
Hybrid Baud-Rate CDR and Clock Distribution Techniques
for High-Speed 100Gbps Wireline Receiver

Yi-Hsuan Shih

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-165
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-165.html

August 15, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Hybrid Baud-Rate CDR and Clock Distribution Techniques for High-Speed 100Gbps
Wireline Receiver

By

Yi-Hsuan Shih

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Vladimir Stojanovic, Co-Chair
Professor Borivoje Nikolic, Co-Chair

Professor Martin White

Summer 2025

Hybrid Baud-Rate CDR and Clock Distribution Techniques for High-Speed 100Gbps
Wireline Receiver

Copyright 2025
by

Yi-Hsuan Shih

1

Abstract

Hybrid Baud-Rate CDR and Clock Distribution Techniques for High-Speed 100Gbps
Wireline Receiver

by

Yi-Hsuan Shih

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Vladimir Stojanovic, Co-Chair

Professor Borivoje Nikolic, Co-Chair

With increasing demands in AI and MIMO systems, wireline link speeds have surged beyond
100Gbps, intensifying inter-symbol interference (ISI), and challenging traditional feedback-
based equalization techniques like decision feedback equalizers (DFE) due to timing con-
straints. To overcome feedback loop limitations, feedforward MLSE was proposed, avoiding
complex feedback but still introducing significant computational complexity.

This thesis presents a new hybrid clock data recovery algorithm (CDR) that leverages the
complexity of the feedforward MLSE to improve the CDR locking performance and ro-
bustness to channel variations. Our approach combines the Mueller-Muller algorithm with a
data-level maximization algorithm, achieving baud-rate CDR locking with reduced hardware
overhead and steady-state stability without additional dithering.

An evaluation framework is developed to compare various CDR algorithms (Mueller-Muller,
dLev maximization, and hybrid CDR) in terms of locking position and steady-state jitter
by Markov chain analysis. The results indicate that hybrid CDR outperforms in locking
accuracy and jitter resilience.

Our hybrid CDR, implemented in 16nm technology node, includes an innovative octature
generator with an injection-locked oscillator for clock distribution. Verification using a digital
SystemVerilog environment improves simulation accuracy and reduces overall verification
time for the receiver system.

i

To my family

ii

Contents

Contents ii

List of Figures iv

List of Tables viii

1 Introduction 1
1.1 Background . 1
1.2 Thesis Organization . 10

2 Clock Generation and Distribution for 100+ Gb/s Transmitter 12
2.1 Clock Path Overview . 12
2.2 Octa-Rate Clock Distribution . 16
2.3 1/16-Rate Clock Distribution . 35

3 MLSE and CDR Overview 42
3.1 Inter-symbol Interference (ISI) and Equalization 42
3.2 CDR Overview . 50
3.3 Proposed Baud-rate Hybrid CDR algorithm 56

4 Statistical Analysis of the CDR Algorithm 63
4.1 Overview . 63
4.2 Mueller-Muller 𝑚𝑙𝑠𝑒𝑖𝑛 update Analysis . 66
4.3 Data level (dLev) Maximization Analysis . 70
4.4 Hybrid Algorithm Analysis . 71
4.5 Performance Matrices . 87
4.6 Summary . 91

5 Design of 100Gb/s 1-Tap MLSE Receiver with Baud-rate CDR 92
5.1 Overview . 92
5.2 Datapath . 93
5.3 Clock path . 105

iii

6 Integration and Verification of 100 Gb/s 1-Tap MLSE Receiver with
Baud-rate CDR 110
6.1 Integration . 110
6.2 Verification . 112
6.3 Testing . 117
6.4 Performance . 124

7 Conclusions 126
7.1 Thesis Summary . 126
7.2 Future Works . 127

Bibliography 128

A Single Variable Markov Chain Analysis for Hybrid Algorithm 132
A.1 Transition Probability Derivation . 132
A.2 3-state Markov Chain Transition Matrix . 133

B Driver Model and Channel Fitting 137

iv

List of Figures

1.1 Per-lane data rate vs. year for a variety of common I/O standards[34]. 2
1.2 Wireline data-rate trend[34]. 3
1.3 Die-to-die communication [25]. 3
1.4 Monolithic die vs. chiplet [25]. 4
1.5 Examples of chiplet design . 4
1.6 High-speed link block diagram. 5
1.7 IEEE P802.3ba 8dB nAUI channel characteristics [19]. 6
1.8 Comparisons of different signaling schemes [33]. 7
1.9 Structures of commonly used equalizers. 8
1.10 Project development. 10

2.1 Clock distribution. 13
2.2 160GHz transceiver clock path. 14
2.3 128GHz receiver clock path. 15
2.4 100GHz receiver clock path. 15
2.5 Polyphase filter for quadrature phase generation. 16
2.6 Polyphase filter for octature clock generation . 18
2.7 Schematic simulation of polyphase filter octature clock generation. 18
2.8 Two rings oscillate independently. 21
2.9 Phase relation of input and output of the inverter. N: number of stages in the

ring oscillator. 22
2.10 Two rings oscillate coupled with each other. 23
2.11 Quadrature corrector. 24
2.12 Octature corrector. 27
2.13 Octature generator. 28
2.14 Octature clocks post-layout simulation results for 25GHz clock. 29
2.15 Delay line structure. 30
2.16 Current DAC structures. 31
2.17 Current and delay line branches. 32
2.18 Current dac code vs. delay. 32
2.19 Global buffer schematic. 33
2.20 One pair of CCDL and global buffer. 34
2.21 Quadrature divider schematic. 35

v

2.22 𝐶2𝑀𝑂𝑆 latch schematic and floorplan. 37
2.23 Standard unit reset synchronizer. 38
2.24 Standard reset synchronizer timing diagram. 39
2.25 Unit reset synchronizer with depth larger than 2. 39
2.26 4-stage reset synchronizer for the dividers. 40
2.27 Phase rotator schematic. 41

3.1 High-speed link block diagram[25]. 42
3.2 High-speed link with low-pass channel. 43
3.3 High-speed link with equalizer. 44
3.4 MLSE illustration. 45
3.5 MLSE mapping with window length of 2. 46
3.6 DFE circuit implementation. 47
3.7 DFE mapping with window length of 2. 48
3.8 DFE/ MLSE mapping. 49
3.9 MLSE circuit implementation (adapted from Figure. 2.14 in [31]). 51
3.10 Function of the CDR. 52
3.11 Type A Muller-Mueller CDR. 53
3.12 Transition diagram analysis for 011100 pattern. 57
3.13 Pattern filtering of 1110 for mlse_in-update. 58
3.14 dLev maximization illustration (adapted from Figure. 4.5(a) in [26]). 60
3.15 Integrated loopback pulse response. 61
3.16 Sweeping of timing function. 62

4.1 Single-variable Markov chain. 65
4.2 ISI distribution. 65
4.3 ISI distribution of 𝑣𝑖𝑛[𝑛] and 𝑣𝑖𝑛[𝑛 − 1]. 67
4.4 MLSE ISI probability (𝑣𝑖𝑛[𝑛] − 𝑣𝑖𝑛[𝑛 − 1]). 67
4.5 Transition probability of 𝑚𝑙𝑠𝑒𝑖𝑛 with loop-back channel [31]. 68
4.6 Steady-state probability with pattern filtering. 69
4.7 ISI distribution of dLev01/ dLev11 at different sample phase count. 71
4.8 Individual 𝑚𝑙𝑠𝑒𝑖𝑛-update and dLev10 transition probability. 72
4.9 Steps of solving steady state and transition probability. 76
4.10 Time-domain simulation vs. statistical analysis with ideal channel. 76
4.11 Time-domain simulation vs. statistical analysis with real channel. 77
4.12 Construction elements of the multiple variable Markov chain transition matrix. . 79
4.13 Multiple Variable Markov chain transition matrix. 80
4.14 Time-domain simulation vs. statistical analysis with real channel. 86
4.15 Statistical eye analysis. 88
4.16 Time-domain simulation vs. steady-state probability with 160Gbps loop-back

channel. (dotted lines: optimal locking window from statistical eye analysis) . . 89
4.17 JTOL with 160Gbps loopback channel. 90

vi

5.1 Block diagram of the receiver. 92
5.2 160Gbps receiver[31] analog datapath block diagram. 94
5.3 100Gbps receiver analog datapath block diagram. 95
5.4 160Gbps vs. 100Gbps MLSE analog datapath layout comparison. 96
5.5 Summer schematic and 160 Gbps waveforms. 97
5.6 Summer path and its timing. 99
5.7 Sampler and retimer. 100
5.8 Adaptation Loop . 101
5.9 Pole introduced by RDAC. 103
5.10 Parallel RDAC. 104
5.11 Schematic of VCO. 106
5.12 Layout of VCO. 107
5.13 VCO placement with C4 bump. 107
5.14 Block Diagram of CDR digital backend. 108
5.15 Block diagram of CDR loop. 109

6.1 Top-level integration flow. 111
6.2 Top-level layout integration. 111
6.3 Hierarchical behavioral model generation. 113
6.4 Event driven SystemVerilog testbench. 114
6.5 Adaptation engine visualization. 116
6.6 Testing setup. 118
6.7 Top view and bottom view of PCB. 119
6.8 6-layer PCB stack-up. 119
6.9 Testing setup for clock path. 120
6.10 VCO measurement results. 121
6.11 Octature generator measurement. 122
6.12 Testing setup with probe station. 123

A.1 3-state Markov chain. 133

B.1 CML driver schematics. 137
B.2 Overall modeling steps. 138
B.3 s-parmeter of channels. 139
B.4 Transfer functions derived from s-parameters. 139
B.5 Testbench for pulse and step response simulation in Cadence. 141
B.6 Pulse response: data rate = 28GHz. 142
B.7 Comparison of pulse response. 142
B.8 Residual ISI distribution. 143
B.9 Step response. 144
B.10 Timing diagram of input signal. 145
B.11 Block diagram. 145

vii

B.12 Tx datapath simulation. 146

viii

List of Tables

1.1 Project information and contributors. 11

2.1 25GHz octature clocks performance (simulation). 29

3.1 RX equalizer comparison table. 45
3.2 TX output and RX input mapping. 46
3.3 Truth table for MLSE decoder. 50
3.4 Truth table of dLev maximization (adapted from Figure. 4.5(b) in [26]. 60
3.5 Table of sweeping of timing function. 62

4.1 Sample space of 𝑃𝐷𝑜𝑢𝑡. 64
4.2 Sample space of 𝑃𝐷𝑜𝑢𝑡. 73

6.1 Power breakdown (simulation). 124
6.2 Bandwidth power efficiency (simulation). 125
6.3 Performance comparison table. 125

ix

Acknowledgments

I feel deeply fortunate to have had the opportunity to pursue my PhD at University of
California, Berkeley and conduct research in Berkeley Wireless Research Center (BWRC).
This has been a long and challenging journey, but I have been lucky to receive the guidance
and support of exceptional faculty and talented peers.

First and foremost, I would like to express my sincere gratitude to my advisors, Professors
Vladimir Stojanovic and Elad Alon. During the past few years, Professor Vladimir helped
me learn to see the whole picture and think from a system perspective technically. I learned
from him how to manage the research and tape-outs strategically, especially when the system
is too large for a single individual. I am really grateful that he always motivated me and
recognized the value of my work. He has been supportive not only in my research but also
in the challenges that I face in life. I cannot thank Professor Vladimir enough for his warm
support and understanding during my most difficult times. Professor Elad introduced me to
the world of high-speed wireline links and guided me through the initial phase of exploring
the field and defining my own research topics. He always provided guidance with his sharp
intuition for circuits and profound technical understanding whenever I felt stuck.

I also thank Professors Borivoje Nikolic and Martin White for serving on my qualifying
exam and dissertation committees. I am grateful for their invaluable feedback and guidance
on my research. I greatly appreciate Professor Bora’s technical advice, which significantly
improved the quality of my dissertation.

I would like to extend my appreciation to Farhana Sheikh and Intel’s University Shut-
tle Program for granting me the opportunity to implement my research work in advanced
technology nodes.

During the PhD journey, I am grateful to have met and learned from many brilliant
people. I would like to especially thank Paul Kown, Ayan Biswas, Wahid Rahman, Kunmo
Kim for working together as a team during multiple tape-outs. I would also like to thank
Zhongkai Wang, Bob Zhou, Zhaokai Liu, Kwanseo Park, Zhenghan Lin, Yikuan Chen, Yu-
Chi Lin, Hesham Beshary, Rohit Braganza for their tape-out and testing assistance. My
sincere thanks also go to Rebekah Zhao, Yue Dai, Meng Wei, Rozhan Rabbani, Bozhi Yin,
Ruocheng Wang for their friendship that made my graduate life more colorful. A special
thanks to the BWRC staff and EECS department staff for their support.

Last but not least, I owe my deepest thanks to my family for their unwavering love,
patience, and encouragement throughout my life. Their belief in me has been the foundation
that supports me through the tough PhD life. Without them, I could not have navigated
the challenges in my journey.

1

Chapter 1

Introduction

1.1 Background
Today, data are being created and transmitted on a massive level as a huge wave of con-
nectivity everywhere through a multitude of modern devices such as wearables, smart home
appliances, connected cars, medical devices, fitness bands, etc. Furthermore, the surge of
artificial intelligence (AI) requires high computational power, which requires integration and
cooperation between multiple chips.

Among these explosive growing connections, high-speed links have been widely used to
provide wide-bandwidth wireline connectivity on various scales, ranging from on-chip to chip-
to-chip and system-to-system interconnects. The data rate of the common I/O standards
is shown in Figure. 1.1 reflects the constantly increasing demand for a higher data rate in
recent years. Most recent publications in the wireline domain focus on data rates exceeding
100Gbps, reflecting this shift. However, achieving these rates presents challenges. Data rate
capabilities are restricted not only by the process node but also by packaging constraints,
which can limit performance and reliability. Our research group is addressing these challenges
by targeting 100Gbps, 128Gbps, and 160Gbps designs by using a 16-nm process node to meet
this demand.

In contrast to this rapid increase in bandwidth, the power consumption becomes the
bottleneck to overcome due to the severe thermal restrictions of the entire system. In the
vision for the future technology stated in the IRDS roadmap [22], it is expected that the
power consumption of communication and routing will be reduced by a factor of 10 while the
data will increase by a factor of more than 10. Therefore, the energy efficiency of high-speed
links should be constantly improved as the data rate increases. While the bandwidth and
power constraints are very challenging by themselves, to make matters worse, the scaling of
the CMOS process is slowing down and the performance gain from scaling is not as dramatic
as in the past. Therefore, innovative design techniques that push the limits of electrical
signaling are essential to meet those bandwidth and energy efficiency goals in advanced
CMOS processes.

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Per-lane data rate vs. year for a variety of common I/O standards[34].

The chiplet is a way to implement a system-in-package (SIP) [46] design, using a modular
approach that partitions functional blocks into different dies and connects them with a
standardized interface, i.e., die-to-die communication. Shown in Figure. 1.1, Universal
Chiplet Interconnect Express (UCIe) [45][36][44], is an open industry standard developed
to establish a ubiquitous interconnect at the package level and covers the die-to-die I/O
physical layer. Instead of having a large monolithic die that includes all functions of the
system, we can use several small dies that perform different functions and connect them
together in the package. Shown in Figure. 1.3, the die-to-die communication includes the
transceiver (TRX) on each die and the connection (channel) between the dies. In this way,
the area of the individual die is reduced so that the yield can be improved with similar defect
rates, ultimately lowering the cost (Figure. 1.4).

The AMD EPYC CPU[15] for the data center and the Apple M2[17] ultra for the Mac
Studio laptop are the real-world example of the chiplet implementation (Figure. 1.5). 192
cores and 384 threads are enabled by 16 CPU dies and 1 IO die connected with Infinity
fabric packaging in Turin CPUs (5𝑡ℎ Gen EPYC). The Apple M2 Ultra SoC is built with
an UltraFusion silicon interposer packaging architecture to connect the die of two M2 Max

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Wireline data-rate trend[34].

Figure 1.3: Die-to-die communication [25].

CHAPTER 1. INTRODUCTION 4

Figure 1.4: Monolithic die vs. chiplet [25].

chips to achieve twice the performance of one M2 Max chip.

(a) AMD Truin CPU [15]. (b) Apple M2 MAX and M2 Ultra[17].

Figure 1.5: Examples of chiplet design

Another example is high-performance computing (HPC). It offers reduced power con-
sumption by connecting the compute node via 112GT/s, 1mm reach, and 1pJ/bit XSR
standard electrical link within the electro-optic engine for HPC [22].

CHAPTER 1. INTRODUCTION 5

Wireline Transceiver

Figure 1.6: High-speed link block diagram.

A typical high-speed link is shown in Figure 1.6, consisting of transmitter and receiver
circuits and the wire as a channel. At high speeds (> 3Gb/s), the bandwidth of the wire
begins to limit the operating speed of the electric links [42]. Equalization techniques have
been developed to compensate for the low-pass filtering effect of the channel (Figure 1.7).
Multi-level signaling schemes are also proposed for higher throughput at the same bandwidth.
Timing in the receiver is especially important to sample the data correctly in terms of
frequency and phase.

Link Environment: Channel

As the data rate reaches the 10Gb+/s range specified by the per-lane transfer rate of UCIe,
the non-ideality caused by the channel has become a critical issue for signal integrity. A typ-
ical channel characteristic is shown in Figure 1.7 [19]). The channel is usually characterized
as the s parameter (Figure. 1.7a). S21 or the corresponding frequency response shows the
low-pass feature with notches at some frequencies in Figure. 1.7b. The notch and highly re-
flective transients in the pulse response could be generated from impedance discontinuities in
complex PCB structures, such as packages and connectors. The corresponding time-domain
pulse response is obtained from passing a 1 UI (unit interval, i.e. 1/data rate) square pulse
as input to the channel. With low-pass characteristics, the pulse response has a lower peak
amplitude and spread wider than 1UI (Figure. 1.7c. The inter-symbol interference (ISI) is
the value measured in time that space nUI (n is nonzero integer) from the peak and are
denoted in Figure. 1.7d.

Signaling: Signaling Scheme and Equalizers

Non-return-to-zero (NRZ) is the intuitive and simple way to transmit the bit streams with
two levels for 0 and 1 respectively. To increase spectral efficiency, complex modulation
schemes, such as the Pulse Amplitude Modulation 4-level (PAM4) scheme, have been widely
explored in recent transceiver designs to relax the baud rate requirements. In Figure. 1.8,
the waveform of the ideal levels of PAM4 and NRZ with the input data streams is shown

CHAPTER 1. INTRODUCTION 6

(a) S-parameters. (b) Frequency response.

(c) 1UI input pulse and pulse response. (d) Pulse response with ISI denoted.

Figure 1.7: IEEE P802.3ba 8dB nAUI channel characteristics [19].

on the left, while the corresponding eye diagram is shown on the right. Although PAM4
transceivers are capable of handling high-loss channels, most PAM4 designs require error
coding and/or complex digital equalization due to a lower signal-to-noise ratio (SNR) and
a higher impact of residual ISI and nonlinearity on eye opening, which typically leads to
their power consumption being higher than the Non-Return-to-Zero (NRZ) counterpart.
For example, PCIe 6.0 required forward error correction (FEC) to compensate for the loss
of 9.5 dB SNR due to the lower eye height (1/3 of the NRZ eye). For the XSR link, NRZ
is often preferred for its simplicity and power efficiency, while PAM4 provides an option to

CHAPTER 1. INTRODUCTION 7

realize a higher date rate at the same bandwidth at the cost of increased power and design
complexity for signal integrity issue.

Figure 1.8: Comparisons of different signaling schemes [33].

Significant ISI due to the channel effect contributes to higher bit error rates (BER).
Equalizers in transmitter and/ or receiver are implemented to compensate ISI and meet
the BER specs at high data rate. If the amount of channel loss remains within a rea-
sonable range (<25dB for NRZ and <15dB for PAM4), which is the short-link case we
are targeting, analog and mixed signal equalizers are preferred over digital approaches to
address ISI. Conventionally, various analog and mixed-signal equalizers have been imple-
mented, including continuous-time linear equalizers (CTLE), feedforward equalizers (FFE),
and decision-feedback equalizers (DFE).

FFEs (Figure 1.9b) are often used to correct pre-cursor ISI and usually perform at the
transmitter side of the mixed-signal based link for simplicity of implementation. Since the
transmitter output power is limited, the summation of the FFE taps has to be fixed, and
therefore the signal power is decreased. The reduced signal power will cause noise enhance-
ment. Both DFE and CTLE are usually placed on the receiver side. DFE(Figure 1.9c)
outperforms CTLE for canceling major post-cursor ISI near the main cursor since DFE
summer taps do not have the linearity constraints present in CTLE, and are more toler-
ant to noise. Furthermore, adapting DFE taps for irregular pulse responses is easier than
CTLE. CTLE(Figure 1.9a) is commonly placed in the first few stages at the receiver and
configurable to cancel both pre-cursor and post-cursor ISI. CTLE uses frequency-dependent
gain degradation of the common source (CS) amplifier to create peaking around the channel

CHAPTER 1. INTRODUCTION 8

bandwidth to extend the bandwidth. In contrast to the finite impulse response filter (FIR)-
based FFEs and DFEs, CTLE serves as an infinite impulse response filter (IIR) and can be
used for long-tail cancellations.

(a) CTLE (b) FFE (c) DFE

Figure 1.9: Structures of commonly used equalizers.

Timing: Clock and Data Recovery Circuits (CDRs)

To correctly decide the data transmitted on the receiver side, it is extremely important to
sample at the correct timing, i.e., accurate spacing of transmitted data symbols and sampling
of the signal waveforms at the receiver. Clock and data recovery (CDR) is used to recover the
clock with the received data and align the recovered clock to the locking position decided by
the CDR loop. The CDR loop compensates for the phase skew between the received signal
and the receiver’s internal clock, and filters out the input jitter which causes the sampling
uncertainty at the sampler. This is the main topic we will focus on in the following chapters.

Berkeley Analog Generator (BAG)
The wireline links used for different applications will have different specs to meet. Even
developing a link with higher data rates based on existing links requires essential efforts to
redesign each block and verify performance. The subtle change in the routing or via style
can have a non-negligible degradation of performance. Thus, substantial layout iteration
would be needed in the design process. To make matters worse, the design rule sets are
more complicated in the advanced nodes, making the layout iteration more time consuming.
These are the non-returning engineering (NRE) costs when the specs evolve. It is crucial to
reduce design costs to increase profit margins for high volumes and enable custom design for
low volumes.

Berkeley Analog Generator (BAG) [20] is an open-source hierarchical Python framework
that allows the design procedure to be specified in executable manners. It defines and
implements a process-portable interface to layout [29][2]. It has already been used mainly

CHAPTER 1. INTRODUCTION 9

for analog and mixed signal (AMS) layout automation [6][50]. BAG is a software wrapper for
hardware design that focuses on reusing the unit design hierarchically instead of designing
from scratch. Instead of doing manual layout with graphical polygons, circuit designers
write executable generator in Python which capture designer’s knowledge. In other words,
the generator itself is an implementation of the circuit design methodology of designers.

The generator nomenclature is as follows:

• Schematic generator
Produces schematic/ netlist based on low-level parameters (width, length, number of
finger, etc.)

• Layout generator
Produces DRC/ LVS clean layout based on low-level parameters (width, length, num-
ber of finger, etc.)

• Model generator
Produces SystemVerilog model based on low-level parameters, netlist of the schematic,
and paramter characterized from the simulation (delay, rising time, falling time, setup
time, hold time, etc.)

With generator-based design methodology, it can truly close the entire design loop from
design (schematic and layout) to verification (behavioral model and testbench).

The other advantage of automatic layout is the manageable layout process in advanced
technology and portability among different technologies. The design rules are different from
technologies to technologies, which makes porting an existing design from one technology
to another not a trivial work. In fact, the complex design rules of the FinFET process
further reduce layout portability and increase the time required to port the design. Within
the BAG framework, the complicated design rules, such as the quantized width and spacing
of the metal in different layers, are parameterized and assigned to the technology files. In
this way, circuit designers do not need to bother knowing each design rules and can easily
port one design to different technology nodes. With BAG, productivity gains come from
parameterization, incremental extension, and process portability.

CHAPTER 1. INTRODUCTION 10

1.2 Thesis Organization
There are a variety of data-rate target die-to-die XSR link projects included in the thesis. The
main contributions in these projects are outlined in Figure. 1.10. The detailed information
and contributors of the projects are listed in Table. 1.1

In Chapter 2, the clock path targeting multiple data-rate links has been explored. The
building blocks of clock generation and distribution are explained. The reconfigurability
of the generator-based design makes it possible to adopt a circuit topology similar to the
different target data rates in short cycle time and resources.

Chapters 3 to 6 focus on the theory and implementation of the baud rate CDR algorithm.
Chapter 3 starts with a review of the literature on the CDR algorithm and the theory
of the hybrid CDR algorithm. Statistical analysis is used to evaluate the performance of
the innovative CDR algorithm and also serves to compare with the state-of-the-art CDR
algorithm. In Chapter 4, the focus is on the implementation of the hybrid CDR algorithm in
the design of the 100Gbps XSR receiver. 200Gbps receiver in [31] is modified for the hybrid
CDR proposed in Chapter 3. The change in the datapath and the clock path achieves a more
compact design and lower power consumption. Next, Chapter 6 describes the integration
flow of the 100Gpbs receiver with hybrid CDR design and the packaging, PCB design for
the testing in lab. The testing setup and results are discussed at the end of Chapter 6.

Finally, Chapter 7 concludes the thesis with the summary and potential future work
based on the proposed work.

Figure 1.10: Project development.

C
H

A
PT

ER
1.

IN
T

R
O

D
U

C
T

IO
N

11
Projects 200Gbps TRX 160Gbps TRX 100Gbps RX 128Gbps RX

Technology 22nm FinFET 16nm FinFET 16nm FinFET 16nm FinFET
Taped out time 2021 Nov. 2022 Aug. 2023 Dec. 2024 Nov.
TX datapath Ayan Biswas3 Ayan Biswas3 - -

TX clock path Yi-Hsuan Shih1/
Wahid Rahman Yi-Hsuan Shih1 - -

RX datapath Paul Kwon4 Paul Kwon4 Paul Kwon4 /
Yi-Hsuan Shih2 Kunmo Kim

RX clockpath Yi-Hsuan Shih1/
Wahid Rahman Yi-Hsuan Shih1 Yi-Hsuan Shih2 Yi-Hsuan Shih1/

Kunmo Kim

Digital Backend Paul Kwon4 Paul Kwon4 Paul Kwon4/
Yi-Hsuan Shih2

Kunmo Kim/
Sunjin Choi

Passive Frontend Kunmo Kim Kunmo Kim Kunmo Kim Kunmo Kim
1Chapter 2
2Chapter 5 and Chapter 6
3Ayan Biswas thesis [18]
4Paul Kwon thesis [31]

Table 1.1: Project information and contributors.

12

Chapter 2

Clock Generation and Distribution for
100+ Gb/s Transmitter

2.1 Clock Path Overview
The basic topology of clock distribution and the building block layout generator are inherited
from [47] designed by Zhongkai Wang. The prior work [47] was done in 28nm planar tech-
nology and the design is listed in Figure. 1.10 were done in 16nm/22nm FinFET technology.
Key changes were made to adapt to the change from quadrature path to octature path due
to the double interleaving of the datapath to push the data rate limited by the technology.1
The octature generator and the reset synchronizer are newly added to adapt to the change
in interleaving. The duty cycle correction is added in the delay line and the change in the
current DAC topology to provide a linear delay step. The clock path design for the 160Gpbs
transceiver, the 128Gbps receiver, and the 100Gbps receiver will be discussed in this chapter.
The clock path of links with different data rates shares a similar structure as summarized in
Figure 2.1. The design is built hierarchically with Berkeley Analog Generator (BAG) which
gives portability and flexibility to configure with different data-rate of the building blocks
and the system.

For 160Gbps and 128Gbps links, the two main analog clock domains are used considering
the fanout and the speed limit of the latches as shown in Figure. 2.1a. For the 100Gbps link,
the computation can be resolved without further deserialization and thus only one analog
clock domain (Figure. 2.1b) is used for simplicity and compactness of the layout.

Both of the clock distribution topology further divide the analog domain clock to the
diigital clock along with the deserialization after the MLSE computation.

1The initial clock path design and the newly added blocks (octature generator, reset synchronizer, global
buffer, duty cycle correction) for 200Gbps TRX clock path is in collaboration with Wahid Rahman. The 160
Gbps TRX follows essentially the same structure, but with an improved layout and an added debug clock.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 13

(a) Two main analog clock domains.

(b) One main analog clock domain.

Figure 2.1: Clock distribution.

160Gbps TRX Clock Distribution Overview
The clock distribution structure for the transmitter (TX) and receiver (RX) is designed
similarly with minor modifications devoted to specific needs, as shown in Figure 2.2. This
simplifies the design, and the layout generator can be reused with different configurations.

There are two clock domains (20G and 10G) in RX and three clock domains (20G, 10G,
1.25G) in TX, respectively. The 20G 8-phase clock domain contains the clock receiver, the
octature generator, the current control delay line, and the global buffer for both TX and
RX.

Four quadrature divider divide the 8 phase 20G clock to the 16 phase 10G clock in RX.
The 10G clocks then feed into the phase rotator for the coarse tuning and the delay line for
the fine tuning.

In TX clock path, only 4-phase is needed in 10G domain, thus only one quadrature
divider is used. The mux is used to choose the clock phase for the divider input and the
reset path to compensate for the delay across the corner. DCDL is enough to correct for the
4 phase skew compared to the RX counterpart. The divided clock followed by the Div-by-8
divider is generated by the clock path and sent to the TX datapath.

128Gbps RX Clock Distribution Overview
The 128Gbps RX clock distribution (Figure. 2.3) is built on the basis of the topology of
the 160Gbps RX clock distribution (Figure. 2.2b).The main modification is the sizing and
stacking change of the oscillator inside the 8-phase clock generation to achieve 128 GHz
frequency with decent phase error across PVT corners. The 𝐶2𝑀𝑂𝑆 divider is redesigned
for robustness to the input clock skew which causes failure in the 160GHz RX measurement.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 14

(a) Transmitter (TX) clock path.

(b) Receiver (RX) clock path.

Figure 2.2: 160GHz transceiver clock path.

100Gbps RX Clock Distribution Overview
The 100Gbps RX clock path (Figure. 2.4) follows the topology of Figure 2.1b where only
one main analog clock domain is presented due to the relaxation of the speed limit from
the down scale of the data rate. Since the sampler can be clocked at 12.5GHz, there is no
need for the divided 1/16 rate clock. The change simplifies the design of the clock path and
reduces the area of the 16-phase 1/16 rate clock distribution. The other difference is that
the input of the 8-phase generation comes from either an external clock or the VCO clock
generated by the LC VCO on chip controlled by the CDR logic in the digital domain.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 15

Figure 2.3: 128GHz receiver clock path.

Figure 2.4: 100GHz receiver clock path.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 16

2.2 Octa-Rate Clock Distribution

Octature Generator
Multiphase generation

Multiple phase clocks are essential for the high-speed SerDes to enable the interleaving path
in the datapth. There are several ways to generate the multiple phase clocks, which can
be mainly categorized to closed-loop and open-loop methods. For closed-loop method, DLL
and PLL can be used for multiphase clock generation, but the power consumption is high,
and large area and long lock-in time are required.

On the other hand, an open loop inverter-based ring oscillator and polyphase filter can
be used to generate multiphase clocks[7]. There are two types of quadrature generation of
polyphase filters depending on the connection of the input clocks. Both types provide a 90
degree phase shift and a matched amplitude at the pole frequency (𝜔 = 1

𝑅𝐶). Type 1 is
constant phase, which means that the phase shift is constant across the frequency, while the
amplitude of the outputs only matches at pole frequency. Type 2 in contrast is constant-
amplitude which has constant matched amplitude response across the frequency while the
phase shift is 90 degree only at pole frequency. The sensitivity to component mismatch
(Δ𝑅, Δ𝐶) of Type 1 is twice higher than of Type 2 [40] and the phase error is tunable in
the following delay line; we chose the Type 2 polyphase filter for quadrature and octature
generation.

(a) Type 1 polyphase filter. (b) Type 2 polyphase filter.

Figure 2.5: Polyphase filter for quadrature phase generation.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 17

To implement octature generation with Type 2 polyphase filter, we can use the phase shift
property of the following stage to achieve a 45 degree phase shift. The octature generator
is shown in 2.6 where 8 phases are generated by one-stage and two-stage polyphase filters,
respectively. To determine the values of the components, we rewrite the relation between
𝑅1 and 𝑅2 as

𝑅2 = 𝛼𝑅1 (2.1)

Since the pole frequency needs to be the target frequency for exact phase shift, we have

𝑅1𝐶1 = 𝑅2𝐶2 = 1
𝜔

(2.2)

Therefore,
𝐶2 = 𝐶1

𝛼
(2.3)

Assuming that the loading of each phase is 𝐶𝐿 and 1
𝜔𝐶𝐿

>> 𝑅1, 𝑅2, we have the following.

|𝑉𝑜1| = |𝑉𝑖𝑛| (2.4)

|𝑉𝑜2| =
√

2|𝑉𝑚| =
√

2(𝛼
𝛼 + 1

|𝑉𝑖𝑛|) (2.5)

To match 𝑉𝑜1 and 𝑉𝑜2,
𝛼

𝛼 + 1
= 1√

2
(2.6)

By solving the above equation, we have

𝛼 = 2.414 (2.7)

Let us take 25GHz clock generation for example. If we have 𝐶𝐿 = 6𝑓𝐹 for each phase,
we can implement the octature generator by choosing 𝑅1 = 93Ω, 𝐶1 = 68.5𝑓𝐹 , 𝑅2 =
217Ω, 𝐶2 = 29.3𝑓𝐹. With an input clock of a perfect 25GHz differential sine wave, the
output schematic simulation results are shown in Figure 2.7. However, if the input is not a
sinusoidal wave, then the output has significant distortion and phase error.

The polyphase filter only consists of passive circuits, and thus has the advantage in terms
of the power consumption. However, the narrow-band frequency filtering characteristics
strictly require the input clock to be a sinusoidal wave. For square waves containing harmonic
frequency components, the phase shift will not be the same as the fundamental frequency,
causing the phase error and the distortion of the output clocks. The input frequency range
can be extended by cascading more stages of the polyphase filter. However, the signal
attenuation will be significant with more stages. To ensure sinusoidal input, the resonant
buffer is needed before the polyphase filter, increasing the area and the power consumption.

The inverter-based injection-locked ring oscillator is an alternative open-loop multiphase
generation. It consumes more power than the polyphase filter due to its active circuit nature.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 18

Figure 2.6: Polyphase filter for octature clock generation

Figure 2.7: Schematic simulation of polyphase filter octature clock generation.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 19

However, it provides a wide frequency locking range with sufficient injection strength. The
MOSFET-based layout is compacter than that of the passive resistor and capacitor. The
quadrature generator based on the injection-locked ring oscillator is proposed in [8] and used
in [32] [48][51]. Due to the wide-bandwidth input and wide locking range, the inverter-based
structure is chosen to be the multiphase clock generation structure. It is intuitive to generate
the octature generator from the single ring oscillator by having 8 inverters connected in one
loop. However, it is difficult to achieve high speed due to the process-dependent minimum
inverter delay.

Phase Interpolation

Suppose that the clock waveform is a sinusoidal wave with amplitude A, radian frequency
𝜔, and phase angle 𝜙 to allow for any position of the time origin. The clock waveform can
be written in the following general form.

𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙). (2.8)

For two clock waveforms with the same amplitude and radian frequency but different phases,
we can express them as follows.

𝑥1(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙1)
𝑥2(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜙2).

(2.9)

The corresponding non-rotating phasors taken by taking a snapshot of t=0 of both clock
waveforms are

𝑋1 = 𝐴∠𝜙1 = 𝐴(𝑐𝑜𝑠𝜙1 + 𝑗𝑠𝑖𝑛𝜙1)
𝑋2 = 𝐴∠𝜙2 = 𝐴(𝑐𝑜𝑠𝜙2 + 𝑗𝑠𝑖𝑛𝜙2).

(2.10)

To interpolate between two clock phases, we weighted the sum of two clock waveforms.
Assuming that the weighting is the same for both waveforms, i.e. 𝑤1 = 𝑤2 = 1

2 , then we
have

𝑋3 = 𝑤1𝑋1 + 𝑤2𝑋2

= 1
2

(𝑋1 + 𝑋2)

= 1
2

𝐴[(𝑐𝑜𝑠𝜙1 + 𝑐𝑜𝑠𝜙2) + 𝑗(𝑠𝑖𝑛𝜙1 + 𝑠𝑖𝑛𝜙2)]

= 𝐴3∠𝜙3.

(2.11)

In Equation. 2.11, 𝐴3 and 𝜙3 are the interpolated amplitude and the phase, respectively.
We would like to rewrite it using the input amplitude 𝐴 and the input phases 𝜙1 and 𝜙2.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 20

1. find 𝐴3

𝐴2
3 = ||𝑋3||2 = 𝑋3𝑋∗

3

= (𝐴
2

)2[(𝑐𝑜𝑠𝜙1 + 𝑐𝑜𝑠𝜙2)2 + (𝑠𝑖𝑛𝜙1 + 𝑠𝑖𝑛𝜙2)2]

= 𝐴2

4
[(𝑐𝑜𝑠2𝜙1 + 𝑠𝑖𝑛2𝜙1 + 𝑐𝑜𝑠2𝜙2 + 𝑠𝑖𝑛2𝜙2) + 2𝑐𝑜𝑠𝜙1𝑐𝑜𝑠𝜙2 + 2𝑠𝑖𝑛𝜙1𝑠𝑖𝑛𝜙2]

= 𝐴2

4
[2 + (𝑐𝑜𝑠(𝜙1 + 𝜙2) + 𝑐𝑜𝑠(𝜙1 − 𝜙2)) − (𝑐𝑜𝑠(𝜙1 + 𝜙2) − 𝑐𝑜𝑠(𝜙1 − 𝜙2))]

= 𝐴2

4
[2 + 2𝑐𝑜𝑠(𝜙1 − 𝜙2)]

= 𝐴2

2
[1 + 𝑐𝑜𝑠Δ𝜙]

(2.12)

2. find 𝜙3 To easily calculate 𝜙3, we can rotate both 𝜙1, 𝜙2, 𝜙3 by −𝜙2.

𝑋′
3 = 𝑤1𝑋′

1 + 𝑤2𝑋′
2

= 1
2

𝐴[(𝑐𝑜𝑠(𝜙1 − 𝜙2) + 𝑐𝑜𝑠0) + 𝑗(𝑠𝑖𝑛(𝜙1 − 𝜙2) + 𝑠𝑖𝑛0)]

= 1
2

𝐴[(𝑐𝑜𝑠Δ𝜙 + 1) + 𝑗𝑠𝑖𝑛Δ𝜙]

= 𝐴3∠(𝜙3 − 𝜙2)

(2.13)

We can take arctan to calculate 𝜙3 − 𝜙2.

𝜙3 − 𝜙2 = 𝑡𝑎𝑛−1 𝑠𝑖𝑛Δ𝜙
𝑐𝑜𝑠Δ𝜙 + 1

= Δ𝜙
2

∀ − 𝜋
2

< Δ𝜙
2

< 𝜋
2

𝜙3 = Δ𝜙
2

+ 𝜙2

= 𝜙1 − 𝜙2
2

+ 𝜙2

= 𝜙1 + 𝜙2
2

∀ − 𝜋 < Δ𝜙 < 𝜋

(2.14)

Here is the caveat that the difference of the phase must be within −𝜋 to 𝜋 to use the
interpolation of the phase. In other words, the phase has to be wrapped within −𝜋 to
𝜋 for Equation 2.14 to hold.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 21

Octature Generation Theory

Based on the theory of coupling between two rings from [39], we designed the octature gen-
erator consisting of two coupled ring oscillators that generate quadrature clocks individually.
By doing so, we can achieve almost 2x the speed that a single ring oscillator can achieve.
The phase interpolation between the two quadrature generators creates a 45-degree phase
shift between them. The phase of the ring oscillator is decided by the input of the ring
inverters, the input of the coupling inverters, and the condition to make the ring oscillator
oscillate.

Let us assume that there are two identical rings that oscillate at the same frequency.
Without any coupling, the two rings will oscillate independently and have the phase shift
𝜙 shown in Figure. 2.8 which is undetermined and unpredictable. The cross-coupled pair
within the ring to ensure the oscillation of even stages oscillator is omitted in the figures just
for simplicity.

Figure 2.8: Two rings oscillate independently.

To make the ring oscillate, the phase shift of the whole ring should be 360 degrees.
Therefore, the phase shift of an inverter within the ring should be 360

𝑁 for N stages. For the
inverter between rings without phase interpolation with the other inverter output, the phase
change should be 180 degrees, as shown in Figure 2.9a. Based on the inverter phase relation,
we can zoom in on a part of the ring and analyze the phase relation between the two rings
after adding the coupling inverter. In Figure 2.9b, we decompose the phase interpolation
into two parts, the input from the previous ring inverter and the input from the coupled
inverter. The two inputs are combined at the input of the ring inverter and then experience

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 22

a Δ𝜙 phase shift to the output of the ring inverter. For the ring oscillator to oscillate, the
output of each stage must have a phase shift of −90 degrees. In Figure 2.9b, the output of
inverter A is rewritten as −90 from 270 to ensure the −90-degree shift of the ring oscillator.
We can find the phase relation 𝜙 between two rings by examining the phase summation and
the change in inverter A and inverter B. Assuming that the coupled inverter has the same
driving strength as the ring inverter, we can use Equation 2.14 for the input summation.

Inverter A has the phase relation as the following equation.

1
2

× 0 + 1
2

× (𝜙 − 90) + Δ𝜙 = −90 (2.15)

Using the same analysis, the phase relation at inverter B can be written as follows.

1
2

× (𝜙 + 180) + 1
2

× (180) + Δ𝜙 = 𝜙 + 90 (2.16)

By solving Equation 2.15 and Equation 2.16, we have

𝜙 = 45
Δ𝜙 = −112.5

(2.17)

The results in Equation 2.17 show that with the same driving strength coupling between
two rings, we can make the phase shift between two rings exactly 45 degrees apart. If
we place the coupling inverter around the full ring oscillators, we can get the coupled ring
oscillator shown in Figure 2.10 running at the same frequency as the quadrature generator,
but generate 8 phases with 45 degrees apart.

(a) phase relation of inverter. (b) phase relation of part of the coupled oscillator.

Figure 2.9: Phase relation of input and output of the inverter. N: number of stages in the
ring oscillator.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 23

Figure 2.10: Two rings oscillate coupled with each other.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 24

Quadrature generation

The quadrature generation can be achieved with the quadrature correlator proposed in [8].
It contains the main structure of the ring, the cross-coupled inverters inside the ring, and
the injection inverters shown in Figure 2.11. The four inverters form the ring structure
and generate four-phase clocks (𝑂𝐶𝐿𝐾0, 𝑂𝐶𝐿𝐾90, 𝑂𝐶𝐿𝐾180, 𝑂𝐶𝐿𝐾270) when entering
oscillation states. The cross-coupled pairs are set to be half of the main ring strength to
help prevent metastability. The input clocks (𝐼𝐶𝐿𝐾0, 𝐼𝐶𝐿𝐾90, 𝐼𝐶𝐿𝐾180, 𝐼𝐶𝐿𝐾270)
inject through the injection inverters to the ring to lock the frequency and the phases are
interpolated between the input clocks and the 90 phase shift inside the ring.

(a) Symbol. (b) Schematic.

Figure 2.11: Quadrature corrector.

In [8], the structure of the quadrature generator is based on the cascading quadrature
correlator to convert the differential clock to the quadrature clocks. The phase error can
be minimized when more stage of quadrature correctors are cascaded with the expanse of
power.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 25

Octature genreator structure

In the octature generation theory section, we explored a way to interpolate two quadrature
rings to generate eight phases with a 45-degree phase shift. We can apply the theory to the
quadrature corrector we introduced in the previous section. The conceptual schematic of
the implementation is shown in Figure 2.12b. The outputs of the two quadrature correctors
are coupled through the coupling inverters in green to achieve phase interpolation between
two quadrature rings. The detailed schematic is shown in Figure 2.12c with the two ring
oscillators shown in red and blue ,respectively. The inverter strength of ring 1 and ring 2 is
shown in Figure 2.12d and Figure 2.12e with the same philosophy as stated in the previous
section. The coupling inverters shown in Figure 2.12f have the same driving strength as the
main ring structure in ring 1 and ring 2 to perform the octature generation.

(a) Symbol. (b) Schematic.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 26

(c) Detailed schematic.

(d) Ring 1, with inverter strength annotated.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 27

(e) Ring 2, with inverter strength annotated.

(f) Coupling inverters between two rings with inverter strength annotated.

Figure 2.12: Octature corrector.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 28

The octature generator shown in Figure 2.13 is implemented by cascading 4 stages of
the octature correctors (Figure 2.13b. The input of the octature generator is the differential
clock 𝐶𝐿𝐾𝑃_𝐼𝑁, 𝐶𝐿𝐾𝑁_𝐼𝑁. The octature corrector is locked to the frequency of the
input differential clocks. The phase of the output clocks of each octature generator is the
interpolation of the 45 phases shift inside the quadrature rings and the input of the octature
corrector. Thus, the output clocks would be closer to the ideal 8-phase clocks with more
octature correctors cascading in series. The layout strategy is to have the two quadrature

(a) Symbol.

(b) Schematic.

Figure 2.13: Octature generator.

generators placed on top and bottom, which make one stage of the octature corrector. Then,
the next stage can be cascaded by placing on the right. The size of each stage and the
number of stages are configurable using BAG. Figure. 2.14 shows the simulation results of
the octature clocks operated at 25GHz. The design includes four-stage quadrature correctors.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 29

The solid clock waveforms include the power grid in the RC extration while the dotted clock
waveforms only include block-level RC extraction. The performance of 25GHz is summarized
in Table. 2.1. Here, we only show the representative simulation results for 25GHz used in
200Gbps TRX since it was the most challenging specs among the TRX clock path in Figure.
1.10 we have built. The phase error is less than 3 degrees and the locking range is larger
than 20%.

Figure 2.14: Octature clocks post-layout simulation results for 25GHz clock.

Phase error Locking range 𝑉𝑠𝑒,𝑝𝑝 Duty cycle Power Jitter
< 3𝑜 > 20% 0.8𝑉𝐷𝐷 48% ∼ 52% 35mW 23.7fs

Table 2.1: 25GHz octature clocks performance (simulation).

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 30

Digitally Controlled Delay Line (DCDL)
The digitally controlled delay line (DCDL) is used to adjust each phase of the clock to
minimize the phase error. The basic structure of the delay element in DCDL is the current-
starved inverter. Current-starved devices are on top and bottom of the inverter with the
biases controlled by the current DAC. The current is adjusted by controlling the gate voltage
of current-starved devices, which change the speed of charging and discharging the cap. The
slower the charging and discharging, the longer the output delay. Extra pull-up and pull-
down devices in parallel with current-starved devices are used to fine-tune the duty cycle
with the digital input signal at the gates.

Figure 2.15: Delay line structure.

The conventional current DAC structure is shown in Figure 2.16a, where the reference
branch in blue is fixed and the output current is decided by how many unit branches are
turned on of the output branches 𝑁 in red. Suppose that the unit output branch is the exact
same size as the reference branch. In this case, the output current is proportional to the
input code assuming that the input code directly indicates the number of branches turned
on. If 𝑛 represents the input code and 𝐼𝑟𝑒𝑓𝑝 = 𝛼𝑟𝑒𝑓𝐼𝑅𝐸𝐹 the relationship between the output
current and the input code can be written in the following equation.

𝐼𝑜𝑢𝑡 = 𝑛𝐼𝑟𝑒𝑓𝑝 = 𝑛𝛼𝑟𝑒𝑓𝐼𝑅𝐸𝐹 (2.18)

Assuming the capacitance load for the delay line is 𝐶, the voltage swing of the delay line
is Δ𝑉, and the current mirror ratio between the current-starved device in the delay line and
the output branch is 𝛼𝐷𝐴𝐶, the delay 𝐷 can be represented as

𝐷 = 𝐶Δ𝑉
𝑛𝛼𝑟𝑒𝑓𝛼𝐷𝐴𝐶𝐼𝑅𝐸𝐹

∝ 1
𝑛

. (2.19)

As shown in Equation 2.19, the input code is inversely proportional to the delay generated
by the delay line.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 31

To have a linear delay step on the delay line, the current DAC for the delay line is
designed with the input code proportional to the delay instead of inversion proportional
to the delay shown in Figure 2.16b. Given the same sizing condition as that for the unit
branches, the output current can be written as

𝐼𝑜𝑢𝑡 =
𝐼𝑟𝑒𝑓𝑝

𝑛
= 𝛼𝑟𝑒𝑓

𝐼𝑅𝐸𝐹
𝑛

(2.20)

Using the same symbol as before, we can find the delay 𝐷 of the delay line as

𝐷 = 𝑛𝐶Δ𝑉
𝛼𝑟𝑒𝑓𝛼𝐷𝐴𝐶𝐼𝑅𝐸𝐹

∝ 𝑛 (2.21)

(a) Current DAC with linear current step. (b) Current DAC with linear delay step.

Figure 2.16: Current DAC structures.

The connection between the current DAC and the delay line is shown in Figure 2.17. For
the 8-phase clock domain, there are eight copies of the current DAC and delay line dedicated
for the tuning of each phase. Delay line for each phase is controlled by the current DAC with
the topology in Figure. 2.16b shown in the green block in Figure. 2.17. The output current
of the current DAC then mirrors the bottom and top current-starved devices to control the
delay of the inverters shown in the yellow block.

The example simulation results are shown in Figure. 2.18 with 500 𝜇𝐴 reference current
and 7 ps tuning range (0.7UI). The nonlinearity occurs mainly in MSB switching due to the
binary DAC structure. The step size is around 150fs. By increasing the reference current,
the step size and tuning range will decrease accordingly.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 32

Figure 2.17: Current and delay line branches.

Figure 2.18: Current dac code vs. delay.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 33

Global Buffer
The global buffer is used to drive the datapath loading and the divider to generate the C16
clocks. The resonant buffer could be used with the inductor to resonate out the loading cap
to reduce the needed driver size. However, the inductor will take up a substantial area, which
may make routing longer and more complicated. For a high-speed circuit, the more compact
the layout, the less routing is involved, leading to lower parasitic capacitance and resistance.
For the matching of the clocks, the parasitic resistance is desired to be reduced as much as
possible. Even if we can match the routing length so that the capacitance matched for all
clock phases, it is more difficult to make the routing resistance the same for all. Therefore,
to make the overall layout more compact, we place the clock path close to the datapath to
minimize the routing parasitic. With less routing capacitance, we can eliminate the need for
a resonant buffer and implement the differential pair of inverters with cross-coupled inverter
pairs in between as the global buffer.

The schematic of the global buffer is shown in Figure 2.19. The cross-coupled pair
inverters are sized much smaller than the main forward inverters so that the main inverter
still dominates the signal path. The positive feedback cross-coupled pair adds hysteresis
to the outputs that helps sharpen the edge and also couples the two outputs differentially.
Positive feedback at the output helps the main inverter drive a larger capacitance load than
the typical fanout. However, it also loads the previous stage more, i.e. the previous stage
needs more driving power to fight with the cross-coupled pairs.

Figure 2.19: Global buffer schematic.

Figure 2.20 shows one of the four pair connections between the DCDL and the global
buffer. The inverter chain serves as the buffer in between to be size with the global buffer.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 34

Figure 2.20: One pair of CCDL and global buffer.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 35

2.3 1/16-Rate Clock Distribution
The 16-phase clocks are required for the buffer array and the MLSE slices on the datapath.
Four quadrature 𝐶2𝑀𝑂𝑆 dividers with the reset synchronizer are implemented to generate
a 16-phase clock from the C8 distribution. The 16 phase clocks are buffered with the inverter
chain array and feed into the phase rotator and delay line for coarse and fine control of the
phase skew. The last stage is the global buffer array to provide enough driving strength for
the datapath loading stages.

Divider
The quadrature divider is implemented by connecting the 𝐶2𝑀𝑂𝑆 latch back-to-back as
shown in Figure. 2.21. The input of the divider is differential clocks which are divided to
quadrature output clocks. 𝐶2𝑀𝑂𝑆 frequency divider is able to provide large output swing
and eliminate the need for the CML-to-CMOS converter. To generate 16 phase clocks, we
need 4 quadrature dividers to start dividing in the appropriate order. The reset signal is
added to ensure that the divider starts with an initial known state and can be manipulated
to have correct orders in the case that 𝑘 quadrature dividers are used to generate 4𝑘 phase
clocks. In our case, there are four quadrature dividers to divide 8-phase clocks into 16-phase
clocks. The reset synchronizer serves this purpose to make sure that the dividers are reset
in the correct order to generate the 16 phases correspondingly.

Figure 2.21: Quadrature divider schematic.

In the 160 Gbps transceiver design [31], the divider is followed by a cascade of 𝐶2𝑀𝑂𝑆
latches with devices clocked outside the signal path. While measuring the 160 Gbps chip, we

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 36

found that the 1.25 GHz digital clock divided from the main clock path fails at the nominal
operating speed, but can be observed at lower speed with the tuned current DAC code[31].
The phase skew of the differential phases at the input of the divider is suspected to cause the
error. This is the known issue described in [38]. This topology can achieve higher frequency
but suffers from charge sharing. The charge-sharing problem induces the kink in divided
clocks which is more sensitive to the phase skew of input clocks[38]. Although the kink
disappears at very high speeds, it is suspected to cause the failure in the 160 Gbps RX clock
path [31].

The original divider structure used in 160Gbps link can support higher speed but is
sensitive to clock phase skews. To enhance robustness against clock phase skews, clock
devices are moved in the signal path to prevent distortion due to charge sharing for 128Gbps
link.

Figure. 2.22 shows the schematics of the original and new dividers and the corresponding
floorplan. The layout generator can be modified without significant change to generate new
divider layout. The new divider layout is verified to be robust to input clock phase skew.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 37

(a) Original schematic. (b) New schematic.

(c) Original floorplan. (d) New floorplan.

Figure 2.22: 𝐶2𝑀𝑂𝑆 latch schematic and floorplan.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 38

Reset Synchronizer
To generate C16 from C8 clocks, four 𝐶2𝑀𝑂𝑆 dividers are needed to generate 4 pairs of
the 4 phases clocks in the C16 domain from differential clocks in the C8 domains. Without
proper reset signals, the initial state of the divider is not predictable. The reset signals
define the initial state of the output of the dividers and thus make the phase alignment
between the C8 and C16 domains more controllable. However, the asynchronous reset from
the scan chain has an unknown relationship with the clock phases, and some dividers could
potentially enter the metastability. In other words, the dividers run independently with the
divided clock occurring at two possible states that are 180 degrees apart. The purpose of
the reset synchronizer is to generate the synchronized reset signals with the input of the
asynchronized reset from the scan chain for each divider in specified order and spacing in
time so that the dividers can be reset and started in desired order. All reset signals are
synchronized with clock phase 0 to preserve clock phase order after the dividers.

A typical reset synchronizer contains two flip-flops as shown in Figure. 2.23 The first flip-
flop synchronizes the reset signal with the clock edge, while the second flip-flop removes the
potential metastability during activation of the asynchronous active low reset (AsyncRSTB),
where AsyncRSTB goes from high to low. The corresponding output is the assertion of the
synchronized reset (SyncRST) that goes to the clock dividers.

The timing diagram of the standard reset synchronizer is shown in Figure 2.24. If the
transition of AsyncRSTB from high to low does not violate the timing of the flip-flop, then
node mid_rest will be synchronized with the following rising clock edge. However, when the
transition of AsyncRSTB from high to low violates the timing of the flip-flop, it will cause
the metastability issue in node mid_rst and it is no longer clean synchronized reset. The
second flip-flop in Figure 2.23 is used to remove the possible metastability in mid_rst. If
the metastability fails to resolve before the next clock cycle, then multiple flip-flops need to
be added to remove the metastability. In this case, the depth of the reset synchronizer must
be greater than two flip-flops to ensure the generation of the clean synchronized reset shown
in Figure 2.25.

Figure 2.23: Standard unit reset synchronizer.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 39

(a) AsyncRSTB not violate timing. (b) AsyncRSTB violates timing.

Figure 2.24: Standard reset synchronizer timing diagram.

Figure 2.25: Unit reset synchronizer with depth larger than 2.

The reset synchronizer consists of four stages of the unit reset synchronizer to generate
four reset signals to the four quadrature dividers shown in Figure 2.26. Each stage requires
CLK and CLKB that correspond to the input of each divider. The first stage contains four
flip-flops cascaded in series (Figure. 2.25) to ensure that the timing of the last flip-flop is
met with the asynchronous reset as the input. The Din of the following stages would be the
synchronized reset of the previous unit reset synchronizer. The synchronized reset transition
from low to high occurs with at least 4 C8 clock delay (depth of the first stage) after the
AsyncRSTB transition from high to low. Therefore, a standard two flip-flop typical unit
reset synchronizer (Figure 2.23) in series is enough for metastability and creates 2 C8 clock
delays between each reset signal. To ensure a match of loading between the C8 clocks, the
CLK/CLKB input of the stage 2 3 are also connected to the dummy load to compensate for
the extra flip-flop load in the first stage.

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 40

Figure 2.26: 4-stage reset synchronizer for the dividers.

Phase Rotator and Delay Line
The phase rotator and the digitally controlled delay line (DCDL) are implemented as coarse
and fine control of the phase errors, respectively. The phase rotator is inspired by [30] to
adjust the clock phases due to the common skew among the 16 phases. Instead of using the
phase interpolator (PI), which mixes and weighted two phases to get the interpolated phase,
we directly apply 4-to-1 mux to choose the clock phase with minimum error that compensate
over PVT corner. The simplicity of the 4-to-1 mux is more power and area efficient than
the phase interpolator. The phase skew is minimized by relabeling the C16 clocks generated
from the quadrature divider to align the C8 clocks, that is, phase 𝑛 of C16 aligns with phase

CHAPTER 2. CLOCK GENERATION AND DISTRIBUTION FOR 100+ GB/S
TRANSMITTER 41

𝑛 of C8, to compensate the logic delay and the routing delay in the post-layout simulation.
Then the 4 phases (𝑛 − 𝑘, 𝑛, 𝑛 + 𝑘, 𝑛 + 2𝑘) of the 16 phases centered on the default phase 𝑛
are chosen to cover the PVT corner. The detailed schematic is shown in Figure 2.27, where
𝑛 is the index of the clock phase (0 < 𝑛 < 15) and 𝑘 is the select phase step to cover all
variation of PVT. The delay line after the phase rotator has a linear relationship between
the delay and the digital code that can be used to fine-tune the phase error between the C16
clocks and the alignment between C8 and C16.

Figure 2.27: Phase rotator schematic.

Digitally Controlled Delay Line (DCDL)
The DCDL is basically the same as the one implemented in the C8 clock domain. Since the
speed is twice slower than the C8 clock, the duty cycle due to the NMOS and PMOS driving
strength is relieved. The duty cycle correction is therefore not included in the C16 CCDL
for simplicity. The number of phases that must be tuned is double in the C16 domain, and
16 DCDLs and current DACs dedicated to each phase are needed. The tuning range needs
to cover the phase step in the phase rotator (at least 𝑘 UI is needed) and the DCDL step is
also linear.

Global Buffer
The global buffer structure is the same as the C8 global buffer shown in Figure 2.19. The
total number of the global buffer is doubled to deal with twice clock phases in the C16 clock
domain.

42

Chapter 3

MLSE and CDR Overview

Figure 3.1: High-speed link block diagram[25].

3.1 Inter-symbol Interference (ISI) and Equalization

Inter-symbol Interference (ISI)
Inter-symbol interference (ISI) is a form of distortion of a signal consisting of a sequence of
data symbol where one symbol is affected by other symbols in the sequence. The impulse
digital input 0, 0, ...,0, 1, 0, ...0 before the serializer in the TX ideally converts into the 1-UI
square pulse at the input of the receiver. However, the pulse response will smear out due
to the finite bandwidth of the TX output driver and the low-pass channel between the TX
and the RX. In Figure. 3.2, we take the pulse response of 200Gbps PAM4 TX in [47] as an

CHAPTER 3. MLSE AND CDR OVERVIEW 43

example. We define the cursor as ℎ[0] in the pulse response. The pre-cursor (ℎ[−1]) and
the post-cursor (ℎ[1], ℎ[2], ...) are the integer multiples of the UI before and after the cursor
of the pulse response, respectively. ISI of the pulse response includes both pre-cursor and
post-cursor. For a sequence of digital input data 𝐷𝑖𝑛[𝑛], the input voltage received at the
input of the RX 𝑉𝑖𝑛[𝑛] can be derived by convolution of the input data and the cursor and
ISI of the pulse response.

𝑣𝑖𝑛[𝑛] = Σ∞
𝑘=−∞𝐷𝑖𝑛[𝑛 − 𝑘]ℎ[𝑘] (3.1)

Figure 3.2: High-speed link with low-pass channel.

Equalization in the Receiver
With the ISI created by the bandwidth-limited output driver and channel, the eye opening is
reduced or even close in the eye diagram (Figure. 3.3. To cancel out the ISI, an equalizer is
needed to open the eye before the sampler in the receiver. As previously described in Chapter
1, the popular equalizer is summarized in Figure. 1.9. CTLE and DFE are commonly used
in RX. A linear CTLE is usually used to cancel the pre-cursor and the long tail but can
cause noise enhancement and may not be sufficient when the speed scales up. DFE is good
at canceling post-cursor without noise enhancement, but suffers from feedback loop timing
constraint that limits the speed it can achieve.

CHAPTER 3. MLSE AND CDR OVERVIEW 44

Figure 3.3: High-speed link with equalizer.

Maximum Likelihood Sequence Estimation (MLSE)
Introduction

Maximum Likelihood Sequence Estimation (MLSE) uses ISI energy to recover a sequence of
symbols. Take, for example, an ideal channel pulse response with 1-tap post-cursor (Figure.
3.4a). The received symbol would be compared with all possible data levels and then be
decoded with the data level that introduces fewer errors.

MLSE provides better error statistics than conventional equalizers and is robust to ther-
mal noise. The conflicts between the symbols could occur with noise; for example, the middle
bit is decoded as 0 while 1 is decoded in the next window. MLSE gives optimal performance
with better error statistics, but is difficult to implement due to its high complexity. If the
complexity can be reduced and reused in the clocking scheme, the MLSE would be promis-
ing to enable further speed scaling. The pros and cons of the RX equalizer used in RX are
summarized in Table 3.1.

Conflict Resolution: Single Window[31]

Conflicts between windows of MLSE are traditionally solved by Viterbi algorithms, which
also introduce a feedback loop. A single-window strategy [31] is used to resolve conflicts that
enable the purely feedforward system.

First, the window length is defined as the number of UIs over which we accumulate
errors. If the window length is 2, that is, we accumulate the error over 2 UIs, we can have

CHAPTER 3. MLSE AND CDR OVERVIEW 45

(a) One-tap ideal pulse reponse. (b) MLSE decoding scheme.

Figure 3.4: MLSE illustration.

Pros Cons
CTLE Adaptive Noise enhancement
DFE No noise

enhancement
Feedback loop timing

constraint
MLSE Optimal performance High complexity

Table 3.1: RX equalizer comparison table.

three consecutive bits, which translates to two consecutive input voltages 𝑉𝑖𝑛[𝑘 − 1 ∶ 𝑘].
We can map the two consecutive input voltages in the 2-dimensional graph with 𝑉𝑖𝑛[𝑘] as
the x axis and 𝑉𝑖𝑛[𝑘 − 1] as the y axis shown in Figure. 3.5a. The previous input voltage
𝑉𝑖𝑛[𝑘 − 1] can be decided by the first two bits (𝐷[𝑘 − 2 ∶ 𝑘 − 1]) which have 4 levels
(−1 − 𝛼, −1 + 𝛼, 1 − 𝛼, 1 + 𝛼) due to the 1-tap post-cursor (Figure. 3.4a). Similarly, the
current input (𝑉𝑖𝑛[𝑘]) can be mapped by the last two bits (𝐷[𝑘 − 1 ∶ 𝑘]). Assuming that the
ratio of the first post-cursor to cursor is 0.5 (𝛼=0.5), the input voltage corresponding to 3
consecutive digital inputs can be summarized in Table. 3.2. The way to decide the border of
the two dots on the graph is to draw the orthogonal line that gives the largest error margin.
If we draw the orthogonal line between every two dots on the graph, we can get the 2D plot
with 8 regions.

It is difficult to implement the partition of 8 regions for a window length of 2. However,
if we only consider the last bit (𝐷[𝑘]) which represents the current bit, then we get a simple
two partitions with three piecewise linear segments. This is called a single-window strategy.

CHAPTER 3. MLSE AND CDR OVERVIEW 46

D[k-2:k] D[k-2:k-1] Vin[k-1] D[k-1:k] Vin[k]
000 00 -1.5 00 -1.5
001 00 -1.5 01 0.5
010 01 0.5 10 -0.5
011 01 0.5 11 1.5
100 10 -0.5 00 -1.5
101 10 -0.5 01 0.5
110 11 1.5 10 -0.5
111 11 1.5 11 1.5

Table 3.2: TX output and RX input mapping.

(a) Symbol mapping of D[k-2:k]. (b) single-window algorithm

Figure 3.5: MLSE mapping with window length of 2.

The left part of the partition stands for 𝐷[𝑘] = 0 while the right part of the partition stands
for 𝐷[𝑘] = 1.

CHAPTER 3. MLSE AND CDR OVERVIEW 47

Compare to DFE

Figure 3.6: DFE circuit implementation.

The conventional one-tap loop-unrolled DFE circuit diagram is shown in Figure 3.6.
𝐷𝑜𝑢𝑡[𝑘] is decoded by different offsets −𝛼 and 𝛼 depending on the previous decoded bit
𝐷𝑜𝑢𝑡[𝑘 − 1].

Although the loop-unrolling removes the time for the slicer to resolve from the feedback
loop. There is still a timing constraint of the DFE as follows.

𝑇𝐶𝐾−𝑄 + 𝑇𝑠𝑒𝑡𝑢𝑝 + 𝑇𝑀𝑈𝑋 < 1𝑈𝐼 (3.2)

Assuming we have the same pulse response as in the example in Figure. 3.4a, the similar
analysis that we did for the MLSE single-window strategy can be applied for the one-tap
loop-unrolled DFE summarized in Figure. 3.7. First, we start with the 8 symbols considering
the consecutive input voltage 𝑉𝑖𝑛[𝑘 − 1 ∶ 𝑘] in Figure. 3.7a. Instead of partitioning between
each symbol, we would like to partition on the basis of 𝐷[𝑛 − 1] first. The symbols are then
divided into two groups: the upper half (𝐷[𝑘 − 1] = 1) and the lower half (𝐷[𝑘 − 1] = 0).
The horizontal line 𝑉𝑖𝑛[𝑘−1] = 0 is the border that gives the largest error margin for the two
groups. Within each group, we want to find the line to partition based on 𝐷[𝑘]. The results
are the two vertical lines 𝑉𝑖𝑛[𝑘] = −𝛼 and 𝑉𝑖𝑛[𝑘] = 𝛼 for 𝐷[𝑘 − 1] = 0 and 𝐷[𝑘 − 1] = 1,
respectively. With these partitions, the symbol mapping for 𝐷[𝑘−1 ∶ 𝑘] is redrawn in Figure.
3.7b. If we only look for the last bit, as we did in the MLSE single-window strategy, we
can obtain the partition of piecewise linear segments that match the circuit implementation
shown in Figure. 3.6.

CHAPTER 3. MLSE AND CDR OVERVIEW 48

(a) Symbol mapping of D[k-2:k]. (b) Symbol mapping of D[k-1:k].

(c) Symbol mapping of D[k]. (d) Mapping of D[k].

Figure 3.7: DFE mapping with window length of 2.

CHAPTER 3. MLSE AND CDR OVERVIEW 49

Circuit Implementation

From the previous analysis for MLSE and DFE using consecutive symbols with an ideal
one-tap channel, we can construct the MLSE circuit based on the one-tap loop-unrolled
DFE shown in Figure. 3.6. Observing the mapping for decoding 𝐷𝑜𝑢𝑡[𝑛] in Figure. 3.8, two
vertical segments (𝑋1, 𝑋2) are identical for both equalization techniques. Although MLSE
has additional segments 𝑚𝑙𝑠𝑒_𝑖𝑛 to deal with the case that both 𝑉𝑖𝑛[𝑘] and 𝑉𝑖𝑛[𝑘 − 1]
are within ±𝛼. In other words, MLSE gives better statistical performance as it can better
separate the symbols 010 and 101 in Figure. 3.5b. To implement piecewise linear segments,
we can start by defining the variables 𝑋1, 𝑋2, 𝑚𝑙𝑠𝑒_𝑖𝑛.

𝑋1 = 𝑉𝑖𝑛[𝑘] > 𝛼
𝑋2 = 𝑉𝑖𝑛[𝑘] > −𝛼

𝑚𝑙𝑠𝑒_𝑖𝑛 = 𝑉𝑖𝑛[𝑘] > 𝑉𝑖𝑛[𝑘 − 1]
(3.3)

(a) DFE. (b) MLSE.

Figure 3.8: DFE/ MLSE mapping.

If we define the slicing function 𝑠𝑙𝑖𝑐𝑒(𝑥) [31] to mimic a comparator or slicer function as
follows, we can rewrite the variables in Equation 3.3.

𝑠𝑙𝑖𝑐𝑒(𝑥) = {
1 𝑥 > 0
0 𝑥 ≤ 0

CHAPTER 3. MLSE AND CDR OVERVIEW 50

𝑋1 = 𝑠𝑙𝑖𝑐𝑒(𝑉𝑖𝑛[𝑘] − 𝛼)
𝑋2 = 𝑠𝑙𝑖𝑐𝑒(𝑉𝑖𝑛[𝑘] + 𝛼)

𝑚𝑙𝑠𝑒_𝑖𝑛 = 𝑠𝑙𝑖𝑐𝑒(𝑉𝑖𝑛[𝑘] − 𝑉𝑖𝑛[𝑘 − 1])
(3.4)

𝑋1 𝑋2 𝑚𝑙𝑠𝑒_𝑖𝑛 𝐷𝑜𝑢𝑡
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

Table 3.3: Truth table for MLSE decoder.

The truth table with input 𝑋1, 𝑋2, 𝑚𝑙𝑠𝑒_𝑖𝑛 and output 𝐷𝑜𝑢𝑡 is derived from Table 3.3.
If we group the don’t care terms with 𝑋1

̄𝑋2 and ̄𝑋1𝑋2𝑚𝑙𝑠𝑒_𝑖𝑛, we can get to the expression
for the decoder.

𝐷𝑜𝑢𝑡 = 𝑋1 + 𝑋2 ⋅ 𝑚𝑙𝑠𝑒_𝑖𝑛 (3.5)
The circuit implementation shown in Figure. 3.9 is realized by using minimal circuitry
consisting of a few comparators, adders, inverter, NAND gate, and register. An additional
2-tap FIR path that generates 𝑚𝑙𝑠𝑒_𝑖𝑛 is required compared to the DFE circuit in Figure.
3.6.

3.2 CDR Overview
In an embedded clock system, the receiver needs to recover the clock from the input data in
order to sample the data in the optimal position. The optimal sampling point should give the
best bit error rate (BER), which means that it should be the sampling point that can best
differentiate the data level so that the error margin for decision making on the datapath can
be maximized in order to reduce the BER. In Figure. 3.10, if there is no feedback CDR loop,
then the receiver clock (𝐶𝐿𝐾_𝑅𝑋) could be drifting in frequency and phase and sample
the data input early or late compared to the optimal sampling point, which gives the largest
opening of eyes.

The CDR locking performance is evaluated using Markov chains assuming that the next
step depends only on the previous state. The single-variable Markov chain and the multiple-
variable Markov chain are used to calculate the locking position and the jitter distribution

CHAPTER 3. MLSE AND CDR OVERVIEW 51

Figure 3.9: MLSE circuit implementation (adapted from Figure. 2.14 in [31]).

while locking. By sensing the difference between the current clock edge and the locking
point, CDR can help bring the sampling point to the locking point, which is ideally the
optimal sampling point that maximizes the timing margin. The other consideration is that
the jitter of the recovered clock should be minimized as much as possible.

Oversampling vs. Baud-rate CDR
The type of CDR can be categorized as oversampling or baud rate depending on how many
data samples in 1UI are needed for the CDR algorithm. Baud-rate CDR only takes one data
sample in 1UI to recover the clock, while oversampling CDR needs extra data samples for
the same purpose.

Bang-bang CDR (Alexander) is a commonly used oversampling CDR that requires ad-
ditional edge sampling points. When there is a data transition between 𝐷[𝑛] and 𝐷[𝑛 + 1],
the polarity of the edge sample 𝐸[𝑛] can be used to detect whether the current clock is early
or late. If the edge sample and the current data sample have the same polarity, the clock
is EARLY and the phase detector output (𝑃𝐷𝑜𝑢𝑡) will be assigned 1. On the other hand,
the clock is LATE and phase detector output will be assigned -1 if the edge sample and the
next data sample have the same polarity.

if E[n]==D[n]:
𝑃𝐷𝑜𝑢𝑡 = 1 (Clock is EARLY)

else:
𝑃𝐷𝑜𝑢𝑡 = -1 (Clock is LATE)

CHAPTER 3. MLSE AND CDR OVERVIEW 52

Figure 3.10: Function of the CDR.

This CDR algorithm is more robust to pulse response variation, but requires additional
slicer and clock phase to produce the edge sample, which is expensive at data rates close to
the limit of the process technology.

The baud-rate CDR eliminates the need for the edge sample and is thus preferred in the
speed target close to the limit of the process technology. The power efficiency is attractive
for people to explore baud-rate CDR over oversampling CDR in recent years. However,
without the additional edge samples, the information for recovering the clock is also reduced
and has more dependency on the pulse response. Our goal is to push the speed limit of the
process technology; therefore, baud-rate CDR is chosen over oversampling CDR. Multiple
state-of-the-art baud-rate CDRs will be described in the following sections.

Mueller-Muller CDR
Timing Recovery Theory[35]

The most popular baud-rate CDR is the Mueller-Muller CDR proposed in 1976 [35]. In the
original paper, fast-converging timing recovery methods with input signal sampled at baud
rate were investigated. Two timing functions are discussed for the timing recovery extraction
related to the pulse response. The results of [35] are summarized below.

First, we consider a continuous signal received by the receiver front-end as 𝑉𝑖𝑛(𝑡) with
a sequence of random data symbols 𝐷𝑖𝑛,𝑘 transmitted in data rate 1

𝑇 with overall pulse
response ℎ(𝑡).

CHAPTER 3. MLSE AND CDR OVERVIEW 53

𝑉𝑖𝑛(𝑡) = Σ𝑘𝐷𝑖𝑛,𝑘ℎ(𝑡 − 𝑘𝑇) (3.6)
Suppose that the signal is sampled at instants 𝑡 = 𝜏 + 𝑚𝑇. The timing function 𝑓(𝜏) will
determine the transfer characteristic of the CDR control loop. The resulting steady-state
timing phase (𝜏𝑠𝑠), which is also called the locked sampling phase, will force the timing
function to 0.[35] as in Equation. 3.8.

𝑓(𝜏𝑠𝑠) = 0 (3.7)

The timing function 𝑓(𝜏) is limited to linear combinations of the samples (ISI) of the pulse
response:

𝑓(𝜏) = Σ𝐿
𝑖=1𝑢𝑖𝜏𝑖, where Σ𝑖𝑢𝑖 = 1 (3.8)

Among all possible timing functions in Equation 3.8, there are two special cases as shown in
Equation. 3.9 is analyzed. Type A is used in most published papers using Mueller-Muller
CDR. It locks when the first pre-cursor and first post-cursor are the same (Figure. 3.11.
Type B is a zero forcing of the first post-cursor ℎ1. This will take the first zero crossing
after the main pulse as a timing reference (ℎ1). Although only type A and B are shown, the
linear combination of ISI is forced to 0 (Equation. 3.8) would be the generalized form of the
Mueller-Muller CDR.

Type A: 𝑓(𝜏) = 0.5(ℎ1 − ℎ−1) = 0.5[ℎ(𝜏 + 𝑇) − ℎ(𝜏 − 𝑇)]
Type B: 𝑓(𝜏) = ℎ1 = ℎ(𝜏 + 𝑇).

(3.9)

Figure 3.11: Type A Muller-Mueller CDR.

CHAPTER 3. MLSE AND CDR OVERVIEW 54

Variants of Mueller-Muller CDR

Sign-sign Mueller-Muller CDR proposed in [3] is a simplified version of the Type A timing
function in Equation. 3.9. The 1-bit sign-sign phase detector is used to replace the original
quantizer proposed in [35]. The desired reference level (𝑉 𝑅𝐸𝐹) which is also called the data
level (𝑑𝐿𝑒𝑣) that is adapted to be the sample at the desired sampling phase. The phase
detector compares the current sample versus 𝑉 𝑅𝐸𝐹 to generate the error sample 𝐸𝑅𝑅𝑛.
By correlating 𝐸𝑅𝑅𝑛 with 𝐷𝑛−1 and 𝐸𝑅𝑅𝑛−1 with 𝐷𝑛, we can obtain the information of
ℎ1 and ℎ−1 respectively.

The hardware overhead of this method includes additional error samplers[3] and 𝑉 𝑅𝐸𝐹
adaptation. The error samplers are also used in the datapath for DFE but reusing the error
sample in clock recovery requires the error sampler to be active at all time, which is not a
requirement for the bang-bang PD.

The timing function will change with the use of DFE, and thus move the sampling position
accordingly. Since the DFE zero forces the first post-cursor tap (ℎ1) to zero, the Type A
timing function in Equation. 3.9 reduces to zero first pre-cursor criteria as Equation. 3.10.
This moves the sampling point to the left (lead) of the original pulse response peak. The
shift can be reduced with higher pre-emphasis at a price of increasing the second pre-cursor
ISI (ℎ−2) [41]. Without the pre-cursor undershoot, the slope near ℎ−1 = 0 would be low,
suggesting a small PD gain and susceptible to noise and degrading jitter on the recovered
clock.

𝑓(𝜏) = ℎ−1 = ℎ(𝜏 − 𝑇) = 0 (3.10)

To solve the left-shifting issue caused by the zero-forcing of DFE, gain and offset adjust-
ment to the timing function is proposed in [11] [10]. The unequalized MM CDR [11] adds
a digital offset to the phase-error accumulator to move the locking point to the unequalized
position (locking point before applying DFE). The added offset is programmable to trade
off between a larger pre-cursor amplitude (ℎ−1) and a better locking point. The gain of the
digital offset depends on the transition density of the data pattern. The weight-adjusting
MM CDR [10] adjusts the weights of EARLY and LATE of the phase detector, 𝛼 and 1 − 𝛼,
to shift the locking point with constant gain of 𝛼. Only one error sampler is used in [10] to
reduce hardware overhead and power consumption at the price of reducing the update rate
of the phase detector. In the sign-sign CDR case, the phase detector updates at transition
from 0 to 1 or from 1 to 0. With only one error sampler, the phase detector updates only
when the data remain 1 for two consecutive samples. The offset is adapted to maximize
ℎ0 − ℎ−1 using the maximum eye tracking algorithm (MET). Authors in [14] also use the
weight-adjusting idea, but add an offset to the reference level of the error sampler and adopt
an asymmetric weighting according to the transition types.

Recent published research paper attempts to address the poor locking point issue by
applying specific pattern filtering according to different transitions in the multilevel system[5,
13]. Obtaining more information from the multiple transitions and the collected histogram of
consecutive samples could help determine a better weighting for the phase detector. However,
these methods require an estimate of the pulse response and the pre-cursor/ post-cursor ℎ[𝑘]

CHAPTER 3. MLSE AND CDR OVERVIEW 55

and adjust the CDR locking position based on the estimate. Therefore, the locking position
of the CDR will be highly dependent on the accuracy of the pulse response estimate.

The major drawback of Mueller-Muller CDR, generalized to combination of pulse-response
coefficient, is that the quality of the locking point depends on the shape of the pulse response.
For Type A timing function in Equation. 3.9, the locking point will be nonideal if the pulse
response waveform is asymmetry at the main peak of the pulse. Furthermore, phase wan-
dering could occur if there are multiple clock phases that can satisfy 𝑓(𝜏) = 0. That is, it
could possibly lose lock if the locking point is not unique.

dLev Maximization CDR
To solve the drawbacks mentioned above of the Mueller-Muller CDR, the dLev maximization
CDR proposed in [6] finds the unique locking point utilizing the 1UI integrated pulse response
resulting from the integration-and-reset frontend in the datapath. The merit of integration-
and-reset frontend compared to the continuous topologies is its superior energy efficiency.
The integration-and-reset frontend serves as the 1UI integrator to the original pulse response.
If the received signal is filtered by an integration-and-reset frontend, the frontend output will
be maximized when the integration window perfectly overlaps with the incoming pulse, which
translates to a single locking point, even when the input pulses have wide flat regions. Take
the extreme case for an example: if the input pulse response is an ideal 1UI square pulse, the
Type A Mueller-Muller CDR could lock anywhere within the pulse. By passing the pulse
to the 1UI integrator, the pulse response becomes the triangle waveform with the unique
maximum point.

To lock the unique maximum point after the integration and reset front-end, the data
level (𝑑𝐿𝑒𝑣) used in the equalizer adaption can serve as the indicator of the sampled value of
the integrated pulse response. In the setting in [6], 𝑑𝐿𝑒𝑣 tracks ℎ0 and can be the estimate
of pulse response sampling at a certain phase. Instead of maximizing the integrated pulse
response, the 𝑑𝐿𝑒𝑣 that serves the same purpose as 𝑉 𝑅𝐸𝐹 in the weight-adjusting Mueller-
Muller PD [10] is the value to maximize in the CDR loop.

Gradient descent is used to find the maximum locking point with a small dithering step
±Δ added to the recovered clock. With the known dithering polarity, we can extract the
slope of the current 𝑑𝐿𝑒𝑣 versus phase with the error sampler output. Similarly to [10], only
one 𝑑𝐿𝑒𝑣 (𝑉 𝑅𝐸𝐹) is used by filtering the +1 symbol specifically to reduce the number of
the error sampler.

To implement dLev maximization CDR, an additional dithering generator is needed, and
the dithering added on top of the recovered clock will increase the jitter and reduce the
horizontal eye opening. Another consideration is that the CDR loop has to be slower than
the dLev loop in order to get the correct error sample with converged dLev value.

CHAPTER 3. MLSE AND CDR OVERVIEW 56

3.3 Proposed Baud-rate Hybrid CDR algorithm
The baud-rate CDR algorithms mentioned in Section 3.10 either have dependency on the
shape of the pulse response or add extra dithering jitter in the steady state. To address
these issues and maintain power efficiency, the hybrid CDR algorithm is proposed with the
following characteristics.

• Baud-rate operation for power efficiency

• Unique locking point robust to pulse shape variation

• Remove extra dithering jitter when locked

• Minimized hardware overhead

The CDR algorithm described in Section. 3.10 has common considerations, that is,
trying to reuse the existing information and hardware in the datapath to reduce hardware
overhead. Mueller-Muller CDR [3][11][10] and data level maximization CDR [6] are all
incorporated with DFE and error sampler for equalization adaptation. In this work, we
have feedforward MLSE described in section 3.1 replace the DFE as MLSE breaks the speed
bottleneck of the feedback loop and has the superior error statistics. The main disadvantage
of MLSE is its high complexity. The single-window strategy simplifies the implementation
of the MLSE algorithm but is still more complicated than the loop-unrolled DFE. More
specifically, additional summer and slicer is required to generate 𝑚𝑙𝑠𝑒𝑖𝑛 in Figure. 3.12
which is not required in DFE. It is desirable to reuse the extra 𝑚𝑙𝑠𝑒𝑖𝑛 signal in the CDR
algorithm to help extract clock information. Using both the complexity on the datapath and
the clockpath, MLSE would be an even more attractive option. To further enhance power
efficiency, the integrate-and-reset latch similar to [6] is used in the datapath.

𝑚𝑙𝑠𝑒𝑖𝑛 Update
The MLSE decoder uses the comparison results between the current and previous data
sample, which is annotated as 𝑚𝑙𝑠𝑒𝑖𝑛. We want to find out if it is possible to utilize
this information to find the locking position for the CDR. The integrated pulse response is
restricted to one-tap post-cursor pulse response, which is reasonable for the XSR channel.

To enable baud-rate CDR recovery with integrating front end, a pattern filtering tech-
nique for baud-rate CDR recovery was proposed in [24, 23]. By filtering certain patterns,
the transition information can be used to provide phase information for the symmetrical
pulse response. In this work, we need to deal with the asymmetry pulse response due to the
one-tap post-cursor. Another constraint is that we want to reuse the complexity (comparison
between two consecutive inputs) that originated from the MLSE equalizer. To see whether
we can actually reuse the comparison between two consecutive inputs, different combinations
of data sequences are swept and analyzed by the transition diagram. There are four possible

CHAPTER 3. MLSE AND CDR OVERVIEW 57

Figure 3.12: Transition diagram analysis for 011100 pattern.

levels in the transition diagram due to the one-tap post-cursor assumption for the pulse
response. In Figure. 3.12, we found that the early and late information can be identified
with the data pattern consisting of 011100 where 𝑚𝑙𝑠𝑒𝑖𝑛 is negative when the clock is late
and positive when the clock is early. All other three data sequences were checked in Figure.
3.13 and confirm that the 𝑚𝑙𝑠𝑒𝑖𝑛 signal can identify EARLY and LATE clock with pattern
𝐷[𝑛 − 2 ∶ 𝑛 + 1] = 1110.

The above finding can be formulated to the phase detector update equation below.

if D[n-2:n+1] == 1110:
PD_out = sgn(Vin[n] - Vin[n-1])

To determine the locking point of the update equation, we can analyze 𝑚𝑙𝑠𝑒𝑖𝑛 with
pattern filtering and set the expectation value to 0 and find the locking condition.

𝑚𝑙𝑠𝑒𝑖𝑛[𝑛] = 𝑣𝑖𝑛[𝑛] − 𝑣𝑖𝑛[𝑛 − 1]
= Σ∞

𝑘=−∞𝐷[𝑛 − 𝑘](ℎ[𝑘] − ℎ[𝑘 − 1])
= ℎ[2] − 2ℎ[−1] + ℎ[−2]Σ∞

𝑘≠−−1,0,1,2𝐷[𝑛 − 𝑘](ℎ[𝑘] − ℎ[𝑘 − 1]).
(3.11)

Taking the expectation value of 𝑚𝑙𝑠𝑒𝑖𝑛 with pattern filtering 𝐷[𝑛 − 2 ∶ 𝑛 + 1] = 1110 and
assuming that the data sequence is random and independent, we have

𝐸[𝑚𝑙𝑠𝑒𝑖𝑛[𝑛]] = ℎ[2] − 2ℎ[−1] + ℎ[−2]
= 0.

(3.12)

CHAPTER 3. MLSE AND CDR OVERVIEW 58

Figure 3.13: Pattern filtering of 1110 for mlse_in-update.

Taking 𝑃𝐷𝑜𝑢𝑡 = 𝑚𝑙𝑠𝑒𝑖𝑛[𝑛], we can simplify the locking condition from Equation. 3.12
as the following:

ℎ[−1] = 1
2

(ℎ[2] + ℎ[−2]). (3.13)

Note that Equation. 3.13 is the subset of the generalized Mueller-Muller CDR in Equa-
tion 3.8 and thus it is a variant of the Mueller-Muller CDR. The advantage of this particular
implementation of Mueller-Muller CDR is that it is suitable for the asymmetric pulse re-
sponse unlike the Type A Mueller-Muller CDR which requires a symmetric pulse response
for ℎ[1] = ℎ[−1] to lock to a better phase. In addition, it requires almost no hardware
overhead to perform the CDR algorithm, since it uses directly the 𝑚𝑙𝑠𝑒𝑖𝑛 signal generated
from the MLSE decoder. However, since it still falls into Mueller-Muller CDR and depends
heavily on the pulse response coefficient, it could potentially lose lock in some nonideal pulse
response.

CHAPTER 3. MLSE AND CDR OVERVIEW 59

Combined with dLev maximization
Pattern filtering 𝑚𝑙𝑠𝑒𝑖𝑛 from MLSE decoder output can give us the Mueller-Muller style
with a better pulse response coefficient relationship than the conventional symmetric locking
position. But it could possibly loose locking with the certain pulse response.

To solve this problem, we consider combining the dLev maximization with the 𝑚𝑙𝑠𝑒𝑖𝑛
pattern filtering to find the more robust locking point. We choose to maximize the difference
between cursor and the first pre-cursor to get a large eye opening. Instead of ℎ0, dLev is set
to adapt to ℎ0 − ℎ−1. Therefore, we need to filter the pattern 𝐷[𝑛 ∶ 𝑛 + 1] = 10 to search
the data level of ℎ0 − ℎ−1. Note that 𝑒[𝑛] = 𝑠𝑔𝑛(𝑣𝑖𝑛[𝑛] − 𝑑𝐿𝑒𝑣).

• dLev Maximization with Dithering (𝛿[𝑛] = ±Δ)

if D[n:n+1] == 10:
PD_out = sgn(δ[n])e[n]

Instead of using extra dithering, we reused the previous phase detector output to estimate
the slope. The dithering direction would just simply be the previous phase detector output
(up or down) for the gradient descent algorithm to work. The relationship of dithering
(±Δ)and previous phase detector output (𝑃𝐷𝑜𝑢𝑡,𝑑) is illustrated in Figure. 3.14 and Table
3.4. This can be verified by the following equations. Assume 𝜙[𝑛] is the sampling phase and
𝛼 is the step size.

𝜙[𝑛 + 1] − 𝜙[𝑛] = 𝛼(𝜙[𝑛] − 𝜙[𝑛 − 1])𝑒[𝑛] (3.14)

Since the sampling clock is updated with the phase detector output, we have 𝜙[𝑛 + 1] =
𝑃𝐷𝑜𝑢𝑡 + 𝜙[𝑛] and 𝜙[𝑛] = 𝑃𝐷𝑜𝑢𝑡,𝑑 + 𝜙[𝑛 − 1]. With this information and setting the step
size 𝛼 = 1 for simplicity, we can rewrite Equation. 3.14 as

𝑃𝐷𝑜𝑢𝑡 = 𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛]. (3.15)

• dLev Maximization with Previous phase detector output (𝑃𝐷𝑜𝑢𝑡,𝑑)

if D[n:n+1] == 10:
PD_out = PD_out,d e[n]

We can modify the update equations with two pattern filterings with the following equa-
tions. Note that 𝑚𝑙𝑠𝑒𝑖𝑛 = 𝑠𝑔𝑛(𝑣𝑖𝑛[𝑛]−𝑣𝑖𝑛[𝑛−1]). Compared to [5, 13], the hybrid algorithm
does not require an accurate estimate of the pulse response due to the incorporation of the
maximization loop.

CHAPTER 3. MLSE AND CDR OVERVIEW 60

Figure 3.14: dLev maximization illustration (adapted from Figure. 4.5(a) in [26]).

Phase dithering/
𝑃𝐷𝑜𝑢𝑡,𝑑

𝑣𝑖𝑛[𝑛] 𝑑𝐿𝑒𝑣 𝑒[𝑛] 𝑃𝐷𝑜𝑢𝑡

A −Δ/-1 𝑉 (𝐴 − Δ) V(A) -1 1(Early)
A +Δ/1 𝑉 (𝐴 + Δ) V(A) 1 1(Early)
B −Δ/-1 𝑉 (𝐵 − Δ) V(B) 1 -1(Late)
B +Δ/1 𝑉 (𝐵 + Δ) V(B) -1 -1(Late)

Table 3.4: Truth table of dLev maximization (adapted from Figure. 4.5(b) in [26].

• Hybrid: 𝑚𝑙𝑠𝑒𝑖𝑛 update + dLev maximization with 𝑃𝐷𝑜𝑢𝑡,𝑑

if D[n:n+1] == 10:
if D[n-2:n-1]=11:

PD_out =sgn(mlse_in+PD_out,d e[n])
else:

PD_out = PD_out,d e[n].

CHAPTER 3. MLSE AND CDR OVERVIEW 61

Figure 3.15: Integrated loopback pulse response.

Locking Point
The proposed hybrid CDR algorithm combined Mueller-Muller-based 𝑚𝑙𝑠𝑒𝑖𝑛 pattern filter
and dLev10 maximization is analyzed with the loopabck channel in 160GHz TRX tapeout
with 16nm technology (Sept 2022). The overall integrated pulse response is shown in Figure.
3.15. The red dots represent the samples (channel coefficient ℎ𝑖) when sampled at the peak
of the pulse response.

If we sample the pulse response at different phases over the 1UI window, we can get
a different set of channel coefficients. The unique value of the timing function specified
for each CDR algorithm is determined by the set of channel coefficients corresponding to
a certain sampling phase. Figure. 3.16 shows the timing function curves of different CDR
algorithms in the possible sampling phase of 1UI. The locking point can be found on the
curves depending on the type of CDR algorithm. For Mueller-Muller CDR, the locking point
is the clock phase that forces the timing function to be zero. For dLev maximization, the
locking phase corresponds to the maximum value of the timing function. The CDR type,
timing function, and corresponding locking point are summarized in Table. 3.5. The locking
point in the table refers to the peak in the pulse response. The locking point for 𝑓(𝜏) = ℎ0
should be 0 UI if there is no resolution issue.

This method can find the locking point when the timing function and the locking con-
dition of the timing function are straightforward. For the hybrid algorithm that involved

CHAPTER 3. MLSE AND CDR OVERVIEW 62

Figure 3.16: Sweeping of timing function.

Color CDR type Timing function Locking point
blue Mueller-Muller ℎ−1 − ℎ1 0.05UI
red Mueller-Muller 2ℎ−1 − ℎ−2 − ℎ2 -0.09UI

yellow dLev Maximization ℎ0 − ℎ−1 -0.04UI
purple dLev Maximization ℎ0 0.01UI

Table 3.5: Table of sweeping of timing function.

both Mueller-Muller based CDR and dLev Maximization CDR, the locking point cannot be
analyzed directly with this method. Moreover, it can only predict the averaged steady-state
locking point but not the jitter performance when reaching the steady state.

63

Chapter 4

Statistical Analysis of the CDR
Algorithm

4.1 Overview
There are two separate methodologies for characterizing the CDR systems found in the
literature [42]. In the circuits community, IC designers tend to linearize the phase detector
and treat the whole loop as a linear control system. Markov chain analysis is used intensively
in communication systems. The pseudo-linear analysis [37, 14, 28] treats the bang-bang
phase detector as a 1-bit quantizer and approximates it as gain elements for random and
deterministic input and an additive Gaussian noise source. Linearization enables frequency
domain analysis and takes loop delay into account. It is useful to predict jitter generation,
JTRAN, and JTOL. However, since gain and noise are modeled with variance of Gaussian
distribution, the analysis could be inaccurate with an unbounded jitter distribution [43].
Although the transition density is considered in the linearization, it cannot capture the
full information of pattern filtering, especially when there are conditional terms such as
the hybrid algorithm in Session 3.3 where the order of the bit stream matters. Markov
chain analysis describes every possible phase as one state with the transition probability
determined by noise and the residual ISI distribution. It is intuitive to apply filtering to the
transition probability for pattern filtering. The steady-state probability indicates the locking
point and the distribution of the jitter generated by CDR itself. It is useful to compare the
locking point and jitter generation of CDR algorithms over different channels. Although the
CDR loop latency is not modeled in Markov chain analysis, the jitter caused by the loop
latency can be ignored when the phase step is small enough so that input jitter is dominated.
In this work, we analyze the CDR with Markov chain, given that the state-based framework
is suitable for pattern filtering and multiple conditions in hybrid algorithm.

One drawback of regular Markov chain analysis is that it only depends on the current
phase position to predict the next state, while in our hybrid algorithm, the output of the
previous phase detector (𝑃𝐷𝑜𝑢𝑡,𝑑) and the bit stream (𝐷[𝑛 − 2 ∶ 𝑛 + 1]) are used to decide

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 64

the next state. To model hybrid CDR more accurately, we propose using the multiple-
variable Markov chain analysis, which is inspired by known statistical analysis [21, 49], as an
extension to the regular Markov chain analysis [27, 1] used in the literature. In our analysis
for the hybrid algorithm, we need to include the factors that correlate with each other in
the transition matrices. By exploring relationships among variables (e.g., 𝑃𝐷𝑜𝑢𝑡,𝑑, data
sequences), we can develop better models for the output phase sequences and hence better
prediction.

In this chapter, we apply Markov chain analysis to Mueller-Muller based CDR imple-
mented by pattern filtering with MLSE decoder input, the data level maximization CDR,
and hybrid CDR proposed in Session 3.3.The extension of statistical eye analysis is proposed
to determine the optimal locking point window for a certain pulse response.

Both regular Markov chain and the multiple-variable Markov chain analysis applied to
three CDR algorithms were verified by comparing with the steady-state histogram from the
ground truth time-domain simulation. The proposed hybrid CDR algorithm is shown to be
more robust over different channels than Mueller-Muller CDR and dLev maximization CDR
in the end of the chapter.

Markov Chain Analysis
Markov chain analysis is widely used to analyze the CDR system in the communication
community [42]. Each possible sampling phase is modeled as a state in a Markov chain
shown in Figure. 4.1. With a phase detector output value listed in Table 4.1, the transition
of state 𝜙𝑖 can go either up with probability 𝑃𝑖,𝑖+1, dn with probability 𝑃𝑖,𝑖−1, and hold
with probability 𝑃𝑖,𝑖. To derive the transition probability of the Markov chain in each state,
we need the information of statistics of the input data and ISI along with the pattern filtering
condition on the update equations.

𝑃𝐷𝑜𝑢𝑡 sampling time direction pattern filtering
0 - hold False
1 Early up True
-1 Late dn True

Table 4.1: Sample space of 𝑃𝐷𝑜𝑢𝑡.

ISI Distribution
To understand the probability that the phase detector goes up or down, we need to first
obtain the ISI distribution of the pulse response. Assuming that the transmitted data are
uncoded, random, and independent, the received signal is a sum of transmitted data (random

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 65

Figure 4.1: Single-variable Markov chain.

variables) weighted by the ISI tap of the pulse response as expressed in Equation. 3.1.
The ISI distribution, which is the probability distribution of the resulting received signal,
can be calculated by convolving each tap [42]. Assuming the data sequence is random and
independent of each other, each data has probability of 0.5 to be either 0 or 1. if we convolute
2 ISI taps ℎ1 and ℎ−1, we will have four possible values for four combinations of D [n+1]
and Dn [n-1]. Each of the combination will have an even probability, i.e. 0.25 in the y-axis.
The operation with a pulse response of 200Gbps PAM4 TX in [47] is shown in Figure. 4.2.

Figure 4.2: ISI distribution.

When calculating the ISI distribution of 𝑉𝑖𝑛[𝑛 − 𝑘], we convolve all the taps other than
ℎ[𝑘]. For example, for the ISI distribution of 𝑉𝑖𝑛[𝑛], all taps except ℎ[0] are convolved. An
example of the ISI distribution of 𝑉𝑖𝑛[𝑛] (Equation. 4.1) and 𝑉𝑖𝑛[𝑛 − 1] (Equation. 4.2)
is shown in Figure. 4.3. Pattern filtering can be done by fixing the ISI tap to the chosen

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 66

pattern, which will cause the offset shift. Note that the center of Figure. 4.3 is not 0 but
offset to 1.5 due to pattern filtering 𝐷[𝑛 − 2 ∶ 𝑛 + 1] = 1110.

𝑉𝑖𝑛[𝑛] =
∞

∑
𝑘=−∞

𝐷[𝑛 − 𝑘]ℎ[𝑘]

=
∞

∑
𝑘≠−1,0,1,2

𝐷[𝑛 − 𝑘]ℎ[𝑘] +
2

∑
𝑘=−1

𝐷[𝑛 − 𝑘]ℎ[𝑘]

=
∞

∑
𝑘≠−1,0,1,2

𝐷[𝑛 − 𝑘]ℎ[𝑘] + pattern offset.

(4.1)

𝑉𝑖𝑛[𝑛 − 1] =
∞

∑
𝑘=−∞

𝐷[𝑛 − 𝑘]ℎ[𝑘 − 1]

=
∞

∑
𝑘≠−1,0,1,2

𝐷[𝑛 − 𝑘]ℎ[𝑘 − 1] + Σ2
𝑘=−1𝐷[𝑛 − 𝑘]ℎ[𝑘 − 1]

=
∞

∑
𝑘≠−1,0,1,2

𝐷[𝑛 − 𝑘]ℎ[𝑘 − 1] + pattern offset.

(4.2)

We can get the probability of 𝐼𝑆𝐼 > 0 and 𝐼𝑆𝐼 < 0 by partitioning the histogram into
two parts with ISI amplitude = 0 and sum the probability in the left part and in the
right part, respectively. If we apply a similar operation to the ISI distribution based on the
update equation 𝑃𝐷𝑜𝑢𝑡 = 𝑠𝑔𝑛(𝑉𝑖𝑛[𝑛] − 𝑉𝑖𝑛[𝑛 − 1]), we can get the probability of going up
and down by integrating the sum of the histogram to the right and left of the amplitude
= 0. The example of getting ISI distribution of 𝑀𝐿𝑆𝐸𝑖𝑛 is shown in Figure. 4.4.

4.2 Mueller-Muller 𝑚𝑙𝑠𝑒𝑖𝑛 update Analysis
For the Mueller-Muller algorithm, we force 𝑓(𝜏) = 0 for the locking condition, which leads
to the update equation.

𝑚𝑙𝑠𝑒𝑖𝑛 = 𝑠𝑔𝑛(𝑣𝑖𝑛[𝑛] − 𝑣𝑖𝑛[𝑛 − 1]). (4.3)
Calculate the transition probability shown in the Figure. 4.1 , we find the ISI distribution of
both 𝑉𝑖𝑛[𝑛] and 𝑉𝑖𝑛[𝑛−1] and take the difference of both to get 𝑥 = 𝑣𝑖𝑛[𝑛]−𝑣𝑖𝑛[𝑛−1] shown
in Figure 4.4a. In ISI distribution 𝑥, the summation of the PMF below 0 is the probability
that the phase detector will go down (𝑃𝑑𝑛) when the summation of the PMF above 0 is the
probability that the phase detector will go up (𝑃𝑢𝑝). For example, Figure 4.4a is the ISI
distribution when the clock phase is at a phase count of 150. The probability of going up
and down can be annotated as two dots at 𝑥 = 150 in Figure. 4.4b. The phase resolution
is 0.002 UI with 500 phase counts in total. At the locking point phase = 𝜙𝑙𝑜𝑐𝑘, we have
𝑃𝑢𝑝 = 𝑃𝑑𝑛, which is the crossing point in Figure. 4.4b.

The process of obtaining the transition probability from the ISI distribution is simplified
in 4.5 with the pulse response extracted from the loop-back channel used in the 160Gbps

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 67

Figure 4.3: ISI distribution of 𝑣𝑖𝑛[𝑛] and 𝑣𝑖𝑛[𝑛 − 1].

(a) ISI distribution of at phase count of 150. (b) Probability of up and down over 1 UI.

Figure 4.4: MLSE ISI probability (𝑣𝑖𝑛[𝑛] − 𝑣𝑖𝑛[𝑛 − 1]).

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 68

TRX tapeout[31]. If there is only an up-and-down decision in the phase detector, then the
steady-state probability of the CDR output phase can be calculated directly by finding the
eigen vector of the transition probability matrix from the transition probability calculated
directly from the ISI distribution. However, there is another hold state which occurs when
the data pattern 𝐷[𝑛−2 ∶ 𝑛+1] ≠ [1110]. With pattern filtering, the hold state is considered
and the new transition probability is calculated from the up-and-down transition probability
with the data pattern condition. The steady-state probability will be the eigen vector of
the new transition probability matrix. The locking point is the phase count that gives
the maximum point of the steady-state probability and should be the same as the point
where 𝑃𝑢𝑝 = 𝑃𝑑𝑛 in the transition probability plot. The process of the above operation is
summarized in Figure. 4.6.

Figure 4.5: Transition probability of 𝑚𝑙𝑠𝑒𝑖𝑛 with loop-back channel [31].

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 69

Figure 4.6: Steady-state probability with pattern filtering.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 70

4.3 Data level (dLev) Maximization Analysis
The data level (dLev) is specified as the average received analog signal with certain data
pattern filtering and is usually used for the adaptation of equalization. Usually in the link
with the equalizers working properly, the dLev would converge to the chosen combination of
the main cursor and ISI, for example ℎ0 depending on the application. This can be achieved
by pattern filtering the incoming signal and adapting to the reference level. For example,
only adapt with the error signal when 𝐷[𝑛] = 1 to obtain the level ℎ0. In some channel, we
would like to maximize the main cursor ℎ0 to get a low BER. In this case, we can maximize
the data level with pattern filtering 𝐷[𝑛] = 1 instead.

Since the main cursor and ISI vary with the sampling phase, 𝑑𝐿𝑒𝑣(𝜙) represents the
converged dLev when the clock is in phase 𝜙. In the dLev maximization described in the
previous chapter, additional dithering (𝑑𝑖𝑡ℎ) is inserted to determine whether the clock phase
is early or late compared to the maximum point of ℎ0. Define

𝛿𝑑𝐿𝑒𝑣(𝜙) = 𝑑𝐿𝑒𝑣(𝜙 + 𝑑𝑖𝑡ℎ) − 𝑑𝐿𝑒𝑣(𝜙). (4.4)

We are then trying to describe the dLev maximization phase detector operation with
the equations below, which help us to develop the ISI distribution in order to obtain the
transition probability of the Markov chain.

If 𝑑𝑖𝑡ℎ = Δ, then if 𝛿𝑑𝐿𝑒𝑣(𝜙) > 0, the clock is early and the output of the phase detector
should go up. On the other hand, if Δ𝑑𝐿𝑒𝑣(𝜙) < 0, the clock is late and the phase detector
output should go down.

If 𝑑𝑖𝑡ℎ = −Δ, then the results reverse in the above condition: if 𝛿𝑑𝐿𝑒𝑣(𝜙) > 0, the
clock is early and the output of the phase detector should go down. On the other hand, if
𝛿𝑑𝐿𝑒𝑣(𝜙) < 0, the clock is late and the phase detector should go up.

Based on the observation, we can derive the probability that the phase detector going
up at phase 𝜙 as follows.

𝑃𝑢𝑝(𝜙)
= 𝑃(𝑑𝑖𝑡ℎ = Δ)𝛿𝑑𝐿𝑒𝑣|𝑑𝑖𝑡ℎ=Δ − 𝑃(𝑑𝑖𝑡ℎ = −Δ)𝛿𝑑𝐿𝑒𝑣|𝑑𝑖𝑡ℎ=−Δ

= 𝑃(𝑑𝑖𝑡ℎ = Δ)((𝑑𝐿𝑒𝑣(𝜙 + Δ) − 𝑑𝐿𝑒𝑣(𝜙))) + 𝑃(𝑑𝑖𝑡ℎ = −Δ)(𝑑𝐿𝑒𝑣(𝜙 − Δ) − 𝑑𝐿𝑒𝑣(𝜙)).
(4.5)

If we define
𝑑𝐿𝑒𝑣𝑠𝑙𝑜𝑝𝑒(𝜙) = 𝛿𝑑𝐿𝑒𝑣|𝑑𝑖𝑡ℎ=Δ

= 𝑑𝐿𝑒𝑣(𝜙 + Δ) − 𝑑𝐿𝑒𝑣(𝜙)
(4.6)

then
𝛿𝑑𝐿𝑒𝑣|𝑑𝑖𝑡ℎ=−Δ = 𝑑𝐿𝑒𝑣(𝜙 − Δ) − 𝑑𝐿𝑒𝑣(𝜙)

= −(𝑑𝐿𝑒𝑣((𝜙 − Δ) + Δ) − 𝑑𝐿𝑒𝑣(𝜙 − Δ))
= −𝑑𝐿𝑒𝑣𝑠𝑙𝑜𝑝𝑒(𝜙 − Δ).

(4.7)

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 71

𝑃𝑢𝑝(𝜙)
= 𝑃(𝑑𝑖𝑡ℎ = Δ)((𝑑𝐿𝑒𝑣(𝜙 + Δ) − 𝑑𝐿𝑒𝑣(𝜙))) − 𝑃(𝑑𝑖𝑡ℎ = −Δ)(𝑑𝐿𝑒𝑣(𝜙 − Δ) − 𝑑𝐿𝑒𝑣(𝜙))
= 𝑃(𝑑𝑖𝑡ℎ = Δ)𝑑𝐿𝑒𝑣𝑠𝑙𝑜𝑝𝑒(𝜙) + 𝑃(𝑑𝑖𝑡ℎ = −Δ)𝑑𝐿𝑒𝑣𝑠𝑙𝑜𝑝𝑒(𝜙 − Δ)
= 0.5(𝑑𝐿𝑒𝑣𝑠𝑙𝑜𝑝𝑒(𝜙) + 𝑑𝐿𝑒𝑣𝑠𝑙𝑜𝑝𝑒(𝜙 − Δ)).

(4.8)

From the above derivation, we can calculate 𝑃𝑢𝑝(𝜙) by obtaining the ISI distribution of
𝑑𝐿𝑒𝑣𝑠𝑙𝑜𝑝𝑒(𝜙) and average it with the shifted version of itself.

In the receiver with one-tap MLSE, two 𝑑𝐿𝑒𝑣 values are used for the adaptation in
the datapath, which are 𝑑𝐿𝑒𝑣01 and 𝑑𝐿𝑒𝑣11. 𝑑𝐿𝑒𝑣𝑥𝑦 stands for the averaged sample at
𝑑[𝑛 − 1 ∶ 𝑛] = 𝑥𝑦. Ideally, 𝑑𝐿𝑒𝑣𝑥𝑦 will converge to 𝑦ℎ[0] + 𝑥ℎ[1] where ℎ[0] is the main
cursor and ℎ[1] is the first post-cursor. 𝑑𝐿𝑒𝑣01 and 𝑑𝐿𝑒𝑣11 are obtained with pattern filtering
of 𝑑[𝑛 − 1 ∶ 𝑛] = 01 and 𝑑[𝑛 − 1 ∶ 𝑛] = 11, respectively. The results are shown in Figure
4.7(channel of 200Gbps PAM4 TX).

Figure 4.7: ISI distribution of dLev01/ dLev11 at different sample phase count.

4.4 Hybrid Algorithm Analysis
The proposed CDR algorithm takes advantage of both the Mueller-Muller algorithm and
dLev maximization to provide the well-defined and optimal locking position across a group
of realistic pulse waveforms without adding additional dithering. One challenge that needs to
be addressed is the exact locking position and the jitter distribution of this hybrid method.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 72

Since the Mueller-Muller 𝑚𝑙𝑠𝑒_𝑖𝑛-update is pattern filtering at 𝐷[𝑛−2 ∶ 𝑛+1]1110 and
the 1-tap MLSE is designed to for the first post-cursor, the remaining first pre-cursor could
be used to maximize the margin. Therefore, 𝑑𝐿𝑒𝑣10 is chosen to maximize for the largest
eye opening.

To solve this problem, we need to obtain the transition probability of both Mueller-Muller
in session 4.2 and dLev maximization of 𝑑𝐿𝑒𝑣10 in session 4.3 individually. This information
is the basis for the analysis of the hybrid algorithm. With the information of individual
Mueller-Muller 𝑚𝑙𝑠𝑒_𝑖𝑛-update and the dLev maximization, we now proceed to combine
both with the Markov chain analysis.

Single-Variable Markov chain
We first try to tackle this problem with the single-variable Markov chain described in session
4.1. The update equations for the hybrid algorithm that was derived in session 3.3 are
rewritten below. 𝑒[𝑛] is the output of the error slicer that compares the sampled value 𝑣𝑖𝑛[𝑛]
with 𝑑𝐿𝑒𝑣10.

Figure 4.8: Individual 𝑚𝑙𝑠𝑒𝑖𝑛-update and dLev10 transition probability.

if D[n:n+1] == 10:
if D[n-2:n-1] == 11:

PD_out = sgn(sgn(Vin[n] - Vin[n-1]) + PD_out,d e[n])
else:

PD_out = PD_out,d e[n]

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 73

Based on the value of 𝑃𝐷𝑜𝑢𝑡,𝑑, we can tabulate the other components as shown below.

𝑃𝐷𝑜𝑢𝑡,𝑑 𝑃(𝑃𝐷𝑜𝑢𝑡,𝑑) 𝑒[𝑛] 𝑠𝑔𝑛(𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛])
0 𝑃𝑖,𝑖 0 0
1 𝜋𝑖−1𝑃𝑖−1,𝑖

𝜋𝑖
𝑑𝐿𝑒𝑣(𝜙𝑖) − 𝑑𝐿𝑒𝑣(𝜙𝑖−1) = Δ𝑑𝐿𝑒𝑣(𝜙𝑖) 𝑠𝑔𝑛(Δ𝑑𝐿𝑒𝑣(𝜙𝑖))

-1 𝜋𝑖+1𝑃𝑖+1,𝑖
𝜋𝑖

𝑑𝐿𝑒𝑣(𝜙𝑖) − 𝑑𝐿𝑒𝑣(𝜙𝑖+1) = −Δ𝑑𝐿𝑒𝑣(𝜙𝑖+1) 𝑠𝑔𝑛(Δ𝑑𝐿𝑒𝑣(𝜙𝑖+1))

Table 4.2: Sample space of 𝑃𝐷𝑜𝑢𝑡.

Here, we define
Δ𝑑𝐿𝑒𝑣(𝜙𝑖) = 𝑑𝐿𝑒𝑣(𝜙𝑖) − 𝑑𝐿𝑒𝑣(𝜙𝑖−1). (4.9)

Assume 𝑐 = 𝑚𝑙𝑠𝑒_𝑖𝑛 = 𝑣𝑖𝑛[𝑛]−𝑣𝑖𝑛[𝑛−1] and 𝑒[𝑛] are the output of the comparator, which
will only be +1 or -1.

𝑃𝑢𝑝,𝑖 = 𝑃𝑖,𝑖+1

= 𝑃(𝑃𝐷𝑜𝑢𝑡 > 0)
= 𝑃(𝑐 > 0, 𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] ≥ 0)
= 𝑃(𝑐 > 0)𝑃(𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] ≥ 0)
= 𝑃(𝑐 > 0)(𝑃 (𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] = 0) + 𝑃(𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] > 0))
= 𝑃(𝑐 > 0)(𝑃 (𝑃𝐷𝑜𝑢𝑡,𝑑 = 0) + (∑

𝑥=±1
𝑃(𝑃𝐷𝑜𝑢𝑡,𝑑 = 𝑥))𝑃(𝑥𝑒[𝑛] > 0))

(4.10)

From the equations derived in A.1, we can rewrite the results into a set of equations
that describe the transition probability in the state 𝑖 of the Markov chain. Here, ⃗𝜋 is the
steady-state distribution of the Markov chain.

𝜋𝑖 = 𝑃(𝜙𝑛 = 𝑖) (4.11)

𝑃𝑖,𝑖+1 = 𝑃(𝑃𝐷𝑜𝑢𝑡 > 0)

=
𝑃𝑐,𝑢𝑝(𝜙𝑖)

𝜋𝑖
[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖+1)]

(4.12)

𝑃𝑖,𝑖−1 = 𝑃(𝑃𝐷𝑜𝑢𝑡 < 0)

=
𝑃𝑐,𝑑𝑛(𝜙𝑖)

𝜋𝑖
[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖+1)]

(4.13)

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 74

𝑃𝑖,𝑖 = 𝑃(𝑃𝐷𝑜𝑢𝑡 = 0)

=
𝑃𝑐,𝑢𝑝(𝜙𝑖)

𝜋𝑖
[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖+1)]

+
𝑃𝑐,𝑑𝑛(𝜙𝑖)

𝜋𝑖
[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖+1)]

(4.14)

Assuming that we obtain the information about the Mueller-Muller update and the dLev
update, the unknown variables are 𝜋𝑖−1, 𝜋𝑖, 𝜋𝑖+1, 𝑃𝑖,𝑖−1, 𝑃𝑖,𝑖, 𝑃𝑖,𝑖+1, 𝑃𝑖−1,𝑖, 𝑃𝑖+1,𝑖, which
are more than the equations we have in the set.

If we multiply both sides of the equations with 𝜋, we can now treat 𝜋𝑖𝑃𝑖,𝑖, 𝜋𝑖𝑃𝑖,𝑖+1,
𝜋𝑖𝑃𝑖,𝑖−1, 𝜋𝑖−1𝑃𝑖−1,𝑖, 𝜋𝑖+1𝑃𝑖+1,𝑖 as unknown variables in the set of equations.

𝜋𝑖𝑃𝑖,𝑖+1 = 𝑃𝑐,𝑢𝑝(𝜙𝑖)[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖+1)] (4.15)

𝜋𝑖𝑃𝑖,𝑖−1 = 𝑃𝑐,𝑑𝑛(𝜙𝑖)[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖+1)] (4.16)

𝜋𝑖𝑃𝑖,𝑖 = 𝑃𝑐,𝑢𝑝(𝜙𝑖)[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖+1)]
+ 𝑃𝑐,𝑑𝑛(𝜙𝑖)[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖+1)]

(4.17)

For an K-state Markov chain, we have 𝜋1, 𝜋2, … , 𝜋𝐾, and 𝑃1,𝐾, 𝑃1,1, 𝑃1,2, 𝑃2,1, 𝑃2,2, 𝑃2,3,
… , 𝑃𝐾,𝐾−1, 𝑃𝐾,𝐾, 𝑃𝐾,1. That implies that we will have 4𝐾 unknown variables in total. How-
ever, if we slightly convert the equations, we will have 𝜋1𝑃1,𝐾, 𝜋1𝑃1,1, 𝜋1𝑃1,2, 𝜋2𝑃2,1, 𝜋2𝑃2,2,
𝜋2𝑃2,3, … , 𝜋𝐾𝑃𝐾,𝐾−1, 𝜋𝐾𝑃𝐾,𝐾, 𝜋𝐾𝑃𝐾,1, where we only have 3𝐾 unknown variables to solve
in 3𝐾 equations.

The transition probability can be solved by rearranging in the form of matrix 𝑃 and using
the steady-state Markov chain property 𝜋𝑃 = 𝜋 which is discussed in the next section.

Transition Matrix

To solve the linear equations of 𝜋𝑥𝑃𝑥,𝑦 above, we can arrange the equations in homogeneous
form and then translate them into matrix form. We can solve the unknown variables 𝜋𝑥𝑃𝑥,𝑦
by solving the null space of the matrix. Then use the characteristic of the transition prob-
ability ∑𝑗=1,…,𝐾 𝜋𝑖𝑃𝑖,𝑗 = 𝜋𝑖 to get 𝜋𝑖. With 𝜋𝑖 being solved, 𝑃𝑖,𝑗 can be simply solved by
𝜋𝑖𝑃𝑖,𝑗
𝑃𝑖,𝑗

.
Rearrange Equation 4.15, Equation 4.16, and equation 4.17 in homogeneous form and

then we can rewrite the equations in matrix form as follows.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 75

𝐴 ⃗𝑥 = ⃗0 (4.18)

.
We know that ⃗𝑥 is in the null space and all elements in ⃗𝑥 have to be non-negative since

𝜋𝑥 and 𝑃𝑥,𝑦 are probability and thus non-negative. ⃗𝑥 would be the null space of A but only
the one with positive sign.

After ⃗𝑥 is solved, we can calculate the steady-state probability at state 𝑖 by summing all
𝜋𝑖𝑃𝑖,𝑗. Since ∑𝑗 𝑃𝑖,𝑗 = 1, we have

∑
𝑗

𝜋𝑖𝑃𝑖,𝑗 = 𝜋𝑖 ∑
𝑗

𝑃𝑖,𝑗 = 𝜋𝑖 (4.19)

With 𝜋𝑖𝑃𝑖,𝑗 and 𝜋𝑖 solved in the previous steps, we can derive the transition probability
𝑃𝑖,𝑗 simply by

𝜋𝑖𝑃𝑖,𝑗

𝜋𝑖
= 𝑃𝑖,𝑗 (4.20)

An example of a 3-state Markov chain is used to illustrate the steps in A.2. The steps
to solve the steady-state probability and the transition state probability are summarized in
Figure 4.9.

To evaluate the accuracy of the derived using a single-variable Markov chain, we compare
the steady-state probability with the histogram obtained from the time-domain simulation
steady state. Two pulse responses are used for the evaluation: the ideal linearized pulse
response (Figure. 4.10a) and real-channel pulse response (Figure. 4.11a). The histogram
represents the results from time-domain simulation while the piecewise linear curve represents
the statistical derivation. Three CDR algorithms are compared for the locking position
and jitter distribution: c for Mueller-Muller based mlse_in algorithm, dLev for dLev
maximization algorithm, and hybrid for hybrid algorithm. In the simple ideal channel, the
time domain matches the statistical analysis in all algorithms (Figure. 4.10b). However,
in the real channel, the result in the time domain of the hybrid algorithm has a different
locking position and jitter distribution than in the statistical analysis (Figure. 4.11b).

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 76

Figure 4.9: Steps of solving steady state and transition probability.

(a) Pulse response. (b) Steady-state probability.

Figure 4.10: Time-domain simulation vs. statistical analysis with ideal channel.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 77

(a) Pulse response (b) Steady-state probability

Figure 4.11: Time-domain simulation vs. statistical analysis with real channel.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 78

Multiple-variable Markov chain
To resolve the discrepancy of the time-domain simulation and the single-variable Markov
chain analysis, the multiple variable Markov chain is being proposed to include more infor-
mation in each state. We consider three variables in the Markov chain: phase (𝜙𝑖), previous
phase detector output (𝑃𝐷𝑜𝑢𝑡,𝑑), and pattern filtering (sequence of 𝐷). The matrix of mul-
tiple variables of the Markov chain is illustrated in Figure 4.12, where the submatrix 𝐴
includes all the possible transitions between the filtered data sequence.

Assume that there are 𝑚 possible phase detector outputs, 𝑘 phase count, and the length
of the filtered data sequence is 𝑝. The size of the submatrix 𝐴 will be 2𝑝 × 2𝑝. We can
integrate submatrix A to include the phase detector output, the resulting matrix size at
each phase will be 𝑘2 × 2𝑝 × 2𝑝. Finally, with the phase counts considered, the size of the
flattened transition matrix would be 𝑚2 × 𝑘2 × 2𝑝 × 2𝑝 in total.

If we filter 𝐷[𝑛 − 3 ∶ 𝑛], where 𝑛 is the current time step, then the submatrix 𝐴 is a 16
by 16 matrix. In our algorithm, 𝑃𝐷𝑜𝑢𝑡,𝑑 records the last meaningful output of the phase
detector, which means the last time we update with the filtered pattern. Therefore, if the
pattern is not found, then both phase and 𝑃𝐷𝑜𝑢𝑡,𝑑 will remain the previous recorded output,
which should be either up(+1) or dn(-1). For each phase (𝜙𝑖), the previous phase detector
output (𝑃𝐷𝑜𝑢𝑡,𝑑) can be +1 or −1. In this case, we have 4𝑘2 submatrices. The size of the
matrix will be 4𝑘2 × 162 = 1024𝑘2.

Figure. 4.12 shows the construction of the matrix. 𝐴(𝜙[𝑛−1],𝑃𝐷𝑜𝑢𝑡,𝑑[𝑛−1]),(𝜙[𝑛],𝑃𝐷𝑜𝑢𝑡,𝑑[𝑛])
in Figure. 4.12a is the submatrix that denotes the transition that occurs at time step 𝑛.
The green submatrices (𝐴(𝜙𝑗,𝑥),(𝜙𝑗,𝑥)) that lie in the diagonal positions of the integrated
matrix (Figure. 4.13) are the transition matrix for the ℎ𝑜𝑙𝑑 decision (Figure. 4.12b). The
blue submatrices 𝐴(𝜙𝑖−1,+1),(𝜙𝑖,−1) and the red submatrices 𝐴(𝜙𝑖+1,𝑥),(𝜙𝑖,𝑥) are the transition
matrices for the decision 𝑢𝑝 and 𝑑𝑛, respectively (Figure. 4.12c and Figure. 4.12d. The
other submatrices in the integrated matrices are impossible transitions, and thus the entry
will be zero. Although the size of the matrix seems large, it is sparse and thus realistic to
be solved.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 79

(a) Submatrix A. (b) Hold matrix.

(c) Up matrix. (d) Dn matrix.

Figure 4.12: Construction elements of the multiple variable Markov chain transition matrix.

C
H

A
PT

ER
4.

STAT
IST

IC
A

L
A

N
A

LY
SIS

O
F

T
H

E
C

D
R

A
LG

O
R

IT
H

M
80

Figure 4.13: Multiple Variable Markov chain transition matrix.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 81

Transition Matrix

The transition matrix in Figure. 4.13 can be rewritten as Equation. 4.21. Since this matrix
itself includes hold state and pattern filtering, we can easily find steady-state probability by
finding the eigen vector for the transition probability matrix.

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐴(𝜙0,−1),(𝜙0,−1) 𝐴(𝜙0,−1),(𝜙0,+1) 𝐴(𝜙0,−1),(𝜙𝑛,−1) 𝐴(𝜙0,−1),(𝜙𝑛,+1)

𝐴(𝜙0,+1),(𝜙0,−1) 𝐴(𝜙0,+1),(𝜙0,+1) 𝐴(𝜙0,+1),(𝜙𝑛,−1) 𝐴(𝜙0,+1),(𝜙𝑛,+1)
. .
. . .
. 𝐴(𝜙𝑎,𝑥),(𝜙𝑏,𝑦) .
. .
. . .
. .

𝐴(𝜙𝑛,+1),(𝜙0,−1) 𝐴(𝜙𝑛,+1),(𝜙0,+1) 𝐴(𝜙𝑛,+1),(𝜙𝑛,−1) 𝐴(𝜙𝑛,+1),(𝜙𝑛,+1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.21)

Hold Submatrices When 𝐷[𝑛 ∶ 𝑛 + 1] ≠ 10, the phase detector 𝑃𝐷𝑜𝑢𝑡 = 0 and the
update logic will not be triggered. This means that both 𝑃𝐷𝑜𝑢𝑡,𝑑 and the phase count
𝜙𝑛 = 𝜙𝑛+1 will not change. Since we assume that the data sequence is 𝑖.𝑖.𝑑, we know that
𝐷𝑖𝑛[𝑛 + 1] can be either 0 or 1 with a probability of 0.5.

If state 𝑛 (𝑆𝑛 =< (𝑖0, 𝑖1, 𝑖2, 𝑖3), 𝜙𝑖, 𝑃𝐷𝑑 >, then state 𝑛 + 1𝑆𝑛+1 the probability mass
function (PMF) can be derived as

𝑃𝑆𝑛+1
(𝑠) =

⎧{
⎨{⎩

0.5, 𝑠 =< (𝑖1, 𝑖2, 𝑖3, 0), 𝜙𝑖, 𝑃𝐷𝑑 >
0.5, 𝑠 =< (𝑖1, 𝑖2, 𝑖3, 1), 𝜙𝑖, 𝑃𝐷𝑑 >

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The submatrix of the hold decision is shown in Equation. 4.22. Note that it is not a
complete transition matrix, thus the summation of each row is not always one. In fact, all

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 82

entries in the row corresponding to the data pattern 𝐷[𝑛 ∶ 𝑛 + 1] = 10 are zero.

𝐴(𝜙𝑖,𝑥),(𝜙𝑖,𝑥) = 1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.22)

Up and Dn Submatrices Based on the update equation, we only update the phase
detector output when 𝐷[𝑛 ∶ 𝑛 + 1] = 10. Mueller-Muller-based 𝑀𝐿𝑆𝐸𝑖𝑛/𝑐 update only
happens at 𝐷[𝑛 − 2 ∶ 𝑛 + 1] = 1110 while dLev update happens at 𝐷[𝑛 − 2 ∶ 𝑛 + 1] =
0010/0110/1010.

To find the transition probability, we consider two cases where 𝑃𝐷𝑜𝑢𝑡,𝑑[𝑛] = +1/−1. The
value of 𝑃𝐷𝑜𝑢𝑡,𝑑[𝑛] will affect the dLev maximization part but not the Mueller-Muller-based
𝑀𝐿𝑆𝐸𝑖𝑛/𝑐 update.

For 𝐷[𝑛 − 2 ∶ 𝑛 + 1] = 0010/0110/1010, we only consider dLev maximization. Assuming
𝑃𝐷𝑜𝑢𝑡,𝑑[𝑛] = 𝑃𝐷𝑑 ∈ [+1, −1], i.e. 𝑆𝑛 =< (𝑖0𝑖1𝑖2𝑖3), 𝜙𝑖, 𝑃𝐷𝑑 >, then

𝑃𝑆𝑛+1
(𝑠) =

⎧
{{
⎨
{{
⎩

0.5𝑃(Δ𝑑𝐿𝑒𝑣(𝑖0𝑖1𝑖2𝑖30), 𝜙(𝑃𝐷𝑑) < 0), 𝑠 =< (𝑖1𝑖2𝑖30), 𝜙𝑖−1, −1 >
0.5𝑃(Δ𝑑𝐿𝑒𝑣(𝑖0𝑖1𝑖2𝑖31), 𝜙(𝑃𝐷𝑑) < 0), 𝑠 =< (𝑖1𝑖2𝑖31), 𝜙𝑖−1, −1 >
0.5𝑃(Δ𝑑𝐿𝑒𝑣(𝑖0𝑖1𝑖2𝑖30), 𝜙(𝑃𝐷𝑑) > 0), 𝑠 =< (𝑖1𝑖2𝑖30), 𝜙𝑖+1, +1 >
0.5𝑃(Δ𝑑𝐿𝑒𝑣(𝑖0𝑖1𝑖2𝑖31), 𝜙(𝑃𝐷𝑑) > 0), 𝑠 =< (𝑖1𝑖2𝑖31), 𝜙𝑖+1, +1 >

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.23)

From Table. 4.2, we know that

𝜙(𝑃𝐷𝑑) = { 𝜙𝑖+1, for 𝑃𝐷𝑑 = −1
𝜙𝑖, for 𝑃𝐷𝑑 = +1 (4.24)

For 𝐷[𝑛 − 2 ∶ 𝑛 + 1] = 1110, we need to take into account the Mueller-Muller-based

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 83

𝑀𝐿𝑆𝐸𝑖𝑛/𝑐 update. Assuming 𝑆𝑛 =< (1110), 𝜙𝑖, 𝑃𝐷𝑑 >, we have the following.

𝑃𝑆𝑛+1
(𝑠) =

⎧
{
{
⎨
{
{
⎩

0.5𝑃(𝑠𝑔𝑛(𝑓ℎ𝑦𝑏𝑟𝑖𝑑(11100, 𝜙𝑖, 𝑃𝐷𝑑)) < 0), 𝑠 =< (1100), 𝜙𝑖−1, −1 >
0.5𝑃(𝑠𝑔𝑛(𝑓ℎ𝑦𝑏𝑟𝑖𝑑(11101, 𝜙𝑖, 𝑃𝐷𝑑)) < 0), 𝑠 =< (1101), 𝜙𝑖−1, −1 >
0.5𝑃(𝑠𝑔𝑛(𝑓ℎ𝑦𝑏𝑟𝑖𝑑(11100, 𝜙𝑖, 𝑃𝐷𝑑)) > 0), 𝑠 =< (1100), 𝜙𝑖+1, +1 >
0.5𝑃(𝑠𝑔𝑛(𝑓ℎ𝑦𝑏𝑟𝑖𝑑(11101, 𝜙𝑖, 𝑃𝐷𝑑)) > 0), 𝑠 =< (1101), 𝜙𝑖+1, +1 >

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.25)

where

𝑓ℎ𝑦𝑏𝑟𝑖𝑑(𝐷𝑎𝑡𝑎, 𝜙, 𝑃𝐷𝑜𝑢𝑡,𝑑) = 𝑠𝑔𝑛(𝑐(𝐷𝑎𝑡𝑎, 𝜙) + 𝑠𝑔𝑛Δ𝑑𝐿𝑒𝑣(𝐷𝑎𝑡𝑎), 𝜙(𝑃𝐷𝑜𝑢𝑡,𝑑)) (4.26)

Up Submatrices The up submatrices consist of the transition probability where the
phase detector output is +1, which means the next delayed phase detector output 𝑃𝐷𝑜𝑢𝑡,𝑑 =
+1. The blue and red entries in Equation. 4.27 correspond to the probability of the first
two states in Equation. 4.23 and Equation. 4.25 respectively.

𝐴(𝜙𝑖−1,𝑥),(𝜙𝑖,1) =1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝑃𝑢𝑝,0 𝑃𝑢𝑝,1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 𝑃𝑢𝑝,2 𝑃𝑢𝑝,3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝑃𝑢𝑝,4 𝑃𝑢𝑝,5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 𝑃𝑢𝑝,6 𝑃𝑢𝑝,7 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.27)

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 84

where
𝑃𝑢𝑝,0 = 𝑃(𝑃𝐷𝑥,00100(𝜙𝑖−1) > 0)
𝑃𝑢𝑝,1 = 𝑃(𝑃𝐷𝑥,00101(𝜙𝑖−1) > 0)
𝑃𝑢𝑝,2 = 𝑃(𝑃𝐷𝑥,01100(𝜙𝑖−1) > 0)
𝑃𝑢𝑝,3 = 𝑃(𝑃𝐷𝑥,01101(𝜙𝑖−1) > 0)
𝑃𝑢𝑝,4 = 𝑃(𝑃𝐷𝑥,10100(𝜙𝑖−1) > 0)
𝑃𝑢𝑝,5 = 𝑃(𝑃𝐷𝑥,10101(𝜙𝑖−1) > 0)
𝑃𝑢𝑝,6 = 𝑃(𝑃𝐷𝑥,11100(𝜙𝑖−1) > 0)
𝑃𝑢𝑝,7 = 𝑃(𝑃𝐷𝑥,11101(𝜙𝑖−1) > 0)

(4.28)

Dn Submatrices The up submatrices consist of the transition probability where the
phase detector output is −1, which means the next delayed phase detector output 𝑃𝐷𝑜𝑢𝑡,𝑑 =
−1. The blue and red entries in Equation. 4.27 correspond to the probability of the third
and fourth states in Equation. 4.23 and Equation. 4.25 respectively.

𝐴(𝜙𝑖−1,𝑥),(𝜙𝑖,1) =1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝑃𝑑𝑛,0 𝑃𝑑𝑛,1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 𝑃𝑑𝑛,2 𝑃𝑑𝑛,3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝑃𝑑𝑛,4 𝑃𝑑𝑛,5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 𝑃𝑑𝑛,6 𝑃𝑑𝑛,7 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.29)

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 85

where
𝑃𝑑𝑛,0 = 𝑃(𝑃𝐷𝑥,00100(𝜙𝑖+1) > 0)
𝑃𝑑𝑛,1 = 𝑃(𝑃𝐷𝑥,00101(𝜙𝑖+1) > 0)
𝑃𝑑𝑛,2 = 𝑃(𝑃𝐷𝑥,01100(𝜙𝑖+1) > 0)
𝑃𝑑𝑛,3 = 𝑃(𝑃𝐷𝑥,01101(𝜙𝑖+1) > 0)
𝑃𝑑𝑛,4 = 𝑃(𝑃𝐷𝑥,10100(𝜙𝑖+1) > 0)
𝑃𝑑𝑛,5 = 𝑃(𝑃𝐷𝑥,10101(𝜙𝑖+1) > 0)
𝑃𝑑𝑛,6 = 𝑃(𝑃𝐷𝑥,11100(𝜙𝑖+1) > 0)
𝑃𝑑𝑛,7 = 𝑃(𝑃𝐷𝑥,11101(𝜙𝑖+1) > 0)

(4.30)

Compare to Single-Variable Markov Chain

The results of statistical analysis are verified through the comparison with histogram from
ground truth time-domain simulation. Shown in Figure. 4.14b, the results of the multiple-
variable Markov chain match much better than the single-variable counterpart for the hybrid
algorithm in the figure. 4.14a. The dotted statistical analysis (dotted curve) agrees well with
the time-domain simulation (blue histogram) both in position (locking point) and shape
(steady-state jitter distribution) in Figure. 4.14b, which indicates that the accuracy of the
statistical results of the multiple-variable Markov chain is enhanced.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 86

(a) Single-variable Markov chain.

(b) Multiple-variable Markov chain.

Figure 4.14: Time-domain simulation vs. statistical analysis with real channel.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 87

4.5 Performance Matrices

Statistical Eye Analysis
To evaluate the performance of CDR algorithm, we need to first define the performance
matrices as a baseline. The locking position and steady-state jitter are two critical consid-
erations of the recovered clock.

We would like to have the steady-state jitter as small as possible. However, it takes
more considerations to decide the best locking position of the recovered clock over a known
pulse response. The best locking position should give the best performance for a link.
Statistical eye analysis [42] is a way to evaluate performance at different sampling phases by
understanding the behavior of the signal received throughout the symbol time.

The statistical eye is a set of probability contours. The horizontal axis represents the
time domain, and the vertical axis represents the scaling signal amplitude. The colored
lines represent the different BER simulations. For the pulse response extracted from the
loop-back channel used in the 160Gbps TRX tapeout[31] in Figure. 4.5, we can obtain the
statistical eye in Figure. 4.15 and analyze for the optimal locking position. Figure. 4.15a
show the timing and voltage margin extracted from the statistical eye. Since the statistical
eye is symmetric with respect to the x-axis, we can only consider the timing margin and
the voltage margin when voltage offset > 0 (blue line). If we look at the voltage offset
of 0 and set the target BER to 10−12, we can get the timing margin by the length of the
red line. The center of the red line is defined as the center timing position that gives the
largest timing margin at 0 voltage offset. As we sweep the voltage offset, we can get the
timing margin and optimal sampling time across the voltage offset. For example, if we set
the voltage offset to 0.2 UI (Figure. 4.15b, the effective voltage margin is 0.4 UI, which is
twice the voltage offset. Here we can find the corresponding timing margin and centered
timing position. Furthermore, since the voltage margin is non-zero now, we can find the eye
opening area. Both the timing margin and the voltage margin are important performance
matrices. Here we define the area as timing margin × voltage margin. We weight the timing
margin and the voltage margin the same by normalizing them to their own maximum value,
respectively. In order to maximize both the voltage margin and the timing margin, we try to
find the sampling point that corresponds to the maximal square area. We can also observe
that the centered timing position varies a little across the voltage offset. In Figure. 4.15c,
the maximum area occurs when the center timing position is -0.02 UI.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 88

(a) Mapping of statistical eye to timing and voltage margin.

(b) voltage offset = 0.2UI.

(c) Maximum area of the opening eye.

Figure 4.15: Statistical eye analysis.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 89

To compare Mueller-Muller 𝑀𝐿𝑆𝐸_𝑖𝑛, dLev maximization and hybrid algorithm, we
find the steady-state phase probability of all algorithms in both time-domain simulation and
statistical analysis in Figure. 4.16. The bold dotted line shows the optimal sampling position
across different voltage offsets from -0.02UI to 0 UI. We can find that it is on the right side
of both MM-base and dLev maximization. And the hybrid algorithm actually fits better in
the optimal sampling region. We can estimate the steady-state jitter from the spread of the
probability distribution. The wider distribution means the larger steady-state jitter. The
hybrid algorithm has the best locking position and moderate jitter distribution by combining
Mueller-Muller and dLev maximization, making it a better and more robust candidate for
the CDR algorithm.

Figure 4.16: Time-domain simulation vs. steady-state probability with 160Gbps loop-back
channel. (dotted lines: optimal locking window from statistical eye analysis)

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 90

Jitter Tolerance (JTOL)
The jitter tolerance (JTOL) defines the maximum tolerable input jitter that can achieve a
given bit error rate (BER).

𝐵𝐸𝑅 = Number of bit errors
Number of transmitted bits

(4.31)

The way to test the JTOL is to add the sinusoidal jitter in the data input of the CDR
and gradually increase the amplitude of the jitter until the BER exceeds the given BER
at a certain frequency. If we sweep the frequency and repeat the same procedure to find
the JTOL at each frequency, we can compare the JTOL curve of the CDR with the JTOL
mask specified for a specific application and data rate. If the JTOL curve lies above the
JTOL mask, the JTOL is satisfied for the specs. Since we are not linearizing the phase
detector as [37, 14, 28] as stated in Session 4.1, JTOL cannot be derived directly from
the Markov chain statistical method that we describe in this chapter. We directly apply a
time-domain simulation to obtain the JTOL of each CDR algorithm.The JTOLs of different
CDR algorithms are shown in Figure. 4.17. All algorithms meet the JTOL specs with the
CEI-112G-XSR JTOL mask. The hybrid algorithm has a similar JTOL curve as the dLev
maximization algorithm, which is superior to the Mueller-Muller 𝑀𝐿𝑆𝐸_𝑖𝑛 algorithm.

Figure 4.17: JTOL with 160Gbps loopback channel.

CHAPTER 4. STATISTICAL ANALYSIS OF THE CDR ALGORITHM 91

4.6 Summary
In this chapter, we apply Markov-chain-based statistical analysis to predict the locking point
and steady-state jitter of the CDR algorithm. The multiple-variable Markov chain analysis
is proposed to better analyze the CDR algorithm with complicated update equations that
include different variables and depend on the data pattern. The statistical results are verified
through the ground-truth time-domain simulation. We show that the single-variable Markov
chain with filtering is good enough to predict Mueller-Muller CDR and dLev maximization
CDR in Session 4.2 and Session 4.3 for two different channels in Figure. 4.10 and Figure. 4.11.
We derive and demonstrate that a multiple-variable Markov chain can predict the locking
point and the jitter distribution more accurately in Figure. 4.14b. These results conclude
the versatile usage of Markov-chain-based statistical analysis for different baud-rate CDR
algorithms and the accuracy to predict the locking point and steady-state jitter distribution.
Furthermore, we demonstrate that the locking point and steady-state jitter distribution
of the hybrid algorithm can be accurately predicted by multiple Markov chain statistical
analysis. Although the locking point and steady-state jitter distribution can be predicted
accurately, the limitation of the Markov-chain-based analysis lacks the direct derivation for
jitter tolerance (JTOL) which we will need to verify through time-domain simulation (Figure.
4.17).

Since JTOL cannot be derived directly through Markov-chain-based statistical analysis,
we propose to use the optimal window for the locking point from statistical eye analysis
to evaluate the CDR performance in terms of the locking point and the steady-state jitter
distribution. Shown in Figure. 4.16, the dotted line shows the optimal locking window and
suggests that the proposed hybrid algorithm has the best performance, since the area under
the steady-state probability distribution of the hybrid algorithm has greater overlap with
the locking window.

92

Chapter 5

Design of 100Gb/s 1-Tap MLSE
Receiver with Baud-rate CDR

5.1 Overview
A 100 Gbps NRZ 1-tap MLSE receiver was designed in a 16 nm FinFET process to implement
the hybrid CDR algorithm described and analyzed in the previous chapters.

Figure 5.1: Block diagram of the receiver.

The receiver block diagram shown in Figure. 5.1 includes the datapath, the clock path
and the digital back-end. The single-window length-2 MLSE design is chosen for its lower
power consumption than window length-3 MLSE and error rates comparable to the DFE for
𝛼 ≤ 0.3[31]. The receiver topology is based on the 160 Gbps receiver designed by Paul-Kwon

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 93

in [31] but is redesigned to optimize for the 100 Gbps data rate and further reduce power
and area. CDR loop and the on-chip adaptation loop are added to perform the hybrid CDR
algorithm. The T-coil structure designed by Kunmo Kim is used as the passive frontend to
improve the bandwidth and signal integrity at the full-bit rate for the datapath and at the
12.5GHz external debugging clock input for the clock path.

The generator-based method using the Berkeley analog generator described in Chapter
1.1 is implemented in the analog design of the receiver. The merit of the generator-based
design includes the reduced efforts to port the design to different specs with similar layout
styles. This 100Gbps receiver design took advantage of hierarchical design and portability,
utilizing the building blocks of the 160Gbps design.

5.2 Datapath

Architecture overview
The overall analog datapath block diagram is shown in Figure. 5.3 compared to its 160Gbps
counterpart version in Figure. 5.2.

To save power, current integration techniques [26][31] are used for T&H, 8:16 deserializer,
buffer, gain and summer in both designs. For N interleaving, there are NUIs in one sample
period. There are three phases: integrate, hold, and reset during one sample period. In the
integrate phase, the input voltage is sampled by the current integration. The final integrated
value will remain during the hold phase, allowing the next stage to sample the hold voltage.
Finally, in the reset phase, the voltage is reset to the default state in preparation for the
next sampling. Ideally, we want the integrate phase in one stage to be within the hold phase
of the previous stage to obtain the correct and stable input. The reset time should be long
enough to prevent residual errors.

To achieve the desired throughput with reduced power, the datapath is implemented in
8 time-interleaved paths instead of 16 time-interleaved paths in the 160Gbps receiver. Dese-
rialization after MLSE remains the factor of 8. This modification makes the operation speed
of the slicers and digital back-end higher than that of the 160Gbps receiver. However, the
increased speed (12.5GHz for MLSE slices and 1.56GHz for digital backend) is achieveable
for the technology node. This change saves half the area and the required slicers and elim-
inates the 2-to-1 deserialization stage in [31]. The change further simplified the layout and
routing. With the number of interleaving halved, the analog clock domain is reduced to one
clock domain only, eliminating the need for dividers (Figure. 2.4).

The highpass filter and buffer stage are removed from the datapath for further area
and power savings. highpass filter helps set the common mode to the acceptable range
for the following 8-16 deserializer in a 160Gbps receiver. With downscaling of speed in
the track-and-hold stage, the output common mode falls in the acceptable range for the
following integrating latch stage and thus can be removed. The gain of the track-and-hold

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 94

and gain/summer increases with the larger integrating window due to lower speed. Therefore,
the buffer stage is no longer needed for the budgeted gain.

Figure 5.2: 160Gbps receiver[31] analog datapath block diagram.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 95

Figure 5.3: 100Gbps receiver analog datapath block diagram.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 96

The resulting layout of the datapath is shown in Figure. 5.4. With the change in
architecture, the overall layout reduces 25% in width and 47% in length.

Figure 5.4: 160Gbps vs. 100Gbps MLSE analog datapath layout comparison.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 97

Architeture change from 160Gbps Receiver
Gain and Summer

Both gain and summer functions are implemented with the integrating latches. In 160 Gbps
design shown in Figure. 5.6, the summer integrating cycle (Reset/ Integrate/ Hold) is 16UI
and Integrate: Hold: Reset is 4UI: 4UI: 8UI. Since the hold phase of the previous buffer stage
is also 4UI, the overlapping hold phase between two signals is 3UI leaving 1UI not aligned
exactly. The inaccuracy of the 1UI misalignment is compensated for with gain control in the
160Gbps receiver [31]. In the 100 Gbps receiver, the main challenge in integrating latched

Figure 5.5: Summer schematic and 160 Gbps waveforms.

summer with the removal of 8:16 deserializer is to ensure that the summing operation occurs
at the window in which two signals are aligned. There is 1UI delay between the current
and previous inputs, which makes timing alignment critical to get the correct summation,
especially when the 8:16 deserializer stage is removed. Due to the serialization factor being
half of the 160 Gbps receiver, the integration phase was reduced to 2UI instead of 4UI. If
we keep the buffer with the 2UI hold phase before the summer, the 1UI misalignment will
account for 50% of the summer integrate phase, which turns into a significant inaccuracy.
By removing the buffer and directly connecting to the T&H stage, the 3UI hold phase can
perfectly cover the 1UI delay and perform the summation without misalignment. The timing

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 98

of the summer path including T&H and sampler is revealed in Figure. 5.6b. The simulation
waveform is shown in Figure. 5.6c.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 99

(a) block diagram.

(b) Timing.

(c) 100 Gbps summer waveforms.

Figure 5.6: Summer path and its timing.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 100

Retimer

Figure 5.7: Sampler and retimer.

The strong-arm sampler and the retimer are inherited from the 160Gbps receiver de-
signed by Paul-Kwon in [31]. The digitized data after the sampler need to be retimed and
deserialized further to 1.56GS/s to process in the digital backend. The detailed description
can be found in [31]. Since there is only 8-phase clock instead of 16-phase clock, the coarse
retimer is shown in Figure. 5.7 only has two groups of quadrature clocks.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 101

Adaptation

Figure 5.8: Adaptation Loop

The adaptation engine for 𝛼 and 𝑑𝐿𝑒𝑣 is implemented in the digital backend. To obtain
𝛼 for the MLSE decoder, 𝑑𝐿𝑒𝑣11 (ℎ0 + ℎ1) and 𝑑𝐿𝑒𝑣10 (ℎ0 − ℎ1) are needed. However,
ℎ0 − ℎ−1 is the target data level in the CDR hybrid algorithm to maximize eye opening.
Therefore, four levels 𝑑𝐿𝑒𝑣010, 𝑑𝐿𝑒𝑣011, 𝑑𝐿𝑒𝑣110, 𝑑𝐿𝑒𝑣111 are adapted by pattern filtering
to extract ℎ0 − ℎ−1. The pseudo-code for the adaptation steps is described below.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 102

h0/h1 tap adaptation
adapt_dlev_*1* -> dlev select
if d[n-1:n+1] == 110 and adapt_dlev110:

dLev110 += mu_dlev * e_dlev[n]
if d[n-1:n+1] == 111 and adapt_dlev111:

dlev111 += mu_dlev * e_dlev[n]
if d[n-1:n+1] == 010 and adapt_dlev010:

dLev010 += mu_dlev * e_dlev[n]
if d[n-1:n+1] == 011 and adapt_dlev011:

dLev011 += mu_dlev * e_dlev[n]

dlev11 = 0.5 * (dlev110 + dlev 111)
dlev10 = 0.5 * (dlev010 + dlev 011)
α = h1 = 0.5 * (dlev11 – dlev01)
h0-hm1 = 0.5 * (dlev110 + dlev010)

In the dLev maximization CDR algorithm, we try to maximize dLev and lock the clock
phase at the maximum point. In order to perform the gradient descent algorithm in search of
the maximum point, dLev has to be stable before the phase detector uses the error sample to
determine whether going up or down. This implies that the dLev loop has to be faster than
the CDR loop. Since the bandwidth of the CDR loop is about a few MHz, the bandwidth
of the dLev loop has to be at least 100MHz for the dLev maximization to function properly.

The RDAC array is a bottleneck in achieving a higher dLev loop bandwidth. The 8-bit
RDAC array is used to convert the digital output code of adaptation to the analog reference
level to compare with the input voltage and then generate the error sample 𝑒𝑑𝐿𝑒𝑣. The RC
model of high-pass filter before the comparator in Figure. 5.3 and RDAC with mid-code
configuration is shown in Figure. 5.9. The midcode (128 of 8 bits) is chosen since this
is the maximum effective resistance seeing from the high-pass filter. A pole at 47 MHz is
introduced in the dLev loop by RDAC with the standard series RDAC topology. For the
same unit resistor, the number of resistors grows exponentially with respect to the resolution
of the RDAC. The higher the resistance, the lower the frequency of the pole introduced by
the RDAC. To reduce resistance at mid-code without compromising the resolution of the
RDAC, we can connect a 3-bit RDAC in parallel with the 8-bit RDAC (Figure. 5.10). The
effective resistance at mid-code configuration dropped from 64 to 7.1 unit resistance with the
corresponding bandwidth enhanced to 170MHz. The bandwidth can be further increased
if we connect a lower resolution RDAC e.g., 2-bit to lower the effective unit resistance.
However, this implies more power consumption and we have 33 RDACs in total. The sub
RDAC is added next to the main RDAC in the layout. The overall layout overhead is 12.5%
in width. The minimum change in layout is important to maintain the top-level layout and
reduce the rerouting effort and additional parasitics.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 103

(a) High-pass filter RC model. (b) High-pass filter bandwidth.

Figure 5.9: Pole introduced by RDAC.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 104

(a) Parallel RDAC schematic. (b) Parallel RDAC floorplan and layout.

(c) High-pass filter bandwidth with parallel RDAC.

Figure 5.10: Parallel RDAC.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 105

5.3 Clock path

Voltage-Controlled Oscillator (VCO)
The voltage-controlled oscillator (VCO) is used to generate the clock for CDR operation.
The timing information obtained by the phase detector in the CDR logic determines that
the clock is early or late than the ideal sampling phase, and the output feeds through the
loop filter, which generates the control bits for VCO to adjust the phase by slightly changing
the clock frequency.

The VCO is implemented with the LC oscillator, which provides better phase noise than
the ring oscillator structure. The inductor area is usually the disadvantage of LC VCO. The
required area increases with both inductance and capacitance. However, the area scales down
with the operating speed determined in Equation 5.1, making LC VCO a good candidate
for high-speed wireline link.

𝜔 = 1√
𝐿𝐶

(5.1)

The frequency varies with both the inductance and the capacitance. In reality, capaci-
tance is the feasible knob to tune the frequency. The tunability is implemented with a cap
DAC (CDAC) for coarse tuning and a varactor for fine tuning. Shown in Figure 5.11, the
VCO includes the cross-coupled CMOS pair, LC tank, CDAC and varactors. The current
enable switch used to turn off the VCO while the external clock is chosen for debugging and
octature generator characterizing purpose.

The performance of the VCO depends on the layout and requires thorough verification.
The two versions of the layout are shown in Figure. 5.12. The layout order is similar in
both layouts: inductor, current mirror, cross-coupling pair, varactor, CDAC, and buffer from
right to left. To obtain the better quality factor, the inductor is implmented with the top
metal layer, and thus the performance degrades if placed right below the C4 bump. To
escape from the C4 bump, the layout should be as compact as possible (Figure. 5.13). The
compact layout also reduces the parasitics in the routing. For careful verification, the VCO
is separated into two parts: the top layers of metal using EMX to extract the S-parameter
file and the lower layers of metal using RC extraction for post-layout simulation. Custom fill
is placed in the inductor area to avoid parasitics from random filling for the density design
rule.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 106

Figure 5.11: Schematic of VCO.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 107

Figure 5.12: Layout of VCO.

Figure 5.13: VCO placement with C4 bump.

CHAPTER 5. DESIGN OF 100GB/S 1-TAP MLSE RECEIVER WITH BAUD-RATE
CDR 108

CDR Loop Implementation
The phase detector logic is implemented in the digital domain. The block diagram of the
digital part of the CDR loop is shown in Figure. 5.14. PD formatter logic includes the
formatter aligning the inputs and the configurable PD logic. There are two CDR locking
modes: Mueller-Muller mode and hybrid mode. data is the decoded data from the MLSE
decoder. data2 and data1e are from the output of the sampler. dn_d and up_d are
the previous PD decision used to estimate the slope dLev as described in Chapter 3.3. The
decision of the PD logic then goes through the voter and is filtered by loop filter which
consists of integrating and proportional path. The output of the loop filter will be separated
into coarse band and fine band to control CDAC and varactor in the VCO, respectively. An
override function is added at each stage to ensure visibility and adaptability in testing.

Figure 5.14: Block Diagram of CDR digital backend.

The overall receiver with the complete CDR loop is shown in Figure. 5.15. Datapath
and clock path are reusing the 160Gbps structure but optimize for 100Gbps with topology
change and block-level retuning. The CDR PD logic and adaptation loop is added for the
hybrid CDR.

C
H

A
PT

ER
5.

D
ESIG

N
O

F
100G

B
/S

1-TA
P

M
LSE

R
EC

EIV
ER

W
IT

H
B

A
U

D
-R

AT
E

C
D

R
109

Figure 5.15: Block diagram of CDR loop.

110

Chapter 6

Integration and Verification of 100
Gb/s 1-Tap MLSE Receiver with
Baud-rate CDR

6.1 Integration
The analog part of the chip is designed and laid out by Berkeley Analog Generator (BAG).
RTL implementation of digital blocks is generated by Constructing Hardware in a Scala
Embedded Lan- guage (Chisel) and Python script with Jinja2 template with configured
parameters. Highly Agile Masks Made Effortlessly from RTL (Hammer) are used to perform
digital flow including synthesis and place and route, analog and digital interface integration,
chiptop level placement including ESD. The overall flow is visualized in Figure. 6.1.

The top level chip integration is shown in Figure. 6.2. The total chip size is 2mm x 2mm.
The analog core is placed at the upper left corner of the chip, while the digital backend is
placed and routed on the right side. The bottom side consists of the power domain for the
clock and the datapath. The customized power grid with decoupling capacitor is modularized
and designed to be compatible with the bump size to ease the deployment of the power grid.

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 111

Figure 6.1: Top-level integration flow.

Figure 6.2: Top-level layout integration.

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 112

6.2 Verification
Verification of the entire link requires systematic modeling and a careful setup of the test
bench. The co-simulation of the analog and digital part of the link system is important to
verify the functionality and performance of the link. The verification part is crucial in the
CDR system, since it includes feedback in the overall system and requires verification at the
top level with the integration of all blocks to ensure its functionality. The verification of the
100Gbps receiver taped out in 16nm process is described in this section.

State-of-the-art

1. Verilog-AMS
The conventional way to verify mixed signal circuit is by applying the verilog file in the
analog environment and performing the time-integrating cosimulation. The accuracy
of the simulation increases with the decrease in step size in time. In other words, to
get accurate results, the simulation time needs to be long enough.

2. XMODEL
XMODEL is a commercial extension to the SystemVerilog simulator that expresses
analog waveforms in functional expression that can be computed in an event-driven
way. There are also some built-in primitives that mimic analog circuit operation in
SystemVerilog. The accuracy is decided by how close the functional expression is able
to describe the analog waveforms and is independent of the integrating time. Due to
the decoupling of accuracy and simulation time, it can achieve a speed-up of up to
10 ∼ 100 times over Verilog-AMS [16].

Event-Driven Model
In our verification system, we apply the similar concept of event-driven modeling in XMODEL.
The primitive is not from an existing libraries but was created by us using the top-level model
generated by BAG3 netlister. The hierarchical model generation is illustrated in an example
(Figure. 6.3) of constructing an 8-way T&H circuits. The leaf cell template of the inverter
(XINV) and integrating latch amplifier (XAMP) are written in Jinja2, an expressive and
extensible templating engine. The parameter of the behavioral model, such as delay, can be
defined in a separate yaml file or passed from the simulation. With an event-driven approach,
the value is calculated only when the trigger arrives.

C
H

A
PT

ER
6.

IN
T

EG
R

AT
IO

N
A

N
D

V
ER

IFIC
AT

IO
N

O
F

100
G

B
/S

1-TA
P

M
LSE

R
EC

EIV
ER

W
IT

H
B

A
U

D
-R

AT
E

C
D

R
113

Figure 6.3: Hierarchical behavioral model generation.

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 114

Figure. 6.4 shows the block diagram of the testbench of the entire RX system. The
testbench is implemented with the SystemVerilog behavioral model for analog blocks and
cosimulates with Verilog RTL for digital blocks using the digital flow. The yellow parts
are the analog circuit mapping to the SystemVerilog model, and the blue part is the digital
Verilog file. The effect of TX and the channel is captured in the SystemVerilog model that
takes into account the transfer function of TX and the characteristic of the channel. The
model is event-driven and only updates at the sampling point of the receiver clock. The
detailed modeling process is described in Appendix. B.

Figure 6.4: Event driven SystemVerilog testbench.

Test Vector Generation
To fully verify the building blocks on the digital side, we established the flow with script
and MakeFile to generate the building blocks with different parameters, matching random
testvectors, and the testbench includes the building block to test and the testvectors. The
simulation will be run automatically and give the results at the end of the flow. This
verification flow is significantly important given the complexity of the system.

Verilog Module Visualization
As we start to put all the building blocks together, the complexity of the inputs, outputs, and
the connections between the submodules will become difficult to manage manually. To make
verification easier and more intuitive, the visualization function is included in the testbench
generation process. Figure. 6.5 is an example of visualization results that has input as the
blue triangle on the leftmost part and red circles on the rightmost part. The port names of

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 115

each instance are marked as a black cross, and the connections are represented by lines with
the net name annotated. This can be used to check if the connections are correctly matched
and if there are any missing connections.

C
H

A
PT

ER
6.

IN
T

EG
R

AT
IO

N
A

N
D

V
ER

IFIC
AT

IO
N

O
F

100
G

B
/S

1-TA
P

M
LSE

R
EC

EIV
ER

W
IT

H
B

A
U

D
-R

AT
E

C
D

R
116

Figure 6.5: Adaptation engine visualization.

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 117

6.3 Testing

Test Setup
The test setup for the 100Gbps receiver is shown in Figure. 6.6. Three supply domains
to the test chip are generated by LDOs on the PCB board. Reference bias currents are
generated by on-board current sources. 100 Gbps input data are transmitted by probing
with a GSGSG probe. The 12.5GHz input clock is a testing option for debugging. The
input clock to the receiver clock distribution is by default connected to the clock generated
by the VCO. 1.56GHz output clock is divided from the clock path and is used to check the
operating frequency and if the octature generator is locked. The scan chain delivers the data
from the test chip snapshot engine, providing visibility for off-chip offset calibration and
debugging purposes. The circuit configuration and overwrite function are set via the scan
chain.

There are three PCB boards in the test setup. The main board includes the DUT chip,
LDOs, and current sources. The level shifter board reused from the 160 Gbps transceiver in
[18] shifted the signal voltage between the voltage domain on the main board and the FPGA
board. FPGA board communicates between the PC and the other boards.

The test chip including 100Gbps receiver with baud rate hybrid CDR is tested with
the probed input data from the Keysight M8195A arbitrary waveform generator (AWG).
12.5GHz external input differential clocks are generated by the Agilent E8267D signal gen-
erator. The external 3.3V power supply connects to SMA and the on board regulators
generate the configurable supply for on-board current source and data/ clock/ digital VDD
on chip. The configurable supply and reference current is controlled by the FPGA board.
The scan chain is also controlled by the FPGA board to configure the test chip setup and
read the data from the chip. The 1.56GHz divided clock generated from the clock path on
the chip is connected to a spectrum analyzer for debugging purposes.

PCB design
The main PCB shown in Figure. 6.8 is designed to support the testing of the 100 Gbps
receiver taped out in a 16 nm FinFET process. All signals go right and bottom with the
upper left reserved for the probe to move freely from left. The dimension of the main board
is important since it needs to be fitted within the probe station whose radius is 4 inches.

To have a clear space for the probe to move freely, the pin heads that sit above the LDOs
are designed to protrude on the bottom sides. They are used to connect the supply to LDOs
or an external supply. Digital potentiometers are used for both LDOs and current sources
for programmability through the FPGA. There are 6 layers in the PCB stack up. Roger
material is used for the high-speed stripline clock interface. FR4 material is used in other
layers where low-speed signals are located to lower the cost.

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 118

(a) Interface of the test chip.

(b) Detailed testing setup with instruments.

Figure 6.6: Testing setup.

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 119

Figure 6.7: Top view and bottom view of PCB.

Figure 6.8: 6-layer PCB stack-up.

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 120

Measurement Results
Before testing with data input, the clock path is tested and verified with the 1.56GHz output
debug clock. VCO and clock distribution are tested and characterized with FPGA, signal
generator and spectrum analyzer. The testing setup is shown in Figure. 6.9.

Figure 6.9: Testing setup for clock path.

The VCO free-running frequency range is characterized by choosing the input clock
from the VCO clock and disconnecting the external clock source with 50-ohm terminator
connected to the k connector. The measurement is taken at a clock VDD of 1.15V. The
measured VCO frequency tuning range is close to the post-layout simulation shown in Figure.
6.10 ranging from 11.5GHz to 15.5GHz. The frequency tuning range from the simulation is
3.8GHz and that of the measurement is 4.0GHz. The VCO range is all within 11.3GHz to
15GHz across five tested boards.

There are two sources for the input clocks of the octature generator. The clock source
could be generated either by on-chip VCO or a signal generator that passes through the k-
connectors to the board. The FPGA configured which mode to use for the clock distribution,
and we can observe the divided clock from the clock path on the spectrum analyzer through
the SMA connectors on the PCB. The measurement results of the two modes are shown
in Figure. 6.11a with the sweep of the supply voltage to the octature generator. The
free-running frequency is matched when the supply is less than 0.85V. While the supply is
larger than 0.9 V, the frequency is above 10.5GHz and the measurement mode with vco clk
connected is affected by the VCO whose freerunning range is 11GHz to 15GHz. It could be
that even with the VCO current disabled by switching off the reference current, there is still
a leakage current that contributes to the small oscillation of the VCO.

The free-running frequency of the octature generator is measured with disconnecting the
VCO clock source and choosing an external clock source with scan chain. However, the k
connector is not connected to the signal generator, but is connected to a 50 ohm terminator
to eliminate noise from the K connector to the injection port of the octature generator. The

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 121

Figure 6.10: VCO measurement results.

injection lock range of the octature generator is shown in Figure 6.11b.It can be locked to
the external clock from 4GHz to 16GHz.

Jitter measurement was not performed as there is no high-speed clock (12.5GHz) probed
for measurement. We could only obtain the information from the low-speed divided clocks
(1.56GHz). This clock is divided from the 12.5GHz clock in datapath and is sent to the
digital back end as the digital clock. It goes through three supply domains (CLKVDD/
DATAVDD/ DVDD) and is expected to pick up noise from all supplies and the noisy digital
backend. Therefore, the divided clock only provides the frequency information of the clock
path, but cannot reflect the jitter of the VCO or octature generator. To fully characterize
the VCO and octature generator, we need to probe the clock directly after the octature
generator and the VCO. To do this, we need to be careful not to load the high-speed clock
path and take good care of the matching of the clock phases.

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 122

(a) Free-running frequency of octature generator.

(b) Injection lock range of octature generator.

Figure 6.11: Octature generator measurement.

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 123

To test the datapath and the whole system, the test setup has to be done with the probe
station to provide the data input through GSGSG probe. For functional testing, M8195A is
used to check the half-speed function of the receiver. The whole test setup is shown in Figure
6.12. There are several offset and gain settings that must be set correctly for the datapath
to work. To test the sampler, we set the RDAC of the path p and n to the minimum code
and the maximum code, respectively, and obtain all 0 and all 1 from the snapshot engine.
This ensures that the sampler works properly in extreme cases. However, unfortunately,
even if the offset is calibrated and the clock source is synced with the AWG, the output
from the snapshot engine does not respond correctly all the time to neither clock pattern
nor pulse pattern. The restriction of visibility prevents further debugging. While testing 160
Gbps receiver in [31], we were unable to measure the clock path due to a potential divider
failure described in Session 2.3. We were able to measure and verify the clock generation and
distribution that we describe and analyze in Chapter 2 through the 100Gbps design. The
datapath design proposed in [31] unfortunately was not able to function in testing, and the
same issue may be propogated from the 160Gbps design in [31] but not captured because
the datapath were unmeasurable at that time.

Figure 6.12: Testing setup with probe station.

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 124

6.4 Performance
Due to the aforementioned data path testing issue, we would not be able to fully evaluate
the performance of the entire receiver. Therefore, the following power and performance are
mainly from the simulation results.

The power breakdown of the 100Gbps receiver with hybrid CDR is summarized in Table.
6.1. Power breakdown 160 Gbps RX is listed side by side for comparison. Both the datapath
and the clock path are reduced by more than 60% in area and 50% in power. The RDACs
are almost 4 times shrinked in size with 3 mW increased. The trade-off of area with power
for RDACs is crucial for both speed and area. In fact, with modification of the structures of
the RDACs, the total area is reduced by more than 50% with power increasing by less than
1%. The power increase due to RDACs can be easily compensated for by reducing other
datapath blocks. Therefore, the overall power is reduced approximately by half.

160Gbps RX 100 Gbps RX
Block Area(𝑚𝑚2) Power(𝑚𝑊) Area(𝑚𝑚2) Power(𝑚𝑊)

Datapath (DP) 0.04 115 0.014 55
Clock path (CP) 0.01 200 0.004 80

DP RDACs 0.39 0.6 0.102 3.6
Passive Frontend 0.09 0 0.111 0

Digital Backend (DBE) 0.05 17 0.033 23
VCO - - 0.012 9
Total 0.58 332.6 0.275 170.6

Table 6.1: Power breakdown (simulation).

If we take the data rate into consideration, the bandwidth power efficiency is defined in
Equation. 6.1 and the results are summarized in Table. 6.2. Overall, the 100Gbps receiver
has 20% better bandwidth power efficiency over the 160Gbps link attributed to modification
of the receiver stages and layout.

Bandwidth Power Efficiency = Power
Data rate

(6.1)

Although the performance of the proposed 100Gbps receiver with hybrid CDR could not
be fully measured due to datapath failure, we were able to measure the VCO operation range
and the octature generator free-running and locking range that operate in the desired region.

The post-layout simulation results of 100Gbps RX (this work) vs. 160Gbps RX in [31]
are summarized in Table 6.3. Recent publications are listed for reference of the trend. This
work attempts to achieve 2x of the Nyquist frequency of other works.

CHAPTER 6. INTEGRATION AND VERIFICATION OF 100 GB/S 1-TAP MLSE
RECEIVER WITH BAUD-RATE CDR 125

160Gbps RX 100 Gbps RX
Data rate (𝐺𝑏𝑝𝑠) 160 100

Power (𝑚𝑊) 332.6 170.6
Bandwidth Power Efficiency (𝑝𝐽/𝑏𝑖𝑡) 2.08 1.7

Table 6.2: Bandwidth power efficiency (simulation).

Specs ISSCC 2022
G.Gangasani[4]

ISSCC 2023
S. Park [12]

CICC 2019
M. Erett[9]

160Gbps
RX* [31]

This
Work*

Technology 5nm 28nm 16nm 16nm 16nm
Data Rate
(Gbps) 113 52 56 160 100

Bandwidth
(GHz) 28.25 13 28 80 50

Modulation PAM4 PAM4 NRZ NRZ NRZ
RX

Equalization CTLE CTLE CTLE MLSE MLSE

Channel
Loss@ BER

11.5dB
@1e-9

7.1dB
@1e-12

8dB
@1e-15

3dB
@1e-12

3dB
@1e-12

CDR type Band-Bang Baud-rate Baud-rate Baud-rate Baud-rate
RX Energy
Eff.(pJ/bit) - 0.83 - 2.08 1.70

Total Energy
Eff.(pJ/bit) 1.55 - 2.25 4.08 -

Area
(𝑚𝑚2/lane) 0.26 0.11** 0.33 0.58** 0.28**

Edge
Throughput

(Gbps/mm)∗∗∗
221.6 495.8 97.5 201.1 189.0

*simulated results **RX only *** Assume number of lane ∝ 1/
√

𝐴𝑟𝑒𝑎 and edge length = 1mm

Table 6.3: Performance comparison table.

126

Chapter 7

Conclusions

7.1 Thesis Summary
The demands for efficient high-speed die-to-die link beyond 100Gbps is growing rapidly with
the wide application such as chiplet design. At such a high speed, the channel limited effect is
worsening causing ISI that requires equalizers to achieve the target BER. Conventional DFE
can equalize post cursors without noise enhancement while the inherent timing constraint of
the feedback loop limits the bandwidth. Power is another stringent constraint that makes
the design of such an equalizer in high-speed links more challenging. To increase connectivity
in constrained dimensions, the link design is required to be as compact as possible. In this
work, we focus on die-to-die connection at a data rate of 100+Gbps.

The 1-tap MLSE 100Gbps receiver with hybrid CDR is implemented in 16nm FinFET
process with general packaging. The analog circuits are designed and layout with the Berke-
ley analog generator. The digital backend and the top-level integration is managed through
the Hammer flow. The event-driven model and the generation of the test vector are used to
speed up the verification of the overall receiver. Although the entire receiver performance
could not be evaluated due to the datapath issue, the octature generator and VCO perfor-
mance is characterized in silicon. The simulated energy efficiency of the 100Gbps receiver is
1.7 pJ/bit.

The key contributions are as follows.

• We proposed two methods, ring-oscillator-based and polyphase-filter-based, to generate
octature clocks and techniques to adjust the phase skews linearly with the code. The
ring-oscillator-based octature generator coupled two quadrature generators and was
implemented at different data rates. The scalability of the free-running frequency with
supply and wide injection locked range is demonstrated with the 100Gbps chip taped
out in the 16nm FinFET process.

• The hybrid CDR algorithm proposed in the thesis combines the Mueller-Muller algo-
rithm with dLev maximization and is implemented with minimal hardware overhead

CHAPTER 7. CONCLUSIONS 127

for the 1-tap MLSE receiver. The Mueller-Muller-based pattern filtering reuses the
hardware complexity from the purely feedforward MLSE in the datapath. The pro-
posed hybrid CDR is shown to be more robust than the state-of-the-art CDR with
different example channels in simulation.

• Performance matrices and statistical analysis using multiple-variable Markov chains are
proposed to analyze the locking point and jitter performance of CDR algorithms. The
results of statistical analysis are verified with ground-truth time-domain simulation.

• The event-driven SystemVerilog behavioral model and test vector generation are de-
veloped to verify the mixed-signal receiver system. The analog circuits of the receiver
are built with generators and ported from different technology nodes and adopted to
different data rates. The generator-based design feature the capability to integrate and
verify with digital flow easily.

7.2 Future Works
The hybrid CDR is described with 1-tap MLSE in this work. The usage of the hybrid CDR
algorithm can be expanded to cover more taps and work with different equalizers in the
future study. Markov-chain-based statistical analysis for the CDR algorithm is a flexible
tool for analyzing the performance of a more complicated CDR algorithm. However, the
performance is only restricted to the ideal update equation and can be expanded to include
nonideality of the actual circuit implementation for more accurate analysis.

128

Bibliography

[1] A.Payzin. “Analysis of a Digital Bit Synchronizer”. In: IEEE Transactions on Com-
munications 31.4 (1983), pp. 554–560.

[2] Eric Chang et al. “BAG2: A process-portable framework for generator-based AMS
circuit design”. In: Custom Integrated Circuits Conference (CICC) (2018).

[3] Fulvio Spagna et al. “A 78mW 11.8Gb/s Serial Link Transceiver with Adaptive RX
Equalization and Baud-Rate CDR in 32nm CMOS”. In: IEEE International Solid-State
Circuits Conference (ISSCC) (2010), pp. 366–367.

[4] G. Gangasani et al. “A 1.6Tb/s Chiplet over XSR-MCM Channels using 113Gb/s
PAM-4 Transceiver with Dynamic Receiver-Driven Adaptation of TX-FFE and Pro-
grammable Roaming Taps in 5nm CMOS”. In: 2022 IEEE International Solid- State
Circuits Conference (ISSCC) 65 (2022), pp. 122–124.

[5] H. Ju et al. “Design Techniques for 48-Gb/s 2.4-pJ/b PAM-4 Baud-Rate CDR With
Stochastic Phase Detector”. In: IEEE Journal of Solid-State Circuits 57.10 (2022),
pp. 3014–3024.

[6] J. Han et al. “Design Techniques for a 60-Gb/s 288-mW NRZ Transceiver With Adap-
tive Equalization and Baud-Rate Clock and Data Recovery in 65-nm CMOS Technol-
ogy”. In: IEEE JOURNAL OF SOLID-STATE CIRCUITS 52.12 (2017), pp. 3474–
3485.

[7] J. Kaukovuori et al. “Analysis and Design of Passive Polyphase Filters”. In: IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 55.10
(2008), pp. 3023–3037.

[8] K.-h. Kim et al. “A 2.6mw 370mhz-to-2.5ghz open-loop quadrature clock generator”.
In: 2008 IEEE International Solid-State Circuits Conference - Digest of Technical
Papers (2008), pp. 458–627.

[9] M. Erett et al. “A 2.25pJ/bit Multi-lane Transceiver for Short Reach Intra-package and
Inter-package Communication in 16nm FinFET”. In: IEEE Custom Integrated Circuits
Conference (CICC) (2019), pp. 1–8.

[10] Moon-Chul Choi et al. “A 0.1-pJ/b/dB 28-Gb/s Maximum-Eye Tracking, Weight-
Adjusting MM CDR and Adaptive DFE with Single Shared Error Sampler”. In: IEEE
Symposium on VLSI Circuits (2020).

BIBLIOGRAPHY 129

[11] Rajeev Dokania et al. “A 5.9pJ/b 10Gb/s serial link with unequalized MM-CDR in
14nm tri-gate CMOS”. In: IEEE International Solid-State Circuits Conference (ISSCC)
(2015), pp. 184–185.

[12] S. Park et al. “A 0.83pJ/b 52Gb/s PAM-4 Baud-Rate CDR with Pattern-Based Phase
Detector for Short-Reach Applications”. In: 2023 IEEE International Solid- State Cir-
cuits Conference (ISSCC) (2023), pp. 118–120.

[13] S. Park et al. “A 52-Gb/s Low-Power PAM-4 Baud-Rate CDR Using Pattern-Based
Phase Detector for Short-Reach Applications”. In: IEEE Journal of Solid-State Circuits
60.8 (2025), pp. 2794–2806.

[14] S. Roh et al. “A Low-Jitter Phase Detection Technique With Asymmetric Weights
in Multi-Level Baud-Rate CDR”. In: IEEE Transactions on Circuits and Systems I:
Regular Papers 71.12 (2024), pp. 5861–5872.

[15] AMD. AMD Launches 5th Gen AMD EPYC CPUs, Maintaining Leadership Perfor-
mance and Features for the Modern Data Center. 2024. url: https://www.amd.
com/en/newsroom/press-releases/2024-10-10-amd-launches-5th-
gen-amd-epyc-cpus-maintaining-le.html.

[16] Scientific Analog. XMODEL Introduction. 2025. url: https://www.scianalog.
com/xmodel/ (visited on 2025).

[17] Apple. Apple introduces M2 Ultra. 2023. url: https://www.apple.com/newsroom/
2023/06/apple-introduces-m2-ultra/.

[18] Ayan Biswas. “Design Methodologies and Automated Generation of Ultra High Speed
Wireline SerDes Transmitters”. In: Ph.D. dissertation, EECS Dept., Univ. California
at Berkeley, Berkeley, CA (2023).

[19] Broadcom. ”nAUI Channel” data. 2009. url: https://www.ieee802.org/3/
ba/public/channel.html.

[20] E. Chang and N. Narevsky et al. “BAG: A Process-Portable Framework for Generator-
based AMS Circuit Design”. In: IEEE Custom Integrated Circuits Conference (CICC)
(2017).

[21] Wai-Ki Ching and Michael K. Ng. “Multivariate Markov Chains”. In: Markov Chains:
Models, Algorithms and Applications. Boston, MA: Springer US, 2006, pp. 141–169.
isbn: 978-0-387-29337-0. doi: 10.1007/0-387-29337-X_7. url: https://
doi.org/10.1007/0-387-29337-X_7.

[22] INTERNATIONAL ROADMAP FOR DEVICES and SYSTEMS. OUTSIDE SYS-
TEM CONNECTIVITY. 2024. url: https://irds.ieee.org/images/files/
pdf/2024/2024IRDS_OSC.pdf.

[23] A. Emami-Neyestanak et al. “CMOS transceiver with baud rate clock recovery for
optical interconnects”. In: 2004 Symposium on VLSI Circuits. Digest of Technical
Papers (IEEE Cat. No.04CH37525) (2004), pp. 410–413.

https://www.amd.com/en/newsroom/press-releases/2024-10-10-amd-launches-5th-gen-amd-epyc-cpus-maintaining-le.html
https://www.amd.com/en/newsroom/press-releases/2024-10-10-amd-launches-5th-gen-amd-epyc-cpus-maintaining-le.html
https://www.amd.com/en/newsroom/press-releases/2024-10-10-amd-launches-5th-gen-amd-epyc-cpus-maintaining-le.html
https://www.scianalog.com/xmodel/
https://www.scianalog.com/xmodel/
https://www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/
https://www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/
https://www.ieee802.org/3/ba/public/channel.html
https://www.ieee802.org/3/ba/public/channel.html
https://doi.org/10.1007/0-387-29337-X_7
https://doi.org/10.1007/0-387-29337-X_7
https://doi.org/10.1007/0-387-29337-X_7
https://irds.ieee.org/images/files/pdf/2024/2024IRDS_OSC.pdf
https://irds.ieee.org/images/files/pdf/2024/2024IRDS_OSC.pdf

BIBLIOGRAPHY 130

[24] Azita Emami-Neyestanak. “Design of CMOS Receivers for Parallel Optical Intercon-
nects”. In: Ph.D. dissertation, EE Dept., Stanford University (2004).

[25] Roberto Piacentini Filho. What is a Chiplet, and Why Should You Care? 2024. url:
https://www.keysight.com/blogs/en/tech/sim-des/2024/2/8/
what-is-a-chiplet-and-why-should-you-care.

[26] Jaeduk Han. “Design and Automatic Generation of 60Gb/s Wireline Transceivers”. In:
Ph.D. dissertation, EECS Dept., Univ. California at Berkeley, Berkeley, CA (2019).

[27] J.K. Holmes. “Performance of a First-Order Transition Sampling Digital Phase-Locked
Loop Using Random-Walk Models”. In: IEEE Transactions on Communications 20.2
(1972), pp. 119–131.

[28] J. -H. Yoon J. -Y. Lee and H. -M. Bae. “A 10-Gb/s CDR With an Adaptive Optimum
Loop-Bandwidth Calibrator for Serial Communication Links”. In: IEEE Transactions
on Circuits and Systems I: Regular Papers 61.8 (2014), pp. 2466–2472.

[29] A. Puggelli et al. J. Crossley. “Bag: A designer-oriented integrated framework for the
development of ams circuit generators”. In: IEEE/ACM International Conference on
Computer-Aided De- sign (ICCAD) (2013), pp. 74–81.

[30] S. Kundu et al. J. Kim. “A 224Gb/s DAC-Based PAM-4 Transmitter with 8-Tap FFE
in 10nm CMOS”. In: IEEE International Solid-State Circuits Conference (ISSCC)
(2021), pp. 126–127.

[31] Paul Kwon. “Feedforward MLSE Equalization for High Speed Serial Links”. In: Ph.D.
dissertation, EECS Dept., Univ. California at Berkeley, Berkeley, CA (2023).

[32] Z. Wang et al. M. Choi. “An Output-Bandwidth-Optimized 200Gb/s PAM-4 100Gb/s
NRZ Transmitter with 5-Tap FFE in 28nm CMOS”. In: 2021 IEEE International
Solid-State Circuits Conference (ISSCC) (2021), pp. 128–129.

[33] Stephanie Michel. With PCIe® 6.0 You Have to Move from NRZ to PAM4... But
What is PAM4 signaling? 2023. url: https://www.keysight.com/blogs/en/
inds/2023/05/11/why-pcie-6-moves-from-nrz-to-pam4.

[34] Shahriar Mirabbasi and Laura C Fujino. “Through the Looking Glass—The 2025 Edi-
tion: Trends in solid-state circuits from ISSCC”. In: IEEE Solid-State Circuits Magazine
17.1 (2025), pp. 97–118.

[35] Kurth Mueller and Markus Muller. “Timing Recovery in Digital Synchronous Data
Receivers”. In: IEEE Trans. Communications (1976), pp. 516–531.

[36] P. Onufryk and S. Choudhary. “UCIe: Standard for an Open Chiplet Ecosystem”. In:
IEEE Micro (2025), pp. 16–25.

[37] M. -J. Park and J. Kim. “Pseudo-Linear Analysis of Bang-Bang Controlled Timing
Circuits”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 60.6 (2013),
pp. 1381–1394.

https://www.keysight.com/blogs/en/tech/sim-des/2024/2/8/what-is-a-chiplet-and-why-should-you-care
https://www.keysight.com/blogs/en/tech/sim-des/2024/2/8/what-is-a-chiplet-and-why-should-you-care
https://www.keysight.com/blogs/en/inds/2023/05/11/why-pcie-6-moves-from-nrz-to-pam4
https://www.keysight.com/blogs/en/inds/2023/05/11/why-pcie-6-moves-from-nrz-to-pam4

BIBLIOGRAPHY 131

[38] Behzad Razavi. “The Design of a Millimeter-Wave Frequency Divider”. In: IEEE Solid-
state circuits magazine (Fall 2022).

[39] A. Rezayee and K. Martin. “A coupled two-stage ring oscillator”. In: Proceedings of the
44th IEEE 2001 Midwest Symposium on Circuits and Systems. MWSCAS 2001 (Cat.
No.01CH37257) 2 (2001), pp. 878–881.

[40] J. C. Rudell. “Frequency translation techniques for high-integra-tion high-selectivity
multi-standard wireless communication systems”. In: Ph.D. dissertation, EECS Dept.,
Univ. California at Berkeley, Berkeley, CA 3.2 (2000), pp. 207–230.

[41] F. Spagna. “Clock and data recovery systems”. In: 2018 IEEE Custom Integrated Cir-
cuits Conference (CICC) (2018), pp. 1–120.

[42] Vladimir Stojanović. “Channel-Limited High-Speed Links: Modeling, Analysis and De-
sign”. In: Ph.D. dissertation, EE Dept., Stanford University (2004).

[43] Vladimir Stojanović and M. Horowitz. “Modeling and analysis of high-speed links”. In:
Proceedings of the IEEE 2003 Custom Integrated Circuits Conference (2003), pp. 589–
594.

[44] Synopsys. UCIe Universal Chiplet Interconnect Express. 2025. url: https://www.
uciexpress.org (visited on 2025).

[45] Synopsys. What is UCIe. 2025. url: https://www.synopsys.com/glossary/
what-is-ucie.html (visited on 2025).

[46] King L. Tai. “System-In-Package(SIP): Challenges and Opportunities”. In: Proceedings
2000. Design Automation Conference. (2000), pp. 191–196.

[47] Zhongkai Wang. “Analog Generators for SerDes Clock Generation and Distribution”.
In: Ph.D. dissertation, EECS Dept., Univ. California at Berkeley, Berkeley, CA (2021).

[48] Z. Wang Y. Zhang and P. R. Kinget. “Analysis of Injection-Locked Ring Oscillators for
Quadrature Clock Generation in Wireline or Optical Transceivers”. In: IEEE Transac-
tions on Circuits and Systems I: Regular Papers 69.8 (2022), pp. 3074–3082.

[49] H. Yamamoto and S. Mori. “Performance of a Binary QuantizedAll Digital Phase-
Locked Loop with a New Class of Sequential Filter”. In: IEEE Transactions on Com-
munications 26.1 (1978), pp. 35–45.

[50] M. Choi et al. Z. Wang. “An Automated and Process-Portable Generator for Phase-
Locked Loop”. In: 2021 58th ACM/IEEE Design Automation Conference (DAC) (2021),
pp. 511–516.

[51] Y. Onizuka Z. Wang Y. Zhang and P. R. Kinget. “Multi-Phase Clock Generation
for Phase Interpolation With a Multi-Phase, Injection-Locked Ring Oscillator and a
Quadrature DLL”. In: EEE Journal of Solid-State Circuits 57.6 (2022), pp. 1776–1787.

https://www.uciexpress.org
https://www.uciexpress.org
https://www.synopsys.com/glossary/what-is-ucie.html
https://www.synopsys.com/glossary/what-is-ucie.html

132

Appendix A

Single Variable Markov Chain
Analysis for Hybrid Algorithm

A.1 Transition Probability Derivation
From Table 4.2, we can rewrite Equation 4.10 as

𝑃𝑢𝑝,𝑖 = 𝑃𝑖,𝑖+1

= 𝑃(𝑐 > 0)[𝑃𝑖,𝑖 +
𝜋𝑖−1𝑃𝑖−1,𝑖

𝜋𝑖
𝑃(Δ𝑑𝐿𝑒𝑣(𝜙𝑖) > 0) +

𝜋𝑖+1𝑃𝑖+1,𝑖

𝜋𝑖
𝑃(Δ𝑑𝐿𝑒𝑣(𝜙𝑖+1) > 0)]

=
𝑃𝑐,𝑢𝑝(𝜙𝑖)

𝜋𝑖
[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖+1)]

(A.1)

By the same logic, 𝑃𝑖,𝑖−1 and 𝑃𝑖,𝑖 can be derived as below.

𝑃𝑑𝑛,𝑖 = 𝑃𝑖,𝑖−1

= 𝑃(𝑃𝐷𝑜𝑢𝑡 < 0)
= 𝑃(𝑐 < 0, 𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] ≤ 0)
= 𝑃(𝑐 < 0)𝑃(𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] ≤ 0)
= 𝑃(𝑐 < 0)(𝑃 (𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] = 0) + 𝑃(𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] < 0))
= 𝑃(𝑐 < 0)(𝑃 (𝑃𝐷𝑜𝑢𝑡,𝑑 = 0) + (∑

𝑥=±1
𝑃(𝑃𝐷𝑜𝑢𝑡,𝑑 = 𝑥))𝑃(𝑥𝑒[𝑛] < 0))

= 𝑃(𝑐 < 0)[𝑃𝑖,𝑖 +
𝜋𝑖−1𝑃𝑖−1,𝑖

𝜋𝑖
𝑃(Δ𝑑𝐿𝑒𝑣(𝜙𝑖) < 0) +

𝜋𝑖+1𝑃𝑖+1,𝑖

𝜋𝑖
𝑃(Δ𝑑𝐿𝑒𝑣(𝜙𝑖+1) < 0)]

=
𝑃𝑐,𝑑𝑛(𝜙𝑖)

𝜋𝑖
[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖+1)]

(A.2)

APPENDIX A. SINGLE VARIABLE MARKOV CHAIN ANALYSIS FOR HYBRID
ALGORITHM 133

𝑃ℎ𝑜𝑙𝑑,𝑖 = 𝑃𝑖,𝑖

= 𝑃(𝑃𝐷𝑜𝑢𝑡 = 0)
= 𝑃(𝑐 > 0, 𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] < 0) + 𝑃(𝑐 < 0, 𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] > 0)
= 𝑃(𝑐 > 0)𝑃(𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] < 0) + 𝑃(𝑐 < 0)𝑃(𝑃𝐷𝑜𝑢𝑡,𝑑𝑒[𝑛] > 0)
= 𝑃(𝑐 > 0)(∑

𝑥=±1
𝑃(𝑃𝐷𝑜𝑢𝑡,𝑑 = 𝑥))𝑃(𝑥𝑒[𝑛] < 0))

+ 𝑃(𝑐 < 0)(∑
𝑥=±1

𝑃(𝑃𝐷𝑜𝑢𝑡,𝑑 = 𝑥))𝑃(𝑥𝑒[𝑛] > 0))

= 𝑃(𝑐 > 0)[
𝜋𝑖−1𝑃𝑖−1,𝑖

𝜋𝑖
𝑃(Δ𝑑𝐿𝑒𝑣(𝜙𝑖) < 0) +

𝜋𝑖+1𝑃𝑖+1,𝑖

𝜋𝑖
𝑃(Δ𝑑𝐿𝑒𝑣(𝜙𝑖+1) < 0)]

+ 𝑃(𝑐 < 0)[
𝜋𝑖−1𝑃𝑖−1,𝑖

𝜋𝑖
𝑃(Δ𝑑𝐿𝑒𝑣(𝜙𝑖) > 0) +

𝜋𝑖+1𝑃𝑖+1,𝑖

𝜋𝑖
𝑃(Δ𝑑𝐿𝑒𝑣(𝜙𝑖+1) > 0)]

=
𝑃𝑐,𝑢𝑝(𝜙𝑖)

𝜋𝑖
[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙𝑖+1)]

+
𝑃𝑐,𝑑𝑛(𝜙𝑖)

𝜋𝑖
[𝜋𝑖𝑃𝑖,𝑖 + 𝜋𝑖−1𝑃𝑖−1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖) + 𝜋𝑖+1𝑃𝑖+1,𝑖𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙𝑖+1)]

(A.3)

A.2 3-state Markov Chain Transition Matrix
To illustrate the steps, let us consider a case of K = 3, where the Markov chain only has
three states shown in Figure A.1.

Figure A.1: 3-state Markov chain.

To decide on the matrix form, we need to write the equations for Equation 4.15, Equation
4.16, and Equation 4.17 as follows.

APPENDIX A. SINGLE VARIABLE MARKOV CHAIN ANALYSIS FOR HYBRID
ALGORITHM 134

𝜋1𝑃1,3 = 𝑃𝑐,𝑑𝑛(𝜙1)[𝜋1𝑃1,1 + 𝜋3𝑃3,1𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙1) + 𝜋2𝑃2,1𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙2)]
𝜋1𝑃1,1 = 𝑃𝑐,𝑢𝑝(𝜙1)[𝜋1𝑃1,1 + 𝜋3𝑃3,1𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙1) + 𝜋2𝑃2,1𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙2)]

+ 𝑃𝑐,𝑑𝑛(𝜙1)[𝜋1𝑃1,1 + 𝜋3𝑃3,1𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙1) + 𝜋2𝑃2,1𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙2)]
𝜋1𝑃1,2 = 𝑃𝑐,𝑢𝑝(𝜙1)[𝜋1𝑃1,1 + 𝜋3𝑃3,1𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙1) + 𝜋2𝑃2,1𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙2)]
𝜋2𝑃2,1 = 𝑃𝑐,𝑑𝑛(𝜙1)[𝜋2𝑃2,2 + 𝜋1𝑃1,2𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙2) + 𝜋3𝑃3,2𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙3)]
𝜋2𝑃2,2 = 𝑃𝑐,𝑢𝑝(𝜙2)[𝜋2𝑃2,2 + 𝜋1𝑃1,2𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙2) + 𝜋3𝑃3,2𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙3)]

+ 𝑃𝑐,𝑑𝑛(𝜙2)[𝜋2𝑃2,2 + 𝜋1𝑃1,2𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙2) + 𝜋3𝑃3,2𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙3)]
𝜋2𝑃2,3 = 𝑃𝑐,𝑢𝑝(𝜙2)[𝜋2𝑃2,2 + 𝜋1𝑃1,2𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙2) + 𝜋3𝑃3,2𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙3)]
𝜋3𝑃3,2 = 𝑃𝑐,𝑑𝑛(𝜙3)[𝜋3𝑃3,3 + 𝜋2𝑃2,3𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙3) + 𝜋1𝑃1,3𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙1)]
𝜋3𝑃3,3 = 𝑃𝑐,𝑢𝑝(𝜙3)[𝜋3𝑃3,3 + 𝜋2𝑃2,3𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙3) + 𝜋1𝑃1,3𝑃𝑑𝐿𝑒𝑣,𝑑𝑛(𝜙1)]

+ 𝑃𝑐,𝑑𝑛(𝜙3)[𝜋3𝑃3,3 + 𝜋2𝑃2,3𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙3) + 𝜋1𝑃1,3𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙1)]
𝜋3𝑃3,1 = 𝑃𝑐,𝑢𝑝(𝜙3)[𝜋3𝑃3,3 + 𝜋2𝑃2,3𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙3) + 𝜋1𝑃1,3𝑃𝑑𝐿𝑒𝑣,𝑢𝑝(𝜙1)]

(A.4)

Rearrange Equation A.4 in homogeneous form and then we can rewrite the equations in
matrix form as follows.

𝐴 ⃗𝑥 = ⃗0 (A.5)

APPENDIX A. SINGLE VARIABLE MARKOV CHAIN ANALYSIS FOR HYBRID
ALGORITHM 135

where

A
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
𝑃

𝑐,𝑢
(𝜙

1)
−

1
𝑃

𝑐,𝑢
(𝜙

1)𝑃
𝐿

,𝑢
(𝜙

1)
0

0
0

0
𝑃

𝑐,𝑢
(𝜙

1)𝑃
𝐿

,𝑢
(𝜙

3)

−
1

𝑃
𝑐,𝑑 (𝜙

1)
0

𝑃
𝑐,𝑑 (𝜙

1)𝑃
𝐿

,𝑑 (𝜙
1)

0
0

0
0

𝑃
𝑐,𝑑 (𝜙

1)𝑃
𝐿

,𝑑 (𝜙
3)

0
−

1
0

𝑃
𝑐,𝑢

(𝜙
1)𝑃

𝐿
,𝑑 (𝜙

1)
0

0
0

0
𝑃

𝑐,𝑢
(𝜙

1)𝑃
𝐿

,𝑑 (𝜙
3)

+
𝑃

𝑐,𝑑 (𝜙
1)𝑃

𝐿
,𝑢

(𝜙
1)

+
𝑃

𝑐,𝑑 (𝜙
1)𝑃

𝐿
,𝑢

(𝜙
3)

0
0

𝑃
𝑐,𝑢

(𝜙
2)𝑃

𝐿
,𝑢

(𝜙
1)

0
𝑃

𝑐,𝑢
(𝜙

2)
−

1
𝑃

𝑐,𝑢
(𝜙

2)𝑃
𝐿

,𝑢
(𝜙

2)
0

0

0
0

𝑃
𝑐,𝑑 (𝜙

2)𝑃
𝐿

,𝑑 (𝜙
1)

−
1

𝑃
𝑐,𝑑 (𝜙

2)
0

𝑃
𝑐,𝑑 (𝜙

2)𝑃
𝐿

,𝑑 (𝜙
2)

0
0

0
0

𝑃
𝑐,𝑑 (𝜙

2)𝑃
𝐿

,𝑢
(𝜙

1)
0

−
1

0
𝑃

𝑐,𝑢
(𝜙

2)𝑃
𝐿

,𝑑 (𝜙
2)

0
0

+
𝑃

𝑐,𝑢
(𝜙

2)𝑃
𝐿

𝑠,𝑑 (𝜙
1)

+
𝑃

𝑐,𝑑 (𝜙
2)𝑃

𝐿
,𝑢

(𝜙
2)

𝑃
𝑐,𝑢

(𝜙
3)𝑃

𝐿
,𝑢

(𝜙
3)

0
0

0
0

𝑃
𝑐,𝑢

(𝜙
3)𝑃

𝐿
,𝑢

(𝜙
2)

0
𝑃

𝑐,𝑢
(𝜙

3)
−

1

𝑃
𝑐,𝑑 (𝜙

3)𝑃
𝐿

,𝑑 (𝜙
3)

0
0

0
0

𝑃
𝑐,𝑑 (𝜙

3)𝑃
𝐿

,𝑑 (𝜙
2)

−
1

𝑃
𝑐,𝑑 (𝜙

3)
0

𝑃
𝑐,𝑑 (𝜙

3)𝑃
𝐿

,𝑢
(𝜙

3)
0

0
0

0
𝑃

𝑐,𝑑 (𝜙
3)𝑃

𝐿
,𝑢

(𝜙
2)

0
−

1
0

+
𝑃

𝑐,𝑢
(𝜙

3)𝑃
𝐿

,𝑑 (𝜙
3)

+
𝑃

𝑐,𝑢
(𝜙

3)𝑃
𝐿

,𝑑 (𝜙
2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.6)

APPENDIX A. SINGLE VARIABLE MARKOV CHAIN ANALYSIS FOR HYBRID
ALGORITHM 136

⃗𝑥 = [𝜋1𝑃1,3 𝜋1𝑃1,1 𝜋1𝑃1,2 𝜋2𝑃2,1 𝜋2𝑃2,2 𝜋2𝑃2,3 𝜋3𝑃3,2 𝜋3𝑃3,3 𝜋3𝑃3,1]𝑇 (A.7)

⃗0 = [0 0 0 0 0 0 0 0 0]𝑇 (A.8)

137

Appendix B

Driver Model and Channel Fitting

1. Overall Modeling Method
The overall CML driver schematic is shown in Figure B.1, real-type input/output is
denoted in red. the additional block, filter_cal, is used to generate the time-domain
output waveform combining the driver pole with the channel response corresponding
to the ideal square wave outp_m and outn_m.

Figure B.1: CML driver schematics.

The overall steps to derive time-domain output waveform form input, driver poles, and
channel response are shown in Figure B.2. The square-wave input waveform could be
decomposed into superposition of step function with different delay. Each input step
experiences driver poles, channel response and received by receiver as output waveform.

a) Channel Fitting In order to implement true-event driven model, the conversion
from input to output is done in s-domain. Thus, the channel response should also

APPENDIX B. DRIVER MODEL AND CHANNEL FITTING 138

Figure B.2: Overall modeling steps.

be fitted in s-domain. First, the measured channel data in s4p format is converted
to differential s-parameter in s2p format. Assuming properly terminated at both
Tx and Rx side, the source and load resistance of the channel are set to be 𝑍0 of
the channel for output voltage to input voltage transfer function derivation. The
nAUI channel S-parameter data from IEEE802 website[IEEE802] and simulated
channel from ADS LindCalc are shown in Figure B.3.
Channel fitting is performed using rationalfit in MATLAB RF toolbox. The fitting
format is linear combination of rational first-order expression. The first-order
expression avoids overflow problem when fitting high order function as in tfest
function which fits in the format of polynomial numerator divided by polynomial
denominator. The fitting results of the transfer function shown in red line in
Figure B.4. The nAUI channel is fitted with 65 poles and simulated channel is
fitted with 31 poles.

APPENDIX B. DRIVER MODEL AND CHANNEL FITTING 139

(a) nAUI channel. (b) simulated channel.

Figure B.3: s-parmeter of channels.

(a) nAUI channel. (b) simulated channel.

Figure B.4: Transfer functions derived from s-parameters.

b) S-Domain Calculation
In order to easily apply Inverse Laplace Transform to obtain time-domain output
waveform, the output in s-domain is required to be converted in the format of

APPENDIX B. DRIVER MODEL AND CHANNEL FITTING 140

linear combination of first order or second order system. As mentioned in the pre-
vious section, expanding channel fitted results in common denominator does not
work because the zero-order coefficient would be too large to express (maximum
number in MATLAB is approximately 10301). Therefore, we could not do par-
tial fractional expansion on the overall output after multiplication and reduction
to common denominator. The way to avoid this problem is to group the input
step and driver function and do partial fractional expansion to get its basis func-
tion expression and then use following equation to calculate overall basis function
expression after combining with channel response which is already expressed in
basis function expression.

𝑉𝑜𝑢𝑡(𝑠) = 𝑉𝑖𝑛(𝑠) × 𝐻𝑑𝑟𝑖𝑣𝑒𝑟(𝑠) × 𝐻𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑠)

= 1
𝑠

×
(1 + 𝑠

𝑧1
)...(1 + 𝑠

𝑧𝑎
)

(1 + 𝑠
𝑝1

)...(1 + 𝑠
𝑝𝑏

)
× ∑

𝑖

𝑏𝑖
𝑠 + 𝑎𝑖

= ∑
𝑗

𝑞𝑗

𝑠 + 𝑝𝑗
× ∑

𝑖

𝑏𝑖
𝑠 + 𝑎𝑖

(B.1)

To handle the multiplication of two basis function expression, we could use the
simplified version of equation proposed in [true_event] below.

∑
𝑖

𝑏𝑖
𝑠 + 𝑎𝑖

× ∑
𝑗

𝑞𝑗

𝑠 + 𝑝𝑗
= ∑

𝑖

𝑐𝑖
𝑠 + 𝑎𝑖

+ ∑
𝑗

𝑑𝑗

𝑠 + 𝑝𝑗
(B.2)

where

𝑐𝑖 =
𝑗

∑
𝑥=1

𝑏𝑖𝑞𝑥
𝑝𝑥 − 𝑎𝑖

𝑑𝑗 =
𝑖

∑
𝑥=1

𝑏𝑥𝑞𝑗

𝑎𝑥 − 𝑝𝑗

c) Inverse Laplace Transform
Since the s-domain output is expressed in basis function, we could map the indi-
vidual term into the coefficient of the exponential function or sinusoidal function
for real pole and complex pole respectively. The SystemVerilog Direct Program-
ming Interface (DPI) allows us to import functions from C language. The expo-
nential and sinusoidal function could be imported from DPI and used to express
the output waveform in time domain.

APPENDIX B. DRIVER MODEL AND CHANNEL FITTING 141

2. Evaluations of Fitted Channel Response
To evaluate how well the fitted s-domain expression fits the transfer function derived
from the measured s-parameter data, we compared the residual ISI distribution and
time-domain step response between the fitted function and the original function derived
from measured data. Testbench in Cadence shown in Figure B.5 is also setup for
verification in time domain.

Figure B.5: Testbench for pulse and step response simulation in Cadence.

a) Residual ISI Distribution
The residual ISI distribution is obtained from the pulse response (Figure B.6)
at 28GHz, assuming the cursor is sampled at the peak. To obtained the pulse
response from the transfer function using ifft function, the transfer function de-
rived from s-parameter need to be extrapolated and interpolated for frequency
response at DC and equally spaced frequency. The extrapolation and interpola-
tion is done in polar coordinate, i.e. magnitude and unwrapped phase respectively.
Zero-padded between the positive frequency and negative frequency is used for
increasing resolution in time-domain. Figure B.7 shows the comparison between
pulse response obtained by convolution of ifft impulse response and input pulse
and pulse response from cadence simulation. The corresponding ISI distribution
by convolution of 20 largest pre-cursors/ post-cursors are shown in Figure B.8, the
error is calculated from the root mean square of the difference between measured
residual ISI and fitted residual ISI.

APPENDIX B. DRIVER MODEL AND CHANNEL FITTING 142

(a) nAUI channel. (b) Simulated channel.

Figure B.6: Pulse response: data rate = 28GHz.

(a) nAUI channel. (b) Simulated channel.

Figure B.7: Comparison of pulse response.

APPENDIX B. DRIVER MODEL AND CHANNEL FITTING 143

(a) nAUI channel fitted with 65 poles. (b) Simulated channel fitted with 31 poles.

Figure B.8: Residual ISI distribution.

APPENDIX B. DRIVER MODEL AND CHANNEL FITTING 144

b) Time-Domain Step Response
Time-domain step response obtained from the time-domain calculation in MAT-
LAB (fitted data) , cadence simulation (cadence data), and the fitted time-domain
expression in SystemVerilog behavioral model (SystemVerilog data) are compared
in Figure B.9. The fitted data in MATLAB overlaps with SystemVerilog data as
expected since both are calculated with same time-domain expression, indicat-
ing that the function in behavioral model is correct. The error is the root mean
square of the fitted data and cadence data.

(a) nAUI channel. (b) Simulated channel.

Figure B.9: Step response.

3. Behavioral Model Simulation
Based on the time-domain settling coefficient obtained from the above section, the
time domain output signal could be calculated by the superposition of multiple step
response at different time delay.

𝑉𝑖𝑛(𝑡) = 𝑉𝑖𝑛𝑡0 + Δ𝑉0𝑢(𝑡 − 𝑡0) + Δ𝑉1𝑢(𝑡 − 𝑡1) + ... + Δ𝑉𝑛𝑢(𝑡 − 𝑡𝑛) (B.3)

where
Δ𝑉𝑛 = 𝑉𝑖𝑛(𝑡+

𝑛) − 𝑉𝑖𝑛(𝑡−
𝑛) (B.4)

Assuming linear time-invariant system, the output could be obtained from the following
equation, where 𝑓(𝑡) denotes step response.

𝑉𝑜𝑢𝑡(𝑡) = 𝑉𝑖𝑛𝑡0 + Δ𝑉0𝑓(𝑡 − 𝑡0) + Δ𝑉1𝑓(𝑡 − 𝑡1) + ... + Δ𝑉𝑛𝑓(𝑡 − 𝑡𝑛) (B.5)

In practice, when 𝑡 − 𝑡𝑛 is large enough, 𝑓(𝑡 − 𝑡𝑛) ≈ 1, therefore, we could lump that
term into initial value 𝑉𝑖𝑛𝑡. The number of the superposition waveform should be

APPENDIX B. DRIVER MODEL AND CHANNEL FITTING 145

chosen based on the settling and the delay of the step response. Figure B.11 shows
the case superposing 5 step response, where the 64-bit registers stores and updates the
delay time, voltage difference, and initial voltage expressed in real number when the
input changes.

Figure B.10: Timing diagram of input signal.

Figure B.11: Block diagram.

The simulation results of the entire Tx datapath model is shown in Figure B.12, where
inp and inn indicate the input of the driver whereas outp and outn represent the output
of the driver including channel response. The settling function combines one driver pole
and the channel response. The overall settling is dominated by the channel response.
For driver pole at lower frequency, the settling would be dominated by the driver pole.
The time scale of the plot is 1 ps and data rate is 28 GHz. Oversampling is only for
checking the pulse shape but not related to the accuracy. The number of superposition
waveform are 7 and 36 for simulated channel and nAUI channel respectively. The delay
of nAUI channel and simulated channel are 1.4 ns and 0.16 ns respecively, which match
the delay in pulse response and step response. The shape and the peak value of the
output waveform conform to the pulse response as well.

APPENDIX B. DRIVER MODEL AND CHANNEL FITTING 146

(a) nAUI channel.

(b) Simulated channel.

Figure B.12: Tx datapath simulation.

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Thesis Organization

	Clock Generation and Distribution for 100+ Gb/s Transmitter
	Clock Path Overview
	Octa-Rate Clock Distribution
	1/16-Rate Clock Distribution

	MLSE and CDR Overview
	Inter-symbol Interference (ISI) and Equalization
	CDR Overview
	Proposed Baud-rate Hybrid CDR algorithm

	Statistical Analysis of the CDR Algorithm
	Overview
	Mueller-Muller mlsein update Analysis
	Data level (dLev) Maximization Analysis
	Hybrid Algorithm Analysis
	Performance Matrices
	Summary

	Design of 100Gb/s 1-Tap MLSE Receiver with Baud-rate CDR
	Overview
	Datapath
	Clock path

	Integration and Verification of 100 Gb/s 1-Tap MLSE Receiver with Baud-rate CDR
	Integration
	Verification
	Testing
	Performance

	Conclusions
	Thesis Summary
	Future Works

	Bibliography
	Single Variable Markov Chain Analysis for Hybrid Algorithm
	Transition Probability Derivation
	3-state Markov Chain Transition Matrix

	Driver Model and Channel Fitting

