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Abstract
Deep Generative Priors for View Synthesis at Scale
by
Hang Gao
Doctor of Philosophy in Computer Science
University of California, Berkeley

Assistant Professor Angjoo Kanazawa, Chair

View synthesis—the task of generating photorealistic images of a scene from novel camera
viewpoints—is a cornerstone of computer vision, underpinning graphics, immersive reality, and
embodied Al. Yet despite its importance, view synthesis has not demonstrated scaling properties
comparable to those in language or 2D generation, even when provided with more data and compute:
reconstruction-based methods collapse under sparse views or scene motion, while generative models
struggle with 3D consistency and precise camera control.

This thesis shows that deep generative priors—instantiated as diffusion models conditioned on
camera poses—bridge this gap. We proceed in three steps. First, we start by revealing that
state-of-the-art dynamic view-synthesis benchmarks quietly rely on multi-view cues; removing
those cues triggers steep performance drops and exposes the brittleness of reconstruction-based
models. Then, we present a working solution that injects learned monocular depth and long-range
tracking priors into a dynamic 3D Gaussian scene representation, recovering globally consistent
geometry and motion from a single video. Finally, we abandon explicit reconstruction altogether,
coupling camera-conditioned diffusion with a two-pass sampling strategy to synthesize minute-long,
camera-controlled videos from as little as one input image.

From diagnosing the limits of reconstruction, to augmenting it with data-driven regularizers, to
replacing it with a fully generative pipeline, our results trace a clear progression that delivers
state-of-the-art fidelity, temporal coherence, and camera control precision while requiring orders-of-
magnitude less input signal. We conclude by outlining open challenges and future directions for
scaling view synthesis to truly world-scale 3D environments.
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Chapter 1

Introduction

We often turn to photographs of the places we love—not just to remember what they looked like,
but to imagine what’s beyond the frame: a childhood street glowing under autumn light, a lone
bench blanketed by phoenix trees in Central Park, or a moment during a live event when the rhythm,
the crowd, and the mood fall into sync. Imagine being able to return to those moments and look
around freely, as if they were sealed inside a time capsule.

This is the promise of view synthesis: the ability to generate new perspectives of a scene from
existing images. It is a core problem in computer vision and has the potential to reshape how
we interact with the visual world. Despite its importance, view synthesis has not exhibited the
scaling behavior observed in language and 2D generation, even when provided with more data and
compute. Traditional reconstruction-based pipelines fail under sparse views or dynamic scenes,
while generative models struggle with 3D consistency and camera control. Bridging this gap calls
for new methods that combine geometric reasoning with strong generative priors.

1.1 View synthesis in the age of scaling

Scaling is at the heart of recent progress in Al. From language models to image and video generation,
performance improves reliably with bigger models, larger datasets, and more compute. These
models—typically large transformers—are trained end-to-end via gradient descent on massive
corpora, revealing emergent capabilities as scale increases.

This simple recipe, however, has yet to translate to 3D view synthesis. Unlike language and
2D vision, 3D generation must adhere to geometric constraints: each novel view must respect the
scene’s structure, appearance, and dynamics. In addition, model architectures for view synthesis
are not yet settled. While transformers dominate language and vision, it’s still unclear how to
natively perform neural rendering within a transformer-style framework. On the data side, the gap
is even wider. The number of 3D scenes available is orders of magnitude smaller than 2D images,
let alone the text corpora used for training LLMs. Even when such data is available, it remains
unclear what annotations or representations best support generalizable 3D reasoning. Finally, the
ecosystem around view synthesis has grown up in a different scaling regime. Neural rendering
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pipelines typically succeed with well-captured image sequences and modest training costs. As a
result, there’s been little practical or industrial pressure to scale up data or compute, especially in a
climate dominated by LLM and video model development.

To tackle these challenges, this thesis adopts three guiding ideas. First, we recast view synthesis
as conditional image generation, letting 3D coherence emerge from data instead of explicit rendering.
Second, we strip away heavy geometric bias, treating the camera only as a conditioning token so
large 2D diffusion backbones can be reused without modification. Third, we tap the latent 3D priors
in pre-trained image and video models and refine them with a modest multiview corpus to gain
precise camera control. With this recipe, view synthesis inherits the familiar scaling trio of modern
generative Al—data diversity, model capacity, and compute.

1.2 Thesis overview

This thesis follows the progression in our investigation: from identifying the core limitations of
existing methods, to injecting data-driven priors into classical pipelines, to scaling view synthesis
through fully generative modeling.

In Chapter 7, we begin with a diagnostic analysis of reconstruction-based methods. While
approaches like NeRF and its dynamic variants perform well under idealized settings, our study
reveals that they implicitly rely on multi-view cues often unavailable in monocular video. When
these cues are removed, performance drops sharply, exposing the brittleness of purely geometric
pipelines. We introduce a new benchmark that includes more diverse real-life motion along with a
new experimental protocol that explicitly disentangles multi-view cues from the input data.

In Chapter 2, we next explore hybrid methods that augment traditional reconstruction with
learned priors. By integrating monocular depth and long-range 2D point tracks—obtained from
off-the-shelf predictors—into a unified dynamic 3D Gaussian representation, we enable the system
to reason over the entire video sequence. Each point’s motion is expressed as a combination of
shared SE(3) bases, allowing the scene to be softly decomposed into rigidly moving parts. This
formulation yields a globally consistent reconstruction of both geometry and motion, even from
sparse, casually captured monocular input.

Finally, in Chapter <, we abandon explicit reconstruction altogether and reframe view synthesis
as conditional image generation. In this formulation, the renderer is simply a diffusion model
conditioned on camera poses, without any intermediate 3D representation. We show that this setup
enables strong 3D consistency to emerge directly from data, rather than being enforced by geometric
supervision. By fine-tuning pre-trained image and video diffusion models on multiview datasets,
we teach them to synthesize photorealistic, camera-controllable novel views and long, temporally
coherent video sequences. This approach inherits the scalability and visual fidelity of large 2D
generative models, while achieving strong generalization to in-the-wild scenes—thus unlocking a
practical and scalable regime for view synthesis.

Finally, in Chapter 5, we summarize our findings and outline open challenges for future
research. Together, these chapters show that 3D vision can scale, just as other domains, when
we learn useful priors from data with minimal 3D inductive bias.



Chapter 2

Monocular dynamic view synthesis: A reality
check

We study the recent progress on dynamic view synthesis (DVS) from monocular video. Though
existing approaches have demonstrated impressive results, we show a discrepancy between the
practical capture process and the existing experimental protocols, which effectively leaks in multi-
view signals during training. We define effective multi-view factors (EMFs) to quantify the amount
of multi-view signal present in the input capture sequence based on the relative camera-scene
motion. We introduce two new metrics: co-visibility masked image metrics and correspondence
accuracy, which overcome the issue in existing protocols. We also propose a new iPhone dataset that
includes more diverse real-life deformation sequences. Using our proposed experimental protocol,
we show that the state-of-the-art approaches observe a 1-2 dB drop in masked PSNR in the absence
of multi-view cues and 4-5 dB drop when modeling complex motion. Code and data can be found
at

2.1 Introduction

Dynamic scenes are ubiquitous in our everyday lives — people moving around, cats purring, and
trees swaying in the wind. The ability to capture 3D dynamic sequences in a “casual” manner,
particularly through monocular videos taken by a smartphone in an uncontrolled environment, will
be a cornerstone in scaling up 3D content creation, performance capture, and augmented reality.
Recent works have shown promising results in dynamic view synthesis (DVS) from a monocular
video [, 2, 3,4, 5, 6, 7, £]. However, upon close inspection, we found that there is a discrepancy
between the problem statement and the experimental protocol employed. As illustrated in Figure 2. 1,
the input data to these algorithms either contain frames that “teleport” between multiple camera
viewpoints at consecutive time steps, which is impractical to capture from a single camera, or depict
quasi-static scenes, which do not represent real-life dynamics. We provide a systematic means of
characterizing the aforementioned discrepancy and propose a better set of practices for model fitting
and evaluation. Concretely, we introduce effective multi-view factors (EMFs) to quantify the amount
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of multi-view signal in a monocular sequence based on the relative camera-scene motion. With
EMFs, we show that the current experimental protocols operate under an effectively multi-view
regime. For example, our analysis reveals that the aforementioned practice of camera teleportation
makes the existing capture setup akin to an Olympic runner taking a video of a moving scene
without introducing any motion blur.

The reason behind the existing experimental protocol is that monocular DVS is a challenging
problem that is also hard to evaluate. Unlike static novel-view synthesis where one may simply
evaluate on held-out views of the captured scene, in the dynamic case, since the scene changes over
time, evaluation requires another camera that observes the scene from a different viewpoint at the
same time. However, this means that the test views often contain regions that were never observed
in the input sequence. Camera teleportation, i.e., constructing a temporal sequence by alternating
samples from different cameras, addresses this issue at the expense of introducing multi-view cues,
which are unavailable in the practical single-camera capture.

We propose two sets of metrics to overcome this challenge without the use of camera telepor-
tation. The first metric enables evaluating only on pixels that were seen in the input sequence
by computing the co-visibility of every test pixel. The proposed co-visibility mask can be used
to compute masked image metrics (PSNR, SSIM [Y] and LPIPS [10]). While the masked image
metrics measure the quality of rendering, they do not directly measure the quality of the inferred
scene deformation. Thus, we also propose a second metric that evaluates the quality of established
point correspondences by the percentage of correctly transferred keypoints (PCK-T) [ 1]. The
correspondences may be evaluated between the input and test frames or even within the input frames,
which enable evaluation on sequences that are captured with only a single camera.

We conduct extensive evaluation on existing datasets [5, 7] as well as a new dataset that includes
more challenging motion and diverse scenes. When tested on existing datasets without camera
teleportation, the state-of-the-art methods observe a 1-2 dB drop in masked PSNR and ~5% drop in
PCK-T. When tested on complex motion with the proposed dataset, existing approaches observe
another 4-5dB drop in masked PSNR and ~30% drop in PCK-T, suggesting a large room for
improvement. We encourage future works to report EMFs on new data and adopt our experimental
protocol to evaluate monocular DVS methods. Code and data are available at our

2.2 Related work

Non-rigid structure from motion (NR-SfM). Traditional NR-SfM tackles the task of dynamic
3D inference by fitting parametric 3D morphable models [ 12, 13, 14, 15, 16, 17, 18, 19], or fusing
non-parametric depth scans of generic dynamic scenes [20, 21, 22, 23, 24]. All of these approaches
aim to recover accurate surface geometry at each time step and their performance is measured
with ground truth 3D geometry or 2D correspondences with PCK [25] when such ground truth
is not available. We analyze recent dynamic view synthesis methods whose goal is to generate a
photo-realistic novel view. Due to their goal, these methods do not focus on evaluation against
ground truth 3D geometry, but we take inspiration from prior NR-SfM works to evaluate the quality
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(b) Quasi-static scene motion (A = 2s

Figure 2.1: Visualizing the training data of existing benchmarks. Existing datasets operate under
the effective multi-view regime: The sequences either have (a) teleporting camera motion or (b)
quasi-static scene motion. These motions leak multi-view cues, e.g.,, the model can observe the
human (1% column) and hands (last column) at roughly the same pose from different viewpoints.

of the inferred 3D dynamic representation based on correspondences. We also draw inspiration from
previous NR-SfM work that analyzed camera/object speed and 3D reconstruction quality [26, 27].

Monocular dynamic neural radiance fields (dynamic NeRFs). Dynamic NeRFs reconstruct
moving scenes from multi-view inputs or given pre-defined deformation template [25, 29, 30, 31, 32,
, 34, 35]. In contrast, there is a series of recent works that seek to synthesize high-quality novel
views of generic dynamic scenes given a monocular video [ !, 2, 3, 4, 5, 6, 7, &]. These works can be
classified into two categories: a deformed scene is directly modeled as a time-varying NeRF in the
world space [ !, 4, 6] or as a NeRF in canonical space with a time-dependent deformation [, 3, 5, 7,
]. The evaluation protocol in these works inherit from the original static-scene NeRF [36] that quan-
tify the rendering quality of held-out viewpoints using image metrics, e.g., PSNR. However, in dy-
namic scenes, PSNR from an unseen camera view may not be meaningful since the novel view may
include regions that were never seen in the training view (unless the method can infer unseen regions
using learning based approaches). Existing approaches resolve this issue by incorporating views
from multiple cameras during training, which we show results in an effectively multi-view setup. We
introduce metrics to measure the difficulties of an input sequence, a monocular dataset with new eval-
uation protocol and metrics, which show that existing methods have a large room for improvement.

2.3 Effective multi-view in a monocular video

We consider the problem of dynamic view synthesis (DVS) from a monocular video. A monocular
dynamic capture consists of a single camera observing a moving scene. The lack of simultaneous
multi-view in the monocular video makes this problem more challenging compared to the multi-view
setting, such as reconstructing moving people from multiple cameras [0, 34, 37].
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Contrary to the conventional perception that the effect of multi-view is binary for a capture
(single versus multiple cameras), we show that it can be characterized on a continuous spectrum. Our
insight is that a monocular sequence contains effective multi-view cues when the camera moves much
faster than the scene, though technically the underlying scene is observed only once at each time step.

2.3.1 Characterizing effective multi-view in a monocular video

Although a monocular video only

sees Fhe scene erm one viewpoint o T~ AT
at a time, depending on the capture — =0 EE——
method, it can still contains cues that

are effectively similar to those cap- Strict Effective Strict
tured by a multi-view camera rig, monocular multi-view multi-view
which we call as effective multi-view.

As shown in Figure , when the
scene moves significantly slower than Figure 2.2: The spectrum of effective multi-view in a

the camera (to the far right end of the monocular video. A video captured by a single camera can
axis), the same scene is observed from Still have multi-view cues when the camera moves much
multiple views, resulting in multi- faster than the scene. We disentangle recent advances in DVS
view capture. In this case, DVS given a monocular video from such phenomena.

Slow scene — 00

reduces to a well-constrained multi-

view stereo problem at each time step. Consider another case where the camera moves significantly
faster compared to the scene so that it observes roughly the same scene from different viewpoints.
As the camera motion approaches the infinity this again reduces the monocular capture to a multi-
view setup. We therefore propose to characterize the amount of multi-view cues by the relative
camera-scene motion.

2.3.2 Quantifying effective multi-view in a monocular video

For practicality, we propose two metrics, referred to as effective multi-view factors (EMFs). The
first metric, full EMF (2 is defined as the relative ratio between the motion magnitude of the camera
to the scene, which in theory characterizes the effective multi-view perfectly, but in practice can be
expensive and challenging to compute. The second metric, angular EMF w is defined as the camera
angular velocity around the scene look-at point, which only considers the camera motion; while
approximate, it is easy to compute and characterizes object-centric captures well.

Full EMF (): ratio of camera-scene motion magnitude. Consider a monocular video of a
moving scene over a set of time steps 7. At each discrete time ¢ € 7, let the camera’s 3D location
be o;. We consider each point x; on the domain of observed scene surface S? C R3. We define the
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camera-scene motion as the expected relative ratio,

Q= E {E [MH) .1)
XtGS%

tt+1eT ||Xt+1 - Xt”

where the denominator x;,; — x; denotes the 3D scene flow and the the numerator o;; — o; denotes
the 3D camera motion, both over one time step forward. The 3D scene flow can be estimated via the
2D dense optical flow field and the metric depth map when available, or monocular depth map from
off-the-shelf approaches [ 3%, 39] in the general case. Please see the Appendix for more details. Note
that €2 in theory captures the effective multi-view factor for any sequence. However, in practice, 3D
scene flow estimation is an actively studied problem and may suffer from noisy or costly predictions.

Angular EMF w: camera angular velocity. We introduce a second metric w that is easy to
compute in practice. We make an additional assumption that the capture has a single look-at point
in world space, which often holds true, particularly for captures involving a single centered subject.
Specifically, given a look-at point a by triangulating the optical-axes of all cameras (as per [5]) and
the frame rate NV, the camera angular velocity w is computed as a scaled expectation,

w= E [arccos( (a — 0,2~ 0441) )}N (2.2)

t+1eT la— ol - ||]a— 01|

Note that even though w only considers the camera motion, it is indicative of effective multi-view in
the majority of existing captures, which we describe in Section

For both () and w, the larger the value, the more multi-view cue the sequence contains. For
future works introducing new input sequences, we recommend always reporting angular EMF for
its simplicity and reporting full EMF when possible. Next we inspect the existing experimentation
practices under the lens of effective multi-view.

2.4 Towards better experimentation practice

In this section, we reflect on the existing datasets and find that they operate under the effective
multi-view regime, with either teleporting camera motion or quasi-static scene motion. The reason
behind the existing protocol is that monocular DVS is challenging from both the modeling and
evaluation perspective. While the former challenge is well known, the latter is less studied, as we
expand below. To overcome the existing challenge in the evaluation and enable future research to
experiment with casually captured monocular video, we propose a better toolkit, including two new
metrics and a new dataset of complex motion in everyday lives.

2.4.1 Closer look at existing datasets

We investigate the datasets used for evaluation in D-NeRF [?], HyperNeRF [7], Nerfies [5], and
NSFF [4]. Table shows their statistics. We evaluate the amount of effective multi-view cues
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#Train cam. Duration FPS Depth Kpt.  Sequences
D-NeRF [3] ~150 1—3s 60 - - 8 MV
HyperNeRF [7] 2 8 — 15s 15 - - 3MV+138SV
Nerfies [5] 2 8 —15s 5/15 - - 4 MV
NSFF [4] 24 1—3s 15/30 Estimated [39] - 8 MV
iPhone (proposed) 1 8 —15s 30/60 Lidar v. TMV+7SV

Table 2.1: Summary of the existing and proposed iPhone datasets. Existing datasets operate
under the effective multi-view regime, teleporting between multiple cameras during training to
generate a synthetic monocular video. Unlike previous protocols, the proposed iPhone dataset
consists of dynamic sequences captured by a single smoothly moving camera. It also has accom-
panying depth maps for training supervision and labeled keypoints for evaluation. “MV” denotes
multi-camera capture, and “SV” denotes single-camera capture.

EMF Q EMF w !
14.98 2135.45

10! 3.92 103
Z.52 1.31 233.87 13454

100 102 53.24
0.20 15.44

DJ\/@RF /‘/yper/veRF /Veffl-es /VSF/: IPhOne Dﬁ/veR/: Hypel‘/\/eRF /V@,.fl.es /VSFF Iphol?@

Urs) Urs)
Figure 2.3: Statistics of effective multi-view factors (EMFs) across different datasets. Existing
datasets have high EMFs, indicating the abundance of multi-view cues during training (note that the
y-axis is in log scale). The proposed iPhone dataset features a single camera, capturing the moving
scene with a smooth motion, and thus has smaller EMFs. Our results help ground the difficulty of
each dataset for DVS from a monocular video.

via the proposed EMFs, shown in Figure 2.5. We find that existing datasets have large EMF values
on both metrics. For example, the HyperNeRF dataset has an w as large as ~200°/s. To put these
numbers in context, a person imaging an object 3m away has to move at 1m/s to get an w = 20°/s
(close to the statistics in the proposed dataset). Some datasets exhibit w higher than 120° /s, which
is equivalent to a camera motion faster than the Olympic 100m sprint record, without incurring any
motion blur.

Visualizing the actual training data shown in Figure reveals that existing datasets feature
non-practical captures of either (1) teleporting/fast camera motion or (2) quasi-static/slow scene
motion. The former is not representative of practical captures from a hand-held camera, e.g., a
smartphone, while the latter is not representative of moving objects in daily life. Note that, out
of the 23 multi-camera sequences that these prior works used for quantitative evaluation, 22 have
teleporting camera motion, and 1 has quasi-static scene motion — the CURLS sequence shown at the
51 column in Figure 2. 1. All 13 single-camera sequences from HyperNeRF [7] used for qualitative
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evaluation have quasi-static scene motion. These systemic bases impaired the existing evaluation.
The four datasets also share a similar data pro-
tocol for generating effective multi-view input se- Left cam. Right cam.

quences from the erglnal multl-camera} rig capture. ";\‘ ":F Moving scene
In Figure 2 4, we illustrate the teleporting protocol < <~

: . . . -> Capture seq.
used in Nerfies [5] and HyperNeRF [7] as a canonical R R

example. They sample alternating frames from two Input seq.

physical cameras (left and right in this case) mounted
on arig to create the training data. NSFF [4] samples .
alternating frames from 24 cameras based on the data Flgur.e 24: Calflera teleportation from a
released from Yoon et al. [40]. D-NeRF [3] experi- multi-camera rig. As an example, we show
ments on synthetic dynamic scenes where cameras the data protocol used in[5, 7].
are randomly placed on a fixed hemisphere at every
time step, in effect teleporting between 100-200 cameras. We encourage you to visit our

to view the input videos from these datasets.

Existing works adopt effective multi-view capture for two reasons. First, it makes monocular
DVS more tractable. Second, it enables evaluating novel view on the full image, without worrying
about the visibility of each test pixel, as all camera views were visible during training. We show
this effect in Figure 2.5. When trained with camera teleportation (3™ column), the model can
generate a high-quality full image from the test view. However, when trained without camera
teleportation (4™ column), the model struggles to hallucinate unseen pixels since NeRFs [5, 36] are
not designed to predict completely unseen portions of the scene, unless they are specifically trained
for generalization [#!]. Next, we propose new metrics that enable evaluation without using camera
teleportation. Note that when the model is trained without camera teleportation, the rendering
quality also degrades, which we also evaluate.

2.4.2 Our proposed metrics

While the existing setup allows evaluating on the full rendered image from the test view, the
performance under such evaluation protocol, particularly with teleportation, confounds the efficacy
of the proposed approaches and the multi-view signal present in the input sequence. To evaluate
with an actual monocular setup, we propose two new metrics that evaluate only on seen pixels and
measure the correspondence accuracy of the predicted deformation.

Co-visibility masked image metrics. Existing works evaluate DVS models with image metrics
on the full image, e.g.,, PSNR, SSIM [Y] and LPIPS [10], following novel-view synthesis evaluation
on static scenes [0]. However, in dynamic scenes, particularly for monocular capture with multi-
camera validation, the test view contains regions that may not have been observed at all by the
training camera. To circumvent this issue without resorting to camera teleportation, for each pixel
in the test image, we propose co-visibility masking, which tests how many times a test pixel has
been observed in the training images.
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3D PRINTER

Nerfies Nerfies Nerfies w/ mask
(teleporting) [5] (non-teleporting) (non-teleporting)

Training view Test view

Figure 2.5: Evaluation without teleportation with the co-visibility mask. (2/w metrics of the
input sequence are annotated on the top-left. Existing works avoid evaluating on unseen pixels
by camera teleportation (3" column). Naively training with the non-teleporting (smooth) camera
trajectory causes evaluation issues on the full image (4™ column), since a NeRF model cannot
hallucinate unseen regions. We propose to only evaluate seen regions during training by a co-
visibility mask (we show non-visible regions in green at the last column). Note that the model
performs poorly on seen regions as well when trained without camera teleportation.

Specifically, we use optical flow to compute correspondences between every test image and the
training images, and only keep test pixels that have enough correspondences in the training images
via thresholding. This results in a mask, illustrated in Figure .5, which we use to confine the image
metrics. We follow the common practice from the image generation literature and adopt masked
metrics, mPSNR and mLPIPS [42, 43]. Note that NSFF [4] adopts similar metrics but for evaluating
the rendering quality on foreground versus background regions. We additionally report mSSIM by
partial convolution [44], which only considers seen regions during its computation. More details
are in the Appendix. Using masked image metrics, we quantify the performance gap in rendering
when a model is trained with or without multi-view cues in Section

Percentage of correctly transferred keypoints (PCK-T). Correspondences lie at the heart of
traditional non-rigid reconstruction [~ ], which is overlooked in the current image-based evaluation.
We propose to evaluate 2D correspondences across training frames with the percentage of correctly
transferred keypoints (PCK-T) [ |], which directly evaluates the quality of the inferred deformation.
Specifically, we sparsely annotate 2D keypoints across input frames to ensure that each keypoint is
fully observed during training. For correspondence readout from existing methods, we use either
root finding [45] or scene flow chaining. Please see the Appendix for details on our keypoint
annotation, correspondence readout, and metric computation. As shown in Figure 7.6, evaluating
correspondences reveal that high quality image rendering does not necessarily result in accurate
correspondences, which indicates issues in the underlying surface, due to the ambiguous nature of
the problem.
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Figure 2.6: High-quality novel-view synthesis does not imply accurate correspondence model-
ing. 2/w metrics of the input sequence are shown on the top-left. The time steps of the ground-truth
data and predictions are shown on the bottom-left. Using Nerfies [5] as an example, we show that
the model renders high-quality results (3™ column) without modeling accurate correspondences
(last column). Transferred keypoints are colorized by a heatmap of end-point error, overlaid on the
ground-truth target frame.

<
jani
®
=
=
=
n

(a) Capture setup (b) Sampled sequences

Figure 2.7: Capture setup and sampled sequences from our proposed iPhone dataset. The
proposed iPhone dataset has a single hand-held camera for training and multiple cameras with a
large baseline for validation. It has accompanying depth from the iPhone sensor and features diverse
and complex real-life motions.

2.4.3 Proposed iPhone dataset

Existing datasets can be rectified by removing camera teleportation and evaluated using the proposed
metrics, as we do in Section ”.5.1. However, even after removing camera teleportation, the existing
datasets are still not representative of practical in-the-wild capture. First, the existing datasets are
limited in motion diversity. Second, the evaluation baseline in existing datasets is small, which can
hide issues in incorrect deformation and resulting geometry. For these reasons, we propose a new
dataset called the iPhone dataset shown in Figure ”.7. In contrast to existing datasets with repetitive
object motion, we collect 14 sequences featuring non-repetitive motion, from various categories
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such as generic objects, humans, and pets. We deploy three cameras for multi-camera capture —
one hand-held moving camera for training and two static cameras of large baseline for evaluation.
Furthermore, our iPhone dataset comes with metric depth from the lidar sensors, which we use
to provide ground-truth depth for supervision. In Section , we show that depth supervision,
together with other regularizations, is beneficial for training DVS models. Please see the Appendix
for details on our multi-camera capture setup, data processing, and more visualizations.

2.5 Reality check: Re-evaluating the state of the art

In this section, we conduct a series of empirical studies to disentangle the recent progress in dynamic
view synthesis (DVS) given a monocular video from effective multi-view in the training data. We
evaluate current state-of-the-art methods when the effective multi-view factor (EMF) is low.

Existing approaches and baselines. We consider the following state-of-the-art approaches for
our empirical studies: NSFF [4], Nerfies [5] and HyperNeRF [7]. We choose them as canonical
examples for other approaches [ 1, 2, 3, 6, &, 34, 35], discussed in Section 2.”. We also evaluate
time-conditioned NeRF (T-NeRF) as a common baseline [/, 3, 4]. Unlike the state-of-the-art
methods, it is not possible to extract correspondences from a T-NeRF. A summary of these methods
can be found in the Appendix.

Datasets. We evaluate on the existing datasets as well as the proposed dataset. For existing
datasets, we use the multi-camera captures accompanying Nerfies [5] and HyperNeRF [7] for
evalulation. Due to their similar capture protocol, we consider them as a single dataset in our
experiment (denoted as the Nerfies-HyperNeRF dataset). It consists of 7 sequences in total, which
we augment with keypoint annotations. Our dataset has 7 multi-camera captures and 7 single-camera
captures. We evaluate novel-view synthesis on the multi-camera captures and correspondence on all
captures. Our data adopts the data format from the Nerfies-HyperNeRF dataset, with additional
support for depth and correspondence labels. All videos are at 480p resolution and all dynamic
scenes are inward-facing.

Masked image and correspondence metrics. Following Section , we evaluate co-visibility
masked image metrics and the correspondence metric. We report masked image metrics: mPSNR,
mSSIM [9, 44], and mLPIPS [4, 10, 42, 43]. We visualize the rendering results with the co-
visibility mask. For the correspondence metric, we report the percentage of correctly transferred
keypoints (PCK-T) [! I] with threshold ratio &« = 0.05. Additional visualizations of full image
rendering and inferred correspondences can be found in the Appendix.

Implementation details. We consolidate Nerfies [5] and HyperNeRF [ 7] in one codebase using
JAX [46]. Compared to the original official code releases, our implementation aligns all training
and evaluation details between models and allows correspondence readout. Our implementation
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Figure 2.8: Impact of effective multi-view on the Nerfies-HyperNeRF dataset. ) /w metrics of
the input sequence are shown on the top-left. We compare the existing camera teleporting setting
and our non-teleporting setting. (Top): Quantitative results of different models using our proposed
evaluation metrics. (Bottom): Qualitative comparison using Nerfies as an example. Two settings
use the same set of co-visibility masks computed from common training images. Visualizations of
other models are in the Appendix.

reproduces the quantitative results in the original papers. We implement T-NeRF in the same
codebase. For NSFF [4], we tried both the official code base [+ 7] and a public third-party re-
implementation [+£], where the former fails to converge on our proposed iPhone dataset while the
latter works well. We thus report results using the third-party re-implementation. However, note
that both the original and the third-party implementation represent the dynamic scene in normalized
device coordinates (NDC). As NDC is designed for forward-facing but not considered inward-facing
scenes, layered artifacts may appear due to its log-scale sampling rate in the world space, as shown
in Figure 2.9. More details about aligning the training procedure and remaining differences are
provided in the Appendix. Code, pretrained models, and data are available on the

2.5.1 Reality check on the Nerfies-HyperNeRF dataset

Impact of effective multi-view. We first study the impact of effective multi-view on the Nerfies-
HyperNeRF [5, 7] dataset. In this experiment, we rectify the effective multi-view sequences by
only using the left camera during training as opposed to both the left and right cameras, illustrated
in Figure 2 4. We denote the original setting as “teleporting” and the rectified sequences as “non-
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Figure 2.9: Qualitative results on the Nerfies-HyperNeRF dataset without camera teleportation.
2 /w metrics of the input sequence are shown on the top-left. Existing approaches struggle at
modeling dynamic regions.

teleporting”. We train all approaches under these two settings with the same held-out validation
frames and same set of co-visibility masks computed from common training frames. In Figure 2 &
(Top), all methods perform better across all metrics when trained under the teleporting setting
compared to the non-teleporting one, with the exception of PCK-T for NSFF. We conjecture that
this is because that NSFF has additional optical flow supervision, which is more accurate without
camera teleportation. In Figure 2.2 (Bottom), we show qualitative results using Nerfies (we include
visualizations of the other methods in the Appendix). Without effective multi-view, Nerfies fails
at modeling physically plausible shape for broom and wires. Our results show that the effective
multi-view in the existing experimental protocol inflates the synthesis quality of prior methods, and
that truly monocular captures are more challenging.

Benchmark results without camera teleportation. In Table 2.2 and Figure 2.9, we report the
quantitative and qualitative results under the non-teleporting setting. Note that our implementation
of the T-NeRF baseline performs the best among all four evaluated models in terms of mPSNR and
mSSIM. In Figure 2.9, we confirm this result since T-NeRF renders high-quality novel view for
both sequences. HyperNeRF produces the most photorealistic renderings, measured by mLPIPS.
However it also produces distorted artifacts that do not align well with the ground truth (e.g., the
incorrect shape in the CHICKEN sequence).

2.5.2 Reality check on the proposed iPhone dataset



CHAPTER 2. MONOCULAR DYNAMIC VIEW SYNTHESIS: A REALITY CHECK 15
Q=130 PSNR SSIM LPIPS| PCK-T =024 PSNR SSIM LPIPS| PCK-T
w=51.53 mPSNRT mSSIMf  mLPIPS| T =158 mPSNRT mSSIMf  mLPIPS| Tt
T-NeRF 21.55  0.595  0.297 . T-NeRF 16.96 0577  0.379 .
NSFF [4] 19.53 0.521 0.471 0.422 NSFF [4] 16.65 0.588 0.369  0.256
Nerfies [5] 20.85 0.562 0.200  0.756 Nerfies [5] 16.45 0.570 0.339  0.453
HyperNeRF [7]  21.16 0.565  0.192  0.764 HyperNeRF [7]  16.81 0.569  0.332  0.400

Table 2.2: Benchmark results on the rectified
Nerfies-HyperNeRF dataset. Please see the
Appendix for the breakdown over 7 multi-camera
sequences.

Table 2.3: Benchmark results on the proposed
iPhone dataset. Please see the Appendix for
the breakdown over 7 multi-camera sequences of
complex motion.

mPSNR 1 0.580 mSSIM 1 mLPIPS | PCK-T 1
17.00 .

B original 0560 0.500 0.450
+B 16.00 0‘540 0.450 0.400
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+B+D 1500 0.520 0.400
- ’ ' 0.300
+B+D+S 1400 0.500 0.350 o
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Figure 2.10: Ablation study on improving the state of the art on the proposed iPhone dataset.
2/w metrics of the input sequence are shown on the top-left. +B, +D, +S denotes random
background compositing [3”], additional metric depth supervision [/, 4] from iPhone sensor, and
surface sparsity regularizer [47], respectively.

Ablation study on improving the state of the art. We find that existing methods perform poorly
out-of-the-box on the proposed iPhone dataset with more diverse and complex real-life motions. In
Figure 2. 10 (Bottom), we demonstrate this finding with HyperNeRF [ 7] for it achieves the highest
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0.75/3.79

NeRF++

Figure 2.11: Qualitative results on the proposed iPhone dataset. ()/w metrics of the input
sequence are shown on the top-left. The models shown here are trained with all the additional
regularizations (+B+D+S) except NSFF. However, existing approaches still struggle to produce
high-quality results.

mLPIPS metric on the Nerfies-HyperNeRF dataset. Shown in the 3™ column, HyperNeRF produces
visually implausible results with ghosting effects. Thus we explored incorporating additional
regularizations from recent advances in neural rendering. Concretely, we consider the following:
(+B) random background compositing [37]; (+D) a depth loss on the ray matching distance [/,

]; and (+S) a sparsity regularization for scene surface [4Y]. In Figure (Top), we show
quantitative results from the ablation. In Figure (Bottom), we show visualizations of the impact
of each regularization. Adding additional regularizations consistently boosts model performance.
While we find the random background compositing regularizations particularly helpful, extra depth
supervision and surface regularization further improve the quality, e.g., the fan region of the paper
windmill.

Benchmarked results. In Figure , we show qualitative results from our benchmark using the
best model settings from the ablation study, denoted as “++”. Note that it is non-trivial to apply
the same enhancements to NSFF for its NDC formulation so we keep it as-is. We visualize the
lidar depth re-projection from the training view (1% column) to the test view (2" column), as a
reference for qualitative comparison (3™ column). Note that the white region is occluded from the
input view, whereas the green region is occluded from the most of input video frames. We observe
that existing approaches do not handle complex deformation well. For example, all models fail at
fusing a valid human shape on the SPACE OUT sequence. In Table 2.3, we find a similar trend as in
the Nerfies-HyperNeRF dataset: the baseline T-NeRF performs the best in terms of mPSNR and
mSSIM while HyperNeRF produces the most photorealistic renderings in terms of mLPIPS. The
overall synthesis quality and correspondence accuracy of all methods drop considerably compared
to the results on the Nerfies-HyperNeRF dataset. Taking Nerfies as an example, it drops 4.4 dB
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in mPSNR, 69.6% in mLPIPS, and 40.1% in PCK-T. Our study suggests an opportunity for large
improvement when modeling complex motion.

2.6 Discussion and recommendation for future works

In this work, we expose issues in the common practice and establish systematic means to calibrate
performance metrics of existing and future works, in the spirit of papers like [50, 51, 52]. We
provide initial attempts toward characterizing the difficulty of a monocular video for dynamic
view synthesis (DVS) in terms of effective multi-view factors (EMFs). In practice, there are other
challenging factors such as variable appearance, lighting condition, motion complexity and more.
We leave their characterization for future works. We recommend future works to visualize the input
sequences and report EMFs when demonstrating the results. We also recommend future works to
evaluate the correspondence accuracy and strive for establishing better correspondences for DVS.
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Chapter 3

Shape of Motion: 4D reconstruction from a
single video

Monocular dynamic reconstruction is a challenging and long-standing vision problem due to the
highly ill-posed nature of the task. Existing approaches are limited in that they either depend on
templates, are effective only in quasi-static scenes, or fail to model 3D motion explicitly. In this
work, we introduce a method capable of reconstructing generic dynamic scenes, featuring explicit,
full-sequence-long 3D motion, from casually captured monocular videos. We tackle the under-
constrained nature of the problem with two key insights: First, we exploit the low-dimensional
structure of 3D motion by representing scene motion with a compact set of SE(3) motion bases. Each
point’s motion is expressed as a linear combination of these bases, facilitating soft decomposition of
the scene into multiple rigidly-moving groups. Second, we utilize a comprehensive set of data-driven
priors, including monocular depth maps and long-range 2D tracks, and devise a method to effectively
consolidate these noisy supervisory signals, resulting in a globally consistent representation of the
dynamic scene. Experiments show that our method achieves state-of-the-art performance for both
long-range 3D/2D motion estimation and novel view synthesis on dynamic scenes.

3.1 Introduction

Reconstructing the persistent geometry and their 3D motion across a video is crucial for understand-
ing and interacting with the underlying physical world. While recent years have seen impressive
progress in modeling static 3D scenes [0, 53], recovering the geometry and motion of complex
dynamic 3D scenes, especially from a single video, remains an open challenge. A number of prior
dynamic reconstruction and novel view synthesis approaches have attempted to tackle this problem.
However, most methods rely on synchronized multi-view videos [54, 55, 55, 56, 57] or additional
LIDAR/depth sensors [55, 59, 60, 61, 62]. Recent monocular approaches can operate on regular
dynamic videos, but they typically model 3D scene motion as short-range scene flow between
consecutive times [34, 63, 64] or deformation fields that maps between canonical and view space [5,
, 05], failing to capture 3D motion trajectories persistent over a video.
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The longstanding challenge for more general in-the-wild videos lies in the poorly constrained
nature of the reconstruction problem. In this work, we tackle this challenge with two key insights.
The first is that, while the image space dynamics can be complex and discontinuous, the underlying
3D motion is a composition of continuous simple rigid motions. Our second insight is that data-
driven priors provide complementary, though noisy cues, that aggregate well into a globally coherent
representation of the 3D scene geometry and motion.

Motivated by these two insights, we represent the dynamic scene as a set of persistent 3D
Gaussians, and represent their motion across the video in terms of a compact set of shared SE(3)
motion bases. Unlike traditional scene flow, which computes 3D correspondence between consecu-
tive frames, our representation recovers a persistent 3D trajectory over the whole video, enabling
long-range 3D tracking. As the 3D trajectories produced by our method capture the geometric
patterns that trace each point’s movement through 3D space and time, we refer to our approach
“Shape of Motion”, as shown in Figure 3.1. We show how to fit our explicit scene representation
to a general video in-the-wild, by fusing together complementary cues from two main sources:
monocular depth estimates per-frame, and 2D track estimates across frames.

We conduct extensive evaluations on both synthetic and real-world dynamic video datasets,
and show that our proposed approach significantly outperforms prior monocular dynamic novel
view synthesis methods and 3D tracking baselines in both long-range 2D and 3D tracking accuracy.
Moreover, we achieve state-of-the-art novel view synthesis quality among all existing methods. In
summary, our key contributions include: (1) A new dynamic scene representation enabling both
real-time novel view synthesis and globally consistent 3D tracking for any point at any time. (2)
A carefully designed framework that optimizes the representation on posed monocular video by
leveraging physical motion priors and data-driven priors.

3.2 Related work

3.2.1 Correspondences and tracking

Monocular 3D long-range tracking has not been explored broadly in the literature, but there exist
many approaches to perform tracking in 2D image space. A typical way for determining 2D point
correspondences relies on optical flows. This involves estimating dense motion fields between
image pairs [00, 67, 68, 69, 70, 71, 72,73, 74,75, 38,76, 74, 77,78, 79, 80, 81]. While effective
for consecutive frames, accurate long-term tracking in videos remains a challenge with optical
flow methods. Sparse keypoint matching methods can enable long trajectory generation [52, &3,

, 85, 0], but these methods are primarily intended for sparse 3D reconstruction. Long-range
2D trajectory estimation for arbitrary points has been explored in earlier works, which relied on
hand-crafted priors to generate motion trajectories [27, 88, 89, 90, 91, 92]. Recently, there has
been a resurgence of interest in this problem, with several works showcasing impressive long-
term 2D tracking results on challenging, in-the-wild videos. These approaches employ either
test-time optimization where models consolidate noisy short-range motion estimates into a global
representation for producing long-term correspondences [V5, 94], or data-driven strategies [95, V0,



CHAPTER 3. SHAPE OF MOTION: 4D RECONSTRUCTION FROM A SINGLE VIDEO 20

], where neural networks learn long-term correspondence estimates from synthetic data [V, 99].
While these methods effectively track any 2D point throughout a video, they lack the knowledge of
underlying 3D scene geometry and motions.

Scene flow or 3D motion trajectory is a common representation to model 3D scene motion and
point correspondences. Most prior work estimates scene flow directly from Lidar point clouds [5%,

, 00,61, 62] or RGBD images [ 100, , , , , ]. In monocular setting, a few recent
works proposed to estimate 3D motions through self-supervised learning or test-time optimization
strategies [ 1 00, , 34, 63, , ], but these approaches either focus on a single object, require

template priors, or only produce short-range motion correspondences. In contrast, our method
does not rely on template priors and is capable of producing long-range 3D trajectories, making it
suitable for modeling complex scenes with multiple moving objects.

3.2.2 Dynamic reconstruction and view synthesis

Our work also relates to dynamic 3D scene reconstruction and novel view synthesis problems. In
non-rigid reconstruction, early methods often required RGBD sensors [ , , , , ]
or strong hand-crafted priors [ 15, , ]. Recent work has demonstrated progress toward the
reconstruction of dynamic scenes in the wild by integrating monocular depth priors [1 18, 119, 120,

, ]. Recently, Neural Radiance Fields (NeRF)[26] and Gaussian Splat [ | 23] based approaches
have achieved state-of-the-art results. Most of these methods [ 124, 55, 54, , 55, , , ,

, ] require simultaneous multi-view video observations or predefined templates [ 131, 37, 37]
for high-quality novel view outputs. Template-free monocular approaches model dynamic scenes
with different types of representations such as video depth maps [+ (], time-dependent NeRFs [35,

, .9, , 7, 1, 63], and dynamic 3D Gaussians [57, , , 05]. While significant progress
has been made, as DyCheck [ | 36] pointed out, many approaches focus on scenarios with camera
teleportation [ 157, 65] or quasi-static scenes, which do not represent real-world monocular videos.

In this work, we focus on modeling casual videos captured by a single camera, a more practical and
challenging setup.

3.3 Method

Our method takes as input a sequence of 1" video frames {I; € RE*W>31 of a dynamic scene, the
camera intrinsics K; € R**3, and world-to-camera extrinsics E; € SE(3) of each input frame ;.
From these inputs, we aim to recover the geometry of the entire dynamic scene and the full-length
3D motion trajectory of every point in the scene.

Unlike most prior dynamic NeRFs methods [ , 63, , 1, ] which render the scene
contents through volumetric ray casting and represent the motion implicitly at fixed 3D locations,
we model the dense scene elements as a set of canonical 3D Gaussians, but allow them to translate
and rotate over entire video through full-length motion trajectories. We adopt explicit point-based
representation because it simultaneously allows for both (1) high-fidelity rendering in real-time and
(2) full-length 3D tracking of any surface point from any input time.
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Figure 3.1: Shape of Motion. Our approach enables joint 3D long-range tracking and novel view
synthesis from a monocular video of a complex dynamic scene. Here, we demonstrate our ability
to render moving scene elements at fixed viewpoint with different moments in time. Additionally,
we visualize the estimated long-range 3D motion as colorful trajectories. These trajectories reveal
distinct geometric patterns that encapsulate the movement of each point through 3D space and time,
which leads us to the term “Shape of Motion”.

Optimizing an explicit representation of dynamic 3D Gaussians from a single video is severely
ill-posed — at each point in time, the moving subjects in the scene are observed at those poses
from only a single viewpoint. In order to overcome this ambiguity, we make two insights: First,
we note that, while the projected 2D dynamics might be complex in the video, the underlying 3D
motion in the scene is low-dimensional, and composed of simpler units of rigid motion. Second,
powerful data-driven priors, namely monocular depth estimates and long-range 2D tracks, provide
complementary but noisy signals of the underlying 3D scene. We propose a system that allows us
to fuse these noisy estimates together into a globally conherent representation of both the scene
geometry and motion.

The following sections introduce our framework. We represent the scene contents as a globally
consistent set of 3D Gaussians that live in a canonical space (Section ). To recover consistent
motion trajectories, we bind the 3D Gaussians to a compact and low-dimensional motion param-
eterization. In particular, we represent the full-length motion trajectories of each dynamic scene
element with a set of compact and low-dimensional SE(3) motion bases (Section ). Finally,
we fit these motion bases to the input video frames, constraining our optimization with structural
priors and data-driven priors (Section ). We show a schematic of our pipeline in Figure

3.3.1 Preliminaries: 3D Gaussian splatting

We represent the appearance and geometry of dynamic scene contents with a global set of 3D
Gaussians, an explicit and expressive differentiable scene representation [57] for efficient opti-
mization and rendering. We define parameters of each 3D Gaussian in the canonical frame ¢,
as go = (wo, Ro, s,0,¢), where pg € R?, Ry € SO(3) are the 3D mean and orientation in the
canonical frame, and s € R? the scale, o € R the opacity, and ¢ € R? the color, are persistent
properties shared across time.
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Figure 3.2: System overview. Given a single RGB video sequence with known camera poses, along
with monocular depth maps and 2D tracks computed from off-the-shelf models [ 3%, 97] as input,
we optimize a dynamic scene representation as a set of persistent 3D Gaussians that translate and
rotate over time. To capture the low-dimensional nature of scene motion, we model the motion
with a set of compact SE(3) motion bases shared across all scene elements. Each 3D Gaussian’s
motion is represented as a linear combination of these global SE(3) motion bases, weighted by
motion coefficients specific to each Gaussian. We supervise our scene representation (canonical 3D
Gaussian parameters, per-Gaussian motion coefficients, and global motion bases) by comparing the
rendered outputs (RGB, depths and 2D tracks) with the corresponding input signals. This results in
a dynamic 3D representation of the scene with explicit long-range 3D scene motion.

To render a set of 3D Gaussians from a camera with world-to-camera extrinsics E and intrin-
sics K, the projections of the 3D Gaussians in the image plane are obtained by 2D Gaussians
parameterized as p), € R? and 3} € R?*? via affine approximation

/'L(](KaE) = H(KEMO) € R27 Ea(KaE) = JKEEOJLE € R2X27 (31)

where II is perspective projection, and Jkg is the Jacobian of perspective projection with K and E
at the point .
The 2D Gaussians can then be efficiently rasterized into RGB image and depth map via alpha
compositing as
I(p) = Z Tiaic;, D(p) = Z Tiaud;, (3.2)
) )

i€H(p i€H(p
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where a; = 0; - exp (— 1(p — p))” Zp (p — pp)), and T; = H;;ll(l — «a;). H(p) is the set of
Gaussians that intersect the ray shoot from the pixel p. This process is fully differentiable, and
enables direct optimization of the 3D Gaussian parameters.

3.3.2 Dynamic scene representation

Scene motion parameterization. To model a dynamic 3D scene, we keep track of /V canonical
3D Gaussians and vary their positions and orientations over time with a per frame rigid transfor-
mation. In particular, for a moving 3D Gaussian at time ¢, its pose parameters (g, R;) are rigidly
transformed from the canonical frame ¢, to ¢ via Tg_,; = [R(Ht toﬁt] € SE(3):

e = Rosipo +tos, Ry = RosiRo. (3.3)

Rather than modeling the 3D motion trajectories independently for each Gaussian, we define a
set of B < N learnable basis trajectories {Télit}le that are globally shared across all Gaussians
[157]. The transformation T_,; at each time ¢ is then computed by a weighted combination of this

global set of basis trajectories through per-point basis coefficients w(®) via
B
To = w T, (3:4)
b=0
where |[w(® || = 1. In our implementation, we parameterize T(()lit as 6D rotation [!39] and

translation, and perform the weighted combination separately on each with the same weight w(®).
During optimization, we jointly learn the set of global motion bases and motion coefficients of
each 3D Gaussian. These compact motion bases explicitly regularize the trajectories to be low-
dimensional, encouraging the 3D Gaussians that move similarly to each other to be represented by
similar motion coefficients.

Rasterizing 3D trajectories. Given this representation, we now describe how we obtain pixelwise
3D motion trajectory at any query frame /;. we take a similar approach to Wang et al. [Y3] and
rasterize the motion trajectories of 3D Gaussians into query frame /;. Namely, for a query camera
at time ¢ with intrinsics K; and extrinsics E;, we perform rasterization to obtain a map WXHt/ S
RHXW>3 that contains the expected 3D world coordinates of the surface points corresponding to
each pixel at target time ¢/
"Xisw(p) = Y Tioupip, (3.5)
1€H(p)
where H (p) is the set of Gaussians that intersect the pixel p at query time .
The 2D correspondence location at time ¢’ for a given pixel p, U (p), and the corresponding
depth value at time ¢/, D .y (p) can then be written as

Ijt—nt’(p) = H<Kt’CXt—>t’ (P))a f)t—nf’(p) = (Cxt—n’(P)>[3] (3.6)

where CXHt,(p) = E"X, _v(p), Il is a perspective projection operation, and (-)[3] is the third
element of a vector.
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3.3.3 Optimization

We prepare the following estimates using off-the-shelf methods in our optimization: 1) masks for
the moving objects for each frame {IM, }, which can be easily obtained using Track-Anything [ 140,

] with a few user clicks, 2) monocular depth maps {D,} computed using state-of-the-art relative
depth estimation method Depth Anything [138] and 3) long-range 2D tracks {U,_,; } for foreground
pixels from state-of-the-art point tracking method TAPIR [©7]. We align the relative depth maps
with the metric depth maps by computing a per-frame global scale and shift and use them for our
optimization, as we found relative depth maps tend to contain finer details. We treat the lifted 2D
tracks unprojected with the aligned depth maps as noisy initial 3D track observations {X,} for the
moving objects. For the static part of the scene, we model them using standard static 3D Gaussians
and initialize their 3D locations by unprojecting them into the 3D space using the aligned depth
maps. The static and dynamic Gaussians are jointly optimized and rasterized together to form an
image. We focus on describing the optimization process for dynamic Gaussians below.

Initialization. We first select the canonical frame ¢, to be the frame in which the most 3D tracks
are visible, and initialize the Gaussian means in the canonical frame p( as N randomly sampled
3D tracks locations from this set of initial observations. We then perform k-means clustering on
the vectorized velocities of the noisy 3D tracks {X;}, and initialize the motion bases {T0 S v
from these B clusters of tracks. Specifically, for the set of trajectories { X}, belonging to cluster
b, we initialize the basis transform T((QW using weighted Procrustes alignment between the point
sets {Xo}p and {X, }, forall 7 = 0, ..., T, where the weights are computed using uncertainty and
visibility scores from TAPIR predictions. We initialize w(®) of each Gaussian to decay exponentially
with its distance from the center of cluster b in the canonical frame.

We then optimize p1, w'®), and set of basis functions {T(()Iit}}?:1 to fit the observed 3D tracks

with an /;-loss under temporal smoothness constraints.

Training. We supervise the dynamic Gaussians with two sets of losses. The first set of losses
comprise our reconstruction loss to match the per-frame pixelwise color, depth, and masks inputs.
The second set of losses enforce consistency of correspondences across time. Specifically, during
each training step, we render the image I, depth D,, and mask M, from their corresponding training
cameras (K;, E;) according to Equation

We supervise these predictions with a reconstruction loss applied independently per-frame

Lrecon = Hi - IHl + )\depthH]AD - DHI + /\maskHl\A/I - 1H1 (37)

The second set of losses supervises the motion of the Gaussians between frames. Specifically,
we additionally render the 2D tracks 0, and reprojected depths D, ., fora pair of randomly
sampled query time ¢ and target time ¢". We supervise these rendered correspondences with the
lifted long-range 2D track estimates via

Ltrack—Zd - ||Ut—>t’ - ﬁt—n’”l, and Ltrack—depth - ”at—nf’ - f)(Ut—>t’)||1~ (38)

Finally, we enforce a distance-preserving loss between randomly sampled dynamic Gaussians
and their k-nearest neighbors. Let X; and X, denote the location of a Gaussian at time ¢ and ¢/, and
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Ck (Xt) denote the set of k-nearest neighbors of X,, we define

2

) (3.9)

2

Lrigidity = Hdist(Xt, Ck(Xt)) — diSt(Xt/7 Ck(th))

where dist(-, -) measures Euclidean distance.

Implementation details. For in-the-wild videos, we obtain their camera parameters with the
following procedure: we first run UniDepth [147] to get the camera intrinsics and metric depth
maps, and then run Droid-SLAM [143] in RGB-D mode with UniDepth’s depth maps to obtain the
camera poses. This process is efficient and provides accurate camera parameters. For evaluating
our methods on public benchmark, we use the camera annotations that come with the datasets (e.g.,
from COLMAP [144] or simulation).

We optimize our model using Adam Optimizer [145]. We perform 1000 iterations of optimiza-
tion for the initial fitting and 500 epochs for joint optimization, respectively. The number of SE(3)
bases B is set to 20 for all of our experiments. We initialize 40k dynamic Gaussians for the dynamic
part and 100k static Gaussians for the static part of the scene, respectively. We perform the same
adaptive Gaussian controls for dynamic and static Gaussians as per 3D-GS [127]. Training on a
sequence of 300 frames of 960 x 720 resolution takes about 2 hours to finish on an A100 GPU. Our
rendering FPS is around 40 fps.

3.4 Experiments

We evaluate our performance quantitatively and qualitatively on a broad range of tasks: long range
3D point tracking, long-range 2D point tracking, and novel view synthesis. We focus our evaluation
in particular on datasets that exhibit substantial scene motion. In particular, the iPhone dataset [ | 30]
features casual captures of real-world scenes that closely match our target scenarios. It provides
comprehensive annotations, including simultaneous validation views, lidar depth, sparse 2D point
correspondences across the entire video, and can be used to evaluate our performance on all three
tasks. Given the challenge of obtaining precise 3D track annotations for real data, we also evaluate
performance using the scenes from the synthetic MOVi-F Kubric dataset [ 146].

3.4.1 Task specification

Long-range 3D tracking. Our primary task is estimating 3D scene motion for any pixel over long
period of time (up to over 10 seconds). For this purpose, we extend the metrics for scene flow
evaluation introduced in RAFT-3D [101] to evaluate long-range 3D tracking. Specifically, we report
the 3D end-point-error (EPE), which measures the Euclidean distance between the ground truth 3D
tracks and predicted tracks at each target time step. In addition, we report the percentage of points
that fall within a given threshold of the ground truth 3D location 3} = 5cm and d3)) = 10cm in
metric scale.
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Method 3D Tracking 2D Tracking View Synthesis
EPE | 055 1 055 T|AJ 1 <0ae T OA T|PSNR 1 SSIM 1 LPIPS |

T-NeRF [136] - - - - - - 15.60  0.55 0.55
HyperNeRF [7] 0.182 284 458 |10.1 193 52.0| 1599 0.59 0.51
DynIBaR [63] 0252 114 246 |54 87 37.7| 1341 048 0.55
Deformable-3D-GS [65] | 0.151 33.4 553|140 209 639 11.92 049 0.66
CoTracker [V0]+DA [138]] 0.202 343 579 |24.1 339 730 - - -
TAPIR [97]+DA [15%] 0.114 38.1 63.2(27.8 415 674 - - -
Ours 0.082 43.0 733|344 47.0 86.6| 16.72 0.63 0.45
Ours + 2DGS[147] 0.097 47.3 713|358 47.0 873 | 16.75 0.65 0.40

Table 3.1: Evaluation on iPhone dataset. Our method achieves SOTA performance on all tasks of
3D point tracking, 2D point tracking, and novel view synthesis. The baselines that perform best on
2D and 3D tracking (TAPIR [©7]+DA [ 3%] and CoTracker [V0]+DA [ 3£]) are unable to synthesize
novel viewpoints of the scene, while the methods that perform best in novel view synthesis struggle
with or fail to produce 2D and 3D tracks. Our method achieves a significant boost in all three tasks
above baselines. We can also substitute the underlying 3DGS with 2DGS [147] to improve scene
geometry. We include details about 2DGS training in the Supplemental.

Long-range 2D tracking. Our globally consistent 3D motion representation can be easily projected
onto image plane to get long-range 2D tracks. We therefore also evaluate 2D tracking performance
in terms of both position accuracy and occlusion accuracy following the metrics introduced in the
TAP-Vid benchmark [Y%], and report the Average Jaccard (AJ), average position accuracy (< 0ayg),
and Occlusion Accuracy (OA).

Novel view synthesis. We measure our method’s novel view synthesis quality as a comprehensive
assessment for geometry, appearance, and motion. We evaluate on the iPhone dataset [ | 36] which
provides validation views and report co-visibility masked image metrics [ | 30]: mPSNR, mSSIM [Y]
and mLPIPS [42, 43].

3.4.2 Baselines

Our method represents dynamic 3D scene comprehensively with explicit long-range 3D scene
motion estimation, which also allows for novel view synthesis. While no existing method achieves
the exact same goals as ours, there are methods that focus on sub-tasks related to our problem, such
as dynamic novel view synthesis, 2D tracking, or monocular depth estimation. We therefore adapt
existing methods as our baselines which are introduced below.

While dynamic novel view synthesis approaches focus primarily on the photometric reconstruc-
tion quality and do not explicitly output 3D point tracks, we can adapt some of their representations
to derive 3D point tracks for our evaluation. For HyperNeRF [7], we compose the learned inverse
mapping (from view space to canonical space) and a forward mapping solved via root-finding [ 36,

] to produce 3D tracks at query points. DynIBaR [63] produces short-range view-to-view
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Figure 3.3: 3D tracking visualization on iPhone dataset. We render novel views for each method
and overlay their predicted 3D tracks on top of the rendered images. For clarity, we only display
a segment of the trails spanning 50 frames for a specific set of grid query points. However, it is
important to note that our method can generate dense, full-length 3D tracks. *Note that TAPIR +
DA cannot produce novel view rendering, and we overlay their tracking results with our rendering
to make it easier to interpret.

scene flow, which we chain into long-range 3D tracks for our evaluation. Deformable-3D-GS (D-
3DGS) [65] represents dynamic scenes using 3D Gaussians [57] in the canonical space and a
deformation MLP network that deforms the canonical 3D Gaussians into each view, which naturally
allows 3D motion computation. Finally, T-NeRF [ 36] models dynamic scenes using time as MLP
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Figure 3.4: Qualitative comparison of novel-view synthesis on iPhone dataset. The leftmost
image in each row shows the training view at the same time step as the validation view. The regions
highlighted in green indicate areas excluded from evaluation due to the lack of co-visibility between
training and validation views. Please see the supplemental video for more qualitative results and
comparisons.

input in addition to 3D locations, which does not provide a method for extracting 3D motion, and
hence they are not considered for 2D/3D tracking evaluation. We evaluate the 3D tracks of these
methods only on the iPhone dataset, because we found none can handle the Kubric scene motion.

In addition to dynamic view synthesis baselines, we would also like to include baselines that
focus on estimating 3D tracks. However, we did not find prior work that produces long-range 3D
tracks from generic monocular videos, hence we adapt existing SOTA methods for long-range 2D
tracking and monocular depth estimation. Specifically, we take the state-of-art long-range 2D tracks
from TAPIR [97] and CoTracker [V6] and lift them into 3D scene motion using monocular depth
maps produced by Depth Anything (DA) [132]. We compute the correct scale and shift for each
relative depth map from Depth Anything to align them with the scene. The two resulting baselines
are called “CoTracker [90] + DA [138]” and “TAPIR [97] + DA [13&]”. Note that these baselines
can only produce 3D tracks for visible regions, as the depth values for occluded points are unknown
from such a 2.5D representation. In contrast, our global representation allows for modeling 3D
motion through occlusions.
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Input PCA Coef. Pred. Depth Input PCA Coef. Pred. Depth

Figure 3.5: Visualization of motion coefficients after PCA and predicted depth maps on iPhone
dataset. The motion coefficients encode information regarding rigid moving components. For
instance, our motion coefficient PCA produces constant color for the block in the second example
which exhibits rigid motion.

3.4.3 Evaluation on iPhone dataset

iPhone dataset [ | 50] contains 14 sequences of 200-500 frames featuring various types of challenging
real world scene motion. All sequences are recorded using a handheld moving camera in a casual
manner, with 7 of them additionally featuring two synchronized static cameras with a large baseline
for novel view synthesis evaluation. It also comes with metric depth from the lidar sensors and
annotations of 5 to 15 keypoints at ten equally spaced time steps for each sequence. For 3D tracking
evaluation, we generate the groundtruth 3D tracks by lifting the 2D keypoint annotations into 3D
using lidar depth, and masking out points that are occluded or with invalid lidar depth values.

All experiments are conducted with the original instead of half resolution as in [ 6] given that
our method can handle high-res video input. We also discard SPACE-OUT and WHEEL scenes due
to camera and lidar error. We find that the original camera annotations from ARKit is not accurate
enough, and refine them using global bundle adjustment from COLMAP [145].

We report the quantitative comparison in Table 3.1 which shows that our method outperforms all
baselines on all tasks by a substantial margin. On 3D and 2D tracking, we show clear improvement
over naive baselines of 2D tracks plus depth maps, and significant improvement over all novel view
synthesis methods, e.g., nearly halving the EPE of the second best method Deformable-3D-GS [65].
Our method also achieves the best novel view synthesis quality across dynamic NeRF, IBR, and
3D-GS-based baselines.

Figure shows qualitative comparison of the 3D tracking results. To illustrate 3D tracking
quality, we render the novel views and plot the predicted 3D tracks of the given query points onto
the novel views. Since “TAPIR + DA” cannot perform novel view synthesis, we overlay their track
predictions onto our renderings to aid interpretation. D-3DGS [65] and HyperNeRF [ 7] fail to
capture the significant scene motion in the paper-windmill and spin sequence, resulting in structure
degradation and blurry rendering. “TAPIR + DA” can track large motions, but their 3D tracks tend
to be noisy and erroneous. In contrast, our method not only generates the highest-quality novel
views but also the most smooth and accurate 3D tracks.

Figure provides additional novel view synthesis comparison on the validation views. In
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Method | EPEL 6551 551
CoTracker [90]4+DA [138] | 0.19 344 56.5
TAPIR [97]+DA [135] 0.20 340 56.2
Ours 0.16 39.8 62.2

Table 3.2: 3D tracking evaluation on Kubric dataset. Evaluation of 3D tracking performance
comparing our method against baselines using CoTracker and TAPIR with depth estimation. Our
approach achieves the best performance across all metrics including End Point Error (EPE) and
delta-3D accuracy thresholds.

Figure 3.5, we provide additional visualization of the outputs from our representation. We visualize
the rendering of the first three components of PCA decomposition for the motion coefficients, which
correlates well with the rigid groups of the moving object.

3.4.4 Evaluation on the Kubric dataset

The Kubric MOVi-F dataset contains short 24-frame videos of scenes of 10-20 objects, rendered
with linear camera movement and motion blur. Multiple rigid objects are tossed onto the scene, at
a speed that far exceeds the speed of the moving camera, making it a similar capture scenario to
in-the-wild capture scenarios. It provides dense comprehensive annotations, including ground truth
depth maps, camera parameters, segmentation masks, and point correspondences that are dense
across time. We use 30 scenes from the MOVi-F validation set to evaluate the accuracy of our
long-range 3D point tracks for all points in time.

We demonstrate our method on the synthetic Kubric MOVi-F dataset in long-range 3D point
tracking across time. Of the above baselines, only “CoTracker[Y6]+DA [ 32]” and “TAPIR[V6]+DA [
yield 3D tracks for these scenes. For all baselines, we provide the ground truth camera intrinsics
and extrinsics, and monocular depth estimates that have been aligned to the ground truth depth map.
We obtain point tracks for all non-background pixels for each method.

We report our quantitative 3D point tracking metrics in Table 5.2, and find that across all metrics,
our method outperforms the baselines. Moreover, we find qualitatively that the optimized motion
coefficients of the scene representation are coherently grouped with each moving object in the scene.
We demonstrate this in Figure 3.6, where we show the first 3 PCA components of our optimized
motion coefficients of evaluation scenes.

3.4.5 Ablation studies

We ablate various components of our method on the iPhone dataset in 3D tracking in Table

We first validate our choices of motion representation, namely the SE(3) motion bases parame-
terization, with two ablations: 1) “Per-Gaussian Transl.”: replacing our motion representation with
naive per-Gaussian translational motion trajectories, and 2) “Transl Bases.”: keeping the motion
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PCA Coef

Figure 3.6: First three PCA components of the optimized motion coefficients. Our method
recovers coherent motion patterns on the Kubric dataset, where different moving objects are clearly
distinguished by the motion coefficients.

Methods | SE(3) Motion Basis 2D tracks Initialization | EPE| 435 1 650 1
Ours (Full) v v v v 0.082 43.0 733
Transl. Bases v v v 0.093 423 699
Per-Gaussian Transl. v v 0.087 41.2 69.2
No SE(3) Init. v v v 0.111 39.3 65.7
No 2D Tracks v v 0.141 304 57.8

Table 3.3: Ablation studies on iPhone dataset. We systematically evaluate the contribution
of each component in our method: SE(3) motion parameterization, motion basis functions, 2D
track initialization, and SE(3) initialization. Each component contributes to improved 3D tracking
performance as measured by EPE and delta-3D metrics.

bases representation but only using translational bases instead of SE(3). We find SE(3) bases lead
to a noticable improvement in 3D tracking compared to both translational bases and per-Gaussian
translational motion representation.

Next, we ablate our training strategies including initialization and supervision signal. We
conduct an ablation of “No SE(3) Init.”, where instead of performing our initial SE(3) fitting stage,
we initialize the translational part of the motion bases with randomly selected noisy 3D tracks
formed by directly lifting input 2D tracks using depth maps into 3D, and the rotation part as identity.
We find that skipping this initialization noticeably hurts performance. Lastly, we remove the 2D
track supervision entirely (“No 2D Tracks”) and find it to lead to significant drop in performance,
which verifies the importance of the 2D track supervision for 3D tracking.
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3.5 Discussion and conclusion

Limitations. Although our approach demonstrates promising steps towards long-range 3D tracking
and accurate reconstruction of complex 3D dynamic scenes, several limitations remain. Similar
to most prior monocular dynamic view synthesis methods, our system still requires per-scene
test-time optimization, which hinders its use in streamable applications. In addition, it cannot
handle large changes in camera viewpoint, which require some kind of generative capabilities or
data-driven priors to hallucinate unseen regions. Moreover, our approach relies on accurate camera
parameters obtained from off-the-shelf algorithms, suggesting potential failure in scenes dominated
by texture-less regions or moving objects. Finally, our method relies on user input to generate the
mask of moving objects. A promising research direction would be to design a feed-forward network
approach for jointly estimating camera poses, scene geometry, and motion trajectories from an
unconstrained monocular video.

Please note that since we wrote this paper, there have been several concurrent works posted on
arXiv [ 149, , , , ] that also address this setup of monocular 4D reconstruction from
causal videos. As far as we know, all of them are optimization-based approaches, also utilizing
strong off-the-shelf data-driven priors. We leave it to future work to compare these approaches.

Conclusion. We presented a new method for joint long-range 3D tracking and novel view synthesis
from dynamic scene captured by a monocular video. Our approach models dense dynamic scene
elements with a global set of 3D Gaussians that translate and rotate over time. We regularize the
full-length 3D motion trajectories of each Gaussian, ensuring smoothness and low dimensionality,
by parameterizing them as linear combinations of a compact set of rigid motion bases. To overcome
the ill-posed nature of this problem in monocular capture settings, we further design the model to
regularize by consolidating noisy data-driven observations into a globally consistent estimate of
scene appearance, geometry, and motion. Extensive evaluations on both synthetic and real bench-
marks demonstrate that our approach significantly improves upon prior state-of-the-art methods in
both 2D/3D long-range tracking and novel view synthesis tasks.
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Chapter 4

Stable Virtual Camera: Generative view
synthesis with diffusion models

We present STABLE VIRTUAL CAMERA (SEVA), a generalist diffusion model that creates novel
views of a scene, given any number of input views and target cameras. Existing works struggle to
generate either large viewpoint changes or temporally smooth samples, while relying on specific
task configurations. Our approach overcomes these limitations through simple model design,
optimized training recipe, and flexible sampling strategy that generalize across view synthesis tasks
at test time. As a result, our samples maintain high consistency without requiring additional 3D
representation-based distillation, thus streamlining view synthesis in the wild. Furthermore, we
show that our method can generate high-quality videos lasting up to half a minute with seamless
loop closure. Extensive benchmarking demonstrates that SEVA outperforms existing methods across
different datasets and settings.

4.1 Introduction

Novel view synthesis (NVS) aims to generate realistic, 3D-consistent images of a scene from
arbitrary camera viewpoints given any number of camera-posed input views. Traditional methods,
which rely on dense input views, treat NVS as a 3D reconstruction and rendering problem [0,

, ], but this approach fails with sparse inputs. Generative view synthesis addresses this
limitation by leveraging modern deep network priors [ 155, 156], enabling immersive 3D interactions
in uncontrolled environments without the need to capture large image sets per scene. In this work,
we focus on generative view synthesis and, unless otherwise specified, refer to it simply as NVS for

clarity.

Despite recent progress [ 157, , , , , , ], NVS in the wild remains limited
due to two key challenges: First, existing methods struggle to generate both large viewpoint
changes [161, ] and temporally smooth samples [ 157, , , ] while being constrained

by rigid task configurations, such as a fixed number of input and target views [ 55, , ,
], reviewed in Table 4.1. Second, their sampling consistency is often insufficient, necessitating
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Figure 4.1: Generative view synthesis. STABLE VIRTUAL CAMERA generates novel views from
any number of input views and target cameras, which the user can specify anywhere. We show
three examples: single view with simple orbit camera trajectory (top); two views with long camera
trajectory (middle); and nine views with large spatial range (bottom). Please visit our website for
video samples.

additional NeRF distillation to fuse inconsistent results into a coherent representation [ | 64, s

]. These limitations hinder their applicability across diverse NVS tasks, which we address in
this work.

We present STABLE VIRTUAL CAMERA  (SEVA), a diffusion-based NVS model that generalizes
across a spectrum of view synthesis tasks without requiring NeRF distillation. With a single network,
SEVA generates high-quality novel views that strike both large viewpoint changes and temporal
smoothness, while supporting any number of input and target views. Our approach simplifies
the N'VS pipeline without requiring distillation from a 3D representation, thus streamlining it for
real-world applications. For the first time, we demonstrate high-quality videos lasting up to half a
minute with precise camera control and seamless loop closure in 3D. We highlight these results in
Figure 4.1 and showcase more examples of camera control in Figure

To achieve this, we carefully design our pipeline in three key aspects: model design, training
recipe, and sampling method at inference. First, SEVA avoids explicit 3D representations within the

"'We are naming this model in tribute to the Virtual Camera [ | 65] cinematography technology, a pre-visualization
technique to simulate real-world camera movements.
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network, allowing the model to inherit strong priors from pre-trained 2D models. Second, during
training, we carefully craft our view selection strategy to cover both small and large viewpoint
changes, ensuring strong generalization to diverse NVS tasks. Third, at inference, we introduce a
two-pass procedural sampling approach that supports flexible input-target configurations. Together,
these design choices create a versatile 3D “virtual camera simulation system” capable of synthesizing
novel views along arbitrary camera trajectories with any number of input and target views, without
using a 3D representation.

We conducted a unified benchmark across 10 datasets and a variety of experimental settings,
including both open-source and proprietary models. Our benchmark reflects the diversity of real-
world NVS tasks across the board and systematically evaluates existing methods beyond their
comfort zones. We find that SEVA consistently outperforms previous works, achieving +1.5 dB
PSNR over the state of the art CAT3D [!59] in its own setup. Moreover, our method generalizes
well to in-the-wild user captures, with input views ranging from 1 to 32.

In summary, our key contributions with the SEVA model include: (1) a training strategy for
jointly modeling large viewpoint changes and temporal smoothness, (2) a two-pass procedural
sampling method for smooth video generation along arbitrary long camera trajectories, (3) a
comprehensive benchmark that evaluates NVS methods across different datasets and settings, and
(4) an open-source release of model weights to support future research.

4.2 Background

We consider the evaluation of an NVS model across three key criteria: (1) generation capacity—the
ability to synthesize missing regions for large viewpoint changes; (2) interpolation smoothness—the
ability to produce seamless transitions between views; and (3) input flexibility—the ability to handle
a variable number of input and target views; We review existing NVS models based on these criteria
in Table 4.1, including the types of training data.

4.2.1 Types of NVS tasks

Given M input view images I'"P € RM>H>Wx3 of IT 5 T}/ resolution, along with their corresponding
cameras 7", NVS involves predicting N targets views 1€ € RN*XHXW>X3 gpecified by their
respective cameras 7'¢'. For each camera, we assume we know both intrinsics and extrinsics. Based
on the number of input views, we define the “sparse-view regime” as having up to 8 input views, and
the “semi-dense-view regime” as an intermediate state bridging the sparse-view regime and dense
captures, which typically involve hundreds of views. Based on the nature of their target views, we
bucket a broad range of NVS tasks into “set NVS” and “trajectory NVS”, as shown in Figure

Set NVS considers a set of target views in arbitrary order, usually across a large spatial range. The
order of views is often not helpful here, and a good NVS model requires great generation capacity
to excel at this task. We note that some works address only this task (e.g., ReconFusion [ 5%]).
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Figure 4.2: Diverse camera control. SEVA generates photorealistic novel views following diverse
camera trajectories. This includes orbit, spiral, zoom out, dolly zooms, and any user-specified
trajectories. Please visit our website for more visual results.
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training generation interpolation input

model data  capacity smoothness flexibility

Regression-based

pixelNeRF [155] (<] X v sparse (1)
pixelSplat [166] A X 4 sparse (2)
MVSplat [167] A X v sparse (2)
Long-LRM [168] A X v semi-dense ({16, 32})
LVSM [162] O A X v sparse ({2, 4})
Diffusion-based: image models

Zerol23 [157] o v X sparse (1)
ZeroNVS [161] QO4 v X sparse (1)
ReconFusion [15%] @ & v X sparse (3)
CAT3D [159] ©aA v X sparse ([1, 9])
Diffusion-based: video models

SV3D [169] o X v sparse (1)
MotionCtrl [161] A X v sparse (1)
ViewCrafter [160] £ X v sparse (2)
4DiM [163] A v v sparse ({1, 2, 8})
SEVA QA % v sparse ([1, 8]),

semi-dense ([9, 32*])

Table 4.1: Comparison of existing NVS models based on the source of training data and key
attributes. SEVA is trained on both object-level (9) and scene-level (A) data, offering flexible
input conditioning, strong generation capacity, and smooth view interpolation. We define generation
capacity and interpolation smoothness of each work based on their evaluation setting and our
benchmark results. *This upper-bound can be up to hundreds for dense captures, we test our model
up to 32 views in practice.

Trajectory NVS regards target views along a smooth camera trajectory, such that they form
a video sequence. However, they are often sampled within a small spatial range in a shorter
video. To solve this task, a good NVS model requires great interpolation smoothness to produce
consistent and non-flickering results. We note that some existing works address only this task (e.g.,
ViewCrafter [160]).

4.2.2 Existing models

We group existing approaches into regression- and diffusion-based models based on their high-level
design choices. A more detailed discussion of related works can be found in Appendix

Regression-based models learn a deterministic mapping:

i i tgt
fe (Ilnp7 ﬂlnp? ™ £ >7
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Figure 4.3: Set NVS versus trajectory NVS. Set NVS generates target views as an image set,
whereas trajectory NVS produces them as a trajectory video.

to directly generate I'¢* deterministically from I'"P, 7wi"P_7r'€', f, can be either an end-to-end network
parameterized by 6, or a composition of a feed-forward prediction of an intermediate 3D representa-
tion and then a neural renderer (e.g.,, NeRF [170] or 3DGS [123]). For the latter case, set NVS and
trajectory N'VS are solved in the same way since there exists a persistent 3D representation.

Diffusion-based models capture the conditional distribution:
Do <Itgt | Iinp’ 7_‘_inp7 ﬂ_tgt>’

from which I'" are sampled [ 71] iteratively. We highlight two types of models within this scope:
Image and Video models. Image models are trained on unordered image sets, such that (T'"P, T'¢") ~
Z, where Z = {I,1),15(2), - ,Io(m4n)} is an image batch, and o(-) is a random permutation
function, where camera parameters are omitted for simplicity. Image models usually thrive at set
NVS, but struggle in trajectory NVS since they are designed to generate images and not videos.
Additionally, the unordered nature of all views solicits flexible input conditioning. Video models
are instead trained on ordered views, such that (I"", T'®") ~ V, where V = {I},I,--- ,Ij; n}isa
randomly sampled video batch with ordering preserved. Additional temporal operators may also
be used to improve the temporal smoothness, such as temporal positional encoding and temporal
attention. In contrast with image models, video models thrive at trajectory NVS, but struggle in set
NVS. Moreover, all existing video models require both input and target views to be ordered (input
views followed by target ones), constraining their input flexibility [ 172, , , , ].

4.2.3 Remarks and motivation

Existing tasks pose critical challenges to our design choices. Specifically, our design choices are
made to achieve high generation capacity, smooth view interpolation, and flexible input conditioning,
as compared in Table 4. 1. In this way, we can employ a single model for both tasks, described next.

4.3 Method

We describe our model design and training strategy in Section , then our sampling process at
test time in Section and Section . A system overview is provided in Figure
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Figure 4.4: Method. SEVA is trained with fixed sequence length as a “M-in N-out” multi-view
diffusion model with standard architecture. It conditions on CLIP embeddings, VAE latents of
the input views, and their corresponding camera poses. During sampling, SEVA can be cast as a
generative “P-in (Q-out” renderer that works with variable sequence length, where P and () need not
be equal to M and N. To enhance temporal and 3D consistency across generated views, especially
when generating along a trajectory, we present procedural two-pass sampling as a general strategy.

4.3.1 Model design and training

We consider a “M-in N-out” multi-view diffusion model py, as notated in Section . We
formulate this learning problem as a standard diffusion process [ |7 1] without any change.

Architecture. Our model is based on the publicly available SD 2.1 [175], which consists of
an auto-encoder and a latent denoising U-Net. Following [159], we inflate the 2D self-attention
of each low-resolution residual block into 3D self-attention [ | 76] within the U-Net. To improve
model capacity, we add 1D self-attention along the view axis after each self-attention block via skip
connection [ 177, ], bumping the model parameters from 870M to 1.3B. Optionally, we further
tame this model into a video model by introducing 3D convolutions after each residual block via
skip connection, similar to [ 179, 172], yielding 1.5B total parameters. The temporal pathway can be
enabled during inference when frames within one forward pass are known to be spatially ordered,
enhancing output’s smoothness.

Conditioning. To fine-tune our base model into a multi-view diffusion model, we add camera
conditioning as Pliicker embedding [ | 0] via concatenation [|59] and adaptive layer normaliza-
tion [151]. We normalize 7™ and 7'¢' by first computing the relative pose with respect to the
first input camera and then normalizing the scene scale such that all camera positions are within
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a [—2, 2|3 cube. For each input frame, we first encode its latent then concatenate with its Pliicker
embedding and a binary mask [ 159, ] differentiating between input and target views. For each
target frame, we use the noisy state of its latent instead. Additionally, we find it helpful [169] to
also inject high-level semantic information via CLIP [15”] image embedding. We zero initialize
new weights for additional channels in the first layer. In our experiment, we found that our model
can quickly adapt to these conditioning changes and produce realistic images with as few as 5K
iterations.

Training. Let us define the training context window length 7' = |I"| 4 [I''| = M + N. One
natural goal is to support large 7" such that we can generate a larger set of frames. However, we
find that naive training is prone to divergence, and we thus employ a two-stage training curriculum.
During the first stage, we train our model with 7' = 8 with a batch size of 1472 for 100K iterations.
In the second stage, we train our model with 7" = 21 with a batch size of 512 for 600K iterations.
Given a training video sequence, we randomly sample the number of input frames M € [1,T — 1]
and the frames (I, I'®"). We find it important to jointly sample I with a smaller subsampling
stride to ensure sufficient temporal granularity and avoid missing critical transitions with a small
probability (0.2 is used in practice). In the optional video training stage, we only train temporal
weights with data sampled with a small subsampling stride and a batch size of 512 for 200K
iterations. We shift the signal-to-noise ratio (SNR) in all stages as more noise is necessary to destroy
the information when training with more frames, corroborating findings from [ 153, , ]. The
model is trained with squared images with H = W = 576.

4.3.2 Sampling novel views

Once the diffusion model is trained, we can sample it for a wide range of NVS tasks during test time.
Formally, let us consider a “P-in Q-out” NVS task during testing, where we are given P = |[™|
input frames and aim to produce ) = |I'¢'| target frames. Our goal is to design a generic sampling
strategy that works for all P and () configurations, where P and () need not be equal to M and N.

We make two key observations: First, within a single forward pass, predictions are 3D consistent,
provided the model is well-trained. Second, when P + ) > T, I'¥ must be split into smaller chunks
of size Q; such that P + Q; < T for the i forward pass. We term this practice one-pass sampling.
However, predictions across these forward passes would be inconsistent unless they share common
frames to maintain local consistency within a spatial neighborhood. Building on these observations,
we summarize our sampling process under two scenarios: P+ Q <Tand P+ Q) > T.

P+ Q <T. Wefit the task within one forward pass for simplicity and consistency. As shown in
Appendix (.5, we find it works better to pad the forward pass to have exactly 1’ frames by repeating
the first input image, compared to changing the context window 7' zero-shot.

P+ Q > T. We propose procedural two-pass sampling: In the first pass, we generate anchor
frames I*" using all input frames I'"P. In the second pass, we divide I'®" into chunks and generate
them using I*" (and optionally I'"’) according to the spatial distribution of I*" and I'¢". Given the
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distinct nature of the two tasks of interest—set NVS and trajectory NVS—e.g.,, differences in the
availability of views’ ordering, we design tailored chunking strategies for each task.

For set NVS, we consider nearest procedural sampling. We first generate I* based on pre-
defined trajectory priors, similar to [159], e.g.,, 360 trajectories for object-centric scenes, or spiral
trajectories for forward-facing scenes. We then divide I'®' into chunks w.r.t.I**" using nearest
neighbor. Specifically, the i forward pass involves:

nearest : {I} U {I;‘éI | NN(I?{ 1) — e,

We considered two strategies of procedural sampling: nearest as described above, and gt + nearest
strategy by appending I'"™ into each forward pass. We find that the gt + nearest strategy performs
better than nearest and thus default to it instead. In the absence of trajectory priors, we revert to
one-pass sampling. In practice, employing nearest anchors enhances qualitative consistency, albeit
on a limited scale.

For trajectory NVS, we consider interp procedural sampling. We first generate a subset of target
frames as I** by uniformly spanning the target camera path with a stride A = L%J We then
generate the rest of I'¢" as segments between those anchors:

: . acr Tylgt tgt acr
interp : {I}*, Ix 1y, -+ 7I(i+1)~A—17Ii+1}'

Since the input to the model is ordered, we can leverage temporal weights to further improve
smoothness (Section ). Similarly, gt + interp is possible by appending I'"® with A = L%j
We find that interp is sufficiently robust, and choose it as the default option. The interp strategy
drastically outperforms its counterparts (e.g.,, one-pass, or gt + nearest procedural sampling) in

terms of temporal smoothness.

4.3.3 Scaling sampling for large P and ()

Next, we examine two special cases when P + @ > T: P > T and ) > T. Here, we make a
tailored design for anchor generation in the first pass, while keeping target generation in the second
pass unchanged.

P > T. Inthe semi-dense-view regime (e.g.,, P = 32), we extend the context window length T’
zero-shot to accommodate all P input views and anchor views in one pass during anchor generation.
Empirically, 7' can even be extended up to hundreds without severe degradation in photorealism
in the generated outputs. We find that the diffusion model generalizes well in this case as long
as the input views cover the majority of the scene, shifting the task from generation to primarily
interpolation. In the sparse-view regime (i.e.,, P < 8), we observe similar performance degradation
caused by zero-shot extension of 7" compared to what we have found when P + ) < T'. Refer to
Section for a detailed discussion.

QQ > T. When the number of target views () is large, e.g.,, in large-set NVS or long-trajectory
NVS, even anchors will be chunked into different forwards in the first pass, leading to the inconsis-
tency of anchors. To this end, we maintain a memory bank of anchor views previously generated,
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Figure 4.5: Anchor generation when Q > T. We introduce a memory bank composed of
previously-generated anchor views and their corresponding camera poses. The lookup of spatial
neighbors helps improve long-term 3D consistency.

as shown in Figure 4.5. We generate anchors auto-regressively by retrieving their spatially near-
est ones from the memory bank, similar to the nearest strategy introduced above for the second
pass. In Section , we show that this strategy drastically outperforms the standard practice of

reusing temporally nearest anchors previously generated in long video literature [| /4], in terms of
long-range 3D consistency, especially for hard trajectories.

4.4 Experiments

We employ a single model for a spectrum of settings and find that SEVA model generalizes well
under the three criteria (Table 4. 1). We cover different NVS tasks (set NVS and trajectory NVS) and
examine one special task of interest—long trajectory NVS. We also cover different input regimes
(single-view, sparse-view, and semi-dense-view). A discussion about several key properties is
presented in Section

4.4.1 Benchmark

Datasets, splits, and the number of input views. We consider (1) object datasets, e.g., OmniOb-
ject3D [185] (O0O3D) and GSO [156]; (2) object-centric scene datasets, e.g., LLFF [157], DTU [185],
CO3D [1£9], and WildRGBD [190] (WRGBD); and (3) scene datasets, e.g., RealEstate 10K [191]
(RE10K), Mip-NeRF 360 [+9] (Mip360), DL3DV140 [192] (DL3DV), and Tanks and Temples [ 193]
(T&T). We consider a wide range of the number of input views P, ranging from sparse-view regime
to semi-dense-view regime, evaluating models’ input flexibility. To establish a comprehensive and
rigorous comparison with baselines, we consider different dataset splits utilized in prior works with
the same input-view configuration, unless specified as our split (O). These include splits used in
4DiM [163] (D), ViewCrafter [ 160] (V), pixelSplat [ 1 66] (P), ReconFusion [155] (R), SV3D [169]
(S), and Long-LRM [16%] (L). For example, the 4DiM [163] (D) split on the RE10K dataset is 128
out of all 6711 test scenes with P = 1.
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dataset OO3D GSO RE10K LLFF DTU CO3D WRGBD Mip360 DL3DV T&T

Method - I

ST split O O DUGYVIICIPLIO] REISH RS8 REISS VIGOIR[IS] Oc Op R[ISE O LGV [I60]LI6H]

P 3 3 1 1 2 1 3 1 3 1 3 1 3 3 6 6 6 32 1 32

Regression-based models
Long-LRM [168] - - - - - - - - - - - - - - - - 2386 - 18.20
MVSplat [167] 14.78 15.21 2042 20.32 26.39 21.5625.6411.23 12.50 13.87 15.52 12.52 13.52 14.56 12.54 13.56 14.34 1624 13.22 12.63
DepthSplat [194] 15.67 16.52 20.90 19.24 27.44 21.8722.54 12.07 12.62 14.15 16.24 13.23 13.77 15.93 14.23 14.01 15.72 16.78 14.35 13.12
LVSM [162] - - - - 29.67 - - - - - - - - - - -
Diffusion-based models
MotionCtrl [195] - - 1274 16.29 - - - - - - - 1546 - - - - - - 13.29
4DiM [163] - - 17.08 - - - - - - - - - - - - - - - -
ViewCrafter [160] 14.64 15.93 20.43 22.04 21.42 20.8822.81 10.53 13.52 12.66 16.40 18.96 14.72 16.42 12.66 14.59 13.78 - 18.07 -
SEvVA 30.30 31.53 17.99 18.56 25.66 18.1127.57 14.03 19.48 14.47 20.82 18.40 19.25 19.75 1891 16.70 17.80 20.96 15.16 16.50

Table 4.2: PSNRT on small-viewpoint set NVS. P denotes the number of input views. For all
results with P = 1, we sweep the unit length for camera normalization due to the model’s scale
ambiguity. O, and Oy, denote the easy and hard split of our split, respectively. Underlined numbers
are run by us using the offical released code.

Small-viewpoint versus large-viewpoint NVS. Sweeping across all datasets, splits, and input-
view configurations reveals a diverse benchmark of setups. To better evaluate models’ generation
capacity and interpolation smoothness (Section ), we propose to categorize these setups into
two groups—small-viewpont NVS and large-viewpoint NVS—depending on the disparity between
I'¢* and I'™. small-viewpoint NVS with smaller disparities emphasizes interpolation smoothness and
continuity with nearby input views, whereas large-viewpoint NVS with larger disparities requires
a model to generate prominent unseen areas from input observations, predominantly assessing
models’ generation capacity. See Table for the complete list. Refer to Appendix for the
detailed choice of datasets, splits, the number of input views, and the way to measure disparity.

Baselines. We consider a range of proprietary models, including ReconFusion [ 58], CAT3D [159],
4DIM [163], LVSM [162], and Long-LRM [16&]. We also consider various open-source models,
including SV3D [169], MVSplat [ 167], depthSplat [ 194], MotionCtrl [195], and ViewCrafter [160].
As outlined in Section , these baselines encompass both regression-based and diffusion-based
approaches, providing a comprehensive framework for comparison.

4.4.2 SetNVS

In this section, we focus on comparing our model against prior works, given that set NVS is a task
that has been extensively explored.

Quantitative comparison. The input and target views are chosen following splits used in previous
methods. The order of target views is not preserved, i.c.,, I'®" ~ Z. We use standard metrics of
peak signal-to-noise ratio (PSNR), learned perceptual image patch similarity [ 97] (LPIPS), and
structural similarity index measure [V] (SSIM). Only PSNR is showcased here due to space limits,
with the rest deferred to Appendix . Empirically, our method shows a greater performance
improvement on LPIPS, reflecting the photorealism of our results.
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dataset 003D GSO CO3D WRGBD Mip360 DL3DV T&T Jarge-
- — — small-viewpoint . .

Method Splil S [ ]S [ ]R [ ] Oh R [ ] le) (o) Method P viewpoint
I ) 1 | . 3 1 3 1 3 1 3 6 9 RE10K LLFF DTU CO3D Mip360
SVaD[10] 1928 2038 - - ZipNeRF [196] 2077 17.23 9.18 1434 1277
DepthSplat [194] 11.56 12.32 1042 9.35 13.5310.4912.54 9.63 12.52 8.63 9.78 10.1211.20 ~ ZeroNVS [164]  19.11 159116.71 17.13  14.44
CAT3D [159] - - - - - - 15.15 - - - - _ _ ReconFusion [158] 25.84 21.3420.74 19.59 15.50
ViewCrafter [160] 10.56 11.42 10.11 9.12 13.45 9.79 10.34 8.97 11.50 9.23 9.88 10.3211.08  CAT3D [159] 26.78 21.5822.02 20.57  16.62
SEVA 19.25 20.65 15.30 14.3717.2812.9315.7813.0115.9511.2812.6513.8014.72  SEVA 27.95 21.8822.68 21.88  17.82

Table 4.3: PSNR? on large-viewpoint set NVS. For all results Table 4.4: PSNR? on 3DGS ren-
with P = 1, we sweep the unit length for camera normalization derings for set NVS. Results are
due to the model’s scale ambiguity. Underlined numbers are reported on the ReconFusion [15¢]
run by us using the officially released code. split with P = 3.

For small-viewpoint set NVS, Table shows that SEVA sets state-of-the-art results in the
majority of splits. In the sparse-view regime (i.e.,, P < 8), SEVA excels across different datasets
when P > 1. For example, a performance gain of +6.0 dB PSNR is achieved on LLFF with P = 3.
In the semi-dense-view regime (e.g.,, P = 32), SEVA surprisingly performs favorably against the
specialized model [ 6%], despite not being specifically designed for this setup. For example, SEVA
lags behind the state-of-the-art method [16%] by only 1.7 dB on T&T. On object datasets OO3D and
GSO, SEVA achieves a significantly higher state-of-the-art PSNR compared to all other methods.

Notably, for small-viewpoint set NVS on the RealEstate10K [ |9 1] dataset, SEVA underperforms
when in the single-view regime (i.e.,, P = 1). This issue arises from scale ambiguity in the model
due to two factors: (1) it always takes in unit-normalized cameras during training, and (2) it is
trained on multiple datasets with diverse scales. This challenge is most pronounced on RE10K,
where panning motion dominates. Additionally, the absence of a second input view negates any
scale relativity. To address this, for all results with P = 1, we sweep the unit length for camera
normalization from 0.1 to 2.0 (with 2.0 used during training), selecting the best scale for each
scene. On P split with P = 2, we observe diffusion models lag behind regression-based models that
are advantageous in small-viewpoint interpolation. SEVA bridges this gap by improving upon the
state-of-the-art diffusion-based model by +4.2 dB. On R split with P = 3, the advantage of SEVA
is pronounced exceeding the previously best result by +1.9 dB. Notably, ViewCrafter excels on V
split due to capacity taking in wide-aspect-ratio images and thus more input pixels than others with
square images. The advantage of ViewCrafter on V split diminishes on CO3D since the majority of
informative pixels are centrally located.

For large-viewpoint set NVS, Table #.3 shows that SEVA’s quantitative advantages are even more
prominent here, revealing clear benefits of SEVA in terms of generation capacity when the camera
spans a large spatial range. On Mip360 with P = 3, SEVA improves over previous state-of-the-art
method CAT3D [159] by +0.6 dB PSNR. On harder scenes like DL3DV and T&T with different
input-view configurations, SEVA obtains a clear performance lead. On OO3D and GSO with P =1,
although the performances of SEVA and previous state-of-the-art method [169] are similar, we
qualitatively observe more photorealistic and sharper output from our model.



CHAPTER 4. STABLE VIRTUAL CAMERA: GENERATIVE VIEW SYNTHESIS WITH
DIFFUSION MODELS 45

Input Target Target Baseline

Ours

Figure 4.6: SOTA comparison on set NVS (top) and trajectory NVS (bottom) across varying
numbers of input views. We compare with open-source approaches—ViewCrafter [160] (VC) and
DepthSplat [194] (DS)—as well as proprietary ones including LVSM [162], Long-LRM [16%]
(LLRM), 4DiM [165], and CAT3D [159]. When the input comprises multiple views, we arrange
them so that the view closest to the target is placed at the top of each set.

Qualitative comparison. Figure top panel shows a qualitative comparison with diverse
baselines. For small-viewpoint set NVS, the output from SEVA with the best scale exhibits desir-
able alignment with the ground truth while being more photorealistic in details. Compared with
LVSM [162] on the P split of RE10K, SEVA produces sharper images, also corroborating that
lower PSNR arises from scale ambiguity rather than interpolation quality. Similar trends hold when
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compared to Long-LRM [165] on DL3DV with P = 32. For large-viewpoint set NVS, we compare
with DepthSplat [194] on DL3DV with P = 3. DepthSplat fails to produce reasonable results when
the viewpoint change is too large and falls short in overall visual quality.

Comparison of 3D reconstruction. To enable a direct quantitative comparison with prior
works [158, ], we adopt the few-view 3D reconstruction pipeline described in [159]. For
each scene, we first generate 8 videos conditioned on the same input views following different
camera paths, summing into 720 generated views. Then, both the input views and generated
views are distilled into a 3DGS-MCMC [ | 9%] representation without point cloud initialization. We
optimize the camera parameters and apply LPIPS loss [ | 0] during the distillation. Finally, we render
the distilled 3D model on the test views and report the performance in Table 4.4. SEVA shows a
consistent performance lead.

4.4.3 Trajectory NVS

In this section, we focus on qualitative demonstration, given that trajectory NVS is an underexplored
task. We then compare against prior arts both qualitatively and quantitatively.

Qualitative results. Figure presents qualitative results, illustrating trajectories of varying
complexities with different numbers of input views across diverse types, including object-centric
scene-level, scene-level, real-world, and text-prompted from image diffusion models [ 75], etc..

In the single-view regime (i.e.,, P = 1), we manually craft a set of common camera move-
ments/effects, e.g.,, look-at 360, spiral, panning, zoom-in, zoom-out, dolly zoom, etc.. We observe
that SEVA generalizes to a wide range of images and demonstrates accurate camera-following
capacity. Excitingly, our model derives reasonable output with a dolly zoom effect (the second row
of Figure 4.7). In the FERN scene from the third row of Figure <.2, our model demonstrates its ability
to generate plausible outputs even when moving close to or passing through an object—despite
never being explicitly trained for such scenarios. This highlights the expressiveness of our model.
An extensive sweeping of camera movements on 4 types of images is provided in Figure ,
Figure C 4, Figure (.5, and Figure

In the sparse-view regime with few input views (i.e.,, 1 < P < 8), we observe that SEVA
demonstrates strong generalization to in-the-wild real-world images and versatility in adapting to
different numbers of input views. The output forms a smooth trajectory video with subtle temporal
flickering, revealing its capacity to interpolate between views smoothly. In the last row of Figure 4.7,
our model generates plausible results at the end of the trajectory—an area unseen in the input
observations—demonstrating its strong generation capacity. In the semi-dense-view regime (i.e.,,
P >9), we similarly find that SEVA is surprisingly able to produce a smooth trajectory video with
minimal artifacts. Please check the website for video results.

Qualitative comparison. Figure /.6 bottom panel presents a qualitative comparison with diverse
baselines. In the single-view regime (i.e.,, P = 1), we compare to 4DiM [165] and CAT3D [159].
We observe more photo-realistic and sharper output from our model, especially in the background
area for object-centric scenes. 4DiM outputs tend to be cartoonish and over-simplistic, given that
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. small-viewpoint large-viewpoint
split p £ p

Method V [160] O
dataset RE CO3D T&T RE DTU WR DL T&T

MotionCtrl [195] 16.29 15.46 13.29 - - - - -
DepthSplat [194] 19.24 13.23 14.35 25.23 14.68 12.45 11.32 9.11

ViewCrafter [160] 22.04 18.96 18.07 26.54 18.99 13.44 11.45 9.68

SEVA 18.56 18.40 15.16 27.34 19.99 17.79 15.76 11.92
SEVA (+temp.) 18.62 18.43 15.13 27.36 20.19 17.93 15.78 11.99

Table 4.5: PSNRT on trajectory NVS. remp. denotes optional temporal pathway. RE, WR, and DL.
denotes RE10K, WRGBD, and DL3DV, respectively. For the V [160] split, P = 1 with unit length
swept; for the O split, P = 3. Underlined numbers are run by us using the officially released code.

Method samples 3DGS video

PSNRT TSED] PSNR{T MS?t
SEVA (one-pass) 15.73 115.1 16.03 95.39
SEVA (two-pass: nearest) 13.74 1209 1421  94.71

SEVA (two-pass: gt + nearest) 1558 1162 1596 95.22
SEVA (two-pass: gt + interp) 15.66 120.1 1598 95.56

SEVA 15.76  116.7 16.11 95.76
SEVA (+ temp.) 15.78 109.0 16.17 95.77

Table 4.6: 3D consistency (TSED| and PSNR?) and temporal quality (MS?) on trajectory NVS.
SEVA uses interp procedural sampling by default. temp. denotes the optional temporal pathway.
MS denotes motion smoothness from VBench [199]. Results are reported on our split of DL3DV
with P = 3.

the model is only trained on RE10K. In the sparse-view regime with few input views (i.e.,, P = 3),
we compare with CAT3D and observe that our model demonstrates more photo-realistic textures,
especially in the background. For start-end-view interpolation considered in ViewCrafter [160)]
with P = 2, our model produces smooth transitions across trajectories, although it exhibits slight
flickering between adjacent frames, particularly in regions with significant high-frequency detail.

Quantitative comparison. We use the same input views as in the set NVS for each split. We use
all frames from each scene as target views such that they form a smoothly transitioning trajectory
video, i.e.,, I'®" ~ 1. We use PSNR as metrics and compare with baselines in Table

For small-viewpoint trajectory NVS, Table +.5 compares SEVA with baselines on PSNR. SEvA
performs favorably against other methods in V split with P = 1. The performance lead of
ViewCrafter is mainly attributed to its training on high-resolution images. For large-viewpoint
trajectory NVS with P = 3, SEVA consistency sets new state-of-the-art results. Applying the
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Figure 4.7: Temporal quality. Vertical slices of a rendered novel camera path on the BONSAI scene
from Mip-NeRF360 [49] illustrate the temporal quality across adjacent viewpoints. One-pass or
gt + nearest procedural sampling results in notable flickering, whereas interp procedural sampling
ensures temporally smooth rendering.

temporal pathway further boosts performance and improves smoothness, indicating the benefits of
the gated architecture.

Ablation on two-pass procedural sampling. We conduct an ablation study comparing the default
interp procedural sampling with one-pass sampling and alternative procedural sampling strategies.

Quantitatively, beyond evaluating PSNR on individual views, we assess 3D consistency using
the PSNR on 3D renderings of that same view and SED [ 163, ] score. To compute the SED
score, we first apply SIFT [201] to detect keypoints in two images. For each keypoint in the first
image, we determine its corresponding epipolar line in the second image and measure the shortest
distance to its match. Additionally, we report Motion Smoothness (MS) from VBench [19Y], a
benchmark designed to evaluate temporal coherence in video generative models. As shown in
Table 4.6, interp procedural sampling demonstrates a clear advantage over its alternatives, with the
integration of the temporal pathway further reinforcing its superiority.

Qualitative comparisons in Figure show that one-pass sampling introduces visible tempo-
ral flickering and abrupt visual changes. In contrast, interp produces the smoothest transitions,
outperforming gt 4+ nearest and mitigating noticeable flickering.
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Baseline

Ours

Loop 1 Loop Loop 1 Lop 2 Loop 3

Figure 4.8: Long-range 3D consistency. We visualize samples following a camera path looping
three times around the TELEPHONE-BOOTH scene. Lookup using spatial neighbors from the memory
bank (ours) notably improves view consistency and reduces artifacts in recurring locations across
different loops, compared to lookup using temporal neighbors (baseline).

4.4.4 Long-trajectory NVS

Figure < & presents a qualitative demonstration of NVS over a long trajectory of up to 1000 frames.
As the camera orbits the TELEPHONE BOOTH for multiple rounds, the generated views in each
round from similar viewpoints can be drastically different since they are far away from each other
temporally. With the memory bank maintaining previously generated anchors, SEVA achieves robust
3D consistency for long-trajectory NVS, e.g.,, the building in front of and the plantation after the
booth. Comparing it to using temporal nearest anchors previously generated, using spatially nearest
ones demonstrates a clear advantage. The memory mechanism has been concurrently explored in
previous works [ 160, ], leveraging explicit intermediate 3D representations such as dense point
clouds predicted by DUSt3R [203]. In contrast, our model demonstrates greater robustness and
generalizability to in-the-wild data, as it is not constrained by the quality of DUSt3R’s output, which
often becomes unreliable in quality for data outside of its training domain, e.g.,, text-prompted
images.

4.4.5 Discussions

Zero-shot generalization of context window length 7'. 'We surprisingly find our model, though
only trained on 7' = 21 frames, can generalize reasonably to larger 7' during sampling in the
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Figure 4.9: Generation quality on the number of input views. PSNR? (top) and Image Quality
(bottom) on set NVS. Results are reported on our split of T&T. Extending 7' to more input views in
a zero-shot manner produces more consistent samples in the semi-dense-view regime. Dense 3DGS
denotes results of [123] with full views.

semi-dense-view regime. On our split of T&T for set NVS, we evaluate the predictions against
ground truth in both sparse-view (i.e.,, 1 < P < 8) and semi-dense-view regime (i.e.,, 9 < P)
using PSNR1 and Image Quality? [199]. Image Quality refers to the distortion (e.g.,, over-exposure,
noise, blur) presented in the generated image. We experiment with different sampling strategies:
one-pass sampling zero-shot extending the context window length 7'; two-pass procedural sampling
by first generating anchor views using nearest— K (K < T') input views and then interpolating
anchor views into target views.

Our results are shown in Figure 4.9. Procedural sampling with the nearest— K anchor views
plateau after taking K views as input, indicating inefficiencies in procedural sampling and an
inability to effectively utilize all available input views when P > T'. Conversely, the metrics
steadily improve with respect to the number of input frames for one-pass sampling with 7" extending
to P + () in a zero-shot manner. However, we observe that this generalization fails in the sparse-
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view regime, resulting in blurry samples, as indicated by the low Image Quality when P < 9 and
qualitative samples when P = 3. In the semi-dense-view setting, although quantitative metrics
show minimal differences between one-pass and procedural sampling, we consistently observe that
one-pass produces more 3D-consistent samples, as illustrated in the bottom-right figure.

Zero-shot generalization of image resolution. Surprisingly, we find our model, despite being
trained only on square images with i/ = W = 576, generalizes well to different image resolution
during sampling, similar to [204]. As shown in Figure , SEVA can produce high-quality results
in both portrait (16 : 9) and landscape (9 : 16) orientations of different image resolutions.

Guidance scale on generation uncertainty. We employ classifier-free guidance [205] (CFG) to
enhance sampling quality. Empirically, we find that the CFG scale, a hyperparameter at test time,
has a significant impact on the final result [ | 72], as shown in Figure . Specifically, the optimal
CFG scale is strongly correlated with the inherent uncertainty of the generation. When uncertainty
is high (top row), a higher CFG scale (e.g.,, 5) is preferable to prevent excessive blurriness in the
generated samples. Conversely, when uncertainty is low (bottom row), a lower CFG scale (e.g.,, 3)
helps avoid oversaturation. In practice, setting the CFG scale between 2 and 5 consistently produces
high-quality results across all our samples.

Sampling diversity of unseen areas. Figure demonstrates the capability of the model to
generate diverse and plausible predictions for unseen regions of input observations. In the first
row, the input view depicts a frontal view of a classical statue. We sample multiple back views by
varying the random seeds, producing distinct yet coherent interpretations of the unseen geometry
and texture while preserving fidelity to the input. Similarly, in the second row, the model generates
multiple plausible continuations of the scene given an input view of a scenic road, each reflecting
unique variations in environmental and structural details. These results highlight the model’s ability
to synthesize realistic and diverse outputs for occluded or ambiguous regions.

4.5 Conclusion

We present STABLE VIRTUAL CAMERA (SEVA), a generalist diffusion model for novel view synthe-
sis that balances large viewpoint changes and smooth interpolation while supporting flexible input
and target configurations. By designing a diffusion-based architecture without 3D representation,
a structured training strategy, and a two-pass procedural sampling approach, SEVA achieves 3D
consistent rendering across diverse NVS tasks. Extensive benchmarking demonstrates its superiority
over existing methods, with strong generalization to real-world scenes. For broader impact and
limitations, please refer to the appendix.



Figure 4.10: Generation quality on different image resolutions. Our model generalizes to
different image resolution of varying aspect ratios, including both portrait (top) and landscape
orientations (bottom). Results are presented as a pair of the input view and the target views.
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Figure 4.11: Generation uncertainty on CFG. The CFG scale should be increased as generation
uncertainty rises. For single-view conditioning (top), a higher CFG scale is typically required,
whereas few-view conditioning (bottom) benefits from a lower scale.

Seed 2 Seed 3

Figure 4.12: Generation diversity in unseen regions. Our model generates diverse samples by
varying randomization seeds during the sampling process.
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Chapter 5

Conclusion

In this thesis, we chart a data-driven path for scaling view synthesis. Chapter 2 diagnoses the hidden
multi-view assumptions in state-of-the-art dynamic NeRF pipelines and establishes a benchmark that
exposes their limits under monocular capture. Chapter 3 remedies these limits with a hybrid system
that fuses monocular depth and long-range tracks into a dynamic 3D Gaussian scene representation,
recovering globally consistent geometry and motion from a single video. Chapter 4 completes the
progression by reframing view synthesis as camera-conditioned diffusion: a fully generative model
that synthesizes photorealistic, 3D-consistent images and minute-long videos from sparse inputs
while inheriting the scalability of large 2D backbones.

5.1 Limitations and future work

While this thesis outlines a practical path for scaling view synthesis, several limitations remain.

First, our diagnostic benchmark in Chapter ” only accounts for view sparsity; other factors
such as lighting, texture, sequence length, and global motion remain unquantified. Systematically
isolating and evaluating these variables would provide a more complete understanding of the
problem space.

Second, the 4D reconstruction system introduced in Chapter 2 remains optimization-based. This
makes it slow to train and dependent on a heavy preprocessing pipeline. Developing a feedforward
or transformer-based 4D reconstruction system would improve scalability and usability.

Third, our generative exploration in Chapter # is still constrained in model and data scale. The
current model is 2B parameters—far smaller than proprietary systems like Veo 3—and trained only
on academic multiview datasets. Scaling to larger models and training directly on internet-scale
video collections would likely yield further gains in generalization and fidelity. Moreover, current
generation remains bounded in length and consistency. Extending view synthesis to produce open-
ended, 3D-consistent videos over long camera trajectories remains a key challenge. Future research
could explore autoregressive or recurrent architectures that maintain both local photorealism and
global scene coherence over time.
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5.2 The future of 3D

This thesis was written during a time of explosive progress in Al. In contrast, 3D research has
advanced more slowly—constrained by data scarcity, architectural uncertainty, and the unique
demands of geometric consistency. As 3D researchers, we are often asked: why 3D? Is it fundamen-
tally important for the future of AI? These questions push us beyond our technical comfort zones to
consider the broader relevance of our work.

While the verdict will ultimately be left to future generations, this thesis offers a few personal
hunches about where 3D is heading.

Multimodality. Compared to text or audio, 3D may not seem “special.” But in practice, modalities
often bootstrap one another. Our own experiments show that strong 2D generative models can
transfer useful priors to 3D view synthesis. As foundation models evolve, we expect the boundaries
between modalities to blur: general-purpose models will natively handle images, video, 3D, text,
and more—allowing them to perceive, imagine, and act in grounded environments. Because our
physical world is inherently 3D, we believe 3D will remain a vital input and output interface.

Geometry as interaction. The boundary between geometry and photorealism is fading. In the
past, artists needed clean 3D assets—meshes, textures, depth—to drive applications. But as neural
representations become more powerful and interactive, users increasingly care less about how a 3D
model is structured and more about how it behaves: Is it view-consistent? Can I move through it?
Does it respond to my edits? For many applications, implicit representations can now satisfy these
requirements without ever producing explicit geometry. Of course, task-specific constraints will
always matter, but the line between “rendering” and “reasoning” is becoming less clear.

3D data growth. 3D data is poised to grow. Today, most 3D datasets are constructed from image
or video collections where camera poses can be extracted. But the landscape is evolving: immersive
virtual worlds, wearable sensors, and embodied agents are all generating massive volumes of spatial
data. We expect this co-evolution—between representation, supervision, and environment—to be
one of the key enablers of scalable 3D learning.

World modeling. We are just beginning to model the world. View synthesis is only a small step
toward the broader goal of world modeling: constructing representations that support prediction,
imagination, interaction, and reasoning. Future models will need to synthesize not just how the
world looks, but how it changes, responds, and unfolds over time. In that future, 3D is not the
goal—but it is an essential foundation.
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Appendix A

Monocular dynamic view synthesis: A reality
check

A.1 Outline

In this Appendix, we describe in detail the following:

* Computation for effective multi-view factors (EMFs) in Section
* Computation for co-visibility mask and masked image metrics in Section
* Summary of existing works and correspondence readout in Section

* Summary of the capture setup and data processing for our iPhone dataset in Section

Summary of the implementation details and remain differences in Section

Additional results on the impact of effective multi-view in Section

Additional results on per-sequence performance breakdown in Section

Additional results on novel-view synthesis in Section

* Additional results on inferred correspondence in Section

For better demonstration, we strongly recommend visiting our for videos of the capture
and result visualizations.

A.2 Computation for effective multi-view factors (EMFs)

To quantify the amount of effective multi-view in a sequence by the camera and scene motion
magnitude, we propose two metrics as effective multi-view factors (EMFs), i.e.,, the Full EMF ()
and the angular EMF w. Note that we design our metrics to be scale-agnostic such that we can
compare them across different sequences of different world scales.

As in the main paper, we define a point x; € S? on the visible object’s surface and a camera
parameterized by its origin o, at time ¢t € 7, where 7 is the set of possible time steps.
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A.2.1 Full EMF (): Ratio of camera-scene motion magnitude

We are interested in the relative scale of the camera motion compared to the object. Recall that we
define € as the expected ratio over all visible pixels over time,

0= E { E [MH (A1)
ti+1€T | x,€S? %1 — x|

The numerator is trivially computable given the camera information. We thus focus on the denomi-

nator, i.e., the foreground 3D scene flow x; 1 — X;.

We estimate 3D scene flow by combining the known cameras, dense 2D optical flow, and
per-frame depth maps. We estimate the 2D optical flow using RAFT [35]. When metric depth is
not available, e.g., on previous datasets [%, 7, 5], we use DPT [39] for monocular depth estimation.
Additionally, we need a foreground mask for the object, which we obtain through a video segmenta-
tion network [206]. For each pixel location u, at time ¢ in the foreground mask, we can compute
its 3D position x; by back-projection with the depth z,. We then get the 2D pixel correspondence
at time ¢ + 1 by simply following the 2D optical flow u; 1 = u; + f;,;11(u;), where f;_;,; is a
bilinearly interpolated forward flow map. After back-projection, we obtain the corresponding 3D
point position X, at frame ¢ 4 1. In practice, extra care is needed for handling the unknown depth
scale from model prediction and occlusion, discussed next.

Aligning depth maps of unknown scales. The DPT [39] model predicts a disparity map in
Euclidean space with an unknown scale a and shift b. To resolve the scale and shift ambiguity in the
predicted disparity maps, we make use of the sparse 3D points extracted by COLMAP. For a frame
at time ¢, we first calculate the actual disparity 1/Z; of the sparse 3D points by projecting them onto
the image, which usually results in sub-pixels. We then bilinearly interpolate the predicted disparity
map to get the predicted disparity 1/Z;. Scale a and shift b can then be estimated through linear
regression via the relation:

Note that the sparse 3D points from COLMAP [145] are all located on the static background. When
projecting the sparse 3D points onto the image, some points might be occluded by the moving
objects in the foreground. We handle occluded points by fitting a and b using RANSAC [207],
which ignores outliers and is robust in practice.

Handling occlusions. We identify occlusions using a forward-backward consistency check fol-
lowing the method of Brox et al. [20%]. We briefly summarize their method here.

Concretely, we identify an occlusion by chaining the forward flow f; ,;,; and backward flow
f; 1.+ and thresholding based on warp consistency. For those pixels that have inconsistent forward
and backward optical flows, defined by regions where chained forward and backward flows result in
non-zero flow values, satisfying the following inequality:

||ft—>t+1 (ut) + ft-{-l%t(ut + ft—>t+1 (ut))H%

(A.2)
> 0.01 - (\IfHHl(ut)II% + Hft+lﬁt(ut + ftatﬂ(ut))“%) + 0.5.
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The occluded pixels, along with the background pixels not belonging to the foreground mask, are
excluded from the 3D scene flow computation.

Discussion. In practice, we find that the {2 metric relies on the model estimation quality, in
particular, the monocular depth prediction. We therefore design a second metric by measuring
camera angular speed w. With some practical assumptions, it circumvents 2’s limitation and does
not rely on any external model estimates.

A.2.2 Angular EMF w: Camera angular velocity

We propose to measure camera angular speed w given the camera parameters, frame rate /V and a
single 3D look-at point a obtained by triangulating all cameras, following Nerfies [5]. Recall that w
is computed as the scaled expectation,

w= E [arccos( (a—ona— o) )} - N. (A.3)
tt+1eT ||a - 0t|| . ||a — 0t+1||

When computing this metric, we assume that (1) the object moves at roughly constant speed, (2)
the camera always fixates on the object, and (3) the distance between the camera and the object
remains approximately the same over time. All sequences from existing works as well as ours meet
these assumptions, except those from the NSFF [4] and NV-DYN [40] datasets. In their case, the
cameras are always facing forward, breaking the assumption (2). However, we find that even though
cameras are not fixated on the object since they are static, we can still compute the look-at point a
by considering the center of mass of the foreground visible surfaces in 3D. Both datasets provide
accurate foreground segmentations and MVS depth, which we use to identify and back-project
foreground pixels into 3D space. The final look-at point is computed as the average foreground
points over all frames.

Note that existing works only provide extracted frames from each sequence without specifying
the frame rate. We identify the frame rates by re-assembling the original video using different FPS
candidates and hand-picking the one that results in the most natural object and camera motion,
which are verified by the original authors [+, 7, 5]. We document per-sequence FPS for future
reference in Table

A.3 Computation for co-visibility mask and masked image
metrics

Code for both the co-visibility mask and masked image metrics are made publicly available on our
. In this section, we provide further details for their computation processes.


https://hangg7.com/dycheck

Dataset Sequence #Frames FPS w

D-NeRF [3] BOUNCINGBALLS 150 30 15.52 1945.52
HELLWARRIOR 100 30 10.32 2984.15
Hook 100 30 25.82 1996.95
JUMPINGJACKS 200 30 10.64 1969.47
LEGO 50 30 17.00 2133.78
MUTANT 150 30 12.64 1908.67
STANDUP 150 30 14.22 2011.31
TREX 200 30 13.70 2133.78
HyperNeRF [7] 3D PRINTER 207 15  3.13 251.37
CHICKEN 164 15 7.38 212.58
PEEL BANANA 513 15 1.26 237.66
Nerfies [5] BROOM 197 15 3.40 128.54
CURLS 57 5 1.20 138.55
TAIL 238 15 3.30 160.55
ToBY SIT 308 15 2.18 110.51
NSFF [4] BALLOONI 24 15 244  57.63
BALLOON?2 24 30 0.76 76.97
DYNAMIC FACE 24 15 4.57 83.17
JUMPING 24 30 0.68 53.79
PLAYGROUND 24 30 0.36 71.56
SKATING 24 30 0.79 42.76
TRUCK 24 30 0.22 1941
UMBRELLA 24 15 0.62 20.66
iPhone (Ours)  APPLE 475 30 0.75 3.79
BACKPACK 180 30 0.26 5.59
BLoCK 350 30 0.04 11.50
CREEPER 210 30 0.23 14.05
HANDWAVY 303 30 0.05 13.66
HARU 200 60 0.30 30.32
MOCHI 180 60 0.07 14.49
PAPER WINDMILL 277 30 0.38 10.71
PiLLOW 330 30 0.06 13.19
SPACE OUT 429 30 0.13 6.37
SPIN 426 30 0.15 7.86
SRIRACHA 220 30 0.18 18.56
TEDDY 350 30 0.20 7.62
WHEEL 250 30 0.03 58.45

Table A.1: Per-sequence breakdowns of the statistics of different datasets. As in the main paper,
we consider the multi-camera captures from three representative existing datasets: D-NeRF [?],
Nerfies [5] and HyperNeRF [7]. We also provide per-sequence breakdowns for both the multi-
camera and single-camera captures from our proposed iPhone dataset.
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(b) Training views and (c) Test view (d) Test view (e) Test view
test view occlusions  co-visibility heatmap  co-visibility mask with mask

(a) Test view

Figure A.1: Illustration of the computation process for co-visibility. Given a (a) test view, we
first compute its pairwise (b) occlusions in all training views the forward-backward consistency
check [20Z] based on the optical flow estimation from pre-trained RAFT [3%]. The occlusions
are visualized as binary masks in (b)’s second row, where black color indicates pixels without
correspondence. We also visualize their overlays over the original test image. Then by summing up
all occlusion maps, we compute the (c) test view co-visibility heatmap, which stores the number of
times each test pixel is seen in training frames. Finally, we apply a threshold on the heatmap and
obtain a binary (d) co-visibility mask. We also visualize its (e) overlay on the test image. Note that
the occlusion maps are usually inaccurate due to noise in optical flow prediction, e.g.,, they miss the
cover of the chicken toy in this example. Our conservative threshold strategy overcomes the noise
and ensures that adequately seen regions are included in the final mask.

A.3.1 Co-visibility mask

In dynamic scenes, particularly for monocular capture with multi-camera validation, the test view
contains regions that may not have been observed at all by the training camera. To circumvent this
issue without resorting to camera teleportation, for each pixel in the test image, we propose “co-
visibility” masking, which tests how many times a test pixel has been observed in the training images.

We visualize the computation process of the co-visibility mask in Figure . Concretely, for
each (a) test frame, we first check its (b) occlusion in each training frame by the forward-backward
flow consistency check according to Equation A.2. We use RAFT [3¢] for optical flow estimation
between each test frame and each training frame. Note that we visualize occlusion as both a binary
mask and its overlay on the test image. For occlusion mask visualization, the black color indicates
pixels with no correspondence in the training views. We then compute the (c) co-visibility heatmap
by simply summing up all test view occlusion masks. This co-visibility heatmap stores the number
of times that each pixel is seen in training views. For visualization purpose, we normalize the
heatmap by the number of the training frames N. Finally, we apply a threshold /3 to the heatmap and
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obtain a (d) binary co-visibility mask, which we also visualize with (e) its overlay on the test image.
We adopt a conservative strategy and set 5 = max(5,0.1 - N), meaning that we deem a pixel “seen”
during training and valid for evaluation when it is seen in 5 or 10% of training frames, whichever is
larger. This strategy ensures high recall in the masking result, i.e.,, the final co-visible regions are
adequately seen during training when the flow estimation is noisy. For example, as shown in the
third row of Figure (b), the test view occlusions are inaccurate and miss the red cover of the
chicken toy when it is visible in both frames. However, since the red cover is adequately seen over
the whole sequence, it is still included in the final co-visibility mask.

A.3.2 Masked image metrics

In this work, we propose to only evaluate on regions that are adequately seen during training by
co-visibility masking. We employ three masked image metrics, namely mPSNR, mSSIM and
mLPIPS, which extend from their original definition, which we discuss next.

PSNR — mPSNR. PSNR is originally defined as per-pixel mean squared error (MSE) in the log
scale (with a constant negative multiplier). We compute mPSNR by simply taking the average of
per-pixel PSNR scores over the masked region.

SSIM [9] — mSSIM. Comparing to PSNR, SSIM is defined on the patch level: it considers the
structural similarity within each patch. In practice, it is usually implemented as convolutions where
kernels are defined by the pixels in each patch. We take inspiration from Liu et al. [44] and follow
exactly their partial convolution implementation for this operation, where only the masked pixels
are accounted for the final result.

LPIPS [10] — mLPIPS [4, 42, 43]. LPIPS is also defined on patch level. Given two images, it
computes their similarity distance in the feature space across different spatial resolution using a
pretrained AlexNet model [209]. The final similarity score is the average over all distance maps. To
compute mLPIPS, we follow the previous works [+, 42, 43] and first apply the co-visibility mask on
the input images by zeroing out the unseen regions. Given the output distance maps at each spatial
resolution, we then apply the same mask with downsampling and compute the masked average
distance score. It should be noted that the pretrained AlexNet has a receptive field of 195%. Thus
when the co-visibility mask is small (most of the pixels are not seen during training), this metric
can be artificially low due to the zeroing operation.

A.4 Correspondence readout from existing works

In this section, we first review the formulation of the existing works and then describe the computa-
tion to read out correspondence from these models.
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A.4.1 Formulation of existing works

A neural radiance field (NeRF) [30] represents a static scene as a continuous volumetric field F' that
transforms a point’s position x and auxiliary variables w (e.g.,, view direction, latent appearance
vector) to color ¢ and density o,

F:(x,w)—(c,0). (A4)

Here we briefly review representative approaches that extend NeRFs to dynamic scenes.

Nerfies [5] and HyperNeRF [7]. Similarly to traditional non-rigid reconstruction methods that
explains non-rigid scenes with a static canonical space and a per-frame deformation model [” 1],
Nerfies [5] capture a non-rigid scene with one canonical NeRF F' and a per-time step view-to-
canonical deformation W,_,. that takes a point x with a time-conditioned latent vector ¢; to a
canonical point x.,

Wise : (X, 00) — Xe. (A.5)

At each time step the resulting volumetric field is F; = F' o W;_,.. HyperNeRF [7] addresses
topological change on top of Nerfies by outputting a two-dimensional “ambient” coordinate w
encoding the topological change in addition to the canonical point x.,

Wise : (x,1) = (Xe, W). (A.6)

These two output variables are passed to the (topologically varying) canonical space mapping F'.
Time-conditioned NeRF and NSFF [4]. Another way to handle non-rigid scenes is to directly map
space-time to the output color and density by a time-conditioned latent vector ,, which we refer to
as T-NeRF:

F,: (x,1) — (c,0). (A7)

Note that since T-NeRF implicitly handles deformation, it is difficult to compute correspondences
over time. NSFF [4] augments T-NeRF’s implicit function F; to output an explicit scene flow field
W15 between adjacent time steps ¢ and ¢ + 0,

Wt*)tJr(S X = X/, 0 € {+1, —1} (AS)

This explicit flow field is used to regularize motion and, as shown below, can be chained to compute
long-range point correspondences across views and times.

A.4.2 Correspondence readout

Our goal is to find view-to-view correspondences such that given a set of key-points on a source
image at time ¢;, we can find their correspondence on a target image at time %s.

For clarity, we start with assuming a known 3D view-to-view warp Wy, _,;,, outlined in the
last sub-section. The 2D correspondence u;, given u,, can be obtained by three steps, which we
describe as “warp-integrate-project”. In the “warp” step, given the pixel location u,, and camera 7, ,
we sample points on the ray passing from the camera center through the pixel 7 '(uy,). Then, we
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warp the sampled points toward their 3D correspondences in the target frame using the known 3D
warp W, _,,. In the “integrate” step, we compute the expected 3D location for the source samples
weighted by the probability mass w;, by volume rendering, as per NeRF [36]. We can use densities
from either source or target frame, a choice that we find insensitive in practice. In our formulation,
we use the densities from the source frame. Finally, in the “project” step, we project the expected
3D location to the target frame through the target camera 7,,. The “warp-integrate-project” process
can be written as

u, = 7Tt2( E  [wy(x) Wi (th)]) (A.9)

Xty Efr{ll (ugy)

Note that there are also other alternatives such as “warp-project-integrate” where integration happens
after projecting warped points to 2D. We find in practice that these different approaches make little
difference to the final results when the surface is dense such that w; is concentrated near one point
(almost one-hot) for each ray.

Nerﬁe~s [5] and HyperNeRF [7]. We can compose W, _,;, by an inverse map W, _,. and a forward
map W_.,,

Wt1—>t2 (th) = WC—>t2 (Wt1—>c(xt1))~ (Alo)

We solve for the forward map given the inverse map through optimization:

Wi (x¢) = arg min |W_.(x;) — X||3. (A.11)

Xc

We use the Broyden solver for root-finding, as per SNARF [45], and initialize x,. with x;.

NSFF [4]. We can compose W;, ¢, by chaining the scene flow predictions through time. Con-
cretely we have

Wi sty (th) = Wi—156 ( Wihp1st42 (Wt1—>t1+1 (th))) . (A.12)

A.5 Summary of the capture setup and data processing for our
iPhone dataset

Our capture setup has 7 multi-camera captures (MV) and 7 single camera captues (SV). We evaluate
novel-view synthesis on the multi-camera captures and correspondence on all captures.

Multi-camera captures. For multi-camera captures, we employ three cameras: one hand-held
camera to capture monocular video for training and two stationary mounted cameras for validation.
The two validation cameras face inward from two distinct viewpoints with large baseline. This wide-
baseline setup enables us to better evaluate the shape modeling quality for novel-view synthesis. We
use the “Record3D” app [2 0] on iPhone to record both RGB and depth information at each time
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step. Note that we only collect depth information for training views given that we will only use the
depths for supervision. We discuss the preprocessing procedure for the training video sequence in
the “Single-camera captures” paragraph below.

To synchronize multiple cameras, we leverage the “audio-based multi-camera synchronization”
functionality in Adobe Premiere Pro, as per [ | 1], which achieves millisecond-level accuracy. In
Figure , we show visualizations of our multi-camera captures after time synchronization. To
ensure that our input sequence covers most of the scene regions in evaluation, we intentionally move
the training camera in front of each test camera at certain frames. When we do so, that particular
test frame is excluded due to severe occlusion (shown as “Excluded” in the figure). For the WHEEL
sequence (last row), we only employ the right camera due to the limited physical space to set up the
multi-camera rig in that scene.

After time synchronization, we calibrate the multi-camera system. The Record3D app provides
camera parameters and poses at each time step, but the poses only relate to each other within
each capture sequence. In fact, each camera pose is recorded as relative pose to the first frame in
each sequence, with the first pose being identity. We therefore need to solve the relative SF(3)
transforms between the first frame in each test sequence with respect to the first training frame. This
problem can be formulated as a Perspective-n-Point (PnP) problem where, given a set of 3D points
and their corresponding 2D pixels in two sequences, we aim to solve the camera pose. In practice,
given a training RGBD frame and a testing RGB frame, we compute a set of 2D correspondences
by SIFT feature matching [2!”] and obtain their 3D point positions (in the training sequence’s
world space) by back-projecting the 2D keypoints with the training frame depth map. This process
is repeated for all time steps. We exploit our problem structure by constraining the camera poses
within each test sequence to be the same, i.e.,, static camera. We use the RANSAC PnP solver [217]
in OpenCV [214].

Single-camera captures. We treat the single-camera captures as the training sequence in our
multi-camera capture setup. In effect, the single-camera capture setup will not have validation data
for novel-view synthesis evaluation. We preprocess the depth data for the training sequence by
applying a Sobel filter [ | 5] to filter out inaccurate depth values around object edges. In Figure A .3,
we visualize our depth data before and after filtering. We find that NeRF is particularly sensitive
to depth noise and this filtering step is necessary. Finally, we manually annotate keypoints for
correspondence evaluation. For sequences of humans and quadrupeds (dogs or cats), we annotate
keypoints based on the skeleton defined in the COCO challenge [2 6] and StanfordExtra [217].
For sequences that focus on more general objects (e.g.,, our BLOCK and TEDDY sequences), we
manually identify and annotate 5 to 15 trackable keypoints across frames. We visualize keypoint
annotations (with skeleton if available) for both our proposed iPhone dataset and the Nerfies-
HyperNeRF dataset in Figure

Note that both Nerfies [5] and HyperNeRF [7] use background regularization which requires a
point cloud of the background static scene. We first extract the object mask over time by MTTR,
an off-the-shelf video segmentation network [206], which takes a text prompt of the foreground
object as input. Since our foreground objects are quite diverse (e.g.,, backpack and block), the
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segmentation results are usually noisy. Thus we apply TSDF Fusion [7|¢] to the background point
clouds over the whole sequence to get a completed background point cloud. We find that this
point cloud can be noisy when segmentation fails, and that it is necessary to manually filter the
background point cloud to make sure that it does not include any foreground regions. We consider
this manual process a weakness of the previous background regularization [5].

A.6 Summary of the implementation details and remaining
differences

To ensure a fair comparison, we align numerous training details between the models that we inves-
tigate in this paper: T-NeRF, NSFF [], Nerfies [5] and HyperNeRF [7]. Code and checkpoints are
available on our .

To start with, we align the total number of rays seen during training. We add support of ray
undistortion [/] in the third-party implementation of NSFF [4Z] to make sure that the training rays
are the same across codebases. All models are trained with view-dependency modeling turned on.
We did not find appearance encoding [ | 9] helpful in terms of quantitative results. This might due
to the lighting difference between training and validation captures — a common issue in evaluation
discussed in mip-NeRF 360 [49].

T-NeRF, Nerfies, and HyperNeRF share the exact same training setup since they are implemented
within our codebase. We follow the hyper-parameters specified in their official repositories. We use
a batch size B = 6144 for a total number of iterations N = 2.5 x 10°, optimized by ADAM [220]
with an initial learning rate = 1 x 1072 exponentially decayed to 1x % at the end. We use
this training recipe for all of our experiments across all datasets. On 4 NVIDIA RTX A4000 or
2 NVIDIA A100 GPUs with 24GB memory, it takes roughly 12 hours to train a T-NeRF and 24
hours to train a Nerfies or a HyperNeRF. In Table , we show that our codebase reproduces the
numbers from the original papers and official repositories.

Due to no publicly available code to train NSFF on the Nerfies-HyperNeRF dataset. We adapt
and extend the third-party implementation of NSFF (which we find to perform better than the official
repo [47]). We confirm the finding from HyperNeRF that the default hyper-parameters in the NSFF
paper are not suitable for long video sequences, and use their hyper-parameters instead. In Table A 3,
we check on one sequence that our modified re-implementation of NSFF can reproduce the numbers
from the ones we obtain by running the released code. On 1 NVIDIA RTX A4000 or NVIDIA
A100 GPU, it takes roughly 72 to train a NSFF. With better implementation, we hypothesize that
the training process can be largely accelerated.

While we try to ensure the fairness in our comparison, there are still four main remaining
differences, namely: (1) static scene stablization, (2) sampling and rendering, (3) NeRF coordinates,
and (4) flow supervision. First, Nerfies and HyperNeRF use additional background points from SfM
system as supervision to stabilize the static region of the scene, which we find sensitive to foreground
segmentation errors as mentioned in Section A.5. On the other hand, NSFF stabilizes the static region
by composing the samples from a time-invariant static NeRF and a time-varying dynamic NeRF. Sec-
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BrROOM CURLS TAIL ToBY SIT
Q) =3.40,w = 128.54 Q =1.20,w = 138.55 Q =3.30,w = 160.55 Q =2.18,w = 110.51
Method PSNR1 SSIM?T LPIPS| PSNRtT SSIM?T LPIPS| PSNRtT SSIM?T LPIPS| PSNRfT SSIMtT LPIPS|
Nerfies [5] 19.40 - 0.323 - - - - - - - - -
Nerfies (repo) 19.40 - 0.325 24.40 - 0.392 21.90 - 0.245 18.44 - 0.384
Nerfies (our reimpl.) 19.70 0.216 0.296 24.04 0.670 0.245 21.79 0.314 0.236 18.48 0.355 0.375
HyperNeRF [7] 19.30 - 0.296 - - - - - - - - -
HyperNeRF (repo) 19.30 - 0.308 24.60 - 0.363  22.10 - 0.226 18.40 - 0.330
HyperNeRF (our reimpl.) 19.36 0.210 0.314 24.59 0.686 0.247 2216 0.329 0.231 1841 0.345 0.339
3D PRINTER CHICKEN PEEL BANANA
0 =3.13,w = 251.37 0 =17.38w=212.58 0 =1.26,w = 237.66

Method PSNRT SSIMtT LPIPS] PSNR{T SSIM?T LPIPS| PSNR{T SSIM?T LPIPS|

Nerfies [5] 20.20 - 0.115 26.00 - 0.084  21.70 - 0.157

Nerfies (repo) 20.20 - 0.118 26.80 - 0.081 22.00 - 0.179

Nerfies (our reimpl.) 20.30 0.639 0.115 26.54 0.823 0.079 21.11 0.693 0.174

HyperNeRF [7] 20.00 - 0.111  26.90 - 0.079 23.30 - 0.133

HyperNeRF (repo) 20.10 - 0.110 27.70 - 0.076  22.20 - 0.140

HyperNeRF (our reimpl.) 20.12 0.638 0.110 27.74 0.834 0.077 2225 0.729 0.144

Table A.2: Our re-implementation reproduces Nerfies [©]’s and HyperNeRF [7]’s results. The
official numbers for both Nerfies and HyperNeRF are taken from the HyperNeRF paper. Our results
matches closely to their numbers and the ones that we obtained by running the officially released
repositories (denoted as “repo”). All models are trained under the teleporting setting.

JUMPING
Q =0.68,w =53.79
Method PSNR1T SSIM?T LPIPS|
NSFF (repo) 27.41  0.900 0.057

NSFF (our reimpl.) 27.80 0.908 0.051

Table A.3: Our modified third-party re-implementation reproduces NSFF [4]’s results on
one sequence from Yoon et al. [40]. Due to the absence of per-sequence results in the original
paper, we compare to the numbers that we obtained by evaluating the officially released checkpoints
(denoted as “repo”). Our results matches closely to their numbers. All models are trained under the
teleporting setting.

ond, Nerfies and HyperNeRF sample S = 128 points during the coarse stage, and another 2.5 points
during the fine stage, evaluating 35 = 384 points in total. NSFF, on the other hand, only samples S
points for dynamic NeRF and another S points for static NeRF, without coarse-to-fine sampling, eval-
uating 2S5 = 256 points in total. Third, Nerfies and HyperNeRF sample points in world space, while
NSFF samples in normalized device coordinates (NDC), which can cause issues when applying to
non-forward-facing scenes like the ones we use in this paper. Finally, NSFF uses additional optical
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flow supervision, while Nerfies and HyperNeRF do not. In fact, we consider the fact that NSFF
can leverage correspondence supervision as a merit in the sense that it is non-trivial to apply optical
flow supervision to Nerfies and HyperNeRF since their warp representation is not fully invertible.

A.7 Additional results on the impact of effective multi-view

In Figure A5, we provide more qualitative comparisons between models that are trained with and
without camera teleportation on the Nerfies-HyperNeRF dataset.

A.8 Additional results on per-sequence quantitative
performance breakdown

We document the per-sequence quantitative performances of different models on both the Nerfies-
HyperNeRF dataset (under non-teleporting setting) in Table and the proposed iPhone dataset in
Table

A.9 Additional results on novel-view synthesis

We provide additional novel-view synthesis qualitative results under the non-teleporting setting.
In Figure , we show qualitative results on the Nerfies-HyperNeRF dataset. In Figure , We
show qualitative results on the multi-camera captures from the proposed iPhone dataset. All models
except NSFF [4] are trained with all the additional regularizations that we find helpful through

ablation, denoted with “++” to distinguish with the original models. In Figure , we show
qualitative results on the single-camera captures from the proposed iPhone dataset. We render novel
views using the camera pose from the first captured frame. Finally, in Figure , we show the

rendering results with and without co-visibility mask applied.

A.10 Additional results on inferred correspondence

In Table , we provide additional quantitative results of the inferred correspondence on the
single-camera captures from the proposed iPhone dataset. In Figure and , we provide
additional qualitative results of the inferred correspondence on both the Nerfies-iPhone dataset and
the proposed 1Phone dataset. Note that all models are trained with additional regularizations on the
proposed iPhone dataset except NSFF.



BROOM (2 = 2.57, w = 60.4) CURLS (2 = 0.90, w = 118.7)

Method mPSNR*T mSSIMt mLPIPS| PCK-T?t mPSNR1 mSSIM?T mLPIPS| PCK-Tt

T-NeRF 20.04(20.17)  0.344(0.257) 0.590(0.624) - 21.86(21.75)  0.677(0.597) 0.284(0.341) -

NSFF 20.36(20.46) 0.335(0.247) 0.776(0.813) 0.119  18.74(18.85) 0.616(0.531) 0.378(0.423) 0.212

Nerfies 19.34(19.51)  0.293(0.202) 0.294(0.327)  0.460 23.28(23.03) 0.707(0.630) 0.220(0.26¢ 0.782

HyperNeRF 19.04(19.23) 0.288(0.197) 0.279(0.313)  0.471  23.13(22.98) 0.700(0.625) 0.220(0.266) 0.838
TAIL (2 = 1.31, w = 28.6) TOBY-SIT (2 = 1.28, w = 26.4)

Method mPSNR* mSSIMt mLPIPS| PCK-Tf mPSNR? mSSIM*+ mLPIPS| PCK-Tt

T-NeRF 22.56(22.11) 0.460(0.385) 0.305(0.365) - 18.53(18.53)  0.428(0.330)  0.421(0.471)

NSFF 21.94(21.72) 0.461(0.388) 0.522(0.579) 0.323 18.66(18.65) 0.429(0.329) 0.600(0.634) 0.666

Nerfies 21.46(21.17) 0.385(0.305) 0.213(0.261) 0.645 18.45(18.41) 0.423(0.326) 0.249(0.307) 0.914

0.3

32
HyperNeRF 21.54(21.13) 0.382(0.301) 0.218(0.263)  0.623  18.40(18.33) 0.422(0.324) 0.242(0.300)  0.883

3DPRINTER (2 = 1.22, w = 59.4) CHICKEN (2 = 1.52, w = 33.5)
Method mPSNR?T mSSIM+ mLPIPS| PCK-Tt mPSNR? mSSIMT mLPIPS| PCK-Tt

T-NeRF 19.69(18.60) 0.665(0.591) 0.205(0.238) - 25.54(2

NSFF 16.89(16.26)  0.526(0.426) 0.443(0.492) 0.797  21.47(20.72) 0.671(0.619) 0.290(0.325) 0.604
Nerfies 19.67(18.81) 0.661(0.588) 0.148(0.175) 0.998  23.78(22.71) 0.784(0.742) 0.114(0.142)  0.978
HyperNeRF 19.58(18.73)  0.656(0.583) 0.147(0.175)  0.994  24.90(23.88) 0.792(0.753) 0.101(0.125) 1.000

A1) 0.802(0.764) 0.131(0.158) -

PEEL-BANANA (€2 = 0.33, w = 33.8)

Method mPSNR? mSSIM? mLPIPS| PCK-T{
T-NeRF 22.64(22.07) 0.787(0.721) 0.142(0.185) -
NSFF 18.68(18.62) 0.613(0.530) 0.293(0.335)  0.233
Nerfies 19.97(19.85) 0.677(0.609) 0.161(0.206)  0.514

HyperNeRF 21.34(21.08) 0.707(0.641) 0.135(0.173) 0.540

Table A.4: Per-scene breakdowns of the quantitative results on the Nerfies-HyperNeRF dataset.
Numbers in gray are calculated without using the co-visibility mask. All models are trained under
the non-teleporting setting.
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Figure A.2: Visualizations of the multi-camera captures after time synchronization from the
proposed iPhone dataset. In each row, we visualize the frames from both the training camera and
two testing cameras at two time steps. We intentionally move the training camera in front of each
test camera at certain times to ensure that our input sequence covers most of the scene in evaluation.
When a particular test frame depicts the training camera, we exclude the test frame (denoted as
“Excluded”). For the WHEEL sequence in the last row, we only employ the right test camera due to
limited space to set up the multi-camera rig.
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Figure A.3: Visualizations of the depth filtering during data preprocessing of the proposed
iPhone dataset. The depth sensing is particularly noisy around the object edges, which we filtered
out by Sobel filter [215]. We visualize the re-projected RGB image with the original (2" column)
or filtered depth (3™ column) from the captured view to the first view in each sequence at the last
two columns. Without filtering (4" column), there are erroneous floaters which cause too much
noise for training supervision. With filtering (last column), we have a crisper depth map which is
used for improving the state-of-the-art methods.



Figure A.4: Visualizations of the keypoint annotation during data preprocessing of the pro-
posed iPhone dataset. We manually annotate keypoints for correspondence evaluation. For
sequences of humans and quadrupeds (dogs or cats), we annotate based on the skeleton defined
in the COCO challenge [? 6] and StanfordExtra [2 | 7]. For sequences that focus on more general
objects, we manually identify and annotate 5 to 15 trackable keypoints across frames.
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Figure A.5: Additional qualitative results on the impact of effective multi-view on the Nerfies-
HyperNeRF dataset. {)/w metrics of the input sequence are shown on the top-left. We compare
the existing camera teleporting setting and our non-teleporting setting. For every two rows, we
show the results trained with and without camera teleportation in the first and second rows. Two
settings use the same set of co-visibility masks computed from common training images.



APPLE (2 = 0.75, w = 3.8) BLOCK (2 = 0.04, w = 11.5)

Method mPSNR7 mSSIMT mLPIPS| PCK-TT mPSNR?t mSSIM?T mLPIPS| PCK-Tt
T-NeRF 17.43(15.98)  0.728(0.375) 0.508(0.598) - 17.52(17.15)  0.669(0.521)  0.346(0.449) -
NSFF 17.54(16.50)  0.750(0.432) 0.478(0.548) 0.599  16.61(16.34) 0.639(0.494) 0.389(0.482) 0.274
Nerfies 17.64(16.34) 0.743(0.411) 0.478(0.563)  0.318 17.54(17.35) 0.670(0.528) 0.331(0.42 0.216
HyperNeRF  16.47(16.07) 0.754(0.425) 0.414(0.505) 0.132 14.71(14.93)  0.606(0.460) 0.438(0.517) 0.180
PAPER-WINDMILL (2 = 0.38, w = 10.7) SPACE-OUT (2 = 0.13, w = 6.4)
Method mPSNR?T mSSIM? mLPIPS| PCK-T?t mPSNRT mSSIM?T mLPIPS| PCK-T1
T-NeRF 17.55(17.55) 0.367(0.349) 0.258(0.268) - 17.71(17.04)  0.591(0.521) 0. 377( 138) -
NSFF 17.34(17.35)  0.378(0.362) 0.211(0.218) 0.113 17.79(17.25)  0.622(0.560)  0.303(0.3! 0.812
Nerfies 17.38(17.39) 0.382(0.366) 0.209(0.215) 0.107 17.93(18.10) 0.605(0.546) 0.320(0.369) 0.859
HyperNeRF 14.94(14.98) 0.272(0.254) 0.348(0.361) 0.163  17.65(17.79) 0.636(0.578) 0.341(0.3 0.598
SPIN (2 =0.15,w = 17.9) TEDDY (2 = 0.20, w = 7.6)
Method mPSNR* mSSIM T mLPIPS| PCK-Tf mPSNR?} mSSIM*t mLPIPS| PCK-T{
T-NeRF 19.16(18.17)  0.567(0.441) 0.443(0.49 - 13.71(13.32) 0.570(0.331) 0.429(0.565) -
NSFF 18.38(16.97) 0.585(0.445) 0.309(0.380) 0.177  13.65(12.91) 0.557(0.302) 0.372(0.508) 0.801
Nerfies 19.20(18.59) 0.561(0.436) 0.325(0.377)  0.115  13.97(13.91) 0.568(0.327) 0.350(0.479)  0.775
HyperNeRF 17.26(16.52) 0.540(0.414) 0.371(0.437) 0.083 12.59(12.78)  0.537(0.304) 0.527(0.( 0.291
WHEEL (2 = 0.03, w = 58.5)

Method mPSNR?T mSSIM? mLPIPS| PCK-T{

T-NeRF 15.65(14.42) 0.548(0.405) 0.292(0.363) -

NSFF 13.82(13.19) 0.458(0.312) 0.310(0.366)  0.394

Nerfies 13.99(13.35) 0.455(0.307) 0.310(0.366) 0.408

HyperNeRF 14.59(13.31) 0.511(0.359) 0.331(0.402) 0.346

Table A.5: Per-scene breakdowns of the quantitative results on the proposed iPhone dataset.
Numbers in gray are calculated without using the co-visibility mask.

Method CREEPER BACKPACK HANDWAVY HARU MOCHI PILLOW SRIRACHA MEAN
NSFF [4] 0.560 0.269 0.178 0.699 0.624 0.154 0.616 0.443
Nerfies++ 0.708 0.329 0.685 0.942 0.908 0.575 0.737 0.698
HyperNeRF++ 0.702 0.260 0.708 0.817 0.891 0.602 0.617 0.657

Table A.6: Additional quantitative results of the PCK-T evaluation on the single-camera
captures from the proposed iPhone dataset. The correspondence evaluation is applicable when
multi-camera validation is not available. All numbers are computed with o = 0.05.
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Figure A.6: Additional qualitative results on the Nerfies-HyperNeRF dataset without camera
teleportation. () /w metrics of the input sequence are shown on the top-left.
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Figure A.7: Additional qualitative results on the multi-camera captures from the proposed
iPhone dataset. (2 /w metrics of the input sequence are shown on the top-left. The models shown
here are trained with all the additional regularizations (+B+D+S) except NSFFE.
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Figure A.8: Additional qualitative results on the single-camera captures from the proposed
iPhone dataset. (2 /w metrics of the input sequence are shown on the top-left. The models shown
here are trained with all the additional regularizations (+B+D+S) except NSFF. We re-render the
scene from the first viewpoint in each sequence. Note that there are no ground-truth validation
frames.



3D PRINTER

0.15

SPIN

& . p ; I ¥
Training view Test view T-NeRF++ NSFF [4 HyperNeRF

Figure A.9: Additional qualitative results on the full image rendering on both the Nerfies-
HyperNeRF dataset and the proposed iPhone dataset. (2 /w metrics of the input sequence are
shown on the top-left. All models are trained under non-teleporting setting. For every two rows, we
show the results with and without applying co-visibility mask. All models are not able to reconstruct

the unseen regions.
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Figure A.10: Additional qualitative results of keypoint transferring on the Nerfies-HyperNeRF
dataset without camera teleportation. ()/w metrics of the input sequence are shown on the
top-left. All models are trained under non-teleporting setting. Transferred keypoints are colorized
by a heatmap of end-point error, overlaid on the ground-truth target frame.
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Figure A.11: Additional qualitative results of keypoint transferring on the proposed iPhone
dataset. ()/w metrics of the input sequence are shown on the top-left. All models are trained
under non-teleporting setting. Transferred keypoints are colorized by a heatmap of end-point error,
overlaid on the ground-truth target frame.



95

Appendix B

Shape of Motion: 4D reconstruction from a
single video

B.1 Outline

In this Appendix, we describe in detail the following:

* Additional preprocessing details in Section

* Additional training details in Section

* Initialization details in Section

* Training details including optimization and loss functions in Section
* Additional evaluation details in Section

* Visualization of Kubric experiment in Section

¢ NVIDIA dataset evaluation in Section

B.2 Additional preprocessing details

Obtaining camera poses. Our method takes video sequences with known camera poses as input.
To obtain camera poses for in-the-wild videos with moving objects, we adopt one of these two
approaches depending on the type of input camera motion: (1) if there is sufficient camera motion
parallax, we use COLMAP [145]’s SfM pipeline to obtain the camera poses and the sparse point
clouds for the static regions, where we exclude keypoints in the foreground masks during the feature
extraction stage. The foreground masks are generated using Track-Anything [ 14 1], a flexible and
interactive tool for video object tracking and segmentation. The static point clouds produced by
COLMAP [14£] can then be used for aligning the affine-invariant monocular depth maps from
Depth Anything [135]. (2) If the video is captured by a roughly stationary camera (small interframe
camera baseline), COLMAP tends to fail catastrophically. Initial results on DAVIS use camera poses
estimated with Unidepths [14”] and DroidSLAM [!43]. Specifically we first employ Unidepths to
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predict metric depth and camera intrinsics. Using these predictions, we then estimate camera poses
with DroidSLAM.

Aligning monocular depth maps. The dispairty output from Depth Anything [!3%] model is affine-
invariant, so we need to align them with the cameras and reconstruction dervied from COLMAP or
DroidSLAM. To do so, we solve for a per-frame global scale and shift parameters that minimizes ¢
distance between the monocular disparity from Depth Anything and the disparity derived from SfM
sparse point clouds or depth outputs from DroidSLAM.

Computing long-range 2D tracks. We utilize TAPIR [97] to compute long-range 2D tracks for a
video. While the ideal scenario would involve computing full-length tracks for every pixel in every
frame (i.e., exhaustive pairs of correspondences), this approach is prohibitively computationally
expensive. We therefore only compute full-length tracks for pixels located on a grid for foreground
moving objects in each frame. In our experiment, we set grid interval to 4 (i.e., sampling a query
point every 4 pixels). Due to our low-dimensional motion representation, we observe that our method
can effectively operate with semi-dense 2D tracks without significant performance degradation.
During training, we filter out correspondences that TAPIR predicts with high uncertainty or those
that are occluded.

B.3 Additional training details

B.3.1 Initialization details

During initialization stage, we first solve a Procrustes alignment problem for each cluster b, where
we estimate SE(3) transformation between point sets {Xo}, and {X,}, forall 7 = 0,...,7 .
We exclude point pair when either one of them is occluded, and weight the point pair using the
uncertainty score predicted by TAPIR [97] when solving Procrustes. This process produces the
initialization for the set of basis functions {T(()lit}le. To initialize the motion coefficient w® for
each track, we compute the distance between the 3D location of the track in the canonical frame and
the 3D location of each cluster center, and initialize each of the corresponding motion coefficient
value to be exponentially decay with the distance.

We then optimize the p1o, w®), and set of basis functions {Tgit B | to fit the observed 3D
tracks lifted by monocular depths and 2D tracks. Specifically, we enforce an ¢; loss between each
of our predicted 3D track and its corresponding observed 3D track. In addition, we enforce the
motion bases to be temporally smooth by adding an /5 regularization on the acceleration of both
the quaternion and the translation vector. We optimize the parameters using Adam [220] optimizer
for 2k steps, where the initial learning rates for jto, w®, and {T\”,,}B are 1 x 1073, 1 x 1072
and 1 x 1072, respectively. All learning rates are exponentially decayed to % of their initial values
during the optimization process.
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B.3.2 Training details

Gaussian initialization. The aforementioned initialization stage gives the initialization of the mean
of each Gaussian in the canonical frame. We follow the original 3D-GS [123] paper to initialize the
scale s, rotation Ry, and opacity o of each Gaussian in the canonical frame. The color c of each
Gaussian is initialized as the pixel color at the projected location in the canonical frame.

Optimization. We use Adam [?20] Optimizer to optimize all scene parameters. The learning rates
for Gaussian’s canonical mean /i, opacity o, scale s, rotation R (parameterized as quaternion)
and color c are set to 1.6 x 1074, 1 x 1072, 5 x 1073, 1 x 1073, and 1 x 1072, respectively. The
learning rates for the SE(3) motion bases and the motion coefficients are set to 1.6 x 10~* and
1 x 1072 respectively. During each training iteration, we randomly select a batch of 8 query frames.
For each query frame, we render the color, mask, depth, and the 3D track locations for 4 randomly
selected target frames.

Loss weights and details. Our first set of loss functions enforces our rendered results to match the
per-frame pixelwise color, depth, and masks inputs. The coefficients for depth loss Agepn and mask
loss Amask are set to 0.5 and 1.0, respectively. We additionally add regularization to the estimated
surface geometry via a depth gradient loss and per-Gaussian scale penalty. In particular, We add a
pixelwise ¢; loss of spatial gradient between the depth renderings D, and corresponding reference
depth maps D, with a weight set to 1.0. In addition, we enforce the foreground Gaussian to be
isotropic by incorporating a regularization term that penalizes standard deviations of the scale s
along all three axes.

Our second set of losses supervise the motion of the Gaussian. The weights for the 2D tracking
loss Agack-24 and the track depth 10SS Ayack-depn are set to 2.0 and 0.1, respectively. The Lick-2q
is applied on normalized pixel coordinates (i.e., divided by the maximum image edge length).
For the rigidity 10ss Lygigiy, We use foreground part masks from SAM automatic segmentation
independently on each frame. For each training iteration, we sample 4 part masks for each query
frame. For each mask, we sample 32 center points and find their 16 nearest neighbors within the
mask. We compute the 3D track locations for all point samples in 4 target frames, and regularize
the distances between the center points and their neighbors in the target frames to be similar to
their distances in the query frame. We let Ajgiaiy = 0.1. We weight the neighbor distances with
an exponential kernel exp(—f||z — Z||) with § = 2, where 7 is the center point and x is one of
its neighbors. We additionally add motion smoothness regularization that enforces an ¢, loss on
acceleration of the motion translation bases and motion quaternion bases, with a weight set to 0.1
and an /5 loss on the acceleration along z-axis (in the camera frame) of the yi;, both through finite
difference approximation.

Training with 2D Gaussian Splatting (2DGS). To enhance scene geometry estimation, we replace
3D Gaussian Splatting with 2D Gaussian Splatting [147]. Specifically, we employ an off-the-shelf
monocular normal estimator [2” 1] to generate monocular normal maps, N , which are then used
to supervise both the rendered normals and the normals derived from the rendered depth. The
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supervision is achieved through the following losses:

L, = Zwi(l —nI'N) (B.1)

Ly=1-NT'N (B.2)

where the summation is over the splats intersect the current ray, w; represents the blending weight
for ¢-th splat, and n,; denotes the normal of i-th splat. Here, /V represents the normal derived from
rendered depth map. This supervision ensures that the orientation and depth of the 2D splats are
aligned with the monocular normal prediction.

B.4 Additional evaluation details

In our evaluation, since the synthetic Kubric dataset [ 46] comes with groundtruth camera poses,
we directly use the groundtruth camera poses for our experiments. For iPhone dataset [ 30], we
observed that the provided camera poses from ARKit are not accurate, we thus perform an additional
global bundle adjustment using COLMAP [145] to refine the camera poses while fixing the camera
intrinsics. To maintain metric scale after refinement, we compute a global SIM(3) transformation
for each scene to align the refined camera poses with the original metric-scale camera poses. This
allows us to evaluate 3D tracking performance in metric scale.

B.S5 Visualization of Kubric experiment

We find qualitatively that the optimized motion coefficients of the scene representation are coherently
grouped with each moving object in the scene. We demonstrate this in Figure 3.6, where we show
the first 3 PCA components of our optimized motion coefficients of evaluation scenes.

B.6 NVIDIA dataset evaluation

We conduct experiments on seven scenes from the NVIDIA Dynamic Scenes dataset [ (], following
the evaluation protocol of Dynamic Gaussian Marbles [151]. Specifically, we use video footage
from the static camera 4 for training and employ videos from cameras 3, 5, and 6 for evaluation.
For consistency with Dynamic Gaussian Marbles [151]’s experiments, we use images at half-
resolution for all seven experiments, though our method is compatible with high-resolution images
as well. Camera poses are estimated using COLMAP [145], and depths are predicted with Depth
Anyting [ 3%] and subsequently aligned with the COLMAP point cloud. The quantitative results
reported in this paper differ from those in DGM [151]. Specifically, we compute covisibility masks
between training and test views and apply them during evaluation, whereas DGM [ !5 1] inpaints
unobserved regions in test views for evaluation. This difference in evaluation procedure accounts
for the variation in reported performance. We will make the covisibility masks publicly available to
facilitate future research.
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Appendix C

Stable Virtual Camera: Generative view
synthesis with diffusion models

C.1 Outline

In this Appendix, we describe in detail the following:

* Broader impact and limitations in Section

» Related work in Section

* Benchmark datasets and evaluation setup in Section
* Additional experimental results in Section

* Additional qualitative results in Section

» Additional quantitative results in Section

* Discussion on samples versus 3DGS, padding strategies, and long-trajectory artifacts in
Section

C.2 Broader impact and limitations

Broader impact. SEVA significantly advances immersive 3D experiences by synthesizing realistic
and temporally consistent views from sparse camera inputs, addressing key limitations in NVS.
Inspired by James Cameron’s pioneering Virtual Camera technology—which enabled filmmakers to
intuitively navigate virtual environments and visualize precise camera trajectories—our generative
Al-driven model similarly allows users to create intricate, controllable camera paths without the
typical complexity of dense view captures or explicit 3D reconstructions. By generalizing across
arbitrary viewpoint changes and enabling temporally smooth rendering without NeRF distillation,
our approach simplifies the NVS pipeline, enhancing accessibility for content creators, developers,
and researchers. This facilitates applications ranging from virtual cinematography and gaming to
digital heritage preservation, substantially broadening the usability and scalability of NVS.
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Limitations. The performance of SEVA is constrained by the scope of its training data, resulting
in reduced quality for certain types of scenes. Specifically, input images featuring humans, animals,
or dynamic textures (e.g.,, water surfaces) typically lead to degraded outputs. Additionally, highly
ambiguous scenes or complex camera trajectories pose challenges; for instance, trajectories that
intersect with objects or surfaces may cause noticeable flickering artifacts. Similar issues arise
for extremely irregularly shaped objects or when target viewpoints significantly diverge from the
provided input viewpoints.

C.3 Related work

Novel view synthesis. While traditional NVS has been studied for nearly several decades, it has
recently achieved remarkable success with the help of techniques such as NeRF [0, ] and
diffusion models [171, ]. Using these techniques, there are broadly two ways of generating
novel views : 1) estimate a 3D representation using multiple sparse input views, then regress the
novel views from this intermediate representation, 2) directly estimate the novel views from the
sparse input views, either in a single shot in a feed-forward manner, or in multiple sampling steps
using diffusion models.

Feed-forward models. Approaches like LFNR [224] and LVSM [162] directly generate target
views and leverage data-driven learning to capture 3D inductive biases. While often efficient, these
methods struggle with the inherent diversity of generative NVS, limiting their capacity to model
multiple plausible solutions. In contrast, our approach frames generative NVS through a diffusion
perspective, enabling us to sample diverse, plausible solutions during inference, thereby addressing
ambiguities and enhancing generation capacity.

Intermediate representation models. Techniques such as NeRF [30] and Gaussian Splat-
ting [ 1 25] have made significant progress on per-scene optimization from input views by building
3D representations efficiently. Several works show that these representations can then be used
to regress novel views. pixelNeRF [155] builds a NeRF from multiple input views; Splatter Im-
age [225], pixelSplat [166], and MV Splat [167] build a 3D representation using Gaussian Splatting;
LRM [226] builds a triplane representation. However, these optimization-based methods cannot
creatively synthesize missing regions, and rely on tens, if not hundreds, of posed input images
which limits their practicality in real-world applications.

Diffusion-based models. Our work falls within this category, where target novel views are
generated in multiple steps through a denoising diffusion process [1 71, ]. As mentioned earlier,
existing diffusion-based methods can be divided into two main types: image models and video
models.

Image models are designed to synthesize distant viewpoints [227, , ]. However, these
early practices only generate one viewpoint at a time, and lack multi-view consistency, often
resulting in jittery and inconsistent samples when generating along a camera trajectory. Works
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such as MVDream [!76], SyncDreamer [”30] and HexGen3D [”3 1] generate multiple fixed views
simultaneously. However, these models only generate specific views given a conditional image, not
arbitrary viewpoints.

To obtain consistent 3D objects, these models necessitate NeRF distillation, either through Score
Distillation Samling (SDS) [ 156, ] or directly upon completely sampled images [ 5%, ].

Video models can produce smooth video sequences by maintaining certain constraints relative
to the input views [169]. However, they are generally limited to smaller camera motions due to
the natural frame rate in video training. Some works use video diffusion models to generate 4D
scenes [237]. But in those works, the video diffusion models do not contribute to the consistency of
the 3D object itself, that part is handled by image-based diffusion models such as MVDream.

C.4 Benchmark

We collect 10 commonly used datasets to benchmark NVS, encompassing a diverse range of scene
distributions and complexities, shown in Table

Small-viewpoint versus large-viewpoint NVS. In Section , we split NVS tasks into two
categories: small-viewpoint and large-viewpoint NVS based on the disparity between I'™ and
I'*". Formally, for each target view, we consider the minimal distance between the CLIP [157]
feature of that view and those of all input views. Averaging across all target views yields the CLIP
distance, Dcryp(I). Splits with Depp(I) <= 0.11 are grouped as small-view NVS, while those
with Depip(I) > 0.11 are grouped as large-view NVS. We concrete in Table a detailed task
setup including the choice of datasets and splits (depending on which scenes from each dataset and
which views from each scene are used).

Choice of scenes. We follow the choices of scenes for splits adopted from previous works. For
our split, we use all scenes from the dataset without specification.
For the Tanks and Temples dataset, the 2 chosen scenes in our (O) split are TRAIN and TRUCK.
For the DL3DV-140 dataset, the 10 test scenes we choose in O split are:
* 165F5AF8BFE32F70595A1C9393A6E442ACF7AF 019998275144F605B89A306557
e 341B4FF3DFD3D377D7167BD81F443BEDAFBFF0O 03BF04881B99760FCOAEB69510
* 3BB3BB4D3E871D79EB71946CBAB1E3AFC7A8E3 3A661153033F32DEB3E23D2ES2
* 3BB894D1933F3081134AD2D40E54DESF0636BD 8B502B0A8561873BB63BODCESS
e 9E9AB9AEOGFEDO6DOE2F4749B4B005S9F35CA97F 848CEDC4A14345999E746F 7884
¢ CD9CY981EEB4A9091547AF19181B382698E9DI9E EEOA838C7C9783A8A268AFOAEE
* D4FBEBAO168AF8FDDB2FC695881787AEDCD62F 477C7TDCEC9EBCA7B8594BBDY5B
* E78F8CEBD2BD93D960BFAEAC18FACOBB2524F1 5c44288903CD20B73E599E8A81
e ED16328235C610F15405FFO08711EAF15D88A05 03884F3A9CCB5SAOEE69CB4ACBS
e F71AC346CDOFC4652A89AFB37044887EC3907D 37D01D1CEBOAD28E1A780D8ED3.
For the WildRGBD dataset, the 20 test scenes we choose in O split are: For the WildRGBD dataset,
the 20 test scenes we select for the O split are:



type split #scene (I"P 1%®) ~ )V P Dcrrp(1)

Small-viewpoint NVS

OmniObject3D [185] (<] O (dynamic orbit) 308 v 3 0.11

GSO [186] (<] O (dynamic orbit) 300 v 3 0.11

D[167] 128 v 1 0.09

1 008

RealEstatel0K [101] 4 R 15 10 v 3003

P[166] 6474 v 2 0.04

V [160] 10 v 2 011

1 004

LLFE [187] A R[154] 8 4 3 0.03

1 007

DTU [155] A R [158] 15 v 3006

R[158] 20 v 3 0.09

CO3D [157] A V[160] 10 v 2 0.09

. O, (1/3 orbit) 3007

WildRGB-D [190] A 5 il orio 20 v 6 011

Mip-NeRF360 [19] A R[15%] 9 X 6 0.11

0 10 v 6 0.10

DL3DV-140 [197] ' L[16%] 140 v 32 005

V[160] 22 v 2 010

Tanks and Temples [193] £ L68] ) Y 2 010
Large-viewpoint NVS

OmniObject3D [185] & S[16Y] (dynamic orbit) 308 v 1 0.16

GSO [186] @ S[169] (dynamic orbit) 300 v 1 0.18

CO3D [189] A R[159] 20 v 1 015

. . 1 019

WildRGB-D [190] A Oy, (full orbit) 20 v 3 014

_ 1 019

Mip-NeRF360 [49] A R [158] 9 X 3013

1 021

DL3DV-140 [197] A o) 10 v 3 o

1 021

3 0.8

Tanks and Temples [ 193] A (0] 2 v 6 0.16

9 0.4

Table C.1: Statistics for NVS benchmark. We consider 10 publicly available datasets commonly
used for evaluating NVS, encompassing both object-level and scene-level data. Views from Mip-
NeRF360 [49] derive from several disjoint captures following different camera trajectories, thus all
views (I" T'") ~ 7. P denotes the number of input views. Depending on the disparity between I'"P
and I'®", we group NVS tasks into small-viewpoint NVS (top panel) where target views are similar
to input views and large-viewpoint NVS (bottom panel) where target views are more different to
input views.
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dataset 003D GSO REI0K LLFF  DTU CO3D  WRGBD Mip360 DL3DV T&T
Methed “Glit 0 0 DUI6AVICOIPII66] R[5 RIS R[5 VIIGOIR[I55] O, O R[I55] O L[I65]V[160]L[I65]
P 3 3 1 1 2 1 3 1 3 1 3 1 3 3 6 6 6 32 1 3
Regression-based models
Long-LRM [168] - - - - - - - - - 0262 - 0.375

'
—

0.2540.142 0.542 4 0.5040.643 0.556 0.527 0.425 0.519 0.568

MVSplat [167]  0.411 0.387 0.224 0.237 0.128 0.254 0.142 0.542 0.497 0.386 0.310 0.634 0.6
DepthSplat [194] 0.404 0.372 0.217 0.245 0.119 0.236 0.177 0.530 0.465 0.369 0.304 0.618 0.603 0.499 0.530 0.534 0.481 0.404 0.462 0.528

LVSM [162] - - 0.098 - - - - -
Diffusion-based models
MotionCtrl [195] - - 0500 0.386 - - - - - - - 0443 - - - - - - 0.473
4DIM [1673] - - 0302 - - - - - - - - - - - - - - - -
ViewCrafter [160] 0.427 0.379 0.220 0.178 0.203 0.287 0.164 0.620 0.435 0.485 0.272 0.324 0.513 0.324 0.639 0.464 0.558 - 0.283 -
SEVA 0.049 0.041 0.194 0.231 0.061 0.308 0.073 0.389 0.181 0.316 0.158 0.318 0.278 0.2150.237 0.319 0.232 0.155 0.354 0.236
(a) LPIPS|
dataset OO3D GSO RE10K LLFF DTU CO3D WRGBD Mip360 DL3DV T&T

Method R T

0T split O O DIIAVI6OIPTI6o] R[ISE] - REISE] - RIISE] VIIOOIR[ISE] Oe  Op R[ISS] O LIIGE]V[I60]L[I68]

P 3 3 1 1 2 1 3 1 3 1 3 1 3 3 6 6 6 32 1 32

Regression-based models
Long-LRM [168] - - - - - - - - - - - - - - - 0775 - 0.590
MVSplat [167]  0.554 0.621 0.788 0.769 0.869 0.812 0.857 0.283 0.358 0.576 0.624 0.403 0.370 0.4050.368 0.312 0.487 0.512 0.394 0.314

DepthSplat [194] 0.636 0.689 0.801 0.745 0.887 0.820 0.824 0.299 0.396 0.601 0.638 0.429 0.402 0.4360.417 0.324 0.513 0.564 0.413 0.359

LVSM [167] - - 0.906 - - - - - -

Diffusion-based models

MotionCtrl [195] - - 0267 0.587 - - - - - - - 0502 - - - - - - 0.384

4DIM [163] - - 0463 - - - - - - - - - - - - - - - -
ViewCerafter [160] 0.538 0.647 0.792 0.798 0.710 0.806 0.830 0.146 0.454 0.542 0.671 0.641 0.483 0.4650.376 0.354 0.469 - 0.563 -
SEvA 0.935 0.942 0.615 0.693 0.847 0.700 0.892 0.384 0.602 0.652 0.750 0.585 0.647 0.670 0.646 0.395 0.546 0.661 0.437 0.505

(b) SSIM*

Table C.2: LPIPS| (top) and SSIM1 (bottom) on small-viewpoint set NVS. For all results with
P =1, we sweep the unit length for camera normalization due to the model’s scale ambiguity. O,
and O;, denote the easy and hard split of our split. Underlined numbers are run by us using the
officially released code.

* BALL/SCENE_563

* APPLE/SCENE_234

e MICROWAVE/SCENE_143
* SCISSOR/SCENE_489

e BUCKET/SCENE_294

* KEYBOARD/SCENE_092
* SHOE/SCENE_868

e KETTLE/SCENE_399

e CLOCK/SCENE_524

* HAT/SCENE_039

* BACKPACK/SCENE_264
* SCISSOR/SCENE_958

e TRUCK/SCENE_232

* HANDBAG/SCENE_575



dataset OO3D GSO CO3D WRGBD Mip360 DL3DV T&T
split  S[I69]S [169]R [158] On R[15%] O o
P 1 1 1 1 3 1 3 1 3 1 3 6 9

SV3D [169] 0.158 0.140 - - - - - - - - - - -
DepthSplat [194] 0.610 0.543 0.756 0.7320.5880.6910.4910.5800.4050.7740.7060.6110.487
CAT3D [159] - - - - - - 0488 - - - - - -
ViewCrafter [160] 0.634 0.559 0.789 0.7750.6030.7230.5400.6160.5760.7550.6710.6040.546

Method

SEVA 0.160 0.137 0445 0.4230.2890.5730.3640.4840.3160.5710.4630.3870.328
(2) LPIPS]
dataset 003D GSO CO3D WRGBD Mip360 DL3DV T&T
Method =i STico1S[I60IR[15¢]  On R[5 O 0
P 1 1 1 3 1 3 1 3 1 3 6 9
SV3D [169] 0850 0880 - -

DepthSplat [194] 0.549 0.612 0.385 0.2340.3350.2060.2910.3490.4520.3040.3150.3260.367
CAT3D [159] - - - - - - 029 - - - - - -

ViewCrafter [160] 0.463 0.575 0.277 0.2250.3210.1990.2640.3230.4000.3120.3280.3370.343
SEVA 0.857 0.873 0.536 0.5050.6030.2820.3770.3600.4800.3420.3850.4270.452

(b) SSIM 1

Table C.3: LPIPS/ (top) and SSIMT (bottom) on large-viewpoint set NVS. For all results with
P =1, we sweep the unit length for camera normalization due to the model’s scale ambiguity.
Underlined numbers are run by us using the officially released code.

small-viewpoint large- small-viewpoint large-
Method p viewpoint ~ Method p viewpoint
RE10KLLFF DTU CO3D Mip360 RE10KLLFF DTU CO3D Mip360

ZipNeRF [196] 0.332 0.3730.383 0.652 0.705 ZipNeRF [1906] 0.774 0.5740.601 0.496 0.271
ZeroNVS [164] 0.422 0.5120.223 0.566 0.680 ZeroNVS [164] 0.675 0.3590.716 0.581 0.316
ReconFusion [158] 0.144 0.203 0.124 0.398 0.585 ReconFusion [158] 0.910 0.724 0.875 0.662 0.358

CAT3D [159] 0.132 0.1810.121 0.351 0.515 CAT3D [159] 0.917 0.7310.844 0.666 0.377
SEVA 0.078 0.164 0.107 0.256  0.435 SEVA 0.961 0.7350.867 0.702 0.454
(a) LPIPS| (b) SSIM?

Table C.4: LPIPS| (top) and SSIM1 (bottom) on 3DGS renderings for set NVS. Results are
reported on the ReconFusion [15%] split with P = 3.
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. small-viewpoint large-viewpoint
split P £ p

Method V [160] O
dataset RE CO3D T&T RE DTU WR DL T&T

MotionCtrl [195] 0.386 0.443 0.473 - - - - -
DepthSplat [194] 0.224 0.532 0.415 0.134 0.253 0.452 0.572 0.685
ViewCrafter [160] 0.178 0.283 0.324 0.120 0.187 0.346 0.566 0.674

SEVA 0.231 0.318 0.353 0.079 0.159 0.284 0.329 0.514
SEVA (+temp.) 0.228 0.312 0.356 0.078 0.156 0.280 0.328 0.510

(a) LPIPS|
split small-viewpoint large-viewpoint
Method VIio0] O

dataset RE CO3D T&T RE DTU WR DL T&T

MotionCtrl [195] 0.587 0.502 0.384 - - - - -
DepthSplat [194] 0.723 0.486 0.408 0.844 0.723 0.447 0.539 0.497
ViewCrafter [160] 0.798 0.641 0.563 0.868 0.739 0.464 0.523 0.456

SEVA 0.693 0.585 0.437 0.890 0.756 0.613 0.475 0.363
SEVA (+temp.) 0.695 0.590 0.436 0.891 0.760 0.616 0.476 0.369

(b) SSIM+

Table C.5: LPIPS] (top) and SSIM1 (bottom) on trajectory NVS. For the V [160] split, P =1
with unit length swept; for the O split, P = 3. RE, WR, and DL denote RE10K, WRGBD, and
DL3DV, respectively. Underlined numbers are run by us using the officially released code.

PINEAPPLE/SCENE_182

TRAIN/SCENE_033

e REMOTE_CONTROL/SCENE_453

* BOWL/SCENE_673

e TV/SCENE_062

Full test scenes are chosen for the remaining datasets.

Choice of input and target views. We follow the same setup for splits adopted from previous
works, by using the same set of input and target views. For split defined ourselves, we detail the
choice of views as below. For the WildRGB-D [ 90] dataset, which consists of scenes captured
while orbiting around an object, we define two splits with different difficulty levels. O, represents
the easy set, where each scene is trimmed to one-third of the original sequence (i.e.,, approximately
120 degrees of rotation). In contrast, Oj, corresponds to the hard set, using the full original sequence
(i.e.,, approximately 360 degrees of rotation). We first uniformly subsample 21 frames from the
scene, and randomly choose P frames as input views with the remaining frames as target views. For
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)

Figure C.1: 3DGS versus samples. The model generates consistent renderings that closely resemble
those from 3DGS [ 23], with minimal perceptual differences.

each scene from DL3DV-140 [192] and Tanks and Temples [ | 93] datasets, we selected target frames
by using every 8" frame of the original sequence. For the remaining frames, we applied K -means
clustering (K = 32) on a 6-dimensional vector formed by concatenating the camera translation and
the unit vector of the camera direction.

C.5 Additional experiments

C.5.1 Qualitative results

We provide additional single-view conditioning sampling results with a diverse set of camera motions
and effects on a variety of image prompts: a text-prompted object-centric scene (Figure ('.5), a
text-prompted scene (Figure (".4), a real-world object-centric scene (Figure ('.5), and a real-world
scene (Figure (".0). SEVA demonstrates strong generalization, adapting robustly across a wide range
of scenarios.

C.5.2 Quantitative results

We provide additional quantitative evaluation results of our model against baselines on set NVS and
trajectory NVS, measured using LPIPS [197] and SSIM [“], in Tables , , , and

C.5.3 Discussion

Samples versus 3DGS. We compare our samples to their 3DGS distillation on the O split of
DL3DYV, shown in . First, we note that our samples contain plausible hallucinations when
uncertainty is high (first row, building on the right). Second, we note that our 3DGS renderings
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Figure C.2: Padding. Padding the last elements within one forward reduces artifacts compared to
changing T'.

remain sharp and are close to the samples. These results suggest that our samples are 3D consistent
enough.

Padding 7" when P + () < T. We analyze the effect of different padding strategies when
P+ @ < T in Figure (2. We observe that zero-shot generalization of 7" to P + () without padding
leads to abnormal color overflows. This is in stark contrast to the excessive blurriness observed
when generalizing 7" when P + ) >> T in sparse-view regime (section ). Hypothetically,
sampling with a 7" unseen during training induces a distribution shift in the attention scores [253].
Specifically, a smaller 7" sharpens the attention distribution, whereas a larger 7' disperses it. This
shift may explain the contrasting behavior observed when using the model for sampling. Training
the model with a dynamically varying 7" during training could mitigate this issue by exposing the

model to a broader range of attention score distributions, improving generalization across different
T.

Artifacts on long-trajectory NVS. We observe that the results tend to become increasingly
saturated, particularly when the target views are far from the input views and share no content
overlap, such as in open-ended exploration and navigation. The concurrent work [254] explores
the concept of Diffusion Forcing [255] for long video rollouts, achieving high-generation quality.
Applying diverse noise to the input views during training can be beneficial, as it enables the
refinement of high-level details in all anchor views within the memory bank during sampling,
thereby mitigating the accumulation of saturation. We leave this for future work.
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Figure C.3: Diverse camera motions and effects. Single-view conditioning with a text-prompted
object-centric scene. The image is generated using SD 3.5 [236] with the text prompt, “A cute firefly
dragon in its natural habitat.”



Figure C.4: Diverse camera motions and effects. Single-view conditioning with a text-prompted
scene. The image is generated using SD 3.5 [236] with the text prompt, “Wide view of the interior
of the famed Library of Alexandria, elegantly set behind a time-worn wreckage by a lake. ™



Figure C.5: Diverse camera motions and effects. Single-view conditioning with a real-life object-
centric scene.



Figure C.6: Diverse camera motions and effects. Single-view conditioning with a real-life scene.



	Contents
	List of Figures
	List of Tables
	Introduction
	View synthesis in the age of scaling
	Thesis overview

	Monocular dynamic view synthesis: A reality check
	Introduction
	Related work
	Effective multi-view in a monocular video
	Towards better experimentation practice
	Reality check: Re-evaluating the state of the art
	Discussion and recommendation for future works

	Shape of Motion: 4D reconstruction from a single video
	Introduction
	Related work
	Method
	Experiments
	Discussion and conclusion

	Stable Virtual Camera: Generative view synthesis with diffusion models
	Introduction
	Background
	Method
	Experiments
	Conclusion

	Conclusion
	Limitations and future work
	The future of 3D

	Bibliography
	Monocular dynamic view synthesis: A reality check
	Outline
	Computation for effective multi-view factors (EMFs)
	Computation for co-visibility mask and masked image metrics
	Correspondence readout from existing works
	Summary of the capture setup and data processing for our iPhone dataset
	Summary of the implementation details and remaining differences
	Additional results on the impact of effective multi-view
	Additional results on per-sequence quantitative performance breakdown
	Additional results on novel-view synthesis
	Additional results on inferred correspondence

	Shape of Motion: 4D reconstruction from a single video
	Outline
	Additional preprocessing details
	Additional training details
	Additional evaluation details
	Visualization of Kubric experiment
	NVIDIA dataset evaluation

	Stable Virtual Camera: Generative view synthesis with diffusion models
	Outline
	Broader impact and limitations
	Related work
	Benchmark
	Additional experiments


