
Sensitive-data Protection for Today's Web Applications

Wen Zhang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-149
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-149.html

August 11, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Sensitive-data Protection for Today’s Web Applications

by

Wen Zhang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Scott Shenker, Chair

Assistant Professor Aurojit Panda

Professor Sylvia Ratnasamy

Associate Professor Alvin Cheung

Summer 2025

Sensitive-data Protection for Today’s Web Applications

Copyright 2025

by

Wen Zhang

1

Abstract

Sensitive-data Protection for Today’s Web Applications

by

Wen Zhang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Scott Shenker, Chair

As web applications increasingly handle sensitive user data, protecting that data from unautho-

rized access is more critical than ever. Yet, despite decades of research on access control, data

leaks remain prevalent—not due to a lack of solutions, but because existing solutions are diffi-

cult to adopt by today’s deployed applications. Two key challenges hinder adoption: (1) many

solutions require nonstandard programming models that are incompatible with mainstream web

frameworks, and (2) developers must manually define access-control policies—a time-consuming

and error-prone task, particularly for legacy applications that lack such policies.

If we want to solve the societal problem of sensitive-data protection, we must meet today’s ap-

plications where they are. This dissertation focuses on developing access-control techniques that

can be easily applied to existing applications. We will present two systems: Blockaid, which per-

forms fine-grained access control on existing web applications with minimal modification, and

Ote, which aids in policy creation by extracting implicit policies embedded in legacy code. By

supporting today’s applications without requiring a redesign, our approach aims to bring practi-

cal data protection to real-world deployments.

i

To my family.

ii

Contents

Contents ii

List of Figures v

List of Tables vi

Acknowledgements vii

1 Introduction 1
1.1 The Problem . 1

1.2 The Status Quo . 2

1.3 Past Research . 3

1.4 Our Contributions . 4

1.5 Previous Publications . 5

2 Blockaid: Access-control Enforcement 6
2.1 Introduction . 6

2.2 Related Work . 7

2.3 System Design . 8

2.3.1 Application Assumptions and Threat Model 8

2.3.2 System Overview . 9

2.3.3 Application Requirements . 10

2.4 View-based Policy and Compliance . 10

2.4.1 Specifying Policies as Views . 11

2.4.2 Compliance to View-based Policy . 11

2.4.3 From Query Compliance to Noninterference 13

2.5 Compliance Checking with SMT . 16

2.5.1 Translating Noncompliance to SMT . 16

2.5.2 Handling Practical SQL Queries . 17

2.5.3 Optimizations and SMT Encoding . 19

2.6 Decision Generalization and Caching . 21

2.6.1 Example . 23

iii

2.6.2 Definitions and Goals . 23

2.6.3 Generating Decision Templates . 25

2.6.4 Decision Cache and Template Matching 29

2.7 Implementation . 30

2.8 Evaluation . 30

2.8.1 Constraints, Policies, and Annotations . 30

2.8.2 Code Modifications . 31

2.8.3 Experiment Setup and Benchmark . 33

2.8.4 Page Load Times . 33

2.8.5 Fetch Latency . 34

2.8.6 Solver Comparison . 35

2.8.7 Template Generalization . 35

2.8.8 Artifact . 37

2.9 Additional Issues . 39

2.9.1 Comparison to row- and cell-level policy 39

2.9.2 False rejections . 40

2.9.3 Off-path deployment . 40

2.9.4 What if Blockaid could issue its own queries? 40

2.9.5 Optimal templates . 40

2.10 Conclusion . 41

3 A Decidable Case of Query Determinacy: Project-Select Views 42
3.1 Introduction . 42

3.2 Setup . 42

3.3 Reducing determinacy to a logical formula . 43

3.3.1 Statement of Theorem . 43

3.3.2 Proof of Theorem . 44

4 Ote: Access-policy Extraction 48
4.1 Introduction . 48

4.2 Motivation and Background . 49

4.2.1 Why Policy Extraction? . 49

4.2.2 Policy as SQL View Definitions . 50

4.3 Overview . 51

4.3.1 Workflow . 52

4.3.2 Assumptions and Scope . 54

4.4 Exploring Executions . 55

4.4.1 Observation: Simple Query-issuing Cores 55

4.4.2 Concolic Execution: What and Why . 56

4.4.3 System Architecture . 56

4.4.4 Symbolic Modeling and Input Generation 56

4.4.5 Instrumentation and Tracking . 58

iv

4.5 Generating a Policy . 58

4.5.1 Preprocessing Into Conditioned Queries 58

4.5.2 Simplifying Conditioned Queries . 59

4.5.3 Generating SQL View Definitions . 59

4.5.4 Pruning Views via Enforcement . 63

4.6 Discussion . 63

4.7 Implementational and Practical Aspects . 64

4.7.1 Driver and Policy Generator . 64

4.7.2 Executors . 64

4.7.3 Tooling . 65

4.8 Evaluation . 65

4.8.1 Setting Up Applications for Ote . 66

4.8.2 Experiment Setup . 68

4.8.3 Paths, Conditioned Queries, and Views . 68

4.8.4 Performance . 70

4.8.5 Findings From the Extracted Policies . 70

4.8.6 Broadening the Extracted Policy . 71

4.9 Related Work . 72

4.10 Conclusion and Future Work . 73

5 Future Directions 74
5.1 Policy Testing . 74

5.1.1 Challenge: Evaluating a Policy for Sensitive-data Disclosure 74

5.1.2 Existing Work: Bayesian Privacy . 75

5.1.3 Proposal: Prior-agnostic Privacy . 75

5.2 Violation Diagnosis . 76

5.2.1 Challenge: Troubleshooting Violations . 76

5.2.2 Proposal: Patch Generation . 77

5.3 Policy Comprehension . 78

5.4 Decidable Compliance Checking . 79

Bibliography 80

v

List of Figures

1.1 A simplified architecture of a typical web application. 2

2.1 An overview of Blockaid. 9

2.2 From compliance to strong compliance. 20

2.3 URL fetch latency. 34

2.4 Fraction of wins by each solver. 35

4.1 Policy extraction workflow. 53

vi

List of Tables

2.1 Summary of schemas, policies, and code changes. 31

2.2 Application benchmark description and page-load time. 32

2.3 Where artifact contents are hosted. 38

3.1 Database notations. 43

3.2 Other mathematical notations. 43

4.1 Number of database constraints. 67

4.2 Statistics and performance for path exploration and policy generation. 69

4.3 View count in extracted vs handwritten policies. 71

vii

Acknowledgments

My first and deepest thanks go to my advisor, Scott Shenker. Scott was the reason I chose

Berkeley, and looking back, I certainly made the right choice. He is, simply put, the best advisor I

could have asked for. From Scott, I learned to look beyond low-hanging fruit and instead to “take

a step back”, ask fundamental questions, relentlessly seek simplicity and clarity, and find the

right way to solve a problem—the way that changes how people think. I always feel comfortable

walking into Scott’s office to discuss any idea that pops into my head, whether related to my

research or in a completely different area, whetherwell-formed or (as is often the case) half-baked.

Even when I have no idea what I’m talking about, Scott always humors me, listens patiently to

my ramblings, and skillfully finds the nuggets of gold within. His mentorship transcends any

single research topic and has emboldened me to venture into any new area that interests me.

I owe tremendous gratitude toAurojit Panda, my unofficial second advisor. Panda is a walk-

ing encyclopedia of computer science (and many other things). No matter what subject I bring

up—a thorny research problem, a question about a random paper I’ve read, or a new industry

technology—Panda always has something intelligent to offer. I have had the privilege of working

with him since my first day at Berkeley, and I am still amazed by his generosity with his time and

knowledge. Most of all, working with Panda has made research infinitely more enjoyable.

I am also deeply grateful to my other committee members, Sylvia Ratnasamy and Alvin
Cheung. Over the years, Sylvia has givenme invaluable feedback onmy research. My only regret

is not having the opportunity to work with her more closely, but whenever I needed help, she

was always there for me. Alvin brought unique expertise from both database and programming-

language research. Hewould patiently dissect my nascent ideas and sharpen them into something

concrete—I have learned a great deal from him.

I first met Natacha Crooks when I took her class on distributed systems and have since

had the privilege of collaborating with her. As a newcomer to distributed systems, I always

have countless basic questions—or worse, vague confusion that I cannot even articulate. Natacha

would patiently listen, help me frame my thoughts, and guide me to the precise answers I am

seeking. I also thank Natacha for her endless encouragement as I navigate my career path.

I began working with Mooly Sagiv at the start of the Blockaid project. He singlehandedly

introduced me to both database theory and the amazing capabilities of SMT solvers. Whenever I

was stuck, Mooly could point the way towards progress, whether by sharpening a definition or

by leveraging a suitable tool. Even after our paper was published, Mooly continued to support

my career, making time to meet even when he was busiest with his company. I learned so much

from Mooly and truly appreciate his guidance.

I interned with Irene Zhang at Microsoft Research in the summer of 2019; we started the

Persimmon project then and extended our collaboration beyond the internship. Irene skillfully

located three servers with Intel
®
Optane™ DC Persistent Memory, which were essential for our

experiments. But more importantly, she introduced me to the world of datacenter computing

and taught me the valuable skill of thinking about problems at a high level and presenting the

big picture.

viii

Throughout my PhD, I have been fortunate to collaborate with many people at Berkeley:

Dev Bali, Eric Sheng, Jamison Kerney, Matei Zaharia, Micah Murray, Michael Alan Chang, Narek

Galstyan, Peter Xiang Gao, Rishabh Iyer, Sam Son, Silvery Fu, Zhihong Luo, Jiwon Park, and

Shadaj Laddad. I have learned a lot from each of them, and I thank them for putting up with my

incessant questions.

I give special thanks to Silvery Fu. Silvery and I started as graduate students in the NetSys

Lab at the same time; he has always been there for me when I need someone to talk to, and
even when I don’t realize I do. I have found in Silvery a true friend, and I am confident that our

friendship will extend well beyond graduate school.

I have enjoyed the company of many others—friends from the NetSys Lab: Aisha Mushtaq,

Akshay Narayan, Alexander Krentsel, Amin Tootoonchian, Amy Ousterhout, Anwar Hithnawi,

Chang Lan, Christopher Branner-Augmon, Edward Oakes, Emily Marx, Emmanuel Amaro, Ethan

J. Jackson, Hannah B. Pasandi, Lloyd Brown, Murphy McCauley, Radhika Mittal, Sarah McClure,

Tenzin Samten Ukyab, Tess Despres, YotamHarchol, and ZimingMao; and friends from the RISE-

Lab / Sky Computing Lab and beyond: Geng Zhao, Zongheng Yang, Sam Kumar, Conor & Laura

Power, David Chu, Eyal Sela, Jaewan Hong, Jean-Luc Watson, Jenny Huang, Julien Piet, Justin

Wong, Peter Schafhalter, Samyu Yagati, Shishir Patil, Shu Liu, StephanieWang, Tian Xia, Tianjun

Zhang, Wenshuo Guo, and many more!

I am grateful to our lab’s administrative staff—Ivan Ortega, Jon Kuroda, Kailee Truong, Kattt

Atchley, TramVu, Angie Goodwin, Boban Zarkovich, Dave Schonenberg, and Shane Knapp—who

have skillfully kept the lab running smoothly.

I began my research journey as an undergraduate at Stanford University, where I had the

great fortune to work with Elliott Slaughter and Alex Aiken. Elliott and Alex were the reason
why I chose to pursue a PhD. They introduced me to the fun and excitement of research and

encouraged me to apply to graduate school, believing in my potential even when I did not. I am

profoundly grateful to them for setting me on a path that has turned out to be so rewarding.

∗ ∗ ∗

I would not be here without my parents, Yan Lang and Zhuo Zhang, who have uncondi-

tionally loved and supported me from the beginning, consistently put my needs before their own,

and kept my best interests in mind in everything they did. They also had the incredible foresight

to recognize the importance of mastering both computer technology and the English language

early in my education, which has certainly prepared me well for writing this Computer Science

dissertation in English.

Last but certainly not least, I thank my wife, Vivian Fang. She has been my constant com-

panion on this journey, possessing the remarkable ability to pull me away from my desk—out of

the apartment, even—for much-needed breaks that I didn’t realize I needed. Proud as I am of the

work in this dissertation, the most precious thing I have gained during my PhD is undoubtedly

my relationship with Vivian. I thank her for being a loyal and loving partner, for adding color

to my life, and for bringing into our lives our two cats, Natto and Mini, who have provided

immeasurable joy and support throughout this journey.

1

Chapter 1

Introduction

We use many web applications in our everyday lives, applications that store and serve sensi-

tive user data. Students log into university portals to check grades, patients access healthcare

dashboards to review medical records, and billions of people rely on messaging platforms to stay

connected with friends and family. In every case, users expect that their personal data remains

confidential and is revealed only to authorized parties.

Protecting such data is therefore a matter of both social importance and, in many domains,

legal obligation. Governments have long regulated the disclosure of information deemed par-

ticularly sensitive—e.g., FERPA for education records and HIPAA for medical records. But even

outside strictly regulated settings, platform operators face contractual, reputational, and ethical

pressure to avoid unauthorized disclosures.

Yet data leaks continue unabated, suggesting that the status quo for data-protection in web

applications is woefully inadequate. To explain why, we will define the problem (§1.1), discuss

why the prevailing approaches for data protection are insufficient (§1.2), and highlight where past

research falls short (§1.3). We will then outline our contributions—two complementary systems

that, taken together, form a holistic solution for protecting sensitive data in web applications

today (§1.4).

1.1 The Problem

Figure 1.1 shows the simplified architecture of a typical web application. A user interacts with

the application—say, a calendar—backed by a database holding records for all users. The browser
sends an HTTP request to the application, which issues a series of queries to the database and

uses the results to construct a response to send back to the user. Both the application and the

database are controlled by the web application’s operator, whereas the user is free to craft arbi-

trary requests.

Under this setting, we set out to tackle one problem:

How should the operator ensure that the user sees only the data they are
allowed to see?

CHAPTER 1. INTRODUCTION 2

User DatabaseApplication

HTTP request

HTTP response

SQL

⋮

Controlled by Operator

Figure 1.1: A simplified architecture of a typical web application.

For example, the user should be able to see the calendar events that they are invited to, but not

the private events of others.

Remark 1.1. Sensitive-data protection is a broad domain, under which there are many other prob-

lems that are just as important but we will not be addressing in this dissertation. For example,

we will not try to protect the user’s data from the operator, for which many good cryptographic

techniques have been developed. And we will not try to prevent the identification of personal

records from aggregate statistics, for which differential privacy [49] is a good solution. Rather,

we are solely taking the perspective of the operator, and making sure that the user is shown the

right data.

1.2 The Status Quo

At first glance, this problem doesn’t seem hard to solve: Since the user interacts only with the

application layer, why not just implement the application logic to reveal only the allowed data?

Indeed, today’s status quo is to limit data disclosure within the application code. There are

two common code patterns for achieving this:

Query filters To serve a general request for data, the developer carefully crafts a SQL query to

return only data that the user is allowed to see. For example, in our calendar application,

to implement the HTTP endpoint /all_events the developer may write the query:

SELECT *
FROM Events

JOIN Attendance
ON Attendance.EId = Events.EId

WHERE Attendance.UId = ?MyUId

This query returns only those events that the current user is attending.

CHAPTER 1. INTRODUCTION 3

Access checks To serve a request for a specific data item, the developermaywrite an if statement

to check if the user is allowed to see it. For example, to implement the HTTP endpoint

/event/{eid}, which displays the details of an event, the developer may write the code:

if not curr_user.is_attending(eid):
raise Http404("Event not found")

event = Event.find(eid)
return format_html(event)

Here, the if block raises an error when there is no event that the current user is attending

with the requested event ID.

This approach is effective, as long as the developer is careful to put the appropriate filters and

checks in every place they are needed. The problem is that if the developermakes a singlemistake,

a data leak may ensue. For example, if the developer forgot the access check in the /event/{eid}
endpoint, then a user would be able to access another user’s data simply by requesting an event

with an arbitrary ID.

This example may look contrived, but in the real world, such mistakes happen all the time:

• Fiserv, a top provider for banking solutions, allowed a customer to view other customers’

personal details by simplymaking anHTTP request for a notification ID belonging to some-

one else [124].

• The U.S. Postal Service exposed an API that let any logged-in user query the account details

for any other user [75].

• OpenEMR, a medical records portal, contained a defective access check that allowed a user

to access other patients’ medical profiles [163].

• HotCRP, a conference management system, had a bug that leaked hidden paper tags, not

on the main webpage, but in the search autocomplete dropdown [134].

In fact, suchmistakes are so prevalent that “broken access control” is listed as the topweb-security

risk in the OWASP Top 10 [103].

To be clear, the developers are likely not being malicious in these cases. They are likely just

making mistakes—mistakes that are very likely to occur in any software above a certain size.

1.3 Past Research

Sensitive-data exposure is not a new problem. There has been decades of research on access con-

trol for database applications—of which web applications is a prominent class—trying to address

this problem. The foundational work in this area was laid out in the database literature [135],

but solutions applying database access control to applications have appeared in many research

communities [32, 80, 81, 90, 92, 97, 151]. These solutions typically work as follows:

CHAPTER 1. INTRODUCTION 4

1. A human writes an access-control policy defining what data the user is allowed to access.

2. Then, an enforcement mechanism ensures that the policy is respected by the application.

Unfortunately, these solutions suffer from a common drawback: They are difficult to apply to

existing web code bases, due to two key issues:

1. Past solutions are incompatible with today’s web programming model. Broadly

speaking, past solutions fall into a few categories (which we discuss in detail in §2.2):

View-based authorization Many databases allow administrators to define views, which are

virtual tables denoting subsets of the database to be revealed. The user is then allowed

to query only the views, not the underlying tables. But to apply this approach to an

existing web application, we would have to rewrite every SQL query to use the views

instead, a significant undertaking.

Content filtering The database transparently modifies the application’s query results to re-

move any information that the user is not allowed to see. But such modification can

cause an existing application’s queries to returnmisleading orwrong results [119,142],

and can easily break the application’s functionality.

Static verification Once a developer implements the web application in a specialized lan-

guage, they can use a verifier to catch access-control bugs at compile time. Again, this

approach is not design to work with existing applications, which are overwhelmingly

written in mainstream languages like PHP and Ruby, which are not amenable to such

verification.

2. Past solutions require writing a policy from scratch. As we explain in §4.2.1, writing

a policy for an existing code base is far from trivial, and the requirement of writing a policy

from scratch is a major barrier to adoption for access control.

Thus, most prior research on sensitive-data protection targets either greenfield applications—

those built from scratch using novel technology—or existing applications that are extensively

rewritten. But today’s web is powered by large, entrenched codebases that cannot feasibly be

rewritten from the ground up. These legacy systems are the ones that people rely on daily, and

arguably the ones most in need of robust data protection. Yet, they are largely overlooked by

the access-control literature. It should be clear that sensitive data protection is far too urgent a

problem to demand a complete rewrite of the modern web to achieve.

1.4 Our Contributions

The work presented in this dissertation has one goal:

To bring data protection to today’s installed base of web applications.

CHAPTER 1. INTRODUCTION 5

Our solution consists of two systems, addressing the two issues mentioned above:

1. Blockaid: an access-control enforcer that is compatible with today’s web programming

model. Blockaid checks SQL queries issued by the application using a novel criterion called

trace determinacy, which works with the way queries are issued by existing web applica-

tions. The key challenge is to check this criterion fast; to do so, we developed a general-

ization caching solution on top of SMT solving. We describe Blockaid in Chapter 2, and an

associated theoretical result in Chapter 3.

2. Ote: a tool that helps humans create a policy for a legacy web application by extracting

the policy embedded in its code. The main challenge is that web-application code is often

written in dynamic languages, which makes it difficult to analyze. Our approach is to adopt

concolic execution, a technique from software testing, which proved effective in exploring

code paths through the parts of the application that affect what data is being queried. Ote

then generalizes the individual queries encountered into a policy for human review. We

describe Ote in Chapter 4.

In building these systems, we take a first step in providing a holistic solution for protecting sensi-

tive data in web applications today. We point out several avenues for future research in Chapter 5.

1.5 Previous Publications

Blockaid was published at OSDI ’22 [159]. Ote and our result on query determinacy were posted

as arXiv preprints in 2024 [155, 157]. Some of the future directions we discuss in Chapter 5 were

presented at HotOS ’23 [158]. My previous work on Kappa [156] (published at SoCC ’20) and

Persimmon [160] (published at OSDI ’20) are not included in this dissertation.

6

Chapter 2

Blockaid: Access-control Enforcement

2.1 Introduction

Many modern web applications use relational databases to store sensitive user data, access to

which is governed by organizational or regulatory data-access policies. To enforce these policies,
today’s web developers wrap each database query within access checks that determine whether

a user has access to the queried data. As an application can query the database at many call sites,

getting access checks right at every call site is challenging, and erroneous or missing checks have

exposed sensitive data in many production systems [10, 57, 71, 72, 91, 134].

Prior work has suggested a variety of languages, frameworks, and tools that simplify the en-

forcement of data-access policies. As we detail in §2.2, these approaches either (1) require applica-

tions be written using specialized web frameworks, hindering their adoption; or (2) transparently

remove from query results any data that cannot be revealed, possibly resulting in unexpected ap-

plication behavior (e.g., the user has no idea that there are missing results and reaches the wrong

conclusion).

In this chapter, we propose an alternative approach to enforcing data-access policies that

meets four goals:

Backwards compatibility Applies to applications built using common existing web frame-

works.

Semantic transparency Fully answers queries that comply with the policy and blocks queries

that do not (rather than providing partial, and potentially misleading, results).

Policy expressiveness Supports a wide range of policies.

Low overhead Has limited impact on page load time.

We implement this approach in Blockaid, a system that enforces a data-access policy at run-

time by intercepting SQL queries issued by the application, verifying that they comply with the

policy, and blocking those that do not. We assume non-compliant queries are rare in production

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 7

(having been mostly eliminated in testing), and focus on efficiently checking compliant queries.

Blockaid expects the developer to insert access checks as usual; it merely ensures that the checks

are adequate.

A policy in Blockaid is specified using SQL view definitions defining what information that

can be accessed by a given user, although the application still issues queries against the base tables

as usual (rather than against the views). Under this setting, a query is compliant if and only if it

never reveals—for any underlying dataset—more information than the views do, a well-studied

property in databases called query determinacy [99].

While determinacy does characterize the compliance of one query in isolation, it is too re-

strictive in the context of web applications, which typically issue multiple queries when serving

a request. In this setting, what data is accessible often depends on the result of previous queries

in the same web request. We thus extend determinacy to take a trace of previous queries and
their responses, a novel extension we call trace determinacy, and use that as the criterion for

compliance.

To verify compliance, Blockaid frames trace determinacy as an SMT formula and checks it

using SMT solvers. As we later explain, a solver returns an unsatisifiability proof when a query

is compliant, and a test demonstrating a violation otherwise.

This basic method, while correct, is impractically slow as it invokes solvers for every query.

Thus, we use a decision cache to record compliant queries (with traces) so that future occurrences

need not be rechecked. But caching exact queries and traces would be ineffective: a query is often

specific to the user and page visited, and so is unlikely to occur many times.

Thus, to increase cache hit rate, we implement a novel generalizationmechanismwhich, given

a compliant query-trace pair, extracts a small set of assumptions on the query and trace that alone

would guarantee compliance. These assumptions are cached in the form of a decision template,
which will apply to all future query-trace pairs that meet those assumptions. Blockaid generates

decision templates by progressively relaxing a query and trace while maintaining compliance,

with the help of solver-generated unsat cores [15, § 11.8]. It does not cache noncompliance results,

which we expect to be rare in production as they typically indicate application/policy bugs.

We applied Blockaid to three existing applications—diaspora* [46], Spree [133], and Auto-

lab [29]—and found that it imposes an overhead of 2% to 12% to the median page load time

when compliance decisions are cached.

Blockaid has some important limitations. It assumes that the application obtains all of its in-

formation through SQL queries visible to Blockaid or from a caching layer or file systemmediated

by Blockaid. It also only supports a subset of SQL and is at the mercy of solver performance and

unsat-core size.

Blockaid is open source at https://github.com/blockaid-project.

2.2 Related Work

The subject of data-access control has been studied by many. We compare our approach to prior

ones along our goals (§2.1).

https://github.com/blockaid-project

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 8

Static verification. Several systems have been proposed to statically verify that application

code can only issue compliant queries; examples include Swift [34], SELinks [40], UrFlow [32],

and Storm [81]. These systems incur no run-time overhead and can be more precise than Block-

aid as they analyze source code. However, they typically require using a specialized language or

framework like Jif [98] and Ur/Web [33], sacrificing compatibility with commonweb frameworks.

Query modification. A popular run-time approach is query modification [135]: replacing se-

cret values returned by a query with placeholders (or dropping any rows containing secrets). This

is implemented in commercial databases [24,93] and academicworks likeHippocratic databases [6],

Jacqueline [151], Qapla [92], and multiverse databases [90]. While this approach allows program-

mers to issue queries without regard to policies, it lacks semantic transparency as it can alter

query semantics in unexpected ways and return misleading results [59, 119, 142].

Furthermore, query modification mechanisms typically use row- and cell-level policies (e.g.,

SQL Server RLS and DDM, Oracle VPD). As we discuss in §2.9, this row-/cell-level format is less

expressive than Blockaid’s view-based scheme.

View-based access control. Many databases allow administrators to create views and grants

access to views and tables. Although identical in expressiveness to Blockaid, this mechanism

requires queries to explicitly use view names instead of table names (like Users). This marks a

significant deviation regular web programming, as programmers must now sort out which views

grant them information for each query. In contrast, Blockaid allows queries to be issued against

the base tables directly.

While some prior work has studied view-based compliance of queries issued against base

tables [18, 19], they only check single queries, while Blockaid checks a query in the context of a

trace, a crucial feature for supporting web applications.

2.3 System Design

2.3.1 Application Assumptions and Threat Model
Blockaid targets web applications that store data in a SQL database. We assume that a user is

logged in and that the current user’s identifier is stored in a request context. The application

can access the database and the request context when serving a request; each request is handled

independently from others. We assume that the application authenticates the user correctly, and

that the correct request context is passed to Blockaid (§2.3.2).

A data-access policy dictates, for a given request context, what information in the database is

accessible and what is inaccessible. We treat the database schema and the policy itself as public

knowledge and assume that the user cannot use side channels to circumvent policies. We enforce

policies on database reads only (as done in prior work [5, 18, 19, 23, 60, 80, 90, 119, 130, 135, 142]).

Ensuring the integrity of updates, while important, is orthogonal to our goal and is left to future

work.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 9

Web app DatabaseBlockaid

Decision
cache

SMT
solvers

Trace

<latexit sha1_base64="TCxyYp3sQmp7dVg6cbDTQZ6ZIaE=">AAAB/3icbVDLSgMxFM34rONrVHDjJliEFqRMiqjLght3tmAf0BmGTJppQzOZIckIpXbhr7hxoYhbf8Odf2PazkJbDwTOPede7s0JU86Udt1va2V1bX1js7Blb+/s7u07B4ctlWSS0CZJeCI7IVaUM0GbmmlOO6mkOA45bYfDm6nffqBSsUTc61FK/Rj3BYsYwdpIgXNcagTo/C5AZeh5timqpqiWA6foVtwZ4DJBOSmCHPXA+fJ6CcliKjThWKkuclPtj7HUjHA6sb1M0RSTIe7TrqECx1T549n9E3hmlB6MEmme0HCm/p4Y41ipURyazhjrgVr0puJ/XjfT0bU/ZiLNNBVkvijKONQJnIYBe0xSovnIEEwkM7dCMsASE20is00IaPHLy6RVraDLCmpcFGswj6MATsApKAEErkAN3II6aAICHsEzeAVv1pP1Yr1bH/PWFSufOQJ/YH3+AAUSksk=</latexit>

(Q1, O1)

(Q2, O2)

Miss

Hit
❌Error ✔️

<latexit sha1_base64="vBvQhBad85f7+Icv8bMXDj4luV8=">AAAB6nicdVDLSgMxFM34rPVVdekmWARXQ9KX467gxmWL9gHtUDJp2oZmMkOSEcrQT3DjQhG3fpE7/8ZMW0FFD1w4nHMv994TxIJrg9CHs7a+sbm1ndvJ7+7tHxwWjo7bOkoUZS0aiUh1A6KZ4JK1DDeCdWPFSBgI1gmm15nfuWdK80jemVnM/JCMJR9xSoyVbpuD8qBQRC7yyp53BZFbQaiMM4KruFqqQeyiBYpghcag8N4fRjQJmTRUEK17GMXGT4kynAo2z/cTzWJCp2TMepZKEjLtp4tT5/DcKkM4ipQtaeBC/T6RklDrWRjYzpCYif7tZeJfXi8xI89PuYwTwyRdLholApoIZn/DIVeMGjGzhFDF7a2QTogi1Nh08jaEr0/h/6RdcnHNxc1KsQ5XceTAKTgDFwCDS1AHN6ABWoCCMXgAT+DZEc6j8+K8LlvXnNXMCfgB5+0TNRCNqA==</latexit>

Q3

<latexit sha1_base64="4bm5anW5sbML6axEBXb6Rnj+4pE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPBi8cW7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHstHM0nQj+hQ8pAzaqz00Ohf9ssVt+rOQVaJl5MK5Kj3y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14a2fcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmldVL3rqte4qtRIHkcRTuAUzsGDG6jBPdShCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDK/Y1f</latexit>

Q3

At the start
of request

Data-access
policy

Compliant?

Request
context

Figure 2.1: An overview of Blockaid (for a single web request).

2.3.2 System Overview
Blockaid is a SQL proxy that sits between the application and the database (Figure 2.1). It takes

as input (1) a database schema (including constraints), and (2) a data-access policy specified as

database views (§2.4), and checks query compliance for each web request separately. For each

web request, it maintains a trace of queries issued so far and their results; the trace is cleared

when the request ends. Blockaid assumes that results returned by queries in the trace are not

altered till the end of the request.

When a web request starts, the application sends its request context to Blockaid. Then, every

SQL query from the application traverses Blockaid, which attempts to verify that the query is

compliant—i.e., it can be answered using accessible information only. To do so, Blockaid checks

the decision cache for any similar query has been determined compliant previously. If not, it

encodes noncompliance as an SMT formula (§2.5) and checks its satisfiability using several SMT

solvers in parallel (§2.7).

If a query is compliant, Blockaid forwards it to the database unmodified. In case of a cache

miss, it also extracts and caches a decision template (§2.6). Finally, it appends the query and

its result to the trace. If verification fails, Blockaid blocks the query by raising an error to the

application.

Although our core design assumes all sensitive information is stored in the relational database,

Blockaid supports limited compliance checking for two other common data sources:

1. If the application stores database-derived data in a caching layer (e.g., Redis), the pro-

grammer can annotate a cache key pattern with SQL queries from which the value can

be derived. Blockaid can then intercept each cache read and check the compliance of the

queries associated with the key.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 10

2. If the application stores sensitive data in the file system, it can generate hard-to-guess

names for these files and store the file names in a database column protected by the policy.

Blockaid’s basic requirement is soundness: preventing the revelation of inaccessible informa-

tion (formalized in §2.4.3). But it may reject certain behaviors that do not violate the policy (§2.9),

although we never encountered this in our evaluation.

We end by emphasizing two aspects of Blockaid’s operation:

1. Blockaid has no visibility into or control over the application (except by blocking queries).

So it must assume that any data fetched by the application will be shown to the user.

2. Blockaid has no access to the database except by observing query results; it cannot issue

additional queries of its own.

2.3.3 Application Requirements
For use with Blockaid, an application must:

1. Send the request context to Blockaid at the start of a request and signal Blockaid to clear

the trace at the end;

2. Handle rejected queries cleanly (although a web server’s default behavior of returning

HTTP 500 often suffices); and,

3. Not query data that it does not plan on revealing to the user.

Existing applications often violate the third requirement. For example, when a user views

an order on a Spree e-commerce site, the order is fetched from the database and only then does

Spree check, in application code, that the user is allowed to view it. To avoid spurious errors from

Blockaid, such applications must be modified to fetch only data known to be accessible.

2.4 View-based Policy and Compliance

Throughout the paper, wewill use as a running example a calendar application with the following

database schema:

Users(UId,Name)
Events(EId, Title,Duration)

Attendances(UId, EId,ConfirmedAt)

where primary keys are underlined. The request context consists of a parameterMyUId denoting
the UId of the current user.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 11

Listing 2.1: Example policy view definitions V1 to V4 for the calendar application. ?MyUId refers

to the current user ID.

1. SELECT * FROM Users

Each user can view the information on all users.

2. SELECT * FROM Attendances
WHERE UId = ?MyUId

Each user can view their own attendance information.

3. SELECT * FROM Events
WHERE EId IN (SELECT EId

FROM Attendances
WHERE UId = ?MyUId)

Each user can view the information on events they attend.

4. SELECT * FROM Attendances
WHERE EId IN (SELECT EId

FROM Attendances
WHERE UId = ?MyUId)

Each user can view all attendees of the events they attend.

2.4.1 Specifying Policies as Views
A policy is a collection of SQL queries that, together, define what information a user is allowed

access. Each query is called a view definition and can refer to parameters from the request context.

As an example, Listing 2.1 shows four view definitions, V1–V4; we denote this policy as V =
{V1, V2, V3, V4}.

Notationally, for a view V and a request context ctx , we write V ctx
to denote V with its pa-

rameters replaced with values in ctx . We often drop the superscript when the context is apparent.

2.4.2 Compliance to View-based Policy
Under a policy consisting of view definitions, Blockaid can allow an application query to go

through only if it is certain that the query’s result is uniquely determined by the views. In other

words, an allowable query must be answerable using accessible information alone. If a query’s

output might depend on information outside the views, Blockaid must block the query.

Example 2.1. Let MyUId = 2. The following query selects the names of everyone whom the

user attends an event with:

SELECT DISTINCT u.Name
FROM Users u

JOIN Attendances a_other

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 12

ON a_other.UId = u.UId
JOIN Attendances a_me

ON a_me.EId = a_other.EId
WHERE a_me.UId = 2

Looking at Listing 2.1, this query can always be answered using V4, which reveals the UId of

everyone whom the user attends an event with, and V1, which supplies the names associated

with these UId’s. Hence, Blockaid allows it through. ◀

This query above is allowed unconditionally because it is answerable using the views on any
database instance. More commonly, queries are allowed conditionally based on what Blockaid has
learned about the current database state from the trace of prior queries and results in the same

web request.

Example 2.2. Again, let MyUId = 2. Consider the following sequence of queries issued while

handling a web request:

1. SELECT * FROM Attendances WHERE UId = 2 AND EId = 5

↪→ (UId=2, EId=5, ConfirmedAt="05/04 1pm")

2. SELECT Title FROM Events WHERE EId = 5

The application first queries the user’s attendance record for Event #5—an unconditionally al-

lowed query—and receives one row, indicating the user is an attendee. It then queries the title

of said event. This is allowed because V3 reveals the information on all events attended by the

user. More precisely, the trace limits our scope to only databases where the user attends Event #5.

Because the second query is answerable using V3 on all such databases, it is conditionally allowed
given the trace. ◀

Context is important here: the second query cannot be safely allowed if it were were issued

in isolation.

Example 2.3. Suppose, instead, that the application issues the following query by itself:

SELECT Title FROM Events WHERE EId = 5

Blockaid must block this query because it is not answerable using V on a database where the user

does not attend Event #5. Whether or not the user actually is an attendee of the event is irrelevant:
The application, not having queried the user’s attendance records, cannot be certain that the

query is answerable using accessible information alone. This differs from alternative security

definitions [59, 73, 162] where a policy enforcer can allow a query after inspecting additional

information in the database that has not been fetched by the application. ◀

Definition 2.4. A trace T is a sequence (Q1, O1), . . . , (Qn, On) where each Qi is a query and

each Oi is a collection of tuples.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 13

Such a trace denotes that the application has issued queries Q1, . . . , Qn and received results

O1, . . . , On from the database.

We now motivate the formal definition of query compliance given a trace (using colors to

show correspondence between text and equations). Consider any two databases that are:

• Equivalent in terms of accessible data (i.e., they differ only in information outside the

views), and

• Consistent with the observed trace (i.e., we consider only databases that could be the one

the application is querying).

Blockaid must ensure that such two databases are indistinguishable to the user—by allowing only

queries that produce the same result on both databases.

Definition 2.5. Let ctx be a request context, V be a set of views, and T = {(Qi, Oi)}ni=1 be a

trace. A queryQ is ctx -compliant to V given T if for every pair of databasesD1, D2 that conform

to the database schema and constraints,
1
and satisfy:

V ctx (D1) = V ctx (D2), (∀V ∈ V) (2.1)

Qi(D1) = Oi, (∀1 ≤ i ≤ n) (2.2)

Qi(D2) = Oi, (∀1 ≤ i ≤ n) (2.3)

we have Q(D1) = Q(D2). We will simply say compliant if the context is clear.

We call Definition 2.5 trace determinacy as it extends the classic notion of query determi-

nacy [99, 126] with the trace. Query determinacy is undecidable even for conjunctive views and

queries [54, 55]; trace determinacy must also be undecidable in the same scenario. Although

several decidable cases have been discovered for query determinacy [2, 99, 105], they are not ex-

pressive enough for our use case. A promising direction is to identify classes of views and queries

that capture common web use cases and for which trace determinacy is decidable.

2.4.3 From Query Compliance to Noninterference
Blockaid’s end goal is to ensure that an application’s output depends only on information accessi-

ble to the user. In relation to this goal, query compliance (Definition 2.5) satisfies two properties,

making it the right criterion for Blockaid to enforce:

1. Sufficiency: As long as only compliant queries from the application are let through, there

is no way for an execution to be influenced by inaccessible information.

2. Necessity: Any enforcement system that makes per-query decisions based solely on the

query and the trace cannot safely allow any non-compliant query without the risk of the

application revealing inaccessible information.

1
We will henceforth use “schema” to mean both schema and constraints, and rely on the database and/or the

web framework to enforce the constraints.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 14

Before stating and proving these properties formally, let us first model our target applications,

enforcement systems, and goals.

We model a web request handler as a programP(ctx , req , D) that maps a request context ctx ,
an HTTP request req , and a database D to an HTTP response.

2
A program that abides by a

policy V satisfies a noninterference property [39, 56] stating that its output depends only on the

inputs that the user has access to—namely, ctx , req , and V ctx (D) for each V ∈ V . The formal

definition follows from a similar intuition as Definition 2.5.

Definition 2.6. A program P satisfies noninterference under policy V if the following condition

holds:

NIV(P)
∆
= ∀ctx , req , D1, D2.[
∀V ∈ V . V ctx (D1) = V ctx (D2)

]
=⇒ P(ctx , req , D1) = P(ctx , req , D2).

An enforcement system must ensure that any program running under it satisfies noninterfer-

ence. We now model such systems that operate under Blockaid’s assumptions.

Definition 2.7. An enforcement predicate is a mapping from a request context, a query, and a

trace to an allow/block decision:

E(ctx , Q, T)→ {✓,✗}.

Definition 2.8. Let P(ctx , req , D) be a program and E be an enforcement predicate. We define

the programP under enforcement usingE as a new programPE(ctx , req , D) that simulates every

step taken by the original program P , except that it maintains a trace T and blocks any query Q
issued by P where E(ctx , Q, T) = ✗ by immediately returning an error.

Note that PE
invokes E only with traces in which every query has been previously allowed

by E given its trace prefix.

Definition 2.9. Given a request context ctx , we say that a trace T = {(Qi, Oi)}ni=1 is prefix
E-allowed if for all 1 ≤ i ≤ n,

E(ctx , Qi, T [1..i− 1]) = ✓.

Definition 2.10. A predicate E correctly enforces policy V if:

∀P . NIV(PE).

We are ready to state the sufficiency-and-necessity theorem. Like before, we use colors to

link statements to their explanation.

2
For simplicity, we assume P is a pure function—deterministic, terminating, and side-effect free—although this

assumption can be relaxed through standard means from information-flow control [62, § 2].

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 15

Theorem 2.11. Let V be a set of views and E be a predicate.

1. Suppose E(ctx , Q, T) = ✓ only when Q is ctx -compliant to V given T . Then E correctly

enforces V .

2. Suppose E correctly enforces V . Then for any request context ctx , query Q, and prefix

E-allowed trace T such that E(ctx , Q, T) = ✓, Q is ctx -compliant to V given T .

To unpack, Theorem 2.11 says: (1) as long as an enforcement predicate ensures query com-

pliance, it correctly enforces the policy on an application (i.e., sufficiency); and (2) for a predicate

to correctly enforce the policy, it must ensure query compliance (i.e., necessity). Thus, query

compliance can be regarded as the “projection” of application noninterference onto Blockaid’s

lens, making it the ideal criterion to enforce.

Proof of Theorem 2.11. We prove the two parts separately.

Part 1. Suppose E(ctx , Q, T) = ✓ only when Q is ctx -compliant to V given T . Pick any P ,
ctx , and req , and let D1 and D2 be databases such that V ctx (D1) = V ctx (D2) for all V ∈ V .

Consider executions PE(ctx , req , D1) and PE(ctx , req , D2). We will show that the two exe-

cutions coincide, by induction on the number of steps taken by P . This will allow us to conclude

that PE(ctx , req , D1) = PE(ctx , req , D2), finishing the proof.

Base case Because P is assumed to be deterministic, so is PE
, and so the two executions start

off with the same program state.

Inductive step Suppose the two executions coincide after P has taken i steps. Consider the

i+ 1st step taken on both sides:

• Suppose this step is a query Q to the database. Let T denote the (same) trace main-

tained by the two executions so far. If E(ctx , Q, T) = ✗, then both executions termi-

nate with an error. Otherwise, Q must be ctx -compliant to V given T . By assump-

tion, V ctx (D1) = V ctx (D2) for all V ∈ V ; and by the construction of PE
, Qi(D1) =

Qi(D2) = Oi for every (Qi, Oi) ∈ T . Therefore, we must have Q(D1) = Q(D2), and
so the two executions end up in the same program state after this step.

• If this step is not a database query, then its behavior depends only on P ’s program
state and inputs ctx and req , all of which are the same across the two executions at

this time.

Part 2. Suppose that E correctly enforces V . Pick any ctx , Q, and prefix E-allowed T =
{(Qi, Oi)}ni=1 such that E(ctx , Q, T) = ✓. Consider the following program P :

procedure P(ctx , req , D)

for i← 1..n do
issue Qi(D) and discard the result

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 16

end for
return Q(D)

end procedure
To show that Q is ctx -compliant to V given T , let D1 and D2 be databases such that:

V ctx (D1) = V ctx (D2), (∀V ∈ V) (2.4)

Qi(D1) = Oi, (∀1 ≤ i ≤ n) (2.5)

Qi(D2) = Oi. (∀1 ≤ i ≤ n) (2.6)

Let req be a request, and consider executions PE(ctx , req , D1) and PE(ctx , req , D2). Because T
is prefix E-allowed, neither execution ends in a policy violation error. Therefore,

PE(ctx , req , D1) = P(ctx , req , D1) = Q(D1),

PE(ctx , req , D2) = P(ctx , req , D2) = Q(D2).

Furthermore, because E correctly enforces V , Equation (2.4) implies that PE(ctx , req , D1) =
PE(ctx , req , D2). We thus haveQ(D1) = Q(D2), concludingQ to be ctx -compliant toV given T .

2.5 Compliance Checking with SMT

Having defined view-based policy and compliance, we now introduce how Blockaid verifies com-

pliance using SMT solvers.

2.5.1 Translating Noncompliance to SMT
Blockaid verifies query compliance by framing noncompliance (i.e, the negation of Definition 2.5)

as an SMT formula and checking its satisfiability; a query is compliant if and only if the for-

mula is unsatisfiable. We use a straightforward translation based on Codd’s theorem [38], which

states, informally, that relational algebra under set semantics is equivalent in expressiveness to

first-order logic (FOL). Relational algebra has five operators—projection, selection, cross prod-

uct, union, and difference—and tables are interpreted as sets of rows (i.e., no duplicates). Under

this equivalence, tables are translated to predicates in FOL, and operators are implemented using

existential quantifiers, conjunctions, disjunctions, and negations.

Example 2.12. Let us translate into FOL the following query Q executed on a database D:

SELECT e.EId , e.Title
FROM Events e, Attendances a
WHERE e.EId = a.EId AND a.UId = 2

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 17

Let ED(·, ·, ·) andAD(·, ·) be FOL predicates representing the Events and Attendances table in the

database D in:

QD(xe, xt)
∆
= ∃xd, xu, x

′
e, xc. E

D(xe, xt, xd) ∧ AD(xu, x
′
e, xc)

∧ xe = x′
e ∧ xu = 2.

QD(xe, xt) encodes the statement (xe, xt) ∈ Q(D), i.e., the row (xe, xt) is returned by Q on

database D. Note that QD
is not a logical symbol, but merely a shorthand for the right-hand

side. ◀

Example 2.13. We now present the noncompliance formula for a single query Q with respect

to V from §2.4.1. Let VDi
1 , . . . ,VDi

4 and QDi
encode the views and query on databaseDi (i = 1, 2)

in FOL. The desired formula is the conjunction of:

∀x.VD1
1 (x)↔ VD2

1 (x), (V1(D1) = V1(D2))

.

.

.

∀x.VD1
4 (x)↔ VD2

4 (x), (V4(D1) = V4(D2))

∃x.QD1(x) ̸↔ QD2(x), (Q(D1) ̸= Q(D2))

where x denotes a sequence of fresh variables. We can similarly encode database constraints and

consistency with a trace. ◀

2.5.2 Handling Practical SQL Queries
The encoding of relational algebra into logic, while straightforward, fails to cover real-world SQL

due to two semantic gaps:

1. While the translation assumes that relational algebra is evaluated under set semantics, in
practice databases use a mix of set, bag, and other semantics when evaluating queries.

3

2. SQL operations like aggregations and sorting have no corresponding operators in relational

algebra.

For Blockaid to bridge these gaps, it must first assume that database tables contain no duplicate

rows. This is generally the case for web applications as object-relational mapping libraries like

Active Record [122] and Django [48] add a primary key for every table. Given this assumption,

Blockaid rewrites complex SQL into basic queries that map directly to relational algebra.

3
For example, a SQL SELECT clause can return duplicate rows, but the UNION operator removes duplicates.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 18

Basic SQL Queries

Definition 2.14. A basic query is either a SELECT-FROM-WHERE query that never returns duplicate
rows, or a UNION of SELECT-FROM-WHERE clauses. (The UNION removes duplicates).

4

A basic query on duplicate-free tables maps to relational algebra under set semantics, and so

can be directly translated to FOL. To ensure a SELECT query is basic, we check it against these

sufficient conditions for returning no duplicate rows:

• It contains the DISTINCT keyword or ends in LIMIT 1; or

• It projects unique key column(s) from every table in FROM, e.g., SELECT UId, Name FROM Users;

or

• It is constrained by uniqueness in its WHERE clause—e.g.:

SELECT e.EId
FROM Events e, Attendances a
WHERE e.EId = a.EId AND a.UId = 2

For this query to return multiple copies of x, the database must contain multiple rows of

the form Attendances(2, x, ?); this is ruled out by the uniqueness constraint on (UId, EId).

In our experience, policy views can typically be written as basic queries directly—e.g., for

Listing 2.1 we can frame V3 and V4 as equivalent basic queries by replacing subqueries with joins

and using the inner join transformation from §2.5.2.

Rewriting Into Basic Queries

When the application issues a query Q, Blockaid attempts to rewrite it into a basic query Q′
and

verify its compliance instead. Ideally, Q′
would be equivalent to Q, but when this is not possible,

Blockaid produces an approximate Q′
that reveals at least as much information as Q does.

5
Such

approximation preserves soundness but may sacrifice completeness, although it caused no false

rejections in our evaluation. We now explain how to rewrite several types of queries encountered

in practice.

Inner joins. A query of the form:

SELECT ... FROM R1
INNER JOIN R2 ON C1 WHERE C2

is equivalently rewritten as the basic query:

SELECT ... FROM R1, R2 WHERE C1 AND C2

4
The MINUS operator is not used in our applications and is omitted.

5
It suffices to guarantee that Q can be computed from the result of Q′

.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 19

Left joins on a foreign key. Consider a query of the form:

SELECT ... FROM R1
LEFT JOIN R2 ON R1.A = R2.B WHERE ...

If R1.A is a foreign key into R2.B, then every row in R1 matches at least one row in R2. In this

case, the left join can be equivalently written as an inner join, which is handled as above.

Order-by and limit. We add any ORDER BY column as an output column and then discard the

ORDER BY clause. We also discard any LIMIT clause but, when adding this query to the trace, use

a modified condition Oi ⊆ D(Qi) (instead of “=”) to indicate that Blockaid may have observed a

partial result.

Aggregations. We rewrite SELECT SUM(A) FROM R into SELECT PK, A FROM R, where PK is table
R’s primary key. By projecting the primary key in addition to A, the rewritten query reveals

the multiplicity of the values in A—necessary for computing SUM(A)—without returning duplicate

rows.

Left joins that project one table. Left joins of the form:

SELECT DISTINCT A.* FROM A
LEFT JOIN B ON C1 WHERE C2

can be equivalently rewritten to the basic query:

(SELECT A.* FROM A
INNER JOIN B ON C1 WHERE C2)

UNION
(SELECT * FROM A WHERE C3)

where C3 is obtained by replacing each occurrence of B.? with NULL in C2 and simplifying the

resulting predicate.
6
The first sub-query covers the rows in A with at least one match in B, and

the second sub-query covers those with no matches.

Feature not supported. The SQL features that we do not support include GROUP BY, ANY,
EXISTS, etc., although they can also be formulated / approximated using basic queries. In the

future we also plan to leverage other formalisms that model complex SQL semantics more pre-

cisely [31, 35, 36, 139–141, 144].

2.5.3 Optimizations and SMT Encoding
We end this section with several optimizations for compliance checking and some notes on the

SMT encoding.

6
As long as C2 contains no negations, it is safe to treat a NULL literal as FALSE when propagating through or

short-circuiting AND and OR operators.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 20

V ctx (D1)=V ctx (D2)

Qi(D1)=Oi

Qi(D2)=Oi

Q(D1)=Q(D2)

(a) Compliance (Definition 2.5).

V ctx (D1)⊆V ctx (D2) (∀V ∈ V)
Qi(D1)⊇Oi (∀1 ≤ i ≤ n)

Qi(D2)⊇Oi (∀1 ≤ i ≤ n)

Q(D1)⊆Q(D2)

(b) Strong compliance (Definition 2.15).

Figure 2.2: The definition of compliance is turned into that of strong compliance in five
steps. Dashed arrows for Steps 1–4 denote modifications; the solid line (strikethrough) for Step 5

denotes removal.

1

2

3

4

5

Strong compliance. We define a stronger notion of compliance, which we found SMT solvers

can verify more efficiently.

Definition 2.15 (Strong compliance). A queryQ is strongly ctx-compliant to policy V given trace

{(Qi, Oi)}ni=1 if for each pair of databases D1, D2 that conform to the schema and satisfy:

V ctx (D1) ⊆ V ctx (D2), (∀V ∈ V) (2.7)

Qi(D1) ⊇ Oi, (∀1 ≤ i ≤ n) (2.8)

we have Q(D1) ⊆ Q(D2).

Theorem 2.16. If Q is strongly compliant to V given trace T = {(Qi, Oi)}ni=1, then Q is com-

pliant to V given T .

Proof. Let Q be strongly compliant to V given T . To show that Q is also compliant, let D1, D2

be databases that satisfy Equations (2.1) to (2.3) from the compliance definition. These imply

the strong compliance assumptions (Equations (2.7) and (2.8)), and so we have Q(D1) ⊆ Q(D2).
By symmetry, we also have Q(D2) ⊆ Q(D1). Putting the two together, we conclude Q(D1) =
Q(D2), showing Q to be compliant to V given T .

For faster checking, Blockaid verifies strong compliance rather than compliance; by Theo-

rem 2.16, soundness is preserved. However, there are scenarios where a query is compliant but

not strongly compliant (see Remark 2.17); such queries will be falsely rejected by Blockaid. This

did not pose a problem in practice as we found the two notions to coincide for every query en-

countered in our evaluation.

Remark 2.17. To understandwhen strong compliance fails to coincidewith compliance, let us look

at Figure 2.2, which illustrates how we modified the definition of compliance (Definition 2.5) into

that of strong compliance (Definition 2.15) in five steps.

Step 1 does not affect the truthfulness of the formula sinceD1 andD2 are symmetric. Steps 2–

3 adopt an open-world assumption (OWA) [115], treating every query as returning partial results.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 21

Under this assumption, a trace can no longer represent the nonexistence of a returned row; this can
cause Blockaid may falsely reject a query. However, such cases never arose in our evaluation. The

OWA also proves convenient during decision template generation (§2.6.3) when Blockaid com-

putes a minimal sub-trace (which, by necessity, represents partial information) that guarantees

strong compliance.

To see how Step 4 affects the definition, suppose there are no database dependencies and the

trace is empty (so Steps 2–3 are irrelevant). In this scenario, compliance holds iff V determines
Q [99, 126], while strong compliance states that Q has a monotonic rewriting using V . There are
cases where determinacy holds but no monotonic rewriting exists; e.g., Nash et al. [99, § 5.1]

present an example in terms of conjunctive queries.

Finally, in Step 5 we drop the condition thatD2 be consistent with the trace. We can show by

induction that this condition is redundant as long as each query in the trace is strongly compliant

given the trace before it (which is the case in Blockaid).

Fast accept. Given a view SELECT C1, ..., Ck FROM R, any query that references only columns

R.C1, . . . , R.Ck must be compliant and is accepted without SMT solving.

Trace pruning. Queries that returnsmany rows can inflate the trace and slow down the solvers.

Fortunately, often times only few of the rows matter to a later query’s compliance. We thus use a

trace-pruning heuristic: when checking a queryQ, look for any previous query has returned over

ten rows, and only keep rows that contain the first occurrence of a primary-key value (e.g., user

ID) that appears in Q. This heuristic is sound, but may need to be adapted for any application

where our premise for pruning does not hold.

SQL types and predicates. To model SQL types, we use SMT’s uninterpreted sorts, which

we found to yield better performance than theories of integers, strings, etc. We support logical

operators AND and OR, comparison operators <, <=, >, >=, and operators IN, NOT IN,7 IS NULL, and
IS NOT NULL. We model < as an uninterpreted function with a transitivity axiom.

NULLs. We model NULL using a two-valued semantics of SQL [58, § 6] by (1) designating a

constant in each sort as NULL, and (2) taking NULL into accountwhen implementing SQL operators.

For example, the SQL predicate x=y translates into the following SMT formula: x = y ∧ x ̸=
null ∧ y ̸= null.

2.6 Decision Generalization and Caching

While SMT solvers can verify a wide range of queries, doing so often takes 100s of milliseconds

per query. As a page load can depend on tens of queries, this overhead can add up to seconds.
7
We only support IN and NOT IN with a list of values, not with a subquery.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 22

Listing 2.2: An example query with trace from the calendar application and a decision template

generated from it.

(a) Example query with trace (UId = 1).

1. SELECT * FROM Users WHERE UId = 1
↪→ (UId=1, Name="John Doe")

2. SELECT * FROM Attendances WHERE UId = 1 AND EId = 42
↪→ (UId=1, EId=42, ConfirmedAt="05/04 1pm")

3. SELECT * FROM Events WHERE EId = 42

(b) The decision template generated by Blockaid.

1. SELECT * FROM Attendances WHERE UId = ?MyUId AND EId = ?0
↪→ (UId = ?MyUId , EId = ?0 , ConfirmedAt = *)

SELECT * FROM Events WHERE EId = ?0

To alleviate this overhead, Blockaid aims to reduce solver calls by caching compliance deci-

sions. Naively, once query Q is deemed compliant given trace T , we could record (Q, T) and
allow future occurrences without re-invoking the solvers.

However, this approach is unlikely to be effective because the number of distinct (Q, T) pairs
can be unbounded. For example, the application can issue as many queries of the form:

SELECT * FROM Users WHERE UId = ?

as there are users in the system. Requiring an exact query-trace match for a cache hit would

result in a low cache hit rate.

Fortunately, while an application can issue an unbounded number of distinct queries, it only

exhibits a finite number of truly different behaviors. For example, the query sequences generated

by requests for two different calendar events are likely identical in structure while differing only

in parameters (e.g., event ID). If one sequence is compliant, we can generalize this knowledge to
conclude that the other is also compliant.

This generalization problem is the central challenge we tackle in this section: Given a query’s

compliance with respect to a trace, how to abstract this knowledge into a decision template such
that (1) any query (and its trace) that matches this template is compliant, and (2) the template is

general enough to produce matches on similar requests. Such a template, once cached, will apply

to an entire class of traces and queries.

Decision templates are designed to cache compliant queries only. Our techniques do not

extend to non-compliant queries, which are expected to be rare in production as they typically

indicate bugs in the application or the policy.

Let us start with an example of a decision template.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 23

2.6.1 Example
Suppose a user with UId = 1 requests Event #42 in the calendar application, resulting in the

application issuing a sequence of SQL queries. Consider the third query, shown in Listing 2.2a.

As we explained in Example 2.2, Query #3 is compliant because Query #2 has established that the

user attends the event.

Blockaid aims to abstract this query (with trace) into a decision template that applies to an-

other user viewing a different event. Listing 2.2b shows such a template; the notation says: If

each query-output pair above the line has a match in a trace T , then any query of the form below

the line is compliant given T . This particular template states: after it is determined that user x
attends event y, user x can view event y for any x and y.

Compared with the concrete query and trace, this template (1) omits Query #1, which is im-

material to the compliance decision; and (2) replaces the concrete values with parameters. Oc-

currences of ?0 here constrain the event ID fetched by the query to equal the previously checked

event ID. We use * to denote a fresh parameter, i.e., any arbitrary value is allowed.

We now dive into how Blockaid extracts such a decision template from a concrete query and

trace. But before we do so, let us define what a decision template is, what it means for a template

to have a match, and what makes a “good” template.

2.6.2 Definitions and Goals
For convenience, from now on we will denote a trace as a set of query-tuple pairs {(Qi, ti)}ni=1,

where each ti is one of the rows returned byQi. A query that returns multiple rows is represented

as multiple such pairs. This change of notation is permissible because under strong compliance

(Definition 2.15), we no longer take into account the absence of a returned row.

Definition 2.18. We say a trace T = {(Qi, ti)}ni=1 is feasible if there exists a database D such

that ti ∈ Qi(D) for all 1 ≤ i ≤ n.

Definition 2.19. A decision template D[x, c], where c denotes variables from the request context

and x a sequence of variables disjoint from c, is a triple (QD, TD,ΦD) where:

• QD is the parameterized query, whose definition can refer to variables from x ∪ c;

• TD is the parameterized trace, whose queries and tuples can refer to variables from x ∪ c;
and

• ΦD, the condition, is a predicate over x ∪ c.

We will often denote a template simply by D if the variables are either unimportant or obvious

from the context.

As we later explain, ΦD represents any extra constraints that a template imposes on its vari-

ables (e.g., ?0 < ?1).

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 24

Definition 2.20. A valuation ν over a collection of variables y is a mapping from y to constants

(including NULL), extended to objects that contain variables in y. For example, given a parame-

terized query Q, ν(Q) denotes Q with each occurrence of variable y ∈ y substituted with ν(y).

Definition 2.21. LetD[x, c] = (QD, TD,ΦD) be a decision template, ctx be a request context, T
be a trace, andQ be a query. We say thatD matches (Q, T) under ctx if there exists a valuation ν
over x ∪ c such that:

• ν(c) = ctx ,

• ν(QD) = Q,

• (ν(Qj), ν(tj)) ∈ T for all (Qj, tj) ∈ TD, and

• ν(ΦD) holds.

Example 2.22. Listing 2.2b can be seen as a stylized rendition of a decision template D[x, c]
where x = (x0, x1)—x0 denoting ?0 and x1 denoting the occurrence of *—and c = (MyUId);
QD and TD are as shown below and above the line; and ΦD is the constant ⊤, meaning the

template imposes no additional constraints on the variables.
8
Under the request contextMyUId =

1, this template matches the query and trace in Listing 2.2a via the valuation {x0 7→ 42, x1 7→
"05/04 1pm",MyUId 7→ 1}. ◀

We are interested only in templates that imply compliance.

Definition 2.23. A decision template D is sound with respect to a policy V if for every request

context ctx , whenever D matches (Q, T) under ctx , Q is strongly ctx-compliant to V given T .

Blockaid verifies that a template is sound via the following theorem derived from strong com-

pliance (Definition 2.15):

Theorem 2.24. A decision template D[x, c] = (QD, TD,ΦD) is sound with respect to a policy V
if and only if:

∀x, c, D1, D2.

ΦD

∀V ∈ V . V (D1) ⊆ V (D2)

∀(Qi, ti) ∈ TD. ti ∈ Qi(D1)

 =⇒ QD(D1) ⊆ QD(D2).

For a compliant query Q (with trace T) that misses the cache, there often exist many sound

templates that match (Q, T). But all such templates are not equal—we prefer the more general
ones, those that match a wider range of other queries and traces.

8
Technically, this template requires MyUId ̸= NULL ∧ x0 ̸= NULL. We omitted this condition in Listing 2.2b

because we assume the user ID parameter and the Attendances table’s EId column are both non-NULL.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 25

Definition 2.25. A template D1 is at least as general as a template D2 if for every query Q and

feasible trace T , if D2 matches (Q, T), D1 also matches (Q, T).

Thus, Blockaid aims to generate a decision template that (1) is sound, (2) matches (Q, T), and
(3) is general enough for practical purposes. We now explain how this is achieved.

2.6.3 Generating Decision Templates
Blockaid starts from the trivial template D0 = (Q, T ,⊤), which is sound but not general, and

generalizes it in two steps:

1. Minimize the trace T to retain only those (Qi, ti) pairs that are required forQ’s compliance

(§2.6.3).

2. Replace each constant in the trace and query with a fresh variable, and then generate a

weak condition Φ over the variables that guarantees compliance (§2.6.3).

Step One: Trace Minimization

Blockaid begins by finding a minimal sub-trace of T that preserves compliance. It removes each

(Qi, ti) ∈ T and, ifQ is no longer compliant, adds the element back. For example, for Listing 2.2a

this step removes Query #1. Denote the resulting minimal trace by Tmin and let decision template

D1 = (Q, Tmin,⊤).

Proposition 2.26. D1 is sound, matches (Q, T), and is at least as general as D0.

As an optimization, Blockaid starts the minimization from the sub-trace that the solver has

actually used to prove compliance. It extracts this information from a solver-generated unsat
core [15, § 11.8]—a subset of clauses in the formula that remains contradictory even when all

other clauses are removed. If we attach labels to the clauses we care about, a solver will identify

all labels in the unsat core when it proves the formula unsatisfiable.

To get an unsat core, Blockaid uses the following formula:

V ctx (D1) ⊆ V ctx (D2), (∀V ∈ V)
[LQi] ti ∈ Qi(D1), (∀(Qi, ti) ∈ T)

Q(D1) ̸⊆ Q(D2),

where the clause asserting the ith trace entry is labeled LQi. If Q is compliant, the solver returns

as the unsat core a set S of labels. Blockaid ignores any (Qi, ti) ∈ T for which LQi ̸∈ S.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 26

Interlude: Model Finding for Satisfiable Formulas

A common operation in template generation is to remove parts of a formula and re-check sat-

isfiability. A complication arises when the formula turns satisfiable—while solvers are adept at

proving unsatisfiability, they often fail on satisfiable formulas.
9

To solve these formulas faster, we observe that they are typically satisfied by databases with

small tables. We thus construct SMT formulas to directly seek such “small models” by repre-

senting each table not as an uninterpreted relation, but as a conditional table [65] whose size is

bounded by a small constant.

A conditional table generalizes a regular table by (1) allowing variables in its entries, and

(2) associating with each row with a condition, i.e., a Boolean predicate for whether the row

exists. For example, a Users table with a bound of 2 appears as:

UId Name Exists?

xu,1 xn,1 b1
xu,2 xn,2 b2

where each entry and condition is a fresh variable, signifying that the table is not constrained in

any way other than its size.

Queries on condition tables can be evaluated via an extension of the relational algebra opera-

tors [65, § 7]. This allows queries to be translated into SMT without using quantifiers or relation

symbols. For example, the query SELECT Name FROM Users WHERE UId = 5 can be written as:

Q(xn)
∆
=

2∨
i=1

(xu,i = 5 ∧ xn,i = xn ∧ bi) .

We found that such formulas could be solved quickly by Z3.

After Blockaid generates an unsat core as described in §2.6.3, it switches to using bounded for-

mulas (i.e., ones that use conditional tables instead of uninterpreted relations) for the remainder

of template generation. Blockaid sets a table’s bound to one plus the number of rows required to

produce the sub-trace induced by the unsat core;
10
it relies on the solvers to produce small unsat

cores to keep formula sizes manageable.

Care must be taken because using bounded formulas breaks soundness—a query compliant

on small tables might not be on larger ones. Therefore, after a decision template is produced

Blockaid verifies its soundness on the regular, unbounded formula, and if this fails, increments

the table bounds and retry.

9
For example, finite model finders in CVC4 [117] and Vampire [113] often time out or run out of memory on

tables with only tens of columns.

10
If the bounds are too small for a database to produce the trace, the resulting formula will be unsatisfiable

regardless of compliance.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 27

Listing 2.3: Parameterization and candidate atoms for Listing 2.2a.

(a) Parameterized trace T p

min
and query qp.

2. SELECT * FROM Attendances
WHERE UId = x0 AND EId = x1

↪→ (UId = x0 , EId = x1 , ConfirmedAt = x2)

3. SELECT * FROM Events WHERE EId = x3

(b) Candidate atoms (with symmetric duplicates removed).

Form x = v:
• MyUId = 1
• x0 = 1
• x1 = 42
• x2 = "05/04 1pm"
• x3 = 42

Form x = x’:
• MyUId = x0
• x1 = x3

Form x < x’:
• MyUId < x1
• MyUId < x3
• x0 < x1
• x0 < x3

Step Two: Find Value Constraints

Taking the templateD1 = (Q, Tmin,⊤) from Step 1, Blockaid generalizes it further by abstracting

away the constants. To do so, Blockaid parameterizes Tmin and Q by replacing each occurrence

of a constant with a fresh variable. We use a superscript “p” to denote the parameterized version

of a query, tuple, or trace. Listing 2.3a shows T p

min
and Qp

from our example. As an optimization,

Blockaid assigns the same variable (e.g., x0) to locations that are guaranteed by SQL semantics

to be equal.

Blockaidmust now generate a conditionΦ such that the resulting templateD2 = (Qp, T p

min
,Φ)

meets our goals. It picks as Φ a conjunction of atoms from a set of candidate atoms. Let x denote

all variables generated from parameterization, and let ν map x to the replaced constants and c to
the current context ctx .

Definition 2.27. The set of candidate atoms is defined as:

C =
⋃


{x = v | x ∈ x ∪ c, v = ν(x) ̸= NULL}
{x IS NULL | x ∈ x ∪ c, ν(x) = NULL}
{x = x’ | x, x′ ∈ x ∪ c, ν(x) = ν(x′) ̸= NULL}
{x < x’ | x, x′ ∈ x ∪ c, ν(x) < ν(x′)}

.

(We write atoms in monospace font to distinguish them from mathematical expressions. Fol-

lowing SQL, the “=” in an atom implies that both sides are non-NULL.)

Note that all atoms hold onQ and Tmin. Blockaid now selects a subset that not only guarantees

compliance, but also imposes relatively few restrictions on the variables.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 28

Definition 2.28. With respect to Qp
and T p

min
, a subset of atoms C0 ⊆ C is sound if the decision

template (Qp, T p

min
,
∧

C0) is sound. (
∧

C0 denotes the conjunction of atoms in C0.)

Definition 2.29. Let C1, C2 ⊆ C . We say that C2 is at least as weak as C1 (denoted C1 ⪯ C2) if∧
C1 =⇒

∧
C2, and that C2 is weaker than C1 if C1 ⪯ C2 but C2 ̸⪯ C1.

Example 2.30. Listing 2.3b shows all the candidate atoms from Listing 2.3a (after omitting sym-

metric ones in the x = x’ group). Consider the following two subsets of atoms:

C1 =
{
MyUId = x0, x1 = 42, x3 = 42

}
,

C2 =
{
MyUId = x0, x1 = x3

}
.

While both are sound, C2 is preferred over C1 as it is weaker and thus applies in more scenarios.

In fact, C2 ismaximally weak: there exists no subset that is both sound and weaker than C2. ◀

Ideally, Blockaid would produce a maximally weak sound subset of C as the template condi-

tion, but finding one can be expensive. It thus settles for finding a subset that is weak enough for

practical generalization. It does so in three steps.

First, as a starting point, Blockaid generates a minimal unsat core of the formula:

V ctx (D1) ⊆ V ctx (D2), (∀V ∈ V)
t
p

i ∈ Q
p

i (D1), (∀(tpi , Q
p

i) ∈ T
p

min
)

[LCi] ci, (∀ci ∈ C)

Qp(D1) ̸⊆ Qp(D2).

Let Ccore denote the set of atoms whose label appears in the unsat core. For example, Ccore =
{ MyUId = x0, x1 = 42, x3 = 42 }.

Second, Blockaid augments Ccore with other atoms that are implied by it:

Caug

∆
=

{
c ∈ C

∣∣∣ ∧Ccore =⇒ c
}
.

In our example,

Caug = Ccore ∪ { x1 = x3 }
=

{
MyUId = x0, x1 = 42, x3 = 42, x1 = x3

}
.

Caug enjoys a closure property: if C0 ⊆ Caug and C0 ⪯ C1, then C1 ⊆ Caug. In particular, Caug

contains a maximally weak sound subset of C . Thus, Blockaid focuses its search within Caug.

Finally, as a proxy for weakness, Blockaid finds a smallest sound subset of Caug, denoted

Csmall, breaking ties arbitrarily. It does so using the MARCO algorithm [85, 86, 110] for minimal

unsatisfiable subset enumeration, modified to enumerate from small to large and to stop after

finding the first sound subset. In our example, the algorithm returnsCsmall = { MyUId=x0, x1=x3 }
of cardinality two—which is also a maximally weak subset—even though this might not be the

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 29

case in general.
11

Nevertheless, searching for a smallest sound subset has produced templates

that generalize well in practice.

Blockaid thus produces the decision template:

D2[x, c] =
(
Qp, T p

min
,
∧

Csmall

)
.

Proposition 2.31. D2 is sound, matches (Q, T), and is at least as general as D1.

As an optimization, whenever

∧
Csmall =⇒ x = y for x, y ∈ x∪ c, Blockaid replaces x with

y in the template. This is how, e.g., in Listing 2.2b ?0 appears in both the trace and the query.

Optimizations

We implement two optimizations that improve the performance of template generation and the

generalizability of templates.

Omit irrelevant tables. Given trace T and queryQ, we call a table relevant if (1) it appears in T
orQ, or (2) the table appears on the right-hand side of a database constraint of the formQ1 ⊆ Q2,

given that a relevant table appears on the left.
12
Blockaid sets the size bounds of irrelevant tables

to zero, reducing formula size while preserving compliance.

Split IN. A queryQ that contains “c IN (x1, x2, . . . , xn)” often produces a template with a long

trace. If Q is a basic query that does not contain the NOT operator, it can be split into q1, . . . , qn
where qi denotesQ with the IN-construct substituted with c = xi, such thatQ ≡ q1 ∪ . . .∪ qn. If
q1, . . . , qn are all compliant then so is Q, and so Blockaid checks the sub-queries instead. This is

usually fast because q2, . . . , qn typically match the decision template generated from q1. If any qi
is not compliant, Blockaid reverts to checking Q as a whole.

This optimization also improves generalization. Suppose Q′
has structure identical to Q but

a different number of IN operands. It would not match a template generated from Q, but its split

sub-queries q′i could match the template from q1.

2.6.4 Decision Cache and Template Matching
Blockaid stores decision templates in its decision cache, indexing them by their parameterized

query using a hash map. When checking a query Q, Blockaid lists all templates whose param-

eterized query matches Q; for each such template, it uses recursive backtracking (with pruning

optimizations) to search for a valuation that results in a match. This simple method proves effi-

cient in practice as the templates tend to be small.

11
For example, { x < y, x < z } is strictly weaker than { x < y, y < z } even though the two sets have the same

cardinality.

12
Every constraint encountered in our evaluation can be written in the form Q1 ⊆ Q2, including primary-key,

foreign-key, and integrity constraints.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 30

2.7 Implementation

We implemented Blockaid as a Java Database Connectivity (JDBC) driver that interposes on an

underlying connection. It thus supports only applications on the JVM and runs within the web

server, although our design allows it to reside elsewhere (e.g., in the database). The JDBC driver

accepts custom commands that (1) set the request context, (2) clear the context and the trace, and

(3) check an application cache read.

Blockaid parses SQL using Apache Calcite [17] and caches parser outputs. To check compli-

ance, it uses Z3’s Java binding [43] to generate formulas in SMT-LIB 2 format [14] and invokes

an ensemble of solvers in parallel. Our ensemble consists of Z3 [44] (v4.8.12) and cvc5 [13] (v0.3)

using default configurations, and Vampire [74] (v4.6.1) using six configurations from its CASC

portfolio.
13

The ensemble is killed as soon as any solver finishes. If a query is not compliant, or

all solvers time out after 5 s, Blockaid throws a Java SQLException.
To generate decision templates, Blockaid uses the same ensemble to produce the initial unsat

core (§2.6.3), but kills the ensemble only when a solver returns a small core of up to 3 labels

(subject to timeout). It uses only Z3 on bounded formulas.

Our prototype does not verify that queries return no duplicate rows and does not look at any

ORDER BY columns. We manually ensured that queries in our evaluation return no duplicates and

do not reveal inaccessible information through ORDER BY.

2.8 Evaluation

We use Blockaid to enforce data-access policies on three existing open-source web applications

written in Ruby on Rails:

• diaspora* [46]: a social network with 850 k users.

• Spree [133]: an e-commerce app used by 50+ businesses.

• Autolab [29]: a course management app used at 20 schools.

For each application, we devised a data-access policy, modified its code to work with Blockaid,

and measured its performance.

In summary: Blockaid imposes overheads of 2%–12% to median page load time when com-

pliance decisions are cached; the decision templates generalize to other entities (users, etc.); and

no query was falsely rejected in our benchmark. Reproduction instructions can be found in §2.8.8.

2.8.1 Constraints, Policies, and Annotations
Table 2.1 summarizes the constraints and policies for database tables queried in our benchmark,

including any necessary application-level constraints (e.g., a reshared post is always public in

13https://github.com/vprover/vampire/blob/master/CASC/Schedules.cpp.

https://github.com/vprover/vampire/blob/master/CASC/Schedules.cpp

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 31

Table 2.1: Summary of schemas, policies, and code changes.

diaspora* Spree Autolab

Schema & Policy
Tables modeled 35 / 52 46 / 93 17 / 28

Constraints 108 122 51

Policy views 108 84 57

Cache key patterns 0 11 3

Code Changes (LoC)
Boilerplate 12 17 12

Fetch less data 6 26 38

SQL feature 1 3 5

Parameterize queries 0 18 32

File system checking 0 0 9

Total 19 64 96

diaspora*). Spree and Autolab use the Rails cache, and we annotate their cache key patterns with

queries (§2.3.2).

Once a policy is given, transcribing it into views was straightforward. The more arduous task

lied in divining the intended policy for an application, by studying its source code and interacting

with it on sample data. This effort was complicated by edge cases in policies—e.g., a Spree item

at an inactive location is inaccessible except when filtering for backorderable variants. Such edge

cases had to be covered using additional views.

To give a sense of the porting effort, writing the Spree policy took one of us roughly a month.

However, this process would be easier for the developer of a new application, who has a good

sense of what policies are suitable and can create policies while building the application, amor-

tizing the effort over time.

When writing the Autolab policy, we uncovered two access-check bugs in the application:

(1) a persistent announcement (one shown on all pages of a course) is displayed regardless of

whether it is active on the current date; and (2) an unreleased handout is hidden on its course

page but can be downloaded from its assignment page. This experience corroborates the difficulty

of making every access check airtight, especially for code bases that enjoy fewer maintenance

resources.

2.8.2 Code Modifications
Our changes to application code fall into five categories:

1. Boilerplate: We add code that sends the request context to Blockaid at request start and

clears the trace at request end.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 32

T
a
b
l
e
2
.2
:
A
pp

li
ca
ti
on

be
nc

hm
ar
k
de

sc
ri
pt
io
n
an

d
pa

ge
-l
oa

d
ti
m
e.

F
o
r
a
p
a
g
e
w
e
l
i
s
t
t
h
e
p
a
g
e
U
R
L
f
o
l
l
o
w
e
d
b
y
o
t
h
e
r

U
R
L
s
f
e
t
c
h
e
d
(
U
R
L
s
f
o
r
a
s
s
e
t
s
a
r
e
e
x
c
l
u
d
e
d
)
.
W
h
e
n
c
o
m
p
l
i
a
n
c
e
d
e
c
i
s
i
o
n
s
a
r
e
c
a
c
h
e
d
,
B
l
o
c
k
a
i
d
i
n
c
u
r
s
u
p
t
o
12

%
o
v
e
r
h
e
a
d
t
o

t
h
e
m
e
d
i
a
n
P
L
T
o
v
e
r
t
h
e
m
o
d
i
fi
e
d
a
p
p
l
i
c
a
t
i
o
n
s
.
T
h
e
a
b
b
r
e
v
i
a
t
i
o
n
“
w
/
”
s
t
a
n
d
s
f
o
r
“
w
i
t
h
”
.

Pa
ge

Lo
ad

T
im

e
(
m
e
d
i
a
n
/
P
9
5
;
d
e
f
a
u
l
t
u
n
i
t
:
m
s
)

U
R
Ls

D
es
cr
ip
ti
on

O
r
i
g
i
n
a
l

M
o
d
i
fi
e
d

C
a
c
h
e
d

N
o
c
a
c
h
e

di
as
po

ra
*

S
i
m
p
l
e
p
o
s
t

D
1
,
D
2
,
D
9

V
i
e
w
a
s
i
m
p
l
e
p
o
s
t
s
h
a
r
e
d
w
i
t
h
t
h
e
u
s
e
r
.

1
6
9
/
1
7
3

1
6
9
/
1
7
5

1
7
4
/
1
7
9

2.
5
s
/
2
.6
s

C
o
m
p
l
e
x
p
o
s
t

D
3
,
D
4
,
D
9

V
i
e
w
a
p
u
b
l
i
c
p
o
s
t
w
/
3
0
v
o
t
e
s
&
c
o
m
m
e
n
t
s
.

1
7
1
/
1
7
8

1
7
1
/
1
7
8

1
7
6
/
1
8
3

2.
6
s
/
2
.7
s

P
r
o
h
i
b
i
t
e
d
p
o
s
t

D
5

A
t
t
e
m
p
t
t
o
v
i
e
w
a
n
u
n
a
u
t
h
o
r
i
z
e
d
p
o
s
t
.

3
2
/
3
4

3
2
/
3
4

3
3
/
3
5

2
6
2
/
2
8
5

C
o
n
v
e
r
s
a
t
i
o
n

D
6
,
D
9

V
i
e
w
a
c
o
n
v
e
r
s
a
t
i
o
n
(
5
m
e
s
s
a
g
e
s
)
.

2
5
3
/
2
5
8

2
5
5
/
2
6
2

2
6
0
/
2
6
7

2.
1
s
/
2
.2
s

P
r
o
fi
l
e

D
7
,
D
8
,
D
9

V
i
e
w
a
p
r
o
fi
l
e
(
b
a
s
i
c
i
n
f
o
&
3
p
o
s
t
s
)
.

1
4
2
/
1
4
8

1
4
5
/
1
5
2

1
5
0
/
1
5
6

1.
3
s
/
1
.4
s

Sp
re
e

A
c
c
o
u
n
t

S
1
,
S
6
–
S
8

V
i
e
w
t
h
e
u
s
e
r
’
s
a
c
c
o
u
n
t
i
n
f
o
r
m
a
t
i
o
n
.

7
4
/
8
0

7
6
/
8
3

7
8
/
8
4

5
8
8
/
6
1
1

A
v
a
i
l
a
b
l
e
i
t
e
m

S
2
,
S
6
–
S
8

V
i
e
w
a
p
r
o
d
u
c
t
f
o
r
s
a
l
e
.

1
2
2
/
1
3
3

1
1
5
/
1
6
7

1
2
2
/
1
7
3

4.
4
s
/
4
.4
s

U
n
a
v
a
i
l
a
b
l
e
i
t
e
m

S
3

V
i
e
w
a
p
r
o
d
u
c
t
n
o
l
o
n
g
e
r
f
o
r
s
a
l
e
.

2
0
/
2
2

2
1
/
2
3

2
2
/
2
4

3
5
0
/
3
7
1

C
a
r
t

S
4
,
S
6
–
S
8

V
i
e
w
t
h
e
c
u
r
r
e
n
t
s
h
o
p
p
i
n
g
c
a
r
t
(
3
i
t
e
m
s
)
.

1
1
6
/
1
3
1

1
1
8
/
1
3
2

1
2
4
/
1
3
7

7.
6
s
/
7
.7
s

O
r
d
e
r

S
5
,
S
6
–
S
8

V
i
e
w
a
s
u
m
m
a
r
y
&
s
t
a
t
u
s
o
f
a
p
r
i
o
r
o
r
d
e
r
.

1
6
0
/
1
7
0

1
6
4
/
1
7
4

1
7
3
/
1
8
2

3
9
s
/
39

s
A
ut
ol
ab

H
o
m
e
p
a
g
e

A
1

V
i
e
w
a
s
u
m
m
a
r
y
o
f
3
c
o
u
r
s
e
s
e
n
r
o
l
l
e
d
.

5
6
/
6
1

5
9
/
6
4

6
5
/
7
0

1.
4
s
/
1
.6
s

C
o
u
r
s
e

A
2
,
A
3

V
i
e
w
c
o
u
r
s
e
s
u
m
m
a
r
y
(
1
5
a
s
s
i
g
n
m
e
n
t
s
)
.

8
4
/
9
6

8
7
/
1
0
1

9
7
/
1
1
6

3.
9
s
/
4
.1
s

A
s
s
i
g
n
m
e
n
t

A
4

V
i
e
w
a
q
u
i
z
(
w
/
3
s
u
b
m
i
s
s
i
o
n
s
&
g
r
a
d
e
s
)
.

9
7
/
1
1
0

1
0
3
/
1
1
8

1
1
5
/
1
3
8

3.
5
s
/
3
.6
s

S
u
b
m
i
s
s
i
o
n

A
5

D
o
w
n
l
o
a
d
a
h
o
m
e
w
o
r
k
s
u
b
m
i
s
s
i
o
n
.

2
2
/
2
6

2
6
/
3
1

2
7
/
3
3

1.
1
s
/
1
.2
s

G
r
a
d
e
s
h
e
e
t

A
6

I
n
s
t
r
u
c
t
o
r
v
i
e
w
s
g
r
a
d
e
s
f
o
r
5
1
e
n
r
o
l
l
e
e
s
.

4
5
6
/
4
7
4

4
7
4
/
4
9
3

5
0
4
/
5
3
0

7
2
s
/
73

s

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 33

2. Fetch less data: We modify some queries to not fetch potentially sensitive data unless it

will be revealed to the user; some of these changes use the lazy_column gem [89].

3. SQL features: We modify some queries to avoid SQL features not supported by Blockaid

(e.g., general left joins) without altering application behavior.

4. Parameterize queries: We make some queries parameterized so that Blockaid can effec-

tively cache their parsing results. Most changes are mechanical rewrites of queries with

comparisons, as idiomatic ways of writing comparisons [107] cause query parameters to

be filled within Rails.

5. File system checking: Autolab uses files to store submissions; the file name are always

accessible but the content is inaccessible during an exam. We modify it to store the sub-

mission content under a randomly generated file name and restrict access to the file name

in the database (§2.3.2).

The code changes are summarized also in Table 2.1, which omits configuration changes, adap-

tations for JRuby, and experiment code. The changes range from 19 to 96 lines of code.

2.8.3 Experiment Setup and Benchmark
We deploy each application on an Amazon EC2 c4.8xlarge instance running Ubuntu 18.04. Be-

cause our prototype only supports JVM applications, we run the applications using JRuby [68]

(v9.3.0.0), a Ruby implementation atop the JVM (we use OpenJDK 17). In Rails’s database con-

figuration, we turn on prepared_statements so that Rails issues parameterized queries in the

common case.
14

The applications run atop the Puma web server over HTTPS behind NGINX

(which serves static files directly), and stores data in MySQL (and, if applicable, Redis) on the

same instance. To reduce variability, all measurements are taken from a client on the same in-

stance.

For each application, we picked five page loads that exercise various behaviors (Table 2.2).

Each page load can fetch multiple URLs, some common among many pages (e.g., D9, which is the

notifications URL). All queries issued are compliant, and all experiments are performed with the

Rails cache populated.

2.8.4 Page Load Times
We start by measuring the page load time (PLT) using a headless Chrome browser (v96) driven

by Selenium [132]. The PLT is reported as the time elapsed between navigationStart and

loadEventEnd as defined by the PerformanceTiming interface [145]. The one exception is the

14
In case a Rails query is not fully parameterized (e.g., due to the use of raw SQL), it gets parameterized by

Blockaid as described in §2.6.3.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 34

diaspora* Spree Autolab

D1 D2 D3 D4 D5 D6 D7 D8 D9 S1 S2 S3 S4 S5 S6 S7 S8 A1 A2 A3 A4 A5 A6

10ms

100ms

1 s

10 s

100 s

URL

M
e
d
i
a
n
f
e
t
c
h
t
i
m
e
(
l
o
g
s
c
a
l
e
)

Original Modified Blockaid (cached) Blockaid (cold cache) Blockaid (no cache)

Figure 2.3: URL fetch latency (median). With all compliance decisions cached, Blockaid incurs

up to 10% overhead over “modified”.

Autolab “Submission” page, a file download, for which we report Chrome’s download time in-

stead. Since the client is on the same VM as the server, these experiments reflect the best-case

PLT, as clients outside the instance / cloud are likely to experience higher network latency.

We report PLTs under four settings: original (unmodified application), modified (modified

à la §2.8.2), cached (modified application under Blockaid with every query hitting the decision

cache), and no cache (decision caching disabled). For the first three, we perform 3000 warmup

loads before measuring the PLT of another 3000 loads. For no cache, where each run takes longer,

we use 100 warmup loads and 100 measurement loads.

Table 2.2 shows that when compliance decisions are cached, Blockaid incurs up to 12% over-

head tomedian PLT over themodified application (and up to 17% overhead to P95). With caching

disabled, Blockaid incurs up to 236× higher median PLT. Compared with the original applica-

tions, the modified versions result in up to 6% overhead tomedian PLT for all pages but Autolab’s

“Submissions”, which suffers a 19% overhead. (The P95 overhead is up to 7% for all but two pages

with up to 26% overhead.) We will comment on these overheads in the next subsection, where

we break down the pages into URLs.

2.8.5 Fetch Latency
To better understand page load performance, we separate out the individual URLs fetched by

each page (Table 2.2), omitting URLs for assets, and measure the latency of fetching each URL

(not including rendering time). The median latencies are shown in Figure 2.3. In addition to the

four settings from §2.8.4, it includes performance under a “cold cache”, where the decision cache

is enabled but cleared at the start of each load (100 warmup runs followed by 100 measurements).

When all compliance decisions are cached, Blockaid incurs up to 10% of overhead (median 7%)

over “modified”. In contrast, it incurs 7×–422× overhead on a cold decision cache, and 7×–310×
overhead if the decision cache is disabled altogether.

For most URLs, “cold cache” is slower than “no cache” due to the extra template-generation

step. Two exceptions are D4 and A6, where many structurally identical queries are issued. As a

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 35

No cache
(compliance checking only)

Cache miss
(template generation)

diaspora* Spree Autolab diaspora* Spree Autolab

0.00

0.25

0.50

0.75

1.00

F
r
a
c
t
i
o
n
o
f
w
i
n
s

Solver

cvc5

Vampire

Z3

Figure 2.4: Fraction of wins by each solver. “Vampire” covers a portfolio of six configurations

(§2.7).

result, the performance gain from cache hits within each URL offsets the performance hit from

template generation.

Compared to the original, themodified diaspora* and Spree are up to 5% slower (median 2%),

but Autolab is up to 21% slower (median 8%). Autolab routinely reveals partial data on objects

that are not fully accessible. For example, a user can distinguish among the cases where: (1) a

course doesn’t exist, (2) a course exists but the user is not enrolled, and (3) the user is enrolled but

the course is disabled. The original Autolab fetches the course in one SQL query but we had to

split it into multiple—checking whether the course exists, whether it is disabled, etc.—and return

an error immediately if one of these checks fails.

In one instance (S2), the modified version is 11% faster than the original because we were

able to remove queries for potentially inaccessible data that is never used in rendering the URL.

2.8.6 Solver Comparison
When a query arrives, Blockaid invokes an ensemble of solvers to check compliance when de-

cision caching is disabled, and to generate a decision template on a cache miss when caching is

enabled. Thewinner, in the no-cache case, is the first solver to return a decision; and in the cache-
miss case, the first to return a small enough unsat core (§2.7), assuming the query is compliant.

Figure 2.4 shows the fraction of wins by each solver in the two scenarios. In the no-cache

case, wins are dominated by Z3 followed by cvc5, with none for Vampire. In the cache-miss case,

however, Vampire wins a significant portion of the time—Z3 and cvc5 often finish quickly but

with large unsat cores, causing Blockaid to wait till Vampire produces a smaller core.

2.8.7 Template Generalization
We found that the generated decision templates typically generalize to similar requests. The rest

generalize in more restricted scenarios, but none is tied to a particular user ID, post ID, etc.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 36

Listing 2.4: Two (abridged) decision templates generated for the same parameterized
query from Spree. Token is a Spree request context parameter identifying the current (pos-

sibly guest) user, and NOW is a built-in parameter storing the current time.

(a) This template doesn’t fully generalize.

SELECT * FROM products WHERE id IN (*, *, *)

↪→ (id = ?1 , available_on < ?NOW ,
discontinue_on IS NULL, deleted_at IS NULL, *)

SELECT * FROM variants WHERE id IN (*, *, *)

↪→ (id = ?2 , deleted_at IS NULL,
discontinue_on IS NULL, product_id = ?1 , *)

SELECT a.* FROM assets a
JOIN variants mv ON a.viewable_id = mv.id
JOIN variants ov ON mv.product_id = ov.product_id
WHERE mv.is_master AND mv.deleted_at IS NULL

AND a.viewable_type = 'Variant ' AND ov.id = ?2

(b) This template does fully generalize.

SELECT * FROM orders WHERE ...

↪→ (id = ?0 , token = ?Token , *)

SELECT * FROM line_items WHERE order_id = ?0

↪→ (variant_id = ?1 , *)

SELECT a.* FROM assets a
JOIN variants mv ON a.viewable_id = mv.id
JOIN variants ov ON mv.product_id = ov.product_id
WHERE mv.is_master AND mv.deleted_at IS NULL

AND a.viewable_type = 'Variant ' AND ov.id = ?1

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 37

To illustrate how Blockaid might produce a template that does not generalize fully, consider

a query from Spree’s cache key annotations (Listing 2.4). This query fetches assets for prod-

uct variants in the user’s order; here, a variant’s asset belongs to its product’s “master variant”.

Listing 2.4a shows a template that fails to generalize fully, for three reasons.

First, due to the queries with the IN operator in its premise (above the horizontal line), this

template only applies when an order has exactly three variants. The IN-splitting optimization

from §2.6.3 only applies to the query being checked, and we plan to handle such queries in the

premise in future work.

Second, this template constrains the variant to be “not discontinued”, which Spree defines as

discontinue_on IS NULL or discontinue_on >= NOW. But because disjunctions are not supported

in decision templates, Blockaid picked only the condition that matches the current variant (IS
NULL).

Third, in this example there are multiple justifications for this query’s compliance, and Block-

aid happened to pick one that does not always hold in a similar request. The policy states that

a variant’s asset can be viewed if it is not discontinued, or if it is part of the user’s order.
15

This

particular variant in the user’s order happens to not be discontinued, and the template captures

the former justification for viewing the asset. However, it does not apply to variants in the order

that are discontinued; indeed, for such a variant, Blockaid produces the template in Listing 2.4b,

which generalizes fully. We could address this issue by finding multiple decision templates for

every query.

Incidentally, inspecting decision templates has helped us expose overly permissive policies.

When writing the Autolab policy we missed a join condition in a view, a mistake that became

apparent when Blockaid generated a template stating that an instructor for one course can view

assignments for all courses. Although manually inspecting templates is not required for using

Blockaid, doing so can help debug overly broad policies, whose undesired consequences are often

exposed by the general decision templates produced by Blockaid.

2.8.8 Artifact
We have open-sourced our artifact, which includes:

• Our implementation of Blockaid, which is compatible with applications that can run atop

the JVM and connect to a database via JDBC (§2.7);

• The three applications we used for our evaluation—modified according to §2.8.2—as well

as the policy we wrote for each; and,

• A setup for reproducing the evaluation results from §2.8.

Scope This artifact can be used to run the main experiments from this chapter: the page load

time (PLT) measurements (§2.8.4) and the fetch latency measurements (§2.8.5 and §2.8.6) on the

15
This is to allow users to view past purchases that are since discontinued.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 38

T
a
b
l
e
2
.3
:
W
h
e
r
e
a
r
t
i
f
a
c
t
c
o
n
t
e
n
t
s
a
r
e
h
o
s
t
e
d
.

C
on

te
nt

Lo
ca
ti
on

B
ra
nc

h
/t
ag

/r
el
ea
se

A
rt
if
ac
tR

EA
D
M
E

ht
tp

s:
//

gi
th

ub
.c

om
/b

lo
ck

ai
d-

pr
oj

ec
t/

ar
ti

fa
ct

-
ev

al
ma

in
b
r
a
n
c
h

B
lo
ck

ai
d
so
ur

ce
ht

tp
s:

//
gi

th
ub

.c
om

/b
lo

ck
ai

d-
pr

oj
ec

t/
bl

oc
ka

id
ma

in
b
r
a
n
c
h
(
l
a
t
e
s
t
v
e
r
s
i
o
n
)

os
di

22
ae

b
r
a
n
c
h
(
A
E
v
e
r
s
i
o
n
)
a

Ex
pe

ri
m
en

tl
au

nc
he

r
ht

tp
s:

//
hu

b.
do

ck
er

.c
om

/r
ep

os
it

or
y/

do
ck

er
/b

lo
ck

ai
d/

ae
la

te
st

t
a
g

L
a
u
n
c
h
e
r
s
o
u
r
c
e

ht
tp

s:
//

gi
th

ub
.c

om
/b

lo
ck

ai
d-

pr
oj

ec
t/

ae
-
la

un
ch

er
ma

in
b
r
a
n
c
h

V
M

im
ag

e
ht

tp
s:

//
gi

th
ub

.c
om

/b
lo

ck
ai

d-
pr

oj
ec

t/
ae

-
vm

-
im

ag
e

os
di

22
ae

r
e
l
e
a
s
e

E
x
p
e
r
i
m
e
n
t
s
c
r
i
p
t
s

ht
tp

s:
//

gi
th

ub
.c

om
/b

lo
ck

ai
d-

pr
oj

ec
t/

ex
pe

ri
me

nt
s

os
di

22
ae

b
r
a
n
c
h

A
pp

li
ca
ti
on

s
d
i
a
s
p
o
r
a
*

ht
tp

s:
//

gi
th

ub
.c

om
/b

lo
ck

ai
d-

pr
oj

ec
t/

di
as

po
ra

bl
oc

ka
id

b
r
a
n
c
h
b

S
p
r
e
e

ht
tp

s:
//

gi
th

ub
.c

om
/b

lo
ck

ai
d-

pr
oj

ec
t/

sp
re

e
bv

4.
3.

0-
or

ig
b
r
a
n
c
h
(
o
r
i
g
i
n
a
l
)
c

bv
4.

3.
0
b
r
a
n
c
h
(
m
o
d
i
fi
e
d
)
d

A
u
t
o
l
a
b

ht
tp

s:
//

gi
th

ub
.c

om
/b

lo
ck

ai
d-

pr
oj

ec
t/

Au
to

la
b

bv
2.

7.
0-

or
ig

b
r
a
n
c
h
(
o
r
i
g
i
n
a
l
)
c

bv
2.

7.
0
b
r
a
n
c
h
(
m
o
d
i
fi
e
d
)
d

Po
li
ci
es

fo
r
ap

pl
ic
at
io
ns

ht
tp

s:
//

gi
th

ub
.c

om
/b

lo
ck

ai
d-

pr
oj

ec
t/

ap
p-

po
li

ci
es

ma
in

b
r
a
n
c
h

a
T
h
e
“
A
E
v
e
r
s
i
o
n
”
i
s
t
h
e
v
e
r
s
i
o
n
o
f
B
l
o
c
k
a
i
d
u
s
e
d
i
n
a
r
t
i
f
a
c
t
e
v
a
l
u
a
t
i
o
n
.

b
T
h
e
s
a
m
e
d
i
a
s
p
o
r
a
*
b
r
a
n
c
h
i
s
u
s
e
d
f
o
r
b
o
t
h
b
a
s
e
l
i
n
e
a
n
d
B
l
o
c
k
a
i
d
m
e
a
s
u
r
e
m
e
n
t
s
.
T
h
e
c
o
d
e
a
d
d
e
d
f
o
r
B
l
o
c
k
a
i
d
i
s
g
a
t
e
d
b
e
h
i
n
d

c
o
n
d
i
t
i
o
n
a
l
s
t
h
a
t
c
h
e
c
k
w
h
e
t
h
e
r
B
l
o
c
k
a
i
d
i
s
i
n
u
s
e
.

c
“
(
o
r
i
g
i
n
a
l
)
”
d
e
n
o
t
e
s
t
h
e
o
r
i
g
i
n
a
l
a
p
p
l
i
c
a
t
i
o
n
m
o
d
i
fi
e
d
o
n
l
y
t
o
r
u
n
o
n
t
o
p
o
f
J
R
u
b
y
.

d
“
(
m
o
d
i
fi
e
d
)
”
d
e
n
o
t
e
s
t
h
e
“
(
o
r
i
g
i
n
a
l
)
”
c
o
d
e
a
d
d
i
t
i
o
n
a
l
l
y
m
o
d
i
fi
e
d
t
o
w
o
r
k
w
i
t
h
B
l
o
c
k
a
i
d
(
§
2
.8
.2
)
.

https://github.com/blockaid-project/artifact-eval
https://github.com/blockaid-project/blockaid
https://hub.docker.com/repository/docker/blockaid/ae
https://github.com/blockaid-project/ae-launcher
https://github.com/blockaid-project/ae-vm-image
https://github.com/blockaid-project/experiments
https://github.com/blockaid-project/diaspora
https://github.com/blockaid-project/spree
https://github.com/blockaid-project/Autolab
https://github.com/blockaid-project/app-policies

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 39

three applications. From these experiments, it generates Table 2.2 (with URLs and descriptions

omitted), Figure 2.3, and Figure 2.4. Because the full experiment can be time- and resource-

consuming (taking roughly 15 hours on six Amazon EC2 c4.8xlarge instances), the experiment

launcher can be configured to take fewer measurement rounds at the expense of accuracy.

Our Blockaid implementation can also be used to enforce data-access policies on new appli-

cations, as long as they have been modified to satisfy our requirements (§2.3.3), run atop the JVM,

and connect to the database using JDBC (§2.7).

Contents This artifact consists of our Blockaid implementation, the three applications used in

our evaluation (with modifications described in §2.8.2), the data-access policy we wrote for each,

and scripts and virtual machine image for running the experiments.

Hosting See Table 2.3.

Requirements The experiment launcher, which relies on Docker, launches experiments on

Amazon EC2 and so requires an AWS account. By default, it uses six c4.8xlarge instances—to run

the PLT and fetch latency experiments for the three applications simultaneously. However, it can

be configured to launch fewer instances at a time (e.g., to run the experiments serially, using one

instance at a time).

2.9 Additional Issues

2.9.1 Comparison to row- and cell-level policy
Several commercial databases (such as SQL Server [93] and Oracle [102]) implement row- and/or
cell-level data-access policies, which specify accessible information at the granularity of rows or

cells.

Such policies are less expressive than the view-based ones supported by Blockaid. For ex-

ample, suppose we wish to allow each user to view everyone’s timetables (i.e., the start and end

times of the events they attend). Querying someone’s timetable requires joining the Events and
Attendances tables on the EId column, which must then be treated as visible by a cell-level policy.

But this inevitably reveals meeting attendee information as well. Instead, we can implement this

policy using a view:

SELECT UId , StartTime , EndTime
FROM Events e
JOIN Attendances a ON e.EId = a.EId

which lists the times of events attended without revealing EId.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 40

2.9.2 False rejections
Even though false rejections of compliant queries never occurred in our evaluation, they remain

a possibility for several reasons, including: (1) approximate rewriting into basic queries, which

is incomplete; (2) our use of strong compliance; and (3) solver timeouts. Developers can reduce

the chance of false rejections by running an application’s end-to-end test suite under Blockaid

before deployment and manually examining any rejected query to determine whether it is due

to a false positive, a bug in the code, or a misspecified policy.

2.9.3 Off-path deployment
If an operator is especially worried about false rejections affecting a website’s availability, we

can modify Blockaid to log potential violations instead of blocking any queries. We can even

move Blockaid off-path by having the application stream its traces to Blockaid to be checked

asynchronously, further reducing Blockaid’s performance impact.

2.9.4 What if Blockaid could issue its own queries?
Suppose Blockaid can issue extra queries—but only ones answerable using the views, lest the

decision itself reveals sensitive data—when checking compliance. Blockaid can now safely allow

more queries from the application. For example, faced with the formerly non-compliant single

query from Example 2.3:

SELECT Title FROM Events WHERE EId = 5

Blockaid can now ask whether the user attends Event #5 and if so, allow the query. In fact, under

this setup the “necessary-and-sufficient” condition for application noninterference (in the sense

of §2.4.3) becomes instance-based determinacy [73, 119, 162], a criterion less stringent than trace

determinacy.

We decided against this design alternative for two reasons. First, it seems nontrivial to check

instance-based determinacy efficiently—Blockaid must either figure out a small set of queries to

ask, a difficult problem, or fetch all accessible information, an expensive task. Second, Blockaid is

designed for conventional applications that do not rely on an enforcer for data-access compliance.

Such applications should not be issuing queries that fail trace determinacy but pass instance-

based determinacy: Such queries can, in Blockaid’s absence, reveal inaccessible information on

another database and typically indicate application bugs. Thus, Blockaid is right to flag them.

2.9.5 Optimal templates
While decision templates produced by Blockaid are general enough in practice, they might not be

maximally general among the templates that match the query and trace being checked. For one

thing, the template condition might not be maximally weak (§2.6.3). For another, a maximally

general template can have a longer trace than the concrete one, a possibility Blockaid never ex-

plores.

CHAPTER 2. BLOCKAID: ACCESS-CONTROL ENFORCEMENT 41

Fundamentally, our template generation algorithm is limited by its black-box access to the

policy: It interacts with the policy solely by checking template soundness using a solver. Produc-

ing maximally general templates might require opening up this black box and having the policy

guide template generation more directly, a path we plan to explore in future work.

2.10 Conclusion

Blockaid enforces view-based data-access policies on web applications in a semantically trans-

parent and backwards-compatible manner. It verifies policy compliance using SMT solvers and

achieves low overhead using a novel caching and generalization technique. We hope that Block-

aid’s approach will help rule out data-access bugs in real-world applications.

42

Chapter 3

A Decidable Case of Query Determinacy:
Project-Select Views

3.1 Introduction

To enforce a view-based access-control policy, Blockaid checks trace determinacy (Definition 2.5),

a property on views and queries which generalizes query determinacy under set semantics [159,

§ 4.2]. A setV of queries (which we will call “views”) determines a queryQ if and only ifV(I) =
V(I′) implies Q(I) = Q(I′) [99].1

Checking query determinacy is a hard problem—it is undecidable even for CQ (conjunctive

query) views and CQ queries [54, 55]. It is shown to be decidable in simpler scenarios—for ex-

ample, (1) for MCQ (monadic-conjunctive-query) views and CQ queries [99, Theorem 5.16], and

(2) for a single path-query view and a CQ query [99, Theorem 5.20]. But these decidability results

are too limited to be applied to view-based access-control for practical web applications.

Here, we discuss another case where query determinacy is decidable: for select-project views,

and a select-project-join query with no self joins—as long as the selection predicates are not too

complex. To be clear, this result is still quite limited, for the simple reason that real-world views

often have joins. But it is a step forward in our search for a larger class of views and queries,

encompassing more real-world use cases, for which query determinacy is decidable.

3.2 Setup

We consider all queries under set semantics, and we assume that all select-project-join queries

are put into normal form [1, Proposition 4.4.2].

Fix a database schema consisting of relation names R1, R2, . . . , Rm, and let V be a set of

views. Since we’re dealing only with project-select views, we partition V into V1,V2, . . . ,Vm,

1
We may think of V(I) as a database instance that, for each V ∈ V, maps the relation name V to the rela-

tion V (I). Then the formulaV(I) = V(I′) means ∀V ∈ V : V (I) = V (I′).

CHAPTER 3. A DECIDABLE CASE OF QUERY DETERMINACY: PROJECT-SELECT VIEWS 43

Table 3.1: Database notations.

m Number of relations in the database schema

Ri Name of relation

I, I′ Database instance (a mapping from relation names to relations)

Vi,j , Q Query

V, Vi Set of queries

U , Ui,j Set of column names

θ, θi,j Predicate (used in selections)

t Database tuple (a mapping from column names to values)

ti, ti,j Tuple in relation Ri

t[U] Sub-tuple {A 7→ t(A) : A ∈ U}

Table 3.2: Other mathematical notations.

t Sequence of tuples ⟨t1, . . . , t|t| ⟩
tm..n Sub-sequence of tuples ⟨tm, tm+1, . . . , tn ⟩
t ◦ s Concatenation of the sequence t and the sequence s

t except i 7→ s Sequence of tuples ⟨t1, . . . , ti−1, s, ti+1, . . . , t|t| ⟩

where each Vi consists of some number ni of queries that refer only to the relation Ri. In other

words, we denote:

V
∆
= V1 ∪V2 ∪ · · ·Vm,

Vi
∆
= {Vi,j : 1 ≤ j ≤ ni}, (1 ≤ i ≤ m)

Vi,j
∆
= πUi,j

σθi,jRi. (1 ≤ i ≤ m, 1 ≤ j ≤ ni) (3.1)

And let query Q be a project-select-join query with no self joins:

Q
∆
= πUσθ(R1 ×R2 × · · · ×Rm). (3.2)

A summary of notations is found in Tables 3.1 and 3.2. For visual clarity, we will use lists

bulleted by “∧” to denote the conjunction of a number of formulas [77].

3.3 Reducing determinacy to a logical formula

3.3.1 Statement of Theorem
In this setting, checking whetherV determinesQ can be reduced to checking the satisfiability of

a logical formula.

CHAPTER 3. A DECIDABLE CASE OF QUERY DETERMINACY: PROJECT-SELECT VIEWS 44

Theorem 3.1. The setV of views determines query Q iff for every 1 ≤ i ≤ m:

∀ t : θ(t)⇒
ni∨
j=1

(θi,j(ti) ∧ ∀ t′i : Φi,j(ti, t
′
i)⇒ Ψi,j(t, t

′
i)) (⋆)

where the sub-formulas Φ and Ψ are defined as:

Φi,j(ti, t
′
i)

∆
= ∧ θi,j(t

′
i)

∧ t′i[Ui,j] = ti[Ui,j],

Ψi,j(t, t
′
i)

∆
= let s

∆
= t except i 7→ t′i

in ∧ θ(s)
∧ s[U] = t[U].

Furthermore, finite and unrestricted determinacy coincide in this setting.

We present its proof in §3.3.2.

As a result of this theorem, for project-select views and a project-select-join query without

self joins, we can check query determinacy by checking the validity of (⋆) for every 1 ≤ i ≤ m.

That is, query determinacy is decidable as long as the validity of (⋆) is decidable.
Observe that (⋆) is constructed from selection predicates θ and θi,j , equality atoms, and propo-

sitional connectives.

Corollary 3.2. For project-select views and a project-select-join query without self joins, if all

selection predicates in the views and the query are in a first-order theory for which validity is

decidable, then query determinacy is decidable.

For example, if the selection predicates consist only of equalities over variables and proposi-

tional connectives [22, § 9], then query determinacy is decidable. A straightforward way to check

determinacy is by encoding (⋆) into an SMT formula and calling an SMT solver. What’s more, if

the selection predicates are quantifier-free (which they typically are in practice), then the nega-

tion of (⋆) is purely existentially quantified, so we can check determinacy simply by checking the

satisfiability of a formula that is quantifier-free.

3.3.2 Proof of Theorem
Theorem 3.1 is somewhat tedious to prove. In an attempt to avoid mistakes and make the proof

easier to check, we write the proof in the hierarchically structured style [79]. Explaining this style,
Lamport [78, Appendix A] writes:

A structured proof consists of a sequence of statements and their proofs; each of

those proofs is either a structured proof or an ordinary paragraph-style proof. The

jth step in the current level i proof is numbered ⟨i⟩j. [. . .] We recommend reading

the proofs hierarchically, from the top level down. To read the proof of a long level i
step, first read the level i+ 1 statements that form its proof, together with the proof

of the final Q.E.D. step (which is usually a short paragraph).

CHAPTER 3. A DECIDABLE CASE OF QUERY DETERMINACY: PROJECT-SELECT VIEWS 45

Proof of Theorem 3.1. By structured proof:

⟨1⟩1. Assume: (⋆) holds for every 1 ≤ i ≤ m.

Prove: V determines Q.

⟨2⟩1. Suffices Assume: 1. New (I, I′)
2. V(I) = V(I′)
3. New s ∈ Q(I)

Prove: s ∈ Q(I′)
Proof: By definition of query determinacy, and by symmetry between I and I′.
⟨2⟩2. Choose t such that:

1. θ(t) holds,

2. t[U] = s,

3. ti ∈ I(Ri) for all 1 ≤ i ≤ m.

Proof: Such t exists by ⟨2⟩1.3, and by definition of Q (3.2).

⟨2⟩3. For every 0 ≤ ℓ ≤ m, there exists a sequence tℓ of ℓ tuples, such that:

C1. tℓi ∈ I′(Ri) for every 1 ≤ i ≤ ℓ,

C2. θ(tℓ ◦ tℓ+1..m) holds,

C3. (tℓ ◦ tℓ+1..m)[U] = s.

We will proceed by induction on ℓ.
⟨3⟩1. There exists t0 which satisfies C1–C3 for ℓ = 0.
Proof: Take t0 to be the empty sequence. C1 holds vacuously; C2 follows from ⟨2⟩2.1;
and C3 follows from ⟨2⟩2.2.
⟨3⟩2. Assume: New tr−1

(0 < r ≤ m), tr−1
satisfies C1–C3 for ℓ = r − 1.

Prove: There exists tr which satisfies C1–C3 for ℓ = r.
⟨4⟩1. There exists 1 ≤ j ≤ nr such that:

∧ θr,j(tr) (3.3)

∧ ∀ t′r : Φr,j(tr, t
′
r)⇒ Ψr,j

(
(tr−1 ◦ tr..m), t′r

)
. (3.4)

Proof: By taking (⋆) with i = r, instantiating the outermost universal quantifier using

tr−1 ◦ tr..m, and applying C2 with ℓ = r − 1.
⟨4⟩2. tr[Ur,j] ∈ Vr,j(I)
Proof: tr ∈ I(Rr) by ⟨2⟩2.3; by (3.3); and by definition of Vr,j .

⟨4⟩3. tr[Ur,j] ∈ Vr,j(I
′)

Proof: By ⟨4⟩2, noting that Vr,j(I) = Vr,j(I
′) by ⟨2⟩1.2.

⟨4⟩4. There exists tuple t′r ∈ I′(Rr) such that Φr,j(tr, t
′
r) holds.

Proof: By ⟨4⟩3, plugging in the definition of Vr,j (3.1), there exists t′r ∈ I′(Rr) such
that:

∧ θr,j(t
′
r)

∧ t′r[Ur,j] = tr[Ur,j]
which implies Φr,j(tr, t

′
r).

⟨4⟩5. Ψr,j ((t
r−1 ◦ tr..m), t′r) holds.

Proof: Instantiate universal quantifier in (3.4) with t′r from ⟨4⟩4.

CHAPTER 3. A DECIDABLE CASE OF QUERY DETERMINACY: PROJECT-SELECT VIEWS 46

Define: tr
∆
= tr−1 ◦ ⟨t′r ⟩

⟨4⟩6. tr satisfies C1 for ℓ = r.
Proof: From ⟨3⟩2, tr−1

satisfies C1 for ℓ = r − 1; from ⟨4⟩4, t′r ∈ I′(Rr).
⟨4⟩7. tr satisfies C2 for ℓ = r.
Proof: By ⟨4⟩5, plugging in definition for Ψ.

⟨4⟩8. tr satisfies C3 for ℓ = r.
Proof: By ⟨4⟩5, plugging in definition for Ψ; by ⟨2⟩2.2, t[U] = s.
⟨4⟩9. Q.E.D.
Proof: By ⟨4⟩6, ⟨4⟩7, and ⟨4⟩8.

⟨3⟩3. Q.E.D.
Proof: By induction on ℓ, with ⟨3⟩1 as the base case and ⟨3⟩2 as the inductive step.

⟨2⟩4. Q.E.D.
Proof: By ⟨2⟩3, taking ℓ = m; and by definition of Q (3.2).

⟨1⟩2. Assume: For some 1 ≤ k ≤ m, (⋆) does not hold for i = k.
Prove: There exist finite I, I′ such thatV(I) = V(I′) but Q(I) ̸= Q(I′).

⟨2⟩1. Choose t such that θ(t) holds, but for every 1 ≤ j ≤ nk:

N1. θk,j(tk) does not hold, or

N2. There exists t′k,j such that Φk,j(tk, t
′
k,j) but ¬Ψk,j(t, t

′
k,j).

Proof: Such t exists by the negation of (⋆).
Define: Database instances I, I′:

I(Ri)
∆
= if i = k then {t′k,j : θk,j(tk), 1 ≤ j ≤ nk}

else {ti},
(as in N2)

I′(Ri)
∆
= if i = k then I(Rk) ∪ {tk}

else I(Ri).
⟨2⟩2. Assume: New Vi,j ∈ V

Prove: Vi,j(I) = Vi,j(I
′)

⟨3⟩1. Case: i ̸= k
Proof: Vi,j refers only to relation Ri by assumption, and I(Ri) = I′(Ri) by the construc-

tion of I′.
⟨3⟩2. Case: i = k
Since Vk,j refers only to relation name Rk, we will treat Vk,j as a function on the rela-

tion Rk—i.e., Vk,j(I) = Vk,j(I(Rk)).
⟨4⟩1. Vk,j(I(Rk)) ⊆ Vk,j(I

′(Rk))
Proof: Because I(Rk) ⊆ I′(Rk) by definition, and by monotonicity of project-select

queries.

⟨4⟩2. Vk,j(I
′(Rk)) ⊆ Vk,j(I(Rk))

⟨5⟩1. Suffices: Vk,j({tk}) ⊆ Vk,j(I(Rk))
Proof: Because I′(Rk) = I(Rk) ∪ {tk} by construction.

⟨5⟩2. Case: θk,j(tk) holds.
By the definition of I, there exists t′k,j ∈ I(Rk) such that Φk,j(tk, t

′
k,j) holds. Expand-

CHAPTER 3. A DECIDABLE CASE OF QUERY DETERMINACY: PROJECT-SELECT VIEWS 47

ing the definition of Φ, we have:
∧ θk,j(t

′
k,j)

∧ t′k,j[Uk,j] = tk[Uk,j]
which implies Vk,j({tk}) = Vk,j({t′k,j}) ⊆ Vk,j(I(Rk)).
⟨5⟩3. Case: θk,j(tk) does not hold.
Proof: Vk,j({tk}) = ∅ ⊆ Vk,j(I(Rk)) by definition of Vk,j (3.1).

⟨5⟩4. Q.E.D.
Proof: ⟨5⟩2 and ⟨5⟩3 cover all the cases.

⟨4⟩3. Q.E.D.
Proof: By ⟨4⟩1 and ⟨4⟩2.

⟨3⟩3. Q.E.D.
Proof: ⟨3⟩1 and ⟨3⟩2 cover all the cases.

⟨2⟩3. Q(I) ̸= Q(I′).
⟨3⟩1. t[U] ∈ Q(I′)
Proof: By construction of I′, we have ti ∈ I′(Ri) for all 1 ≤ i ≤ m. By assumption, θ(t)
holds.

⟨3⟩2. t[U] ̸∈ Q(I)
⟨4⟩1. Suffices Assume: 1. New s ∈ I(R1)× · · · × I(Rm)

2. θ(s) ∧ (s[U] = t[U])
Prove: false

Proof: By definition of Q (3.2).

⟨4⟩2. Choose 1 ≤ j ≤ nk and tuple t′k,j such that:

1. s = t except k 7→ t′k,j ,
2. ¬Ψk,j(t, t

′
k,j).

Proof: Such j and t′k,j exist by the construction of I.
⟨4⟩3. Q.E.D.
Proof: ⟨4⟩2.2 contradicts ⟨4⟩1.2.

⟨3⟩3. Q.E.D.
Proof: By ⟨3⟩1 and ⟨3⟩2.

⟨2⟩4. Q.E.D.
Proof: By ⟨2⟩2 and ⟨2⟩3, noting that I and I′ are finite.

⟨1⟩3. Finite and unrestricted determinacy coincide.

Proof: If unrestricted determinacy does not hold, by ⟨1⟩2 there exists a finite counterexample,

and so finite determinacy does not hold either.

⟨1⟩4. Q.E.D.
Proof: By ⟨1⟩1, ⟨1⟩2, and ⟨1⟩3.

48

Chapter 4

Ote: Access-policy Extraction

4.1 Introduction

Protecting sensitive data from unauthorized access is a critical concern for today’s web applica-

tions. Therefore, when building web applications, developers must determine what access-control
policy the application should enact—for example, a university might want a policy that ensures

a student’s grades are visible only to the student and their instructors.

In today’s applications, access-control policies are embedded in application code. Further-

more, in most cases they are spread across several functions and in the filter predicates of mul-

tiple database queries. This practice is error-prone: Missing or misspecified access checks have

previously led to sensitive-data exposure [10,57,71,72,91,134]. But more fundamentally, because

the policy is never stated explicitly, it is difficult for anyone other than the application’s developer

to understand what policy is embedded in the code. Worse, as time passes, even the application

development team is unlikely to remember the policy, and is unlikely to be able to reconstruct it

from application code. While there have been research frameworks that require explicit policy

specification [11, 151, 152], we aim to address legacy applications rather than requiring them to

be rewritten in such frameworks.

This chapter tackles the task of policy extraction: extracting a web application’s implicitly

embedded access-control policy by summarizing its possible data accesses. A human then reviews

the extracted policy to better understand the application’s data accesses, ensuring they are within

the bounds of intended data revelations. If not, the application likely has an access-check bug

to be fixed. Once reviewed, the policy can stand alone as a specification for the application’s

data accesses and can optionally be enforced using an enforcer [90, 92, 159] to ensure continued

compliance.

We present an approach for extracting policies from legacy web applications. Our approach

begins by exploring execution paths through application code using concolic execution [53,127],

producing transcripts that record the conditions under which SQL queries are issued (§4.4). These

transcripts are then merged and simplified to derive a policy that allows each recorded query to

be issued under its conditions (§4.5).

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 49

A key challenge here is scalability: Web-backend code is often complex with many branches,

making exhaustive path exploration infeasible. But we empirically observe that the logic govern-

ing query issuance typically involves only a few simple control- and data-flow operations (§4.4.1).

We thus tailor concolic execution to track only those operations, reducing the number of paths

to explore—and our implementation effort.

We implemented this approach in Ote, a policy-extraction tool for web applications written in

Ruby on Rails. We then applied Ote to three real-world applications, two of which we had previ-

ously written policies for by hand. When we compared the extracted policies to the handwritten

ones (§4.8.5), we identified several formerly unknown errors in the latter—including a few overly

permissive views can reveal sensitive data to unauthorized users. This underscores the difficulty

of understanding access-control logic in a complex legacy application and testifies to the utility

of policy extraction in aiding this understanding. A further review of the extracted policies un-

covered a subtle bug we had inadvertently introduced into application code that silently disabled

an access check.

In terms of limitations: Due to its reliance on concolic execution, Ote cannot guarantee that

the extracted policy covers all possible application queries or captures every condition under

which the queries are issued (§4.3.2), and it does not scale to all web handlers (§4.8.4). In addition,

Ote may require the user to specify certain input constraints and to provide hints to prune the

exploration space (§4.3.1), supports only a subset of SQL (§4.3.2), and could benefit from a better

user interface for policy auditing. Nevertheless, we were encouraged by the usefulness of the

policies Ote has already managed to extract, and see this as a meaningful step towards better

access control for existing web applications.

4.2 Motivation and Background

4.2.1 Why Policy Extraction?
Wewere prompted to tackle the policy-extraction problem by our earlier experience hand-crafting

policies for existing web applications. A few years ago, while investigating externally enforced

access control for web applications,
1
we took two open-source applications [29,46], chose several

representative URL endpoints, and tried our best to write down policies for data that should be

allowed for their intended function.

This process was extremely tedious and time-consuming. We reviewed documentation, in-

spected database schemas, experimented with the applications using sample data, and read their

source code.
2
Using this information and common sense, we formulated policies that we thought

would allow the endpoints to function correctly while protecting sensitive data. Despite our best

1
By “externally enforced”, we mean having an enforcer program mediate the application’s database queries,

preventing accesses deemed unauthorized according to an access-control policy [80, 90, 92, 159].

2
This process was especially hard for us because we were not the developers of these applications. But we

suspect that for a large-enough codebase, any single developer would go through a similar (albeit lighter) process.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 50

efforts, we often discovered errors in our drafts, including an omission that would have leaked

sensitive data—one that we only later discovered by chance.

We started the policy-extraction effort to make it easier to write an accurate policy. After

building Ote, we applied it to the same two applications and compared the extracted policies to

our original, handwritten ones. This exercise (§4.8.5) uncovered even more errors in our hand-

written policies, which turned out to be overly restrictive in some places (blocking legitimate

accesses) and overly permissive in others (allowing unauthorized access). Having Ote would

certainly have helped us write a more accurate policy with less effort from the start.

Additionally, while reviewing the extracted policy, we discovered in the application code a

subtle bug that we had introduced years earlier when adapting the application for access control.

This bug, caused by a misuse of an external library, silently rendered an access check a no-op

(§4.8.5). This experience shows that policy extraction can uncover access-control issues even if

the policy is not ultimately enforced.

4.2.2 Policy as SQL View Definitions
Before delving into how policy extractionworks, we first describe how our access-control policies

are specified.

We target web applications that store data in a relational database; when a user visits a page,

the application issues SQL queries on the user’s behalf and renders the page using the query

results. In this context, a classic way to specify access-control policies is to use a list of view
definitions [97,119,120], which are SQL SELECT statements—parameterized by session parameters

like the current user ID—that define information in the database that a user is allowed to access.

Under a view-based policy, a query is allowed only if it can be fully answered using the views.

This criterion extends to a program that (conditionally) issues multiple queries, by treating the

program as “one big query” that returns the results of its constituent queries. These notions can

be made precise based on query determinacy [99], but in the interest of space, we omit the formal

definitions and offer an example instead.
3

Example 4.1. Suppose a course-management site has a web request handler that displays a

course’s grade sheet (Listing 4.1). It ensures that the user is an instructor before fetching grades.

Note that the handler has access to both session parameters (user ID) and request parame-
ters (course ID). Session parameters are trusted (e.g., set by an authentication mechanism), and

may appear in the policy and dictate the extent of allowed data access. Request parameters are

untrusted (e.g., parsed from an HTTP request) and must not appear in the policy.

A policy for this handler might look like Listing 4.2, where MyUserId denotes the user-ID ses-

sion parameter. Notably, it does not reference the course-ID request parameter, instead allowing

the handler’s queries for any course ID. This policy precisely captures the information the handler

can query. ◀

3
We refer interested readers to the literature for both theoretical [3, 82, 99, 162] and practical [18, 19, 119, 159]

treatments of this subject.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 51

Listing 4.1: A handler that displays a course’s grade sheet.

1 def view_grade_sheet(db, session , req):
2 role = db.sql(
3 "SELECT * FROM roles WHERE user_id = ? AND course_id = ?",
4 session["user_id"], req["course_id"])
5 if role is None:
6 raise Http404
7 if not role.is_instructor:
8 raise Http403
9 all_grades = db.sql("SELECT * FROM grades WHERE course_id = ?",
10 role.course_id)
11 return format_html(all_grades , ...)

Listing 4.2: An example policy for the handler in Listing 4.1.

(V1) SELECT * FROM roles
WHERE user_id = MyUserId

A user can view their role (if any) in any course.

(V2) SELECT grades .* FROM roles , grades
WHERE roles.user_id = MyUserId

AND roles.is_instructor
AND grades.course_id = roles.course_id

An instructor for a course can view all grades.

Like prior work in database access control [5,18,19,80,90,119,130,159], we focus on extracting

policies for database reads (SELECTs) only. Similar techniques can be used to extract conditions

for other operations, although our policy language (§4.3.2) and algorithms (§4.5) would need to

be extended.

4.3 Overview

Given an application, the ideal policy extractor would produce a view-based access-control policy

that satisfies:

Completeness Allows all queries the application can issue.

Tightness Reveals as little information as possible subject to completeness.

Conciseness Has a short representation in SQL.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 52

For example, given Listing 4.1 (but written in a real web framework), we would like to extract the

policy in Listing 4.2.

Policy extraction is a challenging task and Ote is not guaranteed to meet all three goals (see

§4.3.2). Nevertheless, we show in §4.8 that Ote produces policies that are useful in practice.

4.3.1 Workflow
Before discussing how we approach these goals, we first describe Ote’s workflow from a user’s

perspective (Figure 4.1).

Suppose a user wants to extract a policy from a web application. We assume that the appli-

cation is written in a supported framework (Ruby on Rails) and that the user is familiar with the

application’s functionality. The user first (Figure 4.1 left):

1. Declares the handlers to be analyzed, with the names and types of request parameters; and,

2. Writes down the application’s database constraints, with the help of a constraint-generation

tool (§4.7.3).

Ote supports two general forms of database constraints: (1) a column (or set of columns) is

unique, (2) a query Q1’s result is contained in another query Q2’s. These forms can express

all constraints we encountered—including non-null, foreign-key, and domain constraints, as well

as more advanced kinds. Ote accepts constraints written as a HOCON configuration [87] and

provides shorthands for common constraint types.

In our experience (§4.8.1), a handler declaration requires a single line of code and a majority

of the database constraints can be auto-generated. If path pruning is required, the user can add

further constraints to restrict the input space.

The user then packages the application into a Docker container and invokes Ote, which (Fig-

ure 4.1):

1. Explores execution paths through the handlers via concolic execution, producing transcripts
that record the branches taken and the SQL queries issued (§4.4);

2. For each individual handler, analyzes the transcripts to generate a preliminary policy al-

lowing each query to be issued under its recorded conditions (§§ 4.5.1 to 4.5.3);

3. Merges the individual policies and prunes any redundant views, producing a final policy

(§4.5.4).

Next, the user inspects the generated policy, using their domain knowledge of the applica-

tion’s privacy requirements:

• A policy that is too broad can indicate that the application may access unauthorized data

(i.e., an access-control bug). The user can investigate the queries that yielded a too-broad

view using inputs logged by concolic execution (§4.7.3) and modify the application if ap-

propriate.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 53

O
t
e

C
o
n
c
o
l
i
c

e
x
e
c
u
t
i
o
n

(
§
4
.4
)

C
o
n
v
e
r
t
t
o
c
o
n
d
Q
s

a
n
d
s
i
m
p
l
i
f
y

(
§
§
4
.5
.1
a
n
d
4
.5
.2
)

G
e
n
e
r
a
t
e

v
i
e
w
s

(
§
4
.5
.3
)

P
r
u
n
e

v
i
e
w
s

(
§
4
.5
.4
)

U
s
e
r
p
r
o
v
i
d
e
s

(
§
4
.3
.1
)

U
s
e
r
b
r
o
a
d
e
n
s
(
o
p
t
i
o
n
a
l
)

(
§
4
.8
.6
)

E
n
f
o
r
c
e

(
o
p
t
i
o
n
a
l
)

T
r
a
n
s
c
r
i
p
t
s

C
o
n
d
Q
s

V
i
e
w
s

H
a
n
d
l
e
r

d
e
c
l
s

D
B
c
o
n
s
t
r
a
i
n
t
s

(
a
i
d
e
d
b
y
t
o
o
l
—
§
4
.7
.3
)

P
r
u
n
e
d

v
i
e
w
s

B
r
o
a
d
e
r
v
i
e
w
s

a
d
d
e
d
i
n

P
o
l
i
c
y

F
i
g
u
r
e
4
.1
:
Po

li
cy

ex
tr
ac
ti
on

w
or
kfl

ow
.“
C
o
n
d
Q
s
”
s
t
a
n
d
s
f
o
r
c
o
n
d
i
t
i
o
n
e
d
q
u
e
r
i
e
s
(
§
4
.5
.1
)
.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 54

• A policy that is too tight can be broadened to reveal more data. This may simplify the

policy—by removing filters or by replacing multiple views with a single broader one. Ote

supports iterative policy broadening: The user adds a broader view into the policy, re-

invokes pruning (Step 3) to remove now-redundant views, and repeats (§4.8.6).

Once satisfied, the user can optionally enforce the policy to ensure the application’s current and

future compliance.

4.3.2 Assumptions and Scope
Queries At its core, Ote supports project-select-join queries in set semantics. These are queries

that (1) always return distinct rows, and (2) have the form:

SELECT [DISTINCT] col1 , col2 , ...
FROM tbl1 , tbl2 , ... WHERE ...

(PSJ)

Also supported are common queries that Ote can mechanically rewrite into this form, such as

queries with inner joins or of the form SELECT 1 FROM tbl1, tbl2, ... WHERE ... LIMIT 1.

We found that the distinct-rows assumption does not limit utility, having never encountered

queries that may return duplicate rows in our evaluation. But applications do issue queries more

complex than PSJ; this is handled differently in different stages: The concolic-execution driver

precisely models richer SQL features (§4.4.4), but view generation and pruning must approximate

complex queries using PSJ (§§ 4.5.3 and 4.8.3). We plan to extend our prototype to support more

complex queries.

Policies Ote generates policies consisting of PSJ views, which are expressive enough for the

applications we studied. A notable limitation is that PSJ views cannot generally express negations

(e.g., “Q1 is allowed only if Q2 returns no rows”). Negations complicate approximating a query’s

information content [142, §2.2] and can slow down enforcement [159, §6], so we defer handling

negations to future work.

Non-guarantees Ote does not guarantee completeness or tightness: It may generate a policy

that disallows a query issued by the application, or one that can be tightened while allowing the

same application queries. This is because:

• Concolic execution can miss execution paths as the input space explored is bounded.

• Uninstrumented operations in the query-issuing core (§4.4.1) can lead to incomplete path

conditions (§4.6).

• Approximating complex queries using PSJ can make a policy more, or less, restrictive than

ideal (§4.8.3).

In general, complete-and-tight policy extraction for Turing-complete code is impossible [118].

But in practice, Ote can produce policies more accurate than handwritten ones (§4.8.5).

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 55

Similarly, Ote does not guarantee that the policy has the most concise SQL representation, but

its simplification and pruning steps (§4.5) make it feasible to inspect the policy (§4.8.5).

Application assumptions Ote uses a modified Ruby interpreter and Ruby on Rails framework

for concolic execution (§4.4.5), and so it supports only applications written in Rails. However, our

approach generalizes to other languages.

Ote’s effectiveness depends on a “simple query-issuing core” assumption (§4.4.1). In short,

we assume that the application’s SQL query issuance depends only on simple expressions—ones
that use only operations instrumented by Ote’s Ruby interpreter. Most notably, Ote does not

instrument string formatting (doing so would complicate SMT solving), and so it requires the

application to issue SQL queries in parameterized form rather than splicing parameters into query

strings within Ruby. Fortunately, idiomatic Rails code already issues parameterized queries by

default, and the few places in our evaluation where this isn’t the case were easy to fix (§4.8.1).

4.4 Exploring Executions

Ote begins by exploring paths through application code via concolic execution. This section

explains how concolic execution works and why we chose it as the exploration strategy, and

details our tailored implementation. But we begin with some empirically observed characteristics

of typical web applications that motivated our choice of concolic execution.

4.4.1 Observation: Simple Query-issuing Cores
Given a web application’s codebase, consider all program statements that issue SQL queries. In-

formally, imagine the backward program slice [147] from these statements. This slice, which

we will call the query-issuing core, is what policy extraction is concerned with: It includes any

program component on which a query-issuing statement has a control- or data-dependence, and

omits the rest (e.g., HTML generation).

While the codebase as a whole can be complex, it has been observed [32,128] that the query-

issuing core of a typical web application is often simple. We confirm this observation—for the

applications we studied, the core consists mostly of:

1. Conditionals that test if a query’s result set is empty [128, § 2] or check basic conditions on

primitive values (e.g., checking for equality or nullity) [129, § 6.2];

2. Loops over a query’s result set [128, § 2] with no loop-carried dependencies [32, § 4]; and,

3. Trivial data-flow to query statements—e.g., passing a value returned by one query to an-

other. (Given that the application issues parameterized SQL queries, no query-string for-

matting operation appears in the data flow.)

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 56

Our goal is then to analyze this simple query-issuing core while not wasting resources ex-

ploring the rest of the (more complex) codebase, with the additional challenge that the two parts

of the code are not explicitly separated. We found concolic execution to be a technique that is up

to this task. (In §4.6 we discuss what happens when the core is not simple.)

4.4.2 Concolic Execution: What and Why
In concolic execution [53,127], a program is executed repeatedly using concrete inputs that have

symbolic variables attached. As the program runs, its state is tracked both concretely and sym-

bolically. When the program branches on a symbolic condition, the condition and its outcome

are recorded. This produces a conjunction of constraints—the path conditions—that led execution
down a path. The conjuncts are then negated using a solver to generate new inputs (up to a

bound) that will steer execution down other paths.

We chose concolic execution because it offers a “pay-as-you-go” model for symbolic tracking:

We selectively instrument the operations that might appear in the query-issuing core, and the

rest will simply execute concretely by default. This strategy not only reduces our instrumentation

effort, but also mitigates path explosion—a branch on an uninstrumented condition will not cause

a new path to be explored.

Concolic execution has the additional benefit (like symbolic execution) of having “no false

positives”: Each path explored comes with a concrete input, which the user can use to recreate

the run that led to a query being issued (§4.7.3).

4.4.3 System Architecture
Ote has a driver that generates inputs and concurrent executors that run application code on

each input. The driver tracks explored paths in a prefix tree; for every prefix, it negates the last

condition and invokes an SMT solver to generate a new input. (The driver keeps the prefix tree in

memory and generates inputs sequentially, but both can be relaxed to improve performance.) It

then sends the input to an executor, which runs a handler using an instrumented Ruby interpreter

and Ruby on Rails framework (§4.4.5) and sends back a transcript capturing the path conditions

and queries issued (§4.4.4). Exploration terminates when all prefixes have been visited.

4.4.4 Symbolic Modeling and Input Generation
Concolic execution requires symbolicallymodeling the handler’s inputs, consisting of the database

and session/request parameters. To ensure termination, the input spacemust be bounded. Follow-

ing prior work [30], we model the database as tables containing a bounded number of symbolic

rows (our prototype uses a bound of 2). Inspired by UrFlow’s loop analysis [32, § 4.2], we also

restrict the input space so that each query returns at most one row. For simplicity, we will de-

scribe our algorithms under this assumption, even though they can be extended to handle queries

returning multiple rows.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 57

Listing 4.3: A transcript from a run of the handler in Listing 4.1, when the user is an instructor

for the course.

1. Query1(SELECT * FROM roles WHERE user_id = ? AND course_id = ?,
⟨MyUserId, CourseId⟩, isEmpty = false)

2. Branch(r1.is_instructor, outcome = true)

3. Query2(SELECT * FROM grades WHERE course_id = ?, ⟨r1.course_id⟩, isEmpty = false)

Under this modeling, a transcript is a sequence of operations performed by the application

with two types of records:

1. Queryi(sql, params, isEmpty), meaning the ith query issued was the parameterized query

sql with parameters params, and the result set was empty if isEmpty is true.
4
If not empty,

a symbol ri is introduced to later records representing the result row.

2. Branch(cond, outcome), meaning the condition cond was branched on, and the outcome
(either true or false) branch was taken. The condition can reference session and request pa-

rameters as well as columns returned by previous queries (e.g., “r5.author_id = MyUserId”).

Listing 4.3 shows an example transcript from a run of the handler in Listing 4.1, when the user is

an instructor.

Our SMT encoding represents bounded database tables using conditional tables [65] and uses

the theory of integers to model all database values [61], including timestamps and strings. Each

nullable value is accompanied by a boolean indicating if it is NULL. This simple encoding naturally

supports equality and arithmetic operations but not string operations, a limitation that can be

lifted using a string solver [21, 84].

Similar to prior work [61], we encode a subset of SQL into SMT on bounded symbolic tables.

Our encoding supports left- and inner-joins and count- and sum-aggregations. One notable un-

supported feature is ordering, which we have not needed assuming that each query returns at

most one row.
5

The driver implements several optimizations for input generation; the most impactful ones

were reusing Z3 AST objects, calling the solver incrementally, and caching conflicts (which result

in infeasible paths) using unsat cores [125].

4
Ote assumes that the application always inspects the result set of a query, branching on its emptiness, and does

not track it as a separate Branch.

5
Ordering cannot be ignored when a LIMIT clause can truncate a result set with multiple distinct rows; we

encountered no such queries in our evaluation.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 58

4.4.5 Instrumentation and Tracking
To maintain symbolic state, we modified the JRuby interpreter [68] to add an optional “symbolic

expression” field to each Ruby object. For each class that we want represented symbolically,

we implement a with_sym method that returns a clone with a symbolic expression attached,

and amend methods that we want instrumented to attach symbolic expressions to their results.

Unmodified methods simply return an object with no expression attached, concretizing the result

as desired.

We implemented symbolic representations of nine built-in classes (including String, Fixnum,
Booleans, and NilClass) and one Rails class (ActiveSupport::TimeWithZone), covering all

symbolic inputs in our evaluation. For these classes we instrumented a few simple operations—

equality, null-check, cloning, and logical negation (!)—that appear in the query-issuing core.

Additional handling was needed for:

Certain primitive classes We ensure that instances of true, false, and nil with different

symbolic expressions are treated as equal and have identical hash code.

Mutable classes Their mutating methods must by default clear the symbolic expression, lest it

be out of syncwith the new concrete state. For String, we implemented the clearingwithin

JRuby’s RubyString::frozenCheck method, which is called by all mutating methods.

At run time, Ote’s library attaches symbolic expressions to request and session parameters, and

a modified Rails database layer attaches symbolic expressions to query results (§4.7).

To track queries and branches, we added a library for maintaining transcript records, expos-

ing methods record_query and record_branch (§4.4.4). We modify the Rails database layer to

call record_query after every query, and modify JRuby’s isTrue and isFalse methods (which

evaluate an object’s truthiness and lack thereof) to call record_branchwith the object’s symbolic

expression if it has one.

Finally, we also implemented an optimization: In our setup, a few conversion methods in the

database layer have unnecessary branching (e.g., if x.nil? then nil else x end); we manually

model these using simple function summaries [52].

4.5 Generating a Policy

After exploration, Ote merges and simplifies the transcripts and creates a preliminary set of views

for each handler. It then gathers the views for all handlers explored and removes redundancy by

leveraging an existing enforcement tool, Blockaid [159]. We now delve into this policy-generation

process.

4.5.1 Preprocessing Into Conditioned Queries
As a first step, Ote processes the transcripts for each handler into a set of conditioned queries. A
conditioned query is a tuple ⟨sql, params, conditions⟩, where conditions is a list of prior Query

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 59

and Branch records.
6
It associates each query with the conditions under which it is issued;

one conditioned query is generated for each query issued in each transcript. As Ote does not

currently support negations in policies (§4.3.2), it drops from conditions any Query record with

isEmpty = true (i.e., a condition that a prior query returns empty).

4.5.2 Simplifying Conditioned Queries
For each handler, Ote simplifies the set of conditioned queries by removing redundancy. As

outlined in Algorithm 4.1, Ote:

• RemovesBranches thatmust be taken due to an input constraint or a prior condition (Line 2),
as determined by the SMT solver during exploration;

• Unifies variables that are constrained to be equal by query filters (Line 3);

• Removes identicalQuery records from each conditioned query’s conditions (Line 4);7

• Drops vacuousQuery records—for queries thatmust return a row due to, e.g., a foreign-key

dependency—whose result is not subsequently referenced (Line 8);

• Merges pairs of conditioned queries that differ only in the outcome of a single Branch

record (Line 10)—the query is issued no matter which way the branch goes;

• Removes a conditioned query if another exists with the same sql and params but only a

subset of the conditions (Line 12)—the latter subsumes the former.

Each step is parallelized across cores. Due to the large number of conditioned queries, we de-

signed these steps to favor efficiency over optimality. For example, in “remove subsumed” we

refrain from full-blown implication checking and instead use a simpler procedure that attempts

to map records from one set of conditions to another—anymissed opportunities for simplification

will be caught by the final pruning step (§4.5.4).

4.5.3 Generating SQL View Definitions
Ote now generates one SQL view per conditioned query. The view should reveal the same infor-

mation as the conditioned query’s path if its conditions are met, and no information otherwise.

For this, Ote uses an iterative algorithm that “conjoins” each condition record onto an accumu-

lated query definition A. It maintains the invariant that query A:

• Returns empty if any previous condition is violated;

6
A prior Query represents the condition that a query Q returned empty or not; the action of Q’s issuance is

captured by Q’s own conditioned queries.

7
Identical queries arise because we disable Rails’s query cache (§4.7), but often they can be identified only after

unifying equal variables.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 60

Algorithm 4.1 Simplifying a set of conditioned queries (§4.5.2).

1: for all conditioned query do
2: remove vacuous branches

3: propagate equalities

4: remove duplicate queries

5: end for
6: repeat
7: for all conditioned query do
8: remove vacuous-and-unused query records

9: end for
10: repeat merge branches until convergence
11: until convergence
12: remove subsumed

• Returns the Cartesian product of all prior queries’ results (i.e., concatenations of one-row-

per-query) otherwise.

Query A serves two purposes: It captures the branching conditions, and it exposes query results

to be referenced by later records. Lastly, the algorithm conjoins the final query onto A.
Before fully specifying the view-generation algorithm, let us walk through an example.

Example 4.2. Consider Listing 4.3. We shall generate the view for the conditioned query asso-

ciated with Query2.

The algorithm starts with the query A that returns the empty tuple. After the first record

(Query1), A is updated to A1:

SELECT * FROM roles
WHERE user_id = MyUserId

AND course_id = CourseId

(We use CamelCase for request and session parameters.)

After the second record (the Branch), A is updated to A2:

SELECT * FROM roles
WHERE user_id = MyUserId

AND course_id = CourseId
AND is_instructor

Observe that A indeed returns the same rows as Query1 if the branch condition holds, and an

empty result otherwise.

Then, Query2 is conjoined onto A, resulting in view V :

SELECT roles.*, grades .* FROM roles , grades
WHERE roles.user_id = MyUserId

AND roles.course_id = CourseId
AND roles.is_instructor
AND grades.course_id = roles.course_id

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 61

Algorithm 4.2 View generation from conditioned query (§4.5.3).

1: procedure GenerateSqlView(cq)
2: A← {⟨ ⟩} ▷ Constant query returning empty tuple

3: M← {} ▷Maps query result column to A’s column

4: for all cond ∈ cq.conds do
5: if cond is Branch(θ, outcome = true) then
6: A← σθ[M](A)
7: else if cond is Branch(θ, outcome = false) then
8: A← σ¬θ[M](A)
9: else if cond isQueryℓ(sql, params) then
10: Qℓ ← SqlToRa(sql, params)
11: ▷ Converts SQL query to relational algebra

12: (A,M)← ConjoinQuery(Qℓ, A,M)
13: end if
14: end for
15: Qℓ+1 ← SqlToRa(cq.sql, cq.params)
16: (A,M)← ConjoinQuery(Qℓ+1, A,M)
17: return RaToSql(A)
18: end procedure
19: procedure ConjoinQuery(Qℓ, A,M)

20: let Qℓ = πj1,...,jmσθ(S1 × S2 × · · ·) ▷ Normal form

21: n← arity(A) ▷ Number of columns in A
22: θ′ ← θ[k 7→ k + n][M] ▷ ∀ column index k
23: A← π1,...,n,n+j1,...,n+jmσθ′(A× S1 × S2 × · · ·)
24: M←M∪ {rℓ.i 7→ i+ n | 1 ≤ i ≤ m}
25: return (A,M)
26: end procedure

Note that Query2’s sole parameter, r1.course_id, has been replaced by the course_id column

exposed by A2. A final step remains to remove the CourseId parameter, which we will discuss

at the end of this subsection. ◀

A generated view can be thought of as a natural generalization of the conditioned query to

cases where a SQL query can return multiple rows: The view allows a query to be issued for

every combination of rows returned by the prior queries, as long as the branching conditions are

met. This would allow the program to have loops over result sets in the form we assume in the

simple query-issuing core (§4.4.1).

We specify the view-generation procedure in Algorithm 4.2, which uses relational algebra

notations (under the unnamed perspective) [1, § 3.2] for conciseness. The algorithmworks for PSJ

queries in normal form [1, Prop. 4.4.2]. It does not currently handle general joins or aggregations;

when these arise, we approximate them using supported constructs (§4.8.3).

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 62

Algorithm 4.2 essentially follows the steps illustrated by Example 4.2. It maintains a mapping

M from result columns of prior queries to columns in A (e.g., mapping r1.course_id to the third

column of A). It then uses this mapping to resolve references to results from prior queries.

Removing request parameters Recall fromExample 4.1 that request parameters like CourseId
must not appear in view definitions. So strictly speaking, Example 4.2 has produced not one view,

but a set of views:
8

{V [CourseId 7→ x] : x ∈ dom(roles.course_id)}

To collapse this set into one view, we use the following fact.

Fact 4.3 (Informal). Let V [X] be a view definition of the form:

SELECT col1, col2, ... FROM tbl1, tbl2, ...
WHERE colj = X AND f

where colj is a non-nullable column, X is a request parameter, and f does not refer to X. Then
the set of views {V [X 7→ x] : x ∈ dom(colj)} reveals the same information as the view:

SELECT colj , col1, col2, ...
FROM tbl1, tbl2, ... WHERE f

While this fact applies only to queries of a specific form, it already covers all cases encountered

in our evaluation. We leave a theoretical study of the general case to future work.

Example 4.4 (continues=example:view-generation). Starting from view V , Ote removes the con-

dition roles.course_id = CourseId, but refrains from adding roles.course_id to the SELECT
statement as it is redundant with the already-present grades.course_id. This brings us to the

final view V ⋆
:

SELECT * FROM roles , grades
WHERE roles.user_id = MyUserId

AND roles.is_instructor
AND grades.course_id = roles.course_id

Compared to the handwritten view V2 from Listing 4.2, the view V ⋆
is identical except that it

retains more columns. However, conditioned on the existence of V1 (which Ote would have gen-

erated from another conditioned view), V ⋆
reveals the same information as V2 and so is equally

tight. For simplicity, Ote outputs V ⋆
without removing extraneous columns, since we find V ⋆

just as concise and readable as V2. ◀

Outputting SQL Ote outputs SQL views in the form:

SELECT ... FROM tbl1 , tbl2 , ... WHERE ...

8
We let V [X 7→ x] denote the view definition V with each occurrence of X replaced by x, and dom(col) denote

the set of valid values for column col.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 63

similar to the representation of V ⋆
above. These view definitions are not always as concise as

they can be—e.g., they may contain joins that are redundant due to unique- or foreign-key de-

pendencies. Ote reduces clutter in the generated SQL by:

• Removing joins of two copies of a table on a unique key;

• Reducing parenthesizing in WHERE clauses by transforming a SQL AND tree into a left-deep

tree before unparsing;

• Coalescing column names into table.* when possible.

We plan to extend Ote to remove other redundancies using standard techniques for query opti-

mization [1, § 6].

4.5.4 Pruning Views via Enforcement
Lastly, Ote minimizes the set of views for each handler—producing a subset that reveals the same

information—and then takes their union and minimizes it again. To minimize a set V of views,

Ote goes through each view V ∈ V and checks whether the information revealed by V is already

contained in that revealed by V \ {V }; if so, it removes V . Heuristically, Ote sorts the views by

the number of joins in decreasing order, so that longer views have a chance of being removed

first.

It remains to check information containment. This is the same problem as policy enforcement:

checking whether issuing V as a query is allowed under the policy V \ {V }. To tackle this,

we repurpose an existing enforcement tool, Blockaid [159]. Specifically, we extended Blockaid

with a command-line interface, which Ote invokes as described earlier. Finally, Ote outputs the

minimized set of views for human review.

4.6 Discussion

The simple query-issuing core assumption (§4.4.1) is not true for all practical applications. It can

be violated in two ways.

Complex control-flow conditions This is when a query’s issuance depends on a complex

expression. For example, diaspora* crashes if a photo’s url is not a valid URL, thus preventing

later queries; the URL-validity condition relies on regex-matching operations, which Ote does

not instrument.

Suppose a query Q is issued conditioned on an expression C with some uninstrumented op-

erations. This may cause Ote to generate a policy that is either broader or tighter than ideal:

1. If Ote happens to generate an input that satisfiesC (this is not guaranteed because the driver

is unaware of C), then Q will appear as a conditioned query without C in its condition,

leading to a policy broader than ideal.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 64

2. If Ote never generates an input that satisfies C , then Q may not appear in any transcript,

leading to a policy that may not allow Q—which is tighter than ideal.

In practice, Case 1 has not been a problem for us because (1) the complex condition C typically

reflects business logic and has no privacy implications (§4.8.6), and (2) queryQ is likely also issued

elsewhere under a simpler condition. Case 2 is problematic for validations (e.g., URL validity);

we get around this by manually setting the input using database constraints (e.g., setting URLs

to always be http://foo.com).
If an uninstrumented operation turns out important for an application domain, we would

update Ote’s Ruby instrumentation, SMT encoding, and SQL generation to support it.

Complex dataflow This is when the transcript contains an expression derived from a symbolic

value through uninstrumented operations—a problematic scenario because the symbolic value is

concretized. For example, the conditional if uid < uid * uid may insert a Branch record for

uid < 16 into the transcript, as multiplication is not instrumented. In such cases, the driver might

fail to terminate because a “new path condition” emerges for every value of uid. Even if we cut

off the exploration, the generated policy would be overly strict and verbose, littered with concrete

filters like uid < 16.
To detect such harmful concretizations, the driver reports each new constant and new query it

encounters (there should be a bounded number of these). This mechanism alerted us to a few non-

parameterized SQL queries (§4.8.1), where symbolic values were formatted into the query string.

We encountered no concretization issues in our final evaluation, and we plan to implement more

precise detection of such “partially concrete” conditions via heavier-weight data-flow tracking.

4.7 Implementational and Practical Aspects

4.7.1 Driver and Policy Generator
Ote’s concolic-execution driver (§4.4) and policy generator (§4.5) are implemented in Scala 3. The

driver uses Apache Calcite [17] to parse SQL queries and convert them into relational algebra, and

invokes Z3 using its Java binding [43]. It communicates with executors using Protobuf messages,

and saves program inputs and transcripts to compressed JSON files. The policy generator uses

Calcite’s query analyses and optimizations for conditioned-query simplification (§4.5.2), and uses

Scala’s parallel-collections library [111] for parallelization.

4.7.2 Executors
Ote’s library uses RSpec [121] to invoke handlers (Rails “controller actions”) with inputs from

the driver. At startup, the executor clears the database. For each input, it begins a transaction,

populates the database, installs symbolic request parameters by patching the params hash, and

sets two symbolic session parameters: the user ID (by logging in using a symbolic integer) and the

current time (by patching Time.now). It then invokes the handler and rolls back the transaction.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 65

We disable Rails’s fragment and low-level caching to expose queries issued only on cache

misses. As an optimization, we also disable Rails’s query cache, which introduces branches that

do not affect what data is fetched. We execute handlers on MySQL backed by an in-memory

tmpfs, and configure string columns to use a case-sensitive collation [161] as our SMT encoding

(§4.4.4) does not support case insensitivity.

4.7.3 Tooling
Generating database constraints To help the user write down an application’s database con-

straints (§4.3.1), Ote provides a tool that generates common simple types of constraints for a

Rails application, including uniqueness and foreign keys. It does so by inspecting the database

schema’s SQL constraints and the Active Record models’ validators, associations, and inheritance

hierarchy. The user may then supplement the generated list with more advanced constraints

(§4.8.1).

In general, generating constraints is a tricky task because (1) constraints from the object-

relational mapping (ORM) are commonly absent from the database [153, § 4.2], and (2) some

constraints are not even declared in the ORM [64]. We plan to explore more advanced techniques

for inferring constraints from either code [64, 88] or data [16, 37, 63, 154].

Tracing a view back to the application When reviewing an extracted view, the user may

wonder: What code in the application was responsible for this view’s generation? To help trace

a view back to its source, Ote outputs with each view the ID of an execution from which the view

is derived. The user can then recover the concrete input for that execution and re-run it. (Ote

supports launching an executor using an ad hoc input.) To gain visibility into the run, the user

may:

• Launch an executor in “verbose mode”, which captures a stack trace for each transcript

record; or,

• Launch an executor under a Ruby debugger, allowing them to view the program’s state

when a query is issued.

We found both methods helpful for understanding a view’s origin. In the future, we plan to

explore better workflows and user interfaces to enhance the “policy debugging” experience.

4.8 Evaluation

We applied Ote to three existing Ruby-on-Rails applications:

1. diaspora* [46], a social network with over 850 k users;

2. Autolab [29], a platform for managing course assignments used at over 20 schools; and,

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 66

3. The Odin Project (Odin) [137], a site where over a million users take web-dev classes and

share their work.

We chose diaspora* and Autolab because we had previously written policies for them by hand;

we will be comparing these handwritten policies to the extracted ones. In contrast, we had never

worked with Odin before, and so our experience applying Ote to Odin will be unbiased by prior

knowledge.

The key takeaways from this evaluation are:

• Using Ote does not require significant human effort.

• Ote can extract a policy within hours.

• The extracted policies avoid, and alerted us to, several errors and omissions in the hand-

written policies.

• Reviewing the extracted policies revealed an access-check bug that we had inadvertently

introduced.

4.8.1 Setting Up Applications for Ote
Code changes We used versions of diaspora* (v0.7.14) and Autolab (v2.7.0) that had previously

been modified to work with Blockaid. To summarize the most relevant modifications:

• We had modified a few code locations to issue parameterized queries. (Most queries were

already parameterized, but some needed a rewrite—see below for an example.)

• We had modified the applications to fetch sensitive data only if it affects the output. (This

allows for finer-grained policies, but is not necessary for use with Ote. We kept these mod-

ifications to enable an apples-to-apples comparison between extracted and handwritten

policies.)

• We had rewritten one query to an equivalent form supported by Ote. (This modification is

not fundamentally required—it could have been implemented in Ote itself.)

For Odin, wemade changes to three code locations in its backend source code (commit f6762f0):

• We changed two code locations so that they issue parameterized SQL queries—e.g., in one

location we changed:

where('expires >= ?', Time.now)

to a form that uses a Ruby endless range [107]:

where(expires: Time.now..)

because the former inserts Time.now into the query string within Ruby, resulting in non-

parameterized SQL.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 67

Table 4.1: Number of database constraints. “Application Logic”= constraints from application

logic; “pruning” = constraints we added to prune the input space. “Auto” = auto-generated

constraints; “manual” = manually written ones.

Application Logic Pruning

Auto Manual Manual Total

diaspora* 347 63 11 421
Autolab 185 42 3 230
Odin 116 9 1 126

• We deleted one line of code to prevent an aggregation from appearing in the conditions
portion of conditioned queries (Ote does not currently handle this). This change preserves

application behavior.

We also omitted JRuby-incompatible gems used for development and testing, modified the con-

figuration to use MySQL, and adjusted some HTML and JavaScript so that pages render correctly.

These changes are to accommodate our prototype and environment and are not fundamental to

policy extraction.

Database constraints Table 4.1 breaks down the database constraints supplied to Ote. The

constraint generator (§4.7.3) produced over 80% of the constraints that were used. The rest,

which we manually wrote, were either inferred from application logic or added for input-space

pruning (see below). The number of manual constraints ranged from 10 to 74.
A fewmanual constraintswere unobvious—e.g., that two diaspora* posts cannot be reshares of

each other. When we missed these, the application would crash or hang during path exploration,

which would then alert us to the missing constraints. For fields with constraints that are either

unsupported by our SMT encoding (e.g., URL validity) or related to the external environment

(e.g., an Autolab course name must have a file directory), we manually constrained them to a

fixed set of valid values (after creating any environmental state).

Input-space pruning To reduce the input space, we impose a few more constraints based on

our application knowledge:

• We restrict nullable string fields to be non-empty. (Null and empty strings are typically

treated identically.)

• We restrict a diaspora* user to be non-admin and non-moderator, and an Autolab user to

non-admin.
9

9
There is less of a need to extract policies for these cases—the additional privileges for these roles are easy to

write down.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 68

• We assume there are no Autolab scheduler actions, which are background tasks not trig-

gered by user requests.

• We assume there are no diaspora* “services,” which are concerned with external calls and

not database access.

• We constrain a diaspora* user to have non-null names and photos, and to have English as

their language.

We applied no pruning to Odin other than the first restriction.

To develop these constraints, we ran path exploration for a bounded time, inspected the

longest transcripts to identify branches that could be removed without substantially degrading

the quality of the extracted policy, and imposed constraints to remove these branches by render-

ing them vacuous.

For Autolab, we aimed to execute the six handlers for which we had previously handwritten

policies, but ended up excluding one of them due to its large number of paths (Remark 4.5).

4.8.2 Experiment Setup
We ran the experiments on Google Compute Engine using a t2a-standard-48 instance (48 Am-

pere Altra Arm cores). We used 24 parallel executors, which saturated input generation. Execu-

tors run a modified version of JRuby v9.3.13.0 atop OpenJDK 21. The driver uses Z3 v4.11.2. For

view pruning, we configured Blockaid with a timeout of 5 s.

4.8.3 Paths, Conditioned Queries, and Views
Table 4.2 shows that while the number of explored paths can be large, Ote is able to reduce the

number of views to between 24 and 140—a manageable number for human review.

For view generation, we had to approximate some SQL features that either Ote or Blockaid

does not support. To do so, we wrote scripts to transform conditioned queries:

• We rewrite a LEFT JOIN into an equivalent INNER JOIN if possible. Otherwise, we split

it into an INNER JOIN (for rows that match) and a SELECT (for rows that do not); this will

split one conditioned query into two.

• We rewrite a SELECT COUNT(*) FROM tbl in the query portion into SELECT id FROM tbl.

• We omitted date-timestamp comparisons and replaced “Now + 1 second” with “Now”.

These approximations are “lossy”: They can broaden or tighten the policy and must be applied

with human discretion.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 69

T
a
b
l
e
4
.2
:
St
at
is
ti
cs

an
d
pe

rf
or
m
an

ce
fo
r
pa

th
ex

pl
or
at
io
n
an

d
po

li
cy

ge
ne

ra
ti
on

.U
n
d
e
r
S
t
a
t
i
s
t
i
c
s
,
“
#
C
o
n
d
.
Q
u
e
r
i
e
s
”

s
h
o
w
s
t
h
e
n
u
m
b
e
r
o
f
c
o
n
d
i
t
i
o
n
e
d
q
u
e
r
i
e
s
b
e
f
o
r
e
a
n
d
a
f
t
e
r
s
i
m
p
l
i
fi
c
a
t
i
o
n
(
§
4
.5
.2
)
;
“
#
S
Q
L
V
i
e
w
s
”
s
h
o
w
s
t
h
e
n
u
m
b
e
r
o
f
v
i
e
w
s

a
f
t
e
r
p
e
r
-
a
n
d
c
r
o
s
s
-
h
a
n
d
l
e
r
p
r
u
n
i
n
g
(
§
4
.5
.4
)
.
U
n
d
e
r
R
u
n
n
i
n
g
T
i
m
e
,
“
S
i
m
p
l
i
f
y
”
s
t
a
n
d
s
f
o
r
c
o
n
d
i
t
i
o
n
e
d
-
q
u
e
r
y
s
i
m
p
l
i
fi
c
a
t
i
o
n

a
n
d
v
i
e
w

g
e
n
e
r
a
t
i
o
n
(
§
§
4
.5
.2

a
n
d
4
.5
.3
)
,
“
P
r
u
n
e
”
f
o
r
p
e
r
-
h
a
n
d
l
e
r
v
i
e
w
-
p
r
u
n
i
n
g
,
a
n
d
“
F
i
n
a
l
P
r
u
n
e
”
f
o
r
c
r
o
s
s
-
h
a
n
d
l
e
r
v
i
e
w
-

p
r
u
n
i
n
g
(
§
4
.5
.4
)
.

H
a
n
d
l
e
r

#
P
a
t
h
s

E
x
p
l
o
r
e

S
i
m
p
l
i
f
y

P
r
u
n
e

F
i
n
a
l
P
r
u
n
e

di
as
po

ra
*

50
m
in

Pe
op

le
#s

tr
ea

m
1
1
84

51
0

3
26

0
16

5
→

20
1

14
8

8.
1
h

6
m
in

49
m
in

Po
st

s#
sh

ow
25

6
12

4
1
66

8
72

2
→

20
9

87
2
.0
h

2
m
in

28
m
in

Pe
op

le
#s

ho
w

16
65

2
51

12
8
→

38
32

8
m
in

33
s

6
m
in

No
ti

fi
ca

ti
on

s#
in

de
x

5
30

6
24

75
6
→

76
54

4
m
in

32
s

12
m
in

Co
nv

er
sa

ti
on

s#
in

de
x

75
51

1
→

41
16

2
m
in

28
s

5
m
in

Co
mm

en
ts

#i
nd

ex
19

42
→

24
17

2
m
in

27
s

4
m
in

A
ut
ol
ab

17
m
in

As
se

ss
me

nt
s#

gr
ad

es
he

et
18

97
2

10
00

0
→

10
3

72
7
m
in

33
s

17
m
in

As
se

ss
me

nt
s#

in
de

x
90

47
10

21
8
→

97
27

5
m
in

32
s

11
m
in

Su
bm

is
si

on
s#

do
wn

lo
ad

99
59
→

25
18

1
m
in

25
s

4
m
in

Co
ur

se
s#

in
de

x
36

22
→

10
5

2
m
in

24
s

1
m
in

Me
tr

ic
s#

ge
tN

um
Pe

nd
in

g
11

20
→

12
7

1
m
in

24
s

2
m
in

T
he

O
di
n
Pr

oj
ec
t

11
m
in

Le
ss

on
s#

sh
ow

7
5
46

6
73

81
2
→

15
3

46
20

m
in

39
s

19
m
in

Co
ur

se
s#

sh
ow

6
19

2
44

88
→

38
25

4
m
in

26
s

5
m
in

Pr
oj

ec
tS

ub
mi

ss
io

ns
#i

nd
ex

30
52

26
16
→

40
17

3
m
in

25
s

5
m
in

Us
er

s#
sh

ow
28

03
29

24
→

15
9

3
m
in

24
s

2
m
in

Pa
th

s#
in

de
x

29
27
→

7
4

2
m
in

22
s

55
s

Si
te

ma
p#

in
de

x
28

14
→

5
3

1
m
in

22
s

40
s

St
at
is
ti
cs

R
un

ni
ng

T
im

e

#
C
o
n
d
.
Q
u
e
r
i
e
s

#
S
Q
L
V
i
e
w
s

→
14

0

→
51

→
24

                                        

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 70

4.8.4 Performance
Table 4.2 (right) shows the running times for each step of policy extraction. End to end, the

most time-consuming handler (People#stream) completes in around ten hours. Aside from path

exploration, the most expensive step is view pruning (§4.5.4). This is because (1) Ote relaunches

Blockaid for every view, incurring start-up cost; (2) Blockaid is optimized for checking compliant
queries against a fixed policy, while Ote uses it to check often non-compliant (i.e., non-redundant)

queries against a policy being iteratively pruned; and (3) view pruning is sequential. We plan to

improve Blockaid for our use case and devising parallel pruning algorithms.

Remark 4.5. We attempted path exploration on Autolab’s Assessments#show handler, but it did

not finish after many hours. This handler displays the details of an assessment, branching on

the fields of the assessment and its submissions, scores, etc., but many of these branches have no

influence on data access. One potential solution is to apply selective constraint generation [146,

§ 2.5], which could help prune irrelevant branches by approximating backward slices.

4.8.5 Findings From the Extracted Policies
We now compare the extracted policies with the handwritten ones for diaspora* and Autolab.

Expectations We generally expect an extracted policy to be tighter (more restrictive) than a

handwritten one: Ote aims to produce the tightest possible policy, while humans often relax non-

privacy-critical conditions and allow broader accesses than the application requires (§4.8.6). Thus,

the extracted policy would be longer as it encodes conditions not imposed by the handwritten

one. Indeed, Table 4.3 shows that the extracted policies have roughly twice as many views as

their handwritten counterparts—but they remain manageable for human review.

Where handwritten policies reveal too much But not all relaxations by the human policy-

writer are benign. When we compared the extracted Autolab policy against the handwritten one,

we found that the latter granted course assistants access to five types of records in a “disabled”

course, when the application’s logic states that only instructors should have access. Such an

erroneous policy, if enforced, would allow a future code change to leak sensitive data to course

assistants.

Where handwritten policies reveal too little Unexpectedly, there is also information re-

vealed by the extracted policy but not by the handwritten one. To investigate, we used Blockaid

to check whether each extracted view is allowed as a query under the handwritten policy and

found that:

• The handwritten diaspora* policy failed to reveal the pod of a “remote” person and data for

MentionedInPost and MentionedInComment notifications.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 71

Table 4.3: View count in extracted vs handwritten policies. The extracted policies have more

views because in many places, they are more fine-grained and restrictive (§4.8.5).

diaspora* Autolab Odin

Extracted policy 140 51 24
Handwritten policy 66 28 –

• The handwritten Autolab policy overlooked granting instructors access to all attachments

in their courses.

Enforcing a policy with oversights like these would disrupt normal application function by deny-

ing legitimate data accesses from the application.

A defective access check While reviewing the extracted Autolab policy, we noticed that the

assessments.exam column was never checked in the submissions-related views. This was sus-

picious, as we knew that Autolab prohibited students from downloading prior exam submissions.

It turned out that we had introduced a bug years earlier when adapting Autolab for access

control. To manage the sensitive columns in the assessments table, we used the lazy_column
gem [89] to defer fetching these columns until needed. But when specifying columns to lazy-load,

we mistakenly used the column’s query method name exam? instead of its actual name exam; this
altered the exam? method to always return nil (interpreted as false). So a correct-looking access
check in the controller code was rendered a no-op due to a misuse of external library elsewhere

in the codebase—a subtle bug that we discovered only from the extracted policy.

4.8.6 Broadening the Extracted Policy
Sometimes, an extracted policy includesmany combinations of conditions under which some data

can be accessed, typically reflecting business logic rather than privacy concerns. For example,

the extracted diaspora* policy has 44 views (out of 140) that reveal profile data under various

conditions—if the profile belongs to the current user, or to the author of a public post, or to

the author of a comment on a public post, etc. But by our understanding, a diaspora* user’s

profile is generally public, except for a few columns guarded by the public_details flag. If this
interpretation holds, we can simplify the policy by broadening it.

We can broaden the policy with the help of Ote’s view pruning (§4.5.4). First, we write down

four simpler, broader views to capture the relaxed conditions for accessing profiles:

1. SELECT id, first_name , ... FROM profiles

(For all profiles, some columns are always visible. . .)
2. SELECT * FROM tags , taggings

WHERE tags.id = taggings.tag_id
AND taggings.taggable_type = 'Profile ';

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 72

(. . . and so are the profile taggings.)
3. SELECT * FROM profiles

WHERE public_detail = TRUE

(All columns are visible if profile has “public details”. . .)
4. SELECT * FROM profiles , people

WHERE profiles.person_id = people.id
AND people.owner_id = MyUserId

(. . . or if the profile belongs to the current user)

We add these to the policy and re-run view-pruning, which removes 41 of the 44 profile-related

views as redundant. This process spares the human from having to reason about view subsump-

tion, which can be tedious and tricky. (For example, the remaining three views, which pertain to

the current user’s contacts, are not subsumed by the ones that we added!)

4.9 Related Work

Symbolic execution Symbolic execution [70] is a classic path-exploration technique thatmain-

tains symbolic program state. We decided not to use it because implementing it for an interpreted

language is challenging (more so than for lower-level languages [28,96,131]) due to the dynamic

features and functionality implemented outside the language [26, § 2.2].

Bug finding Many tools use symbolic or concolic execution to look for bugs in web applica-

tions [9, 30, 146], typically aiming to trigger certain statements or program states. Policy extrac-

tion requires not only reaching the query-issuing statements, but also gathering the conditions

under which these statements are reached. Derailer [100] and Space [101] check for security bugs

in web applications by validating data exposures against human input or a catalog. We could use

similar techniques to (semi-)automatically analyze extracted policies.

Instrumentation strategies Some systems track symbolic values in dynamic languages by

performing instrumentationwithin the target language. They represent symbolic objects through

proxying [25,143] or inheritance [12], and track path conditions using Boolean-conversion hooks [12,

25] or debug tracing [143, § 4.1.2]. These approaches avoid the need for a custom interpreter and

support standard environments [8]. In contrast, Ote performs offline analysis, allowing us to

modify the interpreter for better transparency [41] and performance.

Learning models of database applications Konure infers models of database-backed appli-

cations [128,129] by generating targeted inputs to probe the application as a black-box. We took

inspiration from Konure when stating the simple query-issuing core assumption (§4.4.1). How-

ever, a black-box approach cannot effectively extract conditionals from application code [129,

§ 6.2]; Ote is able to do so via instrumentation.

CHAPTER 4. OTE: ACCESS-POLICY EXTRACTION 73

Policy mining Policy-mining systems share our high-level goal of generating access-control

rules that capture existing practice. They take existing access-control lists [27,148,149], operation

logs [50,67,95], or human interactions [66], and produce role- [50,95,148], attribute- [67,149,150],

or relationship-based [27, 66] rules, often via (statistical) learning techniques. In contrast, Ote

does not require live data and instead analyzes the application, which also provides the visibility

needed to produce fine-grained view-based policies.

4.10 Conclusion and Future Work

Ote is an initial step towards better access control for existing web applications. Our results show

that Ote can extract policies from practical web applications and avoid errors found in handwrit-

ten policies. We have also identified areas for improvement, such as parallelizing input gener-

ation (§4.4.3) and view pruning (§4.8.4), supporting richer SQL features (§4.4.4), and improving

scalability with advanced instrumentation (Remark 4.5).

We end by pointing out a risk in policy extraction: for humans to rubber-stamp an extracted

policy that appears reasonable. Enforcing such a policy would create a false sense of security and

fail to catch errors. This is an example of automation bias and complacency, where humans overly

rely on computer output and abdicate their decision-making responsibility [109]. We will study

the extent of these issues and mitigate them using established measures [51].

74

Chapter 5

Future Directions

Let us now recap what we have achieved with Blockaid and Ote:

During development We can take an existing web application and use Ote to extract a draft

policy for it. This draft policy may not be perfect—in fact, it will be buggy if the existing

application has access-check bugs—but a human will review the policy and fix or adjust it

as needed to produce the final policy.

At deployment We can install Blockaid to enforce this final policy, so that if the application

has a bug—either right now or in the future—Blockaid will prevent it from revealing any

information it shouldn’t.

These two systems form a holistic solution for protecting sensitive data in web applications today.

But our work is not done. In the remainder of this chapter, we will discuss some challenges

we have not yet addressed, and point out some directions for future work.

5.1 Policy Testing

5.1.1 Challenge: Evaluating a Policy for Sensitive-data Disclosure
A policy, be it hand-written or extracted, should be sanity-checked before being put into produc-

tion. Policies have two potentially conflicting imperatives. On the one hand, they must allow

queries required for the application’s operation. On the other, they must prevent users from

learning something about sensitive information (i.e., data that should remain hidden). In many

cases, no policy satisfies both imperatives. So how can an administrator evaluate how much sen-

sitive information is disclosed, so that she can determinewhether the policy (and the application’s

functionality) must be modified to limit such disclosure?

To bemore precise, suppose S is a query whose answer should be hidden (wewill refer to such

queries as sensitive queries). The administrator first checks whether query S is blocked by the

policy. But she must go further: even if S is blocked, substantial information could be disclosed

on the answer to S from answers to other queries allowed by the policy [94].

CHAPTER 5. FUTURE DIRECTIONS 75

Example 5.1 ([45, §2]). Consider a hospital-management system whose policy allows staff to

view 1. the doctor assigned to each patient, and 2. the diseases treated by each doctor; but the

disease each patient is treated for is deemed sensitive information. Suppose patient John is treated

by a doctor who only treats two diseases. The policy would block a direct query for John’s disease,

but discloses enough information to narrow the answer down to two possibilities. ◀

Challenge. Design an evaluation tool that detects potential sensitive-data disclosure by a given

data-access policy.

The first problem we face when tackling this challenge is to define what we mean by “disclo-

sure”. Despite much prior work, identifying a practical notion of disclosure useful to operators

turns out to be nontrivial.

5.1.2 Existing Work: Bayesian Privacy
One of the most well-studied notions of disclosure in the database literature is that of Bayesian

privacy [45, 94], where disclosure is modeled as the shift in an adversary’s belief for the answer

to a sensitive query S after observing the views. The bigger the shift, the more the knowledge

gained by the adversary, and the more extensive the disclosure.

To complicate matters, such shift depends not only on the policy and sensitive query, but

also on the adversary’s prior belief. For example, a neighbor who has seen John coughing might

change his belief only slightly when he learns that John is treated by a doctor who treats only

pneumonia and tuberculosis (Example 5.1); someone without prior knowledge of John’s cough

might undergo a bigger shift.

As a result, Bayesian privacy criteria are typically parameterized by the class of prior beliefs
considered. But we are now caught between a rock and a hard place: we can assume either

(1) a general class of priors (e.g., all tuple-independent distributions [94]), yielding a criterion

that applies to diverse adversaries but imposes impractically strict restrictions on what a policy

can reveal; or (2) a specific family of priors (as in Dalvi et al. [42]), yielding a criterion that is

more permissive but applies only to a specific class of adversaries—one that might not match the

adversaries that arise in reality.

5.1.3 Proposal: Prior-agnostic Privacy
At the root of this dilemma is Bayesian privacy’s reliance on modeling the adversary’s prior be-

lief. In contrast to the kinds of distributions routinely modeled in systems work—like for traffic

arrivals [106], which can be readily measured and validated—distributions on people’s prior be-

liefs are much harder to model realistically and validate empirically. And if we can’t validate a

prior, we can’t precisely interpret a Bayesian guarantee based on that prior.

For this reason, we think it is time to turn to prior-agnostic privacy criteria—ones that do not

require modeling priors. Many such criteria can be defined, and no one criterion fits all. We

highlight two examples from computational logic: positive query implication (PQI) and negative
query implication (NQI) [20, Def. 3.5], adapted to view-based access control.

CHAPTER 5. FUTURE DIRECTIONS 76

Fix a setV of policy views and a sensitive query S. We call a row t a possible answer to S if it

is returned by S on some database, a certain answer if on all databases, and an impossible answer
if on no database. Then, we say:

• PQIS(V) holds if revealing the contents ofV could render a possible answer to S certain.

• NQIS(V) holds if revealing the contents of V could render a possible answer to S impos-

sible.

PQI and NQI signal disclosure—i.e., the contents of V enabling certain inferences about the an-

swer to S. We illustrate these concepts with a toy example.

Example 5.2. Define two queries on an employee database:

(Q1) SELECT name FROM Employees WHERE age >= 60

(Q2) SELECT name FROM Employees WHERE age >= 18

Take V = {Q1} and S = Q2. Revealing Q1’s answer allows positive inference on Q2’s answer:

if Q1 returns "Alex", then so must Q2. Thus, PQIQ2
({Q1}) holds.

Conversely, take V = {Q2} and S = Q1. Revealing Q2’s answer allows negative inference

on Q1’s: if Q2 doesn’t return "Alex", then nor can Q1. So we have NQIQ1
({Q2}).

PQI and NQI are prior-agnostic: nowhere in our reasoning did we appeal to assumptions on

the adversary’s belief. ◀

Remark 5.3. In all fairness, if it were possible to accurately model belief as a probability distribu-

tion, then Bayesian privacy would be a valuable metric as it provides the probability of someone

holding that belief correctly guessing a sensitive value—exactly the event we wish to avoid. Our

proposal is motivated only by the inherent difficulty of modeling belief.

As far as we know, algorithms for checking PQI and NQI have been studied only in theo-

retical contexts for simple, conjunctive queries [20]. Practical algorithms exist for checking k-

anonymity [123, 136] (another prior-agnostic criterion), but they typically assume single-table

schemas. It is a promising direction to explore how to extend these algorithms to complex

schemas and queries found in practice.

5.2 Violation Diagnosis

5.2.1 Challenge: Troubleshooting Violations
Having produced a policy she’s happy with, the administrator enables policy enforcement on

her application. One day, the application (possibly after a code update) issues a query that gets

blocked due to policy violation. What has gone wrong?

CHAPTER 5. FUTURE DIRECTIONS 77

Answering this question can be difficult. Because we use allow-list policies (i.e., views that a

user is allowed to access),
1
no item or subset of items in the policy can be singled out for causing

the violation. Then what form of feedback should be provided to help the administrator diagnose

the problem?

While providing feedback is straightforward for simpler policy specifications (like row- or

column-level policies), the solution is less obvious for the more expressive view-based poli-

cies. A natural proposal is to display a counterexample—in Blockaid’s case, a pair of databases

on which every view produces the same answer, but the blocked query produces different an-

swers.
2
However, while a counterexample is a proof-of-violation, it is not easily interpreted by

the administrator—what is she to do with two databases shown side by side?

Challenge. Assist human in diagnosing policy violations.

Streamlining diagnosis is crucial to keeping an access-control deployment manageable. The

more effort needed to resolve violations, the more likely is the administrator to forgo access

control out of frustration or, worse, to silence violations by setting overly permissive policies,

leaving data unprotected.

5.2.2 Proposal: Patch Generation
A policy violation is caused by either the policy being stricter than intended, or the application

accessing more data than intended. A tool cannot easily distinguish between the two cases, but it

can suggest patches to both the policy and the application such that, once any patch is applied, the
offending query would be allowed. Even patches that do not get applied can help. For example,

if all policy patches look unreasonable (e.g., they allow every user access to all calendar events),

then the application—not the policy—is the likely culprit.

Patching the policy

Policy patches, consisting of modified/added view definitions, can be generated via policy ex-

traction (Chapter 4): run the extraction algorithm either on the up-to-date source code, or on a

test suite augmented with the offending query, and then compare the extracted policy with the

current one. The extraction algorithm could also be augmented to produce deltas over an existing

policy.

Patching the application

A typical application patch would take one of two forms:

1
Allow-lists can naturally implement least privilege: simply write the policy to allow the minimum necessary

information. Block-lists, where the extent of allowed access is implicit, risk granting more privilege than necessary.

2
Intuitively, for a query to be allowed, its answer must be uniquely determined by the answers to the views; a

counterexample refutes this property. See prior work for a more formal discussion [159, §4.2].

CHAPTER 5. FUTURE DIRECTIONS 78

1. Narrowing down the offending query (e.g., by adding a conjunct to its SQL WHERE clause),

or

2. Wrapping the offending query in an additional access check (along the lines of the if state-
ments in Listing 4.1).

We envision both forms of patching will work at the query level, and can be applied to applica-

tions written in any language. In particular, an access-check patch will consist of a condition on

database content (e.g., the existence of a particular row), which can be checked in any application

language.
3

The two patch forms might require different techniques to generate. Conceptually, the task

of narrowing down a blocked query Q reduces to the database-theoretic problem of finding

a contained rewriting Q′
of Q using the policy views [83]—i.e., Q′

may refer only to view names

(and not base tables), and its answer must be a subset ofQ’s on all databases.
4
There has also been

theoretical work on finding maximally contained rewritings—ensuring Q′
returns as much data

as possible without violating the policy—for restricted query languages like conjunctive queries

(CQs) [82, 112] and CQs with arithmetic comparisons [4]. The practical systems problems, then,

are (1) to extend these algorithms to more expressive query languages found in practice, and

to implement them efficiently; and (2) to empirically evaluate the extent to which the rewriting

found helps a developer.

Generating an access check requires finding a statement about database content such that

(1) once known, this statement (with the existing trace) makes the blocked query compliant; and

(2) the statement is consistent with the existing trace. In Example 2.2, if Query 2 were issued

alone (it would be blocked), one such statement would be “the Attendance table contains row

(UId=2, EId=5)”, which the developer can check for in her code before issuing the query.

The search for such a statement falls under abductive inference: finding an “explanatory hy-

pothesis for a desired outcome” [47], with the desired outcome being policy compliance for the

blocked query. As such, a promising approach is to leverage program synthesis techniques for

abduction [116].

5.3 Policy Comprehension

While (a subset of) SQL as a policy language is precise and familiar, it can be verbose for complex

policies. A promising direction is to design a more concise policy domain-specific language (DSL)

that desugars into SQL. To ensure that the DSL is comprehensible and easy to learn, we can bor-

row ideas from user studies on query languages [7, 114] and from the design of object-relational

mappings [138]. Once a DSL is in place, a policy-extraction tool must convert extracted SQL

3
This is in contrast to leak repair for liquid information flow control [108, §5], which statically analyzes source

code written in a special type system.

4
More precisely, we only need the latter condition to hold on all databases consistent with the trace prior toQ’s

issuance.

CHAPTER 5. FUTURE DIRECTIONS 79

views into this DSL; we may be able to implement this conversion using techniques like verified

lifting [69, 76].

5.4 Decidable Compliance Checking

SMT solvers have proven effective for checking query compliance in real-world scenarios, but

it remains theoretically unclear if compliance checking is decidable in these cases. Even for

single-query checking, where Blockaid’s criterion degenerates into query determinacy, our un-

derstanding still remains “at the extremes”. On one side, we proved that query determinacy is

decidable for project-select views and a project-select-join query with no self joins, provided

the selection formulas are reasonable (Chapter 3), but this result is too restricted for practical

use. On the other side, query determinacy is undecidable for conjunctive queries [54, 55], yet

practical views and queries look far simpler than those constructed in the undecidability proofs.

So a natural question would be: Is there a natural class of views and queries—reflecting those

in practice—for which compliance checking is decidable? An affirmative answer could lead to

explicit compliance-checking algorithms with more stable performance than SMT solving [104].

80

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995.

[2] Foto N. Afrati. Determinacy and query rewriting for conjunctive queries and views. Theor.
Comput. Sci., 412(11):1005–1021, 2011.

[3] Foto N. Afrati and Rada Chirkova. Answering Queries Using Views, Second Edition. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2019.

[4] Foto N. Afrati, Chen Li, and Prasenjit Mitra. Rewriting queries using views in the presence

of arithmetic comparisons. Theor. Comput. Sci., 368(1-2):88–123, 2006.

[5] Rakesh Agrawal, Paul Bird, Tyrone Grandison, Jerry Kiernan, Scott Logan, and Walid

Rjaibi. Extending relational database systems to automatically enforce privacy policies.

In Karl Aberer, Michael J. Franklin, and Shojiro Nishio, editors, Proceedings of the 21st In-
ternational Conference on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan, pages
1013–1022. IEEE Computer Society, 2005.

[6] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Hippocratic

databases. In Proceedings of 28th International Conference on Very Large Data Bases, VLDB
2002, Hong Kong, August 20-23, 2002, pages 143–154. Morgan Kaufmann, 2002.

[7] Alireza Ahadi, Julia Coleman Prior, Vahid Behbood, and Raymond Lister. A quantitative

study of the relative difficulty for novices of writing seven different types of SQL queries. In

Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science
Education, ITiCS 2015. ACM, 2015.

[8] Kalev Alpernas, Aurojit Panda, Leonid Ryzhyk, and Mooly Sagiv. Cloud-scale runtime ver-

ification of serverless applications. In Carlo Curino, Georgia Koutrika, and Ravi Netravali,

editors, SoCC ’21: ACM Symposium on Cloud Computing, Seattle, WA, USA, November 1 - 4,
2021, pages 92–107. ACM, 2021.

[9] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit M. Paradkar, and

Michael D. Ernst. Finding bugs in dynamic web applications. In Barbara G. Ryder and An-

dreas Zeller, editors, Proceedings of the ACM/SIGSOFT International Symposium on Software

BIBLIOGRAPHY 81

Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24, 2008, pages 261–272. ACM,

2008.

[10] Warwick Ashford. Facebook photo leak flaw raises security concerns, March

2015. https://www.computerweekly.com/news/2240242708/Facebook-photo-leak-
flaw-raises-security-concerns.

[11] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-Lezama. Faceted

execution of policy-agnostic programs. In Prasad Naldurg and Nikhil Swamy, editors, Pro-
ceedings of the 2013 ACM SIGPLAN Workshop on Programming Languages and Analysis for
Security, PLAS 2013, Seattle, WA, USA, June 20, 2013, pages 15–26. ACM, 2013.

[12] Thomas Ball and JakubDaniel. Deconstructing dynamic symbolic execution. InMaximilian

Irlbeck, Doron A. Peled, and Alexander Pretschner, editors, Dependable Software Systems
Engineering, volume 40 of NATO Science for Peace and Security Series, D: Information and
Communication Security, pages 26–41. IOS Press, 2015.

[13] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai

Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex

Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar.

cvc5: A versatile and industrial-strength SMT solver. In Dana Fisman and Grigore Rosu,

editors, Tools and Algorithms for the Construction and Analysis of Systems - 28th Interna-
tional Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I,
volume 13243 of Lecture Notes in Computer Science, pages 415–442. Springer, 2022.

[14] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.6.

Technical report, Department of Computer Science, The University of Iowa, 2017.

[15] Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In Edmund M. Clarke,

Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 305–343. Springer, 2018.

[16] Jana Bauckmann, Ziawasch Abedjan, Ulf Leser, Heiko Müller, and Felix Naumann. Dis-

covering conditional inclusion dependencies. In Xue-wen Chen, Guy Lebanon, Haixun

Wang, and Mohammed J. Zaki, editors, 21st ACM International Conference on Information
and Knowledge Management, CIKM’12, Maui, HI, USA, October 29 - November 02, 2012, pages
2094–2098. ACM, 2012.

[17] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and Daniel Lemire.

Apache calcite: A foundational framework for optimized query processing over heteroge-

neous data sources. In Gautam Das, Christopher M. Jermaine, and Philip A. Bernstein,

editors, Proceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 221–230. ACM, 2018.

https://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns
https://www.computerweekly.com/news/2240242708/Facebook-photo-leak-flaw-raises-security-concerns

BIBLIOGRAPHY 82

[18] Gabriel Bender, Lucja Kot, and Johannes Gehrke. Explainable security for relational

databases. In Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu, editors, International Con-
ference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014, pages
1411–1422. ACM, 2014.

[19] Gabriel Bender, Lucja Kot, Johannes Gehrke, and Christoph Koch. Fine-grained disclosure

control for app ecosystems. In Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias,

editors, Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 869–880. ACM, 2013.

[20] Michael Benedikt, Pierre Bourhis, Balder ten Cate, Gabriele Puppis, and Michael Vanden

Boom. Inference from visible information and background knowledge. ACM Trans. Com-
put. Log., 22(2):13:1–13:69, 2021.

[21] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. Z3str3: A string solver with theory-

aware heuristics. In Daryl Stewart and GeorgWeissenbacher, editors, 2017 Formal Methods
in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, pages 55–59.
IEEE, 2017.

[22] Aaron R. Bradley and Zohar Manna. The calculus of computation - decision procedures with
applications to verification. Springer, 2007.

[23] Alexander Brodsky, Csilla Farkas, and Sushil Jajodia. Secure databases: Constraints, infer-

ence channels, and monitoring disclosures. IEEE Trans. Knowl. Data Eng., 12(6):900–919,
2000.

[24] Kristy Browder andMaryAnnDavidson. The virtual private database in Oracle9iR2. Oracle
Technical White Paper, 2002.

[25] Alessandro Bruni, Tim Disney, and Cormac Flanagan. A peer architecture for

lightweight symbolic execution, February 2011. Retrieved April 4, 2024 from https:
//hoheinzollern.wordpress.com/wp-content/uploads/2008/04/seer1.pdf.

[26] Stefan Bucur, Johannes Kinder, and George Candea. Prototyping symbolic execution en-

gines for interpreted languages. In Rajeev Balasubramonian, Al Davis, and Sarita V. Adve,

editors, Architectural Support for Programming Languages and Operating Systems, ASPLOS
2014, Salt Lake City, UT, USA, March 1-5, 2014, pages 239–254. ACM, 2014.

[27] Thang Bui and Scott D. Stoller. A decision tree learning approach for mining relationship-

based access control policies. In Jorge Lobo, Scott D. Stoller, and Peng Liu, editors, Proceed-
ings of the 25th ACM Symposium on Access Control Models and Technologies, SACMAT 2020,
Barcelona, Spain, June 10-12, 2020, pages 167–178. ACM, 2020.

[28] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs. In Richard Draves and

https://hoheinzollern.wordpress.com/wp-content/uploads/2008/04/seer1.pdf
https://hoheinzollern.wordpress.com/wp-content/uploads/2008/04/seer1.pdf

BIBLIOGRAPHY 83

Robbert van Renesse, editors, 8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings,
pages 209–224. USENIX Association, 2008.

[29] Autolab project. https://autolabproject.com/.

[30] Avik Chaudhuri and Jeffrey S. Foster. Symbolic security analysis of Ruby-on-Rails web

applications. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, Pro-
ceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010,
Chicago, Illinois, USA, October 4-8, 2010, pages 585–594. ACM, 2010.

[31] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing database-backed

applications with query synthesis. In Hans-Juergen Boehm and Cormac Flanagan, editors,

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13,
Seattle, WA, USA, June 16-19, 2013, pages 3–14. ACM, 2013.

[32] Adam Chlipala. Static checking of dynamically-varying security policies in database-

backed applications. In Remzi H. Arpaci-Dusseau and Brad Chen, editors, 9th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2010, October 4-6, 2010,
Vancouver, BC, Canada, Proceedings, pages 105–118. USENIX Association, 2010.

[33] Adam Chlipala. Ur: statically-typed metaprogramming with type-level record computa-

tion. In Benjamin G. Zorn and Alex Aiken, editors, Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2010, Toronto, On-
tario, Canada, June 5-10, 2010, pages 122–133. ACM, 2010.

[34] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin

Zheng. Secure web application via automatic partitioning. In Thomas C. Bressoud and

M. Frans Kaashoek, editors, Proceedings of the 21st ACM Symposium on Operating Systems
Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007, pages 31–44.
ACM, 2007.

[35] Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. Axiomatic

foundations and algorithms for deciding semantic equivalences of SQL queries. Proc. VLDB
Endow., 11(11):1482–1495, 2018.

[36] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. Hottsql: proving query

rewrites with univalent SQL semantics. In Albert Cohen and Martin T. Vechev, editors,

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 510–524. ACM, 2017.

[37] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Discovering denial constraints. Proc. VLDB Endow.,
6(13):1498–1509, 2013.

[38] E. F. Codd. Relational completeness of data base sublanguages. Research Report / RJ / IBM
/ San Jose, California, RJ987, 1972.

https://autolabproject.com/

BIBLIOGRAPHY 84

[39] Ellis S. Cohen. Information transmission in computational systems. In Saul Rosen and

Peter J. Denning, editors, Proceedings of the Sixth Symposium onOperating System Principles,
SOSP 1977, Purdue University, West Lafayette, Indiana, USA, November 16-18, 1977, pages
133–139. ACM, 1977.

[40] Brian J. Corcoran, Nikhil Swamy, andMichaelW. Hicks. Cross-tier, label-based security en-

forcement for web applications. In Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann,

and Nesime Tatbul, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009,
pages 269–282. ACM, 2009.

[41] Limitations – crosshair 0.0.54 documentation. Retrieved April 16, 2024 from https://
crosshair.readthedocs.io/en/latest/limitations.html.

[42] Nilesh N. Dalvi, Gerome Miklau, and Dan Suciu. Asymptotic conditional probabilities for

conjunctive queries. In Thomas Eiter and Leonid Libkin, editors, Database Theory - ICDT
2005, 10th International Conference, Edinburgh, UK, January 5-7, 2005, Proceedings, volume

3363 of Lecture Notes in Computer Science, pages 289–305. Springer, 2005.

[43] Leonardo de Moura. Z3 for Java, 2012. Retrieved October 6, 2024 from https://
leodemoura.github.io/blog/2012/12/10/z3-for-java.html.

[44] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In

C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages
337–340. Springer, 2008.

[45] Alin Deutsch. Privacy in database publishing: A bayesian perspective. In Michael Gertz

and Sushil Jajodia, editors, Handbook of Database Security - Applications and Trends, pages
461–487. Springer, 2008.

[46] The diaspora* project. https://diasporafoundation.org/.

[47] Isil Dillig, Thomas Dillig, and Alex Aiken. Automated error diagnosis using abductive

inference. In Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16,
2012, pages 181–192. ACM, 2012.

[48] Django Software Foundation. Models | Django documentation | Django. https://docs.
djangoproject.com/en/3.2/topics/db/models/.

[49] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise

to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of

https://crosshair.readthedocs.io/en/latest/limitations.html
https://crosshair.readthedocs.io/en/latest/limitations.html
https://leodemoura.github.io/blog/2012/12/10/z3-for-java.html
https://leodemoura.github.io/blog/2012/12/10/z3-for-java.html
https://diasporafoundation.org/
https://docs.djangoproject.com/en/3.2/topics/db/models/
https://docs.djangoproject.com/en/3.2/topics/db/models/

BIBLIOGRAPHY 85

Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer Science, pages 265–
284. Springer, 2006.

[50] Nurit Gal-Oz, YaronGonen, Ran Yahalom, EhudGudes, Boris Rozenberg, and Erez Shmueli.

Mining roles from web application usage patterns. In Steven Furnell, Costas Lambri-

noudakis, and Günther Pernul, editors, Trust, Privacy and Security in Digital Business -
8th International Conference, TrustBus 2011, Toulouse, France, August 29 - September 2, 2011.
Proceedings, volume 6863 of Lecture Notes in Computer Science, pages 125–137. Springer,
2011.

[51] Kate Goddard, Abdul V. Roudsari, and Jeremy C. Wyatt. Automation bias: a systematic

review of frequency, effect mediators, and mitigators. J. Am. Medical Informatics Assoc.,
19(1):121–127, 2012.

[52] Patrice Godefroid. Compositional dynamic test generation. In Martin Hofmann and

Matthias Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2007, Nice, France, January 17-19, 2007, pages
47–54. ACM, 2007.

[53] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random

testing. In Vivek Sarkar and Mary W. Hall, editors, Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation, Chicago, IL, USA, June
12-15, 2005, pages 213–223. ACM, 2005.

[54] Tomasz Gogacz and Jerzy Marcinkowski. The hunt for a red spider: Conjunctive query

determinacy is undecidable. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 281–292. IEEE Computer Society,

2015.

[55] Tomasz Gogacz and JerzyMarcinkowski. Red spider meets a rainworm: Conjunctive query

finite determinacy is undecidable. In Tova Milo and Wang-Chiew Tan, editors, Proceed-
ings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 121–134. ACM, 2016.

[56] Joseph A. Goguen and José Meseguer. Security policies and security models. In 1982 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982, pages 11–20. IEEE
Computer Society, 1982.

[57] Matthew Green. Twitter post: Piazza offers anonymous posting, but does not hide each

user’s total number of posts, October 2017. https://twitter.com/matthew_d_green/
status/925053953330634753.

[58] Paolo Guagliardo and Leonid Libkin. A formal semantics of SQL queries, its validation,

and applications. Proc. VLDB Endow., 11(1):27–39, 2017.

https://twitter.com/matthew_d_green/status/925053953330634753
https://twitter.com/matthew_d_green/status/925053953330634753

BIBLIOGRAPHY 86

[59] Marco Guarnieri and David A. Basin. Optimal security-aware query processing. Proc. VLDB
Endow., 7(12):1307–1318, 2014.

[60] Raju Halder and Agostino Cortesi. Fine grained access control for relational databases

by abstract interpretation. In José Cordeiro, Maria Virvou, and Boris Shishkov, editors,

Software and Data Technologies - 5th International Conference, ICSOFT 2010, Athens, Greece,
July 22-24, 2010. Revised Selected Papers, volume 170 of Communications in Computer and
Information Science, pages 235–249. Springer, 2010.

[61] Yang He, Pinhan Zhao, Xinyu Wang, and Yuepeng Wang. Verieql: Bounded equivalence

verification for complex SQL queries with integrity constraints. Proc. ACM Program. Lang.,
8(OOPSLA1):1071–1099, 2024.

[62] Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow control. In Tobias

Nipkow, Orna Grumberg, and Benedikt Hauptmann, editors, Software Safety and Security -
Tools for Analysis and Verification, volume 33 of NATO Science for Peace and Security Series
- D: Information and Communication Security, pages 319–347. IOS Press, 2012.

[63] Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, Anja Jentzsch, and Felix Nau-

mann. Scalable discovery of unique column combinations. Proc. VLDB Endow., 7(4):301–
312, 2013.

[64] Haochen Huang, Bingyu Shen, Li Zhong, and Yuanyuan Zhou. Protecting data integrity

of web applications with database constraints inferred from application code. In Tor M.

Aamodt, Natalie D. Enright Jerger, and Michael M. Swift, editors, Proceedings of the 28th
ACM International Conference on Architectural Support for Programming Languages and Op-
erating Systems, Volume 2, ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023, pages
632–645. ACM, 2023.

[65] Tomasz Imielinski and Witold Lipski Jr. Incomplete information in relational databases. J.
ACM, 31(4):761–791, 1984.

[66] Padmavathi Iyer and Amir Masoumzadeh. Towards automated learning of access con-

trol policies enforced by web applications. In Silvio Ranise, Roberto Carbone, and Daniel

Takabi, editors, Proceedings of the 28th ACM Symposium on Access Control Models and Tech-
nologies, SACMAT 2023, Trento, Italy, June 7-9, 2023, pages 163–168. ACM, 2023.

[67] Padmavathi Iyer and Amirreza Masoumzadeh. Mining positive and negative attribute-

based access control policy rules. In Elisa Bertino, Dan Lin, and Jorge Lobo, editors, Pro-
ceedings of the 23nd ACM on Symposium on Access Control Models and Technologies, SAC-
MAT 2018, Indianapolis, IN, USA, June 13-15, 2018, pages 161–172. ACM, 2018.

[68] JRuby – the Ruby programming language on the JVM. https://www.jruby.org.

https://www.jruby.org

BIBLIOGRAPHY 87

[69] Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. Verified lifting

of stencil computations. In Proceedings of the 37th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2016. ACM, 2016.

[70] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,

1976.

[71] Eddie Kohler. Hide review rounds from paper authors • kohler/hotcrp@5d53abc, March

2013. https://github.com/kohler/hotcrp/commit/5d53ab.

[72] Eddie Kohler. Download PC review assignments obeys paper administrators

• kohler/hotcrp@80ff966, March 2015. https://github.com/kohler/hotcrp/commit/
80ff96.

[73] Paraschos Koutris, Prasang Upadhyaya, Magdalena Balazinska, Bill Howe, and Dan Suciu.

Query-based data pricing. In Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini,

editors, Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 167–178. ACM,

2012.

[74] Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In Natasha

Sharygina and Helmut Veith, editors, Computer Aided Verification - 25th International Con-
ference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of

Lecture Notes in Computer Science, pages 1–35. Springer, 2013.

[75] Brian Krebs. USPS site exposed data on 60 million users, 2018. https://
krebsonsecurity.com/2018/11/usps-site-exposed-data-on-60-million-users/.

[76] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and Joseph M. Hellerstein.

Katara: synthesizing crdts with verified lifting. Proc. ACM Program. Lang., 6(OOPSLA2),
2022.

[77] Leslie Lamport. How to write a long formula (short communication). Formal Aspects
Comput., 6(5):580–584, 1994.

[78] Leslie Lamport. Lower bounds for asynchronous consensus. Distributed Comput.,
19(2):104–125, 2006.

[79] Leslie Lamport. How to write a 21st century proof. Journal of Fixed Point Theory and
Applications, 11(1):43–63, March 2012.

[80] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan, Yirong Xu, and

David J. DeWitt. Limiting disclosure in hippocratic databases. In Mario A. Nascimento,

M. Tamer Özsu, Donald Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard

Schiefer, editors, (e)Proceedings of the Thirtieth International Conference on Very Large Data

https://github.com/kohler/hotcrp/commit/5d53ab
https://github.com/kohler/hotcrp/commit/80ff96
https://github.com/kohler/hotcrp/commit/80ff96
https://krebsonsecurity.com/2018/11/usps-site-exposed-data-on-60-million-users/
https://krebsonsecurity.com/2018/11/usps-site-exposed-data-on-60-million-users/

BIBLIOGRAPHY 88

Bases, VLDB 2004, Toronto, Canada, August 31 - September 3 2004, pages 108–119. Morgan

Kaufmann, 2004.

[81] Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang, Niki Vazou, Nadia Polikarpova,

Deian Stefan, and Ranjit Jhala. STORM: refinement types for secure web applications. In

Angela Demke Brown and Jay R. Lorch, editors, 15th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2021, July 14-16, 2021, pages 441–459. USENIX
Association, 2021.

[82] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering

queries using views. In Mihalis Yannakakis and Serge Abiteboul, editors, Proceedings of the
Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
May 22-25, 1995, San Jose, California, USA, pages 95–104. ACM Press, 1995.

[83] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous information

sources using source descriptions. In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mo-

han, and Nandlal L. Sarda, editors, VLDB’96, Proceedings of 22th International Conference
on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 251–262.
Morgan Kaufmann, 1996.

[84] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark W. Barrett, and Morgan Deters. A

DPLL(T) theory solver for a theory of strings and regular expressions. In Armin Biere

and Roderick Bloem, editors, Computer Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-
22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 646–662.
Springer, 2014.

[85] Mark H. Liffiton and Ammar Malik. Enumerating infeasibility: Finding multiple muses

quickly. In Carla P. Gomes and Meinolf Sellmann, editors, Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems, 10th Interna-
tional Conference, CPAIOR 2013, Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings,
volume 7874 of Lecture Notes in Computer Science, pages 160–175. Springer, 2013.

[86] Mark H. Liffiton, Alessandro Previti, Ammar Malik, and João Marques-Silva. Fast, flexible

MUS enumeration. Constraints An Int. J., 21(2):223–250, 2016.

[87] Lightbend. HOCON (human-optimized config object notation), 2019. Retrieved April 3,

2024 from https://github.com/lightbend/config/blob/main/HOCON.md.

[88] Xiaoxuan Liu, Shuxian Wang, Mengzhu Sun, Sicheng Pan, Ge Li, Siddharth Jha, Cong Yan,

Junwen Yang, Shan Lu, and Alvin Cheung. Leveraging application data constraints to

optimize database-backed web applications. Proc. VLDB Endow., 16(6):1208–1221, 2023.

[89] Jorge Manrubia. jorgemanrubia/lazy_columns: Rails plugin that adds support for lazy-

loading columns in Active Record models, 2015. https://github.com/jorgemanrubia/
lazy_columns.

https://github.com/lightbend/config/blob/main/HOCON.md
https://github.com/jorgemanrubia/lazy_columns
https://github.com/jorgemanrubia/lazy_columns

BIBLIOGRAPHY 89

[90] Alana Marzoev, Lara Timbó Araújo, Malte Schwarzkopf, Samyukta Yagati, Eddie Kohler,

Robert Tappan Morris, M. Frans Kaashoek, and Sam Madden. Towards multiverse

databases. In Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS 2019,
Bertinoro, Italy, May 13-15, 2019, pages 88–95. ACM, 2019.

[91] Mark Maunder. Vulnerability in WordPress Core: Bypass any password protected

post. CVSS score: 7.5 (High), June 2016. https://www.wordfence.com/blog/2016/06/
wordpress-core-vulnerability-bypass-password-protected-posts/.

[92] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter Druschel. Qapla:

Policy compliance for database-backed systems. In Engin Kirda and Thomas Ristenpart,

editors, 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017, pages 1463–1479. USENIX Association, 2017.

[93] Microsoft. Row-level security - SQL Server, 2021. https://docs.microsoft.com/en-us/
sql/relational-databases/security/row-level-security.

[94] Gerome Miklau and Dan Suciu. A formal analysis of information disclosure in data ex-

change. In Gerhard Weikum, Arnd Christian König, and Stefan Deßloch, editors, Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, Paris, France,
June 13-18, 2004, pages 575–586. ACM, 2004.

[95] Ian M. Molloy, Youngja Park, and Suresh Chari. Generative models for access control

policies: applications to role mining over logs with attribution. In Vijay Atluri, Jaideep

Vaidya, Axel Kern, andMurat Kantarcioglu, editors, 17thACMSymposium onAccess Control
Models and Technologies, SACMAT ’12, Newark, NJ, USA - June 20 - 22, 2012, pages 45–56.
ACM, 2012.

[96] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco, Josselin

Feist, Trent Brunson, and Artem Dinaburg. Manticore: A user-friendly symbolic execution

framework for binaries and smart contracts. In 34th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019,
pages 1186–1189. IEEE, 2019.

[97] Amihai Motro. An access authorization model for relational databases based on algebraic

manipulation of view definitions. In Proceedings of the Fifth International Conference on
Data Engineering, February 6-10, 1989, Los Angeles, California, USA, pages 339–347. IEEE
Computer Society, 1989.

[98] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In Andrew W.

Appel and Alex Aiken, editors, POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Antonio, TX, USA, January 20-22,
1999, pages 228–241. ACM, 1999.

https://www.wordfence.com/blog/2016/06/wordpress-core-vulnerability-bypass-password-protected-posts/
https://www.wordfence.com/blog/2016/06/wordpress-core-vulnerability-bypass-password-protected-posts/
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security

BIBLIOGRAPHY 90

[99] AlanNash, Luc Segoufin, and Victor Vianu. Views and queries: Determinacy and rewriting.

ACM Trans. Database Syst., 35(3):21:1–21:41, 2010.

[100] Joseph P. Near and Daniel Jackson. Derailer: interactive security analysis for web ap-

plications. In Ivica Crnkovic, Marsha Chechik, and Paul Grünbacher, editors, ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14, Vasteras, Sweden -
September 15 - 19, 2014, pages 587–598. ACM, 2014.

[101] Joseph P. Near and Daniel Jackson. Finding security bugs in web applications using a cat-

alog of access control patterns. In Laura K. Dillon, Willem Visser, and Laurie A. Williams,

editors, Proceedings of the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, pages 947–958. ACM, 2016.

[102] Oracle. Using Oracle Virtual Private Database to control data access. https://docs.
oracle.com/database/121/DBSEG/vpd.htm.

[103] OWASP Foundation. OWASP Top 10:2021, 2021. https://owasp.org/Top10/.

[104] Oded Padon. Deductive Verification of Distributed Protocols in First-Order Logic. PhD thesis,

Tel Aviv University, Israel, 2018.

[105] Daniel Pasaila. Conjunctive queries determinacy and rewriting. In Tova Milo, editor,

Database Theory - ICDT 2011, 14th International Conference, Uppsala, Sweden, March 21-
24, 2011, Proceedings, pages 220–231. ACM, 2011.

[106] Vern Paxson and Sally Floyd. Wide-area traffic: The failure of poisson modeling. In Jon

Crowcroft, editor, Proceedings of the ACM SIGCOMM 1994 Conference on Communications
Architectures, Protocols and Applications, London, UK, August 31 - September 2, 1994, pages
257–268. ACM, 1994.

[107] Alex Piechowski. Rails: How to use greater than/less than in Active Record where state-

ments, 2019. Retrieved April 17, 2024 from https://piechowski.io/post/how-to-use-
greater-than-less-than-active-record/.

[108] Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando

Solar-Lezama. Liquid information flow control. Proc. ACM Program. Lang., 4(ICFP):105:1–
105:30, 2020.

[109] Amanda Potasznik. ABCs: Differentiating algorithmic bias, automation bias, and automa-

tion complacency. In 2023 IEEE International Symposium on Ethics in Engineering, Science,
and Technology (ETHICS), pages 1–5, 2023.

[110] Alessandro Previti and João Marques-Silva. Partial MUS enumeration. In Marie desJardins

and Michael L. Littman, editors, Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA, pages 818–825. AAAI
Press, 2013.

https://docs.oracle.com/database/121/DBSEG/vpd.htm
https://docs.oracle.com/database/121/DBSEG/vpd.htm
https://owasp.org/Top10/
https://piechowski.io/post/how-to-use-greater-than-less-than-active-record/
https://piechowski.io/post/how-to-use-greater-than-less-than-active-record/

BIBLIOGRAPHY 91

[111] Aleksandar Prokopec and Heather Miller. Overview | Parallel Collections | Scala Docu-

mentation. Retrieved April 16, 2024 from https://docs.scala-lang.org/overviews/
parallel-collections/overview.html.

[112] Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries using tem-

plates with binding patterns. In Mihalis Yannakakis and Serge Abiteboul, editors, Proceed-
ings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, May 22-25, 1995, San Jose, California, USA, pages 105–112. ACM Press, 1995.

[113] Giles Reger, Martin Suda, and Andrei Voronkov. Finding finite models in multi-sorted

first-order logic. In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications
of Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July
5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 323–341.
Springer, 2016.

[114] Phyllis Reisner. Human factors studies of database query languages: A survey and assess-

ment. ACM Comput. Surv., 13(1), 1981.

[115] Raymond Reiter. On closed world data bases. In Hervé Gallaire and Jack Minker, editors,

Logic and Data Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches
de Toulouse, France, 1977, Advances in Data Base Theory, pages 55–76, New York, 1977.

Plemum Press.

[116] Andrew Reynolds, Haniel Barbosa, Daniel Larraz, and Cesare Tinelli. Scalable algorithms

for abduction via enumerative syntax-guided synthesis. In Nicolas Peltier and Viorica

Sofronie-Stokkermans, editors, Automated Reasoning - 10th International Joint Conference,
IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part I, volume 12166 of Lecture Notes
in Computer Science, pages 141–160. Springer, 2020.

[117] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstic, Morgan Deters, and Clark W.

Barrett. Quantifier instantiation techniques for finite model finding in SMT. In Maria Paola

Bonacina, editor, Automated Deduction - CADE-24 - 24th International Conference on Auto-
mated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, volume 7898 of Lecture
Notes in Computer Science, pages 377–391. Springer, 2013.

[118] H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transactions
of the American Mathematical Society, 74(2):358–366, 1953.

[119] Shariq Rizvi, Alberto O.Mendelzon, S. Sudarshan, and Prasan Roy. Extending query rewrit-

ing techniques for fine-grained access control. In Gerhard Weikum, Arnd Christian König,

and Stefan Deßloch, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004, pages 551–562. ACM, 2004.

[120] Arnon Rosenthal and Edward Sciore. View security as the basis for data warehouse se-

curity. In Manfred A. Jeusfeld, Hua Shu, Martin Staudt, and Gottfried Vossen, editors,

https://docs.scala-lang.org/overviews/parallel-collections/overview.html
https://docs.scala-lang.org/overviews/parallel-collections/overview.html

BIBLIOGRAPHY 92

Proceedings of the Second Intl. Workshop on Design and Management of Data Warehouses,
DMDW 2000, Stockholm, Sweden, June 5-6, 2000, volume 28 of CEUR Workshop Proceedings,
page 8. CEUR-WS.org, 2000.

[121] RSpec: Behaviour driven development for Ruby. Retrieved April 16, 2024 from https:
//rspec.info/.

[122] Ruby on Rails Guides. Active Record basics. https://edgeguides.rubyonrails.org/
active_record_basics.html.

[123] Pierangela Samarati. Protecting respondents’ identities in microdata release. IEEE Trans.
Knowl. Data Eng., 13(6):1010–1027, 2001.

[124] Schneider Downs. Security notice: Major online banking platform vulnerability—Fiserv,

2018. https://schneiderdowns.com/our-thoughts-on/online-banking-platform-
vulnerability-fiserv/.

[125] Daniel Schwartz-Narbonne, Martin Schäf, Dejan Jovanovic, Philipp Rümmer, and Thomas

Wies. Conflict-directed graph coverage. In Klaus Havelund, Gerard J. Holzmann, and

Rajeev Joshi, editors, NASA Formal Methods - 7th International Symposium, NFM 2015,
Pasadena, CA, USA, April 27-29, 2015, Proceedings, volume 9058 of Lecture Notes in Com-
puter Science, pages 327–342. Springer, 2015.

[126] Luc Segoufin and Victor Vianu. Views and queries: determinacy and rewriting. In Chen

Li, editor, Proceedings of the Twenty-fourth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 13-15, 2005, Baltimore, Maryland, USA, pages 49–60.
ACM, 2005.

[127] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing engine for C. In

Michel Wermelinger and Harald C. Gall, editors, Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005, pages 263–
272. ACM, 2005.

[128] Jiasi Shen and Martin C. Rinard. Using active learning to synthesize models of applications

that access databases. In Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 269–285. ACM, 2019.

[129] Jiasi Shen and Martin C. Rinard. Active learning for inference and regeneration of appli-

cations that access databases. ACM Trans. Program. Lang. Syst., 42(4):18:1–18:119, 2021.

[130] Jie Shi, Hong Zhu, Ge Fu, and Tao Jiang. On the soundness property for SQL queries

of fine-grained access control in dbmss. In Huaikou Miao and Gongzhu Hu, editors, 8th
IEEE/ACIS International Conference on Computer and Information Science, IEEE/ACIS ICIS
2009, June 1-3, 2009, Shanghai, China, pages 469–474. IEEE Computer Society, 2009.

https://rspec.info/
https://rspec.info/
https://edgeguides.rubyonrails.org/active_record_basics.html
https://edgeguides.rubyonrails.org/active_record_basics.html
https://schneiderdowns.com/our-thoughts-on/online-banking-platform-vulnerability-fiserv/
https://schneiderdowns.com/our-thoughts-on/online-banking-platform-vulnerability-fiserv/

BIBLIOGRAPHY 93

[131] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino, Andrew

Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Krügel, and Giovanni

Vigna. SOK: (state of) the art of war: Offensive techniques in binary analysis. In IEEE
Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages
138–157. IEEE Computer Society, 2016.

[132] Software Freedom Conservancy. SeleniumHQ: Browser automation, 2021. https://www.
selenium.dev/.

[133] Spree Commerce - a headless open-source ecommerce platform. https:
//spreecommerce.org/.

[134] Ben Stock. Search leaks hidden tags • Issue #135 • kohler/hotcrp, June 2018. https://
github.com/kohler/hotcrp/issues/135.

[135] Michael Stonebraker and Eugene Wong. Access control in a relational data base man-

agement system by query modification. In Roger C. Brown and Donald E. Glaze, editors,

Proceedings of the 1974 ACMAnnual Conference, San Diego, California, USA, November 1974,
Volume 1, pages 180–186. ACM, 1974.

[136] Latanya Sweeney. k-anonymity: Amodel for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl. Based Syst., 10(5):557–570, 2002.

[137] The Odin Project. https://www.theodinproject.com/.

[138] Alexandre Torres, Renata Galante, Marcelo Soares Pimenta, and Alexandre Jonatan B. Mar-

tins. Twenty years of object-relational mapping: A survey on patterns, solutions, and their

implications on application design. Inf. Softw. Technol., 82, 2017.

[139] Margus Veanes, Pavel Grigorenko, Peli de Halleux, and Nikolai Tillmann. Symbolic query

exploration. In Karin K. Breitman and Ana Cavalcanti, editors, Formal Methods and Soft-
ware Engineering, 11th International Conference on Formal Engineering Methods, ICFEM
2009, Rio de Janeiro, Brazil, December 9-12, 2009. Proceedings, volume 5885 of Lecture Notes
in Computer Science, pages 49–68. Springer, 2009.

[140] Margus Veanes, Nikolai Tillmann, and Jonathan de Halleux. Qex: Symbolic SQL query

explorer. In Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Ar-
tificial Intelligence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers, volume 6355 of Lecture Notes in Computer
Science, pages 425–446. Springer, 2010.

[141] ChenglongWang, Alvin Cheung, and Rastislav Bodík. Synthesizing highly expressive SQL

queries from input-output examples. In Albert Cohen and Martin T. Vechev, editors, Pro-
ceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 452–466. ACM, 2017.

https://www.selenium.dev/
https://www.selenium.dev/
https://spreecommerce.org/
https://spreecommerce.org/
https://github.com/kohler/hotcrp/issues/135
https://github.com/kohler/hotcrp/issues/135
https://www.theodinproject.com/

BIBLIOGRAPHY 94

[142] Qihua Wang, Ting Yu, Ninghui Li, Jorge Lobo, Elisa Bertino, Keith Irwin, and Ji-Won

Byun. On the correctness criteria of fine-grained access control in relational databases. In

Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer,

Anand Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-Christian

Kanne, Wolfgang Klas, and Erich J. Neuhold, editors, Proceedings of the 33rd International
Conference on Very Large Data Bases, University of Vienna, Austria, September 23-27, 2007,
pages 555–566. ACM, 2007.

[143] Ruowen Wang, Peng Ning, Tao Xie, and Quan Chen. MetaSymploit: Day-one defense

against script-based attacks with security-enhanced symbolic analysis. In Samuel T. King,

editor, Proceedings of the 22th USENIX Security Symposium, Washington, DC, USA, August
14-16, 2013, pages 65–80. USENIX Association, 2013.

[144] YuepengWang, Isil Dillig, Shuvendu K. Lahiri, andWilliam R. Cook. Verifying equivalence

of database-driven applications. Proc. ACM Program. Lang., 2(POPL):56:1–56:29, 2018.

[145] Zhiheng Wang. Navigation timing. W3C recommendation, W3C, December 2012. https:
//www.w3.org/TR/2012/REC-navigation-timing-20121217.

[146] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Inamura, and

Zhendong Su. Dynamic test input generation for web applications. In Barbara G. Ryder

and Andreas Zeller, editors, Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24, 2008, pages 249–260.
ACM, 2008.

[147] Mark D. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.

[148] Zhongyuan Xu and Scott D. Stoller. Algorithms for mining meaningful roles. In Vijay

Atluri, Jaideep Vaidya, Axel Kern, and Murat Kantarcioglu, editors, 17th ACM Symposium
on Access Control Models and Technologies, SACMAT ’12, Newark, NJ, USA - June 20 - 22,
2012, pages 57–66. ACM, 2012.

[149] Zhongyuan Xu and Scott D. Stoller. Mining attribute-based access control policies. CoRR,
abs/1306.2401, 2013. http://arxiv.org/abs/1306.2401.

[150] Zhongyuan Xu and Scott D. Stoller. Mining attribute-based access control policies from

logs. In VijayAtluri andGünther Pernul, editors,Data andApplications Security and Privacy
XXVIII - 28th Annual IFIP WG 11.3 Working Conference, DBSec 2014, Vienna, Austria, July
14-16, 2014. Proceedings, volume 8566 of Lecture Notes in Computer Science, pages 276–291.
Springer, 2014.

[151] Jean Yang, Travis Hance, Thomas H. Austin, Armando Solar-Lezama, Cormac Flanagan,

and Stephen Chong. Precise, dynamic information flow for database-backed applications.

In Chandra Krintz and Emery D. Berger, editors, Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2016, Santa Bar-
bara, CA, USA, June 13-17, 2016, pages 631–647. ACM, 2016.

https://www.w3.org/TR/2012/REC-navigation-timing-20121217
https://www.w3.org/TR/2012/REC-navigation-timing-20121217
http://arxiv.org/abs/1306.2401

BIBLIOGRAPHY 95

[152] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for automatically en-

forcing privacy policies. In John Field and Michael Hicks, editors, Proceedings of the 39th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012,
Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 85–96. ACM, 2012.

[153] Junwen Yang, Utsav Sethi, Cong Yan, Alvin Cheung, and Shan Lu. Managing data con-

straints in database-backed web applications. In Gregg Rothermel and Doo-Hwan Bae,

editors, ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea,
27 June - 19 July, 2020, pages 1098–1109. ACM, 2020.

[154] Meihui Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, Cecilia M. Procopiuc, and Divesh

Srivastava. Onmulti-column foreign key discovery. Proc. VLDB Endow., 3(1):805–814, 2010.

[155] Wen Zhang, Dev Bali, Jamison Kerney, Aurojit Panda, and Scott Shenker. Extracting

database access-control policies from web applications. CoRR, abs/2411.11380, 2024.

[156] Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. Kappa: a programming frame-

work for serverless computing. In Rodrigo Fonseca, Christina Delimitrou, and Beng Chin

Ooi, editors, SoCC ’20: ACM Symposium on Cloud Computing, Virtual Event, USA, October
19-21, 2020, pages 328–343. ACM, 2020.

[157] Wen Zhang, Aurojit Panda, Mooly Sagiv, and Scott Shenker. A decidable case of query

determinacy: Project-select views. CoRR, abs/2411.08874, 2024.

[158] WenZhang, Aurojit Panda, and Scott Shenker. Access control for database applications: Be-

yond policy enforcement. In Malte Schwarzkopf, Andrew Baumann, and Natacha Crooks,

editors, Proceedings of the 19th Workshop on Hot Topics in Operating Systems, HOTOS 2023,
Providence, RI, USA, June 22-24, 2023, pages 223–230. ACM, 2023.

[159] Wen Zhang, Eric Sheng, Michael Alan Chang, Aurojit Panda, Mooly Sagiv, and Scott

Shenker. Blockaid: Data access policy enforcement for web applications. In Marcos K.

Aguilera and Hakim Weatherspoon, editors, 16th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022, pages
701–718. USENIX Association, 2022.

[160] Wen Zhang, Scott Shenker, and Irene Zhang. Persistent state machines for recoverable

in-memory storage systems with nvram. In 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020, Virtual Event, November 4-6, 2020, pages 1029–1046.
USENIX Association, 2020.

[161] Xing Zhang. MySQL 8.0.1: Accent and case sensitive collations for utf8mb4, 2017. Retrieved

Nov 7, 2024 from https://dev.mysql.com/blog-archive/mysql-8-0-1-accent-and-
case-sensitive-collations-for-utf8mb4/.

https://dev.mysql.com/blog-archive/mysql-8-0-1-accent-and-case-sensitive-collations-for-utf8mb4/
https://dev.mysql.com/blog-archive/mysql-8-0-1-accent-and-case-sensitive-collations-for-utf8mb4/

BIBLIOGRAPHY 96

[162] Zheng Zhang and Alberto O. Mendelzon. Authorization views and conditional query con-

tainment. In Thomas Eiter and Leonid Libkin, editors, Database Theory - ICDT 2005, 10th
International Conference, Edinburgh, UK, January 5-7, 2005, Proceedings, volume 3363 of

Lecture Notes in Computer Science, pages 259–273. Springer, 2005.

[163] Zeljka Zorz. OpenEMR vulnerabilities put patients’ info, medical records at risk, 2018.

https://www.helpnetsecurity.com/2018/08/08/openemr-vulnerabilities/.

https://www.helpnetsecurity.com/2018/08/08/openemr-vulnerabilities/

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	The Problem
	The Status Quo
	Past Research
	Our Contributions
	Previous Publications

	Blockaid: Access-control Enforcement
	Introduction
	Related Work
	System Design
	Application Assumptions and Threat Model
	System Overview
	Application Requirements

	View-based Policy and Compliance
	Specifying Policies as Views
	Compliance to View-based Policy
	From Query Compliance to Noninterference

	Compliance Checking with SMT
	Translating Noncompliance to SMT
	Handling Practical SQL Queries
	Optimizations and SMT Encoding

	Decision Generalization and Caching
	Example
	Definitions and Goals
	Generating Decision Templates
	Decision Cache and Template Matching

	Implementation
	Evaluation
	Constraints, Policies, and Annotations
	Code Modifications
	Experiment Setup and Benchmark
	Page Load Times
	Fetch Latency
	Solver Comparison
	Template Generalization
	Artifact

	Additional Issues
	Comparison to row- and cell-level policy
	False rejections
	Off-path deployment
	What if Blockaid could issue its own queries?
	Optimal templates

	Conclusion

	A Decidable Case of Query Determinacy: Project-Select Views
	Introduction
	Setup
	Reducing determinacy to a logical formula
	Statement of Theorem
	Proof of Theorem

	Ote: Access-policy Extraction
	Introduction
	Motivation and Background
	Why Policy Extraction?
	Policy as SQL View Definitions

	Overview
	Workflow
	Assumptions and Scope

	Exploring Executions
	Observation: Simple Query-issuing Cores
	Concolic Execution: What and Why
	System Architecture
	Symbolic Modeling and Input Generation
	Instrumentation and Tracking

	Generating a Policy
	Preprocessing Into Conditioned Queries
	Simplifying Conditioned Queries
	Generating SQL View Definitions
	Pruning Views via Enforcement

	Discussion
	Implementational and Practical Aspects
	Driver and Policy Generator
	Executors
	Tooling

	Evaluation
	Setting Up Applications for Ote
	Experiment Setup
	Paths, Conditioned Queries, and Views
	Performance
	Findings From the Extracted Policies
	Broadening the Extracted Policy

	Related Work
	Conclusion and Future Work

	Future Directions
	Policy Testing
	Challenge: Evaluating a Policy for Sensitive-data Disclosure
	Existing Work: Bayesian Privacy
	Proposal: Prior-agnostic Privacy

	Violation Diagnosis
	Challenge: Troubleshooting Violations
	Proposal: Patch Generation

	Policy Comprehension
	Decidable Compliance Checking

	Bibliography

