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Abstract

High-Performance Bio-sensing ICs

by

Sina Faraji Alamouti

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Rikky Muller, Chair

Recording of bio-signals from the human body has undergone significant improvements in
terms of power, speed, and form factor in the past decade due to the help of low-cost com-
pact IC-based solutions. Recent development of these devices focus on integrating multiple
sensor inputs in a single IC, enhancing the robustness of the sensor in the face of challenges
in ambulatory settings, as well as including some level of smartness in the sensor operation
to improve its performance. In this dissertation, a couple of novel examples of the above ICs
are presented that achieve state-of-the-art performance while delivering the target function-
ality. In the first chapter, a heart-rate and oxygen saturation monitoring IC is proposed that
leverages a sparse sampling algorithm to significantly lower the sensor power consumption
and increase battery life. Then in chapter 3 a sensor IC is discussed that utilizes body-sensor
impedance information to help combat the impact of users’ motion artifact in biopotential
recordings. Lastly, an ultra-low noise current sensor IC is covered in chapter 4 that enables
multi-channel sensing of very small electrical currents in biomedical applications. The per-
formance of the above sensor ICs are compared against prior arts and future directions of
these projects are discussed at the end of each chapter.
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Chapter 1

Biosensors, Goals and Challenges

1.1 History of Biosensing

The recorded history of sensing signals from the body dates back to 2600 BC where Gilgamesh
first described and recognized the death of his dear friend by not being able to feel his heart
beat, “I touch his heart but it does not beat at all” he said [14]. But as it appears, it took
human beings millennia to improve on the methods and add to the signals and information
recorded from the body. In 1625 when Santorio of Venice and Galileo published their body
thermometer, it was one of the first attempts to try to use an apparatus for recording of
a vital sign [56]. After about 80 years, Floyer’s report on measuring the timing of pulses
using a pendulum was published in 1707 [71]. This trend continued until in 1903 when
the first EKG machines were introduced [7]. Later on in 1950s, electrical activity of single
neurons in brain of mammals was measured using wires [67]. Later, the advent of patch-
clamp electrophysiology in 1970s provided a lot of insight into the synaptic transmission of
neurons [60]. In the 1980s to 1990s, silicon microelectrode arrays became the main tool in
investigating the communication of neuron groups [16] and even today they still form the
standard method in recording of neural activity.

Recording of such signals has always been aimed to provide information about how certain
systems and organs in the body operate, assist diagnosis of many physiological and neuro-
logical diseases, enhance the prognosis of various medications and treatments, as well as to
develop a more thorough understanding of the underlying mechanisms for various illnesses.

1.2 Biosensor Interfaces

Any apparatus used to acquire a biosignal needs to interface with one or multiple parts of
the body. Depending on the signal of interest, the recording site, and the signal quality,
the type of interface can change. There is a wide spectrum of ways for a device to interact
with the human body. From mechanical contact to the body such as in sensing of ECG
using piezoelectric materials [23], electrical connection such as in EKG machines, optical
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Wet ElectrodesDry Electrodes

Figure 1.1: Dry snap electrodes fabricated by Florida Research Instruments and generic wet
electrodes useful for biopotential measurements.

interfaces as in pulse-oximeters, magnetic and radio-frequency readout such as MRI, high-
intensity particles penetrating the body as in X-ray imaging, to the biochemical analysis
of body gas or fluids such as human exhales [15]. The focus of this dissertation is however
only on electrical and optical interfaces and the following sections review these two interfaces
more thoroughly.

Electrical Interfaces

Recording of biopotentials such as Electrocardiogram (ECG), Electroencephalogram (EEG),
Electromyogram (EMG), and neural signals such as local field potentials (LFP) and spikes
requires electrical contact between the sensor and the recording site. This electrical connec-
tion occurs via conductive electrodes contacting the skin, tissue, or nerve endpoints. The
advantage of electrical contact is that it provides the most direct access to the recording
target and as a result it generally achieves a higher signal quality. Fig. 1.1 shows two sets
of dry and wet electrodes useful for biopotential recording. On the other hand, there are
a few challenges in making electrical contact to the targets. For one, such a contact re-
quires physical access to the target point and if the target resides within the human body,
surgical procedures followed by maintaining an open incision is required. Moreover, the for-
eign body response generally degrades the recorded signal quality over time and necessitates
re-implantation. To address this, wirelessly operating implants have been proposed in the
literature to minimize tissue scarring and extend the sensor lifetime in the body [20, 3].
However, this challenge by itself is enough to restrict electrical readout to only applications
where the information is otherwise inaccessible such as recording of deep brain neural signals.
Another challenge in using electrodes for connection is to achieve a low-impedance contact
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Figure 1.2: Apple Watch heart rate and blood oxygen sensors on its back consisting of four
LEDs and four photodiodes.

especially when contacting a dry surface such as skin. This will cause a degradation in the
signal quality, higher susceptibility to common mode noise and interference, as well as an
elevated interface noise level. Chapter 3 focuses on an ambulatory ear-EEG recording device
that directly deals with this problem and discusses a potential solution to this challenge.

Optical Interfaces

One other approach in collecting biosignals is the use of light propagation, attenuation, or
phase shift when passing through the biological medium. Optical approaches have recently
found a lot of interest due to their potential in providing access to information within rel-
atively deeper anatomical areas without the need for incisions or tissue displacement. Fig.
1.2 shows Apple Watch series 7 optical sensors that capture user’s heart rate and blood
oxygenation level using a circular array of four LEDs and four photodiodes. One of the most
commonly used optical methods in retrieving biological signals is the measurement of pulse
by recording the time domain changes in the venous tissue volume in response to the pul-
satile blood flow. The technique, known as photoplethysmography or PPG in short, detects
a pulsatile component in the transmitted or reflected light from the tissue whose periodicity
corresponds to the cardiac cycle. A major benefit of this technique is that it provides one
of the least invasive methods of acquiring the pulse. The topic of PPG and its sensors will
be discussed in greater detail in chapter 2. There are plenty of other optical applications
that extract information from the body. Optical coherence tomography (OCT) for example
provides micrometer resolution 3D scans of the human tissue with detail information about
every layer using a low coherence light. This technique has been used for reconstruction of
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3D scans of retinal cells [68]. Another application has to do with monitoring of neural activ-
ities using optical methods, a field known as optogenetics [82]. Many individually selected
neurons are simultaneously excited using a spatial light modulator and the response can be
recorded using high sensitivity imagers. Chapter 4 focuses on a recording device that can
serve as an implantable imager to capture fluorescent activity of neurons.

One of the challenges of optical methods however is that since the light needs to propagate
back and forth into the tissue, it generally requires a higher power level at the source when
providing the desired signal with su�cient levels of SNR. This is why many of the optical
biosignal recording systems are constrained by either the sensor battery life or the maximum
light intensity allowed to penetrate the tissue without exceeding the standard tissue heating
limits. Chapter 2 further discusses this bottleneck and proposes an algorithmic solution in
the case of pulse-oximeters.

1.3 Biosensing ICs

The development of microfabrication techniques and compact integrated circuits began mak-
ing an impact on the world of biomedical devices in its early years [61]. From data acquisition
and telemetry in implantable devices to transcutaneous devices such as X-ray and ultrasonic
imagers, defibrillators, etc. all benefited from compact chips performing analog amplifica-
tion or digital operations. But the first distinct IC published in ISSCC dates back to 1969
where a reading aid device was proposed consisting of an integrated photo-transistor array
reading the image and a switch matrix that interacted with piezoelectric transducers creat-
ing mechanical feedback to the blind to perform direct image translation [47]. Ever since
that date, ISSCC has witnessed an ever increasing number of articles focused on biomedical
applications. Fig. 1.3 shows the number of papers published in ISSCC from 2006 to 2023
relating to a biomedical application. As seen, on average the number of these papers have
increased by more than 4⇥ since 2008 highlighting the significance of the biomedical appli-
cations in the field of IC design. This increase in the number of publications stems from
opportunities enabled by IC design techniques to improve the existing sensors and devices
from many aspects.

With a brief review of the published articles on biomedical applications, a number of
noticeable trends can be observed among the majority of these papers. Many of these articles
aim to exploit the IC form factor to integrate multiple sensor and actuator modalities on a
single die, or increase the number of readout and stimulation channels in the chip. Another
group of these works employ novel circuit and architectural ideas to improve the signal to
noise ratio and the overall quality of sensor output data or to significantly lower the power
consumption of the sensor especially in the case of wearable health monitoring devices and
medical implants. Lastly in some cases, new sensing or actuation modalities have been
introduced enabling completely new applications.
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Chapter 2

Low Power HR & SpO2 Sensing

2.1 Motivation

Timely diagnosis of many chronic cardiovascular and respiratory systems diseases can be en-
abled through continuous monitoring of vital signs such as heart rate (HR), blood oxygena-
tion level (SpO2), respiration rate, blood pressure etc. [4, 5, 72, 49, 17, 70]. A comfortable,
wearable device can track these vital signs autonomously, unobtrusively, and without the
user’s intervention, allowing changes to be immediately detected and reported to medical
sta↵, preventing disease progression. Similarly in patients with a history of heart failure,
remote monitoring of vital signals has proven essential in early recognition of potential con-
gestions [5, 70]. Moreover, in the setting of COVID-19, remote monitoring provides the
healthcare workforce with real-time biodata without needing any physical contact, reducing
the spread of infection [72]. As a result, the interest and market for biosensors in at home
care continue to grow. A similar trend is observed for health monitoring wearable devices
including smart-watches, rings, and health patches [49]. These devices aim to record a user’s
vital signs without their intervention. The biodata is recorded, stored, and presented to
the user via application interfaces and can be used to warn users of an abnormal condition.
Traditionally, electrocardiography (ECG) has been used to accurately measure HR and car-
diac waveforms; since it requires access to multiple sites across the body, the subject has to
trigger these measurements and thus, it cannot be performed continuously. Photoplethys-
mography (PPG) is an attractive method to acquire biodata such as HR due to its fully
optical, non-invasive nature where the sensors do not even need to contact the subject skin.
In addition, using light from two distinct wavelengths, typically red and infra-red (IR), the
SpO2 of the subject can be extracted, a technique known as pulse oximetry. Figure 1 shows
the operation of a pulse oximeter where light sources, typically LEDs, are driven sequen-
tially and the reflected light is received by a photodiode (PD), inducing a photocurrent that
contains the PPG signal. A current sensing IC, shown in figure 1, then samples and digitizes
the photocurrent to output the information.
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Figure 2.1: Reflectance mode pulse oximetry and typical SpO2 sensing IC block diagram.

2.2 Devices, Methods, and Prior Arts

Silicon PDs and LEDs are commonly used in today’s SpO2 sensors. Despite great respon-
sivity and mm-scale sizes, they are rigid devices that eventually impact the dimensions and
conformality of the sensor. Organic optical devices however are lightweight, mechanically
flexible, and shock resistant, and thus o↵er a more conformal solution, improving user com-
fort [44, 39, 31]. Flexible vital sign monitoring patches can therefore be built to seamlessly
integrate into clothing and be comfortably worn over long durations [31, 11]. In addition,
these devices can be printed using low-cost fabrication processes, reducing the overall cost
of the health monitoring patches [84, 26].

Commercial SpO2 sensors operate with mWs of power to drive the LEDs posing strict
limits on the sensor battery life. Use of OLEDs further restricts the battery life as these
devices generally require higher drive voltages, up to 8 V [31]. Duty cycling has been used in
prior arts [10, 63] to lower the power consumption of the overall system at the cost of increased
noise bandwidth, impacting signal-to-noise ratio (SNR). The parasitic capacitance of the PD
(CPar) impacts the input referred noise of the transimpedance amplifier (TIA) by attenuating
the feedback factor as the frequency increases [13]. CPar in silicon PDs ranges from sub-pF
to 100s of pF depending on the size of their active area. OPDs however exhibit a much larger
CPar up to 10 nF which can exceed the maximum capacitance handled by many of the prior
arts. It is thus critical that a sensor IC aimed for a wearable can operate with a wide variety
of devices and a wide range CPar. On-chip photodetectors were employed to significantly
lower the detector and the interface parasitic capacitance and as a result compensate the
SNR penalties at extremely low duty cycle ratios [10, 27]. However, on-chip photodiodes
generally o↵er inferior responsivities compared to their o↵-the-shelf counterparts, reducing
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the power saving benefits of this approach. In addition, there are fundamental limitations on
how fast the LEDs can operate as well as the response bandwidth of the PDs, restricting the
lower bound of the duty cycle. Moreover, this technique cannot be extended to using organic
devices as they are usually fabricated on plastic substrates. [2] tried to balance the tradeo↵
between SNR and the LEDs and readout power by setting the front-end bias current. The
technique significantly reduced the readout power, but the LEDs still dominated the sensor
power consumption. Compressive sampling was first introduced in [54] to exploit the sparse
nature of the PPG signal and thus save power by reducing the number of sample points.
Despite excellent results for HR estimation from the compressively sampled data, SpO2

measurements required full reconstruction of the PPG waveform out of randomly selected
samples, demanding up to 10 mW of processing power [54]. [38] presented the heart-beat-
locked-loop technique to make the sensor lock to the PPG signal period and selectively
sample the PPG peaks to report HR data. A comparator-based design was used that only
detected the input peaks, outputting a digital clock that was synchronized to the input
period. This lowered the LED power by a factor of ⇠6.5⇥, but since the PPG waveform was
not digitized, no SpO2 measurements were performed.

This work presents an SpO2 and HR monitoring IC utilizing a reconstruction-free sparse
sampling algorithm to reduce the overall system power consumption by about 70%. The
remainder of this chapter is strcutured as follows. Section 2.3 outlines the system require-
ments and the overall architecture of the sensor. In section 2.4, the proposed sparse sampling
algorithm is discussed. Section 2.5 describes the circuit-level details of the implemented IC.
Bench-top electrical and in vivo measurement results are presented in section V followed by
the conclusions and comparison against selected prior arts in section VI.

2.3 System Overview

System requirements

As discussed in [48], the PD photocurrent contains multiple components including the de-
tector dark current, the ambient photocurrent, and the reflected light’s baseline (IDC) and
pulsatile (IAC) components. The overall input baseline component is commonly 40-60 dB
stronger than the pulsatile signal. Thus, without any subtraction, the readout chain will
need a very large dynamic range, greater than 100 dB [62], which can pose challenges in
realizing a low power readout.

The PPG IAC is a low frequency signal with most of its power residing between 0.5 to
5 Hz, which according to the Nyquist theorem can be sampled with frequencies as low as
10 Hz. However, as explained in [38], the timing resolution of the PPG samples can impact
the accurate detection of pulsatile peaks, which in turn a↵ects the reported HR error of the
sensor. Therefore, a sampling frequency of a few 10s to 100s of Hz is typically selected. In
this work, to achieve an average HR error of less than 1 bpm, a sampling rate of 100 S/s is
used. Furthermore, to extract SpO2 with a 2% error, the sensor requires nearly 40 dB of SNR
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[21], which determines the noise level of the readout. The amplitude of IAC depends on many
biological factors such as the structure, thickness, and color of Epidermis and Dermis, optical
factors such as wavelength of light and devices’ responsivities, and mechanical factors such as
distance between the sensor and tissue as well as the angle of emission. These factors cause
the IAC to vary over a wide range from a few nAs to up to 100s of nAs. Thus, to maintain
the required SNR for low amplitude inputs, the readout input referred noise density needs
to be approximately 1-10 pA/rtHz.

Sensor architecture

The block diagram of a typical SpO2 sensing IC is shown in Fig. 2.1. LEDs are driven
sequentially using on-chip current sources, emitting light at red (660 nm) or green (530nm)
as well as IR (880 nm) wavelengths to the tissue. The received photocurrent with a baseline
component as large as a few µAs is digitized by the readout. To relax the dynamic range
requirements of the chain, the large input DC component is subtracted using di↵erential
current DACs (I-DACs). The remaining AC component is then amplified, filtered, and
digitized through the readout chain. On-chip digital back-end computes the required code
for the DACs, closing the servo-loop. The digitized data is transmitted to an FPGA or a
PC via a serial programming interface.

Large values of CPar are an obstacle in achieving low input referred noise in current
sensing frontends. Furthermore, CPar poses a constraint on the achievable transimpedance
gain and bandwidth in the TIA. As a result, handling very large values of CPar as in OPDs
necessitates careful design of the TIA and readout chain. Prior arts have used both capacitive
and resistive feedback types in the TIA architecture.

Traditionally, TIAs with capacitive feedback (CTIA) are deployed to achieve the lowest
input referred current noise [13]. However, most CTIA designs only handle a few pFs of
parasitic capacitance at the TIA input. In order to acquire the current signal out of OPDs
with up to 10 nF of CPar, such topologies would require very large values of feedback and load
capacitors (100s of pF) to deliver the required noise performance while realizing a reasonable
gain. This can result in very large area occupation and demand larger transconductances,
increasing the overall power consumption of the TIA. In resistive-capacitive TIAs (ZTIA),
the feedback resistor enhances the feedback factor at lower frequencies. This causes the
output noise spectrum to only increase at high frequencies, a phenomenon known as “noise
peaking”. The output noise PSD of the ZTIA can be written in a simplified form as follows:
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with gm, RF , and CF representing the e↵ective transconductance of the OTA, the feedback
resistance and capacitance. Only the OTA thermal noise as well as the feedback resistor’s
Johnson noise is considered in this analysis. The bandwidth of this noise peaking can be
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Figure 2.2: PPG signal AC and DC components. Red and IR signals are computed after
subtracting the AMB sample, performing system level CDS.

greater than the system’s observation bandwidth. It is therefore possible to attenuate the
TIA’s high frequency noise by means of su�cient filtering through the subsequent blocks.
The appendix section covers the derivation of (1) as well as the comparison between CTIA
and ZTIA topologies in greater detail. As a result, a ZTIA readout chain can potentially
deliver a lower input referred noise compared to CTIA based architectures when CPar is very
large and is hence chosen in this design.

2.4 Sparse Sampling of PPG Signal

HR and SpO2 extraction

Fig. 2.2 shows a typical PPG waveform containing both AC and DC components. The
period (T) of the AC component represents a heart-beat cycle and can be used to compute
HR. Thus, PPG using a single LED is su�cient to provide HR information. Prior arts have
routinely used the average value of the period over 2 or 8 second windows. In this paper, an
8 second window is selected to report HR. (Eq. 2.2)

HR =
60

T
(2.2)

SpO2, however, depends on relative concentration of oxygenated versus de-oxygenated
hemoglobin, and hence, needs information at two di↵erent light wavelengths. As light passes
through the tissue, it is attenuated by di↵erent elements and this attenuation is described
by the extinction coe�cient. Light at red and IR wavelengths have been used traditionally
[79] since they o↵er the largest di↵erence in extinction coe�cients when passing through
oxygenated and de-oxygenated hemoglobin. The value of SpO2 is computed based on the
ratio of AC component over the DC component of red and IR PPG waveforms (Eq. 2.3 &
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Figure 2.3: Sparse sampling algorithm. The sensor transitions to sparse mode after learning
T over multiple cycles where it predicts next PAVs.

2.4). [31]

ROS =
IACRed

IDCRed

/
IACIR

IDCIR

(2.3)

SpO2 =
"HbRed

� "HbIR · ROS

"HbRed
� "HbO2Red

+ ["HbIR � "HbO2IR ] · ROS
(2.4)

where " is the extinction coe�cient of light at red or IR wavelength through oxygenated or
de-oxygenated hemoglobin. To compute SpO2, only the peak and valley (PAV) values of the
PPG signals are needed in the two wavelengths. It is therefore possible to only sample the
signal PAVs and as a result save power.

Sparse sampling algorithm

The idea of the proposed sparse sampling algorithm is shown in Fig. 2.3 where the sensor
has two modes of operation. The flowchart of this sparse sampling algorithm is also shown
in Fig. 2.4. The sensor starts by uniformly sampling the PPG signal at 100 Hz (continuous
mode). The period of the AC component (T) is learned over multiple cycles. Once a stable
value is realized, the sensor enters the sparse mode where it predicts the upcoming PAVs and
takes a few samples centered around them. A window size (W) of dT/8e is initially selected
which can then be reduced upon successful detection of PAVs. A smaller W means that
fewer samples are taken and as a result the overall power is decreased. However, larger W
allows the backend to accurately detect PAVs in the presence of high heart rate variability.
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Figure 2.4: Sparse sampling algorithm flow-chart. The system begins with continuous mode
sampling at fs = 100 Hz and then transitions to sparse mode upon learning the period, T.

Therefore, cycle-to-cycle updates are made to the estimated value of T to adjust for any
period drift. If PAVs are repeatedly missed due to rapid drifts or large motion artifacts, the
sensor expands its observation window by increasing W until a programmable maximum,
WMax. Without new PAVs detected, the sensor can revert to the continuous mode to re-
learn T. The computed T, together with samples taken from signal’s PAVs are adequate to
provide both HR and SpO2 information.

Proper detection of PAVs by the backend depends on the SNR of the sparse samples as
well as how fast the input is changing. To evaluate the performance of the proposed algorithm
at di↵erent SNR levels and a range of HR values, a set of MATLAB simulations are run that
quantify the reported HR error. The results of such simulations provide information about
the required SNR levels at di↵erent heart rates to achieve the desired 1 bpm accuracy.
These simulations were run with a sine wave input at frequencies ranging from 0.5 to 3 Hz,
corresponding to HRs of 30 to 180 bpm, and at amplitudes corresponding to SNRs from 28
to 56 dB. In each run, sparse sampling is performed on the sine wave input and the estimated
periods are recorded, averaged over 8 second windows. A total of 12,800 simulations were
conducted to capture the mean and variance of the reported HR errors. The results are
shown in Fig. 2.5, where the solid lines show the mean error, and the green shades represent
the ±3� of the computed HR errors. The results confirm that the proposed algorithm
provides a robust operation under a wide range of SNR and heart rates. Furthermore, the
results demonstrate that a minimum SNR of ⇠30 dB is su�cient in achieving sub-1 bpm
HR error for HRs up to 180 bpm. A similar test is performed in measurements to quantify
the performance of the sensor and the results will be discussed in section V.
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Figure 2.5: Simulated sparse mode HR error for input sine waves at di↵erent frequencies and
SNRs. Green shades show the ±3� range of the error.

2.5 Circuit Implementation

Frontend architecture

Fig. 2.6 shows the detailed block diagram of the transimpedance frontend (TFE) as well
as the on-chip digital backend (DBE). The PD is connected and read out di↵erentially at
the channel input. The di↵erential readout eliminates the need for a separate low noise bias
voltage on the other end of the photodiode. The 0 V bias across the detector also minimizes
the PD dark current [25]. 8-bit (5-bit thermometer/3-bit binary coded) di↵erential I-DACs
(P and N-DACs) subtract the DC current at the input up to 15 µA. Since the PD current
is always in the same direction (cathode to anode), the P and N-DACs at the input are
connected considering this polarity. The I-DAC LSB reference current is tunable from 20
to 60 nA to provide a wider range and granularity for the subtraction. N and P I-DAC
codes are computed separately to adjust for any mismatch and gain error between them.
This calibration only occurs once and the resulting coe�cients are programmed into the
backend. The DC DAC code for each phase is computed, stored, and updated separately
for fastest operation. I-DAC codes are also re-timed prior to entering the DACs to enhance
synchronicity and prevent race related glitches. The output current of the I-DACs settles
to its expected value in less than 5 µs to not reduce the e↵ective signal duration. The
bandwidth of the servo-loop is set via a programmable digital attenuation in the feedback
path to have a high-pass corner of ⇠0.1 Hz. The remaining AC component of the signal is
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Figure 2.6: Detailed channel block diagram of the chip. The LED driver module is high-
lighted to indicate the use of HV devices that support up to 8 V of supply.

then amplified via a di↵erential ZTIA followed by a reset integrator that provides additional
gain and boxcar averaging, obviating the need for an explicit anti-aliasing filter. A 12-bit
synchronous SAR ADC samples the integrator output and delivers the digital code to the
DBE.

The timing of TFE operation is diagrammed in Fig. 2.7. Every sample consists of three
back-to-back phases. Red and IR signals are acquired followed by an ambient (AMB) phase
where no LED is on and the photocurrent due to the ambient light as well as the PD dark
current are sampled. AMB must be sampled with each red/IR sample since there can exist
time-varying changes in the ambient lighting as well as reflected pulsatile components during
this phase. AMB subtraction also serves as a system level correlated double sampling (CDS)
that helps remove any o↵set and flicker noise [63]. TRST and TInt are programmable settings
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Figure 2.7: Detailed timing diagram of the operation of the sensor. Every set of samples
consists of three phases, red, IR, and ambient.

that set the reset and integration durations for TFE. In most measurements, TInt is set from
25 µs to 100 µs with TRST as short as 5 to 10 µs. An on-chip timing unit provides all timing
signals to the TFE and LED driver sub-blocks to maintain synchronicity. A peak and valley
analysis block within the DBE performs algorithm computations and triggers counters that
determine the upcoming sampling windows.

ZTIA design

As previously discussed, a ZTIA topology is utilized to accommodate a wide range of photo-
diode capacitance (CPar) while maintaining a high SNR. The use of a resistor in the feedback
eliminates the reset noise (kT/C) and the need for a separate CDS phase. Fig. 2.8 shows
the schematic of the 3-stage current reuse core OTA. The current reuse topology enhances
the performance by doubling the e↵ective current e�ciency factor (gm/ID) of each stage.
The fully di↵erential architecture also provides better immunity against supply and common
mode noise sources, as well as improved linearity. Fig. 2.9 plots the closed-loop bandwidth
and phase margin (PM) of the TIA for CPar ranging from 1 pF to 10 nF. As shown, larger
values of CPar reduce the overall bandwidth and as a result increase the PM. The loop main-
tains a minimum PM of 62� across the entire CPar range. Local and global common mode
feedback networks are included to provide common mode bias and improve common mode
rejection. Reset switches connect the inputs and outputs of the TIA during the RST phases
to quickly bring the outputs to the mid-rail bias point. Values of RF and CF are tunable
to provide a gain of 1 to 5 M⌦ and an adjustable bandwidth. The entire OTA is power
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Figure 2.8: Schematic of the ZTIA core OTA. Current reuse topology enhances current
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common mode, enhancing CMRR.

Figure 2.9: Post-extraction simulated TIA bandwidth and phase margin vs. CPar. The OTA
shows a minimum of 62� of phase margin over the entire CPar range.

gated using low resistance NMOS transistors to save power outside of sampling windows.
The power gating is implemented using switches at the source terminals of the tail current
sources to minimize the switching glitch.
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Reset integrator and SAR ADC

The RC integrator captures the TIA output over TINT and provides di↵erential outputs to
the SAR ADC sampling capacitors. A SAR topology is selected to achieve a low power
consumption while providing the required resolution. The value of CInt is tunable to allow
for adjustable gain. The integrator is reset at the beginning of every phase via the RST
switches. During reset phase, the core OTA is put in unity gain feedback both to empty the
integration capacitor as well as to achieve the desired common mode voltage at the OTA
input and output nodes. Furthermore, this integration and reset provides a boxcar averaging
transfer function detailed in Eq. 2.5.

HSinc(f) =
TInt

RInt · CInt
· Sinc(TInt · f) (2.5)

This low pass transfer function significantly attenuates the high frequency noise content
of the TIA output. The feedback capacitors are sized such that the reset kT/C noise of
the integrator is insignificant when referred to the channel input. Similar to the OTA, the
integrator is shut down outside of sampling windows to save power.

A 12-bit synchronous SAR ADC is implemented using monotonic switching scheme that
only needs half the total capacitance compared to traditional switching methods. The ADC
uses a 4 fF unit standard cell MOM capacitor to achieve 12-bit linearity. The total ADC
sampling cap. is ⇠ 16pF keeping the ADC kT/C sampled noise standard deviation less than
16 µV. The ADC uses a 1.1V reference voltage for conversion giving an LSB of ⇠ 265 µV. The
SAR ADC uses a 2 MHz reference clock provided by the DBE to perform the conversions.
ADC conversion is done shortly after the LED pulse is over and using the 2MHz conversion
clock, the ADC output sample is ready in less than 8 µs.

Peripheral circuits

An on-chip PTAT current reference is used to supply the bias current of all analog sub-
blocks. The PTAT nature of the reference increases the bias current in proportion to the
temperature to maintain a constant noise level in the readout chain. An on-chip HV LED
driver, shown in Fig. 2.10 is implemented to drive the LEDs with up to 16 mA of current.
The driver uses HV transistors that operate with up to 8 V of supply voltage, enabling the
use of OLEDs. The driver is controlled by the timing unit and sinks the current from the
LEDs. The drive strength is 5-bit tunable and is separately set for red and IR phases. The
entire driver unit is power-gated using HV NMOS switches to minimize wasted power outside
of the LED operation phases. Fast start-up circuit quickly brings up the driver bias unit in
less than 1 µs. LV (1.1 V) to HV (5-8 V) logic level-shift blocks are implemented within the
driver cell to minimize the travel distance of HV logic signals.

The driver unit is tested and its drive current is measured when driving an OLED with
about 5.7 nF of parasitic capacitance with up to 16 mA of current. As shown in Fig. 2.11,
the current waveform settles in less than 6 µs for all levels of current. The HV shorting
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Figure 2.10: The schematic of the HV LED driver is shown. The entire unit is power gate
to save power in between the samples.

PMOS switches quickly turn o↵ the OLED once the integration pulse is over bringing the
current to zero in less than 7 µs.

2.6 Measurement Results

Chip micrograph and power breakdown

The IC was fabricated in a TSMC 40 nm HV technology and occupies an area of 1.35 ⇥
1.8 mm2. Fig. 2.12(a) shows the chip micrograph. Two identical channels are implemented
on the chip where channel #2 contains features and test amplifiers intended for testing
and debugging purposes. The chip power breakdown is depicted in Fig. 2.12(b) & (c). In
continuous mode, the sensor consumes a total of 49.7 µW with 45.1 µW, 1.22 µW, and 3.34
µW drawn by the two LEDs, the TFE, and the DBE respectively. Sparse mode significantly
lowers the system power consumption to 15.2 µW with LEDs and TFE power going down
by ⇠75%, while increasing the DBE power by only 2%. The pie chart in Fig. 2.12 shows the
breakdown of power consumption of the individual sub-blocks within the TFE in continuous
mode where most of the power is dissipated in the ZTIA (79%) to maintain a low input
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6�s 7�s

Figure 2.11: The driver current waveform up to 16 mA when driving an OLED with up to
5.7 nF of CPar.

Block Name Power (µW)

ZTIA 0.96

CT Integ. 0.178

SAR ADC 0.044

IDAC 0.034

Total 1.216
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SAR ADC
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LED Driver
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45.1µW
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LED Power
Cont. Sparse
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TFE Power
Cont. Sparse

1.2µW 0.32µW

73.7% lower

DBE Power
Cont. Sparse

3.34µW 3.43µW
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Figure 2.12: Chip micrograph (a). TFE power breakdown in continuous mode. (b) System
power reduction between continuous mode and sparse mode. (c)

referred noise.
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Electrical measurements

The performance of the TFE was characterized via benchtop electrical measurements and
the results are presented. Fig. 2.13(a) shows the input referred noise (IRN) spectrum of
the readout at 40 M⌦ of overall gain. The measurement was performed with a CPar = 40
pF matching the capacitance of the commercial PD. It achieved a noise spectrum density of
4.8 pA/rtHz and 10.8 pArms integrated noise over the 5 Hz bandwidth. IRN increased with
CPar as plotted in Fig. 2.13(b) for CPar as large as 10 nF, the largest measured capacitance
of the OPDs [31]. The ADC output spectrum for a 2 Hz sine wave input with 50 nApp of
amplitude is shown in Fig. 2.13(c). The TFE achieved an SFDR of 68.3 dB and an SNDR
of 62.4 dB with the 3rd harmonic forming the largest spur.

The simulation results from section III (Fig. 2.5) were verified via similar benchtop
measurements. A set of 48 measurements were performed while providing a sine wave to
the TFE with sparse mode enabled. The frequency of the sine wave was swept from 0.5 to
3 Hz, corresponding to 30 to 180 bpm HR. Two di↵erent amplitudes were selected for the
input sine wave to achieve two distinct SNR levels, 32 dB and 44 dB. Fig. 2.14 presents
the measured e↵ective HR error for every experiment. The measured results are well in
agreement with the simulation, confirming the performance and robustness of the algorithm.
Less than 1 bpm of average error was measured with an SNR as low as 32 dB for HR up to
180 bpm.

In vivo results

A set of in vivo experiments were performed with the sensor in both continuous and sparse
modes of operation. In these experiments, the sensor was placed on the index finger of a
healthy adult in a sitting position, under typical incandescent lighting and at room tem-
perature. To evaluate the accuracy of the sensor output, a clinical grade pulse-oximeter
(Wellue HPO) was attached to the subject’s ring finger to perform measurements simulta-
neously with the sensor IC. In the first experiment, commercial PDs and LEDs were used
as interface devices and the PPG signal, the HR, and the SpO2 results were recorded. Fig.
2.15 plots these results against data from the clinical reference. The accuracy of the sensor
was maintained after transitioning to sparse mode where the HR and SpO2 mean absolute
errors only rose from 0.3 bpm and 0.5% to 0.4 bpm and 0.7% respectively. The errors were
computed based on the total 40 seconds duration of the recording presented in Fig. 2.15 in
both modes of operation. Fig. 2.16 shows a set of 30 similar recordings of HR and SpO2

measurements in sparse mode and compares the results against the clinical reference. The
measured standard deviation of error for HR and SpO2 recordings were 0.24 bpm and a
0.21% respectively.

A similar experiment was performed using a set of flexible organic devices discussed in [31]
and [25]. The OPD has a measured CPar of 4.8 nF, less than 10 nA dark current at 0 V bias,
and provides a quantum e�ciency (QE) of ⇠30-40% over the red and IR wavelengths [25].
The red and IR OLEDs exhibit about 5.7 nF and 6.2 nF of parasitic capacitance respectively



CHAPTER 2. LOW POWER HR & SpO2 SENSING 21

10.8 pArms(a)

(b)

(c)

Figure 2.13: Electrical testing results. (a) IRN spectrum for a 40 pF CPar. (b) Integrated
IRN over 5 Hz bandwidth vs. CPar. The red dot corresponds to the spectrum from (a). (c)
ADC output spectrum for a 2 Hz sine wave input.
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SNR = 32 dB

SNR = 44 dB

Figure 2.14: Measured sparse mode HR error with input sine waves at di↵erent frequencies
and at two levels of SNR. Black circles show the average error at each rate. The computed
error is the mean absolute error over 8 s windows.

and as shown in [25] require about 5-7 V of forward voltage at 10 mA of current. The PPG
waveform, and the corresponding measured HR and SpO2 are plotted in Fig. 2.17 in both
continuous and sparse modes. The sensor achieved less than 1 bpm and less than 1% HR
and SpO2 errors when compared against the clinical reference. The use of organic devices
required a higher drive voltage (8 V), an increased drive current as well as a higher (0.5%)
duty cycle ratio resulting in overall higher power consumption. However, enabling sparse
mode significantly lowered the OLED power by about 75%, improving sensor battery life.
Fig. 2.18 presents the measurement setup of the in vivo recordings where an FPGA interface
is used to read out data via the serial interface and transfer the data to a PC where the
results are analyzed and plotted. Fig. 2.19 also presents a summary of the in vivo results
using (a) commercial and (b) organic devices.

Fig. 2.20 captures an incident where the sparse mode operation is interrupted by a motion
artifact that is large enough to create a big di↵erence in sampled PAV values compared to
the previously captured PAVs. This causes an unwanted shift in the estimated period and
results in the following PAVs to be missed. As shown in the figure, the sensor initially tries
to find new PAVs by expanding the observation window and increasing W. Since no new
PAVs are found after W reaches WMax, the sensor eventually reverts to continuous mode.
Shortly after this transition occurs, the backend re-learns the signal period and the system
re-enters sparse mode.
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Figure 2.15: In vivo verification of the sensor IC in both continuous and sparse modes using
commercial silicon PD and LEDs. The PPG waveform and its corresponding HR and SpO2

measurements are shown.

(a) (b)

Figure 2.16: HR and SpO2 measurements from a set of 30 recordings using silicon PD and
LEDs. The red dotted line shows the fit line.
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Figure 2.17: In vivo verification of the sensor IC in both continuous and sparse modes using
organic interface devices (OLEDs & OPDs). The PPG waveform and the corresponding HR
and SpO2 measurements are shown.

CPar

PD

LED VDD

HV LED Driver

TFE DBE

Sensor IC

Data

Data

PC

OpalKelly
FPGA

Spartan-6

Figure 2.18: In vivo recording measurement setup. Data is transferred to a PC via an FPGA.
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Cont. Mode Sparse Mode
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Figure 2.19: A summary of the In vivo results when using (b) commercial silicon devices
and (c) flexible organic devices.

Missing PAVs

Re-learning

Figure 2.20: Missing PAVs due to motion artifact creating a large change in the sampled
PAV values. The backend initially expands W, then reverts to the continuous mode and
finally re-gains lock on the PPG.
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2.7 Summary & Comparison

A comparison against the most recent prior arts of PPG and SpO2 sensors is provided in
Table 2.7. The LED power is normalized by the number of LEDs in the system since only a
single wavelength PPG measurement is required to report HR, while SpO2 requires two. The
TFE power however is not normalized since there could be bias current variations between
di↵erent phases of operation in prior arts. Compared to state-of-the-art, this work achieves
the lowest LED power and one of the lowest total power consumptions while simultaneously
delivering the lowest input referred noise. The measured HR and SpO2 errors are less than
1 bpm and 1% respectively and are lower compared to other works.

The functionality and performance of the proposed sensor IC was characterized using both
commercial and flexible organic interface devices. The in vivo measurement results confirm
the accuracy of the sensor data when operating with a wide range of optical components
including organic devices with parasitic capacitances as large as 10 nF. The introduction of
reconstruction-free sparse sampling reduces the overall system power by nearly 70% while
maintaining the accuracy of the output data.
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Chapter 3

Electrode-Skin Impedance
Measurement

3.1 Motivation

Monitoring of brain signals is a gateway to learn about many neurological conditions and
diseases. Information about the communication of neurons within the brain is recorded and
analyzed to help neuroscientists attain insights on the processes involved in development and
progression of di↵erent conditions as well as track the prognosis of specific treatments used
for any neurological disease. Collection of neural signals attributed to reflexes and motor
tasks can also help bypass spinal chord injuries and enable seamless operation of prosthetic
limbs. Moreover, many important physiological senses and phenomena such as emotions
[37], sleep [51] and drowsiness [83], fatigue [36], seizure [12] etc. have been shown to leave
traces in electroencephalograms (EEG) recorded from the brain and thus are detectable.
This makes EEG an attractive candidate neural signal that can find immeasurable use in
next generation brain-computer interfaces [30, 76].

Recording of EEG is typically done via a network of electrodes contacting the scalp sur-
face as shown in Fig. 3.1. Current clinical standard of acquiring EEG still utilizes similar
electrodes and is therefore not convenient for continuous use. Future generations of EEG-
based BCI devices however need a recording interface that is compact, light, and unobtrusive
to be able to perform monitoring in the background without disrupting the subject’s daily
activities. In addition, the power consumption of the sensors should be low enough to main-
tain the sensor battery life. Clearly solutions with scalp electrode arrays are not ideal given
their bulky tethered form factor not to mention their unattractive look. Prior arts of EEG
recording have been able to perform measurements from the inside of the ear canal [32, 8].
Capturing EEG data from inside the ear has many important advantages compared to scalp
recordings. First, the solution is rather discreet without any especially visible protrusions.
Second, the recording sensors and electrodes can be embedded into earbuds and earpieces
commonly used by millions of users around the globe. These devices can be comfortably
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Figure 3.1: EEG signal and its di↵erent frequency bands. A network of EEG recording scalp
electrodes are shown on the right in a photo adapted from an article on MayoClinic.[18]

worn over long durations with minimal impediment to users’ activities. Moreover, the elec-
trical connection can occur with electrodes having a more stable attachment to the skin with
multiple contact points around the ear-piece tip. Lastly, despite that the spatial coverage
is seemingly limited to the two ears, there are many applications that only require a small
number of electrodes and channels which can greatly benefit from a fully wearable ear-EEG
recording platform.

To maximize user comfort and increase the longevity of the electrodes, dry electrodes
are strongly preferred over wet electrodes. Dry electrodes however typically have much
higher contact impedance as their e↵ective surface area is lower than wet electrodes. An
increase in the interface impedance has a lot of adverse e↵ects on the recording system and
the quality of recordings. For one, the electrode noise is elevated when the interface has
higher impedance degrading the SNR at the input. In addition, higher interface impedance
raises the inputs’ susceptibility to common mode noise and interference such as 60 Hz power
line interference, demanding a much higher sensor CMRR. Furthermore, since the contact
is not as well established as with the wet electrodes due to numerous air gaps and single
point connections, the recording is more prone to motion induced artifact. This is a critical
issue for a wearable dry-electrode-based ear-EEG sensor. Fig. 3.2 presents an example of a
biopotential, here in-ear EEG, recorded with the presence of motion artifact (MA) due to the
subject chewing an apple. As seen, motion can indeed induce large artifacts in-band with the
desired signal fully disrupting the measurement. This is even more troublesome given the
extremely wide variety of movements and their corresponding artifact with various shapes,
amplitudes, frequency bands barring the predictability of the motion and thus achieving a
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Figure 3.2: Sample recording of Ear-EEG using dry in-ear electrodes where the subject chews
an apple in the middle of the recording. Large in-band motion artifact due to the subject
chewing is observed completely disrupting the measurement.

robust recording system.
Prior arts of ambulatory biopotential recording have demonstrated various methods to

acquire and suppress motion artifact [74, 64, 53]. [53] used dual-electrode setups to detect
the biopotential as the common principal component. Post-processing algorithms such as
PCA and wavelet transforms have been used to separate out and remove motion related
components [64]. Electrode to tissue interface impedance has been used as a proxy to
measure a signal that is highly correlated with the motion artifact enabling frontend or
backend cancellation of the artifact [74]. Measurement of electrode-skin impedance (ESI) to
capture motion artifact is a very attractive approach since it exploits the potential physical
correlation of the signals based on the changes on the contact characteristic. Measurement
of ESI also provides a means to assess the quality of the contact which can be a useful feature
in adaptive control of the recording units. Both analog and digital suppression of MA have
been demonstrated by prior arts. However, none of these systems measure the impedance
from exactly the same set of electrodes used for biopotential recording. This task is especially
challenging as it can disrupt or degrade the quality of the weak biopotential signal when the
impedance recording stimuli are introduced. This work presents a front-end IC consisting
of 8 simultaneously sampled channels that capture EEG and ESI from the same set of dry
electrodes [55]. A shared frontend path is used for both EEG and ESI signals lowering the
system power consumption. Measurements are done with a per channel output rate of 1 kS/s
large enough to capture the full bandwidth EEG and motion signals. The main focus of this
chapter is the impedance acquisition unit of the system and the remainder of this chapter
is structured as follows. Section 3.2 goes over the various requirements of the proposed
system. Section 3.3 covers the circuit level design and implementation of the system and the
benchtop and in vitro results from testing the silicon are presented in section 3.4. Section
3.5 provides a comparison of the ESI unit performance in this work against best performing
and most relevant prior arts followed by future directions of this work in section 3.6.
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3.2 System Overview

System Requirements

Generally, human motions are relatively slow occurring at a sub-1Hz to a few Hz of speed
as analyzed and depicted in [46]. However, as shown in recordings from prior arts [9],
in many cases motion artifact can appear as large rapid transients in the measured data
inducing sudden jumps in the recorded samples. Therefore in order to not lose any correlation
between the recorded motion artifact and the measured impedance, the impedance signal is
also acquired at the same sample rate as with the biopotential signal. In this work, the target
biopotential signal is ear EEG with a bandwidth of ⇠ 250 Hz. Fig. 3.3(a) shows a simple
diagram of the system where the EEG and ESI IC interface the ear canal via electrodes.

The required sensitivity of the impedance sensor greatly depends on the relationship
between the changes in impedance and the corresponding motion artifact induced in the
biopotential data. [46] provides an analysis where the maximum absolute correlation coe�-
cient max|c(n)| is obtained for the real part, the imaginary part, and the absolute value of
the measured impedance for both wet and dry electrodes and over various types of artifacts.
As discussed in [9], the highest correlation is seen when the imaginary part of the impedance
is used with wet electrodes and for the local types of disturbances such as tapping over,
pushing, and stretching under the electrodes. However, reasonable correlation is observed
with max|c(n)| greater than 0.6-0.7 when considering the absolute impedance magnitude
and with dry electrodes. Assuming perfect correlation, max|c(n)| = 1, one can define an
artifact transfer ratio (ATR) as the ratio of changes in the relative value of the impedance
and biopotential which can then be used to quantify the required resolution on the measured
impedance. With first order linear approximations, a wide range of ATR is observed from
⇠ 0.01 mV/% to ⇠ 0.1 mV/% looking at data recorded by our setups and also from prior
arts [9, 35, 46]. Considering the worst case of ATR of ⇠ 0.1 mV/%, the required accuracy
on relative changes in impedance magnitude would be about 1 % to achieve less than 100µV
of error in the biopotential. Achieving sub 1% of impedance magnitude error requires a full
bandwidth impedance signal to noise ratio of at least ⇠ 40 dB. If the artifact bandwidth is
10⇥ smaller, the same < 1% accuracy can be achieved with only ⇠ 20 dB of SNR. This sets
a target specification for the ESI measuring unit to determine the amplitude of stimulation.

Another important aspect is the range of impedances that is expected for ambulatory
EEG and ESI recording. Extensive measurements performed by our colleagues have shown an
estimated range of 10 k⌦ to 1 M⌦ for the electrodes used in our system [29]. Fig. 3.3(b) shows
a plot of ESI magnitude over frequency taken from [29]. Achieving the desired SNR when
the impedance is at the higher end of the above range is substantially easier than when the
electrodes have a solid low-impedance contact. However, the system is targeted to maintain
the accuracy for the entire range of ESI. Considering a spot noise floor of ⇠ 100 nV/

p
Hz at

the ESI band, achieving 40 dB of SNR for a 10 k⌦ ESI requires an impedance signal as large
as ⇠ 160 µV over the complete 250 Hz EEG bandwidth. Such a signal requires a stimulation
current of around 16 nA. As a result, a stimulation current range of 5 - 40 nA is employed
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in the design. Simultaneous recording of ESI and biopotential necessitates that the ESI
recording does not incur significant noise or interference in the biopotential frequency band.
This poses a significant challenge in design of the stimulation electronics given that ESI
is considerably larger in lower frequency bands than in bands where the biopotential signal
resides. Considering a maximum ESI of 1 M⌦, achieving less than ⇠ 100 nV/

p
Hz of voltage

noise density at the biopotential band demands a current noise density of < 100 fA/
p

Hz.
Therefore, a maximum current noise density of 55 fA/

p
Hz in the stimulation current is

targeted to not increase the readout noise floor by more than 15 %. Section 3.3 discusses how
the current sources are designed and implemented to deliver the target noise performance.
Lastly, the system intends to simultaneously record the biopotential signal from a set of 4-8
electrodes. This simultaneous recording of ESI from multiple channels requires a multiplexing
scheme that guarantees minimal interchannel leakage. The leakage constraint is even more
stringent when a single reference electrode is used for all channels. In this project, a frequency
division multiplexing scheme is selected to achieve the desired performance.

Sensor Architecture

Measurement of impedance is typically done by using a stimulation signal, either current
or voltage, that is applied to the target impedance and the associated response, voltage or
current, recorded by a readout frontend. Then post processing of the acquired response using
the knowledge of the stimulation waveform enables extraction of impedance magnitude and
phase. Both types of stimulation signal are covered in this work and the pros and cons of
each method is discussed in section 3.3.

In order to record the magnitude and phase of impedances with reactive components,

Body
(Ear Canal)

EarPiece

Electrodes

ESIIC

(a)

730 IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 14, NO. 4, AUGUST 2020

Fig. 5. Electrical characterizations of in-ear Ag electrodes across three users. (a) Average magnitude of electrodes with fitted Ze,CPE and Ze,CAP models
(n = 101). (b) Histogram plotting the 50 Hz impedance of every impedance spectroscopy trial (n = 101). (c) Average electrode skin impedance (ESI) phase with
fitted electrode models (n = 101). (d) Histogram plotting electrode DC offset (EDO) measurements across three users (n = 395).

surface adhesion. The treated, masked earpiece is spray-coated
with Ag to deposit 15 µm thick electrodes (Fig. 3(f)). Finally,
the PI mask is removed (Figs. 3(g) & 4(d)), and wires are
cold-soldered to each electrode with a heat-cured silver epoxy
(Epo-tek, H20E-D). Each silver epoxy bump is passivated with
an ultraviolet cured epoxy. The final earpieces can be easily
cleaned with IPA and re-used without loss of structural integrity.
This process can be easily repeated through reuse of the heat
resistant master mold and quickly adapted to different designs,
thermoplastics, electrode shapes, and materials. Acrylic, for its
rigidity, may be used for the substrate while other metals (e.g.,
Au for longevity) can be electroplated on the Ag base layer.
This process is improved over [24] through the addition of
new surface treatment steps, the surface roughening and plasma
treatment (Fig. 3(d) & (e)), that result in an increased effective
electrode area (and thus reduced ESI) and electrode lifetime.

To measure the in-ear electrode’s (EA, EB, EC, and ED) com-
pliance, each electrode was strained with a force gauge. The av-
erage electrode spring constant was 171 N/m with a standard de-
viation of 5 N/m (n = 50). This inherent spring allows each elec-
trode to apply approximately 90 kPa (at 50% strain). This pres-
sure is on the order of polyurethane foam (at 50% strain) [25].

C. Electrode Electrical Characterization

The electrodes were characterized by impedance spec-
troscopy, measurements of EDO, and electrode skin interface
noise analysis. ESI and EDO characterizations were performed

Fig. 6. (a) Capacitive electrode model Ze,CAP. (b) Constant phase element
electrode model Ze,CPE.

TABLE I
ELECTRODE MODEL FIT PARAMETERS

on all three subjects with the earpiece inside the ear without any
skin cleaning or preparation to simulate realistic, day-to-day use.

1) Electrode Skin Impedance: All ESI measurements were
performed between each dry electrode on the user-generic ear-
piece and a wet electrode placed on the subject’s ipsilateral
mastoid. No skin preparation was performed before each trial,
and measurements sessions were repeated over the course of
six months. Since wet electrodes have an order of magnitude
lower impedance than dry electrodes of the same size [8],
the impedance measurements are dominated by the single dry
ESI. All measurements were performed with an LCR meter
(E4980 A, Keysight) and results were fitted to two equivalent
circuit models (spectra shown in Fig. 5(a) & (b), circuit models
shown in Fig. 6 and Table I). One model comprises resistors and

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on November 02,2022 at 05:20:43 UTC from IEEE Xplore.  Restrictions apply. 

(b)

Figure 3.3: (a) The ESI and EarEEG recording system diagram showing two electrodes and
the readout IC. (b) The ESI of dry in-ear electrodes from [29]
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Figure 3.4: Signal Flow diagram of the sensor readout. The stimulation block creates a
di↵erential AC current that terminates over the ESI inducing a voltage signal at the stimu-
lation frequency band. This signal is then summed with the desired biopotential signal, here
the EEG, and is then acquired via a shared frontend ADC. In the backend, the decimated
ADC output is multiplied by in-phase and quadrature components of the stimulation signal
allowing for the impedance magnitude |ZES(j!)| and phase 6 ZES(j!) to be extracted.

capacitors or inductors, measurements need to take place at frequencies other than DC and
changes in amplitude and phase of the response with respect to the stimulation waveform
are used to retrieve ESI information. In-phase and Quadrature (I/Q) demodulation is a
technique, dating back to the early days of electronic communication and used by prior arts
[73], that utilizes orthogonal demodulation waveforms with 90� of phase shift to extract
the magnitude and phase changes of the recorded response. In this technique, the recorded
response signal is mixed by the I & Q components of the stimulation waveform, creating
I & Q impedance signals ZI and ZQ. Then, the overall magnitude and phase of the test
impedance can be found as:

|Ztest(t)| =
q

ZI(t)2 + ZQ(t)2 (3.1)

6 Ztest(t) = tan�1

✓
ZQ(t)

ZI(t)

◆
(3.2)

The principle of operation of I/Q demodulation is later discussed in appendix B. The
discussion is continued by only considering current stimulation; however, all of the discussed
principles similarly apply to voltage stimulation as well.

Fig. 3.4 demonstrates the signal flow diagram of the IC readout frontend. The stimulation
block creates a di↵erential AC current that is terminated over the ESI inducing a voltage
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signal at the stimulation frequency band. This signal is then summed with the desired
biopotential signal, here the EEG, and is then acquired via a shared frontend ADC. In the
digital backend, the ADC output is multiplied by in-phase and quadrature components of the
stimulation waveform extracting the impedance magnitude |ZESI | and phase 6 ZESI . In this
work, a shared readout frontend is used for both impedance and biopotential acquisition.
This is because the two signals reside in di↵erent frequency bands that can be separated
and filtered in the digital backend. Moreover, re-using the same frontend path and sub-
blocks saves power while not compromising the accuracy of the recorded data. In addition,
connecting parallel frontends to the same electrodes would reduce the impedance seen by
the electrodes by at least 2⇥ degrading the recorded biopotential signal quality as well as
common mode interference rejection. Using shared frontend path however necessitates that
the full-scale range of the ADC is set by the maximum of the two signals and the noise of
the ADC is set by the smallest one. Ear EEG signals are typically weak with amplitudes
only as large as 100s of µV . The impedance signal however can be bigger depending on the
ESI and the stimulation current. Since the expected ESI of dry electrodes can be as large
as a few M⌦, the ADC full-scale range is set by the peak impedance signals that can be as
large as 10-40 mV.

Prior arts of bio-impedance measurement have used square wave drive and demodulation
waveforms to acquire the impedance. Use of square wave considerably simplifies both the
implementation of the driver as well as the digital demodulation hardware. Fig. 3.5 shows
the analog and digital hardware required for square wave drive and demodulation. The drive
can simply be implemented using two constant current sources, ID, and a butterfly switch
toggling at the ESI frequency, fZ , Fig. 3.5 (a). The output current waveform therefore is an
up-modulated square wave current with a peak amplitude of ID. The digital demodulation,
shown in Fig. 3.5(b), can also be viewed as a simple sign flip of the impedance data in
phase with the demodulation square wave. This technique significantly reduces the area and
energy costs of the impedance measurement hardware and is therefore employed in this work.
Using square wave however brings about an issue that can create non-negligible errors in the
acquired impedance magnitude and phase. The square wave signal contains components at
all odd harmonics of the main harmonic frequency, fZ . This means that the Z signal also has
components at all odd harmonics of fZ each scaled and phase-shifted by the magnitude and
phase of the ESI at that harmonic. All of these higher order harmonics when demodulated
using the square wave are down-converted to the base-band, DC to 250 Hz. Consequently, the
resulting magnitude and phase outputs are impacted by the ESI profile at higher frequencies.
Each harmonic’s error and the cumulative error in the absolute |Z| is plotted in Fig. 3.6 for
the worst case purely resistive impedances that exhibit no attenuation at higher frequencies.
Note that the objective of this project is to track the changes in impedance as a proxy for
measuring motion artifact. Therefore, the absolute value of the impedance is not really as
important as the relative changes in the impedance. As a result, despite being as large as
10-20%, this error can be neglected in sensor design. One can note that more than half of this
error is due to the existence of the 3rd harmonic in both the drive and demodulation signals.
Therefore, eliminating this harmonic from either one of the two signals can cut the absolute



CHAPTER 3. ELECTRODE-SKIN IMPEDANCE MEASUREMENT 35

ID ID

CACCAC
fZ

VDD

+1 
-1 
+1 
-1

Electrodes Z Signal

Demod.

Z

Sign

Flip

to ADC

(a) (b)
Square Wave Drive (Analog) Square Wave Demod. (Digital)

Figure 3.5: Simple square wave drive and demodulation hardware. (a) The drive is imple-
mented using two current sources and a butterfly switch toggling at fZ . (b) The digital
demodulation is as simple as a sign flip in phase with the demodulation signal.

value error by more than half. We thus employ the 3rd-harmonic-free drive which uses the
waveform shown in Fig. 3.7 to create the stimulation signal. This balanced waveform only
uses three levels of current already existing in the designed hardware i.e. +ID, �ID, and 0.
The timing of this signal however mandates that the master clock frequency is divisible by
12 to allow for short phases that only last ⇡/6 of phase shift. Looking at Fig. 3.7(b), we can
see that this technique gets rid of all components that are at an integer multiple of the 3rd

harmonic of fZ .
As a better alternative to square wave or 3rd-harmonic-free signals, we can also employ

sine waves at either the driver module or in the demodulation backend. Section 3.3 discusses
the implementation of a 4-bit sine wave drive in voltage domain that no longer su↵ers from
the issue of harmonics even with square wave demodulation. We also implement the sine
wave demodulation backend that uses digital 8-bit multipliers and an on-chip look-up table
(LUT) containing the 8-bit sine wave values. This way, the error in absolute impedance
values due to harmonics is completely eliminated for all types of drive signals.
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Figure 3.6: Errors induced in the absolute value of the impedance due to higher order
harmonic sampling. 3rd-harmonic-free drive reduces this error by more than 50%.

(a) (b)

Figure 3.7: 3rd Harmonic free drive vs. square wave drive. (a) The time domain waveforms
are shown for fZ = 1.6 kHz. (b) The spectrums associated with “a”.

3.3 ESI Recording IC

The ear-EEG IC was designed to simultaneously acquire the low frequency EEG signal as
well as the ESI at higher frequency bands. A second order continuous time delta-sigma
ADC frontend was used in this work and the details are covered in [55]. The focus of this
chapter is only on the ESI recording unit and the following sections cover the stimulation
and demodulation hardware of the ESI measurement.
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Stimulation Unit

In section 3.2, the two di↵erent types of stimulus signals that enable impedance acquisition
were discussed and the target sets of specifications for frequency, amplitude, noise, and
impedance were reviewed. The following subsections provide details on the how these sub-
blocks are designed and implemented to achieve the desired specs.

Active Stimulation

The first type of stimulation requires low noise current sources that can apply a di↵erential
current at the input nodes. The target ranges of current are about 5-40 nA while maintaining
less than 55 fA/rtHz current noise density. Unlike prior arts that use current mirrors, we
employ regulated resistively degenerated current source topologies that o↵er superior noise
performance while achieving > 1 G⌦ output impedance. Fig. 3.8 shows the schematic of
the active current driver. The sink and source current sources’ output currents are up-
modulated using the butterfly switches. Since the input electrodes are approximately at
ground potential (0 V), the current sources need to be AC coupled to maintain the correct
bias point. Prior art [73] uses large o↵-chip capacitors for AC coupling that prevent full
integration and miniaturization. In this work to remove all o↵-chip components, on-chip AC
coupling capacitors (CAC) are used that provide the isolation at the cost of limiting the peak
drive current. The period of the impedance drive (TZ = 1/fZ) is closely tied to the size of the
AC coupling capacitor as well as the drive current amplitude. This is because during every
half period of TZ , the voltages at the drains of MOS devices observe linear ramps towards
the rail voltages reducing the VDS of the devices. To avoid getting the devices into triode
region region, the di↵erential swing is restricted to about a maximum of VSwingmax = 600
mV. Therefore, the drive frequency’s lower bound is set by Eq. 3.3.

fZmin =
Istim

CAC · VSwingmax

(3.3)

For the expected range of ESI and a minimum fZ that is outside the EEG bandwidth
(fZ > 250 Hz), a total of 100 pF on-chip CAC per channel is su�cient.

The large degeneration resistor greatly attenuates the noise of the MOS devices, the
regulating amplifier, as well as any reference noise originating from the voltage DACs. These
resistors (RP & RN) form ⇠ 98% of the output current noise density and are therefore set
to 8.6 M⌦ nominally to achieve < 45 fA/rtHz current noise. The low frequency flicker
noise of the amplifiers or reference however can potentially degrade the noise performance.
Hence, the amplifiers are internally chopped to up-modulate the flicker noise. Using fchop =
8� 16 kHz, the flicker noise and o↵set are up-modulated and then fall in the notches of the
ADC decimation filter’s response and are thus fully removed. The N & P reference voltages
are also supplied via resistive DACs (R-DACs) to avoid reference flicker. The value of the
reference voltages are 4-bit tunable to adjust the output current level and provide ways for
calibration. The sink and source current sources need to provide matched output currents
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Figure 3.8: The schematic and timing diagram of the active stimulation unit. The timing
signals are generated on-chip using the reference master clock.

that not only deliver a charge-balanced stimulation, but also maintain a stable common
mode voltage at the current source outputs avoiding biasing issues. To achieve the desired
matching, resistors RP and RN are 5-bit adjustable within 10% of their value. A one-time
calibration of these resistors’ codes allows for su�cient matching of the two currents.
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1/f
45 fA/ Hz

Up-modulated 1/f

Figure 3.9: The spectrums of the stimulation current sources at 10 nA of drive current. Blue
and orange curves shows the analytical and simulated spectra of the drive current without
chopping where flicker noise dominates the noise floor over EEG bandwidth. The black curve
represents the drive current spectrum with chopping at 8 kHz that results in a significantly
reduced current noise density over the EEG band.

EEG Bandwidth

Figure 3.10: Output Impedance of the active stimulation unit. The unit maintains a > 1 G⌦
output impedance across the entire EEG bandwidth and even up to 3 kHz.

To obtain > 1 G⌦ output impedance, high-gain OTAs are used as boosting amplifiers
that enhance the output impedance of the degenerated MOS devices. Toggling of fZ switches
induces large voltage transients across the P & N current outputs. The bandwidth of the
OTAs thus is set high enough to provide fast responses to the transients maintaining the
waveform accuracy. The MOS devices and the transistors inside the butterfly switches
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Figure 3.11: Passive stimulation unit block diagram. Enable switches can fully disengage
this unit from the inputs, providing isolation as well as increasing the input impedance when
using active mode.

are sized small enough to prevent excessive drain and source leakage and drain to bulk
parasitic transconductances diminishing the output impedance. Note that the resistance of
these switches is not important as they are in series with the large current sources’ output
impedance. Fig. 3.9 plots the spectrum of the current source outputting a 10 nA DC
current. Without chopping, the current noise density is high at frequencies below 250 Hz
due to flicker noise, degrading the noise performance of the readout. Chopping at 8 kHz
lowers this noise floor to ⇠ 45 fA/rtHz. The simulated output impedance of the active
stimulation unit is depicted in Fig. 3.10. The designed module maintains a greater than
1 G⌦ output impedance up to ⇠ 3 kHz. The result shown is the worst impedance over a
Monte-Carlo simulation with 200 runs with both global and local variations.
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EEG Bandwidth

Figure 3.12: Comparison of output impedance between active and passive stimulation units.

Passive Stimulation

Fig. 3.11 shows the block diagram of the passive stimulation unit. The unit consists of
two di↵erentially driven 4-bit resistive V-DACs that are run by digital codes coming from
the digital backend creating a stimulation signal at fZ . The backend uses the same LUT
values from the sine-wave demodulation to create the DAC codes. The resulting response
at the input is induced based on voltage division from the DAC outputs and between the
reference impedance impedancez (ZREF ) and the ESI. With a one-time calibration of values
of ZREF and DAC outputs at any fZ , the ESI can be extracted using the response signal
and a similar demodulation backend. Use of voltage DACs allows for a coarse sinusoidal
drive waveform eliminating the issue of harmonics even when using a simple square wave
demodulation. In addition, since the reference impedance can be very large at EEG frequency
band, the reference and DAC noise is greatly attenuated at the input preventing any EEG
SNR degradation. Furthermore, the entire power consumption of the unit occurs in the
V-DACs which can be implemented with sub-µW total power. The only disadvantage of the
passive drive is that its output impedance is limited by the impedance of the passive elements
since there is no active impedance boosting. Fig. 3.12 depicts the output impedance of the
passive unit and compares it against the active one.

Demodulation Back-end

As explained earlier, the on-chip digital backend is capable of performing two di↵erent types
of impedance I/Q demodulation. The first is the simple square wave demodulation in which
the decimated ADC output is mixed with the in-phase and quadrature impedance clocks
using sign-flip operation. This uses minimal hardware and digital power on the chip and is
by far the easiest demodulation method. To calibrate extra delay in the forward path, the
phase of I/Q clocks in the demodulation backend can be shifted by 15 integer multiples of
1/16 of the impedance clock period. This allows for having an ideal imaginary impedance
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Figure 3.13: Chip micrograph of EarEEG IC and the power breakdown of the stimulation
unit.

signal at the output with zero mean and therefore no extra phase calibration is necessary.
The second type of demodulation is done by using an on-chip 128 slot LUT containing data
for a 128 point per quarter period sine-wave. Therefore, 8-bit sine-wave demodulation can
be done via on-chip digital multipliers. To create both in-phase and quadrature components,
the starting pointer for the quadrature component begins 1-quarter of the wave behind the
in-phase component. Similar to the square-wave demodulation, the starting pointers for
both I/Q components can be shifted along the LUT to achieve zero net-phase between the
ADC output data and the reference clocks cancelling the delay of the front-end forward path.
Unlike the square wave demodulation, sine-wave demod. uses much more digital area and
power as it requires the LUT array of registers, two 8-bit digital multipliers as well as the
control logic. However, the overall power consumption of the demod. backend still remains
well within the IC power budget.

3.4 Measurement results

Chip Micrograph & Power Breakdown

The Ear EEG IC was fabricated in a TSMC 28 nm technology. The chip consisting of eight
channels occupied an area of 1.98 ⇥ 1.44 mm2. Fig. 3.13 shows the IC micrograph as well
as the stimulation unit power breakdown. The entire unit consumes a total of ⇠ 750 nW of
power when generating a di↵erential current of 40 nA. Fig. 3.14 shows the layout of the per
channel stimulation unit. The unit takes a drawn silicon area of 470 µm⇥ 150 µm mostly
dominated by the area of the passive elements CAC and RN,P .



CHAPTER 3. ELECTRODE-SKIN IMPEDANCE MEASUREMENT 43

470�m

150�m CAC RP,N

Passive
Stim . Bias & Reg . OTAs

Figure 3.14: The layout of the stimulation block. The area is dominated by the area of the
passive elements, CAC and RN,P .

Benchtop Measurements

Enabling the stimulation unit, we first recorded the current waveforms using 100 k⌦ resistive
test terminations. Fig. 3.15 shows oscilloscope captures of square and 3rd harmonic free
waveforms at fz = 2 kHz. The time domain captures are shown in sub-figures (a) and (c)
while the corresponding spectrums are presented in sub-figures (b) and (d). As observed, the
amplitude of the third harmonic is attenuated by more than 60 dB confirming the e�cacy
of the employed technique. The ESI recording is tested in bench-top settings using explicit
on-board resistances. The value of the resistance is swept over a range of ⇠ 1 k⌦ � 2 M⌦
and the acquired resistance value is recorded. Fig. 3.16 (a) presents the plot of acquired
resistance versus the test resistance. Two point calibration is performed on the recorded
values to remove the e↵ect of o↵set and gain error. Less than ⇠ 2% of error in absolute
value of the resistance is measured with test resistances as large as 2 M⌦. The error is
reduced to less than ⇠ 0.3% for the expected range of ESI highlighted in green shade. The
measured results at the higher end are limited by on-board parasitic capacitance preventing
the accurate tracking of recorded impedance and test resistance value. Fig. 3.16 (b) plots
the associated µ/� of the same measurement featuring a maximum SNR of ⇠ 68 dB. A
minimum SNR of 40 dB is maintained for the entire expected range of ESI guaranteeing a
less than 1% magnitude error.

The voltage readout provides an input referred voltage noise density of ⇠ 120 nV/rtHz
at around the stimulation bands while the stimulation unit is active. This voltage noise
density can be converted to an e↵ective impedance noise density if scaled by the amplitude
of the stimulation current. Fig. 3.17 plots the impedance noise spectrum of the ESI readout
when a stimulation current of 17 nA is used. The measured noise floor is approximately
⇠ 7.2 ⌦/rtHz. This results in a total RMS impedance noise of 72 ⌦ over the 100 Hz EEG
bandwidth, more than 40 dB lower than the smallest expected ESI of 10 k⌦. The impedance
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Figure 3.15: Oscilloscope captures of stimulation waveforms over 100 k⌦ test resistances. (a)
shows the time domain square wave stimulation waveform at 2 kHz. (b) shows the spectrum
of “a” with a 3rd harmonic amplitude ⇠ 10 dB below the main harmonic. (c) presents the
time domain 3rd harmonic free waveform at 2 kHz. (d) exhibits the spectrum of “c” with
the 3rd harmonic amplitude attenuated by > 60 dB.

range can be further extended by 8⇥ via adjusting the amplitude of the stimulation current
from 5 to 40 nA. Another experiment is performed using three di↵erent electrode models
representing impedances measured for electrodes with mean, �1�, and +1� of impedance
magnitude. Fig. 3.18 depicts the results of these measurements. Each model’s impedance is
measured at four di↵erent frequencies, 500 Hz, 780 Hz, 985 Hz, and 1,950 Hz. The dotted
lines represent the same impedance measured by the LCR meter (Keysight E4980A-001). As
seen, the data from the ESI chip reasonably tracks the accurate impedances over frequency.

3.5 Comparison with Prior Arts

The ESI IC performance is compared against some of the most recent and most relevant
prior arts. Table 3.5 shows the comparison chart. Papers [75, 81] aim to acquire extremely
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Figure 3.16: Resistive impedance measurement results for a range of ⇠ 1 k⌦ � 2 M⌦ of
di↵erential test resistance. (a) Two point calibration is performed on the values and the
fit-line is plotted in solid red. (b) The µ/� of the measurement in dB signifying a maximum
⇠68 dB of SNR.

7.2 �/ Hz

Figure 3.17: E↵ective impedance noise spectrum of the ESI readout at 17 nA of stimulation
amplitude.

small variations in bio-impedance and have impedance noise floors around a few m⌦/rtHz
which is much smaller than the impedance noise floor in this work. However, the overall
achieved dynamic range is still lower than the one in this work. Compared to prior art [73]
with similar ranges of ESI, this work achieves 10⇥ lower Z-induced voltage noise as well
as 20⇥ lower impedance unit power consumption. Furthermore, the measured impedance
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Figure 3.18: (a) The electrode model consisting of series resistance (RS), double layer ca-
pacitance (CDL) and the parallel resistance (RCT ). The values of each element in every
model is presented in the table. These values are measured with a benchtop LCR meter.
(b) The acquired impedance (solid line) of the electrode model vs. the LCR meter reported
impedances (dashed line).

bandwidth is also improved by a factor of 4⇥ compared to [73].

3.6 Future Work

In this work, a low power multi-channel Ear-EEG and ESI recording IC was presented that
simultaneously captures the the EEG and ESI signals from the same set of dry electrodes.
Bench-top electrical testing and in vivo experiments confirmed the functionality and per-
formance of the designed IC. Future generations of this work can however improve on a
couple of aspects. Currently, the motion artifact detection and cancellation occurs o↵-chip
via post-processing of the recorded data. MATLAB models are trained that use the ESI
data as a proxy to eliminate the motion artifact from the recorded EEG signal. In future,
a compact digital core can be implemented on-chip that performs on-line real-time motion
artifact cancellation outputting clean EEG data. O↵-line and on-line training can be done
on the MA cancellation backend to maintain accuracy. Moreover, the impedance data which
represents the motion artifact can by itself be used for many classification tasks. An on-chip
classifer can be incorporated that detects and classifies various types of motion using ESI
data from the all channels. This task can also be accomplished on-line and in real-time.
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Chapter 4

Low Noise Current Sensing

4.1 Introduction

Recording of very small electrical currents is a frequently required capability of biosensors
operating in many di↵erent biological settings. This chapter reviews some of the applications
that employ high sensitivity current sensors and their typical requirements. Prior arts of
these applications are reviewed briefly and then the focus of this work is discussed. A low
noise current sensor is then detailed in following sections.

Patch Clamp Recording

With the introduction of patch-clamps in neural recording setups, Fig. 4.1(a), current sen-
sors with single-digit pico-Ampere sensitivities became a necessity since the transfer of ions
through the cell membrane induces extremely small electrical current transients that occur
over fairly short durations [22, 52]. Activation events recorded by patch-clamps typically
require bandwidths as high as 5-10 kHz to capture the complete time-domain information
given that the time constant of the membrane charging waveform is about 16 � 20 µs [59].
The smallest levels of change in electrical current measured through patch-clamps are typi-
cally around 5-10 pA. This is because patch-clamping allows for monitoring of ion currents
through single ion channels which only permit very little charge transfer [59]. Whole cell
recordings on the other hand can sometimes create current signals as large as 10-20 nA [66].

Prior arts of patch clamp recording mostly use continuous time TIAs that directly inter-
face the pipette electrode output [77, 34]. Despite large bandwidth at the TIA output, the
tradeo↵ between the transimpedance gain and the input referred noise level ultimately limits
the performance of the design. In addition, most of these continuous TIA designs su↵er from
elevated noise floor at lower frequencies due to the flicker noise contributions.
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Figure 4.1: Applications for low noise current sensors. (a) Recording of ion channel currents
via patch-clamps in neurons. (b) Silicon nano-pores passing various bio-molecules such as
proteins. (c) Capturing fluorescence activity of stimulated neurons in brain. (d) Character-
ization of cells mechanical phenotypes via microfluidic channels.

Si Nanopore Sensing

Silicon nano-pores, Fig. 4.1(b), have been introduced as inexpensive biomolecule detec-
tion assays especially in DNA sequencing applications [6]. Passage of specific biomolecules
through the nanopore induces a momentary blockage changing the ion based electrical cur-
rent passing through the pore where depending on the size of the pore and the amount of
change in current, the type of the biomolecule can be classified. Current fluctuations occur-
ring across a blocked nanopore can usually exhibit around 1-10pA of change depending on
the size of the pore as well as the target biomolecule. The typical speed at which these fluc-
tuations occur can typically range from 1 to 5 kHz, therefore needing a minimum sampling
rate of 10 kS/s.

Prior arts of nanopore sensing have explored a variety of approaches to the design of the
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current sensor. [69] proposed a two stage integrate-then-di↵erentiate scheme with analog
high pass filtering. The achieved noise floor was about 10 fA/rtHz over a bandwidth of 10
kHz. However similar to the patch-clamp sensors, the large transimpedance gain of 330 M⌦
limited the dynamic range and overall the sensor required 30 mW of power to operate. [85]
introduced a sigma-delta based direct current to digital converter that significantly reduced
the power consumption to ⇠ 50 µW while achieving a 30 fA/rtHz input current noise
density. However, this noise performance only existed for a 10 Hz bandwidth and extending
the sensor bandwidth to 10 kHz resulted in two orders of magnitude higher noise floor.

Fluorescence Imaging

Single-pixel monitoring of fluorescence activity of genetically modified neurons is another
example in which the fluorescent light induces a small photocurrent in a photodetector that
is then acquired using a current sensor [24]. This imaging technique can be further ex-
tended into implantable imagers shown in Fig. 4.1(c) that are placed in close proximity
of target neurons collecting the fluorescent response with a higher e�ciency and therefore
reducing the needed stimulation light intensity. To collect the full time-domain fluorescence
of optically stimulated neurons, a readout bandwidth as large as 2-5 kHz is usually needed
especially when using genetically encoded voltage indicators (GEVI)[45]. Imaging of flu-
orescence activity with a minimum signal to shot noise ratio of 20 demands at least 400
photons which with a 90% detector conversion e�ciency result in about ⇠ 440 e� of input
signals to the imager IC [28, 58]. With a typical 2 ms time constant for GEVIs [58] and a
sampling frequency of 10 kS/s, the allowable standard deviation for every sample taken from
each recorded action potential will be about 440 e� that with a 50 µs integration window
results in about ⇠ 1.4pArms of input referred RMS noise for the sensor IC. An implantable
imager IC sitting nearby the target neurons can significantly increase the numerical aperture
(NA) of the readout enhancing the signal strength such that a higher sensor IRN can still
be tolerated.

Single pixel imaging is an application that has not been as extensively explored by prior
arts as in the case of other applications. A single-pixel fluorescence imager IC was introduced
in [24] where a CTIA amplifier was used whose output was sampled and converted by a
high resolution delta-sigma ADC. The design delivered a reasonable performance by only
consuming about 2.4mW of power. However, the noise and linearity of the system was yet
limited by the CTIA block where it at best achieved ⇠ 160 fA/rtHz of input referred noise
density.

Microfluidic Channels Recording

Mechanical deformability and sti↵ness properties of living cells have been shown to correlate
with the development of cancerous properties [80] where an increase in the sti↵ness can indi-
cate the contribution of the cell to developing tumors. Various methods have been explored
by prior arts to evaluate the mechanical viscoelastic properties of the living cells, a technique
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known as mechanical phenotyping. Optical and acoustice tweezers have been used by prior
arts [40, 43] to assess the response of a floating living cell to certain forces and deforma-
tions. However, the throughput of such methods is extremely limited to a few cells per hour
[33]. Mechano-nanopore sensing was introduced by [33] that uses a microfluidic contraction
channel to perform similar assays with substantially higher throughputs potentially reaching
thousands of cells per minute. Fig. 4.1(d) depicts a microfluidic channel that is used for me-
chanical phenotype characterization of di↵erent cells. As shown, a cell is passed through the
channel where specific deformations are caused in the cell shape and based on the viscoelas-
ticity properties of the cell, its response to such deformations varies which can be measured
by capturing the overall channel resistance or rather recording the small electrical current
across the channel [33]. As for recording of electrical currents across microfluidic channels,
sub-ms resolution is needed to fully digitize current fluctuations caused by the passage of
the cell through the channel [33]. This means that the target sensor requires a sampling
frequency in the range of 2-5 kS/s. The deformation of the cell and its recovery when going
through contractions exhibit a change in the electrical impedance across the channel. Prior
art uses DC channel resistance as a proxy to monitor these changes and the same method
is aimed in this work; however, this approach can be further extended to capture the entire
frequency domain complex impedance of channel in future works. The change in the electri-
cal current therefore depends on the applied voltage across the channel. Prior art and works
by our colleagues indicate an expected current fluctuations of around 20-100 nA when a 5
V DC voltage is applied across the channel [33]. However, applying a voltage as large as 5
V across the cells can potentially result in unfavorable side e↵ects reducing the accuracy of
the measurements. Lowering this voltage to around 0.5-1 V would reduce the current signal
down to 2-20 nA at the input of the sensor. To find the smallest changes in the input signal,
the microfluidic flow current changes can be used as shown in Eq. 4.1 from [33].

�I

I
=

d3

D2
eL


1

1 � 0.8(d/De)3

�
(4.1)

where d is the cell diameter, L is the overall channel length, and De is the e↵ective channel
diameter. With smallest cell sizes being around 4 µm, the changes in the current can even be
5⇥ smaller than the above ranges. To have a minimum SNR of 40 dB, a minimum detectable
signal of ⇠ 4 pA is required from the sensor.

Our Focus

Table 4.1 summarizes the requirements of the above applications. As seen, most of these
applications can benefit from a current sensor capable of measuring fast and small changes
in electrical currents with sensitivities of a few pA and sample rates as high as 5-10 kS/s.
Despite potential suitability for all of above applications, the focus of this work is on the
recording of electrical currents through microfluidic channels for mechanical phenotype char-
acterization of living cells. The setup used by [33] consisted of a bulky PCB and a separate
data acquisition unit (DAQ) to only record from a single microfluidic channel. This work
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Table 4.1: Summary of requirements for current sensing applications

Application Sensitivity (pA) Bandwidth (kHz)

Patch-Clamping 1-5 5-10

Si Nanopore Sensing 1-10 2-5

Fluorescence Imaging 1-10 1-2

Microfluidic Ch. Recording 4-10 2-5

targets a 4-channel IC that can integrate all the components of the larger setup with a much
improved noise performance. A minimum detectable signal of around 1.5-4 pArms is targeted
while achieving a maximum signal of ⇠ 20 nA matching the required specifications. Fur-
thermore, the target sub-50 fA/rtHz of IRN is targeted over > 2 kHz of bandwidth without
sacrificing the dynamic range of the sensor. The remainder of this chapter is organized as
follows. In section 4.2, the system requirements as well as sensor architecture are reviewed.
Section 4.3 covers the IC design details followed by section 4.4 that goes over the measure-
ment results. A comparison against prior arts is presented in section 4.5 and finally section
4.6 discusses future directions of this work.

4.2 Sensor Overview

Traditional current sensors typically consist of a transimpedance amplifier at the very input
that converts the input current into a voltage. This voltage generally contains noise at
bandwidths much higher than the input bandwidth. Therefore, the TIA output bandwidth
needs to be limited via a filter stage following the TIA. Finally, the output of the filter can be
sampled and converted by an ADC. Some current sensors contain current DACs at the input
of the chain that help cancel unwanted components of the input signal or provide feedback
as in �-⌃ converters. The addition of an I-DAC at the input however generally results in
an elevated sensor noise floor due to the presence of the I-DAC noise. This issue will be
reviewed again in the later sections of this chapter. In the first implementation of this work
to achieve a low input referred current noise, the classic architecture with no input I-DACs
is used.

Architecture

A single readout channel architecture of the IC is diagrammed in Fig. 4.2(a). The input
current is first amplified via a single-ended capacitive TIA. A CTIA architecture is used
to minimize the input current noise via eliminating the noise of the feedback resistor. The
input current is integrated using the CTIA stage which is reset at the beginning of every
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Figure 4.2: Readout channel block-diagram (a) and timing diagram (b)

integration phase. The durartion of the reset phase is extremely short lasting for a maximum
of 500 ns allowing the integration period and therefore SNR to be maximized. Once reset
switches are open, the input current is integrated across CF1 creating a voltage at the TIA
output. The size of CF1 is 7-bit tunable to set the trans-impedance gain in the range of 5 M⌦
to 640 M⌦. Moreover, the integration time is set by the period of the reset signal typically
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ranging around 50 µs - 200 µs. The TIA output voltage is then passed into an RC amplifier
that serves both as a band-limiting filter as well as an adjustable gain stage with a gain of
1-16⇥. It is critical to limit the bandwidth of the TIA output voltage prior to sampling given
that the noise bandwidth of the TIA output is typically orders of magnitude larger than the
bandwidth of the input signal. In addition, the TIA single-ended output signal is converted
into a di↵erential signal by being subtracted from a reference voltage Vref equal to the DC
bias point of the TIA. The output of the RC amplifier is then sampled by a flip-around track-
and-hold (T/H) stage running nominally at fs = 1 MS/s. This keeps the sampled voltage
at the T/H output until the ADC performs the conversion. A 16-bit asynchronous SAR
ADC then digitizes the T/H output passing the data into the digital backend. The ADC
is time-multiplexed across all four channels running nominally at 4 MS/s. The existence of
T/H stages allows for simultaneous sampling of all four channel signals while the ADC is
rotating through channels to perform the conversion. The SAR ADC uses a 1-bit redundancy
scheme with non-binary weights to allow for foreground calibration of the weights lowering
the nonlinearity induced by capacitor mismatch. The unit capacitor of the SAR ADC is
sized ⇠ 0.25 fF and is manually designed and laid out using custom MOM capacitors. This
minimizes the ADC area while delivering >15b of linearity.

The timing diagram of the channel is shown in Fig. 4.2(b). The reset phase is composed
of two phases. The short phase, �RSTsh

lasting about half of the reset duration shorts the
TIA input and output to the common mode bias voltage, Vcm, via low-resistance switches.
This quickly empties any charge across input and output capacitances allowing for very fast
reset operation. During the second half of the reset phase, shorting switches are open and
the OTA is put in a unity-gain feedback via �RST1 letting the TIA to settle to its stable
bias point. This is critical since the OTA might have an o↵set voltage resulting in a bias
point di↵erent than the applied common mode voltage, Vcm and helps prepare the TIA for
the integration phase. The same reset scheme is applied to the RC amplifier as well so that
once the reset phase is over, all no memory from the previous integration phase is preserved
in any sub-block. The T/H block operates in two phases, tracking and retention. During
the tracking phase (�1 & �1e), the 4 pF sampling capacitors di↵erentially sample the RC
amplifier output while the T/H OTA is in common-mode reset. In phase 2 (�2), the caps are
disconnected from the input and are flipped around to connect across the T/H OTA. The
T/H clock frequency is nominally set at 1 MHz. This oversamples the RC amplifier output
signal and the multiple samples are used to lower the noise variance of the output samples
enabling ultra-low noise operation. The next subsection discusses this concept in detail.

Channel Oversampling

Using a reset-CTIA induces reset kT/C noise that is sampled across the TIA input capacitors
right after the reset switch opens. The sampled kT/C noise is typically very large ruining
the noise performance of the system if not cancelled. The majority of prior arts that use
CTIA topology employ a correlated double sampling (CDS) scheme to remove the sampled
kT/C, o↵set, and attenuate flicker noise. Two samples are taken, one at the beginning of the
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Tint

ts = 1 � 2.4�s

y = a � x + b
output

Figure 4.3: Oversampling of the integration ramp. Slope of the fit line represents the net
input signal during the integration phase.

integration ramp, and the other at the end of it and the di↵erence of the two samples rep-
resents the net output value. However, for the first sample to be an accurate representation
of the sampled kT/C, the TIA closed-loop bandwidth has to large enough that it settles to
the desired accuracy within the time span of that single sample. As an example, if the first
sample is taken only after ts = Tint

100
, the TIA output has to settle within ts. This imposes

a strict requirement on the bandwidth of the TIA demanding a closed-loop speed that is at
least 100⇥ higher. Higher TIA closed-loop bandwidth in turn increases the noise bandwidth
at the TIA output further increasing the variance of the output samples.

In this work, we employ the ramp oversampling technique proposed in [19]. Fig. 4.3
shows this scheme where the ramp signal is sampled by the maximum frequency allowable
by the TIA closed-loop bandwidth. Then at the output, the slope of the best fit line (least-
squared-error) represents the net signal received during the integration phase. Defining the
output this way brings major benefits in terms of noise attenuation. First, since the slope
of the line is independent of its bias, any sampled kT/C noise that basically acts as a DC
shift to all samples is immediately removed. The low frequency flicker noise also sees a much
greater attenuation this way compared to results using traditional CDS. This is because CDS
is essentially a subset of this technique using only the two end-point samples. The overall
transfer function of the applied line-fitting is shown in Eq. 4.2 when using n sample points.

M 0(z)

Y (z)
=

n

2

(n � 1)z2 � (n + 1)z + (n + 1)z2�n � (n � 1)z1�n

z2 � 2z + 1
(4.2)

This transfer function is e↵ectively an nth-order high-pass filter that gets rid of low frequency
noise as explained. Appendix D discusses the mathematical analysis behind this approach to
further illustrate the e↵ect. To achieve the desired noise level of < 50 fA/rtHz, an external
ADC sample rate of 825 kS/s is selected that gives ⇠ 160 samples with a 200 µs integration
period. The following section discusses the designed IC in greater detail and goes over the
sub-block optimizations.
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Figure 4.4: Sensor IC full chip block diagram.

4.3 Current Sensor IC

The block diagram of the sensor IC is shown in Fig. 4.4. The chip consists of four simulta-
neously recorded readout channels sharing a time-multiplexed 16-bit SAR ADC. An on-chip
PTAT current reference creates the bias currents for all sub-blocks. Channel timing signals
are provided via digital pads while the sub-blocks’ configuration settings are programmed via
an on-chip serial programming interface (SPI). The ADC data is also read through the SPI
using an external FPGA or micro-controller. On-chip logic toggles the ADC input through
all four channels as well as a debug-mode auxiliary input. An on-chip 1.8 V current driver
unit is also implemented to allow for simultaneous drive and measurement using a single IC.

The CTIA block uses a single-stage gain-boosted folded-cascode OTA shown in Fig. 4.5.
A single stage topology guarantees closed-loop stability at any input capacitance and gain
while providing the largest speed/power ratio since no compensation is needed. Folded-
cascode gain-boosting OTAs enhance the gain of the OTA to greater than 95 dB providing
the desired accuracy. Folded-stage top and bottom devices are degenerated to attenuate
flicker noise. Cascoding the input stage maintains a low Miller CGD cap at the input en-
hancing the closed-loop bandwidth of the design. The tail current source consists of a
regulated resistor-based current source that has minimal flicker noise while obtaining a very
large output impedance enhancing CMRR. The TIA uses a 1.8 V supply voltage to provide
su�cient output swing. The single-ended output voltage provides a 600-700 mV linear swing
while achieving >80 dB of THD. The input devices are sized large to maximize the current
e�ciency factor (gm/ID) and minimize flicker noise. The common mode input voltage of the
TIA is set via an o↵-chip voltage reference that is su�ciently low-pass filtered to minimize
bias voltage noise impact. The TIA uses a nominal bias current of ⇠ 5 mA to achieve >30 mS
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Figure 4.5: The core OTA of the CTIA block.

of transconductance (gm) in the input devices needed for both noise and speed requirements.

4.4 Measurement Results

Chip Micrograph & Power Breakdown

The sensor IC was designed and fabricated in a TSMC 28 nm 1P10M CMOS technology. The
chip occupying an area of 1.8 ⇥ 1.53 mm2 consists of four simultaneously recorded channels.
The chip micrograph is shown in Fig. 4.6(a). Each channel occupies an area of 1000 ⇥
240 µm2 and consumes a total of 11.86 mW of power out of 1.8/1 V supplies. The power
breakdown of each channel is also depicted in Fig. 4.6(b) where the TIA power dominates
the overall power consumption due to the critical noise floor constraint.

Bench-top measurements

Electrical bench-top testing is performed to assess the performance of the readout channels
using an o↵-chip ADC, AD4001 and ADC driver, AD4940. Fig. 4.7 plots the input referred
noise spectrum of the readout channel at a total transimpedance gain of ⇠ 38 M⌦ sampling
at 5 kS/s with a total input parasitic capacitance of ⇠ 35 pF . It measures a current noise
density of ⇠ 33 fA/rtHz and a total RMS noise of ⇠ 1.6 pArms matching the target



CHAPTER 4. LOW NOISE CURRENT SENSING 58

Ch.1 Ch.2 Ch.3 Ch.4

SAR ADC BiasDig .

(a) (b) CTIA
Track & Hold
Analog Buff.

SAR ADC
RC Amp.

75%

5%

12%

3%
6%

Figure 4.6: Sensor IC chip micrograph (a) and channel power breakdown (b)

specification. This noise floor is achieved while the fast sample rate of the o↵-chip ADC was
set to 825 kS/s taking ⇠ 160 samples per integration ramp resulting in a noise reduction
factor of ⇠ 3.6. Running the same setup at 1 MS/s would enhance the noise reduction
factor to ⇠ 4.1 lowering the noise floor to ⇠ 1.4 pArms without sacrificing other performance
metrics.

The static linearity of the channel is measured using ramp inputs from a low distortion
wave generator (SRS DS360). An input ramp voltage signal with an amplitude of ⇠ 600mV
is applied in series with a 40 M⌦ resistance at the channel input to achieve full scale 600
mV swing at TIA output. The recorded ramps are compared against fit line and the worst
case INL and DNL are measured and plotted in Fig. 4.8. Less than 100 ppm worst case
INL and less than 10 ppm of worst case DNL are measured while running at full scale linear
output range. The linearity of the channel is also characterized using tone test. An input 16
nAPP sine wave current at fin = 8 Hz is applied to channel input and the output spectrum
is plotted in Fig. 4.9. A total harmonic distortion of ⇠ 81 dB and an SFDR of ⇠ 83 dB is
measured where the 3rd harmonic is the dominant spur at the output. The source used at
the test contains spurs at higher frequencies which are irrelevant to the measured linearity.

4.5 Summary and Comparison

The performance of the IC is compared against current sensors from the most recent prior
arts. Table 4.5 shows a comparison chart that contains the most important specifications.
To facilitate comparison, two figures of merit are used that represent the overall performance
of the sensor. First, the Schreier FoM is used that is typically employed when comparing
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Figure 4.7: Input referred noise spectrum at 5 kS/s and 38 M⌦ of transimpedance gain.
Slight increase at >500 Hz is due to TIA loop gain drop.

Figure 4.8: Measured INL and DNL of the overall channel using ramp input. Less than 100
ppm worst case INL and less than 10 ppm of worst case DNL are measured.

ADCs with Delta-Sigma architectures. In addition, a new figure of merit (FoM) for current
sensors is proposed and used for comparison which is defined as follows.

FoMCS =
DR · fs

VDD · P
(4.3)
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Spurs from Source

Figure 4.9: Measured spectrum of tone test with 16 nAPP sine wave input at 8 Hz.

with P denoting the sensor power, DR denoting the sensor dynamic range, fs denoting
the sample rate, and VDD denoting the sensor supply voltage. The motivation behind the
introduction of this FoM is that as discussed in detail in appendix C, achieving the same
dynamic range in an analog amplifier that is limited by the thermal noise is more challenging
at lower supply voltages. In other words, changing the VDD has a stronger impact on the
sensor dynamic range than merely changing the sensor power. Further discussions of this
FoM and its derivation are presented in appendix C. This FoM is used to achieve a more
realistic comparison against the prior arts than using only the Schreier FoM especially when
the supply voltages of sensors are di↵erent. As seen, compared to works with < 100 fA/rtHz
of IRN density, this work achieves the largest SNDR and one of the highest figures of merit.
It should be noted that the prior arts with the highest FoMs are all CTDSM direct current to
digital converters that achieve a very wide dynamic range at moderate power levels. However,
the input referred noise level of these sensors are significantly (2-3 orders of magnitude) larger
than that of other works making them unsuitable for sensing of small electrical currents.
Next section will discuss these architectures in more detail with ideas to improve their noise
performance.

4.6 Future Directions

The first generation IC achieved all target performance specifications that are needed to
realize a sensor in the discussed applications. The power consumption of the IC however
is about 12 mW which makes it very challenging to power as an implantable device. Next
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Figure 4.10: Minimum required supply current vs. input referred noise floor. Typical values
are used from the design to achieve realistic takeaways.

subsection goes back to the principles of traditional TIA-input architectures and explains why
their power consumption is tightly constrained by the dynamic range requirements. Then
the following subsection focuses on ideas to significantly reduce the power consumption of
the sensor beyond traditional topologies.

Traditional TIA-input architectures

The majority of the sensor power consumption discussed in the previous chapter was spent
in the CTIA block to minimize the input referred current noise. While the sampled kT/C
and flicker noise are greatly attenuated via the line fitting approach, the thermal noise of
the TIA dominates the overall input noise of the sensor. The simple thermal input referred
voltage noise density of a single transistor follows the well-known expression below.

v2
nth

�f
= 4kT�

1

gm

(4.4)

Eq. 4.4 immediately explains the tradeo↵ between power and noise performance of various
designs. A more accurate tradeo↵ can be observed via Eq. 4.5 where the dynamic range
of the sensor is directly impacted by the power, the supply, the speed, as well as the input
dependent feedback factor of the TIA.
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Figure 4.11: Signal flow graph for a first order DSM current converter. The noise sources
and their transfer functions are highlighted in red.

DR / VDD · P · �2

fs
(4.5)

Using reasonable values and a simple OTA topology for the design, Fig. 4.10 plots the min-
imum required supply current vs. the desired input referred current noise density given a
fixed maximum current. As it stands, to achieve ⇠ 30fA/rtHz, supply currents of greater
than 3 mA are needed which results in an overall power consumption of a few mWs. There-
fore, all traditional architectures comprised of only a TIA at the input will inevitably su↵er
from this bottleneck and therefore cannot provide a better performance.

�-⌃ Modulated Converters

In reviewing of prior works focused on wide dynamic range current sensors, many of the
recent arts utilize non-traditional �-⌃ Modulator (DSM) architectures for direct current
to digital conversion of the input signals. [78] demonstrated simple resistive I-DAC input
converters using a reset-then-open technique to minimize the DAC noise. The majority of
the power was consumed by the digital backend and decimation filters, but in the analog
domain, the noise of the frontend was limited by the input I-DACs and not the TIA. [41]
extended this technique by significantly lowering the power consumption of the converter
down to ⇠ 28 µW ; but the noise floor of the converter is still limited by the I-DACs and not
the TIA. This signals of a benefit in using DSM-based architectures in suppressing the TIA
noise at lower TIA power levels. To take a closer look, consider the diagram shown in Fig.
4.11. The TIA is modeled as an ideal continuous time integrator which is the loop filter of a
first order DSM converter. The input current of the TIA observes this transfer function as
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Figure 4.12: Input referred spectrum of a 4 MS/s 1st-order �-⌃ converter with and without
the DAC noise. As seen, the DAC noise completely dominates the input referred noise of
the frontend at lower frequencies.

it is continuously integrated over time. The noise of the TIA however is added at its output
node while only seeing a low-pass transfer function with a -3 dB corner frequency close to
the loop bandwidth. This means that in essence throughout the operation of the converter,
the TIA noise spectrum is pretty flat over frequency and can be viewed as an elevated
quantizer noise. As a result, the TIA noise once propagated to the modulator’s output, Iout,
goes through the 1st order noise shaping which considerably suppresses its density at lower
frequencies. Therefore, the same input referred noise contribution from TIA can be achieved
at a much lower power dissipation compared to values from Fig. 4.10. In the case of higher
order modulators, since the TIA noise is added to the loop at the output of the first stage,
a 1st order noise shaping is the best that can be achieved.

Fig. 4.12 displays the input referred spectrum of a 1st-order �-⌃ current converter
operating at 200 µA of TIA supply current achieving a noise floor of ⇠ 30 fA/rtHz while
running at 4MS/s. Inclusion of the DSM DAC noise however signifcantly increases the noise
floor to about 300 fA/rtHz because of the I-DACs resistors Johnson noise. This noise is
unavoidable when using noisy DACs simply because of the current that the input DACs
need to supply. In addition, when the input amplitude increases, the current of I-DACs goes
up as well further increasing the noise floor. As a result, state-of-the-art of �-⌃ current
converters cannot resolve a 1 pA signal on top of a 100 nA input despite having a >100 dB
nominal dynamic range. The following subsection introduces a noise shaping return-to-zero
(RZ) current DAC that can replace resistive I-DACs in state-of-the-art to further improve
the noise performance of the system.
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Noise shaping RZ I-DAC

Resistive I-DACs discussed previously generate white wide-band thermal noise that contam-
inate the signal spectrum right at the input of the sensor. In addition, the quantization noise
of the I-DAC also raises the noise floor in the case of multi-bit DSM converters. This work in-
troduces a noise-shaping return-to-zero (RZ) I-DAC that reduces the noise floor at the signal
band, significantly improving the in-band SNR. The circuit block diagram of this I-DAC is
shown in Fig. 4.13. It consists of P and N sides capable of sourcing and sinking current pulses
at their output. Current sources are implemented using regulated capacitively-degenerated
topologies where the amplifiers’ input voltage is provided via a multi-bit resistive voltage
DAC. The R-DACs create a ramp voltage per each current pulse that is then regulated and
driven across the CDAC . The current of CDAC as expected is the time-domain derivative of
the voltage across it, giving a constant current pulse at the output. Therefore in essence,
this I-DAC performs a di↵erentiation on the input DAC code to create the output current.
The operation of this I-DAC is as follows. During the reset, �N and �P switches reset the
CDAC capacitors to reset voltages that are slightly below/above the R-DAC’s first code.
When the reset phase is over, the DAC first code drives the CDAC to the associated voltage
overwriting any stored kT/C noise. Then the output switches (�N and �P ) close and at the
same time the R-DAC voltage ramp begins. Non-overlapping clocks drive � and � signals to
make sure no unwanted current flows into the DAC outputs. This process is then repeated
for every current pulse, positive or negative, fulfilling the job of the pulsed I-DAC. During
the time that �N,P is inactive, the output current is zero, and as a result the design works
as a return-to-zero I-DAC. The amplitude of the output current pulses depend on the slope
of the voltage ramp as well as the size of the CDAC following Eq. 4.6.

Iout = CDAC · �V

�T
(4.6)

In the I-DAC shown in Fig. 4.13, there are multiple noise sources that can propagate into
the final DAC output. The DAC quantization noise, the Johnson noise of the R-DAC as well
as the input referred noise of the amplifier all observe the di↵erentiating transfer function of
the DAC. As a result, their noise contribution undergoes a 1st-order noise shaping, thereby
being significantly suppressed at the signal band. The di↵erentiation also flattens the flicker
noise of the amplifier, e↵ectively acting as an auto-zeroing. The sampled kT/C noise of the
reset phase is fully overwritten right before the active phase begins and therefore does not
impact the noise performance. However, switching of � and � switches at the output induces
a switched-cap resistance at that node injecting thermal current noise. But since the output
impedance of the I-DAC is very large and the drains of the MOS devices have very small
parasitic capacitance, this noise contribution of this parasitic resistance remains low. Any
voltage noise on the ground and supply rails also goes through the di↵erentiation and hence
does not impact the noise performance. Hence, the proposed I-DAC is capable of achieving
very low output current noise densities. Fig. 4.14 shows the time-domain and frequency
domain representation of the simulated 200 nA I-DAC current pulses repeating at 1 MHz.
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Figure 4.13: Circuit block diagram of the noise-shaping RZ I-DAC.

As shown in Fig. 4.14(a), each 200 nA current pulse includes a short RZ phase lasting only
about 20 ns. The spectrum of this current waveform is shown in Fig. 4.14(b). At lower
frequencies, the noise floor is ultimately limited by the switched-cap parasitic resistance at
the DAC output achieving a very low 30 fA/rtHz current noise density. The shaped noise
components increase the noise density with frequency, but the noise floor goes up only at
frequencies well outside the signal bandwidth. Please note that the 200 nA DC component
is not visible in the spectrum plot simply because of the log-scale definition of the x-axis as
well as coherent sampling. Therefore, about a 10⇥ reduction in the I-DAC noise is achieved
compared to the conventional resistor-based I-DAC topologies while operating with the same
200 nA full-scale. In this simulation, a 10 pF MOM capacitor is used for CDAC which is
completely reasonable for on-chip implementation. Furthermore, the slope of the R-DAC
voltage ramp was only 20 mV/µs which can easily be implemented on-chip. The R-DAC
and the amplifier had a combined ⇠ 40 nV/rtHz voltage noise density that can be achieved
by only a few µWs of power. Consequently, the proposed I-DAC o↵ers a superior noise
performance with minimal chip power and area overhead. This low-noise I-DAC can then
be used within a �-⌃ converter to achieve the optimum noise performance.

�-⌃ converter with noise-shaping I-DAC

The noise-shaping I-DAC can be employed in the �-⌃ architecture to significantly improve
the noise performance. However, the input-output transfer function of the I-DAC contains
a di↵erentiation which can disrupt the overall loop transfer function of the �-⌃ loop if not
addressed properly. For this purpose, a modified �-⌃ architecture is suggested where the
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Figure 4.14: NS-RZ I-DAC 200 nA output current time domain waveform (a) and power
spectrum density (b)

I-DAC di↵erentiation is compensated using digital up-sampling and integration. This is
to essentially create a ramp per DSM output bit so that the I-DAC can create the corre-
sponding current pulse at the input. The digital integration happens using a simple multi-bit
accumulator that takes very little digital area and power and does not incur additional noise.

4.7 Final Thoughts

This chapter proposed a low noise high bandwidth current sensor IC achieving 30 fA/rtHz
of current noise density at 5 kS/s sampling rate. The bottleneck of the design in terms of
power consumption was discussed and alternative solutions were proposed to exploit noise-
shaping topologies that can run with a much lower power consumption. Future generations
of the proposed IC will exploit the ideas suggested in the final section to deliver the same
noise and bandwidth performance at much lower power fulfilling the ultimate target sensor
requirements and advancing the noise performance of the state-of-the-art by at least a factor
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Appendix A

Noise analysis, CTIA vs. ZTIA

In chapter 2, we discussed how for designing a current sensor that handles substantially
large parasitic capacitances, CPar, a ZTIA topology can perform better than the CTIA
architecture. This appendix covers the analytical description of the TIA noise when operating
with a large CPar at the input. For simplicity, the core OTA is modeled as a single stage
with a transconductance of gm. Fig. A.1 shows the representative diagram of the discussed
circuit. The two major sources of noise are the amplifier thermal noise modeled as a current
source at the OTA output as well as the thermal noise of RF. Each of these sources impact
the TIA output voltage with their specific transfer functions, shown in simplified forms as
follows (Eq. A.1 & A.2).

HvnRF
(s) =

CPars + gm

CParCF RF s2 + (CPar + CF gmRF )s + gm
(A.1)

Hingm
(s) =

RF (CPar + CF )s + 1

CParCF RF s2 + (CPar + CF gmRF )s + gm
(A.2)
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Figure A.1: A simplified diagram of the ZTIA (a) in its noise sources (b).
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The power spectral densities (PSD) of the two noise sources can be written as:
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= 4kTRF ,

i2ngm

�f
= 4kT�↵gm (A.3)

Where ↵ and � are parameters relating to the technology and topology of choice and T is
the absolute temperature. For simplicity, we assume ↵ = 1, � = 1. This gives the following
PSD for the TIA output noise:
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At low frequencies, the PSD has a value of,

SNout(f) ⇡ 4kT
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◆
(A.5)

The shape of the PSD in Eq. A.4 changes with the values of CPar and CF varying with
respect to each other. As CPar increases, the PSD begins to peak at higher frequencies.
This high frequency noise can however be attenuated through the subsequent stages since
it exceeds the observation bandwidth of the frontend. In this work, using a reset integrator
as the following block (section IV-C), the required filtering can be achieved. The boxcar
averaging applies a Sinc transfer function to the TIA output as follows:

HSinc(f) =
TInt

RInt · CInt
· Sinc(TInt · f) (A.6)

Integrating Eq. A.4 when filtered by the transfer function in Eq. A.6 will determine the
variance of a single sample taken at the ADC output. Eq. A.4 can also be used to find the
noise PSD of the CTIA topology prior to sampling, via setting RF ! 1, resulting in:

SNoutCTIA
(f) = 4kT

1

gm
· 1/

✓
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F
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f 2 +
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F
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Par

◆
(A.7)

At low frequencies, the OTA input referred voltage noise is boosted by a factor of CPar/CF

at the CTIA output, highlighting the issue of CTIA topology in handling large CPar. In
practice, CTIA designs require reset phases inducing reset kT/C noise which will then be
removed via CDS. [13] provides a comprehensive analysis of this scheme. The e↵ective output
noise PSD of that scheme can be found as:

SNCDS(f) = 2(⇡fCTInt � 1)

✓
1 +

CPar

CF

◆2

⇥ 4kT
1

gm
· Sinc2(TInt · f) (A.8)

where fC is the closed loop bandwidth of the CTIA. By integrating this PSD, one can find the
variance of a sample at the CTIA output. Fig. A.2 shows the variance of samples taken in
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Figure A.2: The input referred standard deviation of a single sample taken in ZTIA and
CTIA schemes versus CPar.

both CTIA and ZTIA schemes when CPar changes from 1 pF to 10 nF. The following param-
eter values were used to produce the graph: gm = 2 mS, TIgain = 2 M⌦, and TInt = 50 µs,
which are typical numbers in the application. For both schemes, similar e↵ective gain, TInt,
and gm are assumed to deliver a fair comparison. This ensures that the same input can
be amplified through the chain over the same observation window and using the same TIA
power. Thus, based on the comparison results and since this work aims to acquire current
out of a wide range of PDs with potentially very large CPar, the ZTIA scheme is selected in
the design.

The reader might wonder about the power consumption of the integrator in the ZTIA
scheme. Since this block is after the first stage of gain, its input referred noise contribution
even with smaller values of CInt can stay negligible and thus its power consumption will not
be prominent. It should be noted that some of the assumptions made in [13] are optimistic
and in reality, the resulting output noise will be higher. For example, [13] assumes that
the first sample of the CDS scheme is taken immediately after the reset phase is over. This
cannot be true as the sampled noise charge across CPar during the reset phase needs to be
transferred onto CF and this settling takes time depending on the closed loop bandwidth
of the circuit. Thus, based on the comparison results and since this work aims to acquire
current out of a wide range of PDs with potentially very large CPar, the ZTIA scheme is
selected in the design.
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Appendix B

I/Q Demodulation in Impedance
Acquisition

In this appendix, the governing equations of I/Q demodulation for impedance magnitude
and phase extraction are reviewed. Consider a square wave stimulation current defined as
in Eq. B.1 expanded by its Taylor’s series.

Istim(t) = I0 · pulse(fZt) = I0

1X

i=1

1

i
Sin(2⇡ifZt) (B.1)

The electrode impedance causes a change in the amplitude and phase of the stimulation
signal based on its frequency profile. Therefore, a total response voltage of VZ(t) is received
at the channel input across the electrodes as shown in Eq. B.2.

VZ(t) = I0

1X

i=1

Zi

i
Sin(2⇡ifZt + ✓i) (B.2)

The ADC acquires the impedance signal and the output codes contain the digitized in-
formation. Without loss of generality, we continue writing the demodulation equations in
continuous time domain knowing that the fZ clock is derived from a master clock in the
backend maintaining phase synchronicity. The impedance signal is then mixed with in-
phase and quadrature components resulting in outputs shown below where i & j are odd
integer indices.

ZI(t) = I0
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i
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1X

j=1

1

j
Sin(2⇡jfZt) (B.3)

ZQ(t) = I0
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Equations B.3 & B.4 can be slightly rearranged as follows.

ZI(t) = KDII0
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ZQ(t) = �KDQI0
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Low pass filtering Eq. B.5 & B.6 removes all the high frequency components leaving only
the baseband components as shown in the following.
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Cos(✓i) (B.7)

ZQ(t) = �
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2
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i2
Sin (✓i) (B.8)

If the demodulation backend has similar gains for I & Q outputs, i.e. KDI = KDQ = KD

and the higher order harmonics are attenuated either by observing a much smaller Zi or via
originally performing sine-wave demodulation, one can arrive at the following results.

ZI(t) =
KDI0

2
ZfZCos(✓Z) (B.9)

ZQ(t) = �KDI0

2
ZfZSin (✓Z) (B.10)

|ZfZ (t)| =
2
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ZI(t)2 + ZQ(t)2

KDI0

(B.11)

6 ZfZ (t) = tan�1
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�ZQ(t)

ZI(t)

◆
(B.12)

Equations B.11 and B.12 can therefore be used to extract the time domain ESI magnitude
and phase in the backend. Note that if there is not enough higher harmonics suppression,
the output magnitude and phase results contain information at higher bands too as Eq. B.9
and B.10 suggest.
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Appendix C

Current Sensors Figure of Merit

The goal of this appendix is to come up with a quantitative measure of generic current
sensors’ performance using a defined quantity as Figure of Merit (FoM). The first section
develops a FoM for a simple capacitive Transimpedance Amplifiers (CTIA). In section C.2,
this FoM is extended to all types of TIA architectures including ZTIAs. Finally, section C.3
reviews the Schrier FoM and provides and discusses the similarities and di↵erences.

C.1 CTIA FoM

Consider a simple CTIA shown in Fig. C.1. There are a number of noise sources whose
e↵ect shows up at the output of the CTIA depending how it operates. Reset CTIAs typically
exhibit a reset kT/C noise at their output that needs to be cancelled via correlated double
sampling or similar techniques as discussed in appendix B. The gm source itself exhibits

CF

CP

IIN

VOUT
gm

CL

VB

Figure C.1: Simple CTIA diagram with important components shown for the analysis.
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di↵erent types of noise such as thermal noise, flicker noise, shot noise etc. that ultimately
need to be considered upon completing the design. However, for the purpose of this analysis,
it is reasonable to assume that the thermal noise of the amplifier is the major and dominant
source of noise of the circuit. For this amplifier, the output noise density can be written as
shown in C.1.

v2

nout

�f
= 4kT�↵gm ·

✓
1

�gm

◆2

=
4kT�↵

�2gm
(C.1)

where � = CF
CF +CP

⇡ CF
CP

is the feedback factor of the TIA. This results in a total output
noise variance expressed by Eq. C.2.

v2
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=

4kT�↵

�2gm
· 1

4 1

�gm
Ctot

=
kT�↵

�Ctot
(C.2)

where Ctot = CL + CF ||CP ⇡ CL + CF = CF (1 + CL/CF ) represents the total capacitance
driven by the TIA output. This means the larger the output capacitance, the lower the noise
variance which is the traditional noise/bandwidth tradeo↵. Now we proceed to find the input
referred noise variance by dividing the output noise by the square of the transimpedance gain.
The transimpedance gain of the TIA depends on the integration time which is inversely
proportional to the sample rate of the TIA, Eq. C.3.

TIgain =
Tint

CF
=

1

fsCF
(C.3)

As a result,
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=
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s

(C.4)

This makes sense as higher sample rates or higher input parasitic capacitances result in higher
the input referred noise. Next the maximum signal that can be acquired by the sensor is
reviewed. Suppose the TIA output can support a voltage swing of VSwing = KV VDD. This
maximum swing should support that largest input current, Iinmax when boosted with the
transimpedance gain. Therefore,

Iinmax = KV VDDCF fs (C.5)
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The input dynamic range of the system can now be derived as shown in C.6.
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Note that by assuming a certain sample rate fs, the TIA needs to be able to drive its load at
that speed. This means the core OTA will need a large enough gm to maintain the required
bandwidth. We can thus relate the TIA bandwidth and its supply current as follows:

fs = Kf
�gm

Ctot

= Kf ·
CF

CP
· KIIDD · 1

CL + CF

= KfKIIDD · 1

CP (1 + CL/CF )

(C.7)

where KI represents the current e�ciency factor of the entire OTA. Equation C.7 can be
rearranged in the following format.

CP (1 + CL/CF ) = KfKIIDD
1

fs
(C.8)

Combining C.6 and C.8, the overall dynamic range can be rewritten as follows.
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Expression C.9 can again be rearranged to keep all the design specific constants on one side
and the measurable specifications on the other side.

DR · fs · C2
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All parameters on the right side of C.10 are indicators of the design performance but the
CF . CF is the feedback capacitance that is going to require a significant amount of area in
the TIA design targeting low noise and high performance. As a result, it is possible to relate
the value of CF to the amount of area taken by the TIA. Defining CF = KC · Asensor, one
can arrive at,

DR · fs · C2

P

V 2

DDIDD
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K2

V KIKf
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· K2

CA2

sensor (C.11)
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With slight re-arrangements,

DR · fs · C2
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(C.12)

The right side of C.12 only consists of design specific factors representing the performance
of the TIA and can thus be defined as a figure of merit. Larger values of this FoM indicates
higher performance by the design. Hence,

FoMCTIA =
DR · fs · C2

P

V 2

DDIDDA2
sensor

(C.13)

C.2 Generic TIA FoM

The FoM in C.13 covers all important aspects of a thermal noise limited CTIA based current
sensor. When considering ZTIAs, it is important to note that the feedback resistance can be
a non-negligible source of noise dominating the noise floor of the TIA at lower frequencies.
Integrating Eq. A.4 for f : 0 ! 1 gives,
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This noise variance can be referred to the input simply by dividing it by the square of the
gain, RF .
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Similar to the previous section, the maximum input signal can also be mapped to the max-
imum output swing using the gain factor.

Iinmax =
KV VDD

RF
(C.16)

And thus the input dynamic range can be written as follows.
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Similar to the CTIA, the sampling frequency of the TIA can be linked to the settling time
constant of the feedback loop.

fs = Kf ·
1

RF CF
(C.18)

Such a settling time constant necessitates that the non-dominant pole of the circuit is at
a higher frequency than the dominant pole set by the feedback time constant ⌧F = RF CF .
This requires a minimum OTA transconductane, gm as described in C.19 where Kx is the
pole separation factor.

gm = Kx
CP

RF CF
(C.19)

KI · IDD = Kx
CP · fs
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(C.20)

Plugging in C.17 for CP from C.20, the following expression is obtained.
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With minor re-arrangements, expression C.21 can be rewritten as,
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Note that C.22 is almost identical to C.10. This goes to show that our previous derived FoM
for CTIA designs is in fact very much applicable to any TIAs in general and should bear the
same conclusions. The ratio � = CF

CP
is a factor that is fundamentally limited based on the

capacitor density of the technology used in the design as well as the sensor input parasitic
capacitance in every application. Therefore, for sensors designed in the same application
and using technologies with similar capacitance densities, this ratio can also be treated as a
constant. We therefore proceed to re-define the generic TIA figure of merit as follows.

FoMTIA =
DR · fs

V 2

DDIDD

=
DR · fs

VDD · P

(C.23)

where P represents the power dissipated by the TIA. Interestingly, Eq. C.23 suggests that
designing a TIA for a given dynamic range and sampling frequency as well as a determined
power consumption is harder with lower supply voltages. Therefore, when compared against
each other, designs in lower feature size technologies using lower VDD are expected to be
more di�cult and consequently more valuable.
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Figure C.2: The plot of FoMTIA and FoMS for works published in ISSCC to date.

C.3 I-to-D converters FoM

A vast group of recently published current sensors perform direct current to digital conversion
using �-⌃ modulators or other over-sampled architectures. Traditionally, Schreier FoM [57]
has been used to compare these designs which is defined as follows.

FoMS =
DR · fN

P

where fN indicates the Nyquist rate of the system in consideration. As discussed in [57], the
design first described by the above FoM is based on a switched-capacitor �-⌃ modulator and
the derivation of the FoM assumes that the kT/C noise determines the minimum detectable
signal of that frontend. However, [57] also assumes that for a class-A amplifier, the supply
current of the frontend is set based on the maximum swing of the modulator output meaning
IDD / �Vout which results in the VDD term being cancelled. Then a case is made in [57] for
class-B amplifiers that do not have the above constraint resulting in,

P = 4kT · DR · fN
�Vin

VDD

where �Vin is the voltage di↵erence at the input of the modulator. In practice, for a given
input signal, �Vin stays constant and therefore the result looks very similar to Eq. C.23.
Therefore, the proposed FoM can serve not only for TIA based current sensors but also direct
I-D converters including �-⌃ modulator based architectures. Fig. C.2 plots FoMs C.23 and
C.3 for works published in ISSCC to date using [50]. As seen, both FoMs display the same
patterns with C.23 slightly preferring works with lower supply voltages.
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Appendix D

Analysis of Ramp Oversampling

The ramp oversampling (or slope sampling) was a technique employed in chapter 4 where
it reduced the overall noise variance at the output of the CTIA. To illustrate this e↵ect,
consider the slope of the LS fit line defined using regression analysis shown in Eq. D.1.

m[n] =
n
Pn�1

i=0
x · y �

Pn�1

i=0
x ·
Pn�1

i=0
y

n
Pn�1

i=0
x2 �

�Pn�1

i=0
x
�2 (D.1)

in which x defines the time vector of the samples taken uniformly and y defines the vector
of the obtained sample values. Replacing these vectors with proper values considering a
uniform sample time, ts provides the following expression.
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Eq.D.2 can be further simplified into the following form.
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Taking the Z transform of Eq.D.3 allows further simplification in the Z domain.
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The denominator of Eq. D.4 is merely a constant factor set by the number of samples and
the sample time of the system and can be ignored when deriving the transfer function. Later
when plotting the response, this factor will be included. Considering M 0[z] as the numerator,
we can write:

M 0(z) = Y (z)n
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With slight rearrangements,

M 0(z) = Y (z)nz�(n�1)
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Now using geometric series theory, one can re-write D.6 in the following modified form.
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With expansion and re-arrangements,

M 0(z) = Y (z)nz�(n�1)
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Eq. D.8 can be further simplified to give the final expression for the overall transfer function
of the slope.
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which is an (n+1)th-order high-pass transfer function attenuating all the low frequency noise
and sampled kT/C components. It should be noted that the system consists of a down-
sampling operation following the above line-fitting that only takes the single slope value for
a collection of n samples at the TIA output. The Z transformation of a down-sampler block
can be expressed as shown.

YD(z) =
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The down-sampling e↵ectively scales or stretches the x-axis of the transfer function of the
original fit-line, but does not impact the magnitude response. Therefore, we can plot the mag-
nitude e↵ect of the line-fitting technique in Fig. D.1. A fixed integration time of Tint = 100 µs
has been selected for this plot and the number of samples, n, is swept from 2 (traditional
CDS) to 256. As seen, within the frequency band of interest, f = 0 � 1

2·Tint
, higher order

transfer functions provide larger attenuation to the noise at all frequencies. Traditional CDS
is known to increase the � of white noise by

p
2 given that it combines two uncorrelated

noisy samples with each other. This can be seen by the +3dB increase at f = 1

2Tint
in the

plot for n = 2. However, the line-fitting also reduces the white noise variance as shown in the
plot. Note that higher n also necessitates higher bandwidth which increases the wide-band
noise variance by a factor of n. It has been shown [19] that using this technique, the white
noise standard deviation is reduced by a factor ⌘ shown below,

⌘ =

r
n

12
(D.11)
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Figure D.1: The magnitude response of the line-fitting transfer function for a fix integration
time of Tint = 100 µs

Using the line-fitting technique allows for significant reduction of noise variance at the
output samples. It should be noted that the technique comes with little additional cost.
The TIA bandwidth already is set fast enough to perform a CDS while not losing any
significant input signal power. Therefore, no extra power or bandwidth overhead is caused
by introducing this technique. The only disadvantage of this technique is that it requires
post-processing of output data which can require time and digital resources on the chip.


