld, a pixel-based robotic manipulation benchmark, to test the adaptation

capability of vision-based RL to various realistic textures.

5. Our results demonstrate that it is not only possible to learn domain-invariant vision from videos

without supervision, but freeing RL from visual distractions also leads to better policies, setting

new SOTA by a large margin.

8.2 Related Works

Unsupervised Learning has made much progress in natural language processing, computer vi-

sion, and RL. It aims to learn a feature transferable to downstream tasks [26]–[28], [40], [49],

[317]–[320]. In RL, UNREAL [321] proposes unsupervised reinforcement and auxiliary learn-

ing to improve learning efficiency of model-free RL algorithms, by maximizing pseudo-reward

functions; CPC [322] learns representations for RL in 3D environments by predicting the future

in the latent space with autoregressive models; CURL [323] extracts high-level features from raw

pixels using contrastive learning and performs off-policy control on extracted features to improve

data-efficiency on pixel-based RL.

Domain Adaptation incorporates an adaptation module to align the feature distribution from the

source domain and the target domain without paired data [247], [324]–[328]. There are various

approaches to this, from using supervised data [325], [326], [329], to assumed correspondences

[330], to unsupervised approaches [247], [331], [332].

Multi-domain Learning learns representations for multiple domains known a prior [311], [312],

[333], [334]. A combination of shared and domain-specific parameters are adopted. It is also

feasible to simply learn multiple visual domains with residual domain adapters [311], [312].

Our work is different from these works, since we do not have prior knowledge of test data distri-

butions and the model needs to generalize to unknown test environments.



CHAPTER 8. UNSUPERVISED VISUAL ATTENTION AND INVARIANCE FOR

REINFORCEMENT LEARNING 133

Observation

�(#)

·
Spatial-wise Multiplication

Zero Tensor

Direct Effect

> �

Distraction-invariant 

Observation Mask

K
e
y
N

e
t

Φ(ot)ot

G(Ψ(ot))G(Ψ(ot))
Causal 

Inference

V
A

D
e
c
o
d
e
r

V
A

D
e
c
o
d
e
r

V
A

E
n
c
o
d
e
r

Random 

Crop

Reconstruction 

Loss 3!"#

Source

Observation

K
e
y
N

e
t

V
A

E
n
c
o
d
e
r

Target

Observation

K
e
y
N

e
t

ot

V
A

E
n
c
o
d
e
r

os

Φ(ot)

Φ(os)

Transport

VA

Decoder

Reconstructed

Target

Stop 
Gradient

1) Unsupervised Keypoint Detection 2) Unsupervised Visual Attention

3) Self-supervised Visual Invariance

Reconstruction 

Loss 3$"#

Attentive Tensor

Synchronized 

Causal Inference with 

Counterfactual Reasoning

Stop 

Gradient
ôt

G(Ψ(ot))

G(Ψ(os))

Φ(os)⊗ (1− G(Ψ(os)))(1− G(Ψ(ot)))

+Φ(ot)⊗ G(Ψ(ot))

E
n
c
o
d
e
r

E
n
c
o
d
e
r D

e
c
o
d
e
r

Random 

Crop

D(It)

D̂(Is)

D(ot)

ot

D(ot)

Is

It
ˆ

E(It)

E(Is)
We thank all three

Feature Matching 

Loss 3%&'()

·

Augmentations

Figure 8.3: Technical implementation of our three components. 1) Unsupervised keypoint detection: We

build unsupervised keypoint detection and visual feature extraction based on KeyNet [315] and Transporter

[316]. The goal is to reconstruct the target frame from the target foreground appearance and the source-

transported background appearance, capturing a moving foreground on a relatively still background. 2)

Unsupervised visual attention: We remove the model bias in the foreground mask derived from detected

keypoints with novel causal inference for counterfactual removal. 3) Self-supervised visual invariance:

We train a model to restore an invariant foreground visual image by adding artificial distractors to extracted

foreground and perform self-supervised distraction removal.

Robustness to Distribution Shifts studies the effect of corruptions, perturbations, out-of-distribution

examples, and real-world distribution shifts [309], [335]–[339]. Recent deep RL approaches model

such uncertainties explicitly.

[340] uses recurrent neural networks for direct adaptive control and determines dynamic model

parameters on-the-fly. UP-OSI [341] applies indirect adaptive control for online parameter iden-

tification. EPOpt [305] uses simulated source domains and adversarial training to learn policies

that are robust and generalizable to a range of possible target domains. PAD [313] uses self-

supervision to continue policy training during deployment without any rewards, achieving SOTA

in several environments. SODA [342], a concurrent work to ours, alternates strong augmentations

associated with self-supervised learning and weak augmentations associated with RL for obtaining

both generalizability and stability.

Instead of demanding a universal policy that is invariant to distribution shifts or transferable to

novel environments, we achieve generalizability by demanding universal visuals that can be fed

into the subsequent RL policy learner, freeing it from visual distractions and making it more effec-

tive.



CHAPTER 8. UNSUPERVISED VISUAL ATTENTION AND INVARIANCE FOR

REINFORCEMENT LEARNING 134

8.3 Unsupervised Visual Attention & Invariance

Our goal is to extract universal visual foreground and then feed clean invariant vision to an RL

policy learner (Fig. 8.2). Our technical challenge is to deliver such clean visuals with a completely

unsupervised learning approach, without mannual annotations or access to environment internals.

Our VAI method has three components: Unsupervised keypoint detection, unsupervised visual

attention, and self-supervised visual invariance. The first two are only used during training to ex-

tract foregrounds from videos without supervision, whereas only the last trained model is deployed

to automatically remove distractors from a test video.

Unsupervised Keypoint Detection

We assume that training videos contain moving foregrounds against a relatively still background.

Our idea for unsupervised foreground extraction is the following: Given two such source and target

frames, we can learn to predict keypoints and visual features from each image so that foreground

features and target keypoints can be used to reconstruct the target frame, without requiring manual

annotations.

For a particular image pair, the moving foreground may have a still part (upper body), or the

background may have a moving part (flickering flames) . However, when the keypoint predictor

and the visual feature extractor have to work consistently across all the videos in the same environ-

ment, they would have to focus on the entire moving foreground and disregard the random minor

background motion.

Let os, ot ∈R
C×H×W denote the source and target frames sampled from a trajectory, where C,

H , and W are the channel dimension, image height and width respectively. Let Φ(·) denote the

visual feature extractor. Let Ψ(·) denote the keypoint network that predicts K keypoints in terms

of 2D spatial locations {µk}. We render each keypoint as a smaller H ′ × W ′ Gaussian heatmap

with fixed variance Ã2, and derive a foreground mask by taking the max of all of them:

G(µ; x) = max
k∈{1,2,...,K}

exp

(

−
∥x− µk∥

2

2Ã2

)

. (8.1)

We follow KeyNet [315], [316] to reconstruct the target observation ot from K landmarks

Ψ(os),Ψ(ot). We follow [316] to transport the source background appearance to the target frame

by putting the source feature at common background areas and the target feature at the target

keypoints:

Φ̂(ot, os) =Φ(os)¹ (1− G(Ψ(os)))(1− G(Ψ(ot)))

+Φ(ot)¹ G(Ψ(ot)) (8.2)

where ¹ denotes location-wise multiplication applied to each channel. A visual attention (VA)

decoder outputs a reconstruction ôt of target frame ot from the transported feature Φ̂(ot, os). Mini-

mizing the reconstruction loss below optimizes the KeyNet and the visual attention encoder/decoder

end-to-end:

LO-R(ot, ôt) = ∥ot − ôt∥
2
2. (8.3)
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Figure 8.4: Our VAI foreground reconstruction (Row 1) provides clearer and more robust foreground vi-

sual information than detecting keypoints across image frames using Transporter (Row 2). Due to occlu-

sion, symmetry, and lacking visual distinctions, it is often impossible to track keypoints consistently across

frames. That is, keypoint locations alone are not suitable as an invariant visual representation.

Note that the original Transporter only focuses on changes between frames in the same episode,

whereas we also sample frames from different episodes 50% of the time in reacher environment

which has a fixed target throughout each episode, so that our keypoints will be able to capture the

target and spread over the entire moving foreground.

Unsupervised Spatial Attention

Now we already have an unsupervisedly learned keypoint detector. We first explain why we do not

use keypoints for control and instead derive a visual foreground mask. We then describe our novel

causal inference formulation for obtaining a foreground mask without model bias.

Transporter [316] successfully makes use of keypoints for RL in Atari ALE [343] and Manip-

ulator [314]. Keypoints are geometrical extraction without visual appearance distractions that they

could be potentially used to minimize differences between training and testing environments.

However, there are three major issues with keypoints in practice. 1) It is often hard to track

keypoints consistently across frames; even for humans, whether a keypoint is on the left or right

foot is unclear in Fig. 8.4. This implies that using predicted keypoints for control directly would

be brittle even in clean images.

2) While keypoints along with image features and LSTM could work on relatively complicated

tasks [316], they add substantial model complexity and computational costs. 3) While keypoints

themselves are free of visual distractions, their extractor (KeyNet) is only trained for the training

environment, with no guarantee for robustness against domain shifts.

We thus propose to generate a foreground mask G(Ψ(ot)) from the (un-ordered) collection of

predicted keypoints instead. We enhance the visual feature in the foreground: G(Ψ(ot)) ¹ Φ(ot)
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walker walk finger spin

Figure 8.5: Foreground reconstructions with causal inference are cleaner (Row 2) than those without (Row

1).
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Figure 8.6: Causal graph of casual inference with counterfactual reasoning for our foreground mask ex-

traction. The Controlled Direct Effect (CDE) is measured by the contrast between two outcomes: the

counterfactual outcome given the visual feature At and that given the null feature A0.

and pass it to the VA decoder to reconstruct a cleaner image ôt (Fig. 8.5 Row 1). However, it is

blurry with common background remnants captured in the bias terms of the decoder. The bias

terms are essential for proper reconstruction and cannot be simply set to zero.

We apply causal inference with counterfactual reasoning [344]–[348] to remove the model bias

(Fig. 8.6). Intuitively, the predicted foreground mask Y has a direct cause from the visual feature

A, and an indirect cause from the model bias M through the decoder D. To pursue the direct causal

effect, we perform counterfactual reasoning known as Controlled Direct Effect (CDE) [344], [347],

which contrasts the counterfactual outcomes (marked by do(·)) between visual feature At and null

visual feature A0 (set to the zero tensor):

CDE(Y )=[Y |do(At), do(M)]−[Y |do(A0), do(M)]. (8.4)
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cartpole walker open drawer

Figure 8.7: Our detected keypoints (Row 1) and generated foreground masks (Row 2) from DeepMind con-

trol and DrawerWorld benchmarks. Note that they could cover multiple moving objects in the foreground.

training randomized colors video backgrounds distractions

Figure 8.8: Visualization results of testing environments in DeepMind Control benchmark [313], [314]. The

testing environment changes include randomized colors, video backgrounds, and background distractions.

We further threshold it to obtain the foreground mask D(ot):

D(ot) =

{

0,CDE(Y ) < ϵ

1,CDE(Y ) g ϵ
. (8.5)

Fig. 8.7 shows our detected keypoints and generated masks: 1) While the keypoints may be sparse

and imprecise, the foreground mask is clean and complete; 2) Our unsupervisedly learned key-

points do not correspond to semantic joints of articulation, e.g., for the grasper opening a drawer,

there are keypoints on both the grasper and the drawer, and our derived foreground mask contains

both moving objects.

Self-supervised Visual Invariance

Our spatial attention module outputs a foreground mask, after seeing samples in the training envi-

ronment. To make it adaptable to unknown test environments, we augment the clean foreground

image with artificial distractors and train a model to reconstruct a mask to retrieve clean foreground

observation.
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Given image ot, we generate equally cropped clean target image It and noisy source image Is.

It = Tc(ot)¹ Tc(D(ot)) (8.6)

Is = Tf (It) + Tb(Tc(ot)¹ (1−D(It))) (8.7)

where D(It) = Tc(D(ot)), Tc denotes synchronized random crop, Tf adds possible foreground

changes such as color jitter and random brightness change, whereas Tb adds a set of possible

background changes such as random colored boxes to the background. We learn a convolutional

encoder/decoder pair to reconstruct the clean foreground mask from noisy Is, so that they could

focus more on the foreground and ignore background distractors. We impose a feature matching

loss at output of encoder E and an image reconstruction loss at output of decoder D̂:

Ltotal = ∥D̂(Is)−D(It)∥
2
2 + ¼ · ∥E(Is)− E(It)∥

2
2 (8.8)

where D(It) is simply the cropped version of D(ot). During RL training and deployment, for any

frame I , we feed I ¹ D̂(E(I)) to the learned RL policy.

What augmentations to use has a big impact on generalization. We propose four additional

strong background augmentations on Tb. 1) The background could randomly assume the training

image background, a random color, or the mean foreground color with small perturbations. 2)

Gaussian pixel-wise noise and random boxes are added. MultiColorOut, an extension to Cutout-

color [349], adds multiple boxes of random sizes, colors, and positions. 3) Darkened foreground

copies are added to the background areas where the foreground mask values are 0, to simulate

distractors that look similar to the foreground. 4) We follow [342] to randomly select images in

the Places dataset [350] as background images for augmentation. For fair comparisons, we list our

results with and without this option. With such generic augmentations, our model is able to perform

well on realistic textures and unknown testing environments even though it has not encountered

them during training.

RL policy training with weak augmentations. Our visual invariance model outputs a clean

foreground image with background distractors suppressed. The RL policy learner still needs to

handle foreground variations in unknown test environments. We train our RL policy with weak

foreground augmentations to make it robust to noise and distortions. We add the usual Gaussian

random noise and use only a simple MultiColorOut to simulate the inclusion of backgrounds and

missing foreground parts. Empirically we find that such weak augmentations do not affect the RL

training stability.

8.4 Experiments

We experiment on two benchmarks, DeepMind and DrawerWorld, and perform ablation studies.

The DeepMind Control benchmark contains various background distractions [313], [352] as in

Fig. 8.8. We propose a DrawerWorld Robotic Manipulation benchmark, based on MetaWorld

[353], in order to test a model’s texture adaptability in manipulation tasks.
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Random colors SAC DR PAD SODA+P VAI VAI+P ∆

Walker, walk 414
±74

594
±104

468
±47

692
±68

819
±11

918
±6

+226
(↑ 33%)

Walker, stand 719
±74

715
±96

797
±46

893
±12

964
±2

968
±3

+75
(↑ 8%)

Cartpole, swingup 592
±50

647
±48

630
±63

805
±28

830
±10

819
±6

+14
(↑ 2%)

Cartpole, balance 857
±60

867
±37

848
±29

- 990
±4

957
±9

+142
(↑ 17%)

Ball in cup, catch 411
±183

470
±252

563
±50

949
±19

886
±33

960
±8

+11
(↑ 1%)

Finger, spin 626
±163

465
±314

803
±72

793
±128

932
±3

968
±6

+165
(↑ 21%)

Finger, turn easy 270
±43

167
±26

304
±46

- 445
±36

455
±48

+151
(↑ 50%)

Cheetah, run 154
±41

145
±29

159
±28

- 337
±1

334
±2

+178
(↑ 112%)

Reacher, easy 163
±45

105
±37

214
±44

- 934
±22

936
±19

+722
(↑ 337%)

average 467 464 531 - 793 812 +281

(↑ 53%)

Table 8.1: VAI outperforms existing methods on DeepMind randomized color tests by a large margin with-

out using the external Places dataset; it is even better than SODA+P, which uses Places as a part of the

training set. Soft Actor-Critic (SAC) [299], [351] is used as a base algorithm for DR (domain randomiza-

tion), PAD [313], SODA [342], and our VAI. SODA+P and VAI+P use Places [350] as overlay or adapter

augmentation. The results of SAC and DR are copied from PAD [313]. Listed are the mean and std of

cumulative rewards across 10 random seeds and 100 random episode initializations per seed. The absolute

and relative improvement of VAI over SOTA method are listed in the ∆ column.

DeepMind Control Benchmark

Tasks. There are walking, standing, and reaching objects [352], all in 3D simulation. Our agent

receives pixel-based inputs instead of state-based inputs from the underlying dynamics unless oth-

erwise stated.

Testing. We follow PAD [313] and test our method under three types of environments: 1) random-

ized colors; 2) video backgrounds; and 3) distracting objects. For tasks with video background

and distracting objects without Places Augmentation, we apply a moving average de-noising trick

by subtracting a moving average of the past observations from the current observation and adding

back the mean color of moving average. We also introduce a constant factor ³ multiplied to past

moving average to tune its aggressiveness.

Training. For each scenario, we train agents without distractions and evaluate the model across

10 random seeds and 100 random environment initializations. To get observation samples for

training, we export 5000 transitions from the replay buffer for the training environment, which are

collected with a random policy. We use the same environment settings such as frame skip and data

augmentation as in PAD to ensure fair comparisons between VAI, PAD, and others.

Randomized color results. Table 8.1 shows that our VAI outperforms published SOTA on all
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Video background SAC DR PAD SODASODA+P VAI VAI+P∆

Walker, walk 616
±80

655
±55

717
±79

635
±48

768
±38

870
±21

917
±8

+149
(↑ 19%)

Walker, stand 899
±53

869
±60

935
±20

903
±56

955
±13

966
±4

968
±2

+13
(↑ 1%)

Cartpole, swingup 375
±90

485
±67

521
±76

474
±143

758
±62

624
±146

761
±127

+3
(↑ 0%)

Cartpole, balance 693
±109

766
±92

687
±58

- - 869
±189

847
±205

+182
(↑ 26%)

Ball in cup, catch 393
±175

271
±189

436
±55

539
±111

875
±56

790
±249

846
±229

-29
(↓ 3%)

Finger, spin 447
±102

338
±207

691
±80

363
±185

695
±97

569
±366

953
±28

+258
(↑ 37%)

Finger, turn easy 355
±108

223
±91

362
±101

- - 419
±50

442
±33

+80
(↑ 22%)

Cheetah, run 194
±30

150
±34

206
±34

- - 322
±35

325
±31

+119
(↑ 58%)

average 497 470 569 - - 678 757 +188

(↑ 33%)

Table 8.2: VAI+P (VAI) outperforms PAD by more than 33% (19%) on challenging DeepMind video back-

grounds. Same settings and conventions as Table 8.1.

Distracting objects SAC DR PAD VAI ∆

Cartpole, swingup 815
±60

809
±24

771
±64

891
±0

+120
(↑ 16%)

Cartpole, balance 969
±20

938
±35

960
±29

993
±0

+24
(↑ 2%)

Ball in cup, catch 177
±111

331
±189

545
±173

956
±4

+411
(↑ 75%)

Finger, spin 652
±184

564
±288

867
±72

805
±3

-62
(↓ 7%)

Finger, turn easy 302
±68

165
±12

347
±48

389
±18

+42
(↑ 12%)

average 583 561 698 806 +108

(↑ 15%)

Table 8.3: VAI outperforms current SOTAs by more than 15% on DeepMind Control distracting objects.

Although VAI performs worse than PAD on “Finger, spin” task in terms of mean rewards, the reward vari-

ance is greatly reduced from 72 to 3 in std. Same settings and conventions as Table 8.1.

the 9 tasks by up-to an astonishing 337% margin in terms of mean cumulative rewards, without

seeing samples in the test environment at any time. In contrast, DR is trained with color change to

the environment (which requires knowing and changing the internals of the environment), which,

to some extent, previews what the test environment would be. Similarly, although PAD does not

use any evaluation samples during training, it does use the samples at the test time to tune the

encoder. Since VAI does not change model weights, it has no adaptation delay, better stability,

and less compute (see more details in supplementary materials). By suppressing distractions and

feeding only the foreground image, the RL algorithm ideally sees the same input no matter what
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success %
DrawerOpen DrawerClose

SAC PAD VAI ∆ SAC PAD VAI ∆

Grid 98
±2

84
±7

100
±0

+2
(↑ 2%)

100
±0

95
±3

99
±1

-1
(↓ 1%)

Black 95
±2

95
±3

100
±1

+5
(↑ 5%)

75
±4

64
±9

100
±0

+25
(↑ 33%)

Blanket 28
±8

54
±6

86
±6

+32
(↑ 59%)

0
±0

0
±0

85
±8

+85
(↑ ∞%)

Fabric 2
±1

20
±6

99
±1

+79
(↑ 395%)

0
±0

0
±0

74
±8

+74
(↑ ∞%)

Metal 35
±7

81
±3

98
±2

+17
(↑ 21%)

0
±0

2
±2

98
±3

+96
(↑ 4800%)

Marble 3
±1

3
±1

43
±7

+40
(↑ 1333%)

0
±0

0
±0

49
±13

+49
(↑ ∞%)

Wood 18
±5

39
±9

94
±4

+55
(↑ 141%)

0
±0

12
±2

70
±6

+58
(↑ 483%)

average 40 54 87 +33

(↑ 61%)
25 25 82 +57

(↑ 228%)

Table 8.4: Our VAI consistently outperforms all the baselines in new texture environments, and on Draw-

erClose in particular, VAI succeeds 82% vs. SAC/PAD’s 25%. Grid is the training environment. Black

means a completely dark background without texture. Other textures are shown in Fig. 8.9. DrawerClose

is more challenging than DrawerOpen, as the drawer handle is concealed by the effector in DrawerClose,

which would require the agent to infer the handle position from the position and the size of the effector.

The success rate is the percentage of successful attempts out of 100 attempts to open or close a drawer. The

mean/std are collected over 10 seeds.

the environment is and is thus not influenced by background distractions or domain shifts in the

test environment.

Video background results. Table 8.2 shows that our VAI outperforms baselines in 7 out of 8 tasks

in terms of mean cumulative rewards, often by a large margin.

Distracting object results. Table 8.3 shows that our VAI surpasses baselines on 4 out of 5 tasks

in terms of cumulative rewards. It not only obtains nearly full scores on “Cartpole, balance” and

“Ball in cup, catch” tasks, but also greatly decreases the variance of results to a negligible level.

DrawerWorld Manipulation Benchmark

A New Texture Benchmark for Manipulation. CNNs are sensitive to textures [354]. We propose

to evaluate a model’s texture adaptability in manipulation tasks, based on the MetaWorld [353]

benchmark for meta RL and multi-task RL.

In the original MetaWorld, the observations include 3D Cartesian positions of the robot, the

object, and the goal positions collected with sensors on the object and the robot. Accurate object

positions and robot keypoints are hard to get by in real-world applications, we thus propose a

variant of MetaWorld, DrawerWorld, with visual observations instead. We focus on the variety of

realistic textures (Fig. 8.9).
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Figure 8.9: DrawerWorld environments. The grid tex-

ture is used during training, while the other five evalua-

tion textures are realistic photos—making the task sig-

nificantly more challenging.

Tasks. There are DrawerOpen and DrawerClose tasks, where a Sawyer arm is manipulated to

open and close a drawer. The action space contains the end-effector positions in 3D. We adopt

MetaWorld reward functions and success metrics. See supplementary materials for details.

Testing. We test the agent on surfaces of different textures which, unlike the grid texture used for

training, come from photos instead of from simulations. These tasks are extremely challenging for

two reasons: 1) The agent has never seen any realistic textures during training; 2) Each texture

also has a different color, so the agent needs to handle both color change and texture change at the

same time.

Texture background results. Table 8.4 shows that our VAI outperforms PAD [313] and SAC

[351] significantly in all the test environments. In particular, for 5 out of 6 textures such as blanket,

metal, and wood, SAC and PAD have 0% success rate, whereas VAI performs far better at 85%,

98%, and 70% respectively. In the training grid environment, PAD performs worse than SAC,

consistent with [313] on the DeepMind Control benchmark, whereas our VAI is on-par or slightly

better than SAC, suggesting that we are not gaining texture adaptability at the cost of losing training

performance.

CNNs’ sensitivity to textures poses a big challenge for visual adaptation. 1) SAC adapts to

unknown test environments with augmentations at the training time. Since textures are not used

during training, SAC breaks down during texture testing. 2) PAD has to change its feature encoder

a lot in order to adapt to never-seen textures at the time time, shifting the feature distribution.

However, PAD assumes an invariant feature distribution and, therefore, does not fine-tune the

control part of the policy network at the test time, which causes the vision-RL pipeline to break

down.

Ablation Studies

We evaluate four ablated variants of our methods on the DrawerOpen task:

1. SAC, a base universal policy learning model

2. Method 1 + RL with image augmentations, equivalent to Domain Randomization;

3. Method 2 + Visual invariance module trained without augmentations: Tf , Tb are identity func-

tions;

4. Method 3 + We apply the augmentations in Section 8.3 on Tf , Tb, for greater adaptability.
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success rate (%) Grid Wood Metal Fabric

SAC 98
±2

18
±5

35
±7

2
±1

+ RL Augmentation 100
±1

18
±5

41
±8

24
±5

+ Foreground Extraction 100
±0

18
±4

13
±4

38
±4

+ Background Augmentation 100
±0

94
±4

98
±2

99
±1

Table 8.5: Ablation studies for augmentation and foreground extraction on DrawOpen task. From top

to bottom rows, components are added to the method cumulatively. Each method is trained in the grid

environment and tested in new texture enviroments of wood, metal, and fabric. Success rates are collected

over 500K steps. Only the last method with all augmentations deliver consistent robustness.

Table 8.5 shows that while all the methods perform well in the training environment, they adapt

poorly to realistic textures except the last one. These results suggest that adding visual augmenta-

tions during RL or to the entire image as a whole is insufficient; providing a clean observation for

RL agents with foreground clues adds significant robustness to vision-based RL.

8.5 Appendix Materials

Additional Environment Descriptions

DeepMind Control

We wrote a short description for each environment in DeepMind Control suite [352] in Table 8.6

to further introduce the environment.

Environment Descriptions

Walker A planar walker which encourages an upright torso and minimal torso height in the “stand”

task. In “walk” task forward velocity is also encouraged.

Cartpole A pole tied to a cart at its base, with forces applied to the base. “swingup” task requires the

pole to swing up from pointing down while “balance” task requires the pole to balance to be

upright.

Ball in cup A ball attached to a cup, with forces applied to the cup to swing the ball up into the cup in the

“catch” task.

Finger A finger is asked to rotate a rectangular body on a hinge. The top of the body needs to overlap

with the object in “turn easy” task and the body needs to rotate continuously in the “spin” task.

Cheetah An animal with two feet which is asked to run in the “run” task.

Reacher A planar reacher with two links connected with a hinge in a plane with a random target location.

In the “easy” task, the reacher is asked to reach the object location. The “hard” task is unused

in our evaluation since it was not adapted by [313].

Table 8.6: Descriptions for each environment in DeepMind Control suite.



CHAPTER 8. UNSUPERVISED VISUAL ATTENTION AND INVARIANCE FOR

REINFORCEMENT LEARNING 144

Figure 8.10: Samples in evaluation environments in DeepMind Control. The samples in the first row are

from [313].

We also provide samples for the evaluation environments designed by [313] in Fig. 8.10.

DrawerWorld

We propose the DrawerWorld, a benchmark with observations in pixels, based on MetaWorld [353]

to enable the agent to work in an environment close to real-life scenarios. There are two tasks in

DrawerWorld, which are DrawerOpen and DrawerClose. These tasks ask a Sawyer robot to open

and close a drawer, respectively.

The multi-component reward function R is a combination of a reaching reward Rreach and a

push reward Rpush as follows:

R = Rreach +Rpush

= −||h− p||2 + I||h−p||2<ϵ · c1 · exp{||p− g||22/c2}
(8.9)

where ϵ is a small distance threshold and is set as 0.08 by default, p ∈ R
3 be the object position,

h ∈ R
3 be the position of the robot’s gripper, and g ∈ R

3 be goal position. c1 = 1000 and

c2 = 0.01 for all tasks in DrawerWorld benchmark.

The goal of distraction-robust RL is to learn a task-conditioned policy Ã(a|s, z), where z indi-

cates an encoding of the task ID, and in this case, different task IDs have different drawer positions.

This policy should maximize the average expected return from the task distribution p(T ), given

by ET ∼p(T )[EÃ[
∑T

t=0 µ
tRt(st, at)]]. The success metric, which is evaluate the agent in evaluation

time, is described by I||p−g||2<ϵ, where ϵ is set to 8cm. The difference between training and eval-

uation time is the texture and color of the table cloth. Image samples of textures that we use are

provided in the main text.

De-noise with Past Averages

Since our adapter model works on each frame separately without any assumption on temporal

continuity of consecutive frames, our adapter works exactly the same on videos as on fixed back-

grounds and is not affected by drastic changes in the background such as flashes of light. However,
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in some environments where the assumption of temporal continuity holds, i.e. with a relatively

slow-moving background, we may make use of this assumption to better de-noise the observations

before passing the them into the adapter.

We exploit the assumption here by keeping a mean of past observations omean =
1
t

∑t

i=1 oi and

subtract the mean from observation ot and compute the observations after de-noise with the formu-

lation: This de-noise step happens before the observation is sent into CNN (adaptor), formulated

as:

ode-noised = filter(ot − ³omean, ϵ) + ³omean color (8.10)

where omean color is the mean of omean in spatial dimensions, filter is a function that sets the part with

value less than ϵ to 0 to remove some noise, and ³ ∈ [0, 1] is the strength in noise removal.

This is completely optional, and since it makes use of an additional assumption, they are only

used in the cartpole and ball in cup in experiments with background videos and experiments with

distracting objects. In addition, we observe that with Places dataset as augmentation, the model

is robust enough without this trick, so we disable it for all models in the training of which Places

dataset is used.

Memory Usage and Speed Comparisons
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Figure 8.11: Comparisons on the mean time per episode and GPU memory occupancy at evaluation

time for DrawerClose task in DrawerWorld between current state-of-the-art method PAD [313] and the

proposed method VAI. VAI is more than 2 times faster than PAD during testing time and requires

∼40% less GPU memory usage. Both methods are evaluated with exactly the same backbone net-

work. We take the mean of 10 runs for the latency comparison. Memory usage is obtained with

torch.cuda.max memory allocated.

From Fig. 8.11, it seems that VAI is about 3 times as fast as PAD in terms of the evaluation

time in each episode and requires substantially less GPU memory than PAD. This is largely due to



CHAPTER 8. UNSUPERVISED VISUAL ATTENTION AND INVARIANCE FOR

REINFORCEMENT LEARNING 146

the fact that PAD trains the encoder network at evaluation time with back-propagation, which not

only requires the intermediate results to be saved in GPU memory but also requires backward com-

putation to update the model parameters, which consumes both time and memory space. Although

VAI has an extra adapter module, the computation and memory it takes are much less than the ones

required by backward computation and storing intermediate results. According to the requirements

of computational resources in terms of speed and memory, our method is more suitable for robots

powered by battery and edge inference devices than PAD from this point of view.

RL Observations Cumulative Reward

Joint Positions, Velocity, Torso Height from the Environment 969±2

Joint Positions from the Environment 935±3

Keypoints Extracted with KeyNet 709±3

VAI on Training Environment 889±3

Table 8.7: Cumulative rewards on Walker, walk task with 1) joint positions, velocity, and torso height

from the environment as observations; 2) joint positions from the environment as observations; 3) keypoints

extracted by KeyNet from images; 4) The proposed method VAI. The first two use the ground truth informa-

tion, which is not accessible during real-world deployment, and serve as upper bounds. For experiment 2,

3, and 4, we use stack of 3 frames as input for the RL agent to infer the velocity since velocity information

is missing. Since walker is a planar environment (the walker will not lean towards to away from the screen),

the extracted keypoints should roughly correspond to positions from the significant parts of the walker body.

The gap between experiments indicate that a limited number of keypoints from KeyNet on its own is not

a sufficiently informative or accurate source for observations for an RL agent, which is in accord with our

visualization in the main text about the keypoints’ temporal inconsistency.

Further Experiments with Raw Keypoints

To investigate the question of whether raw keypoints extracted from image observations by KeyNet

are able to contribute to effective learning of useful behaviors, we set up experiments based on the

Walker, walk task in DeepMind Control and list the outcomes in Table 8.7.

We first train an agent with the state-based observation provided by the environment, a 24-

dimensional tensor, which includes positions of the joint, velocity, and walker’s torso height. We

do not stack frames for this experiment. This experiment indicates an upper bound that our agent

is able to achieve in this environment. However, to make a fair comparison with other experiments,

where velocity and torso height information is not directly provided, we also remove these parts

from our observation, leaving only the positions of the joint as observation in the second experi-

ment. Thus, in the second experiment, the agent directly reads a 14-dimensional tensor per frame

from the environment based on the position of each joint. The third experiment is conducted with

the RL agent reading a tensor that contains the (x, y) coordinates of 24 keypoints. The keypoints

are from a KeyNet which reads an image input. The KeyNet is pre-trained with transporter. In the

last experiment, we run VAI, with the adapter module trained from the same KeyNet that is used
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in the experiment above, on the training environment, although it is able to adapt to other environ-

ments as well and thus is more general. To infer velocity information, we stack the observations

for three frames for experiments 2, 3, and 4. We run both experiments for 500k steps. We compare

their efficiency by evaluating the agent in training environment 10 times with 10 seeds.

According to the performance of these RL agents in the training environment, keypoints on its

own do not capture all the information needed by the RL agent accurately. This will be even worse

if the agent is evaluated in a different environment is has never seen before, since KeyNet itself

does not come with the ability to adapt, although the keypoints it generates are not supposed to

carry domain-specific or distraction information. Using keypoints information along with image

features as well as history observations may help, as illustrated in [316] and described in the main

text, but it will add greatly to the complexity of the RL framework. What’s more, agents may need

information other than what keypoints provide. For example, keypoints do not carry the shape,

size, and color information, which may be of paramount importance in certain tasks. Furthermore,

since KeyNet allocates an output dimension for each keypoint, the number of parameters as well

as computation time scales linearly with the number of keypoints, which prohibits adding a large

number of keypoints to compensate the effect of temporal inconsistency or to capture complicated

observations. In contrast, since KeyNet is not used in getting adapted observations in our method,

the speed and number of parameters of our RL agent, including the adapter, at evaluation time are

not affected by the number of keypoints used to generate ground-truth, which allows our method

to scale to complicated environments with many moving parts without losing efficiency.

Figure 8.12: Samples from DrawerWorld, DrawerClose task with their corresponding observation pro-

cessed by the adapter module. The Grid task is the training task for the adapter. All the observations use the

same adapter for a fair comparison.

Visualizations of the Observation Adapter

How to make sure that RL will adapt to a certain setting that is different from training setting is

still an open problem. Our method opts to work on observation-space. In contrast, PAD works on
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an intermediate encoder feature space. Our method is much easier to visualize and debug since

humans are able to directly understand the quality of adapted observations while it is really difficult

to understand what happens in the feature space.

To give examples on how to assess whether an adapter works on a certain environment easily

and to illustrate our performance in a visual way in evaluation environments, we gathered 6 pairs

of raw samples and samples processed by the adapter in DrawerClose task from the same adapter

in Fig. 8.12. As can be seen from the examples, the adapter model differentiates most of the

evaluation environments well, with the exception of the marble environment, which the adapter

confuses parts of the foreground and background such as the handle and the patches around the

actuator, probably due to the fact that the reflected light on the actuator has a similar white color

to the color of background. This indicates why our model performances worse in marble environ-

ment, as illustrated in the experiment section in the main text, and, in real-life applications, means

that the adapter needs to be re-trained or fine-tuned with observations from similar environments,

or if this is not applicable, with augmentation specially-designed to handle this case. We leave the

question of handling adapter fine-tuning and re-training to later research.

This visualization has a large impact on the real-world applications of our method: with only a

few observations from an intended deployment environment, one could easily visualize and assess

whether our method will adapt to such environment. This does not require any ability to run the

policy in the dynamics, nor does it require reward functions or consecutive observations which may

be difficult to obtain from deployment environments in real-world applications. We strongly be-

lieve that this simple assessment provides a direction for future research in explainable, adaptable,

and generalizable reinforcement learning and will present great benefit to potential applications of

reinforcement learning.

8.6 Summary

We propose a fully unsupervised method to make vision-based RL more generalizable to unknown

test environments. While existing methods focus on learning a universal policy, we focus on

learning universal foreground vision.

We learn to extract foregrounds with unsupervised keypoint detection, followed by unsuper-

vised visual attention to remove model bias and generate a foreground mask. We then train a

model to reconstruct the clean foreground mask from noise-augmented observations.

We propose an additional challenging DrawerWorld benchmark, which trains manipulation

tasks on grid and tests on texture environments. Existing methods fail due to CNN’s sensitivity to

textures, yet our model with foreground extraction and strong generic augmentation is robust to

never-seen textures without sacrificing training performance.

Our method significantly advances the state-of-the-art in vision-based RL, demonstrating that

it is not only possible to learn domain-invariant vision without supervision, but freeing RL from

visual distractions also improves the policy.

Acknowledgments. This work was supported, in part, by Berkeley Deep Drive.
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Chapter 9

Debiased Learning from Naturally

Imbalanced Pseudo-Labels

Pseudo-labels are confident predictions made on unlabeled target data by a classifier trained on

labeled source data. They are widely used for adapting a model to unlabeled data, e.g., in a semi-

supervised learning setting.

Our key insight is that pseudo-labels are naturally imbalanced due to intrinsic data similarity,

even when a model is trained on balanced source data and evaluated on balanced target data. If

we address this previously unknown imbalanced classification problem arising from pseudo-labels

instead of ground-truth training labels, we could remove model biases towards false majorities

created by pseudo-labels.

We propose a novel and effective debiased learning method with pseudo-labels, based on

counterfactual reasoning and adaptive margins: The former removes the classifier response bias,

whereas the latter adjusts the margin of each class according to the imbalance of pseudo-labels.

Validated by extensive experimentation, our simple debiased learning delivers significant accu-

racy gains over the state-of-the-art on ImageNet-1K: 26% for semi-supervised learning with 0.2%

annotations and 9% for zero-shot learning.

9.1 Introduction

Real-world observations, as well as non-curated datasets, are naturally long-tail distributed [61],

[356]. Imbalanced classification [22], [357], [358] tackles such data biases to prevent models

from being dominated by head-class instances. Developing visual recognition systems capable of

counteracting biases also has significant social impacts [359].

While existing methods focus on debiasing from imbalanced ground-truth labels collected by

human annotators, we discover that pseudo-labels produced by machine learning models are natu-

rally imbalanced, creating another source for widespread biased learning!

Pseudo-labels are highly confident predictions made by an existing (teacher) model on un-

labeled data, which then become part of the training data for supervising the (student) model
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Figure 9.1: We study the pseudo-labeling-based Semi-Supervised Learning (SSL) and transductive Zero-

Shot Learning (ZSL), where both tasks require transferring semantic information learned from labeled

source data to unlabeled target data via pseudo-labeling. Surprisingly, we find that pseudo-labels of tar-

get data produced by typical SSL and ZSL methods (i.e., FixMatch [355] and CLIP [17]) are highly biased,

even when both source and target data are class-balanced or even sampled from the same domain.

adaptation to unlabeled data (Fig. 9.1a). When the student model is the teacher model itself, the

learning process is also known as self-training [355], [360]–[363]. Pseudo-labeling is widely used

in semi-supervised learning (SSL) [355], [364], domain adaptation [365], [366], and transfer

learning [367].

We examine pseudo-label distributions in two common tasks. 1) In zero-shot transfer learning

(ZSL) where the source and target domains are different, a pretrained CLIP model [17] produces

highly imbalanced predictions on the curated and balanced ImageNet-1K dataset, although the

training set of CLIP is approximately balanced (Fig. 9.1c). More than 3500 instances are pre-

dicted as class 0, 3 times the actual number of samples in class 0. 2) In semi-supervised learning

where the source and target domains are the same, FixMatch [355] trained on labeled CIFAR10

images generates highly biased pseudo-labels on unlabeled images, although both the labeled and

unlabeled sets are balanced (Fig. 9.1b).

That is, pseudo-labels created by machines are naturally imbalanced, just like ground-truth

labels created by humans. If we address this previously unknown imbalanced classification prob-

lem arising from pseudo-labels instead of ground-truth training labels, we could improve model
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learning based on pseudo-labels and remove the model bias towards false majorities created by

pseudo-labels.

We propose a novel and effective debiased learning method with pseudo-labels, without any

knowledge about the distribution of actual classification margins that are readily available to debi-

ased learning with ground-truth labels [368]–[370]. It consists of an adaptive debiasing module and

an adaptive marginal loss. The former dynamically removes the classifier response bias through

counterfactual reasoning, whereas the latter dynamically adjusts the margin of each class according

to the imbalance of pseudo-labels.

Validated by our extensive experiments, our simple debiased learning not only improves the

state-of-the-art on ImageNet-1K by 26% for SSL with 0.2% annotations and 9% for ZSL, but is

also a universal add-on to various pseudo-labeling methods with more robustness to domain shift.

The imbalanced pseudo-labeling issue is even more severe when the unlabeled raw data is naturally

imbalanced, and the model tends to mislabel tail-class samples as head-class. By applying debiased

learning, we improve SSL performance under long-tailed settings by a large margin.

Our work makes four major contributions. 1) We systematically investigate and discover that

pseudo-labels are naturally imbalanced and create biased learning. 2) We propose a simple debi-

ased learning method with pseudo-labeled instances, requiring no knowledge of their actual clas-

sification margins. 3) We improve the ZSL/SSL state-of-the-art by a large margin and demonstrate

that our debiasing is a universal add-on to various pseudo-labeling models. 4) We establish a new

effective ZSL/SSL pipeline for applying vision-and-language pre-trained models such as CLIP.

9.2 Related Work

Semi-Supervised Learning integrates unlabeled data into training a model given limited labeled

data. There are four lines of approaches. 1) Consistency-based regularization methods impose

classification invariance loss on unlabeled data upon perturbations [371]–[374]. 2) Pseudo-labeling

expands model training data from labeled data to additional unlabeled but confidently pseudo-

labeled data [355], [360]–[363], [375]. 3) Transfer learning trains the model first on large unlabeled

data through self-supervised representation learning, e.g., contrastive learning, and then on small

labeled data through supervised classifier learning [376], [377]. 4) Data-centric SSL assumes that

labeled data are not given but can be optimally selected among unlabeled data for labeling [378].

Focusing on this practical issue of labeled data selection turns out to bring substantial gains for

SSL.

CReST [379] improves existing SSL methods on class-imbalanced data by leveraging a class-

rebalanced sampler, which samples more frequently for the minority class according to the labeled

data distribution. CReST does not work when the labeled data is balanced. In contrast, our ap-

proach does not assume any prior distribution for the labeled set.

Although previous literature has achieved tremendous success in SSL, the implicitly biased

pseudo-labeling issue in SSL is previously unknown and has not been thoroughly analyzed, which,

however, has a great impact on the learning efficiency. The focus of this work is on proposing a

simple yet effective debiasing module to eliminate this critical issue.
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Zero-shot Classification refers to the problem setting where a zero-shot model classifies images

from novel classes into correct categories that the model has not seen during training [380]–[382].

Several strategies have been considered from various sets of viewpoints: 1) hand-engineered at-

tributes [383], [384]; 2) pretrained embeddings that incorporate prior knowledge in form of seman-

tic descriptions of classes [385], [386]; 3) modeling relations between seen and unseen classes with

knowledge graphs [387], [388]; 4) learning generic visual concepts with vision-language models,

allowing zero-shot transfer of the model to a variety of downstream classification tasks [2], [17].

Long-Tailed Recognition (LTR) aims to learn accurate “few-shot” models for classes with a

few instances, without sacrificing the performance on “many-shot” classes, for which many in-

stances are available. 1) re-balancing/re-weighting method Ä -norm [358] tackles LTR problem by

giving more importance to tail classes; 2) margin-based method LDAM [357] proposes a label-

distribution-aware margin loss to improve the generalization of minority classes by encouraging

larger margins for tail classes; 3) post-hoc adjustment approach modifies a trained model’s predic-

tions according to the prior knowledge of class distribution, such as LA [389], or pursues the direct

causal effect by removing the paradoxical effects of the momentum, such as Causal Norm [348]; 4)

ensemble-based approach RIDE [22] optimizes multiple diversified experts and a dynamic expert

routing module to reduce model bias and variance on long-tailed data.

In stark contrast to previous works on LTR which either requires the prior knowledge of class

distribution or are applied post-hoc to a trained model, the proposed debias module does not require

any prior knowledge and focuses on the biased pseudo-labels issue which is previously unknown.

9.3 Pseudo-Labels are Naturally Imbalanced

In contrast to previous work that concentrated on biases caused by trained on imbalanced data, our

focus is on pseudo-label biases, even when trained on balanced data. In this section, we provide

an analysis of this previously unknown issue hidden behind the tremendous success of FixMatch

[355] on SSL and CLIP [17] on ZSL, both of which require the use of “pseudo-labeling” to transfer

knowledge learned in source data to target data.

We first describe the backgrounds for pseudo-labeling approaches and then analyze their bias

issue. We attribute the cause of bias to the inter-class correlation problem.

Background

FixMatch for semi-supervised learning. The core technique of FixMatch [355] is pseudo-

labeling [360]. It selects unlabeled samples with high confidence as training targets.

Suppose we have a labeled dataset XL = {(xi, yi)}
L
i=1 with L labeled instances, and an unla-

beled dataset XU = {(xi)}
L+U
i=L+1

with U instances. xi is the input instance and yi = [y1i , ..., y
C
i ] ¦

{0, 1}C is a discrete annotated target with C classes. XU and XL share the same semantic labels.

The optimization objective consists of two terms: L = Ls + ¼uLu, i.e., the supervised loss Ls

applied to labeled data and an unsupervised loss Lu applied to unlabeled data, and ¼u is a scalar

hyperparameter.
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Figure 9.2: FixMatch’s pseudo-labels are highly imbalanced across different training stages, even though

the unlabeled and labeled data it trains on is class-balanced. In contrast, DebiasPL produces nearly balanced

pseudo-labels at late stages. The probability distributions of FixMatch and DebiasPL are averaged over all

unlabeled data. The class indices are sorted by average probability. We conduct experiments on CIFAR10

with 4 labeled instances per class.

The supervised loss Ls is the cross-entropy between the model predictions and the ground

truth: Ls =
1

B

∑B

i=1
H(yi, p(³(xi))), where ³ is the weak augmentation, and B is the batch size.

The pseudo-labels ŷi for unlabeled instances are generated from the weakly-augmented unlabeled

samples, which are used to supervise the model prediction of the strongly-augmented samples.

Instances whose largest probability fall under a confidence threshold Ä are regarded as unreliable

samples and discarded. Formally, the unsupervised loss Lu can be formulated as:

Lu =
1

µB

µB∑

i=1

1[max(p(³(xi))) g Ä ] · H(ŷi, p(´(xi))) (9.1)

where ´ is a strong augmentation [390], and µ determines the ratio of labeled and unlabeled sam-

ples in the minibatch.

CLIP for zero-shot learning. CLIP [17] is an efficient and scalable way to learn image repre-

sentations from scratch on a dataset of 400M image-text pairs, which is manually curated to be

approximately query-balanced. At pre-training time, an image encoder and a text encoder are op-

timized by maximizing (minimizing) the similarity between paired (unpaired) captions and visual

images.

For producing pseudo-labels of unlabeled data, natural language prompting is used to enable

zero-shot transfer to target datasets: CLIP uses the names or descriptions of the target dataset’s

classes as the set of potential text pairings (e.g. “a photo of a dog”) and predicts the most probable

class according to the cosine similarity of image-text pairs. Specifically, the feature embedding

of the image and the feature embedding of the set of possible texts are first computed by their

respective encoders. The cosine similarity of these embeddings is then evaluated, and normalized

into a probability distribution via a softmax function.
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Figure 9.3: Per-class precision and recall of pseudo-label predictions on 1.3M ImageNet instances with a

pre-trained CLIP. The majority classes with high recall often have less precise pseudo-labels.

Biases in Semi-supervised Learning

Fig. 9.2 visualizes the FixMatch probability distributions averaged on all unlabeled data at vari-

ous training epochs. Surprisingly, even when labeled and unlabeled data are both curated (class-

balanced), the pseudo-labels are still highly class-imbalanced, most notably at the early training

stage. As the training progresses, this situation persists.

A student model will inherit the implicitly imbalanced pseudo-labels and, in turn, reinforces

the teacher model’s biases. Once confusing samples are wrongly pseudo-labeled, the mistake is

almost impossible to be self-corrected. On the contrary, it may even mislead the model and further

amplify existing bias to produce more wrong predictions. Without intervention, the model will get

trapped in irreparable biases.

On the contrary, as in Fig. 9.2, although DebiasPL is also troubled by the imbalanced pseudo-

labels at the beginning, this situation can be significantly alleviated, and, eventually, we can obtain

an almost balanced distribution through dynamically debiasing the model.

Biases in Zero-Shot Learning

CLIP actually generates highly biased predictions on ImageNet, which is hidden behind CLIP’s

tremendous success in terms of overall zero-shot prediction accuracy.

Except for the imbalance problem, the precision and recall of many high-frequency classes are

much lower than many medium-/few-shot classes, as illustrated in Fig. 9.3. Thresholding the CLIP
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Figure 9.4: CLIP’s zero-shot predictions are highly biased for various datasets and benchmarks.

a) top-10 classes b) least-10 classes

Figure 9.5: The low-frequency classes of ImageNet, with the least-10 number of CLIP predictions per class,

usually have strong inter-class correlations, while the high-frequency classes are the opposite. We compare

the cosine similarity between each class’s image embedding centroid and embedding centroids of its nine

closest “negative” classes. (better view zoomed in)

predictions based on the confidence score may help. However, simply setting a higher confidence

score threshold could lead to even more imbalanced distributions (more details in appendix). There

is a trade-off between imbalance ratio and precision/recall.

Highly biased zero-shot predictions are not unique to ImageNet. They are widely present on

many benchmarks, such as EuroSAT [391], MNIST [392], CIFAR10 [393], CIFAR100 [393], and

Food101 [394], as shown in Fig. 9.4.

Inter-Class Correlations

To delve into the causes of biased pseudo-labels, we provide an analysis of inter-class correlations.

For CLIP, we first compute one image centroid per class by taking the mean of the normalized
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Figure 9.6: The cause for pseudo-label biases can be partially attributed to inter-class confounding. For

example, FixMatch often misclassifies “ship” as “plane”. The confusion matrix of FixMatch’s and our

DebiasPL’s pseudo-labels are visualized.

image features, extracted by the image encoder of a pre-trained CLIP model, that belong to this

class. The cosine similarity between the image centroid of classes with top-10/least-10 prediction

frequency and their closest “confusing” classes are visualized. The prediction confusions indicate

image similarities at the class level. Fig. 9.5 shows that the low-frequency classes of ImageNet,

with the least-10 number of CLIP predictions per class, usually have strong inter-class confusions.

Fig. 9.6a shows the confusion matrix of FixMatch’s pseudo-labels. It is observed that many

instances in some categories tend to be misclassified into one or two specific negative classes; for

instance, “ship” is often misclassified as “plane”.

Based on our analysis of the inter-class correlations, we believe that the blame for the pseudo-

label bias can be largely attributed to inter-class confounding, which the proposed DebiasPL can

successfully address as in Fig. 9.6b. DebiasPL will be introduced in the next section.

9.4 Debiased Pseudo-Labeling

This section introduces Debiased Pseudo-Labeling (DebiasPL) and methods to integrate it into

ZSL and SSL tasks. It is worth noting that the proposed simple yet effective approach is universally

applicable to various networks and benchmarks, not limited to the ones introduced here.

Adaptive Debiasing

Our DebiasPL approach aims at dynamically alleviating biased pseudo labels’ influence on a stu-

dent model without leveraging any prior knowledge on marginal class distribution, even when
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exposed to source and target data that follow different distributions. An adaptive debiasing mod-

ule with counterfactual reasoning and an adaptive marginal loss is proposed to fulfill this goal,

described next.
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Figure 9.7: Diagram of the proposed Adaptive Debiasing module and Adaptive Marginal Loss, added to

the top of FixMatch.
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Figure 9.8: Causal graph of debiasing with counterfactual reasoning.

Adaptive Debias w/ Counterfactual Reasoning. Causal Inference is the undertaking of deriving

counterfactual conclusions using only factual premises, in which causal graphical models represent

the interventions among the variables [344], [347], [395]–[397]. It has been widely studied and

applied in various tasks to remove selection bias which is pervasive in almost all empirical studies

[398], eliminating the confounding effect using causal intervention [399], disentangling the desired

direct effects with counterfactual reasoning [400], etc.
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Motivated by this, to dynamically mitigate impacts of unwanted bias (counterfactual), we

incorporate causality of producing debiased predictions through counterfactual reasoning [344],

[346], [395], [401], [402].

Given the proposed causal graph in Fig. 9.8, we can delineate our goal for generating debiased

predictions: the pursuit of the direct causal effect along Ai → Y , defined as Controlled Direct

Effect (CDE) [344]–[348]:

CDE(Yi) = [Yi|do(Ai), do(D)]− [Yi|do(Â), do(D)] (9.2)

i.e. the contrast between the counterfactual outcome if the individual were exposed at A = Ai

(with do(Ai) notation) and the counterfactual outcome if the same individual were exposed at

A = Â = {A1, ..., An}, with the mediator set to a fixed level D. CDE [344], [347] disentangles

the model bias in a counterfactual world, where the model bias is considered as the Y ’s indirect

effect when A = Â but D retains the value when A = Ai.

However, measuring the counterfactual outcome via visiting all training samples is significantly

computational expensive. We use Approximated Controlled Direct Effect (ACDE) instead. ACDE

assumes that the model bias is not drastically changed, therefore, the momentum-updated coun-

terfactual outcomes (Eqn. 9.4) can be served as an approximation to the actual [Yi|do(Â), do(D)].
The debiased logits with counterfactual reasoning, which is later used to perform pseudo-labeling

(i.e., replace p(α(xi)) in Eqn. 9.1), can be formulated:

f̃i = f(α(xi))− λ log p̂ (9.3)

p̂← mp̂+ (1−m)
1

µB

µB∑

k=1

pk (9.4)

m ∈ [0, 1) is a momentum coefficient, f(α(·)) refers to logits of weakly-augmented unlabeled

instance, pk is the probability distribution for instance α(xk) obtained via a softmax function. λ

denotes the debias factor, which controls the strength of the indirect effect. If the debias factor is

too strong, it is hard for a model to fit on the data, while too small a factor can barely eliminate the

biases and, ultimately, impairs the generalization ability. Since the scale of logits is unstable, most

notably at the early training stage, we use the probability distribution pk rather than directly using

the logit vector in the second term of Eqn. 9.3. A log function is applied to rescale p̂ to match the

magnitude of logit.

Eqn. 9.3 can be associated with re-weighting and logits adjustment methods in long-tailed

recognition, whereas ours is dynamically adaptive.

Adaptive Marginal Loss. As aforementioned in Sec. 9.3, the biases in pseudo-labels may be

partially caused by inter-class confusion. Motivated by this, we apply adaptive margin loss to

demand a larger margin between hardly biased and highly biased classes, so that scores for dom-

inant classes, towards which the model highly biased, do not overwhelm the other categories. In

addition, by enforcing a dynamic class-specific margin, inter-class confusion can be greatly coun-

teracted, which is further empirically evidenced in Fig. 9.6. LAML can be formulated as:

LAML = −log
e(zŷi−∆ŷi

)

e(zŷi−∆ŷi
) +

∑C

k ̸=ŷi
e(zk−∆k)

(9.5)
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where ∆j = λ log( 1
p̂j
) for j ∈ {1, ..., C}, z = f(β(xi)). We use LAML to replaced H(ŷi, f(β(xi))

in Eqn. 9.1. We then get the final unsupervised loss by updating Eqn. 9.1 with Eqn. 9.3 and

Eqn. 9.5.

(Optional) All unlabeled instances with low probabilities do not contribute to the final loss. We find

it beneficial to apply cross-level instance-group discrimination loss CLD [9] to unlabeled instances

to leverage their information fully.

Distinctions and Connections with Alternatives

Please refer to Sec. 9.2 for an introduction to LA, LDAM, and Causal Norm. Another often adopted

method in SSL distribution alignment (DA) [362] is also compared. It aims to encourage the actual

marginal distribution of the model’s predictions to match the actual marginal class distribution.

Please refer to Tab. 9.1 to check the distinctions and connections with these alternatives han-

dling distribution mismatch and long-tailed recognition in key properties, and Tab. 9.2 and Tab. 9.3

to compare experimental results.

The use of a momentum updated p̂ for debiasing pseudo-labels with counterfactual reasoning

and applying adaptive marginal loss is crucial to the success of DebiasPL, which also enables our

training objective does not necessarily need to use the true marginal class distribution as prior

knowledge. Furthermore, since more training samples per class do not necessarily lead to a higher

model bias against it, dynamically adjusting the margin rather than measuring margins based on

the number of samples per class as in LA and LDAM could better respect the degree of bias

against each class. The number of samples alone can not determine the degree of bias. Also,

unlike previous works, e.g., LA/LDAM and Causal Norm, that use fixed margins or adjustments,

we argue that the degree of bias of each class should never be a fixed value, but is in a process

of dynamic change. The cause of bias cannot be attributed to the data alone, but the cause of the

interaction between model and data.

For DA, the biggest issue is that it is limited to scenarios where either true marginal class

distribution is available, or source and target data are collected from the same distribution, which

is too ideal in the real world.

Experiments on several benchmarks are made to show the validity and feasibility of DebiasPL.

For imbalanced data, Tab. 9.1 shows that integrating LA [389] into FixMatch lags far behind Fix-

Match w/ DebiasPL. For balanced data, since the adjustment or re-weighting vector is calculated

based on the true class distribution, most existing long-tailed methods that rely on true marginal

class distribution are no longer applicable without major changes (balanced class distribution leads

to identical treatment for all classes).

DebiasPL for T-ZSL and SSL

For semi-supervised learning, the proposed DebiasPL can be integrated into FixMatch, as in

Fig. 9.7, by adopting the adaptive debiasing module and adaptive marginal loss. To further boost

the performance of SSL and exploit the power of the vision-language pre-trained model, during

the training time, we can also integrate CLIP into FixMatch/DebiasPL by pseudo-labeling the
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Desired Properties
LA or
LDAM

Causal
Norm

DA Ours

Improve representation
learning at training time

6 : 6 6

No prior knowledge on
true marginal class distribution

: 6 : 6

Adaptive as the
training progresses

: : 6 6

Applicable to both
imbalanced and balanced data

: : 6 6

Source and target data can
come from varying distributions

: : : 6

Table 9.1: Our method is the only one with all these desired properties. Comparisons with previous works

concentrating on resolving training data distribution issues, including LA [389], LDAM [357], DA [362],

Causal Norm [348] and our DebiasPL, in key properties. Desired (undesired) properties are in green (red).

Method

CIFAR10-LT: # of labels (percentage) CIFAR10: # of labels (percentage)

γ=100 γ=200
40 (0.08%) 80 (0.16%) 250 (2%)

1244 (10%) 3726 (30%) 1125 (10%) 3365 (30%)

UDA [403] § - - - - 71.0 ±6.0 - 91.2 ±1.1

MixMatch [361] § 60.4 ±2.2 - 54.5 ±1.9 - 51.9 ±11.8 80.8 ±1.3 89.0 ±0.9

CReST w/ DA [379] 75.9 ±0.6 77.6 ±0.9 64.1 ±0.22 67.7 ±0.8 - - -

CReST+ w/ DA [379] 78.1 ±0.8 79.2 ±0.2 67.7 ±1.4 70.5 ±0.6 - - -

CoMatch w/ SimCLR [28], [375] - - - - 92.6 ±1.0 94.0 ±0.3 95.1 ±0.3

FixMatch [355] § 67.3 ±1.2 73.1 ±0.6 59.7 ±0.6 67.7 ±0.8 86.1 ±3.5 92.1 ±0.9 94.9 ±0.7

FixMatch w/ DA w/ LA [355], [362], [379], [389] § 70.4 ±2.9 - 62.4 ±1.2 - - - -

FixMatch w/ DA w/ SimCLR [28], [355], [362] § - - - - 89.7 ±4.6 93.3 ±0.5 94.9 ±0.7

DebiasPL (w/ FixMatch) 79.2 ±1.0 80.6 ±0.5 71.4 ±2.0 74.1 ±0.6 94.6 ±1.3 95.2 ±0.1 95.4 ±0.1

gains over the best FixMatch variant +8.8 +7.5 +9.0 +6.4 +4.9 +1.9 +0.5

Table 9.2: Without any prior knowledge of the marginal class distribution of unlabeled/labeled data, the

performance of DebiasPL on both CIFAR and CIFAR-LT SSL benchmarks surpasses previous SOTAs,

which are either designed for balanced data or meticulously tuned for long-tailed data. DibasMatch is

experimented with the same set of hyper-parameters across all benchmarks. § states the best-reported results

of counterpart methods, copied from [375], [355] or [379]. γ: imbalance ratio. We report results averaged

on 5 different folds.

discarded unlabeled instances with CLIP. Because the instances CLIP are not confident on may be

noisy, only these unlabeled instances with a CLIP confidence score greater than τclip are pseudo-

labeled by CLIP. We could get CLIP’s predictions on all training data and store it in a dictionary

without re-predicting per iteration. Therefore, the computational overheads introduced by using

the CLIP model are negligible. We only leverage CLIP in large-scale datasets since using CLIP on

low-resolution datasets like CIFAR10 can only observe marginal gains, partly due to the lack of

scale-based data augmentation in CLIP [17].

For transductive zero-shot learning, to better exploit knowledge learned from the vision-language

pre-trained model and alleviate the domain shift problem when transferring the knowledge to

downstream ZSL tasks, a new framework to conduct transductive zero-shot learning (T-ZSL) based

on FixMatch and CLIP is developed.
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Method B.S. #epochs Pre-train
1% 0.2%

top-1 top-5 top-1 top-5

FixMatch w/ DA [355], [362] 4096 400 : 53.4 74.4 - -

FixMatch w/ DA [355], [362] 4096 400 6 59.9 79.8 - -

FixMatch w/ EMAN [355], [404] 384 50 6 60.9 82.5 43.6∗ 64.6∗

DebiasPL w/ FixMatch 384 50 6 63.1 (+2.2) 83.6 (+1.1) 47.9 (+3.7) 69.6 (+5.0)

DebiasPL (multi-views) 768 50 6 65.3 (+4.4) 85.2 (+2.7) 51.6 (+8.0) 73.3 (+8.7)

DebiasPL (multi-views) 768 200 6 66.5 (+5.6) 85.6 (+3.1) 52.3 (+8.7) 73.5 (+8.9)

DebiasPL (multi-views) 1536 300 6 67.1 (+6.2) 85.8 (+3.3) - -

DebiasPL w/ CLIP [17] 384 50 6 69.1 (+8.2) 89.1 (+6.6) 68.2 (+24.6) 88.2 (+23.6)

DebiasPL w/ CLIP (multi-views) [17] 768 50 6 70.9 (+10.0) 89.3 (+6.8) 69.6 (+26.0) 88.4 (+23.8)

CLIP (few-shot) [17], [405] 256 50 6 53.4 - 40.0 -

SwAV [46] 4096 50 6 53.9 78.5 - -

SimCLRv2 (+ Self-distillation) [376] 4096 400 6 60.0 79.8 - -

PAWS (multi-crops) † [377] 4096 50 6 66.5 - - -

CoMatch (multi-views) [375] 1440 400 6 67.1 87.1 - -

Table 9.3: DebiasPL delivers state-of-the-arts results on ImageNet-1K semi-supervised learning with

various fractions of labeling samples, especially for extremely low-shot settings. All results are produced

with a backbone of ResNet-50. †: unsupervised pre-trained for 800 epochs, except for PAWS [377], which

is pre-trained for 300 epochs with pseudo-labels generated non-parametrically. ∗: reproduced.

Specifically, we again make use of the pseudo-labeling idea by leveraging the one-hot labels

(i.e., the argmax of the model’s output) and retaining pseudo labels whose largest class probability

fall above a confidence threshold τclip (= 0.95 by default). These instances, along with their pseudo

labels, are considered “labeled data” in SSL.

After this, we could follow the original FixMatch pipeline to optimize “labeled” and “un-

labeled” data jointly. To make a fair comparison with previous works and simplify the overall

system, all other training recipes and settings are consistent with the original FixMatch+EMAN

settings, including the model initialization part. The diagram is in the appendix.

Because CLIP is highly biased, the vanilla FixMatch + CLIP framework under-performs the

original CLIP zero-shot learning, confirming our earlier hypothesis that learning from a biased

model may further amplify existing bias and produce more wrong predictions. Therefore, we

update the unsupervised loss Lu with our Adaptive Marginal Loss for alleviating the inter-class

confusion and Adaptive Debias for producing debiased pseudo-labels as in Sec. 9.4.

9.5 Experiment

In this section, we conduct empirical experiments to show that DebiasPL: 1) delivers state-of-

the-art results on both semi-supervised and zero-shot learning benchmarks; 2) works as a universal

add-on and brings consistent performance gains to various methods; 3) exhibits stronger robustness

to domain shifts; 4) is capable of improving performance on long-tailed, balanced and even hybrid

data.
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Semi-supervised Learning

Dataset. We perform comprehensive evaluations of DebiasPL on multiple SSL benchmarks, in-

cluding CIFAR10 [393], long-tailed CIFAR10 (CIFAR10-LT) [393], and ImageNet-1K [406], with

varying amounts of labeled data. For the balanced benchmarks, the performance almost saturates

when using more than 2% labeled data. We put our focus on the extremely low-shot settings, i.e.,

0.08%/0.16%/2% on CIFAR10 and 1%/0.2% on ImageNet-1K. For imbalanced benchmarks, we

follow the settings in [379] and test DebiasPL on CIFAR10-LT under various pre-defined imbal-

ance ratios γ, where γ ∈ [100, 200], and percentage of labeled data, including 10% and 30%. More

details about datasets are included in the appendix.

Setup. For all experiments on both long-tailed CIFAR10 and CIFAR10 datasets, we follow previ-

ous works [355], [379] to use the network architecture WRN-28-2 [58], [407]. We also follow the

same set of hyper-parameters in FixMatch, except we reduce the total optimization iterations by

half.

For experiments on ImageNet-1K, we use ResNet50 as the backbone network and follow the

training recipes introduced in FixMatch w/ EMAN [404], which is also the default baseline of all

experiments on ImageNet-1K. The model is initialized with MoCo v2 + EMAN as in [404]. For the

setting with multiple views, we perform two strong augmentations and two weak augmentations on

each unlabeled sample. Each strongly-augmented instance is paired with one weakly-augmented

instance, and we jointly optimize the two pairs via pseudo-labeling as in the original setting of

Fig. 9.7. Multi-views could increase the convergence speed and stabilize the training process.

DebiasPL is simple yet effective. Tab. 9.2 and Tab. 9.3 show that DebiasPL delivers state-of-

the-art performance on all experimented benchmarks, outperforming current approaches by a large

margin. Without using CLIP, DebiasPL can outperform CoMatch on CIFAR, and is comparable

to CoMatch on ImageNet-1K. DebiasPL wins on its merit of simplicity. Leveraging the power of

CLIP could significantly improve the performance of DebiasPL, surpassing CoMatch by about 4%

on ImageNet-1K SSL.

Method
Labeled: LT; 10% labeled, γ = 200

Unlabeled: LT Unlabeled: Balanced

FixMatch [355] 62.3 ±1.6 72.1 ±2.3

DebiasPL 71.4 ±2.0 (+9.1) 83.5 ±2.4 (+11.4)

Table 9.4: DebiasPL consistently improves the performance of SSL when the unlabeled data is either the

sames as labeled data, i.e., long-tailed distributed, or different with labeled data, i.e., balanced distributed

across semantics. We report results averaged on 5 folds.

DebiasPL is agnostic to source/target data distribution. Tab. 9.2 shows that, for both CIFAR

and long-tailed CIFAR SSL benchmarks, using a unified framework and the same set of hyper-

parameters, DebiasPL can surpass previous state-of-the-art methods, which are either designed

for balanced data or meticulously tuned for long-tailed data. Furthermore, Tab. 9.4 shows that

when tested in scenarios where labeled and unlabeled data follow different distributions, DebiasPL

produces an even greater gain (11.4%) to the baseline.
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FixMatch MixMatch UDA

Baseline 89.7 ± 4.6 47.5 ± 11.5 29.1 ± 5.9

+ DebiasPL 94.6 ± 1.3 61.7 ± 6.1 43.2 ± 5.2

Table 9.5: DebiasPL is a universal add-on. Top-1 accuracies of various SSL methods on CIFAR10,

averaged on 5 folds, are compared. 4 instances per class are labeled.

Method #param
Accuracy (%)

top-1 top-5

ConSE [408] - 1.3 3.8

DGP [387] - 3.0 9.3

ZSL-KG [388] - 3.0 9.9

Visual N-Grams [409] - 11.5 -

CLIP (prompt ensemble) [17] 26M 59.6 -

(ours) CLIP + FixMatch 26M 55.7 80.6

(ours) CLIP + DebiasPL 26M 68.3 (+8.7) 88.9 (+8.3)

CLIP (few-shot) [17], [405] † 26M 53.4 -

CLIP + CoOp (few-shot) [405] † 26M 60.9 -

CLIP (ViT-B/32) [17] 398M 63.2 -

CLIP (ResNet50x4) [17] 375M 65.8 -

Table 9.6: DebiasPL delivers state-of-the-art results of zero-shot learning on ImageNet-1K, outperforming

CLIP with bigger models or fine-tuned with labels. †: CoOp and CLIP (few-shot) are fine-tuned with about

1.5% annotated data.

The fewer labeled data, the more significant gains can be observed in Tab. 9.2 and Tab. 9.3,

almost eliminating the gap between fully-supervised and semi-supervised learning.

DebiasPL is also a universal add-on as illustrated in Tab. 9.5. Incorporating DebiasPL into

various SSL methods can achieve consistent performance improvements.

Tranductive Zero-Shot Learning

Dataset. We evaluate the efficiency of DebiasPL in T-ZSL on ImageNet-1K [406]. EuroSAT [391],

MNIST [392], CIFAR10 [393], CIFAR100 [393], and Food101 [394] are also used as evaluation

datasets to show the robustness to domain shift.

Setup. T-ZSL assumes that the list of possible class candidates is known for the target data.

Following this setting, we do not use any semantic labels for target data. We apply DebiasPL

on CLIP in a similar way as we apply DebiasPL on FixMatch, except that the labeled data is

“labeled” by CLIP rather than a human annotator. Specifically, all unlabeled instances whose CLIP

confidence score greater than τclip are pseudo-labeled by CLIP and considered as “labeled” data.

A backbone of ResNet50 and a threshold τclip of 0.95 are used for all datasets. The same default

hyper-parameters and training recipes as in FixMatch + EMAN are utilized for fair comparisons.
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Figure 9.9: DebiasPL exhibits stronger robustness to domain shift when conducting zero-shot learning on

various datasets. We experiment with ResNet-50 as a backbone network. CLIP results are reproduced with

official codes.

More details are in the appendix.

DebiasPL delivers SOTA results on zero-shot learning, even surpassing CLIP [17] and CoOP

[405] that are fine-tuned on partial human-labeled data. Moreover, DebiasPL with a backbone of

ResNet50 can significantly outperform CLIP with 15× larger backbones, as shown in Tab. 9.6.

The time cost of zero-shot training DebiasPL w/ CLIP (without using any human annotations) for

100 epochs is less than 0.01% of CLIP’s overall training time.

DebiasPL exhibits stronger robustness to domain shift than zero-shot CLIP without accessing

any semantic labels, as depicted in Fig. 9.9. Also, DebiasPL can observe greater gains (more than

20%) on datasets with larger domain shifts, e.g., an astonishing 25.7% gains can be obtained on

the satellite image dataset EuroSAT [391].

9.6 Appendix

Details on Datasets and Implementations

The PyTorch-style pseudocode for semi-supervised learning with DebiasPL is available at Algo. 2.

We conduct experiments on several benchmarks to prove the effectiveness and universality of

DebiasPL. Here we provide more details on datasets and implementations for each benchmark:
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Algorithm 2 PyTorch-style pseudocode for semi-supervised learning with DebiasPL

Initialize p̂ with 1/C, where C is the number of classes

1: p̂← torch.ones([1, C]) / C

Load a batch with labeled (x, target) and unlabeled samples u

2: for (x, target), u in loader do

Augment x (weak) and get two versions of u (strong and weak)

3: x, us, uw ← weak(x),strong(u),weak(u)
Model forward

4: lx, lus, luw ← model(x, us, uw)
Get debiased pseudo-labels

5: puw ← softmax(luw − τ · log(p̂))
6: max probs,pseudo label← torch.max(puw)

Get mask for filtering low-confidence instances

7: mask← max probs ≥ thresh

Update p̂

8: p̂← momentum · p̂+ (1− momentum) · mean(puw)
Compute labeled loss

9: lossx ← cross entropy(lx, target)
Compute marginal loss for unlabeled instances

10: lus ← lus + λ · log(p̂)
11: lossu ← mean(cross entropy(lus,pseudo label) · mask)

Total loss

12: loss← lossx + λu · lossu

Optimization step

13: loss.backward()

14: optimizer.step()

15: end for

Update the EMA model

16: model.momentum update ema()

CIFAR10 [393]: The original version of CIFAR10 contains 50,000 images on the training set

and 10,000 images on the validation set with 10 categories for CIFAR10. For semi-supervised

learning on CIFAR10, we conduct the experiments with a varying number of labeled examples

from 40 to 250, following standard practice in previous works [355], [361], [362], [375]. The

reported results of each previous method in the paper are directly copied from the best-reported

results in MixMatch [361], ReMixMatch [362], FixMatch [355], CoMatch [375], etc.

We keep all hyper-parameters the same as FixMatch, except for the number of training steps.

We use WideResNet-28-2 [58], [407] with 1.5M parameters as a backbone network for CIFAR10.

The SGD optimizer with a Nesterov momentum of 0.9 is used for optimization. The learning rate is

initialized as 0.03 and decayed with a cosine learning rate scheduler [410], which sets the learning

rate at training step k as cos( 7πk
16K

) times the initial learning rate, where K = 219 is the total number
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of training steps, i.e., about 512 epochs, and is 2 times fewer than the original number of FixMatch

training steps. The model is trained with a mini-batch size of 512, which contains 64 labeled

samples and 448 unlabeled samples, on one V100 GPU. As in previous works, an exponential

moving average of model parameters is used to produce the final performance. The weight decay

is set as 0.0005 for CIFAR10. Unless otherwise stated, the only independent hyperparameter of

DebiasPL λ is fixed and set to 0.5 in all experiments. Each method is tested under 5 different folds,

and we report the mean and the standard deviation of accuracy on the test set.

CIFAR10-LT [379], [393], [411]: The long-tailed version of CIFAR10 follows an exponential

decay in sample sizes across different categories. CIFAR10-LT is constructed by sampling a subset

of CIFAR10 following the Pareto distribution with the power value γ ∈ [100, 200]. Then, we select

10% or 30% of all CIFAR10-LT instances to construct the SSL benchmark labeled dataset, and the

others are regarded as the unlabeled datasets. Each algorithm is tested under 5 different folds of

labeled data, and we report the mean and the standard deviation of accuracy on the test set. As in

previous works, an exponential moving average of model parameters is used to produce the final

performance.

To demonstrate the universality of the proposed method DebiasPL and its insensitivity to data

distribution, we follow the same hyperparameters and training formulas in CIFAR10. We do not

specifically adjust any hyperparameters when conducting experiments in the long-tail SSL bench-

marks.

ImageNet-1K [406]: ImageNet-1K is a curated dataset with approximately class-balanced data

distribution, containing about 1.3M images for training and 50K images for validation.

For semi-supervised learning, ImageNet-1K with varying amounts of labeled data is experi-

mented with, i.e., 0.2% and 1%. The FixMatch model is trained with a batch size of 64 (320)

for labeled (unlabeled) images with an initial learning rate of 0.03. Following [404], we replace

batch normalization (BN) layers with exponential moving average normalization (EMAN) layers

in the teacher model. EMAN updates its statistics by exponential moving average from the BN

statistics of the student model. ResNet-50 is used as the default network and the default hyper-

parameters in the corresponding papers [355], [404] are applied. The model is initialized with

MoCo v2 + EMAN pre-trained model as in [404]. To make fair comparisons, we report results of

FixMatch with EMAN as the baseline model, and all hyper-parameters of FixMatch with EMAN

are untouched unless noted otherwise.

For zero-shot learning, no manual annotation is leveraged in the training process. We train

CLIP + DebiasPL and CLIP + FixMatch following the same hyperparameters and training recipes

as FixMatch with EMAN, except that the labeled data is “labeled” by CLIP rather than a human

annotator. Specifically, all unlabeled instances whose CLIP confidence score greater than τclip

are pseudo-labeled by CLIP (with a backbone of ResNet50) and considered as “labeled” data. A

backbone of ResNet50 and a threshold τclip of 0.95 are used. The same default hyper-parameters

and training recipes as in FixMatch + EMAN are utilized for fair comparisons.

For experiments on other benchmarks of ZSL, including EuroSAT [391], MNIST [392], DTD

[412], GTSRB [413] and Flowers102 [414], we follow the training recipe of ImageNet-1K.
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Ablation Study

In this section, we conduct additional ablation studies on the influence of the two components of

DebiasPL (Table. 9.7) for SSL, DebiasPL’s unique hyperparameter λ (Table. 9.8) for SSL, and

CLIP’s confidence score threshold τclip (Table. 9.9) for T-ZSL.

Debiasing Magirnal Loss CIFAR10 CIFAR10-LT

86.1 73.5

6 93.3 79.6

6 6 94.6 80.6

Table 9.7: Ablation study on the contribution of each component of DebiasPL. Experimented on CI-

FAR10 and CIFAR10-LT (γ=100) SSL, in which 4 out of 5,000 samples are labeled per class for CIFAR10

and 30% instances are labeled for CIFAR10-LT. Results averaged over 5 different folds are reported.

As shown in Table. 9.7, the two components of DebiasPL lead to significant improvements to

both CIFAR10 and CIFAR10-LT SSL benchmarks. Compared with the balanced benchmark, the

performance improvement obtained by introducing the marginal loss is relatively smaller than the

unbalanced benchmark.

λ 0.0 0.25 0.5 0.75 1.0 2.0

DebiasPL 73.5 79.5 80.6 80.5 80.5 77.7

Table 9.8: Ablation study on CIFAR10-LT (γ = 100) semi-supervised learning with DebiasPL under

various weight λ of debiasing module and marginal loss. 30% samples are labeled. The model is identical

to FixMatch when λ = 0. Results averaged over 5 different folds are reported.

Table. 9.8 illustrates the influence of debias factor λ. When the value of λ is set to 0, DebiasPL

is identical to FixMatch. Adding a debiasing module and marginal loss can improve the perfor-

mance on CIFAR10-LT by more than 7% when selecting the optimal choice of λ 0.5, which is

marginally better than the default value of 1.0. However, there is a trade-off. Suppose the debias

factor λ is too strong. In that case, it is hard for a model to fit on the data, while a too-small factor

can barely eliminate the biases, ultimately impairs the generalization ability.

τclip 0.2 0.4 0.6 0.8 0.9 0.95

DebiasPL + CLIP 55.9 63.2 66.2 67.1 67.7 67.7

Table 9.9: Ablation study on ImageNet-1K zero-shot Learning with DebiasPL + CLIP [17] under various

threshold τclip.

As illustrated in the main paper, the CLIP predictions are class-imbalanced. Therefore, the

natural question is whether we can obtain a more balanced prediction by filtering instances with a
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Figure 9.10: A higher imbalanced ratio is obtained when filtering CLIP’s zero-shot predictions with a

larger threshold, analyzed on CLIP’s zero-shot predictions on 1.3M almost class-balanced ImageNet training

samples. Per class number of predictions (row 1), precision (row 2), and recall (row 3) of samples passing

various confidence score thresholds τ are visualized. Zero-shot predictions are produced with an ensemble

of 80 prompts and a backbone of ResNet50, using official codes.

threshold τclip? Unfortunately, no, on the contrary, when filtering predictions with a larger thresh-

old, a higher imbalance rate is observed, as in Fig. 9.10. Furthermore, when filtering instances

with a threshold of 0.95, more than 60 categories get zero predictions.

The dilemma is that using a smaller threshold τclip can obtain a smaller imbalanced ratio, which

is the desired property. However, it also leads to a lower precision, introducing many outliers and

misclassified samples. Therefore, a module to eliminate biases captured by the CLIP model when

CLIP is pre-trained on source data is needed to yield a good performance on target data.

Table. 9.9 shows that using a threshold of 0.95 can get the optimal performance on the Ima-

geNet zero-shot learning task, which indicates that the high precision of the labeled data, realized

by using a high threshold, is essential for better performance on target data. At the same time, our

proposed DebiasPL can greatly alleviate the trouble of a higher imbalance ratio caused by using a

larger threshold, eventually obtaining more than 10% performance gains.
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9.7 Summary

In this paper, we conduct research on the previously unknown biased pseudo-labeling issue. A

simple yet effective method DebiasPL is proposed to dynamically alleviate biased pseudo-labels’

influence on a student model, without leveraging any prior knowledge of true data distribution.

As a universal add-on, DebiasPL delivers significantly better performance than previous state-of-

the-arts on both semi-supervised learning and transductive zero-shot learning tasks and exhibits

stronger robustness to domain shifts.
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Part V

Looking Ahead: Towards Autonomous

Machine Intelligence
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Natural intelligence emerges through a lifelong process of perceiving and acting, involving

both passive observation and active exploration across behaviors, expressions, and language. These

experiences form rich sources of intelligence, enabling agents to associate observed behaviors with

environmental cues and learn interactions in a task-independent, unsupervised manner. In contrast,

current AI systems are primarily trained on simplified abstractions of human intelligence — labeled

datasets for vision models or text-based corpora for language models. While large language models

(LLMs) excel at mimicking human language patterns, they operate within a constrained spectrum

of intelligence, far removed from the full range of sensory, perceptual, and motor experiences that

shape human intelligence [415]–[417].

Despite recent efforts to develop large multimodal models, most approaches remain language-

centric, relying on pretrained LLMs with other modalities — e.g., visual, auditory, and sensory

inputs — layered on top. However, language is merely an abstraction of the world: a compressed

representation of human knowledge that inevitably fails to capture the many nuances and sensory

experiences we encounter. Treating language as the primary representation of intelligence imposes

inherent limitations on many tasks, ultimately constraining AI’s ability to perceive and interact

with the rich, dynamic nature of our world.

To advance AI toward human-like intelligence, we must break free from these limitations.

My future work aims to overcome these constraints by creating AI systems that leverage richer,

multimodal sensory inputs to foster a more complete form of intelligence — systems that can

operate across the full spectrum of cognitive skills, from perception and reasoning to prediction and

strategic action, while possessing the agility to evolve through continual, self-directed interaction

with the world, free from heavy human supervision. Consider how a child learns: by observing

adults, interacting with the environment, and interpreting behaviors and cues. Similarly, while

human intelligence has been encoded into text over centuries — forming a framework that LLMs

can replicate — true AI requires richer sensory grounding, encompassing physical interaction,

spatial navigation, and social dynamics, to genuinely mirror human capabilities.

Interactive, continual learning is another essential component. Beyond passive observation,

intelligent agents must actively engage with their environment — forming hypotheses, acting,

and adjusting based on feedback. For example, a robot learning to grasp objects cannot master

the skill through static observation alone; it must experiment, receive trial-and-error feedback,

and iteratively refine its approach until it succeeds. This type of adaptive learning is crucial for

building systems that not only comprehend but also intelligently respond to novel situations in

real time. Many of the sensory and motor capabilities in humans and animals evolved in this way

to enhance survival in dynamic environments. Likewise, developing machine intelligence in a

dynamic, interactive context could yield more robust and adaptive AI systems.

In summary, my research vision is to design machine intelligence that approach — and eventu-

ally surpass — human intelligence by developing scalable, multimodal models equipped with rich

world models and intrinsic drives for exploration. I am committed to developing the foundations of

an AI that is deeply informed by real-world, multimodal experiences, ultimately reflecting and sur-

passing the complexity, adaptability, and richness of natural human intelligence. These systems

should integrate diverse forms of perception, act to generate their own learning opportunities, and

continuously refine their understanding through interaction. Looking forward, the path towards
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autonomous machine intelligence will require unifying perception, reasoning, prediction, and ac-

tion within agents that can learn effectively and efficiently from the world itself — not just from

curated datasets — enabling them to adapt, generalize, and thrive in the open-ended complexity of

real environments.
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“The 2017 davis challenge on video object segmentation,” arXiv preprint arXiv:1704.00675,

2017.

[99] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101,

2017.

[100] M. Hamilton, Z. Zhang, B. Hariharan, N. Snavely, and W. T. Freeman, “Unsupervised se-

mantic segmentation by distilling feature correspondences,” arXiv preprint arXiv:2203.08414,

2022.

[101] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detec-

tion,” in ICCV, 2017.

[102] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint triplets for

object detection,” in Proceedings of the IEEE/CVF international conference on computer

vision, 2019, pp. 6569–6578.

[103] B. Cheng, A. G. Schwing, and A. Kirillov, “Per-pixel classification is not all you need for

semantic segmentation,” 2021.

[104] Y. Li, H. Mao, R. Girshick, and K. He, “Exploring plain vision transformer backbones for

object detection,” in European Conference on Computer Vision, Springer, 2022, pp. 280–

296.

[105] A. Kirillov, K. He, R. B. Girshick, C. Rother, and P. Dollár, “Panoptic segmentation,” 2019

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9396–

9405, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:

4853375.

[106] J. Jain, J. Li, M. Chiu, A. Hassani, N. Orlov, and H. Shi, “OneFormer: One Transformer to

Rule Universal Image Segmentation,” 2023.

[107] X. Wang, R. Girdhar, S. X. Yu, and I. Misra, “Cut and learn for unsupervised object detec-

tion and instance segmentation,” arXiv preprint arXiv:2301.11320, 2023.

[108] X. Ji, J. F. Henriques, and A. Vedaldi, “Invariant information clustering for unsupervised

image classification and segmentation,” in ICCV, 2019.

[109] J. H. Cho, U. Mall, K. Bala, and B. Hariharan, “Picie: Unsupervised semantic segmentation

using invariance and equivariance in clustering,” ArXiv, vol. abs/2103.17070, 2021.

[110] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, and L. Van Gool, “Unsupervised seman-

tic segmentation by contrasting object mask proposals,” arxiv preprint arxiv:2102.06191,

2021.

https://api.semanticscholar.org/CorpusID:4853375
https://api.semanticscholar.org/CorpusID:4853375


BIBLIOGRAPHY 181

[111] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic segmentation,” in

CVPR, 2019.

[112] Y. Xiong, R. Liao, H. Zhao, et al., “Upsnet: A unified panoptic segmentation network,” in

CVPR, 2019.

[113] A. Kirillov, R. Girshick, K. He, and P. Dollár, “Panoptic feature pyramid networks,” in

CVPR, 2019.

[114] B. Cheng, M. D. Collins, Y. Zhu, et al., “Panoptic-DeepLab: A simple, strong, and fast

baseline for bottom-up panoptic segmentation,” in CVPR, 2020.

[115] Y. Li, H. Zhao, X. Qi, et al., “Fully convolutional networks for panoptic segmentation with

point-based supervision,” arXiv preprint arXiv:2108.07682, 2021.

[116] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end

object detection with transformers,” in ECCV, 2020.

[117] H. Wang, Y. Zhu, H. Adam, A. Yuille, and L.-C. Chen, “MaX-DeepLab: End-to-end panop-

tic segmentation with mask transformers,” in CVPR, 2021.

[118] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, and L. Van Gool, “Scan:

Learning to classify images without labels,” in European conference on computer vision,

Springer, 2020, pp. 268–285.

[119] Z. Dang, C. Deng, X. Yang, K. Wei, and H. Huang, “Nearest neighbor matching for deep

clustering,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2021, pp. 13 693–13 702.

[120] S. Park, S. Han, S. Kim, et al., “Improving unsupervised image clustering with robust

learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2021, pp. 12 278–12 287.

[121] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory,

vol. 28, no. 2, pp. 129–137, 1982.

[122] E. W. Forgy, “Cluster analysis of multivariate data: Efficiency versus interpretability of

classifications,” biometrics, vol. 21, pp. 768–769, 1965.

[123] H.-P. Kriegel, E. Schubert, and A. Zimek, “The (black) art of runtime evaluation: Are we

comparing algorithms or implementations?” Knowledge and Information Systems, vol. 52,

no. 2, pp. 341–378, 2017.

[124] G. J. McLachlan and T. Krishnan, The EM algorithm and extensions. John Wiley & Sons,

2007, vol. 382.

[125] E. H. Adelson, “On seeing stuff: The perception of materials by humans and machines,” in

Human Vision and Electronic Imaging, 2001.

[126] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in CVPR, 2009.



BIBLIOGRAPHY 182

[127] W. Wang, M. Feiszli, H. Wang, and D. Tran, “Unidentified video objects: A benchmark

for dense, open-world segmentation,” CoRR, vol. abs/2104.04691, 2021. arXiv: 2104.

04691. [Online]. Available: https://arxiv.org/abs/2104.04691.

[128] M. Cordts, M. Omran, S. Ramos, et al., “The cityscapes dataset for semantic urban scene

understanding,” CoRR, vol. abs/1604.01685, 2016. arXiv: 1604.01685. [Online]. Avail-

able: http://arxiv.org/abs/1604.01685.

[129] A. Kirillov, R. Girshick, K. He, and P. Dollár, “Panoptic feature pyramid networks,” in

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,

2019, pp. 6399–6408.

[130] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of machine

learning research, vol. 9, no. 11, 2008.

[131] X. Wang, R. Zhang, C. Shen, T. Kong, and L. Li, “Dense contrastive learning for self-

supervised visual pre-training,” in Proc. IEEE Conf. Computer Vision and Pattern Recog-

nition (CVPR), 2021.

[132] A. Kirillov, E. Mintun, N. Ravi, et al., “Segment anything,” arXiv:2304.02643, 2023.

[133] A. Young, B. Chen, C. Li, et al., “Yi: Open foundation models by 01. ai,” arXiv preprint

arXiv:2403.04652, 2024.

[134] J. Bai, S. Bai, Y. Chu, et al., “Qwen technical report,” arXiv preprint arXiv:2309.16609,

2023.

[135] A. Q. Jiang, A. Sablayrolles, A. Mensch, et al., “Mistral 7b,” arXiv preprint arXiv:2310.06825,

2023.

[136] J. Kaplan, S. McCandlish, T. Henighan, et al., “Scaling laws for neural language models,”

arXiv preprint arXiv:2001.08361, 2020.

[137] J. Bill, H. Pailian, S. J. Gershman, and J. Drugowitsch, “Hierarchical structure is employed

by humans during visual motion perception,” Proceedings of the National Academy of

Sciences, vol. 117, no. 39, pp. 24 581–24 589, 2020.

[138] S. R. Mitroff, B. J. Scholl, and K. Wynn, “Divide and conquer: How object files adapt

when a persisting object splits into two,” Psychological Science, vol. 15, no. 6, pp. 420–

425, 2004.

[139] B. Zhou, H. Zhao, X. Puig, et al., “Semantic understanding of scenes through the ade20k

dataset,” International Journal of Computer Vision, vol. 127, pp. 302–321, 2019.

[140] L. Qi, J. Kuen, Y. Wang, et al., “Open world entity segmentation,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2022.

[141] J. He, S. Yang, S. Yang, et al., “Partimagenet: A large, high-quality dataset of parts,” in

European Conference on Computer Vision, Springer, 2022, pp. 128–145.

[142] V. Ramanathan, A. Kalia, V. Petrovic, et al., “Paco: Parts and attributes of common ob-

jects,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, 2023, pp. 7141–7151.

https://arxiv.org/abs/2104.04691
https://arxiv.org/abs/2104.04691
https://arxiv.org/abs/2104.04691
https://arxiv.org/abs/1604.01685
http://arxiv.org/abs/1604.01685


BIBLIOGRAPHY 183

[143] D. Niu, X. Wang, X. Han, L. Lian, R. Herzig, and T. Darrell, “Unsupervised universal

image segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2024.

[144] Y. Wang, X. Shen, Y. Yuan, et al., “Tokencut: Segmenting objects in images and videos

with self-supervised transformer and normalized cut,” IEEE transactions on pattern anal-

ysis and machine intelligence, 2023.

[145] S. Cao, J. Gu, J. Kuen, et al., “SOHES: Self-supervised open-world hierarchical entity seg-

mentation,” in The Twelfth International Conference on Learning Representations, 2024.

[Online]. Available: https://openreview.net/forum?id=PXNrncg2DF.

[146] W. Van Gansbeke, S. Vandenhende, and L. Van Gool, “Discovering object masks with

transformers for unsupervised semantic segmentation,” arxiv preprint arxiv:2206.06363,

2022.

[147] S. Cao, D. Joshi, L. Gui, and Y.-X. Wang, “HASSOD: Hierarchical adaptive self-supervised

object detection,” in NeurIPS, 2023.

[148] H. V. Vo, F. Bach, M. Cho, et al., Unsupervised image matching and object discovery as

optimization, 2019. arXiv: 1904.03148 [cs.CV].

[149] F. Li, H. Zhang, P. Sun, et al., “Semantic-sam: Segment and recognize anything at any

granularity,” arXiv preprint arXiv:2307.04767, 2023.

[150] X. Zhao, W. Ding, Y. An, et al., Fast segment anything, 2023. arXiv: 2306.12156

[cs.CV].

[151] Y. Xiong, B. Varadarajan, L. Wu, et al., Efficientsam: Leveraged masked image pretraining

for efficient segment anything, 2023. arXiv: 2312.00863 [cs.CV].

[152] J. Cheng, J. Ye, Z. Deng, et al., Sam-med2d, 2023. arXiv: 2308.16184 [cs.CV].
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