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Abstract

Representation Learning for Active Perception

by

Jerome Quenum

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Trevor Darrell, Co-chair

Professor Jitendra Malik, Co-chair

Active perception driven by representation learning lies at the intersection of computer
vision and robotics, powered by advanced Artificial Intelligence (AI) algorithms. It has
for goal to develop systems that can actively gather information from their environment
by learning useful representations to enhance both their perception and decision-making
capabilities. This dissertation explores various facets of this topic, with a particular focus on
how advanced representation-learning techniques can significantly improve the performance
and utility of such systems.

We begin by examining the role of precision in AI-driven systems through classical segmen-
tation tasks in Ultra-High-Resolution (UHR) images within the context of battery design.
A novel transformer-based network, TransforCNN, is introduced to segment dendrites in
Lithium Metal Battery (LMB) 3D X-ray computed tomography (XCT) volumes. This ap-
proach significantly improves the accuracy of segmenting critical structures, which is essential
for developing more efficient and reliable batteries. The precision gained in this segmentation
problem through our proposed representation learning model not only enhances the visual
understanding of battery components but also lays the groundwork for more informed and
effective design strategies.

Building on this foundation, we transition to addressing the challenge of processing Ultra-
High-Resolution (UHR) images, which is important for applications requiring both speed and
accuracy. We explore this in the context of barcode detection in UHR images, where a new
detection pipeline is proposed, integrating a modified Region Proposal Network (RPN) with a
proposed segmentation network named Y-Net. This study demonstrates how representation
learning can be optimized to reduce latency while maintaining high accuracy, showcasing
the potential of AI to handle complex visual tasks in real time.
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We then examine scalability when it comes to the integration of representation learning for
active perception in robotics, where speed, accuracy, adaptability, and robustness are key.
Using the Open X Embodiment (OXE) dataset, we investigate a cross-robot self-supervised
sensorimotor pre-training approach through RPTx, a multimodal model that does not lever-
age language instructions and does not use auto-regressive methods. This approach provided
valuable insights into the robustness and adaptability issues encountered by robotic systems.
Here, we conduct reliability assessments, an examination of negative transfer instances where
models struggle to adapt, and we speculate on future directions for overcoming these difficul-
ties. Additionally, we observe that the use of multimodal models that leverage large language
models for instruction tuning and that employ auto-regressive techniques led to more stable
and promising outcomes with LLARVA, a vision-action instruction tuning paradigm that en-
hances Robot Learning. These findings demonstrate how learning good representations can
enhance robotic systems’ ability to interpret and respond to complex environmental cues.

Finally, we explore the challenge of extending segmentation models beyond fixed object cat-
egories to support reasoning over visual scenes. While current segmentation models work
well when objects are clearly defined, they struggle with complex user queries that refer to
multiple or implicit objects. Recent work in reasoning segmentation, which generates seg-
mentation masks from natural language input, shows that vision-language models (VLMs)
can help address this. However, our experiments show that existing models perform poorly
on remote-sensing images, which often contain dense and varied content. To address this,
we introduce LISAt, a vision-language model designed to describe remote-sensing images,
answer questions about them, and segment objects based on user queries. LISAt is trained
on GRES, a dataset with 27,615 annotations across 9,205 images, and PreGRES, a multi-
modal dataset with over one million question–answer pairs. LISAt outperforms geospatial
models like RS-GPT4V by 10.04% in BLEU-4 for image description and improves on open-
domain models in reasoning segmentation by 143.36% in generalized Intersection over Union
(gIoU). These results show how learning strong multimodal representations can improve
scene understanding, especially in the geospatial domain.
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Chapter 1

Introduction

1.1 Motivation

Representation learning refers to the process of automatically discovering the features or
representations needed for a task from raw data. Instead of manually crafting features
(e.g., edges in images, patterns in text), representation learning allows models to learn these
features directly from the data. Deep learning methods have been particularly very successful
in learning such good representations. It is the case, for example, in image recognition where
the network might learn hierarchical representations in a way that lower layers detect edges,
middle layers detect shapes, and higher layers recognize objects (7; 8; 9).

Active perception, on the other hand is the idea that a perception system can take actions
to improve its understanding of the environment. Unlike passive perception, where a system
simply observes the environment, active perception involves actively choosing viewpoints,
actions, or strategies to gather the most informative data. An example of this is in robotic
systems where a robot would be moving around an object to see it from different angles,
thereby gaining a better understanding of its shape and size (10).

Given the above, it is natural to deduce that being able to obtain good representations
will significantly improve robotic systems, as those can allow the robots to acquire useful
information about their environment, which will facilitate their ability to actively make
decisions. In other words, we want learned representations to be as robust and informative
as possible to guide the active perception process, regardless of environmental changes.

This dissertation addresses the multifaceted challenges of representation learning within
the domain of active perception, exploring its impact across different applications. In the field
of battery technology, achieving high precision in the segmentation of Lithium Metal Battery
(LMB) structures is crucial for advancing design and efficiency. We discuss TransforCNN (T-
Net) (11), a novel transformer-based network designed to enhance the segmentation accuracy
of dendrites in 3D X-ray computed tomography (XCT) volumes. This approach not only
shows that a system that can learn good representations improves visual understanding but
also supports more effective design strategies in battery technology.
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Shifting the focus to industrial applications, we tackle the challenge of processing ultra-
high-resolution (UHR) images, where both speed and accuracy are critical. For tasks such as
barcode detection, we discuss a detection pipeline that combines a modified Region Proposal
Network (RPN) with a Y-Net segmentation network (12). This solution optimizes the learned
representation of visual features to achieve real-time processing with minimal latency while
maintaining high accuracy. This work highlights how advanced representation techniques
can be tailored to meet the demands of real-time applications. For example, in Amazon
warehouses, efficient barcode detection is necessary for managing inventory and streamlining
operations. Similarly, barcode scanning in environments such as grocery stores and hospitals
has been reported to enhance efficiency and minimize mistakes in daily operations.

In the realm of robotics, where systems must be adaptable and robust, we explore the
integration of learning a good representation of sensory data with active perception. Some
applications of this could be, for example, in gas station safety, where robots equipped with
advanced perception capabilities can identify potential hazards and improve safety protocols.
Another example is in self-driving vehicles, where robust perception and representation learn-
ing are critical for safe and efficient navigation. It is also the case in food delivery systems
where robots with advanced perception and navigation technologies can efficiently handle
complex delivery tasks and avoid obstacles. By employing the Open X Embodiment (OXE)
dataset (6), we examine RPTx, an adaptation of RPT (3), a multimodal model that employs
neither language nor auto-regressive techniques for robot self-supervised sensorimotor pre-
training. This study provides insights into issues associated with robustness and adaptability
when it comes to cross-robot learning. We present approaches for reliability assessment and
analyze instances where models face challenges in new scenarios. Additionally, we discuss
how using language and auto-regressive methods via the paradigm introduced in LLARVA
contributes to stability and improved outcomes, paving the way for future advancements in
active perception systems.

We further extend our investigation into how representation learning can support more
open-ended visual tasks guided by user intent. In many real-world scenarios, particularly in
geospatial analysis, users may seek information using flexible, language-based queries rather
than relying on fixed object categories. This requires models that can effectively link visual
content with natural language. To address this need, we introduce LISAt, a model trained
on both imagery and text to perform tasks such as image description, question answering, and
segmentation from natural language prompts. Using curated geospatial datasets, PreGRES
and GRES, which include paired annotations and questions, LISAt shows how multimodal
learning can aid decision-making in complex settings where goals and context may shift.
This line of work highlights new opportunities for applying active perception in systems that
must interpret user-defined objectives and respond in a context-aware manner.

Through these investigations, this dissertation aims to advance our understanding of how
good representation learning can enhance AI systems’ capabilities across various domains,
ultimately improving their performance and adaptability in complex, real-world environ-
ments.
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1.2 Thesis outline

This dissertation is structured into five main interconnected chapters, each addressing a
unique aspect of representation learning for active perception, but all contributing to a
cohesive exploration of the topic.

In chapter 2, we focus on the precision of AI-driven systems, particularly in the domain
of battery design. Here, a novel transformer-based network, TransforCNN (T-Net), is in-
troduced for segmenting dendrites in Lithium Metal Battery (LMB) 3D X-ray computed
tomography (XCT) volumes. The purpose of this chapter is to demonstrate how a good
representation learning scheme can significantly improve the accuracy of AI-driven systems.
We also show how this segmentation model, can be used for the development of more efficient
and reliable batteries, thereby giving insights into the foundation for more informed design
strategies in energy storage technology.

While precision is essential, the efficiency of AI-driven models is equally critical, espe-
cially in real-time applications. Therefore chapter 3 looks into strategies to reduce latency
in detection when dealing with ultra-high-resolution (UHR) images. Here, we explore this
challenge through the problem of small barcode detection in UHR images. This chapter
introduces a new detection pipeline that integrates a modified Region Proposal Network
(RPN) with a proposed segmentation network, Y-Net. By optimizing the learned represen-
tation to reduce latency while maintaining high accuracy, this study showcases AI’s potential
to handle complex visual tasks in real time, which is needed for applications requiring both
speed and precision.

In chapter 4, we investigate the integration of representation learning with active percep-
tion in robotics. Here, we investigate a cross-robot self-supervised sensorimotor pre-training
approach using RPTx, a non-auto-regressive multimodal model not using language that
leverages the Open X Embodiment (OXE) dataset. This allowed us to gain valuable insights
into the robustness and adaptability of robotic systems, including methods for reliability
assessment and an examination of negative transfer instances where the model struggles to
adapt. Additionally, we speculate on future directions for robotic perception, noting that
the use of large language models in the pipeline has led to more stable and promising out-
comes. We then contrast this in chapter 5 with our findings on LLARVA, an auto-regressive
multimodal model using language, on the same Open X Embodiment (OXE) dataset, and
show how this approach improves learning and facilitates generalization.

Finally, in chapter 6, we explore active perception within the geospatial domain, focusing
on the integration of vision and language for flexible, user-driven tasks. We introduce LISAt,
a vision-language model that learns from both imagery and text to perform tasks such as
answering questions, describing images, and segmenting objects based on natural language
prompts. This chapter demonstrates how multimodal representation learning enables sys-
tems to respond to dynamic, context-aware goals, providing new opportunities for decision-
making in complex environments. The model is trained on curated datasets, PreGRES and
GRES, and highlights how effective multimodal learning can adapt to user-defined tasks in
real-world scenarios.
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Chapter 2

Precision: Lithium Metal Battery
Quality Control via
Transformer-CNN Segmentation

2.1 Introduction

Lithium metal batteries (LMBs) offer high specific energy density, as Li is a light element.
Furthermore, the liquid electrolyte is not needed in LMBs, and polymer or ceramic elec-
trolytes can be used, which are inherently safer compared to organic electrolytes. However,
currently, no commercially available LMB systems exist because of Li dendrite formation,
resulting from inhomogeneous Li-metal plating. This section describes current methods for
imaging batteries followed by a review of the main algorithms for image analysis, semantic
segmentation, and battery characterization.

It is worth mentioning that this chapter makes use of material from our previous work
(13). We also briefly discuss the operation of conventional batteries in Appendix A.

Assessing Battery Quality with Imaging

Synchrotron-based hard X-ray computed tomography (XCT) has spatial resolution suitable
to resolve dendrite structures that have microscale dimensions (14; 15). Lithium has a
low atomic number and, therefore, a low X-ray attenuation. For example, Li dendrites
will appear to be void spaces within dense polymer electrolyte materials. XCT imaging of
LMB seldom recovers chemical information and relies on differences in material thicknesses
and atomic numbers to differentiate Li from solid polymer electrolytes (SPE). To worsen
the detection of LMB dendrites, they are porous formations that lead to large intensity
variations within their volume. When the LMB is subjected to multiple charge-discharge
cycles, a phenomenon known as pitting corrosion develops, and an electrode can present a
combination of pits and dendrites, with both presenting similar X-ray attenuation in XCT
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data. Thus, it is challenging to differentiate dendrites from pits, but also to quantify them
properly.

Previous LMB operando studies using XCT analyzed Li metal plating and how the in-
terphase evolves in symmetric Li-Li cells with polymer electrolytes and in the batteries with
Li-metal anode (15; 16; 17; 18; 19). These studies focused on the battery design and func-
tioning, however, they lack methods for revealing the structure of the dendrites. Most of
these previous studies applied traditional thresholding algorithms to conduct segmentation
that is unfortunately not reproducible when applied to new samples and is rarely applicable
to the differentiation between Li metal, pits, and other materials. Alternatively, manual seg-
mentation could be used for a selected cross-section, but it is often unfeasible for full-stack
high-resolution imaging surveillance because it is a highly time and labor-intensive process
(20).

Deep Learning for Semantic Segmentation

Semantic segmentation is the computer vision task of splitting an image into different cat-
egories (21) using a data-driven model to assign a pixel-wise classification given the input
image. Different models have been proposed, among them, the Fully Convolutional Networks
(FCN) (22), which proposed a paradigm shift in 2015 that runs fully connected layers and
includes a way to allow for each pixel to be classified from feature maps coming from convo-
lutional layers. This builds on a series of local convolutions of preceding layers that aim to
obtain a representation of multi-scale feature maps used for the classification tasks. Around
the same time, (2) introduced their convolutional neural network (CNN), a new CNN-based
encoder-decoder model known as U-Net, and showed that combining higher and lower fea-
tures symmetrically is beneficial in obtaining better performance. Soon after, SegNet (23)
and Deeplab (24) were proposed, confirming that the encoder-decoder architecture is well
suited for such a task.

A lot of these works (12; 24; 25; 26) also leverage the atrous convolution to show that
it could help capture contextual information. In particular, Y-Net (12) used three modules
to improve segmentation accuracy. In addition to the Regular Convolution Module, and the
Pyramid Pooling Module which allows the model to learn global information about potential
locations of the target at different scales, the Dilated Convolution Module took advantage of
the fact that the target is often shared out in the samples, which supports learning sparse
features in their structure. PSPNet (26), on the other hand, adds ResNet (27) as a backbone
while multi-scale feature maps are aggregated in its encoder.

Though these architectures work well, the computer vision community has increasingly
seen their design shift from pure CNN-based (see Figure 2.1(a)) design with (12; 22; 23;
24; 26; 28) to transformer-based (see Figure 2.1(b;c;d;e)) designs which started with ViT
(29; 30; 31; 32; 33). Later on, hybrid models (see Figure 2.1(b;c;d)) started exploiting the
best of both worlds by either using a transformer as encoder and CNN as decoder (34; 35),
or CNNs as encoder and a transformer as decoder, or even using CNNs and encoder-decoder
while transformers are used in the middle or in between to process the feature maps. One
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Figure 2.1: Types of Hybrid architectures.

such hybrid model is HRNet-OCR (36), which has a CNN as a backbone and combines
it with cross-attention layers between features of different scales to account for multiple
contexts and scales in the data. Table 2.1 gives a comprehensive comparison of the two
types of model, and in this chapter, we stick to the Transformer-CNN hybrid model because
of the high performance and fewer parameter counts that it offers.

Criterion Transformer Encoders CNN Encoders

Global Context
Awareness

Capture long-range dependencies
and global context; can be ideal

for images with complex
structures or widely spread

patterns.

Focus on local features, often
limited in the ability to capture

global patterns.

Multi-Head Attention

Allows simultaneous processing
of different parts of the image,
considering various aspects of

the data.

Unable to process multiple parts
of the image concurrently.

Attention
Mechanisms

Focus on relevant parts of the
data; can handle complex and

cluttered backgrounds effectively.

Use fixed receptive fields and
weight sharing.

Table 2.1: Comparison of Transformer encoder vs. CNN encoder
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In all these schemes, the common denominator remains the attention mechanism, which
has proven in the past few years to exceed the performance of models disregarding it. That
is because it allows the features not to be subject to the inductive biases and translation
invariance that occur in CNNs. Instead, it allows the model to learn long-term dependen-
cies between pixel locations (29). In other words, it allows for a better representation by
leveraging contextual information either between pixels, patches, or channels.

Figure 2.2: Diagram illustrating the Li–polymer–Li symmetric cell design, imaged using X-
ray CT, with highlighted dendrite formations (blue) and the redeposited Li (red).

Problem and Motivation

Li dendrite formations initiate during battery cycling as illustrated in Figure 2.2, with den-
drites nucleating on the interface between the electrolyte and the electrodes. Dendrite growth
depends on the current density of plating, electrolyte transference number, electrolyte me-
chanical properties, and impurities present in Li-metal material and at the interfaces. Earlier
works have shown that increasing the shear modulus of the SPEs can help suppress Li den-
drite growth but cannot fully eliminate it (37; 38; 39; 40). Further studies have shown that
Li-metal surface impurities (Li3N, Li2CO3, and Li2O) can result in inhomogeneous current
density and promote nucleation of Li dendrites.

Accurate segmentation for measuring dendrite volume has guided research and quality
control of battery designs, as well as tests of materials used for its components. Deep learning
methods can provide exceptional segmentation results (41; 42; 43) when using high-resolution
XCT data, particularly when large collections of annotated data are available. For example,
(44) used a CNN known as D-LinkNet to inspect the effect of distortion on the segmentation
accuracy of Li-ion batteries. Additional works by the same team (45) used a U-Net for
multiphase segmentation of battery electrodes from nano-CT images. Despite being focused
on battery segmentation, those studies lack information on dendrite segmentation.
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Previous studies (46; 47) on inspecting dendrites in batteries discussed problems re-
garding the mechanisms and types of nucleation, e.g., lateral growth or Li filaments. Data
acquisition modes range from electron microscopy (46; 48; 49) to XCT (47; 49) with valuable
morphological characterization and designs for suppression of dendrite growth, but dendrite
detection was addressed mostly qualitatively through dendrite projections and/or visualiza-
tions. For example, the dendrite volume calculation in (49) was based on median filtering
and Otsu thresholding, a method that seldom works for more than a few slices from an XCT
stack, unless considering strenuous manual post-processing (50).

Research Contributions

The proposed method describes the design and implementation of precise dendrite and Li
deposit segmentation from 3D XCT images. In performing the segmentation of a 3D vol-
ume automatically, we could either design a 3D model that performs directly on an input
volume, or we could leverage 2D models by subdividing the volume into slices. This chapter
introduces a 2D model due to its ability to be trained faster and with a limited number
of samples, hence making it more versatile. In particular, we propose an architecture that
benefits from both the contextual information learned from transformers and the global infor-
mation captured by CNNs to predict dendrites and Li deposits from a lithium metal battery
that underwent cycling and was imaged using high-resolution XCT data. We compare four
different deep learning architectures, including U-Net, Y-Net, TransforCNN (T-Net), and
E-Net, on their ability to segment dendrites inside the cycled symmetric Li-Li battery with
polymer electrolytes.

2.2 Materials Description

Li metal batteries have several benefits over Li-ion batteries as shown in Table 2.2. It holds
a high theoretical capacity (3860 mAh/g) and a large negative thermodynamic potential
(-3.06 V vs. SHE)(51). Thus, it is considered a promising candidate for the next-generation
battery anode. Li metal is highly active and can introduce a series of side reactions in a
battery system with liquid electrolytes. This can also cause the dendrite to form, which
would eventually lead to short circuits and bring safety issues to the battery. Using solid
electrolytes, instead of liquid electrolytes, a more stable interface can be designed between
the electrolyte and the Li metal electrodes, thus alleviating the dendrite formation issue.
Recent developments in electrolyte engineering can be found in (45; 49; 52; 53).

Currently, several solid-state materials are used as electrolytes and separators, such as
polymers and single-ion conducting inorganic solid electrolytes (glass or ceramic). Polymer
materials are promising as they are mechanically flexible, because polymer materials can be
produced in a roll-to-roll scalable process and be designed very thinly. However, for SPEs
to have broad deployment, strategies for dendrite suppression must be developed, such as
coatings and soft interlayers including polymers as well as ionic liquids (54; 55; 56).
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Figure 2.3: Cross-Sectional Images for the Li–polymer–Li symmetric cell; (A) Cross section
of the x-y plane where the training was done on this plane; (B) Cross-sections of the x-z
plane and detailing of the cell components; (C) Cross-sections of the y-z plane.

Aspect Lithium-ion Batteries Lithium Metal Batteries

Status Mass Production
Active

Development/Improvement

Energy Density
High energy density, suitable for

various applications
Higher energy density,

potentially more space-efficient

Safety
Prone to dendrite formation,
Heat, Liquid Electrolyte

Prone to dendrite formation

Electrolyte type Liquid, more risks Solid, Safer

Cost More expensive to manufacture
Potentially lower manufacturing

cost depending on scale

Charging Speed Moderate charging speed
Potentially faster charging due

to higher conductivity

Table 2.2: Comparison of Li-ion and Li-metal Battery.

Design of interfaces in Li-metal batteries or All Solid-State Batteries (ASSBs) is chal-
lenging, as it involves control of Li-ion plating onto Li metal, and this plating process needs
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to be uniform. When not done properly, interactions at the interfaces of electrodes arise
due to transport processes associated with ions (53; 57), which can form ionic aggregates.
Dendrite growth can be triggered by the formation of localized regions of high lithium ion
concentration, which can occur due to the clustering of lithium ions into ionic aggregates.
In general, dendrites are formed during battery charge and discharge cycles. This happens
especially when a battery is charged at high current densities, due to the heterogeneous Li
metal plating, even when considering solid electrolytes. Tracking the structure and evo-
lution of dendrites is important to develop a strategy to prevent their growth. Dendrites
are tree-like and porous structures, usually with a size in nano to micro-scale. Given the
morphological structure of dendrites and their size relative to an input stack, performing
XCT segmentation is a suitable method of analysis as it allows for a pixel-wise classification,
which helps quantify the volume of dendrites and use it as a proxy of battery quality.

Electrochemical Testing

Li/Li symmetric cells are assembled using two Li metal electrodes and are considered a tool
for testing and observing the Li metal anode without being affected by cathode materials.

Free-standing Li-metal foils with a thickness of 100 µm from FMC were used. Polymer
electrolyte membrane was sourced from an industrial partner with a thickness of 140 µm as a
research sample. The cell was assembled as Figure 2.4 shows. A red shim with a thickness of
50 µm was used to create a circle with a 0.8 cm diameter. Two circular polymer electrolytes
with a diameter of 0.80 cm were punched out and placed on each side of the red shim.
Two Li-metal foils were then placed on the outside of the membranes as electrodes. The
electrodes were connected to the metal tabs. The cell was sealed with a vacuum sealer. A
current density of 1.5 mA/cm2 was periodically applied to the cell for 10 minutes, and the
battery rested for 20 minutes. The cell was cycled at 3.0 mAh/cm2 for one full cycle (120
minutes for charging and 120 minutes for discharging), after which the cell XCT scan was
acquired.

Synchrotron X-ray CT Imaging

The XCT scan was acquired at Beamline 2-BM at Advanced Photon Source (APS) at Ar-
gonne National Laboratory (ANL), which used a 20 µm LuAG scintillator with 5× lenses,
and an sCMOS PCO edge camera. A 27.5 keV energy was selected using a multilayer
monochromator, with 100 ms exposure time per back-projection and over 180 degrees of
rotation, enabling the collection of 1,500 projections as depicted in Figure 2.5 from (1). The
yielded image presents a resolution of 1.33 µm/pixel and a field-of-view of 3.3 mm. Three
FOVs were recorded and were stitched together to form a vertical height of >3 mm dur-
ing the post-processing. Tomographic reconstructions considered TomoPy with the Gridrec
algorithm(58; 59; 60).
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Figure 2.4: Schematic illustration of the pouch cell.

Figure 2.5: Schematic illustration of the dataset collection process. This process was outlined
in (1)

.

Raw data Pre-Processing

The resulting raw TomoPy reconstruction was a large volume of size (3977, 2575, 2582) and
was not properly aligned as expected due to the various motions involved in collecting the
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data, as shown in Figure 2.6. As this raw data contains a lot of noise and irrelevant parts,
we proceed to develop an algorithm that will allow us to cleanly crop out those regions. In
the process, we inverted the grayscale volume and obtained a maximum projection image on
the stacks to facilitate our ability to locate corners.

Figure 2.6: Sample Raw data obtained after TomoPy reconstruction of a CT scan

To align the data, we first used a series of perspective transformations and homography
to rectify the region of interest along each plane. Though this process could be automated
using feature detectors and feature matching techniques such as MOPS (61) and SIFT (62),
we manually selected corners for optimal precision. We then rectified and cropped the raw
data to obtain the region of interest to a volume of size (3849, 340, 2071) shown in Figure
2.7.

2.3 Computational Methods

For a given volume stack, we apply 2D models due to their versatility. In doing so, we
subdivide each training hand-labeled slice into 128× 128 patches which were then separated
into training, validation, and testing datasets. Based on their known performances over
the years, we investigate CNN encoder-based architectures such as U-Net (28) and Y-Net
(12). In addition, we also compared their performance with TransforCNN, our proposed
Transformer encoder-based network, and E-Net, an Ensemble Network over U-Net, Y-Net,
and TransforCNN. We train the networks in a weakly-supervised fashion where a small subset
of labeled data is used in conjunction with a much larger unlabeled sample size. Figure 2.12
shows a sample output of the model considered in this chapter.
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Figure 2.7: Sample Region of Interest (RoI) data obtained after pre-processing TomoPy
reconstruction of a CT scan

U-Net

Figure 2.8: U-Net architecture adapted from (2).

U-Net is a CNN architecture that was first introduced in 2015 by (2) for the semantic
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segmentation of biomedical images. We refer interested readers to (2) for details about the
architecture of the network. In this chapter, the model was adapted to take images of size
128×128 as input. For the encoder, we started with 16-channel 3×3 kernels and doubled the
number at each layer, followed by a ReLU activation and max pooling until a 256-channel 8×8
resolution feature map is obtained. We reversed the operation with transposed convolutions
operation on the decoder side and concatenated with corresponding-sized encoder feature
maps until the desired output shape was obtained.

Y-Net

Y-Net is a CNN architecture, detailed in Chapter 2, which was originally introduced by
(12) to tackle latency issues in barcode segmentation from Ultra High-Resolution images.
By leveraging Y-Net’s architecture shown in Figure 3.6, we have modified and adapted the
Regular Convolution Module to take in 128× 128 images from training slices. As it consists
of convolutional and pooling layers, we started with 24-channel 3×3 kernels and doubled the
number at each layer. We alternated between convolution and max-pooling until we reached
a feature map size of 8× 8 pixels. The Dilated Convolution Module here took advantage of
the fact that dendrites are often shared out in the samples to learn sparse features in their
structure. It also took 128× 128 input patches, and we maintained 16–channel 3× 3 kernels
throughout the module while the dimensions of the layers were gradually reduced using a
stride of 2 until a feature map of 8 × 8 pixels was obtained. Finally, the Pyramid Pooling
Module, which allows the model to learn global information about potential locations of
the dendrites at different scales, had its layers concatenated with the layers on the dilated
convolution module to preserve the features extracted from both modules.

TransforCNN

TransforCNN is a hybrid Transformer-CNN segmentation model that leverages the encoder
model of Vision Transformers ViT (29) and the decoder architecture of CNNs. More specifi-
cally, its encoder model was first introduced in Natural Language Processing (NLP) by (63),
and its multi-headed self-attention was later shown (by ViT) to help remove the common
inductive biases observed in CNN-only models by relating all input sequences with each
other. As depicted in Figure 2.9, the proposed architecture is hybrid because it combines
the Transformer Encoder Block with the CNN Decoder Block to deliver semantic segmenta-
tion.

The Transformer Encoders Block takes inputs that are 16 × 16 sub-patches se-
quences from the 128× 128 patches that were obtained from training slices. These patches
are flattened and each is embedded into a 64-dimensional feature vector via a linear projec-
tion and is added to its corresponding Fourier Features (FF) positional encoding. We used
8 transformer encoder units, and the outputs of every 2 transformer encoders were reshaped
into a 2-dimensional feature map representation, concatenated, up-sampled recombined with
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Figure 2.9: T-Net architecture.

the layers from the CNN Decoder Block of corresponding dimension.

The CNN Decoder Block takes in the output of the last transformer encoder unit,
reshapes it into a 2-dimension representation on which a set of 3×3 kernels convolutions and
max-pooling is applied to obtain a feature map of 8× 8 pixels. The resulting feature maps
are then concatenated with corresponding size feature maps coming from the Transformer
Encoder Block and up-sampled continuously until the final output is obtained. This last step
allows for the enhancement of the features in the CNN Decoder Block as we are progressively
reconstructing the output dimension of 128× 128.

E-Net

We have combined the results of different architectures, namely U-Net, Y-Net, and Trans-
forCNN, to create an ensemble prediction scheme called E-Net. It was found that our best
mean Intersection over Union (mIoU) is obtained when combining 20% of U-Net with 80%
of TransforCNN while the best mean Dice Similarity Coefficient (mDSC) is obtained using
only a TransforCNN.
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2.4 Experimental Results

In training the models (U-Net, Y-Net, and TransforCNN), we used one NVIDIA Tesla V100
GPU for each experiment. We obtained a total of 4433 samples of resolution 128× 128 with
their corresponding hand-labeled ground truth that the models were trained on. We used
80% of the examples for the training set, 10% for the validation set, and 10% for the testing
set. We used data augmentation schemes in training all models which consist of random
rotations in all directions, random flips (vertically and horizontally), random cropping (2%),
random shifts, random zoom (range in [0.8, 1]), and a small range of random brightness
and contrast variation x ± 5%. We trained the U-Net for 450 epochs while the Y-Net and
TransforCNN models were trained for 130 and 300 epochs, respectively.

As shown in Figure 2.10, the Y-Net and TransforCNN converge faster than U-Net with
the initial loss of the TransforCNN model being significantly lower than that of the U-Net
and Y-Net models. We have experimented with various loss functions such as Tversky loss
(64) described in Eq. 2.1, the focal Tversky loss (65) described in Eq. 2.2, the balanced
cross-entropy loss described in Eq. 2.4, and the binary cross-entropy loss (Eq. 2.3) out
of which the latter yields the best results. One interesting observation is that though the
validation curve on U-Net exhibits characteristics of a better generalization, the quantitative
results show otherwise.

For evaluation, we have used the dice similarity coefficient described in Eq. 2.5 and the
Jaccard Index also known as Intersection over Union Eq. 2.6. In all the equations, y and ŷ
are respectively the ground truth and prediction on patch i, and TP, FP, and FN represent
the number of true positives, false positives, and false negatives, respectively.

LTversky(y, ŷ) =
yŷ

yŷ + β(1− y)ŷ + (1− β)y(1− ŷ)
(2.1)

where α, β > 0, α+ β = 1.

LFocal Tversky(y, ŷ) =
[
1− LTversky(y, ŷ)

]γ
(2.2)

where α, β > 0, α+ β = 1, γ = 4/3.

LCross Entropy(y, ŷ) = −y log(ŷ)− (1− y)log(1− ŷ) (2.3)

Lbalanced Cross Entropy(y, ŷ) = −βy log(ŷ)− (1− β)(1− y)log(1− ŷ) (2.4)

where β ∈ [0, 1].



CHAPTER 2. PRECISION: LITHIUM METAL BATTERY QUALITY CONTROL VIA
TRANSFORMER-CNN SEGMENTATION 17

DSC(y, ŷ) = 2TP

2TP + FP + FN
(2.5)

IoU(y, ŷ) = TP

TP + FP + FN
(2.6)

(2.7)

Note that Eq. 2.6 could also be expressed as DSC / (2-DSC).

Figure 2.10: Training curves for U-Net, Y-Net, and TransforCNN on the y-axis vs numbers
of epochs on the x-axis; the models were optimized over the binary cross-entropy function
as loss and evaluated on the dice similarity coefficient as evaluation metric during training;
The gray curves depict behavior on the validation sets while the black curves show behavior
on the training sets over increasing numbers of epochs; (a) training and validation dice
coefficient for U-Net; (b) training and validation dice coefficient for Y-Net; (c) training and
validation Dice coefficient for TransforCNN; (d) training and validation loss for U-Net; (e)
training and validation loss for Y-Net; (f) training and validation loss for U-Net; the use of
dropout during only the training phase explains why the models tend to perform better on
the validation set over time.

For all of the models, we use the mean Dice Similarity Coefficient (mDSC) and the
mean Intersection over Union (mIoU) as metrics, shown in Table 3.1. As seen, our proposed
pipeline outperforms U-Net (28), and Y-Net (12) by amIoU of 8.13% and 10.3% andmDSC
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mIoU mDSC latency (ms) Input Patch Resolution (px)

U-Net .8698 .8998 65.36 128× 128
Y-Net .8481 .8790 103.62 128× 128
T-Net .9511 .9647 206.75 128× 128
E-Net .9514 .9641 473.59 128× 128

Table 2.3: mIoU, mDSC, Inference Time, and Patch Size for Li-Li Symmetric battery
Dataset.

Volume (Cubic Px) Occupied Volume Percentage

U-Net 54,940,997.0 2.027
Y-Net 99,389,447.0 3.667

TransforCNN 82,892,014.0 3.058
E-Net 80,858,216.0 2.983

Table 2.4: Volume and Percentage Volume Occupied for U-Net, Y-Net, TransforCNN, and
E-Net.

of 6.49% and 8.57%, respectively. Also shown in Table 3.1 is a slight mIoU improvement of
0.03% by our Ensemble Network analysis (E-Net) on TransforCNN.

In addition, Table 3.1 displays that while TransforCNN is successful in segmenting out
dendrites, its latency is at least 3.16× slower than U-Net, which has the fastest latency of
all models evaluated at 65.36 milliseconds (ms). The slowest of all the models is observed to
be E-Net, which performs 7.24× slower than U-Net.

Qualitatively, Figure 2.11 shows the predictions on a given test slice and more specifically,
Figure 2.12 shows sample predictions at the patch level. As observed in the first and second
rows (a;b), the TransforCNN and U-Net predictions are the closest to the Ground Truth.
The third, fourth, and eighth rows (c; d; h) show that U-Net and Y-Net tend to generalize
better as the unlabeled dendrite regions in the input patches are segmented out by these
two models, while TransforCNN and E-Net still reflect the Ground Truth images. The
fifth, sixth, and seventh rows (e; f; g) show the generalization potential of all models, while
the predictions of TransforCNN and E-Net overall tend to remain closer to the Ground
Truth. In addition, Table 3.2 summarizes the absolute number of voxels corresponding to
the segmented dendrite and re-deposited Li volume as well as their volume fraction.

2.5 Discussion

LMBs are promising candidates for next-generation batteries because of their high specific
energy density. Currently, Li dendrites growth is an issue, as it can lead to loss of Li (dead
Li), shorting of cells, and other undesirable degradation phenomena.
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More specifically, short-circuiting is a leading failure mechanism in LMBs due to the
uncontrolled propagation of lithium protrusions that often present a dendritic morphology.
The energy density benefits of using LMBs can only be harvested after scientists are able to
detect and regulate the dendrite formation and control dendrite growth.

Uneven lithium-ion distribution and dendrite formation can compromise battery perfor-
mance and safety. For this reason, this chapter introduced a semantic segmentation algo-
rithm called TransforCNN that detects both dendrites and re-deposited Li accurately and
compares it with traditional approaches.

Overall, it was observed that TransforCNN and E-Net tend to learn semantics in the
Ground Truth images provided during training. In contrast, U-Net and Y-Net tend to
simply generalize even to cases where segments in the Ground Truth were wrongly hand-
labeled. We speculate that this may lead to U-Net and Y-Net being wrongly penalized during
the evaluation process, while TransforCNN and E-Net are rewarded since their predictions
always look the closest to the Ground Truth.

Experiments have also illustrated that our approach outperforms existing methods, though
it is slower than the fastest (U-Net) of all considered models. In future work, extending this
method to a multi-class segmentation task, differentiating dendrites from pits and bubbles
while improving the current latency in a weakly supervised fashion.
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Figure 2.11: U-Net, Y-Net, T-Net, and E-Net sample outputs on a slice showing a cross-
section along the x-y plane.
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Figure 2.12: U-Net, Y-Net, T-Net, and E-Net sample outputs on random test patches.
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Figure 2.13: 3D rendering of U-Net, Y-Net, T-Net, and E-Net on test volume; (a) grayscale
test input volume; (b), (c), (d), (e) are respectively U-Net, Y-Net, T-Net, and E-Net predic-
tions
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Chapter 3

Latency: Fast, Accurate Barcode
Detection in Ultra-High-Resolution
Images

3.1 Introduction

Barcodes are digital signs often made of adjacent and alternating black and white smaller
rectangles that have become an intrinsic part of human society. In administration, for
example, they are used to encode, save, and retrieve various users’ information. At grocery
stores, they are used to track sales and inventories. More interestingly, in e-commerce, they
are used to track and speed up processing time in warehouses and fulfillment centers.

Figure 3.1: Barcode detection with classical Signal Processing.

In classical signal processing, filters used for detection are image-specific since input
images are not all necessarily acquired with the same illumination, brightness, angle, or
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camera. This causes such algorithms to have a high failure rate, as shown in Figure 3.1.
Consequently, adaptive image processing algorithms are required, which can impact detection
accuracy (66). In addition, because classical signal processing methods often run on Central
Processing Units, they tend to be much slower compared with deep learning implementations
that are easily optimized on Graphics Processing Units (GPUs).

Figure 3.2: Barcode detection in UHR images.

Over the years, a number of methods have been proposed to detect barcodes using clas-
sical signal processing (66; 67; 68; 69; 70), but nearly all of them take too long to process
Ultra High-Resolution (UHR) images because the image is too large while the actual barcode
location may occupy a small region in the image (see Figure 3.2). More specifically, (70)
used parallel segment detectors which improved on their previous work (71) of finding imag-
inary perpendicular lines in Hough space with maximal stable extremal regions to detect
barcodes. (68) used morphological manipulation for barcode detection, but this method did
not generalize well as different barcode types have varying detection performances. Similarly,
(72) proposed using x and y derivative differences, but varying input images yield different
outputs, and using such an operation on UHR images often becomes highly inefficient.

With neural networks, though there has been much improvement in barcode detection
tasks, few of them have addressed the fast and accurate detection problem in UHR images.
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(73) paved the way for using neural networks to detect barcodes by investigating Hough
spaces. This was followed by (74), which adapted the You Only Looked Once (YOLO)
detector to find barcodes in Low Resolution (LR) images, but the YOLO algorithm is known
to perform poorly with long shaped objects such as Code 39 barcodes. Instance segmentation
methods such as Mask R-CNN (75) perform better on images of size 1024×1024 pixels, but on
smaller size images, the outputted Region of Interests (RoI) do not align well with long, 1D-
barcode structures. This is because it typically predicts masks on 28× 28 pixels irrespective
of object size, and thereby generates ”wiggly” artifacts on some barcode predictions, losing
spatial resolution. In the same way, dedicated object detection pipelines, such as YOLOv4
(76), though they perform well on lower Intersection over Union (IoU) thresholds, suffer
accuracy at higher IoU thresholds. Among those using segmentation on LR images as a
means for detection, (77) also tends not to perform well at higher IoU thresholds.

In this chapter, incorporating material from our work in (78), we propose a pipeline for
detecting barcodes using deep neural networks, shown in Figure. 3.3, which consists of two
stages trained separately. When compared with classical signal processing methods, neural
networks not only provide a faster inference time but also yield higher accuracy because
they learn meaningful filters for optimal feature extraction. As seen in Figure. 3.3, in the
first stage, we expand on the Region Proposal Network (RPN) introduced in Faster R-CNN
(79) to extract high-definition regions of potential locations where barcodes might be. This
stage allows us to significantly reduce inference computation time that would have been
required otherwise in the second stage. In the second stage, we introduce Y-Net, a semantic
segmentation network that detects all instances of barcodes in a given outputted RoI image
(400 × 400). We then apply morphological operations on the predicted masks to separate
and extract the corresponding bounding boxes as shown in Figure. 3.5.

One of the limitations of existing work on barcode detection is the insufficient number
of training examples. ArTe-Lab 1D Medium Barcode Dataset (73) and the WWU Muenster
Barcode Database (80) are two examples of existing available datasets. They contain 365
and 595 images, respectively, with ground truth masks at a resolution of 640× 480. Most of
the samples in the ArTe-Lab dataset have only one EAN13 barcode per sample image, and
few of them in the Muenster database have more than one barcode instance on a given image.
To address this dataset availability problem, we have released 100,000 UHR and 100,000 LR
synthetic barcode datasets along with their corresponding bounding boxes ground truths
and their ground truth masks to facilitate further studies. The outline of this chapter is as
follows: in Section 2, we describe details of our approach; in Section 3, we summarize our
experimental results; and in Section 4, we conclude and expand on our future work.
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Figure 3.3: Proposed approach, the modified RPN is followed by Y-Net and the bounding
box extractor.

3.2 Proposed Approach

As seen in Figure. 3.3, our proposed method consists of three stages: the modified Region
Proposal Network stage, our Y-Net 1 segmentation network stage, and the bounding box
extraction stage.

Modified Region Proposal Network

Region proposals have been influential in computer vision, and more so when it comes to
object detection in UHR images. It is common in UHR images that barcodes are clustered in
a small region of the image. To filter out most of the non-barcode backgrounds, we modified
the RPN introduced in Faster R-CNN (79) to propose regions of barcodes for our next stages.
By first transforming the UHR input image to an LR input image of size 256×256, the RPN
was trained to identify blobs in LR images. Once a bounding box is placed around the
identified blobs, the resulting proposed bounding box is remapped to the input UHR image
by a perspective transformation, and the resulting regions are cropped out. The LR input
to the RPN is chosen to be of size 256 × 256 as a lower resolution results in the loss of
pertinent information. Non-Max Suppression (NMS) is used on the predictions to select the
most probable regions as shown in Figure. 3.4.
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Figure 3.4: Sample region proposal processing phases; (a) UHR Input image; (b) a Low
Resolution (LR) of the input is obtained; (c) proposed regions on (b); (d) remapped regions
from (b) to (a).

Y-Net Segmentation Network

As depicted in Figure. 3.6, Y-Net is made out of 3 main modules distributed in 2 branches:
a Regular Convolutional Module shown in blue, which constitutes the left branch, and a
Pyramid Pooling Module shown in brown, along with a Dilated Convolution Module shown
in orange, which, after concatenation and convolution, constitute the right branch.

The Regular Convolution Module takes in 400× 400 output images of the RPN and
consists of convolutional and pooling layers. It starts with 64-channel 3 × 3 kernels and
doubles the number at each layer. We alternate between convolution and max-pooling until
we reach a feature map size of 25× 25 pixels. This module allows the model to learn general
pixel-wise information anywhere in the input image.

The Dilated Convolution Module takes advantage of the fact that barcodes have
alternating black and white rectangles to learn sparse features in their structure. The moti-
vation for this module comes from the fact that dilated convolution operators play a signifi-
cant role in the ”algorithme a trous” for biorthogonal wavelet decomposition (82). Therefore,
the discontinuities in alternating patterns and sharp edges in barcodes are more accurately
learned by such filters. In addition, they leverage a multiresolution and multiscale decompo-
sition as they allow the kernels to widen their receptive fields with dilation rates from 1 up
to 16. Here too, a 400× 400 input image is used and we maintain 32–channel 3× 3 kernels
throughout the module while the dimensions of the layers are gradually reduced using a
stride of 2 until a feature map of 25× 25 pixels is obtained.

The Pyramid Pooling Module allows the model to learn global information about

1Our Y-Net architecture resembles the English alphabet letter “Y” and differs from (81) which used a
pre-trained encoder network that is augmented with an untrained mirrored network and a decoder network.
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Figure 3.5: Sample outputs of our pipeline; yellow - segmented barcode pixels; purple -
segmented background pixels; boxes - bounding box extracted; (a) synthetic barcode image;
(b) real barcode image; (c) prediction results on (a); (d) prediction results on (b).

potential locations of the barcodes at different scales, and its layers are concatenated with
the layers on the dilated convolution module in order to preserve the features extracted from
both modules.

The resulting feature maps from the right branch are then added to the output of the
Regular Convolution Module, which allows for the correction of features that would have been
missed by either branch. In other words, the output of each branch constitutes a residual
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Figure 3.6: Y-Net architecture.

correction for the other, thereby refining the result at each node as shown in white. The nodes
are then up-sampled and concatenated with transposed convolution feature maps shown in
red and yellow of the corresponding dimension. Throughout the network, we use ReLU as a
non-linearity after each layer and add L2 regularization to account for possible over-fitting
scenarios that could have occurred during training. On all datasets, we use 80% for the
training set, 10% for the validation set, and the remaining 10 % for the testing set. We use
one NVIDIA Tesla V100 GPU for the training process. Since this is a segmentation network
and we are interested in classifying background and barcodes, we use binary cross-entropy
as loss function. In Appendix B, we explore the use of Y-Net to Depth and Uncertainty
estimation problems and show some qualitative results. We further looked at how they
compare to a transformer-based model.

Bounding Box Extraction

Since some images contain barcodes that are really close to each other, their Y-Net outputs
reflect the same configuration, which makes the extraction of individual barcode bounding
boxes complex, as shown in Figure. 3.7(a). To separate them effectively, we perform erosion,
contour extraction, and bounding box expansion with a pixel correction margin. As shown
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mAP
(all)

AP50

(all)
AP75

(all)
mAP
(small)

mAP
(medium)

AR50

(all)
AR70

(all)
AR80

(all)
AR90

(all)
Latency
(ms)

Resolution
(px)

Mask R-CNN .466 .985 .317 .340 .489 .990 .740 .279 .023 94.8 448×448
YOLOv4 .882 .990 .989 .815 .897 1. 1. .995 .873 40.5 320×320
Ours .937 .990 .990 .903 .945 1. 1. 1. .972 16.0 400×400

Table 3.1: Average Precision for Max Detection of 100 and Average Recall for Max Detection
of 10 computed using MS COCO API.

Muenster Dataset ArTe Lab Dataset
DR Precision Recall mIoU DR Precision Recall mIoU

Creusot et al. .982 - - - .989 - - -
Hansen et al. .991 - - .873 .926 - - .816
Namane et al. .966 - - .882 .930 - - .860
Zharkov et al. .980 .777 .990 .842 .989 .814 .995 .819

Ours 1.000 .984 1.000 .921 1.000 .974 1.000 .934

Table 3.2: Mean IoU (mIoU), Precision, Recall, and Detection Rate (DR) at an IoU threshold
of 0.5 for Muenster and ArTe-Lab datasets.

in Figure. 3.7(b), the erosion stage allows the algorithm to widen gaps between segmented
barcodes that may be separated by 1 or more pixels. The resulting mask is then used to infer
individual barcode bounding boxes in the contour extraction stage in Figure. 3.7(c) through
border following. A pixel correction margin is used to recover the original bounding boxes’
dimensions during the expansion stage, as shown in Figure. 3.7(d). This post-processing
stage of our pipeline has an average processing time of 1.5 milliseconds (ms) because it
is made of a set of Python matrix operations to efficiently extract bounding boxes from
predicted masks.

Px Acc Px mIoU Px Prec Px Rec

Mask R-CNN .993 .990 .989 .890
Ours 1. 1. .999 .999

Table 3.3: Pixel-wise metrics

3.3 Datasets and Results

For the synthetic dataset, we use treepoem 2 and random-word 3 to generate UHR and LR
barcode images. We use Code 39, Code 93, Code 128, UPC, EAN, PD417, ITF, Data Matrix,
AZTEC, and QR, among others. We model the number of barcodes in a given image using a

2https://github.com/adamchainz/treepoem
3https://github.com/vaibhavsingh97/random-word
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Poisson process, and a combination of perspective transforms is used to make the barcodes
vary in shape and position from one image to the other. We have also added random black
blobs at random locations on the original UHR and LR canvases. The real UHR barcodes
dataset obtained from Amazon.com, Inc is made of 3.8 million UHR images of resolution
up to 30k × 30k grayscale images and could not be released due to confidentiality reasons.
Additionally, the Muenster and Artelab datasets are used with some data augmentation
schemes for more samples.

For the RPN, we accumulated the number of bounding boxes inside the proposed regions
and divided it by the total number of ground truth bounding boxes. Our implementation
yields an accuracy of 98.03% on the synthetic dataset at 10 ms per image and 96.8% on the
real dataset at 13 ms per image, while the baseline (79) yields the same accuracies and an
average latency of over 2.5 seconds (s) per image for both datasets.

For Y-Net, we use the Microsoft (MS) COCO API, and Pixel-wise metrics to evaluate
against (75; 76). By default, the MS COCO API configuration evaluates on small, medium
and large areas objects but in our application, the largest detected barcode area is medium.
Since Y-Net is a segmentation network and does not output confidence scores for each seg-
mented barcode, we propose using pseudo scores, the ratio of the total number of nonzero
pixels in a predicted mask to the total number of nonzero pixels in the corresponding ground
truth mask at the location of a given object.

Table 3.1 shows mAP and mAR values of the models on the synthetic dataset. As seen,
our pipeline outperforms (75), and (76) by a mAP of 47.1% and 5.5% and AP75 of 67.3%
and 0.1% respectively. Also shown in Table 3.1 is a mAR90 improvement of 94.9% and 9.9%
on (75) and, (76), respectively, which highlights that Y-Net continues to yield better mAR
results even at higher IoU thresholds. Both our approach and (76) achieve an AR50 of 100%
and outperform (75) by 1%. For small area barcodes, Y-Net outperforms (75) and (76) by
a mAP of 56.3% and 8.8% and for medium area barcodes, Y-Net displays a mAP increase
of 45.6% and 4.8% on (75) and (76) respectively. In addition, Table 3.3 reveals that Y-Net
a has much better semantic segmentation performance than (75). Table 3.1 displays that
Y-Net performs at least 2.5× faster than the fastest of models (75) and, (76) on LR images.

Similarly, we have used the Detection Rate (DR), mIoU, Precision, and Recall, as de-
scribed in (66; 70; 74; 77) on the Arte-Lab and Muenster datasets and as can be seen in
Table 3.2, our method outperforms previous works on all of the mentioned metrics. This in-
dicates that our bounding box extraction algorithm is working as expected to detect accurate
bounding boxes. However, while it is successful in separating barcodes that are relatively
close to each other, it has limitations when barcodes are overlapping, as shown in Fig. 3.7(e).
For those occlusion scenarios, the algorithm tends to group the overlapping barcodes into
one bounding box instead of separate bounding boxes as shown in Fig. 3.7(f).
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Figure 3.7: (a) Y-Net output; (b) Y-Net output after erosion; (c) extracted bounding boxes
–red, ground truth bounding boxes –green on eroded output; (d) final bounding boxes after
pixel correction margin on Y-Net output; (e) Y-Net output of occluded barcodes scenarios; (f)
final extracted bounding boxes are grouped after pixel correction margin due to overlapping
barcodes in the input image.

3.4 Discussion

In this chapter, we showed that barcodes can be efficiently, accurately, and speedily detected
using Y-Net on UHR images. With pseudo scores as confidence scores, our approach out-
performs existing detection pipelines with a much better latency. In future work, we will
be extending this method to the multi-class detection task for small objects in UHR images
and videos in a weakly supervised fashion.
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Chapter 4

Active Perception: Using
Non-Auto-Regressive Multimodal
Models without Language
Instructions via RPTx, a Cross Robot
Learning Method with Sensorimotor
Pre-training

4.1 Introduction

Recent advancements in vision and language processing have ignited significant interest in
applying these techniques to pre-training methods for embodied systems in robotics (83; 84;
85). This chapter explores a first key approach of utilizing non-auto-regressive multimodal
models in robotics without language, while a second key approach incorporating language in
auto-regressive models is explored in the next chapter. In all cases, our goal is to learn good
representations that can utilize cross-modal interaction between each element across various
modalities.

For non-auto-regressive multimodal models not incorporating language, (3) has shown
that self-supervised visual pre-training on large and diverse image datasets is promising on
in-domain data. However, the complexity of sensory and motor information in robotic data
goes beyond what in-domain visual pre-training alone can capture. This raises a crucial
question: can we effectively leverage the sensorimotor representations learned from different
robotic trajectories to improve the skills of a particular robot?

To do so, we leverage the extensive and diverse OXE dataset (6) to explore the self-
supervised robotic pre-training method proposed by (3), inspired by the masked prediction
tasks successfully used in natural language processing (86) and computer vision (87). As
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such, the central hypothesis here posits that a robot capable of predicting missing parts of
sensorimotor sequences from mixed robot datasets will develop a robust model of the physical
world, enhancing its ability to act effectively and adapt easily across different robots.

Given the structure of the OXE dataset, we used RPTx, an adaptation of the RPT model
(see Figure 4.1), utilizing a Transformer (88) architecture to manage sequences of sensorimo-
tor tokens. These tokens, derived from camera images, proprioceptive states, and actions,
are encoded into sequences where a subset is masked, and the model is trained to predict
these masked tokens across various robots and tasks during pre-training. This approach aims
to develop cross-modal, spatiotemporal representations that can be generalized across robots
and tasks. Following (3), we experimented with high-ratio masking across all modalities and
time steps to investigate the learning schemes of complex patterns.

To handle latent vision representations, we employ pre-trained vision encoders (89) to
process camera images, making the prediction task more tractable, as demonstrated in (3).
We adapted the initial RPT architecture to work with the OXE dataset (6), which includes
data from a diverse range of robots, some of which lack certain modalities. To align all
inputs within our pipeline, we used learnable tokens for each modality, accommodating
scenarios where a modality may be present in one robot’s data but absent in another’s. This
adjustment was crucial because, unlike (3), which was trained solely on in-domain datasets
from a Franka robot with all modalities present and a restricted action space, the OXE
dataset includes datasets that may lack essential modalities. Thus, filling in these gaps was
necessary to achieve optimal performance.

We utilized over 1.3 million real-world robot trajectories from the OXE dataset (6), en-
compassing data from various robots and a range of skills in contrast to 1,920 collected
in-domain trajectories for the pre-training stage. The input modalities at the pretraining
stage include sequences of multi-view RGB camera images, proprioceptive robot states, and
actions, depending on the specific robot. During the fine-tuning stage, we employed behav-
ioral cloning, focusing on classic robotic tasks such as Picking, Stacking, and Destacking
cubes. For these tasks, we collected approximately 550 trajectories for the Picking task,
1,092 trajectories for the Stacking task, and 1,092 trajectories for the Destacking task, all
on a Franka robot. Through extensive real-world experiments, we conducted new reliability
assessments, identified negative transfer results, and speculated on future work.

4.2 Cross Robot Learning with Sensorimotor

Pre-training

The pipeline consists of a pre-training stage followed by a fine-tuning stage, designed to
enable cross-robot training as outlined above. During the pre-training stage, we modified
and adapted the RPT architecture to now accommodate existing and non-existent modal-
ities in the trajectories of various robots. We acquire representations by not only using
masked prediction on sequences of camera images, proprioceptive states, and actions, but
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Figure 4.1: Architechture of RPT (3).

also masked-out modalities that may be non-existent in a particular robot trajectory. This
stage leverages the diverse data from various robots included in the OXE dataset to attempt
to help the model learn generalized representations.

In the fine-tuning stage, these representations are transferred to downstream tasks and re-
fined using behavioral cloning. This process allows the pre-trained model to effectively adapt
its learned representations and states to specific robotic tasks and environments, ensuring
effective transfer across different robots and tasks.

We reformulate the problem in (3) as follows: Let’s consider D, the OXE dataset (6),
which is a collection of robot-specific datasets D j where i goes from 1 to N (In our case,
we use N=54). Each robot-specific dataset D j consists of sensorimotor trajectories TDj

where each trajectory comprises sequences of camera images, proprioceptive states, and
actions: TDj

= (i1, s1, a1, . . . , iTDj
, sTDj

, aTDj
). Importantly, we do not use additional semantic

information, such as language instructions or task labels. We do consider the case where
a particular robot trajectory will not have some specific modalities since the OXE dataset
contains a wide variety of robots and replaced the missing modality in those instances with
learnable tokens l j resulting in a trajectory TDj

= (l1, s1, a1, . . . , lTDj
, sTDj

, aTDj
) for the case

where robot j is missing some camera images ij for example.
We frame the pre-training process as a general masked sensorimotor sequence prediction

problem across all modalities and time, as was done in (3). This is implemented through a
masked prediction task, inspired by similar techniques in vision and language processing. In
this task, a subset of each trajectory described above is masked, and the model is trained
to predict the missing content. Given a sensorimotor sequence of the jth robot dataset in
(6), LDj

tokens, we sample a mask sub-sequence M = MDj
⊂ [1, LDj

] and train the model
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to minimize the mean squared error of the masked tokens TM
Dj

conditioned on the observed
tokens TDj , [1,LDj

]\MDj
.

This general formulation allows us to represent a variety of contextual prediction problems
by using different masking patterns. We explore several variants, including random masking
at the modality, timestep, and token-level masking. This flexibility is crucial for developing
a model capable of adapting to different robots and tasks.

4.3 RPTx

Figure 4.2: Modality Distribution across 54 OXE dataset; no data is missing all modality at
once.

We refer interested readers to (3) for details of the RPT architecture. We use the same
Vision latent representations, Token encoders, Transformer model, and Prediction heads as
in the prior work. Because some of the OXE dataset is missing some modalities, as shown
in Figure 4.2, we modified the input of the model to now automatically replace such missing
modalities for a given dataset with learnable tokens that were reused across datasets missing
the same modality and account for this in the corresponding calculated loss.
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4.4 Downstream Transfer

In the first section of this chapter, we investigate whether RPTx can learn sensorimotor
representations from a diverse pool of robot datasets and transfer knowledge across various
downstream tasks and robots. Given that it was shown in (3) that fine-tuning works better
than linear probing, we restrict this study to the former. In that setting, we take a pre-trained
RPTx model checkpoint and fine-tune it using data specific to a downstream task. This
approach aims to leverage pre-training weights as a means to provide a strong initialization
to the fine-tuning model.

4.5 Discussion

As shown below, our experiments provide strong evidence of negative transfer when us-
ing non-auto-regressive multimodal models that do not incorporate large language models
(LLMs). We followed with a reliability assessment and speculated on future research direc-
tions.

Negative Transfer Assessment

Negative transfer occurs when a model trained in one context underperforms in a new context
due to the transfer of inappropriate or irrelevant knowledge. This phenomenon is particularly
significant in active perception, where robots must adapt to varied and dynamic environ-
ments. In this section, we discuss the challenges posed by negative transfer and propose
strategies to mitigate its impact.

We first observe that errors can emerge in the data preprocessing pipeline. Since the
model operates in latent space, it’s crucial to ensure that the image representations ob-
tained from the Vision Transformer (ViT) during both pre-training and fine-tuning align
with expectations. Figure 4.3 illustrates our use of Principal Component Analysis (PCA) to
investigate why the models initially failed to respond as expected. We discovered that due
to a Python version mismatch, the extracted image representations formed three distinct
clusters, as shown in Figure 4.3(a), instead of a single, cohesive cluster depicted in Figure
4.3(b). This distribution shift caused the robot to hover during evaluation tasks, rather than
moving in the intended direction.

Next, we conducted experiments similar to those in (3), where models were pre-trained
on various subsets of the OXE dataset and fine-tuned on the collected Franka dataset. For
pre-training, we addressed the dimensionality differences across robots by zero-padding the
joint position vector to match the largest dimension of 36-DoF with a default 1-DoF parallel
jaw gripper, resulting in a 37-DoF proprioceptive vector. For fine-tuning, we maintained
the default 7-DoF joint position with a 1-DoF gripper, controlling the joint position at 10
Hz. Three RGB cameras, as used in (3), were employed for fine-tuning, with one camera
attached to the robot’s hand (gripper) and two positioned on the sides.
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Figure 4.3: PCA of ViT features of the right camera.

We pre-trained the models across various scenarios, including token masking, timestep
masking, and modality masking. We also varied the size of the pre-training dataset and
explored the impact of context length. Additionally, we evaluated the effects of pre-training
exclusively on Franka, xArm, Kuka iiwa, and other non-Franka datasets. For fine-tuning, we
focused on the Picking, Destacking, and Stacking tasks, and the fine-tuned models were eval-
uated across 16 real-world trials, focusing on success rates. All fine-tunings were completed
for 900 epochs.

We refer to the model trained from scratch on fine-tuning data as MVP (89), the model
pre-trained on in-domain dataset as RPT (3), and the RPT model pre-trained on the OXE
dataset as RPTx.

• Pre-training and Fine-tuning Studies on the Picking Task

We investigated the impact of sensorimotor pre-training on the OXE dataset, followed
by fine-tuning for the Picking task, as illustrated in Figure 4.4. Due to the lengthy pre-
training process, we applied the pre-training weights from using 100% of the OXE data
at epoch 0, after only a few iterations. Token masking was utilized during pre-training,
given its superior performance as demonstrated in (3). Our observations indicate that
while the general trend of pre-training on in-domain data is apparent, RPTx struggled
significantly. We attributed the result for the 60 trajectories to the variance in the
evaluation process that we documented below in subsequent sections.

• Pre-training and Fine-tuning Studies on the Destacking Task

We examined the impact of sensorimotor pre-training on the OXE dataset, followed
by fine-tuning for the Destacking task. As in the previous experiment, we used pre-
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Figure 4.4: Evaluation on the Picking task.

Figure 4.5: Evaluation on the Destack task.

training weights from using 100% of the OXE dataset at epoch 0 after only a few
iterations, given the slow pre-training process. Token masking was also employed
during pre-training.

We observed a consistent trend between the MVP model and the RPT model for 60
and 120 trajectories. However, for 240 and 480 trajectories, this trend was reversed
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by a margin of one success, which we attributed to variance in the evaluation. On the
other hand, the RPTx model struggled across all trajectory counts, highlighting the
effects of negative transfer as shown on Figure 4.5.

• Pre-training and Fine-tuning Studies on the Stacking Task

Figure 4.6: Evaluation on the Stacking task.

In Figure 4.6, we analyze the effect of sensorimotor pre-training on the OXE dataset,
followed by fine-tuning for the Stacking task, where token masking was also employed
during pre-training. The pre-training weights used were obtained from utilizing 100%
of the OXE dataset only after a few iterations at epoch 0.

The RPTx model struggled across all trajectory counts, while the MVP model consis-
tently outperformed the RPT model. This result contrasts with the trends observed
in the previous two experiments, as the trend is now completely reversed between the
MVP and RPT models.

• Pre-training and Fine-tuning Studies Context Length

Our goal was to assess the impact of sensorimotor pre-training on the OXE dataset
with varying input context lengths: 1, 4, 8, and 16, each consisting of 5 entries (left,
hand (gripper), and right cameras, states, actions). We fine-tuned and evaluated the
models on the Stacking task. Pre-training weights were applied at epochs 10, 4, 2,
and 0 for context lengths 1, 4, 8, and 16, respectively. Due to the lengthy training
process, we reduced the number of epochs to only a few iterations. Token masking was
employed for all pre-training scenarios.
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Figure 4.7: Success rate vs. context length.

As shown in Figure 4.7, the RPT model exhibits improved performance with increas-
ing context length. In contrast, the RPTx model shows inconsistent results and often
performs near zero. This behavior supports our hypothesis of negative transfer, high-
lighting the challenges associated with pre-training on the OXE dataset.

• Pre-training Data Complexity Studies

We further examined the impact of sensorimotor pre-training on the OXE dataset using
25%, 50%, and 100% of the pre-training data. Each model was fine-tuned and evaluated
on the Stacking task, following the same procedure as in previous experiments. Pre-
training weights were applied at epochs 6, 2, and 0 (after only a few iterations) for the
25%, 50%, and 100% models, respectively. Token masking was consistently employed
throughout the pre-training process.

As shown in Figure 4.8, the RPTx model struggled across all pre-training data sizes,
while the RPT model performed better when using the smallest amount of pre-training
data, specifically 480 trajectories. These results do not necessarily align with the
findings in (3), which suggest that model performance should improve consistently
with increased pre-training data size.

• Masking Type Studies

We looked at the effect of different masking types (Token, Timestep, and Modality)
used during sensorimotor pre-training on the OXE dataset. Each model was fine-
tuned and evaluated on the Stacking task, and due to the slow pre-training process, we
applied pre-training weights for all three models at epoch 0 after only a few iterations.
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Figure 4.8: Success rate vs. pre-training data size.

From Figure 4.9, the result suggests that the masking scheme to be used for all the
experiments above should have been a timestep masking instead of the default token
masking used in RPT. It also suggests that an auto-regressive (next-token prediction)
style of pretraining, such as that used in scaling language models, may be the key to
scaling cross-robot training. Furthermore, it hints that language may be one means
through which we can scale cross-robot training. In fact, existing models such as RT-1
(84) and RT-2 (90), which were further expanded to RT-1-X and RT-2-X using the
Open-X-Embodiment dataset (6), all utilized language. Unfortunately, these models
were not open-sourced at the time of this work. The Octo model (91) also employed
language, though it requires improvement in terms of generalization. These observa-
tions led us to explore how large language models (LLMs) could be effectively leveraged
for robotics, a topic we further discuss in chapter 5.

• Pre-training Robot Data Type Studies

We examined in Figure 4.10 the transfer across different robot types, specifically
Franka, xArm, Kuka iiwa, and all other non-Franka robots. The models were fine-
tuned and evaluated on the Stacking task. Due to the slow pre-training process, we
applied pre-training weights at epochs 10, 10, 10, and 3 for the Franka, xArm, Kuka
iiwa, and all non-Franka robot datasets, respectively. Token masking was employed
throughout the pre-training process.

We observed that for the RPTx model, pre-training on xArm robot data outperformed
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Figure 4.9: Success rate vs. masking type.

pre-training on the other robot types. Conversely, pre-training on Kuka iiwa or all
other non-Franka robots showed significant struggles. On the other hand, (3) with
the RPT model demonstrates that while sensorimotor pre-training is beneficial, pre-
training on the Franka robot dataset performs better than pre-training on xArm data.
However, their study only included the Franka and xArm datasets.

Reliability Assessment

Conducting a reliability assessment is important in active perception as it helps uncover
situations where failures can have severe consequences. Traditional methods of assessing
the reliability of robotic systems often rely on static benchmarks or simulated environments,
which may not fully capture the complexity and variability of real-world conditions. Since
we are evaluating the models on a real robot, in this section, we looked at metrics such as
Consistency, Recovery Capability, Downtime, and Operational Safety.

• Consistency

Consistency measures the robot’s ability to repeat tasks under the same conditions and
obtain similar outcomes. We used this reliability metric to investigate the variance in
performance between different runs of the same experiment.

It is crucial because a robot’s performance should not drastically change from one trial
to another under identical conditions. That is, if a robot performs a task successfully
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Figure 4.10: Success rate vs. robot type (Cross Robot Transfer).

in one run but fails in subsequent runs, we could assess that there are reliability and
consistency issues.

To assess the variance in the evaluation process on the Franka robot, we used RPT
models trained from scratch (or fine-tuned from scratch) on collected 60, 120, 240, and
480 trajectories. We then repeated the Stacking experiment multiple times consecu-
tively.

As shown in Figure 4.11, the general trend of model performance improvement with
an increasing number of trajectories, as mentioned in RPT, is observed except for the
240-trajectory model, which performed worse than the 120-trajectory model in 3 out
of 4 runs. Additionally, there is a significant variance between runs 3 and 4.

We attribute this variance to sensor noise and calibration issues. The system relies
heavily on real-time data from all camera feeds and sensed positions, which can in-
troduce noise or errors if the sensors are not well-calibrated. This can significantly
impact the model’s ability to perceive and make decisions accurately. Environmental
factors, such as lighting, textures, and dynamic elements, can also affect the model’s
performance during evaluation. These factors, among others, can compound, leading
to large variances in model evaluation, making it challenging to accurately assess and
compare their true effectiveness.

To improve consistency across tasks, one solution involves refining the model’s ability to
handle variations in environmental conditions and input noise. This could be achieved
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Figure 4.11: Success rate vs. consistency test over several runs.

by incorporating more diverse training data, especially under different lighting condi-
tions, sensor states, and physical disturbances. Techniques like domain randomization
and robust data augmentation can expose the model to a wider range of scenarios,
allowing it to generalize better and avoid the erratic behavior observed in edge cases.
Regular calibration of sensors and actuators will also help mitigate drift over time,
leading to more consistent task execution.

• Recovery Capability

Recovery capability in robotic systems can be understood as the robot’s ability to
recover from minor errors or disturbances while continuing its task without requir-
ing a complete system reset or human intervention. This capability is essential for
reliable and resilient robotic operation, especially in real-world environments where
unexpected events such as slight object misplacements, sensor noise, or environmental
shifts frequently occur.

In our system, recovery is particularly challenging due to the structure of our model at
inference time. Since the past trajectory is provided as input, and the model is tasked
with predicting actions for the next 16 steps, errors introduced in any of the last steps
can propagate through the prediction. This sometimes leads to behavior such as the
robot jerking back and forth or even crashing the system when the predicted values
fall outside the operational range.
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In fact, during certain evaluations, it was observed that once the model produced an
out-of-range prediction, the robot consistently experienced a form of oscillation until it
failed. This points to the importance of recovery mechanisms that prevent small errors
from compounding and causing total task failure. This behavior was also observed
during the data collection process.

A highly reliable robotic system should not only perform tasks accurately but also
exhibit robustness against such minor disturbances. The ability to adapt and recover
without a full reset is crucial for autonomy, especially in scenarios where human inter-
vention is impractical. High recovery capability, therefore, directly enhances a robot’s
operational resilience and increases its utility in more complex, unstructured environ-
ments.

During our experiments, recovery capability was evaluated by deliberately introducing
small perturbations during task execution to observe how the robot would respond.
These perturbations included slight shifts in the environment, such as minor changes
in lighting conditions or changing the position of the cube after initialization. Across
all models, a consistent sensitivity to such small environmental changes was observed,
highlighting the need for improvements in the system’s robustness and the design
of recovery mechanisms to ensure continued performance in the presence of external
disturbances.

Enhancing recovery capability will require equipping the robot with adaptive control
algorithms that can recognize and respond to minor errors before they escalate. By
integrating a feedback loop that continuously monitors the robot’s performance, the
system could detect deviations in real time and make corrective adjustments. Tech-
niques like reinforcement learning or adaptive neural networks can enable the robot
to learn recovery strategies from its own failures, improving autonomy. Additionally,
building fault-tolerant mechanisms such as graceful degradation will help the system
recover from errors gracefully without requiring external intervention.

• Downtime

Downtime, in our context, is intentionally structured to provide the robot with pe-
riods of rest, which diverges from the traditional focus on minimizing non-functional
time. Rather than viewing downtime solely as a loss of productivity, we integrate it
as a proactive measure to enhance the robot’s long-term reliability and performance,
particularly in continuous operations. Allowing the robot to rest and recalibrate pe-
riodically mitigates the effects of sensor drift, motor fatigue, and the accumulation of
small errors that could otherwise lead to performance degradation.

Instead of perceiving downtime as a detriment, we consider it a crucial component of
system maintenance and health management. Through careful monitoring, we found
that by strategically increasing downtime, we could significantly improve the robot’s
consistency and reduce the likelihood of system failures during extended evaluations.
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This approach shows the importance of downtime as a tool not only for preserving the
system’s functionality but also for improving its overall resilience.

During our evaluations, we observed that after prolonged operation without breaks,
the robot’s performance deteriorated significantly even on the MVP and RPT models.
This prompted us to explore maximizing downtime as a deliberate strategy to ”rest”
the robot between tasks. Counterintuitive as it may seem, this method proved bene-
ficial, leading to more stable and reliable performance over time. The brief periods of
inactivity allowed the system to recover, resulting in improved evaluation outcomes.

This balance between active operation and controlled downtime helps prevent system
overstrain and failures, turning downtime management from a maintenance necessity
into a performance optimization technique. By incorporating well-timed recovery in-
tervals, we can bolster the robot’s long-term operational reliability and sustain higher
levels of performance.

To manage downtime, introducing scheduled maintenance periods for the robot is key.
This includes periodic system checks and recalibration intervals to address issues like
sensor drift and motor fatigue, which can accumulate over extended use. Implementing
self-diagnostic tools would allow the robot to detect when a recalibration or rest is
needed, minimizing downtime by conducting these operations autonomously when it is
least disruptive. By balancing active task execution with structured downtime, we can
maintain the system’s reliability and avoid performance degradation due to overuse.

• Operational Safety

Operational safety refers to the robot’s capacity to perform tasks without causing
harm to itself, its surroundings, or humans in its operating environment. Given that
robots often operate in close proximity to people or fragile objects, maintaining a
high standard of safety is critical. A reliable robotic system must adhere to safety
protocols, ensuring it avoids collisions, prevents excessive force during manipulation,
and accurately interprets its surroundings to minimize risks.

During our experiments, operational safety was assessed by observing the robot’s be-
havior while interacting with objects and its environment. In the Stacking task, for
example, we evaluated how safely the robot handled objects, testing its ability to avoid
dropping them or applying unnecessary force. Models with higher error rates or incon-
sistencies were more likely to pose safety risks, particularly in edge cases where sensor
misinterpretation could lead to erratic or unintended movements.

We observed several concerning behaviors during these experiments. On some occa-
sions, the robot dropped objects in mid-air, seemingly at random. In other instances,
the gripper missed the target entirely, bypassing the object and colliding with the ta-
ble instead. There were also moments when the robot exhibited uncontrollable jerking
motions, leading to system crashes. These issues highlighted the need for improved
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safety measures, as unpredictable actions not only jeopardized task success but also
increased the risk of damaging the system or its environment.

Ensuring robust operational safety is essential, particularly as robots are integrated into
environments shared with humans and delicate objects. By identifying and addressing
these safety lapses, we aim to enhance the system’s operational safety and minimize
potential hazards during real-world deployments.

Improving operational safety involves developing more sophisticated collision avoidance
and force-limiting protocols. This could be achieved through the use of advanced
sensors, such as high-fidelity force-torque sensors and overhead vision systems, which
provide the robot with more precise awareness of its environment. Combining these
with Machine learning models that predict human movement and object trajectories
can further improve interaction safety as it could anticipate a dangerous movement
and shut down the system. Implementing hard limits on force and motion speed will
also help ensure that, in the event of an unexpected behavior, the robot poses minimal
risk to humans or objects. Regular safety audits and testing under edge cases can
further identify vulnerabilities and refine protocols to prevent system crashes or erratic
movements.

Future Directions and Speculation

One potential way to improve the RPTx system’s performance would be to run the pre-
training step for significantly longer than the few iterations we have experimented with.
However, this is costly and can take months to converge on existing infrastructures at the
time of this work. Another way that could potentially work would be to use Reinforcement
Learning (RL) methods instead of the Behavioral Cloning (BC) method on the downstream
tasks to improve learning, as has been explored by (92; 93; 94; 95). By allowing robots to
learn from their experiences in real time, these techniques can improve the adaptability and
robustness of the systems. For instance, a robot using reinforcement learning could continu-
ously refine its perception model based on feedback from the environment (unstructured or
dynamic), which will lead to a more accurate and reliable performance over time while using
imitation learning alone on the same robot will be insufficient.

Another exciting direction to overcome this issue is the integration of auto-regressive
large language models (LLMs) with active perception systems as has been explored by (84;
96; 97; 98). LLMs have not only been shown to have the potential to enhance the decision-
making capabilities of robots by enabling them to interpret and generate complex actions
via instructions input based on natural languages, but also seem to facilitate cross-robot
transfer when not trained solely on in-domain data. For example, a robot equipped with an
LLM could understand and execute high-level commands, such as ”navigate to the kitchen
and find the red cup,” by integrating visual perception and actions with linguistic context.
This opens the door for more intuitive human-robot interaction, reducing the need for highly
specific training for different tasks.
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By aligning linguistic, visual, and action space, robots can now achieve a more holistic un-
derstanding of their surroundings, improving their ability to make context and environment-
aware decisions. In chapter 5, we discuss our findings on exploring such an approach in
robotics via instruction tuning.
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Chapter 5

Active Perception: Using
Auto-Regressive Multimodal Models
with Language Instructions via
LLARVA, a Vision-Action Instruction
Tuning Method that Enhances Robot
Learning

5.1 Introduction

In this chapter, which contains material from our work in (4), we shift focus to incorporating
language into auto-regressive multimodal models. Recent advancements in instruction-tuned
Large Multimodal Models (LMMs) have achieved impressive results in image captioning and
visual question answering. Despite these successes, applying LMMs to robotics remains chal-
lenging, with many models struggling to generalize across diverse robotic scenarios despite
extensive training.

We show that integrating language with robotics through a new instruction-tuning tech-
nique that utilizes structured prompts to unify various robotic tasks and environments can
significantly enhance performance. By leveraging auto-regressive large language models
(LLMs), we aim not only to overcome the negative transfer experienced in the previous
chapter with RPTx but also to improve generalization across diverse robotic settings. As
detailed in (4), we used 8.5 million images from the Open X-Embodiment dataset and evalu-
ated the model’s performance on a real Franka robot. Our findings suggest that this approach
provides robust performance improvements compared to non-auto-regressive attempts that
do not incorporate language like RPTx. This chapter highlights how the integration of lan-
guage data and the utilization of auto-regressive methods can address challenges in robotic
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applications and facilitate better generalization across different tasks and environments. In
Appendix C, we give more details about the dataset used, and we elaborate on the steps
taken to successfully train these models on High-Performance Computers (HPC).

5.2 LLARVA

Recent developments in instruction-tuned Large Multimodal Models (LMMs), such as In-
structBLIP (99), InstructGPT (100), LLaVA (101; 102), and PALM (97), have led to signifi-
cant advancements in tasks that combine vision and language. Despite their success in these
areas, similar models applied to robotics often face different levels of challenges in achiev-
ing consistent and effective results across various practical environments (91; 96; 103; 104).
These difficulties may arise from the unique conditions in robotics, including the variability of
real-world settings, differences among robots, and the need for precise action control. Given
that multimodal instruction tuning has proven effective for LMMs in other domains, it is
reasonable to explore its potential in robotics as well. In this section, we discuss a method for
instruction tuning that focuses on vision and action, aiming to align a language model’s pri-
mary pre-training task of predicting subsequent words with the demands of different robotics
applications.

In particular, we discuss, LLARVA: Large LAnguage model for Robotic Vision and Ac-
tion (4), an open-source, instruction-tuned auto-regressive large multimodal model designed
specifically for robotics. The model is engineered to adapt efficiently across different envi-
ronments and robot setups. This approach involves creating a unique instruction prompt
that combines information about the robot type, task, scene, and control methods into a
natural language format that is compatible with current LMMs. As shown in Figure 6.1, we
outline a crafted instruction tuning method for robotics: the model receives a description
that includes details about the robot, its control mode, the task at hand, and sensory input,
and it is tasked with forecasting future actions based on this description thereby allowing
the system to utilize language prompts as a common framework for active perception.

Because aligning vision and action in robotics remains complex, many models struggle
with 3-D representations like voxels or point clouds due to compatibility issues with existing
LMMs, which typically process only single images and language inputs. To address this,
we use 2-D images, which integrate better with LMMs. Our approach involves predict-
ing ”visual traces,” 2-D projections of an end-effector, alongside subsequent robot actions
to improve alignment between vision and action. By leveraging the Open X-Embodiment
dataset (OXE) (6) for generating these traces and structuring our instructions, we enhance
action prediction accuracy. Our evaluations demonstrate that this method allows LLARVA
to generalize effectively across various robotic tasks and environments, showing competitive
performance against current baselines in both simulated and real-world settings.
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LLARVA

The 2-D visual trace:
The next action is: [1.2,-0.3…,-0.24]

You are a Franka robot using end-effector control. The task is “put can aside”, and 
the previous five (including current) steps are [[-0.1060,0.1280,-0.0767,…]]. Can you 
predict the 2-D visual trace of the end effector and the action of the next 1 step?

Visualization of 
Visual TraceRobotic Action

UR5

EE Control

“Slide cloth”

Franka Panda

Joint Control

“Stack red cube”

Franka Panda

EE Control

“Put can aside”

Figure 5.1: Overview of LLARVA (4). We used language instruction that contains robot
model, control mode, robot task, proprioceptive information, and number of predicted steps,
and outputs text with the next robot action(s) and the visual trace for the remainder of the
episode.

5.3 Method

We refer interested readers to (4) for extensive details of the architecture and summarize the
key points here.

• Input

There are two main modalities to the inputs, which are the visual observations and the
language instructions. The visual component, ot, is an image showing the environment
at a specific time t. The language input, lt, provides detailed guidance by including
information about the robot type R (e.g., Franka, UR5, xArm), control mode M
(e.g., joint or end-effector control, absolute or delta control), task I (e.g., “open the
drawer”), and previous sensory data S (e.g., positions or velocities), as well as a request
to forecast future n actions and it is framed as a prompt shown below that asks the
model to predict the end-effector’s trajectory and subsequent actions.

lt = “You are a [R] robot using [M] control. The task is [I], and the
previous [h] steps are [S]. Can you predict the trajectory of the end-effector
and the action of the next [n] steps?”

To handle tasks with varying durations effectively, the model also accommodates flex-
ible proprioceptive inputs. These inputs are presented as a sequence of past joint
positions and gripper states, S = st−h, where h indicates the number of previous steps
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considered. This approach ensures that the model can be robustly trained for both
short-term and long-term tasks, adapting to different time horizons as needed.

• Architecture

Language Decoder

Visual
Encoder

Projection Layer

Auto-regressive Transformers

Language Input

Language
Encoder

“The 2-D Visual Trace: . The action: .”

Image Input Tunable weights
Frozen weights

Figure 5.2: LLARVA architecture (4).

The LLARVA architecture, shown in Figure 5.2, integrates current visual data ot with
corresponding language instructions lt and predicts both the sequence of actions for
the upcoming n steps, denoted as At+n−1, and the 2-D visual traces Pt for the entire
episode. The model is represented by:

π(ot, lt) → At+n−1,Pt (5.1)

In this framework, the visual input is processed through a pre-trained CLIP ViT- L/14
(105) vision encoder vϕ(·), which extracts features and maps them into a latent space
using an MLP layer H. These features are then aligned with the language tokens
generated by the Llama 2 (7B-parameters) (106) language encoder. The combined
visual and language tokens are fed into the auto-regressive transformers used in Large
Language Models of the LMM fθ, which are designed to predict the next tokens in
such a way that: T = fθ(vϕ(o), eγ(l)).

• Outputs

– Visual Traces We found that predicting Visual Traces in the process helps im-
prove the alignment between visual inputs and robotic actions, enhancing accu-
racy. These 2-D Visual Traces are sequences of (x, y) coordinates tracking the
gripper’s path and are aligned with the image ot at each time step:
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Pt = (xi, yi) | i = t, t+ 1, . . . , N (5.2)

Here, (xi, yi) denotes the i−th coordinate in the entire visual trace for the episode,
and N represents the number of time steps in the episode

– Robot Actions Robot Actions are obtained by leveraging the language model de-
coders, which transform these multimodal inputs into actionable outputs, thereby
utilizing a unified vision-action space to generate effective robotic responses.

• Training

While keeping the vision encoder and language encoder frozen, we use instruction
tuning to train the auto-regressive transformers using standard LoRA adapters (107)
for both the pre-training and fine-tuning stages. Each image ot for an episode is
accompanied by a language instruction lt, and the ground-truth annotations consist
of robotic actions Ât:t+n−1 and visual traces P̂t:N . Next, given ot and lt, we predict
the next actions and 2-D visual trace. Specifically, for a response R, we compute the
probability of the target actions and target visual traces by the following equation:

p(Ât:t+n−1, P̂t:N | ot, lt) =
|R|∏
i=1

pθ(xi | ot, lt) (5.3)

where θ represents the trainable parameters, xi is the current prediction token, and
n ≤ N . To calculate loss, we use the standard cross-entropy function with these
probabilities. Next, we describe our two-step training process, the large-scale pre-
training and the fine-tuning for a downstream task.

– Step 1: Vision-Action Instruction Pre-training We begin with an LMM
that has been pre-trained on vision-language (VL) tasks. In order to generalize
across robotic tasks, scenarios, and environments, the model is pre-trained on
our large-scale vision-action instruction dataset. Due to the diversity of this
dataset, our model is trained simultaneously for multiple configurations of prompt
variables such as robot type R, control mode M or task instruction I. Using
language as input allows us to bridge fundamental gaps between subsets brought
by these different configurations. This extensive and varied training process can
establish a powerful LMM framework that can be further fine-tuned and adapted
to handle various robotic settings. We note that this pre-training stage is different
from standard LMM pre-training. As opposed to aligning the two modalities
using a projector in VL, here we align the two modalities for generalizing robotic
configurations.

– Step 2: Fine-tuning for Downstream Tasks Unlike other fields, a robotic
model must be fine-tuned on a downstream task before it can be evaluated due
to the practical considerations of real-world physical properties. Therefore, we
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fine-tune the pre-trained model using a small dataset with a fixed configuration
for the factors defined in the constructed prompt (e.g., the instruction has the
same robot type R, control mode M, etc.). Having seen diverse data samples
makes it easy for the model to adapt to specific downstream settings resembling
what it has already encountered in pre-training.

• LLARVA Dataset In order to pre-train LLARVA, we generate 8.5M image-visual
trace pairs from the Open X-Embodiment (OXE) dataset (6). As shown in Figure C.2,
our dataset consists of images from a diverse collection of 37 OXE subsets with 13
different robots, including a wide assortment of tasks, environments, cameras (and
thus images), and end-effectors, among other factors. For each image in an episode,
we calculate the 2-D visual trace of the end-effector Pt:N . For this purpose, we use
a bounding box detector (108) that is trained specifically on each of the different
end-effectors in OXE. The center points of bounding boxes are used for a simpler
representation, and the visual trace for step t is then the ordered list of all center
points from image t to image N .

During fine-tuning, we use a comparable number of episodes as (3) for each task,
both with/without visual trace joint training. We condition on joint positions of the
previous 16 steps, and predict and execute 7-dimensional delta joint positions and 1-
dimensional gripper status for the following 16 steps. We take 16 episodes to evaluate
RPT and LLARVA, 10 episodes for Octo, averaging 5 times to get the final success
rate. For fine-tuning data collection and evaluations, we use a real Franka Emika
Panda robot with a Franka gripper. A Logitech BRIO 4K camera positioned to the
right of the Franka robot provides single-view RGB (without depth data) vision input
to our model. Camera autofocus is disabled, and the data is captured at 640x480
resolution. The model inference is done on a 48GB NVIDIA A6000. We use the
data collection code and process from https://github.com/Max-Fu/franka-scripted to
collect data for picking, stacking, and destacking tasks. The script generates for each
of the arbitrary number of episodes, x-y positions on the table plane using a uniform
random distribution for each axis. The script directs the robot to place the cube at each
location and then collects the camera and joint information as the robot is directed to
pick, stack, or destack the cubes. Vision is not used during this process as the cube
locations are all generated and therefore known.

For training and execution on the collected Franka Emika Panda robot data, we start
with our LLARVA model that has undergone vision-action instruction pre-training
on OXE as described in step 1 above, and perform step 2 for four epochs on 1920
episodes of task-specific downstream data (e.g., picking, stacking, destacking) using 8
A100 GPUs. This is similar to other baselines, such as RPT (3), which uses an equal
amount of in-domain episodes (1920) for pre-training, with an additional 120-240-480
episodes used for various fine-tuning tasks and experiments. Additionally, (3) uses
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three camera views for each episode, while LLARVA uses only one. More details of the
dataset are reported in (4) and are shown in Appendix D.

5.4 Discussion

Method 2-D Visual Trace Pick Stack Destack
RPT - 87.50 31.25 93.75
RPTx - 0.0 0.0 0.0
Octo - 60.00 10.00 40.00

LLARVA ✗ 81.25 50.00 87.50
LLARVA ✓ 93.75 56.25 100

Table 5.1: Success rate (%) of LLARVA on the Frank robot. We compare LLARVA with
RPT, RPTx (480 trajectories), and Octo by taking each pre-trained model and fine-tuning
it on the same set of demonstrations. LLARVA outperforms the others on all the tasks.

Table 5.1 presents a comparison of success rates between in-domain results of the non-
auto-regressive models, which do not utilize language like RPT (3) and RPTx, non-auto-
regressive models that do incorporate language, such as Octo (91), and auto-regressive models
that do incorporate language like LLARVA (4). We omitted the results of RPTx in this
discussion because of the observed negative transfer mentioned above, where all evaluated
tasks for the 480 tracjectories returned zeros. This comparison covers various robotic tasks,
including Picking, Stacking, and Destacking, offering valuable insights into how incorporating
language frameworks can enhance performance and address negative transfer issues observed
in RPTx.

RPT (3) and Octo (91) serve as baseline methods for this analysis. RPT demonstrates
high success in the Destacking task (93.75%) but shows relatively lower performance in Pick-
ing (87.50%) and Stacking (31.25%) tasks. In contrast, Octo exhibits improved performance
in Picking (60.00%) but falls short in Stacking (10.00%) and Destacking (40.00%).

LLARVA, on the other hand, outperforms both RPT and Octo across all tasks. Even
without using 2-D Visual traces, LLARVA achieves competitive results (81.25%) in Pick-
ing, 50.00% in Stacking, and 87.50% in Destacking. When 2-D Visual traces are included,
LLARVA’s performance markedly improves, achieving 93.75% in Picking, 56.25% in Stack-
ing, and a perfect 100% in Destacking.

These results suggest that LLARVA offers superior transferability, versatility, and ro-
bustness compared to RPT and Octo. The significant performance boost observed with the
inclusion of visual traces indicates that further refinements within LLARVA could lead to
even greater improvements. While RPTx experienced severe negative transfer, in-domain
RPT excelled in Destacking, and Octo performed relatively better in Picking. This rein-
forces the benefits of incorporating language in auto-regressive large multimodal models for
robotics. That is, LLARVA’s balanced and high performance across all tasks presents the
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effectiveness of multimodal models with language instruction, showcasing their ability to
handle diverse tasks effectively.

In summary, these results highlight the potential of fine-tuning and adapting instruction-
tuned models to enhance robotics performance. The in-domain data-driven and non-auto-
regressive RPT provides a valuable benchmark for LMMs without language instructions,
while Octo offers insights for those with non-auto-regressive models with language model
integrations. However, the substantial improvements achieved by LLARVA demonstrate
the clear advantages of advanced language-driven auto-regressive models and techniques in
optimizing robotic task execution.

5.5 Future Work

The results suggest several promising avenues for future research and development. One
key area is to dig deeper into the specific enhancements or modifications within LLARVA
that contribute to its superior performance when using visual traces. Understanding these
factors could offer valuable insights for further refining LLARVA. Historically, advancements
in this area have explored a variety of techniques, from foundational image recognition meth-
ods (109; 110; 111) to object-focused video analysis approaches (112; 113; 114; 115). These
techniques have included object tracking, interaction modeling, and scene graph generation
(116; 117; 118). Recently, there has been increased interest in combining vision with lan-
guage for tasks like referring expression localization (119; 120; 121) and text-guided semantic
segmentation (122; 123). However, none of these studies have explicitly investigated why
and how modeling the end-effector location with a language model could lead to such per-
formance enhancements. It will therefore be beneficial to look deeper to understand what is
going on.

While LLARVA performs better on the Franka robot, it is worth mentioning that it
takes too long to execute (8 minutes). In future work, significantly improving the latency as
discussed in chapter 3 will be beneficial.

Additionally, exploring how LLARVA scales under various conditions or with different
real-world tasks could further validate its robustness and adaptability. Testing LLARVA in
diverse environments and across a broader range of tasks would provide deeper insights into
its practical applicability and effectiveness.

In conclusion, the observations presented highlight the significant advantages of using
language-driven auto-regressive Large Multimodal Models (LMMs) for robotics. LLARVA
stands out as a promising solution for enhancing robotic task performance, demonstrating
considerable potential for future advancements and applications. The continued exploration
of LLARVA’s capabilities and integration with other modalities could lead to substantial
improvements in robotic systems and broaden their scope of use.
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Chapter 6

Active Perception: Using
Auto-Regressive Multimodal Models
for Geospatial Reasoning
Segmentation via LISAt, a
Language-Instructed Segmentation
Assistant for Satellite Imagery

6.1 Introduction

Active perception, as mentioned in previous chapters, requires learning representations that
enable systems to interpret sensory data in a goal-directed and context-aware manner. Just
as robots must perceive and act using multimodal inputs and language, remote-sensing sys-
tems increasingly need similar capabilities. These systems must go beyond static object
detection to reason about complex queries grounded in visual context. This chapter, which
includes material from our work (124), explores how reasoning segmentation, where models
generate segmentation masks from natural language queries, is a step toward active percep-
tion and tasking in the geospatial domain.

Segmentation models for remote-sensing have been a staple of geospatial analysis, sup-
porting applications ranging from disaster response, environmental monitoring, and more
(125; 126). These models typically operate within rigid boundaries but struggle to adapt to
real-world scenarios in which the ability to segment regions based on flexible, user-defined
queries, which are tasks often referred to as reasoning segmentation, is paramount (127). For
instance, a query such as “identify flood-prone urban areas” or “which regions have observed
urban expansion” demands that segmentation models move beyond static object recognition
and into contextual, task-specific reasoning. Despite the clear need for such capabilities, rea-
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Locate the truck that is 
elongated and light-colored, 
diagonally positioned on the 

road, contrasting with the 
surrounding darker pavement.

"Sure, it's <SEG>”

Query

Prior
Work

LISAT

✅ ❎

Figure 6.1: Existing models struggle to generate accurate segmentation masks for complex
natural language queries in remote-sensing imagery. LISAt, our open-source, open-data,
foundation model for geospatial reasoning segmentation trained on GRES, our new semi-
synthetic dataset for remote-sensing reasoning segmentation, helps to bridge the gap between
State-of-the-Art (SOTA) reasoning segmentation models and remote-sensing domains.

soning segmentation remains largely underexplored in the remote-sensing domain, limiting
the adaptability of segmentation systems in practice.

Adapting existing vision models for the remote-sensing domain introduces a unique set of
challenges differing fundamentally from those encountered in natural imagery (128). Remote-
sensing images can drastically vary in terms of clutter, objects of interest can be very small
or very large, and implicit interactions between objects can span over long distances. Addi-
tionally, remote-sensing is characterized by both subtle visual differences between drastically
different types of objects, where it is challenging to distinguish between objects that look
similar in satellite images but have vastly different semantic meanings (e.g., small cars vs.
buildings), and extreme variations in scale along with object diversity, where remote-sensing
images contain objects of vastly different sizes (e.g., entire cities, forests vs. individual trees).
Compounding these difficulties is the lack of high-quality annotated data consisting of nat-
ural language queries and remote-sensing imagery pairs. As a result, models trained on
natural image datasets or designed for general-purpose reasoning struggle to achieve high
performance when directly applied to geospatial tasks (129; 130).

Recent geospatial-specific foundation models, such as RS-GPT4V (129), EarthGPT (130),
and others (131; 132) have demonstrated strong performance in related visual understand-
ing and reasoning tasks such as visual captioning and visual question answering. Despite
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these advances, such models remain limited to textual outputs and cannot generate seg-
mentation masks or localize objects within images. This lack of segmentation capability
presents a significant barrier for applications that require spatially explicit reasoning. Some
vision-language models can generate segmentations from text queries (127; 133; 134), but
they struggle to adapt to the unique challenges of remote-sensing, mentioned above (see
Table 6.2).

We address these challenges by introducing LISAt (Language Instruction Segmentation
Assistant for Satellite Images), an open-source and open-data vision-language model that
bridges the gap between reasoning segmentation and remote-sensing foundation models.
Central to LISAt ’s development are two new datasets: the Geospatial Reasoning Segmenta-
tion dataset (GRES), comprising 27,615 pixel-level annotations paired with natural language
reasoning-segmentation queries across 9,205 images, and PreGRES, a fine-tuning dataset ag-
gregated from existing remote-sensing datasets consisting of over 1 million question-answer
pairs. These datasets enable LISAt to handle scale, resolution, and complexity, in aligning
textual queries with remote-sensing and top-down imagery. LISAt achieves significant per-
formance gains over state-of-the-art geospatial and open-domain models. Specifically, LISAt
outperforms existing geospatial foundation models, such as RS-GPT4V, by over 10.04% on
BLEU-4 on remote-sensing visual description tasks and outperforms state-of-the-art open-
domain models on remote-sensing reasoning segmentation by 143.36% on gIoU.

6.2 Related Work

Semantic segmentation has been an essential task in remote-sensing with applications ranging
from urban planning (135; 136; 137), economic assessment (138), precision agriculture (125),
resource management (135; 139), and environmental protection (126). A key challenge facing
such models, however, is that they are typically constrained to rigid, task-specific models
that fail to generalize across applications without significant fine-tuning and adjustment
despite using identical imagery and label ontologies. Recently, however, since the emergence
of vision language models (VLMs) as a predominant paradigm (140; 141; 142), there has
been a renewed interest in multimodal foundation models that are capable of responding
to/answering arbitrary natural language (or multimodal) queries. Models such as GPT-4
(143) and LLaVA (141; 142) have expanded on this by allowing users to provide an image
along with a natural language query, to solve tasks such as visual description and visual
question answering.

Remote-Sensing Datasets for Multimodal Learning

Semantic segmentation in remote sensing has long been constrained by a lack of large-scale
datasets that combine fine-grained spatial annotations with multimodal supervision. Well-
established benchmarks such as DeepGlobe (144; 145; 146) have advanced geospatial vision
tasks by providing imagery annotated for classification, detection, and basic segmentation.
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However, these datasets do not support the kind of complex, query-driven interaction that
modern vision-language models require. To support multimodal tasks, several remote sens-
ing datasets have emerged at the image or region level. Datasets like Sydney-Captions

(147), RSICD (148), NWPU-Captions (147), RSITMD (149), and UCM-Captions (147) enable
captioning and image-text retrieval. While useful for high-level semantic understanding,
they are individually small in scale, and combining them will help improve text generation.
More recent efforts, such as VRSBench (150) and GeoChatInstruct (132) have expanded
multimodal learning to region-level tasks like grounded image captioning, region-specific
question answering, and visual grounding. These datasets are built on existing remote sens-
ing datasets (e.g., (151; 152)) and use rule-based or GPT-based methods to automatically
generate textual descriptions for objects or regions within images. While they support region-
level reasoning through bounding box annotations, they do not include pixel-level ground
truth, which is necessary for supervised training in segmentation tasks. Datasets that do
provide segmentation supervision, such as FloodPrompt (139) and RefSegRS (153), are often
domain-specific or limited in scale, with RefSegRS offering only 4,420 images. The datasets
we introduce, PreGRES and GRES, are specifically developed to address these limitations. To-
gether, they provide a unified pipeline of detailed spatial annotations paired with natural
language, enabling the training of models that can both understand and segment remote
sensing imagery.

Geospatial Foundation Models

Recent geospatial foundation models have adapted the foundation model paradigm to remote
sensing, enabling multi-task capabilities for tasks like captioning, visual question answering,
and object detection. EarthGPT (130) unifies a wide range of multi-sensor RS tasks, includ-
ing scene classification, image captioning, and object detection, using a large-scale multi-
modal dataset derived from several task-specific datasets (see section 6.3). TEOChat (131)
introduces temporal reasoning for applications such as change detection and damage assess-
ment, demonstrating strong performance on temporal sequence tasks, but struggles on more
general descriptions. GeoChat (132) supports region-specific dialogue and visual grounding,
enabling fine-grained interaction with high-resolution RS imagery, while SkyEyeGPT (154)
achieves notable performance on image-level and region-level vision-language tasks with a
streamlined instruction-following architecture. RS-GPT4V (129) emphasizes fine-grained
object understanding and complex scene reasoning, leveraging a hierarchical instruction-
following approach. While these models represent significant progress across a wide range
of tasks, such models have been limited by their ability to produce only natural language
outputs. Our proposed work, LISAt addresses this limitation by natively producing seg-
mentation masks in addition to answering natural language queries.
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Reasoning Segmentation

Beyond just producing segmentation masks for single classes, a goal of LISAt is to perform
“reasoning segmentation,” the task of generating a segmentation mask from a complex or im-
plicit query text (Figure 6.1). Two overarching approaches have been developed for this task.
LISA (127) introduced this concept with an embedding-as-mask approach, allowing segmen-
tation via a [SEG] token which is decoded into a segmentation mask using a SAM decoder
(155). PixelLM (133) expanded on this method by leveraging a lightweight pixel decoder and
segmentation codebook to improve multi-target differentiation in the same paradigm, while
GLaMM (156) also targeted the granularity problem through additional focused data. GSVA
(157) extended the [SEG] paradigm by introducing a [REJ] token to handle ambiguous or
absent targets in queries. In the second paradigm, models such as Shikra (158), Kosmos-2
(159) and others (141; 142; 160; 161) focus on solving reasoning segmentation tasks with
natural language alignment: represent visual concepts as sequences of natural language to-
kens (such as the literal coordinates of a bounding box). Despite these advances, existing
models often fall short when applied to remote sensing due to challenges like varying spatial
resolutions, fine differences between target classes, and the lack of domain-tailored datasets
(See Table 6.2). Our proposed work, LISAt, extends the embedding-as-mask approach to
top-down remote-sensing data.

6.3 Geospatial Reasoning Segmentation Dataset

The development of vision-language models (VLMs) for remote sensing has been hindered
by the lack of high-quality remote sensing imagery paired with natural language data, a
key challenge outlined in our introduction. Unlike natural image datasets, remote-sensing
data require fine-grained, context-aware segmentation that accounts for extreme variations in
scale, subtle object differences, and the ability to reason across complex spatial relationships.
To help alleviate this need, we introduce the Geospatial Reasoning Segmentation Dataset
(GRES), a collection of vision and language data designed around remote-sensing applications.
GRES consists of two core components: PreGRES, a dataset consisting of over 1M remote-
sensing specific visual instruction-tuning Q/A pairs for pre-training geospatial models, and
GRES, a semisynthetic dataset specialized for reasoning segmentation of remote-sensing
data. With this structure of GRES, we enable LISAt to overcome both data scarcity and
the domain transfer limitations faced by general-purpose models. The dataset is specifically
designed to handle scale variability, object diversity, and complex reasoning queries, making
it a critical resource for advancing geospatial VLMs.

PreGRES

PreGRES is a large-scale structured collection of existing smaller-scale geospatial datasets
designed for fine-tuning vision-language models in remote sensing applications. It integrates
multiple sources, each contributing to different aspects of geospatial data understanding. The
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datasets within GRES provide coverage across image captioning, visual question answering,
and visual grounding tasks:

1. Image Captioning: NWPU-Captions (162), RSICD (148), RSITMD (149), Sydney-Captions (147),
and UCM-Captions (147). Each contributes paired image-text data, and contains long-
form descriptions of top-down imagery across different geospatial environments, in-
creasing the diversity of language supervision.

2. Visual Question Answering (VQA): RSVQA LR (163), RSVQA HR (163), FloodNet (164),
and RSIVQA (165). Each of these datasets consists of structured question-answer pairs
and supports reasoning over aerial and satellite images, covering tasks such as object
identification, scene understanding, and disaster assessment.

3. Visual Grounding / Region-Level Captioning: DIOR-RSVG (151) provides paired
text-image data for object localization and spatial reference resolution, and NWPU-RESISC45 (166)
supplies scene classification labels.

Overall, PreGRES consists of 119,279 images and 1,204,993 question-answer pairs and is
used in the first-stage pre-training of the LISAt model, enabling general-purpose geospatial
question-answering in the final LISAt model. For more details on dataset composition, see
Table D.5.

GRES

GRES is a semi-synthetic dataset designed explicitly for geospatial reasoning segmentation.
Each sample in GRES consists of an image, a natural language query referring to a single
object in that image, and a pixel-level segmentation mask (See Figure 6.2 for an example
of a GRES query/image pair). This task allows us to train the LISAt model to correctly
localize images at a pixel level within the scene, even in the case of multiple objects requiring
disambiguation.

To build the dataset, we begin with a subset of the xView dataset (146) consisting of
26, 541 high-resolution satellite images spanning approximately 1, 400 square kilometers, cov-
ering more than 60 classes. xView consists of paired images and object detections within the
images in bounding box form. To convert xView images/annotations to GRES annotation-
s/images, we follow the process overviewed in Figure 6.2.

Given an input image of size 512 × 512, we divide it into 4 quadrants, where the top-left
quadrant is defined by 0 ≤ x ≤ 255, 0 ≤ y ≤ 255; the top-right quadrant is defined by 256 ≤
x ≤ 511, 0 ≤ y ≤ 255; the bottom-left quadrant is defined by 0 ≤ x ≤ 255, 256 ≤ y ≤ 511;
the bottom-right quadrant is defined by 256 ≤ x ≤ 511, 256 ≤ y ≤ 511.

In the first part of the pipeline, we need to generate a “disambiguating query” that selects
for a single object within the scene from the large set of objects. To do so, we first filter
the scenes for two key objectives: (1) uniqueness (i.e., can objects be easily disambiguated
with a natural language query), and (2) interest (i.e., are the objects visually interesting)
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Figure 6.2: To generate synthetic data, we start with a seed detection dataset (xView). We
then filter detections for those that are both visually interesting and highly distinguishable
(A). For that detection, we then generate a natural language description (B) and a pixel-
wise segmentation mask (C). Finally, the natural language description is used to generate a
localization query (D). Together, the segmentation mask and the query form a ground-truth
pair for the LISAt reasoning segmentation fine-tuning.

(Figure 6.2, A). An object is considered “unique” in an image if it is one of less than
2 detections of its class in its respective quadrant, and an object is considered “visually
interesting” if it belongs to a class appearing in less than 50% of the overall subset of
xView detections. Comprehensive statistics of object categories after filtering are available
in Table D.1. To ensure a balanced evaluation, our dataset includes queries with and without
explicit spatial references, each with a 50% probability.

After the filtering stage, we convert the object detection to a query using a set of struc-
tured queries to a large vision and language model trained on natural images (in our case,
GPT-4v (143), Figure 6.2, B). In the first prompting stage, we ask the VLM to identify unique
characteristics of the class within the bounding box by asking the model to ‘‘Find visual

features (color, shape, size, etc.) that help find or segment {class name} in

the image.’’. We then ask the VLM to come up with a sentence describing the object in
the bounding box within the scene using the collected unique characteristics (See the full
prompt in section D.2). Given these features, we prompt the VLM again with the full image,
along with other detections in the image and the position of the bounding box to produce a
query(see the full prompt in section D.2, Figure 6.2, D).

In the second part of the pipeline (Figure 6.2, C), we need to generate the pixel-based
mask from the bounding box. To do this, we leverage a GeoSAM model (167) with a custom
high-resolution inference configuration (128 points per side, 0.95 prediction IoU threshold,
and 0.95 stability score with an 80-pixel minimum mask region area) to produce a part-wise
segmentation of each bounding box. We then add any sub-parts that cover more than 80px
of the underlying bounding box to the final pixel mask.
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We then asked the VLM to rephrase each query in two separate ways, which added to
the initially generated query, giving us 3 queries per image. This pipeline’s overall results
in a dataset consisting of 9,205 images and 27,615 natural language queries/answers within
those images. From this dataset, we generate train, test, and validation splits consisting of
7,205, 1,500, and 500 images, respectively.

6.4 Training LISAt for Geospatial Reasoning

Segmentation

Inspired by LISA (127), LISAt integrates a multimodal large language model (LLM) with
a segmentation model. The multimodal LLM processes both textual and visual inputs,
leveraging datasets that contain image-text pairs for instruction-following and reasoning
(142) while the segmentation model uses a dataset designed for high-quality mask generation
(155). An overview of the architecture is given in Figure 6.3.

Geospatial Multimodal Language Models

While LISA (127) leverages a pre-trained LLaVA (141; 142) model as a vision and language
backbone, we found that leveraging LLaVA alone was insufficient to capture the range of
queries and visual variance in remote-sensing applications. To solve this problem, in the first
stage of our training process, we trained a remote-sensing-specific multimodal large language
model to serve as the base MLLM for the segmentation backbone. Our architecture generally
follows LLaVA (141; 142) with several modifications for remote-sensing applications.

For the base language model, we leverage default Vicuna-7B (168) to embed a text query
Xl. For the visual backbone, LISAt adopts the Remote-CLIP ViT-L/14 encoder (169) to
extract visual features from an input image Xv. To align visual representations with the
language model’s word embedding space, we use a simple linear projection matrix to produce
a sequence of visual tokens that match the dimensionality of the word embeddings in the
language model. A pre-trained Vicuna base model combined with the vision encoder is
further pre-trained on PreGRES (see section 6.5) with LoRA (170) prior to being trained on
GRES. We refer to this pre-trained variant as LISAtpre.

Preliminaries

Existing multimodal LLMs for remote sensing, such as RS-GPT4V (129) and EarthGPT
(130), support images and text as input but output only text. To produce segmentation
masks, LISAt leverages the “embedding-as-a-mask” paradigm introduced by LISA (127),
and expands the LLM vocabulary with a new token, <SEG>, which represents segmentation
requests. When the model produces an output containing the <SEG> token, we extract the
final layer embedding of that token, and project it via an MLP layer to the query space of
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Figure 6.3: LISAt integrates a geospatial multimodal large language model (MLLM) with
a segmentation decoder to enable reasoning-based segmentation. LISAt first pre-trains a
Remote-CLIP-based MLLM on PreGRES before fine-tuning on GRES. We then expand the
LMM vocabulary with a segmentation token (<SEG>), whose final-layer embedding is pro-
jected into the SAM segmentation query space and combined with image features to produce
a segmentation mask.

a SAM-based segmentation decoder (155). The segmentation decoder combines the query-
projected final embedding and a set of visual features extracted from the base image to
produce a final segmentation mask M̂.

Training Objectives

LISAt is trained end-to-end with a loss function that combines text generation and segmen-
tation objectives. The total loss L is the weighted sum of two components:

L = λtxtLtxt + λmaskLmask. (6.1)

where the text generation loss Ltxt is an autoregressive cross-entropy loss:

Ltxt = CE(ŷtxt,ytxt). (6.2)
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Queries RGB LISA LISAt (Ours) Ground Truth

Locate the building
with a large

rectangular structure,
dark roof, and

symmetrical window
patterns.

Identify the facility in
the center-left of the

image.

Identify the damaged
building in the center

of the image.

Failure Case:
Locate the dark,

elongated rectangular
shape with a red
outline against the
dark background to
identify the barge.

Table 6.1: Qualitative examples of the segmentations generated by LISAt on the GRES

dataset.

and the segmentation loss Lmask consists of a per-pixel binary cross-entropy (BCE) loss
and a DICE loss, weighted by λbce and λdice:

Lmask = λbceBCE(M̂,M) + λdiceDICE(M̂,M). (6.3)

6.5 Experimental Results

Implementation Details: LISAt and LISAtpre are trained on eight DGX A100 80GB
GPUs. In the first stage, we pretrain LISAtpre (context length = 2048) using LoRA (170)
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for 1 epoch on PreGRES (described in section 6.3) with next-token prediction cross-entropy
loss. We employ the AdamW optimizer (171) with a learning rate of 3e−4 and a cosine-decay
learning rate scheduler, setting the batch size to 2 and gradient accumulation steps to 6.

In the second stage, we train LISAt using GRES, as well as two traditional natural image
referring segmentation datasets, FP-Ref-COCO (172) and ReasonSeg (127). LoRA is applied
to LISAtpre, while the SAM decoder undergoes full fine-tuning. The learning rate is set to
3e−4, with all other configurations remaining the same. For the loss function, we empirically
found that setting the weight for text generation loss (λtxt) and mask loss (λmask) to 1.0,
while the binary cross-entropy loss (BCE) (λbce) and Dice loss (λdice) are assigned weights
of 2.0 and 0.5, respectively performs better. The total training time was approximately 12
hours on eight DGX A100 80GB GPUs.

Evaluation Protocol: We use the GRES test set to evaluate segmentation performance.
We focus on two subsets of the GRES test set, Small and Large, to evaluate performance on
small and large objects, respectively. We define a threshold of 500 pixels2 and categorize any
object in the test set that covers an area less than the threshold to be Small and bigger to
be Large. We evaluate segmentation performance using generalized Intersection-over-Union
(gIoU) and cumulative Intersection-over-Union (cIoU) (127). To evaluate the performance
of our approach on traditional vision and language tasks, we use several existing datasets,
including NWPU-Captions (162), UCM-Captions (147), Sydney-Captions (147), and RSICD
(148). Following prior work, we report standard evaluation metrics: BLEU (173), CIDEr
(174), and SPICE (175).

Segmentation

Table 6.2 compares LISAt with LISA-7B-v1 and LISA-13B-Llama2-v1 (127) across different
dataset configurations (All, Small, Large). LISAt consistently and significantly outperforms
both natural-image trained referring segmentation models. In particular, for smaller objects,
LISAt has larger relative gains compared to large models, suggesting that LISAt is more ef-
fective for capturing fine-grained spatial details, which is important for applications involving
dense scenes or small-scale features in remote sensing imagery.

Some qualitative examples are given in Table 6.1. The first three rows represent success
cases, where LISAt correctly identifies and localizes objects based on the queries. In the
first, LISAt correctly segments the building against a noisy background, and when many of
the ground features match the visual features of the target object. In the second and third,
LISAt correctly identifies the key object of interest, ignoring other potential distractor
objects. In the failure case, LISAt fails to correctly identify the barge alone from the two
ships, likely due to the color patterns on the first ship, but still manages to outperform LISA,
which only focuses on the larger ship objects.

Figure 6.4 demonstrates the influence of training dataset size on LISAt ’s performance.
With an increasing number of training images, LISAt demonstrates notable improvements in
both cIoU and gIoU scores. These results indicate that LISAt benefits from larger training
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Model Obj. Size cIoU gIoU

LISA-7B All 0.122±0.014 0.113±0.007

Small 0.104±0.022 0.062±0.008

Large 0.157±0.017 0.222±0.013

LISA-13B All 0.122±0.014 0.139±0.006

(llama2) Small 0.106±0.016 0.089±0.007

Large 0.148±0.018 0.244±0.019

PixelLM-7B All 0.101±0.011 0.142±0.006

Small 0.069±0.009 0.094±0.006

Large 0.142±0.019 0.243±0.014

PixelLM-13B All 0.145±0.013 0.162±0.008

Small 0.102±0.015 0.106±0.008

Large 0.204±0.028 0.277±0.014

LISAt (Ours) All 0.245±0.023 0.275±0.009

Small 0.232±0.024 0.240±0.009

Large 0.250±0.029 0.348±0.015

Table 6.2: Performance of LISAt against LISA-7B-v1, LISA-13B-Llama2-v1, PixelLM-7B
and PixelLM-13B on GRES across different object sizes. LISAt-7B consistently outperforms
the baseline models, particularly in the Small object category.

Segmentation Model cIoU gIoU

GeoSAM (167) 0.220±0.019 0.238±0.007

SAM (155) 0.245±0.023 0.275±0.009

Table 6.3: Comparison of LISAt’s performance using GeoSAM vs. SAM for segmentation
on the All dataset configuration.

datasets, thereby exhibiting some good scaling properties, as its segmentation performance
improves with more data, particularly for small objects.

Table 6.3 compares LISAt’s performance using GeoSAM and SAM as base segmentation
models on the All dataset. While both models yield competitive results, SAM achieves
slightly higher cIoU (0.245) and gIoU (0.275) than GeoSAM. This suggests that, despite
being designed for geospatial tasks, GeoSAM alon,e without specific language-aligned fine-
tuning, may be limited by training-specific biases, whereas SAM’s broader training on diverse
natural images enables more adaptable feature extraction, leading to improved segmentation
performance.



CHAPTER 6. ACTIVE PERCEPTION: USING AUTO-REGRESSIVE MULTIMODAL
MODELS FOR GEOSPATIAL REASONING SEGMENTATION VIA LISAT, A
LANGUAGE-INSTRUCTED SEGMENTATION ASSISTANT FOR SATELLITE
IMAGERY 70

33% 66% 100%

% of GRES-Train

0.15

0.20

0.25

0.30

0.35

Se
gm

en
ta

tio
n 

Pe
rf

or
m

an
ce

 (I
oU

)

gIoU (All)
gIoU (Large)
gIoU (Small)
cIoU (All)
cIoU (Large)
cIoU (Small)

Figure 6.4: Scaling behavior of LISAt on the GRES dataset. While adding additional data
is helpful, even with 7K training images (the full GRES dataset), we observe the beginning of
a plateau in performance, particularly on cIOU scores. This suggests that more data alone
may not be helpful, and instead, we may need additional data variance outside the xView

classes.

Captioning and Question-Answering

On the UCM-Captions dataset (Table 6.4), LISAtpre achieves the highest BLEU-4 (72.34)
and CIDEr (355.32) scores, surpassing previous geospatial models such as RS-GPT4V (129)
and post-processing methods (179), as well as general-purpose vision-language models such
as LLaVA-v1.5 and LLaVA-v1.6 (141; 142). For NWPU-Captions (Table 6.5), LISAtpre

achieves the highest BLEU-4 score and matches the best SPICE performance, outperforming
prior geospatial captioning models such as MLCA-Net (162) and multimodal attention-based
methods (148). General-purpose vision-language models (LLaVA-v1.5 and LLaVA-v1.6)
(141; 142) perform significantly worse, highlighting the benefits of domain-specific training.
Similar trends are observed on RSICD (Table D.6) and Sydney-Captions (Table D.7).

Table 6.6 presents the performance of LISAtpre on the RSVQA-LR dataset across Count,
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Method BLEU-4 CIDEr

SAA (163) 64.77 294.51
SD-RSIC (176) 53.80 213.20
RTRMN (semantic) (177) 35.87 180.25
RTRMN (statistical) (177) 63.93 312.70
SVM-D BOW (178) 51.95 271.42
SVM-D CONC (178) 59.42 292.28
Post-processing (179) 62.62 309.64
LLaVA-v1.5-7b (142) 5.54 32.67
LLaVA-v1.6-7b (141) 5.44 23.86
RS-GPT4V (129) 65.74 333.23
LISA-7B (baseline) 0.00 0.00
LISA-7B (fine-tuned on GRES) 8.73 59.96
LISAtpre (Ours) 72.34 355.32

Table 6.4: Comparison of captioning performance on the UCM-Captions dataset. Results
are reported for BLEU-4 and CIDEr metrics.

Method BLEU-4 SPICE

CSMLF (106) 47.1 26.5
Multimodal (147) 45.5 27.6
Attention (hard) (148) 46.4 28.4
FC-Att (180) 46.9 28.3
MLCA-Net (162) 47.8 28.5
LLaVA-v1.5-7b (142) 4.8 11.1
LLaVA-v1.6-7b (141) 2.9 8.7
EarthGPT(130) 65.5 32.2
LISA-7B (baseline) 0.00 0.00
LISA-7B (fine-tuned on GRES) 39.9 19.52
LISAtpre (Ours) 65.8 32.2

Table 6.5: Comparison of captioning performance on the NWPU-Captions dataset. Results
are reported for BLEU-4 and SPICE metrics.

Presence, and Comparison categories. The model achieves the highest Presence accuracy
(92.36) and Comparison accuracy (92.20), indicating strong performance in these tasks. In
contrast, models such as LLaVA-1.5 and InternLM-XC2 report lower scores in Count and
Presence. These results suggest that LISAtpre effectively handles multimodal reasoning and
task-specific fine-tuning, particularly in Presence-based evaluations.

The ablation study in Table 6.7 evaluates different vision encoders and language models
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Model Count Presence Comparison

RSVQA (163) 67.01 87.46 81.50
EasyToHard (181) 69.22 90.66 87.49
Bi-Modal (182) 72.22 91.06 91.16
SHRNet (183) 73.87 91.03 90.48
LLaVA-1.5 (142) 26.81 54.72 66.22
InternLM-XC2 (184) 26.91 55.74 64.89
RS-GPT4V (129) - 91.17 91.70
GeoChat (185) - 91.09 90.33
Full-FT (129) 70.48 91.10 92.23
RS-GPT4V-LoRA-FT (129) 70.34 92.24 92.10
RS-GPT4V-MoE-LoRA-FT (129) 71.06 91.10 92.55
LLaVA-v1.5-7b (142) 18.66 53.98 66.22
LLaVA-v1.6-7b (141) 19.65 57.53 62.32
LISA-7B (baseline) 0.00 0.00 0.00
LISA-7B (fine-tuned on GRES) 25.86 79.80 84.41
LISAtpre (Ours) 70.24 92.36 92.20

Table 6.6: Performance on RSVQA-LR (% accuracy).

for LISAtpre on the UCM-Captions dataset. Among the vision encoders, RemoteCLIP
(which we use in LISAt) significantly outperforms both Geo-CLIP and Sat-CLIP on all
domains, while slightly outperforming the base CLIP models. Models using LLama 2 as a
base LLM are worse than Vicuna. These findings highlight that both the vision encoder
and the language model play crucial roles, with RemoteCLIP and Vicuna forming the most
effective pairing for remote sensing imagery.

Limitations and Failure Cases

While LISAt outperforms all existing reasoning segmentation models, it is not perfect.
section D.4 highlights examples of failure cases in our pipeline. In some instances, LISAt
struggles to produce accurate predictions when images are cloudy or when key features are
obscured. Other challenges arise when the query is too vague like ‘‘Identify the plane

in the bottom-right of the image.‘‘ while there are several planes in the bottom right
corner of the image. It is also the case when similar objects to the target item appear in the
image, leading to ambiguity. We hypothesize that training on a larger dataset and refining
the query design could help mitigate these issues. Another issue arises from the ground truth
masks generated by GeoSAM in the GRES dataset. In some cases, the underlying ground
truth mask is incorrect, and LISAt is occasionally penalized even when making correct
predictions, as demonstrated in section D.4.
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Vision Encoder LLM BLEU-4 CIDEr SPICE

CLIP Llama 2 69.03 328.82 52.21
CLIP336 Llama 2 66.97 324.61 50.46
SAT-CLIP Llama 2 8.82 30.41 8.15
Geo-CLIP Llama 2 12.77 44.64 11.67
RemoteCLIP Llama 2 68.31 330.94 52.17
CLIP Vicuna 66.68 329.32 52.00
CLIP336 Vicuna 68.28 324.89 51.55
SAT-CLIP Vicuna 16.87 63.92 15.08
Geo-CLIP Vicuna 24.56 109.20 21.15
RemoteCLIP Vicuna 72.34 355.32 54.15

Table 6.7: Ablations of the base language model and visual feature extractor for LISAtpre

on the UCM-Captions dataset.

6.6 Discussion

In this chapter, we introduce LISAt, an open-source, open-data foundation model for
geospatial reasoning segmentation, and GRES, an open dataset to help support applications
in remote-sensing referring segmentation. LISAt is only the first step towards models that
can produce text and task-specific outputs such as masks and boxes when reasoning about
a geospatial world. Future work can focus on scaling LISAt for use with large rasters,
integrate LISAt with additional segmentation models other than SAM and GeoSAM, or
incorporate multimodal/hyperspectral data sources. Overall, we hope that LISAt lays the
groundwork for future advancements in geospatial artificial intelligence, paving the way for
more sophisticated models that integrate vision and language to better understand and in-
teract with our dynamic geospatial world.

Impact Statement

This chapter presents advancements in reasoning segmentation for remote sensing tasks.
LISAt is a method that is able to reason over arbitrary remote sensing images and output
both explanations and segmentation masks for objects of interest. These kinds of workflows
are extremely common across multiple fields. For example, disaster management personnel
may want to know which roads leading to an airport are undamaged, and why. LISAt is
the first such model that can simultaneously answer both components of such questions.

Broadly, LISAt has impacts in numerous domains such as environmental monitoring,
urban planning, and search and rescue. However, one of the biggest uses of satellite imaging
is surveillance. Being cognizant of this, our work is primarily based on datasets that have
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been widely adopted by the remote sensing community over interesting, cluttered scenes that
do not capture any individual entity.

We encourage responsible deployment and continued discourse on the implications of
geospatial AI in real-world applications.
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Chapter 7

Conclusion

This thesis explored methods to advance computer vision and multimodal systems across
diverse domains, including precision segmentation in materials science, latency-optimized
small object detection in ultra-high-resolution imagery, and advanced multimodal learn-
ing for robotics and geospatial analysis. Despite the varied applications, a unifying theme
emerged: the efficient development of scalable, generalizable models capable of processing
complex visual and contextual information.

In chapter 2, we addressed the challenge of achieving high precision in semantic segmen-
tation of 3D volumes composed of ultra-high-resolution image slices, with a focus on critical
applications such as lithium metal battery defect detection. By combining a transformer-
based encoder with a CNN-based decoder, we demonstrated how this hybrid architecture
can significantly improve the detection of dendrite growth in lithium metal batteries, con-
tributing to a better understanding of dendrite morphology and its implications for battery
design.

chapter 3 focused on reducing latency in large-scale visual detection through segmenta-
tion tasks, with an emphasis on small barcode detection in ultra-high-resolution images. By
employing a two-stage pipeline that combines a modified region proposal network with pre-
cise semantic segmentation, we achieved substantial improvements in inference speed while
maintaining high accuracy. This work highlighted how architectural design and processing
strategies directly impact the real-time performance of computer vision systems.

chapter 4 shifted focus toward multimodal learning, particularly in the context of active
perception. In this chapter, we introduced RPTx, a sensorimotor pretraining model for
robotics that applies a non-auto-regressive BERT-style masked token prediction approach
inspired by RPT (3). While RPT performed well on in-domain data, RPTx struggled to
scale effectively when applied to the broader, more diverse OXE dataset. This limitation
highlighted the challenges of adapting BERT-style masked prediction methods to large-
scale multimodal robotic data, especially when such data do not benefit from the sequential
modeling strengths leveraged in auto-regressive large language models.

chapter 5 addressed this gap with LLARVA, a vision-action instruction-tuned model em-
ploying a next-token prediction strategy similar to auto-regressive large language models.
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By aligning vision, action, and language through structured instruction tuning, LLARVA
achieved superior scalability and generalization on the same OXE dataset, where RPTx fell
short. However, LLARVA’s higher computational latency revealed a key tradeoff between
model performance and deployment efficiency, pointing to future opportunities for optimiza-
tion.

Finally, chapter 6 extended the investigation of auto-regressive multimodal models into
the geospatial domain with LISAt, a language-instructed segmentation assistant for satellite
imagery. LISAt achieved strong benchmark performance, surpassing existing models on
reasoning segmentation tasks. This work validated that combining carefully chosen vision
and language encoders can significantly enhance task-specific performance. Furthermore,
the release of the PreGRES and GRES datasets, along with LISAt and LISAtpre open-source
models, established a foundation for future research in geospatial AI, demonstrating the
importance of both high-quality pre-training and fine-tuning data as well as adaptable model
architectures.

Across all chapters, this thesis highlights that auto-regressive multimodal models that
utilize language can achieve robust, scalable performance when training objectives, model
architecture, and data are carefully aligned with task requirements. In robotics, shifting from
masked token prediction to next-token prediction improved performance and generalization.
In geospatial reasoning segmentation, thoughtful encoder pairing and dataset design were
essential to success. For precision tasks, architectural refinement combined with latency-
aware design proved to be necessary.

Looking forward, key opportunities lie in improving the computational efficiency of large
multimodal models, exploring their combination with reinforcement learning for active per-
ception, and extending pre-training paradigms across broader domains. Open data sharing
and community-driven model development will also be useful in driving progress.

In summary, this work contributes not only technical advancements in model design and
training strategies but also practical insights into how multimodal systems can be better
adapted for real-world challenges in materials science, small object detection, robotics, and
geospatial intelligence.
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vision transformer,” 2021.

[195] H. Xu, G. Ghosh, P.-Y. Huang, D. Okhonko, A. Aghajanyan, F. Metze, L. Zettlemoyer,
and C. Feichtenhofer, “Videoclip: Contrastive pre-training for zero-shot video-text
understanding,” 2021.

[196] A. V. Etten, D. Lindenbaum, and T. M. Bacastow, “Spacenet: A remote sensing
dataset and challenge series,” 2019.

[197] T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye, “A large contextual
dataset for classification, detection and counting of cars with deep learning,” 2016.

[198] X. Li, A. Yuan, and X. Lu, “Multi-modal gated recurrent units for image description,”
Multimedia Tools and Applications, vol. 77, no. 22, pp. 29847–29869, 2018.



BIBLIOGRAPHY 98

[199] K. Xu, “Show, attend and tell: Neural image caption generation with visual attention,”
arXiv preprint arXiv:1502.03044, 2015.

[200] C. Liu, R. Zhao, and Z. Shi, “Remote-sensing image captioning based on multilayer
aggregated transformer,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–
5, 2022.



99

Appendix A

Extension of Battery Operation

Lithium metal batteries (LMBs) have the potential to offer higher energy density and im-
proved efficiency compared to traditional lithium-ion batteries (LIBs). This appendix out-
lines the basic working principles of lithium batteries in general, including the movement
of lithium ions and electrons during charge and discharge, the role of battery components,
the formation of the solid electrolyte interface (SEI), and some challenges, such as dendrite
formation.

• Appendix A.1 provides an overview of the components of lithium batteries.

• Appendix A.2 explains how lithium-ion batteries operate.

• Appendix A.3 explains how lithium metal batteries operate.

• Appendix A.4 discusses the motivation for moving from lithium-ion batteries to lithium
metal batteries.

• Appendix A.5 explains dendrite formation and its risks.

A.1 Overview of Lithium-Ion and Lithium-Metal

Batteries

Lithium-Ion and Lithium-Metal typically consist of the following components:

• Current Collectors: For both LIBs and LMBs, current collectors facilitate electron
collection and distribution at the electrodes. Copper is commonly used on the anode
side, while aluminum is used on the cathode side.

• Anode: For LMBs, the anode is made of lithium metal, which has a high theoretical
capacity of 3,860 mAh/g. This is a key difference from LIBs, where the anode is usually
made of graphite, which has a theoretical capacity of 372 mAh/ g.
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• Cathode: LIBs typically use lithium metal oxide cathodes, such as Lithium Nickel
Manganese Cobalt Oxide (NMC), Lithium Iron Phosphate (LFP), Lithium Manganese
Oxide (LMO), Lithium Nickel Cobalt Aluminum Oxide (NCA), or Lithium Cobalt Ox-
ide (LiCoO2), paired with a graphite-based anode. In contrast, LMBs differ primarily
by using a pure lithium metal anode, and can employ similar lithium transition metal
oxide cathodes, including NMC, NCA, and LiCoO2. Additionally, some LMB designs
incorporate alternative cathode materials, such as sulfur (used in lithium-sulfur bat-
teries) and conversion-type compounds like iron fluoride (FeF3) and copper fluoride
(CuF2), which offer the potential for higher energy densities.

• Electrolyte: The electrolyte, which can be in liquid, gel, or solid form, allows lithium
ions to move between the anode and cathode. In liquid electrolytes, this typically
consists of lithium salts dissolved in organic solvents, while gel and solid electrolytes
use different materials, such as polymers or ceramics, to conduct lithium ions.

• Separator: The separator is a porous material placed between the anode and cath-
ode to allow the passage of lithium ions but prevent electrical contact between the
electrodes, which would lead to short circuits.

A.2 How Lithium-Ion Batteries Work

Figure A.1: Diagram of a battery at equilibrium.

In LIBs, lithium is stored at the anode as neutral lithium atoms intercalated between the
layers of carbon atoms in graphite at equilibrium as shown in Figure A.1. When the battery
is discharging and supplying power to a device as depicted on Figure A.2, these lithium
atoms are oxidized at the anode. This means each lithium atom loses an electron, becoming
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a lithium ion (Li+). The oxidizing agent in this case is the external circuit, which provides
a low-resistance path for the electrons to flow toward the cathode, driven by the electrical
potential difference between the electrodes.

Figure A.2: Diagram of a battery during its discharging state.

As electrons move through the external load, the lithium ions travel through the elec-
trolyte and the porous polymer separator toward the cathode to balance the negative charge
buildup at the cathode. As mentioned above, the cathode typically consists of a lithium
metal oxide, such as lithium cobalt oxide (LiCoO2), where the transition metal ions (like
cobalt) are reduced by the incoming electrons. Lithium ions are simultaneously intercalated
into the cathode structure to maintain charge neutrality.

This process continues until most of the usable lithium has moved from the anode to the
cathode, at which point the battery is considered discharged. When charging as shown in
Figure A.3, an external power source applies a voltage that forces electrons to move from
the cathode back to the anode. Lithium ions also migrate back across the electrolyte and
separator to the anode, where they recombine with the returning electrons and are once
again intercalated between the graphite layers, restoring the battery to a charged state.
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Figure A.3: Diagram of a battery during its charging state.

A.3 How Lithium Metal Batteries Work

In LMBs, the anode is not graphite but pure lithium metal. During discharge, lithium metal
at the anode is oxidized, releasing lithium ions into the electrolyte and electrons into the
external circuit. The cathode may be a lithium metal oxide, sulfur, or a conversion-type
material such as iron fluoride. At the cathode, the lithium ions are reduced and either in-
tercalated, alloyed, or react to form new compounds, depending on the cathode chemistry.
During charging, an external power source drives lithium ions back toward the anode, where
they are reduced and deposited as metallic lithium. This direct lithium plating enables
significantly higher theoretical energy density compared to LIBs, but it also introduces chal-
lenges such as dendrite formation, which can cause internal short circuits and pose safety
risks.
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A.4 Why Move from Lithium-Ion Batteries to

Lithium Metal Batteries

In LIBs, the electrolyte is crucial for enabling lithium ions to safely move back and forth
between the anode and cathode during charging and discharging. The anode, typically made
of graphite as mentioned above, is thermodynamically unstable when in contact with the
electrolyte. This instability leads to the formation of a Solid-Electrolyte Interphase (SEI)
layer on the surface of the anode during the initial cycles of the battery. The SEI acts as
a protective barrier, preventing direct contact between the electrolyte and the intercalated
lithium in the graphite, which helps suppress further side reactions that could degrade the
battery’s performance.

When the battery reaches elevated temperatures, typically around 70 degrees Celsius,
and the heat is not dissipated, the SEI layer can begin to decompose. This decomposition
allows more extensive reactions between the anode and the electrolyte, generating additional
heat. If the temperature continues to rise, the polymer separator can begin to degrade or
melt, potentially allowing direct contact between the anode and cathode. This internal
short circuit accelerates exothermic reactions, causing the temperature to rise even further.
Eventually, the cathode material, such as lithium cobalt oxide, may decompose and release
oxygen, which can react with flammable electrolyte components and lead to fire or explosion.
This self-reinforcing sequence of events is known as thermal runaway and is one of the primary
safety risks associated with LIBs.

In addition to addressing safety concerns, the motivations for the development of LMBs
include the potential for significantly higher energy density and the goal of enabling faster
charging, as illustrated in Table 2.2. Replacing the graphite anode with lithium metal
increases the theoretical storage capacity by both weight and volume, which can extend the
range and improve performance in high-energy-demand applications. Although fast charging
is a key research objective for LMBs, it remains challenging due to issues such as lithium
dendrite formation, which can compromise both safety and cycle life. These challenges
motivate our investigation of dendrite morphology in chapter 2, with the aim of informing
the design of safer and more efficient lithium metal batteries.

A.5 Dendrite Formation and its Risks

A key challenge in lithium metal batteries is the formation of dendrites. When the battery is
charged, lithium ions deposit onto the anode. If the deposition is uneven, dendrites can form
needle-like structures of lithium metal as shown in Figure A.4 from (5). These dendrites
can grow through the electrolyte and cause short circuits, potentially leading to battery
failure or even thermal runaway. Efforts are underway to develop methods that control
lithium deposition, ensuring even plating and reducing the risk of dendrite growth. Hence,
our proposed method to understand dendrites’ morphology contributes to building safer and
more powerful batteries.
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Figure A.4: Dendrite formation in lithium metal batteries as shown in (5).
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Appendix B

Extension of Y-Net

This appendix highlights the robustness, generalization, and versatility of the Y-Net archi-
tecture through two key demonstrations. Y-Net’s ability to produce accurate segmentation,
even under incomplete supervision, shows the effectiveness of its dual-branch design and
residual feature refinement strategy. Additionally, we qualitatively demonstrate that Y-Net
extends beyond segmentation to perform accurate depth and uncertainty estimation, show-
casing its potential as a flexible, general-purpose vision backbone. Together, these examples
illustrate the strength of Y-Net in addressing challenging visual tasks across diverse scenarios.

• Appendix B.1 shows Y-Net correctly predicting segmentation masks even in areas with
missing ground truth annotations.

• Appendix B.2 depicts Y-Net’s successful adaptation to monocular depth and uncer-
tainty estimation in equirectangular imagery, further demonstrating its architectural
flexibility.

B.1 Y-Net Robustness and Generalization

Y-Net exhibits remarkable robustness and generalization in segmentation tasks, particularly
in scenarios where ground truth labels are incomplete or missing, as shown in Figure B.1.
This capability stems from its dual-branch architecture, which fuses local and global feature
extraction through the Regular Convolutional Module and the right-branch combination of
Dilated Convolution and Pyramid Pooling Modules. By capturing both fine-grained tex-
tures and long-range contextual information, Y-Net can infer semantic structure even in
ambiguous regions. Residual connections between branches allow the network to self-correct
and reinforce weak signals, resulting in accurate predictions that often extend beyond the
annotated ground truth. Empirical observations such as Figure B.1 confirm that Y-Net
can identify valid regions omitted in GT labels, suggesting its learned representations are
resilient to annotation noise and capable of meaningful generalization.
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Figure B.1: Y-Net segmentation predictions extending beyond incomplete ground truth
annotations.

B.2 Y-Net for Depth and Uncertainty Estimation

In this section, we present the adaptation of the Y-Net architecture to two complementary
computer vision tasks: monocular depth estimation and aleatoric uncertainty estimation.
Originally designed for barcode segmentation, Y-Net was modified to include dual-task out-
put heads. We found that its encoder-decoder architecture is inherently well-suited for
simultaneous regression and dense prediction. By leveraging this flexibility, we extended the
model to predict both the depth map of a scene and the associated aleatoric uncertainty
within a unified framework.

Accurate depth estimation from single RGB images is crucial for a range of applications,
including autonomous navigation, 3D reconstruction, and robotic manipulation. One par-
ticularly compelling application is drone-based navigation, where lightweight, cost-effective
sensors are critical, and monocular cameras are often the only available modality due to
payload constraints. In such scenarios, equirectangular RGB images captured using wide
field-of-view or panoramic cameras offer a holistic, 360-degree scene representation, making
them well-suited for obstacle avoidance and situational awareness in complex environments.

However, predicting depth from these monocular images is fundamentally ill-posed and
subject to ambiguity, especially in textureless regions or areas with occlusions. To address
this, our model also estimates aleatoric uncertainty, which captures data-dependent noise
and reflects the inherent uncertainty in visual input. This uncertainty estimation is partic-
ularly helpful in drone navigation, as it enables the system to reason probabilistically about
prediction confidence and take precautionary actions in uncertain regions of the scene to
avoid collision.

For the dataset, we use the Stanford 2D-3D-S dataset (186), which provides 1,413
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equirectangular RGB images along with their corresponding depth maps. In addition, we
generate an extended dataset comprising 98,000 equirectangular RGB-depth pairs using the
Replica dataset (187). The Replica dataset comes with 18 highly photorealistic 3D indoor
scene reconstructions at both room and building scales, spanning a variety of environments
such as six different configurations of the Facebook Reality Labs (FRL) apartment, five office
rooms, a two-floor house, two multi-room apartment spaces, a hotel room, and three individ-
ual apartment rooms. To generate our dataset, we develop a script that randomly places a
virtual 360° camera at valid positions within randomly selected locations and captures both
the rendered equirectangular RGB image and its corresponding depth map.

We retain the dual-head configuration of Y-Net mentioned above, modifying the output
heads to support the following:

• Depth Prediction Decoder: Outputs a dense, per-pixel depth map.

• Uncertainty Estimation Decoder: Outputs a dense map of the per-pixel log-variance
(log σ2), following the modeling approach introduced by (188).

The model is trained using the heteroscedastic uncertainty loss function Equation B.1
proposed by (188), which jointly optimizes for depth accuracy and uncertainty regularization:

LN(θ) =
1

N

N∑
i=1

(
1

2σ(xi)2
∥yi − f(xi)∥2 +

1

2
log σ(xi)

2

)
(B.1)

Where:

• yi is the ground-truth depth at pixel i,

• f(xi) is the predicted depth from input xi,

• σ(xi)
2 is the predicted variance at pixel i,

• N is the number of valid pixels,

• θ are the model parameters.

Training is conducted using the Adam optimizer with a constant learning rate of 0.004
and weight decay of 10−4 with early stopping based on validation loss. We also perform data
augmentation with standard techniques such as horizontal flipping and color jittering.

Qualitative results for (186) are shown in Figure B.2 and those for (187) are shown in
Figure B.3. As can be seen, the adapted Y-Net achieves competitive performance in depth
estimation while also producing meaningful uncertainty maps.

This analysis reveals that high uncertainty values correlate with object boundaries and
primarily with geometric features such as locations with strong curvature in the equirect-
angular images, reflective surfaces, and occluded regions, which is consistent with areas of
ambiguous visual information.
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This demonstrates that the Y-Net architecture can be effectively repurposed for depth
and aleatoric uncertainty estimation with minimal architectural changes. The resulting
model produces interpretable and accurate outputs, making it well-suited for deployment in
real-world perception systems where understanding prediction confidence is as important as
the prediction itself.

Figure B.2: Qualitative results of Y-Net on depth and uncertainty estimation for the Stanford
2D-3D-S dataset.
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Figure B.3: Qualitative results of Y-Net on depth and uncertainty estimation for the Replica
dataset.
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Appendix C

Training Multimodal Models on High
Performance Computers (HPC)

This appendix provides sample scripts used for training our models on large datasets across
multiple nodes of a high-performance computing (HPC) cluster using SLURM (Simple Linux
Utility for Resource Management). The system consists of multiple interconnected comput-
ing nodes, each equipped with its own CPU, memory, and sometimes GPU resources. These
nodes are linked via a high-speed network, enabling the distribution of computational tasks
across multiple machines.

• Appendix C.1 details the code release, including links to the codebases and datasets
used in this project.

• Appendix C.2 shows the script used while launching the training manually with Pytorch
DDP or FSDP.

• Appendix C.3 allows automatic relaunch of training with Pytorch DDP or FSDP when
it crashes unexpectedly due to system issues.

• Appendix C.4 shows of part of the script that needs to be updated for DeepSeep.

• Appendix C.5 presents more details on the OXE and LLARVA dataset.

C.1 Code Release

Details on licensing, user consent, and personally identifiable information (PII) for each
dataset are available in their corresponding original publications. We note that the datasets
used in this work are commonly adopted in related research and do not include any offensive
or harmful material. As with any machine learning system, responsible use is advised. More
information about our project can be found here.

https://llarva24.github.io/
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C.2 Manual Launch Script

#!/bin/bash

# Parameters
#SBATCH --output=path/to/slurm_dir/train_${SLURM_JOB_NUM_NODES}

_nodes_rpt_%N/%j/% j_0_log.out
#SBATCH --error=path/to/slurm_dir/train_${SLURM_JOB_NUM_NODES}

_nodes_rpt_%N/%j/% j_0_log.err
#SBATCH --account=$ACCOUNT_NAME
#SBATCH --qos=$QOS_NAME
#SBATCH --job -name=$MODEL_NAME
#SBATCH --open -mode=append
#SBATCH --signal=$SIGNAL_NAME
#SBATCH --time =168:00:00
#SBATCH --constraint=$CONSTRAINT_NAME
#SBATCH --nodes=$NUM_NODES
#SBATCH --ntasks=$NUM_TASKS
#SBATCH --gres=gpu:NUM_GPU_NAME:$NUM_GPU_PER_NODE
#SBATCH --mail -type=ALL
#SBATCH --mail -user=$USER_EMAIL
#SBATCH --export=ALL
#SBATCH --propagate=STACK

ulimit -s unlimited

create_folder_if_not_exists () {
local folder_name="$1"
if [ ! -d "$folder_name" ]; then

mkdir "$folder_name"
echo "Folder ’$folder_name ’ created."

else
echo "Folder ’$folder_name ’ already exists."

fi
}

# setup
export EXP_NAME="rpt"
PROJ_ROOT="${HOME}/ Projects/${EXP_NAME}"
ENV_NAME=${EXP_NAME}

OUTPUT_DIR="${WORKDIR }/ outputs/$MODEL_NAME/training_dir_${
SLURM_JOB_NUM_NODES}_nodes_${BC_HOST }/${SLURM_JOB_ID}"

LOG_DIR="${OUTPUT_DIR }/logs"

echo "PROJ_ROOT ${PROJ_ROOT}"
echo "OUTPUT_DIR ${OUTPUT_DIR}"
echo "LOG_DIR ${LOG_DIR}"

create_folder_if_not_exists "$OUTPUT_DIR"
create_folder_if_not_exists "$LOG_DIR"

pushd "${PROJ_ROOT}"
cp "${PROJ_ROOT }/ example_launch_scripts/manual.slurm" "${LOG_DIR }/"

# Source conda env
if [[ -d "${HOME}/ mambaforge" ]]; then

CONDA_FN="mamba"
CONDA_DIR="${HOME}/ mambaforge"
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elif [[ -d "${HOME}/ anaconda3" ]]; then
CONDA_FN="conda"
CONDA_DIR="${HOME}/ anaconda3"

elif [[ -d "${HOME}/ miniconda3" ]]; then
CONDA_FN="conda"
CONDA_DIR="${HOME}/ miniconda3"

fi

echo "CONDA_FN: $CONDA_FN"
echo "CONDA_DIR: $CONDA_DIR"

if [ -d "${CONDA_DIR }/etc/profile.d" ]; then
source "${CONDA_DIR }/etc/profile.d/conda.sh"

fi
if [ -f "${CONDA_DIR }/etc/profile.d/mamba.sh" ]; then

source "${CONDA_DIR }/etc/profile.d/mamba.sh"
fi

$CONDA_FN activate "${ENV_NAME}"
$CONDA_FN info --envs

export NGPUS_TOTAL=${SLURM_NTASKS}
export MASTER_PORT =29500
export WORLD_SIZE="${NGPUS_TOTAL}"

echo "NODELIST="${SLURM_NODELIST}
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr
echo "MASTER_ADDR="$MASTER_ADDR

export HYDRA_FULL_ERROR =1
export OC_CAUSE =1

srun \
--unbuffered \
--output ${OUTPUT_DIR }/%j_%t_log.out \
--error ${OUTPUT_DIR }/%j_%t_log.err \
python -u \

${PROJ_ROOT }/ tools/train_mma.py \
num_gpus="${NGPUS_TOTAL}" \
--config -name "mma/rptx/config_${MODEL_NAME }.yaml"

C.3 Automatic Launch Script

import argparse
import os
import uuid
import submitit

from pathlib import Path
from omegaconf import OmegaConf

def parse_args ():
parser = argparse.ArgumentParser("Submitit for Segmentor Train+Val")
parser.add_argument("--job_dir", default="", type=str , help="Job dir

. Leave empty for automatic.")
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parser.add_argument("--qos", default="", type=str , choices =("
frontier", "standard"), help="Queue to use")

parser.add_argument("--account", default="", type=str , help="The
Account string to use")

parser.add_argument("--constraint", default="viz", type=str , help="
Which Nautilus or Raider constraint to use")

parser.add_argument("--nodes", default=2, type=int , help="Number of
nodes to request")

parser.add_argument("--config_path", default="/PATH/TO/MODEL_DIR/
configs/config_${MODEL_NAME }.yaml", type=str , help="Path to
config file")

parser.add_argument("--exclude", default="", type=str , help="Comma
separated list of nodes to exclude")

parser.add_argument("--timeout", default =7*24*60 , type=int , help="
Duration of the job (min)")

parser.add_argument("--comment", default="", type=str , help="Comment
to pass to scheduler")

parser.add_argument("--name", default="rpt", type=str , help="
experiment name")

return parser.parse_args ()

def get_shared_folder () -> Path:
# user = os.getenv ("USER")
job_dir_path = Path(f’{os.environ [" WORKDIR "]}/ outputs/$MODEL_NAME/

training_dir_{os.environ [" TOTAL_NUM_OF_NODES "]} _nodes_{os.
environ [" BC_HOST "]}’) # _{os.environ [" SLURM_JOB_ID "]} {os.
environ [" SLURM_JOB_ID "]} # BC_NODE_ALLOC

if not os.path.exists(job_dir_path):
os.makedirs(job_dir_path)

if Path(job_dir_path).is_dir ():
return job_dir_path

raise RuntimeError("No shared folder available")

def get_init_file ():
# Init file must not exist , but it ’s parent dir must exist.
os.makedirs(str(get_shared_folder ()), exist_ok=True)
init_file = get_shared_folder () / f"{uuid.uuid4().hex}_init"
if init_file.exists ():

os.remove(str(init_file))
return init_file

class Trainer(object):
def __init__(self , args):

self.args = args

def __call__(self):
self._setup_gpu_args ()
import TRAINER_FILE as trainer

cfg = OmegaConf.load(self.args.config_path)
cfg.num_gpus = int(cfg.num_nodes) * int(cfg.num_gpus_per_nodes)

self.args.config = cfg
trainer.train(cfg)

def checkpoint(self):
import os
import submitit
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# pass
self.args.dist_url = get_init_file ().as_uri ()
checkpoint_file = os.path.join(self.args.output_dir , "checkpoint

.pth")
if os.path.exists(checkpoint_file):

self.args.resume = checkpoint_file
print("Requeuing ", self.args)
empty_trainer = type(self)(self.args)
return submitit.helpers.DelayedSubmission(empty_trainer)

def _setup_gpu_args(self):
import os
from pathlib import Path
import submitit

job_env = submitit.JobEnvironment ()
dist_env = submitit.helpers.TorchDistributedEnvironment ().export

(
set_cuda_visible_devices=False

)
self.args.output_dir = Path(str(self.args.output_dir).replace("%

j", str(job_env.job_id)))
self.args.log_dir = self.args.output_dir
self.args.gpu = job_env.local_rank
self.args.rank = job_env.global_rank
self.args.world_size = job_env.num_tasks

print(f"master: {dist_env.master_addr }:{ dist_env.master_port}")
print(

f"World size: {dist_env.world_size}, Process group: {job_env
.num_tasks} tasks , rank: {job_env.global_rank}"

)

def main():
slurm_args = parse_args ()

if slurm_args.job_dir == "":
slurm_args.job_dir = get_shared_folder () / "%j"

# Note that the folder will depend on the job_id , to easily track
experiments

executor = submitit.AutoExecutor(folder=slurm_args.job_dir ,
slurm_max_num_timeout =30)

if slurm_args.constraint == "$CONSTRAINT_NAME_1":
num_gpus_per_node = 4

elif slurm_args.constraint == "CONSTRAINT_NAME_2":
num_gpus_per_node = 1

else:
num_gpus_per_node = 0

kwargs = {}
if slurm_args.comment:

kwargs[’slurm_comment ’] = slurm_args.comment

executor.update_parameters(
gpus_per_node=num_gpus_per_node ,
tasks_per_node=num_gpus_per_node , # one task per GPU
nodes=slurm_args.nodes ,
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timeout_min=slurm_args.timeout ,
slurm_qos=slurm_args.qos ,
slurm_signal_delay_s =120,
slurm_account=slurm_args.account ,
slurm_constraint=slurm_args.constraint ,
slurm_exclude=slurm_args.exclude ,
name=slurm_args.name ,
** kwargs

)

slurm_args.dist_url = get_init_file ().as_uri ()
slurm_args.output_dir = slurm_args.job_dir

trainer = Trainer(slurm_args)
job = executor.submit(trainer)

print("Submitted job_id:", job.job_id)

if __name__ == "__main__":
main()

C.4 DeepSpeed Launch Script

#!/bin/sh

...

...

srun \\
--unbuffered \\
--output "\${LOG_DIR }/%j/node%n-task%t-srun.out.log" \\
--error "\${LOG_DIR }/%j/node%n-task%t-srun.err.log" \\
--jobid "\$SLURM_JOBID" \\
python "\${PROJ_ROOT }/path/to/train/train_mem.py" \\

--deepspeed "\${PROJ_ROOT }/ scripts/zero3.json" \\
--lora_enable "\${LORA_ENABLE}" \\
--lora_r "\${LORA_R}" \\
--lora_alpha "\${LORA_ALPHA}" \\
...

or

#!/bin/sh

...

...

srun \\
--unbuffered \\
--output "\${LOG_DIR }/%j/node%n-task%t-srun.out.log" \\
--error "\${LOG_DIR }/%j/node%n-task%t-srun.err.log" \\
--jobid \$SLURM_JOBID \\
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deepspeed \\
--include "\${GPU_SETTINGS}" \\
--master_port="\${MASTER_PORT}" \\
"\${PROJ_ROOT }/ training_file.py" \\
...

C.5 More on OXE and LLARVA Datasets

As depicted in (6), the Open-X-Embodiment distribution is shown in Figure C.1.

Figure C.1: Diagram of OXE dataset distribution as shown in (6); (a) shows the dataset
distribution per robot; (b) shows that the Franka robot has the most diversity in distinct
scenes; (c) shows that xArm and Google Robot have the most trajectories; (d, e) show the
data distribution by skills and common objects.

The OXE (6) was used to generate 8.5 million image–visual trace pairs, as shown in
Figure C.2. As referenced in (4), we used 13 different robots (shown in Table C.1), covering
a variety of cameras, tasks, environments, and end-effectors. We obtained the 2-D visual
traces for each image using the Detectron2 (189) implementation of Faster R-CNN (190),
trained to detect all types of end-effectors present in (6). The center of the detected bounding
box in each frame of a trajectory was then used as the 2-D visual trace.
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Figure C.2: Diagram of data distribution for LLARVA as shown in (4).
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OXE Subset Number of Image + 2-D visual trace pairs

kuka 1,044,466

austin sailor dataset converted externally to rlds 70,758

fractal20220817 data 753,647

maniskill dataset converted externally to rlds 909,568

cmu play fusion 47,115

bc z 1,198,963

berkeley rpt converted externally to rlds new 1,533,451

bridge 195,745

language table 885,876

stanford kuka multimodal dataset converted externally to rlds 30,128

robo net 496,454

toto 65,527

furniture bench dataset converted externally to rlds 786,692

stanford hydra dataset converted externally to rlds 72,160

ucsd pick and place dataset converted externally to rlds 13,545

kaist nonprehensile converted externally to rlds 6,512

stanford mask vit converted externally to rlds 57,012

utokyo pr2 opening fridge converted externally to rlds 2,276

berkeley fanuc manipulation 11,854

utaustin mutex 72,461

taco play 47,780

berkeley autolab ur5 19,621

austin sirius dataset converted externally to rlds 56,101

columbia cairlab pusht real 5,486

stanford robocook converted externally to rlds 22,894

roboturk 37,120

berkeley cable routing 7,797

nyu franka play dataset converted externally to rlds 9,118

jaco play 15,515

viola 15,146

tokyo u lsmo converted externally to rlds 2,398

austin buds dataset converted externally to rlds 6,771

dlr sara pour converted externally to rlds 2,695

utokyo xarm pick and place converted externally to rlds 1,381

utokyo pr2 tabletop manipulation converted externally to rlds 6,545

dlr edan shared control converted externally to rlds 746

dlr sara grid clamp converted externally to rlds 1,543

Table C.1: More statistics about the LLARVA (4) dataset.
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Appendix D

Extension of LISAt

In this appendix, we include several additional discussions:

• Appendix D.1 details the code release, including links to the codebases and datasets
used in this project.

• Appendix D.2 outlines the prompt structure used for engineering the GRES dataset for
LISAt, provides further details on its class distribution as well as its quality verifica-
tion, and discusses additional experiments.

• Appendix D.3 presents additional details on the PreGRES dataset used to fine-tune
LISAtpre, discussing its composition and further evaluations.

• Appendix D.4 showcases qualitative results, highlighting both successful and failure
cases, as well as instances where LISAt was penalized due to incomplete Ground
Truth annotations generated by GeoSAM (GT).

D.1 Code Release

The project page for this work is available here. Our code for LISAt, derived from the
Apache 2.0-licensed LISA codebase (127), as well as the curated datasets, are publicly re-
leased under the MIT license (or their respective licenses) and could also be found on the
same page.

D.2 More on GRES

Prompt Engineering

As outlined in Section 6.3, we used GPT-4o to generate the final prompt in two stages,
detailed below.

https://lisat-bair.github.io/LISAt/
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Prompt Engineering Stage 1

In the first stage, we input a 512×512 chip into the model and prompt it, following the tem-
plate below, to generate a sentence that accurately describes the item within the bounding
box provided, as specified by the Ground Truth from xView

The size of the original image is (512 ,512).
This original image , where the image ’s origin is at the top left corner ,

contains the following objects: {classes_list_str }.
Only focus on {class_name} in the image.
If {class_name} contains the word ’Other ’, remove the word ’Other ’ and

use only the second word in {class_name} describing the class. In
that case , make sure that second word in {class_name} starts with a
lowercase letter.

The following are the bounding boxes [x, y, width , height] of objects of
class {class_name}, where (x,y) represents the top left corner of

the bounding box , and ’width ’ represents the bounding box ’s width ,
and ’height ’ represents the bounding box ’s height.

The bounding box of the {class_name} is at coordinates {bbox}.
Find visual features (color , shape , size , etc.) that can help find or

segment {class_name} in the image.
Generate a sentence (not a question) that can uniquely segment or

identify or find or locate {class_name} in this image , be concise
and clear.

Where {classes list str}, {class name}, and {bbox} are the ground truth list of
classes, the object class name or category, and the bounding box of the object from the
xView dataset, bounding box and class annotations.

The model outputs a descriptive sentence in the variable {unique characteristics.query},
which is then used to query the model again in the second stage, as shown below.

Prompt Engineering stage 2

Once the uniquely descriptive sentence is generated, we asked the model using the template
below to come with a question to which the given sentence in {unique characteristics.query}
will be the answer.
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The size of the original image is (512 ,512).
Only focus on {class_name} in the image.
In the original image , where the image ’s origin is at the top left

corner , the object is a {class_name} located at bounding box
coordinates {bbox}.

The following are the bounding boxes [x, y, width , height] of objects of
class {class_name}, where (x,y) represents the top left corner of

the bounding box , and ’width ’ represents the bounding box ’s width ,
and ’height ’ represents the bounding box ’s height:

This original image , where the image ’s origin is at the top left corner ,
contains the following objects: {classes_list_str }.

If {class_name} contains the word ’Other ’, remove the word ’Other ’ and
use only the second word in {class_name} describing the class. In
that case , make sure that second word in {class_name} starts with a
lowercase letter.

{ ’ located at bounding box coordinates {bbox}.’ if include_bbox else
’.’}

Please generate a query that would help locate this {class_name} in the
original image.

Your query will be the question to the answer provided by {
unique_characteristics.query}.

For example , if the value contained in {unique_characteristics.query} is
’Look for a long rectangular shape with distinct wheels , typically

metallic or painted in color , connected to a truck cab at the front
’, your query should be:

’Segment the blue car in the bottom right of the image with a long
rectangular shape with distinct wheels , typically metallic or
painted in color , connected to a truck cab at the front ’

’Identify the blue car in the bottom right of the image with a long
rectangular shape with distinct wheels , typically metallic or
painted in color , connected to a truck cab at the front ’

’Find the blue car in the bottom right of the image with a long
rectangular shape with distinct wheels , typically metallic or
painted in color , connected to a truck cab at the front ’

’Locate the blue car in the bottom right of the image with a long
rectangular shape with distinct wheels , typically metallic or
painted in color , connected to a truck cab at the front ’

’Show the blue car in the bottom right of the image with a long
rectangular shape with distinct wheels , typically metallic or
painted in color , connected to a truck cab at the front ’.

Generate the query considering the sentence: {unique_characteristics.
query}

{ ’and the location described by the bounding box.’ if include_bbox else
’.’}

Make sure to vary the start of your queries with key words such as ’
Segment , Find , Locate , Show , Identify ’ and similar synonyms. Do not
overuse one over the others.

Rephrase the generated query to make it sound better.
{ ’Do not mention or use any location -related info such as: top , near

the center in your query.’ if not include_bbox else ’’}
Do not output the exact bounding box coordinates , instead , output the

locations such as: bottom -left , top -right , top -left , bottom -right ,
center , etc.

The response to the generated queries should be a JSON object in the
following format and contain nothing else:

The response to the generated query should be a sentence , not a question
.

Be concise and clear , start the sentence with: Locate , Segment , or
Identify.

{"query ": "<your_query_here >"}
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Where {class name}, {bbox}, {unique characteristics.query}, and {class name}
are the ground truth class name or category of the object class name or category, its bounding
box and the unique characteristics obtained from GPT-4 (143) in the first stage.

The final query is then treated as the principal query. To enhance query diversity, we
ask GPT to rephrase the principal query into two additional variants, resulting in three
distinct queries per image. We then use GeoSAM to generate corresponding masks, forming
image-queries-mask tuples.

Dataset Quality Assurance

We use RGB images from the xView dataset (146), as referenced in this document. Although
the dataset covers regions in South America, Africa, Europe, Asia, and Australia, we agree
that LISAt and GRES would benefit from additional datasets from around the world, as
shown in Figure 6.4.

For the classes of the targeted object referenced in the GRES natural language queries asso-
ciated with each image, we inherited them from the Quality Control and Gold Standards

method used in the xView paper (146). In their paper, the authors outline a three-tier quality
assurance process: worker, supervisory, and expert stage. In the first stage, labelers reviewed
each other’s annotations in a rotating manner. During the supervisory phase, the process
included checks for duplicate or incorrect labels, geometry errors, incomplete annotation
coverage, misaligned features, and empty image tiles. In the final expert stage, annotations
were compared against a gold standard dataset. This reference dataset was developed by
the paper’s co-authors and professional image analysts. It involves a manual labeling of six
1 km2 image chips per batch. To meet the expert-level quality standard at this 3rd stage,
annotation batches were required to achieve a minimum of 0.75 precision and 0.95 recall at
a 0.5 Intersection over Union (IoU) threshold when evaluated against the gold standard.

For natural language queries in GRES, we generated three variations per RGB image and
used cosine similarity to ensure they conveyed semantically equivalent information. Only
those with a similarity/ alignment score of 0.9 or higher were retained.

Regarding ground truth segmentation masks produced via GeoSAM, we used only the
cropped RGB regions defined by the bounding boxes in the xView dataset (146). Random
batches of GeoSAM outputs were inspected by co-authors in a rotating manner. Their task
was to validate or reject the generated masks. A randomly selected data point from a random
batch was retained only if all participants unanimously agreed on its accuracy.

For the obtained data, we employ Human Verification, where multiple team members
manually inspect randomly selected subsets of the dataset to verify the accuracy of the
query-image-annotation triplets.

GRES Dataset Summary

Table D.1 below shows the LISAt dataset distribution per class. We have also provided bar
charts for the dataset distributions in Figures D.1 through D.5.
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Object Category Train
(2.5k)

Train
(4.5k)

Train
(7.2k)

Val
(0.5k)

Test
(1.5k)

Test-L
(0.5k)

Test-S
(1k)

Truck w/Trailer Bed 142 298 469 25 100 34 66
Dump/Haul Truck 104 148 208 16 50 18 32
Bus 224 417 671 61 139 8 131
Facility 115 197 370 28 66 44 22
Car 247 546 914 65 182 2 180
Truck 240 518 932 75 173 12 161
Small Plane 6 18 39 2 7 3 4
Shed 80 152 249 7 51 16 35
Hut/Tent 26 46 82 9 16 8 8
Storage Tank 47 74 120 8 25 14 11
Truck w/Liquid Tank 21 29 45 3 10 4 6
Building 331 548 937 69 183 102 81
Helicopter 6 12 19 2 4 1 3
Passenger/Cargo Plane 107 135 198 11 45 25 20
Aircraft Hangar 25 39 73 6 13 9 4
Aircraft 3 15 29 0 5 3 2
Container Ship 31 72 102 5 24 11 13
Motor/Sail/Small Boat 32 58 87 7 20 2 18
Maritime Vessel 41 92 134 12 31 21 10
Crane Truck 33 48 70 2 16 5 11
Container Crane 12 25 38 4 9 0 9
Tower Crane 18 42 57 6 14 7 7
Engineering Vehicle 82 115 166 15 39 11 28
Excavator 84 115 161 12 39 10 29
Straddle Carrier 3 7 14 2 3 2 1
Passenger Vehicle 96 145 215 15 49 0 49
Pylon 104 140 177 6 47 34 13
Helipad 15 21 32 2 8 6 2
Loader/Dozer/Tractor 100 137 186 7 46 7 39
Damaged Building 61 151 226 8 51 37 14
Railway Vehicle 13 22 26 1 8 8 0
Locomotive 13 21 32 3 8 4 4
Tower Structure 16 30 41 1 11 6 5
Barge 17 42 59 5 14 13 1
Passenger Car 5 14 27 1 5 1 4

Total 2500 4489 7205 500 1500 488 1023

Table D.1: Summary of object categories across train, validation, and test sets

Additional Experiments

1. GPT vs. Human vs. Template style Queries

We start by asking whether there is a difference in language style and complexity
between queries generated by Large Language Models and real analysts. Though using
GPT-generated queries is an effective strategy, it is important to consider the potential
differences between the two.

To preliminarily investigate this, we conducted a small-scale comparative analysis using
10 test examples. We created two additional query variants: (1) human-like reword-
ings and (2) template-based queries referencing specific image regions. Our evaluation
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Figure D.1: Class distribution of 33% training set

showed in Table D.2 revealed that while GPT-style queries achieved slightly higher
average performance on segmentation metrics, the differences were accompanied by
relatively high variance, likely due to the tiny sample size.

This initial result suggests that GPT-generated queries are a reasonable proxy for
human queries in the current setting, supporting the effectiveness of our dataset con-
struction approach. However, we agree that a larger-scale collection of real human
queries would provide a stronger validation and potentially improve the dataset fur-
ther if augmented with such a collection.

Type of Queries (10 test examples) cIoU (±) gIoU (±)

LISAt on Template-style queries 0.025 ± 0.014 0.045 ± 0.021
LISAt on Human-entered queries 0.037 ± 0.022 0.063 ± 0.040
LISAt on GPT-style queries (GRES Data) 0.050 ± 0.036 0.099 ± 0.045

Table D.2: Performance comparison across different query types on 10 test examples.

2. LISAt vs. LISA on Natural Images

We also evaluated and reported in Table D.3 the performance of LISAt on the natural
images test set from the LISA benchmark (127). LISA-7B on LISA Natural Images

Data is the baseline model reported in the original paper. LISA-7B (ft) on LISA
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Figure D.2: Class distribution of 66% training set

Natural Images Data refers to the fine-tuned version, where (127) note that perfor-
mance improves after fine-tuning on 239 complex-reasoning samples. LISAt on LISA

Natural Images Data represents our LISAt model evaluated on the same test set,
while LISAt on GRES Data shows its performance on the GRES dataset.

Type of Model and Data cIoU gIoU

LISA-7B on LISA Natural Images Data 0.341 0.368
LISA-7B (ft) on LISA Natural Images Data 0.484 0.473
LISAt on LISA Natural Images Data 0.326 0.341
LISAt (Ours) on GRES Data 0.245 0.275

Table D.3: Performance comparison across different models and datasets.

The results shown in Table D.3 indicate that LISAt does perform slightly worse than
the original LISA-7B model and its fine-tuned version on this domain. Specifically,
LISAt achieved a cIoU of 0.326 and gIoU of 0.341, compared to 0.341/0.368 for
LISA-7B and 0.484/0.473 for the fine-tuned LISA-7B (ft).

While LISAt is not optimized for natural image reasoning tasks, its performance is
still in a comparable range to the baseline LISA-7B model. The difference is expected,
as LISAt is designed for generalization across geospatial and abstract reasoning seg-
mentation tasks, and has not been fine-tuned on the LISA dataset. Thus, while it does
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Figure D.3: Class distribution of 100% training set

not outperform models specialized or fine-tuned on natural image tasks, it remains
competitive and shows promise as a more generalizable model.

3. LISAt’s Latency Across Image Resolutions

Because assessing inference speed and computational requirements is important for
evaluating practical deployment feasibility, we have included an analysis in Table D.4,
which reports the average inference time per image-query pair on a single NVIDIA A100

GPU across different image resolutions.

Image Size Object Size cIoU (±) gIoU (±) Avg. Inference Time
(s/image-query pair)

512 × 512 All 0.245 ± 0.023 0.275 ± 0.009 0.244
256 × 256 All 0.237 ± 0.029 0.207 ± 0.007 0.262
128 × 128 All 0.158 ± 0.019 0.130 ± 0.007 0.391
64 × 64 All 0.102 ± 0.010 0.061 ± 0.003 0.454
32 × 32 All 0.081 ± 0.007 0.042 ± 0.004 0.468

Table D.4: Effect of input image Size on performance and inference time (All object sizes).
Measured on a single NVIDIA A100.

We found that at a standard resolution of 512×512, the model achieves 0.244 seconds
per query, while maintaining competitive accuracy (cIoU: 0.245 ± 0.023, gIoU: 0.275 ±
0.009). As expected, inference becomes slower and less accurate at very low resolutions
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Figure D.4: Class distribution of validation set

(e.g., 32×32), where performance drops (gIoU: 0.042 ± 0.004) and latency slightly
increases (0.468s).

We believe the inference time increases at lower resolutions because the frozen vision
encoder still processes inputs at a fixed size of 512×512 in our case. This requires
lower-resolution input images to the resized back to 512x512, which adds an overhead.
These resized images also contain fewer details, which makes it harder for the model
to perform well since our pipeline resizes all inputs to the fixed resolution required by
the encoder before inference.

For very small images (e.g., 32×32), the additional overhead from resizing operations
and suboptimal GPU utilization can slightly increase inference time, as shown in Ta-
ble D.4.

This indicates that reducing input resolution significantly degrades visual quality with-
out providing meaningful speed benefits, which supports the use of higher resolutions
(e.g., 512×512) in deployment settings.

4. LISAtpre vs. GPT-4o vs. GPT-o1

At the time of this work, we note that since GPT-4o (191) and GPT-o1 (192) do not
explicitly output segmentation masks, they cannot be fairly compared with LISAt. A
specialized prompt must be engineered to extract the coordinates of points along the
contour lines for the target object. Instead, we compare them to LISAtpre.

We found that GPT-4o (191) and GPT-o1 (192) yielded identical scores across all
metrics and benchmark datasets, while significantly underperforming compared to
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Figure D.5: Class distribution of testing set

LISAtpre on the PreGRES test data. We verified that this results from both models
returning generic or irrelevant outputs (e.g., hallucinated captions, answers unrelated
to the query, or blank responses), likely due to their lack of grounding in geospatial
semantics and structured output generation.

While these models represent the state of the art in general-purpose multimodal reason-
ing, they often require carefully crafted prompts to perform meaningfully on domain-
specific tasks such as geospatial captioning or other domain-related VQA. This high-
lights the need for specialized VLMs like LISAt, which natively support geospatial
semantics and reasoning. We refer the interested reader to (124) for more details.

5. More on Future Work

Building on the promising performance of LISAt, we outline several directions for
future work to enhance both the model and the GRES dataset:

a) Incorporation of Temporal Data
It will be interesting to extend LISAt’s capabilities by incorporating tempo-
ral geospatial data, enabling the model to reason over frame sequences. This
includes investigating the effects of frame-rate downsampling and adapting archi-
tectures that leverage temporal vision encoders such as TimeSformer (193) and
ViViT (194), as well as contrastive video-text pretraining approaches like Video-
CLIP (195), in combination with different language encoders. These explorations
aim to identify the most effective architectural combinations for spatiotemporal
grounding and reasoning in remote sensing contexts.
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b) Expansion to Additional Modalities
To enhance generalization and robustness, it will be interesting to integrate addi-
tional modalities such as synthetic aperture radar (SAR), LiDAR, aerial imagery,
and elevation data (e.g., digital surface models, DSM), in both static and tem-
poral settings. Once collected and processed, these modalities will broaden the
applicability of the model and enable it to handle more dynamic and realistic
geospatial scenarios. Incorporating these diverse inputs will also help evaluate
LISAt’s cross-modal generalization capabilities.

c) Dataset Enrichment and Potential Bias Mitigation
For future iterations of the GRES dataset, it will be valuable to augment it with
additional publicly available datasets such as SpaceNet (196) and COWC (197).
This enrichment will help address existing dataset potential biases and improve
the robustness and fairness of LISAt across a wider range of environmental and
sensor conditions.

d) Efficient Model Variants for Deployment
For deployment in resource-constrained environments, future avenues include ex-
ploring model compression techniques such as knowledge distillation, quantiza-
tion, and pruning. These approaches will enable us to reduce model size and
improve inference efficiency while maintaining competitive performance, thereby
supporting broader accessibility and real-time applications of LISAt.

Through these efforts, we believe LISAt will turn into an even more comprehensive
and generalizable foundation model for geospatial-language understanding, capable of
reasoning across modalities and time with increased accuracy and efficiency.

D.3 More on PreGRES

We conducted additional evaluations of LISAtpre. We show evaluation results on the NWPU
Caption in Table 6.5, RSICD in Table D.6, and Sidney-Caption in Table D.7. We also ran
Count, Presence, Comparison and Area evaluation as was done in (129) in Table D.9.

D.4 Qualitative Analysis

In this section, we present a qualitative analysis of the model’s performance, showcasing a
range of success cases section D.4, failure cases section D.4, and instances where the ground
truth (GT) was erroneous section D.4. Success cases shown in Table D.10, Table D.11, Ta-
ble D.12, Table D.13, and Table D.14 highlight scenarios where the model successfully aligns
with the expected outcomes, demonstrating its ability to handle complex tasks accurately.
Failure cases shown in Table D.15, however, indicate situations where the model struggles
due to challenges such as occlusion, poor lighting, or ambiguous object representations,
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Task Data Source Train
Images

Train QA
Pairs

Test Images Test QA
Pairs

Image Captioning

NWPU-Captions 25200 125894 3150 1093
RSICD 8734 17813 1093 1093
RSITMD 4291 20096 - -
Sydney-Captions 497 2294 58 58
UCM-Captions 1680 7999 210 210

Visual Question Answering

RSVQA-LR 572 57223 100 10004
RSVQA-HR 6251 625340 2226 222684
FloodNet 1448 4511 - -
RSIVQA 5401 19218 - -

Visual Grounding DIOR-RSVG 9466 19643 7936 18677

Region-level Captioning DIOR-RSVG 9466 19643 - -

Scene Classification NWPU-RESISC45 31500 31500 - -

Total - 104506 951174 14773 253819

Table D.5: Overview of data sources and statistics

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr

VLAD + RNN (148) 49.38 30.91 22.09 16.77 19.96 42.42 103.92
VLAD + LSTM (148) 50.04 31.95 23.19 17.78 20.46 43.34 118.01
mRNN (147) 45.58 28.25 18.09 12.13 15.69 31.26 19.15
mLSTM (147) 50.57 32.42 23.29 17.46 17.84 35.02 31.61
mGRU (198) 42.56 29.99 22.91 17.98 19.41 37.97 124.82
mGRU embedword (198) 60.94 46.24 36.80 29.81 26.14 48.20 159.54
CSMLF (106) 57.59 38.59 28.32 22.17 21.28 44.55 52.97
SAA (163) 59.35 45.11 35.29 28.08 26.11 49.57 132.35
Soft-attention (199) 65.13 49.04 39.00 32.30 26.39 49.69 90.58
SD-RSIC (176) 64.50 47.10 36.40 29.40 24.90 51.90 77.50
RTRMN (semantic) (177) 62.01 46.23 36.44 29.71 28.29 55.39 151.46
RTRMN (statistical) (177) 61.02 45.14 35.35 28.59 27.51 54.52 148.20
SVM-D BOW (178) 61.12 42.77 31.53 24.11 23.03 45.88 68.25
SVM-D CONC (178) 59.99 43.47 33.55 26.89 22.99 45.57 68.54
MLAT (200) 66.90 51.13 41.14 34.21 27.31 50.57 94.27
Post-processing (179) 62.90 45.99 35.68 28.68 25.30 47.34 75.56
RS-GPT4V (129) 70.32 54.23 44.02 36.83 30.10 53.34 102.94
LLaVA-v1.5-7b (142) 38.36 18.27 8.46 3.57 14.64 27.36 16.96
LLaVA-v1.6-7b (141) 29.31 13.40 6.00 2.44 13.11 24.40 10.69
LISAtpre (Ours) 72.51 54.98 43.77 36.10 30.28 53.80 118.39

Table D.6: Comparison of various models for LISAtpre on RSICD

leading to incorrect predictions or missed detections. These cases reveal areas where model
improvements are needed, particularly in dynamic environments or with less structured in-
put data. Finally, GT mistake cases, as shown in Table D.16 refer to instances where the GT
was erroneous but the model aligns with the expected ground truth annotations. The model
is penalized here due to inherent inconsistencies in the dataset from the mask labeling with
GeoSAM. These cases reveal the challenges posed by noisy or ambiguous ground truth data,
highlighting the importance of dataset refinement and improved model calibration to reduce
such errors. Together, these cases provide valuable insights into the model’s performance,
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Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE L CIDEr

VLAD + RNN (148) 56.58 45.14 38.07 32.79 26.72 52.71 93.72
VLAD + LSTM (148) 49.13 34.12 27.60 23.14 19.30 42.01 91.64
mRNN (147) 51.30 37.50 20.40 19.30 18.50 - 161.00
mLSTM(147) 54.60 39.50 22.30 21.20 20.50 - 186.00
mGRU (198) 69.64 60.92 52.39 44.21 31.12 59.17 171.55
mGRU embedword (198) 68.85 60.03 51.81 44.29 30.36 57.47 168.94
CSMLF (106) 59.98 45.83 38.69 34.33 24.75 50.18 75.55
SAA (163) 68.82 60.73 52.94 45.39 30.49 58.20 170.52
Soft-attention (199) 73.22 66.74 62.23 58.20 39.42 71.27 249.93
Hard-attention (199) 75.91 66.10 58.89 52.58 38.98 71.89 218.19
SD-RSIC (176) 72.40 62.10 53.20 45.10 34.20 63.60 139.50
SVM-D BOW (178) 77.87 68.35 60.23 53.05 37.97 69.92 227.22
SVM-D CONC (178) 75.47 67.11 59.70 53.08 36.43 67.46 222.22
Post-processing (179) 78.37 69.85 63.22 57.17 39.49 71.06 255.53
LLaVA-v1.5-7b (142) 41.04 19.62 10.80 4.69 13.71 31.38 10.89
LLaVA-v1.6-7b (141) 32.25 17.15 9.98 5.92 14.11 29.17 12.20
RS-GPT4V (129) 82.26 75.28 68.57 62.23 41.37 74.77 273.08
LISAtpre (Ours) 77.92 68.30 60.75 54.24 38.50 69.92 216.36

Table D.7: Comparison of various models for LISAtpre on Sydney-Captions

guiding future research and optimizations.

Success Cases of LISAt

In this subsection, we present a selection of successful cases where LISAt accurately pre-
dicted object categories and configurations. These examples highlight the model’s ability
to generalize and perform well under varied conditions, demonstrating its effectiveness in
real-world applications.

Failure Cases of LISAt

We examined failure cases where LISAt struggled to make accurate predictions in sec-
tion 6.5. Some of these instances, where the model’s performance could be improved, high-
light the challenges it faces under complex conditions, such as cloudy or ambiguous scenes
as shown in Table D.15.

Ground Truth Error Cases

Table D.16 displays cases where the model’s predictions are affected by errors in the ground
truth data. These errors highlight discrepancies between the model’s output and the labeled
data, shedding light on limitations within the dataset and the potential impact on evaluation
metrics.
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Model Count Presence Comparison Area

RSVQA (163) 67.01 87.46 81.50 85.24
EasyToHard (181) 69.22 90.66 87.49 85.92
Bi-Modal (182) 72.22 91.06 91.16 86.27
SHRNet (183) 73.87 91.03 90.48 86.35
LLaVA-1.5 (142) 26.81 54.72 66.22 1.45
InternLM-XC2 (184) 26.91 55.74 64.89 5.94
RS-GPT4V (129) - 91.17 91.70 -
GeoChat (185) - 91.09 90.33 -
Full-FT (129) 70.48 91.10 92.23 86.00
LoRA (129) 70.34 92.24 92.10 85.84
MoE LoRA (129) 71.06 91.10 92.55 85.82
LLaVA-v1.5-7b (142) 18.66 53.98 66.22 58.00
LLaVA-v1.6-7b (141) 19.65 57.53 62.32 62.00
LISAtpre (Ours) 70.24 92.36 92.20 61.43

Table D.9: Performance metrics for LISAtpre on the RSVQA LR
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Queries RGB LISA LISAt (Ours) Ground Truth

Identify the excavator
by locating the bright
yellow arm and bucket
against the darker

background.

Locate the building
with a beige facade

and a dark brown roof
in the image.

Locate the large,
elongated structure

with stacked
rectangular containers
and a reddish-brown
deck, characteristic of

a container ship,
against the dark water

background.

Locate the building in
the center-left of the

image.

Locate the long, green
vehicle with

rectangular windows
and wheels, positioned
horizontally across the

image.

Locate the building in
the top-left of the

image.

Table D.10: Comparison of predictions and ground truth across models
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Queries RGB LISA LISAt (Ours) Ground Truth

Identify the triangular
metal structure with
intersecting lines,

standing vertically in
the image.

Identify the circular
structure with a

metallic appearance
and distinct shadow,
contrasting against the
surrounding terrain.

Identify the pylon in
the top-left area of the

image.

Identify the pylon
located in the

bottom-right of the
image.

Identify the
engineering vehicle
with a metallic
appearance and
distinct geometric
shapes against the
brown background.

Identify the damaged
building with an

irregular, fragmented
roof structure and
scattered debris
contrasting with
surrounding
vegetation.

Table D.11: Comparison of predictions and ground truth across models (Cont.)
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Queries RGB LISA LISAt (Ours) Ground Truth

Segment the damaged
building located in the
top-right of the image.

Identify the building
in the center-left of

the image.

Identify the building
with a unique vertical
dark brown structure
with a slight curvature

on the edge.

Identify the large,
rectangular building
with a dark roof and
multiple visible roof

fixtures.

Locate the trailer bed
in the top-right of the
image, characterized
by a long rectangular
shape with distinct
wheels, typically

metallic or painted in
color, attached to a

truck cab.

Identify the liquid
tank in the top-right
of the image with a

long rectangular shape
connected to a truck
cab at the front.

Table D.12: Comparison of predictions and ground truth across models (Cont.)
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Queries RGB LISA LISAt (Ours) Ground Truth

Locate the building
with a reddish-brown
roof next to a dark

black structure in the
image.

Identify the damaged
building in the center

of the image.

Locate the maritime
vessel in the

bottom-right of the
image.

Identify the building
with a rectangular

shape, dark roof, and
noticeable white lines
across its surface, set
against a brownish

background with green
areas nearby.

Identify the building
with a grayish roof
and white linear

features.

Locate the engineering
vehicle in the top-left

of the image.

Table D.13: Comparison of predictions and ground truth across models (Cont.)
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Queries RGB LISA LISAt (Ours) Ground Truth

Locate the large
rectangular structure

with stacked,
multicolored

containers floating on
water as the container

ship.

Locate the building in
the top-left corner of

the image.

Identify the maritime
vessel near the top-left
corner of the image.

Identify the aircraft
hangar with the large
rectangular structure

and curved roof,
displaying a uniform
beige coloration and
surrounded by open

areas.

Identify the large
rectangular brown
building with a flat
roof surrounded by

vegetation.

Identify the railway
vehicle with an

elongated, rectangular
shape and a metallic
texture contrasting
against the dark
background.

Table D.14: Comparison of predictions and ground truth across models (Cont.)
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Queries RGB LISA LISAt (Ours) Ground Truth

Locate the facility in
the top-center of the

image for
identification.

Find the facility in the
bottom-left corner of

the image.

Identify the plane in
the bottom-right of

the image.

Locate the barge in
the top-left of the

image.

Locate the building
with a distinctive light

gray color and
rectangular shape
against the darker

background.

Identify the trailer in
the bottom-right of
the image with a
distinct shape,

typically metallic or
painted, connected to
a truck cab at the

front.

Table D.15: Failure cases
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Queries RGB LISA LISAt (Ours) Ground Truth

Identify the pylon in
the top-right area of

the image.

Identify the vertical,
metallic structure with
a lattice framework
contrasting against
the brown, earthy

background.

Identify the building
with a large,

rectangular structure
and a distinct

reddish-brown roof,
surrounded by

greenery.

Table D.16: GT Mistake cases
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