ScenicGym: Reinforcement Learning with Data Generation
Using Scenic

Kai Xu

..
1

hl--

& i

A .I. II i W | % l: ..II. : -l
i, .“ij1lullll' ! h
i (e, St u

e
!

Electrical Engineering and Computer Sciences
University of California, Berkeley

18

Technical Report No. UCB/EECS-2025-168
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-168.html

August 15, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

| am grateful of my advisor Prof. Sanjit Seshia. Special thanks to Prof.
Shankar Sastry, who is the second reader, and also to Prof. Daniel Fremont.
Thanks to Eddie Kim, and to the Learn and Verify Group. Special thanks to
my family for their support all along.

ScenicGym: Reinforcement Learning with Data Generation Using Scenic

by

Kaifei Xu

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Master of Science
in
Electrical Engineering and Computer Science

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Sanjit A. Seshia, Chair
Professor Shankar Sastry

Summer 2025

The dissertation of Kaifei Xu, titled ScenicGym: Reinforcement Learning with Data Gener-
ation Using Scenic, is approved:

Chair Date

Date

Date

University of California, Berkeley

ScenicGym: Reinforcement Learning with Data Generation Using Scenic

Copyright 2025
by
Kaifei Xu

Abstract
ScenicGym: Reinforcement Learning with Data Generation Using Scenic
by
Kaifei Xu
Master of Science in Electrical Engineering and Computer Science
University of California, Berkeley

Professor Sanjit A. Seshia, Chair

There has been significant recent interest in using reinforcement learning for control in cyber-
physical-systems (CPS). Domains affected include autonomous driving, robotics, and drone
control. Much of these applications should be considered as safety-critical, where system
failure can cause significant damage and injury to humans. Even in non-safety critical ap-
plications, such system failures could also be expensive. It is therefore important to be
able to add assurance to the process of reinforcement learning, which is a challenge due to
the statistical nature of modern learning algorithms. In this thesis, we present ScenicGym,
which is an RL training tool based on the probabilistic programming language Scenic and its
related toolkit VerifAl. The new tools allow RL researchers to train agents completely using
data generated by concise Scenic programs with sampling conducted by VerifAl to incorpo-
rate edge cases. We demonstrate the use of ScenicGym and the influence of incorporating
VerifAl's sampler with experiments in autonomous driving.

I once was lost.

Contents

Contents

[List of Figures|

[List of Tables|

(1__Introduction|
(1.1 Background|
1.2 Motivations and Contributionsl.

2 Modeling RL Episodes with Scenic]

2.1 Definitionsl
[2.2 Modeling Initial Condition Distributions|
[2.3 Environment Dynamics and Agent-Environment Interactions|
2.4 Modeling Rewards|
[2.5 Interfacing to New RL Environments and Simulators|

[3 ScenicGym|

3.1 Designl

[3.2 On Running Parallel Training Environments|

[3.3 Using RL Algorithm Libraries
[4 Experiments|

A1 Setupl.

(4.2 Training Methods|

4.3 Results and Discussionl Lo
[5__Conclusions|

bl Future Workl.o

(Bibliography|

i

ii

iii

iv

—~ N

— © o OO

12
15
15

16
16
16
18

20
20

22

List of Figures

iii

2.1 An Example Training Program| 7
[2.2 Modification to the Scenic Program in Figure [2.1{to Use VeritAll 8
2.3 A 2-Car Intersection Crossing Scenel., 10
2.4 Figure[2.3/cont. 11
[3.1 Overall Design of ScenicGym| 15
4.1 Comparison of training results between different samplers for each agent. Besides |
| the BO sampler, the other samplers have relatively similar performance. This |
| could be due to the reduced sample diversity resulting from the BO sampler| . . 17
4.2 Comparison of training results between the two agents in each sampler. Agent 1 |
| generally outperforms Agent 0, likely due to the larger variation we allow on its |
| initial position that includes points closer to its goal|. 18

List of Tables

v

4.1 Mean Episode Return £+ Standard Deviation Evaluated in Under Scene Generated

| from Uniform Samplingl oo

Acknowledgments

I would like to express deep gratitude to my advisor Prof. Sanjit Seshia. While I was
a second-semester junior who have just decided to go into research in EECS, he was the
one who took a chance on me. I have grown tremendously under his mentorship, learning
to be a better researcher, engineer, communicator, and part of a team. He led me into
an exciting research field that I knew little about before and has always been a true role
model of heartfelt scientific passion and a source of sincere guidance. It was also through
his unwaivering support that I have the opportunity to become a master student and now
further my studies as a PhD student. I am thus indebted to him for opening for me a colorful
door to a brilliant new world.

I would also like to thank Prof. Shankar Sastry, who is also a reader of this work. His
teaching gave me the foundational knowledge in robotics that powered much of my research,
and his insights and constant excitement and joy during our conversations serve as powerful
inspirations to me, both as a researcher and as a person. I would also like to thank him for
the great support that allowed me to continue my studies here in the coming years.

I am also grateful for Prof. Daniel Fremont, who has mentored me throughout my time
here in the Scenic project and is also a driving force that allowed me to pursue graduate
studies. He has imparted me much wisdom during our weekly Scenic meetings, covering
items from engineering, research directions, new ideas, and more. He also has always been
generous with his time in guiding me through the many obstacles I encountered during
development, and research would have been impossible without his patience and advice.

Eddie Kim has been my post-doc mentor ever since [arrived at the lab. I have learned
from him a great deal about the practice of research, the value of collaboration and reaching
out to people, and being a very good guy who is caring of others. I am glad that I have
gotten to work with him, and I will always value the lessons he has taught me.

I want to thank all the members of the Learn and Verify Group for all the good times.
To my fellow masters at the table, Alex and Anirudh, it has been a true blast. Special
thanks to Aniruddha, Kai-Chun, and Beyazit for the laughter at all the events and the
Scenic workshop. Kai-Chun led the first paper I was ever a part of, and this experience I
will always cherish. I want to thank Victoria for the conversations exchanging thoughts on
life and Gazebo, and a big thanks to Adwait for the fun times setting up the NAS on LAV.

To mom and dad, thank you for believing in me all this way, for encouraging me through-
out my life wherever I am, and for teaching me to have love and faith. You are the best
parents one can dream of. To Snow and Mocha, you two brighten up my days and nights,
and growing up with you all these years has given me a heart I will not lose. I love you all.

Chapter 1

Introduction

The application of reinforcement learning (RL) to cyber-physical systems (CPS) necessitates
strong safety guarantees. Generating such assurance usually falls under the realm of formal
methods, but challenges arise. While RL techniques currently seem promising for domains
including autonomous driving and robotics, assurance of any kind of learning-based systems
is difficult due to the high uncertainty and variability of real-world environments combined
with the statistical of modern learning algorithms. Application of techniques such as model
checking that proves correctness is therefore a challenge.

Overall, the correctness guarantee of RL-based CPS (RL-CPS) aligns with the the gen-
eral effort towards verified artificial intelligence [16], where the societal-scale deployment of
AT software requires novel techniques for verification. In this context, developing robust
RL-CPS with correctness guarantees presents a multi-faceted problem. First, there exists
the question of specification. In the context of RL, the train-time specification is generally
encapsulated by the reward function, the design of which is an art of its own. Modeling is the
another issue. A properly abstracted model of both the system and its operating environ-
ment are necessary for a useful verification result, but finding the correct level of abstraction
is tricky. A detailed model entailing the great complexity of the system can make the verifi-
cation procedure intractable; in contrast, a model too simple yields useless guarantees. In the
context of CPS, the uncertainty and unknown variables in the real-world environment also
need to be modeled. This aspects raises the question as to how one would model the environ-
mental uncertainty in a realistic way that allows for rigorous testing of the system without
generating spurious counterexamples. Machine learning components brings in additional
complexity. For instance, RL policies generally have a high dimensional feature space for
inputs such as images and LiDAR sensor readings. Traversing these high dimensional spaces
for the purposes of verification is not practical, and our verification model should allow us to
circumvent examining system inputs at the level of raw sensor data. In summary, a linchpin
to providing guarantees of robustness to learning-based CPS is to generate a compact and
efficient model composed of the learning agent, the environment, their interaction, and their
overall dynamics and evolution. The model should allow us to efficiently verify if the our
learning-based CPS satisfy our specification, and in the event that complete verification is

CHAPTER 1. INTRODUCTION 2

difficult, the model should be usable for discovering meaningful counterexamples. For the
purposes of reinforcement learning, there is the additional requirement that we should be
able to use the model and the verification process to train the agent to correct its errors.
Simulation-based verification is a promising direction. This approach takes advantage
of the recent advances in simulation technologies that allow us to simulate a CPS and its
deployment environments at varying degrees of realism and efficiency. Simulation is also
the predominant way by which autonomous CPS are developed, allowing for testing designs
without the costly investment of physical implementation. Inside the simulation, the environ-
mental and internal system dynamics and evolution are generally well-modeled by modern
physics engine. Developments in modern graphics makes camera sensor inputs similar to
real-world images, and new hardware and software implementations allows the simulation to
be run at high efficiency and parallelism. The challenges left to be tackled is to efficiently
model and represent the input space of the learning-based CPS, to develop the procedure by
which the verification is conducted, and to invent methods by which we train the agent to
master the discovered counterexample scenarios. In this thesis, we develop new tools that
take advantage of the existing tool kits Scenic and VerifAl [6][21][4]to provide an integrated
workflow that combines all three of the above points for the robust training of RL-CPS.

1.1 Background

Reinforcement Learning

Reinforcement learning differs from supervised learning schemes due to its problem setup
where the agent learns the correct behavior from interacting with its operating environment
rather than a set of demonstrations. The formal model of reinforcement learning is based on
the Markov decision process (MDP)[17]. Formally, an MDP is a random process defined by
the tuple (S, A, T, r), where S is the state space, A is the set of available actions to the agent,
T is a function S x A — AS that defines the transition between state based on the action
that was chosen. AS denotes the set of probability distributions over S. The function T
yields distributions that are Markovian: the probability of the future state is dependent on
past states and actions only through the present state and action. r is the reward function
S x A — R. To solve the RL problem is to learn a policy my(a|s), which is a distribution,
parameterized by 6, over the possible actions to take in the current timestep conditioned on
the current state s. The typical goal is for the policy to maximize the expected long term
reward, the exact definition of which differs among cases.

Scenic + VerifAI[6][21][4]

Moving towards verifying machine learning-based CPS, two particularly useful tools that
have been developed are Scenic and VerifAl. Scenic is a probabilistic programming language
that tackles the modeling problem in the verification process. Scenic is interfaced to a range

CHAPTER 1. INTRODUCTION 3

of simulators, and any controller and simulated model of a CPS that can be run inside the
simulators can be run alongside Scenic. Scenic specifies environmental models that captures
variation of the real-world operating conditions of the CPS, the hard and soft (probabilistic)
constraints that the composed agent-environment model should satisfy in the form of logical
properties, and the high-level interaction between the system and its environment. It thus
provides the environmental model and defines the composition of the environmental model
and the system model.

Scenic programs further offer a compact representation of the semantic feature space for
the learning-based agents. To elaborate, the high-dimensional input space to learning-based
systems are usually hopeless to specify and model directly. For instance, it is difficult to
describe the kinds of images a vision-based controller will see on a pixel-by-pixel level. What
is more practical is to describe the kinds scenarios (the semantic aspect) that will induce an
input to our CPS. For instance, generating a specific configuration of cars and pedestrians
on the street in simulation will cause a camera to see a particular image. Thus, the range
of images the sensor sees is directly determined by the range of scenarios the simulation
environment generates, and the latter is much more describable and analyzable. In Scenic,
the semantic features are the parameters sampled from a Scenic program, such as positions
of the cars, speed of the pedestrians walking, or the end effector position of a robot. Overall,
Scenic can generate test scenarios for the CPS and monitor the evolution of the combined
closed-loop system-environment model. In the context of training learning-based CPS, Scenic
provides a framework that models a CPS’ operating environment, and from this model, data
can be generated, including data of rare events that are difficult to obtain from the real
world.

VerifAl is a closely related tool that takes advantage of Scenic. VerifAl performs the
function of the verifier and analyzer in the verification framework. Given a specification, a
model of the cyber-physical system (controller, perception component, and the plant model),
and a model of the system’s operating environment, VerifAl conducts tasks including fuzz
testing, falsification, counterexample analysis, data augmentation, hyperparameter synthesis,
and model parameter synthesis. In more detail, VerifAI accepts a specification, which can be
in the form of metric temporal logic (MTL) or a generic reward/objective function. A Scenic
program is provided that specifies a simulator in which to test the target CPS. This Scenic
program serves to define the environmental model, variation in the environmental condition,
and the agent-environment interaction. It also defines the semantic feature space, which is
the main analysis target of VerifAl and usually takes the form of distributions specified in
the Scenic program. The specified simulator will run the controller, the plant model, and
the perception modules; the simulator also defines the evolution dynamics of the simulation
world via its physics engine. While operating, VerifAl samples environmental parameters
from the semantic feature space and monitors each simulation episode for violation of the
specification. VerifAl collects the violation results from past episodes into an error table,
on which the toolkit performs analysis to discern which features in the semantic feature
space are most correlated with the violation of the specification. VerifAl possesses a suite of
samplers for the semantic feature space. Some are passive, where the sampler does not take

CHAPTER 1. INTRODUCTION 4

any inputs nor consider past simulation histories when sampling parameters for an episode.
Passive samplers include the likes of uniform random sampling, simulated-annealing, and
Halton sampling, which have shown to perform well in falsification. The other samplers,
such as the multi-arm bandit, cross-entropy, and Bayesian optimization samplers, are active.
The analysis result from the error table analysis, usually a number, is fed back into these
active samplers prior to the next episode and informs future sampling. Generally, based on
the feedback, the active samplers attempt to sample for episodes that results in stronger
violations of the specification. Overall, Scenic and VerifAl combines to tackle the complex
modeling, analysis, and verification challenges that arise in developing assured Al-enabled

CPS.

1.2 Motivations and Contributions

Training RL-based CPS comes with inherent challenges. Among those is the problem of
dataset construction. Modern RL dataset, such as the Habitat Synthetic Scenes Dataset
(HSSD)[10] for indoor robotics and NuScenes for autonomous driving|3], are often hand-
curated. HSSD is hand-made by artists, and NuScenes is derived from real-world traffic sce-
narios. The disadvantage of this approach is clear: creating such datasets is labor-intensive,
and the resulting datasets are often bulky. For certain new domains, such as drone naviga-
tion, where such datasets are still lacking, researchers might have to wait a long time before
obtaining a datasets that allows them to make progress. Furthermore, datasets are often
not portable across simulators. This issue impedes cross-simulator training methods, where
one may wish to pretrain a policy on a fast, low-fidelity simulator, and fine-tune on a slower
but more realistic simulator. Data interpretability and case coverage are also challenges. It
is generally hard to reason about the distribution of scenarios inside a large datasets: what
kinds of scenarios are included, and how much of each kind is in the dataset? It is further
difficult to have any confidence that the dataset covers important edge cases under which
the agent may fail to perform correctly.

Scenic and VerifAl can help alleviate these problems. Scenic programs serve as natural
means of describing and generating RL training episodes. Being simulator agnostic, Scenic
programs can be ported across any simulators to which Scenic has an interface, allowing
for cross-simulator training. During training time, VerifAl can analyze regions in the se-
mantic feature space that are likely to result in low reward/bad behavior on the agent’s
part. VerifAI's samplers will then generate training episodes with parameters sampled from
those regions. This aspect of training with Scenic and VerifAl assures case-coverage within
the bounds of the types of scenarios specified by the Scenic program. We do note that
this scheme could be somewhat naive from an assurance perspective since we are assuming
that the reward function is a good specification of the desired behavior of an agent. This
assumption is often untrue, as we have seen in cases of reward-hacking among RL agents.
However, given a reward function derived from a good specification, the training process
described above should help reduce incorrect behaviors in deployment. Within the scope of

CHAPTER 1. INTRODUCTION d

this thesis, we assume in our experiments that the reward functions specify the appropriate
system behaviors.

Scenic and VerifAl has been put to great use in complete training of RL agents in prior
works [1], where the toolkit was used to effectively train a soccer-playing agent in the Google
Soccer training environment. Scenic and VerifAl has also been used before to robustify
learning-based CPS in edge cases through data augmentation by generating counterexample
scenarios where the system violates specification||[7]. These work left for exploration the
from-scratch training of RL agent using Scenic/VerifAl. What also needs to be developed
is a RL training tool that is integrated with Scenic and VerifAl that can be used with all
modern RL framework, thus combining training, modeling, error analysis, and verification
into a single workflow. To this end, some technical obstacles also need to be addressed. In its
current form, Scenic is incompatible with existing RL API’s and libraries, and incorporating
its use into existing RL code base is difficult. This issue is due to the API not allowing
the user to control stepping of the simulation or relay information such as reward and
observation to any external RL algorithms. The rigid logic of the current Scenic backend
also requires modification of the interface between Scenic and the simulator to incorporate
the RL algorithms. Therefore, Scenic needs a new API that allows it to be used in standard
RL workflows.

In this work, we developed the tools ScenicGym, which is a set of API wrappers around
Scenic that inherits from OpenAl Gym/Farama Gymnasium[2][20] and PettingZoo[1§] for
both single-agent and multi-agent RL training. This direction allows the user to use Scenic
and VerifAl training with the API popularized by Open AI Gym, where we have the stan-
dard methods such as step and reset which controls the training episodes and returns
information about the training such as reward and observation. We then demonstrate using
the new API on some simple RL tasks.

Chapter 2

Modeling RL Episodes with Scenic

In this chapter, we introduce how to use Scenic|7][21] to model single and multi-agent RL
scenarios. Scenic programs allow modeling of RL episodes in a way that is concise, modular,
and compositional. This approach is advantageous in a number of use cases since users can
model complex behaviors of the environment (which would include non-learning agents) that
obey spatio-temporal constraints. This plays important roles in both single and multi-agent
training.

2.1 Definitions

We will illustrate components of the Scenic program corresponding to the MDP formulation
of RL. Recall that an MDP can be thought to consists of the tuple (S, A, p,, po), where S
is the set of states, A is the actions available to the agent, p is is Markovian conditional
probability of future states dependent on the current state and actions. r is the reward
function, and pg is the distribution of the initial states.

2.2 Modeling Initial Condition Distributions

We shall use the program in Figure to illustrate using Scenic to model an RL episode.
The figure illustrates a robot navigation task. There is one learning agent spot, and one
agent that is part of the environment fetch. The goal of spotis to reach its goal point
without colliding with fetch. There are parameters sampled by the initial distribution,
corresponding to the x-position of spotand the x and y position of fetch. These three
distributions together corresponds define py in our MDP. In general, any distribution specified
in the Scenic program contribute to defining the initial condition. We would like to make a
few notes about the Scenic program. We declared spot to be a learning agent, as shown by
the true settting of is_learning agent field. This means that spotis the agent that we
are training, whereas fetchis just a part of the environment. In the backend, Scenic then
marks spot as an agent whose observation and rewards we keep track.

CHAPTER 2. MODELING RL EPISODES WITH SCENIC 7

1 model scenic.simulators.habitat.model

2 from scenic.simulators.habitat.actions import *x

3 from scenic.simulators.habitat.behaviors import *

4 from scenic.simulators.habitat.model import *

5

6

7 goal_point = (-3.2, -1.0, @)

8 goal_region = CircularRegion(goal_point, 0.7)

9

10 param verifaiSamplerType = 'halton'

11 param spot_y = Range(-6.5, -4.0)

12 param fetch_x = VerifaiRange(-5.5, -4.6)

13 param fetch_y = VerifaiRange(-3.8, -2.0)

14

15 v spot = new SpotRobot at (-3.2, globalParameters.spot_y, ©),

16 with yaw 90 deg, with is_learning_agent True
17 ~ fetch = new FetchRobot at (globalParameters.fetch_x, globalParameters.fetch_y, @),
18 with yaw @ deg, with behavior Traverse(1.5, @, 0)
19
20 v~ monitor Reward():
21 done = False
22 last_distance_from_goal = (goal_point - spot.position).norm()
23
24 ~ while True:
25 v if done:
26 terminate
27 spot.reward = 0
28
29 distance_from_goal = (distance from spot to goal_point)
30 d_distance = distance_from_goal - last_distance_from_goal
31 spot.reward += —-d_distance
32
33 v if (spot intersects goal_region):
34 spot.reward += 10
35 done = True
36
37 v if (spot intersects fetch):
38 spot.reward —-= 10
39 done = True
40
41 last_distance_from_goal = distance_from_goal
42 wait
43
44 require monitor Reward()

Figure 2.1: An Example Training Program

VerifAI[4] Sampling for Initial Conditions

To take advantage of VerifAl, we make some changes to the program shown in Figure[2.1} As
shown in Figure , we first specify a new Scenic param called verifaiSamplerType. This
determines the sampling technique used by VerifAI, which in this case is Halton sampling.
Range in the original program are not replaced by VerifaiRange, which declares these

CHAPTER 2. MODELING RL EPISODES WITH SCENIC 8

variables and their distributions to be analyzed VerifAl. Note that distributions not changed
to VerifaiRange, such as the parameter spot_y are still the original naive continuous
uniform distribution, and VerifAI does not influence those values. It is worth noting that
despite its name, VerifaiRange would in general not be a continuous uniform distribution
due to the underlying sampling algorithm.

During training, the active VerifAl sampler will accept a feedback value. The user is free
to define the feedback value to pass into the VerifAl sampler. For reinforcement learning, this
value can be the episode cumulative reward or the cumulative discounted reward. VerifAl
analyzes the history of this feedback in past episodes to determine which parameter is most
responsible for changes in the feedback value. VerifAl also determines regions in the specified
distributions that are likely to yield a low feedback and samples from these regions in the
next episode. Qualitatively, this process generates difficult episodes for the agent. From the
perspective of theory, this behavior breaks the independence of the initial conditions across
different training episodes, which is usually not seen in standard RL training. The effects of
this setup can be a topic for a future investigation.

13 param verifaiSamplerType = 'halton'

14 param spot_y = Range(-6.5, -4.0)

15 param fetch_x = VerifaiRange(-5.5, -4.6)
16 param fetch_y = VerifaiRange(-3.8, -2.0)

17

18 spot = new SpotRobot at (-3.2, globalParameters.spot_y, @),

19 with yaw 90 deg, with is_learning_agent True

20 fetch = new FetchRobot at (globalParameters.fetch_x, globalParameters.fetch_y, 9),
21 with yaw © deg, with behavior Traverse(1.5, 9, @)

Figure 2.2: Modification to the Scenic Program in Figure 2.1 to Use VerifAl

2.3 Environment Dynamics and Agent-Environment
Interactions

Returning to the Scenic program in Figure [2.1] we note that the environment transition dy-
namics is partly defined by behaviors in the environment objects. Notice that fetch possesses
a Scenic behavior called Traverse, which specifies how an actor behaves as part of the
training environment. In our case, fetchpurely traverses back and forth along a straight
line, but Scenic behaviors are allowed to be interactive. For instance, we can define a
behavior for fetchwhere it moves at different trajectories based on its distance to spot.
Other factors outside of Scenic, such as simulator physics, still contribute to the environment
dynamics as usual.

CHAPTER 2. MODELING RL EPISODES WITH SCENIC 9

2.4 Modeling Rewards

There is some freedom in ways to model the reward. We demonstrate the current recom-
mended way with the Scenic monitor construct. The monitor is not attached to any
single agent. Rather, it is an object of the episode itself. In Figure , the while True
loop keeps the monitor running throughout the episode, with the required wait keyword
at the bottom prompting the loop body to be executed once per simulation timestep. In the
context of RL, a monitor has several advantages. First, it possesses a global view of the
training episode. A monitor can access any information inside the simulation, such as agent
positions and object velocities. The monitor allows the user to identify the spatio-temporal
relationship at each timestep using any of the Scenic operators, which provide convenience
in considering the state of the episode. For instance, we used the distance from operator
to identify the distance between two agents in . We also use the intersects operator
to see if our agent has entered its goal zone, defined by goal region early in the program
using the CircularRegion class provided by Scenic. This allow us to define a circular area
with the goal point as the center as the region we want the robot to enter.

In computing the reward, we allow the spotagent to possess a reward field, which
can be modified by the monitor. This reward is eventually yielded by ScenicGym to the
higher-level RL algorithm when stepping the RL environment, which we will see in the next
chapter. We note that once a goal state is reached, as characterized by if blocks setting the
variable done to be true, we can use the Scenic terminate keyword to end the episode. For
instance, in the case of collisions or reaching a destination region, characterized by statements
involving the keyword intersects to be true, we give spot an additional reward/penalty
and set done to be true. Note that during training, if we set the episode length to be a
particular number of time steps, the episode will terminate once that time limit is reached
(despite us not explicitly stating this in the Scenic program). We will see how to set this
timestep in the next chapter.

Using a monitor is also helpful in multi-agent scenarios. In Figure , and we have
two learning agents, ego and car. Those two vehicles arrive at an intersection and seek
to cross without collision. In the monitor of this program, we are able to, with concise
syntax, explicitly calculate the spatial relationship between the cars and assign reward and
terminations from a global view rather than having to program the reward computation
for each agent. This program also demonstrates the use of the record statement at the
very bottom, where we can record any values computable from the Scenic program for post-
episode analysis. In this case, we are recording our agents’ total episode return for computing
the VerifAl sampler feedback, which we will demonstrate in the next chapter. The final
keyword means we are only recording the value of episode_return at the end of the episode.
There is a corresponding initial keyword. If there is no such temporal keyword, then we
will record the value at every single timestep.

CHAPTER 2. MODELING RL EPISODES WITH SCENIC

1 from math import pi

2 param map = localPath(root_user + '/ScenicGymClean/assets/maps/CARLA/Town®@4.xodr")
3 param carla_map = 'Town@4'

4 param time_step = 1.0/10

5 param camera_position = (311, 255, @)

6 model scenic.domains.driving.model

7

8 success_reward = 10.90

9 driving_reward = 1.0

10 crash_penalty = -5.0

11 out_of_road_penalty = -5.0

12 speed_reward = 0.1

13

14 ego_dir = 180

15 car_dir = -90

16 ego_x = 312

17 car_y = 247

18

19 param ego_y = Range(255, 265)

20 param car_x = Range(290, 306)

21

22 ego = new Car on (ego_x, globalParameters.ego_y, @), facing ego_dir deg,
23 with name "agent@",

24 with goal (311, 235, @),

25

26 car = new Car on (globalParameters.car_x, car_y, 0), facing car_dir deg,
27 with name "agentl",

28 with goal (320, 246, @),

29

30 monitor Reward():

31 done = False

32 ego_success = False

33 car_success = False

34

35 last_long_1 = ego.position[1]

36 last_long_2 = car.position[@]

37

38 drive_dir_1 = ego_dir * pi/180

39 drive_dir_2 = car_dir % pi/18@

40

41 while True:

42

43 ego.zero_reward()

44 car.zero_reward()

45

46 current_long_1 = ego.position[1]

47 current_long_2 = car.position[@]

48

49 ego.add_reward(driving_reward *x (-1) % (current_long_1 - last_long_1))
50 car.add_reward(driving_reward * (current_long_2 - last_long_2))
51

52 last_long_1 = current_long_1

53 last_long_2 = current_long_2

54

55 ego.add_reward(speed_reward * ego.speed_km_h/ego.max_speed_km_h)
56 car.add_reward(speed_reward * car.speed_km_h/car.max_speed_km_h)
57

Figure 2.3: A 2-Car Intersection Crossing Scene

CHAPTER 2. MODELING RL EPISODES WITH SCENIC 11

58 angle_rescale = lambda angle: angle + 2 x pi if angle < @ else angle

59

60 ego.add_reward(-abs(angle_rescale(ego.yaw) - angle_rescale(drive_dir_1))/pi * 0.1)
61 car.add_reward(-abs(angle_rescale(car.yaw) - angle_rescale(drive_dir_2))/pi x 0.1)
62

63 if (distance from ego to ego.goal) < 1:

64 ego_success = True

65 ego.add_reward(success_reward)

66

67 if (distance from car to car.goal) < 1:

68 car_success = True

69 car.add_reward(success_reward)

70

71 if ego_success and car_success:

72 done = True

73

74 # can do this since the cars can only crash with each other if they do crash
75 if ego.metaDriveActor.crash_vehicle or car.metaDriveActor.crash_vehicle:

76 ego.add_reward(crash_penalty)

77 car.add_reward(crash_penalty)

78 done = True

79

8e ego.episode_return += ego.reward

81 car.episode_return += car.reward

82

83 if done:

84 terminate

85 wait

86

87

88 require monitor Reward()
89 record final ego.episode_return as agent@_return
90 record final ego.episode_return as agentl_return

Figure 2.4: Figure 2.3] cont.

2.5 Interfacing to New RL Environments and
Simulators

Scenic currently has interfaces to a number of learning-oriented simulators. Interfacing Scenic
to a new simulator is a straightforward process. We refer the reader to the Scenic repository
and documentation for details.

https://github.com/BerkeleyLearnVerify/Scenic
https://docs.scenic-lang.org/en/latest/index.html

12

Chapter 3

ScenicGym

We hereby discuss the background design and implementation of ScenicGym. In order to
make the Scenic/VerifAI[6][21][4] suite a viable and convenient tool for the RL practitioners
and thus merging modeling, verification, error/counterexample analysis, and training into
one tool, a new API to Scenic is necessary. The prior API requires making significant and
tedious changes at the simulator-interface level of Scenic each time a developer wishes to try a
different algorithms. This issue has in the past made conducting RL experiments with Scenic
a task that can only be tackled by Scenic veterans. A new API ought to address this issue.
Specifically, the API should be compatible with modern RL libraries (such as Stable Baselines
3 and RLLib [14][12]), and it should be easily incorporable into any existing RL code base.
Creating a Farama Gymnasium/OpenAl Gym-like API[2][20] is a natural thought, since the
gym-style API has become industry standard. Certain design and implementation choices
and issues needed to be addressed. In this section we illustrate the design of ScenicGym.

3.1 Design

ScenicGym consists of RL environments that inherit from the Farama Gymnasium environ-
ments, which has become an staple in the field. Corresponding wrappers for the OpenAl
Gym as well as PettingZoo|18] for multi-agent training are also available. The use of the tool
is shown in the following code block that was used to train an agent in Habitat using the
Scenic program in Figure [2.1| with Stable Baselines 3. As shown in the scenic_env function
on line to instantiate a ScenicGym environment for training, the user specify a Scenic
program that models the training episodes (line , compile the program into a Scenic sce-
nario object, which serves as one of the environment’s __init__ arguments. To specify the
simulator to use, a Scenic simulator instance (HabitatSimulator on line[41]) is instantiated
and also passed into the environment instantiation. Besides some standard keyword argu-
ment such as action and observation spaces, the user also pass in a function feedback_fn
that processes the simulation and training episode results to generate a feedback value for
the VerifAl samplers. In the vanilla case, this function can be one that computes the episode

CHAPTER 3. SCENICGYM 13

cumulative return. We were then able to create a vectorized environment on line B6l Note
that to make this vector environment with Scenic, the wrapper on line [7] is necessary due
to reasons we will discuss when talking about running parallel training environments.

© 0 N O Ut s W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

import gymnasium as gym

from scenic.gym import ScenicGymEnv

from pprint import pprint

import os

import numpy as np

import scenic

from scenic.simulators.habitat import HabitatSimulator
import datetime

from stable_baselines3.common.vec_env import SubprocVecEnv
from stable_baselines3 import PPO

from stable_baselines3.common.callbacks import (EvalCallback,

ProgressBarCallback,
CallbackList,
CheckpointCallback)
import datetime
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model', type=str)
parser.add_argument('-r', '--resume', action="store_true")

args = parser.parse_args()

def

def

max_cum_reward(result):
return result.records["agent_return"]

scenic_env():
root_user = os.path.expanduser("™")

obs_space = gym.spaces.Box(0, 255, (256, 256, 3), np.uint8)
action_space = gym.spaces.Box(-2.0, 2.0, (2,), np.float32)

scenic_file = "train_scenes/train.scenic"

scenario = scenic.scenarioFromFile(scenic_file,
model="scenic.simulators.habitat.model",
mode2D=False)

CHAPTER 3. SCENICGYM 14

39

40 env = ScenicGymEnv(scenario,

41 HabitatSimulator(),

42 render_mode=None,

43 max_steps=150,

44 observation_space=obs_space,
45 action_space=action_space

46 feedback_fn=max_cum_reward)

47 env = gym.wrappers.RecordEpisodeStatistics(env)
48

49 return env

50
".

51 if __name__ == "__main__

52 now = datetime.datetime.now()

53 now = now.strftime("Ym_%d_Y%H_%M")

54 model_folder_name = f'"habitat_nav_{now}"

55

56 env = SubprocVecEnv([scenic_env for _ in range(6)])

57 eval_env = scenic_env()

58

59 eval_callback = EvalCallback(eval_env,

60 best_model_save_path=f"./sb_models/{model_folder_name}",

61 log_path=f"./sb_models/{model_folder_name}",
62 eval_freq=1000,

63 deterministic=True,

64 render=False)

65

66 model = PPO("CnnPolicy", env, verbose=2)

67 model.learn(total_timesteps=100_000, callback=eval_callback, progress_bar=True)
68 model .save(f"habitat_nav_{now}")

Backend Design

The interaction between ScenicGym, Scenic, VerifAl, and the underlying simulators are
shown in At the start of the episode, Scenic samples for a new scene using a specified
VerifAl sampler. The information about the new scene is then sent to the simulator via the
Scenic-simulator interface. The scene is spawned in the simulator, and the episode begins. At
each timestep, the ScenicGym environment computes the observation, reward, termination,
and other information, and relays it back to the outer training loop. At the end of each
episode, ScenicGym internally computes a feedback value for the VerifAl sampler based on
the user’s settings, and the next episode is generated. One new feature of Scenic that allowed

CHAPTER 3. SCENICGYM 15

VerifAl analyzes
feedback history and
determines next
sampled values

Sampled scene Feedback
Episode
ScenicGym
action action
poli Scenic simulation
olicy Interface imulatio
reward reward
obs obs

Figure 3.1: Overall Design of ScenicGym

for this construction is the ability for sequential stepping, where Scenic steps the simulation
only when the user calls an advance function.

3.2 On Running Parallel Training Environments

ScenicGymallow running parallel training environments. The current requirement is that
the parallelism has to be multi-process rather than mere multi-thread. Supporting multi-
thread training is an ongoing work. This was why the wrapper on line [47]in the code block
above was necessary, as it forces Gymnasium to use true multi-processing rather than multi-
threading. Please see the |code repository for more instructions and examples on configuring
this for some common RL APIs.

3.3 Using RL Algorithm Libraries

The gym-like interface of ScenicGym allows compatibility with existing RL libraries. For
instance, the code block shown above was using Stable Baselines 3, and training conducted
for in the next section has been done using Ray. Please see the code repository for more
instructions and examples.

https://github.com/BerkeleyLearnVerify/Scenic
https://github.com/BerkeleyLearnVerify/Scenic

16

Chapter 4

Experiments

We describe experimental results in this section that illustrate training with ScenicGym and
influence of VerifAI[4] sampling.

4.1 Setup

The training Scenic program is shown in The experiment is a multi-agent autonomous
driving task where two cars arrive at an intersection seeking to cross without collision. The
two cars are controlled by the same policy, so the training scenario is self-play. The policy
takes in a lidar sensor observation and outputs a vector setting the acceleration and steering
angle. The reward consists of incentives for speed, a straight steering, and reaching the goal
point. There is a penalty for collision. We conducted our experiments inside the MetaDrive
simulator [11] with Scenic. Training was done using PPO [15] inside RLLib of Ray using
Ray’s default PPO policy and training setting. The feedback we choose to give to the VerifAl
active samplers is the maximum episode return among the two agents, which is the value
that VeriAl’s active samplers seek to minimize.

4.2 'Training Methods

We first pre-trained a policy with Scenic using the standard uniform sampler (no active
sampling). This is because during early stages in the training, the policy is likely to have
poor performance across the distribution. An active sampler would then sample the scenes
mostly from the small sections of the distributions that it encountered early on, reducing
the variety of scenes the agent would experience, hindering learning. The pretraining was
conducted for 80,000 timesteps.

We proceeded to conduct four experiments, each with a different VerifAI sampler, and
examine the effects on the learning outcomes. The samplers examined are Bayesian opti-
mization (BO), multi-armed bandit (MAB), and Halton[9]. We also trained a model continue
using the uniform sampler as a baseline. Each experiment started with the pretrained model

CHAPTER 4. EXPERIMENTS 17

and proceeded 80,000 timesteps. For each sampler, 5 trainings were conducted, each using
a different seed. Any evaluation result is the average over the 5 trials. To evaluate the
performance of each policy facing similarly distributed scenarios during and after training,
we deployed the policy in simulation using scenes sampled from the training Scenic program
under uniform sampling. We used 3 seeds, each running for 30 episodes and then take the
mean episode return.

Sampler Agent 0 Agent 1
BO 24.984 + 0.513 | 29.683 £ 2.519
MAB 29.172 4+ 1.116 | 33.505 + 4.921

Halton | 26.762 + 4.741 | 32.821 4+ 7.166

Uniform | 29.353 4+ 1.836 | 34.497 + 4.052

Table 4.1: Mean Episode Return + Standard Deviation Evaluated in Under Scene Generated
from Uniform Sampling

Training of agent0 Training of agentl

— bo
mab

—— halton

254 — uniform

— bo
mab

7 — halton

—— uniform

30

20

]]
£ £ .0
g1s5 g
& &
15
10 -
10 1
5
54
01 0
D 20000 40000 60000 80000 100000 120000 140000 160000 0 20000 40000 60000 80000 100000 120000 140000 160000
timesteps timesteps
(a) Agent 0 Training Comparison (b) Agent 1 Training Comparison

Figure 4.1: Comparison of training results between different samplers for each agent. Besides
the BO sampler, the other samplers have relatively similar performance. This could be due
to the reduced sample diversity resulting from the BO sampler

CHAPTER 4. EXPERIMENTS

Training with bo sampler

35 4

30 4

254

20

rewards

15 4

10 4

—— agento
agentl

T T T T T T T T
1] 20000 40000 60000 80000 100000 120000 140000 160000
timesteps

(a) Bayesian Optimization

Training with halton sampler

35 A

30

25

201

rewards

15 4

10 4

—— agent0
agentl

AVt

T T T T T T T T
o] 20000 40000 60000 80000 100000 120000 140000 160000
tmesteps

(c) Halton

18

Training with mab sampler

35

304

25

20

rewards

15 4

10 4

—— agento
agentl

T T T T T T T T
1] 20000 40000 60000 80000 100000 120000 140000 160000
timesteps

(b) Multi-Armed Bandit

Training with uniform sampler

40

354

30

254

20 -

rewards

154

10 1

—— agent0
agentl

T T T T T T T T
o] 20000 40000 60000 80000 100000 120000 140000 160000
tmesteps

(d) Uniform

Figure 4.2: Comparison of training results between the two agents in each sampler. Agent
1 generally outperforms Agent 0, likely due to the larger variation we allow on its initial

position that includes points closer to its goal

4.3 Results and Discussion

Table [4.T|shows the final evaluation performance of each policy. Figure [4.1 and [4.2]shows the

training curve for individual policies for each agent. In we compare, for each agent, the

CHAPTER 4. EXPERIMENTS 19

training performance using different samplers, and in Figure[d.2] we compare the performance
of the two agents during the same training session with the same sampler. Note that the
training curves also include the pretraining stages using a uniform sampler. It is the general
trend that Agent 1 performs better than Agent 0, with a larger variance. This is most
likely be due to differences between each car’s configuration as the intersection, since we
assigned to Agent 1 a greater range of values for its starting distance from the intersection,
which include points closer to the goal point. We note that the MAB performed on par
with the uniform finetune baselines. MAB is the archetypal active sampler, which would
actively seek to discover scenarios yielding low rewards among the agents while explore
under-sampled regions for new difficult episodes. The Halton sampler and BO sampler did
not perform as well as the uniform baseline. The Halton sampler is deterministic: given a
range on the real line, it "samples” points in a way such that the range is gradually covered,
and each segment of the range is visited equally often. This behavior of the sampler likely
yielded the larger variance in the trained policy’s performance across trials: the diversity of
samples generated could yield a more varied range of performance. The BO sampler seems to
have significantly underperformed. We hypothesize that this is due to Bayesian optimization
having a weaker emphasis on sample diversity when generating scenes, unlike the Halton and
MAB samplers. This decreased diversity likely hurt training. While the uniform baselines
seems to have performed better than the policies trained with the VerifAl samplers, we
would like to note that it is likely that a full falsification could offer more definitive insight.
Overall, the experiments points to sample diversity to be an important factor when choosing
the VerifAl samplers for RL training, even during the later stages.

20

Chapter 5

Conclusions

We introduce a new Scenic/VerifAl[6][21][4] based tool, ScenicGym, for training RL agent
using data generated by the Scenic probabilistic programming language. Scenario coverage
during training is enforced by VerifAI. The new API is compatible with existing RL work-
flows and libraries, and demonstrated VerifAI's sampler being able to influence the final
performance during evaluation. Some directions merit further explorations.

5.1 Future Work

Cross-Simulator Training

One direction that we did not describe in this thesis was cross-simulator training. Scenic-
Gym currently allows for cross-simulator training between simulators to which Scenic has an
interface. This direction is especially important in tasks like vision-based manipulation in
robotics, where the visual and physical fidelity of the simulation environment are important.
However, for training for these tasks are often bottle-necked by the intense computational re-
source requirements of high-end simulators. So it would be desirable to pre-train a policy on
a low-fidelity simulator that incurs lower computational cost and then transfer the training
to a high-fidelity simulator for finetuning to improve robustness. ScenicGym/Zoo could serve
as a uniformed platform for these kinds of training. Towards this end, one ongoing effort is
interfacing Scenic to MetaSim, which is a part of RoboVerse [§]. MetaSim is a “wrapper”
simulator that provides a single unified API for using an array of popular robotics simulator,
such as IsaacSim[13] and Mujoco|19]. The user can transfer training setup/scenarios from
one simulator to another with a keyword argument. Interfacing Scenic to this simulator will
provide additional environmental modeling and error analysis capability, yielding a strong
cross-simulator training platform for assured Al-enabled robotics.

CHAPTER 5. CONCLUSIONS 21

Hierarchical Reinforcement Learning

One of Scenic’s native features is generating compositional scenarios, where, starting from
a parent scenario, we can randomly ”transition” into a second child scenario. For instance,
the parent scenario could be a car driving on the road, for which we have a Scenic program.
We then provide a few other Scenic programs, such as entering an intersection, turning, or
lane-changing. Scenic can start in the parent scenario and transition into these sub-scenarios
based on user specified distributions. This offers a good foundation for training hierarchical
reinforcement learning, where an RL agent not only needs to be able to perform individual
tasks, but also needs to be able to discern which task it should perform and how to correctly
transition between its different operating modes.

22

Bibliography

Abdus Salam Azad, Edward Kim, Mark Wu, Kimin Lee, Ion Stoica, Pieter Abbeel,
Alberto Sangiovanni-Vincentelli, and Sanjit A. Seshia. “Programmatic Modeling and
Generation of Real-time Strategic Soccer Environments for Reinforcement Learning”.
In: Thirty-Siath AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, Feb.
2022.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAl Gym. 2016. eprint: arXiv:1606.01540.

Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang
Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuScenes: A
multimodal dataset for autonomous driving. 2020. arXiv: 1903.11027 [cs.LG]. URL:
https://arxiv.org/abs/1903.11027.

Tommaso Dreossi, Daniel J. Fremont, Shromona Ghosh, Edward Kim, Hadi Ravan-
bakhsh, Marcell Vazquez-Chanlatte, and Sanjit A. Seshia. “VerifAIl: A Toolkit for the
Formal Design and Analysis of Artificial Intelligence-Based Systems”. In: 31st Inter-
national Conference on Computer Aided Verification (CAV). July 2019.

Daniel J. Fremont, Johnathan Chiu, Dragos D. Margineantu, Denis Osipychev, and
Sanjit A. Seshia. “Formal Analysis and Redesign of a Neural Network-Based Aircraft
Taxiing System with VerifAI”. In: 32nd International Conference on Computer Aided
Verification (CAV). July 2020.

Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L.
Sangiovanni-Vincentelli, and Sanjit A. Seshia. “Scenic: a language for scenario specifi-
cation and scene generation”. In: Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI "19. ACM, June 2019,
pp. 63-78. DOI: |10.1145/3314221.3314633. URL: http://dx.doi.org/10.1145/
3314221 .3314633.

Daniel J. Fremont, Edward Kim, Yash Vardhan Pant, Sanjit A. Seshia, Atul Acharya,
Xantha Bruso, Paul Wells, Steve Lemke, Qiang Lu, and Shalin Mehta. “Formal Scenario-
Based Testing of Autonomous Vehicles: From Simulation to the Real World”. In: 23rd
IEEFE International Conference on Intelligent Transportation Systems (ITSC). Sept.
2020.

arXiv:1606.01540
https://arxiv.org/abs/1903.11027
https://arxiv.org/abs/1903.11027
https://doi.org/10.1145/3314221.3314633
http://dx.doi.org/10.1145/3314221.3314633
http://dx.doi.org/10.1145/3314221.3314633

BIBLIOGRAPHY 23

8]

[15]

[16]
[17]

[18]

Haoran Geng, Feishi Wang, Songlin Wei, Yuyang Li, Bangjun Wang, Boshi An, Charlie
Tianyue Cheng, Haozhe Lou, Peihao Li, Yen-Jen Wang, Yutong Liang, Dylan Goetting,
Chaoyi Xu, Haozhe Chen, Yuxi Qian, Yiran Geng, Jiageng Mao, Weikang Wan, Ming-
tong Zhang, Jiangran Lyu, Siheng Zhao, Jiazhao Zhang, Jialiang Zhang, Chengyang
Zhao, Haoran Lu, Yufei Ding, Ran Gong, Yuran Wang, Yuxuan Kuang, Ruihai Wu,
Baoxiong Jia, Carlo Sferrazza, Hao Dong, Siyuan Huang, Yue Wang, Jitendra Malik,
and Pieter Abbeel. RoboVerse: Towards a Unified Platform, Dataset and Benchmark
for Scalable and Generalizable Robot Learning. 2025. arXiv:[25604.18904 [cs.R0O]. URL:
https://arxiv.org/abs/2504.18904.

John H. Halton. “On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals”. In: Numerische Mathematik (1960).

Mukul Khanna, Yongsen Mao, Hanxiao Jiang, Sanjay Haresh, Brennan Shacklett,
Dhruv Batra, Alexander Clegg, Eric Undersander, Angel X. Chang, and Manolis Savva.
Habitat Synthetic Scenes Dataset (HSSD-200): An Analysis of 3D Scene Scale and Re-
alism Tradeoffs for ObjectGoal Navigation. 2023. arXiv: 2306.11290 [cs.CV]. URL:
https://arxiv.org/abs/2306.11290.

Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou.
“Metadrive: Composing diverse driving scenarios for generalizable reinforcement learn-
ing”. In: IEEFE Transactions on Pattern Analysis and Machine Intelligence (2022).

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg,
Joseph E. Gonzalez, Michael 1. Jordan, and Ion Stoica. RLIlib: Abstractions for Dis-
tributed Reinforcement Learning. 2018. arXiv: 1712 .09381 [cs.AI]. URL: https:
//arxiv.org/abs/1712.09381.

NVIDIA. Isaac Sim. Version 5.0.0. URL: https://github.com/isaac-sim/IsaacSim.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus,
and Noah Dormann. “Stable-Baselines3: Reliable Reinforcement Learning Implemen-
tations”. In: Journal of Machine Learning Research 22.268 (2021), pp. 1-8. URL: http:
//jmlr.org/papers/v22/20-1364.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proz-
imal Policy Optimization Algorithms. 2017. arXiv: 1707 .06347 [cs.LG]. URL: https:
//arxiv.org/abs/1707.06347.

Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. “Toward Verified Artificial
Intelligence”. In: Communications of the ACM 65.7 (2022), pp. 46-55.

Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT
Press, 2020.

J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan
Sullivan, Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente,
et al. “Pettingzoo: Gym for multi-agent reinforcement learning”. In: Advances in Neural
Information Processing Systems 34 (2021), pp. 15032-15043.

https://arxiv.org/abs/2504.18904
https://arxiv.org/abs/2504.18904
https://arxiv.org/abs/2306.11290
https://arxiv.org/abs/2306.11290
https://arxiv.org/abs/1712.09381
https://arxiv.org/abs/1712.09381
https://arxiv.org/abs/1712.09381
https://github.com/isaac-sim/IsaacSim
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

BIBLIOGRAPHY 24

[19] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine for model-
based control”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2012, pp. 5026-5033. DoI: [10.1109/IR0S. 2012 . 6386109.

[20] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola,
Tristan Deleu, Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et

al. “Gymnasium: A Standard Interface for Reinforcement Learning Environments”. In:
arXiv preprint arXiw:2407.17032 (2024).

[21] Eric Vin, Shun Kashiwa, Matthew Rhea, Daniel J. Fremont, Edward Kim, Tommaso
Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L. Sangiovanni-Vincentelli, and San-
jit A. Seshia. 3D Environment Modeling for Falsification and Beyond with Scenic 3.0.
2023. arXiv: 2307.03325 [cs.PL]. URL: https://arxiv.org/abs/2307.03325.

https://doi.org/10.1109/IROS.2012.6386109
https://arxiv.org/abs/2307.03325
https://arxiv.org/abs/2307.03325

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Motivations and Contributions

	Modeling RL Episodes with Scenic
	Definitions
	Modeling Initial Condition Distributions
	Environment Dynamics and Agent-Environment Interactions
	Modeling Rewards
	Interfacing to New RL Environments and Simulators

	ScenicGym
	Design
	On Running Parallel Training Environments
	Using RL Algorithm Libraries

	Experiments
	Setup
	Training Methods
	Results and Discussion

	Conclusions
	Future Work

	Bibliography

