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Abstract

Towards Safe, Strategic Multi-Agent Autonomy: A Game-Theoretic Perspective

by

Jingqi Li

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire J. Tomlin, Co-chair

Professor Somayeh Sojoudi, Co-chair

As autonomous systems increasingly operate in complex and uncertain environments, decentralized
decision-making is essential for ensuring scalability, adaptability, and resilience. This dissertation
integrates control theory, game theory, and reinforcement learning to advance safe, efficient, and
strategic decision-making in multi-agent systems. The contributions are organized into three
interconnected themes: safe multi-agent control, efficient computation of game-theoretic equilibria,
and information asymmetry management.

The first theme focuses on safety-critical policy learning. It introduces a certifiable reachability
learning framework based on a novel Lipschitz-continuous value function that guarantees safe
operation. To address safety constraints more flexibly, an augmented Lagrangian reinforcement
learning approach is proposed, enabling efficient policy optimization through adaptive penalty
mechanisms. Building on these methods, a layered architecture integrates reachability-based filters
with reinforcement learning to resolve conflicting constraints during multi-agent coordination.

The second theme addresses the computational challenges of game-theoretic decision-making. It
introduces efficient algorithms for computing equilibria in dynamic games, including a primal-
dual interior-point method for computing feedback Stackelberg equilibria and a parallelizable
Alternating Direction Method of Multipliers (ADMM) algorithm for solving generalized Nash
equilibria in stochastic settings. Leveraging these results, we apply stochastic game theory to energy
systems, where we propose a nodal pricing mechanism using potential game structures to transform
distributed coordination into tractable decision problems.

The third theme focuses on game-theoretic decision-making under incomplete information. It
presents a method for inferring agents’ objectives from partial observations in feedback settings,
showing improved performance over traditional open-loop approaches. Additionally, it introduces
an intent demonstration framework based on iterative linear-quadratic approximations, designed to
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strategically influence agents’ beliefs and enhance overall task performance.

Together, these contributions aim to provide a step toward designing safe, efficient, and strategically
intelligent multi-agent systems. The proposed methods have potential applications in areas such
as autonomous driving, aerial mobility, distributed energy systems, multi-robot manipulation, and
human-robot collaboration.



i

To Ji, and to my parents, Arong Hu and Daming Li
— for their unwavering support and love.



ii

Contents

Contents ii

List of Figures v

List of Tables xi

1 Introduction 1
1.1 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I Safe Learning-Based Control 4

2 Certifiable Reachability Learning for Nonlinear Dynamical Systems 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 A New Reach-Avoid Value Function . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Learning the New RA Value Function . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Certifying Learned RA Sets with Guarantees . . . . . . . . . . . . . . . . . . . . . 13
2.7 Combining reachability learning and certification . . . . . . . . . . . . . . . . . . 17
2.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Augmented Lagrangian Safe Reinforcement Learning 22
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 From Cumulative to Instantaneous Constraints . . . . . . . . . . . . . . . . . . . . 24
3.3 Augmented Lagrangian Surrogate Function . . . . . . . . . . . . . . . . . . . . . 26
3.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Layered Safety Approaches to Multi-Agent Reinforcement Learning for Air Mobility 38
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



iii

4.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Safety Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Multi-Agent Reinforcement Learning with Layered Safety . . . . . . . . . . . . . 50
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

II Game-Theoretic Decision-Making 67

5 Primal Dual Interior Point Method for Nonlinear Feedback Stackelberg Games 68
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Constrained Feedback Stackelberg Games . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Necessary and Sufficient Conditions for Local Feedback Stackelberg Equilibria . . 73
5.5 Constrained Linear Quadratic Games . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 From LQ Games to Nonlinear Games . . . . . . . . . . . . . . . . . . . . . . . . 85
5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.9 Supplementary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.10 KKT conditions for two-player LQ games . . . . . . . . . . . . . . . . . . . . . . 95

6 Scenario-Game ADMM for Chance-Constrained Stochastic Games 97
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4 Scenario Game Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5 Sample Complexity of Scenario Games . . . . . . . . . . . . . . . . . . . . . . . 102
6.6 Scenario Games via Decentralized ADMM . . . . . . . . . . . . . . . . . . . . . . 103
6.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.8 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Stochastic Game Theory for Distributed Energy Management 113
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3 Markov Potential Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



iv

IIIStrategic Information Alignment 135

8 Inferring Agents’ Objectives in Feedback Dynamic Games 136
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.5 Results: From Characterization to Computation . . . . . . . . . . . . . . . . . . . 144
8.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.8 Acknowledgements For This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 151

9 Beyond Alignment: Exploiting Information Asymmetry in Multi-Agent Coordination154
9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.3 Background: General-sum Games and Nash Equilibrium . . . . . . . . . . . . . . 156
9.4 Problem Formulation: Intent Demonstration in General-Sum Dynamic Games . . . 156
9.5 Theoretical and Algorithmic Results . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
9.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10 Conclusion and Future Directions 169
10.1 Intent Inferability and Active Social Reasoning . . . . . . . . . . . . . . . . . . . 170
10.2 Theory of Mind and Hierarchical Belief Modeling . . . . . . . . . . . . . . . . . . 171
10.3 Reasoning under Partial Observability and Epistemic Uncertainty . . . . . . . . . . 171
10.4 Safe Coordination in Dynamic, Heterogeneous Environments . . . . . . . . . . . . 171
10.5 Safe Decentralized Learning under Incomplete Information . . . . . . . . . . . . . 172
10.6 Toward Socially Intelligent Multi-Agent Systems . . . . . . . . . . . . . . . . . . 172

Bibliography 173



v

List of Figures

2.1 Applying our reachability analysis framework to drone racing. In (a), hardware ex-
periments demonstrate that our learned control policy enables an ego drone to safely
overtake another drone, despite unpredictable disturbances in the other drone’s acceler-
ation. In (b), we illustrate the concept of the propeller induced airflow [102], which can
affect other drones’ flight. In (c), we apply our learned control policy in a simulation
with randomly sampled disturbances. In (d), we project the learned reach-avoid value
function onto the (x, y) position of the ego drone. The super-zero level set, outlined by
dashed curves, indicates our learned reach-avoid (RA) set. In (e), we plot the certified
RA sets using Lipschitz and second-order cone programming certification. . . . . . . . 6

2.2 Comparing Vγ(x) with V̄ (x) from (2.10) and V (x), a constructed solution to the
Bellman equation of V̄ (x) in prior works [98, 134, 132, 135, 133, 234, 190]. Consider a
1-dimensional dynamics: xt+1 = 1.01xt + 0.01(ut + dt), with |ut| ≤ 1 and |dt| ≤ 0.5.
We associate T = {x : x < −1} and C = {x : x > −2} with bounded, Lipschitz
continuous functions r(x) = max(min(−(x+ 1), 10),−10) and c(x) = max(min(x+
2, 10),−10), respectively. For all γ ∈ (0, 1), our super-zero level set {x : Vγ(x) > 0}
equals the RA set R = {x : −2 < x < 0.5}. By Theorem 2, Vγ(x) is Lipschitz
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the (x, y) position of the ego vehicle. In (c), we plot the RA set learned using the
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4.1 The figure shows our approach using an example scenario of four agents. Agent i
must reach the waypoints shown on the right. Our Layered Safe MARL framework
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4.2 Running example illustrating the CBVF-based safe sets, safety filtering, and the leaky
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ing their CBVF safety filters (4.12) successfully prevents collision. (c) In the three-agent
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4.3 Maximum safe sets (exterior of the white level sets), potential conflict region, and
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4.4 Crazyflie hardware experiment with the MARL policy learned by our method. The three
drones have to pass through two common waypoints to get to their landing location.
The trajectories corresponding to the video footage are visualized in Fig. 4.5 (b). . . . 58

4.5 We compare the recorded Crazyflie hardware experiment trajectories under our method
and the baseline policy trained without the safety filter. With our approach, the drones
smoothly deconflict and efficiently complete the task. In contrast, under the baseline
policy, the yellow Crazyflie misses a waypoint and must make a second pass. These res-
ults demonstrate that incorporating layered safety information during training improves
the performance of the MARL policy. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Bay Area case scenarios. The left panel illustrates routes where multiple air taxi vehicles
would travel from the North and East Bay toward San Francisco, merging into a single
air corridor. The right panel shows intersecting air corridors: one where the vehicles
would travel from Fremont (southeast) to San Francisco, and another from Oakland
(northeast) to Redwood City. The blue dots represent the waypoints that UAVs follow,
while the yellow dots indicate the departure or an incoming waypoint of the corridor. . 60

4.7 Comparison of air taxi trajectories in merging and crossing scenarios: The top row
illustrates the single-lane merging scenario, where UAVs converge into a shared inbound
air corridor, while the bottom row depicts intersecting air corridors. In the merging
scenario, our method achieves the most efficient deconfliction of trajectories, minimiz-
ing congestion near the corridor. In the crossing scenario, our method demonstrates a
wider safety buffer around intersections, as UAVs actively maintain greater separation
to mitigate conflicts. Videos are available in the supplementary material. . . . . . . . . 61

4.8 Simulation results of (a) safety-blind (method 1), (b) safety-informed with no penalty
(method 5), and (c) safety-informed with potential conflict penalty (method 9) under
Scenario 2 in Table 4.6, trained for double integrator dynamics. Agents are initialized
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Chapter 1

Introduction

Autonomous robotic systems have demonstrated remarkable success in structured and predictable
environments, such as automated manufacturing plants and robotic warehouses. In these settings,
the predictability of dynamics, consistency of interactions, and reliability of communication greatly
simplify control and coordination. Robots in such environments can effectively synchronize their
actions, enhancing productivity, efficiency, and operational safety.

However, extending autonomous systems to unstructured, dynamic, and human-centric environ-
ments remains a substantial challenge. These domains are inherently uncertain, involve frequent
interaction with unpredictable agents (including humans), and often lack reliable communica-
tion. For instance, despite rapid technological progress, autonomous vehicles still face significant
obstacles to widespread deployment due to safety concerns when navigating in complex and dy-
namically evolving traffic conditions. Similarly, robotic assistants in domestic or healthcare settings
raise pressing safety challenges as they must operate safely in close proximity to humans. These
scenarios highlight the need for adaptable, robust, and provably safe decision-making strategies.

A central difficulty in these domains lies in the decentralized nature of multi-agent decision-
making. In many practical systems, multiple agents must coordinate despite having distinct or
even conflicting objectives, varying levels of information, and limited ability to communicate. The
optimal action for one agent may inadvertently compromise the safety or performance of others,
potentially leading to unsafe interactions or system-level failures. These challenges are further
complicated by information asymmetry, where agents lack full knowledge of each other’s states,
intentions, capabilities, or goals. Classical methods in control theory and multi-agent systems often
assume full observability, shared knowledge, or ideal communication, which are assumptions that
usually do not hold in practice. Realistic scenarios frequently involve noisy observations, strategic
behavior, communication limitations, or privacy constraints. If such asymmetries are not explicitly
accounted for, the resulting decisions may be suboptimal, uncoordinated, or even unsafe.

This dissertation systematically addresses these challenges through three interconnected research
themes: safety assurance in multi-agent systems, efficient computation of dynamic game-theoretic
equilibria, and strategic reasoning under information asymmetry. By integrating insights from
control theory, game theory, and reinforcement learning, this work aims to develop principled
and practical solutions for safe and intelligent multi-agent coordination under uncertainty. A key
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unifying theme is the synthesis of model-based optimization with model-free learning, combining
formal guarantees with data-driven adaptability.

1.1 Overview of the Dissertation
The first research theme of this dissertation focuses on safety assurance in complex multi-agent
systems. Classical methods such as reachability analysis and model predictive control struggle
with scalability when applied to high-dimensional systems with nonlinear dynamics and nonconvex
constraints. Meanwhile, learning-based approaches such as deep reinforcement learning lack explicit
safety guarantees due to their black-box structure and reliance on exploratory policies. To bridge
this gap, this dissertation proposes a reachability learning framework that combines reinforcement
learning with formal verification techniques. The resulting method provides certifiable safety
guarantees under bounded environmental disturbances and is experimentally validated in real-world
drone racing scenarios. Additionally, the dissertation adapts classical optimization techniques,
such as the augmented Lagrangian method, to reinforcement learning settings, enabling effective
handling of discrete action spaces and non-differentiable objectives. These techniques are further
extended to multi-agent settings relevant to applications like air mobility, where safety is critical.

The second theme addresses the computational challenges of equilibrium analysis in dynamic
multi-agent systems. Solving for Nash or Stackelberg equilibria is computationally intractable in
general, especially when feedback and dynamics are involved. Most existing methods focus on static
formulations and do not adequately capture the recursive structure of strategic interactions. This
dissertation introduces efficient computational frameworks for feedback Stackelberg games using a
nested Karush-Kuhn-Tucker (KKT) formulation. These methods ensure consistency and feasibility
across multiple decision-making stages. To improve scalability in large systems such as power
grids, air traffic networks, or transportation infrastructure, the work exploits structural properties
like potential game formulations and network sparsity. This enables the design of scalable policy
gradient algorithms capable of handling large agent populations and complex coupling constraints.

The third theme explores decision-making under information asymmetry in decentralized envir-
onments. Classical inverse game-theoretic methods often assume static or fully observable scenarios,
which fail to capture the richness of dynamic feedback-based interactions. In realistic settings, agent
behavior may reflect both immediate goals and long-term strategic intent. Moreover, agents may
choose to maintain or exploit information asymmetry for strategic advantage. This dissertation de-
velops new methods for inferring agent objectives from partial and dynamic behavioral observations,
aligning inferred models more closely with true underlying intentions. It also introduces an intent
demonstration framework, enabling agents not only to be understood but also to shape the beliefs
and subsequent actions of others, thereby enhancing coordination and system-level performance.

Together, these contributions support the development of decentralized, safety-aware, and
strategically intelligent multi-agent systems. The proposed methods offer practical tools for a range
of real-world applications, including autonomous transportation, human-robot collaboration, aerial
mobility, and robotic logistics.
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Each chapter of this dissertation centers on one of the core research themes, presenting the
associated technical and empirical results. The dissertation is based on a series of publications,
including [182, 179, 60, 181, 184, 38, 180], as well as a conditionally accepted manuscript [183],
from many co-authors. These will be cited as appropriate at the start of each chapter.
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Part I

Safe Learning-Based Control
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Chapter 2

Certifiable Reachability Learning for
Nonlinear Dynamical Systems

In this chapter, we focus on providing robust safety assurance for multi-agent systems from a
zero-sum game perspective, where the autonomous agent plays against the worst-case behaviors of
other agents and the environment. Our goal is to learn both safe control policies and a reachability
set that provides global insight into the system’s safety guarantees. This chapter is based on the
published work [182], co-authored with Donggun Lee, Jaewon Lee, Kris Shengjun Dong, Somayeh
Sojoudi, and Claire J. Tomlin.

2.1 Background
Ensuring the safe and reliable operation of robotic systems in uncertain environments is a critical
challenge as autonomy is introduced into everyday systems. For instance, we would like humanoid
robots to safely work close to humans. As a second example, new concepts for air taxis will need
real-time synthesis of safe trajectories in crowded airspace. These safety-critical applications are
typically characterized by sequences of tasks, and knowing the set of states from which the task
can be safely completed despite unpredictable disturbances is important. Reachability analysis
addresses this challenge by determining the reach-avoid set—a set of states that can safely reach
a target set under all possible disturbances within a specified bound, as well as the corresponding
control.

Traditional Hamilton-Jacobi reachability analysis methods [295, 206, 99] leverage dynamic
programming to synthesize the optimal control and a reachability value function, whose sign
indicates whether or not a state can safely reach the target set. Though theoretically sound, they
suffer from the curse of dimensionality [28]: as the system’s dimension increases, the computational
complexity grows exponentially, making these methods impractical for real-world applications
without approximation or further logic to manage the problem size.

There has been interest in using machine learning techniques to estimate reachability value
functions for high-dimensional systems [19, 98, 134, 135, 132, 133, 190]. However, a major
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Figure 2.1: Applying our reachability analysis framework to drone racing. In (a), hardware experiments demonstrate
that our learned control policy enables an ego drone to safely overtake another drone, despite unpredictable disturbances
in the other drone’s acceleration. In (b), we illustrate the concept of the propeller induced airflow [102], which can affect
other drones’ flight. In (c), we apply our learned control policy in a simulation with randomly sampled disturbances. In
(d), we project the learned reach-avoid value function onto the (x, y) position of the ego drone. The super-zero level
set, outlined by dashed curves, indicates our learned reach-avoid (RA) set. In (e), we plot the certified RA sets using
Lipschitz and second-order cone programming certification.

drawback of existing reachability learning methods is the lack of deterministic safety guarantees.
Recent work [193, 194] provides probabilistic safety guarantees for the learned reach-avoid sets.
Additionally, safety filter approaches [133, 190, 234] have been proposed, which offer point-wise
guarantees by ensuring safety for individual states.

In this chapter, we propose a novel method for learning reach-avoid sets for high-dimensional
nonlinear systems with deterministic assurances. Our method involves learning a new reach-avoid
value function (Sections 2.4 and 2.5), and then conducting set-based certification to ensure that all
states in the certified set safely reach the target set despite disturbances (Section 2.6). Specifically:

1) We propose a new reach-avoid value function that is provably Lipschitz continuous. Though
it is not based on a Lagrange-type objective function (cumulative rewards over time) as in classical
reinforcement learning (RL) [31], we prove its Bellman equation is still a contraction mapping,
removing the need for contractive Bellman equation approximation commonly used in prior reach-
ability works [133, 190]. Moreover, the control policy derived from our value function tends to
reach the target set rapidly. We apply deep RL to learn this new value function.

2) We develop two reach-avoid set certification methods. The first uses the Lipschitz constant
of the dynamics to certify the safety of a subset of the learned reach-avoid set, ensuring all its
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elements can safely reach the target set under disturbances. The second employs second-order cone
programming to do the same. Both methods offer deterministic assurances. They can be applied
online to verify if a neighboring set around the current state can safely reach the target set, or offline
for verifying the same for a larger user-defined set.

3) We show the computational benefits of our new value function and the assurance of our (real-
time) certification methods through simulations and hardware experiments. We empirically justify
that the Lipschitz continuity of our new value function can accelerate value function learning.

2.2 Related works
Hamilton-Jacobi reachability learning. DeepReach [19] is a pioneering work on learning finite-
horizon reachability value functions. In other studies, such as [98, 134, 132, 135, 133, 234, 190],
the assumption of a known horizon is relaxed and infinite horizon reachability learning problems
are considered. In this work, we also consider the infinite horizon case. We introduce a new value
function which is provably Lipschitz continuous and whose Bellman operator is a contraction
mapping, offering computational efficiency when compared with prior work.
Verification of learning-based control. Recent work [193, 194, 282] has provided probabilistic
safety guarantees for DeepReach. In this chapter, we introduce methods that provide deterministic
reach-avoid guarantees and we show how they could be used locally in real time. Other studies
[133, 234, 190] provide point-wise safety filters. However, we propose set-based reach-avoid
certification methods to verify if all states in a set can safely reach the target set under potential
disturbances. Our certification methods also differ from existing set-based approaches for verifying
neural network-controlled systems, including those that verify regions of attraction [235, 158, 273],
forward reachability sets [67, 178, 87, 139, 164], and safe sets using barrier certificates [256, 210,
311]. To the best of the authors’ knowledge, our work is the first to certify if a set of initial states is
within the ground truth reach-avoid set.
Constrained optimal control. Control barrier functions (CBFs) offer safety guarantees [9, 292,
257], but they tend to be more conservative than model predictive control (MPC) [264, 198], which
optimally balances task performance and safety. However, constructing or learning CBFs and
solving MPC can be difficult for nonlinear systems with complex constraints. By leveraging deep
neural networks, constrained reinforcement learning (CRL) [1, 62, 321] learns control policies that
maximize task rewards while adhering to complex constraints. CBFs, along with the typical value
functions defined in MPC and CRL, do not provide the information about whether a state can safely
reach the target set. In contrast, our new value function not only provides the optimal control for the
worst-case disturbance, but also indicates, based on its sign, whether or not a state can safely reach
the target set.
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2.3 Problem Formulation
We consider uncertain nonlinear dynamics described by

xt+1 = f(xt, ut, dt), (2.1)

where xt ∈ Rn is the state, ut ∈ U ⊆ Rmu is the control, and dt ∈ D ⊆ Rmd represents the
disturbance, such as model mismatch or uncertain actions of other agents. We assume that both U
and D are compact and connected sets. The disturbance bound could be estimated from prior data
or a physical model. We define a state trajectory originating from an initial condition x0 under a
control policy π : Rn → U and a disturbance policy ϕ : Rn × U → D as ξπ,ϕx0

:= {xt}∞t=0, where
xt+1 = f(xt, π(xt), ϕ(xt, π(xt))), ∀t ∈ {0, 1, 2, · · · }. Let T ⊆ Rn be an open set, representing a
target set. We assume that there exists a Lipschitz continuous, bounded reward function r : Rn → R
indicating if a state x is in the target set,

r(x) > 0⇐⇒ x ∈ T . (2.2)

We consider a finite number of Lipschitz continuous, bounded constraint functions ci(x) > 0,∀i ∈ I ,
where I is the set of indexes of constraints. Throughout this chapter, we define Lipschitz continuity
with respect to the ℓ2 norm. We can simplify the representation of constraints by considering their
pointwise minimum c(x) := mini∈I ci(x). We define the constraint set as C := {x ∈ Rn : c(x) >
0}, and we have

c(x) > 0⇐⇒ x ∈ C. (2.3)

We look for states that can be controlled to the target set safely under the worst-case disturbance,
with dynamics given by (2.1). We refer to this set as the reach-avoid (RA) set [294, 206]:

R :=

{
x0 :∃π such that ∀ϕ, ∃T <∞,(

r(xT ) > 0 ∧ ∀t ∈ [0, T ], c(xt) > 0
)}, (2.4)

which includes all the states that can reach the target set safely in finite time despite disturbances
within the set D.
Running example, safe take-over in drone racing: We model the drone take-over example
in Figure 2.1 as an RA problem, where two crazyflie drones [109] compete to fly through an
orange gate. The first drone (ego agent) starts behind and aims to overtake the other drone. The
second drone flies directly to the gate using an LQR controller, but its acceleration is uncertain
to the first drone. We model the uncertain part of the other drone’s acceleration by a disturbance
∥dt∥2 ≤ εd := 0.1 m/s2. We compute the RA set to ensure the ego drone can safely overtake the
other despite this disturbance.

We consider a 12-dimensional dynamics [253], where the i-th drone’s state is

xit = [pix,t, v
i
x,t, p

i
y,t, v

i
y,t, p

i
z,t, v

i
z,t]. (2.5)

In each of the (x, y, z) axes, the i-th drone is modeled by double integrator dynamics, and the
control is its acceleration uit = [aix,t, a

i
y,t, a

i
z,t], with ∥uit∥∞ ≤ εu := 1m/s2. We model the center of
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the gate as the origin. The radius of the orange gate is 0.3 meters, and the radius of the crazyflie
drone is 0.05 meters. We consider a target set for the ego drone:

T =

{
x : p1y − p2y > 0, v1y − v2y > 0,

|p1x| < 0.3, |p1z| < 0.3

}
. (2.6)

To ensure the ego drone flies through the gate, we constrain:

±p1x,t − p1y,t > −0.05, ±p1z,t − p1y,t > −0.05. (2.7)

To ensure safe flight, the ego drone should avoid the area affected by the airflow from the other
drone, as depicted in Figure 2.1, using the constraint:∥∥∥∥[p1x,t − p2x,tp1y,t − p2y,t

]∥∥∥∥2
2

>
(
1 + max(p2z,t − p1z,t, 0)

)
× 0.2, (2.8)

where the required separation distance between the ego drone and the other drone increases as
their height difference grows. Numerically computing the RA set directly for this problem is
computationally infeasible [20]. We introduce our new reachability learning method in the following
sections.

2.4 A New Reach-Avoid Value Function
In this section, we propose a new RA value function for evaluating if a state belongs to the RA
set. Unlike prior works [98, 134, 132, 135, 133, 234, 190], our value function incorporates a time-
discount factor. This results in a Lipschitz-continuous value function, which appears to accelerate
the learning process, and establishes a contractive Bellman equation, eliminating the need for the
contractive Bellman equation approximation commonly used in prior works [98, 134, 132, 135, 133,
234, 190]. Furthermore, we show that the control policy derived from this new value function tends
to reach the target set rapidly.

We begin the construction of our new value function by first introducing the concept of RA
measure, which assesses whether a trajectory can reach the target set safely. Let ξπ,ϕx0

be a trajectory
that enters the target set safely at a stage t. We have r(xt) > 0 and c(xτ ) > 0 for all τ ∈ {0, 1, . . . , t}.
In other words, the RA measure g(ξπ,ϕx0

, t), defined as

g(ξπ,ϕx0
, t) := min

{
r
(
xt
)
, min
τ=0,...,t

c
(
xτ
)}
, (2.9)

is positive, g(ξπ,ϕx0
, t) > 0, if and only if there exists a trajectory from x0 reaching the target set

safely.
An RA value function V̄ (x) has been proposed in prior works [98, 134, 132, 135, 133, 234, 190],

and it evaluates the maximum RA measure under the worst-case disturbance:

V̄ (x) := max
π

min
ϕ

sup
t=0,...

g(ξπ,ϕx0
, t), (2.10)



CHAPTER 2. CERTIFIABLE REACHABILITY LEARNING FOR NONLINEAR
DYNAMICAL SYSTEMS 10

where V̄ (x) > 0 if and only if x ∈ R. We compute V̄ (x) by solving its Bellman equation. However,
V̄ (x) has a non-contractive Bellman equation, whose solution may not recover R, as shown in
Figure 2.2. To address this, prior works [98, 134, 132, 135, 133, 234, 190] include a time-discount
factor γ to create a contractive Bellman equation approximation. For each γ ∈ (0, 1), there is a
unique solution to the approximated Bellman equation, which converges to V̄ (x) as γ is gradually
annealed to 1.

Inspired by previous studies, we enhance computational efficiency by designing a new time-
discounted RA value function. Ours incorporates a time-discount factor into the value function
formulation, resulting in a contractive Bellman equation without the need for any approximation.
This improvement eliminates the requirement of the γ-annealing process commonly used in prior
works [98, 134, 132, 135, 133, 234, 190], where N approximated Bellman equations are solved
sequentially with γ values converging to 1. Theoretically, computing our new value function
requires only 1

N
of the time needed in prior works.

The central part of our new value function is the time-discounted RA measure gγ(ξπ,ϕx0
, t), for a

γ ∈ (0, 1),
gγ(ξ

π,ϕ
x0
, t) := min

{
γtr
(
xt
)
, min
τ=0,...,t

γτc
(
xτ
)}
. (2.11)

This yields a new time-discounted RA value function

Vγ(x) := max
π

min
ϕ

sup
t=0,...

gγ(ξ
π,ϕ
x0
, t). (2.12)

For all γ ∈ (0, 1) and any finite stage t, we have

gγ(ξ
π,ϕ
x0
, t) > 0⇐⇒ g(ξπ,ϕx0

, t) > 0. (2.13)

Therefore, for all γ ∈ (0, 1), the super-zero level set of Vγ(x), defined as Vγ := {x : Vγ(x) > 0}, is
equal to the RA setR in (2.4), and it includes all possible states that can reach the target set safely
in finite time under the worst-case disturbance.

In what follows, we present the advantages of our new value function. First, we show that the
Bellman equation for Vγ(x) is a contraction mapping, with Vγ(x) as its unique solution.

Theorem 1 (Contraction mapping). Let γ ∈ (0, 1) and V : Rn → R be an arbitrary bounded
function. Consider the Bellman operator Bγ[V ] defined as,

Bγ[V ](x):=max
u

min
d

min
{
c(x),max{r(x), γV (f(x, u, d))}

}
.

Then, we have ∥Bγ[V
1
γ ]−Bγ[V

2
γ ]∥∞ ≤ γ∥V 1

γ − V 2
γ ∥∞, for all bounded functions V 1

γ and V 2
γ , and

Vγ(x) in (2.12) is the unique solution to the Bellman equation V (x) = Bγ[V ](x).

Proof. Let π∗ and ϕ∗ be the optimal control and the worst-case disturbance policies. Observe

Vγ(x0) = max
π

min
ϕ

min
{
c(x0),max{r(x0), γ sup

τ=0,...
g(ξπ

∗,ϕ∗

x1
, τ)}

}
= max

π
min
ϕ

min
{
c(x0),max{r(x0), γVγ(x1)}

}
,

(2.14)



CHAPTER 2. CERTIFIABLE REACHABILITY LEARNING FOR NONLINEAR
DYNAMICAL SYSTEMS 11

Figure 2.2: Comparing Vγ(x) with V̄ (x) from (2.10) and V (x), a constructed solution to the Bellman equation of V̄ (x)
in prior works [98, 134, 132, 135, 133, 234, 190]. Consider a 1-dimensional dynamics: xt+1 = 1.01xt +0.01(ut + dt),
with |ut| ≤ 1 and |dt| ≤ 0.5. We associate T = {x : x < −1} and C = {x : x > −2} with bounded, Lipschitz
continuous functions r(x) = max(min(−(x+1), 10),−10) and c(x) = max(min(x+2, 10),−10), respectively. For
all γ ∈ (0, 1), our super-zero level set {x : Vγ(x) > 0} equals the RA set R = {x : −2 < x < 0.5}. By Theorem
2, Vγ(x) is Lipschitz continuous if γ ∈ (0, 0.99009). The super-zero level set of V̄ (x) also recovers R, but V̄ (x)
is discontinuous at x = 0.5 because the control fails to drive the state to T under the worst-case disturbance when
xt ≥ 0.5. Finally, in the third subfigure, we show that the Bellman equation in prior works [98, 134, 132, 135, 133, 234,
190] has non-unique solutions, whose super-zero level set may not equalR.

where x1 = f(x0, π(x0), ϕ(x0, π(x0))) is the only variable affected by π and ϕ. Following [31,
p.234], it can be rewritten as Vγ(x0) = maxu0 mind0 min

{
c(x0),max{r(x0), γVγ(x1)}

}
.

Thus, Vγ(x) is a valid solution to the Bellman equation V = Bγ[V ]. We show it is a unique solu-
tion by proving that Bγ[V ] is a contraction mapping when γ ∈ (0, 1), i.e., ∥Bγ[V1]−Bγ[V2]∥∞ ≤
γ∥V1 − V2∥∞, where V1 and V2 are two arbitrary bounded functions. Let x be an arbitrary state. We
have ∥Bγ[V1](x)−Bγ[V2](x)∥∞ ≤ ∥γmaxu mind V1(f(x, u, d))− γmaxumind V2(f(x, u, d))∥∞.
Since the max-min operator is non-expansive, we have, for all x, ∥Bγ[V1](x) − Bγ[V2](x)∥∞ ≤
γ∥V1(x)− V2(x)∥∞.

Theorem 1 suggests that annealing γ to 1 is unnecessary in our method because, for all γ ∈ (0, 1),
our Bellman equation admits Vγ(x) as the unique solution, and the super-zero level set of Vγ(x)
equals the ground truth RA set.

Furthermore, we show in the following result that our new value function can be constructed to
be Lipschitz continuous, which facilitates efficient learning when approximating high-dimensional
value functions using neural networks [113, 314].

Theorem 2 (Lipschitz continuity). Suppose that r(·) and c(·) are Lr- and Lc-Lipschitz continuous
functions, respectively. Assume also that the dynamics f(x, u, d) is Lf -Lipschitz continuous in x,
for all u ∈ U and d ∈ D. Let L := max(Lr, Lc). Then, Vγ(x) is L-Lipschitz continuous if γLf < 1.

Proof. Consider two arbitrary initial states x0, x′0 ∈ Rn. Let π∗ and ϕ∗ be the optimal control
and the worst-case disturbance policies. For each t ∈ {0, 1, 2, . . . }, define xt+1 := f(xt, ut, d

′
t),

ut := π∗(xt), x′t+1 := f(x′t, ut, d
′
t), and d′t := ϕ∗(x′t, ut). Let u := {ut}∞t=0, d

′ := {d′t}∞t=0,
x := {xt}∞t=0, and x′ := {x′t}∞t=0. Given an arbitrarily small ε > 0, there exists a t̄ < ∞



CHAPTER 2. CERTIFIABLE REACHABILITY LEARNING FOR NONLINEAR
DYNAMICAL SYSTEMS 12

such that Vγ(x0) ≤ gγ(x, t̄) + ε. By definition, we have Vγ(x′0) ≥ gγ(x
′, t̄). Combining two

inequalities, we have Vγ(x′0)−Vγ(x0)+ε ≥ min{γ t̄(r(x′t̄)−r(xt̄)),minτ=0,...,t̄ γ
τ (c(x′t̄)−c(xt̄))} ≥

−max{Lrγ
t̄Lt̄

f ,maxτ=0,...,t̄ Lcγ
τLτ

f}∥x0 − x′0∥2. The condition γLf < 1 implies (γLf )
t̄ < 1, ∀t̄.

As a result, Vγ(x′0)−Vγ(x0)+ε ≥ −L∥x0−x′0∥2. Similarly, we can show that Vγ(x0)−Vγ(x′0)+ε ≥
−L∥x0 − x′0∥2. Combining these two inequalities, we prove Theorem 2.

The main idea of the proof is that a small perturbation in the state x leads to a bounded change
of the time-discounted RA measure value. Theorem 2 suggests that we can ensure the Lipschitz
continuity of Vγ(x) by selecting γ < 1

Lf
. In contrast, the classical RA value function V̄ (x) can be

discontinuous, as shown in Figure 2.2.
Moreover, the control policy derived from Vγ(x) reaches the target set quickly, as a trajectory

that reaches the target set rapidly incurs a high time-discounted RA measure value.

Theorem 3 (Fast reaching). Let x be in the RA set and ϕ be an arbitrary disturbance policy.
Let γ ∈ (0, 1). Suppose (π1, t1) and (π2, t2) are two control policies and corresponding times
to maximize the discounted RA measure gγ , (π1, t1), (π2, t2) ∈ argmaxπ,t gγ(ξ

π,ϕ
x , t). Moreover,

suppose t1 < t2, then for all γ̌ ∈ (0,min{γ, Vγ(x)

maxx r(x)
}), we have gγ̌(ξπ2,ϕ

x , t2) < gγ̌(ξ
π1,ϕ
x , t1).

Proof. From the definitions of γ̌, gγ , and Vγ(x), and the boundedness of r(x), we have γ̌ < 1,
and gγ̌(ξπ2,ϕ

x , t2) ≤ γ̌t1 γ̌maxx r(x) ≤ γ̌t1Vγ(x) <
(
γ̌
γ

)t1Vγ(x) ≤ ( γ̌γ )t1gγ(ξπ1,ϕ
x , t1) ≤ gγ̌(ξ

π1,ϕ
x , t1).

Theorem 3 also suggests that a control policy reaching the target set slowly may become
suboptimal when γ is decreased.

While a small time-discount factor in Vγ(x) offers numerous benefits, it is not conclusive that γ
should always be near zero. In theory, for all γ ∈ (0, 1), the super-zero level set of Vγ(x) recovers
the exact RA set. However, in practice, a near-zero γ can lead to a conservatively estimated RA
set, where a trajectory reaching the target set at a late stage may have a near-zero or even negative
time-discounted RA measure due to numerical errors. We will explore the trade-offs of selecting
various γ values in section 2.8.

2.5 Learning the New RA Value Function
Since the optimal RA control policy is deterministic [294], we adapt max-min Deep Deterministic
Policy Gradient (DDPG) [186], a deep RL method for learning deterministic policies and their value
functions, to learn π, ϕ and Vγ .

Let γ be an arbitrary time discount factor in (0, 1). Similar to prior works [133, 234, 190], we
approximate the optimal control policy π∗(x) and the worst-case disturbance policy ϕ∗(x, π∗(x))
by neural network (NN) policies πθu(x) and ϕθd(x), respectively, with θu and θd being their
parameters. We define an NN Q function as Qθq : Rn × U × D → R, where θq represents the
NN’s parameter vector. Substituting πθu and ϕθd into Qθq , we can derive an NN value function
Vθ(x) := Qθq(x, πθu(x), ϕθd(x)), where θ is the concatenation of parameters θq, θu and θd. Let P
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be a sampling distribution with a sufficiently large support in Rn that covers at least a part of the
target set. In max-min DDPG, we learn πθu , ϕθd and Qθq by alternatively optimizing the following
problems:

We learn πθu by maximizing the Q value over θu:

max
θu

Ex∼P Qθq(x, πθu(x), ϕθd(x)). (2.15)

We learn ϕθd by minimizing the Q value over θd:

min
θd

Ex∼P Qθq(x, πθu(x), ϕθd(x)). (2.16)

We learn Qθq by minimizing the critic loss, also known as the Bellman equation error, over θq:

min
θq

Ex∼P∥Vθ(x)−Bγ[Vθ(x)]∥22. (2.17)

We define the learned RA set R̂ as the super zero-level set of Vθ(x). When DDPG converges to
an optimal solution, Vθ(x) converges to Vγ(x) due to Theorem 1. However, in practice, like other
deep RL methods, DDPG often converges to a suboptimal solution with a near-zero critic loss.
When Vθ(x) is a suboptimal solution, R̂ cannot be reliably considered as the ground truth RA setR.
This motivates us to use a suboptimal learning result to certify a trustworthy RA set, as detailed in
the following section.

2.6 Certifying Learned RA Sets with Guarantees
In this section, we propose two methods to certify if a set of states belongs to the ground truth RA
set. Both methods use a learned control policy, which is not necessarily optimal.

Certification using Lipschitz constants
We leverage a learned control policy πθu and the Lipschitz constants of dynamics, reward and
constraint to construct a theoretical lower bound of the ground truth value function Vγ(x). If
such a lower bound of Vγ(x) is greater than zero for all states in the neighboring set of x0,
Ex0 := {x : ∥x − x0∥2 ≤ εx}, then Vγ(x) > 0, ∀x ∈ Ex0 . We claim that the set Ex0 is within the
ground truth RA setR.

We begin constructing a lower bound of Vγ(x) by considering a T -stage, disturbance-free,
nominal trajectory {x̄t}Tt=0,

x̄t+1 = f(x̄t, ūt, 0), ūt = πθu(x̄t), ∀t = 0, . . . , T − 1 (2.18)

and a disturbed state trajectory {x̃t}Tt=0 under {ūt}T−1
t=0 using an arbitrary dt ∈ D, ∀t = 0, . . . , T −1:

x̃t+1 = f(x̃t, ūt, dt), ∀t = 0, . . . , T − 1. (2.19)

Note that if we can verify that a trajectory starting at state x reaches the target set safely despite
disturbances within T stages, then it suffices to claim x ∈ R, where the certification horizon T
can be set arbitrarily. Ideally, we would set T =∞, but it is impractical to evaluate an infinitely
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long trajectory. Therefore, during certification, we consider a finite, user-defined T . This T should
preferably be long enough to allow initial states to reach the target set. A short T results in a
conservative certification since it overlooks the possibility that the trajectory might safely reach the
target set at a later time.

We assume that the dynamics f is Lipschitz continuous and there exists an upper bound on the
disturbance in D at each stage t, i.e., ∥dt∥2 ≤ εd. Let Lfx and Lfd be the Lipschitz constants of the
dynamics f with respect to the state x and disturbance d, respectively. At time t = 1, we observe

∥x̄1 − x̃1∥2=∥f(x̄0, ū0, 0)− f(x̃0, ū0, d0)∥2
≤ Lfx∥x̄0 − x̃0∥2 + Lfd∥0− d0∥2 ≤ Lfxεx + Lfdεd.

At time t = 2,
∥x̄2 − x̃2∥2=∥f(x̄1, ū1, 0)− f(x̃1, ū1, d1)∥2

≤ Lfx∥x̄1 − x̃1∥2 + Lfdεd.

By induction, we have

∥x̄t − x̃t∥2 ≤ Lt
fxεx + Σt−1

τ=0 L
τ
fxLfdεd =: ∆xt. (2.20)

We define a convex outer approximation of the set of dynamically feasible states as X L
t,x̄0

:= {xt :
∥xt − x̄t∥2 ≤ ∆xt}, and we check if for all xt ∈ X L

t,x̄0
, r(xt) > 0 and c(xt) > 0. By Lipschitz

continuity of the reward function, we have,

∀xt ∈ X L
t,x̄0
, ∥r(x̄t)− r(xt)∥2 ≤ Lr∆xt

which yields a lower bound of r(xt), for all xt ∈ X L
t,x̄0

:

řLt := r(x̄t)− Lr∆xt ≤ r(xt). (2.21)

Similarly, we have a lower bound of c(xt), for all xt ∈ X L
t,x̄0

:

čLt := c(x̄t)− Lc∆xt ≤ c(xt). (2.22)

Using řLt and čLt , we can construct a lower bound V̌ L
γ (x̄0, T ) for Vγ(x0), for all x0 ∈ Ex̄0:

V̌ L
γ (x̄0, T ) := max

t=0,...,T
min{γtřLt , min

τ=0,...,t
γτ čLτ } ≤ Vγ(x0). (2.23)

This implies
V̌ L
γ (x̄0, T ) > 0 =⇒Vγ(x0) > 0,∀x0 ∈ Ex̄0 . (2.24)

Thus, when V̌ L
γ (x̄0, T ) > 0, the set Ex̄0 is certified to be within the ground truth RA setR. Moreover,

{ūt}T−1
t=0 are the certified control inputs that can drive all x ∈ Ex̄0 to the target set T safely despite

disturbances in D.
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Certification using second-order cone programming
Lipschitz certification is fast to compute. However, the lower bound V̌ L

γ can be conservative. In
this subsection, we propose another certification method using second-order cone programming
(SOCP), aiming to provide a less conservative RA certification. Our key idea is to construct SOCPs
that search over a tight, convex outer approximation set of the dynamically feasible trajectories
and verify whether the state trajectory reaches the target set safely under all disturbances, within a
user-defined finite certification horizon T .

The construction of these SOCPs involves two steps.
First, we formulate a surrogate RA problem: A subset of the original target set T , represented

by the interior of a polytope Ť := {x : Pix− ki > 0, i ∈ IŤ }, is defined as a surrogate target set
Ť , where IŤ is a finite index set of the polytope’s edges. Additionally, we define a subset of the
original constraint set C, represented by the intersection of a finite number of positive semidefinite
quadratic functions’ super-zero level sets Č := {x : 1

2
x⊤Qix+q

⊤
i x+ bi > 0, i ∈ IČ}, as a surrogate

(nonconvex) constraint set Č. The set Č could be nonconvex when approximating collision avoidance
constraints.

Subsequently, we leverage SOCPs to verify if a state trajectory from x0 can reach Ť while
staying within Č despite disturbances. We achieve this by sequentially minimizing each function
defined in Ť and Č, iterating from the stage τ = 0 to τ = T . If their minimum is positive at a stage
t and there is no intermediate stage τ < t such that xτ is outside Č, we claim that the initial state
x0 can safely reach the original target set T , under all possible disturbances.

To be more specific, we can check if there exists a stage t ∈ {0, 1, . . . , T} such that, for all
disturbances, all dynamically feasible states xt, originating from the initial states set Ex̄0 := {x :
∥x − x̄0∥2 ≤ εx}, are within Ť and for all stages τ ≤ t, xτ are within Č. If this condition is
met, we claim that Ex̄0 is within the ground truth RA set R, i.e., Ex̄0 ⊆ R. Otherwise, some of
its elements could be outside R, and therefore we do not claim Ex̄0 ⊆ R. To make the analysis
tractable, we define the nominal state trajectory {x̄t}Tt=0 and nominal control trajectory {ūt}T−1

t=0 as
in (2.18). The nominal state and control trajectories allow us to formulate a convex set X S

t,x̄0
for

outer approximating the set of dynamically feasible states:

X S
t,x̄0

:= {xt : ∃{dτ}t−1
τ=0 and x0 such that ∀τ ≤ t− 1,

xτ+1 ≤ Âτxτ + B̂τ ūτ + D̂τdτ + ĉτ , (Upper bound on f)

xτ+1 ≥ Ǎτxτ + B̌τ ūτ + Ďτdτ + čτ , (Lower bound on f)
∥dτ∥2 ≤ εd, (Disturbance bound)
∥x0 − x̄0∥2 ≤ εx} (Initial state bound)

where the first two inequalities are element-wise and the bounds on the dynamics f can be derived
using its Lipschitz constant or a Taylor series1. At a stage t, we can verify if xt ∈ Ť by solving a
sequence of SOCPs iterating over all i ∈ IŤ , and checking if their minimum is positive:

1For simplicity, we can also use XL
t,x̄0

to define the convex outer approximation set of the dynamically feasible
states in SOCP certifications, i.e., XS

t,x̄0
:= XL

t,x̄0
.
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řSt := min
i∈IŤ

{
min

xt∈XS
t,x̄0

Pixt − ki
}
. (2.25)

Similarly, for checking whether xt ∈ Č, we can evaluate if the following term is positive:

čSt := min
i∈IČ

{
min

xt∈XS
t,x̄0

1

2
x⊤t Qixt + q⊤i xt + bi

}
. (2.26)

Combining the above two terms, we can construct a conservative certificate V̌ S
γ for verifying if a

state x̄0 and its neighboring set Ex̄0 are within the ground truth RA setR,

V̌ S
γ (x̄0, T ) := max

t=0,...,T
min{γtřSt , min

τ=0,...,t
γτ čSτ }. (2.27)

This suggests
V̌ S
γ (x̄0, T ) > 0 =⇒ Vγ(x0) > 0,∀x0 ∈ Ex̄0 (2.28)

and {ūt}T−1
t=0 are the certified control inputs, capable of driving all x ∈ Ex̄0 to the target set T safely

despite disturbances.
Running example (continued). At stage t, we evaluate řSt = mini{řSt,i}6i=1 by solving the following
SOCPs, where each řSt,i corresponds a function in the definition of T in (2.6):

řSt,1 = min
xt∈XS

t,x̄0

p1y,t − p2y,t, řSt,2 = min
xt∈XS

t,x̄0

v1y,t − v2y,t

řSt,3 = min
xt∈XS

t,x̄0

0.3− p1x,t, řSt,4 = min
xt∈XS

t,x̄0

0.3 + p1x,t

řSt,5 = min
xt∈XS

t,x̄0

0.3− p1z,t, řSt,6 = min
xt∈XS

t,x̄0

0.3 + p1z,t

Similarly, we can evaluate čSt = mini{čSt,i}5i=1 by considering the following SOCPs, where each čSt,i
corresponds to a constraint function in (2.7) and (2.8):

čSt,i = min
xt∈XS

t,x̄0

(−1)i × p1x,t − p1y,t + 0.05, i ∈ {1, 2},

čSt,i = min
xt∈XS

t,x̄0

(−1)i × p1z,t − p1y,t + 0.05, i ∈ {3, 4}.

We overapproximate the maximum height difference between two drones via

∆21
z,t := max

xt∈XS
t,x̄0

p2z,t − p1z,t, (2.29)

and consider

čSt,5 = min
xt∈XS

t,x̄0

∥∥∥∥[p1x,t − p2x,tp1y,t − p2y,t

]∥∥∥∥2
2

− (1 + max(∆21
z,t, 0))× 0.2
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Remark 1. 1) SOCP certification can be less conservative than Lipschitz certification when Ť
and Č can represent T and C exactly, and X S

t,x̄0
is a subset of the Lipschitz dynamically feasible set

X L
t,x̄0

, as defined in Section 2.6, for all t ≤ T . This is because Lipschitz certification adds extra
conservatism when estimating lower bounds of r(x) and c(x) using the Lipschitz constant, as shown
in (2.21) and (2.22); 2) However, Lipschitz certification is faster to compute than SOCP because
calculating řLt and čLt is easier than evaluating řSt and čSt ; 3) SOCP certification employs convex
over-approximations of the dynamically feasible state sets, similar to tube MPC [198]. However,
it differs from tube MPC in that we compute the worst-case (nonconvex) constraint violation and
target set deviation rather than the control inputs that optimize an objective.

Remark 2. The computational complexity of evaluating V̌ L
γ (x, T ) and V̌ S

γ (x, T ) scales polynomi-
ally with both the dimension of the dynamical system and the length of T .

2.7 Combining reachability learning and certification
We integrate the reachability learning and certification into a new framework of computing trust-
worthy RA sets, as described in Algorithm 1. The super zero-level set of Vθ provides an estimation of
the ground truth RA set. We use πθu to certify a set of states, ensuring deterministic RA guarantees
there. In particular, we can apply certification either online or offline:
Online certification: Let x be an arbitrary state. We can use the RA certificates V̌ L

γ (x, T ) in (2.23)
or V̌ S

γ (x, T ) in (2.27) as online RA certification methods, verifying if all elements in Ex = {x′ :
∥x′−x∥2 ≤ εx} can reach the target set safely despite disturbances. We can compute V̌ L

γ (x, T ) and
V̌ S
γ (x, T ) in real-time (10 Hz in our examples), as shown in Figure 2.5. It can also be integrated into

the safety filter proposed in [133], offering more robust RA certification than [133] by verifying that
all states in Ex can reach the target set safely, thereby enabling RA capability verification without
perfect state estimation.
Offline certification: We consider a finite set of states L := {x(i)}Ni=1 such that the union of their
neighboring sets Ex(i) = {x : ∥x− x(i)∥2 ≤ εx} covers the set of states that we aim at certifying.
For example, this includes the area near the orange gate in drone racing, as show in Figure 2.1. We
enumerate each element x ∈ L and certify whether Ex ⊆ R by checking if V̌ L

γ in (2.23) or V̌ S
γ in

(2.27) is positive. The union S of those certified sets constitutes a subset of the ground truth RA
setR. For all elements in S, we guarantee that they can reach the target set safely under potential
disturbances.

2.8 Experiments
We test our reachability learning and certification methods2 in a 12-dimensional drone racing
hardware experiment (Figure 2.3), and a triple-vehicle highway take-over simulation. In the

2Experiment code and hardware drone racing video are available at https://
github.com/jamesjingqili/Lipschitz_Continuous_Reachability_Learning.git.

https://github.com/jamesjingqili/Lipschitz_Continuous_Reachability_Learning.git
https://github.com/jamesjingqili/Lipschitz_Continuous_Reachability_Learning.git
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Algorithm 1: Certifiable Reachability Learning:
Require: an arbitrary γ ∈ (0, 1), a finite list of states L, and a certification horizon T <∞;
Initialization: certified RA set S ← {};
Learn πθu , ϕθd and Vθ via max-min DDPG [186];
// Certifications:
for x0 ∈ L do

if V̌ L
γ (x0, T ) > 0 or V̌ S

γ (x0, T ) > 0 then
S ← S ∪ {x : ∥x0 − x∥2 ≤ εx}

return certified RA set S

Initial states
uniform sampling

Drone racing Highway

DDPG-L SAC-L Ours DDPG-L SAC-L CPO Ours

In a large bounded state set 0.5716 0.7291 0.7655 0.7512 0.6343 0.5552 0.8782
In the learned reach-avoid set 0.6276 0.8006 0.8889 0.9430 0.9149 0.9566 0.9924
In the SOCP certified set 0.9673 0.9948 1.0000 0.9111 0.8850 0.9451 1.0000

Table 2.1: Success rates table. Our method achieves a 1.0 success rate when the initial states are sampled from the SOCP
certified set. CPO fails to converge for the drone racing experiment due to the complex and nonconvex constraints.

highway simulation, we control one ego vehicle, modeled with nonlinear unicycle dynamics, to
safely overtake another vehicle while avoiding a third vehicle driving in the opposite direction, as
shown in Figure 2.4. Figures 2.1 and 2.4 demonstrate the high quality of the learned and certified
RA sets.

Hypothesis 1: Our learned policy has a higher success rate than
state-of-the-art constrained RL methods
We compare our learned policy πθu with Deep Deterministic Policy Gradient-Lagrangian (DDPG-
L)[62], Soft Actor Critic-Lagrangian (SAC-L) [321], and Constrained Policy Optimization (CPO)
[1]. We summarize the results in Table I. The success rate is estimated by computing the ratio of
sampled initial states that can reach the target set safely under randomly generated disturbances.
Our method achieves a 1.0 success rate when the initial states are sampled from the SOCP certified
set, validating the deterministic guarantee that all elements in the certified sets can safely reach the
target set despite disturbances.

Hypothesis 2: Our online RA set certification methods can be computed in
real-time
Figure 2.5 shows that V̌ L

γ (x, T ) and V̌ S
γ (x, T ) can be computed in real-time to certify if all elements

in Ex = {x′ : ∥x′− x∥2 ≤ 0.1} can safely reach the target set, under all potential disturbances. This
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Figure 2.3: We sampled 50 initial states from the SOCP certified set shown in Figure 2.1. A few crashes occurred due
to insufficient battery charge or Vicon sensor failures caused by natural light. These instances were excluded as outliers.
With a fully charged battery and no Vicon system failures, the ego drone successfully overtook the other drone from
each of the 50 initial states, despite the latter’s uncertain acceleration. We visualize two hardware experiments in the
above subfigures. The remaining 9-dimensional initial state includes [v1x,t, v
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[0, 0.7, 0, 0.4,−2.2, 0, 0, 0.3, 0].

Figure 2.4: Highway reachability analysis: In (a), we simulate the nonlinear dynamics with the learned policy
πθu and randomly sampled disturbances on other vehicles’ acceleration. The 10-dimensional state space includes
[p1x,t, p

1
y,t, v

1
t , θ

1
t , p

2
x,t, p

2
y,t, v

2
y,t, p

3
x,t, p

3
y,t, v

3
y,t]. The py-axis movement of the red and green agents is modeled using

double integrator dynamics, while their initial px positions are sampled randomly and remain stationary during
simulation. In (b), we project our learned value function, with γ = 0.95, onto the (x, y) position of the ego vehicle.
In (c), we plot the RA set learned using the state-of-the-art method [190, 234] with γ = 0.95. As suggested in [134],
annealing γ → 1 is necessary for prior works; otherwise, the learned RA sets in prior works are conservative. In (d), we
plot our certified RA sets.

enables real-time online certification.

Hypothesis 3: The Lipschitz continuity of our new value function appears to
accelerate learning
In Figure 2.6, we compare the critic loss (defined in (2.17) to measure the Bellman equation error)
under different Bellman equations and time-discount factor γ values. Our critic loss converges
rapidly when γ is chosen to ensure the Lipschitz continuity of our new value function.
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Figure 2.5: Histogram of the time required for computing V̌ L
γ (x, T ) and V̌ S

γ (x, T ) for each of the 10,000 randomly
sampled states x. The certification horizons for drone racing and highway are T = 15 and T = 30, respectively.

Figure 2.6: We compare the convergence of the critic loss under our new Bellman equation with the baseline from
previous works [234, 190], using different γ values but identical training parameters. Our critic loss with γ = 0.95
converges faster than with γ = 0.9999, likely due to the Lipschitz continuity of Vγ(x) at γ = 0.95. The training speed
is around 1700 steps per second.

Figure 2.7: The volumes of the learned RA set, SOCP certified set, and the Lipschitz certified set change as γ varies.
We estimate the set volumes using the Monte Carlo method with 10,000 random samples in the state space.

The trade-off of selecting a time-discount factor γ
We summarize our result in Figures 2.7 and 2.8. With a small γ, the learned RA sets can be
conservative due to numerical errors, as an initial state whose optimal trajectory reaches the target
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Figure 2.8: The average time taken for reaching the target set grows as γ increasing.

set at a later stage may have near-zero time-discounted RA measures. However, the optimal policy
tends to drive the state to the target set rapidly, as depicted in Figure 2.8. Conversely, a large γ can
induce discontinuities in the value function, destabilizing learning and yielding suboptimal solutions.
In the drone racing and highway experiments, we find that γ = 0.95 ensures the Lipschitz continuity
of Vγ(x), thereby enhancing learning efficiency, and also mitigates unnecessary conservatism.

2.9 Conclusion and Future Work
We propose a new framework for learning trustworthy reach-avoid (RA) sets. Our method features a
newly designed RA value function that offers improved computational efficiency. We employ max-
min DDPG to learn our value functions and propose two efficient methods to certify whether a set of
states can safely reach the target set with deterministic guarantees. We validate our methods through
drone racing hardware experiments and highway take-over simulations. Our certification methods
can be performed in real time, but they rely on offline value function learning beforehand. Future
research may explore online reachability learning, as well as more efficient RA set certification
methods.
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Chapter 3

Augmented Lagrangian Safe Reinforcement
Learning

In this chapter, we extend our previous work on reach-avoid reinforcement learning, which focuses
on safely reaching a target set, to address more general constrained optimal control problems. In
this broader setting, the objective can encode complex task requirements, including trade-offs
between competing goals, while ensuring that safety constraints are satisfied. To achieve this, we
adapt the augmented Lagrangian method from classical convex optimization to the context of safe
reinforcement learning. This chapter is based on the published work [179], co-authored with David
Fridovich-Keil, Somayeh Sojoudi, and Claire J. Tomlin.

3.1 Background
Deep reinforcement learning algorithms have achieved state-of-the-art performance in many do-
mains [216, 177, 118]. In standard reinforcement learning (RL), the ultimate goal is to optimize the
expected sum of rewards or costs, and the agent can freely explore in order to improve the current
policy. RL methods have been widely used to learn optimal policies for agents with complicated or
even unknown dynamics. RL has successfully solved a wide range of tasks, including the game of
Go [280], robotic control [77], and traffic control [310].

There is a well-known trade-off between exploration and exploitation in RL. To optimize the
overall reward, the agent must balance whether to take a sequence of actions similar to what
it has already tried (i.e., exploitation) or to try a new combination of actions (i.e., exploration).
Since most RL problems are non-convex, pure exploitation leads to a suboptimal policy leading
to a poor local maximum of the reward function. To encourage the agent to find a better policy,
various methods have been proposed for promoting exploration, such as using an Upper Confidence
Bound [14], Inverse Entropy [124], or designing a Variational Auto-encoder [10]. Nevertheless, in
many applications such as autonomous driving [277] and surgical robotics [85], exploration can
be dangerous because violating certain constraints even by a small amount may have significant
consequences. Thus, ensuring safety is of great importance in real-world applications.
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A natural way of encoding safety in RL is through constraints. Here, there are two types of
constraints: cumulative constraints (e.g., average vehicle speed) and instantaneous constraints (e.g.,
collision avoidance at each time). A cumulative constraint requires that an infinite-horizon or a
finite-horizon discounted sum of a constraint cost function lie within a certain bound. By contrast,
an instantaneous constraint must hold at all time instants. For both problems, the horizon could be
either infinite or finite.

One common formulation of RL with cumulative constraints is the Constrained Markov Decision
Process (CMDP) framework [7], where the agent optimizes an objective while satisfying constraints
on the expectation of an infinite-horizon discounted sum of auxiliary costs. A classical approach
to solving CMDPs is the Lagrangian dual method [7]. The Lagrangian approach allows us to
transform a constrained control problem to an equivalent minmax unconstrained control problem.
Recently, it has been shown that under certain regularity conditions there is no duality gap for
infinite-horizon RL problems with cumulative constraints, despite their non-convex nature [245].
This result theoretically justifies the effectiveness of popular Lagrangian-relaxation-based CMDP
algorithms, such as Constrained Policy Optimization (CPO) [1], Primal-Dual Policy Optimization
(PDO) [63] and Lyapunov-based safe learning [61].

As will be shown in Section 3.2, the satisfaction of cumulative constraints may not lead to the
satisfaction of instantaneous constraints. Therefore, it is crucial to develop methods for solving
instantaneously constrained RL problems. The authors of [98] propose to solve instantaneously
constrained RL problems by optimizing a smoothed version of the worst constraint violation rather
than an explicitly constrained objective. One line of work devoted to safe RL with instantaneous
constraints is projection-based Safe RL [119, 252, 116], where at each step the agent selects one
action from a pre-computed safe action set. However, one potential drawback of this approach is
that the pre-computed safe action set could be conservative, leading to a suboptimal policy [151,
25].

In this chapter, we consider an infinite-horizon optimal control problem with instantaneous
safety constraints. We adapt the classical Augmented Lagrangian method [238] to obtain a safe
policy satisfying instantaneous safety constraints. Our work is closely related to [197], where an
interior-point method is adapted to solve the safe RL problem. One major difference is that we relax
the assumption of an initial safe policy, which is required in [197].

We first extend the strong duality results in [245] to instantaneously constrained RL, and propose
a sufficient condition for the strong duality of the instantaneously constrained RL problem. Inspired
by the Augmented Lagrangian method, we then design a surrogate objective function, and we
show that under certain conditions on the feasible policy set, the policy returned by optimizing
the surrogate function converges to an optimal policy for the original problem. We propose a
primal-dual algorithm for optimizing this surrogate function and our empirical results show that the
proposed method is more data-efficient than the existing Lagrangian dual method. Our empirical
results also suggest that this method reduces the total constraint violation, highlighting the potential
of our method for promoting safety throughout learning.

The rest of the chapter is organized as follows. In Section 3.2, we formulate the Instantaneously
Constrained RL problem. We present our main theoretical results in Sections 3.3 and 3.4, with
proofs provided in the Appendix. In Section 3.5, we present three illustrative examples: a tabular
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learning example, and an OpenAI constrained pendulum and half-cheetah example. Finally, we
conclude and discuss future directions in Section 3.6.

3.2 From Cumulative to Instantaneous Constraints
In this section, we first review Constrained Markov Decision Processes, and then motivate and
introduce our instantaneously constrained RL problem formulation.

A Markov Decision Process (MDP) is a tuple (Z,A, γ, r, pz, p0), where Z and A are compact
state and action spaces, γ ∈ [0, 1) is a discounting factor, r(z, a) : Z ×A → R is the immediate
cost function, pz(·|z, a) is the transition probability distribution density, and p0 is the initial state
distribution density. In addition, let g(z, a) : Z ×A → R be the constraint function. A function
f : Z×A → R is bounded if there exists a constant c ∈ R such that f(z, a) ≤ c, for ∀(z, a) ∈ Z×A.
The agent chooses actions sequentially based on a policy π ∈ P(Z), where P(Z) is the space of
probability measures on (A,B(A)) parametrized by elements of Z , where B(A) are the Borel sets
of A.

A Constrained Markov Decision Process was introduced in [7] by incorporating an additional
inequality constraint:

max
π

E

[
∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0,

E

[
∞∑
t=0

γtg(zt, at)

∣∣∣∣∣π
]
≤ 0.

(3.1)

where E[·] is the expectation operator. The zt and at are state and action at time t ∈ {0, 1, . . . },
respectively.

In what follows, we will illustrate with a simple 2D example that a cumulative constraint does
not generally provide any guarantees for the associated instantaneous constraints, i.e., solving
CMDPs may not be sufficient to ensure the satisfaction of instantaneous constraints.

Example 1. Consider a linear dynamical system zt+1 = Azt+Bat, whereA ∈ R2×2 andB ∈ R2×1

are specified as

A =

[
0 1
−1 1

]
, B =

[
1
0

]
. (3.2)

Let K ⊆ R2 be the feasible policy class. Given an initial point ž0 ∈ R2, we consider the infinite-
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horizon constrained optimal control problem

K∗ := argmax
K∈K

[
−

∞∑
t=0

(
z⊤t Qzt + a⊤t Rat

)]
s.t. zt+1 = Azt +Bat, ∀t ∈ {0, 1, . . . },

at = Kzt, ∀t ∈ {0, 1, . . . },
z0 = ž0,
∞∑
t=0

zt ≤ 0

(3.3)

and the instantaneously constrained RL problem

K̃∗ := argmax
K∈K

[
−

∞∑
t=0

(
z⊤t Qzt + a⊤t Rat

)]
s.t. zt+1 = Azt +Bat, ∀t ∈ {0, 1, . . . },

at = Kzt, ∀t ∈ {0, 1, . . . },
z0 = ž0,

zt ≤ 0, ∀t ∈ {0, 1, . . . }.

(3.4)

with the parameters Q = I2 and R = 1. If we assume the policy class to be K = R2, then the
optimal feedback matrix K∗ may be found by solving the well-known LQR Riccati equation and
recognizing that the constraint

∑∞
t=0 zt ≤ 0 in (3.3) is inactive for K∗. Pick K̃ ∈ R2 such that

(A + BK̃) has real positive eigenvalues with magnitude strictly smaller than 1 and (A + BK̃)
has two eigenvectors v1 ≤ 0 and v2 ≤ 0 whose convex hull contains ž0. By Proposition 4 in the
Appendix, we can show that K̃ is a feasible solution for (3.4). We plot the state trajectories under
the two feedback controllers at = K∗zt and ãt = K̃z̃t. In Figure 3.1, the state trajectory under
the controller at = K∗zt violates the constraint zt ≤ 0 at time t = 2 while the trajectory under
ãt = K̃z̃t does not. ■

As illustrated in Example 1, enforcing a constraint cumulatively does not imply that it holds
at each time. We emphasize that constraints may be arbitrary functions of state. In this way, an
instantaneous constraint may be understood to encode desired safety configurations, such as in
collision avoidance [153], human-robot interaction [195], and aerospace control [2]. Motivated by
the above discussion, we formulate the Instantaneously Constrained RL problem as follows.

Problem 1 (Instantaneously Constrained RL Problem). Consider an MDP with transition dynamics
zt+1 ∼ pz(·|zt, at) and initial state distribution p0, along with a bounded reward function r(z, a)
and a bounded constraint function g(z, a). The objective is to find a policy π∗ that solves the
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Figure 3.1: State trajectories comparison between the two controllers at = K∗zt and ãt = K̃z̃t.

following constrained optimization problem over the infinite horizon:

max
π

E

[
∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0,

E[g(zt, at)|π] ≤ 0, ∀t ∈ {0, 1, . . . }.

(3.5)

We remark here that an optimal policy feasible for (3.5) could be a conservative but feasible
solution for (3.1). Therefore, a policy learned from (3.5) is also safe with respect to the constraint
in (3.1). In addition, although we only consider one set of instantaneous constraints in (3.5), the
results of this chapter could be extended to the general case with multiple sets of instantaneous
constraints, by associating each constraint with a Lagrange multiplier and carrying out an analysis
similar to the single constraint case (3.5).

3.3 Augmented Lagrangian Surrogate Function
In this section, we introduce our Augmented Lagrangian Surrogate Function. We first propose a
sufficient condition under which strong duality holds for (3.5), and then design a new surrogate
function which could promote safety during the learning phase.



CHAPTER 3. AUGMENTED LAGRANGIAN SAFE REINFORCEMENT LEARNING 27

Since most of the existing results on RL deal with unconstrained problems, it is beneficial to
work with the unconstrained Lagrangian dual of the primal problem (3.5) given below,

min
{λt}∞t=0
λt≤0

max
π

E

[
∞∑
t=0

γt(r(zt, at) + λtg(zt, at))

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0.

(3.6)

where λt is the Lagrange multiplier associated with the scalar constraint E[g(zt, at)|π] ≤ 0.
It is known that strong duality holds in the case of cumulative constraints [245]. For complete-

ness, we first introduce Assumption 2, and then build on the result of [245].

Assumption 1. Suppose that the feasible policy set for (3.5) has a non-empty relative interior. Fur-
thermore, suppose that for any π satisfying E[

∑∞
t=0 γ

tg(zt, at)|π] ≤ 0, π also satisfies E[g(zt, at)|π] ≤
0, ∀t ∈ {0, 1, . . . }.

Remark 3. We note that, under Assumption 1, Problem 1 could be equivalently considered as a
special subclass of CMDPs in which the cumulative constraints could approximate instantaneous
constraints. In what follows, we will show that Assumption 1 permits us to characterize the strong
duality of Problem 1, and thereby design a new surrogate objective for (3.5) which yields superior
empirical performance than existing primal-dual approach.

Proposition 1. Under Assumption 1, strong duality holds for (3.5).

A natural question that arises is whether Assumption 1 is stringent. To ensure the con-
dition E[

∑∞
t=0 γ

tg(zt, at)|π] ≤ 0 implies E[g(zt, at)|π] ≤ 0, for all t ∈ {0, 1, . . . }, we pro-
pose two approaches. First, we propose a “clipping” method whereby constraint values at
safe states are set to zero. For example, suppose that we have an instantaneous constraint
E[h(zt, at)|π] ≤ 0 with a bounded function h(zt, at) : Z × A → R, computing only the pos-
itive part, i.e., E[Relu(h(zt, at))|π] ≤ 0, where Relu(·) : R→ R is defined as Relu(x) = x if x ≥ 0
and 0 if x < 0. The choice of the Relu function is not strictly necessary, i.e., it could be replaced by
other non-negative activation functions such as Softplus or Sigmoid [258]. The other approach is to
restrict the feasible policy class, as highlighted in the following 2D example:

Example 1 (Continued). Suppose that the policy class K ⊆ R2 is such that for any K ∈ K,
the closed loop dynamics (A + BK) ∈ R2×2 has two real positive eigenvalues, and it has two
eigenvectors v1 ≤ 0 and v2 ≤ 0 whose convex hull contains the point z0. We will show in
Proposition 4 in the Appendix that under any policy K ∈ K, the constraint

∑∞
t=0 zt ≤ 0 and

the condition zt ≤ 0, ∀t ∈ {0, 1, . . . }, are always satisfied. In this simple instance where
g(zt, at) ≡ zt, the constraint E[

∑∞
t=0 γ

tg(zt, at)|π] ≤ 0 implies the constraint E[g(zt, at)|π] ≤ 0,
for all t ∈ {0, 1, . . . }.
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Remark 4. However, as indicated in [245], strong duality is only proved for CMDPs with arbitrary
stochastic policies. Characterizing strong duality in parametric, restricted policy classes such as
that of Problem 1 is an important direction for future research.

Building upon the Lagrangian dual (3.6), by the linearity of the expectation operator, at each time
t ∈ {0, 1, . . . }, (3.6) suggests an instantaneous reward function rt(zt, at) = r(zt, at) + λtg(zt, at).
This function depends upon the Lagrange multiplier λt and hence is time-varying. However, infinite-
horizon RL algorithms typically assume time-invariant reward functions. We next show that, under
Assumption 1, a set of optimal Lagrange multipliers {λ∗t} could share the same value. That is, we
may presume that all {λt}∞t=0 are equal to some constant λ, and therefore obtain a time-invariant
reward function. This time-invariance permits us to apply existing RL algorithms to find the best
policy maximizing the time-invariant instantaneous reward function.

Proposition 2. Let ({λt}∞t=0, π
∗) be an optimal solution of (3.6). Let (λ∗, π̃∗) be a pair of optimal

solutions to

min
λ≤0

max
π

E

[
∞∑
t=0

γt

(
r(zt, at) + λ⊤

(
∞∑
t=0

γtg(zt, at)

))∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0.

(3.7)

Let λ̃t = λ∗, for all t ∈ {0, 1, . . . }. Under Assumption 1, we have that ({λ̃t}∞t=0, π̃
∗) is also a pair

of optimal solution to (3.6).

Remark 5. Proposition 2 does not preclude the existence of optimal Lagrange multipliers {λ∗t}∞t=0

of (3.6) which are time-varying.

Building upon the above results and by assuming λt = λ, for all t ≥ 0, we design the time-
invariant instantaneous reward inspired by Augmented Lagrangian Method [238],

r̃(zt, at) := r(zt, at) + λ · Relu(g(zt, at))−
ρ

2
· Relu(g(zt, at))2, (3.8)

and subsequently we obtain the infinite-horizon objective function

R(π, λ, ρ) := E

[
∞∑
t=0

γt(r(zt, at) + λ · Relu(g(zt, at))

−ρ
2
· Relu(g(zt, at))2

)∣∣∣∣∣π
]
.

(3.9)

Remark 6. Under Assumption 1, (3.9) can be interpreted as a new surrogate function for a
special subclass of CMDPs in which the cumulative constraints could approximate instantaneous
constraints. We will show in Section 3.4 that by optimizing (3.9), we can find a high-quality policy
within fewer iterations and smaller constraint violation throughout learning than a current primal-
dual method. That is, for this special subclass of CMDPs, (3.9) serves as an alternative surrogate
function with a superior empirical performance than the existing primal-dual method.



CHAPTER 3. AUGMENTED LAGRANGIAN SAFE REINFORCEMENT LEARNING 29

Algorithm 2: Augmented Lagrangian RL
Pick cρ ∈ [1,∞), dual ascent stepsize ℓ ∈ R+, and convergence tolerance ε > 0;
Initialize ρ(0) ∈ R+, λ(0) = 0;
Randomly initialize the policy π0;
for k = 0, 1, 2, . . . do

πk ← argmaxπ R(λ
(k), ρ(k), π);

λ(k+1) ←
⌊
λ(k) − ℓ

(
E
[∑∞

t=0 γ
tRelu(g(zt, at))|πk

])⌋
−

ρ(k+1) ← cρρ
(k);

return πk if ||πk − πk−1||∞ ≤ ε.

Notice that R(π, λ, 0) is not equivalent to the objective function in (3.7), E[
∑∞

t=0 γ
t(r(zt, at)+

λg(zt, at))|π], because the constraint E[Relu(g(zt, at))|π] ≤ 0, is a sufficient but not necessary
condition for the constraint E[g(zt, at)|π] ≤ 0.

We will show in Section 3.4 that under certain conditions, as ρ → ∞, any infeasible policy
would become sub-optimal when we maximize the function R(π, λ, ρ), with λ fixed. Thus, an
optimal policy returned by optimizing (3.9) for both π and λ would eventually become safe and
optimal as we increase ρ. In addition, we remark here that the introduction of the Relu function or
other non-negative activation functions in (3.9) is necessary because otherwise, it is not generally
true that an optimal policy for (3.9) is also optimal for (3.5), due to the fact that under an optimal
policy π∗ of problem (3.5), E[g(zt, at)2|π∗] may be nonzero and therefore R(π, λ, ρ) → −∞, as
ρ→∞.

Following the same spirit of the primal-dual algorithm in constrained optimization [238, 245,
63], we propose Algorithm 2.

In Algorithm 2, we initialize λ(0) = 0 and ρ(0) ∈ R+, where R+ denotes the set of non-
negative real numbers. At the k-th iteration, we first find a policy πk ∈ argmaxπ R(λ

(k), ρ(k), π),
which could be done by any unconstrained RL algorithm in the literature (e.g., SAC [121], DDPG
[192], TRPO [272]). Then, we update the Lagrange multiplier by dual ascent λ(k+1) = ⌊λ(k) −
ℓ(E[

∑∞
t=0 γ

tRelu(g(zt, at))|πk])⌋−, where the function ⌊·⌋− : R→ R− is defined as follows:

⌊x⌋− =

{
0 if x > 0,

x otherwise.
(3.10)

We also update ρ(k+1) = cρρ
(k), where cρ ∈ [1,∞) is the increasing rate of the quadratic penalty

coefficient ρ(k) as the iteration index k grows.

3.4 Convergence Analysis
In this section, we show that under certain conditions on the feasible policy set, by optimizing the
surrogate function (3.9) we recover an optimal policy for (3.5).
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Proposition 3. Under Assumption 1, consider the primal maximization of (3.7), denoted by
dρ(λ) : R→ R and defined as

dρ(λ) :=max
π

E

[
∞∑
t=0

γt(r(zt, at) + λ · Relu(g(zt, at))−
ρ

2
· Relu(g(zt, at))2)

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0.

(3.11)

Let λ∗ρ := argminλ≤0 dρ(λ). Suppose that under an optimal policy π∗ of problem (3.5), g(zt, at) ≤ 0,
∀t ∈ {0, 1, . . . }. We define a policy π∗

ρ(λ) as

π∗
ρ(λ) := argmax

π
E

[
∞∑
t=0

γt
(
r(zt, at) + λ · Relu(g(zt, at))−

ρ

2
· Relu(g(zt, at))2

)∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0.

(3.12)

Then, as ρ→∞, we have,∣∣∣∣∣
∣∣∣∣∣E
[

∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π∗

]
− E

[
∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π∗
ρ(λ

∗
ρ)

]∣∣∣∣∣
∣∣∣∣∣
2

→ 0. (3.13)

The condition that under an optimal policy π∗ in the original problem (3.5), g(zt, at) ≤ 0,
∀t ∈ {0, 1, . . . }, is equivalent to the condition E[g(zt, at)|π∗] ≤ 0, ∀t ∈ {0, 1, . . . }, if we have a
deterministic dynamical system. In addition, this condition could be easy to meet for safety-critical
systems, due to the fact in many control applications we have a safe but sub-optimal base controller,
e.g., Autopilot [270], safe robot-human interaction [230], autonomous driving [115].

We remark here that the analysis in Proposition 3 is conservative. However, in Section 3.5 we
consider instantaneous constraints g which we do not know a priori are deterministically satisfiable
for each t. That is, we consider g for which there may not be a policy π for which g(zt, at) ≤ 0,∀t.
Still, our empirical results suggest that when the parameter ρ is sufficiently large, Algorithm 2
returns a high-quality safe policy.

3.5 Experiments
We validate Algorithm 2 in experiments with different initial values of ρ in the settings of a tabular
MDP [286], inverted pendulum [39], and half-cheetah [39]. In all experiments, we assume that
the constraints are of the form E[Relu(h(zt, at))|π] ≤ 0 for some function h : Z × A → R, and
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therefore when ρ0 = 0, R(π, λ, 0) recovers the classical Lagrangian dual method adopted in [7, 1,
63, 61, 245].

We first consider a constrained tabular MDP in Figure 3.2a, where we have 10× 3 states, each
corresponding to a grid cell of a table. The agent starts from an initial state and tries to reach the
goal state. At each grid cell, the agent can stay at the same cell or move up, down, left, or right.
For those grid cells on the boundary, no action moving out of the table is permitted. The constraint
function g(zt, at) takes the value 1 if zt is considered unsafe and 0 otherwise. The agent receives
a reward r(s, a) = 10 for reaching the goal state (which is terminal) and a reward r(s, a) = −1
otherwise. In this experiment, we keep the quadratic penalty coefficient fixed at each iteration in
Algorithm 2, and therefore we pick the parameter cρ = 1. At the k-th iteration of Algorithm 2, we
apply the classical tabular Policy Iteration [286] to find the policy πk.

In Figure 3.2b, we show that the duality gap eventually goes to zero as we update the Lagrange
multiplier at each iteration, which empirically validates Proposition 1. In Figure 3.2c, we observe
that as ρ0 grows, the speed at which the policy returned by Algorithm 2 converges to the optimal
policy increases. In Figure 3.2d, we measure the accumulated constraint

∑∞
t=0 E[g(zt, at)|π], and

we observe that it decreases as we increase ρ0. This implies that the surrogate function (3.9) could
promote safety during learning, compared with the case ρ0 = 0, i.e., the Lagrangian dual approach
in [7, 1, 63, 61, 245].

Subsequently, we consider a constrained pendulum example, where we add an additional
constraint corresponding to avoiding collision with an obstacle near the pendulum, i.e., θt /∈ [π

2
, π],

to the OpenAI Gym "Pendulum-v0" environment [39]. To satisfy Assumption 1, we reformulate
this constraint as E[g(θt)|π] ≤ 0, where g(θ) = 1 if θ ∈ [π

2
, π] and g(θ) = 0 otherwise. Unlike the

previous tabular MDP example where we can find a globally optimal policy, we may only obtain a
locally optimal policy due to the non-convexity of RL problems. In line 2 of Algorithm 2, we find a
locally optimal policy by running a fixed number of steps of Deterministic Deep Policy Gradient
(DDPG) [192]. By picking cρ = 1.15, we slowly increase the quadratic penalty coefficient ρ as the
iteration number grows. We update the parameters λ and ρ almost after 6× 104 steps of DDPG, as
indicated by the vertical dashed lines in Figure 3.3.

We run experiments with different random seeds and show the average performance and the
standard deviation in Figure 3.3. We see that as ρ0 increases, the rate at which the policy converges
increases and the constraint violations decreases in Figure 3.3. In particular, we observe that the
standard deviation of the constraint violations dramatically decreases as ρ0 grows in Figure 3.3b,
which suggests that optimizing the surrogate function (3.9) promotes both safety and stability during
learning.

Finally, we consider the constrained half-cheetah example [197], which is adapted from the
OpenAI gym "Half-cheetah-v0" environment [39] by adding an additional constraint |vx(t)| ≤ 1 on
the horizontal velocity of the cheetah. We reformulate the constraint as E[Relu(|vx(t)| − 1)|π] ≤ 0.
In line 2 of Algorithm 2, we find a locally optimal policy by running a fixed number of steps of Soft
Actor Critic (SAC) [121]. By picking cρ = 1.5, we rapidly increase the quadratic penalty coefficient
ρ as the iteration number grows. Similar to the constrained Pendulum experiments, we update λ
and ρ every 1.6× 105 steps of SAC, as indicated by the vertical dashed lines in Figure 3.4. As we
increase ρ0, we see in Figure 3.4 that the speed at which the policy converges increases and the
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Figure 3.2: Tabular MDP Results

constraint violations decreases. However, when ρ0 is too large, e.g., ρ0 = 2.0 in Figure 3.3a, we
observe that the exploration is inhibited, which suggests that by tuning ρ0 we could control the
trade-off between exploration and safety. We also plot the state trajectory under polices learned from
Algorithm 2 with different values of ρ0 in Figure 3.5. We observe that as long as ρ0 is sufficiently
large, the learned policies perform safely with a similar performance quality. When ρ0 is too large,
the learned policy becomes conservative possibly due to poor exploration.

3.6 Conclusion
In this chapter, we considered Instantaneously Constrained RL problems. We first extended a
recent result on Cumulatively Constrained RL problems to characterize the strong duality of
Instantaneously Constrained RL problems. Inspired by the Augmented Lagrangian method, we
proposed a new surrogate function that can promote safety for instantaneous constraints, i.e.,
reducing the constraint violations during learning. Our surrogate function can be optimized using
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Figure 3.3: Constrained pendulum results
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Figure 3.4: Constrained half-cheetah results
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Figure 3.5: The state trajectory vx(t) of constrained half-cheetah under learned policies corresponding to different
values of ρ0. The horizontal black dashed line indicates the constraint |vx| ≤ 1.

common unconstrained RL algorithms. We provided theoretical results to justify the use of
unconstrained algorithms, which requires stationary Lagrange multipliers to yield time-invariant
rewards in the (augmented) Lagrangian. Theoretical results also show that under certain conditions
we can recover an optimal policy. Finally, our empirical results suggested that our surrogate function
could promote safety during learning. Additionally, we observed that our surrogate function reliably
yielded a faster convergence relative to a standard Lagrangian dual approach.
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Appendix
Proposition 4. Consider a linear system zt+1 = Azt, where A ∈ R2×2. Consider a fixed initial
condition z0 ≤ 0. Suppose that the eigenvalues of A are real and positive, and there exist
two eigenvectors v1 ≤ 0 and v2 ≤ 0 whose convex hull contains z0. Then, we have zt ≤ 0,
∀t ∈ {0, 1, . . . } and

∑∞
t=0 zt ≤ 0.

Proof. Denote by λi the i-th eigenvalue of A. Let vi = [vi1, vi2] be an eigenvector associated with
λi. Consider initial condition z0 = [z01, z02] ≤ 0. Construct

c1 =
v22z01 − v12z02
v22v11 − v12v21

, c2 =
v11z02 − v21z01
v22v11 − v12v21

. (3.14)

We can verify that z0 = c1v1 + c2v2. Suppose that there exists a t′ ∈ {0, 1, . . . } such that zt′ ≤ 0
is not true. Then, it follows that zt′ = c1λ

t′
1 v1 + c2λ

t′
2 v2 ≤ 0 is not true, i.e., either c1 < 0 or

c2 < 0. However, since z0 is in the convex hull of v1 and v2, we have v21
v22
≤ z01

z02
≤ v11

v12
, which yields

v22z01 − v12z02 ≥ 0 and v11z02 − v21z01 ≥ 0. Recall that v1 and v2 are in the third quadrant. We
have v22v11 − v12v21 ≥ 0. This suggests that c1 ≥ 0 and c2 ≥ 0, which presents a contradiction.
Thus, we have zt ≤ 0, for all t ∈ {0, 1, . . . }, and it also yields

∑∞
t=0 zt ≤ 0.

Proof of Proposition 1. By definition, the condition E[g(zt, at)|π] ≤ 0, ∀t ∈ {0, 1, . . . }, implies
the condition E[

∑∞
t=0 γ

tg(zt, at)|π] ≤ 0. By combining the condition in Proposition 1, we have
that E[g(zt, at)|π] ≤ 0, ∀t ∈ {0, 1, . . . }, if and only if E[

∑∞
t=0 γ

tg(zt, at)|π] ≤ 0.
Let π∗ be an optimal policy for (3.5). Define p∗ := E[

∑∞
t=0 γ

tr(zt, at)|π∗]. From Theorem 1 in
[245], we have

p∗ = min
λ

max
π

E

[
∞∑
t=0

γt(r(zt, at) + λg(zt, at))

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), t ∈ {0, 1, . . . },
z0 ∼ p0.

(3.15)

By construction, for any non-positive Lagrange Multipliers {λt}∞t=0, we have

max
π

E

[
∞∑
t=0

γt(r(zt, at) + λtg(zt, at))

∣∣∣∣∣π
]

≥E

[
∞∑
t=0

γt(r(zt, at) + λtg(zt, at))

∣∣∣∣∣π∗

]

≥E

[
∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π∗, z0

]
+

∞∑
t=0

γtλtE[g(zt, at)|π∗]

≥p∗

(3.16)

which also implies
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min
{λt}∞t=0

max
π

E

[
∞∑
t=0

γtr(zt, at) + λtg(zt, at)

∣∣∣∣∣π
]
≥ p∗. (3.17)

Let λ∗ be an optimal solution of (3.15). Subsequently, suppose λ̃t := λ∗, ∀t ∈ {0, 1, . . . }. Then,
we have

max
π

E

[
∞∑
t=0

γt(r(zt, at) + λ̃tg(zt, at))

∣∣∣∣∣π
]
= p∗, (3.18)

which implies that

min
{λt}∞t=0

max
π

E

[
∞∑
t=0

γt(r(zt, at) + λtg(zt, at))

∣∣∣∣∣π
]
≤ p∗ (3.19)

It follows from (3.17) and (3.19) that strong duality holds for (3.5).

Proof of Proposition 2. Observe that the problem (3.7) is the Lagrangian relaxation of

max
π

E

[
∞∑
t=0

γtr(zt, at)

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0,

E

[
∞∑
t=0

γtg(zt, at)

∣∣∣∣∣π
]
≤ 0.

(3.20)

Recall that the condition E[g(zt, at)|π] ≤ 0, ∀t ∈ {0, 1, . . . }, yields E[
∑∞

t=0 γ
tg(zt, at)|π] ≤ 0.

Suppose that under any closed-loop dynamics zt+1 ∼ pz(·|zt, at) with at ∼ π(zt), the constraint
E[
∑∞

t=0 γ
tg(zt, at)|π] ≤ 0 implies that E[g(zt, at)|π] ≤ 0, ∀t ∈ {0, 1, . . . }. Then, the problem

(3.20) shares the same feasible domain with problem (3.6). From Theorem 1 in [245], strong duality
holds for (3.7). By Proposition 1, strong duality also holds for (3.6). Therefore, a pair of optimal
solutions to problem (3.7) implies that ({λ̃t}∞t=0, π̃

∗) is a pair of optimal solutions to (3.6).

Before we present the proof of Proposition 3, we first introduce the following Lemma, which
builds the foundation for the proof of Proposition 3.

Lemma 1. Under Assumption 1, consider the function d(λ) : R− → R defined as

d(λ) := max
π

E

[
∞∑
t=0

γt(r(zt, at) + λ(g(zt, at))

∣∣∣∣∣π
]

s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },
at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0,

(3.21)
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and the function dρ(λ) : R− → R defined as

dρ(λ) := max
π

E

[
∞∑
t=0

γtr(zt, at) + λ · Relu(g(zt, at))

−ρ
2
· Relu(g(zt, at))2

∣∣∣π]
s.t. zt+1 ∼ pz(·|zt, at), ∀t ∈ {0, 1, . . . },

at ∼ π(zt), ∀t ∈ {0, 1, . . . },
z0 ∼ p0.

(3.22)

Let λ∗ := argminλ≤0 d(λ) and λ∗ρ := argminλ≤0 dρ(λ). Suppose that under an optimal policy
π∗ of problem (3.5), g(zt, at) ≤ 0 for all t ≥ 0 under an optimal policy π∗. Then, we have
d(λ∗) ≤ dρ(λ

∗
ρ) ≤ dρ(λ

∗) ≤ d(λ∗).

Proof. On one hand, we observe that for any ρ ≥ 0, dρ(λ) ≤ dρ=0(λ) ≤ d(λ), and therefore,
dρ(λ

∗) ≤ d(λ∗). By definition, dρ(λ∗ρ) ≤ dρ(λ
∗). Moreover, observe that π∗ is a feasible solution to

problem (3.11), and under the policy π∗,

dρ(λ
∗
ρ) ≥E

[ ∞∑
t=0

γt
(
r(zt, at) + λ∗ · Relu(g(zt, at))

− ρ

2
· Relu(g(zt, at))2

)∣∣∣π∗
]

=E
[ ∞∑

t=0

γtr(zt, at)
∣∣∣π∗
]
= d(λ∗).

(3.23)

Thus, d(λ∗) ≤ dρ(λ
∗
ρ) ≤ dρ(λ

∗) ≤ d(λ∗).

Proof of Proposition 3. We aim to show that as ρ → ∞, any infeasible policy π′ will become
suboptimal for problem (3.12). Given ρ ≥ 0, suppose that π∗

ρ(λ
∗
ρ) is infeasible. Then,

E
[ ∞∑

t=0

γtg(zt, at)
∣∣∣π∗

ρ(λ
∗
ρ)
]
> 0, (3.24)

because otherwise π∗
ρ(λ

∗
ρ) would be feasible.

Define the function

J(π) := E
[ ∞∑

t=0

γtr(zt, at)
∣∣∣π]. (3.25)

There are only two cases: either λ∗ρ < λ∗ or λ∗ρ ≥ λ∗.
For the first case that λ∗ρ < λ∗, since π∗

ρ(λ
∗
ρ) is an optimal policy in problem (3.12), we have
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d(λ∗) ≥E
[ ∞∑

t=0

γt(r(zt, at) + λ∗g(zt, at))
∣∣∣π∗

ρ(λ
∗
ρ)
]

=J(π∗
ρ(λ

∗
ρ)) + λ∗E

[ ∞∑
t=0

γtg(zt, at)
∣∣∣π∗

ρ(λ
∗
ρ)
]

>J(π∗
ρ(λ

∗
ρ)) + λ∗ρE

[ ∞∑
t=0

γtg(zt, at)
∣∣∣π∗

ρ(λ
∗
ρ)
]

>dρ(λ
∗
ρ)

(3.26)

which contradicts that d(λ∗) = dρ(λ
∗
ρ), as shown in Lemma 1.

For the second case that λ∗ρ ≥ λ∗, we can pick ρ′ ≥ 0 such that

J(π∗
ρ(λ

∗
ρ))−

ρ′

2
E
[ ∞∑

t=0

γtRelu(g(zt, at))2
∣∣∣π∗

ρ(λ
∗
ρ)
]
< J(π∗). (3.27)

Subsequently, we have

dρ′(λ
∗
ρ′) =J(π

∗)

>J(π∗
ρ(λ

∗
ρ))−

ρ′

2
E
[ ∞∑

t=0

γtRelu(g(zt, at))2
∣∣∣π∗

ρ(λ
∗
ρ)
]

≥J(π∗
ρ(λ

∗
ρ))− λ∗ρ′E

[ ∞∑
t=0

Relu(γtg(zt, at))
∣∣∣π∗

ρ(λ
∗
ρ)
]

− ρ′

2
E
[ ∞∑

t=0

γtRelu(g(zt, at))2
∣∣∣π∗

ρ(λ
∗
ρ)
]

(3.28)

which implies that π∗
ρ(λ

∗
ρ) becomes a sub-optimal solution in problem (3.12), as ρ increases to ρ′.

For any infeasible policy π′, there exists a sufficiently large but finite ρ′ such that π′ is sub-
optimal for problem (3.12), ∀ρ ≥ ρ′. Recall that π∗ is an optimal policy. Thus, as ρ→∞, it holds
that ∥∥∥E[ ∞∑

t=0

γtr(zt, at)
∣∣∣π∗
]
− E

[ ∞∑
t=0

γtr(zt, at)
∣∣∣π∗

ρ(λ
∗
ρ)
]∥∥∥

2
→ 0. (3.29)
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Chapter 4

Layered Safety Approaches to Multi-Agent
Reinforcement Learning for Air Mobility

In this chapter, we integrate reachability analysis with safe reinforcement learning to develop an
efficient layered architecture that enhances the safety of multi-agent coordination tasks, such as air
mobility in dense airspace. This approach enables scalable and safe decision-making in complex,
safety-critical environments. The chapter is based on the published work [60], co-authored with
Jason J. Choi, Jasmine Jerry Aloor, Jingqi Li, Maria G. Mendoza, Hamsa Balakrishnan, and Claire
J. Tomlin.

4.1 Background

Motivation
Collision-free operation is a fundamental requirement for multi-robot coordination tasks, such as
formation control [254], multi-robot payload transport [196], and autonomous navigation [64].
When only two agents interact, there is a single collision-avoidance constraint, which can be easily
managed using a safety filter. However, with multiple nearby agents, the resolution of a constraint
between two agents can conflict with a constraint involving a third agent. These conflicts may result
in suboptimal task performance, such as creating a severe gridlock that prevents agents from taking
actions to achieve their tasks. More crucially, the inability to simultaneously satisfy all constraints
can result in an agent taking an action that makes collision inevitable. In particular, this issue poses
a significant safety risk in high-density scenarios like air taxi operations for Advanced Air Mobility
(AAM) [3].

Prior works have addressed safe multi-robot coordination problems by using model-based control
methods like control barrier functions (CBFs) [306] and reachability analysis [307]. Although CBFs
and reachability provide a framework for safety assurance, they generally offer rigorous guarantees
only when a single safety constraint is considered. The fundamental challenge in extending these
methods to the multi-agent case is that the intersection of the safe sets corresponding to individual
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constraints (each derived from a pair of agents) does not necessarily represent the true safe set when
all constraints are considered together (see Figure 4.2 for an example). In the Hamilton-Jacobi
(HJ) reachability literature, the gap between these two regions is referred to as the “leaky corner"
[215]. Agents that enter a leaky corner can no longer satisfy all safety constraints simultaneously
and are inevitably forced to violate at least one. Unfortunately, identifying leaky corners without
recomputing the reachability analysis from scratch while incorporating all constraints remains an
open problem [172, 147]. Performing reachability analysis or designing CBFs for all possible
combinatorial interaction scenarios is computationally intractable. In summary, the fundamental
challenge in achieving scalability with such control-theoretic methods in multi-agent settings lies in
handling conflicting constraints.

In this chapter, we combine the control barrier-value function (CBVF) [59], which is a CBF
design method based on Hamilton-Jacobi reachability, with multi-agent reinforcement learning
(MARL) into a layered safety architecture. This integration is driven by the essential role MARL
can play in learning to strategically optimize task performance in multi-agent scenarios while
proactively navigating potential conflicting constraints, which helps achieve safer and more effective
behaviors. As a result, our approach enhances both safety and performance to a level that neither
safe control methods nor MARL alone could achieve.

Contributions
1. Architecture: We propose a layered architecture that combines safety-informed MARL-based

policy and CBVF-based safety filtering mechanism (Figure 4.1), which can significantly
mitigate the issues arising from conflicting constraints, such as inefficiency due to gridlock
and the leaky corner problem.

2. Training method: We propose a method to incorporate a CBVF-based safety filter into the
training of MARL, considering two key aspects. First, a main challenge in this safety-
constrained training is that the conservativeness introduced by safety filtering can hinder the
exploration necessary for MARL to learn an effective policy. To address this, we introduce
curriculum learning into the application of the safety filter, carefully balancing safety and
exploration. Second, based on reachability analysis, we derive a conservative estimate of
the safe region that is free from the issue of conflicting constraints (represented by the range
rconflict in Figure 4.1). Based on this estimate, the MARL policy is informed to minimize
entry into this region, thereby avoiding potential conflicting constraints. Crucially, unlike
many existing methods [27, 330], our proposed training approach does not impose safety
through penalty terms directly penalizing the safety violation. Instead, MARL learns to
enhance safety by making strategic decisions that mitigate conflicting constraints. This
indirect approach significantly reduces unnecessary conservativeness, a common side effect
of safe reinforcement learning-based methods.

3. Experimental validation: We conduct hardware experiments using Crazyflie drones and
perform simulations of high-density AAM scenarios to validate our hypothesis.
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Figure 4.1: The figure shows our approach using an example scenario of four agents. Agent i must reach the waypoints
shown on the right. Our Layered Safe MARL framework consists of three key components, and we describe it as
applied through agent i: 1) The MARL policy generates an action based on the observation within the range robs while
aiming to reduce the likelihood of entering other agents’ potential conflict range rconflict. 2) The prioritization module
identifies the most critical neighboring agent in a potential collision scenario by evaluating the CBVF. In this example,
agent j1 is within the potential conflict region and forms a potential collision pair. 3) The CBVF safety filter adjusts the
action to ensure safe navigation.

The remainder of this chapter is organized as follows. Section 4.2 provides background on
safety for multi-agent coordination. Section 4.3 describes the system, environment, and problem
statement. Section 4.4 presents the safety analysis of multi-agent problems under collision avoid-
ance constraints. Sections 4.5 and 4.6 present our proposed Layered Safe MARL approach, the
experiments performed, and the results obtained. We discuss some limitations of our approach in
Section 4.7. Finally, we conclude and propose future work in Section 4.8.
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4.2 Related works

Core related works—safety for multi-agent problems
Classic Control barrier function (CBF)-based approaches. CBFs [9] are used to design safe
controllers via the principle of set invariance, and their application to safe multi-agent coordination
has been explored in [306, 146, 111]. A primary challenge in employing CBFs lies in constructing
a valid CBF, which often requires system-specific, handcrafted designs [306]. In [111, 146], a more
generic design principle based on exponential CBFs [236] is employed; however, this approach does
not address control input bounds. Another common limitation of existing methods is the treatment
of multiple, potentially conflicting CBF constraints, which can lead to infeasibility. To address
this, we adopt the CBVF-based framework to construct valid CBFs and handle multiple safety
constraints in multi-agent coordination via a layered safety architecture.

Neural CBF-based approaches. While learning-based methods [257, 330, 331, 332] are pro-
posed to design approximate CBFs, they lack deterministic safety guarantees due to the nonconvexity
of the learning problems. Graphical CBF (GCBF) in [330, 331] offers a CBF based on local ob-
servations under multi-agent interaction, but how it learns to handle multiple constraints is not
explicitly examined. Discrete Graphical Proximal Policy Optimization (DG-PPO) [332] proposes
a model-free approach to learning decentralized CBFs and a safe control policy optimizing the
task objective. Unlike DG-PPO, our approach leverages model-based information to compute
Control Barrier Value Functions (CBVFs) [59] for pairwise collision avoidance, thereby ensuring
deterministic safety guarantees. Finally, the aforementioned methods focus on learning safety
certificates and policies for uncertain dynamical systems, often with high-dimensional system states.
In contrast, our work specifically addresses the challenge of conflicting constraints in multi-agent
interactions—a critical issue that persists even when each agent’s dynamics can be effectively
represented by simple, low-dimensional models.

Reachability for multi-agent interaction. Classical HJ reachability analysis computes the set
of states that are guaranteed to be safe by computing the optimal control value function with
dynamic programming. Prior works have investigated the reachability analysis for the special case
of three-agent interaction [50] and using the value function to guide the planner, and its optimal
control law is used in the tracking controller for safe multi-agent interaction [307]. Due to the
curse of dimensionality in dynamic programming [28], the applicability of HJ reachability to
high-dimensional systems is inherently limited. Recent work leveraged deep learning techniques to
learn high-dimensional reachability [19, 134, 133, 336, 182], demonstrating their use in multi-agent
collision avoidance scenarios. However, the learned solution does not generalize to new scenarios
involving different agents. Additionally, the question of how to certify the safety of the learned safe
set is still an open research topic [323, 194, 182]. Finally, alternative methods for solving reachable
sets with over-approximation have been used in the context of multi-agent problems and air traffic
management [291, 30].

Safe multi-agent reinforcement learning (MARL). A common approach to safe MARL is through
constrained Markov decision processes (CMDPs) [7]. In theory, CMDPs have no duality gap under
certain assumptions [245], but in practice, training with PPO-Lagrangian [260], and its multi-agent
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variant [117] often suffers from instability due to suboptimal policies and inaccurate Lagrange
multipliers. Another approach is shielded MARL, which uses safety filters [132, 27] to enforce
safety during training and deployment. Originally introduced for single-agent RL [5], this method
has been extended to multi-agent settings [80]. However, designing a shielding policy remains
challenging due to the curse of dimensionality.

Other related works
Multi-agent reinforcement learning. Multi-agent extensions of single-agent RL algorithms, such
as PPO [271] and DDPG [192], include MA-PPO [325] and MA-DDPG [201], both of which
assume full observability. However, in many real-world applications, such as autonomous driving,
agents have to make decisions based on their local information and coordinate effectively with other
agents. A key challenge in MARL is the decentralized decision-making under partial observation.
InforMARL [231] leverages graphical neural networks for information sharing to develop an
efficient, coordinated learning framework for acquiring a high-performance MARL policy. Our
approach builds on InforMARL to allow agents to make decentralized decisions based on their local
observations.

Control and game-theoretic methods. In collaborative multi-agent settings, Model Predictive
Control (MPC) has been used to ensure safe control [283, 95, 82, 334, 111] and its integration with
MARL is explored in [71]. However, the complexity of the constrained optimization involved in
MPC often limits its real-time execution in complex systems. When agents pursue distinct objectives,
the problem becomes a non-cooperative game, with various solution approaches proposed in prior
work [24, 86, 227, 104, 33, 138]. However, treating the safety constraints in the game-theoretic
solutions remains an open research challenge [167, 181].

Collision avoidance & conflict resolution for air traffic control. With the growing interest in
AAM applications such as drone deliveries and air taxi services, developing a scalable low-altitude
air traffic management system that is automated or semi-automated has become an urgent need.
Compared to current aviation, AAM operations are expected to be large-scale, ad hoc, on-demand,
and dynamic. These characteristics motivate the development of a new air traffic management
(ATM) framework that can achieve scalable, efficient, and collision-free operations [3, 157].

Existing work on collision avoidance and conflict resolution for ATM is categorized into strategic
deconfliction, which focuses on preemptive deconfliction, and tactical deconfliction, which focuses
on imminent proactive collision avoidance. A substantial body of work leverages control theory
to design methods for strategic deconfliction. An early work proposed a flight mode switching
framework derived from a hybrid automaton and reachability-based analysis [295]. As this method
suffers from the computational complexity of HJ reachability, [50] uses a mixed integer program to
assign avoidance responsibilities and resolve conflicts cooperatively. The work in [51] alternatively
organizes vehicles into platoons on structured air highways, treating each platoon as a coordinated
entity. While these methods provide strong safety guarantees, they rely on a predefined set of
coordination rules for those guarantees to hold. Additionally, the approach in [68] uses preemptive
strategic speed adjustments to prevent perceived conflicts without requiring controller intervention.
Finally, a negotiation-based framework is introduced in [318] for collision-free strategic planning.
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In parallel, the aviation community employs tactical collision avoidance modules as the final
layer for safety. The Traffic Alert and Collision Avoidance System (TCAS) is an onboard system
developed in the 1980s for conventional airliners, designed to detect and prevent collisions through
vertical separation [163]. A method for tactical collision avoidance through horizontal resolution is
also proposed in [83]. The successor of TCAS, the Airborne Collision Avoidance System (ACAS)
X, integrates predictive modeling with real-time sensor inputs [130] using a partially observable
Markov decision process framework. These existing methods crucially rely on the assumption that
no more than two vehicles are involved in a single conflict resolution. This assumption is typically
upheld by the upstream strategic deconfliction decisions.

Various methods in both strategic and tactical deconfliction are integrated further into layered,
hierarchical decision-making architectures, enhancing the safety of ATM [296, 289, 84]. Our work
is inspired by these layered approaches in the aviation community; however, the separations between
layers underlying the existing approaches do not directly apply to high-volume AAM scenarios.
As such, we have to consider how to achieve safe collision avoidance in instances of simultaneous
multi-vehicle engagement.

Finally, MARL-based methods have also been explored in air traffic control to ensure tactical
deconfliction through preconditioned strategic planning [53], demonstrating improved safety and
efficiency over rule-based methods. However, the available actions of each agent in this work are
limited to the adjustment of speed or position.

4.3 Problem Formulation
In this section, we define the system, environment, each agent’s dynamics, and their safety require-
ment, and the problem statement.

Preliminaries

We formulate our multi-agent system as a Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) defined by the tuple ⟨N,S,O,A, P, R, γ⟩, where:

• N is the number of agents

• s(i) ∈ RD is the state of each agent with D as the state dimension, including their position
variables,

• s ∈ S = RN×D is the environment state, which is the concatenation of each agent’s states
and the state space of the environment, respectively,

• o(i) = O(s(i)) ∈ Rd is the observation of agent i,

• a(i) ∈ A is the action space for agent i. a(i) denotes the sequence of actions for timesteps
k = 0, 1, · · · ,
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• P (s′|s, a) is the transition probability from s to s′ given the joint action a, the concatenation
of each agent’s actions,

• R(o(i), a(i)) is the common reward function of all agents,

• γ ∈ [0, 1) is the discount factor.

The objective is to find a policy Π =
(
π(1), · · · , π(N)

)
, where π(i)

(
a(i)|o(i)

)
is agent i’s policy that

selects an action based on its observation.

Agent’s dynamics & safety constraint

We consider each agent’s dynamics as a sampled data system, meaning that their underlying physical
dynamics evolve continuously in time, but their actions are updated at discrete timesteps. Their
continuous dynamics are given as

ṡ(i)(t) = f (i)(s(i)(t), a(i)(t)), s(i)(0) = s
(i)
0 , (4.1)

and their action is updated at every sampling time ∆t—i.e. the action sequence a(i) maps to the
signal in time given as a(i)(t) ≡ a

(i)
k for t ∈ [k∆t, (k + 1)∆t). Their discrete-time state is given as

s
(i)
k = s(i)(k∆t).

The primary safety constraint we consider in this work is the collision avoidance between agents.
For all time t ≥ 0, agents must satisfy

dist(s(i)(t), s(j)(t)) ≥ rsafety, for ∀i ̸= j, (4.2)

where rsafety is the safety distance.
In the subsequent safety analysis, we consider the relative dynamics between a pair of agents,

(i, j). We define the relative state between the agents, which can be given as s(ij) := rel(s(i), s(j)),
where rel is a mapping from two agents’ states to the relative state. We assume that relative position
variables are part of s(ij); thus, dist can be defined based on s(ij). The dynamics of the relative state
are described by

ṡ(ij)(t) = f (ij)
(
s(ij)(t), a(i)(t), a(j)(t)

)
, (4.3)

which is derived from (4.1).

Observations

For each agent to learn an effective policy for performance and safety, the observations o(i) need
to contain adequate information. We make the following assumptions that are generic for many
multi-agent robot tasks.

• Each agent i’s observation o(i) consists of its local observations of other agents and entities
relevant to their task goals (e.g., goal location) within their observation range defined as robs

and any additional information needed for its task. Thus, the reward given to agent i at each
timestep, R(o(i), a(i)), is defined based on its local observation and action.
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• We define I(i) : N→2N as the index set of the agents within the observation range of agent i.
We assume that o(i) contains information that can be used to reconstruct s(ij) from o(i) for all
j∈I(i). Thus, for agent i, with its observation, it is feasible to execute a feedback policy on
s(ij) if agent j is within its observation range. This assumption will be used in the design of
our safety framework.

Problem statement

To sum up, the decentralized multi-agent coordination problem, subjected to the collision avoidance
constraint we consider in this work, can be described as

max
π(i)

E

[
∞∑
k=0

R(o
(i)
k , a

(i)
k )

]
s.t. sk+1 ∼ P (s | sk, ak)

a
(i)
k ∼ π(i)(a(i) | o(i)k )

dist(s(i)(t), s(j)(t)) ≥ rsafety,

for ∀i ̸= j,∀t ≥ 0,

(4.4)

where each agent’s action a(i)k is determined by their policy π(i), based on their local observations.
The agent learns to maximize its objective subject to its collision avoidance constraint.

4.4 Safety Analysis
In this section, we present the safety analysis of the multi-agent problem under collision avoidance
constraints. Specifically, we first derive the safety analysis for a pair of agents and then investigate
how it applies to the multi-agent scenario.

Collision avoidance for a pair of agents
To ensure dist(s(ij)(t)) ≥ rsafety for all t ≥ 0, we consider the following cost function, which
captures the closest relative distance along the trajectory:

J(s
(ij)
0 ,a(i),a(j)) := min

t∈[0,∞)
dist

(
s(ij)(t)

)
. (4.5)

If J(s(ij)0 ,a(i),a(j)) ≥ rsafety, the agents i and j are rendered safe (collision-free) by their actions.

Reachability analysis for computing the maximal safe set

The agent pair prioritizing safety would want to maximize (4.5) to move away from each other.
From this intuition, we can consider the following optimal control problem

V (s
(ij)
0 ) := max

a(i),a(j)
J(s

(ij)
0 ,a(i),a(j)). (4.6)
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Figure 4.2: Running example illustrating the CBVF-based safe sets, safety filtering, and the leaky corner issue. (a)
Visualization of the ego agent (s(1) = [0.4km, 0km, 0o, 110 kt])’s maximal safe sets (exterior of the level sets) against
two agents, s(2)=[1.7km, 0.3km,−120o, 110kt] and s(3)=[1.7km,−0.6km,−180o, 60kt]. (b) In the two-agent case,
each agent executing their CBVF safety filters (4.12) successfully prevents collision. (c) In the three-agent case,
although agent 1 started inside the intersection of S(12) and S(13), it is not able to prevent safety violation. This is
because the initial state of robot 1 is in the leaky corner.

Solving V is a specific type of reachability problem called the minimal Backward Reachable Tube
(BRT) problem [302]. To see this, consider L(ij) = {s(ij) | dist(s(ij)) < rsafety}, the near-collision
region, as the target set. The minimal BRT of L(ij) is defined as

BRT (L(ij)) := {s(ij)0 | ∀a(i),a(j), ∃t ≥ 0 s.t. s(ij)(t) ∈ L(ij)}, (4.7)

which encapsulates a region from which no action sequence can prevent the relative state from
entering the near-collision region L(ij). Using the definition in (4.6), we can express BRT (L(ij))

as {s(ij)0 | V (s
(ij)
0 ) < rsafety}.

The complement of BRT (L(ij)) becomes the maximal safe set from which the agent pair can
avoid collisions since it encompasses all the states from which there exist action sequences a(i) and
a(j) that can avoid collision. This maximal safe set is denoted as

S(ij) := {s(ij)0 | ∃a(i),a(j), s.t. ∀t ≥ 0, s(ij)(t) /∈ L(ij)}, (4.8)

and satisfies
S(ij) =

(
BRT (L(ij))

)c
= {s(ij)0 | V (s

(ij)
0 ) ≥ rsafety}. (4.9)

We use the open-source library in [165] to compute (4.6) and S(ij), which computes the Hamilton-
Jacobi (HJ) partial differential equation (PDE) associated with the BRT problem [20].

Running example We consider the reduced-order dynamics of an autonomous air taxi given as

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω, v̇ = a, (4.10)

where the robot state consists of s(i) = [x; y; θ; v], representing the positions, heading, and speed.
The allowable actions are a(i) = [ω, a], corresponding to the angular rate and the longitudinal
acceleration, respectively. The speed is limited to the range of [vmin, vmax]. The action space is
defined as A = [−ωmax, ωmax]× [amin, amax]. The parameters we use are defined in Table 4.1 and
are explained in more detail in Section 4.6.
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The relative state s(ij) = [x(ij); y(ij); θ(ij); v(i); v(j)] includes the relative position and heading of
agent j from agent i’s perspective, where x-axis is in the direction of the agent i’s heading. The
relationship between s(ij) and (s(i), s(j)) and the relative state dynamics are given in Appendix 4.8.

The computation of V was completed within an hour using an Nvidia RTX A4500 GPU. 1 The
computed maximal safe set S(ij), defined in the relative state space of s(ij), can be projected to the
position space of the ego agent (agent i), which incorporates all safe positions of the agent that
can ensure collision avoidance, given its heading, speed, and the opponent agent (agent j)’s state.
Examples of S(ij) are visualized in Fig. 4.2 (a) with respect to two different opponent states.

Control barrier-value function-based safety filtering

Next, we investigate how the computed value function V can be used to constrain the relative state
s(ij) to stay within the safe set S(ij). Since each agent makes their primary decision based on their
MARL policy in our framework, we consider how to filter the MARL action if it is potentially
unsafe.

To achieve this safety filtering mechanism, we consider the barrier constraint-based mechanism
of the CBFs. For a generic state variable s and its dynamics ṡ = f(s, a), if a function B(s) satisfies
the barrier constraint given by

∇B(s) · f(s, a) + γB(s) ≥ 0, (4.11)

for every state inside the zero-superlevel set of B, i.e. ∀s ∈ {s | B(s) ≥ 0}, and for some constant
γ > 0, we can guarantee that B(s(t)) ≥ 0, for all t ≥ 0 [9]. Thus, the state can be maintained to
stay within {s | B(s) ≥ 0}.

If the computed reachability value function V in (4.6) is almost-everywhere differentiable, we
can construct a CBF by taking B(s(ij)) = V (s(ij))− rsafety. This choice of B satisfies the barrier
constraint (4.11) almost everywhere, and results in the maximal safe set to be represented as the
CBF zero-superlevel set, S(ij) = {s(ij) | B(s(ij)) ≥ 0}. Such usage of the reachability value
function as the CBF is referred to as the Control Barrier-Value Function (CBVF) [59].

Remark 7. In [332], V is denoted as a constraint-value function and is used to learn Graphical
CBF (GCBF) for uncertain dynamics. In this work, we consider its exact computation for a hard
safety guarantee. However, our approach can be combined with the learning methods proposed in
[332] or other learning-enabled approaches [98, 56] to be extended to agents subjected to uncertain
dynamics.

Remark 8. For certain types of dynamics, the value function can be discontinuous without introdu-
cing a discount factor in time to the cost function (4.5) [58].

Finally, the CBVF-based safety filtering can be implemented in a decentralized manner, with
each agent executing its own safety filter. Here, we assume that the agents are cooperative for

1The computation time is not a critical concern in our setting, as the value function is computed offline rather than
during real-time deployment.
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safety, meaning that although their unfiltered actions can be selfish, their final filtered actions are
coordinated to avoid collision with each other. To achieve this coordination, agent i and agent j can
individually solve the identical optimization program defined as

CBVF Safety Filter (cooperative case):

(a
(i)
safe, a

(j)
safe) = arg min

(a(i),a(j))∈A
||a(i)−a(i)marl||2 + ||a(j)−a

(j)
marl||2

s.t. ∇B(s(ij))·f (ij)
(
s(ij), a(i), a(j)

)
+γB(s(ij)) ≥ 0, (4.12)

and then execute their own action. If the dynamics f (ij) are affine in actions, the optimization
becomes a quadratic program [9, 59].

If the opponent agent is non-cooperative for safety, agent i can solve for its own safe action
considering the worst-case possible action of the opponent:

CBVF Safety Filter (non-cooperative case):

a
(i)
safe = argmin

a(i)∈A
||a(i)−a(i)marl||2

s.t. min
a(j)∈A

∇B(s(ij))·f (ij)
(
s(ij), a(i), a(j)

)
+γB(s(ij)) ≥ 0,

where now B has to be constructed based on a value function for a differential game, which
considers the opponent’s worst-case actions [214], given as

Vworst(s
(ij)
0 ) := [ min max

{a(j)k ,a
(i)
k }k≥0

] J(s
(ij)
0 ,a(i),a(j)). (4.13)

Here, [minmax] denotes the alternating operation min (over a(j)k ) and max (over a(i)k ). The compu-
tation of this worst-case value function can be done similarly to the computation of V by solving
the min-max HJ PDE [20].

Running example In the two-agent case, in Figure 4.2 (b), the initial relative state between
agents 1 and 2 is set near the boundary of the maximal safe set S(12). By each agent applying the
CBVF safety filter, both agents reach their goals safely under the safety-filtered MARL actions.

Analysis of the multi-agent case
We begin the analysis of this section by continuing with the running example of the multi-agent
case:

Running example In Figure 4.2 (c), we now consider the case where a third agent is introduced.
The relative states still remain within the pairwise maximal safe sets S(12), S(13), and S(23). Despite
all agents actively attempting to avoid collisions, their relative distances fall below rsafety. As
mentioned in the introduction, this demonstrates the issue of conflicting constraints, implying
that although agent 1’s initial state did not cross the boundaries of the individual safe sets, it may



CHAPTER 4. LAYERED SAFETY APPROACHES TO MULTI-AGENT REINFORCEMENT
LEARNING FOR AIR MOBILITY 49

already be outside the true safe set when considering all interactions simultaneously. Computing
this true safe set requires defining the relative dynamics of the three agents, which increases the
system’s dimensionality. While approximations of this set have been computed, such as in [19], the
computation of this multiple-agent safe set is challenging.

As can be seen in the above running example, it is crucial to prevent the agents from falling into
the region in which one safety constraint can potentially conflict with the other, i.e., the leaky corners.
Although their exact computation is hard, we define the region that can tightly overapproximate this
potential conflict region.

Proposition 5. Define

Ŝ(i) :=
{
{s(j)}j∈I(i) | ∀j ∈ I(i), V (s(ij)) ≥ rsafety,&

∄j1, j2 ∈ I(i) s.t. Vworst(s
(ij1))<rsafety & Vworst(s

(ij2))<rsafety

} (4.14)

where V is defined in (4.6), and Vworst is defined in (4.13). Note the difference between V and Vworst.
Then for any opponent agent states {s(j)}j∈I(i) ∈ Ŝ(i), there exists a(i) and a(j) for all j ∈ I(i),
such that ∀t ≥ 0, s(ij)(t) /∈ L(ij) for all j ∈ I(i). In other words, set Ŝ(i) can be maintained forward
invariant.

Proof. The second condition in (4.14) allows at most one opponent agent to enter the area in which
Vworst(s

(ij)) < rsafety. We denote this agent as jnear. For (i, jnear), since V (s(ijnear)) ≥ rsafety based on
the first condition in (4.14), agent i and agent jnear are within their CBVF safe set S(ijnear) and can
select their action sequences a(i) and a(jnear), such that s(ijnear)(t) /∈ L(ijnear) for all t ≥ 0.

Next, we consider all other agents j ∈ I(i) \ {jnear}. Based on [100, Proposition 4], for any
Lipschitz continuous Vworst, its level set is a robust control invariant set. Thus, for all j ∈ I(i)\{jnear},
there exists a(j) that results in Vworst(s

(ij)(t)) ≥ rsafety for all t ≥ 0, regardless of a(i), ensuring
s(j)(t) ∈ Ŝ(i).

Intuitively, the set Ŝ(i) prevents conflict of constraints by allowing only one agent to coordinate
for collision avoidance with the ego agent and by prohibiting the other agents from entering the
worst-case safe set. These other agents are able to stay away from the pair (i, jnear) due to the robust
invariance property of the level set of Vworst.

Practical implementation: In practice, enforcing each agent to stay within Ŝ(i) can be compu-
tationally expensive since we have to evaluate V and Vworst for all pairs of interaction. In the next
section, we use this analysis to inform MARL to implicitly learn not to enter this region. For this,
we define the potential conflict range as below:

rconflict := min
r

r (4.15)

s.t. Vworst(s
(ij)) ≥ rsafety ∀s(ij) s.t. dist(s(ij)) ≥ r.
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Then, the set of opponent agent states is defined as

S̃(i) :=
{
{s(j)}j∈I(i) | ∀j ∈ I(i), V (s(ij)) ≥ rsafety,&

∄j1, j2 ∈ I(i) s.t. dist(s(ij1))<rconflict & dist(s(ij2))<rconflict

} (4.16)

This is an underapproximation of the true conflict-free set Ŝ(i) by definition (4.15). To ensure safety,
we want to restrict the number of opponent agents entering this region to be at most one.

Our analysis requires that the observation range be larger than the potential conflict range,
robs > rconflict. Rather than a restriction, this serves as a design guideline for the observation stack of
the robot for safe multi-robot coordination. As shown in Figure 4.1, the concept of the potential
conflict range divides a robot’s proximity into three layers: (1) the range dist(s(ij)) < rsafety, where
collision is imminent; (2) the range rsafety < dist(s(ij)) < rconflict, where engaging with multiple
vehicles may introduce safety risks; and (3) the region rconflict < dist(s(ij)), where the maneuvers
of other agents pose minimal safety concerns. A similar three-layer structure was proposed and
manually designed in [108]. However, our approach provides a theoretical foundation for defining
these boundaries based on reachability analysis.

Remark 9. (Limitation) The set Ŝ(i) is a conflict-free safe set only from agent i’s perspective. In
other words, it does not guarantee that the collision-avoidance maneuvers of other agents j ∈ I(i)
will not interfere with one another. Addressing this issue requires analyzing the combinatorial
number of possible interactions, which remains an open problem. In our work, we address this
challenge by training the MARL policy to learn strategies that mitigate these conflicts.

4.5 Multi-Agent Reinforcement Learning with Layered Safety

Extending InforMARL for improved decentralized decisions
Our work builds upon the InforMARL architecture [231], a MARL algorithm that solves the
multi-agent navigation problem by using a graph representation of the environment, enabling local
information-sharing across the edges of the graph. InforMARL uses graph neural networks (GNNs)
to process neighborhood entity observations, allowing the framework to operate with any number
of agents and provide scalability without changing the model architecture. Each agent has a set of
neighboring agents within its observation range, robs, and shares its relative position, speed, and goal
information with these neighbors. Agents are tasked to navigate to their respective goal positions.
When agents reach their respective goals, they get a goal rewardRgoal(o

(i)
k , a

(i)
k ).

The extensions we make to the baseline InforMARL to incorporate the layered safety framework
and to make it more practical for multi-robot navigation tasks are as follows:

1) Sequential goal point tracking: In the updated framework, the agents navigate to a sequence
of waypoints, each specified by its position and the desired direction and speed, leading to the final
goal (as shown by the green circles in Figure 4.1). At each time step, an agent gets the following
additional rewards,Rtracking(o

(i)
k , a

(i)
k ) which are computed based on the heading and speed of the
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agent relative to the current target waypoint. The details of these terms are presented in Appendix
4.8.

2) Model architecture enhancements: To improve the algorithm and generalize it over diverse
scenarios, we update the observations to incorporate rotation-invariant relative distances of the
ego agent to goals and neighbors. Once an agent crosses a waypoint, we no longer consider
the waypoint in its observation, and the agent moves to the subsequent waypoint. We introduce
dynamics-aware action spaces that are updated based on the dynamics model, angular rate, and
longitudinal acceleration, as in the running example in Section 4.4, ensuring agents respect motion
constraints specific to their dynamics.

3) Curriculum training: The training framework also incorporates curriculum learning where
we progressively make the training environment harder [228] for improving agents’ performance,
refining safety rewards, and updating the safety distance rsafety used in the safety filter. This is
detailed in the subsequent sections.

Safety filter design for multiple agents
For multiple agents, the CBVF B(s(ij)) is evaluated for each agent i and any neighboring agent j
within the observation range robs. A smaller value of B indicates that the near-collision is more
imminent and safety is at greater risk. The neighbor agent with the minimum pairwise B(s(ij)) is
selected as the agent whose actions will be curtailed. We term the module that selects this prioritized
constraint as the prioritization module. If an agent pair (i, j) has each other as the minimum
pairwise B(s(ij)), then we call them a potential collision pair.

Safety-informed training
Curriculum update

We start the training routine without any safety filter or penalty applied for the first half of the
training steps. This is done to optimize the task performance of MARL unconstrained by any safety
parameters. Once training reaches half the number of total training steps, we activate the safety filter.
Additionally, we introduce the following safety parameters, which are updated using the curriculum
learning framework during training. First, the safety distance rsafety is initialized to zero during the
start of model training, allowing agents to approach each other at close ranges. As the training
progresses, we increase rsafety to the desired value. Similarly, we scale the conflict radius rconflict

computed using Eq. (4.15) based on the value of the rsafety. This setup allows agents to explore
the environment early on in the training and prevents them from converging to overly conservative
behavior.
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Safety-informed reward

In addition to the heading, speed, and goal rewards, we introduce some additional penalties. When
more than two agents are within the conflict radius rconflict, we apply a potential conflict penalty

Cconflict :=
∑

j∈{j|dist(s(ij))<rconflict}

max{0, rconflict − dist(s(ij))} ×max
{
0,−

[
x(ij) y(ij)

] [v(ij)x

v
(ij)
y

]
︸ ︷︷ ︸

relative distance change

}
,

(4.17)
which evaluates whether the agent j is within the potential conflict range and is approaching towards
agent i. Based on Proposition 5, we do not apply the penalty when there is just one agent within
rconflict.

The penalty Cconflict is carefully designed to mitigate the risks associated with potential conflicting
constraints when multiple agents enter the range, while simultaneously minimizing the conservatism
it may introduce. This penalty is an indirect safety penalty, as it is not incurred based on explicit
safety violations but rather indirectly through the proximity of multiple agents.

The final reward structure is

Rtotal(o
(i)
k , a

(i)
k ) = Rtracking(o

(i)
k , a

(i)
k ) + ρgoalRgoal(o

(i)
k , a

(i)
k ) − ρconflictCconflict (4.18)

where ρgoal is a binary indicator when the agent is at the goal, and ρconflict is a binary indicator when
the number of other agents within the potential conflict region is more than one.

4.6 Results
The main robotic application we focus on is the safe autonomous navigation of aerial vehicles.
We apply our framework to Crazyflie drones navigating through waypoints in both simulation and
hardware experiments, as well as to the simulation of air taxi operations in realistic settings.

Experiment Setup
Considered dynamics. We consider two types of dynamics, one for the quadrotors and the other for
the air taxi vehicle in a wing-borne flight. The parameters for both dynamics are summarized in
Table 4.1 and are set to match the industry standard [149, 12, 309]. For instance, we use an angular
rate bound of 0.1 rad/s for the air taxi dynamics, as it results in the lateral acceleration 0.5g under
the nominal speed, which amounts to the maximum tolerable lateral acceleration for passenger
comfort in NASA market studies [279].

The quadrotor dynamics in the horizontal plane are represented as simple double integrators
with

ẋ = vx, ẏ = vy, v̇x = ax, v̇y = ay, (4.19)

where s(i) = [x, y, vx, vy] and a(i) = [ax, ay]. The quadrotor runs the low-level onboard flight
controller to track the commanded actions.
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Table 4.1: Parameter Summary for Different Vehicle Dynamics

Parameter Air taxi (Sim) Crazyflie
Groundspeed
vmin 60 knot (30

m/s)
-1.0 m/s

vmax 175 knot (90
m/s)

1.0 m/s

vnominal 110 knot (57
m/s)

0.5 m/s

Acceleration
amin -3.3 ft/s2 (-1.0

m/s2)
-0.5 m/s2

amax 6.6 ft/s2 (2.0
m/s2)

0.5 m/s2

Angular Rate (ωmax)
(rad/s)

0.1 -

Sampling Rate (s) 1.0 0.1
Waypoint Thresholds
(±)

Distance to Goal 0.186 miles
(0.3 km)

0.2 m

Heading 45o 45o

Speed 38.9 knot (20
m/s)

0.1 m/s

Observation Range
(robs)

3.1 mi. (5.0
km)

4.0 m

Safety Distance (rsafety) 500 - 2200 ft
(0.152 - 0.671
km)

0.5 m

Potential Conflict
Range (rconflict)

4600 ft (for
rsafety=2200
ft)

1.0 m

The air taxi dynamics in the horizontal plane are represented using the kinematic vehicle model
in (4.10) of the running example in Section 4.4. Three features of the air taxi dynamics considered
in this work make its safety assurance more challenging and interesting. First, the vehicle cannot
stop as it has to maintain the wing-borne flight (vmin > 0). Next, the dynamics are nonholonomic,
meaning that its control towards the lateral direction can be achieved only by changing its direction.
Finally, due to small acceleration or deceleration authority, the vehicle often has to employ turning
maneuvers for deconfliction. This is common for fixed-wing and hybrid mode vehicles like vertical
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Figure 4.3: Maximum safe sets (exterior of the white level sets), potential conflict region, and CBVF (colormap) for
each vehicle dynamics, displayed in the relative position space when (a) relative velocity is (vx, vy) = (1, 1) [m/s], (b)
relative speed and heading is 220 knots and 180o, respectively.

takeoff-and-landing vehicles (VTOLs), those envisioned for AAM operations [8, 11, 93].
Due to these challenges, the advantages of our method for enhancing safety are particularly

evident for the air taxi dynamics (Section 4.6). In contrast, for the quadrotors (Section 4.6), our
safety filter design consistently ensures safety across all evaluated methods; thus, we focus more
on how our approach achieves performance enhancement. The safe sets, CBVFs, and the potential
conflict range computed using HJ reachability are visualized in Figure 4.3.

Task & Training environment. We modify Multi Particle Environments (MPE) [201] to incorpor-
ate agents to follow the dynamics as specified before and the safety filter. In our navigation task
setup, the drone must pass through a waypoint with its state satisfying the threshold conditions
specified in Table 4.1 to proceed to the next waypoint. The main values that define the training
environments are the number of agents N , the number of waypoints per agent M , and the size of
the environment L. At every episode, the initial positions of the agents, the waypoints’ locations,
and the headings are set randomly. The episode is terminated if all agents reach their goal, the last
waypoint. After training the MARL policies, we test them in various evaluation scenarios with
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values of N,M,L different from those of the training environment. For the quadrotor, we use N=4,
M=2, L=4, and for the air taxi dynamics, we use N=4, M=2, L=6 for the training.

Comparison Studies
We first conduct two sets of simulation experiments to compare our method against: 1) approaches
that do not employ a safety filter or curriculum during training, and instead rely on alternative
reward designs for safety, and 2) methods from prior works based on model-based CBF design and
model-free safe MARL for multi-agent coordination. Both studies are conducted in the quadrotor
simulation environment.

Ablation study for safety-informed training

First, we designed our experiments to evaluate the value of (1) introducing the safety filter during
training, (2) using the curriculum, and (3) the effectiveness of a potential conflict penalty term
for safety, as described in Section 4.5. To evaluate the effect of employing the safety filter during
training, we compare the results of those trained with and without the filter. To evaluate the effect of
the curriculum, we compare our method against a policy trained without the curriculum update in
Section 4.5. Finally, to evaluate the effectiveness of the potential conflict penalty term, we compare
it against three alternative penalty terms for safety suggested in the literature:

• Hinge loss for constraint violation:

Cplain := max{0, rsafety − dist(s(ij))},

This is the most typical penalty term, introduced in the safe RL literature [1].

• CBVF-based hinge loss:
Ccbvf := max{0,−B(s(ij))},

This penalizes the agent for entering the zero-sublevel set of the CBVF, the unsafe set. The
use of reachability value functions as a safety penalty in RL has been explored in previous
works such as [13].

• Penalty occurring when safety filter intervenes:

Cnorm.diff := ||a(i)safe − a
(i)
marl||,

based on (4.12). This is the main penalty term used in the method of [27] to inform MARL
with safety.

When we introduce each penalty term, its weight is carefully tuned to maximize task and safety
metrics. In total, we test nine variants of the training methods based on the activation of the safety
filter, curriculum, and choice of the reward term, which are detailed in Appendix 4.8.
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We evaluate each method in three scenarios. In addition to the random scenario same as the
training environment, in the second scenario, we test how the MARL policy interacts with a larger
number of agents and a more challenging waypoint configuration by setting N=6, M=3, and L=6
while also placing the first two waypoints at the same positions, representing the air corridor. The
third scenario reconstructs our hardware experiment environment, which will be detailed in Section
4.6, in simulation.

Below is the summary of the key aspects of the result, while more details and the table of the
comparison for the performance metrics are presented in Appendix 4.8:

• Effect of using the safety filter in training: Methods that incorporate the safety filter during
training consistently outperform their counterparts trained without the filter across all metrics.

• Effect of curriculum learning: The curriculum learning can significantly enhance performance
by reducing the conservativeness of the trained policy.

• Effect of potential conflict penalty Cconflict compared to other penalty candidates: Our method
achieves the best performance in most cases. Importantly, our method outperforms other
methods, especially when there is a larger number of agents (the second scenario).

Comparison to other methods

Next, we compare our method to (1) DG-PPO [332] and (2) a safety filter designed based on the
exponential CBF (ECBF) [236], used for multi-agent collision avoidance in [111]. We use N=4,
M=1, L=3 for the training of all three methods, which enables fair comparison, especially with
results we can obtain from the DG-PPO source code. We run the training of both DG-PPO and our
MARL policy with the same number of environment steps (1e7) and gradient steps (epoch_ppo=1),
where the initial and goal positions are randomly generated.

We evaluate the trained policies in two environments for 25 episodes each: (1) same random
environment with world size increased to L=6. (2) environment with an increased number of agents
N=8 and world size L=6, where initial and goal positions are arranged in two parallel lines in
random order. The results are reported in Tables 4.2 and 4.3. While all methods perform well
when the number of agents remains the same as in the training environment, our method is the only
method that guarantees 100% safety when N increases, whereas the percentage of near-collision
events increases significantly for DG-PPO and ECBF. It must be noted that DG-PPO is a model-free
method that learns a neural CBF during its training, whereas our method uses the CBVF computed
based on the system dynamics model. As observed in [331], such model-free methods are vulnerable
to generalization in scenarios with a large number of agents.

Hardware experiments with quadrotors
Next, as illustrated in Figure 4.4, we conduct hardware experiments with three Crazyflie 2.0 drones
using a Vicon system for localization. Each drone is controlled by a hierarchical framework: its high-
level system is modeled with double integrator dynamics, and the resulting high-level state is passed
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Table 4.2: Simulation results for Crazyflie dynamics with N=4, with time horizon 51.2s. We evaluate goal reach rate
(%) for performance and the percentage of near-collision events (dist(s(ij)) < rsafety) in the timestamped trajectory
data (Near collision %) for safety.

Methods Goal reach(%) Near collision(%)
DG-PPO 96 ± 11.8 0.04 ± 0.16

Exponential CBF 100 ± 0 0.0 ± 0.0
Our Method 100 ± 0 0.0 ± 0.0

Table 4.3: Simulation results with N=8, and initial & goal positions arranged in lines under random order. Videos are
available in the supplementary material.

Methods Goal reach(%) Near collision(%)
DG-PPO 100 ± 0 9.1 ± 2.7

Exponential CBF 93 ± 8.9 8.8 ± 10.7
Our Method 100 ± 0 0.0 ± 0.0

to onboard PID tracking controllers. We define high-level feedback control (acceleration in the x
and y axes) based on real-time (100 Hz) Vicon system data. To approximate decentralized control,
we run distinct decentralized policies for each drone on a single ThinkPad laptop, transmitting
high-level control commands every 0.1 seconds.

In the experimental scenario, each drone is required to pass through two shared waypo-
ints—representing an air corridor—before reaching its designated landing location (N=3, M=3,
L=3m). We compare the policy learned under our method to the baseline, which is trained without
a safety filter in hardware experiments, with the recorded trajectories shown in Figure 4.5. Under
our approach, three drones smoothly avoid conflicts and safely navigate their individual waypoints,
completing the task in 12.95 seconds. In contrast, the baseline policy requires one drone to perform
a second pass, after missing its first waypoint due to the safety filter preventing it from approaching
other agents passing the waypoint, thus extending the total completion time to 25.29 seconds. These
results demonstrate how our Layered Safe MARL framework enhances task performance through
efficient deconfliction.

Simulation of decentralized air taxi operations
Finally, we evaluate the application of our framework to decentralized air taxi operations. Although
there is no single consensus on how the air traffic management (ATM) system will function for
advanced air mobility (AAM) operations, each vehicle will likely be required to have fallback
autonomy systems in place, for instance, to ensure safety in case the centralized system fails.

To conduct the study with a realistic traffic volume, we use the results of the Urban Air
Mobility (UAM) demand analysis from [40, 174], which estimates how much ground traffic
could be replaced by AAM considering various factors including different demographics of riders,
socioeconomic factors, and historical commuting patterns. By combining these insights, our study
derives a reasonable estimate of how traffic density will evolve once UAM operations reach full
implementation. From their results, we consider a peak-density scenario in which each vertiport
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Figure 4.4: Crazyflie hardware experiment with the MARL policy learned by our method. The three drones have to pass
through two common waypoints to get to their landing location. The trajectories corresponding to the video footage are
visualized in Fig. 4.5 (b).

serves 500 passengers per hour during peak hours, equating to two operations (takeoffs and landings)
per minute, with each operation accommodating a 4-passenger aircraft. This corresponds to about
125 trips per hour. We chose vertiports from multiple locations in the Bay Area with high travel
demand and designed the air corridors with a lateral separation of 1500 ft based on a preliminary
analysis of the separation standards for UAM [174]. Waypoints are created to connect the trails of
these corridors spaced 3-4 km apart. For simplicity and clearer visualization, our simulations focus
on aerial vehicles traveling westward (from the East Bay to San Francisco and to the South Bay);
we assume outbound trips use a separate fixed altitude, thus our study addresses only horizontal
deconfliction.

An important modeling assumption is the required separation distance between vehicles. We
base these restrictions on industry standards that define the minimum safe distance between the
aircraft and potential hazards to maintain an acceptable collision risk [279]. Although there is
no single global standard for the separation distance for AAM vehicles yet, we adopt a set of
parameters from a variety of literature: the separation distance from dynamic obstacles, maximum
accelerations, and bank angle to ensure safety and passenger comfort, [92, 279, 174], which guides
the minimum horizontal distances between UAVs to range from 500 to 2200 feet. In our study,
a horizontal separation of 1500 ft was used, as it aligns with NASA’s UAM corridor design and
provides a good balance between collision risk and operational efficiency.
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Figure 4.5: We compare the recorded Crazyflie hardware experiment trajectories under our method and the baseline
policy trained without the safety filter. With our approach, the drones smoothly deconflict and efficiently complete
the task. In contrast, under the baseline policy, the yellow Crazyflie misses a waypoint and must make a second pass.
These results demonstrate that incorporating layered safety information during training improves the performance of
the MARL policy.

Table 4.4: Simulation results of air taxi operations emulating potential peak traffic around the Bay Area—a scenario in
which all vehicles merge into the city-inbound corridor. For performance, we evaluate the mean travel time (s). For
safety, we evaluate the percentage of near-collision events (dist(s(ij)) < rsafety) in the timestamped trajectory data
(Near collision %), and the percentage of instances having multiple agents encountered within the potential conflict
range (dist(s(ij)) < rconflict) (Conflict %).

Methods
Merging Scenario (N=8, M=5)

Travel t(s)(↓) Near collision(%)(↓) Conflict(%)(↓)
Safety-blind 675.6 0.055 2.4
No penalty 617.9 0.042 5.5
Proposed 450.5 0.021 3.2

We evaluate three methods: MARL trained without the safety filter and no safety penalty (Safety
blind), MARL trained with the safety filter under the proposed curriculum but with no safety penalty
(No penalty), and the proposed safety-informed method employing the safety filter, curriculum, and
the potential conflict penalty (Proposed) in two high-density air traffic scenarios. The two scenarios,
illustrated in Figure 4.6, represent different commuting patterns in the Bay Area. In the left scenario
(Merge Scenario), multiple air routes (eight in total) from the northern Bay merge into a single
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Figure 4.6: Bay Area case scenarios. The left panel illustrates routes where multiple air taxi vehicles would travel from
the North and East Bay toward San Francisco, merging into a single air corridor. The right panel shows intersecting air
corridors: one where the vehicles would travel from Fremont (southeast) to San Francisco, and another from Oakland
(northeast) to Redwood City. The blue dots represent the waypoints that UAVs follow, while the yellow dots indicate
the departure or an incoming waypoint of the corridor.

Table 4.5: Simulation results of air taxi operations—a scenario in which two air corridors intersect with each other.

Methods
Intersection Scenario (N=16, M=6)

Travel t(s)(↓) Near collision(%)(↓) Conflict(%)(↓)
Safety blind 987.4 0.058 2.1
No penalty 780.5 0.129 3.8
Proposed 660.8 0.056 1.6

corridor leading to San Francisco. The departure time of each vehicle varies randomly within a
60-second range. In the scenario shown to the right (Intersection Scenario), two westbound air
corridors intersect. Here, we set the UAVs to leave the origin every 90± 15 seconds to intentionally
induce congestion at the intersection.

We evaluate 25 random episodes for each method and report the results in Table 4.4 and Table
4.5 for each scenario, respectively. The results show that the proposed method achieves both the
highest performance, measured by the shortest mean travel time, and the lowest percentage of
near-collision events.

Examples of vehicle trajectories for each scenario and method are visualized in Figure 4.7. In
the merging scenario, our method demonstrates the most efficient deconfliction of trajectories when
multiple vehicles merge into the air corridor. In the intersection scenario, near the intersection, the
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Figure 4.7: Comparison of air taxi trajectories in merging and crossing scenarios: The top row illustrates the single-
lane merging scenario, where UAVs converge into a shared inbound air corridor, while the bottom row depicts
intersecting air corridors. In the merging scenario, our method achieves the most efficient deconfliction of trajectories,
minimizing congestion near the corridor. In the crossing scenario, our method demonstrates a wider safety buffer
around intersections, as UAVs actively maintain greater separation to mitigate conflicts. Videos are available in the
supplementary material.

region occupied by vehicles as they maneuver to avoid collisions is noticeably larger in our method
compared to the second method, trained with no penalty. This indicates that vehicles using our
approach proactively maintain greater separation to mitigate the conflicting constraints.

While we expect that a fully operational ATM system for AAM will be significantly more
efficient, seamless, and safer than our simulation study suggests, we present this study as an initial
guideline for resolving hypothetical emergency scenarios. For instance, the situations we simulated
can emerge when the airspace congestion coincides with the loss of centralized traffic control,
requiring each agent to make independent, safe decisions.

4.7 Limitations
While our framework shows significant improvements in achieving safety and performance, there
are limitations, which we list below.
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Table 4.6: Results of policies trained under various methods for Crazyflie dynamics: We evaluate mean travel time (s)
and number of reached waypoints (Waypoint #) for performance, and the percentage of the events involving multiple
agents encountered within the potential conflict range in the trajectory data (Conflict %) for safety risk. Note that in
these simulations, the agent never violated safety for all methods due to our safety filter, except in the training scenario
when the agent is initialized at the safety-violating states. (N=number of agents, M=number of waypoints, L=world
size)

Methods
Scenario 1 (Training) (N=4, M=2, L = 4) Scenario 2 (N=6, M=3, L = 6) Scenario 3 (N=3, M=3, L = 3)

Travel time(s)(↓) Waypoint#(↑) Conflict(%)(↓) Travel t Waypoint # Conflict Travel t Waypoint # Conflict
1 (safety-blind) 18.33 1.62± 0.25 8.7 29.18 2.11± 0.24 21.9 19.08 2.14± 0.53 16.2

2 18.21 1.67± 0.19 7.1 29.77 2.06± 0.24 19.7 18.92 2.40± 0.47 16.0
3 17.73 1.76± 0.16 6.6 28.59 2.26± 0.21 19.7 18.44 2.41± 0.46 14.9
4 18.73 1.58± 0.23 7.2 29.11 2.20± 0.21 17.1 18.79 2.17± 0.47 13.4

5 (no penalty) 17.56 1.75± 0.17 5.3 28.46 2.33± 0.20 16.9 16.09 2.78± 0.28 11.8
6 18.31 1.67± 0.17 5.9 28.92 2.27± 0.21 17.0 17.69 2.42± 0.42 15.0
7 17.90 1.71± 0.18 5.3 28.98 2.32± 0.18 15.8 17.59 2.54± 0.34 11.2
8 20.52 1.26± 0.21 2.7 31.25 1.74± 0.27 6.9 18.36 2.20± 0.36 8.6

9 (proposed) 17.81 1.78 ± 0.18 5.4 28.59 2.42 ± 0.20 15.1 16.91 2.71 ± 0.24 10.8

1. Scalability to higher dimensions: Our current framework is designed for 2D scenarios, and
needs extending it to 3D environments.

2. Guarantees for multiple engagements: Our safety guarantees are currently limited to pairwise
interactions. While our method is designed to significantly mitigate collision risks in multi-
agent interactions based on theoretical analysis, it does not provide formal guarantees for
scenarios involving multi-agent engagements. For further details, see Remark 9.

3. Hardware experimentation constraints: In our hardware experiments, local observations
were emulated using a motion capture (mocap) system rather than being obtained through
onboard sensing. This simplification may not fully reflect real-world operational constraints
and should be addressed in future implementations. Additionally, fixed-wing vehicles were
not included in our experiments.

4. Communication range constraints: The impact of communication range limitations in our
hardware experiments was not analyzed.

4.8 Conclusions
In this chapter, we presented a layered architecture combining a CBVF-based safety filtering
mechanism with a MARL policy, demonstrating its effectiveness in ensuring both safety and
efficiency. Our approach enables MARL to navigate conflicts proactively while benefiting from
safety-informed reward signals. Along with the safety filter introduced during training using a
curriculum learning approach, the Layered Safe MARL framework achieved shorter travel times
and reached more waypoints with fewer conflicts. The key components of our approach, curriculum
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learning, and cost terms that inform potential conflict zones are agnostic to the choice of the MARL
algorithm. We validated our method by applying it to two distinct dynamics—quadrotor and
fixed-wing AAM flight dynamics—and evaluated it in progressively complex scenarios. We also
conducted hardware experiments on three Crazyflie drones, highlighting the applicability of our
method in real-world systems.

Our method integrates model-based safety tools from control theory (CBVFs) with learning-
based methods (MARL), together forming a framework that addresses two major challenges in
multi-agent problems—safety and efficient coordination. While deep reinforcement learning has
faced skepticism in safety-critical applications such as air traffic management, recent advances—
including our work—demonstrate the viability of hybrid approaches that combine learning and
control, and illustrate how RL can be responsibly applied in safety-critical settings.

Future research could investigate decomposition techniques and learning-based reachability ana-
lysis (e.g., DeepReach [19]) to extend safety verification to higher-dimensional settings. Adapting to
other methods, including other MARL algorithms (e.g., MAPPO or even further refining DG-PPO),
MPC, or game-theoretic solutions, by treating the potential conflict zone as a soft constraint, is
an exciting future work direction. Further investigation is needed to assess how communication
constraints affect coordination and safety in decentralized multi-agent systems. Finally, an important
future direction is testing the proposed approach’s applicability in various robotics domains, ranging
from higher-order dynamics to complex environments and sensing constraints, such as ground
robots, underwater autonomous vehicles, and space robots.
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Appendix

Reward function design for goal reaching
We assume that, from the agent’s local observation, it can evaluate its state, including the position
and heading relative to the current target waypoint, denoted as s(i)ref . The additional rewardRtracking

is designed to guide agents to efficiently navigate to the target waypoint. It uses a distance-like
measure relative to the waypoint position, and can incorporate additional information like the
errors from the desired heading angle and speed. The vehicle dynamics also inform the reward
design. We design a specific reward for each quadrotor and air taxi dynamics. For the quadrotor,
although the vehicle dynamics are holonomic, we want the vehicle to approach the waypoint from a
specific target heading direction. To achieve this, we design a reference velocity field, vref(s

(i)
ref),

around the waypoint, shaping it like the magnetic field around a solenoid. Then, the reward for the
waypoint tracking is given asRtracking(o

(i)
k , a

(i)
k ) = ||v(i) − vref ||. For the air taxi dynamics, shaping

the reference velocity field is not straightforward, as the vehicle is nonholonomic and is mainly
limited by its maximum turning radius, determined by its speed and yaw rate. Thus, we compute
the time-to-reach function [320], which is the minimum time required to reach the target waypoint
(satisfying the threshold conditions) subject to the vehicle dynamics. This time-to-reach reward is
also used in [203] for RL-based navigation of mobile robots. The use of the time-to-reach reward
guides the vehicle to learn how to perform a 360-degree turn when it misses its waypoint.

Air taxi dynamics: additional information
The relationship between s(ij) and (s(i), s(j)) for the air taxi dynamics in (4.10) is given by

x(ij) = cos θ(ij)(x(j) − x(i)) + sin θ(ij)(y(j) − y(i)),
y(ij) = − sin θ(ij)(x(j) − x(i)) + cos θ(ij)(y(j) − y(i)),
θ(ij) = θ(i) − θ(j).

(4.20)

The relative dynamics (4.3) can be derived from (4.10) and (4.20), and are express as

ẋ(ij) = −v(i) + v(j) cos θ(ij) + y(ij)ω(i)

ẏ(ij) = v(j) sin θ(ij) − x(ij)ω(i)

θ̇(ij) = ω(j) − ω(i).

(4.21)

Ablation Study: Details
We conduct comparison studies among the following nine methods:

1. Policy trained without the safety filter and no safety penalty (Safety blind)

2. Policy trained without safety filter and with Cplain
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3. Policy trained without safety filter and with Cconflict

4. Policy trained with the safety filter and without curriculum learning (with no penalty)

5. Policy trained with the safety filter and no safety penalty (No penalty)

6. Policy trained with the safety filter and with Cplain

7. Policy trained with the safety filter and with Ccbvf

8. Policy trained with the safety filter and with Cnorm.diff

9. Policy trained with the safety filter and with Cconflict (Proposed)

Note that methods 5-9 are trained with curriculum learning on rsafety, as described in Section 4.5.
Every policy we compared has been trained for the same number of environment steps. Methods 1,
5, and 9 correspond to the methods we also evaluate in the air taxi operation simulation.

Table 4.6 summarizes the results of the simulation study, and Figure 4.8 visualizes example
trajectories in Scenario 2 under the policies of methods 1, 5, and 9. Each method is evaluated using
four random seeds, with 25 episodes per seed, totaling 100 random episodes. Note that in these
simulations, the agent never violated safety for all methods due to our safety filter, except in the
training scenario when the agent is initialized at the safety-violating states. Thus, the percentage of
near-collision events (safety violation) is not reported, and only the rate of potential conflict (for
instance, when more than two agents enter the potential conflict range rconflict) is calculated.

The key aspects of the result in Table 4.6 are:

• Effect of using the safety filter in training (1-3 vs 5-6, 9): Methods that incorporate the safety
filter during training consistently outperform their counterparts trained without the filter
across all metrics.

• Effect of curriculum learning (4 vs 5): The curriculum learning can significantly enhance
performance by reducing the conservativeness of the policy.

• Effect of potential conflict penalty Cconflict compared to other penalty candidates (6, 7, 8 vs 9):
Although method 8 that uses Cnorm.diff consistently shows the lowest rate of potential conflict,
and its performance is significantly impaired by the penalty. Our method achieves the best
performance in most cases. Importantly, our method outperforms other methods, especially
when there is a larger number of agents (Scenario 2).
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Figure 4.8: Simulation results of (a) safety-blind (method 1), (b) safety-informed with no penalty (method 5), and (c)
safety-informed with potential conflict penalty (method 9) under Scenario 2 in Table 4.6, trained for double integrator
dynamics. Agents are initialized at random positions and have to merge into a line formed by two waypoints before
reaching their final waypoints. While our safety filter ensures safety for all cases, the MARL method trained with
a potential conflict penalty shows the most efficient behavior for reaching waypoints. Videos are available in the
supplementary material.
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Part II

Game-Theoretic Decision-Making
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Chapter 5

Primal Dual Interior Point Method for
Nonlinear Feedback Stackelberg Games

As demonstrated in previous chapters, ensuring robust safety among agents often leads to overly
conservative behavior when planning for worst-case scenarios in decentralized decision-making
environments. However, in many practical applications, agents have well-defined individual object-
ives that can be understood and anticipated by other agents. This insight suggests that instead of
conservatively planning for arbitrary worst-case scenarios, we can model agents as rational decision-
makers with known objectives. Game theory provides a natural modeling framework for anticipating
the actions of such rational agents when conflicting objectives or constraints exist among them.
Nevertheless, computing game-theoretic equilibria remains computationally challenging. In this
chapter, we focus on feedback Stackelberg equilibrium and demonstrate how its computation can
be reformulated as solving a series of nested Karush-Kuhn-Tucker (KKT) condition equations.
Leveraging this mathematical connection, we propose an efficient second-order algorithm using
primal-dual interior point methods to compute game-theoretic equilibria under coupled constraints
among agents. This chapter is based on published work [181], co-authored with Somayeh Sojoudi,
Claire J. Tomlin, and David Fridovich-Keil.

5.1 Background
Dynamic game theory [24] provides tools for analyzing strategic interactions in multi-agent systems.
It has broad applications in control [52], biology [168], and economics [126]. A well-known
equilibrium concept in dynamic game theory is the Nash equilibrium [229], where players pursue
strategies that are unilaterally optimal, and players make decisions simultaneously. However, this
may not apply to a broad class of games where a decision hierarchy exists, such as lane-merging in
highway driving [324], predator-prey competition in biology [18], and retail markets in economics
[187]. These games could be more naturally formulated as Stackelberg games [301], where players
act sequentially in a predefined order. For such games, the Stackelberg equilibrium is the appropriate
equilibrium concept.



CHAPTER 5. PRIMAL DUAL INTERIOR POINT METHOD FOR NONLINEAR FEEDBACK
STACKELBERG GAMES 69

The formulation of Stackelberg equilibria depends on the information structure [24]. For
instance, in scenarios where players lack access to the current game state, one can compute an
open-loop Stackelberg equilibrium (OLSE). At such an equilibrium, players’ decisions depend on
the initial state of a game and followers’ decisions are influenced by the leaders’. When players
also have access to state information and their prior players’ actions, it becomes appropriate to
compute a feedback Stackelberg equilibrium (FSE), where each player’s decision is contingent
upon the current state and the actions of preceding players. One advantage of FSE over OLSE is
its sub-game perfection, meaning that decision policies remain optimal for future stages, even if
the state is perturbed at an intermediate stage. This feature is particularly beneficial in scenarios
with feedback interactions among players, such as in lane merging during highway driving [288]
and human-robot interactions [103]. In these situations, the sub-game perfection of FSE makes it a
more suitable equilibrium concept than OLSE, as it allows players to adjust their decisions based
on the current state information.

Though FSE is conceptually appealing, computing it poses significant challenges [129, 308,
312, 207]. Previous research has extensively explored the FSE problem in finite dynamic games,
characterized by a finite number of states and actions [281, 24, 293, 160, 17, 305]. In contrast,
infinite dynamic games–those with an infinite number of states and actions–have mostly been
considered within the framework of linear quadratic (LQ) games, featuring linear dynamics and
stage-wise quadratic costs [107, 24, 75, 297, 150]. The computation of FSE for more general
nonlinear games is more challenging than for LQ games. A naive application of existing dynamic
programming solutions in finite dynamic games necessitates gridding the continuous state and
action spaces, often leading to computational intractability [28]. Recent works [226, 317] have
proposed using approximate dynamic programming to compute an approximate FSE for input-affine
systems. Additionally, several iterative linear-quadratic (LQ) approximation approaches have been
proposed in [137, 154], but they lack convergence guarantees.

Moreover, existing approaches are ill-suited for handling coupled equality and inequality
constraints on players’ states and decisions, which frequently arise in safety-critical applications
such as autonomous driving [284] and human-robot interaction [155]. For instance, existing iterative
LQ game solvers [154, 137] cannot be directly integrated with the primal log barrier penalty method
[250] to incorporate these constraints. The most relevant studies, such as [223, 89, 205], focus on
computing OLSE in games under linear constraints. This chapter aims to bridge this gap in the
literature.

Our contributions are threefold: (1) We first reformulate theN -player feedback Stackelberg equi-
librium problem, characterized by N players making sequential decisions over time, into a sequence
of nested optimization problems. This reformulation enables us to derive the Karush–Kuhn–Tucker
(KKT) conditions and a second-order sufficient condition for the feedback Stackelberg equilibrium.
(2) Using these results, we propose a Newton-style primal-dual interior point (PDIP) algorithm for
computing a local FSE for LQ games. Under certain regularity conditions, we show the convergence
of our algorithm to a local FSE. (3) Finally, we propose an efficient PDIP method for approximately
computing a local FSE for more general nonlinear games under (nonconvex) coupled equality
and inequality constraints. The computed feedback policy locally approximates the ground truth
nonlinear policy. Theoretically, we characterize the approximation error of our method, and show
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the exponential convergence under certain conditions. Empirically, we validate our algorithm in a
highway lane merging scenario, demonstrating its ability to tolerate infeasible initializations and
efficiently converge to a local FSE in constrained nonlinear games.

5.2 Related Works
Closely related to the feedback Stackelberg equilibrium (FSE), the feedback Nash equilibrium
(FNE) has been extensively studied, for example, in [23, 24, 262, 167]. Our work builds upon
[167], where the authors proposed KKT conditions for constrained FNE. However, the FNE KKT
conditions in [167] fail to hold true for FSE due to the decision hierarchy in FSE. In our work,
we introduce a set of new KKT conditions for FSE. Another key difference is that we adopt the
primal-dual interior point method for solving LQ and nonlinear games, whereas [167] considers the
active-set method. In general, the former has polynomial complexity, but the latter has exponential
complexity [112]. Moreover, we are able to prove the exponential convergence of our algorithm
under certain conditions. However, there is no such convergence proof in [167].

As highlighted in the literature, e.g., [24, 297, 226, 185, 317], the dominant approach to
computing unconstrained FSE is using (approximate) dynamic programming. LQ games can be
solved efficiently via exact dynamic programming; however, in more general nonlinear cases the
value function could be hard to compute and, in general, has no analytical solution [226]. Compared
with those works, our approach could be considered as computing an efficient local approximation
of the value function along the state trajectory under a local FSE policy instead of approximating
the value function everywhere as in [226].

Finally, to further motivate our work, we examine whether the Stackelberg equilibrium can
be effectively approximated by the Nash equilibrium and whether the FSE can be accurately
approximated by its open-loop counterpart. According to [160], in repeated matrix games, the
Stackelberg equilibrium may coincide with the Nash equilibrium. However, in Appendix 5.9,
we present a counterexample demonstrating that, in games with quadratic costs—reminiscent of
oligopoly models in economics [298]—the Stackelberg equilibrium can deviate arbitrarily from
the Nash equilibrium. Moreover, there is a recent trend of approximating feedback policies via
receding horizon open-loop policies [170, 333], where an open-loop policy is re-solved at each
time for future steps. However, we show in another counter-example in Appendix 5.9 that the
trajectory under the feedback Stackelberg policy and the one under the receding horizon open-loop
Stackelberg policy could be quite different, even if there is no state perturbation. Thus, it is essential
to develop specific tools for computing the feedback Stackelberg equilibrium.

5.3 Constrained Feedback Stackelberg Games
In this section, we introduce the formulation of constrained feedback Stackelberg games. We for-
mulate the problem by extending the N -player feedback Stackelberg games [107] to its constrained
setting. We denote by N and R the sets of natural numbers and real numbers, respectively. Given
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j, k ∈ N, we denote by Ikj = {j, j + 1, . . . , k} if j ≤ k and ∅ otherwise. Let T ∈ N be the time
horizon over which the game is played. At each time t, we denote by xt and uit ∈ Rmi the state of the
entire game and the control input of player i, respectively. We define ut := [u1t , u

2
t , . . . , u

N
t ] ∈ Rm,

with m :=
∑N

i=1mi, to be the joint control input at time t. Moreover, at each time t, players make
decisions in the order of their indices. We consider the time-varying dynamics

xt+1 = ft(xt, ut), (5.1)

where ft(xt, ut) : Rn×Rm → Rn is assumed to be a twice differentiable function. Given a sequence
of control inputs u := [u0, u1, . . . , uT ] ∈ RTm, we denote by x := [x0, x1, . . . , xT+1] ∈ R(T+1)n a
state trajectory under dynamics (5.1).

At each time t ∈ IT0 , we denote the stage-wise cost of player i ∈ IN1 by ℓit(xt, ut) : Rn×Rm → R,
and associate with each player a terminal cost, ℓiT+1(xT+1) : Rn → R. Each player i ∈ IN1 considers
the following time-separable costs,

J i(x,u) =
T∑
t=0

ℓit(xt, ut) + ℓiT+1(xT+1). (5.2)

Moreover, let ni
h,t and ni

g,t be the number of equality and inequality constraints held by player
i ∈ IN1 at time t, respectively. We denote the equality and inequality constraint functions of player i
by hit(xt, ut) : Rn × Rm → Rni

h,t and git(xt, ut) : Rn × Rm → Rni
g,t , respectively. We specify the

stage-wise equality and inequality constraints of player i ∈ IN1 as

0 = hit(xt, ut), 0 ≤ git(xt, ut). (5.3)

At the terminal time t = T + 1, we represent the equality and inequality constraint functions of
player i ∈ IN1 by hiT+1(xT+1) : Rn → Rni

h,T+1 and giT+1(xT+1) : Rn → Rni
g,T+1 , respectively. We

consider the following equality and inequality constraints of player i ∈ IN1 at the terminal time,

0 = hiT+1(xT+1), 0 ≤ giT+1(xT+1). (5.4)

We remark that these definitions generate coupled dynamics and constraints among different players
at each time t ∈ IT+1

0 . We consider the following regularity assumption, following [167, 57].

Assumption 2. The feasible set F := {x ∈ R(T+1)n, u ∈ RTm : hit(xt, ut) = 0, git(xt, ut) ≥
0, hiT+1(xT+1) = 0, giT+1(xT+1) ≥ 0, xt+1 = ft(xt, ut),∀i ∈ IN1 , t ∈ IT0 } is compact. The costs,
dynamics, equality and inequality constraints are twice differentiable and bounded, but could be
nonconvex in general.

Local Feedback Stackelberg Equilibria
Before we formalize the decision process of feedback Stackelberg games, we introduce a few
notations to compactly represent different players’ control at different times. We define ui:i′t:t′ :=
{ujτ , τ ∈ It

′
t , j ∈ Ii

′
i }. In particular, we define u1:i−1

t := ∅ when i = 1 and ui+1:N
t := ∅ when i = N .

We also denote by u1:it+1:T := ∅ when t = T .
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The policy of each player can be defined as follows. At the t-th stage, since player 1 makes
a decision first, its policy function π1

t (xt) : Rn → Rm1 depends only on the state xt. For players
i ∈ IN2 , the policies are modeled as πi

t(xt, u
1:i−1
t ) : Rn × R

∑i−1
j=1 mj → Rmi . We will define the

concept of local feedback Stackelberg equilibria in the remainder of this subsection.
At the terminal time t = T + 1, we define the state-value functions for a player i ∈ IN1 as

V i
T+1(xT+1) :=

ℓiT+1(xT+1) if
{

0=hi
T+1(xT+1)

0≤giT+1(xT+1)

∞ else.
(5.5)

At time t ≤ T , we first construct the state-action-value function for player N :

ZN
t (xt, u

1:N−1
t , uNt ) :=

ℓNt (xt, ut) + V N
t+1(xt+1) if

{
0=xt+1−ft(xt,ut)

0=hN
t (xt,ut)

0≤gNt (xt,ut)

∞ else.
(5.6)

Given (xt, u
1:N−1
t ), there could be multiple uNt minimizing ZN

t (xt, u
1:N−1
t , uNt ). We define player

N ’s local FSE policy πN
t by picking an arbitrary local minimizer uN∗

t ,

πN
t (xt, u

1:N−1
t ) := uN∗

t ∈ argmin
ũN
t

ZN
t (xt, u

1:N−1
t , ũNt ). (5.7)

We then construct the state-action-value function of player i ∈ IN−1
2 ,

Zi
t(xt, u

1:i−1
t , uit) :=


ℓit(xt, ut) + V i

t+1(xt+1) if


0=xt+1−ft(xt,ut)

0=hi
t(xt,ut)

0≤git(xt,ut)

uj
t=πj

t (xt,u
1:j−1
t ), j∈INi+1

∞ else,

(5.8)

and its local FSE policy πi
t by picking an arbitrary local minimizer ui∗t ,

πi
t(xt, u

1:i−1
t ) := ui∗t ∈ argmin

ũi
t

Zi
t(xt, u

1:i−1
t , ũit). (5.9)

We finally construct the state-action-value function of the first player:

Z1
t (xt, u

1
t ) :=


ℓ1t (xt, ut) + V 1

t+1(xt+1) if

{ 0=xt+1−ft(xt,ut)
0=h1

t (xt,ut)

0≤g1t (xt,ut)

uj
t=πj

t (xt,u
1:j−1
t ), j∈IN2

∞ else,

(5.10)

and its local FSE policy
π1
t (xt) := u1∗t ∈ argmin

ũ1
t

Z1
t (xt, ũ

1
t ). (5.11)

We define the state-value function of player i ∈ {1, 2, . . . , N} at time t ≤ T as

V i
t (xt) =Z

i
t(xt, u

1∗
t , . . . , u

i∗
t ), (5.12)

where uj∗t = πj
t (xt, u

1:(j−1)∗
t ),∀j ∈ Ii1.

We formally define the local feedback Stackelberg equilibria as follows.
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Definition 1 (Local Feedback Stackelberg Equilibria [24]). Let {πi
t}

T,N
t=0,i=1 be a set of policies

defined in (5.7), (5.9) and (5.11), and define (x∗,u∗) to be a state and control trajectory under the
policies {πi

t}
T,N
t=0,i=1, i.e.,

x∗t+1 = ft(x
∗
t , u

∗
t ), u

i∗
t = πi

t(x
∗
t , u

1:(i−1)∗
t ), ∀t ∈ IT0 , i ∈ IN1 . (5.13)

We say that (x∗,u∗) is a local feedback Stackelberg equilibrium trajectory if there exists an ϵ > 0
such that, for all t ∈ IT0 ,

Z1
t (x

∗
t , ũ

1
t ) ≥ Z1

t (x
∗
t , u

1∗
t ),

...

ZN
t (x∗t , u

1∗
t , . . . , u

(N−1)∗
t , ũNt ) ≥ ZN

t (x∗t , u
1∗
t , . . . , u

(N−1)∗
t , uN∗

t )

(5.14)

for all ũ1t ∈ {u : ∥u− u1∗t ∥2 ≤ ϵ}, . . . , and ũNt ∈ {u : ∥u− uN∗
t ∥2 ≤ ϵ}.

The above definition encapsulates the traditional approach to computing feedback Stackelberg
equilbiria. This involves optimizing over state-action-value functions, which are obtained by
integrating other players’ policies into each player’s problem and then recording the overall costs.

Remark 10 (Existence of Local Feedback Stackelberg Equilibria). In general, it is difficult to
establish a sufficient condition for the existence of a feedback Stackelberg equilibrium [29]. The
main difficulty is that the decision problem of each player is nested within that of other players. It
must be solved hierarchically. For example, the existence of feedback Stackelberg policies [202] of
a player i ∈ IN−1

1 is related to the topological properties of the set of policies of players j ∈ INi+1.
Even if all the players’ costs are convex, the feedback Stackelberg policy of player N at the terminal
time could be lower semi-continuous. Subsequently, the cost of player (N − 1) could become upper
semi-continuous when substituting in the N -th player’s policy into the (N − 1)-th player’s cost.
Since there may not exist a solution when minimizing an upper semi-continuous function, there may
not exist a feedback Stackelberg policy for player (N − 1). However, if we can show that the policy
of each player is always continuous in the state and prior players’ controls, and the continuous
costs are defined on a compact domain, then there exist feedback Stackelberg equilibria [24].

We will now proceed to characterize the feedback Stackelberg equilibria in greater detail in the
subsequent subsection.

5.4 Necessary and Sufficient Conditions for Local Feedback
Stackelberg Equilibria

We show in the following theorem that the dynamic programming problem, as described in Defin-
ition 1, can be reformulated as a sequence of nested constrained optimization problems. In this
reformulation, the policies for other players are integrated as constraints within the problem of
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each player i, instead of being directly substituted into the costs for computing state-action-value
functions, as is typical in traditional optimal control literature. This approach enables us to establish
KKT conditions for feedback Stackelberg games in the latter part of this subsection.

Theorem 4. Under Assumption 2, for each t ∈ IT0 and each i ∈ IN1 , a local feedback Stackelberg
policy πi

t can be equivalently represented as an optimization problem, given the knowledge of
current state x̄t and prior players’ actions ū1:i−1

t ,

πi
t(x̄t, ū

1:i−1
t ) = ũit ∈ arg

ui
t

min
ui:N
t

u1:N
t+1:T

xt+1:T+1

ℓit(x̄t, ū
1:i−1
t , ui:Nt ) +

T∑
τ=t+1

ℓiτ (xτ , uτ ) + ℓiT+1(xT+1) (5.15a)

s.t. 0 = ujt − π
j
t (x̄t, ū

1:i−1
t , ui:j−1

t ), j ∈ INi+1 (5.15b)

0 = xt+1 − ft(x̄t, ū1:i−1
t , ui:Nt ), (5.15c)

0 = hit(x̄t, ū
1:i−1
t , ui:Nt ), 0 ≤ git(x̄t, ū

1:i−1
t , ui:Nt ) (5.15d)

0 = ujτ − πj
τ (xτ , u

1:j−1
τ ), τ ∈ ITt+1, j ∈ IN1 \ {i} (5.15e)

0 = xτ+1 − fτ (xτ , uτ ), τ ∈ ITt+1 (5.15f)

0 = hiτ (xτ , uτ ), 0 ≤ giτ (xτ , uτ ), τ ∈ ITt+1 (5.15g)

0 = hiT+1(xT+1), 0 ≤ giT+1(xT+1) (5.15h)

where we drop (5.15b) when i = N , and we drop (5.15e), (5.15f) and (5.15g) when t = T . The
notation arguminu,v represents that we minimize over (u, v) but only return u as an output.

Proof. The proof can be found in the Appendix.

In what follows, we will characterize the KKT conditions of the constrained optimization
problems in (5.15). Before doing that, we first introduce Lagrange multipliers, which facilitate the
formulation of Lagrangian functions for all players.

Let t ∈ IT0 and i ∈ IN1 . We denote by λit ∈ Rn the Lagrange multiplier for the dynamics
constraint 0 = xt+1 − ft(xt, ut). Let R≥0 be the set of non-negative real numbers. We define

µi
t ∈ Rni

h,t and γit ∈ Rni
g,t

≥0 to be the Lagrange multipliers for the constraints 0 = hit(xt, ut) and
0 ≤ git(xt, ut), respectively. When t ≤ T , the constrained problem (5.15) of player i < N
considers the feedback interaction constraint 0 = ujt − π

j
t (xt, u

1:j−1
t ), j ∈ INi+1. Thus, we associate

those constraints with multipliers ψi
t := [ψi,i+1

t , ψi,i+2
t , . . . , ψi,N

t ], where ψi,j
t ∈ Rmi . Moreover,

when t < T , the constrained problem (5.15) of a player i ≤ N includes the feedback interaction
constraints 0 = ujτ+1 − π

j
τ+1(xτ+1, u

1:j−1
τ+1 ), for τ ≥ t and j ∈ IN1 \ {i}. Thus, we associate those

constraints with multipliers ηit := [ηi,1t , . . . , η
i,i−1
t , ηi,i+1

t , . . . , ηi,Nt ], where ηi,jt ∈ Rmj . Finally, we
simplify the notation by defining λt := [λ1t , λ

2
t , . . . , λ

N
t ], and define µt, γt, ηt, and ψt accordingly.
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Subsequently, we define the Lagrangian functions of all the players. We first consider player
i ∈ IN1 ,

Li
t(xt:t+1, ut:t+1, λt, µt, γt, ηt, ψt) : = ℓit(xt, ut)− λi⊤t (xt+1 − ft(xt, ut))

− µi⊤
t h

i
t(xt, ut)− γi⊤t git(xt, ut)

−
∑

j∈INi+1

ψi,j⊤
t (ujt − π

j
t (xt, u

1:j−1
t ))

−
∑

j∈IN1 \{i}

ηi,j
⊤

t (ujt+1 − π
j
t+1(xt+1, u

1:j−1
t+1 ))

(5.16)

where the right hand side terms represent player i’s cost, dynamics constraint, equality and inequality
constraints, and constraints encoding the feedback interaction among players at the current and
future time steps.

Furthermore, at the terminal time t = T , for player i ∈ IN1 , we consider

Li
T (xT :T+1, uT , λT , µT :T+1, γT :T+1, ψT ) : = ℓiT (xT , uT ) + ℓiT+1(xT+1)

− λi⊤T (xT+1 − fT (xT , uT ))
− µi⊤

T h
i
T (xT , uT )− µi⊤

T+1h
i
T+1(xT+1)

− γi⊤T giT (xT , uT )− γi⊤T+1g
i
T+1(xT+1)

−
∑

j∈INi+1

ψi,j⊤
T (ujT − π

j
T (xT , u

1:j−1
T ))

(5.17)

where the right hand side terms represent player i’s costs, dynamics constraint, equality and
inequality constraints, and constraints encoding the feedback interaction among players at the
terminal time T . Note that there is no more decision to be made at time t = T + 1, and therefore,
there is no term representing the feedback interactions among players for future time steps in (5.17),
which is different from (5.16).

For all time steps t ∈ IT0 and players i ∈ IN1 , assuming the state xt is given and each player
j < i has taken action ujt , we formulate the Lagrangian of the problem (5.15) of player i at the t-th
stage as

Li
t(xt:T+1, ut:T ,λt:T , µt:T+1, γt:T+1, ηt:T−1, ψt:T ) :=

T−1∑
τ=t

Li
τ (xτ :τ+1, uτ :τ+1,

λτ , µτ , γτ , ητ , ψτ ) + Li
T (xT :T+1, uT , λT , µT :T+1, γT :T+1, ψT )

(5.18)

where for each τ ∈ ITt+1, the terms associated with ψτ in Li
τ ensure constraints already addressed

by the terms associated with ητ−1 in Li
τ−1 and can therefore be dropped when defining Li

t. We
can concatenate the KKT conditions of each player at each stage, and summarize the overall KKT
conditions for (5.15) in the following theorem.
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Theorem 5 (Necessary Condition). Under Assumption 2, let (x∗,u∗) be a local feedback Stack-
elberg equilibrium trajectory. Suppose that the Linear Independence Constraint Qualification
(LICQ) [238] and strict complementarity condition [35] are satisfied at (x∗,u∗). Furthermore,
suppose {πi

t}
T,N
t=0,i=1 is a set of local feedback Stackelberg policies and πi

t is differentiable around
(x∗t , u

1:(i−1)∗
t ), ∀t ∈ IT0 , i ∈ IN1 . The KKT conditions of (5.15) can be formulated as, for all i ∈ IN1 ,

t ∈ IT0 ,

0 = ∇ui
τ
Li

t(x
∗
t:T+1, u

∗
t:T , λt:T , µt:T+1, γt:T+1, ηt:T−1, ψt:T ) ∀τ ∈ ITt

0 = ∇xτLi
t(x

∗
t:T+1u

∗
t:T , λt:T , µt:T+1, γt:T+1, ηt:T−1, ψt:T ) ∀τ ∈ IT+1

t+1

0 = ∇uj
t
Li

t(x
∗
t:T+1, u

∗
t:T , λt:T , µt:T+1, γt:T+1, ηt:T−1, ψt:T ) ∀j ∈ INi+1

0 = ∇uj
τ
Li

t(x
∗
t:T+1, u

∗
t:T , λt:T , µt:T+1, γt:T+1, ηt:T−1, ψt:T ) ∀j ∈ IN1 \ {i},∀τ ∈ ITt+1

0 = x∗τ+1 − fτ (x∗τ , u∗τ ) ∀τ ∈ ITt

0 = hiτ (x
∗
τ , u

∗
τ ) ∀τ ∈ ITt

0 ≤ γiτ ⊥ giτ (x
∗
τ , u

∗
τ ) ≥ 0 ∀τ ∈ ITt

0 = hiT+1(x
∗
T+1)

0 ≤ γiT+1 ⊥ giT+1(x
∗
T+1) ≥ 0

(5.19)

where ⊥ represents the complementary slackness condition [35]. Then, there exists Lagrange
multipliers λ := [λt]

T
t=0, µ := [µt]

T+1
t=0 , γ := [γt]

T+1
t=0 , η := [ηt]

T−1
t=0 , and ψ := [ψt]

T
t=0, such that

(5.19) holds true.

Proof. The proof can be found in the Appendix.

Constructing the KKT conditions in (5.19) requires the computation of policy gradients,
{∇πi

t}
T,N
t=0,i=1, which appear in the first four rows of (5.19). However, knowing the policy it-

self is not required, as any solution satisfying the KKT conditions obeys the corresponding feedback
Stackelberg policy, as shown in the proof of Theorem 5. A key distinction between (5.19) and
the FNE KKT conditions in [167] lies in the accommodation of a decision hierarchy among the
N players at each stage. This is reflected in the terms −

∑
j∈INi+1

ψi,j⊤
t (ujt − π

j
t (xt, u

1:j−1
t )) in the

Lagrangian Li
t. Additionally, this decision hierarchy differentiates the construction of the FSE KKT

conditions from those of FNE. We will outline a detailed procedure for constructing the FSE KKT
conditions in Sections 5.5 and 5.6, with an example provided in Appendix 5.10.

Furthermore, we propose a sufficient condition for feedback Stackelberg equilibrium trajectories
in the following theorem.

Theorem 6 (Sufficient Condition). Let (x∗,u∗) be a trajectory and {πi
t}

T,N
t=0,i=1 be the associated

policies. Suppose there exist Lagrange multipliers {λ,µ,γ,η,ψ} satisfying (5.19) and there exists
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an ϵ > 0 such that, for all i ∈ IN1 , t ∈ IT0 , and nonzero {∆xT+1}
⋃
{∆xτ ,∆uτ}Tτ=t satisfying

0 = ∆ujt −∇π
j
t (x

∗
t , u

1:(j−1)∗
t )

[
∆xt

∆u1:j−1
t

]
, ∀j ∈ INi

0 = ∆ujτ −∇πj
τ (x

∗
τ , u

1:(j−1)∗
τ )

[
∆xτ

∆u1:j−1
τ

]
,∀j ∈ IN1 ,∀τ ∈ ITt+1

0 = ∆xτ+1 −∇fτ (x∗τ , u∗τ )
[
∆xτ
∆uτ

]
,∀τ ∈ ITt

0 = ∇hjτ (x∗τ , u∗τ )
[
∆xτ
∆uτ

]
, 0 = ∇hjT+1(x

∗
T+1)∆xT+1,∀τ ∈ IT0 ,∀j ∈ IN1

(5.20)

we have
T∑

τ=t

[
∆xτ
∆uiτ

]⊤
∇2

[x∗
τ ,u

i∗
τ ]L

i
τ

[
∆xτ
∆uiτ

]
+∆x⊤T+1∇2

[x∗
T+1]

Li
T∆xT+1 > 0. (5.21)

Then, (x∗,u∗) constitutes a local feedback Stackelberg equilibrium trajectory.

Proof. The proof can be found in the Appendix.

Remark 11. The gap between the necessity condition in Theorem 5 and the sufficiency condition in
Theorem 6 is due to the fact that a solution to (5.19) may not necessarily be a feedback Stackelberg
equilibrium, and that there exist feedback Stackelberg equilibria where the cost functions possess
zero second-order gradients.

Theorems 5 and 6 establish conditions to certify whether a trajectory (x,u) constitutes a
feedback Stackelberg equilibrium with a set of feedback Stackelberg policies {πi

t}
T,N
t=0,i=1. However,

computing feedback Stackelberg equilibria can be challenging. In the following sections, we will
discuss how to approximately compute local feedback Stackelberg equilibria. We will first compute
feedback Stackelberg equilibria for Linear Quadratic games and then extend the result to nonlinear
games.

5.5 Constrained Linear Quadratic Games
We consider the linear dynamics

xt+1 = ft(xt, ut) = Atxt +B1
t u

1
t + · · ·+BN

t u
N
t + ct, t ∈ IT0 , (5.22)

where At ∈ Rn×n, Bi
t ∈ Rn×mi and ct ∈ Rn. We denote by Bt := [B1

t , B
2
t , . . . , B

N
t ]. The cost of

the i-th player is defined as

ℓit(xt, ut) =
1

2

[
xt
ut

]⊤ [
Qi

t Si⊤
t

Si
t Ri

t

] [
xt
ut

]
+ qi⊤t xt + ri⊤t ut, t ∈ IT0 ,

ℓiT+1(xT+1) =
1

2
x⊤T+1Q

i
T+1xT+1 + qi⊤T+1xT+1,

(5.23)
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where symmetric matrices Qi
t ∈ Rn×n and Ri

t ∈ Rm×m are positive semidefinite and positive
definite, respectively. The off-diagonal matrix is denoted as Si

t ∈ Rm×n. In particular, we partition
the structure of Ri

t, S
i
t and rit as follows

Ri
t =


Ri,1,1

t Ri,1,2
t · · · Ri,1,N

t

Ri,2,1
t Ri,2,2

t · · · Ri,2,N
t

...
... . . . ...

Ri,N,1
t Ri,N,2

t · · · Ri,N,N
t

 , Si
t =


Si,1
t

Si,2
t
...

Si,N
t

 , rit =

ri,1t
ri,2t

...
ri,Nt

 , (5.24)

where Ri,j,k
t , Si,j

t and rit represent the cost terms uj⊤t Ri,j,k
t ukt , uj⊤t Si,j

t xt and ri,j
⊤

t ujt in ℓit(xt, ut).
The linear equality and inequality constraints are specified as,

0 = hit(xt, ut) = H i
xt
xt +

∑
j∈IN1

H i
uj
t
ujt + h̄it, t ∈ IT0

0 ≤ git(xt, ut) = Gi
xt
xt +

∑
j∈IN1

Gi
uj
t
ujt + ḡit, t ∈ IT0

0 = hiT+1(xT+1) = H i
xT+1

xT+1 + h̄iT+1,

0 ≤ giT+1(xT+1) = Gi
xT+1

xT+1 + ḡiT+1.

(5.25)

Computing Feedback Stackelberg Equilibria and Constructing the KKT
Conditions for LQ Games
In this subsection, we introduce a process for deriving FSE and the KKT conditions for LQ
games. When we have linear inequality constraints, the optimal policies of LQ games are generally
piecewise linear functions of the state [32, 167]. However, this makes them non-differentiable at the
facets. In our work, we propose to use the primal-dual interior point (PDIP) method [238] to solve
constrained LQ games. The benefits of using PDIP are its polynomial complexity and tolerance
of infeasible initializations. Critically, under certain conditions, PDIP yields a local differentiable
policy approximation to the ground truth piecewise linear policy, as shown in the rest of this section
and an example in Appendix 5.9.

To this end, we introduce a set of non-negative slack variables {sit}
T+1,N
t=0,i=1 such that we can

rewrite the inequality constraints as equality constraints for t ∈ IT+1
0 and i ∈ IN1 ,

git(xt, ut)− sit = 0, giT+1(xT+1)− siT+1 = 0. (5.26)

In this chapter, we consider PDIP as a homotopy method as in [238]. Instead of solving the mixed
complementarity problem (5.19) directly, we seek solutions to the homotopy approximation of the
complementary slackness condition

γit ⊙ sit = ρ1, sit ≥ 0, γit ≥ 0 (5.27)
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where ⊙ denotes the elementwise product and ρ > 0 is a hyper-parameter to be reduced to 0
gradually such that we recover the ground truth solution when ρ→ 0. In the following section, we
will construct the KKT conditions where we replace the mixed complementarity condition with
its approximation (5.27). For each ρ > 0, we denote its corresponding local feedback policy as
{πi

t,ρ}
T,N
t=0,i=1, if it exists.

As shown in Theorem 5, the construction of the KKT conditions for player i at stage t requires
the policy gradients of subsequent players at the current stage and future stages. In what follows,
we construct those KKT conditions in reverse player order and backward in time.

Player N at the T -th stage

Before constructing the KKT conditions, we first introduce the variables of player N at the terminal
time T , zNT := [uNT , λ

N
T , µ

N
T :T+1, γ

N
T :T+1, s

N
T :T+1, xT+1]. As shown in Theorem 5, the KKT conditions

of player N at time T can be written as

0 = KN
T,ρ(z

N
T ) :=



∇uN
T
LN
T

∇xT+1
LN
T

xT+1 − fT (xT , uT )
hNT (xT , uT )
hNT+1(xT+1)

gNT (xT , uT )− sNT
gNT+1(xT+1)− sNT+1

γNT :T+1 ⊙ sNT :T+1 − ρ1


, (5.28)

where the rows of KN
T,ρ(z

N
T ) represent the stationarity conditions with respect to uNT and xT+1,

dynamics constraint, equality constraints, inequality constraints, and relaxed complementarity
conditions. To obtain a local policy and its policy gradient around a zNT satisfying (5.28), we build a
first-order approximation to (5.28),

∇KN
T,ρ ·∆zNT +∇[xT ,u1:N−1

T ]K
N
T,ρ ·

[
∆xT

∆u1:N−1
T

]
+KN

T,ρ(z
N
T ) = 0. (5.29)

If there is no solution ∆zNT to (5.29), then we claim there is no feedback Stackelberg policy. Suppose
(5.29) has a solution ∆zNT , then we can define ∆zNT as

∆zNT = −
(
∇KN

T,ρ

)+ · (∇[xT ,u1:N−1
T ]K

N
T,ρ ·

[
∆xT

∆u1:N−1
T

]
+KN

T,ρ(z
N
T )
)

︸ ︷︷ ︸
FN
T (∆xT ,∆u1:N−1

T )

,
(5.30)

where (·)+ represents the pseudo-inverse and we denote ∆zNT as a function FN
T of (∆xT ,∆u1:N−1

T ).
Since ∆uNT represents the firstmN entries of ∆zNT , we consider ∆uNT as a function of (∆xT ,∆u1:N−1

T ),

∆uNT =−
[(
∇KN

T,ρ

)+]
uN
T
·
(
∇[xT ,u1:N−1

T ]K
N
T,ρ ·

[
∆xT

∆u1:N−1
T

]
+KN

T,ρ(z
N
T )
)
, (5.31)
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where
[(
∇KN

T,ρ

)+]
uN
T

represents the rows of the matrix
(
∇KN

T,ρ

)+ corresponding to the variable

uNT , i.e., the first mN rows of the matrix
(
∇KN

T,ρ

)+.
Furthermore, for some x ∈ Rn and u1:N−1 ∈ R

∑N−1
i=1 mi , let ∆xT = x − xT , ∆u1:N−1

T =
u1:N−1 − u1:N−1

T and ∆uNT = uN − uNT . Substituting them into (5.31), we obtain a local policy π̃N
T,ρ

for player N at time T ,

uN =π̃N
T,ρ(x, u

1:N−1)

:=uNT −
[(
∇KN

T,ρ

)+]
uN
T
·
(
∇[xT ,u1:N−1

T ]K
N
T,ρ ·

[
x− xT

u1:N−1 − u1:N−1
T

]
+KN

T,ρ(z
N
T )
)
.

(5.32)

Suppose that∇KN
T,ρ(z

N
T ) has a constant row rank in an open set containing zNT , then, by the constant

rank theorem [145], the policy π̃N
T,ρ of player N at time T is locally differentiable with respect to

(x, u1:N−1), and its gradient over (x, u1:N−1) is

∇π̃N
T,ρ =−

[(
∇KN

T,ρ

)+]
uN
T
· ∇[xT ,u1:N−1

T ]K
N
T,ρ. (5.33)

In the following subsection, we construct the KKT conditions of a player i < N at stage T .

Players i < N at the T -th stage

For player i < N , assuming that zi+1
T has been defined and ∇π̃i+1

T,ρ has been computed, we first
introduce variables

yi
T := [uiT , ψ

i
T , λ

i
T , µ

i
T :T+1, γ

i
T :T+1, s

i
T :T+1] and ziT := [yi

T , z
i+1
T ]. (5.34)

The KKT conditions of player i at time T is

0 = Ki
T,ρ(z

i
T ) :=

[
K̂i

T,ρ(y
i
T )

Ki+1
T,ρ (z

i+1
T )

]
, K̂i

T,ρ(y
i
T ) :=



∇ui
T
Li
T

∇xT+1
Li
T

∇uj
T
Li
T ,∀j ∈ INi+1

hiT (xT , uT )
hiT+1(xT+1)

giT (xT , uT )− siT
giT+1(xT+1)− siT+1

γiT :T+1 ⊙ siT :T+1 − ρ1


, (5.35)

where the definition of Li
T involves the policy πi+1

T,ρ , as shown in (5.17). Building a first-order
approximation to 0 = Ki

T,ρ(z
i
T ), we have

∇Ki
T,ρ ·∆ziT +∇[xT ,u1:i−1

T ]K
i
T,ρ ·

[
∆xT

∆u1:i−1
T

]
+Ki

T,ρ(z
i
T ) = 0. (5.36)

However, a drawback of PDIP is that the policy πi+1
T,ρ is nonlinear in state xT and prior players’

controls u1:iT , as shown in a simplified problem in Appendix 5.9. The computation of ∇Ki
T,ρ
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involves the evaluation of ∇(∇ui
T
Li
T ), which requires the computation of ∇(ψi,i+1

T ∇πi+1
T,ρ ) =

∇ψi,i+1
T · ∇πi+1

T,ρ + ψi,i+1
T · ∇2πi+1

T,ρ . Furthermore, to evaluate ∇2πi+1
T,ρ , we need the computation of

∇3πi+2
T,ρ . In other words, the construction of∇Ki

T,ρ needs the evaluation of∇2πi+1
T,ρ ,∇3πi+2

T,ρ , ..., and
∇N−i+1πN

T,ρ. The evaluation of high-order policy gradients is challenging in practice [167] because
there is no closed-form solution to the KKT equation 0 = Ki+1

T,ρ (z
i+1
T ).

We prove in Appendix 5.9 that the high-order policy gradients could decay to zero as ρ→ 0,
when the ground truth policy is piecewise linear and differentiable around xT . Motivated by this
observation, we propose to approximate the nonlinear policy πi+1

T,ρ by its first-order approximation
π̃i+1
T,ρ in (5.32). With this approximation, we have∇(ψi,i+1

T ∇π̃i+1
T,ρ ) = ∇ψ

i,i+1
T · ∇π̃i+1

T,ρ . We refer to
this policy π̃i+1

T,ρ as a quasi-policy.
In the remainder of this section, we will always approximate the ground truth nonlinear policy

by quasi-policy when we define the KKT conditions.
Solving equation (5.36), we can obtain ∆ziT and ∇π̃i

T,ρ as in (5.30) and (5.33), respectively.
However, by construction, the dimension of ∆ziT is higher than ∆zi+1

T . Therefore, it is more
expensive to compute (∇Ki

T,ρ)
+ than (∇Ki+1

T,ρ )
+, and it is worthwhile to reduce the complexity of

computing ∆ziT by leveraging the computation that we have done for ∆zi+1
T and ∇π̃i+1

T,ρ . To this
end, by exploiting the structure ziT = [yi

T , z
i+1
T ] in (5.34), we can rewrite (5.36) as,

∇K̂i
T,ρ ·∆yi

T +∇[xT ,u1:i−1
T ]K̂

i
T,ρ ·

[
∆xT

∆u1:i−1
T

]
+ K̂i

T,ρ(y
i
T ) = 0

∇Ki+1
T,ρ ·∆zi+1

T +∇[xT ,u1:i
T ]K

i+1
T,ρ ·

[
∆xT
∆u1:iT

]
+Ki+1

T,ρ (z
i+1
T ) = 0

(5.37)

Observe that we have solved the second equation of (5.37) in Section 5.5. What remains to be
solved is the first equation in (5.37). We solve it as follows,

∆yi
T =−

(
∇K̂i

T,ρ

)+ · (∇[xT ,u1:i−1
T ]K̂

i
T,ρ ·

[
∆xT

∆u1:i−1
T

]
+ K̂i

T,ρ(y
i
T )
)

︸ ︷︷ ︸
F̂ i
T (∆xT ,∆u1:i−1

T )

,

∆uiT =−
[(
∇K̂i

T,ρ

)+]
ui
T
·
(
∇[xT ,u1:i−1

T ]K̂
i
T,ρ ·

[
∆xT

∆u1:i−1
T

]
+ K̂i

T,ρ(y
i
T )
)
,

∇π̃i
T,ρ =−

[(
∇K̂i

T,ρ

)+]
ui
T
· ∇[xT ,u1:i−1

T ]K̂
i
T,ρ.

(5.38)

Combining (5.38) and (5.30), we have

∆ziT =

[
∆yi

T

∆zi+1
T

]
=

[
F̂ i
T (∆xT ,∆u

1:i−1
T )

F i+1
T (∆xT ,∆u

1:i
T )

]
. (5.39)

Since ∆uiT is also a function of (∆xT ,∆u
1:i−1
T ), as shown in (5.38), we can represent (5.39)

compactly as ∆ziT = F i
T (∆xT ,∆u

1:i−1
T ).
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As such, given that the KKT conditions of player (i+ 1) at time T have been constructed, we
have finished the construction of the KKT conditions for player i at time T , and we introduced a
computationally efficient way to compute ∇π̃i

T,ρ. We can derive the KKT conditions and quasi-
policy gradient of player i < N at time T , sequentially, from i = N − 1 to i = 1.

Player N at a stage t < T

At a stage t < T , assuming that we have constructed the KKT conditions 0 = K1
t+1,ρ(z

1
t+1), we

are ready to derive the KKT conditions for player N at time t. We first introduce the variable
zNt := [yN

t , z
1
t+1], with yN

t := [uNt , η
N
t , λ

N
t , µ

N
t , γ

N
t , s

N
t , xt+1]. We construct the KKT conditions of

player N at time t as follows,

0 = KN
t,ρ(z

N
t ) :=



∇uN
t
LN
t

∇xt+1L
N
t

∇uj
t+1
LN
t , ∀j ∈ IN−1

1

xt+1 − ft(xt, ut)
hNt (xt, ut)

gNt (xt, ut)− sNt
γNt ⊙ sNt − ρ1
K1

t+1,ρ(z
1
t+1)


. (5.40)

Building a first-order approximation to the above equation, we can obtain quasi-policy gradient
∇π̃N

t,ρ as in (5.38) when it exists.

Players i < N at a stage t < T

Suppose that we have constructed the KKT conditions for the (i + 1)-th player at the t-th stage,
we are then ready to construct the KKT conditions for player i at the t-th stage. We introduce the
variable zit := [yi

t, z
i+1
t ] with yi

t := [uit, ψ
i
t, η

i
t, λ

i
t, µ

i
t, γ

i
t, s

i
t]. The KKT conditions of player i at time

t is

0 = Ki
t,ρ(z

i
t) :=



∇ui
t
Li
t

∇xt+1L
i
t

∇uj
t
Li
t, ∀j ∈ INi+1

∇uj
t+1
Li
t,∀j ∈ IN1 \ {i}
hit(xt, ut)

git(xt, ut)− sit
γit ⊙ sit − ρ1
Ki+1

t,ρ (zi+1
t )


. (5.41)

Building a first approximation to the above equation, we can obtain the quasi-policy gradient ∇π̃i
t,ρ

as in (5.38), when it exists.
We observe that, by construction, the KKT conditions in (5.19) is equivalent to 0 = K1

0,ρ(z
1
0).

To simplify notation, we define

z := z10, Kρ(z) := K1
0,ρ(z). (5.42)
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Algorithm 3: Local Feedback Stackelberg Equilibrium via PDIP

Require: {ft}Tt=0, {ℓit, hit, git}
T+1,N
t=0,i=1, initial homotopy parameter ρ, contraction rate σ ∈ (0, 1),

parameters β ∈ (0, 1) and κ ∈ (0, 1), tolerance ϵ, initial solution
z
(0)
ρ := [x

(0)
ρ ,u

(0)
ρ ,λ(0)

ρ ,µ
(0)
ρ ,γ

(0)
ρ ,η

(0)
ρ ,ψ(0)

ρ , s
(0)
ρ ] with s

(0)
ρ > 0 and γ(0)

ρ > 0

Ensure: policies {π̃i
t,ρ}

T,N
t=0,i=1, converged solution zρ

1: for kout = 1, 2, . . . , koutmax do
2: while the merit function ∥Kρ(z

(k)
ρ )∥2 > ϵ do

3: construct the first-order approximation of the KKT conditions
0 = ∇Kρ ·∆zρ +Kρ(z

(k)
ρ )

4: ∆zρ ← −
(
∇Kρ

)+ ·Kρ(z
(k)
ρ )

5: initialize the step size for line search, α← 1

6: while ∥Kρ(z
(k)
ρ + α∆zρ)∥2 > κ∥Kρ(z

(k)
ρ )∥2 or ẑρ := (z

(k)
ρ + α∆zρ) has a non-positive

element in its sub-vector [ŝρ, γ̂ρ] do
7: α← β · α
8: end while
9: if α == 0 then

10: claim failure to find a feedback Stackelberg equilibrium
11: end if
12: z

(k+1)
ρ ← z

(k)
ρ + α∆zρ

13: end while
14: ρ← σ · ρ
15: end for
16: construct {π̃i

t,ρ}
T,N
t=0,i=1 as in (5.32) and record zρ ← z

(k)
ρ .

17: return {π̃i
t,ρ}

T,N
t=0,i=1, zρ

The KKT conditions (5.19) can be represented compactly as 0 = Kρ(z). To more effectively
illustrate the construction process of KKT conditions described above, we have included detailed
examples of the KKT conditions for two-player LQ games in Appendix 5.10 as a reference.

Primal-Dual Interior Point Algorithm and Convergence Analysis in
Constrained LQ Games
In this subsection, we propose the application of Newton’s method to compute z∗ = [x∗,u∗,λ∗,µ∗,
γ∗,η∗,ψ∗, s∗], ensuring 0 = Kρ(z

∗). This approach guarantees that the associated quasi-policies
form a set of local FSE policies, provided that we anneal the parameter ρ to zero and the sufficient
condition in Theorem 6 is satisfied. We formalize our method in Algorithm 3.

In Algorithm 3, we gradually decay the homotopy parameter ρ to zero such that limρ→0 zρ
recovers an FSE solution. For each ρ, at the k-th iteration, we first construct the KKT conditions
0 = Kρ(z) along the trajectory z

(k)
ρ . We compute the Newton update direction ∆z := −(∇Kρ)

+ ·
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Kρ(z
(k)
ρ ). Since we aim at finding a solution z∗ to 0 = Kρ(z

∗), a natural choice of merit function is
∥Kρ(z)∥2. Given this choice of the merit function, we perform a line search to determine a step
size α and update z

(k+1)
ρ = z

(k)
ρ + α∆z until convergence. The converged solution is denoted as

z∗ρ. Subsequently, we steadily decay ρ and repeat these Newton update steps. We characterize how
the magnitude of the KKT residual value ∥Kρ(z)∥2 influences the convergence rate of Algorithm 3
when solving LQ games in the following result.

Theorem 7. Under Assumption 2, let Fz := {z = [x,u,λ,µ,γ,η,ψ, s] : γ ≥ 0, s ≥ 0} be the
solution set. We denote by ∇Kρ(z) and ∇∗Kρ(z) the Jacobians of the KKT conditions with and
without considering quasi-policy gradients, respectively. Suppose that ∇Kρ(z) is invertible and
there exist constants D and C such that

∥(∇Kρ(z))
−1∥2 ≤ D, ∀i ∈ IN1 ,∀z ∈ Fz, (5.43a)

∥∇∗Kρ(z)−∇∗Kρ(z̃)∥2 ≤ C∥z− z̃∥2, ∀i ∈ IN1 ,∀z, z̃ ∈ Fz. (5.43b)

Let α̂ ∈ [0, 1] be the maximum feasible stepsize for all z ∈ Fz, i.e., α̂ := max{α ∈ [0, 1] :
z, z+ α∆z ∈ Fz}. Moreover, suppose ∥∇∗Kρ(z)−∇Kρ(z)∥2 ≤ δ for all z ∈ Fz and D · δ < 1.
Then, for all z ∈ Fz, there exists α ∈ [0, α̂] such that

1. if ∥Kρ(z)∥2 > 1−Dδ
D2Cα̂

, then ∥Kρ(z+ α∆z)∥2 ≤ ∥Kρ(z)∥2 − (1−Dδ)2

2D2C
;

2. if ∥Kρ(z)∥2 ≤ 1−Dδ
D2Cα̂

, then ∥Kρ(z+ α∆z)∥2 ≤
(
1− 1

2
α̂(1−Dδ)

)
· ∥Kρ(z)∥2, and we have

exponential convergence.

Proof. The proof can be found in the Appendix.

Theorem 7 suggests that, under certain conditions, the merit function ∥Kρ(z)∥2 decays to
zero exponentially fast, and Algorithm 3 converges to a solution satisfying the KKT conditions
considering the quasi-policy gradients. The above analysis can be considered as an extension of
the classical PDIP convergence proof in [35] to constrained feedback Stackelberg games where we
consider feedback interaction constraints 0 = uit − π̃i

t,ρ(xt, u
1:i−1
t ) and the quasi-policy gradients.

The condition (5.43a) equates to establishing a lower bound for the smallest nonzero singular value
of ∇Kρ(z). Practically, this can be achieved by adding a minor cost regularization term to the KKT
conditions [57]. Moreover, the constant C in (5.43b) depends on the maximum singular values
of the Hessians of costs, the Jacobian of constraints, and linear dynamics, which are all constant
matricies in LQ games and can therefore be upper bounded.

Given a ρ > 0, a converged solution z∗ρ renders Kρ(z
∗
ρ) = 0. Note that the KKT conditions

0 = Kρ(z
∗
ρ) reduce to the one in Theorem 5 when ρ decays to zero. As ρ approaches zero, the

solution z∗ρ, when converged, recovers a solution to the KKT conditions in Theorem 5. When the
sufficient conditions in Theorem 6 are also satisfied, the computed solution converges to a local
feedback Stackelberg equilibrium.
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5.6 From LQ Games to Nonlinear Games
In this section, we extend our solution for LQ games to feedback Stackelberg games with nonlinear
dynamics. Without loss of generality, each player could have non-quadratic costs. Coupled nonlinear
equality and inequality constraints could also exist among players.

Iteratively Approximating Nonlinear Games via LQ Games by Aligning Their
KKT Conditions
In this subsection, we introduce a procedure which iteratively approximates the constrained non-
linear games using constrained LQ games, and computes approximate local feedback Stackelberg
equilibria for the nonlinear games. These LQ game approximations are designed to ensure that the
first-order approximations of their KKT conditions, expressed as 0 = ∇Kρ(z) ·∆z+Kρ(z), align
with those of the original nonlinear games, specifically considering the inclusion of quasi-policies.
Our approach differs from the existing iterative LQ game approximation techniques [154, 137]
for FSE policies, which linearize the dynamics and quadraticize only the costs. In contrast, our
method linearizes the dynamics but quadraticizes the Lagrangian. This enables us to utilize the
convergence results for LQ games, as discussed in the previous section, to analyze the convergence
properties of our method in nonlinear games. Consequently, our work provides the first iterative LQ
game approximation approach that has provable convergence guarantees for constrained nonlinear
feedback Stackelberg games.

In what follows, we introduce local LQ game approximations of the original nonlinear game.
Let z be a solution in the set Fz. We first define the following linear approximation of the dynamics
and constraints around z, for all t ∈ IT0 , i ∈ IN1 ,

At := ∇xtft(xt, ut), Bi
t := ∇ui

t
ft(xt, ut), ct := ft(xt, ut)− xt+1,

H i
xt
:= ∇xth

i
t, H

i
uj
t
:= ∇uj

t
hit, Gi

xt
:= ∇xtg

i
t, G

i
uj
t
:= ∇uj

t
git, ∀j ∈ IN1 ,

h̄it := hit(xt, ut), ḡit := git(xt, ut),

H i
xT+1

:= ∇xT+1
hiT+1, Gi

xT+1
:= ∇xT+1

giT+1,

h̄iT+1 := hiT+1(xT+1), ḡiT+1 := giT+1(xT+1).

(5.44)

For each i ∈ IN1 and t ∈ IT0 , we represent the second order terms and cost-related terms in the
Lagrangian Li

t as quadratic costs (5.23), with parameters defined as follows,

Qi
t :=∇2

xxℓ
i
t + (∇2

xxft)
⊤λit − (∇2

xxh
i
t)

⊤µi
t − (∇2

xxg
i
t)

⊤γit,

Si
t :=∇2

uxℓ
i
t + (∇2

uxft)
⊤λit − (∇2

uxh
i
t)

⊤µi
t − (∇2

uxg
i
t)

⊤γit,

Ri
t :=∇2

uuℓ
i
t + (∇2

uuft)
⊤λit − (∇2

uuh
i
t)

⊤µi
t − (∇2

uug
i
t)

⊤γit,

Qi
T+1 :=∇2

xxℓ
i
T+1 − (∇2

xxh
i
T+1)

⊤µi
T+1 − (∇2

xxg
i
T+1)

⊤γiT+1,

qit :=∇xℓ
i
t, rit := ∇uℓ

i
t, qiT+1 := ∇xℓ

i
T+1.

(5.45)
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We can modify Algorithm 3 to address nonlinear games by applying an LQ game approximation
around the solution z

(k)
ρ in step 3 of Algorithm 3 and formulate the resulting approximate KKT

conditions 0 = Kρ(z
(k)
ρ ) defined with terms in (5.44) and (5.45). Furthermore, this LQ game

approximation is reiterated around z
(k)
ρ + α∆zρ in step 6, when we evaluate the merit function

∥Kρ(z
(k)
ρ + α∆zρ)∥2 during line search.

Quasi-Policies Approximation Error and Exponential Convergence Analysis
in Nonlinear Games
In the above solution procedure, we approximate the ground truth nonlinear policies of nonlinear
games by quasi-policies. However, different from LQ games, the ground truth feedback Stackelberg
policies for nonlinear games could have nonzero high-order policy gradients. Thus, it is worthwhile
to characterize the error caused by the quasi-policy gradients. Essentially, there are two error
sources. The first type of error is due to the fact that we have neglected high-order policy gradients
when evaluating the KKT Jacobian ∇Ki

t,ρ(z), and the second form of error is how these changes
propagate into the expression of KKT conditions 0 = Ki

t,ρ(z) for earlier players and stages. Suppose
those two error sources could be upper bounded; then, we can characterize their impact on the
policy gradients error in the following proposition.

Proposition 6. Under Assumption 2, let z and z̃ be two elements in the solution set Fz. We
denote by {πi

t,ρ}
T,N
t=0,i=1 a set of policies around z and {π̃i

t,ρ}
T,N
t=0,i=1 a set of quasi-policies around

z̃, respectively. We denote by {Ki
t,ρ(z)}

T,N
t=0,i=1 and {Ki∗

t,ρ(z)}
T,N
t=0,i=1 the KKT conditions with and

without quasi-policies, respectively. Let i ≤ N and t ≤ T . Suppose that the Jacobian matrices
∇Ki

t,ρ(z̃), ∇Ki∗
t,ρ(z̃) and ∇Ki∗

t,ρ(z) are invertible. Let ϵz,z̃ > 0 be an upper error bound such that

max
{
∥∇Ki

t,ρ(z̃)−∇Ki∗
t,ρ(z̃)∥2, ∥∇Ki∗

t,ρ(z̃)−∇Ki∗
t,ρ(z)∥2,

∥Ki
t,ρ(z̃)−Ki

t,ρ(z)∥2, ∥Ki
t,ρ(z)−Ki∗

t,ρ(z)∥2
}
≤ ϵz,z̃.

(5.46)

Then, the error between the quasi-policy gradient and the policy gradient can be bounded as follows,

∥∇π̃i
t,ρ(z̃)−∇πi

t,ρ(z)∥2 ≤ ϵz,z̃ ·
(
2∥∇Ki∗

t,ρ(z)
−1∥2+(

∥∇Ki
t,ρ(z̃)

−1∥2 + ∥∇Ki∗
t,ρ(z)

−1∥2
)
· ∥∇Ki∗

t,ρ(z̃)
−1∥2∥Ki

t,ρ(z̃)∥2
)
.

(5.47)

Proof. The proof can be found in Appendix.

Proposition 6 suggests that the error introduced by the quasi-policy gradients is proportional to
ϵz,z̃, as described in (5.47). However, it is challenging to obtain an analytical bound ϵz,z̃ because the
evaluation of Ki∗

t,ρ(z) and∇Ki∗
t,ρ(z) requires computing the high-order policy gradients. The above

analysis only provides a partial analysis for the policy gradient error introduced by the quasi-policy
gradients. In principle, it is possible that the quasi-policy gradients could lead to a different feedback



CHAPTER 5. PRIMAL DUAL INTERIOR POINT METHOD FOR NONLINEAR FEEDBACK
STACKELBERG GAMES 87

Stackelberg policy from the ground truth feedback Stackelberg policy. However, it is intractable to
compute high-order policy gradients when we have a long horizon game. In general, the quasi-policy
is a local linear approximation to the ground truth nonlinear feedback Stackelberg policy, and when
a state perturbation occurs at time t, such policies are only approximately optimal for the resulting
sub-game. We believe that the local feedback Stackelberg quasi-policy is the closest computationally
tractable approximation possible when we consider the first-order policy approximation techniques
for long-horizon feedback Stackelberg games.

Furthermore, we can leverage the sufficient condition of the local FSE and the convergence
analysis in Theorem 7 to show that we will converge to a local FSE of nonlinear games under certain
conditions on the iterative LQ game approximations.

Theorem 8 (Exponential Convergence in Nonlinear Games). Suppose that there exist constants
(D,C, δ, α̂), as defined in Theorem 7, such that at each iteration k of Algorithm 3, the approximate
LQ game defined in (5.44) and (5.45) satisfies the conditions of Theorem 7. Then, for each
ρ > 0 and a sufficiently large k, z(k)ρ converges exponentially fast to a solution z∗ρ, which renders
∥Kρ(z

∗
ρ)∥2 = 0. Moreover, if the limit z∗ := limρ→0 z

∗
ρ exists and Theorem 6, which provides a

sufficient condition for local FSE trajectories, holds true at z∗ρ for all ρ > 0, then the converged
solution z∗ recovers a local FSE trajectory.

Proof. The proof can be found in the Appendix.

5.7 Experiments
In this section, we consider a two-player feedback Stackelberg game modeling highway driving1,
where two highway lanes merge into one and the planning horizon T = 20. We associate with each
player a 4-dimensional state vector xit = [pix,t, p

i
y,t, v

i
t, θ

i
t], where (pix,t, p

i
y,t) represents the (x, y)

coordinate, vit denotes the velocity, and θit encodes the heading angle of player i at time t. The joint
state vector of the two players is denoted as xt = [x1t , x

2
t ]. Both players have nonlinear unicycle

dynamics, ∀t ∈ IT0 , ∀i ∈ {1, 2},

pix,t+1 = pix,t +∆t · vit sin(θit), piy,t+1 = piy,t +∆t · vit cos(θit),
vit+1 = vit +∆t · ait, θit+1 = θit +∆t · ωi

t.
(5.48)

We consider the following cost functions, for all t ∈ IT0 ,

ℓ1t (xt, ut) = 10(p1x,t − 0.4)2 + 6(v1t − v2t )2 + 2∥u1t∥22, ℓ2t (xt, ut) = ∥θ2t ∥42 + 2∥u2t∥22, (5.49)

and the terminal costs ℓ1T+1(xT+1) = 10(p1x,T+1 − 0.4)2 + 6(v1t − v2t )2 and ℓ2T+1(xT+1) = ∥θ2T+1∥42.
Note that we include a fourth-order cost term in player 2’s cost at each stage to model its preference

1The code is available at https://github.com/jamesjingqili/FeedbackStackelbergGames.
jl.git

https://github.com/jamesjingqili/FeedbackStackelbergGames.jl.git
https://github.com/jamesjingqili/FeedbackStackelbergGames.jl.git
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(a) ρ = 1. (b) ρ = 2−1. (c) ρ = 2−5. (d) ρ = 2−10.

Figure 5.1: Convergence of Algorithm 3 with iterative LQ game approximations under different values of the homotopy
parameter ρ from 10 sampled initial states. The solid curve and the shaded area denote the mean and the standard
deviation of the logarithm of the merit function values, respectively. By gradually annealing ρ to zero, the solution
converges to a local FSE trajectory. Moreover, under each ρ, the plots above empirically support the linear convergence
described in Theorem 8.

of small heading angle. We consider the following (nonconvex) constraints encoding collision
avoidance, driving on the road, and control limits,√

∥p1x,t − p2x,t∥22 + ∥p1y,t − p2y,t∥22 − dsafe ≥ 0, t ∈ IT+1
0 ,

pix,t − pl ≥ 0, pr(p
i
y,t, p

i
x,t) ≥ 0, ∥ut∥∞ ≤ umax, t ∈ IT+1

0 , i ∈ {1, 2},
(5.50)

where we define pl ∈ R to be the left road boundary and denote by pr(pix,t, p
i
y,t) the distance between

player i and the right road boundary curve. We also consider the following equality constraints at
the terminal time

v1T+1 − v2T+1 = 0, θ1T+1 = 0, (5.51)

where the two players aim to reach a consensus on their speeds, with player 1 maintaining its
heading angle pointing forwards.

The nominal initial states of two players are specified as x10 = [0.9, 1.2, 3.5, 0.0] and x20 =
[0.5, 0.6, 3.8, 0.0], respectively. We randomly sample 10 initial states around x0 = [x10, x

2
0] un-

der a uniform distribution within the range of −0.1 to 0.1. From each sampled x̂0, we ob-
tain an initial state trajectory x(0) by simulating the nonlinear dynamics (5.48) with the initial
controls u(0) = 0. Set the initial slack variables for the inequality constraints as s(0) = 1,
along with the corresponding Lagrange multipliers γ(0) = 1. We set all other Lagrange mul-
tipliers {λ(0),µ(0),η(0),ψ(0)} to zeros. Consequently, we have constructed an initial solution
z(0) = [x(0),u(0),λ(0),γ(0)µ(0),η(0),ψ(0), s(0)]. We repeat this initialization trajectory defining
process for different sampled x̂0.

For each sampled initial state x̂0, we employ Algorithm 3 with iterative LQ game approximations
to compute a local FSE trajectory. The convergence of our method under different sampled x̂0 is
depicted in Figure 5.1. For each ρ, the merit function value decreases as the iterations continue.
Furthermore, since the cost functions are strongly convex with respect to each player’s controls,
Theorem 6 ensures that our converged solution constitutes a local FSE trajectory. Moreover, we
show our method can tolerate infeasible initialization in Figure 5.2, where the right road boundary
constraint is initially violated by initialization z(0), and as the algorithm progresses, subsequent
iterates z(k) become feasible.
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(a) ρ = 1, k = 0. (b) ρ = 1, k = 3. (c) ρ = 1, k = 6. (d) ρ = 2−10, k = 10.

Figure 5.2: Tolerance of an infeasible trajectory initialization and the converged trajectories of two players. In Figure
5.2a, we plot the initial state trajectories of two players, where player 1’s trajectory is infeasible because it violates the
road boundary constraint. When ρ = 1, we plot the state trajectories in the third and the sixth iterations in Figure 5.2b
and Figure 5.2c, respectively. They become feasible at the sixth iteration. In Figure 5.2d, we plot the converged solution,
with ρ = 2−10.

5.8 Conclusions
In this chapter, we considered general-sum feedback Stackelberg dynamic games with coupled
constraints among N players. We proposed a primal-dual interior point method to compute an
approximate feedback Stackelberg equilibrium and the associated policies for all players. To the
best of the authors’ knowledge, this represents the first attempt to compute approximate local
feedback Stackelberg equilibria in both LQ games and nonlinear games under general coupled
equality and inequality constraints, within continuous state and action spaces. We theoretically
characterized the approximation error and the exponential convergence of our algorithm. Numerical
experiments suggest that the proposed algorithm can tolerate infeasible initializations and efficiently
converge to a feasible equilibrium solution. Future research should investigate the potential benefits
of higher-order policy gradient approximations. Additionally, extending our approach to solve other
types of equilibria in dynamic games is also a promising direction for future research.
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5.9 Supplementary results
Proof of Theorem 4. At the terminal time t = T , for ease of notation, we define xT = x̄T , and
u1:i−1
T = ū1:i−1

T . We observe that, for each player i ∈ IN1 , the equation (5.15) can be rewritten as

ũiT ∈ argui
T
min
ui
T

{
min
ui+1:N
T
xT+1

ℓiT (xT , uT ) + V i
T+1(xT+1)

}
s.t. 0 = ujT − π

j
T (xT , u

1:j−1
T ), 0 = xT+1 − fT (xT , uT ) j ∈ INi+1

0 = hiT (xT , uT ), 0 ≤ giT (xT , uT )

0 = hiT+1(xT+1), 0 ≤ giT+1(xT+1)

which implies ũiT ∈ argui
T
minui

T
Zi

T (x̄T , ū
1:i−1
T , uiT ). Moreover, for all t ∈ IT−1

0 and i ∈ IN1 , for the
ease of notation, we assume xt = x̄t, and u1:i−1

t = ū1:i−1
t . We observe

ũit ∈ argui
t
min
ui
t

{
min
ui+1:N
t

u1:N
t+1:T

xt+1:T+1

T∑
τ=t

ℓiτ (xτ , uτ ) + ℓiT+1(xT+1)
}

s.t. 0 = ujt − π
j
t (xt, u

1:j−1
t ) j ∈ INi+1

0 = xτ+1 − fτ (xτ , uτ ) τ ∈ ITt

0 = ujτ − πj
τ (xτ , u

1:j−1
τ ) τ ∈ ITt+1, j ∈ IN1 \ {i}

0 = hiτ (xτ , uτ ), 0 ≤ giτ (xτ , uτ ) τ ∈ ITt

0 = hiT+1(xT+1), 0 ≤ giT+1(xT+1)

The above can be further rewritten as

ũit ∈ argui
t
min
ui
t

{
min
ui+1:N
t
xt+1

ℓit(xt, ut) + V i
t+1(xt+1)

}
s.t. 0 = ujt − π

j
t (xt, u

1:j−1
t ), 0 = xt+1 − ft(xt, ut) j ∈ INi+1

0 = hit(xt, ut), 0 ≤ git(xt, ut)

It follows that ũit ∈ argui
t
minui

t
Zi

t(x̄t, ū
1:i−1
t , uit). Therefore, the set of strategies {πi

t}
T,N
t=0,i=1

constitutes a set of local feedback Stackelberg policies.

Proof of Theorem 5. For a time t ∈ IT0 and player i ∈ IN1 , we set the gradient of Li
t with respect

to {uiτ}Tτ=t and {xτ}T+1
τ=t+1 to be zero. This constitutes the first two rows of (5.19). In addition, a

player i < N considers the feedback interaction constraints 0 = uj∗t − π
j
t (x

∗
t , u

1:j−1∗
1 ), for j ∈ INi+1.

This constraint is implicitly ensured when we include player j’s KKT conditions into player i’s
KKT conditions. Thus, we only need to ensure the gradient∇uj

t
Li

t to be zero, when synthesizing
player i’s KKT conditions. This corresponds to the third row of (5.19). Moreover, at a time t < T ,
each player i ∈ IN1 needs to account for the feedback reaction from other players in future steps.
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Again this constraint is implicitly ensured when we define player j’s KKT conditions. We only
need to additionally set the gradient of Li

t with respect to ujτ to be zero, where τ ∈ ITt+1 and
j ∈ IN1 \ {i}. These correspond to the fourth row of (5.19). Finally, we include the dynamics
constraints, equality and inequality constraints, and complementary slackness conditions in the last
five rows of (5.19).

Proof of Theorem 6. We can check that the feasible set for the equality constraints of (5.20) is a
superset of the critical cone of the problem (5.19). By Theorem 12.6 in [238], the solution(x∗,u∗)
constitutes a local feedback Stackelberg equilibrium trajectory.

Proof of Theorem 7. By fundamental theorem of calculus, we have Kρ(z + α∆z) = Kρ(z) +∫ 1

0
∇∗Kρ(z+ τα∆z)α∆zdτ , and we have

∥Kρ(z+ α∆z)∥2 =
∥∥∥∥Kρ(z) +

∫ 1

0

∇∗Kρ(z+ τα∆z)α∆zdτ

∥∥∥∥
2

≤ ∥Kρ(z) + α∇∗Kρ(z)∆z∥2 +
∥∥∥∥∫ 1

0

(∇∗Kρ(z+ τα∆z)−∇∗Kρ(z))α∆zdτ

∥∥∥∥
2

(5.52)

Substituting ∆z into ∥Kρ(z) + α∇∗Kρ(z)∆z∥2, we have

∥Kρ(z) + α∇∗Kρ(z)∆z∥2 = ∥Kρ(z)− α∇∗Kρ(z)(∇Kρ(z))
−1Kρ(z)∥2

≤(1− α)∥Kρ(z)∥2 + α∥∇∗Kρ(z)−∇Kρ(z)∥2∥(∇Kρ(z))
−1∥2∥Kρ(z)∥2

≤(1− α)∥Kρ(z)∥2 + αδD∥Kρ(z)∥2 = (1− α(1− δD))∥Kρ(z)∥2
(5.53)

Combining (5.53) and (5.52), we have

∥Kρ(z+ α∆z)∥2

≤ (1− α(1− δD))∥Kρ(z)∥2 + ∥α∆z∥2

∥∥∥∥∫ 1

0

∥∇∗Kρ(z+ τα∆z)−∇∗Kρ(z)∥dτ
∥∥∥∥
2

≤ (1− α(1− δD))∥Kρ(z)∥2 +
1

2
α2D2C∥Kρ(z)∥22

where the right hand side is minimized when α∗ = 1−Dδ
D2C∥Kρ(z)∥2 . Suppose ∥Kρ(z)∥2 > 1−Dδ

D2Cα̂
, then

α̂ > 1−Dδ
D2C∥Kρ(z)∥2 and we have ∥Kρ(z+ α∗∆z)∥2 ≤ ∥Kρ(z)∥2 − (1−Dδ)2

2D2C
.

For the case ∥Kρ(z)∥2 ≤ 1−Dδ
D2Cα̂

, let α := α̂. By α̂D2C∥Kρ(z)∥2 ≤ 1−Dδ, we have ∥Kρ(z+
α̂∆z)∥2 ≤ (1− 1

2
α̂(1−Dδ))∥Kρ(z)∥2.
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(a) Trajectories (b) Feedback Stackelberg policy (c) Receding-horizon open-loop
Stackelberg policy

Figure 5.3: The trajectories under the receding horizon open-loop Stackelberg equilibrium (RH-OLSE) policy and those
under the FSE policy are quite different, regardless of the initial conditions. For example, in the above case, under the
FSE policy, player 1 first moves towards the origin and then player 2 follows. However, under the RH-OLSE policy,
player 1 always stays at its initial position, waiting for player 2 to approach.

Proof of Proposition 6. By definition, we have

∥∇π̃i
t,ρ(z̃)−∇πi

t,ρ(z)∥2 = ∥∇Ki
t,ρ(z̃)

−1Ki
t,ρ(z̃)−∇Ki∗

t,ρ(z)
−1Ki∗

t,ρ(z)∥2
= ∥∇Ki

t,ρ(z̃)
−1Ki

t,ρ(z̃)−∇Ki∗
t,ρ(z)

−1Ki∗
t,ρ(z)

+∇Ki∗
t,ρ(z̃)

−1Ki
t,ρ(z̃)−∇Ki∗

t,ρ(z̃)
−1Ki

t,ρ(z̃)

+∇Ki∗
t,ρ(z)

−1Ki
t,ρ(z̃)−∇Ki∗

t,ρ(z)
−1Ki

t,ρ(z̃)

+∇Ki∗
t,ρ(z)

−1Ki
t,ρ(z)−∇Ki∗

t,ρ(z)
−1Ki

t,ρ(z)∥2

≤
(
∥∇Ki

t,ρ(z̃)
−1 −∇Ki∗

t,ρ(z̃)
−1∥2 + ∥∇Ki∗

t,ρ(z̃)
−1 −∇Ki∗

t,ρ(z)
−1∥2

)
∥Ki

t,ρ(z̃)∥2

+
(
∥Ki

t,ρ(z̃)−Ki
t,ρ(z)∥2 + ∥Ki

t,ρ(z)−Ki∗
t,ρ(z)∥2

)
∥∇Ki∗

t,ρ(z)
−1∥2

≤ ϵz,z̃

(
∥∇Ki

t,ρ(z̃)
−1∥2 + ∥∇Ki∗

t,ρ(z)
−1∥2

)
∥∇Ki∗

t,ρ(z̃)
−1∥2∥Ki

t,ρ(z̃)∥2
+ 2ϵz,z̃∥∇Ki∗

t,ρ(z)
−1∥2

where the last line follows by applying Lemma 2.

Lemma 2. Let K and K̃ be two invertible matrices. Suppose ∥K − K̃∥2 ≤ ϵ, then we have
∥K−1 − K̃−1∥2 ≤ ϵ∥K−1∥2 · ∥K̃−1∥2.

Proof of Lemma 2. Define K̄ := K − K̃. Applying the Woodbury matrix equality, we have
K̃−1 = K−1 +K−1 · K̄ · K̃−1, and this implies ∥K̃−1 −K−1∥ ≤ ϵ∥K−1∥ · ∥K̃−1∥.

Proof of Theorem 8. Observe that the first order-approximation of the KKT conditions for the local
LQ game approximations coincides with the one for nonlinear games. By Theorem 7, for each ρ > 0,
limk→∞ ∥Kρ(z

(k)
ρ )∥2 = 0, and we have exponential convergence when k ≥ ∥Kρ(z

(0)
ρ )∥2/( 1−Dδ

D2Cα̂
).

Moreover, by Theorem 6, the solution limρ→0 z
∗
ρ recovers a local FSE trajectory.
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Figure 5.4: Visualization of the policy gradients of a constrained single-stage Linear Quadratic Regulator problem
under different values of ρ. The cost is given by (u0 − x0)

2. The dynamics is defined as x1 = x0 + u0. We consider
a constraint u0 ≥ 0. The ground truth piecewise linear policy is not differentiable at x = 0. As ρ → 0, the policy
obtained from PDIP and its first-order gradient closely approximate the ground truth policy and its first-order gradient,
for all nonzero x. As shown in Figure 5.4c, the high-order gradient of the PDIP policy decays to zero as ρ→ 0, for all
nonzero x.

The difference between Stackelberg equilibrium and Nash equilibrium in
oligopoly games [298]
Consider a two-player Oligopoly game. We denote by the action ui the amount of production of
player i. Consider three positive constants C1, C2, and C3, where C1 > C3. The cost of each player
i ∈ {1, 2} is modeled as

ℓi(u1, u2) := −ui · (C1 − C2(u
1 + u2)− C3) (5.54)

Both players aim to minimize their respective costs. We compute the Nash equilibrium by solving
the KKT conditions

∂

∂u1∗
ℓ1(u1∗, u2∗) = −C1 + 2C2u

1∗ + C2u
2∗ + C3

∂

∂u2∗
ℓ2(u1∗, u2∗) = −C1 + 2C2u

2∗ + C2u
1∗ + C3

(5.55)

The Nash equilibrium is u1∗Nash = u2∗Nash = C1−C3

3C2
. In what follows, we compute the Stackelberg

equilibrium. By solving player 2’s KKT condition, as derived in the second line of (5.55), the
optimal reaction control of player 2 is given by

u2∗ =
C1 − C3

2C2

− 1

2
u1∗ (5.56)

Substituting this into player 1’s decision problem, we have

min
u1

ℓ1(u1, u2) = −u1 · (C1 − C2(u
1 + u2)− C3)

s.t. u2 =
C1 − C3

2C2

− 1

2
u1

(5.57)
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Solving the above problem, we have that the optimal action of player 1 is u1∗Stackelberg =
C1−C3

2C2
, and

the optimal action of player 2 is u2∗Stackelberg =
C1−C3

4C2
. The Stackelberg equilibrium can be arbitrarily

different from the Nash equilibrium when the value C1−C3

C2
varies.

A counter example that the receding horizon open-loop Stackelberg
equilibrium fails to approximate the FSE well
We consider Example 1 from [180]. We show in Figure 5.3a that the receding-horizon open-loop
Stackelberg policy could lead to a trajectory quite different from the one under FSE. Therefore, it is
crucial to study the computation of FSE.

The decay of high-order policy gradients when we apply PDIP to solve
constrained LQ games
We validate the quasi-policy assumption in LQ games in Proposition 7, and include a simplified
example in Figure 5.4.

Proposition 7. Under the same assumptions of Theorem 7, let ρ > 0 and denote by z∗ρ a converged
solution to an LQ game under Algorithm 3 with considering high-order policy gradients. Let
{πi

t,ρ}
T,N
t=0,i=1 be the converged policies. Suppose that limρ→0 z

∗
ρ exists and we denote it by z∗.

Moreover, suppose that the ground truth FSE policies {πi
t}

T,N
t=0,i=1 are differentiable at (x∗,u∗).

Then, limρ→0 ∥∇πi
t,ρ −∇πi

t∥2 = 0, and limρ→0 ∥∇jπi
t,ρ∥2 = 0, ∀i ∈ IN1 , t ∈ IT0 , j ≥ 2.

Proof. At time t = T , there is no policy gradient term in the N -th player’s KKT conditions. Re-
call that ∇πN

T,ρ = −[(∇KN
T,ρ)

−1]uN
T
∇[xT ,u1:N−1

T ]K
N
T,ρ and ∇πN

T = −[(∇KN
T )−1]uN

T
∇[xT ,u1:N−1

T ]K
N
T .

Since limρ→0 ∥KN
T,ρ(z

N∗
T,ρ) − KN

T (zN∗
T )∥2 = 0, we have pointwise convergence limρ→0 ∥∇πN

T,ρ −
∇πN

T ∥2 = 0 almost everywhere. We characterize those high-order quasi-policy gradients of
πN
T,ρ as follows. We denote the map from zN∗

T,ρ to the j-th order gradient of πN
T,ρ by an operator

AN,j
T : zN∗

T,ρ → ∇jπN
T,ρ. Observe that [(∇KN

T,ρ)
−1]uN

T
can be considered as the concatenation of a

matrix inverse operatorM : X ∈ Rn×n → X−1 ∈ Rn×n and a linear operator M̂ : zN∗
T,ρ → ∇KN

T,ρ.
Note that the matrix inverse is an infinitely differentiable operator when X is invertible and
∇[xT ,u1:N−1

T ]K
N
T,ρ is a constant matrix. Thus, by the chain rule [266], πN

T,ρ is infinitely differentiable,
which also implies that∇jπN

T,ρ is continuous, ∀j ≥ 1.
Since∇KN

T,ρ(z
N∗
T,ρ) is invertible at zN∗

T,ρ and AN,j
T , ∀j ≥ 1, is a continuous operator, there exists a

compact set S containing zN∗
T,ρ such that∇KN

T,ρ(z
N
T ) is invertible for all zNT ∈ S . By the compactness

of S and the continuity of AN,j
T , we have that AN,j

T is a uniformly continuous operator on S. By
Theorem 2 in [22], a uniformly continuous operator preserves the pointwise convergence. Thus,
limρ→0 ∥∇jπN

T,ρ − ∇jπN
T ∥2 = 0. Since the ground truth policy πN

T is piecewise linear and the
high-order gradients of πN

T vanish, we have limρ→0 ∥∇jπN
T,ρ∥2 = 0, ∀j > 1.

Subsequently, for player i = N−1, since limρ→0 ∥∇πN
T,ρ−∇πN

T ∥2 = 0, we have limρ→0 ∥∇Ki
T (z

i∗
T,ρ)−

∇Ki
T (z

i∗
T )∥2 = 0, which implies limρ→0 ∥∇πi

T,ρ − ∇πi
T∥2 = 0. A similar reasoning as above
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yields that limρ→∞ ∥∇jπi
T,ρ −∇jπi

T∥2 = 0, ∀j > 1. Moreover, we can show that for all players
i < N − 1, limρ→0 ∥∇jπi

T,ρ −∇jπi
T∥2 = 0, ∀j ≥ 1. We continue this backward induction proof of

limρ→0 ∥∇jπi
t,ρ −∇jπi

t∥2 = 0, ∀j ≥ 1, for prior stages backwards in players decision order until
t = 0 and i = 1.

5.10 KKT conditions for two-player LQ games
The KKT conditions 0 = K2

T,ρ(z
2
T ) of player 2 at time T are

0 =Σ2
j=1R

2,2,j
T ujT + S2,2

T xT + r2,2T +B2⊤
T λ2T −G2⊤

u2
T
γ2T −H2⊤

u2
T
µ2
T

0 =Q2
T+1xT+1 + q2T+1 − λ2T −G2⊤

xT+1
γ2T+1 −H2⊤

xT+1
µ2
T+1

0 =xT+1 − ATxT −B1
Tu

1
T −B2

Tu
2
T − cT

0 =H2
u2
T
u2T +H2

xT
xT +H2

u1
T
u1T + h̄2T

0 =H2
xT+1

xT+1 + h̄2T+1

0 =γ2T :T+1 ⊙ s2T :T+1 − ρ1
0 =G2

u2
T
u2T +G2

xT
xT +G2

u1
T
u1T + ḡ2T − s2T

0 =G2
xT+1

xT+1 + ḡ2T+1 − s2T+1

We construct the KKT conditions 0 = K1
T,ρ(z

1
T ) of player 1 at time T :

0 =Σ2
j=1R

1,1,j
T ujT + S1,1

T xT + r1,1T +B1⊤
T λ1T −G1⊤

u1
T
γ1T −H1⊤

u1
T
µ1
T + (∇u1

T
π2
T,ρ)

⊤ψ1,2
T

0 =Q1
T+1xT+1 + q1T+1 − λ1T −G1⊤

xT+1
γ1T+1 −H1⊤

xT+1
µ1
T+1

0 =Σ2
j=1R

1,2,j
T ujT + S1,2

T xT + r1,2T +B2⊤
T λ1T −G1⊤

u2
T
γ1T −H1⊤

u2
T
µ1
T − ψ

1,2
T

0 =H1
u1
T
u1T +H1

xT
xT +H1

u2
T
u2T + h̄1T

0 =H1
xT+1

xT+1 + h̄1T+1

0 =γ1T :T+1 ⊙ s1T :T+1 − ρ1
0 =G1

u1
T
u1T +G1

xT
xT +G1

u2
T
u2T + ḡ1T − s1T

0 =G1
xT+1

xT+1 + ḡ1T+1 − s1T+1

0 =K2
T,ρ(z

2
T )
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We construct the KKT conditions 0 = K2
t,ρ(z

2
t ) of player 2 at time t < T :

0 =Σ2
j=1R

2,2,j
t ujt + S2,2

t xt + r2,2t +B2⊤
t λ2t −G2⊤

u2
t
γ2t −H2⊤

u2
t
µ2
t

0 =Q2
t+1xt+1 + q2t+1 − λ2t −G2⊤

xt+1
γ2t+1 −H2⊤

xt+1
µ2
t+1

− A⊤
t+1λ

2
t+1 + Σ2

j=1S
2,j
t+1u

j
t+1 + (∇xt+1π

1
t+1,ρ)

⊤η2,1t

0 =Σ2
j=1R

2,1,j
t+1 u

j
t+1 + S2,1

t+1xt+1 + r2,1t+1 +B1⊤
t+1λ

2
t+1 −G2⊤

u1
t+1
γ2t+1 −H2⊤

u1
t+1
µ2
t+1 − η

2,1
t

0 =xt+1 − Atxt −B1
t u

1
t −B2

t u
2
t − ct

0 =H2
u2
t
u2t +H2

xt
xt +H2

u1
t
u1t + h̄2t

0 =γ2t ⊙ s2t − ρ1
0 =G2

u2
t
u2t +G2

xt
xt +G2

u1
t
u1t + ḡ2t − s2t

0 =K1
t+1,ρ(z

1
t+1)

We construct the KKT conditions 0 = K1
t,ρ(z

1
t ) of player 1 at time t < T :

0 =Σ2
j=1R

1,1,j
t ujt + S1,1

t xt + r1,1t +B1⊤
t λ1t −G1⊤

u1
t
γ1t −H1⊤

u1
t
µ1
t + (∇u1

t
π2
t,ρ)

⊤ψ1,2
t

0 =Q1
t+1xt+1 + q1t+1 − λ1t −G1⊤

xt+1
γ1t+1 −H1⊤

xt+1
µ1
t+1

− A⊤
t+1λ

1
t+1 + Σ2

j=1S
1,j
t+1u

j
t+1 + (∇xt+1π

2
t+1,ρ)

⊤η1,2t

0 =Σ2
j=1R

1,2,j
t ujt + S1,2

t xt + r1,2t +B2⊤
t λ1t −G1⊤

u2
t
γ1t −H1⊤

u2
t
µ1
t − ψ

1,2
t

0 =Σ2
j=1R

1,2,j
t+1 u

j
t + S1,2

t+1xt+1 + r1,2t+1 +B2⊤
t+1λ

1
t+1 −G1⊤

u2
t+1
γ1t+1 −H1⊤

u2
t+1
µ1
t+1 − η

1,2
t

0 =H1
u1
t
u1t +H1

xt
xt +Hu2

t
u2t + h̄1t

0 =γ1t ⊙ s1t − ρ1
0 =G1

u1
t
u1t +G1

xt
xt +G1

u2
t
u2t + ḡ1t − s1t

0 =K2
t,ρ(z

2
t )

We continue the above construction process until i = 1 and t = 0.
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Chapter 6

Scenario-Game ADMM for
Chance-Constrained Stochastic Games

In this chapter, we leverage the game-theoretic KKT conditions for deterministic dynamic games
to approximately solve stochastic dynamic games. The challenge is the efficient approximation of
the chance constraints under stochastic dynamics. Inspired by the idea of scenario optimization,
which is a technique for single-objective stochastic optimization problems, we propose a new
approximation for the chance-constrained stochastic games, using a large number of sampled
realizations of the original chance-constrained stochastic game, and efficiently solve a consensus
safe Nash equilibrium across different realizations via a new Alternating Direction Method of
Multipliers (ADMM) algorithm. This chapter is based on the published work [184], co-authored
with Chih-Yuan Chiu, Lasse Peters, Fernando Palafox, Mustafa Karabag, Somayeh Sojoudi, Claire
J. Tomlin, and David Fridovich-Keil.

6.1 Background
Stochastic game theory [278] provides a principled mathematical foundation for modeling inter-
actions between multiple self-interested players in uncertain environments, and has applications
in traffic control [79], multi-robot coordination [319], and human-robot interaction [189]. In this
framework, each player selects actions to optimize their own objective, obey a set of constraints,
and reason about the strategic response of other players. Uncertainty in the players’ potentially
conflicting objectives and coupled constraints makes these problems extremely challenging to solve.

Classical results in stochastic games are often derived under strong assumptions regarding the
problem structure and the distribution of the underlying random process. In the class of linear
quadratic Gaussian games, necessary and sufficient conditions for the existence of Nash equilibria
are characterized in [24]. It is also shown that in N -player noncooperative stochastic games, the
convexity of player-specific objectives and convex, compact strategy sets are sufficient for the
existence of the Nash equilibria [175]. However, for general stochastic games, it is NP-hard to
determine the existence of Nash equilibria [66]. Moreover, computing a Nash equilibrium can also
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be a hard problem [70], partially due to the complexity of solving the nonlinear equations induced
by the Nash equilibrium condition.

Several recent efforts provide computationally efficient, approximate solutions to stochastic
games with coupled constraints. Two lines of work provide high probability guarantees of both
optimality and feasibility. The first [315, 316, 247] approximates the players’ expected value
objectives and constraints with sample average approximations. The second [242, 94, 88] follows
the idea of scenario programming and approximates the objectives and constraints using worst-
case samples. The former approach enjoys low sample complexity under certain distributional
assumptions [140]. However, when the sample size is finite, this method may lead to situations in
which the optimal solution is infeasible for the original chance constraint. The latter technique does
not require strong distributional assumptions and returns conservative feasible solutions with high
probability, but may require a large number of samples. In this chapter, we combine the benefits of
the two approaches such that we obtain accurate approximations for the objectives and maintain the
high probability feasibility guarantee.

Our contributions are threefold: (1) We first propose a new sample-based approximation to the
constrained stochastic game problem. In this framework, we approximate the expected objectives
using a sample average approximation and ensure the feasibility of the original chance constraints by
considering a large number of sampled constraints. We validate this scenario-game approximation
by characterizing its sample complexity, and we show how the sample complexity can be improved
by using problem structure. (2) To overcome the computational burden induced by the sampled
constraints, we decompose the approximated game into smaller games with few constraints per
scenario, and propose a decentralized ADMM algorithm to compute the joint Nash equilibrium
solution in parallel. (3) We prove the convergence of our method to a generalized Nash equilibrium
of the approximated constrained game. Empirical results show that our method can handle a large
number of constraints with faster convergence than a state-of-the-art baseline.

6.2 Related Work

Stochastic Games
Originally due to Shapley [278], the field of stochastic game theory has expanded to model uncertain-
ties in players’ objectives [123], constraints [48], and in the case of dynamic games, underlying state
dynamics [97, 244, 239]. Exact generalized Nash equilibrium solutions to stochastic constrained
games can be obtained by solving their equivalent stochastic variational inequality problems [91,
247]. Under an appropriate constraint qualification, the well-known Karush–Kuhn–Tucker (KKT)
conditions must be satisfied for all players at a generalized Nash equilibrium [91, 167]. We focus
on games with monotone objective pseudogradients [246] and convex constraints, where solutions
can be found in polynomial time [156].
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ADMM for Games
We are ultimately interested in decentralized methods [54, 276] for identifying generalized Nash
equilibria, because they can often exploit computational parallelism for efficiency gains compared
with centralized method. In particular, the alternating direction method of multipliers (ADMM)
[105, 36] is an appealing approach for efficient decentralized computation. The ADMM enjoys
convergence guarantees for convex problems [110, 35], convex-concave saddle point problems [37,
152] and monotone variational inequality problems [125, 322]. Recent work [322] has adopted
an interior-point method to ensure constraint feasibility, thereby outperforming projection-based
consensus ADMM methods [159, 232, 73].

Our algorithm differs from prior work [34, 269, 169] in that we decompose the objective and
constraints over scenarios. For each scenario, we solve an N -player game with relatively few
constraints, and then synchronize across scenarios via ADMM. Unlike prior methods, we do not
require constraint projection or an interior-point method in the consensus step. Moreover, we can
handle nonlinear coupled constraints, while prior works [191, 246] consider affine constraints.

Approximation Methods for Stochastic Optimization
The sample average approximation (SAA) method [300] is a well-known technique for solving
stochastic optimization problems via Monte Carlo simulation [131]. This method approximates
the objectives and constraints of the original problem using sample averages, and has been shown
to be able to recover original optimal solutions, as the sample size grows to infinity [315, 316,
247]. Another approach for approximating the stochastic optimization problem is the scenario
optimization approach [72, 43], where the original chance constraints are replaced with a large
number of sampled constraints [41]. This method has been extensively studied, and subsequent work
has characterized its sample complexity and feasibility guarantees [44]. Moreover, it is recently
extended to constrained variational inequality problems [242]. Our approach approximates the
expected value objective by a sample average, and replaces the chance constraint with a large
number of sampled constraints.

6.3 Preliminaries
We begin by introducing a deterministic, general-sum static game played among N players. Con-
cretely, each player i (Pi) seeks to solve a problem of the form:

x∗i ∈ argmin
xi

fi(x) (6.1a)

s.t. hi(x) ≤ 0 , (6.1b)

where xi ∈ Xi ⊆ Rn, for each i ∈ [N ] := {1, 2, . . . , N}, Xi is the domain of xi and x :=
(x1, . . . , xN) ∈ RNn. Let the joint decision space be denoted by X := X1 × · · · × XN , and let each
player i’s constraint be denoted by hi(x) : X → Rℓ. Observe that players’ problems are coupled,
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both in the objectives and the constraints. We are interested in finding unilaterally optimal strategies
for all players in this setting, i.e., the generalized Nash equilibria.

Definition 2 ([90]). A point x∗ ∈ RNn is a generalized Nash equilibrium (GNE) if for all i ∈ [N ],
hi(x

∗) ≤ 0, and fi(xi,x∗
−i) ≥ fi(x

∗), for each xi satisfying hi(xi,x∗
−i) ≤ 0.

6.4 Scenario Game Problem
In this chapter, we focus our attention on constrained stochastic general-sum games, in which both
the objective and constraints are subject to uncertainty and parameterized by the random vector
θ, i.e. fi(x; θ) and hi(x; θ). Let the random vector of parameters θ ∈ Θ ⊆ Rd be drawn from a
probability distribution pθ that is unknown to all players. We denote player i’s decision problem as:

x∗i ∈ argmin
xi

E [fi(x; θ)] (6.2a)

s.t. Pθ

(
hi(x; θ) ≤ 0

)
≥ 1− ϵ . (6.2b)

Note that we have replaced Pi’s objective with its expectation under distribution pθ, and like-
wise we have replaced the deterministic constraint hi(x; θ) ≤ 0 with the chance constraint
Pθ (hi(x; θ) ≤ 0) ≥ 1 − ϵ, with ϵ ∈ (0, 1) as the probability of failure. In full generality—i.e.,
without making further assumptions about the distribution pθ, such as normality—it is intractable
to find a generalized Nash equilibrium for Eq. (6.2). In the sequel, we will construct a sampled
approximation to Eq. (6.2) which is amenable to both theoretical complexity analysis and efficient,
parallel implementation.

Drawing upon ideas developed in the stochastic optimization [72, 41] and model predictive
control [43, 42, 45] communities, we approximate the stochastic game Eq. (6.2) with the following
deterministic problem:

x∗i ∈ argmin
xi

1

S

S∑
j=1

fi(x; θ
j) (6.3a)

s.t. hi(x; θ
j) ≤ 0, ∀j ∈ {1, . . . , S} , (6.3b)

in which each so-called scenario θj is sampled independently from the probability distribution
pθ. In Eq. (6.3), we have replaced the expected value of the objective from Eq. (6.2) with its
empirical mean, and enforced the original constraint in Eq. (6.1) for all of the scenarios {θj}Sj=1. We
propose to compute the generalized Nash equilibrium of (6.3), which always exists if the following
assumption holds true [101].

Assumption 3. For each player i ∈ [N ], the constraint hi(x; θ) is convex in x and satisfies Slater’s
condition [35]. The objective function of each player is upper bounded, i.e.

sup
θ∈Θ,x∈X

∥fi(x; θ)∥∞ ≤ D, (6.4)
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for some finite D ∈ R. The pseudogradient F (x; θ) := [∇xi
fi(x; θ)]

N
i=1, where ∇xi

fi(x; θ) de-
notes the gradient of fi with respect to xi, is a continuous and monotone operator of x, i.e.,
(x− y)⊤(F (x; θ)− F (y; θ)) ≥ 0,∀x,y ∈ RNn. □

Assumption 3 implies that the objective of each player is convex with respect to its own decision
variable, a standard assumption in variational inequality problems [322]. It is shown in [148] that a
convex-concave saddle point problem can be reformulated to satisfy Assumption 3. Note also that
Assumption 3 allows nonconvex objectives for each player. An example is a two-player game, with
the objectives f1(x1, x2) = x1 − x22 and f2(x1, x2) = x2 − x21.

Running Example: We consider a simplified spacecraft rendezvous problem, where two
spacecraft approach each other at a predefined rendezvous point in space. We model this problem
as a two player general-sum game with a planning horizon T . At time t ∈ {0, 1, . . . , T}, each
spacecraft has a state vector ξi(t) = [ξxi (t), ξ

vx
i (t), ξyi (t), ξ

vy
i (t)] ∈ R4, where [ξxi (t), ξ

y
i (t)] is the

position of the spacecraft in the rendezvous hyperplane and [ξvxi , ξ
vy
i ] is the velocity vector. It also

has a control vector ui(t) = [uxi (t), u
y
i (t)] ∈ R2 representing the x- and y-axis acceleration. The

dynamics of each spacecraft is approximated as a double integrator for simplicity [122],

ξi(t+ 1) =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1


︸ ︷︷ ︸

A

ξi(t) +


1
2
∆t2 0
∆t 0
0 1

2
∆t2

0 ∆t


︸ ︷︷ ︸

B

ui(t) (6.5)

where ∆t > 0 is the time discretization constant. We assume the initial state ξi(0) is drawn from a
known distribution pξ. We concatenate all the random parameters into a vector θ ∈ Rd, and assume
it follows a distribution θ ∼ pθ. As such, the general-sum game that each player considers can be
summarized as follows,

min
{ui(t)}T−1

t=0

1

T

T∑
t=0

Eθ

[
1

2
ξi(t)

⊤Qθ
i ξi(t) +

1

2
ui(t)

⊤ui(t)

]
s.t. Pθ

( [
ξx1 (t)−ξx2 (t)

ξy1 (t)−ξy2 (t)

]
− bθi ≤ 0, ∥ui(t)∥∞ ≤ 1,∥∥∥[ ξx1 (t)−ξx2 (t)

ξy1 (t)−ξy2 (t)

]∥∥∥2
2
≤ 1,∀t ∈ [T ]

)
≥ 0.95

(6.6)

where ξi(t + 1) = Aξi(t) + Bui(t), ∀i ∈ {1, 2}, ∀t ∈ {0, 1, . . . , T − 1}, and bθi parameterizes an
inequality chance constraint ensuring no hard contact between two spacecraft with high probability.
Note that each player’s feasible set depends upon the decisions of the other player. Hence, this
is a generalized Nash equilibrium problem. In the following sections, we will discuss how many
samples are required such that we can approximate (6.6) well using (6.3), and develop an efficient
method for computing a generalized Nash equilibrium of the sample-approximated game.
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6.5 Sample Complexity of Scenario Games
One of the appealing aspects of scenario programming [44, 242] is its generality with respect to
the distribution of parameter vector θ. Indeed, one can establish probabilistic guarantees on the
feasibility of the original chance constraint without strong assumptions that pθ be, e.g. sub-Gaussian
or sub-exponential. We extend this result to the scenario game problem, and characterize sample
complexity as follows:

Proposition 8. Consider ϵ, δ ∈ (0, 1) and ϵ̃ > 0. Let {θj}Sj=1 be i.i.d. samples of the random
variable θ ∼ pθ. Let S be the sample size. DefineHS := {x ∈ RNn : hi(x; θ

j) ≤ 0,∀i ∈ [N ], j ∈
[S]}. Suppose thatHS is non-empty, then under Assumption 3, the following statements hold true
simultaneously for each player i ∈ [N ],

1. ∥ 1
S

∑S
j=1 fi(x; θ

j)− Eθ[fi(x; θ)]∥ ≤ ϵ̃, for all x ∈ HS

2. Pθ(hi(x; θ) ≤ 0) ≥ 1− ϵ, for all x ∈ HS

with probability at least 1− δ, where δ := 2Ne−
Sϵ̃2

4D2 +
∑Nn−1

ℓ=0

(
S
ℓ

)
ϵℓ(1− ϵ)S−ℓ.

Proof. The proof can be found in the Appendix.

Note that we have not made strong assumptions on the distribution pθ; the bound can be
improved if more prior knowledge about the problem structure and distribution pθ is available. For
example, if each player’s constraint hi(x; θ) ≤ 0 only depends on its own decision variable xi, then
the constraint hi(x; θ) can be simplified as hi(xi; θ) ≤ 0, where the decision variable xi ∈ Rn has a
lower dimension than the original decision variable x ∈ RNn. This dimension reduction simplifies
the sample complexity for approximating each constraint. By combining this simplification with
the union bound, we can improve the sample complexity result of Proposition 8, as shown in the
following result.

Proposition 9. Under the same assumptions of Proposition 8, suppose thatHS is non-empty and
each player’s constraint hi(x; θj) ≤ 0 only depends on xi, ∀j ∈ [S]. Then, the following statements
hold true simultaneously for each player i ∈ [N ],

1. ∥ 1
S

∑S
j=1 fi(x; θ

j)− Eθ[fi(x; θ)]∥ ≤ ϵ̃, for all x ∈ HS

2. Pθ(hi(x; θ) ≤ 0) ≥ 1− ϵ, for all x ∈ HS

with probability at least 1− δ, where δ := 2Ne−
Sϵ̃2

4D2 +N
∑n−1

ℓ=0

(
S
ℓ

)
ϵℓ(1− ϵ)S−ℓ.

Proof. The proof can be found in the Appendix.

The above characterization of sample complexity suggests that a sufficient number of samples
leads to an accurate estimation of the objective and ensures the feasibility of the chance constraint
with high probability. However, solving a constrained game with a large number of sampled
constraints presents a significant computational challenge. This motivates the following algorithmic
development.
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Algorithm 4: Scenario-Game ADMM (SG-ADMM)
Input: Initialization {w(0),x(0),λ(0)}, convergence tolerance ϵ > 0.
for k = 0, 1, 2, · · · do

for scenarios j = 1, . . . , S in parallel do
wj
i (k + 1)← argmin

wj
i

Lji (w
j ,x(k),λi(k))

s.t. hi(wj ; θj) ≤ 0

Update {xi(k + 1)}Ni=1: ∀i ∈ [N ], xi(k + 1)← 1
S

∑S
j=1(

1
ρλ

j
i (k) + wj

i (k + 1))

Update {λj
i (k+1)}N,S

i=1,j=1: ∀i ∈ [N ], j ∈ [S], λj
i (k+1)← λj

i (k)+ ρ(wj
i (k+1)−xi(k+1))

If ∥w(k + 1)−Mx(k)∥2 ≤ ϵ, return {xi(k + 1)}Ni=1

6.6 Scenario Games via Decentralized ADMM

Decentralized ADMM
In the scenario game Eq. (6.3), both the objective and constraints involve significantly more terms
than in Eq. (6.1). When S is large, therefore, it can be computationally demanding to find a
generalized Nash equilibrium. Therefore, we propose the following splitting method to enable
parallel—and hence more efficient—computation of equilibrium solutions. This technique is an
analog of the well-known ADMM algorithm tailored to generalized Nash equilibrium problems,
and is summarized in Algorithm 4.

In order to develop this technique, we shall begin by introducing auxiliary decision variables
{wj

i }Sj=1 for each player Pi, and employing the shorthand wi := (w1
i , . . . , w

S
i ) for the decision

variables of player i across scenarios j = 1 to j = S, wj := (wj
1, . . . , w

j
N) for the decision

variables of players i = 1 to i = N in the jth scenario, and w := (w1, . . . ,wN) for all the
decision variables. We will later use the same shorthand (λi,λ

j,λ) for Lagrange multipliers for the
constraints Eq. (6.7c):

x∗i ,w
∗
i ∈ arg min

xi,wi

1

S

S∑
j=1

fi(w
j; θj) (6.7a)

s.t. hi(w
j; θj) ≤ 0, ∀j ∈ {1, . . . , S} (6.7b)

wj
i − xi = 0, ∀j ∈ {1, . . . , S}. (6.7c)

In Eq. (6.7), Pi evaluates its objective and constraints for scenario j using only the auxiliary
variables wj . However, in the end, each player must select a single decision variable; hence, we
also enforce the consensus constraints in Eq. (6.7c). These constraints effectively couple S games
which would otherwise be entirely independent. To facilitate such a decomposition, we construct a
partial augmented Lagrangian for each player, in which only Eq. (6.7c) have been dualized:

Li(w,x,λi) :=
S∑

j=1

Lj
i (w

j,x,λi), (6.8)
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Lj
i (w

j,x,λi) :=
fi(w

j; θj)

S
+ λj⊤i δji +

ρ

2
∥δji ∥22 .

Here, δji := wj
i − xi, and λji may be interpreted as an estimate of the Lagrange multiplier corres-

ponding to the j th instance of Eq. (6.7c) in Pi’s problem. Thus equipped, we develop the key steps
of Algorithm 4, a decentralized technique for solving Eq. (6.3) via Eq. (6.7). To do so, we re-express
Eq. (6.7) in terms of the augmented Lagrangians (6.8):

x∗i ,w
∗
i ∈ arg min

xi,wi

Li(w,x,λi) (6.9a)

s.t. hi(w
j; θj) ≤ 0,∀j ∈ {1, . . . , S} . (6.9b)

Solving for auxiliary variable, w

Holding x and λ constant, each player’s problem Eq. (6.9) is convex in the decision variable wi due
to Assumption 3. Thus, we can be assured that any point w∗

i which satisfies the KKT conditions for
all players simultaneously is a generalized Nash equilibrium. Such a point may be identified by,
e.g., reformulating the joint KKT conditions as a mixed complementarity program (MCP) [96] and
invoking a standard solution method, e.g. PATH [74].

Remark 12. This equilibrium problem may be separated into S independent problems, involving
distinct variables {wj}Sj=1, objectives, and constraints. Consequently, if parallel computation is
available, these games may be solved in separate computational threads or on separate computer
processors; therefore, Algorithm 4 may still operate efficiently and converge even when many
scenarios are required, as shown in Theorem 9.

Solving for consensus variables, x

Holding w and λ fixed, player i’s problem Eq. (6.9) may be simplified to take the following form:

xi = argmin
x̃i

S∑
j=1

(
λj⊤i (wj

i − x̃i) +
ρ

2
∥wj

i − x̃i∥22
)
. (6.10)

Because ρ > 0, we readily identify the global solution to (6.10) for each player as

xi ←
1

S

S∑
j=1

(
1

ρ
λji + wj

i

)
. (6.11)

Updating dual variables, λ

In order to choose new values of the dual variables which account for the solutions to the previous
subproblems, we first examine player i’s vanishing gradient condition. We find:

0 = ∂wj
i
(Lj

i (w
j,x,λi) + Ihi(wj ;θj)(w

j)) (6.12)
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=
∇wj

i
fi(w

j; θj)

S
+ ∂wj

i
Ihi(wj ;θj)(w

j) + λji + ρ(wj
i − xi),

where Ih(x;θ)(x) : RNn → {0,∞} and Ih(x;θ)(x) = 0 if and only if h(x; θ) ≤ 0. Following well-
established reasoning for augmented Lagrangian methods [238, Ch. 17], we recognize the latter two
terms as the (unique) value of the Lagrange multiplier for the original constraint Eq. (6.7c) which
satisfies the vanishing gradient optimality condition. Therefore, we set:

λji ← λji + ρ(wj
i − xi) . (6.13)

The above update rule is formalized in Algorithm 4.

Convergence of Scenario-Game ADMM
In this section, we first characterize the optimality condition of the general-sum game problem. We
then show that the special structure of the consensus constraint allows us to measure convergence
by monitoring the residual of the consensus constraint. Building upon this result, we prove the
convergence of Algorithm 4.

Similar to standard, single-objective optimization problems, under an appropriate constraint
qualification the KKT conditions must be satisfied at solutions to the variational inequality problem
[91]. From the KKT conditions, an optimal solution z∗ := (w∗,x∗,λ∗) should satisfy the following
conditions, 

(p− wj∗
i )⊤(∇wj∗

i
fi(w

j∗; θj) + ∂wj∗
i
Ihi(wj∗;θj)(w

j∗)

+ λ∗) ≥ 0,∀p ∈ Rn,∀i ∈ [N ], j ∈ [S]

w∗ −Mx = 0

hi(w
j∗; θj) ≤ 0,∀i ∈ [N ], ∀j ∈ [S]

(6.14)

where we represent the consensus constraint (6.7c) compactly as w − Mx = 0 by introdu-
cing a constant matrix M := 1N ⊗ In. Let F (w) := [∇wj

i
fi(w

j; θj)]N,S
i=1,j=1 and H(w) :=

[∂wj
i
Ihi(wj ;θj)(w

j)]N,S
i=1,j=1. We can also represent the above optimality condition as the variational

inequality problem:

(z− z∗)⊤Q(z∗) ≥ 0,∀z ∈ RSNn × RNn × RNm, (6.15)

z =

wx
λ

 , Q(z) =
F (w) +H(w) + λ

−M⊤λ
w −Mx

 . (6.16)

Observing that the M matrix in the consensus constraint has full column rank, we see that it
must have trivial null space. Consequently, we can show in the following lemma that an optimal
solution is reached when the consensus constraint residual is zero.

Lemma 3. Suppose w(k + 1)−Mx(k) = 0, then (w(k + 1),x(k + 1),λ(k + 1)) is an optimal
solution to the VI problem (6.15).
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Figure 6.1: The convergence of Scenario-Game ADMM under different numbers of sampled scenarios in running
example (6.6). With only 10 samples, we have no binding constraint, and we converge exponentially fast. With 50
and 100 samples, we suffer binding constraints, and the primal residual ρ∥M(x(k) − x∗)∥2 oscillates. However,
the Lyapunov function, which is defined as the sum of primal residual and dual residual 1

ρ∥λ(k) − λ
∗∥2, decays

monotonically.

Proof. The proof can be found in the Appendix.

Building upon this result, we show in the following theorem that a Lyapunov function, defined
by the Lagrange multiplier error and the consensus constraint’s residual, is monotonically decreasing
with each iteration of Algorithm 3.

Theorem 9. Under Assumption 3, let z∗ = (w∗,x∗,λ∗) be an optimal solution of (6.15). Define
V (k) := (1/ρ)∥λ(k)− λ∗∥2 + ρ∥M(x(k)− x∗)∥2. We have

V (k + 1) ≤ V (k)− ρ∥w(k + 1)−Mx(k)∥2 , (6.17)

and limk→∞ V (k) = 0.

Proof. The proof can be found in the Appendix.

Theorem 9 establishes the asymptotic convergence of Algorithm 3, by showing that V (k)→ 0
as k → ∞; thus, for any convergence tolerance ϵ > 0, there exists some sufficiently large k > 0
such that ∥w(k+1)−Mx(k)∥2 ≤ ϵ. When the players’ objectives satisfy the following assumption,
we can strengthen the convergence result in Theorem 10.

Assumption 4 ([246]). For each player i ∈ [N ], the objective fi(x; θ) is differentiable. The function
F (w) = [∇wj

i
fi(w

j; θj)]N,S
i=1,j=1 is L-Lipschitz continuous and is an m-strongly monotone operator,

i.e., (w − w̃)⊤(F (w)− F (w̃)) ≥ m∥w − w̃∥22, ∀w, w̃ ∈ RSNn.

Theorem 10. Under Assumptions 3 and 4, let z∗ = (w∗,x∗,λ∗) be an optimal solution of (6.15).
Define V (k) as in Theorem 9. At the k-th iteration, we have:
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(a) 10 sampled scenarios, under linear dynamics (6.6)
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(b) 100 sampled scenarios, under linear dynamics (6.6)

Time [s]
0 100 200

P
rim

al
 E

rr
or

10-4

10-2

100

0.0 0.1 0.2 0.3

10-4
10-2
100

SG-ADMM
SG-ADMM (idealized)

(c) 1000 sampled scenarios, under linear dynamics (6.6)
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(d) 1000 sampled scenarios, under nonlinear unicycle dynamics
[167]

Figure 6.2: Comparison of the CPU time under different numbers of sampled scenarios. The solid blue curves represent
the implementation of Scenario-Game ADMM which solves step 4 of Algorithm 4 sequentially, i.e., one scenario by one
scenario. The dashed blue curves represent the expected computation time when we implement step 4 of Algorithm 4 in
parallel. This expected computation time is derived by dividing the computation time of the blue solid curves by the
number of scenarios. In both cases, Scenario-Game ADMM converges faster than ACVI. For each sampled scenario, we
have 20 dimensional decision variables, and 35 constraints. When the number of sampled scenarios is 1000, there are
1000× 35 = 35000 constraints. ACVI fails to compile due to the scale of problem. With 1000 samples, our algorithm
converges even when we replace the linear dynamics in (6.6) with the nonlinear unicycle dynamics in [167], as shown
in Fig.6.2d.

1. If there is no binding constraint at w(k), i.e., hi(x(k); θj) < 0, ∀i ∈ [N ], ∀j ∈ [S], then:

V (k) ≤

(
1− 1

2κ
0.5+|ϵ|
f

)
V (k − 1)

where κf = L/m and ϵ = logκf
(ρ/
√
mL);
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2. Otherwise, V (k) ≤ V (k − 1)− ρ∥w(k)−Mx(k − 1)∥2.

Proof. The proof can be found in the Appendix.

6.7 Experiments
In this section, we continue the running example (6.6). We characterize the sample complexity and
the empirical performance of the Scenario-Game ADMM. The details of the experiment parameters
are included in the Appendix.

By Proposition 8, if the sample size is S = 1000, then for each player i ∈ {1, 2},

P(∥ 1
S

S∑
j=1

fi(x; θ
j)− E[fi(x)]∥ ≤ 0.5) ≥ 1− 4.0× 10−3, (6.18)

and
P(P(hi(x; θ) ≤ 0) ≥ 0.95) ≥ 1− 2.9× 10−7. (6.19)

Therefore, by having 1000 sampled scenarios, we are able to obtain a reasonable approximation
(6.3) of the stochastic game problem (6.6).

We proceed to apply Scenario-Game ADMM to solve the sample-approximated game problem
(6.3). We first validate the convergence of Scenario-Game ADMM in Fig. 6.1. As proven in
Theorem 9, the Lyapunov function decays monotonically in Fig. 6.1a. Note that the primal residual
ρ∥M(x(k) − x∗)∥2 may still oscillate due to the existence of binding constraints, as shown in
Theorem 10 and Fig. 6.1b.

We then compare the performance of Scenario-Game ADMM with the baseline method. Since
prior works [191, 246] do not consider coupled nonlinear constraints among players, we compare
Scenario-Game ADMM with the state-of-the-art ADMM-based constrained variational inequality
solver (ACVI) [322]. As shown in Fig. 6.2, Scenario-Game ADMM converges faster than ACVI
across different scenario sizes. In particular, when we have 1000 sampled scenarios, Scenario-Game
ADMM converges, but ACVI fails to compile due to the scale of the problem, where we have 35000
coupled inequality constraints in total. This experiment suggests that Scenario-Game ADMM can
solve game problems with a large number of constraints within a reasonable amount of time.

As an additional ablation, we also compare our method’s computation time to the centralized
PATH solver that our method uses at the inner loop [74]; c.f. appendix. While PATH is competitive,
in particular for small-scale problems, we observe that the parallelized version of our method is
still more than 2x faster for scenario sizes S ∈ [10, 100]. Finally, as with ACVI, the scenario-
number-dependent compilation overhead of this centralized approach precludes application to larger
problems.

6.8 Conclusion and Future Work
In this chapter, we introduced a new sample-based approximation for stochastic games. We
characterized the sample complexity and the feasibility guarantees of this approximation scheme.
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We proposed a decentralized ADMM solver and characterized its convergence. We empirically
validated the performance of this algorithm in a stochastic game with a large number of sampled
constraints. Future work should extend our results on sample complexity and analyze how well
equilibria of the scenario game approximate solutions to the original chance-constrained stochastic
game.
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Proofs. Before we present the proof of Proposition 8, we first introduce the following lemmas.

Lemma 4 (Thm. 3.26, [303]). Let {θj}Sj=1 be i.i.d. samples from pθ. Suppose ∃D, s.t.

sup
θ∈Θ,x∈X

∥f(x; θ)∥2 ≤ D <∞. (6.20)

Then, P(∥ supx∈X
1
S

∑S
j=1 f(x; θ

j)− Eθ[f(x; θ)]∥2 ≥ ϵ̃) ≤ 2e(−
Sϵ̃2

4D2 ).

Lemma 5 ([44]). Let {θj}Sj=1 be a set of i.i.d. samples of the random variable θ. For all x ∈ RNn,
we have P (P (h(x; θ) ≤ 0) ≥ ϵ) ≤

∑Nn−1
ℓ=0

(
S
ℓ

)
ϵℓ(1− ϵ)S−ℓ.

Proof of Proposition 8. By Assumption 3, supθ∈Θ,x∈X fi(x; θ) ≤ D, for some finite D ∈ R. Let
h(x; θ) := [hi(x; θ)]

N
i=1. By Lemmas 4 and 5 and the union bound, P(supx∈X ∥ 1S

∑S
j=1 fi(x; θ

j)−

Eθ[fi(x; θ)]∥ ≤ ϵ̃ and P (h(x; θ) ≤ 0) ≥ 1 − ϵ,∀i ∈ [N ]) ≥ 1 − 2Ne(−
Sϵ̃2

4D2 ) −
∑Nn−1

ℓ=0

(
S
ℓ

)
ϵℓ(1 −

ϵ)S−ℓ.

Proof of Proposition 9. Under the independent constraint assumption, we have

P(P(hi(xi; θ) ≤ 0) ≥ ϵ) ≤
n−1∑
ℓ=0

(
S

ℓ

)
ϵℓ(1− ϵ)S−ℓ. (6.21)

Then, by Lemma 4 and the union bound, we have P(supx∈X ∥ 1S
∑S

j=1 fi(x; θ
j)− Eθ[fi(x; θ)]∥ ≤

ϵ̃ and P (hi(x; θ) ≤ 0) ≥ 1− ϵ,∀i ∈ [N ]) ≥ 1− 2Ne(−
Sϵ̃2

4D2 ) −N
∑n−1

ℓ=0

(
S
ℓ

)
ϵℓ(1− ϵ)S−ℓ.

Proof of Lemma 3. From Algorithm 4, we have (w−w(k+ 1))⊤(F (w(k+ 1)) +H(w(k+ 1)) +
λ(k)) ≥ 0,∀w, x(k + 1) = M †(w(k + 1) + (1/ρ)λ(k)), and λ(k + 1) = λ(k) + ρ(w(k + 1)−
Mx(k+1)). Since M has full column rank, we have the null space of M is {0}. Also, by definition,∑S

j=1 λ
j
i (k+1) =

∑S
j=1 λ

j
i (k)+ρ(

∑S
j=1w

j
i (k+1)−Mxi(k+1)) =

∑S
j=1 λ

j
i (k)−

∑S
j=1 λ

j
i (k) =
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0, and therefore M †λ(k) = 0. Thus, x(k + 1) = M †w(k + 1) = x(k). This implies that
w(k + 1)−Mx(k + 1) = 0, and λ(k + 1) = λ(k). (w(k + 1),x(k + 1),λ(k + 1)) satisfies the
optimality condition (6.15).

Lemma 6. Let (x∗,w∗,λ∗) be an optimal solution to (6.14), it holds (1/ρ)(λ(k+1)−λ∗)⊤(λ(k+
1)− λ(k)) ≤ ρ(w(k + 1)−w∗)⊤(Mx(k)−Mx(k + 1)).

Proof. From the optimality condition (6.15), we have:

(w(k + 1)−w∗)⊤(F (w∗) +H(w∗) + λ∗) ≥ 0 (6.22)

By the optimality condition at the k-th iteration, we have (w∗−w(k+1))⊤(F (w(k+1))+H(w(k+
1))+λ(k)+ρ(w(k+1)−Mx(k))) ≥ 0. Substituting λ(k+1) = λ(k)+ρ(w(k+1)−Mx(k+1)),
we derive:

(w∗ −w(k + 1))⊤(F (w(k + 1)) +H(w(k + 1))

+ λ(k + 1) + ρ(M(x(k + 1)−Mx(k)))) ≥ 0
(6.23)

Adding (6.22) and (6.23), and using monotonicity, we have:

(w(k + 1)−w∗)⊤(λ(k + 1)− λ∗)

≤ ρ(w(k + 1)−w∗)⊤M(x(k)− x(k + 1))
(6.24)

Similarly, by the optimality of x∗ and x(k + 1), we have (x(k + 1) − x∗)⊤(−M⊤λ∗) ≥ 0 and
(x∗ − x(k + 1))⊤(−M⊤λ(k + 1)) ≥ 0. Adding these two inequalities:

(Mx∗ −Mx(k + 1))⊤(λ(k + 1)− λ∗) ≤ 0 (6.25)

Adding (6.24) and (6.25), and using w∗−Mx∗ = 0 and w(k+1)−Mx(k+1) = 1
ρ
(λ(k+1)−λ(k)),

we have 1
ρ
(λ(k+1)−λ(k))⊤(λ(k+1)−λ∗) ≤ ρ(w(k+1)−w∗)⊤(Mx(k)−Mx(k+1)).

Proof of Theorem 9. Observe that:

(1/ρ)∥λ(k + 1)− λ∗∥2 + ρ∥M(x(k + 1)− x∗)∥2

= (1/ρ)∥λ(k)− λ∗∥2 + ρ∥M(x(k)− x∗)∥2

− ((1/ρ)∥λ(k + 1)− λ(k)∥2 + ρ∥M(x(k + 1)− x(k))∥2)
+ (2/ρ)(λ∗ − λ(k + 1))⊤(λ(k)− λ(k + 1))

+ 2ρ(Mx∗ −Mx(k + 1))⊤(Mx(k)−Mx(k + 1))

(6.26)

The last two terms can be bounded as:

(2/ρ)(λ∗ − λ(k + 1))⊤(λ(k)− λ(k + 1))

+ 2ρ(Mx∗ −Mx(k + 1))⊤(Mx(k)−Mx(k + 1))

≤ 2ρ(w(k + 1)−w∗)⊤M(x(k)− x(k + 1))

+ 2ρ(Mx∗ −Mx(k + 1))⊤(Mx(k)−Mx(k + 1))

= 2ρ(w(k + 1) +Mx(k + 1))⊤(Mx(k)−Mx(k + 1))

= −2(λ(k)− λ(k + 1))⊤(M(x(k)− x(k + 1)))

(6.27)
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where the first inequality follows from Lemma 6, and the first equality is derived by substituting
w∗ −Mx∗ = 0. The last equality holds true because of the update rule of λ(k + 1).

From (6.26) and (6.27), we have (1/ρ)∥λ(k+1)−λ∗∥2+ρ∥M(x(k+1)−x∗)∥2 ≤ (1/ρ)∥λ(k)−
λ∗∥2 + ρ∥M(x(k)− x∗)∥2 − ρ∥w(k + 1)−Mx(k)∥2.

Before we present the proof of Theorem 10, we first introduce a few preliminaries. Define
f̂i := 1

ρ
fi and ĝ := Iim M , where Iim M is the {0,∞}-indicator function of the image of M .

Additionally, we define s(k) := Mx(k), u(k) := λ(k)/ρ. Let β(k) := [∇xi
f̂i(w

j(k); θj)]N,S
i=1,j=1

and γ(k) := [∂xi
ĝ(x)]N,S

i=1,j=1.

Lemma 7. Under Assumption 4, let w, w̃ ∈ RSNn, E = [∇wj
i
fi(w

j; θj)]N,S
i=1,j=1 and Ẽ =

[∇wj
i
fi(w̃

j; θj)]N,S
i=1,j=1. We have

[
w−w̃
E−Ẽ

]⊤ [ −2mL m+L
m+L −2

]
⊗ ISNn

[
w−w̃
E−Ẽ

]
≥ 0.

Proof. Using the co-coercivity of F (w) and the fact that F (w) − m∥w∥22 is L − m Lipschitz
continuous, we have (m+ L)(w − w̃)⊤(E − Ẽ) ≥ mL∥w − w̃∥22 + ∥E − Ẽ∥22. We complete the
proof by putting it in matrix form.

Lemma 8. Suppose there is no binding constraint at w(k + 1). Let η(k) := [s(k), u(k)], v(k) :=
[β(k + 1), γ(k + 1)], y(k) := [w(k + 1), β(k + 1)] and z(k) := [s(k + 1), γ(k + 1)]. We consider
η(k), v(k) and [y(k), z(k)] as the state, control input and output of a dynamical system. Define
the following matrices, Â := [ 1 0

0 0 ], B̂ :=
[ −1 −1

0 −1

]
, Ĉ1 := [ 1 −1

0 0 ], D̂1 := [ −1 0
1 0 ], Ĉ

2 := [ 1 0
0 0 ], and

D̂2 := [ −1 −1
0 1 ]. Then, we have the dynamics

[
η(k+1)
y(k)
z(k)

]
=

[
Â B̂
Ĉ1 D̂1

Ĉ2 D̂2

] [
η(k)
v(k)

]
.

Proof. By the KKT condition, we have∇ifi(w
j(k+1); θj)+λji (k)+ρ(w

j(k+1)−Mxi(k)) = 0,
which is equivalent to

β(k + 1) + u(k) +w(k + 1)− s(k) = 0 (6.28)

Subsequently, when we minimize x with w(k + 1) and λ(k) fixed, we have the problem of
minimizing x is equivalent to, for each i ∈ [N ], minsi ∂iĝ(si)+ui(k)

⊤(wi(k+1)− si)+ ρ
2
∥wi(k+

1)− si∥2: which has the optimality condition:

γ(k + 1) + s(k + 1)−w(k + 1)− u(k) = 0. (6.29)

Finally, from the update rule of the Lagrange multiplier, we have λ(k+1) = λ(k) + ρ(w(k+1)−
Bx(k + 1)), and this implies:

u(k + 1) = u(k) +w(k + 1)− s(k + 1) = γ(k + 1) (6.30)

where the last equality follows by substituting (6.29). We complete the proof by rearranging terms
in (6.28)-(6.30).

Proof of Theorem 10. The second part has been shown in Theorem 9, we only need to prove the first
part. Note that the gradient of f̂ is ρ

(mL)1/2
κ
−1/2
f -Strongly monotone and ρ

(mL)1/2
κ
1/2
f -Lipschitz, and
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M is full column rank. We can extend Theorem 6 [237] to variational inequality problem by using
Lemma 7, and Lemma 8. Then, by Theorem 7 [237], we have V (k) ≤ (1− 1/(2κ

0.5+|ϵ|
f ))V (k− 1),

where ϵ = logκf
(ρ/
√
mL).
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Chapter 7

Stochastic Game Theory for Distributed
Energy Management

In this chapter, we apply stochastic game theory to design a pricing mechanism that regulates
individual users’ behavior in power grids such that we can optimize the overall system’s performance.
This chapter is adapted from the work [38], co-authored with Eli Brock, Javad Lavaei, and Somayeh
Sojoudi.

7.1 Background

DER Coordination in Distribution Networks
An additional 217 GW of distributed energy resources (DERs) is expected on the American electric
power grid by 2028, a pace of growth similar to that of bulk generation capacity [261]. The
widespread introduction of DERs, which include electric vehicles, heat pumps, storage systems,
and distributed solar, marks a critical moment for our energy systems. If operated passively the
extra load from DERs will necessitate expensive infrastructure upgrades and new carbon-intensive
fossil-based dispatchable generation. However, with efficient coordination, DER flexibility can
improve efficiency on the grid by shaping electric demand to align with intermittent renewable
supply and providing local voltage support [6].

There is extensive literature on market mechanisms and control strategies for DER coordination
in distribution networks [120]. Coordinated approaches such as distributed optimal power flow,
aggregators, and distribution locational marginal pricing (DLMP) assume that a third party orches-
trates groups of DERs, either through direct load control or through (shadow) price incentives,
to optimize a single objective function [120, Section 5], [49, 16]. In contrast, peer-to-peer (P2P)
markets assume that prosumers control their own devices and optimize their own utility functions;
as such, P2P is often analyzed using noncooperative game theory [120, Section 6], [55]. These
frameworks make strong assumptions regarding future communication and incentive infrastructures.
For example, P2P and distributed optimal power flow methods typically assume that neighboring
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devices exchange multiple rounds of communication before reaching a collective decision, while
DLMP schemes require prosumers1 to share device parameters with a coordinator and schedule
future consumption in a rolling-horizon fashion.

Achieving any of the aforementioned frameworks at scale would constitute a major departure
from the state of most modern power systems. In practice, distribution system operators (DSOs)
usually do not have visibility behind the meter of their customers, and self-interested prosumers
autonomously dispatch their own devices without communicating with their neighbors. A more
practical mechanism, real-time pricing (RTP), coordinates DERs on the transmission scale by
exposing them to time-varying substation-level nodal prices and allowing each prosumer’s energy
management system (EMS) to optimize their personal electricity usage [217]. Most RTP work has
focused on optimal control of individual devices as in [304] or considers game-theoretic equilibria
on the wholesale market as in [204], without considering the implications for distribution networks.

We propose a new real and reactive nodal pricing structure for minimizing costs and stabilizing
voltages on distribution networks. The framework can be understood as a natural extension of RTP
to distribution nodes. Unlike traditional DLMPs, the nodal prices are set online, and prosumers do
not need to share their device parameters with a DSO. Though the prosumers cannot communicate
directly, the nodal pricing scheme allows for indirect coordination through the coupled prices. The
resulting networked market is represented as a stochastic game (SG) where prosumers attempt to
learn closed-loop control policies in the face of uncertain wholesale prices and demand profiles
[278]. To the authors’ knowledge, this is the first network-aware distribution-level DER coordination
scheme that does not require prosumers to share any information, either between themselves or
with a central operator. Next, we derive new, generalizable sufficient conditions under which an
SG is a Markov potential game [176], allowing us to compute an equilibrium for the proposed
market. Finally, we demonstrate on an IEEE test system that the proposed mechanism results in
near-socially-optimal equilibrium policies, despite the potential suboptimality associated with the
prosumers’ market power.

Notation
G(p) is the geometric distribution with success probability p. If a variable or function is defined as
yi, then y refers to the vector or vector-valued function collecting all indices. If a set is defined as
Xi, then X refers to the Cartesian product over all indices. If I is a collection of indices, yI refers
to the elements of the vector y indexed by I. The subscript −i indexes all components except i.
diag(v) is the square matrix with the vector v along the diagonal and zeros elsewhere.

Stochastic Game Theory Preliminaries
An infinite-horizon stochastic game (SG) [278] with set of agents N is a tuple

G := (S, {Ai}i∈N , ρ0, T, {Ui}i∈N , γ, {Πi}i∈N ). (7.1)
1In active distribution networks, a prosumer is a customer who can both consume and produce energy, for example

through a rooftop photovoltaic or vehicle-to-grid system.
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S is a (possibly infinite) state space, Ai is the (possibly infinite) action space of agent i, ρ0 : S → R
is an initial state distribution, T : S × S × A → R is the transition density, Ui : S × A → R
is the reward function of agent i, γ ∈ [0, 1] is the discount factor, and Πi is the set of agent i’s
available policies. At time t = 0, the initial state s0 is drawn from the initial state distribution ρ0.
At each time t, each agent i chooses an action ati. Based on the current state and actions, each agent
i receives a deterministic reward Ui(s

t, at) and the game transitions to the next state according to
the transition density function: st+1 ∼ T (·|st, at).

Agent i aims to maximize its infinite-horizon discounted rewards, defined by its value function

V π
i := Eπ

[
∞∑
t=0

γtUi(s
t, at)

]
. (7.2)

The notation Eπ is shorthand for the expectation with respect to s0 ∼ ρ0, ati ∼ πi(·|st) and
st+1 ∼ T (·|st, at), where πi ∈ Πi is agent i’s policy. We are now ready to define Nash equilibria,
the most common solution concept for SGs.

Definition 3 (Nash Equilibrium [24]). A joint policy profile π ∈ Π is called a Nash equilibrium of
G if

V
πi,π−i

i ≥ V
π̃i,π−i

i

for all i ∈ N and π̃ ∈ Π.

In the remainder of the paper, we will use “equilibrium” and “Nash equilibrium” interchangeably.
Intuitively, an equilibrium is a configuration of policies where no agent can unilaterally improve
their payoff by changing their policy if all other agents keep their policy fixed. We will often
consider parametric policy sets of the form πi = {πθi

i (·|st, at) : θ ∈ Θ}. For compact notation,
when Π is parametric, we will often use θ in place of πθ. For parametric policy sets, we can also
define the notion of a local Nash equilibrium.

Definition 4 (Local Nash Equilibrium). If Π is a parametric policy class, a set of policy parameters
θ ∈ Θ is called a local Nash equilibrium of G if there exists a ν > 0 such that

V θi,θ−i ≥ V θ̃i,θ−i

for all θ̃ ∈ Θ such that ∥θ̃ − θ∥ ≤ ν.

Going forward, we will assume that the value functions V θi of parameterized SGs are continuous
in θi and differentiable in θi almost everywhere. Local Nash equilibria are stationary points under
the gradient play algorithm, in which each agent applies the update rule(

θ
(k+1)
i − θ(k)i

)
∝ ∇θV

θ(k)

i . (GP)

An SG with a single agent is known as a Markov Decision Process (MDP) and a (local)
equilibrium of an MDP is called a (locally) optimal policy.
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Notice that our definition of SGs explicitly includes the set of feasible policies Π. Most existing
literature on SGs (and MDPs) omits this specification, implicitly assuming that Π includes all
stochastic policies. For large or infinite state and action spaces, policies are often parameterized
in order to design tractable solution methods. However, these parameterizations are treated as
function approximations that induce some suboptimality due to their limited expressiveness [4].
While we also use Π to encode finite-dimensional parameterizations, in this work, the policy sets
are also restricted to capture constraints on the information structure between agents (see Section
7.2). We only seek to find equilibria with respect to the specified policy set without considering the
relationship between said equilibria and the equilibria over all stochastic policies.

Computing local equilibria for SGs is hard in general. Unlike in single-objective optimization
problems, many natural algorithms such as GP may cycle instead of converging to a stationary point
[211]. In the following, we will use the stochastic game framework to model a distribution grid
under a new nodal pricing coordination mechanism (Section 7.2). Then, we will develop theory
inspired by this application to show that our model belongs to a subclass of SGs for which equilibria
can be tractably computed (Section 7.3).

7.2 Model Formulation
We develop a stochastic game model of a distribution grid with dynamic nodal pricing and autonom-
ous DERs. The proposed market is designed to achieve efficient outcomes for the grid without
central coordination or prosumer-to-prosumer communication, as discussed in Section 7.1.

Grid Model
A radial distribution grid is modeled as a directed acyclic graph with a root node 0 and a set
of non-root nodes N . Denote the full set of nodes as N+ = {0} ∪ N and the set of lines and
transformers (directed edges) L ∈ N+ ×N+. By convention, edges are oriented away from the
root node. The linear DistFlow model is, for all i→ j ∈ L,

Pij = pj +
∑
k:j→k

Pjk (7.3a)

Qij = qj +
∑
k:j→k

Qjk (7.3b)

vi − vj = rijPij + xijQij (7.3c)

where pi, qi are the real and reactive power consumption of node i, Pij and Qij are the real and
reactive power flows on line i → j, and vi is the voltage magnitude at node i [21]. The voltage
magnitude at the substation v0 is fixed and constant. Solving the system of equations (7.3) for P , Q,
and v reveal these quantities to be linear functions of (p, q), where p and q are vectors collecting the
nodal injections at the non-root nodes N . We define the matrices H , R, and X to represent (7.3) in
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the compact form

P = Hp (7.4a)
Q = Hq (7.4b)

v − v0 = Rp+Xq. (7.4c)

In what follows, we will use P , Q, and v to denote these functions, leaving the dependence on (p, q)
implicit. At each time, the load profiles p and q are autonomously determined by the prosumers and
the DSO incurs the cost

C(p, q, λ) = (1− w)λ

(∑
i∈N

pi +
∑

i→j∈L

rij
(
P 2
ij +Q2

ij

))
+ w

∑
i∈N

(vi − v0)2 (7.5)

where λ is the wholesale locational marginal price (LMP) at the substation node and w ∈ [0, 1] is a
given parameter. The first term in (7.5), given by the price multiplied by the sum of the loads and
the approximate real power losses, captures the cost of importing real power from the wholesale
market. While the true real power loss on line i → j is rij(P 2

ij + Q2
ij)/v

2
i , we use the fact that

vi ≈ 1 under normal operating conditions to approximate the losses in (7.5). Since the losses do
not appear in the linear model (7.3), the DSO cost (7.5) does not account for the small fraction of
losses incurred on each line due to losses on downstream lines. We also assume that the distribution
network is a price-taker, meaning that it is a small enough participant in the wholesale market
that it cannot affect λ. The second term penalizes deviations from the nominal voltage as in the
voltage control literature [335]. For simplicity, we assume the nominal voltage across the network
is equal to the substation voltage v0. The voltage control weight w controls the trade-off between
cost minimization and voltage control, and can be tuned by the DSO until voltages are within an
acceptable range.

On distribution networks, the DSO typically handles line ampacity limits through network
reconfiguration. Given the complexity introduced by time-varying network topologies, we do not
consider line limits; however, this is an important direction for future work.

Prosumer Model
We model a single prosumer at every non-substation bus, so the set of prosumers is alsoN . Multiple
prosumers per bus may also be handled by the model without affecting the theory. Prosumer
i ∈ N exhibits inelastic real and reactive power demand (p̄i, q̄i) representing the sum of inflexible
consumption from devices other than DERs, such as kitchen appliances, lighting, and most other
plug loads. Prosumer i also owns a set of flexible DERs Ni and an EMS enabling automatic
intelligent control. These DERs may include heat pumps, electric vehicles (EVs), and energy
storage devices. Denoting the consumption from DER j ∈ Ni belonging to prosumer i as p̃i,j , the
load from prosumer i is given by the sum of their inelastic and flexible demand:

(pi, qi) := (p̄i, q̄i) +
∑
j∈Ni

(p̃i,j, q̃i,j). (7.6)
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The DERs also have temporal state dynamics:

dt+1
i = fi(d

t
i, p̃

t
i, q̃

t
i , ω

t
i) (7.7)

where di is a vector collecting the states of the DERs belonging to prosumer i and ωt
i is a random

perturbation that will be further discussed in section 7.2. Here we introduce the subscript t to index
discrete time. The quantities p, q, P , Q, λ, and v also vary in time—the superscript was previously
omitted for clarity. The state dynamics f may represent the state-of-charge of a storage unit/EV or
the air/water temperature for a heat pump. The states serve to constrain the DER consumption at
each stage:

(p̃ti, q̃
t
i) ∈ Pi(d

t
i) (7.8)

where we assume Pi(·) is the feasible set for agent i given di. Constraint (7.8) may encode
state-of-charge, inverter capacity, or comfort constraints.

Pricing Mechanism
The DSO sets real-time nodal prices for real and reactive power equal to the marginal cost of serving
the load at each bus. We assume a net metering policy, meaning agents are charged the same rate for
net consumption as they are credited for net generation. Specifically, prosumer i’s reward function
is given by

Ui(di, λ, p̃, q̃, p̄, q̄) := ui(di, p̃i, q̃i)− pi
∂

∂pi
C(p, q, λ)− qi

∂

∂qi
C(p, q, λ) (7.9)

where ui is prosumer i’s utility function. ui may encode indoor air temperature preferences or
battery degradation costs; for purely shiftable loads, ui may be set to zero. Intuitively, the last two
terms in (7.9) are prosumer i’s payment to the DSO. The first term is their instantaneous benefit
from the state-action configuration of their DERs. The pricing mechanism in (7.9) is inspired by
the DLMP literature [16, 243]. In these prior works, the DSO computes the prices over a rolling
horizon by solving a multi-period scheduling problem for all the devices in the network. By contrast,
the prices in (7.9) are set online for the current time period and only require the DSO to meter the
current aggregate consumption at each node.

The nodal prices are composed of three components associated with the three terms in (7.5)
after expansion: the energy price, the losses price, and the voltage price. The energy price, given
by the substation LMP for real power and zero for reactive power, is constant across nodes. Each
prosumer’s losses and voltage prices, however, depend on their own consumption as well as that
of all agents who share a common ancestor on the network. This coupling introduces strategic
interactions and some market power, that is, the ability of a participant in a market to manipulate the
price. When participants have market power, market equilibria may not maximize social welfare as
they do in the fully competitive case. For (7.9) to be an effective coordination mechanism, the gap
between the socially optimal outcome and the equilibrium outcome, known as the price-of-anarchy,
should be small. We empirically verify this in Section 7.4.
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Exogenous Quantities
We propose a time-invariant state-space model for the exogenous variables λ, p̄, and q̄:

αt+1
i = gi(α

t
i, ξ

t+1
i ) ∀i ∈ {0} ∪ N (7.10a)

λt = m0(α
t
0) (7.10b)

(p̄ti, q̄
t
i) = mi(α

t
i) ∀i ∈ N (7.10c)

(ξt, ωt) ∼ ρξ,ω (7.10d)

where g is the transition function, m is the measurement function, and ρξ,ω is the noise distribution.
The framework (7.10) encompasses a rich class of models while satisfying the Markov property.
Models of the form (7.10) include seasonal autoregressive integrated moving average models, which
are common for forecasting time-series econometric data such as electricity demand and prices [78].

While each prosumer’s inelastic demand p̄ and the LMP λ have separable dynamics in (7.10),
they are coupled through the joint distribution ρξ,ω, which generates the noise ξ. ξ can represent
both independent regressors, such as weather, and decoupled perturbations that may simultaneously
affect the wholesale price and the demand at different buses. Moreover, since the DER dynamics
noise ω is also generated by ρξ,ω, it is correlated with ξ in general. For example, if the DER state is
the indoor air temperature, its evolution will be subject to the same perturbations as the ambient
outdoor temperature.

Policies
Just as the DSO lacks knowledge of the behind-the-meter devices of its customers, prosumers also
cannot see behind the meter of their neighbors. Specifically, we assume that prosumer i observes
only their local DER state di and has knowledge of their own inelastic demand (p̄i, q̄i) and the LMP
λ, which we assume is public2. By “has knowledge”, we mean that the prosumer i’s EMS can
access all the information it needs to make the best possible prediction of the next quantities p̄t+1

i ,
q̄t+1
i and λt+1. In practice, this may include recent histories, periodic information related to the time

of day, day-ahead forecasts, and correlated data such as weather—all of which would be accessible
to a cloud-connected controller. For our model, given the Markovian structure of (7.10), we achieve
the desired information structure by simply allowing agent i to condition its policy directly on αi

and α0, specifically
ati = µθi

i (d
t
i, α

t
i, α

t
0, η

t
i) (7.11)

where ati ∈ R2 is agent i’s action, ηti ∼ ρηi is the policy noise and µθi
i is prosumer i’s policy,

parameterized by θi. The generative model (7.10), combined with the local policies (7.11), abstracts
away the choice of specific information on which real EMSs might condition their policies and
allows for clean theoretical analysis. Optimizing the performance of DERs in a more realistic
context without assuming Markovian states and allowing for possibly incomplete observations is an
important direction for future research, but falls outside the scope of this work.

2As a real-world justification of this assumption, the California Independent System Operator publishes substation-
level real-time nodal prices on its website.
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To handle the constraint (7.8), we define the unbounded action spaces Ai := R2|Ni|, ∀i ∈ N ,
and compute the DER consumption by mapping the action onto the feasible set:

(p̃ti, q̃
t
i) =Mi(a

t
i, d

t
i), (7.12)

where Mi : R2|Ni| → R2|Ni| is an appropriately chosen function satisfying Mi(ai, di) ∈ Pi(di) for
all possible ai, di. Depending on the application, M might be a clipping or projection operation.
We assume that M is differentiable almost everywhere and continuous.

As an alternative to the local policies (7.11), one could also consider a partially observable
stochastic game paradigm, where policies are conditioned on the history of agent i’s observations.
However, since any given agent may be unaware of their neighbors, it is unlikely that realistic EMSs
would attempt to characterize the state of other prosumers’ devices. Therefore, we argue that the
local policy parameterization (7.11) is appropriate for this setting.

Stochastic Game Formulation
We are now ready to formally express the proposed model as an SG, which we call D. The state
vector is s = (x, α). The transition density T of D is characterized by (7.7), (7.10a), and (7.10d).
The reward functions Ui, i ∈ N are given in (7.9). The (parametric) joint policy set Π is defined
according to (7.11). The discount factor γ and initial state distribution ρ0 are case-specific.

7.3 Markov Potential Games
In this section, we introduce a class of well-behaved SGs known as Markov Potential Games (MPGs)
that admit tractable algorithms for computing equilibria [176]. We then present new, generalizable
sufficient conditions under which an SG is an MPG and show that the game D introduced in Section
7.2 satisfies these conditions.

MPGs generalize the notion of potential games in static game theory to SGs [224].

Definition 5 (Markov Potential Game [329]). An SG G is a Markov potential game if there exists a
potential function ϕ : S ×A → R such that

V
πi,π−i

i − V π̃i,π−i

i = Φπi,π−i − Φπ̃i,π−i

where

Φπ := Eπ

[
∞∑
t=0

γtϕ(st, at)

]
for all i ∈ N and π, π̃ ∈ Π.

In other words, an MPG is an SG where each agent’s value function is characterized by a single
potential value function Φπ, given by the discounted sum of the potential function ϕ. An immediate
consequence of Definition 5 is that joint policy profiles that (locally) optimize the potential function
Φπ are also (local) Nash equilibria.
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If a game is an MPG and the potential function ϕ is known, then finding a (local) equilibrium is
reduced to (locally) solving a single-agent MDP for the optimal joint policy with rewards given by
ϕ. Unlike multi-agent SGs, MDPs can be reliably solved by methods from reinforcement learning
and dynamic programming. In particular, for parameterized policy classes, a local equilibrium of an
MPG can be found by the gradient ascent algorithm(

θ(k+1) − θ(k)
)
∝ ∇θΦ

θ(k) . (Φ-GA)

Definition 5 implies that, for MPGs, Φ-GA is equivalent to the decentralized gradient play algorithm
GP; see [176, Proposition B.1] for details.

Definition 5 is challenging to verify. It may be natural to suspect that an SG is an MPG if it is
potential at each stage, that is, if there exists ϕ such that

Ui(s, ai, a−i)− Ui(s, ãi, a−i) = ϕ(s, ai, a−i)− ϕ(s, ãi, a−i) (7.13)

for all i ∈ N , a, ã ∈ A, and s ∈ S. Unfortunately, this is not true; see [329, Proposition 2] for
a counterexample. SGs satisfying (7.13) are, however, the most promising candidates for MPGs
since static game theory techniques may be used to find a candidate potential function ϕ given the
rewards Ui. As such, the existing literature has focused on obtaining sufficient conditions under
which SGs satisfying (7.13) are MPGs [176, 329, 213].

[213] claims to establish a sufficient condition for MPGs under an assumption, called “state
transitivity”, that the reward functions are also potential with respect to the state. This assumption
is quite restrictive and is not satisfied by the game of interest D. [176, Prop 3.2, C1] and [329,
Lemma 8] both introduce what we call the action-independent transitions (AIT) sufficient condition
requiring that the transition density is independent of the agents’ actions. However, this restriction
precludes any controllable state dynamics and is only satisfied by repeated one-shot games. [176,
Prop 3.2, C2] generalizes AIT, but it is difficult to check and is specific to SGs with finite state and
action spaces.

[329, Lemma 8] introduces what we call the local states and policies (LSP) sufficient condition.
LSP holds when 1) each state is owned by a certain agent, 2) the rewards are potential in states as
well as actions, 3) each local state space has its own conditionally independent transition density,
and 4) each agent’s policy is conditioned only on its local state. LSP does not apply to D because
the state space includes the component α0 that does not belong to any agent, and the agents’ local
state transitions are coupled through the joint distribution ρξ,ω.

While neither AIT nor LSP applies directly to D, D exhibits features of each. Similar to AIT,
the exogenous states α evolve independently of the agents’ actions. As in LSP, the agents condition
their policies on private local states with transition densities that are independent of other agents’
actions. We now present a new, verifiable sufficient condition generalizing both AIT and LS that
applies to the proposed distribution system game D.

Theorem 11. An SG G is an MPG with potential function ϕ if, for each agent i ∈ N , there exists a
local state space Si such that S = Si × S−i and
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1. ϕ is a stagewise potential function for both the states and actions, that is

Ui(si, s−i, ai, a−i)− Ui(s̃i, s−i, ãi, a−i) (7.14)
= ϕ(si, s−i, ai, a−i)− ϕ(s̃i, s−i, ãi, a−i)

for all si, s̃i ∈ Si, s−i ∈ S−i, and a, ã ∈ A.

2. Other agents’ policies do not depend on the local states, that is

π−i(a−i|si, s−i) = π−i(a−i|s−i). (7.15)

3. The marginal transition density of the non-local states, defined as

T−i(s
′
−i|s, a) :=

∫
s′i∈Si

T (s′i, s
′
−i|s, a)ds′i

does not depend on agent i’s action or local state, that is

T−i(s
′
−i|si, s−i, ai, a−i) = T−i(s

′
−i|s−i, a−i). (7.16)

Proof. See appendix.

Theorem 1 generalizes LSP by allowing the agents’ non-local state spaces to overlap and by
relaxing the requirement that the local state transition probabilities be conditionally independent.
While Theorem 11 is motivated by the power systems setting considered here, it is quite general and
may extend to other applications. The challenge of the proof is to show that the difference between
the potential value function and agent i’s reward is independent of its policy. At a high level, this is
achieved by combining and generalizing the fundamental ideas of AIT and LSP.

Referring back to Section 7.2, we apply Theorem 11 to show that D is an MPG. From (7.4),
define the matrix

L(λ) = λ(1− w)
[
HT diag(r)H 0

0 HT diag(r)H

]
+ w

[
RT

XT

] [
R X

]
Corollary 1. D is an MPG with potential function

ϕD(d, a, λ) =
∑
i∈N

ui(di, p̃i, q̃i)− C̃(p, q, λ)

where

C̃(p, q, λ) = C(p, q, λ) +
∑
i∈N

[
pi
qi

]T
L(λ)IiIi

[
pi
qi

]
(7.17)

and Ii = {i, i+ |N |} for all i ∈ N .
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Proof. See appendix.

Corollary 1 is instructive. Ideally, the agents would cooperate to maximize the discounted sum
of the social benefit

∑
i∈N ui(di, p̃i) − C(p, q, λ). Instead, due to the market power associated

with the losses and voltage prices, they minimize the discounted sum of ϕD, which includes the
the additional second term in (7.17). In Section 7.4, we will demonstrate that the effect of this
additional term is small in practice.

7.4 Experiment
We evaluate the efficiency of the proposed market on a benchmark IEEE network populated with
autonomous storage units. The equilibrium policies are compared with a more naive non-nodal
RTP pricing structure as well as the theoretical socially optimal policies. Our analysis is from a
mechanism design perspective, meaning that we are interested in evaluating the social benefit of an
equilibrium found through centralized computation, assuming that, in practice, prosumers will find
it in the process of optimizing their local policies.

Algorithm
For MPGs, the potential value function is simply the discounted sum of the potential function.
Therefore, the problem of finding a local equilibrium reduces to the problem of computing a
locally optimal policy for an MDP. Given that we have access to the transition density and reward
functions, we choose to apply a simple value gradient algorithm inspired by [127] instead of
more popular model-free policy gradient algorithms. Value gradient algorithms depend on the
reparameterization trick, where the policy and transition densities are expressed as deterministic
functions of independent random variables:

at = µθ(s
t, at, ηt) (7.18a)

st+1 = h(st, at, ζt+1) (7.18b)
ηt ∼ ρη, ζ

t ∼ ρζ (7.18c)

For the game of interest D, the transition density defined in (7.7), (7.10a), and (7.10d) as well as the
policies (7.11) are already written in reparameterized form; we reuse µ and η given the one-to-one
correspondence between their use in the general case and their use in D. Given an MPG with
potential function ϕ, define the estimated potential value function

Φ̂θ(s0, H, ζ, η) :=
H∑
t=0

ϕ(st, at) (7.19)

where st, t ≥ 1 and at are generated by (7.18). Φ̂θ is an unbiased estimate of the potential value
function

E
[
Φ̂θ(s0, H, ζ, η)

]
= Φθ
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Algorithm 5: SGA
Require: S-MPG G, γ, ρξ, ρη, ρ0, γ, β, Ntrain, Nbatch

1: Define Φ̂θ from G
2: Arbitrarily initialize θ
3: for 1 to Ntrain do
4: for 1 to Nbatch do
5: Sample s0 ∼ ρ0, H ∼ G(1− γ), ζt ∼ ρζ , ηt ∼ ρη
6: ∇̂ ← ∇̂+ 1

Nbatch
∇θΦ̂

θ(s0, H, ζ, η)
7: end for
8: θ ← θ + β∇̂
9: end for

10: return θ

where the expectation is taken with respect to (7.18c), s0 ∼ ρ0, and H ∼ G(1− γ). By extension,
the gradient of the estimator is an unbiased estimate of the gradient of the potential value function:

E
[
∇θΦ̂

θ(s0, H, ζ, η)
]
= ∇θΦ

θ.

This leads to Algorithm 5 for computing local equilibria, which is equivalent to stochastic gradient
ascent (SGA) on the potential value function. Step 6 can be computed by backpropogation through
the Bellman equation as in [127, Sec. 4.1]; automatic differentiation software such as PyTorch can
perform this computation off-the-shelf.

The update rule in Step 6 is equivalent to the stochastic gradient play update rule. AsNbatch →∞,
Algorithm 5 recovers the deterministic gradient ascent algorithm (Φ-GA), which is in turn equivalent
to the gradient play algorithm (GP) as discussed in Section 7.3. The scope of this work is limited to
computing a local equilibrium from a mechanism design perspective. However, consider a more
practical multi-agent reinforcement learning setting where agents compute unbiased estimates of
their policy gradients in a decentralized, model-free manner using the policy gradient theorem [287].
In expectation (with large batch sizes), this multi-agent policy gradient algorithm is equivalent
to Algorithm 5. Therefore, Algorithm 5 may mirror the learning process of multi-agent systems
when the sufficient conditions in Theorem 11 hold. See [328] for a convergence analysis of policy
gradient algorithms for continuous state and action spaces (single-agent policy gradient results
suffice in the MPG setting).

Setup
We demonstrate the proposed distribution grid market on the IEEE 18-bus test case from [114]
with 1-hour timesteps. Each prosumer owns a single battery energy storage unit, such as a Tesla
Powerwall, with its internal state being the current state-of-charge. A storage unit’s charging
is constrained by its maximum state-of-charge as well as its inverter capacity. Customer utility
functions are set to zero, so they focus only on price arbitrage. The substation LMP and inelastic
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Figure 7.1: Relative performance of the EQ, SO, and UN policies. EQ is almost equivalent to SO and is more socially
beneficial than UN pricing regardless of the tradeoff between import costs and voltage control.

demand profiles are simple noisy sinusoids with 1-day periods, with the demand profiles staggered
such that they peak (on average) six hours before the LMP. Loads are scaled until losses reach
approximately 10% of the total power flow, consistent with a heavily loaded distribution network.
The local policies (7.11) are Gaussian with the mean parameterized as a simple affine function of
the states. The full experimental setup is detailed in the appendix.

Performance
We train three joint policies for comparison. All three policies are trained by Algorithm 5 with
Nbatch = 1, Ntrain = 500, β = .001, and the policy parameters θ initialized to the zero vector. The
trained policies are:

1. Equilibrium (EQ) policies, trained to minimize the potential value function by setting ϕ = ϕD
in (7.19).

2. Socially optimal (SO) policies, computed by setting ϕ in (7.19) to the social welfare value
function

W θ := Eπ

[
∞∑
t=0

γt

(∑
i∈N

ui(d
t
i, p̃

t
i)− C(pt, λt)

)]
.

3. Policies under uniform pricing (UN), trained identically to the EQ policies but with the
network removed by setting r = x = 0.

Fig. 7.1 shows the approximate adjusted social welfare value function W θ −W 0 for each policy
across five values of the voltage control weight w3. W 0 is the social welfare value function when

3Because lower values of w deprioritize voltage control, the losses approximation in (7.5) may only be well-justified
for sufficiently high w. The low w cases in Fig. 7.1 are meant to explore the strategic implications of the game, rather
than to serve as realistic simulations.
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Figure 7.2: Equilibrium behavior of three random agents over four-day rollout.

the prosumers idle their storage units at every timestep. The adjustment is necessary because W 0

appears as a constant term in the expanded form of W θ, so including it would distort the relative
performance of the policies. The approximate social welfare value function is the empirical average
over 50 discounted rollouts of length 500 (.99500 < .01). To allow for a one-to-one comparison,
the same 50 trajectories of the random variables ξ and ω were used for all 15 evaluations. Fig. 7.1
visualizes the distributions of the 50 rollouts and their means, indicated by horizontal lines. All
policies converged by the end of the 500 training rollouts.

UN is the equilibrium outcome when the DSO ignores the network and simply forwards the
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LMP to each prosumer. In this aggregated context, the prices no longer vary by node, so there
is no market power. The EQ policies learn to respond to nodal prices reflecting network-related
social costs. However, in theory, they may exploit their market power to benefit themselves at the
expense of their neighbors, thereby failing to meaningfully increase social welfare compared to the
network-blind UN policies. The results in Fig. 7.1 indicate that this is not the case: the EQ policies
outperform the UN policies by at least 8% across all five voltage control weights.

The SO policies capture the ficticious best-case-scenario where all devices cooperatively max-
imize social welfare instead of responding to prices. Fig. 7.1 shows that the price-of-anarchy, given
by the gap between EQ and SO, is negligible relative to the gap between EQ and UN 4. For this
benchmark network, the takeaway is that the benefits of the proposed nodal pricing mechanism
outweigh the costs—in fact, it is almost as efficient as the best possible coordination mechanism
given the local policy structure.

Demonstration
To build intuition, we include a four-day simulation of the deterministic EQ policies with w = 0.75
in Fig. 7.2. Three randomly chosen agents are presented. The first and second subplots show the real
and reactive power load, with inelastic demand as a dashed line and storage consumption as a solid
line. The third subplot shows the nodal prices for real and reactive power as solid and dashed lines,
respectively, with the substation LMP included as a dotted black line. The nodal pricing mechanism
creates different incentive structures and, by extension, different behaviors between the prosumers.
Fundamentally, the agents must balance arbitraging over the substation LMP, minimizing losses,
and stabilizing voltage magnitudes, given the apparent power capacity of their inverters.

During the four-day simulation, voltage magnitudes fluctuated between ±0.10 p.u. and network
losses ranged from about 2% and 12% of the total power flow through the substation.

7.5 Conclusion
We propose a practical pricing scheme for DER coordination in distribution networks, accounting
for both import costs and voltage stability. In order to compute equilibria for the resulting model,
we characterize new generalizable sufficient conditions under which a stochastic game is a Markov
potential game and prove that our application satisfies these new conditions. Finally, the proposed
mechanism is shown to be efficient on a benchmark distribution network. Interesting directions for
future research include accounting for the affect of the aggregate distribution network load on the
LMP and rigorously bounding the price-of-anarchy.

4While it is difficult to see from the figure, SO did indeed slightly outperform EQ for all five voltage control weights,
as expected.
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Additional Notation
Ik is the identity matrix of dimension k. 1, 0, and ek are the matrix of all ones, the matrix of all zeros,
and the kth standard basis vector, respectively, with dimensions inferred from context. U(x, x) is
the uniform distribution between its x and x. N(µ,Σ) is the multivariate normal distribution with
mean µ and covariance Σ.

Proofs
Proof of Theorem 11

For each agent i ∈ N , define the dummy function

ψi(s, a) = Ui(s, a)− ϕ(s, a). (7.20)

Sufficient condition 1 implies that the dummy function does not depend on the local state or action:

ψi(si, s−i, ai, a−i) = ψi(s−i, a−i). (7.21)

Combining (7.2), (7.20), and (7.21), agent i’s value function can be decomposed as follows

V π
i = Eπ

[
∞∑
t=0

γtϕ(st, at)

]
+ Eπ

[
∞∑
t=0

γtψi(s
t
−i, a

t
−i)

]
. (7.22)

Notice that the first term is the desired potential value function Φπ from Definition 5. To satisfy
Definition 5, we need to show that the second term in (7.22) does not depend on πi. First, bring the
expectation inside the summation:

Eπ

[
∞∑
t=0

γtψ(st−i, a
t
−i)

]
=

∞∑
t=0

γtEπ

[
ψ(st−i, a

t
−i)
]
.

Clearly, it suffices to show that Eπ

[
ψ(st−i, a

t
−i)
]

is independent of πi for all t. For compactness, we
write

∫
si∈Si
·dsi simply as

∫
si
·dsi, and likewise for the integral over the nonlocal state space S−i

and relevant subsets of the action space.

Eπ

[
ψ(st−i, a

t
−i)
]

=

∫
s

Pr
π
(st = s)

∫
a−i

π−i(a−i|s)ψi(s−i, a−i)da−ids

=

∫
s−i

Pr
π
(st−i = s−i)

∫
si

Pr
π
(sti = si|st−i = s−i)∫

a−i

π−i(a−i|s)ψi(s−i, a−i)da−idsids−i
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where Prπ(·) is shorthand for the probability with respect to where s0 ∼ ρ0, at ∼ π(·|st), and
st+1 ∼ T (·|st, at). We now apply sufficient condition 2 to rewrite π−i without the dependence on
si:

=

∫
s−i

Pr
π
(st−i = s−i)

∫
si

Pr
π
(sti = si|st−i = s−i)∫

a−i

π−i(a−i|s−i)ψi(s−i, a−i)da−idsids−i

=

∫
st−i

Pr
π
(st−i = s−i)

∫
at−i

π−i(a
t
−i|st−i)ψi(s

t
−i, a

t
−i)∫

sti

Pr
π
(sti|st−i)ds

t
ida

t
−ids

t
−i

=

∫
st−i

Pr
π
(st−i = s−i)∫

at−i

π−i(a
t
−i|st−i)ψi(s

t
−i, a

t
−i)da

t
−ids

t
−i

The only remaining nominal dependence on π is through the term Prπ(s
t
−i = s−i). We show that

this term also does not depend on π by induction. Suppose that Prπ(st−i = s−i) is independent of π
for some t. In general, we have

Pr
π
(st+1

−i = s′−i) =

∫
s

Pr
π
(st = s)

∫
a

π(at|st)∫
s′i

T (s′i, s
′
−i|s, a)ds′idads

Applying sufficient condition 3 gives

=

∫
s

Pr
π
(st = s)

∫
a

π(a|s)T−i(s
′
−i|s−i, a−i)daida−ids

Decomposing the inner integral,

=

∫
s

Pr
π
(st = s)

∫
a−i

π−i(a−i|s)T−i(s
′
−i|s−i, a−i)∫

ai

πi(ai|st)daida−ids

=

∫
s

Pr
π
(st = s)

∫
a−i

π−i(a−i|s)T−i(s
′
−i|s−i, a−i)da−ids
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Decomposing the outer integral,

=

∫
s−i

Pr
π
(st−i = s−i)

∫
si

Pr
π
(sti = si|st−i = s−i)∫

a−i

π−i(a−i|s)T−i(s
′
−i|s−i, a−i)da−idsids−i

Applying sufficient condition 2,

=

∫
s−i

Pr
π
(st−i = s−i)

∫
si

Pr
π
(sti = si|st−i = s−i)∫

a−i

π−i(a−i|s−i)T−i(s
′
−i|s−i, a−i)da−idsids−i

=

∫
s−i

Pr
π
(st−i = s−i)

∫
a−i

π−i(a−i|s−i)T−i(s
′
−i|s−i, a−i)∫

si

Pr
π
(sti = si|st−i = s−i)dsida−ids−i

=

∫
s−i

Pr
π
(st−i = s−i)∫

a−i

π−i(a−i|s−i)T−i(s
′
−i|s−i, a−i)da−ids−i

The only remaining nominal dependence on πi is through the term Prπ(s
t
−i = s−i), which is

independent of πi by the inductive hypothesis. For the base case t = 0, note that Prπ(s0−i = s−i)
does not depend on π since the initial state is drawn directly from the distribution ρ0.

Proof of Corollary 1

We will use the following lemma.

Lemma 9. For any vector v ∈ Rℓ, matrix Q ∈ Rℓ×ℓ, and partition of indices I = {I1, . . . , IJ}
such that

⋃J
k=1 Ik = [ℓ] and Ii ∩ Ij = ∅ for all i ̸= j,

∇vIi

[
vTIi∇vIi

(vTQv)
]
= ∇vIi

(
vTQv +

N∑
j=1

vTIjQIjIjvIj

)
.

Proof. The expressions are shown to be equivalent through expansion. To avoid clutter, we will
write the subscript Ii as simply i. We will use the Ei to denote the matrix composed of the rows of
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the identiy matrix indexed by Ii. Beginning with the left-hand side:

∇vi

[
vTi ∇vi(v

TQv)
]

= Ei∇
[
(Eiv)

TEi∇(vTQv)
]

= Ei∇
[
vTET

i Ei(Q+QT )v
]

= Ei

[
ET

i Ei(Q+QT ) + (Q+QT )ET
i Ei

]
v

= Ei(Q+QT )(I + ET
i Ei)v

where we use the fact that EiE
T
i = I . For the right-hand side:

∇vi

(
vTQv +

∑
j∈I

vTj Qjjvj

)

= Ei∇

[
vT

(
Q+

∑
j∈I

ET
j EjQE

T
j Ej

)
v

]

= Ei

[
(Q+QT ) +

∑
j∈I

ET
j Ej(Q+QT )ET

j Ej

]
v

= Ei(Q+QT )(I + ET
i Ei)v

where we use the fact that EiEj = 0 when i ̸= j.

We now prove Corollary 1 by checking the sufficient conditions from Theorem 11 in sequence,
starting with condition 1. For each agent i ∈ N , define the local state si = di. The property (7.14)
holds if and only if ϕD(d, λ, a)−Ui(d, λ, a) does not depend on the local state di or the local action
ai. Beginning with the local state, we have

ϕD(d, λ, a)− Ui(d, λ, a) =
∑
j∈N

uj(dj, p̃j, q̃j)− C̃(p, q, λ)

−
(
ui(di, p̃i, q̃i)− pi

∂

∂pi
C(p, q, λ)− qi

∂

∂qi
C(p, q, λ)

)
=
∑
j ̸=i

uj(dj, p̃j, q̃j)− C̃(p, q, λ)

−
(
−pi

∂

∂pi
C(p, q, λ)− qi

∂

∂qi
C(p, q, λ)

)
which does not include di as desired. We now want to show the final expression does not depend on
the action ai by way of (p̃i, q̃i) or, by extension, (pi, qi). Clearly, the summation of the other agents’
utilities does not depend on ai, so we need only consider the other terms where (pi, qi) appears.
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Checking the gradient of these terms:

∇(pi,qi)

(
pi
∂

∂pi
C(p, q, λ) + qi

∂

∂qi
C(p, q, λ)− C̃(p, q, λ)

)
= ∇(pi,qi)

[[
pi
qi

]T
∇(pi,qi)

([
p
q

]T
L(λ)

[
p
q

])]

−∇(pi,qi)

[[
p
q

]T
L(λ)

[
p
q

]
+
∑
j∈N

[
pj
qj

]T
LIjIj(λ)

[
pj
qj

]]
= 0.

The first step uses the fact that

C(p, q, λ) = (w − 1)λ
∑
i∈N

pi +

[
p
q

]T
L(λ)

[
p
q

]
,

which can be checked from (7.4) and (7.5). The linear term cancels trivially and the second step
applies Lemma (9). We can conclude from the resulting equality that ϕD(d, λ, a)− Ui(d, λ, a) does
not depend on ai, satisfying condition 1.

The local policy of agent j is given by

π
θj
j (aj|s) = ρηj

({
ηj : aj = µ

θj
j (dj, αj, α0, ηj)

})
When j ̸= i, di does not appear in this expression, so condition 2 is satisfied.

By construction of the local state space, we have s−i = (d−i, α). The marginal transition density
of the nonlocal states is given by

T−i(s
′
−i|s, a) = ρξ,ω({(ξ, ω) :

d′j = fj(dj, p̃j, q̃j, ωj) ∀j ̸= i,

α′
i = gj(αj, ξj) ∀j ∈ N ∪ {0}})

Since neither the local state di nor the local action ai (by way of (p̃i, q̃i) or (pi, qi)) appear in this
expression, condition 3 is satisfied and the proof is complete.

Experimental Setup
A scalar state variable di represents storage unit i’s state-of-charge. The state dynamics (7.7) are
given by

fi(d
t
i, p̃

t
i) = dti + p̃ti

where p̃ti is also a scalar, since the prosumer owns only a single DER. Note that the storage dynamics
include no stochastic component (represented in the general game G by ω). The feasible set (7.8) is
given by

Pi(di) = {(p̃i, q̃i) : −di ≤ p̃i ≤ di − di, p̃i2 + q̃2i ≤ b2i }
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where bi is the apparent power inverter capacity and di is the maximum state-of-charge. We choose
Mi in (7.12) to be a lazy projection operation that first clips the real component fo ai into the range
[−di, di] and then projects the resulting action onto the 2-norm ball of radius bi. It is also possible
to perform a true projection, but doing so requires solving a convex optimization problem at every
timestep and therefore takes much longer to train. Since the authors observed nearly identical results
using the true and lazy projections, we choose the latter for ease of reproducibility.

The agents’ utility functions ui are set to zero, so they will only seek to minimize their utility
bills given their fixed inelastic demand. We do not include round-trip inefficiencies or battery
degradation since the purpose of the example is to demonstrate the fundamental strategic features of
the proposed model, but such details can easily be incorporated under the general framework in
Section 7.2.

The agent policies are Gaussian with fixed variance where the mean is an affine function of the
states:

µθi
i (d

t
i, α

t
i, α

t
0, η

t
i) = θdii d

t
i + θαi

i α
t
i + θα0

i α
t
0 + θ0i + ηti (7.23a)

ηti ∼ N(0,Σηi). (7.23b)

While more complex neural-network-based policies could also be employed, we found that affine
policies are sufficiently expressive for this simple application and exhibited more reliable training.

The inelastic demand and LMP profiles are sinusoids with periods of one day perturbed by
normally-distributed random noise. Specifically, the dynamics (7.10a) are given by

gi(α
t
i, ξ

t+1
i ) = Aαt

i +Bξti

λt = λ∗(1 + κmTαt
0)

(p̄ti, q̄
t
i) = (p̄∗i , q̄

∗
i )(1 + κmTαt

0)

ξti ∼ N(0,Σξ)

where

A =


cos π

12
− sin π

12

sin π
12

cos π
12

0

0
0 0
Iτ 0


B =

[
0 0 eT1

]T
m =

[
1 0 σξ1

T
]

Σξ = z11T + diag((1− z)1).

κ is the amplitude factor of the sinusoids. λ∗ and p̃∗i are the mean LMP and agent inelastic demand,
respectively. τ is the noise duration, σξ is the standard deviation factor for the exogenous parameters,
and z is the correlation coefficient.
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The initial state distribution is defined by

d0i ∼ U(0, di)

α0
i =

[
cos 2π

24
(t0 + δi) sin 2π

24
(t0 + δi) 0 0 0

]
t0 ∼ U(0, 23)

δi ∼ U(δ, δ) ∀i ∈ N
δ0 = 0

where t0 represents the starting hour of the day of the simulation and δi is the phase difference
between agent i’s inelastic demand and the LMP, randomized between agents to introduce hetero-
geneity.

The network model is the 18-bus radial distribution system from [114], one of seven distribution
benchmark cases distributed with MATPOWER. One storage-equipped agent is located at each of
the 15 load buses. To approximate a heavily-loaded distribution network with losses on the order of
10%, the nominal loads are tripled.

p̄∗ and q̄∗ are set to the (tripled) real and reactive nominal load values from the MATPOWER
case file and λ∗ is set to 1. Branch parameters r and x are also taken from the MATPOWER case
file. We further set κ0 = 1/2, σξ = 1/10, z = .9, τ = 3, δ = 3, and δ = 9. For the storage units, we
set bi = 1.5

√
p̄∗2i + q̄∗2i , di = 6p̃i, and Σηi = diag((p̄∗2i , q̄

∗2
i )). Finally, we set the discount factor

γ = 0.99.
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Part III

Strategic Information Alignment
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Chapter 8

Inferring Agents’ Objectives in Feedback
Dynamic Games

In the preceding chapters, we introduced efficient computational methods for determining various
game-theoretic equilibria under the assumption of complete information, wherein agents possess full
knowledge of each other’s private information, such as objectives and constraints. In this chapter,
we relax this complete-information assumption and focus on scenarios involving incomplete or
asymmetric information. Specifically, we propose an efficient approach grounded in differentiable
optimization techniques to infer maximum-likelihood estimates of agents’ objectives from observed
data in feedback dynamic games. This chapter is based on the paper [180], co-authored with
Chih-Yuan Chiu, Lasse Peters, Somayeh Sojoudi, Claire J. Tomlin, and David Fridovich-Keil.

8.1 Background
The safety and efficiency of urban traffic rely heavily on the ability of each participant to predict the
effects of their actions on others’ decisions [218, 275]. For example, drivers on a highway may wish
to halt an overtaking maneuver if they believe the other drivers are aggressive, and some drivers
may decelerate their cars to avoid collision if they believe that another driver wishes to merge.

A powerful paradigm for modeling the interdependence of decisions in multi-agent settings is
provided general-sum dynamic games [24, 144]. A Nash equilibrium solution of a game-theoretic
model can be used to simultaneously predict the actions of all agents in the scene. This equilibrium
solution is particularly expressive when the game possesses a feedback information structure. In
this case, each equilibrium strategy explicitly accounts for the dynamically evolving information
available to each player over time.

Despite the theoretical attractiveness of this modeling paradigm, in reality, autonomous agents
often have only limited information available about the world around them. For example, in
urban traffic an autonomous agent typically has incomplete knowledge of the objectives of other
players. To address this challenge, recent works on inverse dynamic game theory [265, 251, 221]
recover these objectives from past trajectory data. Moreover, in realistic applications, only noisy
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sensor measurements of agents’ states are available. This partial observability further complicates
the inverse game problem, and existing work [251] treats this case in the open-loop information
structure.

In this chapter, we present a gradient-based solver for inverse dynamic games, under the state
feedback information structure. Our solver can recover objectives from partial state observations
of incomplete trajectories. Both of these effects are common in robotics due to noisy perception
and occlusions. We show that our algorithm converges reliably in practice, and demonstrate the
superior robustness and generalization performance as compared with a baseline method which
learns cost functions under the open-loop assumption [251], when the observation data is from a
group of players pursuing a feedback Nash equilibrium strategy.

Our contributions are threefold. Firstly, we characterize the solution set of the inverse feedback
dynamic game problem. In particular, we show that the set of the global minima could be nonconvex
and disconnected, and discuss regularization schemes to mitigate this problem. Secondly, we show
the differentiability of the loss function in linear quadratic games and propose a computationally
efficient procedure to approximate the gradient for nonlinear games. Finally, we propose an
efficient first-order coordinate-descent solver for the inverse feedback game problem, using noisy
partial observations of an incomplete expert state trajectory. Experimental results show that our
method reliably converges for inverse feedback games with nonlinear dynamics and is able to learn
nonconvex costs. Moreover, the converged cost function can accurately predict the feedback Nash
equilibrium state trajectories even for unseen initial states.

8.2 Related works

Non-cooperative Dynamic Games
Non-cooperative dynamic game theory [24, 144] provides a formal framework for analyzing
strategic interaction in a multi-agent setting [69, 24, 173]. In non-cooperative games, each player
minimizes its own individual cost function; since players’ costs may not be mutually aligned, the
resulting equilibrium behavior is generally competitive. Among different equilibrium concepts, the
Nash equilibrium has been extensively studied because of its representative power of capturing
many non-cooperative behaviors arising in real-world multi-agent systems [106, 274].

Recent advances in the literature aim to develop efficient solutions to Nash equilibrium problems
in dynamic games. Though the solutions for the open-loop and feedback Nash equilibrium in
linear quadratic (LQ) games are well understood [24], for nonlinear games there is no closed-form
solution in general. The work [259] characterizes the local Nash solution concept for open-loop
Nash equilibrium. In the feedback setting, numerous approaches have been proposed under various
special cases [290, 161]. A value iteration based approach for computing feedback Nash equilibria
of nonlinear games without constraints is introduced in [128]. Recently, a set of KKT conditions for
feedback Nash equilibria in constrained nonlinear games is derived in [167]. Computing a feedback
Nash equilibrium is challenging due to the nested KKT conditions in different time steps.
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Our work draws upon the ILQGames [104] framework, which at each iteration solves a linear-
quadratic game that approximates the original game. The construction of the approximate game
parallels the iterative linearization and quadraticization methods of iterative LQR [188], and the
dynamic programming equations that characterize equilibrium strategies in linear quadratic dynamic
games [24]. This approach differs from the ALGames [65] method, which computes an open-loop
Nash equilibrium strategy.

Inverse Non-cooperative Dynamic Games
In contrast to the forward game problem of computing a strategy in dynamic games, an inverse
game problem amounts to finding objectives for all agents such that the corresponding strategic
(e.g., Nash equilibrium) interactions reproduce expert demonstrations. The inverse game problem is
important because it paves the way for an agent to understand the preferences which explain other
agents’ behavior, which may facilitate more efficient multi-agent interaction and coordination.

The problem of inverse infinite-horizon LQ games is considered in [143], where the set of
cost functions whose feedback Nash equilibrium strategies coincide with an expert strategy is
derived. In [265, 326], the two-player inverse LQ game is solved by transforming the problem to
an inverse optimal control under the assumption that the control input data of one player is known.
Two methods based on the KKT conditions of an open-loop Nash equilibrium are proposed for
open-loop general-sum differential games in [220]. Several necessary conditions for open-loop
Nash equilibria are proposed in [222] and used for developing an inverse game solution for some
classes of open-loop games.

Recently, an efficient bilevel optimization framework [251] based on the open-loop Nash
equilibrium KKT conditions was proposed for solving inverse games with an open-loop Nash
assumption. Another line of work on inferring costs in open-loop games [15, 142, 81] proposes to
minimize the residual violation of the KKT conditions. This KKT residual framework assumes the
knowledge of complete trajectory data and is a convex problem. Given the difficulty of evaluating
KKT conditions for feedback Nash equilibria in nonlinear games [167], the extension of the KKT
residual method to feedback nonlinear games may be subject to numerical difficulty.

A bilevel optimization approach for inverse feedback game problem is proposed in [219], with
the assumption that both the expert state and control trajectories are observed without noise. In
addition, an inverse game solver is proposed in [212] where they infer the players’ cost functions
with the assumption that the expert strategy follows a new concept called Maximum Entropy Nash
Equilibrium. To the best of the authors’ knowledge, there is no work on inferring cost functions
of nonlinear dynamic games under feedback Nash equilibrium condition, from noisy partial state
observation and incomplete trajectory data.

8.3 Preliminaries
Consider an N -player, T -stage, deterministic, discrete-time dynamic game, with a state xit ∈ Rni

and control input uit ∈ Rmi for each player i ∈ [N ] := {1, · · · , N}, t ∈ [T ]. Let the dimension
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of the joint state and control input be n :=
∑N

i=1 ni and m :=
∑N

i=1mi, respectively. We denote
by xt := [x1t , . . . , x

N
t ] ∈ Rn and ut := [u1t , . . . , u

N
t ] ∈ Rm the joint state and joint control at time

t ∈ [T ], respectively. The joint dynamics for the system is given by the differentiable dynamics map
ft(·, ·) : Rn × Rm → Rn:

xt+1 = ft(xt, ut), ∀ t = 1, · · · , T. (8.1)

We denote by f := {ft}Tt=1 the set of dynamics across all the time instances within horizon T . We
define x := {xt}Tt=1 and u := {ut}Tt=1 to be a state trajectory and control trajectory, respectively,
if xt+1 = f(xt, ut), for each t ∈ [T ]. The objective of each agent i is to minimize its overall cost,
given by the sum of its running costs git : Rn × Rm → R over the time horizon:

J i(x,u) :=
T∑
t=1

git(xt, ut) (8.2)

Define gt := {g1t , g2t , · · · , gNt }, t ∈ [T ]. We denote by g := {gt}Tt=1 the set of cost functions for all
the agents within horizon T .

To minimize (8.2), each player uses their observations of the environment to design a sequence
of control inputs to deploy during the discrete time interval [T ]. The information available to each
player at each time characterizes the information pattern of the dynamic game, and plays a major
role in shaping the optimal responses of each player [24]. Below, we explore two such information
patterns—feedback and open-loop.

Nash Solutions in Feedback Strategies
Under the state feedback information pattern, each player observes the state xt at each time t, and
uses this information to design a feedback strategy γit : Rn → Rmi , given by: uit := γit(xt), for each
i ∈ [N ] and t ∈ [T ]. Let γt(xt) := [γ1t (xt), γ

2
t (xt), . . . , γ

N
t (xt)] ∈ Rm.

Following the notation of [24], we denote by Γi
t the set of all state feedback strategies of player

i, for each i ∈ [N ]. Under this feedback information pattern, the Nash equilibrium of the dynamic
game is as defined below.

Definition 6 (Feedback Nash Equilibrium (FBNE) [24, Ch. 6]). The set of control strategies
{γ1∗t , · · · , γN∗

t }Tt=1 is called a feedback Nash equilibrium if no player is incentivized to unilaterally
alter its strategy. Formally:

W i∗
t

(
xt, [γ

1∗
t (xt), . . . , γ

i∗
t (xt), . . . , γ

N∗
t (xt)]

)
(8.3)

≤ W i∗
t

(
xt, [γ

1∗
t (xt), . . . , γ

i
t(xt), . . . , γ

N∗
t (xt)]

)
, ∀γit ∈ Γi

t,∀t ∈ [T ].

where W i∗
t (·, ·) : Rn × Rm → R, t ∈ [T ] is the optimal state-action function defined as follows,

W i∗
T (xT , uT ) := giT (xT , uT )

W i∗
t (xt, ut) := git(xt, ut) + V i∗

t+1(xt+1), ∀t ∈ [T − 1],

V i∗
t (xt) := W i∗

t (xt, [γ
1
t
∗
(xt), . . . , γ

N
t

∗
(xt)]),∀t ∈ [T ].

(8.4)



CHAPTER 8. INFERRING AGENTS’ OBJECTIVES IN FEEDBACK DYNAMIC GAMES140

We define x and u to be a FBNE state trajectory and a FBNE control trajectory, respectively,
if uit = γi∗t (xt), for each i ∈ [N ] and t ∈ [T ]. We denote by ξ(f ,g) the set of all FBNE state
trajectories in the game defined by the dynamics f and cost functions g.

Remark 13 (Strong Time Consistency). The FBNE conditions of (8.3) implicitly enforce strong
time-consistency [24, Def. 5.14] of the equilibrium strategies. That is, FBNE does not admit
arbitrary feedback strategies, but imposes the additional condition that those strategies must also
be in equilibrium for any subgame starting at a later stage from an arbitrary state.

Nash Solutions in Open-loop Strategies
In contrast, under the open-loop information pattern, each player only observes the initial state x1.
In this case, the strategy for each player i ∈ [N ] is a map from x1 to {ui1, ui2, · · · , uiT}, which we
denote by ϕi(·) : Rn → Rmi × · · · × Rmi︸ ︷︷ ︸

T

. Let Φi be the set of all open-loop strategies of the player

i, i ∈ [N ]. The corresponding open-loop Nash equilibrium is defined as follows.

Definition 7 (Open-Loop Nash Equilibrium (OLNE) [24, Ch. 6]). The tuple of control strategies
{ϕ∗

1, · · · , ϕ∗
N} is called an open-loop Nash equilibrium if no player is incentivized to unilaterally

alter its sequence of control inputs. Formally:

J i
(
x, [ϕ1∗(x1), · · · , ϕi∗(x1), · · · , ϕN ∗

(x1)]
)

(8.5)

≤J i
(
x, [ϕ1∗(x1), · · · , ϕi(x1), · · · , ϕN ∗

(x1)]
)
,∀ϕi ∈ Φi,∀x1 ∈ Rn.

Remark 14. The OLNE definition does not imply the strong time-consistence as in the feedback
counterpart [24].

Feedback vs. Open-loop Nash Equilibria
In this subsection, we demonstrate the difference between open-loop and feedback Nash equilibria
and show the necessity of developing specific solutions for cost inference problems with the feedback
information pattern, instead of applying existing work with the open-loop assumption [250]. To this
end, we introduce below several linear-quadratic (LQ) games where the open-loop Nash equilibrium
(OLNE) and feedback Nash equilibrium (FBNE) state trajectories differ substantially. LQ games
are a class of dynamic games with dynamics and player objectives of the form in (8.6) and (8.7),
respectively,

xt+1 = Atxt +
∑
i∈[N ]

Bi
tu

i
t, ∀t ∈ [T ], (8.6)

git(xt, ut) =
1

2
(x⊤t Q

i
txt +

∑
j∈[N ]

ujt
⊤
Rij

t u
j
t),∀t ∈ [T ],∀i ∈ [N ], (8.7)

where matrices {At, B
i
t}, positive semidefinite matrixQi

t and positive definite matrixRij
t are defined

with appropriate dimensions, for each i, j ∈ [N ] and t ∈ [T ].
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Figure 8.1: Examples of cost functions that yield trajectories that are different under the OLNE and FBNE assumptions.

Case Study: We consider a two-player LQ game with a state vector xt = [p1x,t, p
1
y,t, p

2
x,t, p

2
y,t],

where pix,t and piy,t are the x- and y-coordinates of agent i ∈ {1, 2}, respectively. Let uit ∈ R2 be the
control input for the i-th agent, i ∈ {1, 2}. In this setting, we consider a class of games in which the
first agent wants to drive the second agent to the origin, while the second agent wants to catch the
first agent. The agents’ joint dynamics and costs at time t ∈ [T ] are specified as follows:

xt+1 =

[
I2 0
0 I2

]
xt +

[
I2
0

]
u1t +

[
0
I2

]
u2t ,

g1t (xt, ut) = ∥p2x,t∥22 + ∥p2y,t∥22 + ∥u1t∥22,
g2t (xt, ut) = ∥p2x,t − p1x,t∥22 + ∥p2y,t − p1y,t∥22 + ∥u2t∥22,

(8.8)

where I2 is the 2× 2 identity matrix. We visualize the unique FBNE and OLNE state trajectories of
this example in the first row in Fig. 8.1. If we modify the cost function of the first player such that it
wants to lead the x- and y-position of the second player to be aligned with each other, i.e.,

ĝ1t (xt, ut) := ∥p2x,t − p2y,t∥22 + ∥u1t∥22, (8.9)
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then, the unique FBNE and OLNE state trajectories are still different, as shown in the second row of
Fig. 8.1. Moreover, observations of players may be noisy in practice. To illustrate this, we consider
a task where the two agents want to catch each other, but the first player’s observation of the second
player’s position is inaccurate. We modify the first player’s cost in (8.8) as follows:

ˆ̂g1t (xt, ut) := ∥p1x,t − 2p2x,t∥22 + ∥p1y,t − 2p2y,t∥22 + ∥u1t∥22. (8.10)

The third row of Fig. 8.1 reveals that the FBNE state trajectory is robust to inaccurate observations,
but the unique OLNE state trajectory is not.

Thus, it is readily apparent that the OLNE and FBNE state strategies can be substantially
different even for fixed cost functions. This difference in expressive power may be understood as a
consequence of the strong time consistency property, which is enforced in the feedback information
structure but not in the open-loop setting, per Remarks 13 and 14. A similar problem arises in the
cost inference problem, where the existing OLNE cost inference algorithms may fail to infer the
correct cost function in feedback games.

8.4 Problem Statement
Let x be an expert FBNE state trajectory under the nonlinear dynamics f but unknown cost
functions {git}

T,N
t=1,i=1. Let T ⊆ [T ] be the set of observed time indices of the trajectory x. We

denote by yT := {yt}t∈T the observation data of x, where yt ∈ Rℓ is a partial observation of
the state, composed of certain coordinates of xt corrupted by noise. The task is to infer the cost
function of each player such that those inferred costs jointly yield a FBNE state trajectory that
is as close as possible to the observed trajectory. We parameterize the cost of the player i by a
vector θi ∈ Rdi , and let θ := [θ1, θ2, . . . , θN ] ∈ Rd. Denote by git,θ(xt, ut) =

∑di
j=1 θ

i
jb

i
t,j(xt, ut)

player i’s parameterized cost at time t ∈ [T ], for some basis functions {{bit,j}
di
j=1}

T,N
t=1,i=1. Define

gθ := {git,θ}
T,N
t=1,i=1. Formally, this problem is of the form:

min
θ,x1,x̂

− p(yT |x̂)

s.t. x̂ ∈ ξ(f ,gθ, x1),
(8.11)

where p(·|·) is the likelihood function corresponding to a known sensor model and ξ(f ,gθ, x1)
represents the set of state trajectories from the initial condition x1 ∈ Rn following a FBNE strategy,
under the cost set gθ. Due to the noisy partial observation, x1 is not assumed to be known and instead
needs to be inferred as well in (8.11). Note that the above formulation can also be extended to the
cases where multiple partially observed incomplete trajectories from different initial conditions are
available.

Running example: We consider a highway platooning scenario where player 1 wants to guide
player 2 to a particular lane of the road. The joint state vector is xt = [p1x,t, p

1
y,t, β

1
t , v

1
t , p

2
x,t, p

2
y,t, β

2
t , v

2
t ].
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Figure 8.2: Visualization of the running example.

The time horizon T = 40. The dynamics model for the player i is:
pix,t+1

piy,t+1

βi
t+1

vit+1

 =


pix,t
piy,t
βi
t

vit

+∆T


vit cos(β

i
t)

vit sin(β
i
t)

ωi
t

ait

 (8.12)

where ∆T is a time discretization constant and uit = [ωi
t, a

i
t] ∈ R2 is the control input for player

i ∈ [N ]. Let p∗x be the target lane that player 1 wants to guide player 2 to. We parameterize the cost
function of the player i by θi ∈ R2,

g1t,θ(xt, ut) = θ11∥p1x,t∥22 + θ12∥p2x,t − p∗x∥22 + ∥u1t∥22 (8.13)

g2t,θ(xt, ut) = θ21∥p2x,t − p1x,t∥22 + θ22∥v2t − 1∥22 + ∥u2t∥22,∀t ∈ [T ].

The ground truth solution is θ∗ = [0, 8, 4, 4]. We assume that there is a period of occlusion
happening from the time index t = 11 to t = 19, and the observed time index set is T =
{1, 2, . . . , 10, 20, 21, . . . , 40}. Also, it may be difficult for a human driver to measure other vehicles’
velocity accurately, and therefore we assume that partial observation data yT excludes the velocity
of both cars in the data set, and is further subject to Gaussian noise of standard deviation σ. The
initial condition x1 is not known and needs to be inferred. We visualize the ground truth solution
in the first subplot of Fig. 8.2 and the noisy incomplete trajectory data in the second subplot of
Fig. 8.2.

The many challenges of the above problem include: (a) partial observation; (b) noisy and
incomplete expert trajectory data; and (c) the difficulty of evaluating and differentiating the objective
in (8.11), due to the challenge of computing a FBNE strategy in nonlinear games [167]. In the
following sections, we will characterize the complexity of this inverse feedback game problem and
propose an efficient solution.
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8.5 Results: From Characterization to Computation
In this section, we first characterize the complexity of the inverse feedback game problem (8.11). In
particular, we will show the nonconvexity of the loss function and the existence of multiple isolated
global minima. Based on this observation, we discuss regularization schemes that can mitigate this
issue. Our main contribution is to characterize the differentiability of the inverse feedback game
loss function in (8.11). Finally, we present a gradient approximation scheme that can be used in a
first-order optimization formulation.

Characterization of the Inverse Feedback Dynamic Game Problem
The inverse feedback dynamic game problem (8.11) is a constrained optimization problem, which
is hard to solve due to the nonconvexity of the set ξ(f ,gθ, x1). With a slight abuse of notation,
we denote by x̂(f ,gθ, x1) ∈ ξ(f ,gθ, x1) a FBNE state trajectory. To simplify the problem, we
transform (8.11) to an unconstrained problem by substituting a forward game solution x̂(f ,gθ, x1)
into the likelihood function p(yT |x̂), as follows:

L̂(θ, x1) := −p(yT |x̂(f ,gθ, x1)). (8.14)

The minimizer of (8.14) is a local optimum to the original problem (8.11) and becomes global when
ξ(f ,gθ, x1) contains only a single element.

Before we dive into the nonlinear setting, let us first consider a simplified LQ case to highlight
the main challenges associated with the optimization of this loss. In the LQ case, the evaluation of
the loss (8.14) is straightforward if there exists a closed-form expression for p(yT |x̂), e.g., under
a Gaussian observation model. Even in that setting, however, it is important to realize that the
problem remains nonconvex, as shown in Fig. 8.3. The following proposition makes this challenge
explicit, and the proof can be found in the Appendix.

Proposition 10. There exists an inverse LQ game problem (8.11): (a) whose global minima are
isolated, and (b) for which there exist multiple cost functions that exactly match expert data from
any initial condition, when there is no observation noise.

Remark 15. Proposition 10 does not imply that any inverse LQ game problem will suffer from
the multiple global minima issue. Instead, Proposition 10 suggests that simply normalizing the
cost vector does not rule out the possibility of having multiple global solutions. That is, there exist
two cost parameter vectors which are linearly independent, but generate the same FBNE state
trajectories for any given initial state. This non-injective mapping from the cost parameter space
to the FBNE state trajectory space is a fundamental problem in inverse feedback games, and is
not particular to the formulation (8.11). In practice, this multiple global minima issue could be
mitigated by adding L2 regularization, as visualized in Fig. 8.3.

Though being nonconvex, the loss function L̂(θ, x1) is differentiable with respect to both θ
and x1 under the condition of Theorem 3.2 in [167], which follows from the implicit function
theorem [162]. Inspired by the success of gradient-based methods in non-convex optimization with
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Figure 8.3: Visualization of the loss function L(θ, x1) of the LQ game specified in (8.16) and (8.17), and its L2

regularization, with an initial condition x1 = 1. We adopt Gaussian likelihood function. The yellow hyperplane is
drawn according to 2Q1 +Q2 = 3. With L2 regularization, the number of global minima is reduced.

differentiable objective functions [233, 35, 285], one natural idea is to apply gradient descent to
minimize L̂(θ, x1). In what follows, we discuss efficient ways to evaluate and differentiate L̂(θ, x1)
in nonlinear games.

Efficient Computation for a FBNE State Trajectory in Nonlinear Games
It is easy to evaluate L̂(θ, x1) for LQ games, but when dynamics are nonlinear or objectives are non-
quadratic, the problem becomes more challenging [167]. In forward games, this challenge can be
addressed by using the ILQGames algorithm [104], which finds approximate local FBNE solutions
in smooth non-LQ dynamic games. Given the effectiveness of this approximation scheme in those
domains, we also adopt it as a submodule for evaluating the loss L̂(θ, x1). Akin to the ILQR method
[209, 188], in each step of the ILQGames algorithm, the system dynamics xt+1 = f(xt, ut) and the
costs {git(x, u)}

T,N
t=1,i=1 are linearized and quadraticized, respectively, around a state trajectory x and

a control trajectory u. A FBNE strategy for each player of the derived LQ game is then used to
update the state and control trajectories. This iteration continues until a convergence criterion is
satisfied.

To be more specific, we approximate L̂(θ, x1) by a new loss function L̃(θ, x1) defined as,

L̂(θ, x1) ≃ L̃(θ, x1) := −p
(
yT |x(f̃θ, g̃θ, x1)

)
(8.15)

where x(f̃θ, g̃θ, x1) represents a FBNE state trajectory from initial condition x1, for the LQ game
defined by the linearized dynamics f̃θ, quadraticized cost set g̃θ := {g̃i

t,θ}
T,N
t=1,i=1 at the converged

solution returned by ILQGames solver. Note that the linearized dynamics f̃θ depend upon θ via the
state trajectory about which f is linearized; this trajectory is simulated under the feedback policy
returned by ILQGames, where the policy depends upon costs gθ.
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Differentiating the Loss in the Inverse Feedback Game Problem
The challenge of computing a feedback Nash equilibrium strategy not only makes the evaluation
of the loss function L̂(θ, x1) hard, but also renders differentiation difficult. In this work, we
approximate the gradient of L̂(θ, x1) using a similar idea as the ILQGames algorithm in the
previous section. In other words, we propose to use the LQ approximation of the nonlinear
game specified by f̃θ and g̃θ to derive an approximation to the gradient of L̂(θ, x1). Note that
g̃it,θ(x, u) =

∑di
j=1 θ

i
j b̃

i
t,j,θ(x, u), where b̃it,j,θ(x, u) : Rn × Rm → R is the j-th quadraticized cost

basis function. By the chain rule, we have

∂L̃(θ, x1)

∂θij
= −∇xp(yT |x)

∣∣∣
x(f̃θ,g̃θ,x1)

· ∂x(f̃θ, g̃θ, x1)

∂θij
,

∂x(f̃θ, g̃θ, x1)

∂θij
=
(
∇f̃θ

x(f̃θ, g̃θ, x1)
∂ f̃θ
∂θij

+∇g̃θ
x(f̃θ, g̃θ, x1)

∂g̃θ

∂θij

)
.

The complexity of differentiating L̃(θ, x1) comes from the fact that the linearized dynamics and the
quadraticized costs are functions of θ implicitly, which makes the total derivative hard to compute.
We propose to approximate the above gradient by treating the linearized f̃θ and each quadraticized
cost basis function b̃it,j,θ as constants with respect to θ, denoted by f̃ and b̃it,j , and only compute the
partial derivative with respect to θ, rather than the total derivative:

∂L̃(θ, x1)

∂θij
≃ −∇xp(yT |x)

∣∣∣
x(f̃ ,g̃θ,x1)

·
∂x(f̃ , {

∑di
j=1 θ

i
j b̃

i
t,j}

T,N
t=1,i=1, x1)

∂θij
.

This is based on the observation that at the convergence of the forward ILQGames solver, the
linearized dynamics are a good approximation of the full nonlinear dynamics f , so long as the cost
parameter being perturbed remains sufficiently small. We adopt a similar approximation for the
gradient∇x1L̃(θ, x1) by fixing the linearized dynamics and quadraticized costs and obtaining the
partial derivative with respect to x1.

In summary, we approximate∇L̂(θ, x1) by∇L̃(θ, x1). In practice,∇L̃(θ, x1) can be efficiently
computed by automatic differentiation [238, Ch. 8]. As exemplified in Fig. 8.4, the proposed
gradient approximation is virtually always a descent direction and therefore aligns well with the
true gradient of L̂(θ, x1).

An Inverse Feedback Game Solver
In this subsection, we present a solver for the inverse feedback game problem (8.11). In what
follows, we first discuss how the three challenges mentioned in Section 8.4 are handled in our solver.
We then introduce the proposed solver in Algorithm 6.

The first two challenges on noisy partial observation and incomplete trajectory data are handled
by maintaining an estimate of the full initial condition and a noise-free state-input trajectory.
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Algorithm 6: Inverse Iterative LQ (i2LQ) Games
Data: Horizon T > 0, initial solution θ(0) ∈ Rd, observed time index set T ⊆ [T ], observation data

yT , max iteration number K , tolerance ϵ.
Result: Inferred cost parameter θ̂ and x̂1
for k = 0, 1, . . . ,K do

(x̃(k), {γ̃it}
T,N
t=1,i=1, f̃θ(k) , g̃θ(k))← ILQGames(f ,gθ(k) , x

(k)
1 )

∇x1L̂(θ
(k), x

(k)
1 )← evaluated using f̃θ(k) and g̃θ(k) via Gradient Approximation in Section 8.5

x
(k+1)
1 ← x

(k)
1 − η∇x1L̂(θ

(k), x
(k)
1 ) with line search over η

(x̌(k), {γ̌it}
T,N
t=1,i=1, f̌θ(k) , ǧθ(k))← ILQGames

(
f ,gθ(k) , x

(k+1)
1

)
∇θL̂(θ

(k), x
(k+1)
1 )← evaluated using f̌θ(k) and ǧθ(k) via Gradient Approximation in Section 8.5

θ(k+1) ← θ(k) − η′∇θL̂(θ
(k), x

(k+1)
1 ) with line search over η′

Return (θ(k+1), x
(k+1)
1 ) if ∥θ(k) − θ(k−1)∥2 ≤ ϵ or Return (θ(k

′), x
(k′)
1 ), where

k′ ← argmink L̃(θ
(k), x

(k)
1 ), if iteration number k reaches K.

As shown in Section 8.6, this procedure of joint reconstruction and filtering enables our solver to
reliably recover player costs even in scenarios of substantial partial observability. The third difficulty
of evaluating and differentiating the objective function in the inverse feedback game problem is
mitigated by the efficient approximation outlined in Section 8.5. To jointly infer the initial condition,
the cost and the state-input trajectory, we first adopt the coordinate gradient descent method, where
gradient descent steps are first taken over the initial condition x̂1, and then taken over the cost
parameter. We update the estimate of the noise-free full state-input trajectory by computing a FBNE
state trajectory from the inferred initial condition and the cost.

We summarize our proposed solver in Algorithm 6. At the k-th iteration, we first compute an
approximate FBNE state trajectory x̃(k) and the associated LQ approximation via the ILQGames
algorithm of [104]. Using this LQ approximation, we estimate∇x1L̂(θ, x

(k)
1 ) using the procedure

outlined in Section 8.5. We then update the initial condition x(k)1 by a step of gradient descent, where
the stepsize is chosen by a suitable linesearch technique [238, Ch. 3] such that the loss L̂(θ, x1) is
sufficiently decreased. Given the updated initial condition x(k+1)

1 , we find a new approximate FBNE
state trajectory via the ILQGames algorithm again, which is then used to estimate∇θL̂(θ

(k), x
(k+1)
1 )

via the procedure in Section 8.5. With this gradient, we update θ(k) by one step of gradient descent
with linesearch. We repeat this procedure until, at convergence, we find a locally optimal solution
(θ̂, x̂1).

8.6 Experiments
In this section, we adopt the open-loop solution method of [251] as the baseline method and
compare it to Algorithm 1. The experiment codes can be found in https://github.com/jamesjingqili/
inverse-iLQGames.git. In particular, we evaluate Algorithm 6 in several Monte Carlo studies

https://github.com/jamesjingqili/inverse-iLQGames.git
https://github.com/jamesjingqili/inverse-iLQGames.git
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which aim to justify the following claims.

• The proposed gradient approximation often aligns with a descent direction in the loss function.

• Algorithm 1 is more robust than the open-loop baseline method [251] with respect to noise in,
and incomplete observations of, the expert demonstration trajectory.

• The cost functions inferred by Algorithm 6 can be generalized to predict trajectories from
unseen initial conditions.

• Algorithm 1 can infer nonconvex costs in nonlinear games.

Gradient Approximation Quality
We continue the 2-vehicle platooning example defined in (8.12) and (8.13). We measure the
performance of Algorithm 6 in two settings, incomplete expert trajectory data with noisy partial
state observation, and complete expert trajectory data with noisy full observation. In the first case,
each player’s partial observation only contains its x-position, y-position and heading angle. The time
index set of the incomplete trajectory is T = [T ] \ {11, 12, . . . , 19}. In the second case, the expert
data includes the noisy observation of all the states of both players at all t ∈ [T ]. The ground truth
expert state trajectory follows a FBNE strategy from the initial condition x1 = [0, 0.5, π

2
, 1, 1, 0, π

2
, 1]

and the target lane is p∗x = 0.0. At each variance level σ ∈ {0.004, 0.008, . . . , 0.04}, we generate
10 noisy observations of the ground truth expert trajectory, with isotropic zero-mean Gaussian noise.
For each noisy expert data set yT , we minimize the negative log-likelihood objective in (1), i.e.,∑

t∈T ∥yt − h(xt)∥22, where h(·) : Rn → Rℓ maps a state xt to its partial observation.
As shown in Fig. 8.4, the loss decreases monotonically on the average. This indicates that

the gradient approximation proposed in Section 8.5 provides a reliable descent direction. The
inverse feedback game problem becomes challenging when there is only partial state observation
and incomplete trajectory data, and the quality of inferred costs may degrade when the observation
noise is high.

Robustness, Generalization and the Ability to Infer Nonconvex Costs
We continue the previous 2-vehicle example and compare Algorithm 6 and the baseline in a Monte
Carlo study, where we infer the costs under 10 different levels of Gaussian noise with increasing
variance. In particular, we evaluate three metrics in Fig. 8.5: (a) the distance between the noisy
expert data and the FBNE state trajectory which results from players’ inferred costs; (b) the distance
between the computed FBNE state trajectory (under the players’ inferred costs) and the ground
truth expert data. An example of such a comparison is shown in Fig. 8.6. Finally, we evaluate (c)
the distance between the inferred FBNE state trajectories and the FBNE state trajectory under the
ground truth costs for some randomly sampled initial conditions, which is also visualized in Fig. 8.7.
Collectively, the results demonstrate that Algorithm 6 has better robustness and generalization
performance than the open-loop baseline when the expert data follows the FBNE assumption.
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Figure 8.4: Convergence of Algorithm 1 with the Gradient Approximation proposed in Section 8.5. The loss decreases
monotonically on the average. The bold lines and shaded areas represent the mean values and their standard error, i.e.,
the variance divided by the square root of the sample size, respectively.

To show that Algorithm 1 can infer nonconvex cost functions, we extend the previous 2-vehicle
platooning example and assume that the 2-vehicle team encounters a third vehicle and the follower
wants to stay close to the leader without colliding with the third vehicle. We model this scenario as
a 3-vehicle game with a 12 dimensional state space and a horizon T = 30. The dynamics for each
vehicle is the same as (8.12) and the costs are as follows,

g1t,θ(xt, ut) =θ
1
1∥p1x,t∥22 + θ12∥p2x,t − p∗x∥22 + ∥v1t − 2∥22
+ ∥β1

t −
π

2
∥22 + ∥u1t∥22

g2t,θ(xt, ut) =θ
2
1∥p2x,t∥22 + ∥β2

t −
π

2
∥22 + θ22∥p2x,t − p1x,t∥22 + ∥v2t − 2∥22

− 1

2
log(∥p2x,t − p3x,t∥22 + ∥p2y,t − p3y,t∥22) + ∥u2t∥22

g3t,θ(xt, ut) =θ
3
1∥p3x,t −

1

2
∥22 + ∥u3t∥22

where the ground truth θ∗ ∈ R5 is [0, 4, 0, 4, 2]. The ground truth expert state trajectory follows a
FBNE strategy from the initial condition x1 = [0, 1, π

2
, 2, 0.3, 0, π

2
, 2, 0.5, 0.5, π

2
, 2], where the last

four elements encode the state of the third vehicle. The target lane in the expert data is p∗x = 0.2.
Similar to the 2-vehicle experiment, we consider two settings, incomplete trajectory data with

partial state observation and complete trajectory data with full state observation. The partial state
observation includes all the states of each vehicle except for the velocity of all the vehicles, and
the time indices set of the incomplete trajectory is T = [T ] \ {11, 12, . . . , 19}. The nonconvex cost
of player 2 causes numerical problems in the baseline KKT OLNE solver [251]. Thus, we add an
L2 regularization 10−4∥θ∥22 to the loss L̂(θ, x1) and summarize the Monte Carlo study in Fig. 8.8,
where we see Algorithm 6 is also able to learn better cost functions reflecting the true intentions of
each vehicle in feedback games, even with only partial state observations and incomplete trajectory
data.
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Figure 8.5: 2-vehicle platooning scenario. The bold lines and shaded areas represent the mean values and their standard
error, i.e., the variance divided by the square root of the sample size, respectively. As the noise variance growing, the
converged loss value increases, as shown in the red curves. However, Algorithm 6 is still able to learn a more accurate
cost and has less generalization error than the baseline, as shown in the blue and yellow curves, respectively.

Figure 8.6: Full and partial, noisy observation of the expert trajectories. Dashed lines represent predicted trajectories
which result from inferred costs, and solid lines are ground truth. The trajectories predicted by Algorithm 6 are closer
to the ground truth than the baseline.

8.7 Conclusion
In this chapter, we propose an efficient cost inference algorithm for inverse feedback nonlinear
games, with only partial state observation and incomplete trajectory data. Empirical results show
that the proposed solver converges reliably for inverse games with nonconvex costs and has superior
generalization performance than a state-of-the-art open-loop baseline method when the expert
demonstration reflects a group of agents acting in a dynamic feedback game. There are many
future directions. We can investigate under what conditions the cost can be inferred exactly in
feedback games. The active and online inference are also promising directions. In addition, we are
eager to extend this work to settings of closed-loop interaction. In such an extension, rather than
merely inferring the objectives of observed players, this information would be used to guide the
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Figure 8.7: Generalization performance comparison. p∗x is the target lane position that player 1 wants to guide player 2
toward. All the costs are inferred from partial observations and incomplete trajectory data, with different noise variance
specified in each of the subplot. The trajectories predicted by Algorithm 6 are closer to the ground truth than the
baseline.

Figure 8.8: 3-vehicle platooning scenario. The bold lines and shaded areas represent the mean values and their standard
error, i.e., the variance divided by the square root of the sample size, respectively. As the noise variance growing,
the converged loss value increases on the average, as shown in the red curves. However, Algorithm 6 is still able to
learn a more accurate cost and has less generalization error than the baseline, as shown in the blue and yellow curves,
respectively.

decision-making of an autonomous agent in that scene.
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Appendix
Proof of Proposition 10. Proposition 1 claims that there exists an inverse LQ game, which has
isolated global minima and the induced FBNE state trajectories of those solutions match the expert
demonstration. Here, we show such a counterexample, which supports the claim. Consider a
2-player horizon-3 LQ game with the linear dynamics

xt+1 = xt + u1t + u2t , t ∈ {1, 2, 3}, (8.16)

and the cost
g1t (xt, ut) =

1

2
(Q1∥xt∥22 + ∥u1t∥22), t ∈ {1, 2},

g2t (xt, ut) =
1

2
(Q2∥xt∥22 + 2∥u2t∥22), t ∈ {1, 2},

g13(x3, u3) =
1

2
Q1∥x3∥22, g23(x3, u3) =

1

2
Q2∥x3∥22.

(8.17)

We assume that the ground truth solutions are Q1 = 1, Q2 = 1. We will show there is also one
extra solution Q̂1 = 1

2
and Q̂2 = 2, which yields the same FBNE state trajectory as the ground truth

for any initial condition. We follow the same definition of the variable {Zi
t}

3,2
t=1,i=1 as in [24]. By

definition, we have Zi
t ≥ Qi > 0, when Q1 ∈ R+ and Q2 ∈ R+. Following the notations in FBNE

condition in Corollary 6.1 of [24], we consider the feedback matrices {P i
t }

2,2
t=1,i=1,[

P 1
t

P 2
t

]
=

[
1 + Z1

t+1 Z1
t+1

Z2
t+1 2 + Z2

t+1

]
︸ ︷︷ ︸

Gi
t

[
Z1

t+1

Z2
t+1

]
, ∀t ∈ {1, 2}, (8.18)

where the matrix Gi
t is invertible because det(Gi

t) = 2 + Z2
t+1 + 2Z1

t+1 > 0. The above analysis
suggests that the FBNE state trajectory for all Q1 > 0 and Q2 > 0 are uniquely determined. We
consider the time instant t = 2, and observe[

P 1
2

P 2
2

]
=

[
1 +Q1 Q1

Q2 2 +Q2

]−1[
Q1

Q2

]
=

1

2 + 2Q1 +Q2

[
2Q1

Q2

]
. (8.19)

We then have the closed-loop dynamics x3 = (1− P 1
2 − P 2

2 )x2 =
2

2+2Q1+Q2x2, which yields that
for two pairs of positive variables (Q1, Q2) and (Q̂1, Q̂2), a necessary condition for them to have
the same FBNE trajectory is that 2Q1 +Q2 = 2Q̂1 + Q̂2. We have Z1

2 = Q1 + Q1+(2Q1)2

(2+2Q1+Q2)2
, Z2

2 =

Q2+ Q2+2(Q2)2

(2+2Q1+Q2)2
. Similarly, for the time instant t = 1, we have x2 = (1−P 1

1−P 2
1 )x1 =

2
2+2Z1

2+Z2
2
x1.

A necessary condition for (Q̂1, Q̂2) to have the same FBNE state trajectory as (Q1, Q2) is that the
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following 2 equations are satisfied,

2Q1 +Q2 = 2Q̂1 + Q̂2

2
(
Q1 +

Q1 + (2Q1)2

(2 + 2Q1 +Q2)2
)
+Q2 +

Q2 + 2(Q2)2

(2 + 2Q1 +Q2)2

= 2
(
Q̂1 +

Q̂1 + (2Q̂1)2

(2 + 2Q̂1 + Q̂2)2

)
+ Q̂2 +

Q̂2 + 2(Q̂2)2

(2 + 2Q̂1 + Q̂2)2
.

(8.20)

We substitute Q1 = 1, Q2 = 1 and Q̂2 = 3− 2Q̂1 into the second row of (8.20), which is reduced
to a 2-degree polynomial of Q̂2. By the fundamental theorem of algebra [46], there exist at most 2
solutions for Q̂2. The two pairs of (Q̂1, Q̂2) satisfying (8.20) are (1, 1) and (1

2
, 2). The two global

minima are isolated. Since the dimension of the state xt is 1, for all initial states x1 ∈ R, the FBNE
state trajectories under the costs specified by the two pairs cost parameters (1, 1) and (1

2
, 2) coincide

with each other.
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Chapter 9

Beyond Alignment: Exploiting Information
Asymmetry in Multi-Agent Coordination

In this chapter, we investigate the possibility of strategically influencing agents with incomplete
information and shaping their beliefs for enhanced overall multi-agent coordination task perform-
ance. This chapter is adapted from the work [183], co-authored with Anand Siththaranjan, Somayeh
Sojoudi, Claire J. Tomlin, and Andrea Bajcsy.

9.1 Background
General-sum dynamic games—wherein agents may have competing (but not opposing) objectives—
are a powerful mathematical framework that can model a range of multi-agent behaviors, such as
autonomous vehicle coordination [274] and human-robot interaction [225]. When these models
are put into practice, an outstanding challenge is accounting for the fact that all agents’ objectives
(i.e., intents) may not be known a priori. For example, when a car is merging onto the highway,
the highway drivers typically pay attention to see if the new car is aggressively merging in front of
them, or passively yielding to them.

Prior game-theoretic planners predominantly handle intent uncertainty from the perspective
of the agents that are uncertain about the behavior of another agent. We call these the uncertain
agents. These works propose that the uncertain agent plays the game under point estimates of the
other agent’s intents [274, 212] or plan in expectation under the average of all opponent strategies
parameterized by their intents (e.g., aggressive and passive merging driver) [166, 171]. Other works
focus on how the uncertain agent can take information-gathering actions to probe at the opponent’s
intent [267, 136, 327], thus improving the long-term performance. However, both of these models
miss out on the fact that the other agent, here called the certain agent, can also demonstrate their
intent to the uncertain agent. For example, the merging driver may speed up more aggressively
when entering the highway, conveying its intent in a more exaggerated way to the highway vehicles
behind. The key here is acknowledging that the agent with certainty can plan to influence the belief
of the uncertain agents through its own actions.
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In this chapter, we study strategic intent demonstration in dynamic games, where a certain agent
interacts with multiple uncertain agents. Our core idea is to model the certain agent as planning
over both the evolution of the joint physical state and the dynamics of the uncertain agents’ beliefs.
With this, we can design objectives enabling the certain agent to trade off between demonstrating
its intent (i.e., aligning the uncertain agents’ beliefs with its true intent) and pursuing its own task
performance, while the uncertain agents respond through belief updates and the rational physical
actions.

Our primary contribution is a scalable continuous state-action algorithm for solving nonlinear
intent demonstration games via iterative linear-quadratic approximations. Our algorithm consists of
two sub-optimizations: first solving for all agents’ game-theoretic feedback policies parameterized
by any intent, and then solving the certain agent’s optimization over the joint physical and estimate
dynamics. We theoretically characterize the convergence of the uncertain agents’ beliefs and the
certain agent’s ability to balance intent demonstration with task performance. We also evaluate
our method in a suite of multi-agent settings such as decentralized bi-manual robot manipulation,
three-vehicle platooning, and shared control. We find that when agents can strategically demonstrate
their (dynamically changing) intents to others, they can achieve superior task performance and
coordination.

9.2 Related Works
Efficient Solutions to General-Sum Dynamic Games. Even without intent uncertainty, solving
general-sum dynamic games over continuous state and action spaces is challenging. Most of
these games have no analytic solution, and classical dynamic programming approach for finding
Nash equilibria of these games suffers from the “curse of dimensionality” [255]. However, under
linear dynamics and quadratic costs, there exist efficient numerical solutions for solving these
linear-quadratic (LQ) games [24]. Recent works propose to solve nonlinear games by iteratively
approximating them via LQ games [104, 248]. In this work, we leverage these fast and approximate
iterative LQ game solvers as a submodule in our intent demonstration algorithm.

Incomplete Information Games: From Theory to Algorithms. Prior dynamic programming solu-
tions to incomplete information games [123, 241, 299, 141, 268] do not scale to high-dimensional
nonlinear games with continuous state, action and intent spaces. Thus, recent works focus on scal-
able approximations. One overarching approximation is assuming that some agents have complete
information and others do inference. These approaches model the uncertain agents as planning in ex-
pectation [275, 166], planning with the most likely estimate and recovering a complete-information
game [171, 47], doing intent inference from an offline dataset [251, 180, 212], planning multiple
contingencies based on discrete intent hypotheses [249], and modeling incentives for uncertain
agents to take information-gathering actions [267, 136]. While prior works focus on how uncertain
agents should tractably plan under their beliefs, we focus on how the certain agent can demonstrate
their intent by exploiting the learning dynamics of other agents.

Intent Demonstration in Multi-Agent Interactions. Prior works on intent demonstration, such
as legibility in robot motion planning around humans [76], typically model uncertain agents as
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passive observers. However, in scenarios like multi-agent highway driving [313] or collaborative
manipulation [200], all agents actively interact while some simultaneously learn the missing
information of the games. Unlike previous multi-agent intent demonstration frameworks [208,
26], our model explicitly accounts for rational feedback from uncertain agents within general-sum
dynamic games. Moreover, rather than simply aligning uncertain agents’ beliefs with the certain
agent’s true intent, our approach allows the certain agent to strategically shape these beliefs, thereby
guiding uncertain agents’ actions to enhance overall task performance beyond conventional belief-
alignment methods [76, 171].

9.3 Background: General-sum Games and Nash Equilibrium
In this section, we present the necessary background on general-sum dynamic games. For narrative
simplicity, we will use the terms “players” and “agents” interchangeably.

Notation. We consider general-sum games played over the finite time horizon T . We consider N
players in the game, each of whose control action is denoted by uit ∈ Rm for i ∈ {1, 2, . . . , N}. Let
the set of times {0, 1, . . . , T} be denoted by T and the set of player indicies {1, 2, . . . , N} be denoted
by N. We denote xt ∈ Rn to be the joint physical states of all players (e.g., positions, velocities)
which evolves via the deterministic discrete-time dynamics, xt+1 = ft(xt, u

1
t , . . . , u

N
t ) ∀t ∈ T,

where ft(·) : Rn ×Rm × · · · ×Rm → Rn is assumed to be a differentiable function. For notational
convenience, we denote the vector of all N agents’ actions at time t to be ut := [u1t , . . . , u

N
t ].

Player Objectives. Let each player i ∈ N seek to minimize their own cost function, cit(xt, ut).
Note that in general this cost function depends on both the joint physical state of all players and
also the actions of all players. It is precisely this coupling that induces a dynamic game between
all players. The Nash equilibrium defines a scenario wherein no player wants to deviate from
their current state-action profile under their respective cost functions. Specifically, in our work, we
consider feedback Nash equilibrium (FNE) [24], wherein each player i ∈ N solves for a policy
πi
t(xt) : Rn → Rm which gets access to the current joint physical state, xt, at any time, and outputs

an action. When the cost functions for all agents were assumed to be known a priori, such games
are called complete information games. However, when players have uncertainty over other players’
objectives, these are incomplete information games, which is what we study here.

9.4 Problem Formulation: Intent Demonstration in
General-Sum Dynamic Games

In this chapter, we study the problem of intent demonstration—wherein one agent can express their
intent to uncertain agents—in general-sum game-theoretic interactions. Similar to prior work [47,
171], we consider incomplete information asymmetry between the players: one player (e.g., player
1) has complete information, i.e., they know the cost functions of all players, but players 2 through
N have incomplete information about player 1’s cost function. Moreover, we assume that each
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agent is aware of its status as either certain or uncertain, and that this information is shared among
all agents. For example, from our introductory example, the driver merging in from an on-ramp has
certainty over their own driving style, but all other road agents on the highway do not. However,
players 2 through N have the ability to estimate or learn about player 1’s cost function during
game-theoretic interaction. This problem cannot be reformulated as another complete information
dynamic game with deterministic dynamics because players 2 through N are not aware of player
1’s cost function and there can be an infinite number of possible cost functions for player 1. We
formalize these ideas below.

Certain Player: Cost Parameterization. Without loss of generality, let player 1 be the agent with
complete information of the game, including the cost functions of other players. We model player
1’s task-centric cost function, c1t (xt, ut; θ

∗), as parameterized by a low-dimensional parameter,
θ∗ ∈ Θ, which could in theory be discrete (e.g., aggressive or passive driving style) or continuous
(e.g., weights on a linear feature basis).

Uncertain Players: Estimation and Cost Functions. All agents, except for player 1, are uncertain
about player 1’s cost function parameter. They maintain estimates of this parameter via θ̂, which in
general can be a full Bayesian belief or a point estimate. All uncertain agents possess the ability
to learn, based on the joint physical states (xt) and the action of player 1 (u1t ) observed during
interaction. Mathematically, for any uncertain player j ∈ {2, 3 . . . , N} and their associated estimate
θ̂jt at time t, let θ̂jt+1 = gt(θ̂

j
t , xt, u

1
t ) be the updated estimate via update rule gt. Ultimately, each

uncertain player aims to minimize their own cost function cjt(xt, ut).

Intent Demonstration Formulation. We can now formulate the intent demonstration problem in
general-sum games. One of our core ideas is to augment player 1’s state space with the estimates of
all uncertain agent’s beliefs. Let the vector of all uncertain agent’s current estimates be denoted by
θ̂t := [θ̂2t , . . . , θ̂

N
t ]. We model the certain agent’s cost as a combination of their task-centric cost,

c1t (xt, ut; θ
∗), (e.g., for an autonomous car this could be lane-keeping and smoothness of motion),

and the “error” between the uncertain agent’s estimates and the true intent, cdemo(θ̂t, θ
∗), (e.g.,

expressing that they are aggressive or in a rush):

c̄1t (xt, θ̂t, ut; θ
∗) := ρ1 · c1t (xt, ut; θ∗) + ρ2 · cdemo(θ̂t, θ

∗),

where ρ1, ρ2 ≥ 0 are hyper-parameters. Intuitively, this enables player 1 to synthesize a range
of behaviors, from prioritizing task-cost and only influencing the uncertain agent’s beliefs when
beneficial for minimizing task cost (i.e., ρ1 > 0, ρ2 ≡ 0), to encouraging player 1 to actively express
their intent (i.e., ρ1 ≡ 0, ρ2 > 0). Ultimately, player 1’s intent demonstration problem optimizes
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Figure 9.1: Intent Demonstration Problem in General-Sum Games. The certain player A optimizes uA
t =

π̄A
t (xt, θ̂t; θ

∗), which trades off its own task cost and demonstrating their intent. The uncertain player B engages with
player A through rational actions uB

t = πB
t (xt; θ̂t) and updates their estimate θ̂t of player A’s intent θ∗ by observing

A’s actions. This enables player A to choose to influence player B’s estimate.

their augmented cost function subject to several key constraints:

min
{u1

t }Tt=0

T∑
t=0

c̄1t (xt, θ̂t, ut; θ
∗) (9.1a)

s.t. xt+1 = ft(xt, ut),∀t ∈ T (9.1b)

θ̂jt+1 = gt(θ̂
j
t , xt, u

1
t ),∀j ∈ N \ {1},∀t ∈ T (9.1c)

ujt = πj
t (xt; θ̂

j
t ),∀j ∈ N \ {1},∀t ∈ T (9.1d)

x0 = xinit, θ̂0 = θ̂init. (9.1e)

Here, Equations (9.1b) and (9.1c) constrain the solution to abide by the physical dynamics of
the joint system and ensure that the estimates of the uncertain players follow their update rules.
Given any player’s current estimate θ̂it, Equation (9.1d) models the uncertain players as rationally
responding under their current FNE strategy1 πi

t(xt; θ̂
i
t), assuming that all agents also play under

the player i’s current intent estimate, θ̂it. Note that this is simply a virtual game model in the mind
of each uncertain player (see purple dashed box in Figure 9.1). In reality, player 1 can behave
differently than the current estimate θ̂it; however, this is not a problem for player 2 since they
will update their intent estimate at the next timestep. Finally, similar to prior first-order belief
assumptions [275], in Equation (9.1e) we assume that the initial estimates, θ̂j0, of each uncertain
player j ∈ {2, . . . , N} are common knowledge. An illustrative diagram of our interaction model
between two players is visualized in Figure 9.1.

1We assume that there exists a unique FNE. When multiple FNEs exist, we can align the FNE strategies of players
by taking the technique in [250].
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9.5 Theoretical and Algorithmic Results
In this section, we investigate both the theoretical and algorithmic properties of the proposed intent
demonstration formulation, involving a certain player (player 1) and uncertain players (players 2
to N). We begin by analyzing linear-quadratic games, for which we establish rigorous theoretical
guarantees concerning the efficiency of intent teaching. Subsequently, we extend our framework
algorithmically to address intent demonstration problems within multi-player nonlinear games, such
as those incorporating nonlinear Bayesian estimation rules.

Case 1: LQ Games with Linear Estimation Dynamics

LQ Setup. We consider settings where player 1’s true intent parameter is a continuous goal
parameter (i.e., part of their cost). Each player j ∈ {2, . . . , N} maintains a point estimate θ̂jt of
θ∗. Let the joint physical dynamics in optimization problem (9.1) be a time-varying linear system,
ft := Atxt +

∑N
i=1B

i
tu

i
t, t ∈ T, with At ∈ Rn×n and Bi

t ∈ Rn×m. Let player 1’s task and
intent-demonstration costs be quadratic in physical state and control: c1t (xt, ut; θ

∗) := x⊤t Q
1
txt +

u1⊤t R1
tu

1
t + x⊤t θ

∗ and cdemo(θ̂t, θ
∗) :=

∑N
j=2 ∥θ̂

j
t − θ∗∥22. Similarly, for each i ∈ {1, . . . , N}, let

player i’s quadratic cost be cit(xt, ut) := x⊤t Q
i
txt + ui⊤t R

i
tu

i
t where Qi

t ∈ Rn×n and Ri
t ∈ Rm×m are

positive semi-definite matrices.

Uncertain Player’s Feedback Policy. Given their current point estimate, θ̂jt , the uncertain player
j rationally responds under their current FNE policy πj

t (xt; θ̂
j
t ), assuming a complete information

game where player 1 also acts rationally under player j’s estimate, u1t = π1
t (xt; θ̂

j
t ). Importantly,

since we are in the LQ setting, all players’ complete information game FNE policies are linear
feedback policies [24].

Linear Estimation Dynamics. Finally, let the estimate dynamics of an uncertain player j ∈
{2 . . . , N} to be linear in state and estimate. Specifically, we consider a constant step size α > 0,
and we study a gradient descent-based maximum likelihood estimation (MLE) update rule [199],
gt(θ̂

j
t , xt, u

1
t ), as

gt := θ̂jt − α∇θ̂jt
∥u1t − π1

t (xt; θ̂
j
t )∥22. (9.2)

Player j updates their estimate based on the difference between the action they expected player 1 to
take under their estimate, π1

t (xt; θ̂
j
t ), and player 1’s observed action, u1t .

Bellman Equation and Algorithm. When an uncertain player learns via a linear MLE update rule,
intent demonstration is an LQR problem in the joint physical state xt, the estimate θ̂t, and the true
cost parameter θ∗. The Bellman equation for player 1’s intent demonstration problem specified in
Equation (9.1) is defined as:

V 1
t (xt, θ̂t; θ

∗) =min
u1
t

c̄1t (xt, θ̂t, u
1
t , {π

j
t (xt; θ̂

j
t )}Nj=2; θ

∗)

+ V 1
t+1(xt+1, θ̂t+1; θ

∗).
(9.3)



CHAPTER 9. BEYOND ALIGNMENT: EXPLOITING INFORMATION ASYMMETRY IN
MULTI-AGENT COORDINATION 160

Algorithm 7: Strategic Intent Demonstration Games

Require: dynamics f , player 1’s task cost c1t (x, u; θ
∗) and demonstration cost cdemo(θ̂, θ∗),

ρ1, ρ2 ≥ 0, player j’s cost cjt(x, u), initial estimate θ̂j0, for each j ∈ {2, . . . , N}, and
estimation dynamics g
// Solve complete information game for all potential intents

1: {πi
t(x; θ)}

N,T
i=1,t=0 ← FeedbackGame({cit}Ni=1, f)

2: Π = {πi
t(x; θ)}

N,T
i=1,t=0

// Compute intent demonstration policy

3: {π̄1
t (x, θ̂; θ

∗)}Tt=0 ← OptimalControl(θ̂0, c̄1t , f, g)
4: Π← {π̄1

t (x, θ̂; θ
∗)}Tt=0 ∪ Π

5: return Π

With this Bellman equation in hand, we can now pose our intent demonstration Algorithm 7
and leverage a suite of off-the-shelf numerical techniques for each component of our algorithm.
Specifically, in Algorithm 7, we first solve a complete information linear-quadratic game for all
players under each possible intent parameter θ ∈ Θ. Importantly, here we can obtain feedback
policies, {πi

t}
N,T
i=1,t=0, for all agents with efficient (polynomial time) off-the-shelf algorithms. These

feedback policies are re-used by all players. Player j ∈ {2, . . . , N} uses π1
t (xt; θ̂

j
t ) to predict player

1’s actions under their current estimate, θ̂jt , and then update the estimate. Player 1 plans over the
estimation dynamics of players j ∈ {2, . . . , N} when it solves the LQR problem leveraging the
value function specified in Equation (9.3). Once again, this yields a feedback control law for player
1 in the joint physical and estimate state space, π̄1

t (xt, θ̂t; θ
∗), and enjoys the benefits of off-the-shelf

LQR solvers. We note that the active intent demonstration policy computed by Algorithm 7 is
guaranteed to converge to the optimal one when the associated LQ games and the LQR problems
are well-defined and admit valid solutions.

Theoretical Results. Finally, in the LQ setting, we prove a sufficient condition for the existence of
an intent demonstration policy for player 1 which guarantees to drive player j’s estimate to the true
parameter exponentially fast, for all j ∈ {2, . . . , N}. Our proof operates under player 1’s cost, c̄1t ,
with ρ1 = 0 and ρ2 > 0, meaning that player 1 only considers demonstrating their intent.

Proposition 11 (Effective Intent Demonstration). Consider a two-player LQ game. Suppose that
the linear policy π1

t (xt; θ) takes the form π1
t (xt; θ) = K1

t,xxt +K1
t,θθ, ∀t ∈ T and K1⊤

t,θK
1
t,θ > 0.

Moreover, let player j ∈ {2, . . . , N} learn via linear estimate dynamics θ̂jt+1 = gt(θ̂
j
t , xt, u

1
t ).

Pick a step size α ∈ (0, 1) such that the largest singular value of (I − αK1⊤
t,θK

1
t,θ) is less than

1, ∀t ≤ T . Then, there exists a linear intent demonstration policy u1t = π̄1
t (xt, θ̂t; θ

∗) such that
∥θ̂jt+1 − θ∗∥2 < c∥θ̂jt − θ∗∥2, ∀t ∈ T, ∀j ∈ {2, . . . , N}, where 0 < c < 1 is a constant dependent
on π̄1

t .

Proof. The proof can be found in the Appendix.
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Proposition 11 is a feasibility result, and the strong assumption on the form of the policy π1
t is

not necessary for the existence of active intent demonstration policies. Moreover, always actively
demonstrating the intent to other uncertain agents could be excessive and may impair the certain
agent’s task performance. We show in the following result that the active teaching policy can
trade-off between the certain agent’s task completion and intent demonstration such that it can
achieve a task performance even higher than in the complete information game, when setting ρ1 > 0
and ρ2 = 0.

Proposition 12 (Strategic Intent Demonstration). Let ρ1 = 1 and ρ2 = 0. Suppose that gt is a linear
estimate dynamics and each player’s cost is convex with respect to the state xt and the control ut.
Let {ũit}

N,T
i=1,t=0 be the controls of all players corresponding to the Nash equilibrium in the complete

information game, and denote by {x̃t}T+1
t=0 the resulted Nash equilibrium state trajectory. Moreover,

suppose that there exists a stage t < T such that the Jacobian of the cost-to-go function c̃1t:T , defined
in (9.4), with respect to the control ũ1t:T := [ũ1t , ũ

1
t+1, . . . , ũ

1
T ] is nonzero,

c̃1t:T (x̃t, u
1
t:T ) :=

T∑
τ=t

c1τ (xτ , u
1
τ , {πj

τ (xτ ; θ̂
j
τ )}Nj=2; θ

∗)

s.t. xτ+1 = fτ (xτ , u
1
τ , {πj

τ (xτ ; θ̂
j
τ )}Nj=2),

θ̂jτ+1 = gτ (θ̂
j
τ , xτ , u

1
τ ), j ∈ N \ {1}

τ ∈ [t, T ], xt = x̃t, θ̂
j
t = θ∗, j ∈ N \ {1}

(9.4)

then, the optimal cost of player 1 in (9.1) is strictly lower than its optimal cost in the complete
information game.

Proof. The proof can be found in the Appendix.

Proposition 12 suggests that the ability of influencing the uncertain agent’s belief enables the
certain agent to achieve a higher task performance. In practice, we can replace the estimation
dynamics in (9.2) with other types of estimation dynamics, e.g., Bayesian inference or general
maximum likelihood estimation. We will explore this in the next subsection.

Case 2: Nonlinear Games with Nonlinear Estimation Dynamics
With small modifications, we can adapt Algorithm 7 to non-quadratic costs and for nonlinear
dynamics. This is particularly important as many estimation update rules, such as the Bayesian
belief update, are nonlinear in the estimate.

The algorithm takes inspiration from iterative LQ games (iLQGames) and iterative LQR
(iLQR). Similar to the first phase in Algorithm 7, we first approximately solve the complete-
information FNE equilibrium policies by calling an iLQGames solver [104]. At each iteration,
the solver linearizes the dynamics and approximates the costs quadratically around the current
trajectory–a critical procedure of iLQgames that affects its convergence [104]. Subsequently, it
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computes an optimal control for this local LQ game, updates the trajectory, and repeats these steps
until convergence.

Similar to Section 9.5, after we compute the complete information iLQGames policies {πi
t(xt;

θ)}Ni=1, we use these policies, once again, in both the uncertain player’s estimation dynamics and
for the certain player’s intent demonstration. For example, if player j ∈ {2, . . . , N} maintains
a Gaussian belief θ̂jt := bjt(θ) = N (µj

t ,Σ
j
t) over the intent parameter and learns via a nonlinear

belief update rule like Bayesian inference, they use π1
t computed from iLQGames to construct

their (Gaussian) likelihood function and obtain the posterior:

bjt+1(θ) ∝ p(u1t |xt, θ) · b
j
t(θ) (9.5)

Assuming that the likelihood model p(u1t |xt, θ) follows a Gaussian distributionN (π1
t (xt; θ), I), and

the initial belief is also a Gaussian distribution N (µj
0,Σ

j
0), we can simplify the belief update by

substituting the policy π1
t (xt; θ) and obtain the update rule of the belief distribution parameters:

µj
t+1 =µ

j
t + Σj

t · ∇θπ
1⊤
t · (I +∇θπ

1
t · Σ

j
t · ∇θπ

1⊤
t )−1·

(u1t − π1
t (xt;µ

j
t))

Σj
t+1 =Σj

t − Σj
t · ∇θπ

1⊤
t · (I +∇θπ

1
t · Σ

j
t · ∇θπ

1⊤
t )−1·

∇θπ
1
t · Σ

j
t

To optimize cdemo(·, ·), the certain agent can, for example, minimize the error between the average
intent under the other agent’s belief, θ̃jt := Eθ∼bjt (θ)

[θ], and θ∗. From player 1’s perspective, instead
of solving an LQR problem as in Section 9.5, it solves an iLQR problem to obtain the intent
demonstration policy π̄1

t in the joint physical-estimate space.

Remark 16. We can enhance Algorithm 7 by integrating deep reinforcement learning to compute
policies for intent demonstration problems in general-sum nonlinear dynamic games. For instance,
multi-agent reinforcement learning [201] can be applied in step 1 of Algorithm 7 to compute
complete-information FNE policies, while deep reinforcement learning can be used in step 3 of
Algorithm 7 to derive a strategic intent demonstration policy.

9.6 Experiments
In this section, we evaluate our algorithm2 in four multi-agent scenarios shown in Figure 9.2 and
study the benefits of strategic intent demonstration over alternative game-theoretic interaction
models.

Bi-Manual Robot Manipulation. In the robosuite simulation environment [337], we consider a
bi-manual robot manipulation problem, where two robot arms must coordinate in a decentralized

2The source code and additional details of the experiments are available at https://github.com/jamesjingqili/Active-
Intent-Demonstration-in-Games.git.

https://github.com/jamesjingqili/Active-Intent-Demonstration-in-Games.git
https://github.com/jamesjingqili/Active-Intent-Demonstration-in-Games.git
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Bi-Manual Robot Manipulation

Certain Uncertain

Three-Vehicle PlatooningAssistive Lunar Lander

Furniture Moving

Uncertain

Certain

Uncertain

Uncertain

Certain

Certain

Uncertain

Figure 9.2: Environments. Four incomplete information general-sum games considered in this work.

way to pick up a pot (top left, Figure 9.2). The certain agent (red robot) wants to grab one of the
handles, but the uncertain agent (silver robot) does not know this. Let θ∗ ∈ R be the red robot’s
preferred y-goal location (right handle) and θ̂ ∈ R the silver robot’s point estimate of the red robot’s
desired goal position which evolves via the update rule in Equation (9.2). Let xt = [p1x,t, p

1
y,t,

p2x,t, p
2
y,t] be the joint physical state consisting of the (x, y)-positions of the i-th robot’s end-effector.

Players control linear velocity of their end-effector, uit = [vix,t, v
i
y,t], i ∈ {1, 2}, and the physical

system evolves via double integrator dynamics. The certain robot’s quadratic task-cost minimizes
distance to the target handle, avoids agent collisions, and minimizes velocity. The uncertain agent
has a similar objective but is incentivized to pick up the opposite side of the pot.

Assistive Lunar Lander. A lunar lander autopilot shares control with a human pilot. The human
pilot controls horizontal thrust and wants to land at their preferred destination on the x-axis (top
center Figure 9.2), θ∗ ∈ R, which is unknown to the autopilot. The autopilot controls both the
vertical and horizontal thrust, aiming to avoid crashing on the ground while conserving fuel. For the
convenience of analysis, we focus on its horizontal and vertical movements, excluding the rotation
dynamics, and model this interaction as a two-player linear-quadratic game. The autopilot maintains
a point estimate θ̂ ∈ R and learns via linear estimate update rule (e.g., as in Equation (9.2)).

Furniture Moving. A human and robot must move table to a known destination together. The
human’s task cost is parameterized by their desired furniture moving angle, θ∗, and they seek to
minimize their effort. The robot maintains a Bayesian belief θ̂ := b(θ) over the human’s preferred
orientation angle (bottom, Figure 9.2). The joint physical state is position and current table angle
xt = [pHt,x, p

H
t,y, p

R
t,x, p

R
t,y, θt] and players control their x and y velocity. The dynamics of the furniture

moving follows a simple kinematics model. The robot learns via a Bayesian belief update.

Three-Vehicle Platooning. A human driver guides two autonomous vehicles (AV) towards a target
lane, unknown to the autonomous vehicles. Each vehicle has a unicycle dynamics with a state
vector xit := [pit,x, p

i
t,y, ψ

i
t, v

i
t] and control inputs are acceleration ait and turning rate wi

t (12-D joint
state vector). Each AV optimizes 1) following the human driver’s lane, 2) maintaining a forward
orientation, 3) minimizing control effort and 4) avoiding collisions. Each AV has a separate Gaussian
belief over the human driver’s target lane, θ̂i := bi(θ), and updates via Bayesian estimation.
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Figure 9.3: Results: H1. Algorithm 1 enables the uncertain agent to learn fast (left) and generate behavior qualitatively
similar to complete information game when ratio = 100 (right).

Figure 9.4: Results: H2. The human pilot changes their target landing position θ∗ from 25 to 50 at time t = 20.
The strategic intent demonstration policy π̄1

t , computed without anticipating this change, efficiently conveys the
unforeseen dynamic intent, enabling the autopilot’s belief to converge faster than in the passive game, without the need
of recomputing π̄1

t .

Simulation Results
We compare our game-theoretic intent demonstration algorithm (Algorithm 1) with two other
models. One is a state-of-the-art incomplete information game solver [171] where uncertain agents
infer intent via a Kalman filter and the certain player acts under a FNE in a complete information
setting. We call this method passive game since any learning on the part of the uncertain agents
is not explicitly planned for by the certain agent. We also compare with a complete information
game model where all players have complete information about each others’ intent. We study four
hypotheses described in detail below.
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Figure 9.5: Results: H3. The regrets of the certain player (player 1) under the active teaching strategy are consistently
lower compared to those under the passive teaching strategy, across different ground truth intents of the certain player.
This empirically validates the claim in Proposition 12.

Figure 9.6: Results: H4. Even without explicit incentives to express intent, Algorithm 1 influences the uncertain
agent’s belief in a way that improves task cost over passive game (plot (b)). However, intent demonstration is strategic:
if the state is already sufficiently good, our method pauses its influence (top left, plot (a)) but still achieves better task
performance.

H1. Uncertain agents coordinating under Algorithm 1 reduce uncertainty faster than passive
game-theoretic models that do not account for agent learning.

Setup and Metrics. We focus on the Bi-Manual Robot Manipulation environment where the
uncertain agent maintains a point estimate. The uncertain silver robot initially believes that the
red robot wants to grab the center of the pot, θ̂0 = 0. We measure the convergence of θ̂t to θ∗

under passive game and Algorithm 1. For our method, we also vary the hyperparameters ρ1 and
ρ2, denoted by ratio = ρ2

ρ1
, to study how different weight ratios between belief alignment and task

performance affect the uncertain agents’ learning.
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Results. Figure 9.3 shows both quantitative and qualitative results. In complete information game,
when all agents know what part of the pot they want to grab, then they coordinate seamlessly (left
in Figure 9.3 (b)). However, under a passive game interaction model, the uncertain silver robot first
moves towards the center of the pot and then moves to the correct handle at the last minute. The left
plot in Figure 9.3 shows how with the passive game algorithm, the red robot doesn’t take advantage
of the silver agent’s learning dynamics and thus its behavior doesn’t enable fast learning. On the
other hand, even when Algorithm 1 has low weight on intent demonstration, the red robot still
actively influences the silver robot’s estimation dynamics, enabling faster convergence than passive
game. As more weight is put on intent demonstration, the red robot automatically exaggerates
its motion towards the right handle, and the planned response of the silver robot is a more direct
movement towards the complementary pot handle (right, Figure 9.3 (b)), supporting H1.
H2. The pre-computed intent demonstration feedback policy π̄1

t can efficiently convey the certain
player’s unforeseen changes in its intent without the need of recomputing π̄1

t .

Setup and Metrics. We focus on the Assistive Lunar Lander environment. We measure the belief
state and the physical state trajectories of the lunar lander under passive game and Algorithm 7. For
our method, we set ρ1 = 1 and ρ2 = 4, to ensure the task performance as well as belief alignment.

Results. Although the feedback policy π̄1
t is computed under the assumption that the certain

agent’s intent remains stationary, it can still effectively convey unforeseen changes in certain agent’s
intent during deployment. Figure 9.4 demonstrates that the autopilot’s belief rapidly converges
toward the initial target θ∗ = 25 during the interval t ∈ [0, 20], and then adjusts efficiently to
the updated human-preferred destination θ∗ = 50 when t ≥ 20. This highlights the robustness
of the feedback policy π̄1

t in realistic scenarios where task objectives shift unexpectedly during
deployment—situations not explicitly considered when computing π̄1

t , yet handled effectively due
to the feedback policy’s strong generalization to dynamically changing intents.
H3. The certain agent can improve its task performance by teaching agents with uncertainty.

Setup and Metrics. We focus on the Three-Vehicle Platooning environment. We measure
each player’s task regret by comparing the optimal state-action trajectory ξ∗ under the complete
information game with the executed state-action trajectory ξ under one of the incomplete information
models: Regreti(ξ, ξ∗) :=

∑T
t=0[c

i(xt, ut)− ci(x∗t , u∗t )]. Lower regret indicates better performance.
We set ρ1 = 1 and ρ2 = 0 to evaluate whether the policy π̄1

t can strategically reduce the certain
agent’s task cost when prioritizing task performance.

Results. Figure 9.5 shows the regret of each player (y-axis) under all possible true intents of the
certain player θ∗ (x-axis) in both environments. Across both environments, Algorithm 1 achieves
lower regret for the certain player 1 than the passive game approach. This indicates that the certain
agent can exploit the estimation dynamics of the other players to improve its task performance,
bringing the task regret down, supporting H3.
H4. When ρ2 ≡ 0, Algorithm 1 balances task performance and intent demonstration for the certain
agent.

Setup and Metrics. We evaluate our method in the Furniture Moving environment, focusing on
(1) the uncertain agent’s belief convergence and (2) the certain agent’s task cost. To test whether the
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certain agent can strategically influence belief without explicitly optimizing for intent demonstration,
we set the intent demonstration hyperparameter to ρ2 = 0, thereby prioritizing task performance.
We consider two true furniture angle preferences: θ∗ = 0.3 rad (∼ 17◦) and θ∗ = 1.1 rad (∼ 63◦).
The furniture’s initial angle is always set to θ0 = 0.6 rad (∼ 35◦), and the uncertain agent’s initial
belief is Gaussian, with mean 0.1 and variance 0.4.

Results. Even without explicit intent demonstration in the cost, Algorithm 1 enables the certain
agent to influence the uncertain agent’s belief to improve task cost compared to passive game
(Figure 9.6 (a) and (b)). While the real furniture angle is always moved towards θ∗ faster with
Algorithm 1 than with passive game (plot (c)), we notice that when θ∗ = 0.3, the uncertain player’s
belief converges slower with ours than with the baseline (top plot (a)). This arises as a function of
initial conditions. Since the initial furniture angle θ0 = 0.6 is quite close to the desired one θ∗ = 0.3,
the certain agent minimizes their effort by focusing on task completion rather than correcting the
uncertain agent’s belief. However, when the initial and desired angles are very different, then it is
worth the certain agent to correct the uncertain agent’s belief to improve overall task performance,
supporting H4.

9.7 Discussion

Conclusion. In this chapter, we studied intent demonstration in multi-agent general-sum games, a
problem commonly encountered in game-theoretic control applications such as autonomous driving,
multi-robot manipulation, shared control systems, and human-robot interactions. Theoretically,
we proved a sufficient condition for the convergence of an uncertain agent’s beliefs to the ground
truth certain agent’s intent. Additionally, we showed that the certain agent could achieve a higher
task performance by strategically demonstrating its intent to the uncertain agents. Algorithmically,
we proposed an efficient method to solve linear and nonlinear intent demonstration problems via
iterative linear-quadratic approximations. Our empirical results show that intent demonstration
accelerates the learning of uncertain agents, reduces task regret for players, and enables the certain
agent to balance task performance with intent expression.

Limitations and Future Work. One modeling limitation of our framework is the assumption
of a shared initial estimate. While this assumption may be reasonable based on the context (e.g.,
a strong prior on expected maneuvers at a four-way intersection in driving scenario), it remains
an assumption that could be relaxed in future work. Additionally, future work could relax the
assumption of knowing the estimate dynamics of uncertain agents. This can be achieved by having
the certain agent first infer the estimate dynamics of the uncertain agents and then compute its
optimal intent demonstration policies.

Appendix
Proof of Proposition 1: We approach the proof by showing that there exists a teaching policy under
which the belief θ̂jt , where j ∈ {2, . . . , N}, converges to the ground truth parameter exponentially
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fast. Substituting u1t = π1
t (xt; θ) into player j’s estimate dynamics, we have

θ̂jt+1 = θ̂jt − α∇θ̂jt
∥u1t − π1

t (xt; θ̂
j
t )∥22

= θ̂jt + αK1⊤
t,θK

1
t,θ(θ − θ̂

j
t ).

(9.6)

Subtracting θ from both sides, we have θ̂jt+1−θ = (I−αK1⊤
t,θK

1
t,θ)(θ̂

j
t−θ). Since the largest singular

value of (I−αK1⊤
t,θK

1
t,θ), ∀t ≤ T , denoted as c, is strict less than 1, we have ∥θ̂jt+1−θ∥2 ≤ c∥θ̂jt−θ∥2.

Thus, there exists an active teaching policy, defined as π̄1
t (xt, θ̂t; θ) := π1

t (xt; θ), that guarantees the
exponential convergence of θ̂jt towards θ∗. □

Proof of Proposition 2: First of all, we observe that {ũ1t}Tt=0 and its resulted state trajectory
{x̃t}T+1

t=0 is a feasible solution to (9.1). Thus, the optimal solution (9.1) leads to a cost value not
greater than player 1’s cost in complete information game. Moreover, when the Jacobian of c̃1t:T
with respect to ũ1t:T is nonzero, by convexity of the cost c1t [35, Section 4.2.3], for some ϵ > 0, there
exists a solution ǔ1t:T ∈ {u1t:T : ∥u1t:T − ũit:T∥2 ≤ ϵ} such that player 1’s control ǔ1t:T achieves a
lower task cost value c̃1t:T than under the control ũ1t:T . This completes the proof. □
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Chapter 10

Conclusion and Future Directions

This dissertation addresses key challenges in multi-agent autonomous systems by focusing on
three interconnected research areas: safe learning-based control, efficient computation for dynamic
game-theoretic decision-making, and methods that alleviate information asymmetry. By leveraging
advanced methodologies from reachability analysis, differentiable optimization, and deep reinforce-
ment learning (RL), we have developed solutions enabling safe, efficient, and intelligent interactions
among decentralized autonomous agents operating in uncertain, dynamic environments.

In addressing multi-agent safety, we introduced a new reachability learning framework that
integrates deep reinforcement learning with formal verification techniques. This framework provides
certifiable safety guarantees, even under bounded disturbances, and was empirically validated
through real-world drone racing experiments, demonstrating its practical effectiveness. Additionally,
we extended classical optimization methods, particularly the augmented Lagrangian approach, into
reinforcement learning contexts. These advancements effectively manage discrete action spaces
and non-differentiable objectives and were further adapted to multi-agent reinforcement learning
scenarios relevant to air mobility applications, highlighting their robustness and practical relevance.

The second chapter explored efficient computational methods for dynamic game-theoretic
decision-making. Recognizing the complexity inherent in computing equilibrium solutions such
as Nash and Stackelberg equilibria, we developed new computational frameworks specifically
designed for dynamic feedback Stackelberg games. By formulating nested KKT conditions, we
ensured recursive feasibility and consistent equilibrium solutions across sequential decision stages.
Additionally, addressing the scalability limitations prevalent in large-scale networked systems
such as power grids, air traffic management, and transportation networks, we exploited structural
properties, such as the existence of a potential function in potential game frameworks, to develop
scalable policy gradient algorithms. These contributions enhance computational efficiency, enabling
practical deployment in large-scale multi-agent systems.

The third theme focused on the critical issue of information asymmetry in decentralized multi-
agent decision-making processes. Traditional inference methodologies typically focus on static
scenarios and fail to capture the complexities of dynamic, feedback-driven interactions. We
advanced this area by developing robust methods capable of accurately inferring agent objectives
from dynamically observed interaction data. These methods distinguish immediate strategic actions
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from forward-looking strategic considerations. Further extending these inference capabilities, we
explored strategic intent demonstrations, empowering agents to proactively influence other agents’
belief updates and subsequent decisions. Thus, we demonstrated how leveraging information
asymmetry strategically could significantly enhance overall system performance.

Future Research Directions
Looking ahead, the next generation of multi-agent autonomy must support strategic decision-
making that approaches human-level reasoning. As multi-agent systems become increasingly
central to robotics, autonomous infrastructure, and large-scale societal applications, the need for
agents to act safely, strategically, and independently under uncertainty is more urgent than ever.
Traditional centralized control paradigms face scalability and robustness limitations, motivating the
development of decentralized, game-theoretic approaches that enable agents to reason locally and
coordinate effectively at scale.

To move beyond global planners and full observability, agents must be equipped to reason
about their own objectives, anticipate others’ behavior, and adapt under uncertainty. This shift
enables scalable deployment in real-world settings such as collaborative robotics, drone swarms,
mixed-autonomy traffic, and smart grids. It also raises a central scientific question:

What information structures, learning mechanisms, and interaction protocols are
necessary to ensure safe, efficient, and strategic decision-making in decentralized
multi-agent systems, especially when centralized oversight is infeasible or undesirable?

The following research directions build toward answering this question by integrating ideas
from control, game theory, and learning into a cohesive roadmap for robust and socially intelligent
autonomy.

10.1 Intent Inferability and Active Social Reasoning
A core enabler of strategic autonomy is understanding the inferability of intent: under what
conditions can agents reliably infer others’ goals, strategies, or preferences from observed behavior?
Future research should formalize observability conditions in dynamic games, characterize the
identifiability of latent objectives, and develop uncertainty-aware inference metrics. Beyond passive
observation, agents may also engage in active intent probing—deliberately perturbing their behavior
to elicit informative responses from others, mirroring human-like social learning.

Integrating inverse game-theoretic inference with real-time planning opens the door to intent-
aware policies that proactively adapt in the presence of others. These ideas are particularly relevant
in domains such as socially compliant driving, ad hoc human-agent collaboration, and multi-robot
coordination in unknown or adversarial environments.
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10.2 Theory of Mind and Hierarchical Belief Modeling
Building on intent inference, the next step is incorporating a theory of mind—the recursive capacity
to reason about what others believe, know, or intend. Real-world agents must operate under deep
informational asymmetries, far beyond the near-complete information typically assumed in classical
models. Level-2 and level-K reasoning in reinforcement learning provide promising frameworks for
capturing this recursive structure.

An exciting future direction is the development of Bayesian games with latent beliefs, where
agents reason not only about others’ goals but also about their understanding of the environment and
the game structure itself—such as hidden constraints, reward functions, or roles. These approaches
are especially critical for high-stakes applications like disaster response, competitive planning, or
multi-agent negotiation under limited communication.

10.3 Reasoning under Partial Observability and Epistemic
Uncertainty

Autonomous agents must often operate with incomplete knowledge of system states, dynamics,
or other agents’ behaviors. Strategic decision-making under such epistemic uncertainty remains a
fundamental challenge. One promising direction is the study of value-of-information games, where
agents actively balance task objectives with the need to acquire informative observations.

Extending reachability and viability analysis to multi-agent systems under partial observability
can provide formal safety guarantees even with limited information. Meanwhile, cooperative
exploration and distributed sensing strategies enable agents to reduce uncertainty collectively,
supporting applications such as decentralized monitoring, collaborative mapping, and search-and-
rescue missions.

10.4 Safe Coordination in Dynamic, Heterogeneous
Environments

In realistic deployments, multi-agent systems must withstand dynamic environments with com-
munication dropouts, unexpected agent failures, or conflicting instructions. This calls for robust
coordination protocols that adapt to changes while preserving global safety and performance.

Potential research directions include contract-based planning, where agents make local commit-
ments with fallback guarantees, and emergent social institutions, where coordination norms and
roles evolve through repeated decentralized interactions. Such frameworks are critical for long-term
collaboration in applications like warehouse automation, household robotics, and human-robot
teaming.
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10.5 Safe Decentralized Learning under Incomplete
Information

To realize scalable autonomy, agents must learn and adapt in real time under structural, informational,
and safety constraints. Extending reachability analysis and game-theoretic equilibria into multi-
agent reinforcement learning is a promising path forward. These tools allow agents to optimize
constrained objectives in a distributed manner while respecting local safety and coordination
requirements.

Future research should explore how to incorporate communication topology, temporal depend-
encies, and delayed feedback into decentralized learning algorithms. This may enable multi-agent
policy inference, where agents estimate others’ gradients or value functions from partial observa-
tions. Additionally, curriculum learning and hierarchical task decomposition can accelerate training
and improve generalization in complex domains like urban air mobility, distributed energy control,
and collaborative manipulation.

10.6 Toward Socially Intelligent Multi-Agent Systems
The research directions described above aim to contribute toward the development of autonomous
systems that are not only capable and efficient, but also socially and strategically aware. These
systems should be able to reason about fairness, shared goals, and social norms; collaborate
effectively with humans; and make decisions transparently in the presence of uncertainty and
disagreement. By integrating tools from control theory, game theory, and reinforcement learning,
this work seeks to explore how safety, strategic reasoning, and belief modeling can jointly support
more robust and intelligent multi-agent decision-making.

While the results presented in this dissertation offer several contributions, many challenges
remain. Progress toward truly socially intelligent systems will likely require insights from multiple
disciplines, including cognitive science, communication, and economics. As autonomous agents
become more present in human environments, important questions arise: How should agents balance
individual goals with collective outcomes? How should they communicate uncertainty and intent?
And how can we ensure their decisions are interpretable, fair, and aligned with human values?

This dissertation represents a small step in addressing these broader challenges. The approaches
developed across safety assurance, intent inference, equilibrium computation, and decentralized
learning are intended as foundational tools that others may build upon. It is my hope that this work
will contribute to the continued advancement of reliable and responsible multi-agent autonomy in
domains such as robotics, transportation, logistics, and human-robot collaboration.
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