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Abstract

Abstracting Architectures: Two Techniques in Formal Hardware Security Verification

by

Alejandro Sanchez Ocegueda

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Recent years have seen a dramatic increase in cyberattacks that target vulnerable hardware.
One of the most effective ways to mitigate such vulnerabilities is to formally verify that
hardware designs adhere to security standards. However, in a world with an insatiable need
for performance, tight development cycles, and ever-evolving technical demands, verification
efforts often fail to keep pace with hardware development. In this work, we present two
approaches to making formal verification more efficient.

Our first contribution is a formal model for pointer-encryption schemes, U2. This model
serves as a formal foundation for any system that enforces memory safety by using cryptog-
raphy to protect pointers and data. We implement our model in UCLID5, and prove that it
satisfies all desired security properties.

Our second contribution is BTORSEC, a security-aware extension of the popular BTOR2 for-
mat. By adding new cryptographic instructions, BTORSEC enables formal reasoning about
cryptography in real-world RTL designs. Additionally, we implement a compiler and a proof-
of-concept solver for security queries on BTORSEC programs.

Together, these contributions advance the state of the art in hardware security verifica-
tion, enabling earlier detection of vulnerabilities and lowering the barrier to adopting formal
methods in modern hardware design.
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Chapter 1

Introduction

With the advent of technologies like generative artificial intelligence, cryptocurrencies, and
cloud-based services, the demand for computing power around the world has never been
higher. Models must be trained, transactions must be committed, requests must be fulfilled.
In this age of unprecedented competition and innovation, there is not a second to waste.

To satiate the industry’s ever-growing need for speed, engineers work across the stack
and around the clock, looking to squeeze as much performance out of their systems as
possible. One particularly effective method of improving performance that has gained much
traction recently is hardware acceleration, a technique that involves directly implementing
important functionality in custom hardware circuits. These tailor-made circuits often provide
massive increases in performance, easily outperforming software-based optimizations by large
margins.

One particular class of hardware accelerators has received much attention in recent years:
cryptographic accelerators. Cryptography is often framed as a necessary evil—components
of the system that hinder performance, but prevent much more dire consequences, like the
leakage of sensitive data. Indeed, cryptography presents itself as the perfect candidate for
hardware acceleration: it is a necessary operation that could lead potentially be a bottleneck
for performance. By implementing custom circuits to provide cryptographic functionality,
we can offset this performance penalty, achieving the dream of having both security and
performance.

Unfortunately, the solution to secure and efficient hardware designs is not that straightfor-
ward. Well-designed and properly implemented cryptographic accelerators are not enough.
Much like in the software realm, if cryptographic primitives are not used appropriately, the
security of a hardware design can still be compromised, even if the primitives work exactly
as intended. Thus, to fully achieve the vision of secure and efficient hardware, we must also
ensure the correct integration of cryptographic primitives into the larger design. It is not
enough to have all the right pieces of the puzzle—we must also ensure that it is assembled
correctly.
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Challenges

Guaranteeing the security of hardware designs in the modern age is no small feat, and doing
so poses a number of challenges, which we outline below:

(I) How can we develop formal models to reason about the high-level security properties
of our designs? What kinds of abstractions allow us to reason about the security of
our hardware?

(II) Once we implement a design in RTL, how can we verify its security properties?

(III) Lastly, how can we develop tools that are easy to use and provide meaningful feedback
on the security of hardware designs, in an era where hardware implementations can
change from one day to another?

This Report

The work presented in this text represents our approach to addressing the challenges laid out
above. Our vision is that by combining techniques in the areas of formal methods, security,
and computer architecture, we can make some progress towards developing effective solutions
for verifying security of hardware designs.

1.1 Contributions and Organization

The work presented in this report is the culmination of a collaborative effort. The work
for Chapter 2 started as a class project for the Spring 2023 iteration of EECS 219C at UC
Berkeley. The initial work was done with my classmates Tommy Joseph and Nigel Chen,
with guidance from Adwait Godbole and Sanjit A. Seshia. The work that followed, and that
constitutes the majority of said chapter, was done in collaboration with Adwait Godbole and
Sanjit A. Seshia. The work on Chapter 3 was done in collaboration with Adwait Godbole,
with input and guidance from Sanjit A. Seshia, Tianrui Wei, and Christopher W. Fletcher.
Below we present a brief overview of this report, along with the primary contributions of
each piece of work:

Chapter 2: U2: A Formal Model of Pointer Encryption Schemes. This chapter
provides our approach to modeling and verifying a complex hardware cryptosystem with the
UCLID5 toolkit [1], [2]. This allows us to reason about the correctness and memory safety
guarantees of the C3 cryptosystem at a high level. Additionally, the modeling techniques
utilized therein can be used to tackle similar high-level system verification problems.
Chapter 2 is organized as follows:

• Section 2.4 presents our formal model of the U2 cryptosystem. This section also spec-
ifies the main security properties that our model provides.
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• In Section 2.5, we present our UCLID5 implementation of U2. We highlight key ab-
stractions and design decisions that went into the implementation.

Chapter 3: BTORSEC: A Model-Checking Format for Hardware Security. This
chapter presents BTORSEC, our novel extension of the popular BTOR2 [3] format. Our ex-
tension, which consists of abstract cryptographic instructions, allows us to reason about the
correct usage of cryptographic primitives in RTL design. This chapter also provides proof-
of-concept tools for (almost) automatically compiling and verifying BTORSEC designs, thus
minimizing overheads and effort required on the engineering side.
Chapter 3 is organized as follows:

• Section 3.4 describes BTORSEC, our security-centric extension of the popular BTOR2
model-checking format. Specifically, Section 3.4.1 presents the new abstract crypto-
graphic instructions of the format, while Section 3.4.2 introduces the SECSPEC format,
which is used to annotate a Verilog design with security-relevant metadata.

• In Section 3.5, we explain the BTORSEC compilation pipeline, which allows users to
create BTORSEC files from existing Verilog designs and an associated SECSPEC.

• Section 3.6 dives into the implementation of SSV, our prototype bounded model checker
for BTORSEC programs.

Chapter 4: Conclusion. This final chapter summarizes this report and provides sugges-
tions for future research stemming from our work.

The chapters of this report are self-contained. Each chapter includes the necessary back-
ground required to understand it, as well as the related work most relevant to its focus. We
assume only a basic familiarity with first-order logic (FOL), including the negation operator
(¬), the logical connectives—conjunction (∧), disjunction (∨), conditional (⇒), and bicondi-
tional (⇔)—and a basic understanding of the existential (∃) and universal (∀) quantifiers.
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Chapter 2

U2: A Formal Model of Pointer
Encryption Schemes

Are we building the right thing?
Cryptographic systems claim to provide a number of security guarantees, but how can we
be sure this is indeed the case? Formal models allow us to rigorously reason about the

security properties of such systems. We provide a formal model U2 that provides
cryptographic memory safety guarantees. We also present an implementation of U2 in the

UCLID5 language. This chapter addresses Challenges (I).

2.1 Introduction

Certain low-level languages, such as C and C++, allow programmers to directly manipulate
a program’s memory. This flexibility lets programmers take full advantage of the under-
lying hardware, often enabling high performance. However, the burden of correct memory
management falls entirely on the programmer, creating opportunities for a wide range of
memory-related bugs.

This class of memory corruption bugs—also known as memory safety vulnerabilities—
often leads to undefined and potentially dangerous behavior. Furthermore, malicious attack-
ers can take advantage of these vulnerabilities to perform a number of attacks. For instance,
an attacker may index beyond the bounds of an array to access other parts of memory, or
they may use a pointer that was previously freed to manipulate the data inside the new
allocation. These attacks can have serious consequences, ranging from leaking sensitive data
to allowing an attacker to take control of the machine running the vulnerable code.

Several solutions have been proposed to deal with the threat of memory corruption.
Many propose rewriting code written in vulnerable languages. Most of the effort on this
front involves translating code into Rust, as this ideally would provide both performance
and safety [4]. Other solutions involve statically analyzing the source code for vulnerabilities
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[5]–[7] or monitoring the code during runtime to detect any vulnerabilities when they happen
[8], [9].

Recently, researchers have introduced mitigations that operate at the hardware level.
These solutions introduce specialized hardware that performs the necessary checks required
to enforce memory safety, ensuring that software that runs on these machines is secure. The
philosophy behind this approach is that by utilizing dedicated hardware, users will enjoy se-
curity guarantees and minimal performance overheads. A classic example of hardware-based
memory safety enforcement is the use of hardware-based pointer tagging mechanisms, like
ARM’s Memory Tagging Extension (MTE) [10] and SPARC’s Application Data Integrity
(ADI) [11]. These solutions use tags to enforce that pointers are not improperly modified.
Another prominent example is capability architectures, such as CHERI [12]. Capability
architectures replace pointers with capabilities, which are objects that store additional infor-
mation like permissions, bounds, and more. This additional information is used in hardware-
based checks that enforce correct memory management.

Intel recently proposed a hardware-based architecture for enforcing memory safety: the
Cryptographic Capability Computing microarchitecture, stylized as C3 [13]. C3 is a capa-
bility architecture that defends against memory-based attacks through cryptography. In a
nutshell, C3 protects the heap address space by encrypting pointers to memory, and then
uses these encrypted pointers as part of the key used to access the data. The authors claim
that this scheme is sufficient to provide confidentiality and integrity of all data in the heap,
effectively mitigating vulnerabilities that target the heap altogether.

It is natural to have some skepticism at such bold claims. The authors show C3’s effective
protection on a comprehensive suite of vulnerable code, but how can we be sure that it was
not just good luck? Furthermore, if the C3 scheme is indeed secure, we would like a general
model or framework that future work can build upon.

To move beyond empirical evaluation and provide principled security guarantees, we
develop a formal model for C3-like pointer-encryption schemes. We name our model Un-
observably Unbreakable, or U2, for short. Formal models allow us to reason about systems
and their properties soundly. Additionally, they enable—and indeed require—us to pre-
cisely specify properties that are often ambiguous, such as “memory safety,” “integrity,” and
“confidentiality.” Given that hardware-based memory safety mitigations like C3 involve the
interaction of hardware and software, we employ the UCLID5 language [2]. The language’s
multi-modal modeling capabilities allow us to specify and verify complex systems like C3

seamlessly.

2.2 Contributions

Concretely, the contributions of this chapter can be summarized as follows:

1. We formulate U2, an abstract model for C3-like pointer encryption systems.

2. We give a characterization of memory safety properties for pointer encryption schemes.
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3. We implement and verify a model of U2 in UCLID5, showing that our model satisfies
our memory safety properties.

2.3 Background

This section provides the necessary background information for this chapter. We begin with
a quick treatment of memory safety. Then, we proceed to explain the design of C3. Finally,
we give a short primer on UCLID5.

2.3.1 Memory Safety

Memory safety is the property of a program or system that ensures all memory accesses are
valid—meaning the program only reads from and writes to memory it has been allocated,
and only while that memory is still in scope. Violations of memory safety, such as buffer
overflows, use-after-free errors, or accessing uninitialized memory, can lead to crashes, data
corruption, or exploitable security vulnerabilities. Enforcing memory safety can be done
through safe programming languages, runtime checks, or hardware-based protections. We
refer interested readers to [14] for a more detailed survey of this topic.

2.3.2 The C3 Microarchitecture

As stated in the introduction to this chapter, Cryptographic Capability Computing (C3) [13]
is a capability architecture developed by Intel to provide memory safety in the heap. C3’s
novelty stems from the fact that it relies entirely on cryptography to provide its memory
safety properties. This allows the architecture to remain efficient, and it has the added
benefit of not needing to keep track of any additional state, unlike other hardware-based
mitigations. The most salient aspect of C3 is the way in which the architecture encrypts
pointers, and then utilizes these encrypted pointers as part of the keystream used to access
the associated data. This has the effect of ‘entangling’ the pointer with the data that it
points to in the heap.

In what follows, we give a brief introduction to how C3 works. The diagrams presented
in this section have been adapted from [13] and [15].

Pointer Encryption

One of the innovations of C3 is its use of cryptographic addresses (CAs). CAs are a special
format for pointers that only encrypt a specific portion of a plaintext linear address (LA).
They are created at the time of memory allocation (i.e. after a call to malloc). The format
as specified in the original C3 paper can be seen in Figure 2.1.

The fields of the format are the following:
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Figure 2.1: C3’s Cryptographic Address Format

• Radix: This 6-bit field specifies the size of the allocation1, in power of two.

• Version & upper fixed address: This 24-bit range consists of the upper 20 bits of
the original pointer and the 4 bits of the Version field put together. The Version field
is used to avoid temporal safety issues stemming from the underlying LA being the
same for two CAs that were allocated at different times.

• Lower fixed address & offset: This 34-bit range is left unchanged from the original
LA. This is done so that software can perform pointer arithmetic without requiring
cryptographic intervention.

CAs can be created from LAs by encrypting the corresponding fields. C3 achieves this by
using a tweakable block cipher named “K-cipher” [16]. The flow for generating a CA from
an LA is shown in Figure 2.2.

Data Encryption

The next important component of C3 is data encryption and decryption. Encryption happens
at the time data is stored into a memory slot allocated by C3. Decryption happens whenever
data is loaded from a memory slot. One key aspect of how these operations are performed
is that the pointer to the data itself is part of the key. The flow of how data encryption and
decryption happens during load and store operations can be seen in Figure 2.3.

’

2.3.3 UCLID5 Primer

UCLID5 is a software toolkit for the formal modeling, specification, verification, and synthe-
sis of computational systems. In this section, we briefly familiarize the reader with UCLID5.
For a more thorough discussion of UCLID5, we refer the reader to the tutorial2 or to the
original UCLID5 papers [1], [2].

1In the C3 scheme, the size of all allocations is a power of two, by design.
2https://github.com/uclid-org/uclid/blob/master/tutorial/tutorial.pdf
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Figure 2.2: Flow of C3 Pointer Encryption

Figure 2.3: Flow of C3 Data Encryption and Decryption

We now give two examples of UCLID5 in action. First, we show how we can model state
transition systems by modeling the Fibonacci sequence. Second, we show an example of how
we can construct and use algebraic data types in UCLID5 .
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State Transition Systems

The UCLID5 language allows us to seamlessly model, specify, and verify state transition
systems like the one shown in Figure 2.4. This example module of the Fibonacci sequence,
while simple, is enough to show the power of UCLID5.

1 module main {

2

3 // Part 1: System description

4 var x, y : integer;

5

6 init {

7 x = 0;

8 y = 1;

9 }

10

11 next {

12 x’ = y;

13 y’ = x + y;

14 }

15

16 // Part 2: System specification

17 property y_le_x : y <= x;

18 property ind_strengthen : x >= 0 && y >= 0;

19

20

21 // Part 3: Proof script

22 control {

23 v = induction;

24 check;

25 print_results;

26 }

27 }

Figure 2.4: A simple UCLID5 module of the Fibonacci sequence

Part 1: System Description. We can describe the system’s behavior, as the module
does in lines 4-14. Intuitively, we are describing what the system does. First, we declare the
integer variables x and y. Then, in the init block on lines 6-9, we declare the initial values
of x and y (0 and 1, respectively). Below that, in lines 11-14, the next block specifies how
the variables will change after one step of the transition relation is executed. This is denoted
with the primed variable notation: x’ = y indicates that the next value of x in will be the
current value of y. Similarly, the notation y’ = x + y indicates that the next value of y will
be the sum of the current values of x and y. This aligns with the behavior of the Fibonacci
sequence.

Part 2: System specification. UCLID5 also allows us to create specifications for our
models. Intuitively, the specification allows us to clearly define what the system is supposed
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to do. In this example, we have two properties that describe the correctness of our system:
y le x on line 17 and ind strengthen on line 18. y le x is the property we wish to prove,
whereas ind strengthen is a property that is used to strengthen the induction and avoid
spurious counterexamples.

Part 3: Proof script. Finally, the we have the control block on lines 22-26. This block
consists of a sequence of commands that are used to verify the properties we specified earlier.
In this model, we use induction to verify our properties. The check command checks whether
the proof obligations are satisfied and the print results command prints out the results
of these checks.

Algebraic Data Types

We now proceed to show an example of how we can construct and utilize algebraic data
types (ADTs) in our systems. Consider the example shown in Figure 2.5.

1 module main {

2

3 // Part 1: System description

4 datatype list = cons(head: integer , tail: list) | nil() ;

5

6 var l : list;

7

8 init {

9 l = nil();

10 }

11

12 next {

13 l’ = cons(1, l);

14 }

15

16

17 // Part 2: System specification

18 invariant test : l.head == 1;

19

20

21 // Part 3: Proof script

22 control {

23 induction;

24 check;

25 print_results;

26 }

27 }

Figure 2.5: A UCLID5 module of a linked list

Part 1: System description. This module consists of a single variable l of type list (line
6). The list type is a user-specified algebraic data type. Users can create their own ADTs
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by using the datatype keyword, followed by the type name, as is done on line 4. Then, users
can specify a grammar of constructors. In our example, we have two constructor: the 0-ary
nil, which represents a null value and the binary cons constructor. cons recursively builds
a list by creating a head node from an integer value and appending it to the tail list.

Initially, we create an empty list by declaring l = nil() in the init block (lines 8-10).
Then, at every state transition, we grow the list by appending a 1 to the head

Part 2: System specification. The only property we wish to verify is that in this system,
the head of our list l always has a value of 1.

Part 3: Proof script. Much like the previous example, we verify the correctness of this
system by induction. We then use the check command to check that our module meets
the proof obligations. Finally, we print out the results with the print results command.

2.4 Formal Model

In this section, we present our formal model of the abstract U2 system. We define our model
as the triple U2 = (Σ, T, init). Σ is a set of states, or a valuation of the state variables of the
model. T ⊆ Σ ×Σ is the transition relation, subject to the operations described later in this
section. Finally, init ⊆ Σ is the set of allowed initial states.

We begin by introducing the U2 model, followed by a description of the U2 adversary.
To end the section, we outline the key security properties that we require the U2 model to
satisfy.

2.4.1 State Variables

We now present the state variables of U2. These give a characterization of our system’s
states, as any σ ∈ Σ is merely a valuation of these variables. The state variables of U2 can
be found in Table 2.1. A detailed description of all types can be found in Appendix A.

Initial States

We model our initial state as a fresh start in which no allocations have been made. In other
words, any initial state σi ∈ init must satisfy the following condition:

∀a. alloc map[a] = false.

2.4.2 Operations

We now describe the operations that our U2 model allows. We model these as an API
that all processes running in the system must use to manipulate memory. These give a
characterization of the transition relation T .
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State Var. Type Description
msv curr B Variable denoting whether a memory safety vulnerabil-

ity has occurred in the current step.
alloc map W → B Map indicating whether a given memory address has

been allocated.
mem W →W Physical memory.
ghost mem W → G Memory augmented with ghost metadata.
lmem I →W Local memory (per-process registers).
ghost lmem I → G Local memory augmented with ghost metadata.
observable O Microarchitectural observable variable.
opcode O Opcode for non-memory instructions.
l i I Local memory indices.
action A The current operation to be executed.

Table 2.1: U2 State Variables

Operation Description

malloc(ldest, kp, kd) Creates a new allocation in memory, ensuring pointer
is encrypted under kp and data is encrypted under kd.
Stores resulting pointer in ld.

load(ldest, laddr, kp, kd) Uses pointer at register laddr and kp to load value from
memory, decrypted under key kd. Stores the result in
ldest.

store(laddr, lval, kp, kd) Encrypts value at register lval under kd. Then, stores
the encrypted value at the address computed using laddr
and kp.

free(laddr, kp) Computes physical address a using laddr and kp. Then,
frees the memory by setting alloc map[a] == false.

hanop(op, ldest, lsrc1 , lsrc2) Performs pointer arithmetic using the values at register
indices lsrc1 and lsrc2 . Stores the result in ldest.

arithop(op, ldest, lsrc1 , lsrc2) Performs an abstract arithmetic operation and returns
a non-pointer value.

Table 2.2: The U2 API

Memory Safety Vulnerabilities

In addition to the behaviors described in Table 2.2, the load and store operations can
potentially trigger a memory safety vulnerability by using an invalid pointer. This has the
effect of setting the msv curr to true during that step.
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2.4.3 The U2 Adversary

The U2 adversary A is allowed to start any number of processes and perform arbitrary oper-
ations with them. Additionally, A comes equipped with an observation function Obs, which
enables them to observe certain parts of the state. To model an adversary similar to the one
described in the C3 paper, we let A’s Obs function be such that they are allowed to observe
any values in their process, in addition to the observable system variable. Intuitively, this
means that the adversary has access to any of the values seen by their process, in addition
to a microarchitectural side channel that leaks information.

2.4.4 Security Properties

We aim to prove two key security properties: confidentiality and integrity. Informally, con-
fidentiality means that the adversary is unable to read the contents of a valid allocation in
plaintext through a memory safety vulnerability. Meanwhile, we define integrity to mean
that any values stored through a memory safety vulnerability cannot be decrypted back as
plaintext, ensuring that A is not able to inject arbitrary values or code into other users’
memories.

Definition 2.1. Confidentiality:

msv curr = true⇒
(observable.valid = false ∨ observable.g data.enc state ≠ Plain)

The formula above says that whenever a memory safety vulnerability is triggered, either
the data observed through the observable channel is invalid, or the data must not be in
plaintext.

Definition 2.2. Integrity:

∀a. alloc map[a] = false ∨
(isDenc(ghost mem[a].enc state) ∧
(ghost mem[a].enc state.DEnc nonce = ghost mem[a].nonce true)) ∨
isGarbled(ghost mem[a].enc state)

This formula specifies that at all time steps, any valid allocation must either be decrypted
with the correct nonce, or it must be garbled.

2.5 UCLID5 Model

In this section, we provide an overview of implementation of U2 in the UCLID5 language.
We begin with a brief treatment of the different modules in Section 2.5.1. Then, we move
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on to the verification results in Section 2.5.2. For the sake of brevity, we highlight only the
most important aspect of each module. We direct readers interested in learning more to
either Appendix B or our GitHub repository [17].

2.5.1 Modules

The Common Module

We begin our description of our UCLID5 model with a description of the common module.
This module contains basic type declarations that the other modules rely on.

1 module common {

2

3 type word_t = bv2;

4 type size_t = word_t;

5

6 type opcode_t;

7

8 type lmapind_t = bv3;

9

10 // Attacker , and Victim keys

We note that we model the word type as a 2-bit bit-vector, and the lmap ind type as a 3-bit
bit-vector. This is done mainly for the sake of simplicity, as larger bit-vectors would likely
have no effect on the verification, and would likely only cause the proof to take much longer
to finish.

1 // Attacker , and Victim keys

2 type key_t = enum { AtKey , ViKey };

The key t type is used to model the keys for each process. Implicitly, this also specifies the
number of processes in the system. In our case, we only model the adversary and the victim
processes. We argue that there is no need for modeling more processes, as there are no new
behaviors introduced with the presence of extra processes. This, again, would only lead to
verification being less tractable, which is something we want to avoid at all costs, given that
we are modeling a system as complex as U2.

1 datatype enc_state_t = Pln()

2 | DEnc(DEnc_val: enc_state_t , DEnc_key: key_t , DEnc_nonce: nonce_t

↪ , intcheck: boolean)

3 | DDec(DDec_val: enc_state_t , DDec_key: key_t , DDec_nonce: nonce_t

↪ )

4 | PEnc(PEnc_val: enc_state_t , PEnc_key: key_t)

5 | PDec(PDec_val: enc_state_t , PDec_key: key_t);

The next type declaration we highlight is the algebraic data type used to model cryptography.
This consists of a base Pln() constructor, and appropriate constructors for the other states
of encryption, for both data and pointers.
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Note that we do not model the free operation, as this was difficult to model and caused
issues with proof convergence3.

1 type ghost_data_t = record {

2 // Raw value

3 value: word_t ,

4

5 // Value state (i.e. is this a handle or a raw value?)

6 vtype: value_t ,

7

8 // Handle elements

9 // Base address (inclusive)

10 h_base: word_t ,

11 // This is the current handle offset

12 h_offset: word_t ,

13 // Allocation is [h_base , h_base+h_length)

14 h_length: word_t ,

15

16 // Only modified by the encryption function

17 // Encryption state

18 enc_state: enc_state_t ,

19 // True nonce for that allocation (used for authentication)

20 ca_nonce_true: nonce_t

21 };

The final type declaration we highlight is the ghost data t type. This type contains not
only the real value stored in physical memory, but also several metadata fields that are
necessary for verification:

• The vtype field indicates whether this allocation contains a pointer or raw data.

• The h base, h length, and h offset comprise the allocation’s handle. This handle is
used to check memory bounds and detect memory safety violations during verification.

• enc state tells us which state of encryption this allocation is in. Symbolically, we
should know whether the value is in plaintext, encrypted, or decrypted, reagardless of
the real value that memory may hold.

• ca nonce true indicates the true nonce that was created when this allocation was
made (by making a call to malloc). This corresponds to keeping track of which CA
was made to create the allocation, and ensure that it is that same CA that is used by
ensuing memory access in the original C3 paper.

The U2 Module

We now describe the u2 module. In this module, we create all the necessary state variables,
and we also specify the behavior of the init and next blocks. This gives a full description

3Moreover, the behavior of free is not defined in the original C3 paper.
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of our U2 system, as the state variables characterize Σ, the init block gives us the set of
initial values (init), and the next block gives us our transition relation T .

1 // Ghost state

2 var ghost_mem : ghost_mem_t;

3 var ghost_lmap : ghost_lmap_t;

4 // Allocated map

5 var alloc_map: alloc_map_t;

The ghost mem and ghost lmap variables shown above correspond to the main memory and
local memory variables, respectively (augmented with extra data). The alloc map variable is
used to keep track of which sections of memory have been allocated through calls to malloc.

1 // Current operation was a memory safety vulnerability

2 var msv_curr : boolean;

3 // Architectural observable

4 var observable : observable_t;

These msv curr variable describes whether a process has triggered a memory safety vulner-
ability by performing an illegal memory access. The observable variable is used to model
the adversary’s ability to observe certain parts of memory through other side channels.

1 init {

2 // Initially all cells are unallocated

3 assume (forall (a: word_t) :: (! alloc_map[a] && !shadow_mem[a].

↪ alloc));

4

5 // Initially all values (in lmap and memory) hold raw data (not

↪ pointers)

These variables describe a process’s local map. This allows users to keep a private collection
of values at any given time.

1 assume (forall (a: lmapind_t) :: ghost_lmap[a]. vtype == RAW);

2 assume (forall (a: word_t) :: ghost_mem[a]. vtype == RAW);

3

4 observable.valid = false;

5 msv_curr = false;

6 }

7

8 axiom slot_to_nonce_disjointness :

9 (forall (i1: word_t , i2: word_t , i3: word_t , i4: word_t) :: (

10 non_overlapping_ranges(i1, i2, i3, i4) ==> (slot_to_nonce(i1,

↪ i2) != slot_to_nonce(i3 , i4))

11 ))

12 ;

The init block specifies the initial state of our system. We have three assumptions in the
code above:

(1) Initially, all cells are unallocated.
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(2) Initially, all values in the local map are not pointers.

(3) Initially, all values in main memory are not pointers.

Assumption (1) is used to model a system starting fresh and with all memory available.
This aligns with our definitions in Section 2.4. Assumptions (2) and (3) are mostly a matter
of simplifying the design. We believe that constraining the program such that all values in
main and local memory are initially RAW (i.e. not used as pointers to access memory) is a
fairly reasonable assumption to make. Moreover, this drastically reduces the initial state
space, and speeds up the verification effort.

Moreover, they simplify verification drastically by constraining the possible initial states
of our system.

This block also specifies that the observable variable holds invalid data, and that no
memory safety vulnerability has occurred.

1 havoc action;

2

3 case

4 (action == LOAD) : { call load(l1, l2, ViKey , ViKey); }

5 (action == STORE) : { call store(l1, l2, ViKey , ViKey); }

6 (action == MALLOC) : { call malloc(l1, ViKey , ViKey); }

7 (action == HANOP) : { call hanop(opcode , l1, l2, l3); }

8 (action == ARITHOP) : { call arithop(opcode , l1, l2, l3); }

9 esac

10 }

11

12 }

Finally, the next block specifies how our C3 model must transition from one state to the
next. In our UCLID5 model, this means that the victim can choose to arbitrarily perform
a standard load, store, malloc operation, by following the C3 scheme. Alternatively, they
can perform pointer arithmetic via the hanop operation to create new pointers from data
they hold. Finally, we also allow the user to perform some computation on the values in
their local map, with the restriction that the result is not used as a pointer later. This last
restriction is included to simplify the modeling, but does not change the expressivity of our
system.

Other Modules

We provide a brief overview of the other modules in our UCLID model.

• The main module contains all the formal properties, and is responsible for performing
verification.

• The operations module defines the behavior of the load, store, malloc, hanop, and
arith procedures used in the next block of the u2 module.
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• The cryptography module defines procedures that implement the behavior of the
cryptography using our ADT encoding.

• The contracts module defines a number of macros that are useful for the procedures
in the operations and cryptography modules.

• Finally, the shadow common, shadow u2, and shadow operations modules all define
the shadow memory, which is a structure that independently keeps track of the al-
locations of the system, which allocations each address belongs to, and which nonce
has been used to encrypt it (if any). The shadow memory serves mostly as an aide in
verification.

2.5.2 Verification Results

We proved a total of 24 properties to the correctness of our UCLID5 model. Notably, this
includes our confidentiality and integrity properties from Section 2.4.4. Our model was able
to prove the properties inductively for the two-process case in a total of 11.64 seconds. The
full model, along with instructions of how to run the proofs, can be found in our GitHub
repository [17].

2.6 Related Work

Security Analyses of C3

C3 has been the subject of much scrutiny in the security community. Mahzoun, Kraleva,
Posteuca, and Ashur show that the K-cipher–the main component used to encrypt pointers
in the real C3 system–is susceptible to differential cryptanalysis attacks [18]. Additionally,
Hassan presents four different attacks on the C3 system in their PhD dissertation [15]:

1. They exploit the use of XOR as an encryption primitive to leak confidential values for
allocations with known initial values.

2. They leverage the lack of bounds-checking during pointer arithmetic operation to forge
CAs.

3. They take advantage of the low entropy in the Version field of the CA format to violate
temporal memory safety.

4. They show how the system-level design decision to only protect the heap can be abused
to break C3’s memory safety guarantees.

We note that these attacks work at a much finer level of detail than what our formal model
considers in scope. This only reinforces the vision of our report that security verification
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must be present at all points of the design process: from the ideation and system specification
all the way to the implementation.

UCLID5 for Hardware Security

The work presented in this project builds off prior work in verifying hardware security prop-
erties using UCLID5. Prior endeavors in UCLID5 modeling include but are not limited
to:

• Creating verifiable models of secure hardware enclaves [19], [20], building off the formal
groundwork laid out by Subramanyan et al. in their seminal paper on the Secure
Remote Execution of Enclaves [21].

• Creating models of programs and simulating their execution on a speculative processor
while exposing certain state to the adversary’s observations. [22], [23].

• Formally verifying an open-source hardware implementation of physical memory pro-
tection (PMP) in RISC-V [24].

Our work is yet another testament to the versatility of the UCLID5 toolkit to model and
verify complex systems where hardware and software interact.

Dedicated Cryptographic Verifiers

We would be remiss to overlook the work surrounding other dedicated cryptographic verifiers
in recent years. We give a brief overview of some of the most popular verifiers in the literature.
We refer the reader to Barbosa et al.’s SoK paper on computer aided cryptography [25] for
a more detailed overview into this line of research.

Tamarin: A rather popular cryptographic verifier is Tamarin [26]. This prover operates by
using multiset rewrite rules and backwards reasoning to automatically find attacks for an
unbounded number of sessions. Tamarin has been used in a number of projects to model
and verify the security of protocols such as TLS 1.3 [27], 5G Authentication [28], and more.

ProVerif & CryptoVerif: ProVerif [29] and CryptoVerif [30] both developed at INRIA,
are other examples of cryptographic verifiers. These tools leverage the applied pi calculus
[31] to allow users to verify cryptographic protocols in the symbolic and computational
models of cryptography, respectively. ProVerif has been used to verify election protocols [32],
secure messaging protocols [33], and to automatically find attacks based on hash function
weaknesses [34]. CryptoVerif, on the other hand, has been useful for analyzing the soundness
of post-quantum security protocols [35] and a number of protocols involving dynamic key
compromise [36].

The tools outlined above–being primarily designed with security verification in mind–
support cryptographic primitives and constructs natively. This functionality allows users
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to use these tools and focus on the modeling and verification of cryptographic protocols.
This is an excellent choice when reasoning about the use of cryptography in isolation. We
could very well have used any one of these tools to create our formal, abstract model of C3.
Ultimately, however, we were more interested in modeling C3 as a hardware-software system.
These small details are why we opted to use UCLID5 with ADTs instead.

2.7 Conclusion

This chapter introduced U2, an abstract system model for C3-like systems, modeled in the
UCLID5 language. We also proved that our model satisfies our security properties. This
work provides a rigorous framework to reason about C3-like systems. It is our hope that
this project enables architects of C3-like systems to think about the security of their designs,
or that they are inspired to integrate modeling in UCLID5 or other similar tools into their
workflows.

2.7.1 Future Work

Modeling

One way in which the work presented in this chapter could be extended is by creating a
lower-level model that accurately reflects the behavior of the actual C3 system more closely.
This could include microarchitectural details, such as registers, TLBs, caches, and more.
Then, we could show that this lower-level C3 model refines our U2 model, which would
provide a high degree of confidence on the soundness of the C3 scheme.

UCLID5

Our decision to model cryptographic primitives as ADTs was in part due to necessity. Indeed,
UCLID5 does not natively support the kind of probabilistic or computational reasoning that
is required to verify a cryptographic system at such a fine level of detail. The best we can do
at the time of writing is to model cryptography symbolically. Consequently, one interesting
line of research would be to equip UCLID5 with computational and probabilistic reasoning
capabilities, which would allow users to make more accurate models and have more precise
security guarantees.
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Chapter 3

BTORSEC:
A Model-Checking Format for
Hardware Security

Are we building the thing right?
After validating a high-level system design with a formal model—much like we did with U2

in Chapter 2—the natural next step is to implement it in RTL. But implementations often
introduce bugs that cannot be caught by higher-level specifications. This chapter aims to

provide microarchitects and verification engineers with tools to check their implementations
for security vulnerabilities with minimal overhead. This chapter addresses Challenges (II)

and (III).

3.1 Introduction

The previous chapter focused on the specification and verification of security properties in
high-level system designs. Using the UCLID5 language, we showed that we can reason
about our design by omitting several implementation details and focusing only on the core
properties that we wish to satisfy. But while having high-level assurance that our abstract
models are secure is useful, the ultimate goal is to ensure that the implementations of
the models are secure, too. Many things can go wrong when moving from a high-level
specification to the real implementation. The devil, as usual, is in the details.

Addressing this implementation-to-specification gap requires new verification approaches
that combine the precision of RTL analysis with the abstraction of cryptographic reasoning.
To this end, this chapter introduces BTORSEC, a word-level model checking format for hard-
ware designs that employ cryptographic modules. By nature of being a language extension,
BTORSEC enjoys many of the properties of BTOR2, such as its simplicity and ease of parsing.
Additionally, the new instructions introduced in BTORSEC allow us to express and reason
about security-related properties of an RTL design. Notably, these sorts of security prop-
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erties are not expressible in the base BTOR2 language. This design philosophy—abstracting
cryptographic details while preserving RTL precision—enables a new class of security veri-
fication that was previously impractical.

This chapter details both the technical design of BTORSEC and its practical application
to hardware verification. Section 3.4 provides an overview of the new instructions added to
BTORSEC, explaining our extension of the BTOR2 format in more detail, and what the purpose
of each new instruction is. Next, Section 3.5 gives a detailed explanation of the compila-
tion pipeline, from the initial (System)Verilog design to the final BTORSEC file. Section 3.6
introduces SSV, our prototype model checker for BTORSEC security properties. Section 3.7
compares and contrasts our approach to hardware security verification to existing approaches
in the literature. Finally, we conclude the chapter in Section 3.8 by summarizing our work
and providing directions for future research.

3.2 Contributions

In summary, this chapter makes the following contributions:

1. We propose BTORSEC, an extension of the BTOR2 model-checking format that adds
abstract cryptographic instructions.

2. We introduce a compilation pipeline that allows users to create BTORSEC files from
existing Verilog designs with minimal engineering overhead.

3. We implement a bounded model checking tool, SSV, for checking confidentiality prop-
erties of BTORSEC programs.

3.3 Background

This section provides some relevant technical background that is useful in understanding
the approach to hardware verification we present in this chapter. We begin with a quick
introduction to the Verilog and BTOR2 languages. We emphasize the usefulness of the BTOR2
format as an intermediate representation of hardware designs, motivating our decision to
create its BTORSEC extension, presented in Section 3.4. We then proceed to cover some basic
formal verification techniques that will be useful in describing our approach to verifying
BTORSEC programs in Section 3.6.

3.3.1 Hardware Design

This subsection provides a brief introduction to the Verilog, SystemVerilog, and BTOR2 lan-
guages, focusing on the aspects most relevant to hardware modeling and formal verification.
We give a simple introduction of the popular Verilog and SystemVerilog hardware descrip-
tion languages. We also stress the BTOR2 format’s role as an intermediate representation
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for model checking. This background will equip the reader with the necessary context to
understand the modeling choices and verification workflows presented in subsequent sections.

Verilog and SystemVerilog

Verilog [37] is a hardware description language (HDL) originally developed in the 1980s for
modeling and simulating digital circuits. It provides a C-like syntax for describing hardware
behavior at multiple levels of abstraction, from gate-level implementations to high-level
behavioral descriptions. Verilog became an IEEE standard (IEEE 1364) and remains one
of the most widely used HDLs in the semiconductor industry for designing everything from
simple logic circuits to complex processors and system-on-chips (SoCs).

SystemVerilog [38], introduced in the early 2000s, is a significant extension and enhance-
ment of Verilog that addresses many of the original language’s limitations. Beyond tradi-
tional hardware description capabilities, SystemVerilog adds powerful verification features
including object-oriented programming constructs, constrained random testing, assertions,
coverage metrics, and interfaces.

Given the similarity of these two languages, we will use the terms “Verilog” and “Sys-
temVerilog” interchangeably. Below is a simple example of a (System)Verilog module de-
scribing a flip-flop register:

1 module top (

2 input clk ,

3 input [31:0] in ,

4 output [31:0] out

5 );

6

7 reg [31:0] ff;

8

9 // Sequential logic

10 always @(posedge clk) begin

11 ff <= in;

12 end

13

14 assign out = ff;

15

16 endmodule

Figure 3.1: Flip-Flop Verilog Module

Lines 1-5 declare the module. Since this is the top-level module, it is named top. These
lines also declare the input and output ports, in this case:

• a 1-bit input port, clk, corresponding to the clock,

• a 32-bit input port, in, corresponding to the input data, and

• a 32-bit output port, out, corresponding to the output data.



CHAPTER 3. BTORSEC:
A MODEL-CHECKING FORMAT FOR HARDWARE SECURITY 24

Line 7 declares a 32-bit register named ff. Then, lines 10-12 describe the behavior of
the module:

• Line 10 indicates that the behavior in the block should happen at each rising edge of
the clk signal (always @posedge clk).

• Line 11 indicates that the register ff should store the value in.

Finally, line 14 declares that the out port should have the same value as the ff register.

BTOR2

BTOR2 [3] is a word-level model checking format for capturing models of hardware in a
bit-precise manner. It is largely similar to its predecessor, BTOR, with the main difference
between the two being the addition of explicit sort declarations. By design, the BTOR2 format
is minimalist and line-based. Consequently, it is also easy to parse, making it well-suited
to interface with solvers and other verification tools. Let us continue our simple flip-flop
module example. The BTOR2 representation of the Verilog module is shown in Figure 3.2.

1 ; BTOR description generated by Yosys 0.50+56 (git sha1 176131b50 ,

↪ aarch64 -apple -darwin23.5-clang++ 18.1.8 -fPIC -O3) for module

↪ top.

2 1 sort bitvec 1

3 2 input 1 clk ; flip_flop1/top.v:2.11 -2.14

4 3 sort bitvec 32

5 4 input 3 in ; flip_flop1/top.v:3.18 -3.20

6 5 state 3 ff

7 6 output 5 out ; flip_flop1/top.v:4.19 -4.22

8 7 next 3 5 4

9 ; end of yosys output

Figure 3.2: BTOR2 Code for Flip-Flop Module

Let us break down this simple BTOR2 program line by line. Each line of a BTOR2 program
consists of a line identifier (which we will refer to as lid), followed by the name of the
instruction, followed by the arguments of the instruction. These line identifiers are then
used as references for other instructions. Comments are denoted with a ‘;’ and any text
following the ‘;’ is ignored1. In general, BTOR2 instructions look something like this:

<lid> inst <params>*

1The comment at the top of the file is simply output created by the Yosys at the time of compiling the
program.
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The first line of the program is 1 sort bitvec 1, which means that any subsequent instruc-
tion that uses this sort will be a 1-bit bit-victor.
The second line, 2 input 1 clk indicates that the lid 2 is associated with an input of
sort 1 (i.e. a 1-bit bit-vector) named clk.
Similarly, the third line of the program, 3 sort bitvec 32, declares the lid 3 as a 32-bit
bit-vector.
Line 4, much like line 2, indicates that lid 4 now refers to an input of sort 3 (a 32-bit
bit-vector) named in.
Line 5 declares a state variable (i.e. a reg in Verilog terms) of sort 3 named ff.
Line 6 declares that the value of lid 5 is an output named out.
Finally, line 7 states that, at each transition, the state variable at 5 of sort 3 will take on
the value of 4.

Despite BTOR2’s simple syntax, it is rather difficult to glean the purpose of a BTOR2
program by simply looking at one. Thankfully, BTOR2 files are not meant to be written or
read by humans in the way Verilog files are. For the purposes of this project, the role of
BTOR2 is mostly to act as an intermediate representation of Verilog modules that is easier to
work with.

3.3.2 Formal Verification Techniques

We now provide a brief overview of some formal verification techniques referenced in this
chapter. Of particular relevance are the symbolic simulation and fixed-point computation
techniques. This is because our prototype checker for BTORSEC, SSV, employs a combination
of these methods. While SAT and SMT solving serve as the underlying engines that im-
plement these techniques, they are not the primary focus of this work; nonetheless, a basic
understanding of them is beneficial for context.

Boolean Satisfiability

We provide a brief overview of the Boolean Satisfiability problem, better known as SAT.
The SAT problem consists of asking the following question: given a Boolean formula2 ϕ with
variables v1, v2, v3, ... that are all either True or False, is there some assignment of True and
False to these variables such that the overall value of the formula ϕ is True? As an example,
consider the following Boolean formula:

ϕ ∶= (v1) ∧ (¬v1 ∨ ¬v2).

Then if we assign v1 = True and v2 = False, we have that (v1) evaluates to True and
(¬v1 ∨ ¬v2) evaluates to True as well. Therefore, (v1) ∧ (¬v1 ∨ ¬v2) also evaluates to True.
Since there exists some assignment of True and False to v1 and v2 that makes ϕ evaluate

2That is, a formula that can only be evaluated to True or False.
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to True, we say that ϕ is satisfiable (or SAT, for short). We also say that v1 = True and
v2 = False is a satisfying assignment.

The counterpart of a satisfiable formula is an unsatisfiable (UNSAT) formula, in which
no assignment of True and False can make the overall formula True. For instance, the
formula

ψ ∶= (v1) ∧ (¬v1)
is very clearly unsatisfiable. If we assign v1 = True, then ¬v1 = False; similarly, if we choose
to make ¬v1 = True, then v1 = False. In any case, ψ will always be False.

SAT solvers essentially check every possible assignment of variables until they find a
satisfying assignment. If at any point such an assignment is found, then the solver declares
the formula in question to be SAT and returns the satisfying assignment to the user. On
the other hand, if the solver exhausts all the assignments and does not manage to make the
formula SAT, then it terminates and declares the formula to be UNSAT.

SAT technology has proven exceptionally useful in practice. It has been used to solve
longstanding problems in mathematics, such as the Pythagorean Triples problem [39], and it
is also a fundamental tool used in hardware verification in industry [40], [41]. Readers inter-
ested in learning more about SAT solving are directed to the wonderful papers The Science
of Brute Force [42] by Heule and Kullmann and Boolean Satisfiability: From Theoretical
Hardness to Practical Success [43] by Malik and Zhang.

Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the natural extension of SAT to more expressive
theories. We now provide a formal definition of SMT, as well as some theories of interest
for the present study. We have obtained these definitions from the Handbook of Satisfiability
[44] and from Marker’s Model Theory: An Introduction [45]. We refer the reader to those
texts for a more thorough treatment on SMT and model theory, respectively.
Problem Statement: Let us define the SMT problem more rigorously. A signature Σ is
a set of predicate and function symbols, each with an associated arity. For clarity, we let
ΣP ⊆ Σ be the set of predicate symbols and ΣF ⊆ Σ be the set of function symbols. We call the
0-arity function symbols constant symbols and the 0-arity predicate symbols propositional
symbols. A Σ-structure M is a pair consisting of a set M , called the underlying universe,
and a mapping (⋅)M that assigns

1. to each constant symbol c ∈ ΣF an element cM ∈M ,

2. to each function symbol f ∈ ΣF of arity n > 0 a total function fM ∶Mn →M ,

3. to each propositional symbol B ∈ ΣP a value BM ∈ {True,False}, and

4. to each predicate symbol p ∈ ΣP of arity n > 0 a function pM ∶Mn → {True,False}.

Furthermore, we denote the set of Σ-terms as the smallest set T such that
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(i) c ∈ T for every constant symbol c ∈ ΣF ,

(ii) each variable symbol ci ∈ T for i = 1,2, ..., and

(iii) if t1, ..., tnf
∈ T and f ∈ ΣF with arity nf , then f(t1, ..., tnf

) ∈ T .

Conceptually, the set of terms T contains all the constant symbols, the variable symbols,
and all applications of functions to other terms.

Let ϕ be a formula with free variables from v = (vi1 , vi2 , ..., vim), and let a = (ai1 , ai2 , ..., aim) ∈
Mm. We inductively defineM ⊧ ϕ(a) as follows:

(i) If ϕ is t1 = t2, where t1, t2 ∈ T , thenM ⊧ ϕ(a) if tM1 (a) = tM2 (a).

(ii) If ϕ is B ∈ ΣP , thenM ⊧ ϕ(a) if BM = True.

(iii) If ϕ is p(t1, ..., tnp) where p ∈ ΣP , thenM ⊧ ϕ(a) if p(tM1 (a), ..., tnp(a)
M) = True.

(iv) If ϕ is ¬ψ, thenM ⊧ ϕ(a) ifM ⊭ ψ(a).

(v) If ϕ is (ψ ∧ θ), thenM ⊧ ϕ(a) ifM ⊧ ψ(a) andM ⊧ θ(a).

(vi) If ϕ is (ψ ∨ θ), thenM ⊧ ϕ(a) ifM ⊧ ψ(a) orM ⊧ θ(a).

(vii) If ϕ is ∃vj ψ(v, vj), thenM ⊧ ϕ(a) if there is some b ∈M such thatM ⊧ ψ(a, b).

(viii) If ϕ is ∀vj ψ(v, vj), thenM ⊧ ϕ(a) if for every b ∈M ,M ⊧ ψ(a, b).

If M ⊧ ϕ(a), then we say that M satisfies ϕ(a). Naturally, we say that for any formula
ϕ(v), if there exists some Σ-structureM and a ∈Mn such thatM ⊧ ϕ(a), we say that ϕ is
satisfiable.

A sentence is a formula with no free variables. A Σ-theory3 T is a set of sentences that
uses only symbols from Σ. We say that a Σ-structureM is a model of a theory T ifM ⊧ ϕ
for every ϕ ∈ T . We denote this asM ⊧ T .

Therefore, the problem of Satisfiability Modulo Theories can be stated as follows: given
a signature Σ, a formula ϕ(v), does there exist some Σ-structure M and a ∈Mn such that
M ⊧ T (i.e. M is a model of T ) andM ⊧ ϕ(a) (i.e. ϕ(v) is satisfied inM)?

We now give a brief description of some theories of interest, courtesy of [44].

Fixed-Width Bit-Vectors: Given that we are working with digital circuits, the theory of
fixed-width bit-vectors is of great importance to us. There are many formulations for the
theory of fixed-width bit-vectors. Generally, they all share the characteristic that constant
symbols are used to represent bit-vectors and that each bit-vector has an associated width
(i.e. the number of bits it contains). In this work, we consider the theory as specified by
the SMT-LIB standard [46], which is also the theory that is used by Z3 [47], the SMT solver
that SSV uses for its backend.

3Oftentimes abbreviated to just theory if the signature Σ in question is clear from context.
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What differs among the different theories are the predicate and function symbols, which
may include extraction, concatenation, bit-wise Boolean operations, and arithmetic oper-
ations. Reasoning at the level of bit-vectors offers a more compact representation of the
problem, which lends to more efficient verification than using bit-level reasoning.

Arrays: This theory captures our intuitive notion of how arrays behave by characterizing
and axiomatizing the read and write operations. Formally, we let ΣA be the signature
(read,write). We consider the following sentences as the axioms that comprise the theory
of arrays (with extensionality), TA:

∀a∀i∀v. (read(write(a, i, v), i) = v)
∀a∀i∀j∀v. (i ≠ j ⇒ read(write(a, i, v), j) = read(a, j))
∀a∀b.(∀i.(read(a, i) = read(b, i))⇒ a = b)

Model Checking

Model checking is a verification technique that provides an algorithmic means of determining
whether an abstract model–representing, for example, a hardware or software design–satisfies
a formal specification expressed as a temporal logic formula [48]. It systematically explores
all possible states of a system to check properties like safety (“nothing bad happens”) and
liveness (“something good eventually happens”). If the property fails, model checking pro-
vides a counterexample showing exactly how the system can reach an undesired state. It
is widely used in hardware verification, protocol analysis, and concurrent software systems
because it can catch subtle bugs that are hard to detect through testing alone.

Bounded Model Checking (BMC) is a variant of model checking where, instead of ex-
ploring all possible states, BMC unrolls the system’s transition relation for a limited number
of steps and encodes it as a logical formula, typically solved with a SAT or SMT solver. If
the formula is satisfiable, a counterexample of that length exists; if not, the property holds
within the bound. BMC is especially useful for finding bugs quickly in hardware designs and
software with loops, though it cannot prove correctness beyond the chosen bound.

Symbolic Simulation

Symbolic simulation is a verification technique where, instead of running a system with
concrete input values, the system is executed using symbolic inputs that represent many
possible values at once [49]. The outputs are expressed as symbolic expressions, allowing the
analysis of multiple execution paths simultaneously. This approach is useful for detecting
errors in hardware or software designs, exploring corner cases efficiently, and generating test
cases.



CHAPTER 3. BTORSEC:
A MODEL-CHECKING FORMAT FOR HARDWARE SECURITY 29

Fixed Point Computation

Fixed-point computation is a method used in program analysis and formal verification to
find a stable state of a system or function—one where applying the function again produces
the same result. In verification, it’s often used to compute properties like reachable states,
invariants, or loop behaviors by iteratively applying a transition relation until no new states
are discovered. This technique is fundamental for reasoning about recursive systems, loops,
and other repetitive behaviors in both hardware and software models. This kind of reasoning
is often implemented by using mathematical objects called constrained Horn clauses, and it
has shown to have a number of applications to program verification [50], [51].

3.4 Language Extension

When it comes to security verification, BTOR2 programs face several fundamental limitations.
For one, the format has no support for cryptographic primitives. But even if we were to
add native cryptographic instructions to BTOR2, how would we even get the security-relevant
information in the first place? In this section, we describe the BTORSEC, our extension of the
BTOR2 language, in more detail. Section 3.4.1 provides an overview of the new abstract cryp-
tographic instructions of the language. Section 3.4.2 introduces the SECSPECs, a construct
that allows users to easily specify security-relevant metadata about a hardware design.

3.4.1 Cryptographic Instructions

BTORSEC adds 15 new instructions to the base BTOR2 language. These include a new sort,
acsort, which represents abstract cryptographic objects like messages and keys. It also
includes primitives for key generation, encryption, and more. A summary of all the new
instructions can be found in Table 3.1. The rest of this subsection will be dedicated to
explaining the functionality of each of these instructions in further detail. Readers who
desire a more formal description of the syntax of BTORSEC are directed to Section E.1.

General

These instructions are the core foundations of any BTORSEC design. They include a new
sort declaration, acsort, as well as the acnondet, public, and confidential instructions.
Below, we provide a detailed breakdown of this class of cryptographic instructions.

<lid> acsort <width>

The first instruction we cover is the acsort, which stands for Abstract Cryptography Sort.
This sort declaration instruction is meant to represent abstract cryptographic types such
as messages and keys. This is a useful construct when reasoning about cryptography at a
higher level, where details such as bit-vector widths are not too relevant.
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general

acsort abstract cryptography sort declaration
acnondet nondeterministic acsort
public public signal declaration
confidential confidential signal declaration

key generation

keygen key generation
keydrv key derivation

symmetric cryptography

symenc symmetric encryption
symdec symmetric decryption

asymmetric cryptography

asymenc asymmetric encryption
asymdec asymmetric decryption

message authentication codes

mac create message authentication code
vfmac verify message authentication code

digital signatures

sign create digital signature
vfsign verify digital signature

other

hash compute hash of a value

Table 3.1: Cryptographic Instructions Supported by BTORSEC.

<lid> acnondet <sid>

The acnondet (Abstract Cryptography Nondeterministic Value) instruction is a special in-
struction that returns a nondeterministic ACSort value. It is used to over-approximate an
ACSort value that is operated on by non-cryptographic operations. The reason we have
this over-approximation is that we cannot make any assumptions on the values produced by
primitives like symenc and symdec.
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<lid> public <sid> <inst>

The public instruction is used to declare a signal as public. The inst parameter must be
the lid of another instruction, which will be made public–in other words, observable to an
adversary. While the threat model of BTORSEC is left unspecified, this is meant to capture
the notion of an adversary being able to observe only a subset of the signals in a given
hardware design.

<lid> confidential <sid> <inst>

The confidential instruction is used to declare a signal as confidential. A confidential
signal is a signal whose value an adversary should not be able to infer. The inst parameter
must be the lid of another instruction, which will be marked as confidential.

Key Generation

Next, we discuss the key generation primitives supported by BTORSEC. They include the
keygen and keydrv functions, which represent key generation and key derivation functions,
respectively.

<lid> keygen <sid>

The keygen instruction represents a generic key generation function or algorithm. It gener-
ates a single key of the sort specified by sid.

<lid> keydrv <sid> <source>+

The keydrv instruction represents a function that derives a new key from one or more source
signals. It generates a single key of the sort specified by sid.

The purpose of this instruction is to model protocols where the generated value of a
key depends on other values, such as other keys. For instance, in asymmetric cryptography
protocols, the public key is often a function of the private key. Therefore, we can use the
keygen, keydrv and public instructions in conjunction to model abstract public/private
key pairs.

Symmetric Cryptography

These instructions are used to represent symmetric encryption primitives, such as encryption
and decryption under a shared key. They include the instructions symenc and symdec, made
to abstract symmetric encryption and decryption functions, respectively.
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<lid> symenc <sid> <msg> <key>

The symenc instruction represents an abstract symmetric encryption operation. The msg

parameter represents the ciphertext to be decrypted. The key parameter represents the
shared key.

<lid> symdec <sid> <ctxt> <key>

The symdec is the counterpart to symenc. The structure of the two instructions is essentially
the same. The lid and sid parameters remain unchanged. The parameters ctxt and key

represent the ciphertext and the key, respectively.

Asymmetric Cryptography

These instructions are meant to represent asymmetric cryptographic primitives. These in-
clude the asymenc and asymdec instructions, which represents asymmetric encryption and
decryption. While very similar to the symenc and asymdec instructions, these operate under
a different model of cryptography altogether. Instead of using a single shared key for encryp-
tion and decryption, asymenc and asymdec use a public/private key pair. These instructions
are meant to be used in conjunction with the keygen, keydrv, and public instructions
outlined previously.

<lid> asymenc <sid> <msg> <pubkey>

The asymenc instruction represents an asymmetric encryption function. The msg parameter
represents the ciphertext to be decrypted. The pubkey parameter represents the recipient’s
public key.

<lid> asymdec <sid> <ctxt> <privkey>

The asymdec instruction represents an asymmetric decryption function. The parameters
ctxt and privkey represent the ciphertext and the private key, respectively.

Message Authentication Codes

We now describe the instructions that BTORSEC includes to support modeling message au-
thentication codes (MACs). This category includes the instructions mac and vfmac, which
are used to create and verify MAC tags, respectively.

<lid> mac <sid> <msg> <key>

The mac instruction is used to create a tag on a given message by using a shared key, which
can be verified by other users who have access to the key with the vfmac instruction. The
instruction takes in a msg and a key. Then, it outputs a tag that is tied to the message.
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<lid> vfmac <sid> <msg> <tag> <key>

The vfmac instruction is used to verify tags created by the mac instruction. It takes in
a msg, tag, and a key. By convention, tag should be the lid of some mac instruction.
This instruction should output a 1-bit bit-vector, where 1 indicates that the (msg, tag) was
successfully verified, and 0 indicates that the verification failed.

Digital Signatures

We now describe the instructions used to model digital signatures. These instructions closely
resemble MACs. The main difference is that digital signatures use a signing/verifying key
pair instead of a symmetric key.

<lid> sign <sid> <msg> <skey>

The sign instruction is used to create a digital signature of a given message. The msg

parameter is the message to be signed, and the skey parameter corresponds to a user’s
secret signing key.

<lid> vfsign <sid> <msg> <signature> <vkey>

The vfsign instruction is used to verify a signature produced by the sign instruction.
The msg parameter corresponds to the message to be verified. The signature parameter
corresponds to the digital signature on the message, signed with the secret signing key. The
vkey parameter corresponds to the public verification key that can be used to verify the
authenticity of the message.

Other

Finally, we describe the other kinds of primitives that are typically used in protocols. In this
category, we have the hash instruction, intended to represent generic hash functions.

<lid> hash <sort> <source>+

The hash instruction models hash functions, which are commonplace in cryptographic pro-
tocols. It takes one or more source parameters, and computes the hash of these values, of
sort sort.

3.4.2 SECSPEC Files

While users could theoretically write their own BTORSEC programs, this would soon prove
to be a grueling and tedious process. The BTORSEC language is primarily intended to be an
intermediate representation for model-checking software, much like BTOR2. Currently, there
exist tools that can compile a Verilog file into an equivalent BTOR2 representation, such as
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the Yosys Open Synthesis Suite [52]. However, no tool could realistically compile a BTORSEC
file in the same manner. This is due to the fact that Verilog files lack any explicit security
metadata that could be used to create an accurate BTORSEC representation. One could
potentially add security metadata to the Verilog file directly, but such a paradigm would
likely be difficult to maintain in the long run, especially given the ever-changing nature of
hardware designs as power, performance, and area requirements becoming more strict over
time.

Our dilemma above calls for a solution that allows us to annotate Verilog files with
security-relevant metadata, yet also maintains the original Verilog design intact. Addition-
ally, we would like our solution to be easy to read, maintain, and update as hardware designs
evolve. To this end, we introduce the BTORSEC Security Specification file format (stylized
as SECSPEC). SECSPECs, allow users users to define security-related metadata, such as which
modules represent cryptographic primitives, which signals are public, and more. When pro-
vided with a Verilog file and its associated SECSPEC, the BTORSEC compiler can automatically
create a BTORSEC file that represents the RTL with the abstractions on the cryptography.

As an illustrative example, we will be using the Verilog design found in Figure 3.3. This
design consists of a simple combinational module that takes in some input data (din), two
keys (k1 and k2), and outputs the encryption of the input data under both keys. To encrypt
the data, the design instantiates two encryptor modules, whose details are omitted for
brevity.

The actual implementation of the encryptor module could be very large and compli-
cated, making verification very difficult. However, just like any other encryption primitive,
encryptor is simply computing Enc(din, k). Therefore, we would like to abstract away the
details and replace the module instance with a symenc instruction instead.

A reasonable notion of security for such a circuit is that an adversary should not be able
to deduce the value of the input data by only observing the outputs. In other words, if we
allow an adversary to only observe the values of dout, they should not be able to infer the
value of din, assuming that they do not also know k1 and k2. We will now show how we
can capture this informal idea of security by writing a SECSPEC to go along with this design.

Structure of SECSPECs

We now describe the general structure of SECSPECs, with a focus on our illustrative example
above. At its core, a SECSPEC is a structured JSON file consisting of an array of module
descriptions. A module description either provides information about the top-level module
or about cryptographic modules.

A top-level module description provides information about the design at large. This
description first specifies which signals should be made publicly observable to an adversary.
This signals to the BTORSEC compiler that a public instruction should be created for each of
the signals. Figure 3.4 shows the top-level module description corresponding to our example
design.
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1 /* A simple combinational module that uses an encryptor */

2 module example (

3 input [31:0] din ,

4 input [31:0] k1 ,

5 input [31:0] k2 ,

6 output [31:0] dout

7 );

8

9 wire [31:0] intermediate;

10

11 // First encryption of the input data

12 encryptor enc1 (

13 .din(din),

14 .k(k1),

15 .dout(intermediate)

16 );

17

18 // Second encryption of the intermediate data

19 encryptor enc2 (

20 .din(intermediate),

21 .k(k2),

22 .dout(dout)

23 );

24

25 endmodule

26

27 module encryptor (

28 input [31:0] din ,

29 input [31:0] k,

30 output [31:0] dout

31 );

32

33 /* Implementation details omitted */

34

35 endmodule

Figure 3.3: BTORSEC Program of the Double Encryptor

1 {
2 "name":"example",

3 "modtype":"top",

4 "query":["din"],

5 "public":["dout"]

6 },

Figure 3.4: A Sample Top-Level Module
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The name field is a string that corresponds to the name of the top-level module. In
our case, this corresponds to the example module, so we populate this field with the value
"example". Next, the modtype field is a string that specifies the kind of module we are
working with. To specify that example is a top-level module, we populate this field with
they keyword "top". The confidential field is an array of strings that corresponds to the
signal values that should remain secret throughout the execution of the hardware. In our
example, we do not want the value of the plaintext input data to be leaked to an observer,
so we make an array with a single value of "din". Finally, the public field is another array
of strings used to specify which signals should be made observable to an outsider. To match
our informal security specification, we will make only the dout signal public.

A cryptographic module description, in contrast to a top-level module description, pro-
vides information about module instances that are to be abstracted. Each cryptographic
module description specifies a module instance that should be abstracted. At the very least,
it must specify the name of the instance that is to be abstracted, the type of primitive it
should be abstracted to, and the relevant signals. Figure 3.5 shows the cryptographic module
description corresponding to the enc1 instance of the encryptor module.

1 {
2 "name":"enc1",

3 "modtype":"symenc",

4 "delay":0,

5 "plaintext":"din",

6 "key":"k",

7 "ciphertext":"dout"

8 },

Figure 3.5: A Sample Cryptographic Module Description

Every cryptographic module description shares the name, modtype, and delay fields. The
name field must correspond to the name of the module instance. Since we are specifically
trying to abstract the enc1module instance, we should make sure that this field has the value
enc1. Next, the modtype of this module should be symenc, as the encryptor is ultimately
performing a symmetric encryption operation (and thus should be represented by a BTORSEC
symenc instruction). The delay field is optional, and it is used to specify the delay (in cycles)
that this module takes. If omitted, the compiler will assume that the module is combinational
(and thus has 0 cycles of delay). In our case, the encryptor module is indeed combinational,
so we assign this field the value 0.

Now, we turn our attention to the modtype-specific fields of the description. These latter
fields will vary depending on the modtype. The plaintext, key, and ciphertext fields are
all specific to the symenc modtype. In our example, the plaintext that is being encrypted
by enc1 corresponds to the din signal, while k1 is the key and the output (ciphertext) of
the module corresponds to the intermediate signal. Intuitively, we are telling the BTORSEC
compiler how to interpret each of the ports of enc1.
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Ultimately, the SECSPEC that fully describes our design is shown in Figure 3.6.

1 [

2 {
3 "name":"example",

4 "modtype":"top",

5 "query":["din"],

6 "public":["dout"]

7 },
8 {
9 "name":"enc1",

10 "modtype":"symenc",

11 "delay":0,

12 "plaintext":"din",

13 "key":"k",

14 "ciphertext":"dout"

15 },
16 {
17 "name":"enc2",

18 "modtype":"symenc",

19 "delay":0,

20 "plaintext":"din",

21 "key":"k",

22 "ciphertext":"dout"

23 }
24 ]

Figure 3.6: A Complete SECSPEC

For the interested reader, we provide the full JSON Schema that all SECSPECs must adhere
to in Appendix E.2.

3.5 Compilation

We now shift our focus to explaining the BTORSEC compilation workflow in further detail.
Our compiler is based on previous work by Dobis, and notably we extend her btor2-opt

Python package [53]. We begin by providing a birds-eye view of the compilation process.
Then, we dedicate the rest of the section to explaining the behavior of the compiler passes
that transform a BTOR2 program into a BTORSEC file.
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3.5.1 Overview

Before diving into the details of the compiler, we give a birds-eye view of how BTORSEC
programs are compiled. To a user, the BTORSEC compiler can be seen as a black box that takes
in a Verilog design and a SECSPEC and outputs a BTORSEC file. Thus, the only obligations
on the user’s part are to write the RTL in Verilog and to provide the security metadata of
the RTL with a corresponding SECSPEC. The intended workflow is illustrated in Figure 3.7.

Figure 3.7: The BTORSEC Compilation Pipeline for Users

As can be seen in the diagram, a user must provide the BTORSEC compiler with both the
Verilog design of the hardware as well as an associated SECSPEC. Upon receiving these two
inputs, the compiler will first convert the Verilog into its BTOR2 representation. Then, it will
use the security information provided in the SECSPEC to transform the BTOR2 representation
of the RTL into its final BTORSEC form.

3.5.2 Compiler Passes

We now proceed with a closer analysis of how our compiler transforms a BTOR2 representation
of the RTL and a SECSPEC into a BTORSEC file. At a high level, the compiler achieves this
by running through the program several times and transforming it little by little, until the
desired result is achieved. We call each run of the compiler through the program a “pass.”

Each compiler pass achieves a specific purpose. First, the AbstractModule pass uses the
SECSPEC information to create a new cryptographic instruction that correctly abstracts the
module’s behavior. This pass also makes sure that all relevant signals use the correct AC
Sort. Finally, the Cleanup pass removes any instructions that are no longer relevant to the
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design of the RTL. A diagram of the passes can be seen in Figure 3.8. In what follows, we
will describe the functionality of each compiler pass in more detail.

Figure 3.8: Overview of Compiler Passes

AbstractCrypto Pass

The AbstractCrypto pass takes a BTORSEC program along with a collection of module spec-
ifications indicating which modules implement different cryptographic primitives. The pass
then “replaces” the module with an abstract cryptographic instruction, such as symenc or
symdec.

Let us illustrate this functionality with an example. Consider the Verilog implementation
of a sequential encryptor design in Figure 3.9: Put briefly, this design will take some data
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(din) and a key (k), and compute the encryption of the data under the key. It will then will
output the encrypted value the following cycle.

1 module top (

2 input clk ,

3 input [31:0] din ,

4 input [31:0] k,

5 output [31:0] dout

6 );

7

8 reg [31:0] dout_reg;

9 wire [31:0] enc_out;

10

11 // Instantiation of encryptor

12 encryptor enc (

13 .din(din),

14 .k(k),

15 .dout(enc_out)

16 );

17

18 // Sequential logic

19 always @(posedge clk) begin

20 dout_reg <= enc_out;

21 end

22

23 assign dout = dout_reg;

24

25 endmodule

26

27

28 module encryptor (

29 input [31:0] din ,

30 input [31:0] k,

31 output [31:0] dout

32 );

33

34 assign dout = din ^ k;

35

36 endmodule

Figure 3.9: A Sequential Encryptor Design

The actual encryption is performed by enc, which is an instantiation of the encryptor

module. While the encryptor module is rather simple in this example, other designs may
instead implement cryptographic primitives such as AES encryption with different stream
cipher modes, which will inevitably have more complex circuitry. At any rate, regardless of
how these modules achieve their task, they are all essentially trying to perform a symmetric
encryption operation, a fact that we leverage when performing the abstraction.
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The module above can be compiled into the following BTOR2 program (Figure 3.10 via
Yosys:

1 ; BTOR description generated by Yosys 0.50+56 (git sha1 176131b50 ,

↪ aarch64 -apple -darwin23.5-clang++ 18.1.8 -fPIC -O3) for module

↪ top.

2 1 sort bitvec 1

3 2 input 1 clk ; sequential_encryptor/top.v:2.11 -2.14

4 3 sort bitvec 32

5 4 input 3 din ; sequential_encryptor/top.v:3.18 -3.21

6 5 input 3 k ; sequential_encryptor/top.v:4.18 -4.19

7 6 state 3 dout_reg

8 7 output 6 dout ; sequential_encryptor/top.v:5.19 -5.23

9 8 uext 3 4 0 enc.din ; sequential_encryptor/top.v:29.18 -29.21

10 9 xor 3 4 5

11 10 uext 3 9 0 enc.dout ; sequential_encryptor/top.v:31.19 -31.23

12 11 uext 3 5 0 enc.k ; sequential_encryptor/top.v:30.18 -30.19

13 12 uext 3 9 0 enc_out ; sequential_encryptor/top.v:9.17 -9.24

14 13 next 3 6 9

15 ; end of yosys output

Figure 3.10: BTOR2 Representation of the Sequential Encryptor

We focus our attention on lines 8, 10, 11, and 12. The purpose of these uext instructions
is to create aliases4 of the signals that they are extending (enc.din, enc.dout, etc.). These
aliases are crucial in the implementation of the AbstractCrypto pass, as they give us the
lids of the relevant input and output signals of the different module instantiations present
within the top-level modules. Indeed, the AbstractCrypto pass first collects these lids and
then creates an abstract cryptographic instruction (in this case a symenc) using the relevant
input lids. Simultaneously, this pass will replace any occurrences of the output lid with
the lid of this new abstract cryptographic instruction. We can see the result of applying an
AbstractCrypto pass in the BTORSEC program in Figure 3.11 below:

As the reader can appreciate, line 10 now contains a new instruction: 10 symenc 1 5

6. This instruction does exactly what one expects: it encrypts the value of 5 (din) with
the value of 6 (k). Moreover, we can see that any instructions in the BTOR2 program that
used the value of 9 (the old output of the enc module instance—enc.dout) have now been
replaced with 10.

A particularly attentive reader has probably noticed that several instructions, not just
the symenc instructions, are now of sort acsort. This is because the sorts of a BTORSEC
program must be consistent, so the sorts of any dependents (and anti-dependents) of the
symenc instruction must also change to acsort. Determining which instructions must have

4Upon closer inspection, we can see that these instructions are performing an unsigned extension of zero
bits—meaning that they are simply copying the value of that signal.
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1 1 sort acsort -1

2 2 sort bitvec 1

3 3 input 2 clk

4 4 sort bitvec 32

5 5 input 1 din

6 6 input 1 k

7 7 state 1 dout_reg

8 8 output 7

9 9 uext 1 5 0 enc.din

10 10 symenc 1 5 6

11 11 acnondet 1

12 12 uext 1 10 0 enc.dout

13 13 uext 1 6 0 enc.k

14 14 uext 1 10 0 enc_out

15 15 next 1 7 10

Figure 3.11: BTORSEC Program of the Sequential Encryptor

their sort changed is implemented in the MarkInstructions pass, which is called from within
the AbstractCrypto pass.

MarkInstructions Pass

The MarkInstructions pass is a helper pass that is used by the AbstractCrypto pass when
propagating the sorts across. The goal of this pass is to mark any dependents and anti-
dependents of a given instruction. It achieves this by first iterating through the program
(i.e. the list of instructions) and creating an undirected graph. In this graph, each instruction
is represented as a node. Two nodes u and v share an edge if the instruction corresponding
to u has the lid of the instruction corresponding to v as one of its operands, or vice versa.
There are two exceptions to this rule, however. The first exception is that sort instructions
are isolated no matter what. The second exception is that we do not add an edge between
an ite instruction and the lid corresponding to its condition. The reason behind this is
that we do not want to change the sort of a condition to an acsort unnecessarily, and it
does not make sense for a conditional to be of a type different from 1-bit bit-vector.

To illustrate the functionality of the MarkInsts pass, consider the conditional encryptor
design found in Figure 3.12. The design is almost identical to the sequential encryptor of
Figure 3.9. The main differences are that this circuit is entirely combinational and that we
have a new signal, should encrypt, which decides whether dout takes on the value produced
by the enc module or if it outputs din in plaintext.

The corresponding BTOR2 program can be seen in Figure 3.13, and the resulting graph
created by the MarkInsts pass is shown in Figure 3.14. For better visual clarity, the graph is
color-coded as follows: input instructions are marked as green, sort instructions are marked
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1 module top (

2 input clk ,

3 input should_encrypt ,

4 input [31:0] din ,

5 input [31:0] k,

6 output [31:0] dout

7 );

8

9 wire [31:0] enc_out;

10

11 encryptor enc (

12 .din(din),

13 .k(k),

14 .dout(enc_out)

15 );

16

17 assign dout = should_encrypt ? enc_out : din;

18

19 endmodule

20

21

22 module encryptor (

23 input [31:0] din ,

24 input [31:0] k,

25 output [31:0] dout

26 );

27

28 assign dout = din ^ k;

29

30 endmodule

Figure 3.12: Conditional Encryptor

as light blue, ite instructions are marked as yellow, and output instructions are marked as
pink.

As the reader can appreciate from the graph, the nodes in light blue, corresponding to
sort instructions (1 and 3) are isolated. This is aligned with our first exception. Further-
more, node 6 is also isolated, despite being one of the operands to the instruction ite 3 6

7 4. This is because 6 is the condition of the ite, meaning that it cannot be part of this
graph, in accordance to the second exception we outlined above.

Cleanup Pass

The final step in compiling a BTORSEC program is to eliminate all instructions that are no
longer needed. Specifically, this includes any instructions that encode the internal logic of a
module which has been replaced by an abstract cryptographic operation. We achieve this by
removing any instructions found in the path from the inputs to the outputs of the replaced
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1 ; BTOR description generated by Yosys 0.50+56 (git sha1 176131b50 ,

↪ aarch64 -apple -darwin23.5-clang++ 18.1.8 -fPIC -O3) for module

↪ top.

2 1 sort bitvec 1

3 2 input 1 clk ; enc_pln_mux/top.v:2.11 -2.14

4 3 sort bitvec 32

5 4 input 3 din ; enc_pln_mux/top.v:4.18 -4.21

6 5 input 3 k ; enc_pln_mux/top.v:5.18 -5.19

7 6 input 1 should_encrypt ; enc_pln_mux/top.v:3.11 -3.25

8 7 xor 3 4 5

9 8 ite 3 6 7 4

10 9 output 8 dout ; enc_pln_mux/top.v:6.19 -6.23

11 10 uext 3 4 0 enc.din ; enc_pln_mux/top.v:23.18 -23.21

12 11 uext 3 7 0 enc.dout ; enc_pln_mux/top.v:25.19 -25.23

13 12 uext 3 5 0 enc.k ; enc_pln_mux/top.v:24.18 -24.19

14 13 uext 3 7 0 enc_out ; enc_pln_mux/top.v:9.17 -9.24

15 ; end of yosys output

Figure 3.13: BTOR2 Program of Encryptor with MUX

Figure 3.14: Dependency Graph Created by MarkInsts Pass

module.

3.6 Verification

So far, we have introduced the BTORSEC language and described how a user can compile their
own BTORSEC programs. But a BTORSEC program on its own is useless; the whole point of
BTORSEC was to provide a way to verify that our RTL is correctly employing cryptographic
primitives. This section provides a brief introduction to the recursively-named SSV Secu-
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rity Verifier, our prototype bounded model checker for confidentiality queries in BTORSEC
programs. This section is meant to provide enough detail to make our approach clear and
to give the reader an idea of how SSV works. Readers interested in the theoretical and
mathematical foundations behind SSV are directed to Appendix C. Those interested in the
implementation of SSV are encouraged to check out our GitHub repository [54].

3.6.1 Preliminaries

We now proceed to explain the basic formalisms required to understand the verification
methodology of SSV.

Recall that one of the new additions of BTORSEC over BTOR2 is the Abstract Cryptography
Sort (acsort). This sort was included in the language to make it easier for us to reason about
symbolic terms that involve cryptographic operations. Let A denote the set of these abstract
cryptographic values, and let B denote our base domain, consisting of bit-vectors, arrays,
and other such concrete values. Then our universe, U will be U = A ⊎ B. Our verification
methodology will consider hardware designs with variables over our universe. For any given
hardware design D, we denote its finite set of variables as V .

Definition 3.1. State (σ): A state σ ∶ V → U is a mapping5 from the set of variables to
values in our universe.

Definition 3.2. Trace (τ): A trace τ is a (possibly infinite) sequence of states ⟨σ0, σ1, . . .⟩.
τ is finite if τ = ⟨σ0, σ1, . . . , σn−1⟩ for some n, in which case its length is n.

3.6.2 Threat Model

The threat model of BTORSEC programs is intentionally left largely unspecified. Beyond al-
lowing designers to label a subset of signals as public or confidential, the language makes
no assumptions about the nature or capabilities of a potential adversary. This flexibility en-
ables model-checking tools to define and enforce a wide range of adversaries and threat
models. The design reflects the fact that different hardware designers face distinct security
concerns. We now define the threat model assumed by SSV, our bounded model-checking
tool.

Intuititon

Before moving on with formalisms, we provide some intuition on the threat model we con-
sider. The SSV adversary can be thought of as a passive but curious observer of the system.
By this, we mean that the adversary is allowed to observe certain parts of the hardware
and later use their observations to try to deduce confidential values. However, they are not

5We assume that any state is well-typed, meaning that it only maps A-typed variables to values in A
and B-typed variables to values in B
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allowed to interfere with the execution of the hardware. The process consists of two distinct
phases: an observation phase and a computation phase.

Observation phase: This phase comes first, and it lasts for a predefined number n of
cycles. During this phase, the adversary is allowed to see the values of the public variables
of the system. However, they cannot observe any other parts of the system.

Computation phase: In this phase, the adversary is allowed to perform computation on
the values that they observed during the observation phase. The goal is to deduce any
confidential values. The adversary’s computation is limited to using a the set of rules R
with which it was parameterized. Moreover, it is allowed to apply these rules to their known
terms a maximum of t times, where t is a user-specified bound.

Formalizing the Threat Model

We formalize the above intuition as follows. Let A = (Obs,R, t) be an adversary. Let
τ = ⟨σ0, σ1, ..., σn−1⟩ be a trace of length n.

Definition 3.3. Adversary: We define an adversary as the tuple A = (Obs,R, t), where
Obs ∶ Σ → 2U denotes the adversary’s observation function, R is a set of rules of inference,
and t ∈ N.

Definition 3.4. Adversary Observations (O): The set of values observed by A in a
given trace τ is

O = {Obs(σi) ∣ σi ∈ τ}.

Definition 3.5. Adversary Computation Function (AdvComp): The adversary com-
putation function, AdvComp takes in a set of adversary observations and returns a set of
terms. Formally, AdvCompR ∶ 2U → 2U. The knowledge computed in one round is given by:

AdvCompR(O) = {head(r[α]) ∣ r ∈R, α ∶ vars(r)→ A, body(r[α]) ⊆ K}.
Definition 3.6. Adversary Knowledge (AKR): If A is allowed t rounds of computation,
then the final set of adversary knowledge, AKR(τ) is given by

AKR(τ) = AdvComptR(O),
where AdvComptR(τ) = AdvCompR(AdvCompR( ⋯ AdvCompR(O) ⋯ ))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t times

.

Problem Statement

With the above formalisms, we can state our definition of security as follows:

Definition 3.7. Security: Let C be a set of confidential values. We say that our design D
is secure if

C ∩AKR(τ) = ∅
for every feasible τ such that τ0 ∈ Σ0.
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A deeper dive into this threat model can be found in Section C.3.

3.6.3 Approach

Now that we have defined our threat model and our notion of security, we can proceed
to describe how SSV conducts verification. To effectively model both the observation and
computation phases, our solver uses a combination of two well-known techniques in security
verification: symbolic simulation and fixed-point computation. In what follows, we explain
how SSV uses symbolic simulation to simulate the observation phase and fixed-point com-
putation to model the computation phase.

Observation Phase (Symbolic Simulation)

For the observation phase, we symbolically simulate the execution of the hardware for a fixed
number t of cycles. Symbolic simulation allows us to consider many possible traces at once,
drastically reducing the verification time when compared to concretely executing the design
D. In a nutshell, our approach to symbolic simulation is the following:

Definition 3.8. Symbolic Execution Context (γ): Let σ be a state, ϕ be a Boolean
formula over variables and constants in B, and K ⊆ A. Then γ = (σa, ϕb,K) is a symbolic
execution context. σa denotes the assignments of A-typed variables in this context, whereas
ϕb denotes a path condition on the B-typed variables. K is the set of all attacker-observed
values in the symbolic execution thus far. We use the symbol Γ to denote the set of all such
symbolic execution contexts.

The main advantage of using these contexts is that they allow us to consider many
possible states as once, so long as they satisfy ϕ.

Definition 3.9. Symbolic Transition Relation: We define ↝⊆ Γ × Γ as the symbolic
transition relation of the circuit. (γ1, γ2) ∈↝ if we can transition from γ1 to γ2, as dictated
by the semantics of the design D. For readability, we use infix notation and write γ1 ↝ γ2
instead.

Definition 3.10. Symbolic Trace (π): A symbolic trace π is a (possibly infinite) sequence
of symbolic execution contexts ⟨γ0, γ1, . . .⟩. We impose the constraint that ∀i.γi ↝ γi+1. π is
finite if π = ⟨γ0, γ1, . . . , γn−1⟩ for some n, in which case its length is n.

Our approach to symbolic simulation is as follows. We begin with an initial set of symbolic
contexts Γ0. Then, for n cycles, we compute Γi+1 = {γi+1 ∣ γi ∈ Γi ∧ γi ↝ γi+1 ∧ SAT(γi+1)}.
This will give us a set of final symbolic contexts, which represents all the possible executions
of our design.
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Computation Phase (Fixed Point Computation)

Once we reach our final set of symbolic execution contexts, Γn, for each context (σa, ϕ,K) ∈
Γn, we will compute AdvComptR(K) and check whether AdvComptR(K) ∩ C = ∅.

3.6.4 Evaluation

We evaluate SSV on a number of hand-written hardware modules that use cryptographic
primitives. We evaluate these with two different models of cryptography: the Perfect En-
cryption Model, which closely resembles the formal model by Dolev and Yao [55], and the
XOR Model, in which all symmetric encryption and decryption primitives are simple XOR
operations. The source code for these modules can be found in [54].

Module Cycles Bound Sim Time FP Time Result

comb enc 2 2 1.678ms 134.2ms secure

enc pln mux 2 2 100.5ms 12.4ms din deduced

sequential encryptor 2 2 4.7ms 18.4ms secure

double encryption 2 2 6.4ms 143.5ms secure

perf ok xor bad 2 2 5.8ms 1846.8ms secure

Table 3.2: Verification Results for Perfect Encryption Model

Module Cycles Bound Sim Time FP Time Result

comb enc 2 2 1.1ms 7.8s secure

enc pln mux 2 2 91.1ms 9.2ms din deduced

sequential encryptor 2 2 4.6ms 23.6ms secure

double encryption 2 2 6.7ms 25.7ms din deduced

perf ok xor bad 2 2 6.5ms 32.5s din deduced

Table 3.3: Verification Results for XOR Model

3.7 Related Work

This section reviews prior research and systems relevant to our study, providing the context
for our approach and situating it within the broader literature.
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Verification of Cryptographic Hardware

There is a rich literature in the verification of cryptographic hardware. Tools like Cryptol’s
allow users to specify cryptographic primitives in the Cryptol language, and then automat-
ically synthesize an FPGA implementation [56], [57]. More recently, Cryptonite [58] allows
users to synthesize hardware accelerators from straight-line C code.

In prior work, Dinesh et al. formulate the secure instruction set property (SISP) and de-
velop CONJUNCT [59] to verify whether hardware designs satisfy this property. The H-HOUDINI

[60] algorithm and its associated tool, VELOCT, allow for push-button verification of large
hardware designs. SYNTHCT [61] uses program synthesis to automatically translate unsafe
instructions in a binary into safe instructions for a particular microarchitecture.

Secure language extensions

This project was also partly inspired by prior work concerning secure language extensions.
In particular, our work borrows ideas from the extension of the P programming language
[62] to its security-centric extension, PSEC [63], [64]. This extension allows programmers to
create distributed systems consisting of both trusted and untrusted machines.

3.8 Conclusion

In summary, in this chapter we presented BTORSEC, a model-checking format for hardware
security queries. In addition to the new format, we also presented a compiler and a proof-of-
concept model checker that leverages the novel format to answer queries about the confiden-
tiality of signals in a given circuit. Overall, the toolchain presented enables microarchitects
to easily and seamlessly verify security properties about their designs with minimal engineer-
ing effort. We view this work as a starting point for integrating highly-automated security
verification into the hardware design process.

3.8.1 Future Work

There are several directions in which the work presented in this chapter can be improved.
We now give a few ideas on how future projects could build off the work done for BTORSEC.

BTORSEC

At the language level, we could include more sophisticated cryptographic primitives, such
as pseudorandom number generators or more complex primitives like commitments for zero-
knowledge proofs. With the rising popularity of hardware accelerators for cryptographic
primitives for ZKPs, this could prove to be a valuable line of research.
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SSV

At the solver level, there is much work left to do for SSV. Currently, our solver can only
answer queries about confidentiality. Moreover, it can only perform bounded model checking,
meaning that it can be useful to find bugs within a system, but is fundamentally unable to
prove that a design is free of bugs altogether.

Integration

The ultimate vision for this report is to provide microarchitects and verification engineers
with robust and easy-to-use tools for hardware verification. Following this vision, we could
also explore integration of the BTORSEC suite (i.e. the compiler and solver) with other
existing toolkits. For instance, one could specify the high-level design of their system with
UCLID5, verify that their BTORSEC implementation indeed refines the high-level spec, and
then verify that the primitives being abstracted do indeed meet all the security requirements
with Cryptol and Cryptonite. Ideally, work in this direction would allow experts to seamlessly
verify security properties of their designs at different levels of abstraction, at much lower
engineering overheads.
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Chapter 4

Conclusion

This project report has presented two approaches to the formal verification of hardware
security. The goal of this work was to show how formal verification of security properties can
be incorporated into the hardware design life cycle. We demonstrated that building formal
models, such as the one presented in Chapter 2, can provide a high degree of confidence in
a system’s security. Furthermore, in Chapter 3, we showed that with the right tools, formal
verification can be integrated seamlessly into hardware implementation workflows.

Looking ahead, there are several exciting directions future projects could take. One
particularly promising direction is to unify various design and formal verification tools into
a single, monolithic ecosystem. This integration would save both verification engineers and
designers time, enabling them to specify and prove security properties at multiple levels of
granularity in a cohesive way. Tightly coupling the processes of design and verification would
also likely reduce design flaws and, as a result, lead to more secure hardware.
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Appendix A

U2 Types

We provide a description of the types used in the U2 model. The types that make up our
model are summarized in Table A.1.

Type Description
A Action; enum consisting of MAL-

LOC, FREE, LOAD, STORE
B Boolean.
Bn n-bit bit-vector.
E Encryption state type.
G Ghost memory record.
I Register index.
K Uninterpreted key type.
O Observation record.
O Uninterpreted opcode type.
W Machine words.

Table A.1: Types of U2

State var. Description
value Real value stored in memory
h base Base of the handle
h length Length of the handle
h offset Offset of the handle
enc state State of the encryption

Table A.2: Ghost Memory Record
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State var. Description
valid Boolean value denoting whether this is a

valid allocation.
ghost data Observable ghost data (of type G).

Table A.3: Observation Record
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Appendix B

UCLID5 Model of U2

This appendix includes the source code of our UCLID5 model of the U2 system.

B.1 Common Module

1

2

3 module common {

4

5 type word_t = bv2;

6 type size_t = word_t;

7

8 type opcode_t;

9

10 type lmapind_t = bv3;

11

12 // Attacker , and Victim keys

13 type key_t = enum { AtKey , ViKey };

14

15 type nonce_t;

16

17 type value_t = enum { RAW , HAN };

18

19 datatype enc_state_t = Pln()

20 | DEnc(DEnc_val: enc_state_t , DEnc_key: key_t , DEnc_nonce: nonce_t

↪ , intcheck: boolean)

21 | DDec(DDec_val: enc_state_t , DDec_key: key_t , DDec_nonce: nonce_t

↪ )

22 | PEnc(PEnc_val: enc_state_t , PEnc_key: key_t)

23 | PDec(PDec_val: enc_state_t , PDec_key: key_t);

24

25 type data_t = word_t;

26

27 // Operation semantics should be independent of this
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28 type ghost_data_t = record {

29 // Raw value

30 value: word_t ,

31

32 // Value state (i.e. is this a handle or a raw value?)

33 vtype: value_t ,

34

35 // Handle elements

36 // Base address (inclusive)

37 h_base: word_t ,

38 // This is the current handle offset

39 h_offset: word_t ,

40 // Allocation is [h_base , h_base+h_length)

41 h_length: word_t ,

42

43 // Only modified by the encryption function

44 // Encryption state

45 enc_state: enc_state_t ,

46 // True nonce for that allocation (used for authentication)

47 ca_nonce_true: nonce_t

48 };

49

50 type alloc_data_t = boolean;

51

52

53 type observable_t = record {

54 valid : boolean ,

55 data_g : ghost_data_t

56 };

57

58 // Data map

59 type mem_t = [word_t]data_t;

60 // Local variable map

61 type lmap_t = [lmapind_t]data_t;

62 // Is this current cell allocated?

63 type alloc_map_t = [word_t]alloc_data_t;

64

65 // Ghost memory

66 type ghost_mem_t = [word_t]ghost_data_t;

67 // Ghost local variable map

68 type ghost_lmap_t = [lmapind_t]ghost_data_t;

69

70 type alloc_struct_t = record {

71 valid : boolean ,

72 allocg : ghost_data_t ,

73

74 newgmem : ghost_mem_t ,

75 newamap : alloc_map_t

76 };

77
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78 // Action performed by the process

79 type action_t = enum {

80 MALLOC , FREE , LOAD , STORE , HANOP , ARITHOP

81 };

82

83

84 // Constants

85 const zero : word_t = 0bv2;

86 const one : word_t = 1bv2;

87 const wmax : word_t = 3bv2;

88

89 define between (a: word_t , b : word_t , c: word_t) : boolean = ((b <=_u

↪ a) && (a <_u c));

90

91 }

Listing B.1: Common Module
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B.2 U2 Module

1

2

3 module u2 {

4

5 type * = common .*;

6

7 const * = common .*;

8

9 define * = common .*;

10

11 // Ghost state

12 var ghost_mem : ghost_mem_t;

13 var ghost_lmap : ghost_lmap_t;

14 // Allocated map

15 var alloc_map: alloc_map_t;

16

17

18 // Current operation was a memory safety vulnerability

19 var msv_curr : boolean;

20 // Architectural observable

21 var observable : observable_t;

22

23 // Debugging

24 var addr_probe : data_t;

25 var addr_probe_g : ghost_data_t;

26 var addr_probe_true : word_t;

27 var data_probe : data_t;

28 var data_probe_g : ghost_data_t;

29 var data_probe_pre : data_t;

30 var data_probe_pre_g: ghost_data_t;

31

32 var alloc_probe : alloc_struct_t;

33 var src1_probe : data_t;

34 var src1_probe_g : ghost_data_t;

35 var src2_probe : data_t;

36 var src2_probe_g : ghost_data_t;

37

38

39 // Temporary local variable indices

40 var opcode : opcode_t;

41 var l1 , l2 , l3: lmapind_t;

42 var action: action_t;

43

44 init {

45 // Initially all cells are unallocated

46 assume (forall (a: word_t) :: (! alloc_map[a] && !shadow_mem[a].

↪ alloc));
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47

48 // Initially all values (in lmap and memory) hold raw data (not

↪ pointers)

49 assume (forall (a: lmapind_t) :: ghost_lmap[a]. vtype == RAW);

50 assume (forall (a: word_t) :: ghost_mem[a]. vtype == RAW);

51

52 observable.valid = false;

53 msv_curr = false;

54 }

55

56 axiom slot_to_nonce_disjointness :

57 (forall (i1: word_t , i2: word_t , i3: word_t , i4: word_t) :: (

58 non_overlapping_ranges(i1, i2, i3, i4) ==> (slot_to_nonce(i1,

↪ i2) != slot_to_nonce(i3 , i4))

59 ))

60 ;

61

62 next {

63 havoc l1;

64 havoc l2;

65 havoc l3;

66 havoc opcode;

67 havoc action;

68

69 case

70 (action == LOAD) : { call load(l1, l2, ViKey , ViKey); }

71 (action == STORE) : { call store(l1, l2, ViKey , ViKey); }

72 (action == MALLOC) : { call malloc(l1, ViKey , ViKey); }

73 (action == HANOP) : { call hanop(opcode , l1, l2, l3); }

74 (action == ARITHOP) : { call arithop(opcode , l1, l2, l3); }

75 esac

76 }

77

78 }

Listing B.2: U2 Module
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B.3 Main Module

1 module main

2 {

3 type * = common .*;

4 const * = common .*;

5

6 define * = u2.*;

7 function * = u2.*;

8

9 instance u2_instance : u2();

10

11 var v: boolean;

12

13 // init

14 init {

15 v = false;

16 }

17

18 next {

19 if (v) {

20 next(u2_instance);

21 }

22 v’ = true;

23 }

24

25 // This the global confidentiality property

26 property load_msv_implies_ni : u2_instance.msv_curr ==> (

27 !u2_instance.observable.valid

28 || (u2_instance.observable.data_g.enc_state != Pln())

29 );

30

31 // This is the integrity property

32 property store_msv_implies_integrityviolation : (

33 forall (a: word_t) :: ((! u2_instance.alloc_map[a]) || (

34 is_DEnc(u2_instance.ghost_mem[a]. enc_state) &&

35 (u2_instance.ghost_mem[a]. ca_nonce_true

36 == u2_instance.ghost_mem[a]. enc_state.DEnc_nonce)

37 ) || (

38 is_garbled(u2_instance.ghost_mem[a]. enc_state)

39 ))

40 );

41

42 property shadow_state_alloc_matches_alloc : (

43 forall (a: word_t) :: (

44 u2_instance.alloc_map[a] == u2_instance.shadow_mem[a].alloc

45 )

46 );

47

48 property shadow_state_interval_matches_ca_nonce_true : (
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49 forall (a: word_t) :: ((! u2_instance.shadow_mem[a]. alloc) || (

50 slot_to_nonce(u2_instance.shadow_mem[a].lowend , u2_instance.

↪ shadow_mem[a]. highend)

51 == u2_instance.ghost_mem[a]. ca_nonce_true

52 ))

53 );

54

55 property shadow_state_interval_is_memory_safe : (

56 forall (a: word_t) :: ((! u2_instance.shadow_mem[a]. alloc) || (

57 between (a, u2_instance.shadow_mem[a].lowend , u2_instance.

↪ shadow_mem[a]. highend)

58 ))

59 );

60

61 property handle_sizes_are_nonzero : (

62 (forall (a: word_t) :: (handles_are_valid(u2_instance.ghost_mem[a

↪ ])))

63 && (forall (l: lmapind_t) :: (handles_are_valid(u2_instance.

↪ ghost_lmap[l])))

64 );

65

66 property mem_handles_are_summarized_in_shadow_state : (

67 forall (a: word_t) :: (

68 (u2_instance.alloc_map[a] && u2_instance.ghost_mem[a].vtype ==

↪ HAN)

69 ==> (( u2_instance.shadow_mem[u2_instance.ghost_mem[a].

↪ h_base ]. lowend

70 == u2_instance.ghost_mem[a]. h_base)

71 && (u2_instance.shadow_mem[u2_instance.ghost_mem[a].

↪ h_base ]. highend

72 == (u2_instance.ghost_mem[a]. h_base + u2_instance.

↪ ghost_mem[a]. h_length))

73 && u2_instance.shadow_mem[u2_instance.ghost_mem[a].

↪ h_base ].alloc

74 )

75 )

76 );

77

78 property lmap_handles_are_summarized_in_shadow_state : (

79 forall (l: lmapind_t) :: (

80 (u2_instance.ghost_lmap[l].vtype == HAN)

81 ==> (( u2_instance.shadow_mem[u2_instance.ghost_lmap[l].

↪ h_base ]. lowend

82 == u2_instance.ghost_lmap[l]. h_base)

83 && (u2_instance.shadow_mem[u2_instance.ghost_lmap[l].

↪ h_base ]. highend

84 == (u2_instance.ghost_lmap[l]. h_base + u2_instance

↪ .ghost_lmap[l]. h_length))

85 && u2_instance.shadow_mem[u2_instance.ghost_lmap[l].

↪ h_base ].alloc
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86 )

87 )

88 );

89

90 property shadow_state_non_overlapping_intervals : (

91 forall (a1: word_t) :: (

92 forall (a2: word_t) :: ((

93 u2_instance.shadow_mem[a1].alloc && u2_instance.

↪ shadow_mem[a2].alloc

94 ) ==> (

95 non_overlapping_ranges (

96 u2_instance.shadow_mem[a1].lowend ,

97 u2_instance.shadow_mem[a1].highend ,

98 u2_instance.shadow_mem[a2].lowend ,

99 u2_instance.shadow_mem[a2]. highend

100 ) || (

101 u2_instance.shadow_mem[a1]. lowend == u2_instance.

↪ shadow_mem[a2]. lowend

102 && u2_instance.shadow_mem[a1]. highend ==

↪ u2_instance.shadow_mem[a2]. highend

103 )

104 )

105 )

106 )

107 );

108

109 property shadow_state_consistent_intervals : (

110 forall (a1: word_t) :: (

111 forall (a2: word_t) :: ((

112 u2_instance.shadow_mem[a1].alloc &&

113 between (a2 , u2_instance.shadow_mem[a1].lowend ,

↪ u2_instance.shadow_mem[a1]. highend)

114 ) ==> (

115 u2_instance.shadow_mem[a1]. lowend == u2_instance.

↪ shadow_mem[a2]. lowend

116 && u2_instance.shadow_mem[a1]. highend == u2_instance.

↪ shadow_mem[a2]. highend

117 && u2_instance.shadow_mem[a2]. alloc

118 )

119 )

120 )

121 );

122

123 // For valid handles , raw value is the same as handle value

124 property mem_value_matches_handles : (

125 forall (a: word_t) :: (

126 (u2_instance.ghost_mem[a].vtype == HAN) ==>

127 (

128 u2_instance.ghost_mem[a].value == (
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129 u2_instance.ghost_mem[a]. h_base + u2_instance.

↪ ghost_mem[a]. h_offset

130 )

131 )

132 )

133 );

134

135 // For valid handles , raw value is the same as handle value

136 property lmap_value_matches_handles : (

137 forall (a: lmapind_t) :: (

138 (u2_instance.ghost_lmap[a].vtype == HAN) ==>

139 (

140 u2_instance.ghost_lmap[a].value == (

141 u2_instance.ghost_lmap[a]. h_base + u2_instance.

↪ ghost_lmap[a]. h_offset

142 )

143 )

144 )

145 );

146

147

148 // spec

149 control {

150 v = induction;

151 check;

152 print_results;

153 v.print_cex_json ();

154 }

155 }

Listing B.3: Main Module
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B.4 Operations Module

1

2

3 module u2 {

4

5 function hanop_fun (oldoff: word_t , operand: word_t) : word_t;

6

7

8 procedure [noinline] malloc_helper (s: size_t , pkey: key_t , dkey:

↪ key_t)

9 returns (as: alloc_struct_t)

10 ensures ((

11 s == zero ==> (!as.valid)

12 ) && ((

13 // was able to perform the allocation

14 as.valid

15 // returned value is a handle type (raw value does not

↪ matter)

16 && (as.allocg.vtype == HAN)

17 // allocation has size s

18 && (as.allocg.h_length == s)

19 // allocation is in a valid interval

20 && (no_addr_overflow(as.allocg.h_base , s))

21 // current offset is zero

22 && (as.allocg.h_offset == zero)

23 // generated pointer is p_encrypted

24 && (as.allocg.enc_state == PEnc(Pln(), pkey))

25 // Underlying data value matches the handle

26 && (as.allocg.value == as.allocg.h_base)

27 // so ca nonce does not matter (since no data encryption)

28 && true

29 // allocation interval was free originally

30 && (forall (a: word_t) :: (

31 (between(a, as.allocg.h_base , (as.allocg.h_base + s)))

32 ==> !alloc_map[a]

33 ))

34 // allocation interval is now claimed

35 && (forall (a: word_t) :: (

36 (between(a, as.allocg.h_base , (as.allocg.h_base + s)))

37 ==> as.newamap[a]

38 ))

39 // mem outside allocation interval is the same

40 // and ghost_mem

41 && (forall (a: word_t) :: (

42 (!( between (a, as.allocg.h_base , (as.allocg.h_base + s

↪ ))))

43 ==> as.newgmem[a] == ghost_mem[a]

44 ))

45 // mem in allocation interval is protected
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46 // and is not a pointer type

47 && (forall (a: word_t) :: (

48 (between(a, as.allocg.h_base , (as.allocg.h_base + s)))

49 ==> (as.newgmem[a]. enc_state == DEnc(

50 Pln(),

51 dkey ,

52 slot_to_nonce(as.allocg.h_base , as.allocg.

↪ h_base + s),

53 true)

54 && as.newgmem[a]. ca_nonce_true

55 == slot_to_nonce(as.allocg.h_base , as.allocg.

↪ h_base + s)

56 && as.newgmem[a]. vtype == RAW

57 )

58 ))

59

60 // and allocation map

61 && (forall (a: word_t) :: (

62 (!( between (a, as.allocg.h_base , (as.allocg.h_base + s

↪ ))))

63 ==> as.newamap[a] == alloc_map[a]

64 )))

65 // was not able to perform allocation

66 || !as.valid

67 )

68 );

69 { }

70

71

72 procedure malloc (lind: lmapind_t , pkey: key_t , dkey: key_t)

73 modifies ghost_mem , ghost_lmap;

74 // Shadow state

75 modifies shadow_mem;

76 modifies alloc_map;

77 // Debugging

78 modifies data_probe , data_probe_g , alloc_probe;

79 {

80 var as : alloc_struct_t;

81

82 var nondet_size: word_t;

83

84 // Call the helper function

85 call (as) = malloc_helper(nondet_size , pkey , dkey);

86

87 // If the allocation was successful , update the local variable map

88 if (as.valid) {

89 // Update the shadow state

90 call shadow_malloc(as);

91

92 ghost_lmap[lind] = as.allocg;
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93 ghost_mem = as.newgmem;

94 alloc_map = as.newamap;

95 }

96

97 data_probe_g = ghost_lmap[lind];

98 alloc_probe = as;

99

100 }

101

102

103 procedure load (lind_dest: lmapind_t , lind_addr: lmapind_t , pkey:

↪ key_t , dkey: key_t)

104 modifies msv_curr , observable;

105 modifies ghost_lmap;

106 // Debugging

107 modifies addr_probe , data_probe , data_probe_pre;

108 modifies addr_probe_g , data_probe_g , data_probe_pre_g ,

↪ addr_probe_true;

109 {

110 var addr_bundle : data_t;

111 var addr_bundle_g : ghost_data_t;

112 var h_base : word_t;

113 var h_offset : word_t;

114 var h_length : word_t;

115 var addr : word_t;

116 var cell_data : data_t;

117 var cell_data_g : ghost_data_t;

118 var cell_alloc : alloc_data_t;

119 var dec_cell_data : data_t;

120 var dec_cell_data_g : ghost_data_t;

121

122 // Get the linear address bundle and value

123 call (addr_bundle_g) = ghost_ca_decrypt(ghost_lmap[lind_addr],

↪ pkey);

124

125

126 // extract fields

127 h_base = addr_bundle_g.h_base;

128 h_offset = addr_bundle_g.h_offset;

129 h_length = addr_bundle_g.h_length;

130 // compute the address

131 // INFO: ghost_to_nonce is the more precise

132 addr = ghost_to_addr_value(addr_bundle_g);

133

134 // address value does not wrap around heap boundary

135 assume(no_addr_overflow(h_base , h_offset));

136

137 // definition of a spatial memory safety vulnerability

138 if (! between(h_offset , zero , h_length) || addr_bundle_g.vtype !=

↪ HAN) {



APPENDIX B. UCLID5 MODEL OF U2 66

139 msv_curr = true;

140 } else {

141 msv_curr = false;

142 }

143

144 // get memory cell at the address

145 cell_data_g = ghost_mem[addr];

146 cell_alloc = alloc_map[addr];

147

148 if (! cell_alloc) {

149 // in this case , read is invalid , and there is a fault

150 observable.valid = false;

151 } else {

152

153 // INFO: ghost_to_nonce below is the accurate model

154 assume(value_matches_handle_iff_valid(addr , addr_bundle_g));

155

156 call (dec_cell_data_g) = ghost_data_decrypt(cell_data_g , dkey ,

157 ghost_to_nonce(addr_bundle_g)

158 );

159

160

161 // observable is the decrypted value of the cell

162 observable.valid = true;

163 observable.data_g = dec_cell_data_g;

164

165 // decrypted data is placed as in in the local variable map

166 ghost_lmap[lind_dest] = dec_cell_data_g;

167 // Debugging probe

168 data_probe_pre = cell_data;

169 data_probe_pre_g = cell_data_g;

170 data_probe = dec_cell_data;

171 data_probe_g = dec_cell_data_g;

172 }

173 addr_probe = addr_bundle;

174 addr_probe_g = addr_bundle_g;

175 addr_probe_true = addr;

176 }

177

178

179 procedure store (lind_addr: lmapind_t , lind_val: lmapind_t , pkey:

↪ key_t , dkey: key_t)

180 modifies ghost_mem;

181 modifies msv_curr , observable;

182 // Debugging

183 modifies addr_probe , addr_probe_g , data_probe , data_probe_g;

184 {

185 var addr_bundle : data_t;

186 var addr_bundle_g : ghost_data_t;

187 var h_base : word_t;
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188 var h_offset : word_t;

189 var h_length : word_t;

190 var addr : word_t;

191 var oldcell_data : data_t;

192 var oldcell_data_g : ghost_data_t;

193 var oldcell_alloc : alloc_data_t;

194 var cell_data : data_t;

195 var cell_data_g : ghost_data_t;

196 var cell_alloc : alloc_data_t;

197 var enc_cell_data : data_t;

198 var enc_cell_data_g : ghost_data_t;

199

200 // Get the linear address bundle and value

201 call (addr_bundle_g) = ghost_ca_decrypt(ghost_lmap[lind_addr],

↪ pkey);

202

203

204 // extract fields

205 h_base = addr_bundle_g.h_base;

206 h_offset = addr_bundle_g.h_offset;

207 h_length = addr_bundle_g.h_length;

208 // compute the address

209 // INFO: ghost_to_addr_value is the precise model

210 addr = ghost_to_addr_value(addr_bundle_g);

211

212 // no address overflow

213 assume(no_addr_overflow(h_base , h_offset));

214 // definition of a memory safety vulnerability

215 if (! between(h_offset , zero , h_length)) {

216 msv_curr = true;

217 } else {

218 msv_curr = false;

219 }

220

221 // Old cell location

222 oldcell_data_g = ghost_mem[addr];

223 oldcell_alloc = alloc_map[addr];

224

225 // Plaintext value of the store

226 cell_data_g = ghost_lmap[lind_val ];

227 // Encrypted value of the store

228

229 // INFO: ghost_to_nonce below is the accurate model

230 call (enc_cell_data_g) = ghost_data_encrypt(cell_data_g , dkey ,

231 ghost_to_nonce(addr_bundle_g),

232 oldcell_data_g

233 );

234

235

236 observable.valid = false;
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237

238 if (oldcell_alloc) {

239 // in this case , write is invalid , and there is a fault

240 } else {

241 // Decrypted data is placed as in in the local variable map

242 ghost_mem[addr] = enc_cell_data_g;

243 // Debugging probe

244 data_probe = enc_cell_data;

245 data_probe_g = enc_cell_data_g;

246 }

247 addr_probe = addr_bundle;

248 addr_probe_g = addr_bundle_g;

249 }

250

251

252 procedure hanop (op: opcode_t , lind_dest: lmapind_t , lind_src1:

↪ lmapind_t , lind_src2: lmapind_t)

253 modifies ghost_lmap;

254 // Debugging

255 modifies data_probe , src1_probe , src2_probe;

256 modifies data_probe_g , src1_probe_g , src2_probe_g;

257 {

258 var newoffset: word_t;

259 var newdata: ghost_data_t;

260

261 // Abstraction for the hanop

262 var nondet_arg : word_t;

263

264

265 // First operand must be a handle

266 src1_probe_g = ghost_lmap[lind_src1 ];

267

268 if (ghost_lmap[lind_src1 ]. vtype == HAN) {

269 // Both the value and the handle offset are modulated by the

↪ same amount

270 newoffset = ghost_lmap[lind_src1 ]. h_offset + nondet_arg;

271 assume (no_addr_overflow(ghost_lmap[lind_src1 ].h_base ,

↪ newoffset));

272

273 newdata = ghost_lmap[lind_src1 ];

274 // With new offset defined by hanop_fun

275 newdata.h_offset = newoffset;

276

277 // Also shift the raw value by nondet_arg

278 newdata.value = newdata.value + nondet_arg;

279 ghost_lmap[lind_dest] = newdata;

280

281 } else {

282 // Unhandle

283 assume (newdata.vtype == RAW);
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284

285 // INFO: completely unconstrained

286 ghost_lmap[lind_dest] = newdata;

287 }

288 // Debugging probes

289 data_probe_g = newdata;

290 }

291

292

293 procedure arithop (op: opcode_t , lind_dest: lmapind_t , lind_src1:

↪ lmapind_t , lind_src2: lmapind_t)

294 modifies ghost_lmap;

295 // Debugging

296 modifies data_probe , data_probe_g;

297 {

298 var newdata : data_t;

299 var newdata_g : ghost_data_t;

300

301 // Result from expression evaluation is a non -handle

302 // The result can be arbitrary

303 assume (newdata_g.vtype == RAW);

304

305 ghost_lmap[lind_dest] = newdata_g;

306 // Debugging probe

307 data_probe = newdata;

308 data_probe_g = newdata_g;

309 }

310 }

Listing B.4: Operations Module
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B.5 Cryptography Module

1

2

3 module u2 {

4

5 // Encryption and decryption functions: these are left uninterpreted

6 function cdecrypt (addr_in: word_t , key: key_t) : word_t;

7 function cencrypt (addr_in: word_t , key: key_t) : word_t;

8 // Data encryption and decryption

9 function dencrypt (value_in: word_t , key: key_t , ca: nonce_t) : word_t

↪ ;

10 function ddecrypt (value_in: word_t , key: key_t , ca: nonce_t) : word_t

↪ ;

11

12 // For a given range on the slot , what is the CA

13 // that maps to this slot

14 // This is the power -of -2 assumption from the C3 paper

15 function slot_to_nonce (s1: word_t , s2: word_t) : nonce_t;

16

17 function ghost_to_nonce (val: ghost_data_t) : nonce_t;

18

19 function ghost_to_addr_value (ghost_data: ghost_data_t) : data_t;

20

21

22 // Given an address what is the corresponding nonce?

23 function ca_to_nonce (addr: word_t) : nonce_t;

24

25 define is_garbled (enc_state : enc_state_t) : boolean = (

26 (is_DEnc(enc_state) && !is_Pln(enc_state.DEnc_val))

27 || is_DDec(enc_state)

28 );

29

30 // Operation over the RAW value of the data

31 procedure ca_decrypt (addr_in: data_t , key: key_t)

32 returns (addr_out: data_t)

33 {

34 addr_out = cdecrypt(addr_in , key);

35 }

36

37 // All cryptographic operations preserve the non -crypto fields

38 // and only operate on the crypto ADT elements

39 procedure ghost_ca_decrypt (ghost_addr_in: ghost_data_t , key: key_t)

40 returns (ghost_addr_out: ghost_data_t)

41 {

42 // Core operation

43 // Preserves the internal values

44 ghost_addr_out.value = ghost_addr_in.value;

45 ghost_addr_out.vtype = ghost_addr_in.vtype;

46 ghost_addr_out.h_base = ghost_addr_in.h_base;
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47 ghost_addr_out.h_offset = ghost_addr_in.h_offset;

48 ghost_addr_out.h_length = ghost_addr_in.h_length;

49

50 // Operation over the ADT -based abstraction

51 if (is_Pln(ghost_addr_in.enc_state) || is_PDec(ghost_addr_in.

↪ enc_state)

52 || is_DEnc(ghost_addr_in.enc_state) || is_DDec(ghost_addr_in.

↪ enc_state)) {

53 ghost_addr_out.enc_state = PDec(ghost_addr_in.enc_state , key);

54 } else {

55 if (is_PEnc(ghost_addr_in.enc_state)

56 && ghost_addr_in.enc_state.PEnc_key == key) {

57 ghost_addr_out.enc_state = ghost_addr_in.enc_state.

↪ PEnc_val;

58 } else {

59 // Unreachable

60 // assert(false);

61 }

62 }

63 ghost_addr_out.ca_nonce_true = ghost_addr_in.ca_nonce_true;

64 }

65

66

67 procedure ca_encrypt (addr_in: data_t , key: key_t)

68 returns (addr_out: data_t)

69 {

70 addr_out = cencrypt(addr_in , key);

71 }

72

73 procedure ghost_ca_encrypt (ghost_addr_in: ghost_data_t , key: key_t)

74 returns (ghost_addr_out: ghost_data_t)

75 {

76 // Preserves the internal values

77 ghost_addr_out.value = ghost_addr_in.value;

78 ghost_addr_out.vtype = ghost_addr_in.vtype;

79 ghost_addr_out.h_base = ghost_addr_in.h_base;

80 ghost_addr_out.h_offset = ghost_addr_in.h_offset;

81 ghost_addr_out.h_length = ghost_addr_in.h_length;

82

83 ghost_addr_out.enc_state = PEnc(ghost_addr_in.enc_state , key);

84 ghost_addr_out.ca_nonce_true = ghost_addr_in.ca_nonce_true;

85 }

86

87

88 procedure data_encrypt (data_in: data_t , key: key_t , ca: nonce_t)

89 returns (data_out: data_t)

90 {

91 data_out = dencrypt(data_in , key , ca);

92 }

93
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94 procedure ghost_data_encrypt (ghost_data_in: ghost_data_t , key: key_t ,

↪ ca: nonce_t , old_ghost_data: ghost_data_t)

95 returns (ghost_data_out: ghost_data_t)

96 {

97 // Core operation (kept uninterpreted)

98 ghost_data_out.value = ghost_data_in.value;

99 ghost_data_out.vtype = ghost_data_in.vtype;

100 ghost_data_out.h_base = ghost_data_in.h_base;

101 ghost_data_out.h_offset = ghost_data_in.h_offset;

102 ghost_data_out.h_length = ghost_data_in.h_length;

103

104 // Operation over the abstraction

105 // Integrity violation

106 if (old_ghost_data.ca_nonce_true != ca) {

107 ghost_data_out.enc_state = DEnc(ghost_data_in.enc_state , key ,

↪ ca , false);

108 } else {

109 ghost_data_out.enc_state = DEnc(ghost_data_in.enc_state , key ,

↪ ca , true);

110 }

111 ghost_data_out.ca_nonce_true = old_ghost_data.ca_nonce_true;

112 }

113

114 procedure data_decrypt (data_in: data_t , key: key_t , ca: nonce_t)

115 returns (data_out: data_t)

116 {

117 data_out = ddecrypt(data_in , key , ca);

118 }

119

120 procedure ghost_data_decrypt (ghost_data_in: ghost_data_t , key: key_t ,

↪ ca: nonce_t)

121 returns (ghost_data_out: ghost_data_t)

122 {

123 // Preserves the internal values

124 ghost_data_out.value = ghost_data_in.value;

125 ghost_data_out.vtype = ghost_data_in.vtype;

126 ghost_data_out.h_base = ghost_data_in.h_base;

127 ghost_data_out.h_offset = ghost_data_in.h_offset;

128 ghost_data_out.h_length = ghost_data_in.h_length;

129

130

131 if (is_DEnc(ghost_data_in.enc_state)

132 && ghost_data_in.enc_state.intcheck

133 && ghost_data_in.enc_state.DEnc_key == key

134 && ghost_data_in.enc_state.DEnc_nonce == ca) {

135 ghost_data_out.enc_state = ghost_data_in.enc_state.DEnc_val;

136 } else {

137 ghost_data_out.enc_state = DDec(ghost_data_in.enc_state , key ,

↪ ca);

138 }
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139

140 ghost_data_out.ca_nonce_true = ghost_data_in.ca_nonce_true;

141 }

142

143 }

Listing B.5: Operations Module
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B.6 Contracts Module

1

2

3 module u2 {

4

5

6 define addr_must_be_handle (ghost_addr_bundle : ghost_data_t) :

↪ boolean =

7 (ghost_addr_bundle.vtype == HAN);

8

9 define no_addr_overflow (h_base : word_t , h_offset : word_t) : boolean

↪ =

10 (h_base <=_u wmax - h_offset);

11

12 define non_overlapping_ranges (b1: word_t , l1: word_t , b2: word_t , l2:

↪ word_t) : boolean =

13 // Both of these work and result in convergence with upto bv4

14 ((b1 <_u l1) && (b2 <_u l2) && !between (b1 , b2 , l2) && !between (

↪ b2 , b1, l1));

15 // (b1 <_u l1) && (b2 <_u l2) && !((b1 <=_u (l2 -one)) && (b2 <=_u

↪ (l1 -one)));

16

17 define handles_are_valid (ghost_addr_bundle: ghost_data_t) : boolean =

18 (ghost_addr_bundle.vtype == HAN) ==> (zero <_u ghost_addr_bundle.

↪ h_length);

19

20 define value_matches_handle_iff_valid (addr: word_t , ghost_addr_bundle

↪ : ghost_data_t) : boolean =

21 // Non -plain or non -handles do not match any -slot (" diffusion

↪ property ")

22 (( ghost_addr_bundle.vtype != HAN || !is_Pln(ghost_addr_bundle.

↪ enc_state)) ==> (

23 forall (a1: word_t) :: (

24 forall (a2 : word_t) :: (

25 (a1 <_u a2) ==> (ghost_to_nonce(ghost_addr_bundle) !=

↪ slot_to_nonce(a1, a2))

26 )

27 )

28 )) && (( ghost_addr_bundle.vtype == HAN && is_Pln(ghost_addr_bundle

↪ .enc_state)) ==> (

29 ghost_to_nonce(ghost_addr_bundle) ==

30 slot_to_nonce(ghost_addr_bundle.h_base , ghost_addr_bundle.

↪ h_base+ghost_addr_bundle.h_length)

31 && ghost_addr_bundle.value == ghost_to_addr_value(

↪ ghost_addr_bundle)

32 ))

33 ;

34

35
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36 }

Listing B.6: Operations Module
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B.7 Shadow U2 Module

1

2

3 module u2 {

4

5 // Ghost memory with slots information

6 var shadow_mem: shadow_mem_t;

7

8 }

Listing B.7: Shadow U2 Module
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B.8 Shadow Memory Module

1

2

3 module u2 {

4

5

6 procedure [noinline] shadow_malloc_helper (as: alloc_struct_t)

7 returns (nm: shadow_mem_t)

8 ensures (

9 // New memory is allocated in the ghost state

10 // with the correct allocation interval information

11 (forall (a: word_t) :: (

12 (between (a, as.allocg.h_base , (as.allocg.h_base + as.

↪ allocg.h_length)))

13 ==> (

14 nm[a]. alloc

15 && nm[a]. lowend == as.allocg.h_base

16 && nm[a]. highend == as.allocg.h_base + as.allocg.

↪ h_length

17 // True nonce (currently needs to be non -shadow)

18 // && nm[a]. nonce_true ==

19 // slot_to_nonce(as.alloca.h_base , as.alloca.

↪ h_base + as.alloca.h_length)

20 )

21 ))

22 // Originally shadow_mem is unoccupied

23 && (forall (a: word_t) :: (

24 (between (a, as.allocg.h_base , (as.allocg.h_base + as.

↪ allocg.h_length)))

25 ==> (! shadow_mem[a]. alloc)

26 ))

27 // And memory outside this interval stays the same

28 && (forall (a: word_t) :: (

29 (!( between (a, as.allocg.h_base , (as.allocg.h_base + as.

↪ allocg.h_length))))

30 ==> nm[a] == shadow_mem[a]

31 ))

32 );

33 { }

34

35 procedure shadow_malloc (as: alloc_struct_t)

36 modifies shadow_mem;

37 {

38 // Call the helper function

39 call (shadow_mem) = shadow_malloc_helper(as);

40 }

41

42 }
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Listing B.8: Shadow Operations Module
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Appendix C

Formal Foundations of SSV

C.1 Introduction

At a high level, the purpose of SSV is to verify that a system uses cryptographic primitives
effectively to protect confidential data against an adversary observing its execution. From
this informal description of our goal, many questions naturally arise: What does it mean
to protect confidential data? How exactly does the adversary observe the system while it
executes? Most importantly, how do we go about verifying that this security property holds?

These are all important questions that must be answered precisely if we wish to make
SSV work. Hence, the focus of this chapter is to build the formal framework required to set
up and solve the security verification problem. We begin by presenting a formal model of the
system, specifying both its syntax and semantics. After that, we give a formal description
of our threat model and the security problem that we wish to verify. Next, we present the
verification problem, and show how we can Finally, we conclude the chapter with an overview
of PROTOSL, our Python implementation of this formal framework.

C.2 System Model

We now introduce our system model. Intuitively, we consider a system in which imperative
programs are executed over a set of typed variables, which take on familiar values such as
booleans, integers, bit-vectors, etc, in addition to an abstract “message type”. A key aspect
of our system model is the threat model, which consists of a passive but curious adversary;
the adversary comes equipped with the ability to observe a subset of the variables in the
program and perform some computation on the values that those variables take on. They are
not, however, allowed to interfere with or otherwise modify the program. We now proceed
to formalize this intuitive notion.
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C.2.1 System State

Abstract and Base Domains

Given that the typed variables are instrumental to our system model, we begin by introducing
what values they can take on. We consider two domains: The abstract message domain and
the base domain. The first is the abstract domain, A, which can be conceptualized as the
domain of all messages. Let M denote the concrete domain of message types. Then we define
the abstract domain A by the following grammar:

A =M ∣ SymEnc(d ∶ A, k ∶ A) ∣ SymDec(d ∶ A, k ∶ A)

On the other hand, the base domain, B, is the union of integers, Booleans, bit-vectors,
etc. Morally, we think of A as the message domain (augmented to support cryptographic
operations) and B as the non-message domain. The system will consist of a set of variables
V , which includes message-typed variables Va that take values from the domain A, and
non-message-typed variables Vb that take values from the domain B. Naturally, V = Va ∪ Vb.

States

Let U = A∪B denote our universe. Then an abstract state σ is given by a U-valued assignment
of the variables in V ; that is, σ ∶ V → U. We assume that all states that are well-typed. To
be more precise, any state σ can only assign a variable va ∈ Va a value from A; similarly,
variables vb ∈ Vb only get assigned values from B. We denote the set of all states as Σ.

On occasion, we will need to refer to only the A-valued or B-valued assignments of a state
σ. In these cases, we will denote the restriction of σ to A-valued assignments as σa and the
restriction of σ to B-valued assignments as σb. Similarly, we will let Σa denote the set of all
A-valued restrictions and Σb denote the set of all B-valued restrictions.

C.2.2 Programs

Intuitively, our system admits loop-free programs that allow for conditional branching. This
subsection is dedicated to showing how these programs are constructed, and how their ex-
ecution changes the system state. In other words, we now proceed to define a program’s
syntax and semantics.

Syntax

We now lay out the syntax of PROTOSL programs. Programs are executed over the previously
defined variables and are very simple in nature. Our programs consist of a sequence of parallel
assignments of variables to expressions, allowing branching based on Boolean conditions.

We allow a fairly permissive space of U-valued expressions defined over a wide range of
operations, the details of which we leave up to the implementation of the system. Much like
we have done before, we define E as the set of all U-valued expressions. The only assumption
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that PROTOSL makes is that any expression e ∈ E is well-typed, meaning that the value that
e ultimately evaluates to matches the type of the variable that e is being assigned to.

We now formulate the statements that can be executed in the form of a grammar. Let
x ∈ V be a variable and x ∈ Vn be a collection of n variables: x = (x1, x2, ..., xn). Additionally,
let ψ be a Boolean constraint defined over the base domain; formally, ψ ∶ σb → {true,false}.
Lastly, let e ∈ E be a single expression and e ∈ En be a collection of n expressions: e =
(e1, e2, ..., en).

⟨st⟩ ∶∶= x← e [assign]

∣ x← e [multiassign]

∣ if ψ then ⟨st⟩ else ⟨st⟩ [ite]

∣ ⟨st⟩ ⋅ ⟨st⟩ [composition]

Semantics

In this section, we provide the semantics of PROTOSL programs, beginning by explaining how
we interpret expressions. For every expression e, we define JeK ∶ Σ→ A as the interpretation
of the expression. As a quick example, if our expression e is x+ y and we have that σ(x) = 1
and σ(y) = 2, then

JeK(σ) = Jx + yK(σ) = 1 + 2 = 3,
as one would naturally expect.

We extend the above definition to vectors of expressions e, where JeK ∶ Σ → An. Contin-
uing the above example, suppose e = (x + x, y + y). Then

JeK(σ) = J(x + x, y + y)K(σ) = (1 + 1,2 + 2) = (2,4).

Next, we provide the semantics of our grammar in the form of an interpretation function
JstK ∶ Σ→ Σ that returns a new state σ′ after executing the statement st on the current state
σ. This effectively defines how each PROTOSL statement is to be executed.

Jx← eK(σ) = σ[x↦ JeK(σ)]

Jx← eK(σ) = σ[x↦ Je(σ)K]

Jif ψ then stA else stBK(σ) =
⎧⎪⎪⎨⎪⎪⎩

JstAK(σ) if ψ(σ)
JstBK(σ) otherwise

JstA ⋅ stBK = JstBK(JstAK(σ))
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Now that we have defined how statements are executed, we formalize a program P as a
sequence of statements, st1⋯stn. If P has n statements, we say that it is a program of length
n. We also allow indexing into the program: Pi = sti. As an additional remark, if P has no
statements, then we say that the length of P is 0, or that P is empty. We denote this special
case as P = ∅, and we define J∅K(σ0) = ⟨σ0⟩ for every σ0 ∈ Σ0.

Starting from an initial state σ0 ∈ Σ, we define an execution of the program P as a
sequence of states JP K(σ0) = ⟨σ0, σ1, ..., σn⟩ where σi+1 = Jsti+1K(σi). Often, we will refer to
such a sequence of states as a trace, and represent it with the symbol τ . For convenience,
we will allow indexing into a trace: if τ = ⟨σ0, σ1, ..., σn⟩, then τi = σi.

C.3 Threat Model

As we stated at the beginning of this appendix, we consider a threat model where the
adversary is allowed to observe certain variables of the system. In addition, the adversary is
allowed to perform computation on the values they observed, as dictated by a set of rules.
We can thus conceptualize “security” as the adversary being unable to deduce any secret
values, given their observations. In this section, we make the effort to formally specify this
threat model, including the cryptographic assumptions that under which our threat model
operates.

C.3.1 Abstract Terms and Rules

The terms in the abstract domain are given by the following grammar over a set of variables
X:

T = Enc(T,T ) ∣ Dec(T,T ) ∣ x ∈X
We refer to the variables in mentioned in a term as vars(T ).

We define a rule r to be an object containing a head and a body: head(r) and body(r),
respectively. The head is a term, and the body is a set of terms. For example, consider
the rule r below detailing how one may derive a plaintext message (m) given the message’s
encryption (Enc(m,k)) and the key used to encrypt it (k):

r ∶=m← {Enc(m,k), k}

Here, head(r) = x and body(r) = {Enc(x, k), k}. Just as we did with terms, we let vars(r)
denote the set of variables mentioned in r.

Models of Cryptography

For our purposes, we will consider two models of cryptography, each defined as a set of rules:
the perfect cryptography model and the XOR model. We define the set of rules for the
perfect cryptography model, Rp, as:
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Rp = {Enc(m,k)← {m,k},
Dec(c, k)← {c, k},
m← {Dec(Enc(m,k), k)}}.

The first two rules give the adversary the ability to encrypt and decrypt arbitrary messages
(terms) under some key (also a term). The third rule specifies how Enc and Dec interact.
Namely, we can decrypt an encryption of a message m to recover it, provided we have the
key k.

Next, we have the XOR model, which introduces a more sophisticated algebraic reasoning
system. This is useful in analyzing a number of protocols that make use of certain symmetric
key operations (e.g., one-time pad, stream ciphers). For this model, we first define a new
constant symbol 0, representing the identity element. Then, we define Rx as:

Rx = {a⊕ b ← {a, b},
a← {a⊕ 0},
0← {a⊕ a},
b⊕ a← {a⊕ b},
a⊕ (b⊕ c)← {(a⊕ b)⊕ c},
(a⊕ b)⊕ c← {a⊕ (b⊕ c)}}.

These rules should align with the reader’s existing understanding of the XOR (⊕) operation.

Grounding

Given a rule r and an assignment of variables α ∶ vars(r)→ A, we ground a rule by replacing
the variables in the head and body with their respective assignment from α. Such a grounding
produces a rule where the head is a message type and the body is also a message type. We
denote the grounding of r with assignment α as r[α]. Likewise, we let head(r[α]) ∈ A and
body(r[α]) ⊆ A.

Adversary Computability

So far, we have been building the tools required to give our adversary the ability play
around with the values they have observed during the execution of a program. This aims
to model an adversary with the capability to perform cryptographic operations. We now
make precise this notion of computability by defining the Adversary Computability relation
AdvCompR ∶ 2A → 2A, which is parameterized by a set of rules R. Given a set of abstract
values K ⊆ A, we have that

AdvCompR(K) = {head(r[α]) ∣ r ∈R, α ∶ vars(r)→ A, body(r[α]) ⊆ K}.
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Intuitively, this function represents the possible inferences the adversary can make, making
use of the rules specified by R. We define AdvComp∗R(S) as the closure of the AdvCompR
relation.

C.3.2 Adversary Knowledge

Our threat model consists of an adversary that can passively observe messages that are
assigned to public set of variables Vp ⊆ Va. Given an abstract state σa, we let AK(σa) =
{σa(v) ∣ v ∈ Vp}. We refer to this set AKi(σa) as the adversary’s knowledge.

Furthermore, for a fixed set of rules R and given a trace of abstract states τ = ⟨σ0, ..., σn⟩,
let the set of all observed values, Sτ , be Sτ = ⋃{{σi(v) ∣ v ∈ Vp} ∣ σi ∈ τ}. We make the
assumption that the adversary has perfect memory, meaning that they retain all the values
that they have observed over the execution of a program forever.

Then, we define the adversary’s knowledge, AKR(τ), as

AKR(τ) = AdvComp∗R(Sτ).

Secret Inference Problem

Now that we have defined the observability and the computability of the adversary, we can
go ahead and define the secret inference problem. As the name suggests, this problem asks
whether an adversary can reason about the values they have observed during the execution
of a program in order to infer some secret value(s). Intuitively, if an adversary is indeed able
to infer any secrets, then the system is insecure. A keen reader will notice that we have not
yet defined what it means for a system to be insecure. We will formally define our notion
of security in the next subsection, then show that an adversary is able to solve the secret
inference problem if and only if the system is insecure.

Now we proceed to state the secret inference problem formally. Let P be a program, R
be a set of rules, and Σ0 be a set of initial states. We will use the symbol Q to denote a
set of query values, meaning that Q ⊆ A. Conceptually, Q contains all the secret values that
we do not want the adversary to observe. Now, given the above parameters, we define a
configuration to be the tuple (P,R,Q,Σ0).

Next, we define the secret inference problem, SIP(P,Q,R,Σ0), as

SIP(P,Q,R,Σ0)⇔ ∃σ0 ∈ Σ0, ∃q ∈ Q. q ∈ AKR(JPK(σ0)).

Essentially, SIP(P,Q,R,Σ0) asks the following question: “In a given configuration (P,Q,R,Σ0),
does there exist some execution of P starting from an initial state σ0 ∈ Σ0 such that a secret
value q ∈ Q is deducible by the adversary using the rules R?” If so, we say that the adversary
has solved the secret inference problem, or that they have inferred a secret.

Note that the SIP is defined relative to a configuration (P,Q,R,Σ0). This is because any
change to the given system parameters potentially changes whether an adversary can solve
the secret inference problem or not.
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Now that we have formally defined the SIP, we must also develop a way to verify it.
Thus, the aim of the next section is to develop a methodology for efficient verification of
this problem. To this end, we will show how to symbolically execute programs, which will
allow us to consider multiple executions of the program at once. Then, we will define what
it means for a configuration (P,Q,R,Σ0) to be secure. Finally, we will connect the secret
inference problem and our notion of security, showing that a system is secure if and only if
the adversary is unable to solve the secret inference problem.

C.4 Verification

We have dedicated the past two sections to building the machinery required for this section.
In addition to executing PROTOSL programs, we also want to be able to efficiently verify
them. To do this, we develop a methodology to symbolically simulate the aforementioned
programs, a technique that allows us to consider many possible executions of a program at
once without explicitly executing them.

After defining how we symbolically execute PROTOSL programs, we show how to verify
them. In particular, we will show how we can leverage symbolic executions to determine
whether an adversary can solve the SIP.

Symbolic Execution

For a given state σ, let σa denote only its A-valued assignments and let σb denote only its
B-valued assignments. That is, σa ∶ Va → A and σb ∶ V → B.

Furthermore, for σb, we let ϕ denote its characteristic function. That is, ϕ(σb) is true if
and only if σb ⊧ ϕ. We also overload the symbol ϕ to represent the set of all such states:

ϕ = {σb ∈ Σb ∣ σb ⊧ ϕ}

We refer to this formula ϕ as the path condition. While we represent this path condition
as an explicit set of states here, in the actual execution implementation, this would be
represented by a symbolic formula, following standard symbolic model checking conventions
[48]. Furthermore, we refer to a triple (σa, ϕ,K) ∈ Σa × 2Σb × 2A as a symbolic execution
context. We will refer to the set of all symbolic execution contexts, Σa × 2Σb × 2A, as Γ.

We provide the semantics of our execution in the form of an interpretation function
⟪st⟫ ∶ Γ → 2Γ that returns a set of new execution contexts after executing the statement st.
We lift the semantics of ⟪st⟫ to a set of symbolic execution contexts in the obvious way: if
C ∈ 2Γ, then ⟪st⟫(C) = ⋃{⟪st⟫(c) ∣ c ∈ C}.

For clarity, we will make a distinction between the different kinds of variables contained
in a collection of variables x. In particular, we will use the subscript a to refer to A-typed
variables, the subscript b to refer to B-typed variables, and the subscript p to refer to public
A-typed variables. Thus, we say that xa = {x ∈ x ∣ x ∈ Va}, that xb = {x ∈ xb ∣ x ∈ Vb}, and,
naturally, xp = {x ∈ x ∣ x ∈ Vp}. Similarly, we will define ea as the set of expressions assigned
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to a variable in xa, eb as the set of expressions assigned to a variable in xb, and ep as the set
of expressions assigned to a variable in xp.

For readability, we will let w = JeK(σ) for a given state σ. In other words, w refers to the
interpretation of e in state σ. We extend this definition to tuples: w = JeK(σ). We will also
use the following conventions, which are hopefully clear from context:

• wa = JeaK(σ),

• wb = JebK(σ), and

• wp = JepK(σ).

With all that said, we formally define our symbolic executions below:

⟪x← e⟫(σa, ϕ,K) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{(σa[x↦ w], ϕ,K ∪ {w})} if x ∈ Vp
{(σa[x↦ w], ϕ,K})} if x ∈ Va ∖ Vp
{(σa,{σb[x↦ w] ∣ σb ∈ ϕ},K)} if x ∈ Vb

⟪x← e⟫(σa, ϕ,K) = {(σa[xa ↦ wa],{σb[xb ↦ wb] ∣ σb ∈ ϕ},K ∪wp)}

⟪if ψ then stA else stB⟫(σa, ϕ,K) = ⟪stA⟫(σa, ϕ ∧ ψ,K) ∪ ⟪stB⟫(σa, ϕ ∧ ¬ψ,K)

⟪stA ⋅ stB⟫(σa, ϕ,K) = ⟪stB⟫(⟪stA⟫(σa, ϕ,K))
Starting from an initial context γ0 = (σa0, ϕ0,K0) ∈ Γ, we define a symbolic execution of

the program P = st1⋯stn as a sequence of sets of contexts ⟪P⟫(γ0) = ⟨γ0, γ1, ..., γn⟩ where
γi+1 = ⟪sti+1⟫(γi). We will often write π = ⟨γ0, γ1, ..., γn⟩ to refer to a given symbolic execution.
Additionally, we allow indexing for convenience: if π = ⟨γ0, γ1, ..., γn⟩, then πi = γi.

Without loss of generality , we define K0 = {σa0(v) ∣ v ∈ Vp}. Moreover, we assume that
any initial context must be satisfiable; that is ∀(σa0, ϕ0,K0) ∈ Γ0. SAT(ϕ0). Finally, we say
that if P = ∅, then ⟪P⟫(γ0) = γ0.

Security Verification Condition

Recall that we initially wanted to keep certain values secret from the adversary. We call
these values “queries,” and denote the set of all such values as Q. Now we can finally state
our definition of security as follows:

Let P be a program and Σ0 ⊆ Σ be a set of initial states. Let Γ0 be the set of initial
execution contexts obtained from Σ0. Then we use the symbol F to denote the set of final
execution contexts:

F = {⟪P⟫(γ0)n ∣ γ0 ∈ Γ0}.
Now that we have all the necessary definitions at hand, we can formally define what it

means for a given system (P,Q,R,Σ0) to be secure:
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Definition C.1. System Security: Let (P,Q,R,Σ0) be a system. Then we say that

Secure(P,Q,R,Σ0)⇔ ∀(σa, ϕ,K) ∈ F . ¬SAT(ϕ) ∨ (AdvComp∗R(K) ∩Q) = ∅.

Intuitively, Secure(P,Q,R,Σ0) indicates that in any symbolic execution path in F , either
that path is not reachable (this is what we mean by ¬SAT(ϕ) above), or the adversary is
unable to deduce any of the secret values in Q (this is what we mean when we say that
(AdvComp∗R(K) ∩Q) = ∅)).

Equivalence of SIP and Security Verification Condition

It is finally time to put all the pieces of the puzzle together. Recall that our security goal
was to prevent an adversary from being able to infer any sensitive values from the data they
were able to see. Now that we have a precise formulation of what exactly it means for an
adversary to be able to infer a secret, as well as what it means for the system to be secure,
we can show that our symbolic execution is sound and complete.

Theorem 1. Correctness: Given a program P, a set of rules R, a set of initial states
Σ0 ⊆ Σ, and a set of query values Q, we have that

SIP(P,Q,R,Σ0)⇔ ¬Secure(P,Q,R,Σ0).

We prove this equivalence in Appendix D. This effectively gives us a characterization of
correctness of SSV. What this does is guarantee that our approach is sound, and that we
can trust the results produced by our solver.
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Appendix D

Proof of Equivalence of the Secret
Inference Problem and the Security
Verification Condition

In this appendix, we prove the following equivalence:

SIP(P,Q,R,Σ0)⇔ ¬Secure(P,Q,R,Σ0)

for an arbitrary system specification (P,Q,R,Σ0).
The first step required to prove this property is to show that the knowledge an adversary

obtains through concrete and symbolic executions of P are effectively the same. From this
fact, the equivalence easily follows. We formulate this “knowledge equivalence” as soundness
and completeness lemmas, with respect to the knowledge obtained by an adversary. Intu-
itively, the soundness lemma tells us that any reachable symbolic execution context must
correspond to a concrete trace of the program. Conversely, our completeness lemma states
that every concrete trace of our program can be symbolically simulated. To reiterate, in both
lemmas, the main property we care about is that the knowledge obtained by the adversary
at any point of the execution is the same on the concrete and symbolic side.

Before we state and prove our lemmas, let us define some notational conventions, starting
with those for a concrete execution trace τ . Let P be a program of length n ∈ N and Σ0 ⊆ Σ
be a set of initial states. For any choice of σ0 ∈ Σ0, we have that τ = JPK(σ0) = ⟨σ0, σ1, ..., σn⟩,
where the ith state in the trace τ is σi = τi. As a reminder, we have that the set of observed
values in a trace τ is defined as

Sτ =⋃{{σi(v) ∣ v ∈ Vp} ∣ σi ∈ τ}.

On the side of symbolic executions, we begin with the initial symbolic execution context
γ0 = {(σa0, ϕ0,K0)}, where

• σa0 is the restriction of σ0 to A-typed variables,
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• σ0b is the restriction of σ0 to B-typed variables,

• ϕ0 is the characteristic function of σ0b, and

• K0 = {σa0(v) ∣ v ∈ Vp}.
Analogous to a concrete trace τ , we have that a symbolic execution trace is π = ⟪P⟫(γ0) =
⟨γ0, γ1, ..., γn⟩, where γi = πi. Each γi is a set of symbolic execution contexts, and each one
of its elements is of the form (σai, ϕi,Ki). Again, as a reminder:

• σai symbolizes the current assignment of A-typed variables,

• ϕi is the path condition of the symbolic execution context, and

• Ki is the set of values observed by the adversary up to and including the current
symbolic execution context.

Definition D.1. Characteristic B-Function: Let σ ∈ Σ be a variable assignment. Then
we define σ’s characteristic B-formula, βσ, such that:

βσ⇔ ⋀
v∈Vb

v = σ(v).

Definition D.2. Path Condition: Let α be a formula and βσ be the characteristic B-
function of some σ ∈ Σ. Then we say that a formula ϕ is a path condition if

ϕ⇔ α ∧ βσ.
Definition D.3. Reassignment 1: Let βσ be a characteristic B-function for some σ ∈ Σ.
Next, let x ∈ Vb and w ∈ B. Then we define the formula βσ[x↦ w] as

βσ[x↦ w]⇔ x = w ∧ ⋀
v∈Vb∖{x}

v = σ(v).

Remark D.1. If σ ∈ Σ and βσ is its characteristic B-function, then βσ[x ↦ w] is the
characteristic B-function of σ[x↦ w].
Definition D.4. Reassignment 2: Let ϕ be a path condition; that is, ϕ⇔ α∧βσ for some
formula α and some characteristic B-function βσ. Let x ∈ Vb and w ∈ B. Then we define a
reassignment on the path condition, ϕ[x↦ w], as:

ϕ[x↦ w]⇔ α ∧ βσ[x↦ w].
Remark D.2. If θ is not a path condition or a characteristic B-function, then θ[x↦ w]⇔ θ.

Definition D.5. Containment: Let γ ∈ Γ and σ ∈ Σ. We say that γ contains σ if there
exists (σ∗a , ϕ∗,K∗) ∈ γ such that

σa = σ∗a ∧ σb ⊧ ϕ∗

Definition D.6. Equivalence: Σ and Γ are equivalent when they ‘contain’ each other:
every σ ∈ Σ is contained in some γ ∈ Γ and every γ ∈ Γ is such that every σ contained in γ is
an element of Σ.
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With these definitions in mind, we can finally state our lemmas, beginning with our
soundness lemma:

Lemma D.1 (Soundness). Suppose P is a program and Σ0 is a set of initial states. Let
Γ0 be a set of contexts that contains Σ0. For all σ0 ∈ Σ0, suppose τ = ⟨σ0, ..., σn⟩ = JPK(σ0).
Then there exists, γ0 ∈ Γ0 with π = ⟨γ0, ..., γn⟩ = ⟪P⟫(γ0) and γn = (σ∗a , ϕ∗,K∗) such that:

(a) γn contains σn and

(b) Sτ = K∗.

Proof. Fix some arbitrary Σ0 ⊆ Σ and some Γ0 that contains Σ0. Additionally, fix some
arbitrary σ0 ∈ Σ0. We proceed by induction on the length of the program P.
Base Case: For our base case, we must check that the property holds for programs of length
0 (i.e. when P = ∅). First and foremost, we have that τ = JPK(σ0) = ⟨σ0⟩, meaning that
σn = σ0.

Consider (σ∗a , ϕ∗,K∗), where

σ∗a = (σ0)a,
ϕ∗⇔ true, and

K∗ = {σ∗a(v) ∣ v ∈ Vp}.

Clearly, σ0 ⊧ true. So (σ0)b ⊧ ϕ∗. This means that

(σ0)a = σ∗a ∧ (σ0)b ⊧ ϕ∗.

So γ0 contains σ0. Thus, we can deduce that that the set γ0 = {(σ∗a , ϕ∗,K∗)} is in Γ0.
Now, we have that π = ⟪P⟫(γ0) = ⟨γ0⟩. In other words, γn = γ0.
Furthermore, we have that by definition:

Sτ = S⟨σ0⟩
=⋃{{σi(v) ∣ v ∈ Vp} ∣ σi ∈ ⟨σ0⟩}
= {σ0(v) ∣ v ∈ Vp}
= {(σ0)a(v) ∣ v ∈ Vp}
= {σ∗a(v) ∣ v ∈ Vp}
= K∗.

Thus our base case holds.
Inductive Hypothesis: For our inductive hypothesis, we will assume that for any program P
of length n, there exists some γ0 ∈ Γ0 with π = ⟨γ0, ..., γn⟩ = ⟪P⟫(γ0) such that there is some
(σ∗a , ϕ∗,K∗) ∈ γn so that:

(a) γn contains σn and
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(b) Sτ = K∗.

Inductive Step: Let P be a program of length n + 1. More explicitly, P = st1⋯stn ⋅ stn+1. As
usual, we will let τ = JPK(σ0). Let τ− = Jst1⋯stnK(σ0) = ⟨σ0, ..., σn⟩, or the execution of only
the first n statements of P. By our inductive hypothesis, there exists some γ0 ∈ Γ0 such
that π− = ⟪st1⋯stn⟫(γ0) = ⟨γ0, ..., γn⟩, and, furthermore, there exists some (σ∗a , ϕ∗,K∗) ∈ γn
so that

(a) γn contains σn and

(b) Sτ− = K∗.

Let σn+1 = Jstn+1K(σn) and γn+1 = ⟪stn+1⟫(σn). For visual clarity, we will use the notation
(σ∗a , ϕ∗,K∗) for elements of γn and (σ′a, ϕ′,K′) for elements of γn+1. With that said, our goal
is to show that there exists some (σ′a, ϕ′,K′) ∈ γn+1 such that

(a) γn+1 contains σn+1 and

(b) Sτ = K′.

We will show that this is true by structural induction. Our base cases will be those where
stn+1 = x← e and stn+1 = x← e. Our inductive cases will be where stn+1 = if ψ then stA else stB
and stn+1 = stA ⋅ stB. Let us begin.

stn+1 = x← e: For this statement, we have that σn+1 = σn[x↦ eσn].
There are three disjoint cases1 to consider: x ∈ Va ∖ Vp, x ∈ Vp, and x ∈ Vb. Let us now

show what happens in each case.

(i) x ∈ Va ∖ Vp: By our inductive hypothesis, we know that there is some (σ∗a , ϕ∗,K∗) ∈ γn
such that

(σn)a = σ∗a ∧ (σn)b ⊧ ϕ∗.

Recall that in the case that x ∈ Va ∖ Vp, we have that

γn+1 = {(σ∗a[x↦ eσa], ϕ∗,K∗) ∣ (σ∗a , ϕ∗,K∗) ∈ γn}.

This means that for this (σ∗a , ϕ∗,K∗), there must exist some (σ′a, ϕ′,K′) so that

σ′a = σ∗a[x↦ eσn],
ϕ′⇔ ϕ∗, and
K′ = K∗.

The above facts imply that there exists some (σ′a, ϕ′,K′) ∈ γn+1 such that

1This follows from the fact that V = Va ⊎ Vb and Vp ⊆ Va. This implies that Va = Vp ⊎ (Va ∖ Vp). This
means that V = Vp ⊎ (Va ∖ Vp) ⊎ Vb
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So we have that

(σn+1)a = (σn)a[x↦ eσn]
= σ∗a[x↦ eσn]
= σ′a.

Note that (σn+1)b = (σn)b and ϕ′⇔ ϕ∗. This means that

(σn)b ⊧ ϕ∗

⇔ (σn+1)b ⊧ ϕ∗

⇔ (σn+1)b ⊧ ϕ′.

Finally, note that

Sτ = {{σi(v) ∣ v ∈ Vp} ∣ σi ∈ τ}
= {{σi(v) ∣ v ∈ Vp} ∣ σi ∈ τ−} ∪ {σn+1(v) ∣ v ∈ Vp}
= Sτ− ∪ {σn+1(v) ∣ v ∈ Vp}.

Since x ∉ Vp, we know that (σn+1)p = (σn)p. It follows that

{σn+1(v) ∣ v ∈ Vp} = {(σn+1)p(v) ∣ v ∈ Vp}
= {(σn)p(v) ∣ v ∈ Vp}
= {σn(v) ∣ v ∈ Vp}.

So it must be true that

Sτ = Sτ− ∪ {σn+1(v) ∣ v ∈ Vp}
= Sτ− ∪ {σn(v) ∣ v ∈ Vp}
= Sτ− .

The main consequence of this fact is that

Sτ = Sτ−
= K∗

= K′.

Putting all the information together, we now know that there is some (σ′a, ϕ′,K′) ∈ γn+1
such that

(a) (σn+1)a = σ′a ∧ (σn+1)b ⊧ ϕ′, meaning that γn+1 contains σn+1.

(b) Sτ = K′.
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Therefore, our soundness property holds in this case.

(ii) x ∈ Vp: Given that Vp ⊆ Va, this case is handled almost exactly as the previous one. For
x ∈ Vp, we have that

γn+1 = {(σ∗a[x↦ eσn], ϕ∗,K∗ ∪ {eσn}) ∣ (σ∗a , ϕ∗,K∗) ∈ γn}.

We can use the same reasoning as above to show that γn+1 contains σn+1. Therefore,
we will now focus on showing that Sτ = K′.
By our inductive hypothesis, there exists some (σ∗a , ϕ∗,K∗) ∈ γn such that Sτ− = K∗.
Earlier, we showed that Sτ = Sτ−∪{σn+1 ∣ v ∈ Vp}. We can go a step further and observe
that

{σn+1(v) ∣ v ∈ Vp} = {σn+1(v) ∣ v ∈ Vp ∖ {x}} ∪ {σn+1(x)}
= {σn+1(v) ∣ v ∈ Vp ∖ {x}} ∪ {eσn}

Note that since σn+1 = σn[x↦ eσn], we have that

{σn+1(v) ∣ v ∈ Vp ∖ {x}} = {σn(v) ∣ v ∈ Vp ∖ {x}}.

Since σn ∈ τ−, we also have that {σn(v) ∣ v ∈ Vp ∖ {x}} ⊆ S−τ . This implies that

Sτ = Sτ− ∪ {σn(v) ∣ v ∈ Vp ∖ {x}} ∪ {eσn}
= Sτ− ∪ {eσn}
= K′.

So indeed, we have that

(a) γn+1 contains σn+1, and

(b) Sτ = K′.

Hence, soundness holds in this case as well.

(iii) x ∈ Vb: Again, by our inductive hypothesis, there is some (σ∗a .ϕ∗,K∗) ∈ γn so that

(σn)a = σ∗a ∧ (σn)b ⊧ ϕ∗.

Recall that when x ∈ Vb, we define γn+1 as

γn+1 = {(σ∗a , ϕ∗[x↦ eσn],K∗) ∣ (σ∗a , ϕ∗,K∗) ∈ γn}.

So there must be some corresponding (σ′a, ϕ′,K′) ∈ γn+1 so that

σ′a = σ∗a ,
ϕ′⇔ ϕ∗[x↦ eσn], and
K′ = K∗.
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By definition of a path condition, ϕ∗⇔ α ∧ βσ for some σ ∈ Σ. So

σn ⊧ ϕ∗⇔ σn ⊧ α ∧ βσ

Since σn ⊧ βσ, it must be true that

βσ⇔ βσn
⇔ ⋀

v∈Vb
v = σn(v)

This means that we can express our new path condition, ϕ′, as

ϕ′⇔ ϕ∗[x↦ eσn]
⇔ (α ∧ βσn)[x↦ eσn]
⇔ α ∧ βσn[x↦ eσn]
⇔ α ∧ (x = eσn ∧ ⋀

x∈Vb∖{x}
v = σn(v)).

We’ll define βσn+1 as
(x = eσn ∧ ⋀

x∈Vb∖{x}
v = σn(v)).

Now given that σn+1 = σn[x↦ eσn], we have that

σn+1 ⊧ x = eσn
∧ σn+1 ⊧ ⋀

v∈Vb∖{x}
v = σn.

So it follows that

σn+1 ⊧ x = eσn ⋀
v∈Vb∖{x}

v = σn

⇔ σn+1 ⊧ βσn+1 .

Next, since α is simply a constraint over the symbolic inputs, and σn ⊧ α, it must be
true that σn+1 ⊧ α. So σn+1 ⊧ α ∧ βσn+1 , which implies that σn+1 ⊧ ϕ′.
Moreover, since (σn+1)a = (σn)a, it is easy to see that Sτ = Sτ− .
Thus, we have that there exists some (σ′a, ϕ′,K′) ∈ γn+1 such that

(a) σn+1 = σa ∧ σn+1 ⊧ ϕ, and
(b) Sτ = K′.

Therefore, we can say that soundness holds for the case that x ∈ Vb.
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stn+1 = x← e: This case is similar to the one in which stn+1 = x ← e. The only difference
is that everything happens simultaneously. Naturally, we have that σn+1 = σn[x ← eσn]. Let
xa ⊆ x, xb ⊆ x, and xp ⊆ xa be the natural projections of x into the appropriate types. Then
we have that γn+1 is the set

γn+1 = {(σ∗a[xa ↦ (eσn)a], ϕ∗[xb ↦ (eσn)b],K∗ ∪ (eσn)p) ∣ (σ∗a , ϕ∗,K∗) ∈ γn}.

By our inductive assumption, there is some (σ∗a , ϕ∗,K∗) ∈ γn so that σn is contained in
(σ∗a , ϕ∗,K∗) and Sτ− = K∗. So there must be some corresponding (σ′a, ϕ′,K′) ∈ γn+1 such that

σ′a = σ∗a[x↦ eσn],
ϕ′⇔ ϕ∗[x↦ eσn], and
K′ = K∗ ∪ (eσn)p.

By the same reasoning as above, we have that

(σn+1)a = (σn[x↦ eσn])a
= σ∗a[x↦ eσn]
= σ′a.

By our inductive hypothesis, σn ⊧ α∗, and we know that by construction of γn+1, α′⇔ α∗.
So we have that σn+1 ⊧ α′. Our inductive hypothesis also tells us that (σn)b = β∗. So we
have that

(σn+1)b = (σn[x↦ eσn])b
= β∗[x↦ eσn]
= β′.

Ultimately, this means that σn+1 ⊧ ϕ′. This information tells us that we meet the criterion
(a) for soundness: (σ′a, ϕ′,K′) contains σn+1.

Next, we want to show that criterion (b) holds: that Sτ = K′. By our inductive hypothesis
and our prior reasoning steps, we can show that

Sτ = Sτ− ∪ eσn
= K∗ ∪ eσn
= K′.

This shows us that, indeed, there is some (σ′a, ϕ′,K′) ∈ γn+1 such that

(a) gn+1 contains σn+1.

(b) Sτ = K′.
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stn+1 = if ψ then stA else stB: Before we begin, it will be useful to define some notation.
Recall that for this kind of statement, we have that

σn+1 =
⎧⎪⎪⎨⎪⎪⎩

JstAK(σn) if ψ(σn)
JstBK(σn) otherwise.

For convenience, let σAn+1 be shorthand for JstAK(σn). Similarly, let σBn+1 be shorthand for
JstBK(σn). Also, recall that by definition,

γn+1 = ⟪stA⟫(γψn ) ∪ ⟪stB⟫(γ¬ψn ).

As before, we have that

γψn = {(σ∗a , ϕ∗ ∧ ψ,K∗) ∣ (σ∗a , ϕ∗,K∗) ∈ γn}, and
γ¬ψn = {(σ∗a , ϕ∗ ∧ ¬ψ,K∗) ∣ (σ∗a , ϕ∗,K∗) ∈ γn}.

Consistent with our notation above, we can define

γAn+1 = ⟪stA⟫(γψn ), and
γBn+1 = ⟪stB⟫(γ¬ψn ).

So we can rewrite γn+1 as
γn+1 = γAn+1 ∪ γBn+1.

With the notation above defined, we can proceed with the rest of the proof. Note that
for this kind of statement, there are two possibilities that we must consider. Either

(i) ψ(σn) is true, or

(ii) ¬ψ(σn) is true.

In the case that (i) is true, we execute stA, and in the case that (ii) is true, we must execute
stB. Let us now show that soundness holds in both of these cases.

Case (i): By our inductive hypothesis, there must be some gn = (σ∗a , ϕ∗,K∗) ∈ γn such
that gn contains σn. Since gn contains σn, it must be true that σn ⊧ ϕ. This, along with the
fact that ψ(σn) is true, tells us that σn ⊧ ϕ∧ψ. It follows that gψn = (σ∗a , ϕ∗ ∧ψ,K∗) contains
σn. Note that gψn ∈ γψn .

By our inductive assumption on stA, since g
ψ
n contains σn and Sτ− = K∗, there must exist

some gAn+1 = (σAa , ϕA,KA) ∈ γAn+1 such that

(a) gAn+1 contains σAn+1,

(b) and SτA = KA.
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Since clearly γAn+1 ⊆ γn+1, we have that gAn+1 ∈ γn+1.
Next, since

τ = τ− ⋅ σn+1
= τ− ⋅ σAn+1
= τA,

it must be true that Sτ = SτA . So

Sτ = SτA
= KA.

This all tells us that there exists some gAn+1 = (σAa , ϕA,KA) ∈ γn+1 such that

(a) gAn+1 contains σn+1, and

(b) Sτ = KA.

This proves that soundness holds when ψ(σn) is true.
Case (ii): The proof for the case where ¬ψ(σn) is true is nearly identical to the one we

just did. Systematically replacing every occurrence of ψ above with ¬ψ and replacing A with
B yields the desired soundness result for Case (ii). For the sake of brevity, we omit the full
details and conclude simply that there must exist some gBn+1 = (σBa , ϕB,KB) ∈ γn+1 such that

(a) gBn+1 contains σn+1, and

(b) Sτ = KB.

stn+1 = stA ⋅ stB: In this final case, we once again assume inductively that everything works
as expected with stA and stB. Recall that

σn+1 = JstBK(JstAK(σn)), and
γn+1 = ⟪stB⟫(⟪stA⟫(γn)).

First, let σAn+1 = JstAK(σn) and let γAn+1 = ⟪stA⟫(γn).
By almost the same reasoning as in the previous statement, the following must hold:

there exists some gAn+1 = (σAa , ϕA,KA) such that

(a) gAn+1 contains σAn+1, and

(b) SτA = KA.
Next, let σBn+1 = JstBK(σAn+1). Clearly, σn+1 = σBn+1. Furthermore, let γBn+1 = ⟪stB⟫(γAn+1).
It is easy to see that there must exist some gBn+1 = (σBa , ϕB,KB) ∈ γn+1 such that

(a) gBn+1 contains σBn+1, and
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(b) SτAB = KB.

Thus, since τ ≅ τAB and γBn+1 = γn+1, we must have that soundness holds for the
composition of statements stA and stB, too.

This completes the induction, effectively proving that the soundness property must hold
for any program P.

The proof of completeness proceeds in an analogous fashion. To avoid redundancy, we
omit it here and leave its reconstruction as an exercise for the reader.
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Appendix E

BTORSEC Language Details

In this appendix, we dive deeper into the details of the BTORSEC language. We first present
a more detailed treatment of the syntax of BTORSEC programs in Section E.1. We present
a grammar and outline the supported operations of the language. Subsequently, in Section
E.2 we present the structure of SECSPECs in the form of a JSON Schema.
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E.1 The Syntax of BTORSEC

⟨num⟩ ∶∶= positive unsigned integer (greater than zero)

⟨uint⟩ ∶∶= unsigned integer (including zero)

⟨string⟩ ∶∶= sequence of whitespace and printable characters without [newline]

⟨symbol⟩ ∶∶= sequence of printable characters without [newline]

⟨comment⟩ ∶∶= ‘;’⟨ string⟩
⟨nid⟩ ∶∶= ⟨num⟩
⟨sid⟩ ∶∶= ⟨num⟩

⟨const⟩ ∶∶= ‘const’⟨sid⟩[0-1]+
⟨constd⟩ ∶∶= ‘constd’⟨sid⟩[‘-’]⟨uint⟩
⟨const⟩ ∶∶= ‘consth’⟨sid⟩[0-9a-fA-F]+
⟨input⟩ ∶∶= (‘input’|‘one’|‘ones’|‘zero’) ⟨sid⟩ | ⟨const⟩ | ⟨constd⟩ | ⟨consth⟩
⟨state⟩ ∶∶= ‘state′ ⟨sid⟩
⟨bitvec⟩ ∶∶= ‘bitvec’ ⟨num⟩
⟨array⟩ ∶∶= ‘array’ ⟨sid⟩ ⟨sid⟩
⟨node⟩ ∶∶= ⟨nid⟩‘sort’(⟨array⟩|⟨bitvec⟩)

|⟨nid⟩ (⟨input⟩|⟨state⟩)
|⟨nid⟩ ⟨opidx⟩ ⟨sid⟩ ⟨nid⟩ ⟨uint⟩ [⟨uint⟩]
|⟨nid⟩ ⟨op⟩ ⟨sid⟩ ⟨nid⟩ [⟨nid⟩ [⟨nid⟩]]
|⟨nid⟩ (‘init’|‘next’) ⟨sid⟩ ⟨nid⟩ ⟨nid⟩

⟨line⟩ ∶∶= ⟨comment⟩|⟨node⟩ [⟨symbol⟩[⟨comment⟩]]
⟨btorsec⟩ ∶∶= (⟨line⟩[newline])+

Figure E.1: Syntax of BTOR2
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E.2 A JSON Schema for SECSPECs

Recall that SECSPECs are simply JSON files that follow a specific structure. In this section,
we precisely outline the structure that well-formatted SECSPECs must follow in the form of a
JSON Schema. In a sense, this Schema serves as a meta-specification for a SECSPEC.

1 {

2 "$schema": "https://json-schema.org/draft/2020-12/schema",

3 "title": "SecSpec",

4 "description": "The Schema for a BtorSec Security Specification file",

5 "type": "object",

6

7 "properties": {

8 "modules": {

9 "type": "array",

10 "minItems": 1,

11 "description": "An array of cryptographic module specifications",

12 "items": {

13 "oneOf": [

14 {

15 "type": "object",

16 "description": "A top-level module",

17 "properties": {

18 "name": {"type": "string"},

19 "modtype": {"type": "string", "const": "top"},

20 "query": {"type": "array", "items": {"type": "string"}},

21 "public": {"type": "array", "items": {"type": "string"}}

22 },

23 "required": ["name", "modtype", "query", "public"],

24 "additionalProperties": false

25 },

26 {

27 "type": "object",

28 "description": "A key generation module",

29 "properties": {

30 "name": {"type": "string"},

31 "modtype": {"type": "string", "const": "keygen"},

32 "delay": {"type": "integer", "minimum": 0}

33 },

34 "required": ["name", "modtype"],

35 "additionalProperties": false

36 },

37 {

38 "type": "object",

39 "description": "A key derivation module",

40 "properties": {

41 "name": {"type": "string"},

42 "modtype": {"type": "string", "const": "keydrv"},

43 "delay": {"type": "integer", "minimum": 0},
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44 "sources": {"type": "array", "minItems": 1, "items": {"type":

↪ "string"}}

45 },

46 "required": ["name", "modtype"],

47 "additionalProperties": false

48 },

49 {

50 "type": "object",

51 "description": "A symmetric encryption module",

52 "properties": {

53 "name": {"type": "string"},

54 "modtype": {"type": "string", "const": "symenc"},

55 "delay": {"type": "integer", "minimum": 0},

56 "plaintext": {"type": "string"},

57 "key": {"type": "string"},

58 "ciphertext": {"type": "string"}

59 },

60 "required": ["name", "modtype", "plaintext", "key", "ciphertext

↪ "],

61 "additionalProperties": false

62 },

63 {

64 "type": "object",

65 "description": "A symmetric decryption module",

66 "properties": {

67 "name": {"type": "string"},

68 "modtype": {"type": "string", "const": "symdec"},

69 "delay": {"type": "integer", "minimum": 0},

70 "ciphertext": {"type": "string"},

71 "key": {"type": "string"},

72 "plaintext": {"type": "string"}

73 },

74 "required": ["name", "modtype", "ciphertext", "key", "plaintext

↪ "],

75 "additionalProperties": false

76 },

77 {

78 "type": "object",

79 "description": "An asymmetric encryption module",

80 "properties": {

81 "name": {"type": "string"},

82 "modtype": {"type": "string", "const": "asymenc"},

83 "delay": {"type": "integer", "minimum": 0},

84 "plaintext": {"type": "string"},

85 "publickey": {"type": "string"},

86 "ciphertext": {"type": "string"}

87 },

88 "required": ["name", "modtype", "plaintext", "publickey", "

↪ ciphertext"],

89 "additionalProperties": false
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90

91 },

92 {

93 "type": "object",

94 "description": "An asymmetric decryption module",

95 "properties": {

96 "name": {"type": "string"},

97 "modtype": {"type": "string", "const": "asymdec"},

98 "delay": {"type": "integer", "minimum": 0},

99 "plaintext": {"type": "string"},

100 "privatekey": {"type": "string"},

101 "ciphertext": {"type": "string"}

102 },

103 "required": ["name", "modtype", "plaintext", "privatekey", "

↪ ciphertext"],

104 "additionalProperties": false

105 },

106 {

107 "type": "object",

108 "description": "A hashing module",

109 "properties": {

110 "name": {"type": "string"},

111 "modtype": {"type": "string", "const": "hash"},

112 "delay": {"type": "integer", "minimum": 0},

113 "sources": {"type": "array", "minItems": 1, "items": {"type":

↪ "string"}},

114 "computedhash" : {"type": "string"}

115 },

116 "required": ["name", "modtype", "computedhash", "sources"],

117 "additionalProperties": false

118 }

119 ]

120 }

121 }

122 }

123 }
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