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Abstract

Locomotion Skills for Reconfigurable Hexapod Robots

by

Tomson Qu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Avideh Zakhor, Chair

Hexapod robots are useful for carrying out tasks in cluttered environments since they are
stable, compact, and lightweight. They also have multi-joint legs and variable-height bodies,
making them suitable candidates for tasks such as stair climbing and squeezing under objects
in a typical home environment or an attic. Expanding on previous work on joist climbing in
attics, we train a legged hexapod equipped with a depth camera and visual-inertial odometry
(VIO) to perform four key locomotion tasks: (1) climbing stairs, (2) avoiding obstacles, (3)
squeezing under obstacles such as a table, and (4) squeezing between narrow vertical gaps
such as between furniture.

Our policies are trained with simulation data only and are deployed on low-cost hardware
that does not require real-time joint state feedback. We train a teacher-student model in two
phases: In phase 1, we use reinforcement learning with access to privileged information such
as height maps and joint feedback. In phase 2, we use supervised learning to distill the model
into one with access to only onboard observations, consisting of egocentric depth images
and robot pose captured by a tracking VIO camera. By manipulating available privileged
information, constructing simulation terrains, and refining reward functions during phase
1 training, we are able to train the robot with skills that are robust in non-ideal physical
environments. We demonstrate successful sim-to-real transfer and achieve high success rates
across all four tasks in physical experiments.

We have integrated an adjustable-height camera mount that enables the robot to squeeze
under low obstacles such as a table or a sofa. This additional degree of freedom allows our
policies to automatically reduce the robot’s height by lowering the camera making it more
compact during squeezing tasks. This enables the robot to squeeze under realistic furniture
at home, such as a table or sofa.
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Chapter 1

Introduction

In this chapter, we discuss the background and motivation of our work in Section 1.1 and
the related work in Section 1.2.

1.1 Hexapod Robot and Locomotion Skills

Lightweight legged robots are ideal platforms for navigating cluttered home environments,
where the robot must maneuver around large objects such as refrigerators, squeeze under low
objects such as couches and beds, and climb staircases to move from one floor to the next.
They can also be useful in rough environments such as attics, as shown in Figure 1.1, which
are full of joists and are uncomfortable and potentially dangerous for human workers to

Figure 1.1: An example of a cluttered attic.
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vacuum and air seal before adding insulation [49]. For example, since attics typically consist
of multiple rows of joist structures, a human worker could easily fall through the attic floor
and get seriously injured if they step on the sheetrock between two joists by mistake. Also,
attics are typically low, which means human workers have to crawl on their stomachs to get
around.

There has been a significant amount of work on quadrupeds and bipedal robot locomotion
[1, 5, 15, 17, 20, 22, 23, 24, 25, 34, 36, 41, 42, 43, 46, 47, 54]. In our prior work [50], we
developed methods to enable hexapods to climb joists in harsh attic environments. In this
work, we extend that prior work to include stair climbing, obstacle avoidance, squeezing
under and between objects for a hexapod robot. We focus on hexapods for two main reasons.
First, hexapod robots can be more stable and lightweight than quadrupeds and humanoids
of similar size. Second, bipedal or quadruped robots are often taller than hexapods and are
therefore less suitable for traversing tight spaces such as the corners of attics.

To facilitate the practical usage of robots in the retrofit business, it is important for legged
locomotion controllers to work with low-cost hardware. However, most existing legged loco-
motion systems require high-end robots capable of real-time sensing of joint states, which
can ultimately result in expensive hardware costing thousands, if not tens of thousands, of
dollars. For example, model predictive control methods [37] require powerful computational
resources and real-time joint feedback from expensive robot platforms, and they often com-
promise real-time performance when incorporating more complex dynamics. Data-driven
methods [2] can work with limited computational resources and are robust to a variety of
perception failures but still require fast joint state feedback. Many low-cost robots are not
equipped with powerful onboard computation or real-time feedback, such as joint torque
and angle sensing, which are accessible on more expensive platforms. Meanwhile, humans
without leg-sensing feedback, when equipped with prosthetics, can walk and even participate
in competitive sports using only egocentric visual perception and a sense of body orientation
[29].

In this thesis, we propose an end-to-end learning-based perceptive controller for low-
cost, sub-thousand-dollar hexapods to autonomously climb staircases, avoid obstacles, and
squeeze under and between objects, demonstrating zero-shot sim-to-real transfer in real
environments. In addition to attics, these skill sets are useful for robots navigating inside
homes filled with furniture, where the robot must maneuver around and squeeze under and
between obstacles and climb staircases to move from one floor to the next. Our robot is a
$600 SpiderPi robot by Hiwonder [14] with no real-time joint feedback, and shown in Figure
1.2, and equipped with an Intel L515 depth camera and an Intel T265 tracking camera
with a customized camera mount. Similar to the approach proposed in [50], we use a two-
stage teacher-student training procedure to learn models that can operate without real-time
joint feedback: the first stage involves reinforcement learning (RL) with access to privileged
observations, and the second stage uses supervised learning to distill the model using only
onboard observations, including body pose and egocentric depth images. Since optimal
stair climbing, squeezing, and obstacle avoidance motions are fundamentally different from
walking, we train our controllers without human-defined prior gait knowledge, guiding the
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Figure 1.2: Physical and URDF of the robot. (a) The hexapod robot standing at the reset
position - roughly 37 cm tall. (b) The URDF of the hexapod.

models to explore task-appropriate motions.
Through extensive simulations and physical experiments, we show that our low-cost robot

successfully learns the following four skills and generalizes across different terrains: (a) climb-
ing up and down staircases with as many as 15 steps, including a landing pad; (b) squeezing
under low objects, regardless of whether the objects are long or short; (c) maneuvering right
and left around multiple obstacles without scraping or touching them, and continuing in
the same direction as before each obstacle; and (d) squeezing between tight spaces without
getting stuck. With proper design of terrains, reward functions, and the choice of privileged
information in the simulation environment, our model is able to learn a variety of skills.
After training in simulation, the policy is deployed to the physical robot zero-shot, with
physical experiments suggesting that the learned skills are robust.

We further enhance the robot’s squeezing capability through the design of an adjustable
camera mount that can dynamically change its height, as shown in Figure 1.3. This mech-
anism introduces an additional degree of freedom, allowing the robot to reduce its overall
height by up to 12 centimeters by lowering the camera. This adjustment is critical for the
robot to squeeze under realistic obstacles such as a bed or a chair. We demonstrate that our
policy automates the camera’s up-and-down decision-making process and operates robustly,
even though the camera movements were not explicitly trained in simulation. This highlights
the generalization capability of our learned squeezing policy.

1.2 Related Work

In this section, we review prior work in four areas. We begin by (1) examining the limitations
of traditional obstacle avoidance algorithms when applied to complex terrains, (2) reviewing
locomotion control strategies for legged robots, (3) exploring the application of reinforcement
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Figure 1.3: The hexapod robot standing at the reset position with camera (a) down -
roughly 25 cm tall. (b) up - roughly 37 cm tall.

learning to challenging tasks, and (4) discussing reconfigurable robotic systems and adaptive
perception mechanisms.

Traditional Obstacle Avoidance Methods in Complex Terrains

Traditional obstacle avoidance algorithms have provided foundational techniques for navigation-
related tasks. Well-known algorithms have demonstrated strong performance in such tasks.
The Dynamic Window Approach (DWA) operates by sampling the robot’s velocity space,
constrained by its dynamic capabilities, to select motions that are safe for navigation [8].
Another method, the Vector Field Histogram (VFH), constructs a histogram representing
the density of nearby obstacles and guides the robot through available gaps [4]. While it
performs well in many obstacle avoidance scenarios, it can fail in narrow spaces, making
it suboptimal for use in cluttered environments. Bug algorithms such as Bug1 and Bug2
direct a robot to follow the boundaries of obstacles until a path becomes visible [7]. Finally,
graph-based methods such as A* and Dijkstra rely on complete maps of the environment to
plan optimal paths [13].

Although these traditional methods have shown strong performance in specific tasks,
they exhibit significant drawbacks and inefficiencies when faced with complex terrains such
as attics or staircases. For example, many of these algorithms require pre-existing maps and
struggle to generalize to unfamiliar or dynamically changing environments. Tasks requiring
adaptive body configurations—such as squeezing between furniture or under tables—are
generally beyond the capabilities of these classical methods. These limitations make them
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less suitable for application in real-world complex environments. In contrast, reinforcement
learning enables robots to acquire task-specific policies that integrate perception and control
for effective navigation in such challenging settings.

Locomotion Control

Prior work has focused on specific control methods to achieve basic locomotion abilities
in hexapod and quadruped robots. Researchers have employed two-layer Central Pattern
Generator (CPG) networks and posture control strategies based on force distribution and
compensation to enable robot locomotion across a variety of terrains [28]. In previous work,
Zang et al. [51] successfully enabled a hexapod to climb over joist terrains using a teacher-
student model and an actor-critic reinforcement learning strategy [50].

Deep Reinforcement Learning (DRL) has become a promising approach for developing
autonomous and complex behaviors in real-world systems. Many researchers choose to test
the performance of their systems in simulation environments before applying them to real-
world applications. However, the sim-to-real gap poses significant challenges in transferring
simulated learning to real-world scenarios [18, 30]. Solutions such as system identification,
domain randomization, domain adaptation, imitation learning, meta-learning, transfer learn-
ing, and knowledge distillation have shown promise in narrowing this gap, enabling more
effective deployment of robotic systems in physical environments [16, 18, 38, 53]. Rizzardo
proposed a sim-to-real technique that trains a Soft Actor-Critic agent together with a de-
coupled feature extractor and a latent-space dynamics model, enabling transfer without
retraining or fine-tuning [30]. Tiboni introduced DROPO, a novel method for estimating
domain randomization distributions for safe sim-to-real transfer [39].

Model-free reinforcement learning has emerged as a pivotal approach for achieving dif-
ferent locomotion tasks, such as hopping and crawling, in various environments—both ter-
restrial and aquatic, with barriers or gaps [3, 19, 32, 35, 40, 48, 55]. Special network designs
have been introduced to facilitate the training of the locomotion policy. [40] proposed learn-
ing low-level motion from a biological dog first and then learning high-level tasks in order to
save training time. All these policies were combined into a single framework, allowing the
robot to autonomously select and execute the appropriate policy. Kareer et al. [19] devel-
oped a two-layer architecture consisting of a visual navigation layer, which outputs angular
velocity commands, and a visual locomotion layer, enabling a quadruped robot to step over
scattered terrain toward a target destination. [48] proposed a hierarchical structure with a
high-level vision policy and a low-level motion controller, enabling a quadrupedal robot to
traverse uneven environments effectively.

Reinforcement learning

In order to show the efficacy of the policy employed on the robot, physical experiments
are imperative. Traditional methods such as the Dynamic Window Approach (DWA) [8]
are effective in obstacle avoidance for robotics. Actor-critic reinforcement learning-based
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avoidance methods have been used to enable robots to avoid scattered obstacles [6, 12]. [21]
proposed training ANYmal robots with reinforcement learning in simulation and deployed
the policy to operate in challenging natural environments. [20] presents an approach to
teach a quadruped robot to adapt and conquer unseen environments with a base policy
and an adaptation module. Researchers introduced a general DRL framework for obstacle
avoidance and incorporated a manipulability index into the reward function in order to avoid
joint singularity while executing tasks [31]. The FAM-HGNN framework, which relies on an
attention mechanism within a heterogeneous graph neural network, presents a novel solution
for the obstacle avoidance problem in RL. This approach surpasses the performance of both
multi-layer perceptron-based and existing GNN-based RL methods [52].

With regards to squeezing, researchers enabled the reconfigurable robot RSTAR to
squeeze through two adjacent obstacles, duck underneath an obstacle, and climb over an
obstacle using the Q-learning algorithm [44].

In tasks involving climbing stairs, both Deep Deterministic Policy Gradients (DDPG)
and Trust Region Policy Optimization (TRPO) were evaluated, with the latter showing su-
perior performance [9]. Researchers used sim-to-real RL to achieve climbing by modifying an
existing flat-terrain training framework to include stair-like terrain randomization, without
any changes to the reward function [33]. Researchers also conducted experiments to enable
different articulated, tracked robots [26] and assistive robots [27] to climb on slopes or stairs
using machine learning techniques.

Reconfigurable Robots and Adaptive Perception Systems

The development of reconfigurable robots has emerged as a promising solution for enhancing
versatility and agility in dynamically changing environments. Platforms such as Snapbot
V2 and PolyBot showcase the capacity to alter reconfigurations on-the-fly to better suit
task-specific locomotion requirements [10, 45]. Extending on those works, Hefty [11], an
agricultural robot, demonstrates how reconfiguration can solve realistic tasks in the real
world.

Inspired by those works, our system integrates a height-adjustable depth camera onto a
hexapod platform. This design choice enables the robot to automatically lower its height
when detecting obstacles, thereby achieving optimal performance in squeezing under them.
This automatic reconfiguration introduces a critical degree of freedom, significantly enhanc-
ing the robot’s ability to achieve compact traversal in cluttered environments such as houses
and attics.



7

Chapter 2

Methodolgy and experiements

The outline of this chapter is as follows. In Section 2.1, we discuss the methodology for train-
ing stair climbing, obstacle avoidance, and squeezing under and between obstacles policies.
In Section 2.2, we discuss the corresponding physical experiments.

2.1 Methodology

We train the robot to climb up/down stairs, avoid obstacles, squeeze under objects, and
squeeze between objects. For each task, we train the corresponding policy in simulation
using Isaac Gym, then directly deploy the trained policy onto the robot, which is equipped
with an Intel RealSense Tracking Camera T265 for pose estimation and an L515 for depth
estimation. Each task requires a different terrain construction, reward function, and camera
angle, as shown in Tables 2.1 and 2.2. To further understand the reward terms, they can
be grouped into two categories: (1) action-related terms in Table 2.3, and (2) environment-
related reward terms in Table 2.4. We adopt a 2-stage student-teacher model, shown in
Figure 2.1, similar to [50], in which the teacher policy is trained with privileged information
such as joint feedback and a height map shown as the yellow pad in Figure 2.2. The teacher
policy is then transferred to a student policy that takes in estimated pose and depth images as
visual input using supervised learning. In the teacher model training, even though different
tasks are trained with different reward terms, height map sizes, and terrain constructions,
they are each distilled into a policy that takes a depth map of size 32× 24 as visual input.
During training, we control our robot by directly predicting the joint angles and applying
them to the corresponding joints. The angles range from [-120, 120] degrees. Each joint is
initialized to a resting position provided by the manufacturer, as shown in Figure 1.2.

The entire training process takes approximately 10 hours for the teacher policy and 5
hours for the student policy on an RTX TITAN GPU. The reward terms and weights for
each of the five tasks—joist climbing, stair climbing, obstacle avoidance, squeezing under
objects, and squeezing between objects—are shown in Tables 2.3 and 2.4. Different tasks
require different number of training iterations to converge, as seen in the reward convergence
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Reward Term Expression (Definition)
Linear velocity in global x (forward) clip(vx,min = −0.4,max = 0.4)
Linear velocity in body y (left/right) v2y
Global heading θ2

Angular velocity: yaw ω2

Ground impact ∥ft − ft−1∥2
Collision penalty 1{coxa, femur, or base contacting terrain}
Action rate ∥at − at−1∥2
Action magnitude ∥at∥2
Torques ∥τ∥2

Joint acceleration ˆ̈q2 =
(

q̇t−q̇t−1

∆t

)2
Joint limit penalty clip(qt − qmin,max = 0) + clip(qt − qmax,min = 0)
End effector height ∥zend effector∥
Global y deviation ∥ycurrent − ystart∥2
Distance to obstacle (front) f(H)
Distance to obstacle (above) f(H)
Distance to obstacle (to joints) f(H)

Table 2.1: Reward Term Definitions

Task Camera Angle Height map Height map
(degrees) size (m) location (m)

Joist Climbing 30 0.6× 0.8 0.3
Stairs Climbing 30 0.6× 0.8 0.3
Obstacle Avoidance 30 0.6× 1.0 0.6
Squeezing under Obstacles 0 0.6× 0.8 0
Squeezing between Obstacles 0 1.2× 0.8 -0.3

Table 2.2: Optimal camera angle and height map for each task.

curve shown in Figure 2.3. During model deployment, we take the depth image and pose
estimate from our visual odometry system as input to our policy and output the joint angles
for each of the 18 joints. We then send signals to each servo to set them to the desired
angles.

The optimal camera angle for different tasks is shown in Table 2.2. Other than squeezing,
which requires the optical axis of the camera to be parallel to the horizon, all other tasks
work well with a 30-degree downward-looking inclination. This is expected, since the robot
needs to look “up” rather than “down” to see the obstacle above it when squeezing under
an object.
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Reward Term Joist Stair Obstacle Squeeze under Squeeze between
Action rate −5−1 −5−1 −5−1 −5−1 −5−1

Action magnitude −1−2 0 −1−2 −1−2 −1−2

Torques −1−3 0 −1−3 −1−2 −1−2

Joint acceleration −1−5 −1−5 −1−5 −1−5 −1−5

Joint limit penalty −10 −10 −10 −10 −10

Ground impact −1−1 0 0 0 0
Collision penalty −10 0 −30 −10 −10

Linear velocity (global x) 12 12 12 12 12

Linear velocity (body y) −11 −11 −11 −11 −11

Global heading −31 0 0 0 0
Angular velocity (yaw) −10 0 −10 −10 −10

End effector height −1−1 0 0 0 0
Global y deviation 0 −12 −10 −10 −10

Table 2.3: Action-related reward terms and weights.

Reward Term Joist Stair Obstacle Squeeze Under Squeeze between
Distance to obstacle (front) 0 0 −1−1 0 0
Distance to obstacle (above) 0 0 0 −1−1 0
Distance to obstacle (to joints) 0 0 0 0 2

Table 2.4: Environment-related and task-specific reward terms and weights.

The height map size and location for different tasks are also shown in Table 2.2 and
visualized in 2.4. We have empirically found that obstacle avoidance requires a larger height
map positioned farther from the robot than joist climbing and stair climbing.

Stair Climbing

We trained the robot to climb up and down staircases using the two-step teacher-student
method described earlier. We deployed curriculum training to help the robot climb more
challenging staircases by first learning easier ones. In particular, we let the riser heights
increase from 4.5 cm to 18 cm and the tread depth decrease from 30 cm to 18 cm as the level
of difficulty increased in curriculum training. In addition, we randomized the tread depth
within a given staircase in simulation to improve the generalization of our policy.

The weight of the reward term ’Global y deviation’ in Table 2.1 is an order of magnitude
larger for stair climbing than for the other tasks. The main motivation for this is to prevent
the robot from unnecessarily deviating to the right or left as it climbs a staircase. Intuitively,
this term minimizes the lateral deviation of the robot from the direction of the axis it was
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Figure 2.1: High-level overview of training methodology [50]

pointed toward before it starts climbing. We empirically found that a 30° tilt angle for the
depth camera works well for both climbing up and down staircases.

Obstacle Avoidance

Even though traditional methods such as DWA [8] work well for obstacle avoidance, since
our eventual goal is to combine the different RL skills into one, we have also developed
an RL-based policy for obstacle avoidance. The most straightforward way to teach the
robot to avoid collisions is by minimizing collisions between the robot’s femur, coxa, and
body during simulation, assigning large negative rewards when such collisions occur. This is
shown as the “Collision Penalty” in Table 2.1 and indicates the number of collisions, where
a collision is defined as an event with contact force larger than a force threshold of 0.1 N.
We have empirically found that such a method results in the robot scraping by and touching
obstacles as it tries to avoid them. To circumvent this, we use a reward term shown in the
third-to-last row of Table 2.1, given by:

R(H) = −
M∑
i=1

(
N∑
j=1

h′
ij · −→w1j

)
· −→w2i

where h′
i,j is the (i, j)

th element of the binarized height map M ×N matrix H ′ given by:

h′
ij =

{
1 if hij > 0

0 otherwise
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Figure 2.2: Simulation environment in Isaac Gym. (a) Stair climbing. (b) Obstacle avoid-
ance. (c) Squeezing under obstacles. (d) Squeezing between obstacles.
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Figure 2.3: Reward vs. episode convergence curve for tasks. (a) Stairs Climbing. (b)
Obstacle avoidance. (c) Squeezing under obstacles. (d) Squeezing between obstacles.

hij is the (i, j)th element of the M × N matrix height map matrix H, and −→w1 is an N
dimensional weight vector of dimension N of a triangular shape given by:

−→w1 =

[
1, 1 +

2

N
, 1 +

4

N
, . . . , 2, . . . , 1 +

4

N
, 1 +

2

N
, 1

]
corresponding to the perpendicular distance of the points in the binarized height map to the
axis parallel to the direction of the movement of the robot passing through the middle of
the robot. A visualization of w1 can be seen in Figure 2.5. w2 is an M dimensional weight
vector of the shape of a ramp ranging from 1 to 2, providing more weight to the obstacle
points closer to the center front of the robot in the walking direction given by:

−→w2 =

[
1, 1 +

1

M
, 1 +

2

M
, . . . , 2

]
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Figure 2.4: Visualization of heightmap center and heightmap location value as shown in
Table 2.2.
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Figure 2.5: Visualization of symmetric middle line and the vector structure.

For the terrain in simulation, we included a variety of obstacle shapes in the map. We
also note that if the obstacles are densely placed on the map at the beginning stages of
training, the policy is likely to converge to a local maximum reward and terminate early.
This is due to the sudden large penalty generated by the distance to obstacle reward term.
To address this, we incorporate curriculum training, where the robot first learns to walk
without any obstacles, then to avoid sparsely placed obstacles, followed by navigating a
more densely populated obstacle terrain. The density range at each level of difficulty is
given by (2×Level/Total Levels)×Densityfinal, where Densityfinal is defined as the density
of obstacle spacing at the final difficulty level.

The obstacle avoidance functionality provided by the manufacturer of our robot uses
ultrasound to sense obstacles and change direction accordingly, but it does not revert to
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Figure 2.6: Physical design of a squeezing environment.

its original orientation afterward, as seen in this video link. In contrast, we ideally want
our obstacle avoidance functionality to have the robot return to its original orientation after
avoiding a given obstacle. To achieve this, we use a combination of a ’global y deviation’ term
and a ’local y velocity’ term, where the y-axis is perpendicular to the direction the robot was
moving along before reacting to the obstacle. The ’global y deviation’ term, shown in the
third-to-last row of Table 2.1, indicates the distance between the robot and the y-axis. The
local y velocity term, shown in row 2, refers to the squared velocity along the y direction.
The latter term prevents the robot from returning to its original direction of motion too
soon, which can occur if the obstacle is no longer within the robot’s field of view after the
initial turn.

Squeezing Under Obstacles

Squeezing under objects is an important skill for traversing environments with low-clearance
obstacles such as beds, couches, and tables. We mainly focus on two aspects in the design of
the squeezing terrain: obstacle height and tunnel length, as defined in Figure 2.6. Our goal
is for the robot to learn this skill and generalize to obstacles of varied shapes and tunnels of
varied lengths.

Since Isaac Gym does not support floating terrains and requires all elements to be
grounded, we modified the code to construct terrains on vertices ”in the air.” In the sim-
ulation environment, we created a floating obstacle above the basic terrain shown in Fig-

https://www.youtube.com/shorts/irWzEnhbGC0
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ure 2.2(c) to mimic the effect of a physical table, bed, or couch. The height map used in
phase 1 of training in simulation takes on the ground-level height when there is no obstacle
above, and the obstacle’s height otherwise. We then define a single reward term, shown in
the second-to-last row of Table 2.1, to maximize the distance between the robot and the
obstacle when there is an obstacle above, and maximize the distance between the robot’s
base and the ground otherwise. Concretely, the reward is defined as follows:

R(H) = −
N∑
i=1

(
M∑
j=1

h′′
ij · −→w3j

)
· −→w4i

where h′′
ij is a function of the height map hij and the distance of the base robot to the ground,

b, as follows:

h′′
ij =

{
1 if (hij − b) > 0

−2 · |hij − b| otherwise

−→w3 is a N dimensional vector of all ones, and −→w4 is an M dimensional ramp vector ranging
from 1 to 2 to assign a larger weight to the obstacle points closer to the center front of the
robot in the walking direction given by:

−→w4 =

[
1, 1 +

1

N
, 1 +

2

N
, . . . , 2

]
We use curriculum learning so that the robot first learns to walk and then to squeeze

under obstacles. The level of difficulty increases as we decrease the object’s distance to
the ground from 37 to 35, 33, and finally to 31 cm. The obstacle itself can have variable
height in the vertical direction, as well as variable length or width. The longer the obstacle,
the longer the robot has to remain in a squeezed posture to avoid hitting it while passing
underneath. We also randomize the origin so that, in simulation, the robot encounters the
obstacle after walking different distances. Finally, the optical axis of the depth camera is
parallel to the ground so that it can clearly see the beginning and end of the “tunnel” created
by the obstacle.

Squeezing Between Obstacles

Squeezing between obstacles is a crucial skill for traversing cluttered environments. It en-
ables the hexapod robot to navigate through narrow hallways and narrow spaces between
furnitures, and further enhances its agility.

The width of the robot in the rest position is 52 cm, as shown in Figure 1.2, and it
becomes wider while in motion. In simulation, we construct terrains consisting of obstacles
with various shapes and gaps to mimic a cluttered room. To improve the generalization of
the policy, we vary the shapes of the obstacles and randomize the gaps between them to
values in [45, 50, 55, 60] cm. During policy execution, the robot squeezes its body to reduce
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Figure 2.7: Squeezing between process in simulation.

Figure 2.8: Visualization of the distance between symmetric legs.
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Up (Steps completed/total) Down (Steps completed/total)

Method Cory Soda Sud. Cory Soda Sud.

Perceptive (Ours) 6.0/7.0 7.0/7.0 7.6/8.0 6.6/7.0 7.0/7.0 7.5/8.0

Table 2.5: Stair climbing performance across three test locations (Cory Stairs, Soda Stairs,
and Sudardja).

its width when surrounded by obstacles and expands after successfully exiting the tunnel.
A visualization of this process can be seen in Figure 2.7.

A simple reward that encourages distance between the joints and obstacles can result in
an undesired gait and may be difficult to train. To address this issue, we introduce a new
reward to encourage the squeezing behavior when the robot is surrounded by obstacles. We
define a single reward term, shown in the last row of Table 2.1, to minimize the distance
between the symmetric legs of its body as shown in Figure 2.8. This is designed to deal with
situations where there are obstacles on both the left and right sides of the robot. Concretely,
the reward is defined as follows:

R(H) = I ∗ 1

3

3∑
i=1

(1− (di − t) ∗ c)

where H stands for the heightmap, di denote the distance between symmetric outer joint
of the left and right legs in each row of the legs, t refers to a target width, and c is a constant
scalar value. In our design, we select t = 0.3 and c = 4. I is an indicator defined as follows:

I =

{
1 if Hil > 2 and Hir > 2

0 otherwise

where Hil and Hir represent the number of height points greater than 0 on the left and
right sides of the center of the robot of row i of the heightmap, respectively. In this design,
if any single row satisfies this condition, the indicator I is set to 1; otherwise, it is set to 0.

2.2 Physical Experiments

We run the policies trained in simulation on a Raspberry Pi processor mounted on the
physical robot. We conducted experiments on all four tasks to verify and characterize the
performance of our policies in real-world environments. For the staircase task, we used three
staircases on the campus of U.C. Berkeley. For the other three tasks, we constructed several
terrains to evaluate the robot’s performance by measuring its success rate in completing the
tasks.
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Perceptive (Ours) 7/10 2/10 1/10 9/10 1/10 0/10 7/10 2/10 1/10 8/10 1/10 1/10

Table 2.6: Object avoidance performance.

Stair Climbing

We chose three staircases on the U.C. Berkeley campus, as shown in Figure 2.9, to evaluate
the robot’s performance in both climbing and descending tasks. In Figure 2.9, Cory Hall and
Soda Hall each have 7 steps, while Sutardjai Hall has 8 steps. At the start of each experiment,
the robot is placed 20 cm in front of the stairs and is reset to its default standing position,
as shown in Figure 1.2. We intervene only if the robot falls over or becomes stuck on a stair.

We evaluate performance by counting the number of steps the robot could complete in
each trial. We then average that number across 10 trials, as shown in Table 2.5. As observed,
Soda Hall has the highest success rate because it has the lowest rise and the highest tread.
Few of the climbing failure cases resulted from the robot falling over. Others occurred when
the robot became stuck on the last stair for too long, believing it was walking on flat ground
because the camera image did not show any stairs. For stair descent, failure cases resulted
from the robot losing control and falling. We present a video link showing the robot climbing
two sets of stairs separated by a platform, with 8 and 7 steps in the first and second sets,
respectively. As shown in the video, the robot is able to traverse in a relatively straight
line down the center without significant lateral shift to the right or left. The video also
demonstrates the robot descending stairs using our policy, compared to a baseline walking
policy trained on flat terrain. As expected, applying the ”walk” policy to the staircase results
in the robot crashing down the stairs.

Avoiding Obstacles

We construct a variety of obstacle scenarios to evaluate the robot’s obstacle avoidance per-
formance. We test the robot’s generalization ability to detect arbitrarily shaped obstacles
and to avoid them robustly. We design a total of four environments. The first consists of a
single box-shaped obstacle placed in front of the robot to test its ability to avoid from the
left or the right. The second consists of two obstacles: a box-shaped obstacle placed in front
and a deformable plastic bag placed behind it. The third consists of a person standing or
sitting in front of the robot. The fourth consists of a person walking toward the robot. We
test each environment 10 times, with results shown in Table 2.6. We group the outcomes into
three categories: success, scrape, and collision. Success means the robot navigates around
the obstacle without any collision; scrape means the robot is able to go around the obstacle

https://youtu.be/Z22-K-4Pe6E


CHAPTER 2. METHODOLGY AND EXPERIEMENTS 20

Figure 2.9: Experimental scene for stairs climbing. The first number is the riser height and
the second number is the tread depth both in centimeters.
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Figure 2.10: Obstacle Avoidance Environment.

but some part of its leg scrapes the object or person; collision means the robot runs into the
object.

In failure cases, the robot often detects the object but reacts too slowly, resulting in the
back leg scraping the obstacle after the front part has successfully avoided it. In successful
cases, the robot exhibits avoidance behavior to either the left or right, depending on its
distance to each side of the obstacle. This indicates that our policy did not simply memorize
to avoid obstacles by always veering in one direction. After passing the obstacle, the robot
rotates back to its original orientation and continues moving forward. Finally, we conducted
a comprehensive test of the robot’s ability to avoid all six of our tested obstacles in a row,
as shown in Figure 2.10 and visualized in this video link.

Squeezing Under Obstacles

The squeezing setup shown in Figure 2.11 aims to mimic obstacles such as a couch, a bed,
or a table. At the beginning of the experiment, the robot is positioned 30 cm in front of
the obstacle. It is tasked with squeezing under the object and walking in the squeezed mode
until it exits the “tunnel” created by the overhead obstacle, at which point it is expected to
raise its body to the default height and continue walking. The experiment is considered a
success if the robot is able to pass through the tunnel without any collisions1.

Our experimental setup for squeezing is shown in Figure 2.11, with dimensions superim-
posed on the images. In Figures 2.11(a), 2.11(c), and 2.11(d), there is a pair of metal rods

1Collisions are visually detected and defined as events where contact between the robot and obstacles
results in a trajectory change.

https://youtu.be/tbSoOhQQsJk
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Figure 2.11: Experimental scene for squeezing. (a) Metal rod as obstacle without tunnel.
(b) Lengthy tunnel. (c) Paper block as obstacle without tunnel. (d) Paper block as obstacle
with tunnel.
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Figure 2.12: Squeezing under two consecutive obstacles.

placed 4 inches (10.20 cm) apart. The ends of the rods are inserted into two boards with
holes on a one-inch grid. In Figures 2.11(c) and 2.11(d), paper pieces connect the two rods,
creating a different depth image than in Figure 2.11(a) during inference and thus testing
the generalizability of our policy. Finally, a wooden board in Figures 2.11(b) and 2.11(d)
creates a tunnel of length 129.1 cm to ensure the robot remains in the squeezed position for
an extended period.

As a reference, the robot is 28.75 cm high when lying flat and 37 cm high when standing
in the rest standing position shown in Figure 1.2. While we acknowledge that the height of
the robot in the squeezing position is still relatively large, our main goal is to demonstrate
the concept of teaching the robot to squeeze when needed. For each of the four settings
shown in Figure 2.11, we performed 10 to 20 trials and present the success rate in Table 2.7.

Terrain Success Rate % Success

Metal rod w/o tunnel (a) 17/20 85%
Lengthy tunnel (b) 10/10 100%
Block w/o tunnel (c) 18/20 90%
Block with tunnel (d) 9/10 90%

Table 2.7: Squeezing performance with corresponding construction in Figure 2.11.
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As seen, the success rate is high2. Even though, we would intuitively expect the success
rate for metal rod and block without tunnel experiments in rows (a) and (c) of Table 2.7
to be higher than that of block with tunnel in row (d), since the total number of trails for
(a) and (c) were 20 and for (d) was 10, in practice, the battery in the robot would run out
after 20 trials and result in more failures. While the robot can momentarily squeeze as low
as 31.75 cm to pass under a thin metal rod, it cannot sustain that height over an extended
distance—such as 129 cm—without hitting the tunnel roof. However, it can maintain the
squeezed posture for a short while through the 34.29 cm high tunnel shown in Figure 2.11(b).
The support boards on the sides have grid hole spacing of one inch; thus, we can only adjust
the rod height in one-inch increments, resulting in a ”jump” from 31.75 cm to 34.29 cm. We
speculate that the robot could successfully pass through a tunnel with a height of 33 cm
without scraping the top.

In one experiment, shown in Figure 2.12, where there are two obstacles each 31.75 cm
high and no tunnel between them, we observed that the robot squeezes under the first
obstacle, briefly rises in the middle, then squeezes again under the second obstacle upon
sensing it, and finally stands up to continue walking. We present a video demonstration of
this experiment in this link. As seen in the video, the robot’s “belly” comes close to the
ground as it squeezes under the obstacles and then rises afterward. The plot in Figure 2.13

Figure 2.13: Height of robot body vs. rollout step in Isaac Gym.

shows the change in the height of the robot’s base relative to the ground, as captured in
simulation.

2We have empirically found that the failure rate for all three tasks increases when the battery is low and
the supplied voltage is around 10 volts rather than the nominal 12 volts.

https://youtu.be/dNtgt4t8Pa8
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Squeezing Between Obstacles

Squeezing between occurs when two objects are placed close to each other. In such scenarios,
the robot is required to tighten its body to reduce its width and pass through the obstacles.
To complete the process, the robot should stop squeezing and expand its legs into a walking
gait after exiting the ”tunnel” formed by the obstacles.

The experimental setup for squeezing between is shown in Figure 2.14. We tested the
policy with two different groups of obstacles and various gap widths. The robot has a width
of 52 cm in the resting position and becomes even wider while moving or executing other
skills. Therefore, terrain construction focused primarily on the gap width between obstacles.
As shown in Figure 2.14(a), we placed a tall fan on the left and a black box on the right,
with two different gap widths of 35 cm and 40 cm, where the distance is measured from the
bottom of the fan to the bottom of the box. In the second setup, shown in Figure 2.14(b), we
placed two black boxes on either side and tested the robot’s ability to pass through obstacles
where the narrowest gap between them is 47 cm.

At the beginning of each experiment, the robot is placed 30 cm in front of the obstacles in
a resting position. It is tasked with walking toward the tunnel, initiating squeezing behavior
when surrounded by obstacles, and expanding its legs to resume walking after exiting, as
shown in Figure 2.15. The experiment is considered a success if the robot exhibits squeezing
behavior and exits the tunnel without getting stuck.

Terrain Success Rate % Success

two boxes (47 cm) 4/5 80%
box & fan (40 cm) 5/5 100%
box & fan (35 cm) 4/5 80%

Table 2.8: Squeezing between obstacles results

The results are shown in Table 2.9. We observed that, in failure cases, the robot often
runs into the obstacle before initiating the squeezing behavior. In successful cases, the
robot squeezes while surrounded by the obstacles, then expands and resumes walking after
exiting. As a visual illustration, we present a video of the robot navigating each terrain at
the following link.

2.3 Squeeze with adjustable camera

In the previous section, we demonstrated that the squeezing policy allows the robot to
squeeze under obstacles of varying heights and depths. In that experiment, we showed that
the robot is capable of squeezing under an obstacle of 31.75 cm with a high success rate. One
limitation, however, is that the robot is still too tall to traverse realistic obstacles such as a
low table or a chair. To enhance performance, we designed an adjustable camera mount to

https://youtu.be/7n1VtY6pWV8
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Figure 2.14: Squeezing between physical experiments setup.

Figure 2.15: Squeezing between process in physical experiments.
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replace the rigid camera used in the previous design. We used the same type of servo as those
controlling the legs to enable up-and-down movement of the camera. The servo operates
within a range of 0 to 240 degrees, corresponding to a height adjustment of 0 to 12 cm. As
shown in Figure 1.3, the new camera mount reduces the overall height of the robot from 37
cm to 25 cm in its resting position. This additional degree of freedom enables the hexapod
robot to handle more challenging and realistic terrains, such as passing under a table or a
chair. Different methods were considered for this task. A reinforcement learning (RL)–based
method with the adjustable camera as an extra degree of freedom was trained in Isaac Gym.
The ”distance to above” reward used in the previous iteration remained unchanged, as it
encourages maintaining distance between the obstacle and the camera, causing the camera
to lower whenever an overhead obstacle is detected. However, we observed that this method
suffers from a significant sim-to-real transfer gap.

We analyze the joint angles during the execution of the squeezing policy. A joint angle
vs. rollout step graph is shown in Figure 2.16, where we plot the joint angles of all 18 joints
during a squeezing task. We observe that a few joints exhibit clear patterns that can be used
as thresholds to control camera movement. We select joint 3 as the reference for thresholding
the camera. Specifically, when the joint angle reaches 90 degrees, the camera is set to the
low position; when the camera is already low and the joint angle decreases to 70 degrees,
the camera is set to the high position. Using this thresholding logic, performance remains
stable across different obstacles.

We experiment with two different obstacles found in the office—a 20 cm tall table and
a 25 cm tall sofa—as shown in Figures 2.17(a) and 2.17(b). During each experiment, the
robot is placed in front of the obstacle and tasked with passing through while demonstrating
the desired body and camera movement. We also placed the robot at a tilted angle facing
the desk to test the robustness of the policy.

Terrain Success Rate % Success

Table (straight) 10/10 100%
Table (tilted) 10/10 100%
Sofa 9/10 90%

Table 2.9: Squeezing under obstacles with adjustable camera performance with correspond-
ing construction

As shown in Table 2.9, the success rate is high. The only failure case occurred in the sofa
experiment, where the robot’s leg became stuck on the bottom metal rod of the sofa. In all
other experiments, the robot demonstrated the desired behavior: lowering the camera and
body during squeezing, and maintaining a high camera and body position otherwise. We
performed a comprehensive test involving both the sofa and the table. The robot’s movement
during this process is visualized in Figure 2.18. The complete video can be viewed at the
following link.

https://youtu.be/W_U5_Z50ODc
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Figure 2.16: Joint angle vs. rollout step during squeezing.
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Figure 2.17: Squeezing under obstacles with adjustable camera setup in physical experiments.
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Figure 2.18: Squeezing under obstacles with adjustable camera process in physical experi-
ments
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Chapter 3

Conclusions and Future work

In this work, we trained a hexapod robot with multiple locomotion skills—including climb-
ing up/down stairs, avoiding obstacles, squeezing under objects, and squeezing between
objects—using a depth camera and a visual-inertial odometry sensor. Using a 2 stage train-
ing strategy, we trained the robot entirely in simulation and demonstrated successful transfer
to the physical robot. We further enhanced the robot’s agility by mounting an adjustable
camera, allowing it to become more compact during tasks that require squeezing under ob-
stacles. This additional design enables the robot to pass under common furniture such as
chairs and sofas. The ability to automatically adjust the camera height allows the robot to
benefit from both compact and upright configurations. We demonstrated the robot’s ability
to perform these tasks effectively through rigorous physical experiments.

For future work, we consider it beneficial to enhance the system by combining locomotion
skills with tools such as visual language models. As shown in this thesis, the skills acquired
through training are well-suited for specific tasks. It may be advantageous to introduce a
higher-level agent capable of combining and executing these skills in various scenarios. For
example, given an instruction like ”approach the blue can in the room,” the agent should be
able to decompose the task into subproblems. With the aid of visual reasoning, the agent
can then select the appropriate locomotion skill for each subproblem. This would enable the
hexapod robot to accomplish more complex tasks in real-world settings.

Adding extra mounts could also be useful in many scenarios. For instance, executing a
command such as ”pick up the ball under the bed” requires more than just locomotion—it
necessitates manipulation capabilities. In such cases, a gripper or a hand would be instru-
mental in completing the task. With a more sophisticated system, the inexpensive hexapod
robot has the potential to be both affordable and practical for household use.

We present preliminary results on skill combination using a vision-language model (VLM).
We designed an agentic flow to solve planning tasks, as shown in Figure 3.1. The system
receives a task in the form of a natural language instruction, and the agents within the
system collaborate by performing their respective roles and communicating with each other
to complete the task.

During execution, the vision agent processes depth information and RGB images. It
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Figure 3.1: Overview of the VLM flow with example.

sends requests to tools such as the depth API to obtain accurate environmental information.
The vision agent then sends a scene description to the planning agent, which generates
the most appropriate action for the current context. These actions include rotating by a
certain angle or executing one of the predefined locomotion skills. The robot receives the
action command and performs the action. After execution, the feedback agent stores the
RGB image and action in the system state and initiates the next iteration. We observed
that the current system only works reliably when the goal is visible at the beginning of
the experiment. One challenge is that the robot lacks a reliable tracking system, making it
difficult to estimate information such as distance traveled. Another limitation is the robot’s
lack of precise control—it cannot reliably rotate to a specific angle or maintain a constant
moving speed. Addressing these challenges would be beneficial for future improvements.
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