
Efficient Zero-Knowledge Proofs: Theory and Practice

Jiaheng Zhang

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-20
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-20.html

May 1, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Efficient Zero-Knowledge Proofs: Theory and Practice

by

Jiaheng Zhang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Dawn Song, Chair
Associate Professor Sanjam Garg

Associate Professor Nikhil Srivastava

Spring 2023

Efficient Zero-Knowledge Proofs: Theory and Practice

Copyright 2023
by

Jiaheng Zhang

1

Abstract

Efficient Zero-Knowledge Proofs: Theory and Practice

by

Jiaheng Zhang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dawn Song, Chair

Zero-knowledge proof is a cryptographic protocol enabling provers to convince verifiers of a
statement’s validity without disclosing any additional information beyond its truthfulness. It can be
used to address security and privacy challenges in diverse fields, such as artificial intelligence, data
analytics, and blockchain.

In this dissertation, we delve into the zero-knowledge proof, examining both its theoretical
foundations and real-world applications. In theory, we introduce Libra, Virgo and Virgo++, a series
of pioneering zero-knowledge protocols that boast optimal prover time, rapid verifier time, and
succinct proof size while maintaining exceptional efficiency in practical settings. In practice, we
explore the groundbreaking implementation of zero-knowledge proof in creating secure, trustless,
and permissionless cross-chain bridges for blockchain networks. Furthermore, we also investigate
the application of zero-knowledge proof in the realm of machine learning, showcasing its potential
to ensure the integrity of machine learning models, as demonstrated with the decision tree model.
The applied zero-knowledge proof protocols presented in this dissertation offer robust security
assurances coupled with pragmatic efficiency.

i

To my family, friends, mentors, and colleagues.

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1
1.1 ZKP protocols with optimal prover computation 1
1.2 Applications of ZKP on machine learning and blockchains 3

2 Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation 5
2.1 Introduction . 6
2.2 Preliminaries . 11
2.3 GKR Protocol with Linear Prover Time . 19
2.4 Zero Knowledge Argument Protocols . 28
2.5 Implementation and Evaluation . 38

3 Transparent Polynomial Delegation and Its Applications to Zero Knowledge Proof 45
3.1 Introduction . 46
3.2 Preliminaries . 48
3.3 Transparent Zero Knowledge Polynomial Delegation 56
3.4 Zero Knowledge Argument . 65
3.5 Implementation and Evaluation . 68
3.6 Applications . 73

4 Doubly Efficient Interactive Proofs for General Arithmetic Circuits with Linear
Prover Time 75
4.1 Introduction . 76
4.2 Preliminaries . 81
4.3 Generalizing GKR to Arbitrary Arithmetic Circuits 85
4.4 Zero Knowledge Arguments from Generalized GKR 99
4.5 Implementations and Evaluations . 105

iii

5 Zero Knowledge Proofs
for Decision Tree Predictions and Accuracy 110
5.1 Introduction . 111
5.2 Preliminaries . 113
5.3 Zero Knowledge Decision Tree . 114
5.4 Zero Knowledge Decision Tree Accuracy . 124
5.5 Implementation and Evaluations . 130

6 zkBridge: Trustless Cross-chain Bridges Made Practical 137
6.1 Introduction . 138
6.2 Background . 141
6.3 zkBridge Protocol . 144
6.4 Distributed proof generation . 149
6.5 Reducing proof size and verifier time . 161
6.6 Implementation and Evaluation . 162
6.7 Related work . 168

7 Polynomial Commitment with a One-to-Many Prover and Applications 169
7.1 Introduction . 170
7.2 Preliminary . 176
7.3 Transparent Polynomial Commitment with Prover Batching 181
7.4 KZG-Based Polynomial Commitment with Prover Batching 191
7.5 Implementation and Evaluation . 193

Bibliography 197

iv

List of Figures

2.1 Comparisons of prover time, proof size and verification time between Libra and existing
zero knowledge proof systems. 42

3.1 Arithmetic circuit C computing evaluations of q(x) at κ points in L indexed by I. . . . 59
3.2 Simulator S of the zkVPD protocol. 63
3.3 Simulator S of Virgo. 67
3.4 Comparison of our zkVPD and the pairing-based zkVPD in [ZGKPP17a]. 69
3.5 Comparisons of prover time, proof size and verification time between Virgo and existing

ZKP systems. 71

4.1 Circuit Ci computing Ṽ0,i(r(0,i)), Ṽi−1,i(r(i−1,i)), Ṽi−1,i(r(i−1,i)′
) 95

4.2 Comparison of Virgo++ and Spartan. 108

5.1 Committing algorithm of ADT scheme, lc and rc represent the left child value and the
right child value respectively. 118

5.2 Zero knowledge decision tree prediction. Public inputs are in black, secret witness is in
red, and extended witness for efficiency is in blue. 119

5.4 Zero knowledge decision tree accuracy. 126
5.5 Performance of the zero knowledge decision tree accuracy scheme. 131
5.6 Zero knowledge multivariate decision tree prediction. Public inputs are in black, secret

witness is in red, and extended witness for efficiency is in blue. 132
5.7 Comparison between zkDT, RAM-based and circuit-based generic ZKP schemes. . . . 134

6.1 The design of zkBridge illustrated with the example of cross-chain token transfer. The
components in shade belongs to zkBridge. For clarity we only show one direction of
the bridge and the opposite direction is symmetric. 144

6.2 Prover time of deVirgo and the original Virgo for Cosmos block header verification. . . 165

7.1 VSS Comparison, Trusted setup version . 194
7.2 VSS Comparison, Transparent setup version . 195
7.3 DKG Comparison . 195

v

List of Tables

2.1 Comparison of Libra to existing ZKP systems, where (G,P ,V , |π|) denote the trusted
setup algorithm, the prover algorithm, the verification algorithm and the proof size
respectively. Also, C is the size of the log-space uniform circuit with depth d, and n is
the size of its input. The numbers are for a circuit computing the root of a Merkle tree
with 256 leaves (511 instances of SHA256).1 . 8

2.2 Prover time of our linear GKR and previous GKR variants. 40

3.1 Speed of basic arithmetic on different fields. The time is averaged over 100 million runs
and is in nanosecond. 68

3.2 Performance of transparent ZKP systems. C is the size of the regular circuit with depth
D, and n is witness size. 72

4.1 Comparison of our scheme 1, our scheme 2 and the original GKR on random circuits. . 106

5.1 Performance of zero knowledge decision tree predictions. 131
5.2 Performance of zero knowledge random forest predictions. 134

6.1 The verification circuit size of deVirgo . 161
6.2 Evaluation results. RV is the shorthand for recursive verification. 164
6.3 Prover hardware configuration. 167

7.1 Polynomial commitment with a one-to-many prover: comparison with prior works. We
assume t = Θ(N). 172

7.2 Polynomial commitment with a one-to-many prover: comparison with prior works. We
assume t = Θ(N). 172

7.3 Comparison of our schemes and prior works in VSS and DKG settings. We assume
t = Θ(N). 173

7.4 VSS schemes . 173
7.5 DKG schemes (per party overhead) . 173

vi

Acknowledgments

In the course of completing my Ph.D. and dissertation, I have been fortunate to receive the unwavering
support of numerous individuals. First and foremost, I would like to express my deepest gratitude to
my advisor, Prof. Dawn Song, whose invaluable guidance, steadfast encouragement, and genuine
kindness have been instrumental throughout my Ph.D. journey. As an esteemed professor in
computer security and privacy, Prof. Song consistently offered me inspiring insights, generously
shared her extensive knowledge, and enriched our research discussions with her vast experience.
Her diverse background in the industry has allowed her to introduce me to real-world challenges,
fostering my ability to create impactful work and tackle the most complex problems.

I am profoundly thankful to Prof. Yupeng Zhang from Texas A&M University, whom I had
the pleasure of meeting during his postdoctoral tenure at Berkeley while I began my Ph.D. in
2018. Our collaboration has grown from strength to strength since that initial encounter, and
Prof. Zhang has proven to be an indispensable mentor and a trusted friend throughout my Ph.D.
journey. He has guided me in every aspect of research, ranging from pinpointing valuable problems
and employing cryptographic tools and elegant protocols, to uncovering potential applications,
articulating motivations and contributions with clarity, and presenting our findings to the wider
research community. Beyond research, his valuable life advice has been of immense support.

I also wish to convey my heartfelt appreciation to Prof. Elaine Shi at CMU, who has been both
a mentor and a friend since my undergraduate days. Prof. Shi’s outstanding achievements as a
computer scientist have been a constant source of inspiration, while her genuine concern for my
well-being has provided unwavering encouragement. She has offered invaluable advice regarding
both my research and career aspirations. The knowledge and wisdom I have gained from Professors
Song, Zhang, and Shi serve as my primary motivation for pursuing a faculty position, as I aspire to
pass on their invaluable teachings to the next generation of students.

I would like to express my heartfelt appreciation to Prof. Sanjam Garg and Prof. Nikhil Srivastava
for their invaluable contributions as members of both my dissertation and qualifying committees. I
am equally grateful to Prof. Alessandro Chiesa for serving on my qualifying committee and for
introducing me to cutting-edge zero-knowledge proof constructions during his course. My sincere
thanks go to Prof. Raluca Popa for her role as my hooder at the Ph.D. commencement, as well as
her invaluable support within the security group. Furthermore, I am profoundly grateful to Prof.
Sanjam Garg and Prof. Raluca Popa for their unwavering assistance, guidance, and encouragement
throughout my faculty job search. Their generosity was mirrored by Prof. Dan Boneh, Prof. Justin
Thaler, Prof. Dawn Song, Prof. Elaine Shi, and Prof. Yupeng Zhang, to whom I extend my heartfelt
thanks for their invaluable support.

Throughout my Ph.D. journey, I have had the privilege of collaborating with an exceptional
group of individuals, whose contributions have been instrumental in shaping my research experience.
I would like to extend my gratitude to Zerui Cheng, Arka Rai Choudhuri, Zhiyong Fang, Thang
Hoang, Abhishek Jain, Zhengzhong Jin, Yongzheng Jia, Tianyi Liu, Charalampos Papamanthou,
Weĳie Wang, Tiancheng Xie, Xiang Xie, Fan Zhang, and Yinuo Zhang. Their collective expertise,
creativity, and dedication have been invaluable to our collaborative efforts.

vii

I would also like to express my appreciation to my former mentors, Prof. Xiaotie Deng, Prof.
Yong Yu, Prof. Yu Yu, Prof. John Hopcroft, and others from Shanghai Jiao Tong University. As
an undergraduate student in the ACM Class at Shanghai Jiao Tong University, I was fortunate to
be guided by extraordinary teachers and advisors who introduced me to the captivating realm of
computer science.

Throughout my academic journey, I have been incredibly fortunate to be surrounded by a
close-knit circle of friends who have consistently provided unwavering support and encouragement
during the highs and lows of life. Their presence has been indispensable in completing my Ph.D. I
am truly grateful to have the company of friends from across the globe, spanning from China to the
U.S.A., and covering diverse regions from the West Coast to the East Coast, the Bay Area to Boston,
Los Angeles to New York, Seattle to Pittsburgh, Shanghai to Beĳing, Singapore to Hong Kong,
and beyond. While it is impossible to enumerate all their names, I would like to extend my deepest
gratitude to all the colleagues and friends who have been by my side throughout this journey.

I am especially grateful to Tiancheng Xie, who has been a friend, co-author, roommate, and even
family member to me. His support throughout the entire process has been invaluable, particularly
when overcoming numerous challenges while I was in China during the COVID-19 pandemic.

I also wish to thank the members of the Association of Chinese Entrepreneurs (ACE) club at
Berkeley. Since joining the club in my first year, I have relished discussing, playing, and socializing
with its members, many of whom are undergraduate, master, and Ph.D. students from various
departments. Their enthusiasm, passion, and vitality remind me to cherish my own formative years.

Additionally, I am grateful for the numerous friends who have shared conversations and leisure
activities with me during ordinary days. We exchange news, stories, and emotions, and one such
friend is Lianke Qin, who keeps me informed with daily messages and essential information.

I would also like to acknowledge the individuals in two WeChat groups: The Sun Never Sets
Communication Group and the Chinese Graduate Communication Group of 2021. These groups
have connected me with friends from around the world, expanding my horizons and bringing
immense joy.

Lastly, my profound gratitude goes to my family for their unwavering support. I would like to
express my heartfelt appreciation to my mother, Hongmei Hao, and my father, Jun Zhang, who have
always provided a haven for me to recharge and gather strength. Their steadfast encouragement and
unconditional love have been the driving force behind my journey.

1

Chapter 1

Introduction

The rapid growth of artificial intelligence, data analytics, and blockchains has resulted in an explosion
of sensitive data, including personal information, that requires secure and simple privacy-preserving
solutions. Unfortunately, data breaches have become increasingly frequent, resulting in significant
economic losses and serious concerns about data privacy and security. Cryptographic algorithms
and tools have been developed to address these challenges, and Zero-Knowledge Proofs [GMR]
(ZKP) has emerged as a promising solution. ZKP is a cryptographic protocol that enables a prover
to convince a verifier of the validity of a statement without disclosing any additional information
beyond its truthfulness. For example, the prover can convince the verifier that there exists a x
satisfying f(x) = y for a public function f without revealing x to the verifier. However, applying
ZKP to real-world use cases has been challenging due to the gap between its theoretical feasibility
and practical efficiency, especially for large-scale statements. Therefore, this thesis aims to advance
ZKP from both theoretical and application perspectives, bridging the gap. On the theory side, we
propose novel ZKP protocols with optimal prover time, succinct proof size, and succinct verifier time,
resolving a long-standing open problem. On the application side, we are the first to employ ZKP in
machine learning, providing practical guarantees for the integrity and reproducibility of machine
learning models. We also propose the first solution for building truly trustless and permissionless
cross-chain bridges in blockchains using ZKP, called zkBridge. Our applied ZKP protocols provide
rigorous security guarantees along with practical efficiency. The zkBridge technology has generated
excitement in the industry, with numerous entities and researchers joining the zkBridge collective
to bring the technology to wide industry adoption, creating a secure, universal foundation for
multichain interoperability.

1.1 ZKP protocols with optimal prover computation
The area of ZKP has a rich history and has transitioned from a purely theoretical question to
solutions deployed at sophisticated cryptocurrency constructions, e.g., ZCash [Ben+14]. However,
the existing protocols cannot scale to complicated statements in practice because of heavy prover
computations. In particular, the ZKP protocol used in ZCash needs a prover running quasi-linear

1.1. ZKP PROTOCOLS WITH OPTIMAL PROVER COMPUTATION 2

time in the statement size and each statement needs a separate trusted setup. They are both
time-consuming. To address the bottleneck of the prover time in ZKP, we introduce three protocols,
namely Libra [XZZPS19a], Virgo [ZXZS], and Virgo++ [Zha+20]. All these protocols focus on
accelerating proof generation in ZKP. We also develop libraries of these protocols and released
codes online [Liba; Vira; Virb] for developers.

1.1.1 Libra
Libra presents a groundbreaking solution to the long-standing open problem of creating a ZKP
system based on layered arithmetic circuits that achieves optimal prover time, succinct proof size, and
succinct verifier time. Specifically, for a circuit of size C, Libra’s performance is as follows: (i) the
prover time is O(C), regardless of the circuit type; (ii) the proof size and verification time are both
O(d log C) for d-depth log-space uniform circuits (e.g., RAM programs). Moreover, Libra features
a one-time trusted setup that depends solely on the size of the input to the circuit and not on the
circuit logic. The foundation of Libra is a new linear-time algorithm for the prover of the interactive
proof protocol by Goldwasser, Kalai, and Rothblum (also known as the GKR protocol), as well as
an efficient method for transforming the GKR protocol into zero-knowledge using small masking
polynomials. Libra not only boasts impressive asymptotic performance but also demonstrates
practical efficiency. For instance, our implementation reveals that it takes just 200 seconds to
generate a proof for constructing a SHA2-based Merkle tree root with 256 leaves, outperforming all
existing ZKP systems. Libra’s proof size and verification time are equally competitive.

1.1.2 Virgo
Libra requires a one-time trusted setup, which we aim to eliminate by designing a transparent
polynomial commitment (PC) scheme with succinct proof size and fast verification cost. Leveraging
this PC scheme, we develop Virgo, a transparent ZKP protocol that offers significantly improved
performance compared to previous transparent ZKP systems. Specifically, Virgo’s prover time is at
least an order of magnitude faster, while its verification time is a mere tens of milliseconds. Our
new succinct zero-knowledge argument scheme for layered arithmetic circuits does not rely on a
trusted setup and exhibits a prover time of O(C + n log n) and a proof size of O(D log C + log2 n)
for a D-depth circuit with n inputs and C gates. Additionally, the verification time is succinct
at O(D log C + log2 n) for structured circuits. Utilizing lightweight cryptographic primitives
such as collision-resistant hash functions, our scheme is plausibly post-quantum secure. We have
implemented Virgo based on our new scheme and compared its performance to existing systems.
Experiments reveal that it takes only 53 seconds to generate a proof for a circuit computing a Merkle
tree with 256 leaves—significantly faster than all other succinct zero-knowledge argument schemes.
The verification time is 50ms, and the proof size is 253KB, both of which are competitive with
existing systems. At the core of Virgo is a novel transparent zero-knowledge verifiable polynomial
delegation scheme with logarithmic proof size and verification time. This interactive oracle proof
model-based scheme may hold independent interest.

1.2. APPLICATIONS OF ZKP ON MACHINE LEARNING AND BLOCKCHAINS 3

1.1.3 Virgo++
Both Libra and Virgo operate on layered arithmetic circuits, which are incompatible with other
ZKP frameworks that utilize arbitrary arithmetic circuits. To address this limitation, we introduce
Virgo++, which generalizes the optimal prover for arbitrary arithmetic circuits. In theory, Virgo++
shares the same asymptotic complexity as Virgo, but it directly supports arbitrary arithmetic circuits.
In practice, Virgo++ boasts a 10x faster prover time and only a 1.2x larger proof size compared to
Virgo for general arithmetic circuits. Owing to its exceptional efficiency, Virgo++ takes just 0.3
seconds to generate a proof for a circuit with over 600,000 gates, making it 13 times faster than
the original interactive proof protocol for the corresponding layered circuit. The proof size is 208
kilobytes, and the verifier time is 66 milliseconds. Our key technique involves a new sumcheck
equation that reduces a claim about the output of one layer to claims about its input only, rather
than claims about all the layers above, which would inevitably incur an overhead proportional to the
circuit’s depth. We have developed efficient algorithms for the prover to run this sumcheck protocol
and to combine multiple claims back into one in linear time based on the circuit’s size.

1.2 Applications of ZKP on machine learning and blockchains
The above work has demonstrated significant improvements in the prover time of ZKP for general
computations in theoretical and practical performances. On the practical side, we find more
real-world applications of ZKP and design tailored ZKP schemes with concrete optimizations for
these applications, particularly in machine learning and blockchain.

1.2.1 Decision tree predictions and accuracy tests
Machine learning has emerged as a powerful tool in numerous applications across various fields.
Despite its impressive success, concerns about the integrity of machine learning predictions and
accuracy have been on the rise. For instance, a notable case reported in [Bot] reveals a company
claiming to use machine learning techniques for building food delivery robots, when in reality,
the robots were operated by remote workers. Additionally, the reproducibility of high-accuracy
machine learning models is often challenging, and there is a lack of security guarantees for the
correctness and consistency of machine learning predictions in production environments. To address
these issues, we initiate the study of zero-knowledge machine learning and propose protocols for
zero-knowledge decision tree predictions and accuracy tests in [ZFZS20]. These protocols enable
the owner of a decision tree model to prove the model’s predictions on a data sample or its accuracy
on a public dataset without revealing any information about the model itself. We also develop
efficient approaches for transforming decision tree predictions and accuracy tests into statements of
ZKP. The protocols are implemented using a backend-efficient ZKP scheme, demonstrating their
practical efficiency. This pioneering work lays the foundation for building fair and secure trading
platforms for machine learning models on blockchains. Instead of posting the model directly on the
blockchain, which exposes it to all users, the model provider posts a short zero-knowledge proof
about the model’s quality. Smart contracts are then used to enforce payment and model delivery

1.2. APPLICATIONS OF ZKP ON MACHINE LEARNING AND BLOCKCHAINS 4

simultaneously. This groundbreaking research has inspired the burgeoning field of zero-knowledge
machine learning, with subsequent work following the established framework and extending it to
convolutional neural networks [LXZ21; FQZDC21].

1.2.2 Cross-chain bridges for blockchains
Since the advent of Bitcoin, the cryptocurrency market has experienced rapid growth, reaching a
valuation of over 1 trillion USD in just 13 years. Moreover, with the rise of decentralized finance,
blockchain technology has evolved to offer a variety of financial services that traditional finance
cannot accommodate through automated smart contracts, such as flash loans. However, several
critical issues still impede the further advancement of blockchains, one of which is the interoperability
between different blockchains. To tackle this issue, we develop zkBridge in [Xie+22], an efficient
cross-chain bridge that ensures robust security without relying on external trust assumptions. We
utilize zero-knowledge proofs based on cryptographic assumptions, rather than a committee of
validators often employed in existing constructions, to guarantee the accuracy of relayed block
headers from one chain to another. With these relayed block headers, the bridges can facilitate
message passing, token transfers, and other computational logic operations on state changes across
different chains. As a result, zkBridge is viewed as the infrastructure of the multi-chain universe.
At the core of this innovation is deVirgo, a distributed ZKP protocol derived from Virgo. deVirgo
accelerates proof generation in Virgo by using distributed machines, achieving optimal linear
scalability and minimal communication costs. Furthermore, we apply recursive proofs to deVirgo
to further reduce the proof size and on-chain verification costs. zkBridge has made a significant
impact on the industry, with dozens of entities and researchers joining the zkBridge collective to
promote widespread adoption of the technology.

1.2.3 Polynomial commitment with a one-to-many prover and applications
on blockchains.

Additionally, to enhance the functionality and scalability of verifiable secret sharing (VSS) and
distributed key generation (DKG) for blockchains, we develop a one-to-many fashion of ZKP
protocols and applied it to VSS and DKG in [ZXHSZ22]. Specifically, our protocol features one
prover and N verifiers who share common computation, but each verifier possesses distinct outputs.
We constructed an efficient ZKP protocol in this new setting with optimal complexity, capable
of batching N proofs in a single step. A direct application of this novel ZKP protocol fashion
is Shamir’s VSS scheme. Consequently, we apply the protocol to create efficient VSS and DKG
schemes, particularly suitable for a large number of parties. VSS can be employed to securely store
secret keys of cryptocurrencies, while DKG can be used to generate random beacons on blockchains.
Other applications of this scheme are of independent interest and hold the potential for significant
advancements in various areas.

5

Chapter 2

Libra: Succinct Zero-Knowledge Proofs with
Optimal Prover Computation

We present Libra, the first zero-knowledge proof system that has both optimal prover time and
succinct proof size/verification time. In particular, if C is the size of the circuit being proved (i)
the prover time is O(C) irrespective of the circuit type; (ii) the proof size and verification time are
both O(d log C) for d-depth log-space uniform circuits (such as RAM programs). In addition Libra
features an one-time trusted setup that depends only on the size of the input to the circuit and not on
the circuit logic. Underlying Libra is a new linear-time algorithm for the prover of the interactive
proof protocol by Goldwasser, Kalai and Rothblum (also known as GKR protocol), as well as an
efficient approach to turn the GKR protocol to zero-knowledge using small masking polynomials.
Not only does Libra have excellent asymptotics, but it is also efficient in practice. For example, our
implementation shows that it takes 200 seconds to generate a proof for constructing a SHA2-based
Merkle tree root on 256 leaves, outperforming all existing zero-knowledge proof systems. Proof
size and verification time of Libra are also competitive.

This work was previously published in [XZZPS19a].

2.1. INTRODUCTION 6

2.1 Introduction
Zero-knowledge proofs (ZKP) are cryptographic protocols between two parties, a prover and a
verifier, in which the prover can convince the verifier about the validity of a statement without leaking
any extra information beyond the fact that the statement is true. Since they were first introduced
by Goldwasser et al. [GMR89], ZKP protocols have evolved from pure theoretical constructs to
practical implementations, achieving proof sizes of just hundreds of bytes and verification times of
several milliseconds, regardless of the size of the statement being proved. Due to this successful
transition to practice, ZKP protocols have found numerous applications not only in the traditional
computation delegation setting but most importantly in providing privacy of transactions in deployed
cryptocurrencies (e.g., Zcash [Ben+14]) as well as in other blockchain research projects (e.g.,
Hawk [KMSWP]).

Despite such progress in practical implementations, ZKP protocols are still notoriously hard
to scale for large statements, due to a particularly high overhead on generating the proof. For
most systems, this is primarily because the prover has to perform a large number of cryptographic
operations, such as exponentiation in an elliptic curve group. And to make things worse the
asymptotic complexity of computing the proof is typically more than linear, e.g., O(C log C) or
even O(C log2 C), where C is the size of the statement.

Unfortunately, as of today we are yet to construct a ZKP system whose prover time is optimal, i.e.,
linear in the size of the statement C (this is irrespective of whether the ZKP system has per-statement
trusted setup, one-time trusted setup or no trusted setup at all). The only notable exception is the
recent work by Bünz et al. [BBBPWM] that however suffers from linear verification time—for a
detailed comparison see Table 2.1. Therefore designing ZKP systems that enjoy linear prover time
as well as succinct1 proof size and verification time is an open problem, whose resolution can have
significant practical implications.
Our contributions. In this paper we propose Libra, the first ZKP protocol with linear prover time
and succinct proof size and verification time in the size of the arithmetic circuit representing the
statement C, when the circuit is log-space uniform. Libra is based on the doubly efficient interactive
proof protocol proposed by Goldwasser et al. in [GKR15] (referred as GKR protocol in this paper),
and the verifiable polynomial delegation scheme proposed by Zhang et al. in [ZGKPP17b]. As such
it comes with one-time trusted setup (and not per-statement trusted setup) that depends only on the
size of the input (witness) to the statement that is being proved. Not only does Libra have excellent
asymptotic performance but also its prover outperforms in practice all other ZKP systems while
verification time and proof size are also very competitive—see Table 2.1. Our concrete contributions
are:

• GKR with linear prover time. Libra features a new linear-time algorithm to generate a GKR
proof. Our new algorithm does not require any pattern in the circuit and our result subsumes all
existing improvements on the GKR prover assuming special circuit structures, such as regular
circuits in [Tha13a], data-parallel circuits in [Tha13a; Wah+17], circuits with different sub-copies
in [ZGKPP18]. See related work for more details.

1In ZKP literature, “succinct" is poly-logarithmic in the size of the statement C.

2.1. INTRODUCTION 7

• Adding zero-knowledge. We propose an approach to turn Libra into zero-knowledge efficiently.
In particular, we show a way to mask the responses of our linear-time prover with small random
polynomials such that the zero-knowledge variant of the protocol introduces minimal overhead on
the verification time compared to the original (unmasked) construction.

• Implementation and evaluation. We implement Libra. Our implementation takes an arithmetic
circuit with various types of gates (fan-in 2 and degree ≤ 2, such as +,−,×, AND, XOR, etc.)
and compiles it into a ZKP protocol. We conduct thorough comparisons to all existing ZKP
systems (see Section 2.1.1). We plan to release our system as an open-source implementation.

2.1.1 Comparing to other ZKP Systems
Table 3.2 shows a detailed comparison between Libra and existing ZKP systems. First of all, Libra
is the best among all existing systems in terms of practical prover time. In terms of asymptotics,
Libra is the only system with linear prover time and succinct verification and proof size for log-space
uniform circuits. The only other system with linear prover time is Bulletproofs [BBBPWM] whose
verification time is linear, even for log-space uniform circuits. In the practical front, Bulletproofs
prover time and verification time are high, due to the large number of cryptographic operations
required for every gate of the circuit.

The proof and verification of Libra are also competitive to other systems. In asymptotic terms, our
proof size is only larger than libSNARK [BSCTV] and Bulletproofs [BBBPWM], and our verification
is slower than libSNARK [BSCTV] and libSTARK [BSBHR19]. Compared to Hyrax [WTSTW18],
which is also based on similar techniques with our work, Libra improves the performance in all
aspects (yet Hyrax does not have any trusted setup). One can refer to Section 2.5 for a detailed
description of our experimental setting as well as a more detailed comparison.

Finally, among all systems, libSNARK [BSCTV] requires a trusted setup for every statement,
and Libra requires an one-time trusted setup that depends on the input size. See Section 2.5.3 for a
discussion on removing trusted setup in Libra.
Log-space uniform circuits. Though the prover time in Libra is optimal for all circuits, the
verification time is succinct only when the circuit is structured (log-space uniform with logarithmic
depth). This is the best that can be achieved for all ZKP protocols without per-circuit setup, as
the verifier must read the entire circuit, which takes linear time in the worst case. We always refer
to log-space uniform circuits when we say our scheme is succinct in this paper, to differentiate
from schemes with linear verification time on all circuits (irrespective of whether the circuits are
log-space uniform or not). Schemes such as libSTARK [BSBHR19], zkVSQL [ZGKPP17a] and
Hyrax [WTSTW18] also have such property.

In practice, with the help of auxiliary input and circuit squashing, most computations can be
expressed as log-space uniform circuits with low depth, such as matrix multiplication, image scaling
and Merkle hash tree in Section 2.5. Asymptotically, as shown in [BSCTV; ZGKPP18; BSBHR19],
all random memory access (RAM) programs can be validated by circuits that are log-space uniform
with log-depth in the running time of the programs (but linear in the size of the programs) by
RAM-to-circuit reduction, which justifies the expressiveness of such circuits.

2.1. INTRODUCTION 8

Table 2.1: Comparison of Libra to existing ZKP systems, where (G,P,V, |π|) denote the trusted setup
algorithm, the prover algorithm, the verification algorithm and the proof size respectively. Also, C is the
size of the log-space uniform circuit with depth d, and n is the size of its input. The numbers are for a
circuit computing the root of a Merkle tree with 256 leaves (511 instances of SHA256).2

libSNARK Ligero Bulletproofs Hyrax libSTARK Aurora Libra
[BSCTV] [AHIV17] [BBBPWM] [WTSTW18] [BSBHR19] [BSCRSVW19]

O(C) O(n)
G per-statement no trusted setup one-time

trusted setup trusted setup
P O(C log C) O(C log C) O(C) O(C log C) O(C log2

C) O(C log C) O(C)
V O(1) O(C) O(C) O(

√
n + d log C) O(log2

C) O(C) O(d log C)
|π| O(1) O(

√
C) O(log C) O(

√
n + d log C) O(log2

C) O(log2
C) O(d log C)

G 1027s NA 210s
P 360s 400s 13,000s 1,041s 2,022s 3199s 201s
V 0.002s 4s 900s 9.9s 0.044s 15.2s 0.71s
|π| 0.13KB 1,500KB 5.5KB 185KB 395KB 174.3KB 51KB

2.1.2 Our Techniques
Our main technical contributions are a GKR protocol with linear prover time and an efficient
approach to turn the GKR protocol into zero-knowledge. We summarize the key ideas behind these
two contributions. The detailed protocols are presented in Section 2.3 and 3.4 respectively.
GKR with linear prover. Goldwasser et al. [GKR15] showed an approach to model the evaluation
of a layered circuit as a sequence of summations on polynomials defined by values in consecutive
layers of the circuit. Using the famous sumcheck protocol (see Section 7.2.2.1), they developed a
protocol (the GKR protocol) allowing the verifier to validate the circuit evaluation in logarithmic
time with a logarithmic size proof. However, the polynomials in the protocol are multivariate with
2s variables, where S is the number of gates in one layer of the circuit and s = log S. Naively
running the sumcheck protocol on these polynomials incurs S2 prover time, as there are at least
22s = S2 monomials in a 2s-variate polynomial. Later, Cormode et al. [CMT12] observed that
these polynomials are sparse, containing only S nonzero monomials and improved the prover time
to S log S.

In our new approach, we divide the protocol into two separate sumchecks. In each sumcheck,
the polynomial only contains s variables, and can be expressed as the product of two multilinear
polynomials. Utilizing the sparsity of the circuit, we develop new algorithms to scan through each
gate of the circuit and compute the closed-form of all these multilinear polynomials explicitly,
which takes O(S) time. With this new way of representation, the prover can deploy a dynamic

1STARK is in the RAM model. To compare the performance, we convert a circuit of size C to a RAM program
with T = Θ(C) steps.

2.1. INTRODUCTION 9

programming technique to generate the proofs in each sumcheck in O(S) time, resulting in a total
prover time of O(S).
Efficient zero-knowledge GKR. The original GKR protocol is not zero-knowledge, since the
messages in the proof can be viewed as weighed sums of the values in the circuit and leak information.
In [ZGKPP17a; WTSTW18], the authors proposed to turn the GKR protocol into zero-knowledge by
hiding the messages in homomorphic commitments, which incurs a big overhead in the verification
time. In [CFS17], Chiesa et al. proposed an alternative approach by masking the protocol with
random polynomials. However, the masking polynomials are as big as the original ones and the
prover time becomes exponential, making the approach mainly of theoretical interest.

In our scheme, we first show that in order to make the sumcheck protocol zero-knowledge, the
prover can mask it with a “small" polynomial. In particular, the masking polynomial only contains
logarithmically many random coefficients. The intuition is that though the original polynomial
has O(2ℓ) or more terms (ℓ is the number of variables in the polynomial), the prover only sends
O(ℓ) messages in the sumcheck protocol. Therefore, it suffices to mask the original polynomial
with a random one with O(ℓ) coefficients to achieve zero-knowledge. In particular, we set the
masking polynomial as the sum of ℓ univariate random polynomials with the same variable-degree.
In Section 4.4.2, we show that the entropy of this mask exactly counters the leakage of the sumcheck,
proving that it is sufficient and optimal.

Besides the sumcheck, the GKR protocol additionally leaks two evaluations of the polynomial
defined by values in each layer of the circuit. To make these evaluations zero-knowledge, we mask
the polynomial by a special low-degree random polynomial. In particular, we show that after the
mask, the verifier in total learns 4 messages related to the evaluations of the masking polynomial
and we can prove zero-knowledge by making these messages linearly independent. Therefore, the
masking polynomial is of constant size: it consists of 2 variables with variable degree 2.

2.1.3 Related Work
In recent years there has been significant progress in efficient ZKP protocols and systems. In this
section, we discuss related work in this area, with the focus on those with sublinear proofs.
QAP-based. Following earlier work of Ishai [IKO], Groth [Gro10] and Lipmaa [Lip12], Gennaro
et al. [GGPR13] introduced quadratic arithmetic programs (QAPs), which forms the basis of
most recent implementations [PHGR13; BSCGTV; BFRSBW; BSCTV14; Cos+; WSRBW15;
FFGKOP16] including libSNARK [BSCTV]. The proof size in these systems is constant, and the
verification time depends only on the input size. Both these properties are particularly appealing and
have led to real-world deployments, e.g., ZCash [Ben+14]. One of the main bottlenecks, however,
of QAP-based systems is the high overhead in the prover running time and memory consumption,
making it hard to scale to large statements. In addition, a separate trusted setup for every different
statement is required.
IOPs. Based on “(MPC)-in-the-head" introduced in [IKOS07; GMO16; Cha+17], Ames et
al. [AHIV17] proposed a ZKP scheme called Ligero. It only uses symmetric key operations and
the prover time is fast in practice. However, it generates proofs of size O(

√
C), which is several

2.1. INTRODUCTION 10

megabytes in practice for moderate-size circuits. In addition, the verification time is quasi-linear to
the size of the circuit. It is categorized as interactive PCP, which is a special case of interactive
oracle proofs (IOPs). IOP generalizes the probabilistically checkable proofs (PCPs) where earlier
works of Kilian [Kil92] and Micali [Mic00] are built on. In the IOP model, Ben-Sasson et al. built
libstark [BSBHR19], a zero-knowledge transparent argument of knowledge (zkSTARK).libstark
does not rely on trusted setup and executes in the RAM model of computation. Their verification
time is only linear to the description of the RAM program, and succinct (logarithmic) in the time
required for program execution. Recently, Ben-Sasson et al. [BSCRSVW19] proposed Aurora, a
new ZKP system in the IOP model with the proof size of O(log2 C).
Discrete log. Before Bulletproof [BBBPWM], earlier discrete-log based ZKP schemes include the
work of Groth [Gro09], Bayer and Groth [BG12] and Bootle et al. [BCCGP16]. The proof size of
these schemes are larger than Bulletproof either asymptotically or concretely.
Hash-based. Bootle et al. [BCGGHJ17] proposed a ZKP scheme with linear prover time and
verification time. The verification only requires O(C) field additions. However, the proof size is
O(
√

C) and the constants are large as mentioned in the paper [BCGGHJ17].
Interactive proofs. The line of work that relates to our paper the most is based on interactive
proofs [GMR89]. In the seminal work of [GKR15], Goldwasser et al. proposed an efficient
interactive proof for layered arithmetic circuits. Later, Cormode et al. [CMT12] improved the prover
complexity of the interactive proof in [GKR15] to O(C log C) using multilinear extensions instead
of low degree extensions. Several follow-up works further reduce the prover time assuming special
structures of the circuit. For regular circuits where the wiring pattern can be described in constant
space and time, Thaler [Tha13a] introduced a protocol with O(C) prover time; for data parallel
circuits with many copies of small circuits with size C ′, a O(C log C ′) protocol is presented in the
same work, later improved to O(C + C ′ log C) by Wahby et al. in [Wah+17]; for circuits with many
non-connected but different copies, Zhang et al. showed a protocol with O(C log C ′) prover time.

In [ZGKPP17b], Zhang et al. extended the GKR protocol to an argument system using a protocol
for verifiable polynomial delegation. Zhang et al. [ZGKPP18] and Wahby et al. [WTSTW18] make
the argument system zero-knowledge by putting all the messages in the proof into homomorphic
commitments, as proposed by Cramer and Damgard in [CD]. This approach introduces a high
overhead on the verification time compared to the plain argument system without zero-knowledge,
as each addition becomes a multiplication and each multiplication becomes an exponentiation in the
homomorphic commitments. The multiplicative overhead is around two orders of magnitude in
practice. Additionally, the scheme of [WTSTW18], Hyrax, removes the trusted setup of the argument
system by introducing a new polynomial delegation, increasing the proof size and verification time
to O(

√
n) where n is the input size of the circuit.

Lattice-based. Recently Baum et al. [BBCDPGL18] proposed the first lattice-based ZKP system
with sub-linear proof size. The proof size is O(

√
C log3 C), and the practical performance is to be

explored.

2.2. PRELIMINARIES 11

2.2 Preliminaries

2.2.1 Notation
In this paper, we use λ to denote the security parameter, and negl(λ) to denote the negligible
function in λ. “PPT" stands for probabilistic polynomial time. We use f(), h() for polynomials,
x, y, z for vectors of variables and g, u, v for vectors of values. xi denotes the i-th variable in x. We
use bold letters such as A to represent arrays. For a multivariate polynomial f , its "variable-degree"
is the maximum degree of f in any of its variables.
Bilinear pairings. Let G,GT be two groups of prime order p and let g ∈ G be a generator.
e : G × G → GT denotes a bilinear map and we use bp = (p,G,GT , e, g) ← BilGen(1λ) for
the generation of parameters for the bilinear map. Our scheme relies on the q-Strong Bilinear
Diffie-Hellman (q-SBDH) assumption and an extended version of the Power Knowledge of Exponent
(PKE) assumption.

Assumption 1 (q-Strong Bilinear Diffie-Hellman). For any PPT adversary A, the following holds:

Pr

bp← BilGen(1λ)

s
R← Z∗

p : (x, e(g, g)
1

s+x)← A(1λ, σ)
σ = (bp, gs, ..., gs

q

)

 ≤ negl(λ)

The second assumption is a generalization of the q-PKE assumption [Gro10] to multivariate
polynomials, proposed in [ZGKPP17b; ZGKPP17a]. LetWℓ,d be the set of all multisets of {1, ..., ℓ}
with the cardinality of each element being at most d.

Assumption 2 ((d, ℓ)-Extended Power Knowledge of Exponent). For any PPT adversary A, there
is a polynomial time algorithm E (takes the same randomness ofA as input) such that for all benign
auxiliary inputs z ∈ {0, 1}poly(λ) the following probability is negligible:

Pr

bp← BilGen(1λ)

s1, ..., sℓ, sℓ+1, α
R← Z∗

p , s0 = 1
σ1 = ({g

∏
i∈W

si}W ∈Wℓ,d,g
sℓ+1) e(h, gα) = e(h̃, g)

σ2 = ({gα
∏

i∈W si}W ∈Wℓ,d
, gαsℓ+1) :

∏
W ∈Wℓ,d

gaW

∏
i∈W

sigbsℓ+1 ̸= h

σ = (bp, σ1, σ2, gα)
G×G ∋ (h, h̃)← A

(
1λ, σ, z

)
(

a0, . . . , a|Wℓ,d|, b
)
← E

(
1λ, σ, z

)

≤ negl(λ)

2.2. PRELIMINARIES 12

2.2.2 Interactive Proofs and Zero-knowledge Arguments

Interactive proofs. An interactive proof allows a prover P to convince a verifier V the validity of
some statement. The interactive proof runs in several rounds, allowing V to ask questions in each
round based on P’s answers of previous rounds. We phrase this in terms of P trying to convince V
that f(x) = 1. The proof system is interesting only when the running time of V is less than the time
of directly computing the function f . We formalize interactive proofs in the following:

Definition 2.2.1. Let f be a Boolean function. A pair of interactive machines ⟨P ,V⟩ is an interactive
proof for f with soundness ϵ if the following holds:

• Completeness. For every x such that f(x) = 1 it holds that Pr[⟨P ,V⟩(x) = accept] = 1.

• ϵ-Soundness. For any x with f(x) ̸= 1 and any P∗ it holds that Pr[⟨P∗,V⟩ = accept] ≤ ϵ

Zero-knowledge arguments. An argument system for an NP relationship R is a protocol between a
computationally-bounded prover P and a verifier V . At the end of the protocol, V is convinced by
P that there exists a witness w such that (x; w) ∈ R for some input x. We focus on arguments of
knowledge which have the stronger property that if the prover convinces the verifier of the statement
validity, then the prover must know w. We use G to represent the generation phase of the public
key pk and the verification key vk. Formally, consider the definition below, where we assume R is
known to P and V .

Definition 2.2.2. Let R be an NP relation. A tuple of algorithm (G,P ,V) is a zero-knowledge
argument of knowledge for R if the following holds.

• Correctness. For every (pk, vk) output by G(1λ) and (x, w) ∈ R,

⟨P(pk, w),V(vk)⟩(x) = accept

• Soundness. For any PPT prover P , there exists a PPT extractor ε such that for every (pk, vk)
output by G(1λ) and any x, it holds that

Pr[⟨P(pk),V(vk)⟩(x) = accept ∧ (x, w) /∈ R|w ← ε(pk, x)] ≤ negl(λ)

• Zero knowledge. There exists a PPT simulator S such that for any PPT adversaryA, auxiliary
input z ∈ {0, 1}poly(λ), (x; w) ∈ R, it holds that
Pr
[
⟨P(pk, w),A⟩ = accept : (pk, vk)← G(1λ); (x, w)← A(z, pk, vk)

]
=

Pr
[
⟨S(trap, z, pk),A⟩ = accept : (pk, vk, trap)← S(1λ); (x, w)← A(z, pk, vk)

]

We say that (G,P ,V) is a succinct argument system if the running time of V and the total
communication between P and V (proof size) are poly(λ, |x|, log |w|).

2.2. PRELIMINARIES 13

Protocol 1 (Sumcheck). The protocol proceeds in ℓ rounds.

• In the first round, P sends a univariate polynomial

f1(x1)
def=

∑
b2,...,bℓ∈{0,1}

f(x1, b2, . . . , bℓ) ,

V checks H = f1(0) + f1(1). Then V sends a random challenge r1 ∈ F to P .

• In the i-th round, where 2 ≤ i ≤ l − 1, P sends a univariate polynomial

fi(xi)
def=

∑
bi+1,...,bℓ∈{0,1}

f(r1, . . . , ri−1, xi, bi+1, . . . , bℓ) ,

V checks fi−1(ri−1) = fi(0) + fi(1), and sends a random challenge ri ∈ F to P .

• In the ℓ-th round, P sends a univariate polynomial

fℓ(xℓ)
def= f(r1, r2, . . . , rl−1, xℓ) ,

V checks fℓ−1(rℓ−1) = fℓ(0) + fℓ(1). The verifier generates a random challenge rℓ ∈ F.
Given oracle access to an evaluation f(r1, r2, . . . , rℓ) of f , V will accept if and only if
fℓ(rℓ) = f(r1, r2, . . . , rℓ). The instantiation of the oracle access depends on the application
of the sumcheck protocol.

2.2.3 GKR Protocol
In [GKR15], Goldwasser et al. proposed an efficient interactive proof protocol for layered arithmetic
circuits, which we use as a building block for our new zero-knowledge argument and is referred as
the GKR protocol. We present the detailed protocol here.

2.2.3.1 Sumcheck Protocol.

The sumcheck problem is a fundamental problem that has various applications. The problem is to
sum a polynomial f : Fℓ → F on the binary hypercube∑

b1,b2,...,bℓ∈{0,1}
f(b1, b2, ..., bℓ).

Directly computing the sum requires exponential time in ℓ, as there are 2ℓ combinations of b1, . . . , bℓ.
Lund et al. [LFKN92] proposed a sumcheck protocol that allows a verifier V to delegate the
computation to a computationally unbounded prover P , who can convince V that H is the correct
sum. We provide a description of the sumcheck protocol in Protocol 24. The proof size of the
sumcheck protocol is O(dℓ), where d is the variable-degree of f , as in each round, P sends a

2.2. PRELIMINARIES 14

univariate polynomial of one variable in f , which can be uniquely defined by d + 1 points. The
verifier time of the protocol is O(dℓ). The prover time depends on the degree and the sparsity of f ,
and we will give the complexity later in our scheme. The sumcheck protocol is complete and sound
with ϵ = dℓ

|F| .

2.2.3.2 GKR protocol

Using the sumcheck protocol as a building block, Goldwasser et al. [GKR15] showed an interactive
proof protocol for layered arithmetic circuits.

Definition 2.2.3 (Multi-linear Extension). Let V : {0, 1}ℓ → F be a function. The multilinear
extension of V is the unique polynomial Ṽ : Fl → F such that Ṽ (x1, x2, ..., xl) = V (x1, x2, ..., xl)
for all x1, x2, . . . , xl ∈ {0, 1}l.

Ṽ can be expressed as:

Ṽ (x1, x2, ..., xl) =
∑

b∈{0,1}ℓ

∏l

i=1[((1− xi)(1− bi) + xibi) · V (b)]

where bi is i-th bit of b.

Multilinear extensions of arrays. Inspired by the close form equation of the multilinear extension
given above, we can view an array A = (a0, a1, . . . , an−1) as a function A : {0, 1}log n → F such
that ∀i ∈ [0, n− 1], A(i) = ai. Therefore, in this paper, we abuse the use of multilinear extension
on an array as the multilinear extension Ã of A.
High Level Ideas. Let C be a layered arithmetic circuit with depth d over a finite field F. Each gate
in the i-th layer takes inputs from two gates in the (i + 1)-th layer; layer 0 is the output layer and
layer d is the input layer. The protocol proceeds layer by layer. Upon receiving the claimed output
from P , in the first round, V and P run the sumcheck protocol to reduce the claim about the output
to a claim about the values in the layer above. In the i-th round, both parties reduce a claim about
layer i− 1 to a claim about layer i through the sumcheck protocol. Finally, the protocol terminates
with a claim about the input layer d, which can be checked directly by V , or is given as an oracle
access. If the check passes, V accepts the claimed output.
Notation. Before describing the GKR protocol, we introduce some additional notations. We
denote the number of gates in the i-th layer as Si and let si = ⌈log Si⌉. (For simplicity, we assume
Si is a power of 2, and we can pad the layer with dummy gates otherwise.) We then define a
function Vi : {0, 1}si → F that takes a binary string b ∈ {0, 1}si and returns the output of gate
b in layer i, where b is called the gate label. With this definition, V0 corresponds to the output
of the circuit, and Vd corresponds to the input layer. Finally, we define two additional functions
addi, multi : {0, 1}si−1+2si → {0, 1}, referred as wiring predicates in the literature. addi (multi)
takes one gate label z ∈ {0, 1}si−1 in layer i− 1 and two gate labels x, y ∈ {0, 1}si in layer i, and
outputs 1 if and only if gate z is an addition (multiplication) gate that takes the output of gate x, y as

2.2. PRELIMINARIES 15

input. With these definitions, Vi can be written as follows:

Vi(z) =
∑

x,y∈{0,1}si+1

(addi+1(z, x, y)(Vi+1(x) + Vi+1(y))

+multi+1(z, x, y)(Vi+1(x)Vi+1(y)))
(2.1)

for any z ∈ {0, 1}si .
In the equation above, Vi is expressed as a summation, so V can use the sumcheck protocol to

check that it is computed correctly. As the sumcheck protocol operates on polynomials defined on
F, we rewrite the equation with their multilinear extensions:

Ṽi(g) =
∑

x,y∈{0,1}si+1 fi(x, y)

=
∑

x,y∈{0,1}si+1 (˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(g, x, y)(Ṽi+1(x)Ṽi+1(y))) , (2.2)

where g ∈ Fsi is a random vector.
Protocol. With Equation 7.1, the GKR protocol proceeds as follows. The prover P first sends
the claimed output of the circuit to V . From the claimed output, V defines polynomial Ṽ0 and
computes Ṽ0(g) for a random g ∈ Fs0 . V and P then invoke a sumcheck protocol on Equation 7.1
with i = 0. As described in Section 7.2.2.1, at the end of the sumcheck, V needs an oracle access to
fi(u, v), where u, v are randomly selected in Fsi+1 . To compute fi(u, v), V computes ˜addi+1(u, v)
and ˜multi+1(u, v) locally (they only depend on the wiring pattern of the circuit, but not on the
values), asks P to send Ṽ1(u) and Ṽ1(v) and computes fi(u, v) to complete the sumcheck protocol.
In this way, V and P reduces a claim about the output to two claims about values in layer 1. V and
P could invoke two sumcheck protocols on Ṽ1(u) and Ṽ1(v) recursively to layers above, but the
number of claims and the sumcheck protocols would increase exponentially in d.
Combining two claims: condensing to one claim. In [GKR15], Goldwasser et al. presented a
protocol to reduce two claims Ṽi(u) and Ṽi(v) to one as following. V defines a line γ : F→ Fsi such
that γ(0) = u, γ(1) = v. V sends γ(x) to P . Then P sends V a degree si univariate polynomial
h(x) = Ṽi(γ(x)). V checks that h(0) = Ṽi(u), h(1) = Ṽi(v). Then V randomly chooses r ∈ F and
computes a new claim h(r) = Ṽi(γ(r)) = Ṽi(w) on w = γ(r) ∈ Fsi . V sends r, w to P . In this
way, the two claims are reduced to one claim Ṽi(w). Combining this protocol with the sumcheck
protocol on Equation 7.1, V and P can reduce a claim on layer i to one claim on layer i + 1, and
eventually to a claim on the input, which completes the GKR protocol.
Combining two claims: random linear combination. In [CFS17], Chiesa et al. proposed an
alternative approach using random linear combinations. Upon receiving the two claims Ṽi(u) and
Ṽi(v), V selects αi, βi ∈ F randomly and computes αiṼi(u) + βiṼi(v). Based on Equation 7.1, this

2.2. PRELIMINARIES 16

random linear combination can be written as

αiṼi(u) + βiṼi(v)
=αi

∑
x,y∈{0,1}si+1

(˜addi+1(u, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(u, x, y)(Ṽi+1(x)Ṽi+1(y)))

+βi

∑
x,y∈{0,1}si+1

(˜addi+1(v, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(v, x, y)(Ṽi+1(x)Ṽi+1(y)))

=
∑

x,y∈{0,1}si+1

((αi
˜addi+1(u, x, y) + βi

˜addi+1(v, x, y))(Ṽi+1(x) + Ṽi+1(y))

+ (αi
˜multi+1(u, x, y) + βi

˜multi+1(v, x, y))(Ṽi+1(x)Ṽi+1(y))) (2.3)

V and P then execute the sumcheck protocol on Equation 6.3 instead of Equation 7.1. At the end
of the sumcheck protocol, V still receives two claims about Ṽi+1, computes their random linear
combination and proceeds to an layer above recursively until the input layer.

In our new ZKP scheme, we will mainly use the second approach. The full GKR protocol using
random linear combinations is given in Protocol 9.

Theorem 2.2.4. [VSBW13][Tha13a][CMT12][GKR15]. Let C : Fn → Fk be a depth-d layered
arithmetic circuit. Protocol 9 is an interactive proof for the function computed by C with soundness
O(d log |C|/|F|). It uses O(d log |C|) rounds of interaction and running time of the prover P is
O(|C| log |C|). Let the optimal computation time for all ˜addi and ˜multi be T , the running time of
V is O(n + k + d log |C|+ T). For log-space uniform circuits it is T = polylog |C|.

2.2. PRELIMINARIES 17

Protocol 2. Let F be a prime field. Let C: Fn → Fk be a d-depth layered arithmetic circuit. P wants to
convince that out = C(in) where in is the input from V , and out is the output. Without loss of generality,
assume n and k are both powers of 2 and we can pad them if not.

• Define the multilinear extension of array out as Ṽ0. V chooses a random g ∈ Fs0 and sends it to P .
Both parties compute Ṽ0(g).

• P and V run a sumcheck protocol on

Ṽ0(g(0)) =
∑

x,y∈{0,1}s1

˜mult1(g(0), x, y)(Ṽ1(x)Ṽ1(y)) + ˜add1(g(0), x, y)(Ṽ1(x) + Ṽ1(y))

At the end of the protocol, V receives Ṽ1(u(1)) and Ṽ1(v(1)). V computes ˜mult1(g(0), u(1), v(1)),
˜add1(g(0), u(1), v(1)) and checks that ˜mult1(g(0), u(1), v(1))Ṽ1(u(1))Ṽ1(v(1)) +
˜add1(g(0), u(1), v(1))(Ṽ1(u(1)) + Ṽ1(v(1))) equals to the last message of the sumcheck.

• For i = 1, ..., d− 1:

– V randomly selects α(i), β(i) ∈ F and sends them to P .

– P and V run the sumcheck on the equation

α(i)V̇i(u
(i)) + β(i)V̇i(v

(i)) =∑
x,y∈{0,1}si+1

((α(i) ˜multi+1(u(i), x, y) + β(i) ˜multi+1(v(i), x, y))(Ṽi+1(x)Ṽi+1(y))

+(α(i) ˜addi+1(u(i), x, y) + β(i) ˜addi+1(v(i), x, y))(Ṽi+1(x) + Ṽi+1(y))

– At the end of the sumcheck protocol, P sends V Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)).

– V computes the right hand side of the above equation by replacing x and y by u(i+1) and
v(i+1) respectively, and checks if it equals to the last message of the sumcheck. If all checks
in the sumcheck pass, V uses Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)) to proceed to the (i + 1)-th layer.
Otherwise, V outputs reject and aborts.

• At the input layer d, V has two claims Ṽd(u(d)) and Ṽd(v(d)). V queries the oracle of evaluations
of Ṽd at u(d) and v(d) and checks that they are the same as the two claims. If yes, output accept;
otherwise, output reject.

2.2.4 Zero-Knowledge Verifiable Polynomial Delegation Scheme
Let F be a finite field, F be a family of ℓ-variate polynomial over F, and d be a variable-degree parameter.
A zero-knowledge verifiable polynomial delegation scheme (zkVPD) for f ∈ F and t ∈ Fℓ consists of the
following algorithms:

2.2. PRELIMINARIES 18

• (pp, vp)← KeyGen(1λ, ℓ, d),

• com← Commit(f, rf , pp),

• {accept, reject} ← CheckComm(com, vp),

• (y, π)← Open(f, t, rf , pp),

• {accept, reject} ← Verify(com, t, y, π, vp).

A zkVPD scheme satisfies correctness, soundness and zero knowledge, which we formally define below.

Definition 2.2.5. Let F be a finite field, F be a family of ℓ-variate polynomial over F, and d be a
variable-degree parameter. A zero-knowledge verifiable polynomial delegation scheme (zkVPD) consists
of the following algorithms: (pp, vp)← KeyGen(1λ, ℓ, d), com← Commit(f, rf , pp), {accept, reject} ←
CheckComm(com, vp), (y, π)← Open(f, t, rf , pp), {accept, reject} ← Verify (com, t, y, π, vp), such that

• Perfect Completeness For any polynomial f ∈ F and value t, the following probability is 1.

Pr
rf

(pp, vp)← KeyGen(1λ, ℓ, d)

com← Commit(f, rf , pp) : CheckComm(com, vp) = accept ∧
(y, π)← Open(f, t, rf , pp) Verify(com, t, y, π, vp) = accept

• Binding For any PPT adversary A and benign auxiliary input z1, z2 the following probability is

negligible of λ:

Pr

(pp, vp)← KeyGen(1λ, ℓ, d) CheckComm(com∗, vp) = accept ∧
(π∗, com∗, y∗, state)← A(1λ, z1, pp) : Verify(com∗, t∗, y∗, π∗, vp) = accept ∧

(f∗, t∗, r∗
f)← A(1λ, z2, state, pp) com∗ = Commit(f∗, r∗

f , pp) ∧
(y∗, π∗) = Open(f∗, t∗, r∗

f , pp) ∧
f∗(t∗) ̸= y∗

• Zero Knowledge For security parameter λ, polynomial f , adversary A, and simulator S , consider the

2.3. GKR PROTOCOL WITH LINEAR PROVER TIME 19

following two experiments:

RealA,f (1λ):

1. (pp, vp)← KeyGen(1λ, ℓ, d)

2. com← Commit(f, rf , pp)

3. k ← A(1λ, com, vp)

4. For i = 1, ..., k repeat

a) ti ← A(1λ, com, y1, ..., yi−1, π1,
..., πi−1, vp)

b) (yi, πi)← Open(f, ti, rf , pp)

5. b← A(1λ, com, (y1, ..., yk, π1, ..., πk), vp)

6. Output b

IdealA,S(1λ):

1. (com, pp, vp, σ)← Sim(1λ, ℓ, d)

2. k ← A(1λ, com, vp)

3. For i = 1, ..., k repeat:

a) ti ← A(1λ, com, y1, ..., yi−1, π1,
..., πi−1, vp)

b) (yi, πi, σ)← Sim(ti, σ, pp)

4. b← A(1λ, com, (y1, ..., yk, π1, ..., πk), vp)

5. Output b

For any PPT adversary A and all polynomial f ∈ F, there exists simulator S such that

|Pr[RealA,f (1λ) = 1]− Pr[IdealA,S(1λ) = 1]| ≤ negl(λ).

2.3 GKR Protocol with Linear Prover Time
In this section we present a new algorithm (see Algorithm 6) for the prover of the GKR protocol [GKR15]
that runs in linear time for arbitrary layered circuits. Before that, we present some necessary building blocks.

2.3.1 Linear-time sumcheck for a multilinear function [Tha13a]
In [Tha13a], Thaler proposed a linear-time algorithm for the prover of the sumcheck protocol on a multilinear
function f on ℓ variables (the algorithm runs in O(2ℓ) time). We review this algorithm here. Recall that in
the i-th round of the sumcheck protocol the prover sends the verifier the univariate polynomial on xi∑

bi+1,...,bℓ,∈{0,1}
f(r1, . . . , ri−1, xi, bi+1, . . . , bℓ) ,

where r1, . . . , ri−1 are random values chosen by the verifier in previous rounds. Since f is multilinear, it
suffices for the prover to send two evaluations of the polynomial at points t = 0 and t = 1, namely the
evaluations ∑

bi+1,...,bℓ,∈{0,1}
f(r1, . . . , ri−1, 0, bi+1, . . . , bℓ) (2.4)

and ∑
bi+1,...,bℓ,∈{0,1}

f(r1, . . . , ri−1, 1, bi+1, . . . , bℓ) . (2.5)

2.3. GKR PROTOCOL WITH LINEAR PROVER TIME 20

Algorithm 1 F ← FunctionEvaluations(f, A, r1, . . . , rℓ)
Input: Multilinear f on ℓ variables, initial bookkeeping table A, random r1, . . . , rℓ;
Output: All function evaluations f(r1, . . . , ri−1, t, bi+1, . . . , bℓ);

1: for i = 1, . . . , ℓ do
2: for b ∈ {0, 1}ℓ−i do ▷ b is both a number and its binary representation.
3: for t = 0, 1, 2 do
4: Let f(r1, . . . , ri−1, t, b) = A[b] · (1− t) + A[b + 2ℓ−i] · t
5: end for
6: A[b] = A[b] · (1− ri) + A[b + 2ℓ−i] · ri

7: end for
8: end for
9: Let F contain all function evaluations f(.) computed at Step 6

10: return F

To compute the above sums the prover maintains a bookkeeping table A for f . This table, at round i, has
2ℓ−i+1 entries storing the values

f(r1, . . . , ri−1, bi, bi+1, . . . , bℓ)

for all bi, . . . , bℓ ∈ {0, 1} and is initialized with evaluations of f on the hypercube. For every entry of A, the
prover subsequently computes, as in Step 6 of Algorithm 8 FunctionEvaluations2 two values

f(r1, . . . , ri−1, 0, bi+1, . . . , bℓ) and f(r1, . . . , ri−1, 1, bi+1, . . . , bℓ) .

Once these function evaluations are in place, the prover can easily sum over them and compute the required
sumcheck messages as reguired by Relations 2.4 and 2.5. This is done in Algorithm 20 SumCheck3.
Complexity analysis. Both Algorithms 8 and 20 run in O(2ℓ) time: The first iteration takes O(2ℓ), the
second O(2ℓ−1) and so on, and therefore the bound holds.

2.3.2 Linear-time sumcheck for products of multilinear functions [Tha13a]
The linear-time sumcheck in the previous section can be generalized to a product of two multilinear functions.
Let now f and g be two multilinear functions on ℓ variables each, we describe a linear-time algorithm to
compute the messages of the prover for the sumcheck on the product f · g, as proposed in [Tha13a]. Note that
we cannot use Algorithm 20 here since f · g is not multilinear. However, similarly with the single-function
case, the prover must now send, at round i, the following evaluations at points t = 0, t = 1 and t = 2∑

bi+1,...,bℓ,∈{0,1}
f(r1, . . . , ri−1, t, bi+1, . . . , bℓ) · g(r1, . . . , ri−1, t, bi+1, . . . , bℓ)

2To be compatible with other protocols later, we use three values t = 0, 1, 2 in our evaluations instead of just two.
3We note here that although these two steps can be performed together in a single algorithm and without the need

to store function evaluations, we explicitly decouple them with two different algorithms (FunctionEvaluations and
SumCheck) for facilitating the presentation of more advanced protocols later.

2.3. GKR PROTOCOL WITH LINEAR PROVER TIME 21

Algorithm 2 {a1, . . . , aℓ} ← SumCheck(f, A, r1, . . . , rℓ)
Input: Multilinear f on ℓ variables, initial bookkeeping table A, random r1, . . . , rℓ;
Output: ℓ sumcheck messages for

∑
x∈{0,1}ℓ f(x). Each message ai consists of 3 elements

(ai0, ai1, ai2);
1: F ← FunctionEvaluations(f, A, r1, . . . , rℓ)
2: for i = 1, . . . , ℓ do
3: for t ∈ {0, 1, 2} do
4: ait = ∑

b∈{0,1}ℓ−i f(r1, . . . , ri−1, t, b) ▷ All evaluations needed are in F .
5: end for
6: end for
7: return {a1, . . . , aℓ};

Algorithm 3 {a1, . . . , aℓ} ← SumCheckProduct(f, Af , g, Ag, r1, . . . , rℓ)
Input: Multilinear f and g, initial bookkeeping tables Af and Ag, random r1, . . . , rℓ;
Output: ℓ sumcheck messages for

∑
x∈{0,1}ℓ f(x)g(x). Each message ai consists of 3 elements

(ai0, ai1, ai2);
1: F ← FunctionEvaluations(f, Af , r1, . . . , rℓ)
2: G ← FunctionEvaluations(g, Ag, r1, . . . , rℓ)
3: for i = 1, . . . , ℓ do
4: for t ∈ {0, 1, 2} do
5: ait = ∑

b∈{0,1}ℓ−i f(r1, . . . , ri−1, t, b) · g(r1, . . . , ri−1, t, b) ▷ All evaluations needed are
in F and G.

6: end for
7: end for
8: return {a1, . . . , aℓ};

The above can be easily computed by computing evaluations for functions f and g separately using Algorithm 8
and the combining the results using our new Algorithm 9 SumCheckProduct. We now have the following
lemma:

Lemma 2.3.1. Algorithm SumCheckProduct runs in time O(2ℓ)

Proof. All loops in SumCheckProduct require time 2ℓ + 2ℓ−1 + . . . = O(2ℓ). Also SumCheckProduct
calls FunctionEvaluations twice (one for f and one for g) and each such call takes O(2ℓ) time.

2.3. GKR PROTOCOL WITH LINEAR PROVER TIME 22

2.3.3 Linear-time sumcheck for GKR functions
Let us now consider the sumcheck problem on a particular class of functions that are relevant for the GKR
protocol (that is why we call them GKR functions). In particular we want to compute the sumcheck∑

x,y∈{0,1}ℓ f1(g, x, y)f2(x)f3(y) , (2.6)

for a fixed point g ∈ Fℓ, where f2(x), f3(x) : Fℓ → F are multilinear extensions of arrays Af2
, Af3

of size
2ℓ, and function f1 : F3ℓ → F is the multilinear extension of a sparse array with O(2ℓ) (out of 23ℓ possible)
nonzero elements. It is not hard to see that the sumcheck polynomials in GKR given by Equations 7.1 and 6.3
satisfy these properties.

We note here that applying Algorithm 8 FunctionEvaluations for this particular class of polynomials
would lead to quadratic prover time. This is because f1 has 22ℓ variables to sum on yielding O(22ℓ) complexity.
However, one could take advantage of the sparsity of f1: the prover can store only the O(2ℓ) non-zero
values of the bookkeeping table A. This is exactly the approach used in many prior work [CMT12; Wah+17;
ZGKPP18]. However, with this approach, the number of nonzero values that must be considered in Step 5 is
always at most 2ℓ, since it is not guaranteed that this number will reduce to half (i.e., to 2ℓ−i) after every
update in Step 7 of Algorithm 8 because it is sparse. Therefore, the overall complexity becomes O(ℓ · 2ℓ).

In this section we effectively reduce this bound to O(2ℓ). Our protocol divides the sumcheck into two
phases: the first ℓ rounds bounding the variables of x to a random point u, and the last ℓ rounds bounding the
variables of y to a random point v. The central idea lies in rewriting Equation 4.8 as follows

∑
x,y∈{0,1}ℓ f1(g, x, y)f2(x)f3(y) =

∑
x∈{0,1}ℓ f2(x)

∑
y∈{0,1}ℓ f1(g, x, y)f3(y)

=
∑

x∈{0,1}ℓ f2(x)hg(x) ,

where hg(x) =
∑

y∈{0,1}ℓ f1(g, x, y)f3(y).

2.3.3.1 Phase one.

With the formula above, in the first ℓ rounds, the prover and the verifier are running exactly a sumcheck on
a product of two multilinear functions f2 · hg, since functions f2 and hg can be viewed as functions only
in x—y can be considered constant (it is always summed on the hypercube). To compute the sumcheck
messages for the first ℓ rounds, given their bookkeeping tables, we can call

SumCheckProduct(hg(x), Ahg
, f2(x), Af2

, u1, . . . , uℓ)

in Algorithm 9. By Lemma 2.3.1 this will take O(2ℓ) time. We now show how to initialize the bookkeeping
tables in linear time.
Initializing the bookkeeping tables:
Initializing the bookkeeping table for f2 in O(2ℓ) time is trivial, since f2 is a multilinear extension of an array
and therefore the evaluations on the hypercube are known. Initializing the bookkeeping table for hg in O(2ℓ)
time is more challenging but we can leverage the sparsity of f1. Consider the following lemma.

2.3. GKR PROTOCOL WITH LINEAR PROVER TIME 23

Lemma 2.3.2. LetNx be the set of (z, y) ∈ {0, 1}2ℓ such that f1(z, x, y) is non-zero. Then for all x ∈ {0, 1}ℓ,
it is hg(x) =

∑
(z,y)∈Nx

I(g, z) · f1(z, x, y) · f3(y), where I(g, z) =
∏ℓ

i=1((1− gi)(1− zi) + gizi)).

Proof. As f1 is a multilinear extension, as shown in [Tha13a], we have f1(g, x, y) =
∑

z∈{0,1}ℓ I(g, z)
f1(z, x, y), where I is the multilinear extension of the identity polynomial, i.e., I(w, z) = 1 iff w = z for all
w, z ∈ {0, 1}ℓ. Therefore, we have

hg(x) =
∑

y∈{0,1}ℓ

f1(g, x, y)f3(y) =
∑

z,y∈{0,1}ℓ

I(g, z)f1(z, x, y)f3(y) =
∑

(z,y)∈Nx

I(g, z) · f1(z, x, y) · f3(y)

Moreover, I(w, z) =
∏ℓ

i=1((1−wi)(1−zi)+wizi)) is the unique polynomial that evaluates to 1 iff w = z for
all w, z ∈ {0, 1}ℓ. As the multilinear extension is unique, we have I(g, z) =

∏ℓ
i=1((1−gi)(1−zi)+gizi)).

Lemma 2.3.3. The bookkeeping table Ahg
can be initialized in time O(2ℓ).

Proof. As f1 is sparse,
∑

x∈{0,1}ℓ |Nx| = O(2ℓ). From Lemma 4.3.2, given the evaluations of I(g, z) for all

z ∈ {0, 1}ℓ, the prover can iterate all (z, y) ∈ Nx for all x to compute Ahg
. The full algorithm is presented in

Algorithm 10.
Procedure Precompute(g) is to evaluate G[z] = I(g, z) =

∏ℓ
i=1((1−gi)(1−zi)+gizi)) for z ∈ {0, 1}ℓ.

By the closed-form of I(g, z), the procedure iterates each bit of z, and multiples 1 − gi for zi = 0 and
multiples gi for zi = 1. In this way, the size of G doubles in each iteration, and the total complexity is O(2ℓ).

Step 8-9 computes hg(x) using Lemma 4.3.2. When f1 is represented as a map of (z, x, y), f1(z, x, y) for
non-zero values, the complexity of these steps is O(2ℓ). In the GKR protocol, this is exactly the representation
of a gate in the circuit, where z, x, y are labels of the gate, its left input and its right input, and f1(z, x, y) = 1.

With the bookkeeping tables, the prover runs SumCheckProduct(hg(x), Ahg
, f2(x), Af2

, u1, . . . , uℓ) in
Algorithm 9 and the total complexity for phase one is O(2ℓ).

2.3.3.2 Phase two.

At this point, all variables in x have been bounded to random numbers u. In the second phase, the equation to
sum on becomes ∑

y∈{0,1}ℓ f1(g, u, y)f2(u)f3(y)

Note here that f2(u) is merely a single value which we already computed in phase one. Both f1(g, u, y) and
f3(y) are polynomials on y with ℓ variables. Similar to phase one, to compute the messages for the last ℓ
rounds we can call

SumCheckProduct(f1(g, u, y), Af1
, f3(y) · f2(u), Af3

· f2(u), , v1, . . . , vℓ) .

Note here that Af1
is the bookkeeping table for f1(g, u, y), not the original sparse function f1(g, x, y).

Initializing the bookkeeping table for f1:
It now remains to initialize the bookkeeping table for f1(g, u, y) efficiently. Similar to phase one, we have the
following lemma:

2.3. GKR PROTOCOL WITH LINEAR PROVER TIME 24

Algorithm 4 Ahg
← Initialize_PhaseOne(f1, f3, Af3 , g)

Input: Multilinear f1 and f3, initial bookkeeping tables Af3 , random g = g1, . . . , gℓ;
Output: Bookkeeping table Ahg

;

1: procedure G← Precompute(g) ▷ G is an array of size 2ℓ.
2: Set G[0] = 1
3: for i = 0, . . . , ℓ− 1 do
4: for b ∈ {0, 1}i do
5: G[b, 0] = G[b] · (1− gi+1)
6: G[b, 1] = G[b] · gi+1
7: end for
8: end for
9: end procedure

10: ∀x ∈ {0, 1}ℓ, set Ahg
[x] = 0

11: for every (z, x, y) such that f1(z, x, y) is non-zero do
12: Ahg

[x] = Ahg
[x] + G[z] · f1(z, x, y) · Af3 [y]

13: end for
14: return Ahg

;

Lemma 2.3.4. LetNy be the set of (z, x) ∈ {0, 1}2ℓ such that f1(z, x, y) is non-zero. Then for all y ∈ {0, 1}ℓ,
it is f1(g, u, y) =

∑
(z,x)∈Ny

I(g, z) · I(u, x) · f1(z, x, y).

Proof. This immediately follows from the fact that f1 is a multilinear extension. We have f1(g, u, y) =∑
z,y∈{0,1}ℓ I(g, z) · I(u, x) · f1(z, x, y), where the closed from of I is given in Lemma 4.3.2.

Lemma 2.3.5. The bookkeeping table Af1
can be initialized in time O(2ℓ).

Proof. Similar to Algorithm 10, he prover again iterates all non-zero indices of f1 to compute it using
Lemma 2.3.4.The full algorithm is presented in Algorithm 5.

We now summarize the final linear-time algorithm for computing the prover messages for the sumcheck
protocol on GKR functions. See Algorithm 6 SumCheckGKR.

Theorem 2.3.6. Algorithm SumCheckGKR runs in O(2ℓ) time.

Proof. Follows from Lemma 2.3.1, 2.3.3 and 2.3.5.

2.3. GKR PROTOCOL WITH LINEAR PROVER TIME 25

Algorithm 5 Af1 ← Initialize_PhaseTwo(f1, g, u)
Input: Multilinear f1, random g = g1, . . . , gℓ and u = u1, . . . , uℓ;
Output: Bookkeeping table Af1;

1: G← Precompute(g)
2: U← Precompute(u)
3: ∀y ∈ {0, 1}ℓ, set Af1 [y] = 0
4: for every (z, x, y) such that f1(z, x, y) is non-zero do
5: Af1 [y] = Af1 [y] + G[z] · U[x] · f1(z, x, y)
6: end for
7: return Af1;

Algorithm 6 {a1, . . . , a2ℓ} ← SumCheckGKR(f1, f2, f3, u1 . . . , uℓ, v1, . . . , vℓ, g)
Input: Multilinear extensions f1(z, x, y) (with O(2ℓ) non-zero entries), f2(x), f3(y) and their
bookkeeping tables Af2 , Af3 , randomness u = u1, . . . , uℓ and v = v1, . . . , vℓ and point g;
Output: 2ℓ sumcheck messages for

∑
x,y∈{0,1}ℓ f1(g, x, y)f2(x)f3(y);

1: Ahg
← Initialize_PhaseOne(f1, f3, Af3 , g)

2: {a1, . . . , aℓ} ← SumCheckProduct(∑
y∈{0,1}ℓ f1(g, x, y)f3(y), Ahg

, f2, Af2 , u1, . . . , uℓ)
3: Af1 ← Initialize_PhaseTwo(f1, g, u)
4: {aℓ+1, . . . , a2ℓ} ← SumCheckProduct(f1(g, u, y), Af1 , f3(y) · f2(u), Af3 · f2(u), v1, . . . , vℓ)
5: return {a1, . . . , a2ℓ}

2.3.3.3 Generalizations of our technique.

Our technique can be extended to sumchecks of the general type∑
x1,x2,...,xc∈{0,1}c f0(g, x1, x2, . . . , xc)f1(x1)f2(x2)...fc(xc) ,

where c is a constant, functions fi are multilinear and f0() is sparse and consists of linearly-many nonzero
monomials. We divide the protocol into c phases similarly as above. This generalization captures the
sumcheck in the original GKR paper with identity polynomials (see [GKR15]), and our new algorithms also
improve the prover time of this to linear.

2.3. GKR PROTOCOL WITH LINEAR PROVER TIME 26

2.3.4 Putting everything together
The sumcheck protocol in GKR given by Equation 7.1 can be decomposed into several instances that have the
form of Equation 4.8 presented in the previous section. The term∑

x,y∈{0,1}si+1

˜multi+1(g, x, y)(Ṽi+1(x)Ṽi+1(y))

is exactly the same as Equation 4.8. The term
∑

x,y∈{0,1}si+1
˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y)) can be

viewed as: ∑
x,y∈{0,1}si+1

˜addi+1(g, x, y)Ṽi+1(x) +
∑

x,y∈{0,1}si+1

˜addi+1(g, x, y)Ṽi+1(y)

The first sum can be computed using the same protocol in Algorithm 6 without f3(y), and the second sum can
be computed without f2(x). The complexity for both cases remains linear. Due to linearity of the sumcheck
protocol, the prover can execute these 3 instances simultaneously in every round, and sum up the individual
messages and send them to the veriifer.
Combining two claims. After the sumcheck in the GKR protocol is completed, as described in Section 7.2.2,
the prover and the verifier need to combine the two claims about Ṽi+1 received at the end of the sumcheck
protocol to one to avoid the exponential blow-up. There are two ways to combine the two claims and we show
how to do each of them in linear time.

The second approach using random linear combinations is rather straight forward. After the output
layers, P and V execute sumcheck protocol on Equation 6.3 instead of Equations 7.1, which still satisfies the
properties of Equation 4.8. One could view it as 6 instances of Equation 4.8 and the prover time is still linear.
Moreover, there is a better way to further improve the efficiency. Taking

∑
x,y∈{0,1}si+1 (αi

˜multi+1(u, x, y) +
βi

˜multi+1(v, x, y))Ṽi+1(x)Ṽi+1(y) as an example, in Algorithm 10, the prover runs Precompute twice on
u and v to generate two arrays (G1 and G2), and sets G[b] = αiG1[b] + βiG2[b] for all b. The rest of the
algorithms remains the same. This only incurs a small overhead in practice in our implementation, compared
to the original algorithm on Equation 4.8.

Though with the approach above we already have a linear prover GKR protocol, the technique to condense
two points to one proposed in the original GKR protocol [GKR15] may still be interesting in some scenarios
(e.g., in our implementation, we use this approach in the last layer and only make one query to the multi-linear
extension of the input, which is more efficient practice). We present an algorithm to reduce two claims about
Ṽi+1 to one in linear time. Recall that as described in Section 7.2.2, in the i-th layer, after the sumcheck, the
verifier receives two claims Ṽ (u), Ṽ (v). (Again we omit the superscript and subscript of i for the ease of
interpretation.) She then defines a line γ(x) : F→ Fs such that γ(0) = u, γ(1) = v and the prover needs to
provide Ṽ (γ(x)), a degree s univariate polynomial, to V . If the prover computes it naively, which was done
in all prior papers, it incurs O(s2s) time, as it is equivalent to evaluating Ṽ () at s + 1 points.

2.3. GKR PROTOCOL WITH LINEAR PROVER TIME 27

Algorithm 7 Compute Ṽ (γ(x)) = ∑
y∈{0,1}s I(γ(x), y)Ṽ (y)

1: Initialize a binary tree T with s levels. We use Tj[b] to denote the b-th node at level j.
2: for b ∈ {0, 1}s do
3: Ts[b] = Ṽ (b).
4: Multiply Ts[b] with bs(csx + ds) + (1− bs)(1− csx− ds).
5: end for
6: for j = s− 1, . . . , 1 do
7: for b ∈ {0, 1}j do
8: Tj[b] = Tj+1[b, 0] + Tj+1[b, 1].
9: Tj[b] = Tj[b] · (bj(cjx + dj) + (1− bj)(1− cjx− dj)).

10: end for
11: end for
12: Output T1[0].

In our new algorithm, we write Ṽ (γ(x)) =
∑

y∈{0,1}s I(γ(x), y)Ṽ (y), where I(a, b) is an identity
polynomial I(a, b) = 0 iff a = b. This holds by inspection of both sides on the Boolean hypercube. We then
evaluate the right side in linear time with a binary tree structure. The key observation is that the identity
polynomial can be written as I(a, b) =

∏s
j=1(ajbj + (1 − aj)(1 − bj)), and we can process one variable

(aj , bj) at a time and multiply them together to get the final result.
We construct a binary tree with 2s leaves and initialize each leaf b ∈ {0, 1}s with Ṽ (b). As γ(x) is a linear

polynomial, we write it as γ(x) = [c1, . . . , cs]T x + [d1, . . . , ds]T . At the leaf level, we only consider the last
variable of I(γ(x), y). For each leaf b ∈ {0, 1}s, we multiply the value with bs(csx+ds)+(1−bs)(1−csx−ds),
the result of which is a linear polynomial. For a node b ∈ {0, 1}j in the intermediate level j, we add the
polynomials from its two children, and multiply it with bj(cjx + dj) + (1− bj)(1− cjx− dj), the part in I
that corresponds to the j-th variable. In this way, each node in the j-th level stores a degree j polynomial.
Eventually, the root is the polynomial on the right side of degree s, which equals to Ṽ (γ(x)). The algorithm
is given in Algorithm 7.

To see the complexity of Algorithm 7, both the storage and the polynomial multiplication at level j is
O(s − j + 1) in each node. So the total time is O(

∑s
j=1 2j(s − j + 1)) = O(2s), which is linear to the

number of gates in the layer.
An alternative way to interpret this result is to add an additional layer for each layer of the circuit in GKR

relaying the values. That is,
Ṽi(g) =

∑
x∈{0,1}si

I(g, x)Ṽi+1(x),

where Ṽi = Ṽi+1. Then when using the random linear combination approach, the sumcheck is executed on

αṼi(u) + βṼi(v) =
∑

x∈{0,1}si

(αI(u, x) + βI(v, x))Ṽi+1(x).

2.4. ZERO KNOWLEDGE ARGUMENT PROTOCOLS 28

At the end of the sumcheck, the verifier receives a single claim on Ṽi+1 = Ṽi. The sumcheck can obviously
run in linear time, and the relay layers do not change the result of the circuit. This approach is actually the
same as the condensing to one point in linear time above conceptually.

2.4 Zero Knowledge Argument Protocols
In this section, we present the construction of our new zero-knowledge argument system. In [ZGKPP17b],
Zhang et al. proposed to combine the GKR protocol with a verifiable polynomial delegation protocol, resulting
in an argument system. Later, in [ZGKPP17a; WTSTW18], the construction was extended to zero-knowledge,
by sending all the messages in the GKR protocol in homomorphic commitments and performing all the
checks by zero-knowledge equality and product testing. This incurs a high overhead for the verifier compared
to the plain version without zero-knowledge, as each multiplication becomes an exponentiation and each
equality check becomes a Σ-protocol, which is around 100× slower in practice.

In this paper, we follow the same blueprint of combining GKR and VPD to obtain an argument system,
but instead show how to extend it to be zero-knowledge efficiently. In particular, the prover masks the
GKR protocol with special random polynomials so that the verifier runs a “randomized” GKR that leaks
no extra information and her overhead is small. A similar approach was used by Chiesa et al. in [CFS17].
In the following, we present the zero-knowledge version of each building block, followed by the whole
zero-knowledge argument.

2.4.1 Zero Knowledge Sumcheck
As a core step of the GKR protocol, P and V execute a sumcheck protocol on Equation 7.1, during which
P sends V evaluations of the polynomial at several random points chosen by V . These evaluations leak
information about the values in the circuit, as they can be viewed as weighted sums of these values.

To make the sumcheck protocol zero-knowledge, we take the approach proposed by Chiesa et al. in
[CFS17], which is masking the polynomial in the sumcheck protocol by a random polynomial. In this
approach, to prove

H =
∑

x1,x2,...,xℓ∈{0,1}
f(x1, x2, . . . , xℓ),

the prover generates a random polynomial g with the same variables and individual degrees of f . She commits
to the polynomial g, and sends the verifier a claim G =

∑
x1,x2,...,xℓ∈{0,1}

g(x1, x2, . . . , xℓ). The verifier picks

a random number ρ, and execute a sumcheck protocol with the prover on

H + ρG =
∑

x1,x2,...,xℓ∈{0,1}
(f(x1, x2, . . . , xℓ) + ρg(x1, x2, . . . , xℓ)).

At the last round of this sumcheck, the prover opens the commitment of g at g(r1, . . . , rℓ), and the verifier
computes f(r1, . . . , rl) by subtracting ρg(r1, . . . , rℓ) from the last message, and compares it with the oracle
access of f . It is shown that as long as the commitment and opening of g are zero-knowledge, the protocol is
zero-knowledge. Intuitively, this is because all the coefficients of f are masked by those of g. The soundness
still holds because of the random linear combination of f and g.

Unfortunately, the masking polynomial g is as big as f , and opening it to a random point later is expensive.
In [CFS17], the prover sends a PCP oracle of g, and executes a zero-knowledge sumcheck to open it to a

2.4. ZERO KNOWLEDGE ARGUMENT PROTOCOLS 29

random point, which incurs an exponential complexity for the prover. Even replacing it with the zkVPD
protocol in [ZGKPP17a], the prover time is slow in practice.

In this paper, we show that it suffices to mask f with a small polynomial to achieve zero-knowledge. In
particular, we set g(x1, . . . , xℓ) = a0 + g1(x1) + g2(x2) + . . . + gℓ(xℓ), where gi(xi) = ai,1xi + ai,2x2

i +
. . . + ai,dxd

i is a random univariate polynomial of degree d (d is the variable degree of f). Note here that the
size of g is only O(dℓ), while the size of f is exponential in ℓ.

The intuition of our improvement is that the prover sends O(dℓ) messages in total to the verifier during the
sumcheck protocol, thus a polynomial g with O(dℓ) random coefficients is sufficient to mask all the messages
and achieve zero-knowledge. We present the full protocol in Construction 12.

The completeness of the protocol holds obviously. The soundness follows the soundness of the sumcheck
protocol and the random linear combination in step 2 and 3, as proven in [CFS17]. We give a proof of zero
knowledge here.

Theorem 2.4.1 (Zero knowledge). For every verifier V∗ and every ℓ-variate polynomial f : Fℓ → F with
variable degree d, there exists a simulatorS such that given access to H =

∑
x1,x2,...,xℓ∈{0,1} f(x1, x2, . . . , xℓ),

S is able to simulate the partial view of V∗ in step 1-4 of Construction 12.

Proof. We build the simulator S as following.

Construction 1. We assume the existence of a zkVPD protocol defined in Section 3.2.2. For
simplicity, we omit the randomness rf and public parameters pp, vp without any ambiguity. To
prove the claim H = ∑

x1,x2,...,xℓ∈{0,1}
f(x1, x2, . . . , xℓ):

1. P selects a polynomial g(x1, . . . , xℓ) = a0 + g1(x1) + g2(x2) + . . . + gl(xℓ), where
gi(xi) = ai,1xi + ai,2x

2
i + . . . + ai,dxd

i and all ai,js are uniformly random. P sends
H = ∑

x1,x2,...,xℓ∈{0,1}
f(x1, x2, . . . , xℓ), G = ∑

x1,x2,...,xℓ∈{0,1}
g(x1, x2, . . . , xℓ) and comg =

Commit(g) to V .

2. V uniformly selects ρ ∈ F∗, computes H + ρG and sends ρ to P .

3. P and V run the sumcheck protocol on

H + ρG =
∑

x1,x2,...,xℓ∈{0,1}
(f(x1, x2, . . . , xℓ) + ρg(x1, x2, . . . , xℓ))

4. At the last round of the sumcheck protocol, V obtains a claim hℓ(rℓ) = f(r1, r2, . . . , rℓ) +
ρg(r1, r2, . . . , rℓ). P and V opens the commitment of g at r = (r1, . . . , rℓ) by (g(r), π)←
Open(g, r), Verify(comg, g(r), r, π). If Verify outputs reject, V aborts.

5. V computes hℓ(rℓ)− ρg(r1, . . . , rℓ) and compares it with the oracle access of f(r1, . . . , rℓ).

2.4. ZERO KNOWLEDGE ARGUMENT PROTOCOLS 30

1. S selects a random polynomial g∗(x1, . . . , xℓ) = a∗
0 + g∗

1(x1) + g∗
2(x2) + · · · + g∗

ℓ (xℓ), where
g∗

i (xi) = a∗
i,1xi + a∗

i,2x2
i + · · · + a∗

i,dxd
i . S sends H , G∗ =

∑
x1,x2,··· ,xℓ∈{0,1}

g∗(x1, x2, · · · , xℓ) and

comg
∗ = Commit(g∗) to V .

2. S receives ρ ̸= 0 from V∗.

3. S selects a polynomial f∗ : Fℓ → F with variable degree d uniformly at random conditioning
on

∑
x1,x2,··· ,xℓ∈{0,1}

f∗(x1, x2, · · · , xℓ) = H . S then engages in a sumcheck protocol with V on

H + ρG∗ =
∑

x1,x2,··· ,xl∈{0,1}
(f∗(x1, x2, · · · , xℓ) + ρg∗(x1, x2, · · · , xℓ))

4. Let r ∈ Fℓ be the point chosen by V∗ in the sumcheck protocol. S runs (g∗(r), π)← Open(g∗, r) and
sends them to V .

As both g and g∗ are randomly selected, and the zkVPD protocol is zero-knowledge, it is obvious that
step 1 and 4 in S are indistinguishable from those in the real world of Construction 12. It remains to show
that the sumchecks in step 3 of both worlds are indistinguishable.

To see that, recall that in round i of the sumcheck protocol, V receives a univariate polynomial
hi(xi) =

∑
bi+1,...,bℓ∈{0,1}

h(r1, . . . , ri−1, xi, bi+1, . . . , bℓ) where h = f + ρg. (The view of V∗ is defined in

the same way with h∗, f∗, g∗ and we omit the repetition in the following.) As the variable degree of f and
g is d, P sends V hi(0), hi(1), . . . , hi(d) which uniquely defines hi(xi). These evaluations reveal d + 1
independent linear constraints on the coefficients of h. In addition, note that when these evaluations are
computed honestly by P , hi(0) + hi(1) = hi−1(ri−1), as required in the sumcheck protocol. Therefore, in
all ℓ rounds of the sumcheck, V and V∗ receives ℓ(d + 1)− (ℓ− 1) = ℓd + 1 independent linear constraints
on the coefficients of h and h∗.

As h and h∗ are masked by g and g∗, each with exactly ℓd + 1 coefficients selected randomly, the two
linear systems are identically distributed. Therefore, step 3 of the ideal world is indistinguishable from that of
the real world.

2.4.2 Zero knowledge GKR
To achieve zero-knowledge, we replace the sumcheck protocol in GKR with the zero-knowledge version
described in the previous section. However, the protocol still leaks additional information. In particular, at
the end of the zero-knowledge sumcheck, V queries the oracle to evaluate the polynomial on a random point.
When executed on Equation 7.1, this reveals two evaluations of the polynomial Ṽi defined by the values in the
i-th layer of the circuit: Ṽi(u) and Ṽi(v).

To prevent this leakage, Chiesa et al.[CFS17] proposed to replace the multi-linear extension Ṽi with a low
degree extension, such that learning Ṽi(u) and Ṽi(v) does not leak any information about Vi. Define a low
degree extension of Vi as

V̇i(z) def= Ṽi(z) + Zi(z)
∑

w∈{0,1}λ Ri(z, w), (2.7)

2.4. ZERO KNOWLEDGE ARGUMENT PROTOCOLS 31

where Z(z) =
∏si

i=1 zi(1 − zi), i.e., Z(z) = 0 for all z ∈ {0, 1}si . Ri(z, w) is a random low-degree
polynomial and λ is the security parameter. With this low degree extension, Equation 7.1 becomes

V̇i(g) =
∑

x,y∈{0,1}si+1
˜multi+1(g, x, y)(V̇i+1(x)V̇i+1(y)) (2.8)

+ ˜addi+1(g, x, y)(V̇i+1(x) + V̇i+1(y)) + Zi(g)
∑

w∈{0,1}λ Ri(g, w)

=
∑

x,y∈{0,1}si+1 ,w∈{0,1}λ(I (⃗0, w) · ˜multi+1(g, x, y)(V̇i+1(x)V̇i+1(y)) (2.9)

+ ˜addi+1(g, x, y)(V̇i+1(x) + V̇i+1(y)) + I((x, y), 0⃗)Zi(g)Ri(g, w))

where I (⃗a, b⃗) is an identity polynomial I (⃗a, b⃗) = 0 iff a⃗ = b⃗. The first equation holds because V̇i agrees with
Ṽi on the Boolean hyper-cube {0, 1}si , as Zi(z) = 0 for binary inputs. The second equation holds because
the mask in V̇i is in the form of a “sum" and can be moved into the sumcheck equation.

When executing the zero-knowledge sumcheck protocol on Equation 3.4, at the end of the protocol, V
receives V̇i+1(u) and V̇i+1(v) for random points u, v ∈ Fsi+1 chosen by V . They no longer leak information
about Vi+1, as they are masked by Zi+1(z)

∑
w∈{0,1}λ Ri+1(z, w) for z = u and z = v. V computes

˜multi+1(g, u, v) and ˜addi+1(g, u, v) as before, computes Zi(g), I (⃗0, c), I((u, v), 0⃗) where c ∈ Fλ is a
random point chosen by V for variable w, opens Ri(g, w) at c with P through a polynomial commitment, and
checks that together with V̇i+1(u), V̇i+1(v) received from P they are consistent with the last message of the
sumcheck.V then uses V̇i+1(u), V̇i+1(v) to proceed to the next round.

Unfortunately, similar to the zero-knowledge sumcheck, the masking polynomial Ri is very large
in [CFS17]. Opening Ri at a random point takes exponential time for P either using a PCP oracle as
in [CFS17] or potentially using a zkVPD, as R has si + 2si+1 + λ variables.

In this section, we show that we can set Ri to be a small polynomial to achieve zero-knowledge. In
particular, Ri has only two variables with variable degree 2. This is because in the (i−1)-th round, V receives
two evaluations of Vi, V̇i(u) and V̇i(v), which are masked by

∑
w Ri(u, w) and

∑
w Ri(v, w); in the i-th

sumcheck, V opens Ri at Ri(u, c) and Ri(v, c). It suffices to make these four evaluations linearly independent,
assuming the commitment and opening of Ri are using a zkVPD. Therefore, we set the low-degree term in
Equation 4.12 as Zi(z)

∑
w∈{0,1} Ri(z1, w), i.e. Ri only takes two variables, the first variable z1 of z and an

extra variable w ∈ {0, 1} instead of {0, 1}λ, with variable degree 2.
The full protocol is presented in Construction 2. Here we use superscriptions (e.g., u(i)) to denote random

numbers or vectors for the i-th layer of the circuit.

Construction 2. 1. On a layered arithmetic circuit C with d layers and input in, the prover P sends
the output of the circuit out to the verifier V .

2. P randomly selects polynomials R1(z1, w), . . . , Rd(z1, w) : F2 → F with variable degree 2. P
commits to these polynomials by sending comi ← Commit(Ri) to V for i ∈ [1, d].

3. V defines V̇0(z) = Ṽ0(z), where Ṽ0(z) is the multilinear extension of out. V̇0(z) can be viewed as
a special case with R0(z1, w) being the 0 polynomial. V evaluates it at a random point V̇0(g(0))
and sends g(0) to P .

2.4. ZERO KNOWLEDGE ARGUMENT PROTOCOLS 32

4. P and V execute the zero knowledge sumcheck protocol presented in Construction 12 on

V̇0(g(0)) =
∑

x,y∈{0,1}s1

˜mult1(g(0), x, y)(V̇1(x)V̇1(y))

+ ˜add1(g(0), x, y)(V̇1(x) + V̇1(y))

If u
(1)
1 = v

(1)
1 , P aborts. At the end of the protocol, V receives V̇1(u(1)) and V̇1(v(1)). V computes

˜mult1(g(0), u(1), v(1)), ˜add1(g(0), u(1), v(1)) and checks that

˜mult1(g(0), u(1), v(1))V̇1(u(1))V̇1(v(1)) + ˜add1(g(0), u(1), v(1))(V̇1(u(1)) + V̇1(v(1)))

equals to the last message of the sumcheck (evaluation oracle).

5. For layer i = 1, . . . , d− 1:

a) V randomly selects α(i), β(i) ∈ F and sends them to P .

b) Let Multi+1(x, y) = α(i) ˜multi+1(u(i), x, y) + β(i) ˜multi+1(v(i), x, y) and
Addi+1(x, y) = α(i) ˜addi+1(u(i), x, y) + β(i) ˜addi+1(v(i), x, y). P and V run the zero
knowledge sumcheck on the equation

α(i)V̇i(u
(i)) + β(i)V̇i(v

(i)) =∑
x,y∈{0,1}si+1

w∈{0,1}

(I (⃗0, w) ·Multi+1(x, y)(V̇i+1(x)V̇i+1(y))

+ Addi+1(x, y)(V̇i+1(x) + V̇i+1(y))

+ I((x, y), 0⃗)(α(i)Zi(u
(i))Ri(u

(i)
1 , w) + β(i)Zi(v

(i))Ri(v
(i)
1 , w)))

If u
(i+1)
1 = v

(i+1)
1 , P aborts.

c) At the end of the zero-knowledge sumcheck protocol, P sends V V̇i+1(u(i+1)) and
V̇i+1(v(i+1)).

d) V computes

ai+1 = α(i) ˜multi+1(u(i), u(i+1), v(i+1)) + β(i) ˜multi+1(v(i), u(i+1), v(i+1))

and

bi+1 = α(i) ˜addi+1(u(i), u(i+1), v(i+1)) + β(i) ˜addi+1(v(i), u(i+1), v(i+1))

locally. V computes Zi(u
(i)), Zi(v

(i)), I (⃗0, c(i)), I((u(i+1), v(i+1)), 0⃗) locally.

e) P and V open Ri at two points Ri(u
(i)
1 , c(i)) and Ri(v

(i)
1 , c(i)) using Open and Verify.

2.4. ZERO KNOWLEDGE ARGUMENT PROTOCOLS 33

f) V computes the following as the evaluation oracle and uses it to complete the last step of the
zero-knowledge sumcheck.

I (⃗0, c(i))(ai+1(V̇i+1(u(i+1))V̇i+1(v(i+1)))+

bi+1(V̇i+1(u(i+1)) + V̇i+1(v(i+1))))+

I((u(i+1), v(i+1)), 0⃗)(α(i)Zi(u
(i))Ri(u

(i)
1 , c(i)) + β(i)Zi(v

(i))Ri(v
(i)
1 , c(i)))

If all checks in the zero knowledge sumcheck and Verify passes, V uses V̇i+1(u(i+1)) and
V̇i+1(v(i+1)) to proceed to the (i + 1)-th layer. Otherwise, V outputs reject and aborts.

6. At the input layer d, V has two claims V̇d(u(d)) and V̇d(v(d)). V opens Rd at 4 points Rd(u(d)
1 , 0),

Rd(u(d)
1 , 1), Rd(v(d)

1 , 0), Rd(v(d)
1 , 1) and checks that V̇d(u(d)) = Ṽd(u(d)) + Zd(u(d))

∑
w∈{0,1}

Rd

(u(d)
1 , w) and V̇d(v(d)) = Ṽd(v(d)) + Zd(v(d))

∑
w∈{0,1}

Rd(v(d)
1 , w), given oracle access to two

evaluates of Ṽd at u(d) and v(d). If the check passes, output accept; otherwise, output reject.

Theorem 2.4.2. Construction 2 is an interactive proof protocol per Definition 7.2.1, for a function f defined
by a layered arithmetic circuit C such that f(in, out) = 1 iff C(in) = out. In addition, for every verifier V∗

and every layered circuit C, there exists a simulator S such that given oracle access to out, S is able to
simulate the partial view of V∗ in step 1-5 of Construction 2.

The completeness follows from the construction explained above and the completeness of the zero
knowledge sumcheck. The soundness follows the soundness of the GKR protocol with low degree extensions,
as proven in [GKR15] and [CFS17]. We give the proof of zero knowledge here.

Proof. With oracle access to out, and the simulator Ssc of the zero-knowledge sumcheck protocol in
Section 4.4.2 as a subroutine, we construct the simulator S as following:

1. S sends the out to V∗.

2. S randomly selects polynomials R∗
1(z1, w), . . . , R∗

d(z1, w) : F2 → F with variable degree 2. S
commits to these polynomials by sending comi ← Commit(R∗

i) to V∗ for i ∈ [1, d].

3. S receives g(0) from V∗.

4. S calls Ssc to simulate the partial view of the zero knowledge sumcheck protocol on

V̇0(g(0)) =
∑

x,y∈{0,1}s1

˜mult1(g(0), x, y)(V̇1(x)V̇1(y)) + ˜add1(g(0), x, y)(V̇1(x) + V̇1(y))

If u
(1)
1 = v

(1)
1 , S aborts. At the end of the sumcheck, S samples V̇ ∗

1 (u(1)) and V̇ ∗
1 (v(1)) such that

˜mult1(g(0), u(1), v(1))V̇ ∗
1 (u(1))V̇ ∗

1 (v(1)) + ˜add1(g(0), u(1), v(1)) (V̇ ∗
1 (u(1)) + V̇ ∗

1 (v(1))) equals to the
last message of the sumcheck.

5. For layer i = 1, . . . , d− 1:

2.4. ZERO KNOWLEDGE ARGUMENT PROTOCOLS 34

a) S receives α(i), β(i) from V∗.

b) Let Multi+1(x, y) = α(i) ˜multi+1(u(i), x, y) + β(i) ˜multi+1(v(i), x, y) and
Addi+1(x, y) = α(i) ˜addi+1(u(i), x, y) + β(i) ˜addi+1(v(i), x, y). S calls Ssc to simulate the
partial view of the zero knowledge sumcheck protocol on

α(i)V̇i(u
(i)) + β(i)V̇i(v

(i)) =∑
x,y∈{0,1}si+1

w∈{0,1}

(I (⃗0, w) ·Multi+1(x, y)(V̇i+1(x)V̇i+1(y))

+ Addi+1(x, y)(V̇i+1(x) + V̇i+1(y))

+ I((x, y), 0⃗)(α(i)Zi(u
(i))Ri(u

(i)
1 , w) + β(i)Zi(v

(i))Ri(v
(i)
1 , w)))

If u
(i+1)
1 = v

(i+1)
1 , S aborts.

c) At the end of the zero-knowledge sumcheck protocol, if u
(i+1)
1 = v

(i+1)
1 , S aborts. Otherwise,

S samples V̇ ∗
i+1(u(i+1)) and V̇ ∗

i+1(v(i+1)) randomly such that the following equals to the last
message of the sumcheck protocol.

I (⃗0, c(i))(ai+1(V̇ ∗
i+1(u(i+1))V̇ ∗

i+1(v(i+1))) + bi+1(V̇ ∗
i+1(u(i+1)) + V̇ ∗

i+1(v(i+1))))

+I((u(i+1), v(i+1)), 0⃗)(α(i)Zi(u
(i))R∗

i (u(i)
1 , c(i)) + β(i)Zi(v

(i))R∗
i (v(i)

1 , c(i)))

ai+1 = α(i) ˜multi+1(u(i), u(i+1), v(i+1)) + β(i) ˜multi+1(v(i), u(i+1), v(i+1)) and
bi+1 = α(i) ˜addi+1(u(i), u(i+1), v(i+1))+β(i) ˜addi+1(v(i), u(i+1), v(i+1)). S sends V̇i+1(u(i+1))
and V̇i+1(v(i+1)) to V∗.

d) V∗ computes the corresponding values locally as in step 5(d) of Construction 2.

e) S opens R∗
i at two points R∗

i (u(i)
1 , c(i)) and R∗

i (v(i)
1 , c(i)) using Open.

f) V∗ performs the checks as in step 5(f) of Construction 2.

Note here that V∗ can actually behave arbitrarily in step 5(d) and 5(f) above. We include these steps to be
consistent with the real world in Construction 2 for the ease of interpretation.

To prove zero-knowledge, step 1,3, 5(a), 5(d) and 5(f) are obviously indistinguishable as S only receives
messages from V∗. Step 2 and 5(e) of both worlds are indistinguishable because of the zero knowledge
property of the zkVPD, and the fact that R∗ and R are sampled randomly in both worlds. Step 4 and 5(b) are
indistinguishable as proven in Theorem 2.4.1 for Ssc.

It remains to consider the messages received at the end of step 4 and in step 5(c), namely V̇i(u
(i)), V̇i(v

(i))
and V̇ ∗

i (u(i)), V̇ ∗
i (v(i)) for i = 1, . . . , d. In the real world, V̇i(z) is masked by

∑
w∈{0,1}

Ri(z1, w) (Z(z)

is publicly known), thus V̇i(u
(i)) and V̇i(v

(i)) are masked by
∑

w∈{0,1}
Ri(u

(i)
1 , w) and

∑
w∈{0,1}

Ri(v
(i)
1 , w)

correspondingly. In addition, in step 5(e), V∗ opens Ri at Ri(u
(i)
1 , c(i)) and Ri(v

(i)
1 , c(i)). To simplify the

notation here, we consider only a particular layer and omit the subscription and superscription of i. Let

2.4. ZERO KNOWLEDGE ARGUMENT PROTOCOLS 35

R(z1, w) = a0 + a1z1 + a2w + a3z1w + a4z2
1 + a5w2 + a6z2

1w2, where a0, . . . , a6 are randomly chosen.
We can write the four evaluations above as

2 2u1 1 u1 2u2
1 1 u2

1
2 2v1 1 v1 2v2

1 1 v2
1

1 u1 c cu1 u2
1 c2 c2u2

1
1 v1 c cv1 v2

1 c2 c2v2
1

× [a0 a1 a2 a3 a4 a5 a6
]T

After row reduction, the left matrix is
2 2u1 1 u1 2u2

1 1 u2
1

0 2(v1 − u1) 0 v1 − u1 2(u2
1 − v2

1) 0 u2
1 − v2

1
0 0 2c− 1 (2c− 1)u1 0 2c2 − 1 (2c2 − 1)u2

1
0 0 0 (2c− 1)(v1 − u1) 0 0 (2c2 − 1)(v2

1 − u2
1)

As u1 ̸= v1, the matrix has full rank if 2c2 − 1 ̸= 0 mod p, where p is the prime that defines F. This holds
if 2−1 is not in the quadratic residue of p, or equivalently p ̸≡ 1, 7 mod 8.4 In case p ≡ 1, 7 mod 8, we
can add a check to both the protocol and the simulator to abort if 2c2 − 1 = 0. This does not affect the proof
of zero knowledge, and only reduces the soundness error by a small amount. 5

Because of the full rank of the matrix, the four evaluations are linearly independent and uniformly
distributed, as a0, . . . a6 are chosen randomly. In the ideal world, R∗(u1, c) and R∗(v1, c) are independent
and uniformly distributed, and V̇ ∗(u), V̇ ∗(v) are randomly selected subject to a linear constraint (step 5(c)),
which is the same as the real world. Therefore, they are indistinguishable in the two worlds, which completes
the proof.

2.4.3 Zero knowledge VPD
In this section, we present the instantiations of the zkVPD protocol, as defined in Definition 4.4.2. For every
intermediate layer i, we use the same zkVPD protocol as proposed by Zhang et al. in [ZGKPP17a] to commit
and open the masking polynomials gi(x), Ri(z1, w). In fact, as we show in the previous sections, these
polynomials are very small (gi is the sum of univariate polynomials and Ri has 2 variables with variable
degree 2), the zkVPD protocols become very simple. The complexity of KeyGen, Commit, Open, Verify and
proof size are all O(si) for gi and are all O(1) for Ri. We omit the full protocols due to space limit.

For the zkVPD used for the input layer, we design a customized protocol based on the zkVPD protocol
in [ZGKPP17a]. Recall that at the end of the GKR protocol, V receives two evaluations of the polynomial
V̇d(z) = Ṽd(z) + Zd(z)

∑
w∈{0,1} Rd(z1, w) at z = u(d) and z = v(d). In our zero knowledge proof protocol,

which will be presented in Section 2.4.4, P commits to V̇d(z) using the zkVPD at the beginning, and opens it
to the two points selected by V .

The protocol in [ZGKPP17a] works for any polynomial with ℓ variables and any variable degree, and
is particularly efficient for multilinear polynomials. We modify the protocol for our zero-knowledge proof

4From the reduced matrix, we can see that setting a2 = a3 = a4 = 0 does not affect the rank of the matrix, which
simplifies the masking polynomial R in practice.

5If one is willing to perform a check like this, we can simplify the masking polynomial R to be multilinear. The
reduced matrix will be the first 4 columns of the matrix showed above, and it has full rank if c ̸= 2−1.

2.4. ZERO KNOWLEDGE ARGUMENT PROTOCOLS 36

Construction 3. Let F be a prime-order finite field. Let V̇ (x) : Fℓ → F be an ℓ-variate polynomial such
that V̇ (x) = Ṽ (x) + Z(x)R(x1), where Ṽ (x) is a multilinear polynomial, Z(x) =

∏ℓ
i=1 xi(1− xi) and

R(x1) = a0 + a1x1.

• (pp, vp) ← KeyGen(1λ, ℓ): Select α, t1, t2, · · · , tl, tℓ+1 ∈ F uniformaly at random, run bp ←
BilGen(1λ) and compute pp = (bp, gα, gtℓ+1 , gαtℓ+1 , {g

∏
i∈W

ti , gα
∏

i∈W
ti}W ∈Wℓ

), where Wℓ is
the set of all subsets of {1, . . . , ℓ}. Set vp = (bp, gt1 , . . . , gtℓ+1 , gα).

• com← Commit(V̇ , rV , rR, pp): Compute c1 = gṼ (t1,t2,··· ,tℓ)+rV tℓ+1 , c2 = gα(Ṽ (t1,t2,··· ,tℓ)+rV tℓ+1),
c3 = gR(t1)+rRtℓ+1 and c4 = gα(R(t1)+rRtℓ+1) output the commitment com = (c1, c2, c3, c4).

• {accept, reject} ← CheckComm(com, vp): Output accept if e(c1, gα) = e(c2, g) and e(c3, gα) =
e(c4, g). Otherwise, output reject.

• (y, π) ← Open(V̇ , rV , rR, u, pp): Choose r1, . . . , rℓ ∈ F at random, and compute polynomials qi

such that
Ṽ (x) + rV xℓ+1 + Z(u)(R(x1) + rRxℓ+1)− (Ṽ (u) + Z(u)R(u1)) =

ℓ∑
i=1

(xi − ui)(qi(xi, . . . , xℓ) + rixℓ+1) + xℓ+1(rV + rRZ(u)−
ℓ∑

i=1
ri(xi − ui)).

Set π = ({gqi(ti...,tℓ)+ritℓ+1 , gα(qi(ti...,tℓ)+ritℓ+1)}i∈[1,ℓ], grV +rRZ(u)−
∑ℓ

i=1 ri(ti−ui),

gα(rV +rRZ(u)−
∑ℓ

i=1 ri(ti−ui))) and y = Ṽ (u) + Z(u)R(u1).

• {accept, reject} ← Verify(com, u, y, π, vp): Parse π as (πi, παi) for i ∈ [1, ℓ+1]. Check e(πi, gα) =
e(παi, g) for i ∈ [1, ℓ + 1]. Check e(c1c

Z(u)
3 /gy, g) =

∏ℓ
i=1 e(πi, gti−ui) · e(gπℓ+1 , gtℓ+1). Output

accept if all the checks pass, otherwise, output reject.

scheme and preserve the efficiency. Note that though V̇d(z) is a low degree extension of the input, it can
be decomposed to the sum of Ṽd(z), a multilinear polynomial, and Zd(z)

∑
w∈{0,1} Rd(z1, w). Moreover,

Zd(u(d)) and Zd(v(d)) can be computed directly by V . Therefore, in our construction, P commits to Ṽd(z)
and

∑
w∈{0,1} Rd(z1, w) separately, and later opens the sum together given Zd(u(d)) and Zd(v(d)), which is

naturally supported because of the homomorphic property of the commitment. Another optimization is that
unlike other layers of the circuit, Rd(z1, w) itself is not opened at two points (V does not receive Rd(u(d), c(d))
and Rd(v(d), c(d)) in Construction 2). Therefore, it suffices to set V̇d(z) = Ṽd(z) + Zd(z)Rd(z1), where Rd

is a univariate linear polynomial. The full protocol is presented in Construction 3.

Theorem 2.4.3. Construction 3 is a zero-knowledge verifiable polynomial delegation scheme as defined by
Definition 4.4.2, under Assumption 1 and 2.

The proof of completeness, soundness and zero knowledge is similar to that of the zkVPD protocol
in [ZGKPP17a]. We only add an extra univariate linear polynomial R(x1), which does not affect the proof.

2.4. ZERO KNOWLEDGE ARGUMENT PROTOCOLS 37

We omit the proof due to space limit. Using the same algorithms proposed in in [ZGKPP18; ZGKPP17a], the
running time of KeyGen, Commit and Open is O(2ℓ), Verify takes O(ℓ) time and the proof size is O(ℓ).

2.4.4 Putting Everything Together
In this section, we present our zero knowledge argument scheme. At a high level, similar to [ZGKPP17b;
WTSTW18; ZGKPP17a], V can use the GKR protocol to verify the correct evaluation of a circuit C on input
x and a witness w, given an oracle access to the evaluation of a polynomial defined by x, w on a random point.
We instantiate the oracle using the zkVPD protocol. Formally, we present the construction in Construction 4,
which combines our zero knowledge GKR and zkVPD protocols. Similar to the protocols in [ZGKPP17a;
WTSTW18], Step 6 and 7 are to check that P indeed uses x as the input to the circuit.

Theorem 2.4.4. For an input size n and a finite field F, Construction 4 is a zero knowledge argument for the
relation

R = {(C, x; w) : C ∈ CF ∧ |x|+ |w| ≤ n ∧ C(x; w) = 1},

as defined in Definition 6.2.2, under Assumption 1 and 2. Moreover, for every (C, x; w) ∈ R, the running time
of P is O(|C|) field operations and O(n) multiplications in the base group of the bilinear map. The running
time of V is O(|x|+ d · log |C|) if C is log-space uniform with d layers. P and V interact O(d log |C|) rounds
and the total communication (proof size) is O(d log |C|). In case d is polylog(|C|), the protocol is a succinct
argument.

Proof Sketch. The correctness and the soundness follow from those of the two building blocks, zero
knowledge GKR and zkVPD, by Theorem 2.4.2 and 3.3.2.

To prove zero knowledge, consider a simulator S that calls the simulator SGKR of zero knowledge GKR
given in Section 2.4.2 as a subroutine, which simulates the partial view up to the input layer. At the input layer,
the major challenge is that S committed to (a randomly chosen) V̇ ∗

d at the beginning of the protocol, before
knowing the points u(d), v(d) to evaluate on. If S opens the commitment honestly, with high probability the
evaluations are not consistent with the last message of the GKR (sumcheck in layer d− 1) and a malicious
V∗ can distinguish the ideal world from the real world. In our proof, we resolve this issue by using the
simulator SV P D of our zkVPD protocol. Given the trapdoor trap used in KeyGen, SV P D is able to open the
commitment to any value in zero knowledge, and in particular it opens to those messages that are consistent
with the GKR protocol in our scheme, which completes the construction of S.

The complexity of our zero knowledge argument scheme follows from our new GKR protocol with linear
prover time, and the complexity of the zkVPD protocol for the input layer analyzed in Section 2.4.3. The
masking polynomials gi, Ri and their commitments and openings introduce no asymptotic overhead and are
efficient in practice.
Removing interaction. Our construction can be made non-interactive in the random oracle model using Fiat—
Shamir heuristic [FS]. Though GKR protocol is not constant round, recent results [BSCS16; CCHLRR18]
show that applying Fiat-Shamir only incurs a polynomial soundness loss in the number of rounds in GKR. In
our implementation, the GKR protocol is on a 254-bit prime field matching the bilinear group used in the
zkVPD. The non-interactive version of our system provides a security level of 100+ bits.

2.5. IMPLEMENTATION AND EVALUATION 38

Construction 4. Let λ be the security parameter, F be a prime field, n be an upper bound on input size, and
S be an upper bound on circuit size. We use VPD1, VPD2, VPD3 to denote the zkVPD protocols for input
layer, masking polynomials gi and Ri described in Construction 2.

• G(1λ, n, S): run (pp1, vp1) ← VPD1.KeyGen(1λ, log n), (pp2, vp2) ← VPD2.KeyGen(1λ, log S),
(pp3, vp3)← VPD3.KeyGen(1λ). Output pk = (pp1, pp2, pp3) and vk = (vp1, vp2, vp3).

• ⟨P(pk, w),V(vk)⟩(x): Let C be a layered arithmetic circuit over F with d layers, input x and
witness w such that |x| + |w| ≤ n, |C| ≤ S and C(x; w) = 1. Without loss of generality, assume
|w|/|x| = 2m − 1 for some m ∈ N.

1. P selects a random bivariate polynomial Rd with variable degree 2 and commits to the input
of C by sending comd ← VPD1.Commit(V̇d, rV , rR, pp1) to V , where Ṽd is the multilinear
extension of array (x; w) and V̇d = Ṽd + Rd

2. V runs VPD1.CheckComm(comd, vp1). If it outputs reject, V aborts and outputs reject.
3. P and V execute Step 1-5 of the zero knowledge GKR protocol in Construction 2, with the

zkVPDs instantiated with VPD2 and VPD3. If Construction 2 rejects, V outputs reject and
aborts. Otherwise, by the end of this step, V receives two claims of V̇d at u(d) and v(d).

4. P runs (y1, π1) ← VPD1.Open(V̇ , rV , rR, u(d), pp1), (y2, π2) ←
VPD1.Open(V̇ , rV , rR, v(d), pp1) and sends y1, π1, y2, π2 to V .

5. V runs Verify(comd, u(d), y1, π1, vp1) and Verify(comd, v(d), y2, π2, vp1) and output reject if
either check fails. Otherwise, V checks V̇d(u(d)) = y1 and V̇d(v(d)) = y2, and rejects if either
fails.

6. V computes the multilinear extension of input x at a random point rx ∈ Flog |x| and sends rx to
P .

7. P pads rx to r′
x ∈ Flog |x| × 0log |w| with log |w| 0s and sends V (yx, πx) ←

VPD1.Open(Ṽd, rV , rR, r′
x, pp1). V checks Verify(comd, r′

x, yx, πx, vp1) and yx equals the
evaluation of the multilinear extension on x. V outputs reject if the checks fail. Otherwise, V
outputs accept.

2.5 Implementation and Evaluation
Software. We fully implement Libra, our new zero knowledge proof system in C++. There are around 3000
lines of code for the zkGKR protocol, 1000 lines for the zkVPD protocol and 700 lines for circuit generators.
Our system provides an interface to take a generic layered arithmetic circuit and turn it into a zero knowledge
proof. We implement a new class for large integers named u512, and use it together with the GMP[Gnu]
library for large numbers and field arithmetic. We use the ate-pairing[Ate] library on a 254-bit elliptic curve
for the bilinear map used in zkVPD. We plan to open-source our system.
Hardware. We run all of the experiments on Amazon EC2 c5.9xlarge instances with 70GB of RAM and
Intel Xeon platinum 8124m CPU with 3GHz virtual core. Our current implementation is not parallelized and

2.5. IMPLEMENTATION AND EVALUATION 39

we only use a single CPU core in the experiments. We report the average running time of 10 executions.
More gate types with no overhead. We first present a concrete optimization we developed during the
implementation to support various types of gates with no extra overhead. In our protocol in Section 2.3
and 3.4, we only consider addition and multiplication gates, as they are enough to represent all arithmetic
circuits. However, in practice, the size of the circuit can be reduced significantly if we introduce other types
of gate. The GKR protocol still works with these new gates, but they incur an overhead on the prover time for
a circuit of the same size. Therefore, in prior work such as [WHGSW16; ZGKPP18], this is considered as a
trade-off.

Our protocol supports any gate with fan-in ≤ 2 and degree ≤ 2 with no overhead on the prover. Recall
that in the GKR protocol, the values in layer i is represented as a sumcheck of values in layer i + 1 and the
wiring predicates, as shown in Equation 7.1. With a set of gate types T , we can write the polynomial in the
sum as ∑

j∈T

˜gate
(j)
i (g, x, y)G(j)

i (Ṽi+1(x), Ṽi+1(x)),

where G
(j)
i () is the computation of gate type j (e.g., for addition gates, G

(j)
i (Ṽi+1(x), Ṽi+1(x)) = Ṽi+1(x) +

Ṽi+1(x)). As the gates have fan-in≤ 2 and degree≤ 2, G
(j)
i has up to 2 variables and total degree at most 2 for

all j. Therefore, each G
(j)
i can be expressed explicitly as a0 + a1Ṽi+1(x) + a2Ṽi+1(y) + a3Ṽi+1(x)Ṽi+1(y) +

a4Ṽi+1(x)2 + a5Ṽi+1(y)2, at most 6 nonzero monomials. The prover can then combine all the wiring
predicates ˜gate

(j)
i (g, x, y) for the same monomial through a summation. With this approach, when generating

the proof in Algorithm 10 and 5, the prover only allocates one array for each monomial, and initializes all 6
arrays with one scan through all the gates in Init_PhaseOne and Init_PhaseTwo. In this way, the prover time
remains the same regardless of the number of gate types.

In our experiments, useful types of gates include subtraction, relay, multiply by constant, x(1− x) for
binary check, NOT,AND,OR,XOR, etc.

2.5.1 Improvements on GKR protocols
In this section, we compare the performace of our new GKR protocol with linear prover time with all variants
of GKR in the literature on different circuits.
Methodology and benchmarks. For fair comparisons, we re-implement all of these variants in C++ with the
same libraries. The variants include: (1) O(C) for regular circuits, proposed in [Tha13a], where the two
inputs of a gate can be described by two mapping functions with constant size in constant time. See [Tha13a]
for the formal definition of regular circuits. (2) O(C + C ′ log C ′) for data-parallel circuits with a small copy
of size C ′, proposed in [Wah+17]. (3) O(C log C ′) for circuits with non-connected different copies of size
C ′, proposed in [ZGKPP18]. (4) O(C log C) for arbitrary circuits, proposed in [CMT12].

We compare our GKR protocol to these variants on the benchmarks below:

• Matrix multiplication: P proves to V that it knows two matrices whose product equals a public matrix.
The representation of this function with an arithmetic circuit is highly regular6. We evaluate on different
dimensions from 4× 4 to 256× 256 and the elements in the matrices are 32-bit integers.

6We use the circuit representation of matrix multiplication with O(n3) gates for fair comparisons, not the special
protocol proposed in [Tha13a].

2.5. IMPLEMENTATION AND EVALUATION 40

Matrix
multiplication

Matrix size 4x4 16x16 64x64 256x256
[Tha13a] 0.0003s 0.006s 0.390s 29.0s

Ours 0.0004s 0.014s 0.788s 50.0s

Image scaling
#pixels 112x112 176x176 560x560 1072x1072

[Wah+17] 0.445s 0.779s 7.54s 29.2s
Ours 0.337s 1.25s 19.8s 79.2s

Image scaling with
different parameters

#pixels 112x112 176x176 560x560 1072x1072
[ZGKPP17b] 5.45s 21.8s 348s 1441s

Ours 0.329s 1.22s 19.3s 77.2s

Random circuit
#gates per layer 28 212 216 220

[CMT12] 0.008s 0.179s 3.79s 83.1s
Ours 0.002s 0.039s 0.635s 10.8s

Table 2.2: Prover time of our linear GKR and previous GKR variants.

• Image scaling: It computes a low-resolution image by scaling from a high-resolution image. We use the
classic Lanczos re-sampling[Tur90] method. It computes each pixel of the output as the convolution of
the input with a sliding window and a kernel function defined as: k(x) = sinc(x)/sinc(ax), if− a < x <
a; k(x) = 0, otherwise, where a is the scaling parameter and sinc(x) = sin(x)/x. This function is data
parallel, where each sub-circuit computes the same function to generate one pixel of the output image. We
evaluate by fixing the window size as 16× 16 and increase the image size from 112x112 to 1072x1072.
The pixels are 8-bit integers for greyscale images.

• Image scaling of different parameters: It is the same computation as above with different scaling
parameters in the kernel function for different pixels. The circuit of this function consists of different
sub-copies. We evaluate it with the same image sizes as above.

• Random circuit: It is randomly generated layered circuit. We randomly sample the type of each gate,
input value and the wiring patterns. We fix the depth as 3 and increase the number of gates per layer from
28 to 220.

To be consistent with the next section, all the protocols are executed on a 254-bit prime field. This does not
affect the comparison at all, as all the protocols are in the same field. In Table 2.2, we report the prover time
of the protocols. The proof size and the verification time of all the variants are similar.
Results. As shown in Table 2.2, the performance of our GKR protocol is comparable to those special
protocols for structured circuits, and much better than the state-of-the-art on generic circuits. For example,
for matrix multiplication, our protocol is slower by 1.3-2.4×, because the protocol in [Tha13a] writes the
wiring of matrix multiplication explicitly and does not need to compute ˜add and ˜mult. For image scaling,
our protocol is slower by 2.5-4×. This gap would become even smaller when the size of each sub-copy is
larger. Here we use a small 16× 16 block, while the number of copies is 49-4489.

For image scaling with different parameters and generic random circuits, our protocol has a speedup of
4-8×, and the speedup will increase with the scale of the circuits, as indicated by the complexity.

Besides the speedup on complicated circuits, a significant advantage of our new GKR protocol is on the
prover interface of the system. In prior work such as [Wah+17; ZGKPP18], as the protocols are particularly

2.5. IMPLEMENTATION AND EVALUATION 41

efficient for structured circuits, the circuits must be represented as small copies and the numbers of each copy.
Even worse, the structure is explored per layer of the circuit, making the numbers of each copy potentially
different in different layers. (E.g., 6 gates may be considered 3 copies with 2 gates and 2 copies with 3 gates
in two different layers for efficiency purposes.) This constraint makes the interface of these systems hard to
use and generalize. Our result gives a unified solution for arbitrary circuits, and it is the main reason that
our prover can take the description of any layered arithmetic circuit potentially generated by other tools like
Verilog.

2.5.2 Comparing to Other ZKP Schemes
In this section, we show the performance of Libra as a whole and compare it with several state-of-the-art zero
knowledge proof systems.
Methodology. We compare with the following systems: libSNARK [BSCTV], Ligero[AHIV17], lib-
STARK[BSBHR19], Hyrax[WTSTW18], Bulletproofs[BBBPWM] and Aurora [BSCRSVW19]. See Sec-
tion 6.1 for more explanations of these systems and their asymptotic.

• libSNARK: We use jsnark [Jsna] to write the circuits (rank one constraint system (R1CS)), which compiles
them to zero knowledge proofs using the libSNARK backend [Libb].

• Ligero: As the system is not open-source, we use the same number reported in [AHIV17] on computing
hashes.

• libSTARK: After communications with the authors of [BSBHR19], we obtain numbers for proving the same
number of hashes in the 3rd benchmark below from the authors. The experiments are executed on a server
with 512GB of DDR3 RAM (1.6GHz) and 16 cores (2 threads per core) at speed of 3.2GHz.

• Hyrax: We use the open-source implementation of the system at [Hyr].

• Bulletproofs: We use the system re-implemented by [WTSTW18] at [Hyr].

• Aurora: As a recently accepted paper, the system is not available and we extrapolate its performance using
the numbers reported in the paper [BSCRSVW19] for circuits with 210 − 220 R1CS constrains.

Benchmarks. We evaluate the systems on three benchmarks: matrix multiplication, image scaling and
Merkle Tree[Mer87], which are used in [WTSTW18]. Matrix multiplication and image scaling are the same
as explained in Section 2.5.1. In the third benchmark, P proves to V that it knows the value of the leaves
of a Merkle tree[Mer87] that computes to a public root value[BEGKN94]. We use SHA-256 for the hash
function. We implement it with a flat circuit where each sub-computation is one instance of the hash function.
The consistency of the input and output of corresponding hashes are then checked by the circuit. There are
2M − 1 SHA256 invocations for a Merkle tree with M leaves. We increase the number of leaves from 16
to 256. We use the SHA-256 implemented by jsnark [Jsna] in R1CS format to run libSNARK and estimate
Aurora, and we use the SHA-256 arithmetic circuit implemented by Hyrax to run Hyrax, Bulletproofs and
Libra. We only show the performance of Ligero and libSTARK on the third benchmark.

We report the prover time, proof size and verification time in Figure 3.5.
Prover time. As shown in Figure 3.5(a)(b)(c), the prover in Libra is the fastest among all systems in all three
benchmarks we tested. Ligero is one of the best existing ZKP systems on prover time as it is purely based on

2.5. IMPLEMENTATION AND EVALUATION 42

24 25 26 27 28

#matrix column

10−2
10−1
100
101
102
103
104

pr
ov

er
ti

m
e(

s)

(a) P time: MatMul.

104 105 106

#pixel

100

101

102

103

104

pr
ov

er
ti

m
e(

s)
(b) P time: 16x Lanczos

21 22 23 24 25 26 27 28

#leave

100

101

102

103

104

p
ro

ve
ti

m
e(

s)

(c) P time: Merkle tree

24 25 26 27 28

#matrix column

10−3
10−2
10−1
100
101
102
103

ve
ri

fic
at

io
n

ti
m

e(
s)

(d) V time: MatMul.

104 105 106

#pixel

10−3
10−2
10−1
100
101
102
103

ve
ri

fic
at

io
n

ti
m

e(
s)

(e) V time: 16x Lanczos

21 22 23 24 25 26 27 28

#leave

10−3
10−2
10−1
100
101
102
103

ve
ri

fic
at

io
n

ti
m

e(
s)

(f) V time: Merkle tree

24 25 26 27 28

#matrix column

10−1

100

101

102

pr
oo

fs
iz

e(
kB

)

(g) Proof size: MatMul.

104 105 106

#pixel

10−1

100

101

102

pr
oo

fs
iz

e(
kB

)

(h) Proof size: 16x Lanczos

21 22 23 24 25 26 27 28

#leave

10−1

100

101

102

103
p

ro
of

si
ze

(k
B

)

(i) Proof size: Merkle tree

Ours
Hyrax

Bulletproofs
Ligero

libSNARK
libSTARK

Aurora

Figure 2.1: Comparisons of prover time, proof size and verification time between Libra and existing
zero knowledge proof systems.

symmetric key operations. Comparing to Ligero, the prover time of Libra is 1.15× faster on a Merkle tree
with 2 leaves and 2× faster with 256 leaves. Comparing to other systems, Libra improves the prover time by
3.4− 8.9× vs. Hyrax, 7.1− 16.1× vs. Aurora, 10.1− 12.4× vs. libSTARK and 65− 166× vs. Bulletproof.

Libra is also faster than libSNARK on general circuits by 5− 10×, as shown in Figure 3.5(a) and 3.5(b).
The performance of Libra is comparable to libSNARK on Merkle trees in Figure 3.5(c). This is because (1)
most values in the circuit of SHA256 are binary, which is friendly to the prover of libSNARK as the time of
exponentiation is proportional to the bit-length of the values; (2) The R1CS of SHA256 is highly optimized

2.5. IMPLEMENTATION AND EVALUATION 43

by jsnark [Jsna] and real world products like Zcash [Ben+14]. There are only 26,000 constrains in one hash.
In the arithmetic circuit used by Libra, there are 60,000 gates with 38,000 of them being multiplication gates.
Even so, Libra is still as fast as libSNARK on a Merkle tree with 2 leaves and 2× faster with 256 leaves. We
plan to further optimize the implementation of SHA256 as an arithmetic circuit in the future.

The gap between Libra and other systems will become bigger as the size of the circuit grows, as the prover
time in these systems (other than Bulletproof) scales quasi-linearly with the circuit size. The evaluations
justify that the prover time in Libra is both optimal asymptotically, and efficient in practice.
Verification time. Figure 3.5(d)(e)(f) show the verification time. Our verifier is much slower than libSNARK
and libSTARK, which runs in 1.8ms and 28-44ms respectively in all the benchmarks.

Other than these two systems, the verification time of Libra is faster, as it grows sub-linearly with the
circuit size. In particular, our verification time ranges from 0.08− 1.15s in the benchmarks we consider. In
Figure 3.5(f), the verification time of Libra is 8× slower than Aurora when M = 2, and 15× faster when
M = 256. Libra is 2.5× slower than Ligero with M = 2 and 4× faster with M = 256. Comparing to Hyrax
and Bulletproof, our verification is 1.2 − 9× and 27 − 900× faster respectively. Again, the gap increases
with the scale of the circuits as our verification is succinct.
Proof size. We report the proof size in Figure 3.5(g)(h)(i). Our proof size is much bigger than libSNARK,
which is 128 bytes for all circuits, and Bulletproof, which ranges in 2-5.5KBs. The proof size in Libra is in
the range of 30-60KBs, except for the matrix multiplications where it reduces to 5-9KBs. This is better than
Aurora, Hyrax and libSTARK, which also have poly-logarithmic proof size to the circuit. Finally, the proof
size in Ligero is O(

√
C) and grows to several megabytes in practice.

Setup time. Among all the systems, only Libra and libSNARK require trusted setup. Thanks to the
optimization described in the beginning of this section, it only takes 202s to generate the public parameters
in our largest instance with n = 224. Libra only needs to perform this setup once and it can be used for all
benchmarks and all circuits with no more inputs. libSNARK requires a per-circuit setup. For example, it takes
1027s for the Merkle tree with 256 leaves, and takes 210s for 64× 64 matrix multiplications.

2.5.3 Discussions
In this section, we discuss some potential improvements for Libra.
Improving verification time. As shown in the experiments above, the verification time in Libra is already
fast in practice compared to other systems, yet it can be further improved by 1-2 orders of magnitude.

Within the verification of Libra, most of the time (more than 95% in the evaluations above) is spent on
our zkVPD protocols using bilinear pairings. In our current protocol, we use the pairing-based zkVPD both
for the input layer and for the masking polynomials gi, Ri in each intermediate layer. Although the masking
polynomials are small, the verification of our zkVPD still requires O(si) pairings per layer for gi, which is
asymptotically the same as the input layer. For example, for the SHA256 circuit with 12 layers, the zkVPD
verification of each gi is around 46ms, 1

16 of the total verification time.
However, there are many zkVPD candidates for these masking polynomials. Recall that the size of gi is

only O(si), logarithmic on the size of the circuit. We could use any zkVPD with up to linear commitment
size, prover time, proof size and verification time while still maintaining the asymptotic complexity of Libra.
The only property we need is zero knowledge. Therefore, we can replace our pairing-based zkVPD with any
of the zero knowledge proof systems we compare with as a black-box. Ligero and Aurora are of particular
interest as their verification requires no cryptographic operations. If we use the black-box of these two systems

2.5. IMPLEMENTATION AND EVALUATION 44

for the zkVPD of gi, Ri, the prover time and proof size would be affected minimally, and the verification time
would be improved by almost d times, as only the zkVPD of the input layer requires pairings after the change.
This is a 1-2 orders-of-magnitude improvement depending on the depth of the circuit. In addition, it also
removes the trusted setup in the zkVPD for the masking polynomials. We plan to integrate this approach into
our system when the implementations of Ligero and Aurora become available.
Removing trusted setup. After the change above, the only place that requires trusted setup is the zkVPD for
the input layer. However, replacing our pairing-based zkVPD with other systems without trusted setup may
affect the succinctness of our verification time on structured circuits. For example, using Ligero, Bulletproof
and Aurora as a black-box would increase the verification time to O(n), and using Hyrax would increase the
proof size and verification time to O(

√
n). Using libSTARK may keep the same complexity, as polynomial

evaluation is a special function with short description, but the prover time and memory usage is high in
STARK as shown in the experiments. Designing an efficient zkVPD protocol with logarithmic proof size and
verification time without trusted setup is left as an interesting future work and we believe this paper serves as
an important step towards the goal of efficient succinct zero knowledge proof without trusted setup.

45

Chapter 3

Transparent Polynomial Delegation and Its
Applications to Zero Knowledge Proof

We present a new succinct zero knowledge argument scheme for layered arithmetic circuits without trusted
setup. The prover time is O(C +n log n) and the proof size is O(D log C +log2 n) for a D-depth circuit with
n inputs and C gates. The verification time is also succinct, O(D log C + log2 n), if the circuit is structured.
Our scheme only uses lightweight cryptographic primitives such as collision-resistant hash functions and is
plausibly post-quantum secure. We implement a zero knowledge argument system, Virgo, based on our new
scheme and compare its performance to existing schemes. Experiments show that it only takes 53 seconds to
generate a proof for a circuit computing a Merkle tree with 256 leaves, at least an order of magnitude faster
than all other succinct zero knowledge argument schemes. The verification time is 50ms, and the proof size is
253KB, both competitive to existing systems.

Underlying Virgo is a new transparent zero knowledge verifiable polynomial delegation scheme with
logarithmic proof size and verification time. The scheme is in the interactive oracle proof model and may be
of independent interest.

This work was previously published in [ZXZS].

3.1. INTRODUCTION 46

3.1 Introduction
Zero knowledge proof (ZKP) allows a powerful prover to convince a weak verifier that a statement is true,
without leaking any extra information about the statement beyond its validity. In recent years, significant
progress has been made to bring ZKP protocols from purely theoretical interest to practical implementations,
leading to its numerous applications in delegation of computations, anonymous credentials, privacy-preserving
cryptocurrencies and smart contracts.

Despite of these great success, there are still some limitations of existing ZKP systems. In SNARK [PHGR13],
the most commonly adopted ZKP protocol in practice, though the proof sizes are of just hundreds of bytes and
the verification times are of several milliseconds regardless of the size of the statements, it requires a trusted
setup phase to generate structured reference string (SRS) and the security will be broken if the trapdoor is
leaked.

To address this problem, many ZKP protocols based on different techniques have been proposed recently
to remove the trusted setup, which are referred as transparent ZKP protocols. Among these techniques, ZKP
schemes based on the doubly efficient interactive proof proposed by Goldwasser et al. in [GKR15] (referred
as GKR protocol in this paper) are particularly interesting due to their efficient prover time and sublinear
verification time for statements represented as structured arithmetic circuits, making it promising to scale to
large statements. Unfortunately, as of today we are yet to construct an efficient transparent ZKP system based
on the GKR protocol with succinct1 proof size and verification time. The transparent scheme in [WTSTW18]
has square-root proof size and verification time, while the succinct scheme in [XZZPS19a] requires a one-time
trusted setup. See Section 3.1.2 for more details.
Our contributions. In this paper, we advance this line of research by proposing a transparent ZKP protocol
based on GKR with succinct proof size and verification time, when the arithmetic circuit representing the
statement is structured. The prover time of our scheme is particularly efficient, at least an order of magnitude
faster than existing ZKP systems, and the verification time is merely tens of milliseconds. Our concrete
contributions are:

• Transparent zero knowledge verifiable polynomial delegation. We propose a new zero knowledge
verifiable polynomial delegation (zkVPD) scheme without trusted setup. Compared to existing pairing-based
zkVPD schemes [PST13; ZGKPP17c; ZGKPP17a], our new scheme does not require a trapdoor and
linear-size public keys, and eliminates heavy cryptographic operations such as modular exponentiation and
bilinear pairing. Our scheme may be of independent interest, as polynomial delegation/commitment has
various applications in areas such as verifiable secret sharing [BKP11], proof of retrievability [YY13] and
other constructions of ZKP [MBKM19].

• Transparent zero knowledge argument. Following the framework proposed in [ZGKPP17c], we combine
our new zkVPD protocol with the GKR protocol efficiently to get a transparent ZKP scheme. Our scheme
only uses light-weight cryptographic primitives such as collision-resistant hash functions and is plausibly
post-quantum secure.

• Implementation and evaluation. We implement a ZKP system, Virgo, based on our new scheme. We
develop optimizations such that our system can take arithmetic circuits on the field generated by Mersenne
primes, the operations on which can be implemented efficiently using integer additions, multiplications and
bit operations in C++. We plan to open source our system.

1“succinct" denotes poly-logarithmic in the size of the statement C.

3.1. INTRODUCTION 47

3.1.1 Our Techniques
Our main technical contribution in this paper is a new transparent zkVPD scheme with O(N log N) prover
time, O(log2 N) proof size and verification time, where N is the size of the polynomial. We summarize the
key ideas behind our construction. We first model the polynomial evaluation as the inner product between two
vectors of size N : one defined by the coefficients of the polynomial and the other defined by the evaluation
point computed on each monomial of the polynomial. The former is committed by the prover (or delegated to
the prover after preprocessing in the case of delegation of computation), and the later is publicly known to
both the verifier and the prover. We then develop a protocol that allows the prover to convince the verifier the
correctness of the inner product between a committed vector and a public vector with proof size O(log2 N),
based on the univariate sumcheck protocol recently proposed by Ben-Sasson et al. in [BSCRSVW19] (See
Section 3.2.4). To ensure security, the verifier needs to access the two vectors at some locations randomly
chosen by the verifier during the protocol. For the first vector, the prover opens it at these locations using
standard commitment schemes such as Merkle hash tree. For the second vector, however, it takes O(N) time
for the verifier to compute its values at these locations locally. In order to improve the verification time, we
observe that the second vector is defined by the evaluation point of size only ℓ for a ℓ-variate polynomial,
which is O(log N) if the polynomial is dense. Therefore, this computation can be viewed as a function that
takes ℓ inputs, expands them to a vector of N monomials and outputs some locations of the vector. It is a
perfect case for the verifier to use the GKR protocol to delegate the computation to the prover and validate the
output, instead of computing locally. With proper design of the GKR protocol, the verification time is reduced
to O(log2 N) and the total prover time is O(N log N). We then turn the basic protocol into zero knowledge
using similar techniques proposed in [AHIV17; BSCRSVW19]. The detailed protocols are presented in
Section 3.3.

3.1.2 Related Work
Zero knowledge proof. Zero knowledge proof was introduced by Goldwasser et al. in [GMR89] and
generic constructions based on probabilistically checkable proofs (PCPs) were proposed in the seminal
work of Kilian [Kil92] and Micali [Mic00] in the early days. In recent years there has been significant
progress in efficient ZKP protocols and systems. Following earlier work of Ishai [IKO], Groth [Gro10] and
Lipmaa [Lip12], Gennaro et al. [GGPR13] introduced quadratic arithmetic programs (QAPs), which leads
to efficient implementations of SNARKs [PHGR13; BSCGTV; BFRSBW; BSCTV14; Cos+; WSRBW15;
FFGKOP16]. The proof size and verification time of SNARK are constant, which is particularly useful for
real-world applications such as cryptocurrencies [Ben+14] and smart contract [KMSWP; BCGMMW18].
However, SNARKs require a per-statement trusted setup, and incurs a high overhead in the prover running
time and memory consumption, making it hard to scale to large statements. There has been great research for
generating the SRS through multi-parity secure computations [BSCGTV15] and making the SRS universal
and updatable [GKMMM18; MBKM19].

Many recent works attempt to remove the trusted setup and construct transparent ZKP schemes. Based on
“(MPC)-in-the-head" introduced in [IKOS07; GMO16; Cha+17], Ames et al. [AHIV17] proposed a ZKP
scheme called Ligero. It only uses symmetric key operations and the prover time is fast in practice, but the
proof size is O(

√
C) and the verification time is quasi-linear to the size of the circuit. Later, it is categorized as

interactive oracle proofs (IOPs), and in the same model Ben-Sasson et al. built Stark [BSBHR19], transparent
ZKP in the RAM model of computation. Their verification time is only linear to the description of the RAM

3.2. PRELIMINARIES 48

program, and succinct (logarithmic) in the time required for program execution. Recently, Ben-Sasson et
al. [BSCRSVW19] proposed Aurora, a new ZKP system in the IOP model with the proof size of O(log2 C).
Our new zkVPD and ZKP schemes fall in the IOP model.

In the seminal work of [GKR15], Goldwasser et al. proposed an efficient interactive proof for layered
arithmetic circuits, which was extended to an arugment system by Zhang et al. in [ZGKPP17b] using a protocol
for verifiable polynomial delegation. Later, Zhang et al. [ZGKPP18], Wahby et al. [WTSTW18] and Xie et
al. [XZZPS19a] made the argument system zero knowledge by Cramer and Damgard transformation [CD]
and random masking polynomials [CFS17]. The scheme of [WTSTW18], Hyrax, is transparent, yet the proof
size and verification time are O(

√
n) where n is the input size of the circuit; the schemes of [ZGKPP17a]

and [XZZPS19a] are succinct for structured circuits, but require one-time trusted setup. The prover time of
the GKR protocol is substantially improved in [CMT12; Tha13b; Wah+17; WTSTW18; ZGKPP18], and
recently Xie et al. [XZZPS19a] proposed a variant with O(C) prover time for arbitrary circuits.

Other transparent ZKP schemes based on different techniques include discrete-log-based schemes [Gro09;
BG12; BCCGP16; BBBPWM], hash-based schemes [BCGGHJ17] and lattice-based schemes [BBCDPGL18].
See Section 3.5.3 for detailed asymptotic complexity and practical performance of state-of-the-art systems
with implementations.
Verifiable polynomial delegation. Verifiable polynomial delegation (VPD) allows a verifier to delegate
the computation of polynomial evaluations to a powerful prover, and validates the result in time that is
constant or logarithmic to the size of the polynomial. Earlier works in the literature include [KZG; BGV;
FG]. Based on [KZG], Papamanthou et al. [PST13] propose a protocol for multivariate polynomials. Later
in [ZGKPP17c], Zhang et al. extend the scheme to an argument of knowledge using powers of exponent
assumptions, allowing a prover to commit to a multivariate polynomial, and open to evaluations at points
queried by the verifier. In [ZGKPP17a], Zhang et al. further make the scheme zero knowledge. These
schemes are based on bilinear maps and require a trusted setup phase that generates linear-size public keys
with a trapdoor.

In a concurrent work, Bünz et al. [BFS19] propose another transparent polynomial commitment scheme
without trusted setup. The scheme utilizes groups of unknown order and the techniques are different from our
construction. The prover and verifier time are O(N) and O(log N) modulo exponentiation in the group and
the proof size is O(log N) group elements. Concretely, the proof size is 10-20KB for a circuit with 220 gates
when compiled to different ZKP systems [BFS19, Section 6], and the prover time and the verification time are
not reported. Comparing to our scheme, we expect the prover and verifier time in our scheme are faster, while
our proof size is larger, which gives an interesting trade-off.

3.2 Preliminaries
We use λ to denote the security parameter, and negl(λ) to denote the negligible function in λ. “PPT" stands
for probabilistic polynomial time. For a multivariate polynomial f , its "variable-degree" is the maximum
degree of f in any of its variables. We often rely on polynomial arithmetic, which can be efficiently performed
via fast Fourier tranforms and their inverses. In particular, polynomial evaluation and interpolation over a
multiplicative coset of size n of a finite field can be performed in O(n log n) field operations via the standard
FFT protocol, which is based on the divide-and-conquer algorthim.

3.2. PRELIMINARIES 49

3.2.1 Interactive Proofs and Zero-knowledge Arguments
Interactive proofs. An interactive proof allows a prover P to convince a verifier V the validity of some
statement through several rounds of interaction. We say that an interactive proof is public coin if V’s challenge
in each round is independent of P’s messages in previous rounds. The proof system is interesting when the
running time of V is less than the time of directly computing the function f . We formalize interactive proofs
in the following:

Definition 3.2.1. Let f be a Boolean function. A pair of interactive machines ⟨P,V⟩ is an interactive proof
for f with soundness ϵ if the following holds:

• Completeness. For every x such that f(x) = 1 it holds that Pr[⟨P,V⟩(x) = 1] = 1.

• ϵ-Soundness. For any x with f(x) ̸= 1 and any P∗ it holds that Pr[⟨P∗,V⟩ = 1] ≤ ϵ

Zero-knowledge arguments. An argument system for an NP relationship R is a protocol between a
computationally-bounded prover P and a verifier V . At the end of the protocol, V is convinced by P that
there exists a witness w such that (x; w) ∈ R for some input x. We focus on arguments of knowledge which
have the stronger property that if the prover convinces the verifier of the statement validity, then the prover
must know w. We use G to represent the generation phase of the public parameters pp. Formally, consider
the definition below, where we assume R is known to P and V .

Definition 3.2.2. LetR be an NP relation. A tuple of algorithm (G,P,V) is a zero-knowledge argument of
knowledge forR if the following holds.

• Correctness. For every pp output by G(1λ) and (x, w) ∈ R,

⟨P(pp, w),V(pp)⟩(x) = 1

• Soundness. For any PPT prover P , there exists a PPT extractor ε such that for every pp output by
G(1λ) and any x, the following probability is negl(λ):

Pr[⟨P(pp),V(pp)⟩(x) = 1 ∧ (x, w) /∈ R|w ← ε(pp, x)]

• Zero knowledge. There exists a PPT simulator S such that for any PPT algorithm V∗, auxiliary input
z ∈ {0, 1}∗, (x; w) ∈ R, pp output by G(1λ), it holds that

View(⟨P(pp, w),V∗(z, pp)⟩(x)) ≈ SV∗
(x, z)

We say that (G,P,V) is a succinct argument system if the running time of V and the total communication
between P and V (proof size) are poly(λ, |x|, log |w|).

In the definition of zero knowledge, SV∗
denotes that the simulator S is given the randomness of V∗

sampled from polynomial-size space. This definition is commonly used in existing transparent zero knowledge
proof schemes [AHIV17; BBBPWM; WTSTW18; BSCRSVW19].

3.2. PRELIMINARIES 50

3.2.2 Zero-Knowledge Verifiable Polynomial Delegation
Let F be a finite field, F be a family of ℓ-variate polynomial over F, and d be a variable-degree parameter.
We useWℓ,d to denote the collection of all monomials in F and N = |Wℓ,d| = (d + 1)ℓ. A zero-knowledge
verifiable polynomial delegation scheme (zkVPD) for f ∈ F and t ∈ Fℓ consists of the following algorithms:

• pp← zkVPD.KeyGen(1λ),

• com← zkVPD.Commit(f, rf , pp),

• ((y, π); {0, 1})← ⟨zkVPD.Open(f, rf), zkVPD.Verify(com)⟩(t, pp)

Note that unlike the zkVPD in [PST13; ZGKPP17c; ZGKPP17a], our definition is transparent and does not
have a trapdoor in zkVPD.KeyGen. π denotes the transcript seen by the verifier during the interaction with
zkVPD.Open, which is similar to the proof in non-interactive schemes in [PST13; ZGKPP17c; ZGKPP17a].

Definition 3.2.3. A zkVPD scheme satisfies the following properties:

• Completeness. For any polynomial f ∈ F and value t ∈ Fℓ, pp ← zkVPD.KeyGen(1λ), com ←
zkVPD.Commit(f, rf pp), it holds that

Pr
[
⟨zkVPD.Open(f, rf), zkVPD.Verify(com)⟩(t, pp) = 1

]
= 1

• Soundness. For any PPT adversary A, pp ← zkVPD.KeyGen(1λ), the following probability is
negligible of λ:

Pr

(f∗, com∗, t)← A(1λ, pp)
((y∗, π∗); 1)← ⟨A(), zkVPD.Verify(com∗)⟩(t, pp)
com∗ = zkVPD.Commit(f∗, pp)
f∗(t) ̸= y∗

• Zero Knowledge. For security parameter λ, polynomial f ∈ F , pp ← zkVPD.KeyGen(1λ), PPT

algorithm A, and simulator S = (S1,S2), consider the following two experiments:

RealA,f (pp):
1. com← zkVPD.Commit(f, rf , pp)
2. t← A(com, pp)
3. (y, π) ←
⟨zkVPD.Open(f, rf),A⟩(t, pp)

4. b← A(com, y, π, pp)
5. Output b

IdealA,SA(pp):

1. com← S1(1λ, pp)
2. t← A(com, pp)
3. (y, π) ← ⟨S2,A⟩(ti, pp), given oracle access to

y = f(t).
4. b← A(com, y, π, pp)
5. Output b

For any PPT algorithm A and all polynomial f ∈ F, there exists simulator S such that

|Pr[RealA,f (pp) = 1]− Pr[IdealA,SA(pp) = 1]| ≤ negl(λ).

3.2. PRELIMINARIES 51

3.2.3 Zero Knowledge Argument Based on GKR
In [XZZPS19a], Xie et al. proposed an efficient zero knowledge argument scheme named Libra. The scheme
extends the interactive proof protocol for layered arithmetic circuits proposed by Goldwasser et al. [GKR15]
(referred as the GKR protocol) to a zero knowledge argument using multiple instances of zkVPD schemes.
Our scheme follows this framework and we review the detailed protocols here.
Sumcheck protocol. The sumcheck protocol is a fundamental protocol in the literature of interactive proof
that has various applications. The problem is to sum a polynomial f : Fℓ → F on the binary hypercube∑

b1,b2,...,bℓ∈{0,1} f(b1, b2, ..., bℓ). Directly computing the sum requires exponential time in ℓ, as there are 2ℓ

combinations of b1, . . . , bℓ. Lund et al. [LFKN92] proposed a sumcheck protocol that allows a verifier V to
delegate the computation to a computationally unbounded prover P , who can convince V the correctness of
the sum. At the end of the sumcheck protocol, V needs an oracle access to the evaluation of f at a random
point r ∈ Fℓ chosen by V . The proof size of the sumcheck protocol is O(dℓ), where d is the variable-degree
of f , and the verification time of the protocol is O(dℓ). The sumcheck protocol is complete and sound with
ϵ = dℓ

|F| .
GKR protocol. Let C be a layered arithmetic circuit with depth D over a finite field F. Each gate in the i-th
layer takes inputs from two gates in the (i + 1)-th layer; layer 0 is the output layer and layer D is the input
layer. The GKR protocol proceeds layer by layer. Upon receiving the claimed output from P , in the first
round, V and P run a sumcheck protocol to reduce the claim about the output to a claim about the values
in the layer above. In the i-th round, both parties reduce a claim about layer i − 1 to a claim about layer
i through sumcheck. Finally, the protocol terminates with a claim about the input layer D, which can be
checked directly by V . If the check passes, V accepts the claimed output.

Formally speaking, we denote the number of gates in the i-th layer as Si and let si = ⌈log Si⌉. We
then define a function Vi : {0, 1}si → F that takes a binary string b ∈ {0, 1}si and returns the output of
gate b in layer i, where b is called the gate label. With this definition, V0 corresponds to the output of the
circuit, and VD corresponds to the input. As the sumcheck protocol works on F, we then extend Vi to its
multilinear extension, the unique polynomial Ṽi : Fsi → F such that Ṽi(x1, x2, ..., xsi

) = Vi(x1, x2, ..., xsi
)

for all x1, x2, . . . , xsi
∈ {0, 1}si . As shown in prior work [CMT12], the closed form of Ṽi can be computed

as:

Ṽi(x1, x2, ..., xsi
) =

∑
b∈{0,1}si

si∏
i=1

[((1− xi)(1− bi) + xibi) · Vi(b)], (3.1)

where bi is i-th bit of b.
With these definitions, we can express the evaluations of Ṽi as a summation of evaluations of Ṽi+1:

αiṼi(u
(i)) + βiṼi(v

(i)) =
∑

x,y∈{0,1}si+1 fi(Ṽi+1(x), Ṽi+1(y)), (3.2)

where u(i), v(i) ∈ Fsi are random vectors and αi, βi ∈ F are random values. Note here that fi depends on
αi, βi, u(i), v(i) and we omit the subscripts for easy interpretation.

With Equation 7.1, the GKR protocol proceeds as follows. The prover P first sends the claimed output
of the circuit to V . From the claimed output, V defines polynomial Ṽ0 and computes Ṽ0(u(0)) and Ṽ0(v(0))
for random u(0), v(0) ∈ Fs0 . V then picks two random values α0, β0 and invokes a sumcheck protocol on
Equation 7.1 with P for i = 0. As described before, at the end of the sumcheck, V needs an oracle access to

3.2. PRELIMINARIES 52

the evaluation of f0 at u(1), v(1) randomly selected in Fs1 . To compute this value, V asks P to send Ṽ1(u(1))
and Ṽ1(v(1)). Other than these two values, f0 only depends on α0, β0, u(0), v(0) and the gates and wiring
in layer 0, which are all known to V and can be computed by V directly. In this way, V and P reduces two
evaluations of Ṽ0 to two evaluations of Ṽ1 in layer 1. V and P then repeat the protocol recursively layer by
layer. Eventually, V receives two claimed evaluations ṼD(u(D)) and ṼD(v(D)). V then checks the correctness
of these two claims directly by evaluating ṼD, which is defined by the input of the circuit. Let GKR.P and
GKR.V be the algorithms for the GKR prover and verifier, we have the following theorem:

Lemma 3.2.4. [GKR15; CMT12; Tha13b; XZZPS19a]. Let C : Fn → F be a layered arithmetic circuit with
depth of D. ⟨GKR.P, GKR.V⟩(C, x) is an interactive proof per Definition 7.2.1 for the function computed by
C on input x with soundness O(D log |C|/|F|). The total communication is O(D log |C|) and the running
time of the prover P is O(|C|). When C has regular wiring pattern2, the running time of the verifier V is
O(n + D log |C|).

Extending GKR to Zero Knowledge Argument. There are two limitations of the GKR protocol: (1) It is
not an argument system supporting witness from P , as V needs to evaluate ṼD locally in the last round; (2)
It is not zero knowledge, as in each round, both the sumcheck protocol and the two evaluations of Ṽi leak
information about the values in layer i.

To extend the GKR protocol to a zero knowledge argument, Xie et al. [XZZPS19a] address both of the
problems using zero knowledge polynomial delegation. Following the approach of [ZGKPP17c; ZGKPP17a;
WTSTW18], to support witness w as the input to the circuit, P commits to ṼD using zkVPD before running
the GKR protocol. In the last round of GKR, instead of evaluating ṼD locally, V asks P to open ṼD at two
random points u(D), v(D) selected by V and validates them using zkVPD.Verify. In this way, V does not need
to access w directly and the soundness still holds because of the soundness guarantee of zkVPD.

To ensure zero knowledge, using the techniques proposed by Chiesa et al. in [CFS17], the prover P
masks the polynomial Ṽi and the sumcheck protocol by random polynomials so that the proof does not leak
information. For correctness and soundness purposes, these random polynomials are committed using the
zkVPD protocol and opened at random points chosen by V . In particular, for layer i, the prover selects a
random bivariate polynomial Ri(x1, z) and defines

V̇i(x1, . . . , xsi
) def= Ṽi(x1, . . . , xsi

) + Zi(x1, . . . , xsi
)
∑

z∈{0,1}
Ri(x1, z), (3.3)

where Zi(x) =
∏si

i=1 xi(1 − xi), i.e., Zi(x) = 0 for all x ∈ {0, 1}si . V̇i is known as the low degree
extension of Vi, as V̇i(x) = Ṽi(x) = Vi(x) for all x ∈ {0, 1}si . As Ri is randomly selected by P , revealing
evaluations of V̇i does not leak information about Vi, thus the values in the circuit. Additionally, P
selects another random polynomial δi(x1, . . . , xsi+1

, y1, . . . , ysi+1
, z) to mask the sumcheck protocol. Let

Hi =
∑

x,y∈{0,1}si+1 ,z∈{0,1} δi(x1, . . . , xsi+1
, y1, . . . , ysi+1

, z), Equation 7.1 to run sumcheck on becomes

αiV̇i(u
(i)) + βiV̇i(v

(i)) + γiHi

=
∑

x,y∈{0,1}si+1 ,z∈{0,1}
f ′

i(V̇i+1(x), V̇i+1(y), Ri(u
(i)
1 , z), Ri(v

(i)
1 , z), δi(x, y, z)) , (3.4)

2“Regular” circuits is defined in [CMT12, Theorem A.1]. Roughly speaking, it means the mutilinear extension of
its wiring predicates can be evaluated at a random point in time O(log |C|).

3.2. PRELIMINARIES 53

Protocol 3 (Zero Knowledge Argument in [XZZPS19a]). Let λ be the security parameter, F be a prime
field. Let C : Fn → F be a layered arithmetic circuit over F with D layers, input in and witness w such that
|in|+ |w| ≤ n and 1 = C(in; w).

• G(1λ): set pp as pp← zkVPD.KeyGen(1λ).

• ⟨P(pp, w),V(pp)⟩(in):

1. P selects a random bivariate polynomial RD. P commits to the witness of C by sending
comD ← zkVPD.Commit(V̇D, rVD

, pp) to V , where V̇D is defined by Equation 4.12.

2. P randomly selects polynomials Ri : F2 → F and δi : F2si+1+1 → F for i = 0, . . . , D − 1.
P commits to these polynomials by sending comi,1 ← zkVPD.Commit(Ri, rRi

, pp) and
comi,2 ← zkVPD.Commit(δi, rδi

, pp) to V . P also reveals R0 to V , as V0 is known to V .

3. V evaluates V̇0(u(0)) and V̇0(v(0)) for randomly chosen u(0), v(0) ∈ Fs0 .

4. For i = 0, . . . , D − 1:

a) P sends Hi =
∑

x,y∈{0,1}si+1 ,z∈{0,1} δi(x, y, z) to V .
b) V picks αi, βi, γi randomly in F.
c) V and P execute a sumcheck protocol on Equation 3.4. At the end of the sumcheck, V

receives a claim of f ′
i at point u(i+1), v(i+1) ∈ Fsi+1 , gi ∈ F selected randomly by V .

d) P opens Ri(u
(i), gi), Ri(v

(i), gi) and δi(u
(i+1), v(i+1), gi) using zkVPD.Open. P sends

V̇0(u(i+1)) and V̇0(v(i+1)) to V .
e) V validates Ri(u

(i), gi), Ri(v
(i), gi) and δi(u

(i+1), v(i+1), gi) using zkVPD.Verify. If any
of them outputs 0, abort and output 0.

f) V checks the claim of f ′
i using Ri(u

(i), gi), Ri(v
(i), gi), δi(u

(i+1), v(i+1), gi), V̇0(u(i+1))
and V̇0(v(i+1)). If it fails, output 0.

5. P runs (y1, π1) ← zkVPD.Open(V̇D, rVD
, u(D), pp), (y2, π2) ←

zkVPD.Open(V̇D, rVD
, v(D), pp) and sends y1, π1, y2, π2 to V .

6. V runs Verify(π1, y1, comD, u(D), pp) and Verify(π2, y2, comD, v(D), pp) and output 0 if either
check fails. Otherwise, V checks V̇D(u(D)) = y1 and V̇D(v(D)) = y2, and rejects if either fails.
If all checks above pass, V output 1.

where γi ∈ F is randomly selected by V , and f ′
i is defined by αi, βi, γi, u(i), v(i), Zi(u

(i)), Zi(v
(i))3. Now V

and P can execute the sumcheck and GKR protocol on Equation 3.4. In each round, P additionally opens Ri

and δi at Ri(u
(i)
1 , g(i)), Ri(v

(i)
1 , g(i)), δi(u

(i+1), v(i+1), g(i)) for g(i) ∈ F randomly selected by V . With these
values, V reduces the correctness of two evaluations V̇i(u

(i)), V̇i(v
(i)) to two evaluations V̇i(u

(i+1)), V̇i(v
(i+1))

on one layer above like before. In addition, as fi is masked by δi, the sumcheck protocol is zero knowledge;
3Formally, f ′

i is I(0, z)fi(V̇i+1(x), V̇i+1(y)) + I((x, y), 0)(αiZi(u
(i))R(u(i)

1 , z) + βiZi(v
(i))R(v(i)

1 , z)) +
γiδi(x, y, z), where I(a, b) is an identity polynomial I(a, b) = 0 iff a = b. We will not use f ′

i explicitly in our
constructions later.

3.2. PRELIMINARIES 54

as Ṽi is masked by Ri, the two evaluations of V̇i do not leak information. The full zero knowledge argument
protocol in [XZZPS19a] is given in Protocol 3. We have the following theorem:

Lemma 3.2.5. [XZZPS19a]. Let C : Fn → F be a layered arithmetic circuit with D layers, input in and
witness w. Protocol 3 is a zero knowledge argument of knowledge under Definition 6.2.2 for the relation
defined by 1 = C(in; w).

The variable degree of Ri is O(1). δi(x, y, z) = δi,1(x1) + . . . + δi,si+1
(xsi+1

) + δi,si+1+1(y1) + . . . +
δi,2si+1

(ysi+1
) + δi,2si+1+1(z) is the summation of 2si+1 + 1 univariate polynomials of degree O(1). Other

than the zkVPD instantiations, the proof size is O(D log |C|) and the prover time is O(|C|). When C is
regular, the verification time is O(n + D log |C|).

3.2.4 Univariate Sumcheck
Our transparent zkVPD protocol is inspired by the univariate sumcheck protocol recently proposed by
Ben-Sasson et al.in [BSCRSVW19]. As the name indicates, the univariate sumcheck protocol allows the
verifier to validate the result of the sum of a univariate polynomial on a subsetH of the fieldF: µ =

∑
a∈H f(a).

The key idea of the protocol relies on the following lemma:

Lemma 3.2.6. [BC99]. Let H be a multiplicative coset4 of F, and let g(x) be a univariate polynomial over F
of degree strictly less that |H|. Then

∑
a∈H g(a) = g(0) · |H|.

Because of Lemma 3.2.6, to test the result of
∑

a∈H f(a) for f with degree less than k, we can decompose
f into two parts f(x) = g(x) + ZH(x) · h(x), where ZH(x) =

∏
a∈H(x− a) (i.e., ZH(a) = 0 for all a ∈ H),

and the degrees of g and h are strictly less than |H| and k − |H|. This decomposition is unique for every f .
As ZH(a) is always 0 for a ∈ H, µ =

∑
a∈H f(a) =

∑
a∈H g(a) = g(0) · |H| by Lemma 3.2.6. Therefore,

if the claimed sum µ sent by the prover is correct, f(x)− ZH(x) · h(x)− µ/|H| must be a polynomial of
degree less than |H| with constant term 0, or equivalently polynomial

p(x) = |H| · f(x)− |H| · ZH(x) · h(x)− µ

|H| · x
(3.5)

must be a polynomial of degree less than |H| − 1. To test this, the univariate sumcheck uses a low degree test
(LDT) protocol on Reed-Solomon (RS) code, which we define below.
Reed-Solomon Code. Let L be a subset of F, an RS code is the evaluations of a polynomial ρ(x) of degree
less than m (m < L) on L. We use the notation ρ|L to denote the vector of the evaluations (ρ(a))a∈L, and
use RS[L, m] to denote the set of all such vectors generated by polynomials of degree less than m. Note that
any vector of size |L| can be viewed as some univariate polynomial of degree less than |L| evaluated on L,
thus we use vector and polynomial interchangeably.
Low Degree Test and Rational Constraints. Low degree test allows a verifier to test whether a polyno-
mial/vector belongs to an RS code, i.e., the vector is the evaluations of some polynomial of degree less than
m on L.

4In [BSCRSVW19], the protocols are mainly using additive cosets. We require H to be a multiplicative coset for
our constructions over prime fields and extensions. The univariate sumsheck on multiplicative cosets is also stated
in [BSCRSVW19].

3.2. PRELIMINARIES 55

In our constructions, we use the LDT protocol in [BSCRSVW19, Protocol 8.2], which was used to
transform an RS-encoded IOP to a regular IOP. It applies the LDT protocol proposed in [BSBHR18] protocol
to a sequence of polynomials ρ⃗ and their rational constraint p, which is a polynomial that can be computed
as the division of the polynomials in ρ⃗. In the case of univariate sumcheck, the sequence of polynomials is
ρ⃗ = (f, h) and the rational constraint is given by Equation 3.5.

The high level idea is as follows. First, the verifier multiplies each polynomial in ρ⃗ and the rational
constraint p with an appropriate monomial such that they have the same degree max, and takes their random
linear combination. Then the verifier tests that the resulting polynomial is in RS[L, max + 1]. At the end
of the protocol, the verifier needs oracle access to κ evaluations of each polynomial in ρ⃗ and the rational
constraint p at points in L indexed by I , and checks that each evaluation of p is consistent with the evaluations
of the polynomials in ρ⃗. We denote the protocol as ⟨LDT.P(ρ⃗, p), LDT.V(m⃗, deg(p))⟩(L), where ρ⃗ is a
sequence of polynomials over F, p(x) is their rational constraint, m⃗, deg(p) is the degrees of the polynomials
and the rational constraint to test, and L is a multiplicative coset of F. We state the properties of the protocol
in the following lemma:

Lemma 3.2.7. There exist an LDT protocol ⟨LDT.P(ρ⃗, p), LDT.V(m⃗, deg(p))⟩(L) that is complete and
sound with soundness error O(|L|

|F|) + negl(κ), given oracle access to evaluations of each polynomial in ρ⃗

at κ points indexed by I in L. The proof size and the verification time are O(log |L|) other than the oracle
access, and the prover time is O(L).

The LDT protocol can be made zero knowledge in a straight-forward way by adding a random polynomial
of degree max in ρ⃗. That is, there exists a simulator S such that given the random challenges of I of any
PPT algorithm V∗, it can simulate the view of V∗ such that View(⟨LDT.P(ρ⃗, p),V∗(m⃗, deg(p))⟩(L)) ≈
SV∗

(deg(p)). In particular, S generates p∗ ∈ RS[L, deg(p)] and can simulate the view of any sequence of
random polynomials ρ⃗∗ subject to the constraint that their evaluations at points indexed by I are consistent
with the oracle access of p∗.
Merkle Tree. Merkle hash tree proposed by Ralph Merkle in [Mer] is a common primitive to commit a vector
and open it at an index with logarithmic proof size and verification time. It consists of three algorithms:

• rootc ← MT.Commit(c)

• (cidx, πidx)← MT.Open(idx, c)

• (1, 0)← MT.Verify(rootc, idx, cidx, πidx)

The security follows the collision-resistant property of the hash function used to construct the Merkle tree.
With these tools, the univariate sumcheck protocol works as follows. To prove µ =

∑
a∈H f(a), the

verifier and the prover picks L, a multiplicative coset of F and a superset of H, where |L| > k. P decompose
f(x) = g(x) + ZH(x) · h(x) as defined above, and computes the vectors f |L and h|L. P then commits to
these two vectors using Merkle trees. P then defines a polynomial p(x) = |H|·f(x)−|H|·ZH(x)·h(x)−µ

|H|·x , which is
a rational constraint of f and h. As explained above, in order to ensure the correctness of µ, it suffices to test
that the degree of (f, h), p is less than (k, k − |H|), |H| − 1, which is done through the low degree test. At
the end of the LDT, V needs oracle access to κ points of f |L and h|L. P sends these points with their Merkle
tree proofs, and V validates their correctness. The formal protocol and the lemma is presented in Protocol 4.
As shown in [BSCRSVW19], it suffices to set |L| = O(|H|). And we have the following lemma:

3.3. TRANSPARENT ZERO KNOWLEDGE POLYNOMIAL DELEGATION 56

Lemma 3.2.8. Let f : F → F be a univariate poynomial with degree less than k and H ⊆ L ⊆ F and
|L| > k. Protocol 4 is an interactive proof to prove µ =

∑
a∈H f(a) with soundness O(LF + negl(κ)). The

proof size and the verification time are O(log2 |L|) and the prover time is O(|L| log |L|).

Protocol 4 (Univariate Sumcheck). Let f be a degree k univariate polynomial on F with degree less than k
and H,L be a multiplicative coset of F such that H ⊂ L ⊂ F and |L| > k. To prove µ =

∑
a∈H f(a), a

univariate sumcheck protocol has the following algorithms.

• SC.com← SC.Commit(f):

1. P computes polynomial h such that f(x) = g(x) + ZH(x) · h(x). P evaluates of f |L and h|L.

2. P commits to the vectors using Merkle tree rootf ← MT.Commit(f |L) and rooth ←
MT.Commit(h|L). P sends V com = (rootf , rooth).

• ⟨SC.Prove(f), SC.Verify(com, µ)⟩:

1. Let p(x) = |H|·f(x)−µ−|H|·ZH(x)h(x)
|H|·x .

2. P and V invoke the low degree test: ⟨LDT.P((f, h), p), LDT.V((k, k − |H|), |H| − 1)⟩(L). If
the test fails, V aborts and output 0. Otherwise, at then end of the test, V needs oracle access to
κ points of f, h and p in L. We denote their indices as I.

3. For each index i ∈ I, P opens MT.Open(i, f |L) and MT.Open(i, h|L).
4. V executes MT.Verify for all points opened by P . If any verification fails, abort and output 0.

5. V completes the low degree test with these points. If all checks above pass, V outputs 1.

3.3 Transparent Zero Knowledge Polynomial Delegation
In this section, we present our main construction, a zero knowledge verifiable polynomial delegation scheme
without trusted setup. We first construct a VPD scheme that is correct and sound, then extend it to be
zero knowledge. Our construction is inspired by the univariate sumcheck [BSCRSVW19] described in
Section 3.2.4.

Our main idea is as follows. To evaluate an ℓ-variate polynomial f with variable degree d at point
t = (t1, . . . , tℓ), we model the evaluation as the inner product between the vector of coefficients in f and the
vector of all monomials in f evaluated at t. Formally speaking, let N = |Wℓ,d| = (d + 1)ℓ be the number
of possible monomials in an ℓ-variate polynomial with variable degree d, and let c = (c1, . . . , cN) be the
coefficients of f in the order defined byWℓ,d such that f(x1, . . . , xℓ) =

∑N
i=1 ciWi(x), where Wi(x) is the

i-th monomial inWℓ,d. Define the vector T = (W1(t), . . . , WN (t)), then naturally the evaluation equals
f(t) =

∑N
i=1 ci · Ti, the inner product of the two vectors. We then select a multiplicative coset H such that

|H| = N , 5 and interpolate vectors c and T to find the unique univariate polynomials that evaluate to c and T

5If such coset does not exist, we can pad N to the nearest number with a coset of that size, and pad vector T with 0s
at the end.

3.3. TRANSPARENT ZERO KNOWLEDGE POLYNOMIAL DELEGATION 57

Protocol 5 (Verifiable Polynomial Delegation). Let F be a family of ℓ-variate polynomial over F with
variable-degree d and N = (d + 1)ℓ.We useWℓ,d = {Wi(x1, . . . , xℓ)}

N
i=1 to denote the collection of all

monomials in F . rf = ⊥ and we omit if in the algorithms.

• pp← KeyGen(1λ): Pick a hash function from the collision-resistant hash function family for Merkle
tree. Find a multiplicative coset H of F such that |H| = (d + 1)ℓ. Find a multiplicative coset L of F
such that |L| = O(|H|) > 2|H| and H ⊂ L ⊂ F.

• com ← Commit(f, pp): For a polynomial f ∈ F of the form f(x) =
∑N

i=1 ciWi(x), find the
unique univariate polynomial l(x) : F→ F such that l|H = (c1, . . . , cN). P evaluates l|L and runs
rootl ← MT.Commit(l|L). Output com = rootl.

• ((µ, π); {0, 1})← ⟨Open(f), Verify(com)⟩(t, pp): This is an interactive protocol between P and V .

1. P computes µ = f(t) and sends it to V .

2. P evaluates T = (W1(t), . . . , WN (t)). P finds the unique univariate polynomial q(x) : F→ F
such that q|H = T .

3. P computes l(x) · q(x). P uniquely decomposes l(x) · q(x) = g(x) + ZH(x) · h(x) , where
ZH(x) =

∏
a∈H(x − a) and the degrees of g and h are strictly less than |H| and |H| − 1. P

evaluates h|L and runs rooth ← MT.Commit(h|L) and sends rooth to V .

4. Let p(x) = |H|·l(x)·q(x)−µ−|H|·ZH(x)h(x)
|H|·x . P and V invoke a low degree test: ⟨LDT.P((l ·

q, h), p), LDT.V((2|H| − 1, |H| − 1), |H| − 1)⟩(L). If the test fails, V aborts and output 0.
Otherwise, at then end of the test, V needs oracle access to κ points of l(x) · q(x), h(x) and
p(x) at indices I.

5. For each index i ∈ I, let ai be the corresponding point in L. P opens (l(ai), πl
i) ←

MT.Open(i, l|L) and (h(ai), πh
i)← MT.Open(i, h|L).

6. V executes MT.Verify(rootl, i, l(ai), πl
i) and MT.Verify(rooth, i, h(ai), πh

i) for all points
opened by P . If any verification fails, abort and output 0.

7. To complete the low degree test, P and V runs ⟨GKR.P, GKR.V⟩(C, t), where circuit C
computes the evaluations of q|L and outputs the elements q(ai) for i ∈ I (see Figure 3.1). If
any of the checks in GKR fails, V aborts and outputs 0.

8. For each i ∈ I , V computes l(ai) · q(ai). Together with h(ai), V completes the low degree test.
If all checks above pass, V outputs 1.

on H. We denote the polynomials as l(x) and q(x) such that l|H = c and q|H = T . With these definitions,
f(t) =

∑N
i=1 ci · Ti =

∑
a∈H l(a) · q(a), which is the sum of the polynomial l(x) · q(x) on H. The verifier

can check the evaluation through a univariate sumcheck protocol with the prover. The detailed protocol is
presented in step 1-4 of Protocol 5.

Up to this point, the construction for validating the inner product between a vector committed by P and a
public vector is similar to and simpler than the protocols to check linear constraints proposed in [AHIV17;
BSCRSVW19]. However, naively applying the univariate sumcheck protocol incurs a linear overhead for the
verifier. This is because as described in Section 3.2.4, at the end of the univariate sumcheck, due to the low

3.3. TRANSPARENT ZERO KNOWLEDGE POLYNOMIAL DELEGATION 58

degree test, the verifier needs oracle access to the evaluations of l(x) · q(x) at κ points on L, a superset of
H. As l(x) is defined by c, i.e. the coefficients of f , the prover can commit to l|L at the beginning of the
protocol, and opens to points the verifier queries with their Merkle tree proofs. q(x), however, is defined by
the public vector T , and the verifier has to evaluate it locally, which takes linear time. This is the major reason
why the verification time in the zero knowledge proof schemes for generic arithmetic circuits in [AHIV17;
BSCRSVW19] is linear in the size of the circuits.
Reducing the verification time. In this paper, we propose an approach to reduce the cost of the verifier to
poly-logarithmic for VPD. We observe that in our construction, though the size of T and q(x) is linear in N ,
it is defined by only ℓ = O(log N) values of the evaluation point t. This means that the oracle access of κ
points of q(x) can be modeled as a function that: (1) Takes t as input, evaluates all monomials Wi(t) for all
Wi ∈ Wℓ,d as a vector T ; (2) Extrapolates the vector T to find polynomial q(x), and evaluates q(x) on L; (3)
Outputs κ points of q|L chosen by the verifier. Although the size of the function modeled as an arithmetic
circuit is Ω(N) with O(log N) depth, and the size of its input and output is only O(log N + κ). Therefore,
instead of evaluating the function locally, the verifier can delegate this computation to the prover, and validate
the result using the GKR protocol, as presented in Section 3.2.3. In this way, we eliminate the linear overhead
to evaluate these points locally, making the verification time of the overall VPD protocol poly-logarithmic.
The formal protocol is presented in Protocol 5.

To avoid any asymptotic overhead for the prover, we also design an efficient layered arithmetic circuit
for the function mentioned above. The details of the circuit are presented in Figure 3.1. In particular, in the
first part, each value ti in the input t is raised to powers of 0, 1, . . . , d. Then they are expanded to T , the
evaluations of all monomials inWℓ,d, by multiplying one ti at a time through a (d + 1)-ary tree. The size of
this part is O(N) = O((d + 1)ℓ) and the depth is O(log d + ℓ). In the second part, the polynomial q(x) and
the vector q|L is computed from T directly using FFTs. We first construct a circuit for an inverse FFT to
compute the coefficients of polynomial q(x) from its evaluations T . Then we run an FFT to evaluate q|L from
the coefficients of q(x). We implement FFT and IFFT using the Butterfly circuit [CLRS09]. The size of
the circuit is O(N log N) and the depth is O(log N). Finally, κ points are selected from q|L. As the whole
delegation of the GKR protocol is executed at the end in Protocol 5 after these points being fixed by the
verifier, the points to output are directly hard-coded into the circuit with size O(κ) and depth 1. No heavy
techniques for random accesses in the circuit is needed. Therefore, the whole circuit is of size O(N log N)
and depth O(log N), with ℓ inputs and κ outputs.

Theorem 3.3.1. Protocol 5 is a verifiable polynomial delegation protocol that is complete and sound under
Definition 4.4.2.

Proof. Completeness. By the definition of l(x) and q(x), if µ = f(t), then µ =
∑

a∈H l(a) · q(a) =∑
a∈H g(a) = g(0) · |H| by Lemma 3.2.6. Thus, p(x) = |H|·l(x)·q(x)−|H|·ZH(x)h(x)−µ

|H|·x = g(x)−g(0)
x , which is

in RS[L, |H| − 1]. The rest follows the completeness of the LDT protocol and the GKR protocol.
Soundness. Let εLDT, εMT, εGKR be the soundness error of the LDT, Merkle tree and GKR protocols. There
are two cases for a malicious prover P .
Case 1: ∄l∗ ∈ RS[L, |H|+ 1] such that com = MT.Commit(l∗|L), i.e. com is not a valid commitment.

• By the check in step 6, if com is not a valid Merkle tree root, the verification passes with probability
less than εMT.

• If ∃l∗∗ /∈ RS[L, |H|+ 1] such that com← MT.Commit(l∗∗|L), if the points v∗
i opened by P in step 5

v∗
i ̸= l∗∗(ai) for some i, the verification passes with probability no more than εMT.

3.3. TRANSPARENT ZERO KNOWLEDGE POLYNOMIAL DELEGATION 59

Input: t = (t1, . . . , tℓ)
Output: q()

1. Computing vector T = (W1(t), . . . , WN (t)):

• Compute (t0
i , t1

i , . . . , td
i) for i = 1, . . . , ℓ.

• Initialize vector T0 = (1).
• For i = 1, . . . , ℓ:

Ti = (t0
i · Ti−1, . . . , td

i · Ti−1), where “ · ” here is scalar multiplication between a number and a
vector and “," means concatenation. Set T = Tℓ.

2. Computing q|L:

• q|L = FFT(IFFT(T,H),L)

3. Outputting evaluations indexed by Iq:

Figure 3.1: Arithmetic circuit C computing evaluations of q(x) at κ points in L indexed by I.

• If the output q∗
i returned by P in step 7 is q∗

i ̸= q(ai) for some i, the verification passes with probability
less than εGKR.

• Otherwise, as l∗∗(x) · q(x) /∈ RS[L, 2|H|+ 1], by the checks of LDT in step 4, the verification passes
with probability no more than εLDT.

Case 2: ∃l∗ ∈ RS[L, |H| + 1] such that com = MT.Commit(l∗|L). Let c∗ = l∗|H and f∗(x) =∑N
i=1 c∗

i Wi(x), then com = Commit(f∗, pp). Suppose µ∗ ̸= f∗(t), then µ∗ ̸=
∑

a∈H l∗(a)q(a). Then by
Lemma 3.2.6, for all h ∈ RS[L, |H|+1], p∗ /∈ RS[L, |H|−1], as

∑
a∈H(p∗(a)·a) =

∑
a∈H

|H|·l∗(a)·q(a)−µ
∗

|H| =∑
a∈H(l∗(a) · q(a))− µ∗ ̸= 0. Therefore,

• Similar to case 1, if the commitment in step 3 is not a valid Merkle tree root, or the points opened by P
in step 5 are inconsistent with h or l∗, the verification passes with probability no more than εMT.

• If the output q∗
i returned by P in step 7 q∗

i ̸= q(ai) for some i, the verification passes with probability
no more than εGKR.

• Otherwise, as l∗ · q ∈ RS[L, 2|H|+ 1], either h /∈ RS[L, |H|+ 1] or p /∈ RS[L, |H| − 1] as explained
above. By the check in step 4, the verification passes with probability no more than εLDT.

By the union bound, the probability of the event of a malicious prover is no more than O(εLDT +
εMT + εGKR). As stated in Section 5.2, εLDT = O(|L|

|F|) + negl(κ), εGKR = O(log2
N

|F|) and εMT = negl(λ).
Therefore, with proper choice of parameters, the probability is ≤ negl(λ).

Efficiency. The running time of Commit is O(N log N). C in step 7 is a regular circuit with size
O(N log N), depth O(ℓ + log d) and size of input and output O(ℓ + κ). By Lemma 3.2.4 and 3.2.8, the
prover time is O(N log N), the proof size and the verification time are (log2 N).

3.3. TRANSPARENT ZERO KNOWLEDGE POLYNOMIAL DELEGATION 60

Extending to other ZKP schemes. We notice that our technique can be potentially applied to generic zero
knowledge proof schemes in [AHIV17; BSCRSVW19] to improve the verification time for circuits/constraint
systems with succinct representation. As mentioned previously, the key step that introduces linear verification
time in these schemes is to check a linear constraint system, i.e., y = Aw, where w is a vector of all values
on the wires of the circuit committed by the prover, and A is a public matrix derived from the circuit such
that Aw gives a vector of left inputs to all multiplication gates in the circuit. (This check is executed 2 more
times to also give right inputs and outputs.) To check the relationship, it is turned into a vector inner product
µ = ry = rA · w by multiplying both sides by a random vector r. Similar to our naive protocol to check
inner product, the verification time is linear in order to evaluate the polynomial defined by rA at κ points.
With our new protocol, if the circuit can be represented succinctly in sublinear or logarithmic space, A can
be computed by a function with sublinear or logarithmic number of inputs. We can use the GKR protocol
to delegate the computation of rA and the subsequent evaluations to the prover in a similar way as in our
construction, and the verification time will only depend on the space to represent the circuit, but not on the
total size of the circuit. This is left as a future work.

3.3.1 Achieving Zero Knowledge
Our VPD protocol in Protocol 5 is not zero knowledge. Intuitively, there are two places that leak information
about the polynomial f : (1) In step 6 of Protocol 5, P opens evaluations of l(x), which is defined by the
coefficients of f ; (2) In step 4, P and V execute low degree tests on (l(x) · q(x), h(x)), p(x) and the proofs
of LDT reveal information about the polynomials, which are related to f .

To make the protocol zero knowledge, we take the standard approaches proposed in [AHIV17;
BSCRSVW19]. To eliminate the former leakage of queries on l(x), the prover picks a random degree κ
polynomial r(x) and masks it as l′(x) = l(x) + ZH(x) · r(x), where as before, ZH(x) =

∏
a∈H(x− a). Note

here that l′(a) = l(a) for a ∈ H, yet any κ evaluations of l′(x) outside H do not reveal any information
about l(x) because of the masking polynomial r(x). The degree of l′(x) is |H|+ κ, and we denote domain
U = L−H.

To eliminate the latter leakage, P samples a random polynomial s(x) of the same degree as l′(x) · q(x),
sends S =

∑
a∈H s(a) to V and runs the univariate sumcheck protocol on their random linear combination:

αµ + S =
∑

a∈H(αl′(x) · q(x) + s(x)) for a random α ∈ F chosen by V . This ensures that both µ and S are
correctly computed because of the random linear combination and the linearity of the univariate sumcheck,
while leaking no information about l′(x) · q(x) during the protocol, as it is masked by s(x).

One advantage of our construction is that the GKR protocol used to compute evaluations of q(x) in step 7
of Protocol 5 remains unchanged in the zero knowledge version of the VPD. This is because q(x) and its
evaluations are independent of the polynomial f or any prover’s secret input. Therefore, it suffices to apply
the plain version of GKR without zero knowledge, avoiding any expensive cryptographic primitives.

The full protocol for our zkVPD is presented in Protocol 6. Note that all the evaluations are on U = L−H
instead of L, as evaluations on H leaks information about the original l(x). s(x) is also committed and
opened using Merkle tree for the purpose of correctness and soundness. The efficiency of our zkVPD protocol
is asymptotically the same as our VPD protocol in Protocol 5, and the concrete overhead in practice is also
small. We have the following theorem:

Theorem 3.3.2. Protocol 6 is a zero knowledge verifiable polynomial delegation scheme by Definition 4.4.2.

Proof. Completeness. It follows the completeness of Protocol 5.

3.3. TRANSPARENT ZERO KNOWLEDGE POLYNOMIAL DELEGATION 61

Protocol 6 (Zero Knowledge Verifiable Polynomial Delegation). Let F be a family of ℓ-variate polynomial
over F with variable-degree d and N = (d + 1)ℓ.We use Wℓ,d = {Wi(x1, . . . , xℓ)}

N
i=1 to denote the

collection of all monomials in F .

• pp← zkVPD.KeyGen(1λ): Same as KeyGen in Procotol 5. Define U = L−H.

• com ← Commit(f, rf , pp): For a polynomial f ∈ F of the form f(x) =
∑N

i=1 ciWi(x), find the
unique univariate polynomial l(x) : F→ F such that l|H = (c1, . . . , cN). P samples a polynomial
r(x) with degree κ randomly and sets l′(x) = l(x) + ZH(x) · r(x), where ZH(x) =

∏
a∈H(x− a).

P evaluates l′|U and runs rootl
′ ← MT.Commit(l′|U). Output com = rootl

′ .

• ((µ, π); {0, 1})← ⟨Open(f, rf), Verify(com)⟩(t, pp): This is an interactive protocol between P and
V . It replaces the univariate sumscheck on l(x) ·q(x) by l′(x) ·q(x)+αs(x) and L by U in Protocol 5.

1. P computes µ = f(t) and sends it to V .

2. P evaluates T = (W1(t), . . . , WN (t)). P finds the unique univariate polynomial q(x) : F→ F
such that q|H = T .

3. P samples randomly a degree 2|H|+ κ− 1 polynomial s(x). P sends V S =
∑

a∈H s(a) and
roots ← MT.Commit(s|U).

4. V picks α ∈ F randomly and sends it to P .

5. P computes αl′(x) · q(x) + s(x). P uniquely decomposes it as g(x) + ZH(x) · h(x), where
the degrees of g and h are strictly less than |H| and |H| + κ. P evaluates h|U and sends
rooth ← MT.Commit((h|U) to V .

6. Let p(x) = |H|·(αl
′(x)·q(x)+s(x))−(αµ+S)−|H|·ZH(x)h(x)

|H|·x . P and V invoke the low degree test:
⟨LDT.P((l′ · q, h, s), p), LDT.V((2|H|+ κ, |H|+ κ, 2|H|+ κ), |H| − 1)⟩(U). If the test fails,
V aborts and output 0. Otherwise, at the end of the test, V needs oracle access to κ points of
l′(x) · q(x), h(x), s(x) and p(x) at indices I.

7. For each index i ∈ I, let ai be the corresponding point in U. P opens (l′(ai), πl
′

i) ←
MT.Open(i, l′|U), (h(ai), πh

i)← MT.Open(i, h|U) and (s(ai), πs
i)← MT.Open(i, s|U).

8. V executes MT.Verify(rootl
′ , i, l′(ai), πl

′

i), MT.Verify(rooth, i, h(ai), πh
i) and

MT.Verify(roots, i, s(ai), πs
i) for all points opened by P . If any verification fails,

abort and output 0.

9. To complete the low degree test, P and V runs ⟨GKR.P, GKR.V⟩(C, t), where circuit C
computes the evaluations of q|U and outputs the elements q(ai) for i ∈ I. If any of the checks
in GKR fails, V aborts and outputs 0.

10. For each i ∈ I, V computes l′(ai) · q(ai). Together with h(ai) and s(ai), V completes the low
degree test. If all checks above pass, V outputs 1.

Soundness. It follows the soundness of Protocol 5 and the random linear combination. In particular, in Case
2 of the proof of Theorem 3.3.1, if ∃l′∗ ∈ RS[L, |H| + κ + 1], it can always be uniquely decomposed as
l∗(x) = l′∗(x) − ZH(x)r∗(x) such that

∑
a∈H l′∗(a) =

∑
a∈H l∗(a) and the degree of l∗(x) is |H| and the

3.3. TRANSPARENT ZERO KNOWLEDGE POLYNOMIAL DELEGATION 62

degree of r(x) is κ. If µ∗ ̸= µ =
∑

a∈H(l∗(a) · q(a)) =
∑

a∈H(l′∗(a) · q(a)), let S∗ =
∑

a∈H s∗(a) where
s∗(x) is committed by P in step 5, then

∑
a∈H(αl′∗(a) · q(a) + s∗(a)) = αµ∗ + S∗ = αµ + S if and only if

α = S−S
∗

µ
∗−µ

, which happens with probability 1/|F|. The probability of other cases are the same as the proof of
Theorem 3.3.1, and we omit the details here.
Zero knowledge. The simulator is given in Figure 3.2.

To prove zero knowledge, l′sim in S1 and l′ in zkVPD.Commit are both uniformly distributed. In S2, steps
1, 2 and 9 are the same as the real world in Protocol 6. No message is sent in steps 4, 8 and 10.

In step 3 and 7, ssim and s are both randomly selected and their commitments and evaluations are
indistinguishable. As r(x) is a degree-κ random polynomial in the real world in Protocol 6, κ evaluations
of l′(x) opened in step 7 are independent and randomly distributed, which is indistinguishable from step
7 of S2 in the ideal world. Finally, in step 7 of the ideal world, V∗ receives κ evaluations of hsim at point
indexed by I. Together with l′sim · q and ssim, by Lemma 3.2.7, the view of steps 5-7 simulated by LDT.S is
indistinguishable from the real world with h, l′ · q and s, which completes the proof.

Our zkVPD protocol is also a proof of knowledge. Here we give the formal definition of knowledge
soundness of a zkVPD protocol in addition to Definition 4.4.2 and prove that our protocol has knowledge
soundness.
Knowledge Soundness. For any PPT adversary A, there exists a PPT extractor E such that given access to
the random tape of A, for every pp← zkVPD.KeyGen(1λ), the following probability is negl(λ):

Pr

(com∗, t)← A(1λ, pp),
((y∗, π∗); 1)← ⟨A(), zkVPD.Verify(com∗)⟩(t, pp),

(f, rf)← E(1λ, pp) :
com∗ ̸= zkVPD.Commit(f, rf , pp) ∨ f(t) ̸= y∗

Our zkVPD protocol is a proof of knowledge in the random oracle model because of the extractability

of Merkle tree, as proven in [Val08; BSCS16]. Informally speaking, given the root and sufficiently many
authentication paths, there exists a PPT extractor that reconstructs the leaves with high probability. Additionally,
in our protocol the leaves are RS encoding of the witness, which can be efficiently decoded by the extractor.
We give a proof similar to [Val08; BSCS16] below.

Proof. Suppose the Merkle tree in our protocol is based on a random oracle R : {0, 1}2λ → {0, 1}λ. We
could construct a polynomial extractor E with the same random type of A working as follows:

Simulate AR, and let q1, q2, · · · , qt be the queries made by A to R in the order they are made where
duplicates omitted. Define qi ∈ R(qj) if the first λ bits or the last λ bits of qi isR(qj). If there exist some
i ̸= j,R(qi) = R(qj), or some i ≤ j qi ∈ R(qj), E aborts and outputs a random string as (f, rf).
E constructs an acyclic directed graph G according to the query set Q = {q1, q2, · · · , qt}. There is an

edge from qi to qj in G if and only if qi ∈ R(qj). The outdegree of each node is at most 2. WhenA generates
rootl

′ in step 2 of Protocol 6, if rootl
′ does not equalR(q) for some q ∈ Q, E aborts and outputs a random

string as (f, rf), otherwise we supposeR(qr) = rootl
′ . If a verification path of π∗ is not valid, E aborts and

outputs a random string as (f, rf).
Since E knows the correct depth of the Merkle tree, it could read off all leaf strings with this depth

from the binary tree rooted at qr. If there exists missing leaf, E aborts and outputs a random string as
(f, rf), otherwise, it concatenates these leaf strings as w′ = l′|U, and decodes w = l′|H using an efficient

3.3. TRANSPARENT ZERO KNOWLEDGE POLYNOMIAL DELEGATION 63

• com← S1(1λ, pp): Pick a random polynomial l′sim(x) ∈ RS[L, |H|+ κ + 1]. Evaluate l′sim|U and
output rootl

′
sim
← MT.Commit(l′sim|U).

• S2(t, pp):

1. Given oracle access to µ = f(t), send it to V∗.

2. Evaluate T = (W1(t), . . . , WN (t)). Find the unique univariate polynomial q(x) : F→ F such
that q|H = T .

3. Pick a degree 2|H|+ κ− 1 polynomial ssim(x) randomly. Send V Ssim =
∑

a∈H ssim(a) and
rootssim

← MT.Commit(ssim|U).
4. Receive α ∈ F from V .

5. Let LDT.S be the simulator the LDT protocol described in Section 3.2.4. Given the random
challenges I of V∗, call LDT.S to generate p∗(x) ∈ RS[L, |H| − 1]. For each point ai in I,
compute hi such that p∗(ai) = |H|·(αl

′
sim(ai)·q(ai)+ssim(ai))−(αµ+Ssim)−|H|·ZH(ai)hi

|H|·ai
. Interpolate hi

to get polynomial hsim and sends roothsim
← MT.Commit((hsim|U) to V∗.

6. Call LDT.S to simulate the view of the low degree test LDT.SV∗
.

7. For each index i ∈ I, let ai be the corresponding point in U. P
opens (l′sim(ai), π

l
′
sim

i) ← MT.Open(i, l′sim|U), (hi, π
hsim
i) ← MT.Open(i, hsim|U) and

(ssim(ai), π
ssim
i)← MT.Open(i, ssim|U).

8. Wait V∗ to validate the points.

9. Run ⟨GKR.P, GKR.V⟩(C, t) with V∗, where circuit C computes the evaluations of q|U and
outputs the elements q(ai) for i ∈ I.

10. Wait V∗ for validation.

Figure 3.2: Simulator S of the zkVPD protocol.

Reed–Solomon decoding algorithm (such as Berlekamp–Welch). E could easily output (f, rf) according to
w.

Let E1 denote the event ((y∗, π∗); 1) ← ⟨A(), zkVPD.Verify(com∗)⟩(t, pp) and E2 denote the event
com∗ ̸= zkVPD.Commit(f, rf , pp) ∨ f(t) ̸= y∗, next we show Pr[E1 ∧ E2] ≤ negl(λ).

The probability that E aborts before constructing the graph G is negl(λ) because of the collision-resistant
property of the random oracle. If some node on a verification path(possibly including the root) of the proof π∗

does not lie in the graph G,A has to guess the value to construct a valid verification path, which propability is
also negl(λ) sinceR is noninvertible. Additionally, if one leaf of the tree is missing, then V will be convinced
with probability negl(λ) once it queries this leaf. And the probability this leaf is not be queried by V is at
most (1− 1

|U|)
κ = negl(λ) as κ = O(λ).

If E does not abort, it could always extract some (f, rf) satisfying com∗ = zkVPD.Commit(f, rf , pp).

3.3. TRANSPARENT ZERO KNOWLEDGE POLYNOMIAL DELEGATION 64

Protocol 7 (Our Zero Knowledge Argument). Let λ be the security parameter, F be a prime field. Let
C : Fn → F be a layered arithmetic circuit overFwith D layers, input x and witness w such that |x|+|w| ≤ n
and 1 = C(x; w).

• G(1λ): set pp as pp← zkVPD.KeyGen(1λ).

• ⟨P(pp, w),V(pp)⟩(in):

1. P selects a random bivariate polynomial RD. P commits to the witness of C by sending
comD ← zkVPD.Commit(V̇D, pp) to V , where V̇D is defined by Equation 4.12.

2. P randomly selects polynomials Ri : F2 → F and δi : F2si+1+1 → F for i = 0, . . . , D − 1. P
commits to these polynomials by sending comi,1 ← zkVPD.Commit(Ri, pp) and comi,2 ←
zkVPD.Commit(δi, pp) to V . P also reveals R0 to V , as V0 is defined by out and is known to
V .

3. V evaluates V̇0(u(0)) and V̇0(v(0)) for randomly chosen u(0), v(0) ∈ Fs0 .

4. For i = 0, . . . , D − 1:

a) P sends Hi =
∑

x,y∈{0,1}si+1 ,z∈{0,1} δi(x, y, z) to V .
b) V picks αi, βi, γi randomly in F.
c) V and P execute a sumcheck protocol on Equation 3.4. At the end of the sumcheck, V

receives a claim of f ′
i at point u(i+1), v(i+1) ∈ Fsi+1 , gi ∈ F selected randomly by V .

d) P opens Ri(u
(i), gi), Ri(v

(i), gi) and δi(u
(i+1), v(i+1), gi) using zkVPD.Open. P sends

V̇0(u(i+1)) and V̇0(v(i+1)) to V .
e) V validates Ri(u

(i), gi), Ri(v
(i), gi) and δi(u

(i+1), v(i+1), gi) using zkVPD.Verify. If any
of them outputs 0, abort and output 0.

f) V checks the claim of f ′
i using Ri(u

(i), gi), Ri(v
(i), gi), δi(u

(i+1), v(i+1), gi), V̇0(u(i+1))
and V̇0(v(i+1)). If it fails, output 0.

5. P runs (y1, π1) ← zkVPD.Open(V̇D, u(D), pp), (y2, π2) ← zkVPD.Open(V̇D, v(D), pp) and
sends y1, π1, y2, π2 to V .

6. V runs Verify(π1, y1, comD, u(D), pp) and Verify(π2, y2, comD, v(D), pp) and output 0 if either
check fails. Otherwise, V checks V̇D(u(D)) = y1 and V̇D(v(D)) = y2, and rejects if either fails.
If all checks above pass, V output 1.

In this case, V accepts the statement with probability negl(λ) if f(t) ̸= y∗ according to the soundness of
zkVPD.

Therefore, Pr[E1 ∧ E2] = Pr[E1 ∧ E2|E aborts] + Pr[E1 ∧ E2|E does not abort] ≤ Pr[E1|E aborts] +
Pr[E1 ∧ E2|E does not abort] ≤ negl(λ) + negl(λ) = negl(λ)

3.4. ZERO KNOWLEDGE ARGUMENT 65

3.4 Zero Knowledge Argument
Following the framework of [XZZPS19a], we can instantiate the zkVPD in Protocol 3 with our new
construction of transparent zkVPD in Protocol 6 to obtain a zero knowledge argument of knowledge scheme
for layered arithmetic circuits without trusted setup. In this section, we present two optimizations to improve
the asymptotic performance, followed by the formal description of the scheme.

3.4.1 zkVPD for Input Layer
As presented in Section 3.2.3, to extend the GKR protocol to a zero knowledge argument, we need a zkVPD
protocol for the low degree extension V̇D of polynomial VD defined by Equation 4.12. The variable degree
of V̇D for x2, . . . , xsD

is 2, and the variable degree for x1 is 3. Naively applying our zkVPD protocol in
Section 3.3.1 would incur a prover time of O(sD3sD), superlinear in the size of the input n = O(2sD).

Instead, we observe that the low degree extension in Equation 4.12 is of a special form: it is the sum of
the multilinear extension ṼD defined by Equation 3.1 and ZD(x)

∑
z∈{0,1} RD(x1, z), where ZD is publicly

known and
∑

z∈{0,1} RD(x1, z) is a degree-1 univariate polynomial, i.e.
∑

z∈{0,1} RD(x1, z) = a0 + a1x1.
Therefore, the evaluation of V̇D at point t ∈ FsD can be modeled as the inner product between two vectors
T and c of length n + 2. The first n elements in T are

∏sD
i=1((1 − ti)(1 − bi) + tibi) for all b ∈ {0, 1}sD ,

concatenated by two more elements ZD(t), ZD(t) · t1. Similarly, the first n elements of c are VD(b) for all
b ∈ {0, 1}sD , concatenated by a0, a1.

Therefore, P and V replace vectors T and c in Protocol 6 by ones described above. In addition, the first
part of the GKR circuit shown in Figure 3.1 to compute T from t1, . . . tsD

is also changed according to the
definition of T above. The rest of the protocol remains the same and it is straight forward to prove that the
modified protocol is still correct, sound and zero knowledge. In this way, the prover time is O(n log n), the
proof size is O(log2 n) and the verification time is O(log2 n).

3.4.2 zkVPD for Interior Layers
The second place that uses zkVPD in Protocol 3 is on the masking polynomials Ri and δi in each layer. By
Theorem 7.2.5, δi : F2si+1+1 → F is a sparse polynomial that can be expressed as the sum of 2si+1 + 1
univariate polynomials of degree deg(δi) = O(1) on each variable. Therefore, instead of using the generic
zkVPD in Protocol 6 with d = deg(δi), we model the evaluation of δi as a vector inner product between two
dense vectors of size (deg(δi) + 1) · (2si+1 + 1). The vector committed by P consists of all coefficients in δi,
and the one known to V consists of the value of each variable raised to degree 0, 1, . . . , deg(δi). In addition,
as the size of the vector is asymptotically the same as the number of variables, in step 9-10 of Protocol 6, V can
compute the evaluations of q(x) directly in time O(si+1) and it is not necessary to delegate the computation
to P using GKR anymore. With this approach, the prover time for evaluating the masking polynomials
Ri and δi of all layers is O(D log C log log C), the proof size is O(D log log2 C) and the verification time
is O(D log C). As shown in Lemma 7.2.5, this does not introduce any asymptotic overhead for the zero
knowledge argument scheme.

To further improve the efficiency in practice, we can also combine all the evaluations of Ri and δi into
one big vector inner product using random linear combinations.

3.4. ZERO KNOWLEDGE ARGUMENT 66

3.4.3 Putting Everything Together
With the optimizations above, the full protocol of our transparent zero knowledge argument scheme is
presented in Protocol 7. Consider the following theorem:

Theorem 3.4.1. For a finite field F and a family of layered arithmetic circuit CF over F, Protocol 7 is a zero
knowledge argument of knowledge for the relation

R = {(C, x; w) : C ∈ CF ∧ C(x; w) = 1},

as defined in Definition 6.2.2.
Moreover, for every (C, x; w) ∈ R, the running time of P is O(|C|+ n log n) field operations, where

n = |x|+ |w|. The running time of V is O(|x|+ D · log |C|+ log2 n) if C is regular with D layers. P and
V interact O(D log |C|) rounds and the total communication (proof size) is O(D log |C|+ log2 n). In case
D is polylog(|C|), the protocol is a succinct argument.

Soundness follows the knowledge soundness of our zkVPD protocol (Protocol 6) and Lemma 3.2.4. To
prove zero knowledge, we present the simulator in Figure 3.3. The efficiency follows Lemma 7.2.5 and the
efficiency of our instantiations of the zkVPD protocol with optimizations described above.

Proof. Completeness. It follows the completeness of Protocol 6 and the completeness of the GKR protocol
in [XZZPS19a].
Soundness. It follows the soundness of Protocol 6 and the soundness of the GKR protocol with masking
polynomials as proven in [CFS17; XZZPS19a]. The proof of knowledge property follows the knowledge
soundness of our zkVPD protocol. In particular, the witness can be extracted using the extractor presented
in Section 3.3. More formally speaking, our construction is an interactive oracle proof (IOP) as defined
in [BSCS16]. Applying the transformation from IOP to an argument system using Merkle tree preserves the
proof of knowledge property. Our underlying IOP is proof of knowledge as the proofs are RS codes and the
witness can be efficiently extracted through decoding.
Zero knowledge. The simulator is given in Figure 3.3. V∗ can behave arbitrarily in Step 3, 4(b), 4(e), 4(f)
and 6. We include these steps as place holders to compare to Protocol 7.

To prove zero-knowledge, Step 1, 2, 4(d) and 5 of both worlds are indistinguishable because of the zero
knowledge property of the zkVPD protocol in Protocol 6. As the commitments and proofs are simulated in
step 2 and 4(d) by Svpd without knowing the polynomials, Step 4(c) of both worlds are indistinguishable as
shown in [XZZPS19a, Theorem 3]. Step 4(a) in both worlds are indistinguishable as δ are randomly selected
in both worlds.
Removing interactions. Similar to [XZZPS19a], our construction can be made non-interactive in the random
oracle model using Fiat-Shamir heuristic [FS]. As shown in recent work [BSCS16; CCHLRR18], applying
Fiat-Shamir on the GKR protocol only incurs a polynomial soundness loss in the number of rounds.
Regular circuits and log-space uniform. In our scheme, the verification time is succinct only when the
circuit is regular. This is the best that can be achieved for transparent ZKP, as in the worst case, the verifier
must read the entire circuit, which takes linear time. In fact, as shown in [GKR15], the verification time is
succinct for all log-space uniform circuits. However, it introduces an extra overhead on the prover time, thus
we state all of our results on regular circuits.

In practice, with the help of auxiliary input and circuit squashing, most computations can be expressed
as regular circuits with low depth, such as matrix multiplication, image scaling and Merkle hash tree in

3.4. ZERO KNOWLEDGE ARGUMENT 67

Let λ be the security parameter, F be a prime field. Let C : Fn → F be a layered arithmetic circuit over
F with D layers, input x and witness w such that |x| + |w| ≤ n and out = C(x; w). We construct the
simulator S given the circuit C, the output out and input size n. Let Svpd, Svpd,Ri

and Svpd,δi
be simulators

of zkVPD for the witness and masking polynomials. Let Ssc be the simulator of the sumcheck protocol on
Equation 3.4, given by [XZZPS19a, Theorem 3].

• G(1λ): set pp as pp← zkVPD.KeyGen(1λ).

• (S(pp, C, out, 1n),V∗(C, pp)):

1. S invokes Svpd to generate com← Svpd(1λ, pp) and sends com to V∗.

2. S randomly selects polynomials Rsim,i : F2 → F and δsim,i : F2si+1+1 → F for i =
0, . . . , D − 1 that have the same monomials as Ri and δi in step 2 of Protocol 7. S invokes
Svpd,Ri

and Svpd,δi
to generate comi,1 ← Svpd,Ri

(1λ, ppRi
) and comi,2 ← Svpd,δi

(1λ, ppδi
)

and send them to V∗, where ppRi
and ppδi

are corresponding public parameters. S also reveals
Rsim,0 to V , as V0 is defined by out and is known to V∗.

3. Wait V∗ to evaluate V̇0(u(0)) and V̇0(v(0)) for randomly chosen u(0), v(0) ∈ Fs0 .

4. For i = 0, . . . , D − 1:

a) S sends Hi =
∑

x,y∈{0,1}si+1 ,z∈{0,1} δsim,i(x, y, z) to V∗.
b) Receive αi, βi, γi from V∗.
c) S simulates the sumcheck protocol on Equation 3.4 using Ssc. At the end of the sumcheck,
S receives queries of δsim,i and Rsim,i at point u(i+1), v(i+1) ∈ Fsi+1 , gi ∈ F selected
by V∗. S randomly computes V̇i+1(u(i+1)), V̇i+1(v(i+1)) satisfying Equation 3.4 at point
u(i+1), v(i+1), gi and send them to V∗.

d) S computes Rsim,i(u
(i), gi), Rsim,i(v

(i), gi) and δsim,i(u
(i+1), v(i+1), gi) and invokes

Svpd,Ri
and Svpd,δi

to generate the proofs of these evaluations.

e) Wait for V∗ to validate Rsim,i(u
(i), gi), Rsim,i(v

(i), gi) and δsim,i(u
(i+1), v(i+1), gi).

f) Wait for V∗ to check the last claim of the sumcheck about f ′
i using Rsim,i(u

(i), gi),
Rsim,i(v

(i), gi), δsim,i(u
(i+1), v(i+1), gi), V̇i+1(u(i+1)) and V̇i+1(v(i+1)).

5. In last part of the protocol, S needs to prove to V∗ the values of V̇D(u(D)) and V̇D(v(D)), where
u(D) ∈ Fn and v(D) ∈ Fn are chosen by V∗. S gives u(D), V̇D(u(D)) to Svpd and invokes S2

of Svpd in Figure 3.2 to simulate this process. Do the same process again for v(D), V̇D(v(D)).

6. Wait for V to run zkVPD.Verify to validate the value of V̇D(u(D)) and V̇D(v(D)).

Figure 3.3: Simulator S of Virgo.

Section 7.5. Asymptotically, as shown in [BSCTV; ZGKPP18; BSBHR19], all random memory access (RAM)

3.5. IMPLEMENTATION AND EVALUATION 68

programs can be validated by circuits that are regular with log-depth in the running time of the programs (but
linear in the size of the programs) by RAM-to-circuit reduction, which justifies the expressiveness of such
circuits.

3.5 Implementation and Evaluation
We implement Virgo, a zero knowledge proof system based on our construction in Section 3.4. The system is
implemented in C++. There are around 700 lines of code for our transparent zkVPD protocol and 2000 lines
for the GKR part.
Hardware. We run all of the experiments on AMD Ryzen™ 3800X Processor with 64GB RAM. Our current
implementation is not parallelized and we only use a single CPU core in the experiments. We report the
average running time of 10 executions, unless specified otherwise.

3.5.1 Choice of Field with Efficient Arithmetic
One important optimization we developed during the implementation is on the choice of the underlying field.
Our scheme is transparent and does not use any discrete log or bilinear pairing as in [ZGKPP17c; ZGKPP17a;
WTSTW18; XZZPS19a]. However, there is one requirement on the finite field: in order to run the low
degree test protocol in [BSBHR18], either the field is an extension of F2, or there exists a multiplicative
subgroup of order 2k in the field for large enough k (one can think of 2k ≥ |L| = O(|H|) = O(n)). Existing
zero knowledge proof systems that use the LDT protocol as a building block such as Stark [BSBHR19] and
Aurora [BSCRSVW19] run on the extension fields F264 and F2192 . Modern CPUs (e.g., AMD Ryzen™
3800X Processor) have built-in instructions for field arithmetics on these extension fields, which improves the
performance of these systems significantly. However, the drawback is that the arithmetic circuits representing
the statement of ZKP must also operate on the same field, and the additions (multiplications) are different
from integer or modular additions (multiplications) that are commonly used in the literature. Because of this,
Stark [BSBHR19] has to design a special SHA-256 circuit on F264 , and Aurora [BSCRSVW19] only reports
the performance versus circuit size (number of constraints), but not on any commonly used functions.

One could also use a prime field p with an order-2k multiplicative subgroup. Equivalently, this requires
that 2k is a factor of p− 1. In fact, there exist many such primes and Aurora [BSCRSVW19] also supports
prime fields. However, the speed of field arithmetic is much slower than extension fields of F2 (see Table 3.1).

128-bit prime F264 F2192 Our field
+ 6.29ns 2.16ns 4.75ns 1.23ns
× 30.2ns 7.29ns 15.8ns 8.27ns

Table 3.1: Speed of basic arithmetic on different fields. The time is averaged over 100 million runs and
is in nanosecond.

In this paper, we provide an alternative to achieve the best of both cases. A first attempt is to use Mersenne
primes, primes that can be expressed as p = 2m − 1 for integers m. As shown in [CMT12; Tha13b],
multiplications modulo Mersenne primes is known to be very efficient. However, Mersenne primes do not

3.5. IMPLEMENTATION AND EVALUATION 69

212 214 216 218 220

size of polynomial

10−2

10−1

100

101

102

pr
ov

er
 ti

m
e

(s
)

Bilinear

Ours

(a) P time

212 214 216 218 220

size of polynomial
10−3

10−2

10−1

ve
rif

ica
tio

n
tim

e
(s

)

Bilinear

Ours

(b) V time

212 214 216 218 220

size of polynomial
100

101

102

103

pr
oo

f s
ize

 (K
B) Bilinear

Ours

(c) Proof size

Figure 3.4: Comparison of our zkVPD and the pairing-based zkVPD in [ZGKPP17a].

satisfy the requirement of the LDT, as p− 1 = 2m − 2 = 2 · (2m−1 − 1) only has a factor 21. Instead, we
propose to use the extension field of a Mersenne prime F

p
2 .The multiplicative group of F

p
2 is a cyclic group

of order p2 − 1 = (2m − 1)2 − 1 = 22m − 2m+1 = 2m+1(2m−1 − 1), thus it has a multiplicative subgroup
of order 2m+1, satisfying the requirement of LDT when m is reasonably large. Meanwhile, to construct an
arithmetic circuit representing the statement of the ZKP, we still encode all the values in the first slot of the
polynomial ring defined by F

p
2 . In this way, the additions and multiplications in the circuit are on Fp and our

system can take the same arithmetic circuits over prime fields in prior work. Meanwhile, the LDT, zkVPD
and GKR protocol are executed on F

p
2 , preserving the soundness over the whole field.

With this alternative approach, we can implement modular multiplications on F
p

2 using 3 modular
multiplications on Fp. (The modular multiplication is analog to multiplications of complex numbers.) In our
implementation, we choose Mersenne prime p = 261 − 1, thus our system provides 100+ bits of security. We
implement modular multiplications on Fp for p = 261 − 1 with only one integer multiplication in C++ (two
64-bit integers to one 128-bit integer) and some bit operations. As shown in Table 3.1, the field arithmetic
on F

p
2 is comparable to F264 , 2× faster than F2192 and 4× faster than a 128-bit prime field. Encoding

numbers in Fp for p = 261 − 1 is enough to avoid overflow for all computations used in our experiments in
Section 3.5.2. For other computations requiring larger field, one can set p as 289 − 1, 2107 − 1 or 2127 − 1,
which incurs a moderate slow down. For example, the multiplication over F

p
2 for p = 289 − 1 is 2.7× slower

than p = 261 − 1.
This optimization can also be applied to Stark [BSBHR19] and Aurora [BSCRSVW19], which use the

same LDT in [BSBHR18]. Currently they run on F264 and F2192 and their performances are reported in
Section 3.5.3. With our optimization, they can run on F

p
2 with similar efficiency while taking arithmetic

circuits in Fp.

3.5.2 Performance of zkVPD
In this section, we present the performance of our new transparent zkVPD protocol, and compare it with the
existing approach based on bilinear maps. We use the open-source code of [XZZPS19a], which implements
the zkVPD scheme presented in [ZGKPP17a]. For our new zkVPD protocol, we implement the univariate
sumcheck and the low degree test described in Section 3.2.4. We set the repetition parameter κ in Lemma 3.2.7
as 33, and the rate of the RS code as 32 (i.e., |L| = 32|H|). These parameters provide 100+ bits of security,

3.5. IMPLEMENTATION AND EVALUATION 70

based on Theorem 1.2 and Conjecture 1.5 in [BSBHR18], and are consistent with the implementation of
Aurora [BSCRSVW19]. In addition, we use the field F

p
2 with p = 261 − 1, which has a multiplicative

subgroup of order 2m+1. Thus |L| can be as big as 260 and the size of the witness |H| is up to 255. We pad
the size of the witness to a power of 2, which introduces an overhead of at most 2×.

Figure 3.4 shows the prover time, verification time and proof size of the two schemes. We fix the variable
degree of the polynomial as 1 and vary the number of variables from 12 to 20. The size of the multilinear
polynomial is 212 to 220. As shown in the figure, the prover time of our new zkVPD scheme is 8-10× faster
than the pairing-based one. It only takes 11.7s to generate the proof for a polynomial of size 220. This is
because our new scheme does not use any heavy cryptographic operations, while the scheme in [ZGKPP17a]
uses modular exponentiations on the base group of a bilinear map. In terms of the asymptotic complexity,
though the prover time is claimed to be linear in [ZGKPP17a], there is a hidden factor of log |F| because
of the exponentiations. The prover complexity of our scheme is O(n log n), which is strictly better than
O(n log |F|) field operations. Additionally, as explained in Section 3.5.1, our scheme is on the extension field
of a Mersenne prime, while the scheme in [ZGKPP17a] is on a 254-bit prime field with bilinear maps, the
basic arithmetic of which is slower.

The verification time of our zkVPD scheme is also comparable to that of [ZGKPP17a]. For n = 220, it
takes 12.4ms to validate the proof in our scheme, and 20.9ms in [ZGKPP17a].

The drawback of our scheme is the proof size. As shown in Figure 3.4(c), the proof size of our scheme
is 30-40× larger than that of [ZGKPP17a]. This is due to the opening of the commitments using Merkle
tree, which is a common disadvantage of all IOP-based schemes [AHIV17; BSBHR19; BSCRSVW19]. The
proof size of our scheme can be improved by a factor of log n using the vector commitment scheme with
constant-size proofs in [BBF18], with a compromise on the prover time. This is left as a future work.

Finally, the scheme in [ZGKPP17a] requires a trusted setup phase, which takes 12.6s for n = 220. We
remove the trusted setup completely in our new scheme.

3.5.3 Performance of Virgo
In this section, we present the performance of our ZKP scheme, Virgo, and compare it with existing ZKP
systems.
Methodology. We first compare with Libra [XZZPS19a], as our scheme follows the same framework and
replaces the zkVPD with our new transparent one. We use the open-source implementation and the layered
arithmetic circuits at [Liba] for all the benchmarks. The circuits are generated using [Tan11].

We then compare the performance of Virgo to state-of-the-art transparent ZKP systems: Ligero [AHIV17],
Bulletproofs [BBBPWM], Hyrax [WTSTW18], Stark [BSBHR19] and Aurora [BSCRSVW19]. We use the
open-source implementations of Hyrax, Bulletproofs and Aurora at [Hyr] and [Aur]. As the implementation
of Aurora runs on F2192 , we execute the system on a random circuit with the same number of constraints.
For Ligero, as the system is not open-source, we use the same number reported in [AHIV17] on computing
hashes. For Stark, after communicating with the authors, we obtain numbers for proving the same number
of hashes in the 3rd benchmark. The experiments were executed on a server with 512GB of DDR3 RAM
(1.6GHz) and 16 cores (2 threads per core) at speed of 3.2GHz.
Benchmarks. We evaluate the systems on three benchmarks: matrix multiplication, image scaling and
Merkle tree, which are used in [WTSTW18; XZZPS19a].

3.5. IMPLEMENTATION AND EVALUATION 71

24 25 26 27 28

#matrix columns
10−2

10−1

100

101

102

pr
ov

er
 ti

m
e

(s
)

(a) P time: MatMul.

104 105 106

#pixels

10−1

100

101

102

103

pr
ov

er
 ti

m
e

(s
)

(b) P time: 16x Lanczos

21 22 23 24 25 26 27 28

#leaves
10−1
100
101
102
103
104
105

pr
ov

er
 ti

m
e

(s
)

(c) P time: Merkle tree

24 25 26 27 28

#matrix columns

10−2

10−1

ve
rif

ica
tio

n
tim

e
(s

)

(d) V time: MatMul.

104 105 106

#pixels

10−3

10−2

10−1

100

ve
rif

ica
tio

n
tim

e
(s

)

(e) V time: 16x Lanczos

21 22 23 24 25 26 27 28

#leaves
10−3
10−2
10−1
100
101
102
103

ve
rif

ica
tio

n
tim

e
(s

)

(f) V time: Merkle tree

24 25 26 27 28

#matrix columns

101

102

pr
oo

f s
ize

 (K
B)

(g) Proof size: MatMul.

104 105 106

#pixels
101

102

103

pr
oo

f s
ize

 (K
B)

(h) Proof size: 16x Lanczos

21 22 23 24 25 26 27 28

#leaves

100

101

102

103

pr
oo

f s
ize

 (k
B)

(i) Proof size: Merkle tree

Libra

Hyrax

Bulletproofs

Ligero

Virgo

libSTARK

Aurora

Figure 3.5: Comparisons of prover time, proof size and verification time between Virgo and existing
ZKP systems.

• Matrix multiplication: P proves to V that it knows two matrices whose product equals a public matrix. We
evaluate on different dimensions from 4× 4 to 256× 256, and the size of the circuit is n3.

• Image scaling: It computes a low-resolution image by scaling from a high-resolution image. We use the
classic Lanczos re-sampling[Tur90] method. It computes each pixel of the output as the convolution of
the input with a sliding window and a kernel function defined as: k(x) = sinc(x)/sinc(ax), if− a < x <
a; k(x) = 0, otherwise, where a is the scaling parameter and sinc(x) = sin(x)/x. We evaluate by fixing
the window size as 16× 16 and increase the image size from 112x112 to 1072x1072.

• Merkle tree: P proves to V that it knows the value of the leaves of a Merkle tree that computes to a public
root value [BEGKN94]. We use SHA-256 for the hash function. We implement it with a flat circuit where
each sub-computation is one instance of the hash function. The consistency of the input and output of

3.5. IMPLEMENTATION AND EVALUATION 72

Ligero Bulletproofs Hyrax Stark Aurora Virgo

P time O(C log C) O(C) O(C log C) O(C log2
C) O(C log C) O(C + n log n)

V time O(C) O(C) O(D log C +
√

n) O(log2
C) O(C) O(D log C + log2

n)

Proof size O(
√

C) O(log C) O(D log C +
√

n) O(log2
C) O(log2

C) O(D log C + log2
n)

Table 3.2: Performance of transparent ZKP systems. C is the size of the regular circuit with depth D,
and n is witness size.

corresponding hashes are then checked by the circuit. There are 2M − 1 SHA256 invocations for a Merkle
tree with M leaves. We increase the number of leaves from 16 to 256. The circuit size of each SHA256 is
roughly 218 gates and the size of the largest Merkle tree instance is around 226 gates.

Comparing to Libra. Figure 3.5 shows the prover time, verification time and proof size of our ZKP system,
Virgo, and compares it with Libra. The prover time of Virgo is 7-10× faster than Libra on the first two
benchmarks, and 3-5× faster on the third benchmark. The speedup comes from our new efficient zkVPD. As
shown in Section 3.5.2, the prover time of our zkVPD is already an order of magnitude faster. Moreover,
the GKR protocol for the whole arithmetic circuit must operate on the same field of the zkVPD. In Libra, it
runs on a 254-bit prime field matching the base group of the bilinear map, though the GKR protocol itself is
information-theoretic secure and can execute on smaller fields. This overhead is eliminated in Virgo, and both
zkVPD and GKR run on our efficient extension field of Mersenne prime, resulting in an order of magnitude
speedup for the whole scheme. It only takes 53.40s to generate the proof for a circuit of 226 gates. Our
improvement on the third benchmark is slightly less, as most input and values in the circuit are binary for
SHA-256, which is more friendly to exponentiation used in Libra.

The verification time of Virgo is also significantly improved upon Libra, leading to a speedup of 10-30×
in the benchmarks. This is because in Libra, the verification time of the zkVPD for the input layer is similar
to that for the masking polynomials in each layer, both taking O(log C) bilinear pairings. Thus the overall
verification time is roughly D times one instance of zkVPD verification. This is not the case in Virgo. As
explained in the optimization in Section 3.4.2, we combine all the evaluations into one inner product through
random linear combinations. Therefore, the verification time in Virgo is only around twice of the zkVPD
verification time, ranging from 7ms to 50ms in all the benchmarks.

Because of the zkVPD, the proof size of Virgo is larger than Libra. For example, Virgo generates a proof
of 253KB for Merkle tree with 256 leaves, while the proof size of Libra is only 90KB. However, the gap is not
as big as the zkVPD schemes themselves in Section 3.5.2, as the proof size of Libra is dominated by the GKR
protocol of the circuit, which is actually improved by 2× in Virgo because of the smaller field. Finally, Libra
requires a one-time trusted setup for the pairing-based zkVPD, while Virgo is transparent.
Comparing to other transparent ZKP Systems. Table 3.2 and Figure 3.5 show the comparison between
Virgo and state-of-the-art transparent ZKP systems. As shown in Figure 3.5, Virgo is the best among all
systems in terms of practical prover time, which is faster than others by at least an order of magnitude. The
verification time of Virgo is also one of the best thanks to the succinctness of our scheme. It only takes 50ms
to verify the proof of constructing a Merkle tree with 256 leaves, a circuit of size 226 gates. The verification
time is competitive to Stark, and faster than all other systems by 2 orders of magnitude. The proof size of
Virgo is also competitive to other systems. It is larger than Bulletproofs [BBBPWM] and is similar to Hyrax,
Stark and Aurora.

3.6. APPLICATIONS 73

In particular, our scheme builds on the univariate sumcheck proposed in [BSCRSVW19]. Compared to
the system Aurora, Virgo significantly improves the prover time due to our efficient field and the fact that the
univariate sumcheck is only on the witness, but not on the whole circuit. For the computation in Figure 3.5,
the witness size is 16× smaller than the circuit size. E.g., the witness size for one hash is around 214 while the
circuit size is 218. In the largest instance in the figure, the witness size is 222 while the circuit size is 226. The
verification time is also much faster as we reduce the complexity from linear to logarithmic. The proof size is
similar to Aurora. Essentially the proof size is the same as that in Aurora on the same number of constraint as
the witness size, plus the size of the GKR proofs in the zkVPD and for the whole circuit.

3.6 Applications
In this section, we discuss several applications of our new zkVPD and ZKP schemes.

3.6.1 Verifiable Secret Sharing
Verifiable polynomial delegations (or polynomial commitments) are widely used in secret sharing to achieve
malicious security. In Shamir’s secret sharing [Sha79], the secret is embedded as the constant term of a
univariate polynomial f(x), and the shares hold by party i is the evaluation of the polynomial f(i). To
update the shares, in proactive secret sharing [HJKY95], each party generates a random polynomial δ(x)
with constant term 0, and sends the evaluation of the polynomial δ(i) to party i. To prevent adversaries from
changing the secret or sending inconsistent shares, the random polynomial is committed using a polynomial
commitment scheme together with a proof that δ(0) = 0, and each evaluation to party i comes with a proof of
the polynomial evaluation. Similar mechanism is used in mobile secret sharing [SLL08] to change the parties.

Existing schemes mainly apply the VPD scheme in [KZG], which requires a trusted setup phase to
generate the structured reference string. In addition, the computation time to generate the proofs are high
because of the use of modular exponentiation. For example, in a recent paper, Maram et al. [Mar+19]
proposed a mobile and proactive secret sharing scheme on blockchain. As it is using the pairing-based VPD,
the SRS has to be generated by a trusted party, posted on the blockchain while the trapdoor must be destroyed
after the setup. Moreover, as shown in [Mar+19, Figure 5], it takes 185s for each party to generate the proofs
of the polynomial evaluations in each phase of the scheme for a committee of 1000 parties, which is the
bottleneck of the system.

Using our new VPD scheme in Protocol 5, we can completely remove the trusted setup phase of these
secret sharing schemes for the first time, while maintaining the succinct proof size and verification time.
Additionally, the proof generation time is significantly improved. Based on Figure 3.4, it will take around 11s
to generate the proofs for 1000 parties. The proof size will definitely increase. However, as the proofs are
sent offline among the parties in [Mar+19], the overall throughput will be improved by at least an order of
magnitude with reasonable bandwidth between parties.

5When the circuit is data parallel, the prover time of Hyrax [WTSTW18] is O(C + C ′ log C ′) where C ′ is the size
of each copy in the data parallel circuit. Hyrax has the option with proof size O(D log C + nτ) and verification time
O(D log C + n1−τ) for τ ∈ [0, 1

2].

3.6. APPLICATIONS 74

3.6.2 Privacy on Blockchain
Zero knowledge proof is widely used in blockchain systems to provide privacy for cryptocurrencies (e.g.,
Zcash [Ben+14]), smart contracts (e.g., Hawk [KMSWP]) and zero knowledge contingent payment [CGGN17].
As mentioned in the introduction, the most commonly deployed ZKP scheme, SNARK [BSCTV], requires
a trusted setup phase. A trusted party is usually absent in the setting of blockchains and an expensive
“ceremony” [BSCGTV15] among multiple parties is usually deployed to generate the SRS. To address this
issue, there are recent attempts to use transparent ZKP schemes. For example, in [BAZB19], Bünz et at.
proposed Zether, which uses a variant of Bulletproofs [BBBPWM] to hide account balances and provide
confidentiality for applications such as auction. However, due to the high prover time and verification time of
Bulletproofs for general computations, providing full anonimity still remain impractical.

As shown in Section 3.5.3, among all transparent ZKP schemes, Virgo achieves the best prover time and
one of the best verification time, which are critical for applications of ZKP on blockchains. Compared to
existing GKR-based ZKP scheme, Virgo removes the trusted setup of Libra [XZZPS19a], and improves the
verification time of both Libra and Hyrax [WTSTW18] by 1-2 orders of magnitude. These make Virgo a
good candidate to build privacy-preserving cryptocurrencies and smart contract without trusted setup. The
overhead on the proof size is comparable to schemes based on IOPs, which is acceptable in scenarios such as
permissioned blockchain and can be potentially reduced through proof composition [BSCTV14].

3.6.3 Large Scale Zero Knowledge Proof
Other than blockchain, there are many other applications of ZKP that require proving large statements. For
example, defense advanced research project agency (DARPA) recently intended to use ZKP to prove the
behavior of complicated programs without leaking sensitive information [Dar]. Such applications require
scaling ZKP schemes to circuits with billions of gates. The obstacles in all existing ZKP schemes are the
high overhead of running time and memory consumption on the prover. In our new scheme, we completely
removes the operations of modular exponentiation in Hyrax [WTSTW18] and Libra [XZZPS19a], which
is the bottleneck of both the prover time and memory usage. Our implementation, Virgo, is purely based
on symmetric-key operations, which are fast and memory friendly. As shown in the experiments, Virgo is
promising to scale to large circuits and enable applications such as proving program behavior on secret data
or states.

75

Chapter 4

Doubly Efficient Interactive Proofs for
General Arithmetic Circuits with Linear
Prover Time

We propose a new doubly efficient interactive proof protocol for general arithmetic circuits. The protocol
generalizes the interactive proof for layered circuits proposed by Goldwasser, Kalai and Rothblum to arbitrary
circuits, while preserving the optimal prover complexity that is strictly linear to the size of the circuits. The
proof size remains succinct for low depth circuits and the verifier time is sublinear for structured circuits.
We then construct a new zero knowledge argument scheme for general arithmetic circuits using our new
interactive proof protocol together with polynomial commitments.

Our key technique is a new sumcheck equation that reduces a claim about the output of one layer to
claims about its input only, instead of claims about all the layers above which inevitably incurs an overhead
proportional to the depth of the circuit. We developed efficient algorithms for the prover to run this sumcheck
protocol and to combine multiple claims back into one in linear time in the size of the circuit.

Not only does our new protocol achieve optimal prover complexity asymptotically, but it is also efficient
in practice. Our experiments show that it only takes 0.3 seconds to generate the proof for a circuit with more
than 600,000 gates, which is 13 times faster than the original interactive proof protocol on the corresponding
layered circuit. The proof size is 208 kilobytes and the verifier time is 66 milliseconds. Our implementation
can take general arithmetic circuits directly, without transforming them to layered circuits with a high overhead
on the size of the circuit.

This work was previously published in [Zha+20].

4.1. INTRODUCTION 76

4.1 Introduction
Interactive proofs allow a powerful yet untrusted prover to convince a verifier through a sequence of interactions
that the result of a computation is correctly computed. Since they were introduced by Goldwasser, Micali,
and Rackoff [GMR89] in the 1980s, interactive proofs have expanded people’s understanding on traditional
static mathematical proofs and led to many important theoretical results in complexity theory, such as
IP=PSPACE [LFKN92; Sha92] and MIP=NEXP [BFL91].

In recent years, there is great progress on turning interactive proofs from purely theoretical constructions
to practical schemes with efficient implementations. In the seminal work of [GKR15], Goldwasser, Kalai
and Rothblum proposed doubly efficient interactive proofs where the prover can convince the verifier the
correctness of the evaluation of a layered arithmetic circuit with addition gates and multiplication gates
of fan-in two. The time for the prover to generate all the messages during the protocol (prover time) is a
polynomial on the size of the circuit, and the time to validate the result (verifier time) is close to linear in the
size of the input for log-space uniform circuits, thus the name “doubly efficient”. The total communication
between the prover and the verifier is only poly-logarithmic in the size of the circuit and linear in the depth
of the circuit, which is succinct for bounded-depth circuits. We refer the protocol in [GKR15] as the GKR
protocol in this paper. Later, researchers spent great effort improving the concrete efficiency of the GKR
protocol. The prover time was improved to quasi-linear (O(|C| log |C|)) in [CMT12], and then to close to
linear for various circuits with different structures [Tha13b; Wah+17; ZGKPP18]. Finally, in [XZZPS19b],
Xie et al. proposed an algorithm to improve the prover time to strictly linear (O(|C|)) for layered arithmetic
circuits without assuming any structures, which is asymptotically optimal and very efficient in practice.

Another important advance of interactive proofs is using them to construct efficient zero knowledge
argument schemes. In [ZGKPP17c], Zhang et al. first proposed to combine the GKR protocol with polynomial
commitments to build argument systems, where the prover can further prove to the verifier the computations
on the prover’s witness, without sending the witness directly to the verifier. Following the framework, there are
many subsequent zero knowledge argument constructions based on interactive proofs, including [WTSTW18;
ZGKPP17a; XZZPS19b; ZXZS; Set20a]. These schemes demonstrate great prover efficiency and can achieve
sublinear verifier time for structured circuits, thanks to the advantages of the interactive proofs and the GKR
protocol.

Despite the progress of the GKR protocol, a major drawback is that the protocol only works for layered
arithmetic circuits. Each gate can only connect to the layer above, due to the layer-by-layer reduction of the
GKR protocol. In practice, it introduces a high overhead to pad general circuits to layered circuits using relay
gates. Asymptotically, the circuit size increases from O(|C|) to O(d|C|) where |C| is the size of the general
circuit and d is the depth of the circuit. This is easily 1-2 orders of magnitude larger in practice as we show
in our experiments, and introduces a big overhead on the prover time. Moreover, it is also inconvenient to
implement circuits in a strictly layered way, and most existing tools such as rank-1-constraint-system (R1CS)
cannot be used directly. Therefore, in this paper we ask the following question:

Is it possible to generalize the GKR protocol to directly support general circuits, without introducing any
overhead on the prover time?

4.1.1 Our Contributions
We answer the above question affirmatively by proposing a generalized doubly efficient interactive proofs for
arbitrary arithmetic circuits, where each gate can take the output of any gate as input. The prover time is still

4.1. INTRODUCTION 77

linear to the size of the circuit, and is very efficient in practice. In particular, our contributions are:

• We generalize the GKR protocol to work on arbitrary arithmetic circuits efficiently for the first time. For a
general circuit of size |C| and depth d, the prover time is O(|C|), the same as the original GKR protocol on
a layered circuit with the same size. The overhead on the proof size and the verifier time is minimal. The
proof size in our new protocol is min{O(d log |C|+ d2), O(|C|)}. For structured circuits, the verifier time
is also min{O(d log |C|+ d2), O(|C|)}. Those in the original GKR are min{O(d log |C|), O(|C|)}.

• Together with zero knowledge polynomial commitments, we construct zero knowledge arguments for
general arithmetic circuits. The zero knowledge version of our interactive proof protocols does not incur
any overhead asymptotically on the prover time, the proof size and the verifier time compared to the plain
version without zero knowledge.

• We fully implement a system, virgo++, for our new interactive proof protocols and zero knowledge
arguments. We show that on random circuits with d = 50 and d = 75, our new protocols are 9-13× faster
than the state-of-the-art GKR protocol on the corresponding layered circuits. The prover time per gate (the
constant in the linear complexity) is only 1.3× more than the original GKR protocol on layered circuits.
Therefore, as long as padding the general circuit to layered circuit makes the size 1.3× or larger, our new
protocol will have faster prover time. The verifier time of our new protocols is 17-25× faster, while the
proof size is only slightly larger than GKR on layered circuits.

4.1.2 Technical Overview
The key idea of the GKR protocol is to write the values in the i-th layer of the circuit as an equation of
the values in the previous layer i + 1. Then starting from the output layer (layer 0), P and V reduce the
correctness of the values in layer i to the correctness of the values in layer i + 1 recursively, and eventually to
the correctness of the input. V can then validates the correctness of the input on her own, which completes the
reduction and guarantees that the output is correctly computed. To do so, we use the notation of multilinear
extension Ṽi() of the i-th layer in [Tha15], which is a multilinear polynomial that agrees with all the values in
the i-th layer on the Boolean hypercube, i.e., Ṽi(0, 0, . . . , 0) = Vi[0], Ṽi(0, 0, . . . , 1) = Vi[1], . . . where Vi

is the array representing the values in the i-th layer of the circuit. Assuming for simplicity that all layers have
S gates and Ṽ takes s = log S variables, we can write Ṽi() as a equation of Ṽi+1():

Ṽi(z) =
∑

x,y∈{0,1}s

(˜addi+1(z, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(z, x, y)Ṽi+1(x)Ṽi+1(y))

for all z ∈ {0, 1}s, where ˜addi+1(z, x, y) and ˜multi+1(z, x, y) are polynomials describing the addi-
tion/multiplication gates and their connections in the circuit between layer i and layer i + 1. With this
equation, the GKR protocol invokes the sumcheck protocol (See Section 7.2.2), which reduces the correctness
of Ṽi(g) at a random point g ∈ Fs to the correctness of Ṽi+1(u) and Ṽi+1(v) at two random points u, v ∈ Fs.
Then Ṽi+1(u) and Ṽi+1(v) can be combined back to a single evaluation of Ṽi+1(w) for w ∈ Fs. At this
point, Ṽi+1(w) can be further reduced to an evaluation of Ṽi+2 using the same equation and protocol for
layer i + 1. Therefore, starting from the output layer, P and V perform the reduction layer by layer to the
input layer, which can be validated by V directly. The prover time is O(S) in each layer [XZZPS19b] and
the proof size is only O(log S). Therefore, the total prover time is O(dS) = O(|C|) and the proof size is

4.1. INTRODUCTION 78

O(d log S) = O(d log |C|).

Extending GKR to general circuits naively. The above equation relies on the fact that gates in layer i can
only take input from gates in layer i + 1. In a general circuit, a gate in layer i can take input from any gate in
layer j for j > i. As circuits cannot contain cycles (otherwise we cannot get outputs of the circuit), we can
still assign a layer number to each gate in the topological order. Thus a gate can take input from any gate in
layers above, but not below. More interestingly, every gate in layer i has to have at least one input from layer
i + 1, otherwise it cannot belong to layer i in the topological order. Because of this generalization, we can
write Ṽi() as:

Ṽi(z) =
∑

x,y∈{0,1}s(˜addi+1,i+1(z, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1,i+1(z, x, y)(Ṽi+1(x)Ṽi+1(y))
+ ˜addi+1,i+2(z, x, y)(Ṽi+1(x) + Ṽi+2(y)) + ˜multi+1,i+2(z, x, y)(Ṽi+1(x)Ṽi+2(y))
+ . . . + ˜addi+1,d(z, x, y)(Ṽi+1(x) + Ṽd(y)) + ˜multi+1,d(z, x, y)(Ṽi+1(x)Ṽd(y))).

Namely, we have multiple parts in the summation, one for each layer j = i + 1, i + 2, . . . , d. P and V run
the sumcheck protocol on this equation, which reduces the correctness of Ṽi(g) at a random point g ∈ Fs to
the correctness of Ṽi+1(u) and Ṽi+1(v), Ṽi+2(v), . . . , Ṽd(v) at random points u, v ∈ Fs. Moreover, when
reaching layer i + 1, now V has many evaluations about Ṽi+1 instead of just two. In the sumcheck protocols
of all layers below, V has received one evaluation of Ṽi+1 from the sumcheck of layer k = 0, . . . , i− 1, and
two evaluations from layer i. Nevertheless, V can combine all these evaluations into one evaluation Ṽi+1(w)
using the original protocol multiple times with P . P and V can then run the protocol recursively layer by
layer just as the original GKR protocol to reduce the correctness of the output layer to the input layer.

It is not hard to show that the generalized protocol is secure. However, it introduces a big overhead on the
prover time. The size of all the polynomials in the generalized equation becomes O((d− i)S), and the total
prover time for the sumcheck protocol of all layers becomes O(dS+(d−1)S+. . .+S) = O(d2S) = O(d|C|).
This is as bad as padding the general circuit to a layered circuit and running the original GKR protocol on
it. Even worse, the second step of combining multiple evaluations into one also introduces a prover time of
O(d|C|), because there are now i + 1 evaluations to combine instead of two.

Extending GKR to general circuits with optimal prover time. In order to preserve the linear prover time,
we introduce two new techniques. First, we observe that the key reason why the prover time of the sumcheck
protocol on the generalized equation becomes O((d− i)S) is that the multilinear extension Ṽj of the entire
layer j for j > i is used. As layer j has S gates and its multilinear extension is uniquely defined by these
gates, merely writing out all the polynomials Ṽj for j > i takes O((d− i)S) time. There is no hope to reduce
the prover time if we define the equation in this way. Meanwhile, it is also not necessary to use all the gates in
layers above, because gates in layer i can at most take input from 2S gates in total. Therefore, we propose a
new equation to write Ṽi as a function of multilinear extensions define by only those values used by layer i
from layer j > i. In particular, we have

4.1. INTRODUCTION 79

Ṽi(z) =
∑

x,y∈{0,1}s
′ (˜addi+1,i+1(z, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y))

+ ˜multi+1,i+1(z, x, y)(Ṽi,i+1(x)Ṽi,i+1(y))
+ ˜addi+1,i+2(z, x, y)(Ṽi,i+1(x) + Ṽi,i+2(y)) + ˜multi+1,i+2(z, x, y)Ṽi,i+1(x)Ṽi,i+2(y)
+ . . . + ˜addi+1,d(z, x, y)(Ṽi,i+1(x) + Ṽi,d(y)) + ˜multi+1,d(z, x, y)Ṽi,i+1(x)Ṽi,d(y)),

where Ṽi,j is the multilinear extension of values used by layer i from layer j for j > i arranged in a pre-defined
order, i.e., a subset of the values in the entire layer j. Now the total size of the all these polynomials is
bounded by 2S. We also change the range of the summation from {0, 1}s to {0, 1}s

′
to informally denote

that now the number of variables is smaller. We will show how to deal with different sizes from different
layers in our formal protocols. We then design a new algorithm for the prover to run the sumcheck protocol
on the equation above with time complexity O(S) by utilizing the sparsity of the polynomials ˜add and ˜mult.
The formal algorithms are presented in Section 4.3.2.

Combining evaluations of different multilinear extensions. At the end of the sumcheck protocol on the
equation above, P and V reduce the correctness of Ṽi(g) at a random point g ∈ Fs to the correctness of
Ṽi,i+1(u) and Ṽi,i+1(v), Ṽi,i+2(v), . . . , Ṽi,d(v) at random points u, v ∈ Fs

′
. When reaching layer i + 1, V

has many evaluations of multilinear extensions of subsets of Vi+1. Now we cannot even use the original
protocol to combine these points into one, as they are evaluations of different multilinear extensions, not to
mention that we want to reduce the complexity of the prover time in this step. Our second technique is to
compute them using a layered arithmetic circuit and reduce these evaluations to a single evaluation of Ṽi

through the original GKR protocol. At this point, the random points in these evaluations are already fixed
by the verifier. We construct a circuit whose input is the values Vi+1 of the entire layer i + 1, and all the
random points in the evaluations, denoted as v(0), v(1), . . . , v(i) and u(i). The output of the circuit is exactly
the evaluations of the multilinear extensions of the subsets, received from the sumcheck protocols for all
layers below, i.e., Ṽ0,i+1(v(0)), Ṽ1,i+1(v(1)), . . . , Ṽi,i+1(v(i)) and Ṽi,i+1(u(i)). To compute the output, the
circuit selects all the subsets from input Vi and arrange them in the predefined order, which can be determined
by the structure of the general circuit. The circuit then evaluates the multilinear extensions defined by these
subsets at points from input v(0), v(1), . . . , v(i) and u(i). By executing the original GKR protocol on this
circuit, P and V reduce the correctness of Ṽ0,i+1(v(0)), Ṽ1,i+1(v(1)), . . . , Ṽi,i+1(v(i)) and Ṽi,i+1(u(i)) to a
single evaluation of the input. As part of the input v(0), v(1), . . . , v(i) and u(i) are known to the verifier, it is
easy to subtract it from the evaluation and obtain Ṽi(w), a single evaluation of the multilinear extension Ṽi

at a random point w ∈ Fs. With this single evaluation, P and V can continue the sumcheck for layer i + 1
recursively and proceed all the way to the input layer. With proper design, we are able to bound the total
size of this circuit in all rounds by O(|C|). Therefore, the prover complexity in this step is also O(|C|). See
Figure 4.1 and Section 4.3.3 for the design of the circuit and the details of the protocol.

Furthermore, inspired by the structure of this circuit, we are able to design a single sumcheck protocol to
combine multiple claims on the subsets to a single evaluation of Ṽi at a random point. This second approach
further improves the prover time, the proof size and the verifier time. Putting the two steps together, we are
able to construct a generalized GKR protocol for arbitrary arithmetic circuits while maintaining the optimal
prover time of O(|C|).

4.1. INTRODUCTION 80

Building zero knowledge arguments. Finally, following the framework of [XZZPS19b; ZXZS; ZGKPP17c;
WTSTW18; CFS17], we build zero knowledge arguments for general arithmetic circuits using our new
protocol. We use the standard techniques of zero knowledge sumcheck and low degree extensions in [CFS17;
XZZPS19b] to lift our generalized GKR protocol to be zero knowledge, and use the polynomial commitment
scheme in [ZXZS] to make the protocol a zero knowledge argument.

4.1.3 Related Work
Interactive proofs were formalized by Goldwasser, Micali, and Rackoff in [GMR89]. In the seminal work
of [GKR15], Goldwasser et al. proposed the doubly efficient interactive proof for layered arithmetic circuits.
Later, Cormode et al. improved the prover time of the GKR protocol from O(|C|3) to O(|C| log |C|) using
multilinear extensions instead of low degree extensions in [CMT12]. Several follow-up papers further reduce
the prover time for circuits with special structures. Justin Thaler [Tha13b] introduced a protocol with O(|C|)
prover time for regular circuits where the wiring pattern can be described in constant space and time. In the
same work, a protocol with prove time O(|C| log |C ′|) was proposed for data parallel circuits with many
copies of small circuits of size |C ′|. The complexity was further improved to O(|C|+ |C ′| log |C ′|) by Wahby
et al. in [Wah+17]. For circuits with many non-connected but different copies, Zhang et al. [ZGKPP18]
showed a protocol with O(|C| log |C ′|) prover time. Eventually, Xie et al. [XZZPS19b] proposed a variant of
the GKR protocol with O(|C|) prover time for arbitrary layered arithmetic circuits. All these existing works
follow the layered structure of the GKR protocol and doubly efficient interactive proofs for general arithmetic
circuits have not been considered before.

In [ZGKPP17c], Zhang et al. extended the GKR protocol to an argument system using polynomial
commitments. Subsequent works [WTSTW18; ZGKPP17a; XZZPS19b; ZXZS; Set20a] followed the
framework and constructed efficient zero knowledge argument schemes based on interactive proofs. We follow
the approach of [CFS17; XZZPS19b; ZXZS] and constructs zero knowledge arguments for general circuits
instead of layered circuits. Notably, there is a recent work [Set20a] on constructing interactive proof-based
zero knowledge arguments for R1CS. The protocol reduces the R1CS to a polynomial commitment on the
entire extended witness of all the values in the circuit using one sumcheck. On the contrary, the GKR
protocols reduce the evaluation of the circuit to only the input of the circuit. As the polynomial commitments
are usually the overhead of the zero knowledge argument schemes, we expect that our scheme has faster prover
time, while the scheme in [Set20a] has smaller proof size. We give detailed comparisons in Section 4.5.2. In
addition, the scheme in [Set20a] cannot be used for delegation of computations, which is the original goal of
the GKR protocols. In a recent manuscript [SL20], the proof size of the scheme in [Set20a] is improved from
square-root to logarithmic in the size of the R1CS instance, but the prover time is 3.8× slower. In a different
setting, Blumberg et al. [BTVW14] construct argument schemes using interactive proofs with two provers.

There is a rich literature of zero knowledge arguments other than schemes based on interactive proofs.
Categorized by their underlying techniques, there are schemes based on quadratic arithmetic programs
(QAP) [PHGR13], interactive oracle proofs (IOP) [ben2019aurora], discrete-log [BBBPWM], MPC-in-the-
head [AHIV17] and lattice [BBCDPGL18]. We refer the readers to surveys [WB15] and recent papers [Set20a]
on zero knowledge proofs and arguments for a more comprehensive list of schemes.

4.2. PRELIMINARIES 81

4.2 Preliminaries
We use negl(·) : N → N to denote the negligible function, where for each positive polynomial f(·),
negl(k) < 1

f(k) for sufficiently large integer k. Let λ denote the security parameter. “PPT" stands for
probabilistic polynomial time. We use f(), g() for polynomials, x, y, z for vectors of variables and g, u, v for
vectors of values. xi denotes the i-th variable in x. We use bold letters such as A to represent arrays. For a
multivariate polynomial f , its “variable-degree” is the maximum degree of f in any of its variables.

4.2.1 Interactive Proofs
Interactive proofs. An interactive proof allows a prover P to convince a verifier V the validity of some
statement. The interactive proof runs in several rounds, allowing V to ask questions in each round based
on P’s answers of previous rounds. We phrase this in terms of P trying to convince V that C(x) = y. We
formalize interactive proofs in the following:

Definition 4.2.1. Let C be a function. A pair of interactive machines ⟨P,V⟩ is an interactive proof for f with
soundness ϵ if the following holds:

• Completeness. For every x such that C(x) = y it holds that Pr[⟨P,V⟩(x) = accept] = 1.

• ϵ-Soundness. For any x with C(x) ̸= y and any P∗ it holds that Pr[⟨P∗,V⟩ = accept] ≤ ϵ

We say an interactive proof scheme has succinct proof size (verifier time) if the total communication
(verifier time) is O(polylog(|C|, |x|)).

4.2.2 Doubly Efficient Interactive Proofs for Layered Circuits
In [GKR15], Goldwasser et al. proposed an efficient interactive proof protocol for layered arithmetic circuits.
We present the details of the protocol here.

4.2.2.1 Sumcheck Protocol

The GKR protocol uses the sumcheck protocol as a major building block. The problem is to sum a multivariate
polynomial f : Fℓ → F on the Boolean hypercube:

∑
b1,b2,...,bℓ∈{0,1} f(b1, b2, ..., bℓ). Directly computing the

sum requires exponential time in ℓ, as there are 2ℓ combinations of b1, . . . , bℓ. Lund et al. [LFKN92] proposed
a sumcheck protocol that allows a verifier V to delegate the computation to a computationally unbounded
prover P , who can convince V that H is the correct sum. We provide a description of the sumcheck protocol
in Protocol 24.

Protocol 8 (Sumcheck). The protocol proceeds in ℓ rounds.

• In the first round, P sends a univariate polynomial

f1(x1) def=
∑

b2,...,bℓ∈{0,1}
f(x1, b2, . . . , bℓ) ,

V checks H = f1(0) + f1(1). Then V sends a random challenge r1 ∈ F to P .

4.2. PRELIMINARIES 82

• In the i-th round, where 2 ≤ i ≤ ℓ− 1, P sends a univariate polynomial

fi(xi)
def=

∑
bi+1,...,bℓ∈{0,1}

f(r1, . . . , ri−1, xi, bi+1, . . . , bℓ) ,

V checks fi−1(ri−1) = fi(0) + fi(1), and sends a random challenge ri ∈ F to P .

• In the ℓ-th round, P sends a univariate polynomial

fℓ(xℓ)
def= f(r1, r2, . . . , rl−1, xℓ) ,

V checks fℓ−1(rℓ−1) = fℓ(0) + fℓ(1). The verifier generates a random challenge rℓ ∈ F. Given oracle
access to an evaluation f(r1, r2, . . . , rℓ) of f , V will accept if and only if fℓ(rℓ) = f(r1, r2, . . . , rℓ).
The instantiation of the oracle access depends on the application of the sumcheck protocol.

The proof size of the sumcheck protocol is O(τℓ), where τ is the variable-degree of f , as in each round, P
sends a univariate polynomial of one variable in f , which can be uniquely defined by τ + 1 points. The
verifier time of the protocol is O(τℓ). The prover time depends on the degree and the sparsity of f , and we
will give the complexity later in our scheme. The sumcheck protocol is complete and sound with ϵ = τℓ

|F| .

Definition 4.2.2 (Multi-linear Extension). Let V : {0, 1}ℓ → F be a function. The multilinear extension of V
is the unique polynomial Ṽ : Fℓ → F such that Ṽ (x1, x2, ..., xℓ) = V (x1, x2, ..., xℓ) for all x1, x2, . . . , xℓ ∈
{0, 1}. Ṽ can be expressed as:

Ṽ (x1, x2, ..., xℓ) =
∑

b∈{0,1}ℓ

∏ℓ

i=1
((1− xi)(1− bi) + xibi)) · V (b) ,

where bi is i-th bit of b.

Multilinear extensions of arrays. Inspired by the closed-form equation of the multilinear extension
given above, we can view an array A = (a0, a1, . . . , an−1) as a function A : {0, 1}log n → F such that
∀i ∈ [0, n− 1], A(i1, . . . , ilog n) = ai. Here we assume n is a power of 2. Therefore, in this paper, we abuse
the use of multilinear extension on an array as the multilinear extension Ã of A.

Definition 4.2.3 (Identity function). Let β : {0, 1}ℓ × {0, 1}ℓ → {0, 1} be the identity function such that
β(x, y) = 1 if x = y, and β(x, y) = 0 otherwise. Suppose β̃ is the multilinear extension of β. Then β̃ can be
expressed as: β̃(x, y) =

∏ℓ
i=1((1− xi)(1− yi) + xiyi).

GKR Protocol. Using the sumcheck protocol as a building block, Goldwasser et al. [GKR15] showed an
interactive proof protocol for layered arithmetic circuits. Let C be a layered arithmetic circuit with depth d
over a finite field F. Each gate in the i-th layer takes inputs from two gates in the (i + 1)-th layer; layer 0 is the
output layer and layer d is the input layer. The protocol proceeds layer by layer. Upon receiving the claimed
output from P , in the first round, V and P run the sumcheck protocol to reduce the claim about the output to
a claim about the values in the layer above. In the i-th round, both parties reduce a claim about layer i− 1 to
a claim about layer i through the sumcheck protocol. Finally, the protocol terminates with a claim about the
input layer d, which can be checked directly by V . If the check passes, V accepts the claimed output.
Notation. We follow the convention in prior works of GKR protocols [CMT12; Tha13b; ZGKPP17c;
XZZPS19b; ZXZS]. We denote the number of gates in the i-th layer as Si and let si = ⌈log Si⌉. (For simplicity,

4.2. PRELIMINARIES 83

we assume Si is a power of 2, and we can pad the layer with dummy gates otherwise.) We then define a function
Vi : {0, 1}si → F that takes a binary string b ∈ {0, 1}si and returns the output of gate b in layer i, where b is
called the gate label. With this definition, V0 corresponds to the output of the circuit, and Vd corresponds to
the input layer. Finally, we define two additional functions addi, multi : {0, 1}si−1+2si → {0, 1}, referred to
as wiring predicates in the literature. addi (multi) takes one gate label z ∈ {0, 1}si−1 in layer i− 1 and two
gate labels x, y ∈ {0, 1}si in layer i, and outputs 1 if and only if gate z is an addition (multiplication) gate
that takes the output of gate x, y as input. With these definitions, for any z ∈ {0, 1}si , Vi can be written as:

Vi(z) =
∑

x,y∈{0,1}si+1 (addi+1(z, x, y)(Vi+1(x) + Vi+1(y))

+multi+1(z, x, y)Vi+1(x)Vi+1(y))
(4.1)

In the equation above, Vi is expressed as a summation, so V can use the sumcheck protocol to check that
it is computed correctly. As the sumcheck protocol operates on polynomials defined on F, we rewrite the
equation with their multilinear extensions:

Ṽi(g) =
∑

x,y∈{0,1}si+1 fi(g, x, y)

=
∑

x,y∈{0,1}si+1 (˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(g, x, y)Ṽi+1(x)Ṽi+1(y)) , (4.2)

where g ∈ Fsi is a random vector.
Protocol. With Equation 7.1, the GKR protocol proceeds as following. The prover P first sends the claimed
output of the circuit to V . From the claimed output, V defines polynomial Ṽ0 and computes Ṽ0(g) for a
random g ∈ Fs0 . V and P then invoke a sumcheck protocol on Equation 7.1 with i = 0. As described in
Section 7.2.2.1, at the end of the sumcheck, V needs an oracle access to fi(g, u, v), where u, v are randomly
selected in Fsi+1 . To compute fi(g, u, v), V computes ˜addi+1(g, u, v) and ˜multi+1(g, u, v) locally (they
only depend on the wiring pattern of the circuit, not on the values), asks P to send Ṽ1(u) and Ṽ1(v) and
computes fi(g, u, v) to complete the sumcheck protocol. In this way, V and P reduce a claim about the output
to two claims about values in layer 1. V and P could invoke two sumcheck protocols on Ṽ1(u) and Ṽ1(v)
recursively to layers above, but the number of the sumcheck protocols would increase exponentially.
Combining two claims using a random linear combination. One way to combine two claims Ṽi(u) and
Ṽi(v) is using random linear combinations, as proposed in [CFS17; WTSTW18]. Upon receiving the two
claims Ṽi(u) and Ṽi(v), V selects αi,1, αi,2 ∈ F randomly and computes αi,1Ṽi(u) + αi,2Ṽi(v). Based on
Equation 7.1, this random linear combination can be written as

αi,1Ṽi(u) + αi,2Ṽi(v)
=αi,1

∑
x,y∈{0,1}si+1

(˜addi+1(u, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(u, x, y)Ṽi+1(x)Ṽi+1(y))

+αi,2
∑

x,y∈{0,1}si+1

(˜addi+1(v, x, y)(Ṽi+1(x) + Ṽi+1(y)) + ˜multi+1(v, x, y)Ṽi+1(x)Ṽi+1(y))

=
∑

x,y∈{0,1}si+1

((αi,1 ˜addi+1(u, x, y) + αi,2 ˜addi+1(v, x, y))(Ṽi+1(x) + Ṽi+1(y))

+ (αi,1 ˜multi+1(u, x, y) + αi,2 ˜multi+1(v, x, y))Ṽi+1(x)Ṽi+1(y)) (4.3)

4.2. PRELIMINARIES 84

V and P then execute the sumcheck protocol on Equation 6.3 instead of Equation 7.1. At the end of the
sumcheck protocol, V still receives two claims about Ṽi+1, computes their random linear combination and
proceeds to the layer above recursively until the input layer.

The formal GKR protocol is presented in Protocol 9. With the optimal algorithms with a linear prover
time proposed in [XZZPS19b], we have the following theorem:

Protocol 9. Let F be a finite field. Let C: Fn → Fk be a d-depth layered arithmetic circuit. P wants to
convince that out = C(in) where in is the input from V , and out is the output. Without loss of generality,
assume n and k are both powers of 2 and we can pad them if not.

1. Define the multilinear extension of array out as Ṽ0. V chooses a random g ∈ Fs0 and sends it to
P . Both parties compute Ṽ0(g).

2. P and V run a sumcheck protocol on

Ṽ0(g(0)) =
∑

x,y∈{0,1}s1

(˜add1(g(0), x, y)(Ṽ1(x) + Ṽ1(y)) + ˜mult1(g(0), x, y)Ṽ1(x)Ṽ1(y))

At the end of the protocol, V receives Ṽ1(u(1)) and Ṽ1(v(1)). V computes ˜mult1(g(0), u(1), v(1)),
˜add1(g(0), u(1), v(1)) and checks that ˜add1(g(0), u(1), v(1)) (Ṽ1(u(1)) + Ṽ1(v(1))) + ˜mult1(g(0),

u(1), v(1)) Ṽ1(u(1))Ṽ1(v(1)) equals to the last message of the sumcheck.

3. For i = 1, ..., d− 1:

• V randomly selects αi,1, αi,2 ∈ F and sends them to P .

• P and V run the sumcheck on the equation

αi,1Ṽi(u
(i)) + αi,2Ṽi(v

(i)) =∑
x,y∈{0,1}si+1

((αi,1 ˜addi+1(u(i), x, y) + αi,2 ˜addi+1(v(i), x, y))(Ṽi+1(x) + Ṽi+1(y))

+(αi,1 ˜multi+1(u(i), x, y) + αi,2 ˜multi+1(v(i), x, y))Ṽi+1(x)Ṽi+1(y))

• At the end of the sumcheck protocol, P sends V Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)).
• V computes the following and checks if it equals to the last message of the sumcheck. For simplic-

ity, let Multi+1(x) = ˜multi+1(x, u(i+1), v(i+1)) and Addi+1(x) = ˜addi+1(x, u(i+1), v(i+1)).

(αi,1Multi+1(u(i)) + αi,2Multi+1(v(i))(Ṽi+1(u(i+1))Ṽi+1(v(i+1)))+

(αi,1Addi+1(u(i)) + αi,2Addi+1(v(i))(Ṽi+1(u(i+1)) + Ṽi+1(v(i+1)))

If all checks in the sumcheck pass, V uses Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)) to proceed to the
(i + 1)-th layer. Otherwise, V outputs 0 and aborts.

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 85

4. At the input layer d, V has two claims Ṽd(u(d)) and Ṽd(v(d)). V evaluates Ṽd at u(d) and v(d) using
the input and checks that they are the same as the two claims. If yes, output 1; otherwise, output 0.

Theorem 4.2.4. [XZZPS19b]. Let C : Fn → Fk be a depth-d layered arithmetic circuit. Protocol 9 is
an interactive proof for the function computed by C with soundness O(d log |C|/|F|). It uses O(d log |C|)
rounds of interaction and the running time of the prover P is O(|C|). Let T be the time to evaluate all ˜addi

and ˜multi at the corresponding random points, the running time of V is O(n + k + d log |C|+ T).

4.3 Generalizing GKR to Arbitrary Arithmetic Circuits
Though the GKR protocol has great prover efficiency as demonstrated in [XZZPS19b; ZXZS; Tha13b;
Wah+17] and is used as a major building block to construct fast zero knowledge proof schemes, one major
drawback is that the protocol only works for layered arithmetic circuits, i.e., each gate can only take input
from the layer above. In this section, we show how to generalize the GKR protocol to arbitrary circuits with
no overhead on the prover time.

We consider a general arithmetic circuit C with fan-in 2, which can be viewed as a directed acyclic
graph (DAG), GC . Each gate in C is a vertex in GC and each wire is a directed edge in GC . The in-degree
of each vertex is at most 2. The depth of the circuit d is defined as the length of the longest path in the
DAG. Without loss of generality, we assume that all input gates are at layer d, and all output gates are at
layer 0.1 Following the order to evaluate the circuit, we can actually assign a layer number to each gate
topologically. In particular, if gate g is not an input, suppose gate u and gate v are the input gates of g,
then layer(g) = min(layer(u), layer(v))− 1, where the function layer(x) represents the layer of the gate x.
Because of this definition, an interesting observation is that a gate at layer i must take at least one input from
layer i + 1, otherwise it cannot be labeled as in layer i. Also obviously, a gate at layer i can only take input
from layer j such that j > i.

Same as the original GKR protocol, we use Si as the number of gates in the i-th layer and si = ⌈log Si⌉. For
simplicity, we assume Si is a power of 2, and we can pad the layer with dummy gates otherwise. The function
Vi takes a binary string b and outputs the b-th gate value in layer i of C. As now every gate can take input from
any layer above, we generalize the notations naturally and define addi,j , multi,j : {0, 1}si−1,si,sj → {0, 1} as
the wiring-predicate functions for the general circuit C. addi,j takes one gate label z ∈ {0, 1}si−1 in layer
i− 1, one gate label x ∈ {0, 1}si in layer i and one gate label y ∈ {0, 1}sj in layer j for j ≥ i, and outputs 1
if and only if gate z is an addition gate that takes the output of gate x, y as input. multi,j is defined similarly
for multiplication gates. We still use f̃ to represent the multilinear extensions of the function f .

4.3.1 A Naive Generalization of the GKR Protocol
With these definitions, we first describe a naive generalization of the GKR protocol to general arithmetic
circuits. We follow the core idea of the GKR protocol to reduce the claim about Vi layer by layer via the
sumcheck protocol. In a general circuit, a gate in layer i can take the output of any gate in layer i + 1 to d,
thus we simply extend Equation 7.1 to have one add and one mult for each layer above. Recall from above

1Note that as we support general circuits, it takes at most one relay gate per input/output to transform an arbitrary
circuit to a circuit with such property. Thus the overhead is small and we assume so for simplicity.

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 86

that every gate at layer i must have at least one input from layer i + 1, we assume that this is the left input and
rewrite the sumcheck equation in Equation 7.1 as:

Ṽi(g) =
∑

x∈{0,1}si+1

(∑
y∈{0,1}si+1

˜addi+1,i+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+
∑

y∈{0,1}si+2
˜addi+1,i+2(g, x, y)(Ṽi+1(x) + Ṽi+2(y))

+ . . . +
∑

y∈{0,1}sd
˜addi+1,d(g, x, y)(Ṽi+1(x) + Ṽd(y))

+
∑

y∈{0,1}si+1
˜multi+1,i+1(g, x, y)(Ṽi+1(x)Ṽi+1(y))

+
∑

y∈{0,1}si+2
˜multi+1,i+2(g, x, y)(Ṽi+1(x)Ṽi+2(y))

+ . . . +
∑

y∈{0,1}sd
˜multi+1,d(g, x, y)(Ṽi+1(x)Ṽd(y))

)

(4.4)

for any g ∈ Fsi . With this equation, starting from the output layer, in round i, the first step is that P and V
engage the sumcheck protocol on Equation 4.4 to reduce one claim about layer i to claims about previous
layers. At the end of the sumcheck protocol, P sends V evaluations of Ṽi+1(u), Ṽi+1(v), Ṽi+2(v), . . . , Ṽd(v)
on the randomness of u and v. V evaluates all add and mult on her own and completes the last round of the
sumcheck protocol.

In the second step, when going to a new layer, P and V need to combine multiple claims about this layer.
Here in the naive approach, we use the same method of random linear combinations. When reaching layer i, V
has received the claims about Ṽi from layer 0, 1, . . . , i− 1 (twice for i− 1). Denote the randomness of these
claims as g(0), g(1), . . . , g(i). V picks a random number αi,j for each claim, and we can rewrite Equation 4.4
as:

αi,0Ṽi(g
(0)) + αi,1Ṽi(g

(1)) + . . . + αi,iṼi(g
(i))

=
∑i

j=0
αi,j

(∑
x∈{0,1}si+1 (

∑
y∈{0,1}si+1

˜addi+1,i+1(g(j), x, y)(Ṽi+1(x) + Ṽi+1(y))

+ . . . +
∑

y∈{0,1}sd
˜addi+1,d(g(j), x, y)(Ṽi+1(x) + Ṽd(y))

+
∑

y∈{0,1}si+1
˜multi+1,i+1(g(j), x, y)(Ṽi+1(x)Ṽi+1(y))

+ . . . +
∑

y∈{0,1}sd
˜multi+1,d(g(j), x, y)(Ṽi+1(x)Ṽd(y)))

)
(4.5)

V and P then execute the sumcheck protocol on Equation 4.5 instead of Equation 4.4. At the end of the
sumcheck protocol, V still receives claims about Ṽi+1, Ṽi+2, . . . , Ṽd. For layer i+1, V computes their random
linear combination and proceeds to the sumcheck protocol for layer i + 1 recursively.

This protocol is a direct generalization of the GKR protocol in Protocol 9, and it is not hard to see that the
protocol is sound. Unfortunately, it introduces a big overhead on the prover time. First, in the beginning of the
sumcheck protocol on Equation 4.4, the equation is defined over the multilinear extensions Ṽi+1, Ṽi+2, . . . , Ṽd.
Hence, the prover time in this step is at least O(Si+1+Si+2+. . .+Sd). In fact, merely listing these polynomials
and evaluating them at random points already take O(Si+1 + Si+2 + . . . + Sd) time, not to mention the prover
time of the sumcheck protocol. Therefore, the total prover time is O(dSd +(d−1)Sd−1 +. . .+S1) = O(d|C|)
for all layers. There is a multiplicative overhead of d on the prover time, which is in fact as bad as transforming
the general circuit to a layered circuit. Second, in the step of random linear combinations, as shown in
Equation 4.5, V combines i + 1 claims together for layer i. On the right hand side of the equation, each ˜add

and ˜mult has to be evaluated on i + 1 different random points g(j). This again introduces a prover time of

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 87

O(d|C|). Therefore, overall the prover time of this naive generalized GKR protocol is O(d|C|), as slow as
naively transforming the general circuit to a layered circuit.

In the next two subsections, we will show how to remove the overhead of each of the two steps.

4.3.2 Sumcheck with Linear Prover Time
As explained above, the main overhead of the sumcheck on Equation 4.4 in the first step comes from the fact
that each layer can connect to all layers above in a general circuit, and defining Ṽi+1, Ṽi+2, . . . , Ṽd already
blows up the complexity. Therefore, instead of using the multilinear extension of the entire layer, we define
the multilinear extension of only those gates used in layer i from a previous layer. As each gate only has two
input gates, there are at most 2Si gates connecting to gates in layer i in total. In this way, the total size of
these multilinear extensions is bounded by O(Si).

Formally speaking, we also generalize the definitions of S and s such that Si,j denotes the number of
gates connecting from layer j (j > i) to layer i, and si,j = ⌈log Si,j⌉. We then introduce a new function
Vi,j : {0, 1}si,j → F, which is defined by the subset of gates from layer j connecting to layer i in a pre-defined
order. The function takes a binary string b ∈ {0, 1}si,j and returns the b-th value in this subset. We also
re-define addi,j , multi,j : {0, 1}si−1+si−1,i+si−1,j → {0, 1} to take labels from the subsets instead of the
labels of the entire layers. In particular, addi,j(z, x, y) = 1 (multii,j(z, x, y) = 1) if and only if gate z in
layer i− 1 is the addition (multiplication) of value Vi−1,i(x) and Vi−1,j(y). With these definitions, by taking
their multilinear extensions, we can rewrite Equation 4.4 as

Ṽi(g) =
∑

x∈{0,1}si,i+1 (
∑

y∈{0,1}si,i+1

˜addi+1,i+1(g, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y))+

+ . . . +
∑

y∈{0,1}si,d
˜addi+1,d(g, x, y)(Ṽi,i+1(x) + Ṽi,d(y))

+
∑

y∈{0,1}si,i+1
˜multi+1,i+1(g, x, y)(Ṽi,i+1(x)Ṽi,i+1(y))

+ . . . +
∑

y∈{0,1}si,d
˜multi+1,d(g, x, y)(Ṽi,i+1(x)Ṽi,d(y)))

(4.6)

In Equation 4.6, the size of Ṽi,i+1, . . . , Ṽi,d are bounded by O(Si). Moreover, the ˜add and ˜mult polynomials
are still sparse. In fact, the total number of nonzeros in all ˜add and ˜mult together is Si. Therefore, using
similar ideas proposed in [XZZPS19b], we are able to develop an algorithm for the prover to run the sumcheck
in linear time O(Si), instead of O(Si + Si+1 + . . . + Sd).

Before presenting the linear-time algorithm, we make one more refinement on the equation. Note that
Equation 4.6 consists of multiple sums, because the number of gates connecting from layer j > i to layer i is
different for each j. We cannot pad them to the same length, as it would introduce an overhead asymptotically.
We combine them into a single sum in the following way. Without loss of generality, we suppose si,i+1 is the

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 88

largest. We can then rewrite Equation 4.6 as:

Ṽi(g) =
∑

x,y∈{0,1}si,i+1 (˜addi+1,i+1(g, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y1, . . . , ysi,i+1
))

+ ysi,i+2+1 · . . . · ysi,i+1
˜addi+1,i+2(g, x, y1, . . . , ysi,i+2

)(Ṽi,i+1(x) + Ṽi,i+2(y1, . . . , ysi,i+2
))

+ . . . + ysi,d+1 · . . . · ysi,i+1
˜addi+1,d(g, x, y1, . . . , ysi,d

)(Ṽi,i+1(x) + Ṽi,d(y1, . . . , ysi,d
))

+ ˜multi+1,i+1(g, x, y)(Ṽi,i+1(x)Ṽi,i+1(y1, . . . , ysi,i+1
))

+ ysi,i+2+1 · . . . · ysi,i+1
˜multi+1,i+2(g, x, y1, . . . , ysi,i+2

)Ṽi,i+1(x)Ṽi,i+2(y1, . . . , ysi,i+2
)

+ . . . + ysi,d+1 · . . . · ysi,i+1
˜multi+1,d(g, x, y1, . . . , ysi,d

)Ṽi,i+1(x)Ṽi,d(y1, . . . , ysi,d
))

(4.7)

Note that the only difference between Equation 4.6 and 4.7 is that in Equation 4.7 all the sums are over
y ∈ {0, 1}si,i+1 , the longest binary string. For j = i + 2, . . . , d, as ˜addi+1,j , ˜multi+1,j and Ṽi,j only take
y1, . . . , ysi,j

, we multiply each term with ysi,j+1 · ysi,j+2 · . . . · ysi,i+1
. This guarantees that the term only

appears once in the sum, when ysi,j+1 = ysi,j+2 = . . . = ysi,i+1
= 1, and thus Equation 4.7 holds. In fact,

ysi,j+1 · ysi,j+2 · . . . · ysi,i+1
is exactly the identity polynomial β̃((ysi,j+1, ysi,j+2, . . . , ysi,i+1

), 1⃗). In this way,
we do not have to pad all the polynomials to the same size. We only pad the size of each subset to the nearest
power of 2, which incurs at most an overhead of 2.

Next, we present an algorithm for P to run the sumcheck protocol on Equation 4.7 in linear time. We start
with an algorithm to run sumcheck for the product of two multilinear polynomials in the literature, which we
will use as a major building block.
Linear-time sumcheck for products of multilinear functions [Tha13b]. In [Tha13b], Thaler proposed a
linear-time algorithm for the prover of the sumcheck protocol on the product of two multilinear polynomials
f and g with ℓ variables (the algorithm runs in O(2ℓ) time). We present the algorithm in Algorithm 9.
Algorithm 9 invokes Algorithm 8 FunctionEvaluations() as a subroutine. The algorithms are exactly the
same as Algorithm 1 and 3 in [XZZPS19b]. Both Algorithm 8 and Algorithm 9 run in time O(2ℓ) and the
formal proof can be found in [XZZPS19b; Tha13b]. We have a lemma as follows:

Lemma 4.3.1. Given multilinear functions f and g on ℓ variables and a bookkeeping table Af for
f and a bookkeeping table Ag for g, the prover in Protocol 24 for f · g runs in O(2ℓ) time. Af =
(f(0, . . . , 0), . . . , f(1, . . . , 1)) and Ag = (g(0, . . . , 0), . . . , g(1, . . . , 1)) are initialized with evaluations of f
and g on the Boolean hypercube, respectively.

Linear-time sumcheck for Equation 4.7. The idea of the prover algorithm is similar to that proposed
in [XZZPS19b]. The algorithm proceeds in two phases, one summing x and the other summing y. For the
ease of presentation, let us consider the sumcheck on a particular class of equations:∑

x,y∈{0,1}ℓyk1+1 . . . yℓf1(g, x, y1, . . . , yk1
)s1(y1, . . . , yk1

)t(x)+

yk2+1 . . . yℓf2(g, x, y1, . . . , yk2
)s2(y1, . . . , yk2

)t(x) + . . . +
ykm+1 . . . yℓfm(g, x, y1, . . . , ykm

)sm(y1, . . . , ykm
)t(x) ,

(4.8)

for a fixed point g ∈ Fℓ, where t(x) : Fℓ → F and si(x) : Fki → F are multilinear extensions of arrays
At and Asi

, and all functions of fi(x) : F2ℓ+ki → F are multilinear extensions of sparse arrays with O(2ℓ)
nonzero elements in total. In addition, we require that 2k1 + 2k2 + . . . + 2km = 2ℓ. It is not hard to see

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 89

Algorithm 8 F ← FunctionEvaluations(f, A, r1, . . . , rℓ)
Input: Multilinear f on ℓ variables, initial bookkeeping table A, random r1, . . . , rℓ;
Output: All function evaluations f(r1, . . . , ri−1, t, bi+1, . . . , bℓ);

1: for i = 1, . . . , ℓ do
2: for b ∈ {0, 1}ℓ−i do // b is both a number and its binary representation.
3: for t = 0, 1, 2 do
4: Let f(r1, . . . , ri−1, t, b) = A[b] · (1− t) + A[b + 2ℓ−i] · t
5: end for
6: A[b] = A[b] · (1− ri) + A[b + 2ℓ−i] · ri

7: end for
8: end for
9: Let F contain all function evaluations f(.) computed at Step 6

10: return F

Algorithm 9 {a1, . . . , aℓ} ← SumCheckProduct(f, Af , g, Ag, r1, . . . , rℓ)
Input: Multilinear f and g, initial bookkeeping tables Af and Ag, random r1, . . . , rℓ;
Output: ℓ sumcheck messages for

∑
x∈{0,1}ℓ f(x)g(x). Each message ai consists of 3 elements

(ai0, ai1, ai2);
1: F ← FunctionEvaluations(f, Af , r1, . . . , rℓ)
2: G ← FunctionEvaluations(g, Ag, r1, . . . , rℓ)
3: for i = 1, . . . , ℓ do
4: for t ∈ {0, 1, 2} do
5: ait = ∑

b∈{0,1}ℓ−i f(r1, . . . , ri−1, t, b) · g(r1, . . . , ri−1, t, b) // All evaluations needed are
in F and G.

6: end for
7: end for
8: return {a1, . . . , aℓ};

that Equation 4.7 satisfies these properties, as there are at most Si left input gates and Si right input gates
connected to layer i in the circuit C. If we set ℓ = si = ⌈log Si⌉, we have 2k1 + 2k2 + . . . + 2km = O(Si) in
Equation 4.7.

We use the same intuition in [XZZPS19b] of dividing the sumcheck process into two phases, one is for x
and the other is for y. We rewrite Equation 4.8 as follows

∑
x∈{0,1}ℓ t(x)hg(x), where

hg(x) =
∑

y∈{0,1}ℓ(yk1+1 . . . yℓf1(g, x, y1, . . . , yk1
)s1(y1, . . . , yk1

)+

yk2+1 . . . yℓf2(g, x, y1, . . . , yk2
)s2(y1, . . . , yk2

) + . . . +
ykm+1 . . . yℓfm(g, x, y1, . . . , ykm

)sm(y1, . . . , ykm
))

(4.9)

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 90

Algorithm 10 Ahg
← Initialize_PhaseOne(f1, . . . , fm, s1, . . . , sm, As1 , . . . , Asm

, g)
Input: Multilinear f1, . . . , fm and s1, . . . , sm, initial bookkeeping tables As1 , . . . , Asm

, random
g = g1, . . . , gℓ; We have |As1 |+ . . . + |Asm

| = 2ℓ.
Output: Bookkeeping table Ahg

;
1: procedure G← Precompute(g) // G is an array of size 2ℓ.
2: Set G[0] = 1
3: for i = 0, . . . , ℓ− 1 do
4: for b ∈ {0, 1}i do
5: G[b, 0] = G[b] · (1− gi+1)
6: G[b, 1] = G[b] · gi+1
7: end for
8: end for
9: end procedure

10: ∀x ∈ {0, 1}ℓ, set Ahg
[x] = 0

11: for every (z, x, y) such that f ′
i(z, x, y) is non-zero do

12: Ahg
[x] = Ahg

[x] + G[z] · f ′
i(z, x, y) · Asi

[y1, . . . , yki
]

13: end for
14: return Ahg

;

Phase one. With the formula above, in the first ℓ rounds, the prover and the verifier are running exactly a
sumcheck on the product of two multilinear polynomials t(x) · hg(x), since functions t and hg can be viewed
as functions only in x, and y can be considered constant (it is always summed on the Boolean hypercube). To
compute the sumcheck messages for the first ℓ rounds, given their bookkeeping tables, this will take O(2ℓ)
time by Lemma 4.3.1. It remains to show how to initialize the bookkeeping tables in linear time.
Initializing the bookkeeping tables:
Initializing the bookkeeping table for t in O(2ℓ) time is trivial, since t is a multilinear extension of an array
and therefore the evaluations on the hypercube are known. Initializing the bookkeeping table for hg in O(2ℓ)
time is more challenging, but we can take advantage of the sparsity of fi.

Lemma 4.3.2. Let Nx be the set of (z, y) ∈ {0, 1}2ℓ such that f ′
i(z, x, y) = yki+1 . . . yℓ fi(z, x, y1, . . . , yki

)
is non-zero for some 1 ≤ i ≤ m. Then for all x ∈ {0, 1}ℓ, it is hg(x) =

∑
(z,y)∈Nx

β̃(g, z)·(
∑m

i=1 f ′
i(z, x, y)·

si(y1, . . . , yki
)).

Proof. Since fi is a multilinear extension, as shown in [Tha13b], we have f ′
i(g, x, y) =

∑
z∈{0,1}ℓ β̃(g, z)

f ′
i(z, x, y). Therefore,

hg(x) =
∑

z∈{0,1}ℓ β̃(g, z) · (
∑m

i=1
f ′

i(z, x, y) · si(y1, . . . , yki
))

=
∑

(z,y)∈Nx

β̃(g, z) · (
∑m

i=1
f ′

i(z, x, y) · si(y1, . . . , yki
))

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 91

Lemma 4.3.3. The bookkeeping table Ahg
can be initialized in time O(2ℓ).

Proof. As fi is sparse,
∑

x∈{0,1}ℓ |Nx| = O(2ℓ). From Lemma 4.3.2, given the evaluations of β̃(g, z) for all

z ∈ {0, 1}ℓ, the prover can iterate through all (z, y) ∈ Nx for all x to compute Ahg
. The full algorithm is

presented in Algorithm 10. Since each si is the multilinear extension of an array, its evaluations on the Boolean
hypercube are known. Therefore, we use As1

, . . . , Asm
as the input of Algorithm 10. |As1

|+ . . .+ |Asm
| = 2ℓ

as 2k1 + 2k2 + . . . + 2km = 2ℓ.
Procedure Precompute(g) is to evaluate G[z] = β̃(g, z) =

∏ℓ
i=1((1−gi)(1−zi)+gizi)) for z ∈ {0, 1}ℓ.

By the closed-form of β̃(g, z), the procedure iterates each bit of z, and multiples 1 − gi for zi = 0 and
multiples gi for zi = 1. In this way, the size of G doubles in each iteration, and the total complexity is O(2ℓ).

Step 8-9 computes hg(x) using Lemma 4.3.2. When f ′
i is represented as a map of ((z, x, y), f ′

i(z, x, y))
for non-zero values, the complexity of these steps is O(2ℓ) since

∑
x∈{0,1}ℓ |Nx| = O(2ℓ).

In Protocol 11, the map above is exactly the representation of a gate in the circuit, where z, x, y are labels
of the gate, its left input and its right input, and f ′

i(z, x, y) = 1.

With the bookkeeping tables, the prover runs Algorithm 9 for the product of multilinear polynomials and
the total complexity for phase one is O(2ℓ).
Phase two. At this point, the variable x is bounded to random numbers u ∈ Fℓ. In the second phase, the
equation to sum on becomes

t(u)
∑

y∈{0,1}ℓ(
∑m

i=1
yki+1 . . . yℓfi(g, u, y1, . . . , yki

)si(y1, . . . , yki
))

Note here that t(u) is merely a constant which the prover already computed in phase one. For the part behind
the summation symbol on y, it has m products of two multilinear functions to sum. If we naively apply
Algorithm 9 to each product, the prover runs in O(m · 2ℓ) time instead of only O(2ℓ). Fortunately, we observe
that we can merge some products dynamically during the sumcheck process, which reduces the number
of products and removes the m factor in the complexity. To achieve the linear prover time, we generalize
Lemma 4.3.1 to Lemma 4.3.4 for the summation of multiple products of multilinear functions.

Lemma 4.3.4. Suppose we have 2m multilinear functions f1, f2, . . . , fm and g1 , g2, . . . , gm. Both gi and fi

have ki variables. Without loss of generality, suppose ℓ ≥ km ≥ km−1 ≥ k1. If 2k1 + 2k2 + . . . + 2km = 2ℓ,
given the bookkeeping tables Af1

, . . . , Afm
for f1, . . . , fm and Ag1

, ·, Agm
for g1, . . . , gm, the prover in

Protocol 24 for
∑m

i=1
∑

y∈{0,1}ki fi(y) · gi(y) =
∑

y∈{0,1}ℓ

∑m
i=1 yki+1 . . . yℓfi(y1, . . . , yki

) ·gi(y1, . . . , yki
)

runs in O(2ℓ) time.

Proof. We present Algorithm 11 for the prover in the sumcheck. P runs in O(2ℓ) for step 1-3 as |Af1
|+ . . . +

|Afm
| = |Ag1

|+ . . . + |Agm
| = 2ℓ. P runs in O(2ℓ) for step 5-12 as the total number of the operations is

O(2k1 + 2k2 + . . . + 2km) = O(2ℓ). So P runs in O(2ℓ) time for Algorithm 11.

The sumcheck polynomial for phase two has the same form in Lemma 4.3.4. To compute the sumcheck
messages for the last ℓ rounds, given their bookkeeping tables, this will take O(2ℓ) time by Lemma 4.3.4. We
now show how to initialize the bookkeeping tables in linear time.

Initializing the bookkeeping tables:
Initializing the bookkeeping table for each si in O(2ki) time is trivial, since each si is a multilinear extension of

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 92

Algorithm 11 {a1, . . . , aℓ} ←
SumCheckProduct2(f1, Af1 , g1, Ag1 , . . . , fm, Afm

, gm, Agm
, r1, . . . , rℓ)

Input: Multilinear fi and gi, initial bookkeeping tables Afi
and Agi

for i = 1 to m, random
r1, . . . , rℓ; We have |Af1|+ . . . + |Afm

| = |Ag1|+ . . . + |Agm
| = 2ℓ.

Output: ℓ sumcheck messages for
∑

y∈{0,1}ℓ

∑m
i=1 yki+1 . . . yℓfi(y1, . . . , yki

) · gi(y1, . . . , yki
). Each

message ai consists of 3 elements (ai0, ai1, ai2);
1: for i = 1, . . . , m do
2: Fi ← FunctionEvaluations(fi, Afi

, r1, . . . , rki
)

3: Gi ← FunctionEvaluations(gi, Agi
, r1, . . . , rki

)
4: end for
5: temp = 0
6: for i = 0, . . . , m do
7: if i > 0 then
8: temp = temp + fi(r1, . . . , rki

) · gi(r1, . . . , rki
)

9: end if
10: for j = ki + 1, . . . , ki+1 do // Suppose k0 = 0 < k1 ≤ . . . ≤ km ≤ km+1 = ℓ

11: if j ≤ ℓ then
12: for q ∈ {0, 1, 2} do
13: ajq = ∑m

t=i+1
∑

b∈{0,1}kt−j ft(r1, . . . , rj−1, q, b) · gt(r1, . . . , rj−1, q, b) + q · temp
// All evaluations needed are in Fi and Gi.

14: temp = temp · rj

15: end for
16: end if
17: end for
18: end for
19: return {a1, . . . , aℓ};

an array and therefore the evaluations on the hypercube are known. We also know 2k1 +2k2 +. . .+2km = O(2ℓ).
It remains to initialize bookkeeping tables for all fi in O(2ℓ) time. Similar to phase one, we can leverage the
sparsity of fi and we have the lemma as follows:

Lemma 4.3.5. LetNy be the set of (z, x) ∈ {0, 1}2ℓ such that f ′
i(z, x, y) = yki+1 . . . yℓ fi(z, x, y1, . . . , yki

) is
non-zero for some 1 ≤ i ≤ m. Then for all y ∈ {0, 1}ℓ, it is f ′

i(g, u, y) =
∑

(z,x)∈Ny
β̃(g, z)β̃(u, x)f ′(z, x, y)

Lemma 4.3.5 is a generalization of Lemma 4.3.2 and we omit the proof.

Lemma 4.3.6. The bookkeeping table Af1
, . . . , Afm

can be initialized in time O(2ℓ).

Proof. As fi is sparse,
∑

y∈{0,1}ℓ |Ny| = O(2ℓ). From Lemma 4.3.2, given the evaluations of β̃(g, z) and

β̃(u, x) for all z, x ∈ {0, 1}ℓ, the prover can iterate all (z, x) ∈ Nx for all y to compute Af1
, . . . , Afm

. The

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 93

Algorithm 12 Af1 , . . . , Afm
← Initialize_PhaseTwo(f1, . . . , fm, g, u)

Input: Multilinear f1, . . . , fm, random g = g1, . . . , gm and u = u1, . . . , uℓ;
Output: Bookkeeping tables Af1 , . . . , Afm

;
1: G← Precompute(g)
2: U← Precompute(u)
3: ∀y ∈ {0, 1}ℓ, set Afi

[y1, . . . , yki
] = 0 for all i

4: for every (z, x, y) such that fi(z, x, y1, . . . , yki
) is non-zero do

5: Afi
[y1, . . . , yki

] = Afi
[y1, . . . , yki

] + G[z] · U[x] · fi(z, x, y1, . . . , yki
)

6: end for
7: return Af1 , Af2 , . . . , Afm

;full algorithm is presented in Algorithm 12.
P runs procedure Precompute(g) and Precompute(u) in O(2ℓ) time as we have shown in the proof of

Lemma 4.3.3. Step 4-5 computes fi(y1, . . . , yki
) using Lemma 4.3.5. It takes O(2ℓ) time as

∑
y∈{0,1}ℓ |Ny| =

O(2ℓ). Therefore, P runs in O(2ℓ) time for Algorithm 12.

With the bookkeeping tables, the prover runs SumCheckProduct2(f1, Af1
, g1, Ag1

, . . . , fm, Afm
,

gm, Agm
, r1, . . . , rℓ) in Algorithm 11 and the total complexity for phase two is O(2ℓ).

Combining phase one and phase two, we know that P runs in O(|C|) time for the sumcheck protocol on
Equation 4.8.
Step one with linear prover time. Finally, the sumcheck protocol for Equation 4.7 can be decomposed into
several instances that have the form of Equation 4.8. The term∑

x,y∈{0,1}si,i+1 (˜multi+1,i+1(z, x, y)(Ṽi,i+1(x)Ṽi,i+1(y)) + . . .

+ysi,d+1 . . . ysi,i+1
˜multi+1,d(z, x, y1, y2, . . . , ysi,d

)(Ṽi,i+1(x)Ṽi,d(y1, y2, . . . , ysi,d
))

is exactly the same as Equation 4.8. The term∑
x,y∈{0,1}si,i+1

˜addi+1,i+1(z, x, y)(Ṽi,i+1(x) + Ṽi,i+1(y)) + . . .

+ysi,d+1 . . . ysi,i+1
˜addi+1,d(z, x, y1, . . . , ysi,d

)(Ṽi,i+1(x) + Ṽi,d(y1, . . . , ysi,d
))

can be rewritten as the sum of∑
x,y∈{0,1}si,i+1

˜addi+1,i+1(z, x, y)Ṽi,i+1(x) + . . .

+ ysi,d+1 . . . ysi,i+1
˜addi+1,d(z, x, y1, . . . , ysi,d

)Ṽi,i+1(x)

and ∑
x,y∈{0,1}si,i+1

˜addi+1,i+1(z, x, y)Ṽi,i+1(y) + . . .

+ ysi,d+1 . . . ysi,i+1
˜addi+1,d(z, x, y1, . . . , ysi,d

)Ṽi,d(y1, . . . , ysi,d
) .

The first sum is the same as Equation 4.8 with si(x) = 1, and the second sum is the same as Equation 4.8
with t(x) = 1. The complexity for both cases remains linear. Due to linearity of the sumcheck protocol, the
prover can execute these 3 instances simultaneously in every round, sum up the individual messages and send
them to the verifier.

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 94

Verifier time and proof size for all sumcheck protocols on Equation 4.7. The verifier time for all sumcheck
protocols on Equation 4.7 is the same as Protocol 9. V still runs in O(d log |C|) time to verify all sumcheck
statements based on Equation 4.7. The proof size is also O(d log |C|). Note that this excludes the claims of
Ṽi,j at random points at the end of the sumcheck protocol in each layer, and we will count them in the next
section combining these claims.

4.3.3 Combining Multiple Claims in Linear Time
By executing the sumcheck protocol on Equation 4.7, P and V reduce an evaluation of the multiliear extension
of a layer to multiple evaluations of multilinear extensions defined by values in the layers above. As we
explained in Section 4.3.1, when reaching layer i, V has received multiple evaluations about this layer and
combining these evaluations using a random linear combination would introduce an overhead on the prover.
Even worse, with the refined sumcheck on Equation 4.7 in Section 4.3.2, now the verifier has received multiple
evaluations of different multilinear extensions defined by subsets of gates in layer i used by different layers
below. Now even combining these evaluations becomes challenging, let alone reducing the overhead of the
prover.

In this section, we propose two different approaches that not only combine these evaluations to a single
evaluation of the multilinear extension of the entire layer i, but also incur only a linear prover time in the size
of the circuit.
Combining multiple claims by an arithmetic circuit. The key idea of the first approach is that instead of
trying to come up with a complicated protocol to do the combination, we simply model the computation as an
arithmetic circuit! The circuit takes the values Vi of the entire layer i as the input. In addition, it also takes
the randomness to compute these evaluations of subsets from the verifier. At this point, these randomness are
already chosen by the verifier and can merely be viewed as constants known both to V and P . The circuit
then selects multiple subsets from Vi according to the wiring of the circuit (i.e., gates used by layer j < i
from layer i), arrange them in the pre-defined order. The circuit then computes the multilinear extensions of
these subsets, and evaluates them on the corresponding points from the input. The structure of the circuit Ci

is given in Figure 4.1.
The output of the circuit is exactly the multiple evaluations of the multilinear extensions, which are known

to the verifier. The verifier then executes the original GKR protocol for layered arithmetic circuits (Protocol 9)
on this circuit, which reduces the output to a single evaluation of the multilinear extension of the input. This
can further be expressed as the evaluation of the multilinear extension of Vi, together with the multilinear
extension of all the randomnesses used to compute the output. As the latter is known to V , V can compute it
locally. In this way, using the circuit, P and V reduce multiple claims about subsets of layer i to one claim
about Ṽi.

Another tricky part is that the size of the circuit is not optimal if implemented naively. As shown in
Figure 4.1, the circuit expands the randomness to the bookkeeping tables exactly as described in Algorithm 8,
which has logarithmic layers log Si. If the circuit also takes Vi as input at the same layer as the randomness,
Vi has to be relayed by logarithmic layers and the size of the circuit is O(Si log Si). Instead, we feed Vi

as input to one layer above the bookkeeping tables, as shown on the left side of Figure 4.1. The circuit
selects multiple subsets out of it in one layer, and then computes the inner product between a subset and its
corresponding bookkeeping table, which gives the evaluation of its multilinear extension. Now the size of the
circuit is linear to the total size of all the subsets. The GKR protocol can support inputs from different layers
with such a structure, as proposed in [ZGKPP17c]. We give the formal protocol in Protocol 10.

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 95

𝑟(",$) 𝑟($&',$)…… 𝑟($&',$)(

Expansion

Bookkeeping table of 𝑟(",$) Bookkeeping table of 𝑟($&',$) Bookkeeping table of 𝑟($&',$)(

𝑉!(0) 𝑉!(𝑆! − 2) 𝑉!(𝑆! − 1)……

𝑽",$ 𝑽$&',$ 𝑽$&',$……

Expansion Expansion
……

…

#𝑉",$(𝑟(",$)) #𝑉$&',$(𝑟($&',$)()#𝑉$&',$(𝑟($&',$))……

Inner Product
Inner Product

Inner Product
Inner Product

Choose subsets 𝑽",! , ⋯𝑽!$%,! , 𝑽!$%,!

Figure 4.1: Circuit Ci computing Ṽ0,i(r
(0,i)), Ṽi−1,i(r

(i−1,i)), Ṽi−1,i(r
(i−1,i)′

)

Protocol 10. Let Ci be the circuit in Figure 4.1 with input in consisting of two parts: Vi =
(Vi(0), . . . , Vi(Si − 1)) and R = (r(0,i), . . . , r(i−1,i), r(i−1,i)′

), and the output out = (Ṽ0,i(r
(0,i))

, . . . , Ṽi−1,i(r
(i−1,i)), Ṽi−1,i(r

(i−1,i)′
)). We use V = (V0,i, . . . , Vi−1,i, Vi−1,i) to represent subsets of

Vi used in layer j (j < i), and TR = (T
r

(0,i) , . . . , T
r

(i−1,i) , T
r

(i−1,i)′) to represent bookkeeping tables

after expanding r(0,i), . . . , r(i−1,i), r(i−1,i)′
.

• P and V invoke Protocol 9 on inner products to reduce the claim about out to the claim about the layer
of V and TR: q = r1 · V(r) + (1− r1) · TR(r)

• V requires P to provide values of V(r) and TR(r) to check q = r1 · V(r) + (1− r1) · TR(r).

• P and V invoke Protocol 9 on the left part and the right part of Ci as shown in Figure 4.1, separately.
For the left part, it reduces the claim about V(r) to the claim about Vi(r

(i)) in one layer. For the right
part, it reduces the claim about TR(r) to the claim about R(r(i)).

• V asks P to send Vi(r
(i)) and checks the reduction for the left part. V computes R(r(i)) itself and

checks the reduction for the right part. If both checks pass, output 1; otherwise, output 0.

Efficiency. In order to analyze the prover time for Protocol 10, we consider the specific structure of Ci, as
shown in Figure 4.1. For layer k < i, there are Sk,i gates from layer i connected to layer k. The number
of gates in Ci is at most 8|V|, which is 8

∑i−1
k=0 Sk,i. By Theorem 7.2.5, the prover time for the circuit

Ci is O(
∑i−1

k=0 Sk,i). So the total prover time for circuits C1, . . . , Cd is 8
∑d

i=1
∑i−1

k=0 Sk,i = O(|C|) as∑d
i=1

∑i−1
k=0 Sk,i equals to the number of all output wires in the circuit, which is at most 2|C|.

The size of Ci is O(S0,i + . . . + Si−1,i) = O(|C|), the depth of Ci is O(log Si) = O(log |C|) and
the size of input Ri is at most s0,i + s1,i + . . . + si−1,i + si−1,i ≤ d log |C|. Let Qi be the time to
evaluate all ˜add and ˜mult at the corresponding random points in Ci. Therefore, the verifier time for Ci is
O(log2 |C|+ d log |C|+ Qi) and the proof size is O(log2 |C|) by Theorem 7.2.5. In total for all layers, V

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 96

runs in min{O(d log2 |C|+ d2 log |C|+ Q), |C|} time and the proof size is min{O(d log2 |C|), |C|}, where
Q = Q1 + Q2 + . . . + Qd.
Combining multiple claims by a sumcheck protocol. Though the prover time of the first method is optimal
asymptotically, the overhead in practice is still relatively high. As we will show in Section 7.5, the cost per
gate is around 5× slower than that of the original GKR protocol on layered circuits. In addition, it introduces
an overhead of O(log |C|) on the proof size and the verifier time. Therefore, inspired by the design of the
circuit in Figure 4.1, we propose the second method to combine multiple claims through a single sumcheck
protocol.

The key idea is to define a function to connect the gate in Vi with the same gate in a subset Vk,i. Formally
speaking, we define Ck,i(z, x) : {0, 1}sk,i × {0, 1}si → F such that it takes two gate labels, one in the subset
Vk,i and the other in the entire layer Vi, and Ck,i(z, x) = 1 if the gate z in Vk,i is exactly the gate x in Vi.
Otherwise Ck,i(z, x) = 0. Note that the function Ck,i serves exactly the same purpose as the circuit in
Figure 4.1 selecting subsets from Vi.

With the definition of Ck,i, given Ṽ0,i(r
(0,i)), . . . , Ṽi−1,i(r

(i−1,i)), Ṽi−1,i(r
(i−1,i)′

), V can combine them
through a random linear combination. In particular, V chooses i + 1 random values α0,i, . . . , αi−1,i, α′

i−1,i.
Then we have∑i−1

k=0
αk,iṼk,i(r

(k,i)) + α′
i−1,iṼi−1,i(r

(i−1,i)′
)

=
i−1∑
k=0

αk,i

 ∑
x∈{0,1}si

C̃k,i(r
(k,i), x)Ṽi(x)

+ α′
i−1,i

∑
x∈{0,1}si

C̃i−1,i(r
(i−1,i)′

, x)Ṽi(x)

=
∑

x∈{0,1}si
Ṽi(x)

(∑i−1
k=0

αk,iC̃k,i(r
(k,i), x) + α′

i−1,iC̃i−1,i(r
(i−1,i)′

, x)
)

=
∑

x∈{0,1}si
Ṽi(x)gi(x) ,

(4.10)

where C̃k,i is the multilinear extension of Ck,i and C̃k,i(r
(k,i), x) =

∑
z∈{0,1}sk,i β̃(r(k,i), z)Ck,i(z, x).

We define gi(x) =
∑i−1

k=0 αk,iC̃k,i(r
(k,i), x) + α′

i−1,iC̃i−1,i(r
(i−1,i)′

, x). As gi(x) only depends on the
structure of the circuit, V can compute gi(r

(i)) herself given the randomness of r(i). P and V can execute
a sumcheck protocol on Equation 4.10, which reduces multiple claims of subsets to a single evaluation of
Ṽi(r

(i)) for the randomness of r(i).
It remains to show that the sumcheck can be executed by the prover in linear time. Recall that given the

bookkeeping tables of two multilinear polynomials, the prover can run the sumcheck protocol in linear time
using Algorithm 9. In the equation above, the bookkeeping table AṼi

for Ṽi is already known by the prove as
the values of the gates in layer i. We further describe a linear time algorithm to initialize the bookkeeping
table Agi

for gi(x) in Algorithm 13.

Lemma 4.3.7. The bookkeeping table Agi
can be initialized in O(S0,i + · · ·+ Si−1,i) time.

Proof. It takes O(S0,i+. . .+Si−1,i+Si−1,i) time to run procedure Precompute(r(0,i)), . . ., Precompute(r(i−1,i))

and Precompute(r(i−1,i)′
). There are at most S0,i + . . . + Si−1,i + Si−1,i entries such that Ck,i(t, x) = 1.

Therefore, the running time of Algorithm 13 is O(S0,i + . . . + Si−1,i).

Efficiency. Next we analyze the efficiency of the second scheme to combine multiple claims to one claim.
The prover costs O(S1 + . . . + Sd) = O(|C|) to compute all bookkeeping tables of AṼi

. By Lemma 4.3.7,

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 97

Algorithm 13 Agi
← Initialize(r(0,i), . . . , r(i−1,i), r(i−1,i)′

)

Input: r(0,i), . . . , r(i−1,i), r(i−1,i)′
;

Output: Agi
;

1: ∀x ∈ {0, 1}si , set Agi
[x] = 0

2: for k = 0, · · · , i− 1 do
3: G← Precompute(r(k,i))
4: for t ∈ {0, 1}sk,i such that Ck,i(t, x) = 1 do
5: Agi

[x] = Agi
[x] + αk,i ·G[t]

6: end for
7: end for
8: G← Precompute(r(i−1,i)′

)
9: for t ∈ {0, 1}si−1,i such that Ci−1,i(t, x) = 1 do

10: Agi
[x] = Agi

[x] + α′
i−1,i ·G[t]

11: end for
12: return Agi

;

the prover runs Algorithm 13 to compute all bookkeeping tables of Agi
in O(

∑d
i=1

∑i−1
k=0 Sk,i) = O(|C|)

time. By Lemma 4.3.1, the prover runs the sumcheck protocol on Equation 4.10 for layer 1 to layer d in
O(
∑d

i=1 Si) = O(|C|) time. So the total prover time of the second scheme is also linear in the circuit size.
By the efficiency of the sumcheck protocol in Protocol 24, it takes O(log Si) for the verifier to validate

the sumcheck protocol on Equation 4.10 in round i. She also needs to generate i + 1 random numbers and
computes gi(r

(i)) in round i. Suppose V costs Ti to compute gi(r
(i)) and T = T1 + . . . + Td, the total

verifier time is O(log S1 + . . . + log Sd) + O(2 + . . . + d + 1) + T1 + . . . + Td = O(d log |C|+ d2 + T).
The total proof size is O(d log C + d2). Finally, by a similar analysis to the prover time, the term O(d2) in
the complexity is always bounded by O(|C|). This is because in order for the prover to send a claim about
Ṽi,j , there has to be a gate in layer i connecting to layer j, thus the number of claims cannot be more than
2|C|. Therefore, the proof size of our protocol is min{O(d log C + d2), O(|C|)} and the verifier time is
min{O(d log |C|+ d2 + T), O(|C|)}.

4.3.4 The Full Protocol for General Arithmetic Circuits
Combining the first step and the sumcheck scheme of the second step together, we give the full protocol of
the generalized GKR for arbitrary arithmetic circuits in Protocol 11. As the prover time, proof size and the
verifier time of the second method to combine multiple points are all better than those of the first method, we
state the protocol and the theorem using the second method.

Protocol 11. Let F be a prime field. Let C: Fn → Fk be a d-depth unlayered arithmetic circuit. P
wants to convince that C(in) = out where in is the input from V , and out is the output. Without loss of

4.3. GENERALIZING GKR TO ARBITRARY ARITHMETIC CIRCUITS 98

generality, assume n is the power of 2 and both parties can pad them if not.

1. Define the multilinear extension of array out as Ṽ0. V chooses a random g ∈ Fs0 and sends it to
P . Both parties compute Ṽ0(g).

2. P and V run a sumcheck protocol on Equation 4.7 for i = 0. At the end of the protocol, V
receives Ṽ0,1(r(0,1)′

), Ṽ0,1(r(0,1)), Ṽ0,2(r(0,2)), . . ., Ṽ0,d(r(0,d)). V computes left side of the above

equation by removing the summation symbol and replacing x, y with r(0,1)′
, r(0,1). If it does not

equal to the last message of the sumcheck, V outputs 0 and aborts.

3. For i = 1, ..., d− 1, d:

a) Given Ṽ0,i(r
(0,i)), . . . , Ṽi−1,i(r

(i−1,i)′
), Vi−1,i(r

(i−1,i)) and r(0,i),r(1,i), . . ., r(i−1,i)′
, r(i−1,i),

V chooses i + 1 random elements α0,i, . . . , αi−1,i, α′
i−1,i in F and sends them to P . Then

P and V run the sumcheck protocol on Equation 4.10. If V does not abort in the sumcheck
protocol, he receives Ṽi(r

(i)) for some randomness r(i) ∈ Fsi in the last round.

b) If i < d, P and V run the sumcheck on Equation 4.7 by replacing g with r(i). At the end of
the sumcheck protocol, P sends V Ṽi,i+1(r(i,i+1)′

), Ṽi,i+1(r(i,i+1)), . . ., Ṽi,d(r(i,d)).
V computes the left side of the above equation by removing the summation symbol and
replacing x, y with r(i,i+1)′

, r(i,i+1) and checks it equals to the last message of the sumcheck.
If all checks in the sumcheck pass, V uses Ṽi,i+1(r(i,i+1)′

) and Ṽi,i+1(r(i,i+1)) to proceed
to the (i + 1)-th layer. Otherwise, V outputs 0 and aborts.

4. At the input layer d, V has one claim of Ṽd(r(d)). V computes it locally or queries the oracle of
evaluations of Ṽd at r(d) and checks that it is the same as the claim. If yes, output 1; otherwise,
output 0.

Theorem 4.3.8. Let C : Fn → Fk be a depth-d general arithmetic circuit. Protocol 11 is an interactive
proof for the function computed by C with soundness O(d log |C|/|F|). The running time of the prover P is
O(|C|). The proof size is min{O(d log C + d2), O(|C|)}. Let the time to evaluate all ˜addi,j and ˜multi,j

at random points be T ′, the time to evaluate gi(r
(i)) be Ti in Equation 4.10, and T = T1 + . . . + Td, the

running time of V is min{O(n + d log |C|+ d2 + T + T ′), O(|C|)}. If in addition d = polylog(|C|), T and
T ′ are in polylog(|C|) time in Theorem 4.3.8, Protocol 11 is an interactive proof with succinct proof size and
verifier time.

Proof. Completeness. The completeness is straightforward by the completeness of the sumcheck protocol.
Soundness. For the soundness, for any PPT adversary A, we use Ṽ ′ to represent the correct messages
corresponding to Ṽ in Protocol 11 with input in and the correct execution for circuit C. Suppose C(in) ̸= out,
there must exist a layer i such that Ṽj(r(j)) = Ṽ ′

j (r(j)) and Ṽk,j(r(k,j)) = Ṽ ′
k,j(r(k,j)) for j > i and all k < j

but Ṽi(r
(i)) ̸= Ṽ ′

i (r(i)) or Ṽk,i(r
(k,i)) ̸= Ṽ ′

k,i(r
(k,i)) for some k < i, which event is defined as Ei. This event

can be divided into three cases:

• Case 1: The random elements are chosen in a way such that
∑i−1

k=0 αk,iṼ
′

k,i(r
(k,i)) + α′

i−1,iṼ
′

i−1,i(r
(i−1,i)′

)
=
∑i−1

k=0 αk,iṼk,i(r
(k,i)) + α′

i−1,iṼi−1,i(r
(i−1,i)′

). This happens with probability at most 1
|F| .

4.4. ZERO KNOWLEDGE ARGUMENTS FROM GENERALIZED GKR 99

• Case 2: The above case does not happen, but at the end of sumcheck protocol induced by Equation 4.10,
the final round random evaluation (e.g. Ṽi(r

(i))) is consistent with the single evaluation of Ṽ ′
i (r(i)). By the

soundness of sumcheck protocol this happens with probability at most 2⌈log Si⌉
|F| .

• Case 3: We have Ṽi(r
(i)) ̸= Ṽ ′

i (r(i)), but the verifier accepts after the sumcheck protocol for Ṽi(r
(i)). Since

we assume that Ṽj(r(j)) = Ṽ ′
j (r(j)) and Ṽk,j(r(k,j)) = Ṽ ′

k,j(r(k,j)) for j > i and all k < j, this happens
with probability at most 2⌈log Si+1⌉

|F| by the soundness of sumcheck protocol.

Thus the overall probability that event Ei happens is at most 2(⌈log Si⌉+⌈log Si+1⌉)+1
|F| = O(log |C|

|F|).
Eventually, by the union bound, we have the following statement:

Pr[C(in) ̸= out ∧ V outputs 1] ≤ Pr[∃i, Ei]
≤ Pr[E0] + Pr[E1] + . . . + Pr[Ed−1]

≤ O(log |C|
|F|

) + O(log |C|
|F|

) + . . . + O(log |C|
|F|

)

≤ O(d log |C|
|F|

)

The efficiency follows the efficiency analysis of Section 4.3.2 and Section 4.3.3.

4.4 Zero Knowledge Arguments from Generalized GKR
In this section, we build a new zero knowledge argument protocol for general arithmetic circuits based on
Protocol 11. The construction follows the same ideas proposed in [CFS17; XZZPS19b]. In particular, as
proposed in [ZGKPP17c], we combine the GKR protocol with a (zero knowledge) polynomial commitment
scheme on the witness to build an argument scheme. In order to achieve zero knowledge, we apply the zero
knowledge sumcheck protocol [CFS17; XZZPS19b] on Equation 4.7 and 4.10 to eliminate the leakage during
the sumcheck. We then use the low degree extensions instead of multilinear extensions of Vi and Vi,j so that
their evaluations sent from the prover to the verifier do not leak information about the values in the circuit.
The only difference is that for the values Vi in each layer i of the circuit, the verifier receives multiple claims,
one for each of the subsets Vi,j , instead of two claims about Vi in the original GKR protocol. Thus, we use
the low degree extensions of both Vi and Vi,j with a different random masking polynomial for each. In this
way, these claims leak no information about the values.

For completeness, we present the formal definitions and protocols in the following.

4.4.1 Definitions
We introduce definitions of zero knowledge arguments and zero knowledge polynomial commitments before
presenting the formal protocols.
Zero knowledge arguments. An argument system for an NP relationship R is a protocol between a
computationally-bounded prover P and a verifier V . At the end of the protocol, V is convinced by P that

4.4. ZERO KNOWLEDGE ARGUMENTS FROM GENERALIZED GKR 100

there exists a witness w such that (x; w) ∈ R for some input x. We focus on arguments of knowledge which
have the stronger property that if the prover convinces the verifier of the statement validity, then the prover
must know w. We use G to represent the generation phase of the public parameters pp. Formally, consider
the definition below, where we assume R is known to P and V .

Definition 4.4.1. LetR be an NP relation. A tuple of algorithm (G,P,V) is a zero knowledge argument of
knowledge forR if the following holds.

• Correctness. For every pp output by G(1λ) and (x, w) ∈ R,

⟨P(pp, w),V(pp)⟩(x) = 1

• Knowledge Soundness. For any PPT prover P∗, there exists a PPT extractor E such that given the access
to the entire executing process and the randomness of P∗, E can extract a witness w such that pp← G(1λ),
π∗ ← P∗(x, pp) and w ← EP∗

(pp, x, π∗), the following probability is negl(λ):

Pr[(x; w) /∈ R ∧ V(x, π∗, pp) = 1]

• Zero knowledge. There exists a PPT simulator S such that for any PPT algorithm V∗, auxiliary input
z ∈ {0, 1}∗, (x; w) ∈ R, pp output by G(1λ), it holds that

View(⟨P(pp, w),V∗(z, pp)⟩(x)) ≈ SV∗
(x, z)

We say that (G,P,V) is a succinct argument system if the total communication between P and V (proof size)
are poly(λ, |x|, log |w|).

In the definition of zero knowledge, SV∗
denotes that the simulator S is given the randomness of V∗

sampled from polynomial-size space. This definition is commonly used in existing transparent zero knowledge
proof schemes [ben2019aurora; XZZPS19b; AHIV17; BBBPWM; WTSTW18; ZXZS].
Zero knowledge polynomial commitment. Let F be a finite field, F be a family of ℓ-variate polynomial
over F, and D be a variable-degree parameter. We useWℓ,d to denote the collection of all monomials in F
and N = |Wℓ,D| = (D + 1)ℓ. A zero knowledge verifiable polynomial commitment (zkPC) for f ∈ F and
t ∈ Fℓ consists of the following algorithms:

• pp← zkVPD.KeyGen(1λ),

• com← zkVPD.Commit(f, rf , pp),

• ((y, π); {0, 1})← ⟨zkVPD.Open(f, rf), zkVPD.Verify(com)⟩(t, pp)

Definition 4.4.2. A zkPC scheme satisfies the following properties:

• Completeness. For any polynomial f ∈ F and value t ∈ Fℓ, pp ← zkVPD.KeyGen(1λ), com ←
zkVPD.Commit(f, rf , pp), it holds that

Pr
[
⟨zkVPD.Open(f, rf), zkVPD.Verify(com)⟩(t, pp) = 1

]
= 1

4.4. ZERO KNOWLEDGE ARGUMENTS FROM GENERALIZED GKR 101

• Knowledge Soundness. For any PPT adversaryA, pp← zkVPD.KeyGen(1λ), there exists a PPT extractor
E . Given any tuple (pp, com∗) and the executing process of A, E can extract a function f∗ ∈ F and the
randomness rf

∗ such that (f∗, rf
∗) ← EA(pp, com∗) and com∗ ← zkVPD.Commit(f∗, rf

∗ , pp). The
following probability is negligible of λ:

Pr
[
((y∗

, π
∗); 1)← ⟨A(), zkVPD.Verify(com∗)⟩(t, pp) ∧ (f∗

, rf
∗)← EA(pp, com∗) ∧ f

∗(t) ̸= y
∗]

• Zero Knowledge. For security parameter λ, polynomial f ∈ F , pp← zkVPD.KeyGen(1λ), PPT algorithm
A, and simulator S = (S1,S2), consider the following two experiments:

RealA,f (pp):
1. com← zkVPD.Commit(f, rf , pp)
2. t← A(com, pp)
3. (y, π)← ⟨zkVPD.Open(f, rf),A⟩(t, pp)
4. b← A(com, y, π, pp)
5. Output b

IdealA,SA(pp):

1. com← S1(1λ, pp)
2. t← A(com, pp)
3. (y, π) ← ⟨S2,A⟩(ti, pp), given oracle access to

y = f(t).
4. b← A(com, y, π, pp)
5. Output b

For any PPT algorithm A and all polynomial f ∈ F, there exists simulator S such that

|Pr[RealA,f (pp) = 1]− Pr[IdealA,SA(pp) = 1]| ≤ negl(λ).

4.4.2 Zero Knowledge Sumcheck
To build a zero knowledge argument for arbitrary arithmetic circuit using Protocol 11, we follow the same
blueprint of [XZZPS19b] using zkPC, zero knowledge sumcheck and low degree extensions. In the following,
we present the zero knowledge version of step 3(b) and step 3(a) in Protocol 11, followed by the whole zero
knowledge argument.

In step 3(b) of the full protocol, P and V execute a sumcheck protocol on Equation 4.7, during which
P sends V evaluations of the polynomial at several random points chosen by V . These evaluations leak
information about the values in the circuit, as they can be viewed as weighted sums of these values.

To prevent the leakage, we take the zero knowledge sumcheck proposed by Xie et al. in [XZZPS19b]. To
prove

H =
∑

x1,x2,...,xℓ∈{0,1}
f(x1, x2, . . . , xℓ),

the prover generates a random polynomial g such that g(x1, . . . , xℓ) = a0 + g1(x1) + g2(x2) + . . . + gℓ(xℓ),
where gi(xi) = ai,1xi + ai,2x2

i + . . . + ai,τ xτ
i is a random univariate polynomial of degree τ (τ is the variable

degree of f). Note here that the size of g is only O(τℓ), while the size of f is exponential in ℓ. P commits to
the polynomial g using zkVPD.Commit, and sends the verifier a claim G =

∑
x1,x2,...,xℓ∈{0,1}

g(x1, x2, . . . , xℓ).

The verifier picks a random number ρ ∈ F, and execute a sumcheck protocol with the prover on

H + ρG =
∑

x1,x2,...,xℓ∈{0,1}
(f(x1, x2, . . . , xℓ) + ρg(x1, x2, . . . , xℓ)).

At the last round of this sumcheck, the prover opens the commitment of g at g(r1, . . . , rℓ) using zkVPD.Open,
and the verifier computes f(r1, . . . , rℓ) by subtracting ρg(r1, . . . , rℓ) from the last message, and compares

4.4. ZERO KNOWLEDGE ARGUMENTS FROM GENERALIZED GKR 102

it with the oracle access of f . It is shown that as long as the polynomial commitment is zero knowledge,
the protocol is zero knowledge. Intuitively, this is because the information of f transmitted in the sumcheck
protocol is exactly masked by the randomness of g. We present the protocol in Protocol 12 and we have the
following theorem:

Protocol 12. We assume the existence of a zkPC protocol defined in Section 4.4.1. For simplicity,
we omit the randomness rf and public parameters pp, vp without any ambiguity. To prove the claim
H =

∑
x1,x2,...,xℓ∈{0,1}

f(x1, x2, . . . , xℓ):

1. P selects a polynomial g(x1, . . . , xℓ) = a0 + g1(x1) + g2(x2) + . . . + gℓ(xℓ), where gi(xi) =
ai,1xi+ai,2x2

i +. . .+ai,τ xτ
i and all ai,js are uniformly random. P sends H =

∑
x1,x2,...,xℓ∈{0,1}

f(x1, x2, . . . , xℓ),

G =
∑

x1,x2,...,xℓ∈{0,1}
g(x1, x2, . . . , xℓ) and comg = zkVPD.Commit(g, rg, pp) to V .

2. V uniformly selects ρ ∈ F∗, computes H + ρG and sends ρ to P .

3. P and V run the sumcheck protocol on

H + ρG =
∑

x1,x2,...,xℓ∈{0,1}
(f(x1, x2, . . . , xℓ) + ρg(x1, x2, . . . , xℓ))

4. At the last round of the sumcheck protocol, V obtains a claim hℓ(rℓ) = f(r1, r2, . . . , rℓ) +
ρg(r1, r2, . . . , rℓ). P opens the commitment of g at r = (r1, . . . , rℓ) and V verifies by using
zkVPD.Open and zkVPD.Verify. If the verification fails, V aborts.

5. V computes hℓ(rℓ)− ρg(r1, . . . , rℓ) and compares it with the oracle access of f(r1, . . . , rℓ).

Theorem 4.4.3 ([XZZPS19a]). Protocol 12 is complete and sound for the relationship of H =
∑

x1,x2,...,xℓ∈{0,1}

f (x1, x2, . . . , xℓ). In addition, for every verifier V∗ and every ℓ-variate polynomial f : Fℓ → F with variable
degree d, there exists a simulator S such that given access to H =

∑
x1,x2,...,xℓ∈{0,1} f(x1, x2, . . . , xℓ), S is

able to simulate the partial view of V∗ in Protocol 12. The efficiency of prover time, verifier time and proof
size in Protocol 12 retain the same as in Protocol 24.

We apply the zero knowledge sumcheck directly on the sumcheck equation (Equation 4.7 and 4.10) of our
new GKR protocol. It eliminates all the leakage during the sumcheck protocol.

4.4.3 Zero Knowledge GKR
Even with the zero knowledge sumcheck, the protocol still leaks information about values in the circuit. In
particular, at the end of the zero knowledge sumcheck, V still needs an oracle access to f(r1, . . . , rℓ). When
executed on Equation 4.7, the verifier evaluates all ˜add and ˜mult at the random point, and queries the prover
for the evaluations of Ṽ0,i, · · · , Ṽi−1,i. These evaluations reveal information about values in the circuit.

4.4. ZERO KNOWLEDGE ARGUMENTS FROM GENERALIZED GKR 103

To prevent this leakage, we use the same idea in [XZZPS19b] to replace them with their low-degree
extensions V̇0,i, · · · , V̇i−1,i. Let

V̇j,i(x) def= Ṽj,i(x) + Zj,i(x) ·
∑

w∈{0,1}
Rj,i(x1, w), (4.11)

where Zj,i(x) =
∏sj,i

k=1 xk(1− xk) is the vanishing polynomial, i.e., Zj,i(x) = 0 for all x ∈ {0, 1}sj,i , and
Rj,i is the mask polynomial with only two variables generated by P .

Additionally, in the last round of the sumcheck on Equation 4.10, V asks for Ṽ (r(i)), which leaks
information about Vi. With exactly the same idea as above, we replace it with its low-degree extension V̇i

such that

V̇i(x1, . . . , xsi
) def= Ṽi(x1, . . . , xsi

) + Zi(x1, . . . , xsi
)
∑

w∈{0,1}
Ri(x1, w), (4.12)

where Zi(x) =
∏si

i=1 xi(1−xi) is still the vanishing polynomial, and Ri is still a mask multilinear polynomial
with only two variables. As R0,i, · · · , Ri−1,i and Ri are randomly selected by P , revealing several evaluations
of them does not leak information about V0,i, · · · , Vi−1,i and Vi thus the values in the circuit. The zero
knowledge polynomial commitment scheme is used to commit to these masking polynomials and later open
them at random points. With these changes, Equation 4.7 becomes

V̇i(g) =
∑

x,y∈{0,1}si,i+1

w∈{0,1}

[β̃(w, 1⃗)(˜addi+1,i+1(g, x, y)(V̇ ′
i,i+1(x) + V̇i,i+1(y1, . . . , ysi,i+1

))

+ ysi,i+2+1 · . . . · ysi,i+1
˜addi+1,i+2(g, x, y1, . . . , ysi,i+2

)(V̇ ′
i,i+1(x) + V̇i,i+2(y1, . . . , ysi,i+2

))

+ . . . + ysi,d+1 · . . . · ysi,i+1
˜addi+1,d(g, x, y1, . . . , ysi,d

)(V̇ ′
i,i+1(x) + V̇i,d(y1, . . . , ysi,d

))

+ ˜multi+1,i+1(g, x, y)(V̇ ′
i,i+1(x)V̇i,i+1(y1, . . . , ysi,i+1

))

+ ysi,i+2+1 · . . . · ysi,i+1
˜multi+1,i+2(g, x, y1, . . . , ysi,i+2

)(V̇ ′
i,i+1(x)V̇i,i+2(y1, . . . , ysi,i+2

))

+ . . . + ysi,d+1 · . . . · ysi,i+1
˜multi+1,d(g, x, y1, . . . , ysi,d

)(V̇ ′
i,i+1(x)V̇i,d(y1, . . . , ysi,d

))

+ β̃((x, y), 1⃗)Zi(g)Ri(g1, w)]

(4.13)

The equation holds because V̇j,i agrees with Ṽj,i on the Boolean hypercube {0, 1}si,j , as Zj,i(z) = 0 for
binary inputs.

NowP andV instead execute the zero knowledge sumcheck protocol on Equation 4.13. At the end of the pro-
tocol,V receives V̇i,i+1(r(i,i+1)′

), V̇i,i+1(r(i,i+1)), . . . , V̇i,d(r(i,d)) for random points r(i,i+1)′
, r(i,i+1), . . . , r(i,d)

chosen by V . They no longer leak information about Vi,i+1, . . . , Vi,d. V then evaluates ˜multi,j and ˜addi,j on

the randomness as before, computes Zi(g), β̃(c, 1), β̃((r(i,i+1)′
, r(i,i+1)), 1⃗) where c ∈ F is a random point

chosen by V for the variable w. V also opens Ri(g1, w) at point c with P using zkPC, and checks that together
with the points received from P , they are consistent with the last message of the sumcheck, i.e., the oracle
access to the evaluation of the polynomial in the zero knowledge sumcheck. V then uses these values to
proceed to the second step of combining multiple evaluations, i.e., step 3(a) in Protocol 11. We have the
following theorem.

4.4. ZERO KNOWLEDGE ARGUMENTS FROM GENERALIZED GKR 104

Theorem 4.4.4. For every verifier V∗, there exists a simulator S such that given oracle access to V̇i(g)
and V̇i,i+1(r(i,i+1)′

), V̇i,i+1(r(i,i+1)), . . . , V̇i,d(r(i,d)), S is able to simulate the partial view of V∗ in the zero
knowledge sumcheck protocol on Equation 4.13.

Proof sketch. The completeness and the soundness inherits from the zero knowledge sumcheck protocol
and zkVPD. For zero knowledge, we combine the simulator S1 in zkVPD and the simulator S2 in the
zero knowledge sumcheck protocol to construct the simulator S. Therefore, V only learns V̇i,i+1(r(i,i+1)′

),
V̇i,i+1(r(i,i+1)), . . ., V̇i,d(r(i,d)) at the end of the protocol, which leaks no information about Ṽi,i+1, · · · , Ṽi,d

because of mask polynomials of Ri,i+1, · · · , Ri,d.
Efficiency. Compared with the plain sumcheck protocol in step 3(a) of Protocol 11, the prover costs extra O(1)
time to compute zkVPD.Commit and zkVPD.Open for Ri(g1, w) and O(log |C|) compute zkVPD.Commit
and zkVPD.Open for the mask polynomial in Protocol 12. Therefore, the total prover time is still O(|C|). The
verifier time is min{O(d log |C|+ d2), O(|C|)} while the proof size is also min{O(d log |C|+d2), O(|C|)}.
Combine multiple evaluations in zero knowledge. With low degree extensions of V̇0,i, . . . , V̇i−1,i and V̇i,
we modify Equation 4.10 to

i−1∑
k=0

αk,iV̇k,i(r
(k,i)) + α′

i−1,iV̇i−1,i(r
(i−1,i)′

)

=
i−1∑
k=0

αk,i

 ∑
x∈{0,1}si

C̃k,i(r
(k,i), x)V̇i(x)

+ α′
i−1,i

∑
x∈{0,1}si

C̃i−1,i(r
(i−1,i)′

, x)V̇i(x)+

i−1∑
k=0

αk,iZk,i(r
(k,i))

∑
w∈{0,1}

Rk,i(r
(k,i)
1 , w) + α′

i−1,iZi−1,i(r
(i−1,i)′

)
∑

w∈{0,1}
Ri−1,i(r

(i−1,i)′

1 , w)

=
∑

x∈{0,1}si ,w∈{0,1}

[
β̃(w, 1)V̇i(x)

(
i−1∑
k=0

αk,iC̃k,i(r
(k,i), x) + α′

i−1,iC̃i−1,i(r
(i−1,i)′

, x)
)

+

β̃(x⃗, 1⃗)
(

i−1∑
k=0

αk,iZk,i(r
(k,i))Rj,i(r

(k,i)
1 , w) + α′

i−1,iZi−1,i(r
(i−1,i)′

)Ri−1,i(r
(i−1,i)′

1 , w)
)]

,

(4.14)

The equation holds because V̇i agrees with Ṽi on the Boolean hypercube {0, 1}si , as Zi(z) = 0 for binary
inputs. To execute the second step, the prover commits to mask polynomials of R0,i, . . . , Ri−1,i using zkPC.
P and V then run the zero knowledge sumcheck protocol on Equation 4.14. At the end of the protocol, the
verifier receives evaluations of R0,i(r

(0,i)
1 , c), . . . , Ri−1,i(r

(i−1,i)
1 , c) on a random point c chosen by V for

the variable w. He opens R0,i(r
(0,i)
1 , c), . . . , Ri−1,i(r

(i−1,i)
1 , c) using the zkPC. Then V evaluates gi(r

(i)) as

before, computes all Zk,i(r
(k,i)), Zi−1,i(r

(i−1,i)′
), β(c, 1), β(r(i), 1⃗), shaves them off to obtain the evaluation

of V̇i(r
(i)). We have the following theorem.

Theorem 4.4.5. For every verifier V∗, there exists a simulator S such that given oracle access to V̇i(r
(i))

and V̇0,i(r
(0,i)), . . . , V̇i−1,i(r

(i−1,i)), V̇i−1,i(r
(i−1,i)′

), S is able to simulate the partial view of V∗ in the zero
knowledge sumcheck protocol on Equation 4.14.

Proof sketch. The completeness and the soundness inherits from the zero knowledge sumcheck protocol
and zkVPD. For zero knowledge, we combine the simulator S1 in zkVPD and the simulator S2 in the zero

4.5. IMPLEMENTATIONS AND EVALUATIONS 105

knowledge sumcheck protocol to construct the simulator S . Therefore, V only learns V̇i(r
(i)) at the end of the

protocol, which leaks no information about Ṽi because of the mask polynomail of Ri.
Efficiency. Compared with the plain sumcheck protocol in the second step, the prover costs extra O(i)
time to compute zkVPD.Commit and zkVPD.Open for i constant size polynomials of R0,i, . . . , Ri−1,i and
O(log |C|) compute zkVPD.Commit and zkVPD.Open for the mask polynomial in Protocol 12. Therefore,
the total prover time is O(|C|+ 1 + . . . + d) = O(|C|). The verifier time is min{O(d log |C|+ d2), O(|C|)}
while the proof size is also min{O(d log |C|+ d2), O(|C|)}.

As the second approach to combine multiple claims in Section 4.3.3 is better on all aspects, we focus on
building zero knowledge arguments using the second approach. The first approach can also be lifted to a
zero knowledge argument with similar ideas by applying a zero knowledge GKR protocol on circuit Ci in
Figure 4.1.

4.4.4 Putting Everything Together
Combining the zero knowledge variants of step 3(a) and 3(b) in Protocol 11 with the zkVPD scheme, we get a
zero knowledge argument protocol for general arithmetic circuits.

Theorem 4.4.6. For an input size n and a finite field F, let CF represent the set of general arithmetic circuits
of depth d on F, then there exists a zero knowledge argument for the relation

R = {(C, x; w) : C ∈ CF ∧ |x|+ |w| ≤ n ∧ C(x; w) = 1},

as defined in Definition 6.2.2. Moreover, using the polynomial commitment scheme (Definition 4.4.2)
in [ZXZS], for every (C, x; w) ∈ R, the running time of P is O(|C| + n log n). The running time of V is
min{O(|x|+log2 n+d log |C|+d2+T ′′), O(|C|)}, where T ′′ is the total time to compute all functions of ˜add

and ˜mult and all functions of gi(r
(i)) in the second step. The total proof size is min{O(d log |C|+d2), O(|C|)}.

In case d is polylog(|C|) and T ′′ is also polylog(|C|), the protocol is a succinct argument with succinct
verifier time.

Proof Sketch of Theorem 4.4.6. The correctness and the soundness follow from those of the three building
blocks, by Theorem 4.4.4, 4.4.5 and Definition 4.4.2.

To prove zero knowledge, consider a simulator S that calls the simulator S1 of zero knowledge sumcheck
given in Theorem 4.4.4 for step 1, the simulator S2 of combining multiply claims to one claim with zero
knowledge given in Theorem 4.4.5 for step 2 and the simulator S3 of zkVPD in Definition 4.4.2 for committing
and opening of all hiding polynomials as subroutines. Then S can simulate the partial view of every verifier
V∗ for any general arithmetic circuit C only given oracle access to x.

The complexity of our zero knowledge argument scheme follows from the efficency of Protocol 12 and
the extra complexity of applying zkVPD.Commit to the input layer demonstrated in [ZXZS].

4.5 Implementations and Evaluations
We fully implement our new interactive proof protocols for general arithmetic circuits and use them to build a
zero knowledge argument system for general arithmetic circuits. We name our new system Virgo++. The
implementation is in C++. There are around 1900 lines of code for Protocol 11 and 1600 lines for building
the arithmetic circuit to combine multiple evaluations into one (Protocol 10). We implement two variants

4.5. IMPLEMENTATIONS AND EVALUATIONS 106

Prover time (s) Verifier time (s) Proof size (KB)
29 211 213 29 211 213 29 211 213

d = 50
GKR 0.118 0.465 1.908 0.052 0.206 0.838 83 95 107

Our Scheme 1 0.043 0.154 0.576 0.013 0.042 0.151 280 397 535
Our Scheme 2 0.012 0.049 0.197 0.003 0.011 0.044 93 106 120

d = 75
GKR 0.244 0.973 3.954 0.100 0.404 1.608 129 147 166

Our Scheme 1 0.069 0.243 0.910 0.021 0.066 0.237 416 593 803
Our Scheme 2 0.019 0.075 0.304 0.004 0.017 0.066 168 188 208

Table 4.1: Comparison of our scheme 1, our scheme 2 and the original GKR on random circuits.

of combining multiple claims to one claim in step 3(b) of Protocol 11 as described in Section 4.3.3. One
is building the arithmetic circuit to make the reduction as shown in Figure 4.1 and the other is running the
sumcheck protocol on Equation 4.10. Our protocols work on any finite field, and we choose the extension
field F

p
2 for the Mersenne prime p = 261 − 1. This is the same as in [ZXZS], and we choose it so that our

interactive proof protocols can be compatible with the polynomial commitments in [ZXZS] to build zero
knowledge arguments. The choice of the finite field does not affect our comparison to the original GKR
protocol in the next Section. Our protocols provide 100+ bits of security. We plan to make our implementation
open-source.
Hardware. We ran all of the experiments on an AWS EC2 c5a.2xlarge instance with an AMD EPYC 7R32
CPU with 3.512Ghz, 8 cores and 16GB of RAM. Our current implementation is not parallelized and we only
utilize a single CPU core in the experiments. We report the average running time of 10 executions.

4.5.1 Comparing to the GKR Protocol for Layered Circuits
In this section, we compare the performance of our new protocols with the original GKR protocol. For a
fair comparison, we re-implement the GKR protocol for layered arithmetic circuits with the same field and
libraries in C++. We generate random general circuits with depth d = 50 and d = 75. We vary the number of
gates in each layer from 29 to 213. Our schemes can easily go beyond 213, but the original GKR protocol on
the corresponding layered circuits runs out of memory on our machine. We randomly sample the type of each
gate, input value and the wiring patterns. We execute our new protocols directly on these general circuits. We
refer the one using the arithmetic circuit to combine multiple claims to one claim in Protocol 10 as scheme
1 and the one using the sumcheck protocol on Equation 4.10 to combine multiple claims for step 3(b) in
Protocol 11 as scheme 2. We then transform the general circuits to layered circuits by relaying necessary
values layer by layer, and execute the original GKR protocol on the layered circuits. We report the prover
time, verifier time and proof size in Table 4.1.

First, when we transform the general circuits to layered circuits, the size of the circuit increases by 13×
for d = 50 and by 19× for d = 75. This roughly agrees with the blowup of O(d|C|) and justifies the high
overhead of transforming general circuits to layered circuits. As shown in Table 4.1, when the depth is 50, the
prover time of our scheme 1 is faster by 2-4× than the original GKR protocol, while our scheme 2 is faster by
9-10×. When the depth is 75, the speedup increases to 3-5× for scheme 1 and 12-13× for scheme 2. Finally,

4.5. IMPLEMENTATIONS AND EVALUATIONS 107

the prover time in all schemes grows linearly with the size of the circuit, and is very efficient in practice. The
cost per gate in scheme 2 is only 0.49µs.

To further justify the improvement, the prover of the original GKR protocol for layered circuits takes
around 21 field multiplications per gate. In the implementation of our new protocols, the cost per gate of the
prover is around 120 field multiplications for scheme 1 and around 27 field multiplications for scheme 2. The
average cost per gate of our scheme 2 is only 1.29× of the original GKR protocol. In other words, as long
as the layered circuit has 22% or more relay gates, it is faster to remove those relay gates and run our new
protocol of scheme 2 on the corresponding general circuit. The speedup in our experiments above matches
the analysis here.

Our protocols introduce an overhead on the proof size compared to the original GKR protocol. In
particular, the proof size of our first scheme is 3-5× larger than the GKR protocol, matching the log |C|
overhead in the complexity of the proof size. However, the proof size of our second scheme is very close to
the GKR protocol. It is only 1.1-1.3× larger, showing that this variant reduces the proof size significantly
upon scheme 1. In fact, this overhead is introduced by the second sumcheck protocol to combine multiple
points. The term d2 in the complexity has minimal impact on the total proof size. In all cases, the proof size
is succinct. The largest proof size is still less than 1MB and the proof size is always much smaller than the
size of the circuit.

As the circuits are generated randomly, the verifier time in all schemes are linear in the circuit size.
Therefore, the comparisons on the verifier time of the three protocols are similar to the comparisons on the
prover time. As shown in Table 4.1, our scheme 1 is faster by 4-6× than the original GKR protocol on circuits
with d = 50, and 5-7× faster for d = 75. Our scheme 2 is 17-19× faster on circuits with d = 50, and 23-25×
faster for d = 75. Therefore, we observe in the experiments that our scheme 2 improves the performance of
scheme 1 on all the aspects on random circuits, proving our statement in Section 4.3.3. Compared to the
original GKR protocol, our scheme 2 is much faster on the prover time and the verifier time, and incurs only a
small overhead on the proof size.

4.5.2 Evaluations of Our Zero Knowledge Argument
In this section, we present the performance of our new zero knowledge argument for general arithmetic
circuits, as described in Section 4.4. We use the zero knowledge polynomial commitment scheme in [ZXZS]
to lift our new interactive proofs to zero knowledge arguments. We import the open-source code of zero
knowledge polynomial commitment scheme in [Vira]. We also compare our zero knowledge proof system
with Spartan [Spa].

We do experiments on the benchmark of computing the hash functions of SHA-256. For our protocol, we
modify the circuit generation file of [Hyr; Liba] to obtain the general arithmetic circuit for SHA-256. In fact,
the code first generates the general circuit of SHA-256 and then pads it to the layered circuit, and our new
protocol makes the circuit design even simpler. The circuit contains other types of gates such as subtraction,
bit decomposition and reconstruction. We modify our protocols to support all these types of gates. Each
SHA-256 circuit has 99,949 gates in total (around 217), with the input size of 7,226 (around 213). In the
experiments, we vary the number of SHA-256 from 1 to 64.

Figure 4.2 shows the performance of our system (red line with circle markers). As shown in the figure,
Virgo++ achieves good efficiency in practice. It only takes 0.15s to generate the proof of one SHA-256 circuit,
and 0.014s to verify. In the largest instance of 64 hashes, our system takes 10.8s to generate the proof, the
verifier time is 0.016s and the proof size is 209KB. The verifier time only grows slightly with the number

4.5. IMPLEMENTATIONS AND EVALUATIONS 108

1 2 4 8 16 32 64
#SHA256

10−1

100

101

pr
ov

er
 ti

m
e

(s
)

Spartan

Virgo++

(a) P time

1 2 4 8 16 32 64
#SHA256

10−2

10−1

100

ve
rif

ie
r t

im
e

(s
)

Spartan

Virgo++

(b) V time

1 2 4 8 16 32 64
#SHA256

101

102

300

pr
oo

f s
ize

 (K
B) Spartan

Virgo++

(c) Proof size

Figure 4.2: Comparison of Virgo++ and Spartan.

of hashes, as the verifier time of our new GKR protocol is only linear in the size of a single hash in the
data-parallel circuit, and logarithmic in the size of the entire circuit.
Comparing to Spartan. We then compare the performance of our system with Spartan [Set20a], which also
combines the sumcheck protocol and the polynomial commitments to construct zero knowledge arguments
on R1CS. As described in [Set20a, Section 5], the sumcheck protocol is executed on a equation defined by
the extended witness z and the matrices A, B, C in an R1CS instance. The size of the extended witness
roughly maps to the number of multiplication gates in a circuit, and the number of nonzero elements in the
matrices roughly maps to the number of addition gates. As Spartan is also using the linear time sumcheck
protocol proposed in [XZZPS19b], the prover time of the sumcheck protocol is expected to be similar to the
sumcheck protocol in our zero knowledge argument (O(n) in Spartan, where n is the number of nonzeros
in the matrices [Set20a], and O(|C|) in Virgo++). The major improvement of Virgo++ comes from the
polynomial commitment part. In our scheme, the polynomial commitment is only on the witness of the circuit,
while in Spartan, the polynomial commitment is on the extended witness, which is always larger than the size
of the real witness of the circuit. The improvement comes at the cost of larger proof size. In our scheme, we
reduce the correctness of the output layer by layer to the real witness and the proof size is linear in the depth,
while in Spartan, the sumcheck is executed on one “layer” to check the correctness of the extended witness.

We demonstrate the comparison in our experiments. We download the open-source code of Spartan
from [Spa]. We use the highly-optimized R1CS for SHA-256 generated by jsnark [Jsnb]. Each SHA-256
has 25,656 (around 215) constraints and 25,546 (around 215) witnesses. The number of nonzero elements is
87,689 in A, 54,968 in B and 78,232 in C. Note that the size of the extended witness is 3.5× larger than
the witness of our general circuit for the same function of SHA-256, while the number of nonzeros in the
matrices is roughly the same as the size of the circuit, matching our analysis above. As the open-source code
of Spartan only works on randomly generated R1CS instances, we generate random R1CS instances with
exactly the same number of constraints, witnesses and nonzero elements as SHA-256.

Figure 4.2 shows the performance of Spartan (blue line with star markers). As shown in the figure, the
prover time of Virgo++ is 1.2–1.8× faster than Spartan. The verifier of Spartan grows linearly with the
number of hashes and is significantly slower than Virgo++. We believe its verifier time can also be made
sublinear for data-parallel circuits, but it is not considered in [Set20a] and its implementation. In contrast, the
proof size of Virgo++ is 4.1–7.9× larger than Spartan. Other than the reason explained above, this is also
partly because we are using the polynomial commitment in [ZXZS] based on interactive oracle proofs (IOP).
It is known that IOP-based schemes have larger proof size compared to discrete-log based schemes including
the one used in Spartan, but are plausibly post-quantum secure.

4.5. IMPLEMENTATIONS AND EVALUATIONS 109

The evaluations of Spartan are in the NIZK mode. There is a SNARK mode of Spartan that has sublinear
verifier time in the holographic model, but the prover time is 9× slower. Finally, as described in Section 5.1.1,
our new GKR protocol can also be used for delegation of computations. Spartan does not work in this setting
as the size of the extended witness is always asymptotically the same as the size of the computation and the
verifier does not save anything by delegating the computation using Spartan. In a recent manuscript [SL20],
the proof size of Spartan is improved from square-root to logarithmic in the size of the R1CS instance, but the
prover time is 3.8× slower. We do not include the comparison as its implementation is not available.

110

Chapter 5

Zero Knowledge Proofs
for Decision Tree Predictions and Accuracy

Machine learning has become increasingly prominent and is widely used in various applications in practice.
Despite its great success, the integrity of machine learning predictions and accuracy is a rising concern. The
reproducibility of machine learning models that are claimed to achieve high accuracy remains challenging, and
the correctness and consistency of machine learning predictions in real products lack any security guarantees.

In this paper, we initiate the study of zero knowledge machine learning and propose protocols for zero
knowledge decision tree predictions and accuracy tests. The protocols allow the owner of a decision tree model
to convince others that the model computes a prediction on a data sample, or achieves a certain accuracy on a
public dataset, without leaking any information about the model itself. We develop approaches to efficiently
turn decision tree predictions and accuracy into statements of zero knowledge proofs. We implement our
protocols and demonstrate their efficiency in practice. For a decision tree model with 23 levels and 1,029
nodes, it only takes 250 seconds to generate a zero knowledge proof proving that the model achieves high
accuracy on a dataset of 5,000 samples and 54 attributes, and the proof size is around 287 kilobytes.

This work was previously published in [ZFZS20].

5.1. INTRODUCTION 111

5.1 Introduction
Machine learning has seen a great development over the past years, leading to important progress in various
research areas such as computer vision, data mining, and natural language processing. Despite the great
success, there are many security concerns of machine learning techniques, one of which is the integrity of
machine learning models and their predictions. Newly developed machine learning models are claimed to
achieve high accuracy, yet it is challenging to reproduce the results and validate these claims in many cases.
In addition, even if a high quality model exists, it may not be used consistently in real-world products. For
example, an online service for image classification claiming to use a particular model may simply return a
random answer, and there is no guarantee on the integrity of the result for the clients. The authors in [Bot]
report an extreme case where a company claims to use machine learning techniques to build robots delivering
food automatically, yet the robots are actually operated by remote workers.

These scenarios urge the need for a solution to ensure that the owner indeed has a valid machine learning
model, and it is used to compute the predictions correctly or it achieves high accuracy on public datasets.
A naïve approach is to release the machine learning models publicly. However, it completely sacrifices the
privacy of the machine learning models. Machine learning models are becoming important intellectual
properties of the companies and cannot be shared publicly for validation. Releasing the machine learning
models as black-box testing software does not address the issues as well. For example, in the machine learning
service scenarios above, the customers can just take the black-box software away without paying. Even worse,
recent research shows that one can infer sensitive information or reconstruct the machine learning models
with only black-box accesses [FJR15].

In this paper, we propose to address the problem of machine learning integrity using the cryptographic
primitive of zero knowledge proof (ZKP). A zero knowledge proof allows a prover to produce a short proof π
that can convince any verifier that the result of a public function f on the public input x and secret input w of
the prover is y = f(x, w). w is usually referred as the witness or auxiliary input. Zero knowledge proofs
guarantee that the verifier rejects with overwhelming probability if the prover cheats on computing the result,
while the proof reveals no extra information about the secret w beyond the result.

During the last decade, there has been great progress on generic ZKP schemes that are nearly practical.
They allow proving arbitrary computations modeled as arithmetic circuits. In principle, we can apply these
general-purpose ZKP schemes to address the problem of machine learning integrity. The prover proves that
she knows a secret machine learning model that computes the prediction of an input or achieves the claimed
accuracy on a public dataset, without leaking any additional information about the machine learning model.
The proof is succinct, meaning that it is much smaller than the machine learning model and the prediction
function. However, it is particularly challenging to construct efficient ZKP for machine learning predictions
and accuracy tests because of the high overhead on the proof generation time. Because of these challenges,
ZKP schemes for machine learning computations have not been widely studied in the literature.
Our contributions.. In this paper, we initiate the study of zero knowledge machine learning predictions
and accuracy, and propose several efficient schemes for zero knowledge decision trees. We also extend our
techniques with minimal changes to support variants of decision trees, including regression, multivariate
decision trees and random forests. Decision trees and random forests play important roles in various
applications in practice, because of their good explainability and interpretability: the predictions can be
explained by meaningful rules and conditions. They are widely used for product recommendations, fraud
detection and automated trading in financial applications. Our concrete contributions are:

• Zero knowledge decision tree predictions. First, we propose an efficient protocol for zero knowledge

5.1. INTRODUCTION 112

decision tree predictions. After a setup phase to commit to a decision tree in linear time to the size of the
decision tree, the prover time is only proportional to the length of the prediction path h, and the number of
attributes d of the data. We apply several critical techniques in the literature of ZKP for computations in the
random access memory (RAM) model in non-black-box ways, and translate the decision tree prediction to a
small circuit of size O(d + h).

• Zero knowledge decision tree accuracy. Second, we generalize our protocol to prove the accuracy of a
decision tree in zero knowledge. We develop two important optimizations to bound the number of hashes
in our ZKP backend to be exactly the number of nodes N in the decision tree. It is independent of the
number of data samples to test, and is much less than 2h if the decision tree is unbalanced.

• Implementation and evaluations. Finally, we fully implement our protocols and evaluate their performance
on several real-world datasets. Notably, for a large decision tree with 23 levels and 1,029 nodes, it only
takes 250s to generate a proof for its accuracy on a testing dataset with 5,000 samples and 54 attributes.
The proof size is 287KB and the verification time is 15.6s.

5.1.1 Related Work
Zero knowledge proofs were introduced by Goldwasser et al. in [GMR89] and generic constructions
based on probabilistically checkable proofs were proposed in the seminal work of Kilian [Kil92] and
Micali [Mic00]. In recent years there has been significant progress in efficient ZKP protocols and systems.
Categorized by their underlying techniques, there are succinct non-interactive argument of knowledge
(SNARK) schemes [PHGR13; BSCGTV; BFRSBW; BSCTV14; Cos+; WSRBW15; FFGKOP16; Gro16a],
discrete-log-based schemes [Gro09; BG12; BCCGP16; BBBPWM], hash-based schemes [BCGGHJ17],
interactive oracle proofs (IOP) [AHIV17; BSCRSVW19; BSBHR19; ZXZS] and interactive-proof-based
schemes [ZGKPP17c; ZGKPP17a; WTSTW18; XZZPS19a]. Their security relies on different assumptions
and settings, and they provide trade-offs between prover time and proof size. In our construction, we use the
ZKP scheme proposed in [BSCRSVW19], named Aurora, as our backend because of its fast prover time and
good scalability. The proof size is relatively large compared to other schemes. Please refer to [WTSTW18;
XZZPS19a; ZXZS] for more details on the performance and comparisons of different ZKP schemes.

Most ZKP schemes model the computations as arithmetic circuits, while decision tree predictions are
naturally in the RAM model with comparisons and conditional branching. Several papers [BSCGTV; BSCTV;
WSRBW15; ZGKPP18; BCGJM18] proposed ZKP schemes for RAM programs. We use some of their
techniques in our constructions, without going through the heavy machinery of RAM-to-circuit reductions.

Zero knowledge proofs for machine learning applications have not been studied extensively before.
In [GGG17], Ghodsi et al. proposed a system named SafetyNet to delegate neural network predictions
to a cloud server. It assumes that the verifier has the neural network and guarantees the soundness of the
predictions. The scheme does not support witness from the prover, and there is no notion of zero knowledge.
In [Zha+19], Zhao et al. proposed to use SNARK to validate neural network predictions. The prover commits
to the values of all intermediate layers, and the verifier validates one layer randomly with a SNARK proof.
The scheme does not provide negligible soundness. It also justifies the challenge of the overhead on the
prover time as we mentioned in the introduction, as it is too expensive to apply SNARK to the whole machine
learning model.

Finally, there is a rich literature on privacy-preserving decision tree predictions and training using secure
multiparty computations (MPC), oblivious RAM (ORAM) and fully homomorphic encryptions (FHE) [VC05;

5.2. PRELIMINARIES 113

TKK19; BPTG15]. We note here that both the focus and the techniques of these schemes are quite different
from zero knowledge proofs. These schemes primarily guarantee the privacy of the data during training and
predictions. They do not provide integrity of the results and the succinctness of the communication. The
settings and applications are also different from our zero knowledge decision trees.

5.2 Preliminaries
We use negl(·) : N → N to denote the negligible function, where for each positive polynomial f(·),
negl(k) < 1

f(k) for sufficiently large integer k. Let λ denote the security parameter. Let [m] denote the set of
{1, 2, · · · , m}. “PPT" standards for probabilistic polynomial time. We use bold letters x, y, z to represent
vectors, and x[i] denote the i-th element in vector x.

5.2.1 Zero-knowledge Arguments
An argument system for an NP relationship R is a protocol between a computationally-bounded prover P
and a verifier V . At the end of the protocol, V is convinced by P that there exists a witness w such that
(x; w) ∈ R for some input x. We focus on arguments of knowledge which have the stronger property that if
the prover convinces the verifier of the statement validity, then the prover must know w. We use G to represent
the generation phase of the public parameters pp. Formally, consider the definition below, where we assume
R is known to P and V .

Definition 5.2.1. LetR be an NP relation. A tuple of algorithm (G,P,V) is a zero-knowledge argument of
knowledge forR if the following holds.

• Completeness. For every pp output by G(1λ), (x; w) ∈ R and π ← P(x, w, pp),

Pr[V(x, π, pp) = 1] = 1

• Knowledge Soundness. For any PPT prover P∗, there exists a PPT extractor E such that given the access
to the entire executing process and the randomness of P∗, E can extract a witness w such that pp← G(1λ),
π∗ ← P∗(x, pp) and w ← EP∗

(pp, x, π∗), the following probability is negl(λ):

Pr[(x; w) /∈ R ∧ V(x, π∗, pp) = 1]

• Zero knowledge. There exists a PPT simulator S such that for any PPT algorithm V∗, (x; w) ∈ R, pp
output by G(1λ), it holds that

View(V∗(pp, x)) ≈ SV∗
(x)

We say that (G,P,V) is a succinct argument system if the total communication between P and V (proof size)
is poly(λ, |x|, log |w|).

In the definition of zero knowledge, View(V∗(pp, x)) denotes the veiw the verifier sees during the
execution of the interactive process with P while SV∗

(x) denotes the view generated by S given input x and
transcript of V∗, and ≈ denotes two distributions perfect indistinguishable. This definition is commonly used
in existing transparent zero knowledge proof schemes [AHIV17; BBBPWM; WTSTW18; BSCRSVW19].

5.3. ZERO KNOWLEDGE DECISION TREE 114

5.2.2 Our Zero-knowledge Argument Backend
With the recent progress on efficient zero knowledge proofs(ZKP) protocols, there are several general purpose
ZKP systems with different trade-offs on the prover time, the proof size and the verification time. In our
construction and implementation, we aim to optimize for fast prover time and to scale to large decision trees.
Therefore, after careful comparisons among all existing ZKP systems, we choose the scheme named Aurora
proposed in [BSCRSVW19] as the ZKP backend in our zero knowledge decision tree construction. We state
its properties in the following theorem. Note that our construction is also compatible with other ZKP systems.

Theorem 5.2.2. [BSCRSVW19]. Let λ be the security parameter, for a finite field F and a family of layered
arithmetic circuit CF over F, there exists a zero knowledge argument of knowledge for the relation

R = {(C, x; w) : C ∈ CF ∧ C(x; w) = 1},

as defined in Definition 6.2.2, where x is the public input and w is the auxiliary input(private to the prover) to
the circuit C.

Moreover, for every (C, x; w) ∈ R, the running time of P is O(|C| log |C|) field operations. The running
time of V is O(|C|) and the proof size is O(log2 |C|), where |C| is the number of arithmetic gates in the
circuit C.

Aurora has no trusted setup. Its security is proven in the random oracle model, and is plausibly
post-quantum secure. It can be made non-interactive using Fiat-Shamir [FS] in the random oracle model.

In addition, in order to build our zero knowledge decision tree scheme, we require an additional algorithm
of the general purpose ZKP protocol to commit the witness. This is formalized as “Commit-and-Prove”
in [CFQ], and is naturally supported by Aurora and most of ZKP systems. We denote the algorithm as
commw ← Commit(w, pp). It is executed after G and before P , and V additionally takes commw as an input.
It satisfies the extractability of commitment. Similar to the extractability in Definition 6.2.2, there exists a
PPT extractor E , given any tuple (pp, x, comm∗

w) and the executing process of P∗, it could always extract
a witness w∗ such that comm∗

w ← Commit(w∗, pp) except for the negligible probability in λ. Formally
speaking, comm∗

w = Commit(EP∗
(pp, x, comm∗

w), pp).

5.3 Zero Knowledge Decision Tree
In this section, we present our main construction of zero knowledge decision tree predictions. We first
introduce the background on decision trees. Then we formally define the notion of zero knowledge decision
tree predictions, and present our protocol with the security analysis.

5.3.1 Decision Tree
Decision tree is one of the most commonly used machine learning algorithms. It performs particularly well
for classification problems, and has good explainability and interpretability. Therefore, it is widely deployed
in applications such as product recommendations, fraud detection and automated trading.

For simplicity, we focus on binary decision trees for classification problems in our presentation, but our
techniques can be generalized naturally to decision trees with higher degrees, decision trees for regression
problems, multivariate decision trees and random forests with small changes. We present these variants in

5.3. ZERO KNOWLEDGE DECISION TREE 115

Section 5.5.2. In a decision tree T, each intermediate node contains an attribute, each branch represents
a decision and each leaf node denotes an outcome (categorical or continues value). More formally, each
internal node v has an associated attribute index v.att from the set [d] of d attributes, a threshold v.thr and
two children v.left and v.right. Each leaf node u stores the classification result u.class. Each data sample is
represented as a size-d vector a of values corresponding to each attribute. The algorithm of decision tree
prediction is shown in Algorithm 14. It starts from the root of T. For each node of v in T, it compares
a[v.att] with v.thr, and moves to v.left if a[v.att] < v.thr, and v.right otherwise. Eventually, the algorithm
reaches a leaf node u and the result of the prediction is u.class.

To train a decision tree, given a training dataset, the decision tree is obtained by splitting the set into
subsets from the root to the children. The splitting is based on some splitting rules by maximizing the certain
objective function such as the information gain and the splitting process is repeated on each derived subset in a
recursive manner called recursive partitioning. The recursion will halt when the subset of a node has the same
classification, or when splitting can not increase the value of the objective function. In our scheme, we only
consider proving predictions given the pretrained decision tree, and the training process is out of the scope.

5.3.2 Zero Knowledge Decision Tree Prediction
Motivated by the applications mentioned in the introduction, in our model, the prover owns a pre-trained
decision tree. The prover commits to the decision tree first, and then later the verifier queries for the prediction
of a data sample. The prover generates a proof together with the result to convince the verifier its validity.

Formally speaking, let F be a finite field, T be a binary decision tree of height h and N nodes (N ≤ 2h−1).
Suppose the test dataset is D ⊆ Fd, in which each data point has d features. So for each data a in D,
a ∈ Fd. Let [M] be the set of all target classifications. We treat the decision tree algorithm as a mapping
T : Fd → [M]. For a data point a ∈ D, T(a) ∈ [M] is the prediction for the classification of a using the
decision tree algorithm on T. A zero-knowledge decision tree scheme (zkDT) consists of the following
algorithms:

• pp← zkDT.KeyGen(1λ): given the security parameter, generate the public parameter pp.

Algorithm 14 Decision Tree Prediction

Input: Decision tree T, data sample a
Output: classification ya

1: v := T.root
2: while v is not a leaf node do
3: if a[v.att] < v.thr then
4: v := v.left
5: else
6: v := v.right
7: end if
8: end while
9: return v.class

5.3. ZERO KNOWLEDGE DECISION TREE 116

• commT ← zkDT.Commit(T, pp, r): commit the decision tree T with a random point r generated by the
prover.

• (ya, π)← zkDT.Prove(T, a, pp): given a data a, run the decision tree algorithm to get ya = T(a) and the
corresponding proof π.

• {0, 1} ← zkDT.Verify(commT, h, a, ya, π, pp): validate the prediction of a given ya and π obtained from
the prover.

In our scheme, we assume the height of the decision tree (or an upper bound) is known to both parties.
commT is the commitment of the decision tree. ya denotes the class of a returned by the decision tree. And
π denotes the proof generated by the prover. {0, 1} represents reject or accept output by the verifier after
seeing the classification and the proof.

Definition 5.3.1. We say that a scheme is a zero knowledge decision tree if the following holds:

• Completeness. For any decision tree T and a data point a ∈ Fd, pp← zkDT.KeyGen(1λ), commT ←
zkDT.Commit(T, pp, r), (ya, π)← zkDT.Prove(T, a, pp), it holds that

Pr [zkDT.Verify(commT, h, a, ya, π, pp) = 1] = 1

• Soundness. For any PPT adversary A, the following probability is negligible in λ:

Pr

pp← zkDT.KeyGen(1λ)

(T∗, commT∗ , a, y∗
a , π∗)← A(1λ, pp, r)

commT∗ = zkDT.Commit(T∗, pp, r)
zkDT.Verify(commT∗ , h, a, y∗

a , π∗, pp) = 1
T(a) ̸= y∗

a

• Zero Knowledge. For security parameter λ, pp← zkDT.KeyGen(1λ), for a decision tree T with h levels,

PPT algorithm A, and simulator S = (S1,S2), consider the following two experiments:

RealA,T(pp):
1. comT← zkDT.Commit (T, pp, r)
2. a←A(h, comT, pp)
3. (ya, π)← zkDT.Prove(T, a, pp)
4. b←A(comT, h, a, ya, π, pp)
5. Output b

5.3. ZERO KNOWLEDGE DECISION TREE 117

IdealA,SA(pp, h):

1. com← S1(1λ, pp, h)
2. a← A(h, com, pp)
3. (ya, π)←SA

2 (com, h, a, pp), given oracle access to ya = T(a).
4. b← A(com, h, a, ya, π, pp)
5. Output b

For any PPT algorithm A and all decision tree T with the height of h, there exists simulator S such that

|Pr[RealA,T(pp) = 1]− Pr[IdealA,SA(pp, h) = 1]| ≤ negl(λ).

Intuition of the specific construction of zkDT: .given the algorithm of decision tree and the definition of the
zero knowledge decision tree protocol(zkDT), we will focus on the specific construction of our zkDT scheme
in the subsequent subsections. The general idea of the construction is as follows. In the beginning, the prover
sends the committment of a decision tree T, commT, to the verifier. After receiving a from the verifier, the
prover computes ya and the corresponding witness w for proving ya = T(a), then sends ya to the verifier. We
treat it as some relationshipR = ((ya, a, commT); w) in Definition 6.2.2. Then the verifier and the prover
invoke the backend zero-knowledge proofs protocol in subsection 5.2.2 to verify the relationshipR without
leaking any information of T except for ya.

5.3.3 Authenticated Decision Tree
We start with the scheme to commit to a decision tree. A naive approach to do so is to simply compute the
cryptographic hash of the whole decision tree. However, later when the prover wants to prove the prediction
of a data sample using the committed decision tree, the whole decision tree has to be included as the witness
of the zero knowledge proof, while only the path from the root to the leaf node of the output is relevant for the
prediction. This would introduce a high overhead to recompute the hash of the whole tree.

One could also build a Merkle hash tree [Mer] on top of all the nodes in the decision tree (with a predefined
order). Then later in zkDT.Prove, the prover associates each node in the prediction path with a valid Merkle
tree proof. The overhead of this approach will be O(h log N) hashes in the zero knowledge proof backend to
validate the all nodes in the prediction path. Instead, we propose to leverage the rich literature of authenticated
data structures [Tam03]. We propose to build authenticated decision trees (ADT) directly on the data structure
of decision trees so that proving a prediction path only relies on the information stored in the nodes.
Construction of ADT: . Figure 5.1 illustrates our construction of ADT. The construction is very similar
to Merkle hash tree, with the difference that the data stored in an intermediate node of the decision tree is
also included in the computation of its hash, together with the hashes of the two children. In particular, each
node v contains the attribute v.att, the threshold v.thr, the pointers to the children v.left and v.right, and the
hashes of its children. In the real implementation, we use different identities in [N] to represent the nodes in
T. Therefore, v.left and v.right are identities of the left child and right child of v respectively.

The verification algorithm is also similar to that of the Merkle hash tree. To validate the prediction for a
data sample, the proof includes the prediction path from the root to the leaf node that outputs the prediction
result. In addition, the proof also includes the hashes of the siblings of the nodes along the prediction path.

5.3. ZERO KNOWLEDGE DECISION TREE 118

comADT = Hash(lc, r)

Hash(lc, rc, v0, v0.thr, v0.att, v0.left, v0.right)

Hash(lc, rc, v1, v1.thr, v1.att, v1.left, v1.right)

...

Hash(vN−1, vN−1.class) Hash(vN, vN.class)

Hash(lc, rc, v2, v2.thr, v2.att, v2.left, v2.right)

...

r

Figure 5.1: Committing algorithm of ADT scheme, lc and rc represent the left child value and the right
child value respectively.

With the proof, the verifier can recompute the root hash and compare it with the commitment. In this way, to
prove the validity of a prediction, the verification only computes O(h) hashes. Note that in our construction
of zkDT, the verification of ADT is never executed by the verifier directly. As we will show in the next
section, the prover further proves that there exists such a valid prediction path through a general purpose zero
knowledge proof. Because of this design, the verification of ADT does not have to be zero knowledge.

The algorithms of our ADT are in the following. Note that in order to prove the zero knowledge property
of the scheme later, the commitment has to be randomized and we add a random point r to the root of the
decision tree and use the hash of the root concatenated with r as the final commitment, as shown in Figure 5.1.
Moreover, for the purpose of our application, the ADT does not have to support dynamic insertions and
deletions, which simplifies the construction significantly.

• pp← ADT.KeyGen(1λ): Sample a collision resistant hash function from the family of hash functions.

• commADT ← ADT.Commit(T, pp, r): compute hashes from leaf nodes to the root of T with the random
point r as shown in Figure 5.1.

• πADT ← ADT.Prove(T, Path, pp): given a path in T, πADT contains all siblings of the nodes along the
path Path and the randomness r in Figure 5.1.

• {0, 1} ← ADT.Verify(commADT, Path, πADT, pp): given Path and πADT, recompute hashes along Path
with πADT as the same progress in Figure 5.1 and compare the root hash with commADT. Output 1 if they
are the same, otherwise output 0.

Given these algorithms and the construction, we have the following theorem:

Theorem 5.3.2. Let T be a decision tree with h levels and N nodes, our ADT scheme satisfies the following
properties.

5.3. ZERO KNOWLEDGE DECISION TREE 119

com!

Permutation check of
𝒂 and %𝒂

𝒂 =
1, 𝒂[1] , … , (𝑑, 𝒂[𝑑])

+𝒂 =
𝑖!, 𝒂[𝑖!] , … , (𝑖" , 𝒂[𝑖"])

path𝒂 = 𝑣", 𝑣#, … 𝑣$ 𝑦𝒂

Decision tree prediction:
While 𝑣# is not a leaf node do
1. 𝑖# = 𝑣# . att
2. if 𝒂[𝑖#] < 𝑣# . thr

then 𝑣#$% = 𝑣# . left;
else 𝑣#$%= 𝑣# . right;

3. 𝑗 = 𝑗 + 1;

Path validation of ADT

𝑆𝑖𝑏𝑠 = 𝐻", 𝐻#, ⋯ , 𝐻$ 𝑟

𝑦𝒂 = 𝑣# . class

Figure 5.2: Zero knowledge decision tree prediction. Public inputs are in black, secret witness is in red,
and extended witness for efficiency is in blue.

• Completeness: if pp ← ADT.KeyGen(1λ), Path ∈ T, commADT ← ADT.Commit(T, pp, r) and
πADT ← ADT.Prove(T, Path, pp), then

Pr[ADT.Verify(commADT, Path, πADT, pp) = 1] = 1

• Soundness: for any PPT adversaryA, if pp← ADT.KeyGen(1λ), commADT← ADT.Commit(T, pp, r),
π∗

ADT ← A(T, Path, pp) but Path /∈ T, then

Pr[ADT.Verify(commADT, Path, π∗
ADT, pp) = 1] ≤ negl(λ)

• Hiding: pp← ADT.KeyGen(1λ), for any decision tree T with h levels, any PPT algorithmA, there exists
a simulator SADT: let commADT = ADT.Commit(T, pp, r) and comm′

ADT = SADT(pp, h, r),

|Pr[A(commADT, pp) = 1]− Pr[A(comm′
ADT, pp) = 1]| ≤ negl(λ)

In addition, the time of ADT.Commit is O(N), and the prover time, verification time and the proof size are
all O(h).

Proof Sketch: The completeness of our ADT scheme is straight forward. The soundness holds because of
the collision-resistance of the hash function. To prove the hiding property, we can construct a simulator
SADT(pp, h, r) = ADT.Commit(⃗0h, pp, r), where 0⃗h represents a decision tree with h levels and all nodes
containing only 0 strings. It is indistinguishable from the real algorithm because the verifier does not know r,
which is uniformly random. We omit the formal proofs here.

5.3.4 Proving the validity of the prediction
Following the algorithm to commit to a decision tree, we further present our protocol to prove the correctness
of the prediction. A natural idea is to invoke ADT.P and ADT.V directly to obtain the valid prediction

5.3. ZERO KNOWLEDGE DECISION TREE 120

path, and check the prediction in Algorithm 14. However, this is not zero knowledge as the verifier would
learn a path in the decision tree. We propose to apply an additional zero knowledge proof protocol on
top of this validation. As mentioned in the previous section, the prover instead proves that there exists a
valid prediction path such that ADT.V would accept, and the prediction algorithm is correctly executed. By
applying generic zero knowledge proofs on this relationship, the prediction path and the hashes of the siblings
remain confidential as the witness, and the output is merely 1 or 0, i.e. all the checks are satisfied or not. In
this way, the protocol is both sound and zero knowledge.

However, efficiently designing zero knowledge proof protocols for such an relationship turns out to be
non-trivial. This is because every node v on the prediction path for a data sample a will access one attribute
from a indexed by v.att for comparison, which is a classical random access operation. Most generic zero
knowledge proof protocols represent computations as arithmetic circuits. Implementing the decision tree
prediction algorithm as an arithmetic circuit introduces a high overhead on the prover time. In particular,
each comparison in an internal node leads to an overhead of O(d), and the overall size of the circuit is
O(dh). There are a few RAM-based generic zero knowledge proof protocols [BSCGTV; BSCTV; ZGKPP18;
BCGJM18] in the literature that represent computations as RAM programs. However, though asymptotically
the prover time only depends on the running time of the RAM program, the concrete overhead is very high
(thousands of arithmetic gates per step of the program). Instead, in our construction, we apply some of the
ideas in these work in a non-black-box way to design a specific and efficient zero knowledge proof protocol
for the validation of decision tree predictions.
Reducing decision tree prediction circuit efficiently.. Figure 5.2 illustrates our design to efficiently reduce
the validity of the prediction using a committed decision tree to an arithmetic circuit. As shown in the figure,
the public input (in black) of the circuit consists of the data sample a, the commitment of the decision tree
comT and the prediction result ya. The secret witness (in red) from the prover includes the prediction path
patha, and the randomness r used in the commitment of ADT (for technical reasons to prove zero knowledge).
In order to improve the efficiency, the prover further inputs the siblings of nodes on the prediction path, and the
permutation ā of the data sample a ordered by v.att of the nodes on the prediction path as part of the witness
(in blue). The purpose of these “extended” witness will be explained below. The whole circuit consists of
three parts: (1) validating the prediction algorithm of the decision tree, (2) checking the permutation between
a and ā, and (3) checking the validity of the prediction path in the committed decision tree. Finally, the output
of the circuit is either 1 or 0, denoting either all the conditions are satisfied or some check fails.
Decision tree prediction.. The first component of the circuit is to validate the prediction algorithm.
With the help of ā, this can be efficiently implemented using an arithmetic circuit. In particular, we
slightly modify the representation of a and ā to be index-value pairs, i.e., a = (1, a[1]), . . . , (d, a[d]) and
a = (i1, a[i1]), . . . , (id, a[id]). Under this representation, the circuit simply checks that for every internal
node vj on the prediction path (j = 1, . . . , h− 1), (1) vj .att = ij , and (2) if a[ij] < vj .thr, vj+1 = vj .left,
otherwise vj+1 = vj .right. As we explained in the previous subsection, v, v.left, v.right ∈ [N]. The equality
tests and comparisons are computed using standard techniques in the literature of circuit-based zero knowledge
proof with the help of auxiliary input [PHGR13]. Finally, the circuit checks if ya = vh.class. The circuit
outputs 1 if all the checks pass, and outputs 0 otherwise. The total number of gates in this part is O(d + h),
which is asymptotically the same as the plain decision tree prediction in Algorithm 14.

Note that if h < d, which is usually true in practice, the circuit only checks the indices of the first h− 1
pairs in ā. The rest of the indices are arbitrary, as long as ā is a permutation of a. It does not affect the
correctness or the soundness of the scheme, as those attributes are not used for prediction anyway. In addition,
concrete decision trees are usually not balanced. The prover and the verifier can either agree on the length of

5.3. ZERO KNOWLEDGE DECISION TREE 121

the prediction path and construct a separate circuit for every data sample, or use the height of the tree as an
upper-bound to construct the same circuit for all data samples. The former is more efficient, but leaks the
length of the prediction paths. Both options are supported by our scheme and the asymptotic complexity are
the same. For simplicity, we abuse the notation and use h both for the height of the tree and for (an upper
bound of) the length of the prediction path.
Permutation test.. The second component is to check that ā is indeed a permutation of a. Together with the
first component, it ensures that ya is the correct prediction result of a using the prediction path patha. The
construction is inspired by the RAM-based zero knowledge proof systems and we also apply the techniques
of characteristic polynomials proposed in [ZGKPP17c; ZGKPP18; BCGJM18] to check permutations. In
particular, the characteristic polynomial of a vector c = (c[1], · · · , c[d]) ∈ Fd is χc(x) = Πd

i=1(x− c[i]), the
polynomial with roots c[i]. To prove permutations between c and c, it suffices to show that their characteristic
polynomial evaluates to the same value at a random point r ∈ F chosen by the verifier:

Πd
i=1(r − c[i]) = Πd

i=1(r − c[i])

The soundness error is d
|F| by Schwartz-Zippel Lemma [Sch79; Zip79].

In our construction, however, we need to prove that two vectors of pairs a and ā are permutations of
each other. To this end, we use the approach proposed in [BCGJM18] to pack each pair to a single value
by a random linear combination. The verifier chooses a random point z ∈ F. For each pair (j, a[j]) in a
and (ij , ā[j]) in ā, the circuit computes c[j] = a[j] + z × j and c̄[j] = ā[j] + z × ij . We then invoke the
characteristic polynomial evaluation directly on c and c̄.

The completeness is straight forward. To prove the soundness, suppose a is not a permutation of a, then
there must exist a pair (i, a[i]) not appearing in a. After the packing process, for each j, Pr[a[i] + z × i =
ā[j] + z × ij |(i, a[i]) ̸= (ij , ā[j])] ≤ 1

|F| by Schwartz-Zippel Lemma. Therefore, although a[i] + z × i is
one root of the characteristic polynomial of c, the probability of that it is also one root of the characteristic
polynomial for c is at most d

|F| by the union bound. Combining with the soundness of the characteristic
polynomial checking, we obtain that our method has the soundness error at most 2d

|F| , which is also negligible
of λ. The technique can be extended to verify the permutation of vectors of more than two elements by
packing them with a polynomial of z.

The circuit outputs 1 if and only if the above check passes. The number of gates is O(d). Here we assume
that every attribute is only used at most once in any prediction path. When an attribute can be used multiple
times, which is also very common in practice, the circuit instead checks that ā is a multiset of a, i.e., every
pair in a appears in ā with cardinality greater than or equal to 0. We will present a technique to check the
multiset relationship in Section 5.4. The sub-circuits for decision tree prediction and path validation remain
unchanged, and the total number of gates in the circuit is the same asymptotically, as the size of ā in bounded
by h in this case.
Path validation.. Finally, the only missing component is to ensure that the prediction path is indeed valid as
committed before. The third sub-circuit implements the ADT.Verify algorithm with input patha, all sibling
hash values on patha, random point r and comT. The circuit recomputes the hashes from the leaf to the root,
and compares the root hash with comT. In total, the circuit computes O(h) hashes, which justifies the design
of our ADT scheme.

Finally, the circuit aggregates all three checks and output 1 if and only if all checks pass. The size of the
whole circuit is O(d + h), which is also asymptotically optimal. The prover and the verifier then execute a
generic circuit-based zero knowledge proof protocol on the circuit in Figure 5.2.

5.3. ZERO KNOWLEDGE DECISION TREE 122

Protocol 13 (Zero Knowledge Decision Tree (zkDT)). Let λ be the security parameter, F be a
prime field, T be a decision with h levels, C be the arithmetic circuit in Figure 5.2. Let P and V
be the prover and the verifier respectively. We use ZKP.KeyGen, ZKP.Commit, ZKP.P , ZKP.V to
represent the algorithms of the backend ZKP protocol.

• pp ← zkDT.KeyGen(1λ): let pp1 ← ADT.KeyGen(1λ), pp2 ← ZKP.KeyGen(1λ) and pp =
(pp1, pp2).

• commT←zkDT.Commit(T, pp, r): commT←ADT.Commit(T, pp1, r), where r is the random-
ness generated by P .

• (ya, π)← zkDT.Prove(T, a, pp):

1. P runs the algorithm 14 with input T and a to get ya = T(a). Then generates the
witness w = (a, patha, aux, r) for the circuit C in accordance with the procedure of
the decision tree algorithm. aux represents the extended witness in Figure 5.2. Let
commw ← ZKP.Commit(w, pp2). P sends commw and ya to V .

2. After receiving the randomness r′ for checking the permutation of a and a from V , P
invokes ZKP.Prove(C, (commT , a, ya, r′), w, pp2) to get π. Sends π to V .

• {0, 1} ← zkDT.Verify(comT, h, a, ya, π, pp): V outputs 1 if
ZKP.Verify(C, (commT , a, ya, r′), π, commw, pp2) = 1, otherwise it outputs 0.

5.3.5 Putting Everything Together
In this section, we combine everything together and formally present our zero knowledge decision tree
prediction scheme in Protocol 13. Our scheme has a transparent setup phase where zkDT.G does not have a
trapdoor. It merely samples a collision-resistant hash function for ADT, and executes the algorithm G in the
generic zero knowledge proof. Using Aurora as our backend, it also samples a hash function modeled as a
random oracle.

We have the following theorem:

Theorem 5.3.3. Protocol 13 is a zero knowledge decision tree scheme by Definition 5.3.1.

Proof. Completeness.. As explained in Section 5.3.3 and 5.3.4, the circuit in zkDT.P outputs 1 if ya is the
correct prediction of a output by Algorithm 14 on T. Therefore, the correctness of Protocol 13 follows the
correctness of the ADT and the zero knowledge proof protocol by Theorem 5.3.2 and 5.2.2.
Soundness.. By the extractability of commitment of in Theorem 5.2.2, with overwhelming probability,
there exists a PPT extractor E such that given commw, it extracts a witness w∗ such that commw =
ZKP.Commit(w∗, pp2). By the soundness of zkDT in Definition 5.3.1, if commT = zkDT.Commit(T, pp, r)
and zkDT.Verify(comT, h, a, ya, π, pp) = 1 but ya ̸= T(a), let commw = ZKP.Commit(w∗, pp2) during
the interactive process in Protocol 13, then there are two cases.

5.3. ZERO KNOWLEDGE DECISION TREE 123

[Simulator for Protocol 13] Let λ be the security parameter, F be a prime field, T be a decision
with h levels, C be the arithmetic circuit in Figure 5.2. (pp1, pp2)← zkDT.KeyGen(1λ).

• comm ← S1(1λ, pp, h): S1 invokes SADT to generate comm = SADT(pp1, h, r), where r is the
randomness generated by SADT.

• (ya, π)← SA
2 (h, a, pp):

1. S2 asks the oracle of T to get ya = T(a). Then S2 shares all public input of C to SZKP and
invokes SZKP.Commit(pp2) to get commw.

2. After receiving the randomness r′ for the permutation check from A, it invokes
SZKP.Prove(C, (comm, a, ya, r′), pp2) to get π. Then S2 sends π to A.

• {0, 1} ← A(com, h, a, ya, π, pp): wait A for validation.

• Case 1: w∗ = (a∗, path∗
a, aux∗, r) satisfying to C((commT, a, ya, r′); w∗) = 1. Then we could know

either path∗
a is not a path in T but passing the verification for commT, or a∗ is not a permutation of a but

passing the permutation test. The probability of both events are negl(λ) as claimed by the soundness the
ADT scheme and the soundness of the characteristic polynomial check respectively. Hence, the probability
that P could generate such w∗ is also negl(λ) by the union bound.

• Case 2: w∗ = (a∗, path∗
a, aux∗, r) but C((commT, a, ya, r′); w∗) = 0. Then according to the soundness

of Aurora, given the commitment comm∗
w, the adversary could generate a proof πw making V accept the

incorrect witness and output 1 with probability negl(λ).

Combining these two cases, the soundness of the zkDT scheme is also negl(λ).

Zero-knowledge.. In order to prove the zero-knowledge property, we construct a PPT simulator S = (S1,S2)
in Figure 5.3. Let SADT and SZKP represent the simulator for ADT protocol and the backend ZKP protocol
respectively. The proof follows by a standard hybrid argument.
Hybrid H0.: H0 behaves in exactly the same way as the honest prover in Protocol 13.
Hybrid H1.: H1 uses the real zkDT.Commit(T, pp, r) in Protocol 13 for the commitment phase, it invokes
SZKP to simulate the interactive proof phase.
Hybrid H2.: H2 behaves in exactly the same way as the simulator of Protocol 13.

Given the same commitment commT, the verifier cannot distinguish H0 and H1, because of the zero
knowledge property of the backend ZKP protocol given the same circuit C and the same public input. If the
verifier could distinguish H1 from H2, then we can find a PPT adversary to distinguish whether a commitment
is of an empty decision tree with only zero strings or not. This is contradictory to the hiding property of our
ADT scheme. Therefore, the verifier cannot distinguish H0 from H2 by the hybrid, which completes the
proof of zero knowledge.

Efficiency.. The prover’s computation consists of two parts: committing to the decision tree T and
generating the proof for circuit C. For the committing phase, the provers needs to do O(N) hashes. For the

5.4. ZERO KNOWLEDGE DECISION TREE ACCURACY 124

proof generation phase, the total computation is O(|C| log |C|) = O((d + h) log(d + h)) = O(d log d) in
accordance with Theorem 5.2.2 and d > h. The verifier’s computation only contains the verification for the
circuit C with size O(d + h), so it is O(|C|) = O(d) due to Theorem 5.2.2. The proof size is one digest
plus the Aurora proof for the circuit C, which is only O(log2 |C|) = O(log2 d). Finally, we can apply the
Fiat-Shamir heuristic [FS] to remove the interactions in our zkDT protocol in the random oracle model.

5.4 Zero Knowledge Decision Tree Accuracy
In this section, we present our scheme for zero knowledge decision tree accuracy. As motivated in the
introduction, in this scenario, the prover owns and commits to a decision tree, receives a testing dataset from
the verifier, and then proves the accurary of the committed decision tree model on this dataset. The verifier
learns nothing about the model except its accuracy.

Formally speaking, similar to Section 5.3.2, suppose the decision tree model is T with h levels and
N nodes, where h and N are known to both parties, the testing dataset is D = {a1, a2, · · · , an} with n
data samples and their matching labels are L = {ℓ1, ℓ2, · · · , ℓn}. A zero knowledge decision tree accuracy
(zkDTA) scheme consists of the following algorithms:

• pp← zkDTA.KeyGen(1λ): given the security parameter, generate the public parameter pp.

• commT ← zkDTA.Commit(T, pp, r): commit the decision tree T with a random point r generated by the
prover.

• (accu, π) ← zkDTA.Prove(T,D,L, pp): given a dataset D and their labels L, run the decision tree
algorithm for each data sample in D, compare the predictions with L, and then output accu denoting the
accuracy of the decision tree, i.e., the total number of correct predictions. The algorithm also generates the
corresponding proof π.

• {0, 1} ← zkDTA.Verify(commT, h, N,D,L, accu, π, pp): validate the number of correct predictions,
accu, given π obtained from the prover.

Definition 5.4.1. We say that a scheme is a zero knowledge decision tree accuracy if the following holds:

• Completeness. For any decision tree T with h levels and N nodes, a test dataset D with corresponding
labels L, commT ← zkDTA.Commit(T, pp, r), (accu, π)← zkDTA.Prove(T,D,L, pp), it holds that

Pr [zkDTA.Verify(commT, h, N,D,L, accu, π, pp) = 1] = 1

• Soundness. For any PPT adversary A, the following probability is negligible in λ:

Pr

pp← zkDTA.KeyGen(1λ)

(T∗, commT∗ ,D,L, accu∗, π∗)← A(1λ, pp, r)
commT∗ = zkDTA.Commit(T∗, pp, r)
zkDTA.Verify(commT∗ , h, N,D,L, accu∗, π∗, pp) = 1

n∑
i=1

I(T∗(ai) = ℓi) ̸= accu∗

I(T∗(ai) = ℓi) = 1 if T∗(ai) = ℓi, otherwise I(T∗(ai) = ℓi) = 0.

5.4. ZERO KNOWLEDGE DECISION TREE ACCURACY 125

• Zero Knowledge. For security parameter λ, pp← zkDT.KeyGen(1λ), for any decision tree T with h levels
and N nodes, PPT algorithm A, and simulator S = (S1,S2), consider the following two experiments:

RealA,T(pp):
1. comT← zkDTA.Commit (T, pp, r)
2. D,L←A(h, N, comT, pp)
3. (accu, π)← zkDTA.Prove(T,D,L, pp)
4. b←A(comT, h, N,D,L, accu, π, pp)
5. Output b

IdealA,SA(pp, h, N):

1. com← S1(1λ, pp, h, N)
2. D,L← A(h, N, com, pp)

3. (accu, π)←SA
2 (com, h, N,D,L, pp), given oracle access to accu =

n∑
i=1

I(T(ai) =

ℓi).
4. b← A(com, h, N,D,L, accu, π, pp)
5. Output b

For any PPT algorithm A and all decision tree T with the height of h and N nodes, there exists simulator
S such that

|Pr[RealA,T(pp) = 1]− Pr[IdealA,SA(pp, h, N) = 1]| ≤ negl(λ).

5.4.1 Checking Multiset
Intuitively, when designing the zkDTA scheme, one can repeat the construction in Section 2 described
in Protocol 13 and Figure 5.2 multiple times for every data sample in the testing dataset, followed by an
aggregation circuit testing the accuracy. The prover time in this case grows roughly linearly with the size of
the testing dataset. However, the prediction paths share many common nodes and their total size may exceed
the number of nodes in the decision tree on a large testing dataset. I.e., N < nh.

We introduce an optimization for this case. Instead of validating each prediction path one by one, the idea
is to validate all N nodes of the decision tree in one shot. Then the circuit checks that the nodes of each
prediction path are drawn from these N nodes of the decision tree and they form a path with the correct
parent-children relationships. On top of these checks, the circuit tests the correctness of Algorithm 14 in
the same way as the zkDT scheme and computes the accuracy of the model. To test that each node in the
prediction paths is included in the original decision tree, it suffices to check that all nodes of the prediction
paths form a multiset of the set of N nodes of the decision tree. We can again validate such a multiset
relationship using the characteristic polynomials.
Multiset check.. Suppose Q = (q1, q2, · · · , qm) is an array of m elements with possible duplicates, and
S = {s1, · · · , sn} is a set of size n. The prover needs to show that Q is a multiset of S, i.e., ∀i ∈ [m], qi ∈ S.

5.4. ZERO KNOWLEDGE DECISION TREE ACCURACY 126

Permutation check of
each 𝒂𝒊 and "𝒂𝒊

𝑫 = (𝒂𝟏, ⋯ , 𝒂𝒏) ("𝒂𝟏, ⋯ , "𝒂𝒏)

Using decision tree prediction
for each 𝒂𝒊 to get 𝑦𝒂𝒊

Check 𝑎𝑐𝑐𝑢 = ∑%&'(𝐼(𝑦𝒂𝒊 = 𝑙%)

𝑝𝑎𝑡ℎ𝒂𝟏, ⋯ , 𝑝𝑎𝑡ℎ𝒂𝒏 com!

Commitment check

𝑇

Multiset check

(𝑓', ⋯ , 𝑓)) 𝑟𝑳 = {𝑙', ⋯ , 𝑙(} accu

Figure 5.4: Zero knowledge decision tree accuracy.

We apply the technique proposed in [ZGKPP18]. The characteristic polynomial of a multiset Q is defined as
Πm

i=1(x− qi) with possible duplicated elements in Q. It can also be computed as Πn
i=1(x− si)

fi , where fi is
the multiplicity of each element si in array Q. Therefore, to check the multiset relationship, the prover provides
the multiplicity fi, the verifier picks a random number r and the circuit tests Πm

i=1(r − qi) = Πn
i=1(r − si)

fi .
We call polynomial g(x) = Πm

i=1(x − qi) − Πn
i=1(x − si)

fi the multiset polynomial. The soundness of
the test also follows the Schwartz-Zippel Lemma [Sch79; Zip79]. If there exists qi /∈ S, then the multiset
polynomial g(x) is a non-zero polynomial with degree at most m, if we additionally force

∑n
i=1 fi = m. Then

Pr[g(r) = 0|r $←− F] ≤ m
|F| by the Schwartz-Zippel Lemma. So the soundness error is at most m

|F| = negl(λ).
To implement this test in an arithmetic circuit, as there is no exponentiation gate, we ask the prover to

provide fi in binary. Then the circuit checks that the inputs are indeed binary, and uses the multiplication tree
to compute the exponentiation. As

∑n
i=1 fi = m and fi ≤ m, the prover only provides log m bits for each fi.

With the multiset check, in our zkDTA scheme, the prover provides all N nodes in T and proves that all
the nodes in the prediction paths form a multiset of the N nodes. In addition, the circuit reconstructs the ADT
using the N nodes of T and checks that it is consistent with commT. In this way, the total number of hashes
is bounded by N if N = 2h. The number of gates for the multiset check is at most O(nh + N log(n)). In the
real implementation, computing hashes is usually the bottleneck of the efficiency. For example, SHA-2 takes
around 270, 000 multiplication gates and algebraic hash functions[Ajt96] take hundreds to thousands of gates
to implement. Our optimization reduces the number of hashes from O(nh) to O(N), which greatly improves
the performance of the ZKDTA scheme in practice.

Furthermore, the method of the multiset check can also be used in our zkDT protocol in Protocol 13 to
support decision trees with repeated attributes on the prediction paths, which is very common in practice. We
instead test that a is a multiset rather than a permutation of a in this case.

5.4.2 Validating Decision Tree
In the previous optimization, the circuit checks that N nodes provided by the prover form a valid decision
tree. Using ADT, we can validate it by reconstructing the decision tree in the circuit 2h hashes. However, in
practice, we notice that most decision trees are not balanced. For example, in our largest decision tree model,
there are total 23 levels and 1029 nodes. In this case, N ≪ 2h. Therefore, in this section, we present an
approach to validate a decision tree with a circuit of size linear to N rather than 2h.

We first replace the commitment by a hash of all N nodes concatenated by a random value r, instead of
the root of the ADT. In addition, each node contains a unique id(id) in [N], the id of its parent (pid), left child

5.4. ZERO KNOWLEDGE DECISION TREE ACCURACY 127

Protocol 14 (Zero Knowledge Decision Tree Accuracy). Let λ be the security parameter, F be
a prime field, T be a binary decision with h levels and N nodes, CA be the arithmetic circuit
for model accuracy test, D = {a1, a2, · · · , an} of size n be the test set, L = {ℓ1, ℓ2, · · · , ℓn} be
the corresponding labels of test data. Let PA and VA be the prover and the verifier respectively.
ZKP.KeyGen, ZKP.Commit, ZKP.P , ZKP.V represent the algorithms of the backend ZKP protocol.

• pp← zkDTA.KeyGen(1λ): pp← ZKP.KeyGen(1λ).

• commT ← zkDTA.Commit(T, pp, r): commT = Hash(T, r), it hashes all nodes in T with r,
the randomness generated by PA.

• (accu, π)← zkDTA.Prove(T,D,L, pp): we could use Fiat-Shamir heuristic transformation to
make the following process non-interactive.

1. PA runs the algorithm 14 with input T and the data set D to get yai
= T(ai) for all i.

Let accu = ∑n
i=1 I(yai = ℓi). According the procedure of the algorithm, the prover could

generate the witness ai and pathai
for each data point ai, together with all nodes in T, their

multiplicity in {pathai
}n

i=1 and the randomness r used in commT as the witness wA of the
circuit CA. Let commwA

← ZKP.Commit(wA, pp2). PA sends commwA
and accu to VA.

2. After receiving the randomness r′ for checking characteristic polynomials and the multiset
polynomial from VA. PA invokes ZKP.Prove(CA, (commT ,D,L, accu, r′), wA, pp2) to get
π. Send π to VA.

• {1, 0} ← zkDTA.Verify(comT, h, N,D,L, accu, π, pp): VA outputs 1 if
ZKP.Verify(CA, (commT , {a}n

i=1, accu, r′), π, commwA , pp) = 1, outputs 0 otherwise.

(lid), right child (rid) and its depth (depth) in [h] (the id is 0 means the parent or the child is empty). To verify
that all N nodes of T1, T2, · · · , TN form a binary decision tree, it suffices to check the following conditions:

• Only the first node is the root. (i.e, T1.pid = 0 but Ti.pid ̸= 0 when i ̸= 1.)

• All parent pointers are consistent with the child pointers. (i.e., Ti.rid = Tj .id or Ti.lid = Tj .id if and only
if Tj .pid = Ti.id.)

• The depth of the parent is smaller than the depth of the child. (i.e., if Ti.pid = Tj .id then Ti.depth =
Tj .depth + 1.)

• No repeated child pointers. (i.e., if Ti.lid ̸= 0 then Ti.lid ̸= Ti.rid.)

With this idea in the mind, the formal algorithm is presented in Algorithm 15. The main difference is that the
checks in Algorithm 15 can be efficiently implemented by arithmetic circuits.
Theorem 5.4.2. Algorithm 15 outputs 1 if and only if the input nodes form a valid binary tree except for
negligible probability. The total number of arithmetic gates to implement the algorithm is O(N).

Proof. On the one hand, if the N nodes of T1, T2, · · · , TN construct a valid binary tree, it is easy to check
they will pass all checks and Algorithm 15 always outputs 1.

5.4. ZERO KNOWLEDGE DECISION TREE ACCURACY 128

Algorithm 15 Linear Check for Valid Decision Tree

Input: N nodes of T1, T2, · · · , TN .

1: T1 is the root: T1.id = 1 ∧ T1.depth = 1 ∧ T1.pid = 0.
2: for i = 1 to N − 1 do
3: Ti+1.id = Ti.id + 1
4: end for
5: for i = 1 to N − 1 do
6: Ti+1.depth = Ti.depth ∨ Ti+1.depth = Ti.depth + 1
7: end for
8: TN .depth ≤ h.
9: Check all pids except T1 of {T2.pid, · · · , TN .pid} are a multiset of {1, 2, 3, · · · , N} with

individual multiplicity at most 2.
10: Define two vectors of tuples, S1 and S2.
11: for i = 1 to N do
12: if Ti.lid ̸= 0 then
13: S1 = S1.append((Ti.depth, Ti.id, Ti.lid))
14: end if
15: if Ti.rid ̸= 0 then
16: S1 = S1.append((Ti.depth, Ti.id, Ti.rid))
17: end if
18: if Ti.pid ̸= 0 then
19: S2 = S2.append((Ti.depth− 1, Ti.pid, Ti.id))
20: end if
21: end for
22: Check S1 is a permutation of S2.
23: return 1 if all check pass.

On the other hand, suppose Algorithm 15 outputs 1. With overwhelming probability, (1) T1.depth = 1
and T1.pid = 0; (2) Ti.id = i for all i; (3) all depths is a multiset of {1, 2, · · · , h}; (4) all pids except T1.pid
are in [N]; (5) if Ti.rid = Tj .id or Ti.lid = Tj .id then Tj .pid = Ti.id and Tj .depth = Ti.depth + 1; (6) if
Ti.pid = Tj .id then Tj .lid = Ti.id or Tj .rid = Ti.id and Tj .depth = Ti.depth − 1; (7) if Ti.lid ̸= Ti.rid
unless Ti.lid = Ti.rid = 0. If one of (1), (2), (3), (4) does not hold, it will not pass the checks from line
1 to line 7. If (5) does not hold but S1 is a permutation of S2, we know that (Ti.depth, Ti.id, Ti.lid) =
(Ti.depth, Ti.id, Tj .id) ∈ S1 or (Ti.depth, Ti.id, Ti.rid) = (Ti.depth, Ti.id, Tj .id) ∈ S1. There must exist
an index k ∈ [N] such that (Tk.depth − 1, Tk.pid, Tk.id) = (Ti.depth, Ti.id, Tj .id). Then we have k = j,
Tj .pid = Ti.id and Ti.depth = Tj .depth− 1, which is contradictory. Therefore, if (5) does not hold, S1 is
not a permutation of S2. With very similar argument, if (6) does not hold, S1 is not a permutation of S2. If
(7) does not hold, S1 is not a permutation of S2 as S1 has duplicate element while S2 does not. Therefore, if
(5) or (6) or (7) does not hold, then it will not pass the check in line 16 with high probability.

When (1)-(7) hold, we can construct a directed graph G = (T[N], E) as follows. (Ti, Tj) ∈ E if and

5.4. ZERO KNOWLEDGE DECISION TREE ACCURACY 129

only if Ti.pid = Tj .id. The outdegree of T1 is 0 while all others are 1. To prove G is a tree, we only
need to show Ti connects to T1 for each i, or equivalently, there is no circle in the graph. That is because
Ti.depth = Tj .depth− 1 if (Ti, Tj) ∈ E. So G does not have a circle and it must be a tree. It is a binary tree
as the indegree of each nodes are at most 2.
Complexity.. Step 1-6 and Step 8-15 can be computed by a circuit doing a linear scan of all the N nodes. In
addition,as the the individual multiplicity is at most 2, both the multiset test in Step 7 and the permutation test
in Step 16 are O(N) as we explained in previous sections. Furthermore, we force the N nodes sorted by the
id and the depth. It consumes only O(N) to check Ti.id = i and the depth ranging in [h]. So the total number
of the gates is O(N).

An alternative approach.. Alternatively, because of our application of decision trees, we can simplify the
checks above. Recall that in other parts of the circuit, it is proven that the nodes of the prediction paths are
drawn from the set of N nodes, and each prediction path follows the prediction function of a decision tree.
Therefore, the graph formed by these nodes already satisfies the second and the third conditions of being a
binary decision tree. Because of this, we simplify the test to (1) the N nodes are sorted by the id, Ti.id = i,
where T1 is the root and (2) Ti.lid ̸= Ti.rid unless they are empty for all i ∈ [N]. These checks ensure that
the subgraph formed by all nodes in the prediction paths is part of a binary decision tree. These nodes are
also included in the N nodes because of the multiset check. There is no guarantee on other nodes of the N
nodes provided by the prover, but they are not used in the prediction paths anyway, which is good enough for
our purposes.

This alternative approach is simpler than the check described in Algorithm 15. It is a trade-off between
the efficiency and the security. In practice, as computing hashes is the bottleneck of our system, the difference
between these two approaches on the prover time is actually not significant. We use the latter in our
implementation.

5.4.3 Our construction of zkDT accuracy
With the optimizations presented in the previous sections, we show the circuit CA to validate decision tree
accuracy in Figure 5.4, and present the formal protocol of zkDTA in Protocol 14. Compared with the circuit
C in Figure 5.2 for the zkDT scheme, CA has extra extended witness with all nodes of T and an auxiliary list
F = (f1, f2, · · · , fN) representing the multiplicity of N nodes appearing in all prediction paths of the test
data. CA also has one more part for multiset check. Besides, CA does not need to do path validation for each
path, it only recomputes the hash of all nodes in T with r and compares the final value with the commitment.
We call it commitment check. Furthermore, in this new scheme, all yai

are not public to the verifier. The
circuit compares yai

with ℓi and computes the number of correct predictions. Finally, the circuit compares the
number of correct predictions to the claimed accuracy. We have the following theorem:
Theorem 5.4.3. Protocol 14 is a zero knowledge decision tree accuracy scheme defined by Definition 5.4.1.

The completeness, soundness and zero-knowledgeness of Protocol 14 are extensions of these properties
in Protocol 13. We omit the proof because of the space limitation.
Efficiency.. Consider the circuit CA, the circuit size is O(nh + nd + N log n + N) = O(nd) when N ≪ nd.
Therefore, the prover time is O(nd log(nd)) with O(N) hashes in the committing phase, the verification time
is O(nd) and proof size is O(log2(nd)) according to Theorem 5.2.2.

5.5. IMPLEMENTATION AND EVALUATIONS 130

5.5 Implementation and Evaluations
We fully implement our zero knowledge decision tree schemes and we present their performance in this
section.
Software.. The schemes are implemented in C++. There are around 2000 lines of code for our frontend to
compile the decision tree predictions and accuracy to arithmetic circuits1, as shown in Figure 5.2 and 5.4.
We use the open-source compiler of libsnark[Libb] to generate arithmetic circuits in our frontend, and we
implement the zero knowledge argument scheme Aurora [BSCRSVW19] ourselves as the ZKP backend. We
use the extension field of a Mersenne prime F

p
2 , where p = 261 − 1. This is the same as the field used

in [ZXZS].
We download the datasets from the UCI repository datasets[DG17] and train the decision tree models

using the sklearn package in Python. Then we use these pre-trained decision trees and the testing datasets
in our experiments. The attributes are scaled to 32-bit integers in the field for our ZKP backend. As the
attributes are only used for comparisons, the scaling does not affect the prediction and the accuracy of the
decision trees.
Hardware.. We run all of the experiments on Amazon EC2 c5n.2xlarge instances with 64GB of RAM and
Intel Xeon platinum 8124m CPU with 3GHz virtual core. Our current implementation is not parallelized and
we only use a single CPU core in the experiments. We report the average running time of 10 executions.
Hash function.. As we will show in the experiments, computing hashes in the arithmetic circuits is the
bottleneck of our system. For example, it takes 27,000 multiplication gates to compute one SHA-256 hash.
Therefore, in order to improve the performance of our system, we use the SWIFFT[LMPR] hash function,
which is an algebraic hash function that is collision-resistant and is friendly to arithmetic circuits. With
the optimizations proposed in jsnark[Jsna], one SWIFFT hash can be implemented with around 3,000
multiplication gates.
Datasets.. We use three datasets from the UCI machine learning repository [DG17]. The small dataset we
use is named Breast-Cancer-Wisconsin(Original). It is used for breast cancer diagnosis. Each data has 10
attributes and the prediction is either 0 or 1. We train the model on a training set of 600 data points. The
pre-trained decision tree has 61 nodes and 10 levels. The second dataset we use is Spambase. It is used to
recognize the spam emails. Each data has 57 attributes and the prediction is either 1 or 0. We train the model
on training set of 4, 000 data points. The pretrained decision tree has in total 441 nodes and 26 levels. The
largest dataset is Forest Covertype. It is used to predict forest cover type from cartographic variables. Each
data has 54 attributes and the total number of class is 7. We train the model on a training set of 5, 000 data
points. The pre-trained decision tree has in total 1, 029 nodes and 23 levels.

5.5.1 Performance of ZKDT
We first present the performance of our zero knowledge decision tree prediction protocol. We vary the length
of the prediction paths from 6 to 48. The prediction paths of the first 3 columns are obtained from the decision
trees of the three real-world datasets described above, while the last one is obtained from synthetic data. Table
5.1 shows the performance of our scheme.

As we can see in the Table 5.1, the efficiency of our zkDT scheme is reasonable in practice. Though
linear to the size of the whole decision trees, the time to commit the decision trees is only on the order of

1We actually use the rank-1-constraint-system (R1CS) to be compatible with the backend.

5.5. IMPLEMENTATION AND EVALUATIONS 131

Length h 6 12 24 48
#Attributes d 10 54 57 1000

Commit Time (ms) 0.38 6.3 2.8 13.3
Prover Time (s) 0.754 1.577 3.433 7.024
Verifier Time (s) 0.050 0.104 0.221 0.445
Proof size (KB) 140.736 155.936 172.224 189.632

Table 5.1: Performance of zero knowledge decision tree predictions.

102 103 104

#data samples

10

100

500

pr
ov

er
 ti

m
e

(s
) h = 23, N = 1029

h = 26, N = 441

h = 10, N = 61

(a) Prover time

102 103 104

#data samples
0.1

1

10

50

ve
rif

ie
r t

im
e

(s
) h = 23, N = 1029

h = 26, N = 441

h = 10, N = 61

(b) Verification time

102 103 104

#data samples

100

300

500

pr
oo

f s
ize

 (K
B) h = 23, N = 1029

h = 26, N = 441

h = 10, N = 61

(c) Proof size

Figure 5.5: Performance of the zero knowledge decision tree accuracy scheme.

milliseconds. This is because the Commit in our ADT only involves computing hashes, which is very fast
in practice. For the prover time and the verification time, it takes 7.02 seconds to generate the proof for a
prediction path of length 48, and 0.445 seconds to validate the proof. The proof size is 189KB. Note that
we choose our ZKP backend of Aurora [BSCRSVW19] to optimize for the prover time. Our zkDT scheme
works on all backends and we could use schemes such as Bulletproof [BBBPWM] and SNARK [PHGR13] to
reduce the proof size to several KBs or less, with a sacrifice on the prover time.

Moreover, the prover time and the verification time scale roughly linearly with the length of the prediction
paths, while the number of attributes d does not affect the performance by much. This is because the bottleneck
of the efficiency is computing the hashes in the circuit of the ZKP backend for the path validation, and the
number of hashes is linear to the length of the path. Besides, the performance of our scheme fully depends on
the parameters of the decision trees and the size of the data samples, but not on the values. Hence, we do not
observe any major difference on the performance between the real datasets and the synthetic dataset.

5.5.2 Other Variants of Zero Knowledge Decision Trees.
Multivariate decision trees. . In univariate decision trees, each decision node checks only one attribute for
axis-aligned splits. In a linear multivariate decision tree, each decision node divides the input space into
two with an arbitrary hyperplane leading to slanting splits. More formally, In a linear multivariate decision
tree T, each internal node v has a size-d vector v.w of weights for d attributes, a threshold v.thr and two
children v.left and v.right. Similar to the univariate decision tree, each leaf node u stores the classification
result u.class. Each data sample is represented as a size-d vector a of values corresponding to each attribute.
The algorithm of multivariate decision tree prediction is shown in Algorithm 16. It starts from the root of T.

5.5. IMPLEMENTATION AND EVALUATIONS 132

com!𝒂 = (𝒂[1]… , 𝒂[𝑑]) path𝒂 = 𝑣", 𝑣#, … 𝑣$ 𝑦𝒂

Multivariate decision tree prediction:
While 𝑣# is not a leaf node do
1. if 𝑣# . 𝒘 ⋅ 𝒂! < 𝑣# . thr

then 𝑣#$% = 𝑣# . left;
else 𝑣#$%= 𝑣# . right;

2. 𝑗 = 𝑗 + 1;
𝑦𝒂 = 𝑣&. class

Path validation of ADT

𝑆𝑖𝑏𝑠 = 𝐻", 𝐻#, ⋯ , 𝐻$ 𝑟

Figure 5.6: Zero knowledge multivariate decision tree prediction. Public inputs are in black, secret
witness is in red, and extended witness for efficiency is in blue.

Algorithm 16 Multivariate Decision Tree Prediction

Input: Decision tree T, data sample a
Output: classification ya

1: v := T.root
2: while v is not a leaf node do
3: if v.w · aT < v.thr then
4: v := v.left
5: else
6: v := v.right
7: end if
8: end while
9: return v.class

For each node of v in T, it compares v.w · aT with v.thr, and moves to v.left if v.w · aT < v.thr, and v.right
otherwise. Eventually, the algorithm reaches a leaf node u and the result of the prediction is u.class.

Surprisingly, the hyperplane split in each node of multivariate decision trees makes the design of zero
knowledge multivariate decision trees simpler. The prediction of multivariate decision trees is not a RAM
based program anymore because it uses the linear combination of d attributes in each node. The circuit
for zero knowledge multivariate decision tree predictions is given in Figure 5.6. Note that comparing to
Figure 5.2, the circuit does not need to perform random access to the attributes using a permutation check.
Regression decision trees.. Decision trees where the target variable can take continuous values (typically
real numbers), e.g., the price of a house, are called regression decision trees. For regression decision tree
predictions, we retain Algorithm 14 except for changing ya to a real number. The circuit for verifying the

5.5. IMPLEMENTATION AND EVALUATIONS 133

regression decision tree prediction is also the same as in Figure 5.2 but ya could be a real number.
Random forests. . Random forest consists of many individual decision trees. It is an ensembling learning
method that can help reduce the variance and aviod the overfitting of a single decision tree model. For
the classification problem, each individual decision tree in the random forest outputs a class prediction
and the class with the most votes becomes the prediction of the random forest. More formally, suppose
a random forest contains m decision trees T1, T2, · · · , Tm and [M] is the set of all target classifications,
for a data sample a with d features, we run Algarithm 14 with each decion tree and get the predictions
T1(a), T2(a), · · · , Tm(a) ∈ [M]. Then the model outputs the index in [M] with most occurrences in
T1(a), T2(a), · · · , Tm(a). The specific algorithm is given in Algorithm 17.

For constructing the circuit to verify the random forest prediction, besides verifying each decision tree’s
prediction, we add an argmax function on all predictions before outputting the final classification, which is
easy to be implemented by the arithmetic circuit.

For the regression problem, random forests report the mean of all values output by individual decision
trees, which can be also easily implemented by the arithmetic circuit. We omit the formal construction.

5.5.3 Comparison to Generic Zero Knowledge Proof Schemes
We conducted the experiments on the comparison between our zkDT scheme with the baseline of using
RAM-based and circuit-based generic ZKP schemes and present the experimental results in this section.

For the RAM-based ZKP scheme, we write the decision tree predictions algorithm in TinyRAM [BSCGTV],
a language similar to assembly language with a simple instruction set. Each iteration in Algorithm 14 takes
20 TinyRAM instructions and there are in total h iterations. We then translate the program to a circuit
using the RAM-to-circuit reduction in [BSCTV]. Each instruction takes around 4,000 multiplications gates.
Finally, we estimate the prover time using the same ZKP backend of Aurora [BSCRSVW19] on the circuit.
For the naive circuit-based ZKP scheme, we hardcode the whole decision tree into the circuit and run the
prediction algorithm directly using the arithmetic circuit. Then we apply the same ZKP backend. We also
extend the implementation to zero knowledge random forests trained on the same dataset. Table 5.2 shows the
performance of random forests consisting of different number of decision trees.

Algorithm 17 Random Forest Prediction

Input: Random forest with T1, T2, · · · , Tm, data sample a
Output: classification ya

1: for i = 1 to M do
2: Occ[i] = 0
3: end for
4: for i = 1 to m do
5: Run Algorithm 14 with input of Ti and a
6: Occ[Ti(a)]++
7: end for
8: return arg maxi Occ[i]

5.5. IMPLEMENTATION AND EVALUATIONS 134

 6 12 24 48
path length

0.1
1
10
102
103
104

pr
ov

er
 ti

m
e(

s) zkDT

RAM-based

Circuit-based

Figure 5.7: Comparison between zkDT, RAM-based and circuit-based generic ZKP schemes.

of Trees 2 8 32 128
Length h 24 24 12 12

Commit Time (ms) 13.49 54.95 115.14 468.56
Prover Time (s) 6.992 29.317 60.532 253.41
Verifier Time (s) 0.447 1.842 3.83 15.86
Proof size (KB) 189.728 225984 245632 286592

Table 5.2: Performance of zero knowledge random forest predictions.

5.5.4 Performance of ZKDTA
In this section, we further evaluate the performance of our zero knowledge decision tree accuracy scheme.
We implement Protocol 14 and test it on decision trees trained on the three datasets described before. We vary
the number of data samples in the testing dataset as 100, 300, 1000, 3000 and 5,000. We present the prover
time, proof size and verification time in Figure 5.5.

As shown in Figure 5.5, our zkDTA scheme achieves very good efficiency in practice. On the largest
instance with a decision tree of 1029 nodes and 23 levels, it only takes 250 seconds to generate a zero
knowledge proof for its accuracy on a large testing dataset of 5,000 data samples. We believe this overhead is
close to practical in many applications. The verification time is around 15.6 seconds. In this case, the proof
size is 287KB, which is actually smaller than the size of the decision tree and the size of the testing dataset.
This means our scheme not only provides soundness and zero knowledge, but also reduces the communicating
comparing to the naïve solution of posting the model and the dataset. The gap will further increase because
of the succinctness of the proof size.

5.5. IMPLEMENTATION AND EVALUATIONS 135

In addition, Figure 5.5 shows that the prover time and the verification time for all three models remain
mostly unchanged until the size of the testing dataset becomes larger. This is because the bottleneck of our
scheme is computing hashes in the circuit of the ZKP backend. The number of hashes is proportional to
the total number of nodes in the decision tree, and does not depend on the size of the testing dataset. For
example, for the large decision tree model with N = 1029 nodes, when the size of the testing dataset is less
than 1000, the sub-circuit checking the commitment using hashes consists of around 221 multiplication gates
and contributes to more than 75% of the whole circuit. Thus, the performance of the scheme remains mostly
the same for dataset with less than 1000 samples. As the size of the testing dataset becomes larger than 1000,
other components of the circuit to check decision tree predictions, multisets and permutations start to impact
the performance. There are 223 multiplication gates in our largest data point in the figure.

The observation above also justifies the importance of our two optimizations proposed in Section 5.4. If
we simply repeat the zero knowledge predictions multiple times, the number of hashes will increase with the
size of the testing dataset. In the largest data point, there are 5,000 samples and each prediction path is of
length around 20. The performance would be 100× slower compared to our optimized scheme. Similarly,
as shown by the three real-world datasets, the decision trees are usually not balanced. Without our second
optimization in Section 5.4, the number of hashes would be 2h, which is much larger than N . For the largest
decision tree with N = 1029 and h = 23, our optimization improves the prover time and proof size by around
8000×.

Finally, the accuracy of the three decision trees (from small to large) are 94.89%, 92% and 64.25%
respectively on their largest testing datasets with 5,000 samples. They are exactly the same as the original
decision trees trained from the datasets, as our zkDTA scheme does not use any approximations and does not
introduce any accuracy loss.

5.5.5 Applications of Our Schemes
Besides ensuring the integrity of decision tree predictions and accuracy in the scenarios motivated in the
introduction, our zero knowledge decision tree schemes can also be applied to build a fair and secure trading
platform for machine learning models on blokchains. Machine learning models are valuable assets now, and
people want to monetize their expertise on machine learning by selling high-quality models. In this scenario,
the buyer prefers to test the quality of the machine learning model before making the payment, while the
seller does not want to reveal the model first, as the buyer could disappear without any payment after seeing
the model. This is the classical problem of fair exchange. One could rely on a trusted party to address this
problem. However, it often introduces a heavy burden on the trusted party to validate the quality of the
models, enforce the payments and resolve the disputes. Some applications may lack the existence of such a
trusted party.

Blockchain is a promising technique to replace the role of the trusted party in this scenario. In a blockchain,
all the users validate the data posted on the blocks such that as long as more than 50% of the users are
honest, the data on the blockchain is valid and cannot be altered. Zero knowledge contingent payments [Zkc;
CGGN17] provide a framework for users to trade secret data fairly and securely on blockchains. Instead of
posting the data directly on the blockchain, which reveals the data to all users of the blockchain, the seller posts
a short zero knowledge proof about the properties of the data. Subsequent protocols enforces the payment and
the delivery of the data simultaneously using smart contracts, given that the zero knowledge proof is valid.
In order to build a trading platform for machine learning models on blockchains, efficient ZKP protocols
for machine learning accuracy are the only missing piece in the framework of zero knowledge contingent

5.5. IMPLEMENTATION AND EVALUATIONS 136

payments. Our zero knowledge decision tree schemes in this paper fill in this gap and can be used to build
such a fair and secure trading platform. Realizing the system of the trading platform is left as future work.

137

Chapter 6

zkBridge: Trustless Cross-chain Bridges
Made Practical

Blockchains have seen growing traction with cryptocurrencies reaching a market cap of over 1 trillion dollars,
major institution investors taking interests, and global impacts on governments, businesses, and individuals.
Also growing significantly is the heterogeneity of the ecosystem where a variety of blockchains co-exist.
Cross-chain bridge is a necessary building block in this multi-chain ecosystem. Existing solutions, however,
either suffer from performance issues or rely on trust assumptions of committees that significantly lower
the security. Recurring attacks against bridges have cost users more than 1.5 billion USD. In this paper,
we introduce zkBridge, an efficient cross-chain bridge that guarantees strong security without external trust
assumptions. With succinct proofs, zkBridge not only guarantees correctness, but also significantly reduces
on-chain verification cost. We propose novel succinct proof protocols that are orders-of-magnitude faster
than existing solutions for workload in zkBridge. With a modular design, zkBridge enables a broad spectrum
of use cases and capabilities, including message passing, token transferring, and other computational logic
operating on state changes from different chains. To demonstrate the practicality of zkBridge, we implemented
a prototype bridge from Cosmos to Ethereum, a particularly challenging direction that involves large proof
circuits that existing systems cannot efficiently handle. Our evaluation shows that zkBridge achieves practical
performance: proof generation takes less than 20 seconds, while verifying proofs on-chain costs less than
230K gas. For completeness, we also implemented and evaluated the direction from Ethereum to other
EVM-compatible chains (such as BSC) which involve smaller circuits and incurs much less overhead.

This work was previously published in [Zha+20].

6.1 Introduction
Since the debut of Bitcoin, blockchains have evolved to an expansive ecosystem of various applications
and communities. Cryptocurrencies like Bitcoin and Ethereum are gaining rapid traction with the market
cap reaching over a trillion USD [Coi] and institutional investors [hamlin2022; wintermeyer2021] taking
interests. Decentralized Finance (DeFi) demonstrates that blockchains can enable finance instruments that
are otherwise impossible (e.g., flash loans [QZLG21]). More recently, digital artists [Bee] and content
creators [You] resort to blockchains for transparent and accountable circulation of their works.

Also growing significantly is the heterogeneity of the ecosystem. A wide range of blockchains have
been proposed and deployed, ranging from ones leveraging computation (e.g., in Proof-of-Work [Nak08]), to
economic incentives (e.g., in Proof-of-Stake [GHMVZ17; BLMR14; KRDO17; DGKR17; BPS16]), and
various other resources such as storage [RD16; Fil; DFKP15; ABFG14], and even time [Int]. While it is
rather unclear that one blockchain dominates others in all aspects, these protocols employ different techniques
and achieve different security guarantees and performance. It has thus been envisioned that (e.g., in [Amu;
Mul; But]) the ecosystem will grow to a multi-chain future where various protocols co-exist, and developers
and users can choose the best blockchain based on their preferences, the cost, and the offered amenities.

A central challenge in the multi-chain universe is how to enable secure cross-chain bridges through which
applications on different blockchains can communicate. An ecosystem with efficient and inexpensive bridges
will enable assets held on one chain to effortlessly participate in marketplaces hosted on other chains. In
effect, an efficient system of bridges will do for blockchains what the Internet did for siloed communication
networks.

The core functionality of a bridge between blockchains C1 and C2 is to prove to applications on C2 that
a certain event took place on C1, and vice versa. We use a generic notion of a bridge, namely one that can
perform multiple functions: message passing, asset transfers, etc. In our modular design, the bridge itself
neither involves nor is restricted to any application-specific logic.

The problem. While cross-chain bridges have been built in practice [Rai; Polb; Lay; Axe], existing solutions
either suffer from poor performance, or rely on central parties.

The operation of the bridge depends on the consensus protocols of both chains. If C1 runs Proof-of-Work,
a natural idea is to use a light client protocol (e.g., SPV [Nak08]). Specifically, a smart contract on C2, denoted
by SC2, will keep track of block headers of C1, based on which transaction inclusion (and other events) can be
verified with Merkle proofs. This approach, however, incurs a significant computation and storage overhead,
since SC2 needs to verify all block headers and keep a long and ever-growing list of them. For non-PoW
chains, the verification can be even more expensive. For example, for a bridge between a Proof-of-Stake
chain (like Cosmos) and Ethereum, verifying a single block header on Ethereum would cost about 64 million
gas [Nea] (about $6300 at time of writing), which is prohibitively high.

Currently, as an efficient alternative, many bridge protocols (PolyNetwork, Wormhole, Ronin, etc.) resort
to a committee-based approach: a committee of validators are entrusted to sign off on state transfers. In these
systems, the security boils down to, e.g., the honest majority assumption. This is problematic for two reasons.
First, the extra trust assumption in the committee means the bridged asset is not as secure as native ones,
complicating the security analysis of downstream applications. Second, relying on a small committee can
lead to single point failures. Indeed, in a recent exploit of the Ronin bridge [Ron], the attackers were able to
obtain five of the nine validator keys, through which they stole 624 million USD, making it the largest attack

138

in the history of DeFi by Apr 20221. Even the second and third largest attacks are also against bridges ($611m
was stolen from PolyNetwork [Pola] and $326m was stolen from Wormhole [Wora]), and key compromise
was suspected in the PolyNetwork attack.

Our approach. We present zkBridge to enable an efficient cross-chain bridge without trusting a centralized
committee. The main idea is to leverage zk-SNARK, which are succinct non-interactive proofs (arguments)
of knowledge [WTSTW18; XZZPS19a; Zha+20; BSBHR19; BSCTV; AHIV17; BSCRSVW19; COS19;
CHMMVW20; ZGKPP17c; ZGKPP18; BBBPWM; GWC19; Set20b]. A zk-SNARK enables a prover to
efficiently convince SC2 that a certain state transition took place on C1. To do so, SC2 will keep track of
a digest D of the latest tip of C1. To sync SC2 with new blocks in C1, anyone can generate and submit a
zk-SNARK that proves to SC2 that the tip of C1 has advanced from D to D′.

This design offers three benefits. First, the soundness property of a zk-SNARK ensures the security of
the bridge. Thus, we do not need additional security requirements beyond the security of the underlying
blockchains. In particular zkBridge does not rely on a committee for security. Second, with a purpose-built
zk-SNARK, C2 can verify a state transition of C1 far more efficiently than encoding the consensus logic of C1
in SC2. In this way, as an example for zkBridge from Cosmos to Ethereum, we reduce the proof verification
cost from ∼ 80M gas to less than 230K gas on C2. The storage overhead of the bridge is reduced to constant.
Third, by separating the bridge from application-specific logic, zkBridge makes it easy to enable additional
applications on top of the bridge.

Technical challenges. To prove correctness of a given computation outcome using a zk-SNARK, one first
needs to express the computation as an arithmetic circuit. While zk-SNARK verification is fast (logarithmic
in the size of the circuit or even constant), proof generation time is at least linear, and in practice can be
prohibitively expensive. Moreover, components used by real-world blockchains are not easily expressed as an
arithmetic circuit. For example, the widely used EdDSA digital signature scheme is very efficient to verify on
a CPU, but is expensive to express as an arithmetic circuit, requiring more than 2 million gates [Cir]. In a
cross-chain bridge, each state transition could require the verification of hundreds of signatures depending on
the chains, making it prohibitively expensive to generate the required zk-SNARK proof. In order to make
zkBridge practical, we must reduce proof generation time.

To this end, we propose two novel ideas. First, we observe that the circuits used by cross-chain bridges
are data-parallel, in that they contain multiple identical copies of a smaller sub-circuit. Specifically, the
circuit for verifying N digital signatures contains N copies of the signature verification sub-circuit. To
leverage the data-parallelism, we propose deVirgo, a novel distributed zero-knowledge proofs protocol based
on Virgo [ZXZS]. deVirgo enjoys perfect linear scalability, namely, the proof generation time can be reduced
by a factor of M if the generation is distributed over M machines. The protocol is of independent interest and
might be useful in other scenarios. Other proof systems can be similarly parallelized [WZCPS18].

While deVirgo significantly reduces the proof generation time, verifying deVirgo proofs on chain,
especially for the billion-gate circuits in zkBridge, can be expensive for smart contracts where computational
resources are extremely limited. To compress the proof size and the verification cost, we recursively prove the
correctness of a (potentially large) deVirgo proof using a classic zk-SNARK due to Groth [Gro16b], hereafter
denoted Groth16. The Groth16 prover outputs constant-size proofs that are fast to verify by a smart contract
on an EVM blockchain. We stress that one cannot use Groth16 to generate the entire zkBridge proof because
the circuits needed in zkBridge are too large for a Groth16 prover. Instead, our approach of compressing
a deVirgo proof using Groth16 gives the best of both worlds: a fast deVirgo parallel prover for the bulk of

1see the ranking at https://rekt.news/leaderboard

139

the proof, where the resulting proof is compressed into a succinct Groth16 proof that is fast to verify. We
elaborate on this technique in Section 6.5. This approach to compressing long proofs is also being adopted in
commercial zk-SNARK systems such as [Pold; Polc; Ris].

Implementation and evaluation. To demonstrate the practicality of zkBridge, we implement an end-to-end
prototype of zkBridge from Cosmos to Ethereum, given it is among the most challenging directions as it
involves large circuits for correctness proofs. Our implementation includes the protocols of deVirgo and
recursive proof with Groth16, and the transaction relay application. The experiments show that our system
achieves practical performance. deVirgo can generate a block header relay proof within 20s, which is more
than 100x faster than the original Virgo system with a single machine. Additionally, the on-chain verification
cost decreases from∼80M gas (direct signature verification) to less than 230K gas, due to the recursive proofs.
In addition, as a prototype example, we also implement zkBridge from Ethereum to other EVM-compatible
chains such as BSC, which involves smaller circuits for proof generation and incurs much less overhead.

6.1.1 Our contribution
In this paper, we make the following contributions:

• In this paper, we propose zkBridge, a trustless, efficient, and secure cross-chain bridge whose security
relies on succinct proofs (cryptographic assumptions) rather than a committee (external trust assumptions).
Compared with existing cross-chain bridge projects in the wild, zkBridge is the first solution that achieves
the following properties at the same time.

– Trustless and Secure: The correctness of block headers on remote blockchains is proven by zk-SNARKs,
and thus no external trust assumptions are introduced. Indeed, as long as the connected blockchains and
the underlying light-client protocols are secure, and there exists at least one honest node in the block
header relay network, zkBridge is secure.

– Permissionless and Decentralized: Any node can freely join the network to relay block headers, generate
proofs, and claim the rewards. Due to the elimination of the commonly-used central or Proof-of-Stake
style committee for block header validation, zkBridge also enjoys better decentralization.

– Extensible: Smart contracts using zkBridge enjoy maximum flexibility because they can invoke the
updater contract to retrieve verified block headers, and then perform their application-specific verification
and functionality (e.g., verifying transaction inclusion through auxiliary Merkle proofs). By separating
the bridge from application-specific logic, zkBridge makes it easy to develop applications on top of the
bridge.

– Universal: The block header relay network and the underlying proof scheme in zkBridge is universal

– Efficient: With our highly optimized recursive proof scheme, block headers can be relayed within a
short time (usually tens of seconds for proof generation), and the relayed information can be quickly
finalized as soon as the proof is verified, thus supporting fast and flexible bridging of information.

In summary, zkBridge is a huge leap towards building a secure, trustless foundation for blockchain
interoperability.

• We propose a novel 2-layer recursive proof system, which is of independent interest, as the underlying
zk-SNARK protocol to achieve both reasonable proof generation time and on-chain verification cost.

140

Through the coordination of deVirgo and Groth16, we achieve a desirable balance between efficiency and
cost.

– For the first layer, aiming at prompt proof generation, we introduce deVirgo, a distributed version of
Virgo proof system. deVirgo combines distributed sumcheck and distributed polynomial commitment
to achieve optimal parallelism, through which the proof generation phase is much more accelerated
by running on distributed machines. deVirgo is more than 100x faster than Virgo for the workload in
zkBridge.

– For the second layer, aiming at acceptable on-chain verification cost, we use Groth16 to recursively prove
that the previously generated proof by deVirgo indeed proves the validity of the corresponding remote
block headers. Through the second layer, the verification gas cost is reduced from an estimated ∼ 80M
to less than 230K, making on-chain verification practical.

• We implement an end-to-end prototype of zkBridge and evaluate its performance in two scenarios: from
Cosmos to Ethereum (which is the main focus since it involves large proof circuits that existing systems
cannot efficiently handle), and from Ethereum to other EVM-compatible chains (which in comparison
involves much smaller circuits). The experiment results show that zkBridge achieves practical performance
and is the first practical cross-chain bridge that achieves cryptographic assurance of correctness.

6.2 Background
In this section we cover the preliminaries, essential background on blockchains, and zero-knowledge proofs.

6.2.1 Notations
Let F be a finite field and λ be a security parameter. We use f(), h() for polynomials, x, y for single variables,
bold letters x, y for vectors of variables. Both x[i] and xi denote the i-th element in x. For x, we use notation
x[i : k] to denote slices of vector x, namely x[i : k] = (xi, xi+1, · · · , xk). We use i to denote the vector of
the binary representation of some integer i.

Merkle Tree. Merkle tree [Mer87] is a data structure widely used to build commitments to vectors because
of its simplicity and efficiency. The prover time is linear in the size of the vector while the verifier time and
proof size are logarithmic in the size of the vector. Given a vector of x = (x0, · · · , xN−1), it consists of three
algorithms:

• rt← MT.Commit(x)

• (x[i], πi)← MT.Open(x, i)

• {1, 0} ← MT.Verify(πi, x[i], rt).

6.2.2 Blockchains
A blockchain is a distributed protocol where a group of nodes collectively maintains a ledger which consists
of an ordered list of blocks. A block blk is a data-structure that stores a header blkH and a list of transactions,

141

denoted by blk = {blkH; trx1, . . . , trxt}. A block header contains metadata about the block, including a
pointer to the previous block, a compact representation of the transactions (typically a Merkle tree root),
validity proofs such as solutions to cryptopuzzles in Proof-of-Work systems or validator signatures in
Proof-of-Stake ones.

Security of blockchains. The security of blockchains has been studied extensively. Suppose the ledger in
party i’s local view is LOGr

i = [blk1, blk2, . . . , blkr] where r is the height. For any 2 ≤ k ≤ r and the k-th
block blkk , blkk.ptr = blkHk−1, so every single block is linked to the previous one. For the purpose of this
paper, we care about two (informal) properties:

1. Consistency: For any honest nodes i and j, and for any rounds of r0 and r1, it must be satisfied that
either LOGr0

i is a prefix of LOGr1
j or vice versa.

2. Liveness: If an honest node receives some transaction trx at some round r, then trx will be included
into the blockchain of all honest nodes eventually.

Smart contracts and gas. In addition to reaching consensus over the content of the ledger, many blockchains
support expressive user-defined programs called smart contracts, which are stateful programs with state
persisted on a blockchain. Without loss of generality, smart contract states can be viewed a key-value store
(and often implemented as such.) Users send transactions to interact with a smart contract, and potentially
alter its state.

A key limitation of existing smart contract platforms is that computation and storage are scarce resources
and can be considerably expensive. Typically smart contract platforms such as Ethereum charge a fee
(sometimes called gas) for every step of computation. For instance, EdDSA signatures are extremely cheap
to verify (a performant CPU can verify 71000 of them in a second [BDLSY12]), but verifying a single
EdDSA signature on Ethereum costs about 500K gas, which is about $49 at the time of writing. Storage
is also expensive on Ethereum. Storing 1KB of data costs about 0.032 ETH, which can be converted to
approximately $90 at the time of writing. This limitation is not unique to Ethereum but rather a reflection of
the low capacity of permissionless blockchains in general. Therefore reducing on-chain computation and
storage overhead is one of the key goals.

6.2.3 Light client protocol
In a blockchain network, there are full nodes as well as light ones. Full nodes store the entire history of the
blockchain and verify all transactions in addition to verifying block headers. Light clients, on the other hand,
only store the headers, and therefore can only verify a subset of correctness properties.

The workings of light clients depend on the underlying consensus protocol. The original Bitcoin paper
contains a light client protocol (SPV [Nak08]) that uses Merkle proofs to enable a light client who only stores
recent headers to verify transaction inclusion. A number of improvements have been proposed ever since. For
instance, in Proof-of-Stake, typically a light client needs to verify account balances in the whole blockchain
history (or up to a snapshot), and considers the risk of long range attacks. For BFT-based consensus, a light
client needs to verify validator signatures and keeps track of validator rotation. We refer readers to [CBC21]
for a survey.

To abstract consensus-specific details away, we use

LightCC(LCSr−1, blkHr−1, blkHr)→ {true, false}

142

to denote the block validation rule of a light client: given a new block header blkHr, LightCC determines if
the header represents a valid next block after blkHr−1 given its current state LCSr−1. We define the required
properties of a light client protocol as follows:

Definition 6.2.1 (Light client protocol). A light client protocol enables a node to synchronize the block
headers of the state of the blockchain. Suppose all block headers in party i’s local view is LOGHr

i =
[blkH1, blkH2, ..., blkHr], the light client protocol satisfies following properties:

1. Succinctness: For each state update, the light client protocol only takes O(1) time to synchronize the
state.

2. Liveness: If an honest full node receives some transaction trx at some round r, then trx must be
included into the blockchain eventually. A light client protocol will eventually include a block header
blkHi such that the corresponding block includes the transaction trx.

3. Consistency: For any honest nodes i and j, and for any rounds of r0 and r1, it must be satisfied that
either LOGH

r0
i is a prefix of LOGH

r1
j or vice versa.

6.2.4 Zero-knowledge proofs
An argument system for an NP relationship R is a protocol between a computationally-bounded prover P
and a verifier V . At the end of the protocol, V is convinced by P that there exists a witness w such that
(x; w) ∈ R for some input x. We use G to represent the generation phase of the public parameters pp.
Formally, consider the definition below, where we assumeR is known to P and V .

Definition 6.2.2. Let λ be a security parameter andR be an NP relation. A tuple of algorithm (G,P,V) is a
zero-knowledge argument of knowledge forR if the following holds.

• Completeness. For every pp output by G(1λ), (x; w) ∈ R and π ← P(x, w, pp),

Pr[V(x, π, pp) = 1] = 1

• Knowledge Soundness. For any PPT prover P∗, there exists a PPT extractor E such that for any auxiliary
string z, pp← G(1λ), π∗ ← P∗(x, z, pp), w ← EP∗(·)(x, z, pp), and

Pr[(x; w) /∈ R ∧ V(x, π∗, pp) = 1] ≤ negl(λ),

where EP∗(·) represents that E can rewind P∗,

• Zero knowledge. There exists a PPT simulator S such that for any PPT algorithm V∗, (x; w) ∈ R, pp
output by G(1λ), it holds that

View(V∗(pp, x)) ≈ SV∗
(x),

where View(V∗(pp, x)) denotes the view that the verifier sees during the execution of the interactive process
with P , SV∗

(x) denotes the view generated by S given input x and transcript of V∗, and ≈ denotes two
perfectly indistinguishable distributions.

143

We say that (G,P,V) is a succinct argument system2 if the total communication (proof size) between P and
V , as well as V’s running time, are poly(λ, |x|, log |R|), where |R| is the size of the circuit that computesR
as a function of λ.

6.3 zkBridge Protocol
At a high level, a smart contract is a stateful program with states persisted on a blockchain. A bridge like
zkBridge is a service that enables smart contracts on different blockchains to transfer states from one chain to
another in a secure and verifiable fashion.

Below we first explain the design of zkBridge and its workflow through an example, then we specify the
protocol in more detail. For ease of exposition, we focus on one direction of the bridge, but the operation of
the opposite direction is symmetric.

<latexit sha1_base64="tYgHYaKMpEZiSDeCN0ly/hYNnFw=">AAAC/nicdZLNjtMwEMfd8LWUr104crGoVuIQVXGabMtttXuA44Lo7kptVDnupLXWcYLtVKqiSLwFV7hwQ1x5FcTL4LRhxaYw0kijmZ9n/h47zgXXxvN+dpxbt+/cvbd3v/vg4aPHT/YPnp7rrFAMxiwTmbqMqQbBJYwNNwIucwU0jQVcxFendf1iBUrzTL436xyilC4kTzijxqaiaUrNklFRnlYzMtvveX1vY3g3IE3QQ42dzQ46v6bzjBUpSMME1XpCvNxEJVWGMwFVd1poyCm7oguY2FDSFHRUblRX+NBm5jjJlHVp8Cb794mSplqv09iStUrdrtXJf9UmhUlGUcllXhiQbDsoKQQ2Ga5XgOdcATNibQPKFLdaMVtSRZmxi+p2D6dzSOw6N4LKTLEln1flu9cnVUn8oVu7H4b2cv/HPN/FI+JiEuxyVC6g4Xz/lUuCoeu1ICYy+2YN5Flk4A4scxPSsAL5p1EY2mF+4OKjYatXul4ouAa3zdrzEr66lkR8d2SpQVjZ70Daj78bnPt9ctQP3ga945PmY+yh5+gFeokIGqJj9AadoTFi6AP6hD6jL85H56vzzfm+RZ1Oc+YZumHOj99Rwe0n</latexit>

C1
<latexit sha1_base64="7XQOCflByiY2WT/gU2Gj8PuOfm8=">AAAC/nicdZLNjtMwEMfd8LWUr104crGoVuIQVXGabMtttXuA44Lo7kptVDnupLXWcYLtVKqiSLwFV7hwQ1x5FcTL4LRhxaYw0kijmZ9n/h47zgXXxvN+dpxbt+/cvbd3v/vg4aPHT/YPnp7rrFAMxiwTmbqMqQbBJYwNNwIucwU0jQVcxFendf1iBUrzTL436xyilC4kTzijxqaiaUrNklFRnlYzf7bf8/rexvBuQJqghxo7mx10fk3nGStSkIYJqvWEeLmJSqoMZwKq7rTQkFN2RRcwsaGkKeio3Kiu8KHNzHGSKevS4E327xMlTbVep7Ela5W6XauT/6pNCpOMopLLvDAg2XZQUghsMlyvAM+5AmbE2gaUKW61YrakijJjF9XtHk7nkNh1bgSVmWJLPq/Kd69PqpL4Q7d2Pwzt5f6Peb6LR8TFJNjlqFxAw/n+K5cEQ9drQUxk9s0ayLPIwB1Y5iakYQXyT6MwtMP8wMVHw1avdL1QcA1um7XnJXx1LYn47shSg7Cy34G0H383OPf75KgfvA16xyfNx9hDz9EL9BIRNETH6A06Q2PE0Af0CX1GX5yPzlfnm/N9izqd5swzdMOcH78BVE/tKA==</latexit>

C2

Block Header
Relay Network

Receiver chainSender chain

Updater
Contract

❸ Relay header with proofs ❹Verify and accept

❺ Read
v:=bal[U] on

❷ Write: bal[U]=v
<latexit sha1_base64="Cr+hcqP0Kqyy/pl1SQWJKIG2yUM=">AAAC/3icdZJLj9MwEMfd8FrKaxeOXCyqlThEVZwm23JbsQc4Lo/urtSWynEmrbWOE9lOpSrKgW/BFS7cEFc+CuLL4LRhxaYw0kijmZ9n/h47ygXXxvN+dpwbN2/dvrN3t3vv/oOHj/YPHp/prFAMxiwTmbqIqAbBJYwNNwIucgU0jQScR5cndf18BUrzTL436xxmKV1InnBGjU19mKbULBkV5buTak7m+z2v720M7wakCXqosdP5QefXNM5YkYI0TFCtJ8TLzaykynAmoOpOCw05ZZd0ARMbSpqCnpUb2RU+tJkYJ5myLg3eZP8+UdJU63UaWbKWqdu1Ovmv2qQwyWhWcpkXBiTbDkoKgU2G6x3gmCtgRqxtQJniVitmS6ooM3ZT3e7hNIbE7nMjqMwUW/K4Kt++elmVxB+6tfthaC/3f8zzXTwiLibBLkflAhrO91+4JBi6XgtiIrOP1kCeRQbuwDLXIQ0rkH8ahaEd5gcuPhq2eqXrhYIrcNusPS/hqytJxHdHlhqElf0OpP34u8GZ3ydH/eBN0DsOmo+xh56iZ+g5ImiIjtFrdIrGiCGFPqHP6Ivz0fnqfHO+b1Gn05x5gq6Z8+M3TKftdg==</latexit>

SC1

<latexit sha1_base64="jvw1MaLVBryCo/LfYVFXeQGUOJY=">AAADC3icdZLLbtNAFIYn5lbCpWnZILEZEVViYUW2YzfprmoXsCyXtJXiKBpPjpNRx2NrZhwRWeYNeAu2sGGH2PIQiJdhnJiKOnCkkX6d8825zUQZZ0o7zs+Wdev2nbv3du63Hzx89Hi3s7d/rtJcUhjRlKfyMiIKOBMw0kxzuMwkkCTicBFdnVbxiyVIxVLxTq8ymCRkLljMKNHGNe08DROiF5Tw4u1pOQ01vNdFwoQup52u03PWhreFW4suqu1sutf6Fc5SmicgNOVEqbHrZHpSEKkZ5VC2w1xBRugVmcPYSEESUJNiPUKJD4xnhuNUmiM0Xnv/vlGQRKlVEhmyalg1Y5XzX7FxruPhpGAiyzUIuikU5xzrFFf7wDMmgWq+MoJQyUyvmC6IJFSbrbXbB+EMYrPbdUNFKumCzcrizcuTsnC9gV0dLwjMcP/HHM/GQ9fGrr/NETGHmvO8I9v1B7bTgChPzQPWkGOQvt03zE1IwRLEn0RBYIp5vo0PB41cyWou4RrcJGvWi9nyuiXXs4eG6gfVd3Cbj78tzr2ee9jzX/vd45P6Y+ygZ+g5eoFcNEDH6BU6QyNE0Qf0CX1GX6yP1lfrm/V9g1qt+s4TdMOsH78BgvPyuQ==</latexit>

SCmint
<latexit sha1_base64="n9dxlDeNBqtyWcf/vtnTxvnSnnU=">AAADC3icdZLLjtMwFIbdcBvKZTqwQWJjUY3EIqqSNJmW3WhmAcvh0pmRmqpy3JPWquNEtlNRReENeAu2sGGH2PIQiJfBacOISeFIln6d8/nc7CjjTGnH+dmybty8dfvO3t32vfsPHu53Dh6dqzSXFEY05am8jIgCzgSMNNMcLjMJJIk4XETL0yp+sQKpWCre6XUGk4TMBYsZJdq4pp0nYUL0ghJevD0tp6GG97rgKV2W007X6Tkbw7vCrUUX1XY2PWj9CmcpzRMQmnKi1Nh1Mj0piNSMcijbYa4gI3RJ5jA2UpAE1KTYjFDiQ+OZ4TiV5giNN96/bxQkUWqdRIasGlbNWOX8V2yc63g4KZjIcg2CbgvFOcc6xdU+8IxJoJqvjSBUMtMrpgsiCdVma+32YTiD2Ox201CRSrpgs7J48/KkLFxvYFfHCwIz3P8xx7Px0LWx6+9yRMyh5jzvhe36A9tpQJSn5gFryDFI3+4b5jqkYAXiT6IgMMU838ZHg0auZD2XcAVukzXrxWx11ZLr2UND9YPqO7jNx98V517PPer5r/3u8Un9MfbQU/QMPUcuGqBj9AqdoRGi6AP6hD6jL9ZH66v1zfq+Ra1WfecxumbWj99ckPKq</latexit>

SClock

User U

❶ Lock v tokens ❻ Mint v tokens

Figure 6.1: The design of zkBridge illustrated with the example of cross-chain token transfer. The
components in shade belongs to zkBridge. For clarity we only show one direction of the bridge and the
opposite direction is symmetric.

6.3.1 Overview of zkBridge design
To make it easy for different applications to integrate with zkBridge, we adopt a modular design where we
separate application-specific logic (e.g., verifying smart contract states) from the core bridge functionality
(i.e., relaying block headers).

Figure 6.1 shows the architecture and workflow of zkBridge. The core bridge functionality is provided by
a block header relay network (trusted only for liveness) that relays block headers of C1 along with correctness
proofs, and an updater contract on C2 that verifies and accepts proofs submitted by relay nodes. The updater
contract maintains a list of recent block headers, and updates it properly after verifying proofs submitted by

2In our construction, we only need a succinct non-interactive arguments of knowledge (SNARK) satisfying the first
two properties and the succinctnes for validity. The zero knowledge property could be used to further achieve privacy.

144

relay nodes; it exposes a simple and application-agnostic API, from which application smart contracts can
obtain the latest block headers of the sender blockchain and build application-specific logic on top of it.

Applications relying on zkBridge will typically deploy a pair of contracts, a sender contract and a receiver
contract on C1 and C2, respectively. We refer to them collectively as application contracts or relying contracts.
The receiver contract can call the updater contract to obtain block headers of C1, based on which they can
perform application specific tasks. Depending on the application, receiver contracts might also need a user or
a third party to provide application-specific proofs, such as Merkle proofs for smart contract states.

As an example, Fig. 6.1 shows the workflow of cross-chain token transfer, a common use case of bridges,
facilitated by zkBridge. Suppose a user U wants to trade assets (tokens) she owns on blockchain C1 in an
exchange residing on another blockchain C2 (presumably because C2 charges lower fees or has better liquidity),
she needs to move her funds from C1 to C2. A pair of smart contracts SClock and SCmint are deployed on
blockchains C1 and C2 respectively. To move the funds, the user locks $v tokens in SClock (step 1O in Fig. 6.1)
and then requests $v tokens to be issued by SCmint. To ensure solvency, SCmint should only issue new tokens
if and only if the user has locked tokens on C1. This requires SCmint to read the states of SClock (the balance
of U , updated in step 2O) from a different blockchain, which it cannot do directly. zkBridge enables this by
relaying the block headers of C1 to C2 along with proofs (step 3O and 4O). SCmint can retrieve the block headers
from the smart contract frontend (the updater contract), check that the balance of user U is indeed $v (step 5O),
and only then mint $v tokens (Step 6O).

Besides cross-chain token transfer, zkBridge can also enable various other applications such as cross-chain
collateralized loans, general message passing, etc. We present three use cases in Section 6.3.3.

6.3.2 Protocol detail
Having presented the overview, in this section, we specify the protocol in more detail.

6.3.2.1 Security and system model

For the purpose of modeling bridges, we model a blockchain C as a block-number-indexed key-value store,
denoted as C[t] : K → V where t is the block number, K and V are key and value spaces respectively. In
Ethereum, for example, V = {0, 1}256 and keys are the concatenation of a smart contract identifier SC and
a per-smart-contract storage address K. For a given contract SC, we denote the value stored at address K
at block number t as SC[t, K], and we call SC[t, ·] the state of SC at block number t. Again, for ease of
exposition, we focus on the direction from SC1 to SC2, denoted as BR[SC1 → SC2].
Functional and security goals. We require the bridge BR[SC1 → SC2] to reflect states of SC1 correctly
and timely:

1. Correctness: For all t, K, SC2 accepts a wrong state V ̸= SC1[t, K] with negligible probability.

2. Liveness: Suppose SC2 needs to verify SC1’s state at (t, K), the bridge will provide necessary information
eventually.

Security assumptions. For correctness, zkBridge does not introduce extra trust assumptions besides those
made by the underlying blockchains. Namely, we assume both the sender blockchain and the receiver
blockchain are consistent and live (Section 6.2), and the sender chain has a light client protocol to enable

145

fast block header verification. For both properties, we assume there is at least one honest node in the relay
network, and that the zk-SNARK used is sound.

6.3.2.2 Construction of zkBridge

As described in Section 6.3, a bridge BR[SC1 → SC2] consists of three components: a block header relay
network, a updater contract, and one or more application contracts. Below we specify the protocols for each
component.

Block header relay network. We present the formal protocol of block header relay network in Protocol 18.

Protocol 18 Block header relay network
procedure RelayNextHeader(LCSr−1, blkHr−1)

Contact k different full nodes to get the block headers following blkHr−1, namely blkHr.
Generate a ZKP π proving

LightCC(LCSr−1, blkHr−1, blkHr)→ true.

Send (π, blkHr, blkHr−1) to the updater contract.
end procedure

Nodes in the block header relay network run RelayNextHeader with the current state of the updater
contract (LCSr−1, blkHr−1) as input. The exact definition of LCSr−1 is specific to light client protocols
(see [CBC21] for a survey). The relay node then connects to full nodes in C1 and gets the block header
blkHr following blkHr−1. The relay node generates a ZKP π showing the correctness of blkHr, by essentially
proving that blkHr is accepted by a light client of C1 after block blkHr−1. It then sends (π, blkHr) to the
updater contract on C2. To avoid the wasted proof time due to collision (note that when multiple relay nodes
send at the same time, only one proof can be accepted), relay nodes can coordinate using standard techniques
(e.g., to send in a round robin fashion). While any zero-knowledge proofs protocol could be used, our highly
optimized one will be presented later in Section 6.4.

To incentivize block header relay nodes, provers may be rewarded with fees after validating their proofs.
We leave incentive design for future work. A prerequisite of any incentive scheme is unstealability [SCPTZ21],
i.e., the guarantee that malicious nodes cannot steal others’ proofs. To this end, provers will embed their
identifiers (public keys) in proofs, e.g., as input to the hash function in the Fiat-Shamir heuristic [FS].

We note that this design relies on the security of the light client verifier of the sender chain. For example,
the light client verifier must reject a valid block header that may eventually become orphaned and not part of
the sender chain.

The updater contract. The protocol for the updater contract is specified in Protocol 19.
The updater contract maintains the light client’s internal state including a list of block headers of C1 in

headerDAG. It has two publicly exposed functions. The HeaderUpdate function can be invoked by any
block header relay node, providing supposedly the next block header and a proof as input. If the proof verifies
against the current light client state LCS and blkHr−1, the contract will do further light-client checks, and
then the state will be updated accordingly. Since the caller of this function must pay a fee, DoS attacks are
naturally prevented.

146

Protocol 19 The updater contract
headerDAG := ∅ // DAG of headers
LCS := ⊥ // light client state
procedure HeaderUpdate(π, blkHr, blkHr−1)

if blkHr−1 ̸∈ headerDAG then
return False // skip if parent block is not in the DAG

end if
if π verifies against LCS, blkHr−1, blkHr then

Update LCS according to the light client protocol.
Insert blkHr into headerDAG.

end if
end procedure
procedure GetHeader(t) // t is a unique identifier to a block header

if t ̸∈ headerDAG then
return ⊥ // tell the caller to wait

else
return headerDAG[t], LCS // The LCS will help users to determine if t is on a fork.

end if
end procedure

The GetHeader function can be called by receiver contracts to get the block header at height t. Receiver
contracts can use the obtained block header to finish application-specific verification, potentially with the
help of a user or some third party.

Application contracts. zkBridge has a modular design in that the updater contract is application-agnostic.
Therefore inBR[SC1 → SC2], it is up to the application contracts SC1 and SC2 to decide what the information
to bridge is. Generally, proving that SC1[t, K] = V is straightforward: SC2 can request for a Merkle proof for
the leaf of the state Trie Tree (at block number t) corresponding to address K. The receiver contract can obtain
blkHt from the updater contract by calling the function GetHeader(t). Then it can verify SC1[t, K] = V
against the Merkle root in blkHt. Required Merkle proofs are application-specific, and are typically provided
by the users of SC2, some third party, or the developer/maintainer of SC2.

Security arguments. The security of zkBridge is stated in the following theorem.

Theorem 6.3.1. The bridge BR[SC1 → SC2] implemented by protocols 18 and 19 satisfies both consistency
and liveness, assuming the following holds:

1. there is at least one honest node in the block header relay network;

2. the sender chain is consistent and live;

3. the sender chain has a light-client verifier as in Def. 6.2.1; and

4. the succinct proof system is sound.

147

Proof (sketch). To prove the consistency of DAG, we first need to convert the DAG into a list of blocks to
match the definition of blockchain consistency. We define an algorithm Longest : DAG → List such that
given a DAG, the algorithm will output a list MainChain representing the main chain. For example, if the
sender chain is Ethereum, the algorithm Longest will first calculate the path with the maximum total difficulty
in the DAG represented by L, and then output MainChain := L[: −K]. Here K is a security parameter. By
assumption 1 and 2, there will be an honest node in our system running either a full node or a light node,
which will be consistent with the sender chain. Also, according to assumption 1, at least one prover node
is honestly proving the light client execution. By assumption 4 that the proof system is sound, the updater
contract will correctly verify the light-client state. We argue that the updater contract is correctly running the
light-client protocol. Therefore, by the consistency of the light-client protocol, MainChain will be consistent
with any other honest node.

The liveness of our protocol directly follows from the liveness of C1 and its light client protocol.

6.3.3 Application use cases
In this section, we present three examples of applications that zkBridge can support.

Transaction inclusion: a building block. A common building block of cross-chain applications is to verify
transaction inclusion on another blockchain. Specifically, the goal is to enable a receiver contract SC2 on C2
to verify that a given transaction trx has been included in a block Bt on C1 at height t. To do so, the receiver
contract SC2 needs a user or a third-party service to provide the Merkle proof for trx in Bt. Then, SC2 will
call the updater contract to retrieve the block header of C1 at height t, and then verify the provided Merkle
proof against the Merkle root contained in the header.

Next, we will present three use cases that extend the building block above.

1. Message passing and data sharing. Cross-chain message passing is another common building block
useful for, e.g., sharing off-chain data cross blockchains.

Message passing can be realized as a simple extension of transaction inclusion, by embedding the message
in a transaction. Specifically, to pass a message m from C1 to C2, a user can embed m in a transaction trxm,
send trxm to C1, and then execute the above transaction inclusion proof.

2. Cross-chain assets transfer/swap. Bridging native assets is a common use case with growing demand. In
this application, users can stake a certain amount of token TA on the sender blockchain C1, and get the same
amount of token TA (for native assets transfer if eligible) or a certain amount of token TB of approximately the
same value (for native assets swap) on the receiver blockchain C2. With the help of the transaction inclusion
proof, native assets transfer/swap can be achieved, as illustrated at a high level in Section 6.3.1. Here we
specify the protocol in more detail.

To set up, the developers will deploy a lock contract SClock on C1 and a mint contract SCmint on C2. For a
user who wants to exchange nA of token TA for an equal value in token TB , she will first send a transaction
trxlock that transfers nA of token TA to SClock, along with an address addrC2

to receive token TB on C2.
After trxlock is confirmed in a block B, the user will send a transaction trxmint to SCmint, including sufficient
information to verify the inclusion of trxlock. Based on information in trxmint, SCmint will verify that trxlock
has been included on C1, and transfer the corresponding TB tokens to the address addrC2

specified in trxlock.
Finally, SCmint will mark trxlock as minted to conclude the transfer.

3. Interoperations for NFTs. In the application of Non-fungible Token (NFT) interoperations, users
always lock/stake the NFT on the sender blockchain, and get minted NFT or NFT derivatives on the receiver

148

blockchain. By designing the NFT derivatives, the cross-chain protocol can separate the ownership and utility
of an NFT on two blockchain systems, thus supporting locking the ownership of the NFT on the sender
blockchain and getting the utility on the receiver blockchain.

6.3.4 Efficient Proof Systems for zkBridge
The most computationally demanding part of zkBridge is the zero-knowledge proofs generation that relay
nodes must do for every block. So far we have abstracted away the detail of proof generation, which we will
address in Sections 6.4 and 6.5. Here, we present an overview of our solution.

For Proof-of-Stake chains, the proofs involve verifying hundreds of signatures. A major source of
overhead is field transformation between different elliptic curves when the sender and receiver chains use
different cryptography implementation, which is quite common in practice. For example, Cosmos uses EdDSA
on Curve25519 whereas Ethereum natively supports a different curve BN254. The circuit for verifying a
single Cosmos signature in the field supported by Ethereum involves around 2 million gates, thus verifying a
block (typically containing 32 signatures) will involve over 64 million gates, which is too big for existing
zero-knowledge proofs schemes.

To make zkBridge practical, we propose two ideas.

Reducing proof time with deVirgo We observe that the ZKP circuit for verifying multiple signatures is
composed of multiple copies of one sub-circuit. Our first idea is to take advantage of this special structure
and distribute proof generation across multiple servers. We propose a novel distributed ZKP protocol dubbed
deVirgo, which carefully parallelizes the Virgo [ZXZS] protocol, one of the fastest ZKP systems (in terms of
prover time) without a trusted setup. With deVirgo, we can accelerate proof generation in zkBridge with
perfect linear scalability. We will dive into the detail of deVirgo in Section 6.4.

Reducing on-chain cost by recursive verification. While verifying deVirgo proofs on ordinary CPUs is very
efficient, on-chain verification is still costly. To further reduce the on-chain verification cost (computation and
storage), we use recursive verification: the prover recursively proves the correctness of a (potentially large)
Virgo proof using a smart-contract-friendly zero-knowledge protocol to get a small and verifier-efficient proof.
At a high level, we trade slightly increased proof generation time for much reduced on-chain verification cost:
the proof size reduces from 200+KB to 131 bytes, and the required computation reduces from infeasible
amount of gas to 210K gas. We will present more detail of recursive verification in Section 6.5.

6.4 Distributed proof generation
As observed previously, the opportunity for fast prover time stems from the fact that the circuit for verifying N
signatures consists of N copies of identical sub-circuits. This type of circuits is called data-parallel [Tha15].
The advantage of data-parallel circuits is that there is no connection among different sub-copies. Therefore,
each copy can be handled separately. We consider accelerating the proof generation on such huge circuits by
dealing with each sub-circuit in parallel. In this section, we propose a distributed zk-SNARK protocol on
data-parallel circuits.

There are many zero knowledge proofs protocols [ZXZS; XZZPS19a; Set20b; WTSTW18; BSCTV;
BSCRSVW19; AHIV17; BSBHR19; Zha+20; GWC19; COS19] supporting our computation. We choose
Virgo as the underlying ZKP protocols for two reasons: 1. Virgo does not need a trusted setup and is plausibly
post-quantum secure. 2. Virgo is one of the fastest protocols with succinct verification time and succinct proof

149

size for problems in large scale. We present a new distributed version of Virgo for data-parallel arithmetic
circuits achieving optimal scalability without any overhead on the proof size. Specifically, our protocol of
deVirgo on data-parallel circuits with N copies using N parallel machines is N times faster than the original
Virgo while the proof size remains the same. Our scheme is of independent interest and is possible to be used
in other Virgo-based systems to improve the efficiency.

We provide the overall description of deVirgo as follows. Suppose the prover has N machines in total,
labeled from P0 to PN−1. Assume P0 is the master node while other machines are ordinary nodes. Assume V
is the verifier. Given a data-parallel arithmetic circuit consisting of N identical structures, the naïve algorithm
of the distributed Virgo is to assign each sub-circuit to a separate node. Then each node runs Virgo to generate
the proof separately. The concatenation of N proofs is the final proof. Unfortunately, the proof size in this
naive algorithm scales linearly in the number of sub-circuits, which can be prohibitively large for data-parallel
circuits with many sub-copies. To address the problem, our approach removes the additional factor of N in
the proof size by aggregating messages and proofs among distributed machines. Specifically, the original
protocol of Virgo consists of two major building blocks. One is the GKR protocol [GKR15], which consists
of d sumcheck protocols [LFKN92] for a circuit of depth d. The other is the polynomial commitment (PC)
scheme. We design distributed schemes for each of the sumcheck and the polynomial commitment (PC). In
our distributed sumcheck protocol, a master node P0 aggregates messages from all machines, then sends
the aggregated message to V in every round, instead of sending messages from all machines directly to V .
Our protocol for distributed sumcheck has exactly the same proof size as the original sumcheck protocol,
thus saving a factor N over the naïve distributed protocol. Additionally, in our distributed PC protocol, we
optimize the commitment phase and make P0 aggregate N commitments into one instead of sending N
commitments directly to V . During the opening phase, the proof can also be aggregated, which improves the
proof size by a logarithmic factor in the size of the polynomial.

We present preliminaries in Section 6.4.1, the detail of the distributed sumcheck protocol in Section 6.4.2
and the detail of the distributed PC protocol in Section 6.4.3. We combine them all together to build deVirgo
in Section 6.4.4.

6.4.1 Preliminaries

Multi-linear extension/polynomial. Let V : {0, 1}ℓ → F be a function. The multi-linear exten-
sion/polynomial of V is the unique polynomial Ṽ : Fℓ → F such that Ṽ (x) = V (x) for all x ∈ {0, 1}ℓ. Ṽ
can be expressed as:

Ṽ (x) =
∑

b∈{0,1}ℓ

∏ℓ

i=1
((1− xi)(1− bi) + xibi)) · V (b),

where bi is i-th bit of b.

Identity function. Let β : {0, 1}ℓ × {0, 1}ℓ → {0, 1} be the identity function such that β(x, y) = 1 if
x = y, and β(x, y) = 0 otherwise. Suppose β̃ is the multilinear extension of β. Then β̃ can be expressed as:
β̃(x, y) =

∏ℓ
i=1((1− xi)(1− yi) + xiyi).

6.4.2 Distributed sumcheck

Background: the sumcheck protocol. The sumcheck problem is to sum a multivariate polynomial f : Fℓ → F
over all binary inputs:

∑
b1,··· ,bℓ∈{0,1} f(b1, · · · , bℓ). The sumcheck protocol allows the prover P to convince

150

Protocol 17 (Sumcheck). The protocol proceeds in ℓ rounds.

• In the first round, P sends a univariate polynomial

f1(x1)
def=

∑
b2,...,bℓ∈{0,1}

f(x1, b2, . . . , bℓ) ,

V checks H = f1(0) + f1(1). Then V sends a random challenge r1 ∈ F to P .

• In the i-th round, where 2 ≤ i ≤ ℓ− 1, P sends a univariate polynomial

fi(xi)
def=

∑
bi+1,...,bℓ∈{0,1}

f(r1, . . . , ri−1, xi, bi+1, . . . , bℓ) ,

V checks fi−1(ri−1) = fi(0) + fi(1), and sends a random challenge ri ∈ F to P .

• In the ℓ-th round, P sends a univariate polynomial

fℓ(xℓ)
def= f(r1, r2, . . . , rl−1, xℓ) ,

V checks fℓ−1(rℓ−1) = fℓ(0) + fℓ(1). The verifier generates a random challenge rℓ ∈ F. Given
oracle access to an evaluation f(r1, r2, . . . , rℓ) of f , V will accept if and only if fℓ(rℓ) =
f(r1, r2, . . . , rℓ). The oracle access can be instantiated by PC.

the verifier V that the summation is H via a sequence of interactions, and the formal protocol is presented in
Protocol 24.

The high-level idea of the sumcheck protocol is to divide the verification into ℓ rounds. In each round, the
prover only sends a univariate polynomial to the verifier. The verifier checks the correctness of the polynomial
by a single equation. Then this variable will be replaced by a random point sampled by the verifier. As there
are totally ℓ variables in f , after ℓ rounds, the claim about the summation will be reduced to a claim about f
on a random vector r. Given the oracle access to f on a random vector, the verifier can check the last claim.

The GKR protocol. We follow the convention in prior works of GKR protocols [CMT12; Tha13b;
ZGKPP17c; XZZPS19a; ZXZS]. We denote the number of gates in the i-th layer as Si and let si = ⌈log Si⌉.
(For simplicity, we assume Si is a power of 2, and we can pad the layer with dummy gates otherwise.)
We then define a function Vi : {0, 1}si → F that takes a binary string b ∈ {0, 1}si and returns the
output of gate b in layer i, where b is called the gate label. With this definition, V0 corresponds to the
output of the circuit, and Vd corresponds to the input layer. Finally, we define two additional functions
addi, multi : {0, 1}si−1+2si → {0, 1}, referred to as wiring predicates in the literature. addi (multi) takes
one gate label z ∈ {0, 1}si−1 in layer i − 1 and two gate labels x, y ∈ {0, 1}si in layer i, and outputs 1 if
and only if gate z is an addition (multiplication) gate that takes the output of gate x, y as input. With these
definitions, for any z ∈ {0, 1}si , Vi can be written as:

151

Vi(z) =
∑

x,y∈{0,1}si+1 (addi+1(z, x, y)(Vi+1(x) + Vi+1(y))

+multi+1(z, x, y)Vi+1(x)Vi+1(y))
(6.1)

In the equation above, Vi is expressed as a summation, so V can use the sumcheck protocol to check that
it is computed correctly. As the sumcheck protocol operates on polynomials defined on F, we rewrite the
equation with their multi-linear extensions:

Ṽi(g) =
∑

x,y∈{0,1}si+1 hi(g, x, y)

=
∑

x,y∈{0,1}si+1 (˜addi+1(g, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(g, x, y)Ṽi+1(x)Ṽi+1(y)) , (6.2)

where g ∈ Fsi is a random vector.
With Equation 6.2, the GKR protocol proceeds as following. The prover P first sends the claimed output

of the circuit to V . From the claimed output, V defines polynomial Ṽ0 and computes Ṽ0(g) for a random
g ∈ Fs0 . V and P then invoke a sumcheck protocol on Equation 6.2 with i = 0. As described in Protocol 24,
at the end of the sumcheck, V needs an oracle access to hi(g, u, v), where u, v are randomly selected in Fsi+1 .
To compute hi(g, u, v), V computes ˜addi+1(g, u, v) and ˜multi+1(g, u, v) locally (they only depend on the
wiring pattern of the circuit, not on the values), asks P to send Ṽ1(u) and Ṽ1(v) and computes hi(g, u, v) to
complete the sumcheck protocol. In this way, V and P reduce a claim about the output to two claims about
values in layer 1. V and P could invoke two sumcheck protocols on Ṽ1(u) and Ṽ1(v) recursively to layers
above, but the number of the sumcheck protocols would increase exponentially.

One way to combine two claims Ṽi(u) and Ṽi(v) is using random linear combinations, as proposed
in [CFS17; WTSTW18]. Upon receiving the two claims Ṽi(u) and Ṽi(v), V selects αi,1, αi,2 ∈ F randomly
and computes αi,1Ṽi(u) + αi,2Ṽi(v). Based on Equation 6.2, this random linear combination can be written
as

αi,1Ṽi(u) + αi,2Ṽi(v)
=αi,1

∑
x,y∈{0,1}si+1

˜addi+1(u, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(u, x, y)Ṽi+1(x)Ṽi+1(y)
+αi,2

∑
x,y∈{0,1}si+1

˜addi+1(v, x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(v, x, y)Ṽi+1(x)Ṽi+1(y)
=

∑
x,y∈{0,1}si+1

(αi,1 ˜addi+1(u, x, y) + αi,2 ˜addi+1(v, x, y))(Ṽi+1(x) + Ṽi+1(y))

+ (αi,1 ˜multi+1(u, x, y) + αi,2 ˜multi+1(v, x, y))Ṽi+1(x)Ṽi+1(y) (6.3)

V and P then execute the sumcheck protocol on Equation 6.3 instead of Equation 6.2. At the end of the
sumcheck protocol, V still receives two claims about Ṽi+1, computes their random linear combination and
proceeds to the layer above recursively until the input layer. The formal GKR protocol is presented in
Protocol 18.

152

Protocol 18 (GKR). Let F be a finite field. Let C: Fm → Fk be a d-depth layered arithmetic
circuit. P wants to convince that C(x) = 1 where x is the input from V , and 1 is the output.
Without loss of generality, assume m and k are both powers of 2 and we can pad them if not.

1. V chooses a random g ∈ Fs0 and sends it to P .

2. P and V run a sumcheck protocol on

1 =
∑

x,y∈{0,1}s1

(˜add1(g(0), x, y)(Ṽ1(x) + Ṽ1(y)) + ˜mult1(g(0), x, y)Ṽ1(x)Ṽ1(y))

At the end of the protocol, V receives Ṽ1(u(1)) and Ṽ1(v(1)). V computes
˜mult1(g(0), u(1), v(1)), ˜add1(g(0), u(1), v(1)) and checks that ˜add1(g(0), u(1), v(1))

(Ṽ1(u(1))+ Ṽ1(v(1)))+ ˜mult1(g(0), u(1), v(1)) Ṽ1(u(1))Ṽ1(v(1)) equals to the last message
of the sumcheck.

3. For i = 1, ..., d− 1:

• V randomly selects αi,1, αi,2 ∈ F and sends them to P .
• P and V run the sumcheck on the equation

αi,1Ṽi(u(i)) + αi,2Ṽi(v(i)) =∑
x,y∈{0,1}si+1

((αi,1 ˜addi+1u(i), x, y) + αi,2 ˜addi+1(v(i), x, y))(Ṽi+1(x) + Ṽi+1(y))

+(αi,1 ˜multi+1(u(i), x, y) + αi,2 ˜multi+1(v(i), x, y))Ṽi+1(x)Ṽi+1(y))

• At the end of the sumcheck protocol, P sends V Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)).
• V computes the right-hand side of the above equation by replacing x and y by u(i+1)

and v(i+1) respectively. checks if it equals to the last message of the sumcheck. If all
checks in the sumcheck pass, V uses Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)) to proceed to the
(i + 1)-th layer. Otherwise, V outputs 0 and aborts.

4. At the input layer d, V has two claims Ṽd(u(d)) and Ṽd(v(d)). V evaluates Ṽd at u(d) and
v(d) using the input and checks that they are the same as the two claims. If yes, output 1;
otherwise, output 0.

Complexity of the sumcheck protocol in GKR protocol. For simplicity in the complexity analysis, we

153

define the sumcheck equation in GKR protocol as

Ṽi(g) =
∑

x∈{0,1}ℓ

f(x, Ṽi+1(x)), (6.4)

where f is some polynomial from Fℓ to F and g is a random vector in Fℓ. For the multivariate polynomial of
f defined in Equation 6.4, the prover time in Protocol 24 is O(2ℓ). The proof size is O(ℓ) and the verifier
time is O(ℓ).

In the setting of data-parallel circuits, we distribute the sumcheck polynomial f among parallel machines.
Suppose the data-parallel circuit C consists of N identical sub-circuits of C0, · · · , CN−1 and N = 2n for
some integer n without loss of generality. The polynomial f : Fℓ → F is defined on C by Equation 6.4.

The idea of our distributed sumcheck protocol is to treat each sub-copy as a new circuit as there
is no wiring connections across different sub-circuits. We define polynomials of f (0), · · · , f (N−1) on
C0, · · · , CN−1 : Fℓ−n → F respectively by Equation 6.4 in the GKR protocol, which have the same form as
f defined on C. The naïve approach is running the sumcheck protocol on these polynomials separately. As
there are N proofs in total and each size is O(ℓ− n), the total proof size will be O(N(ℓ− n)). To reduce the
proof size back to ℓ, the prover needs to aggregate N proofs to generate a single proof on f . We observe
that the sumcheck protocol on data-parallel circuits satisfies f (i)(x) = f(x, i). As shown in Protocol 24, the
protocol proceeds for ℓ variables round by round. We first run the sumcheck protocol on variables that are
irrelevant to the index of sub-copies in the circuit. In the first (ℓ− n) rounds, each prover Pi generates the
univariate polynomial of f

(i)
j (xj) for f (i)(x) and sends it to P0. P0 constructs the univariate polynomial for

fj(xj) by summing f
(i)
j (xj) altogether since fj(xj) =

N∑
i=0

f
(i)
j (xj), and sends fj(xj) to V in the j-th round.

The aggregation among parallel machines reduces the proof size to constant in each round. Hence the final
proof size is only O(ℓ). A similar approach has appeared in [WHGSW16]. The main focus of [WHGSW16]
was improving the prover time of the sumcheck protocol in the GKR protocol to O(2ℓ(ℓ−n)) for data-parallel
circuits, which was later subsumed by [XZZPS19a] with a prover running in O(2ℓ) time. Instead, our scheme
is focused on improving the prover time by N times with distributed computing on N machines without any
overhead on the proof size.

With this idea in mind, we rewrite the sumcheck equation on f as follows.

H =
∑

b∈{0,1}ℓ

f(b) =
N−1∑
i=0

∑
b∈{0,1}ℓ−n

f (i)(b).

Then we divide the original sumcheck protocol on f into 3 phases naturally in the setting of distributed
computing. We present the formal protocol of distributed sumcheck in Protocol 19.

1. From round 1 to round (ℓ − n) (step 1 in Protocol 19), Pi runs the sumcheck protocol on f (i) and
sends the univariate polynomial to P0. After receiving all univariate polynomials from other machines,
P0 aggregates these univariate polynomials by summing them together and sends the aggregated
univariate polynomial to the verifier. When P0 receives a random query from the verifier, P0 relays
the random challenge to all nodes as the random query of the current round.

154

Protocol 19 (Distributed sumcheck). Suppose the prover has N machines P0, · · · ,PN−1
and suppose P0 is the master node. Each Pi holds a polynomial f (i) : Fℓ−n → F such that
f (i)(x) = f(x[1 : ℓ − n], i). Suppose V is the verifier. The protocol proceeds in 3 phases
consisting of ℓ rounds.

1. In the j-th round, where 1 ≤ j ≤ ℓ− n, each Pi sends P0 a univariate polynomial

f
(i)
j (xj)

def=
∑

b∈{0,1}ℓ−n−j

f (i)(r[1 : j − 1], xj, b) ,

After receiving all univariate polynomials from P1, · · · , PN−1, P0 computes

fj(xj) =
N−1∑
i=0

f
(i)
j (xj)

then sends fj(xj) to V . V checks fj−1(rj−1) = fj(0) + fj(1), and sends a random
challenge rj ∈ F to P0. P0 relays rj to P1, · · · , PN−1.

2. In the j-th round, where j = ℓ − n, after receiving rj from P0, each Pi computes
f (i)(r[1 : j]) and sends f (i)(r[1 : j]) to P0. Then P0 constructs a multi-linear polynomial
f ′ : Fn → F such that f ′(i) = f (i)(r[1 : j]) for 0 ≤ i < N .

3. In the j-th round, where ℓ− n < j ≤ ℓ, P0 and V run Protocol 24 on the statement:

H ′ =
∑

b∈{0,1}n

f ′(b),

where H ′ = ∑N−1
i=0 f (i)(r[1 : ℓ− n]).

2. In round (ℓ− n) (step 2 in Protocol 19), the polynomials of f (0), · · · , f (N−1) have been condensed
to one evaluation on a random vector r ∈ Fℓ−n. P0 uses these N points as an array to construct the
multi-linear polynomial f ′ : Fn → F such that f ′(x) = f(r, x[1 : n]).3

3. After round (ℓ− n) (step 3 in Protocol 19), P0 continues to run the sumcheck protocol on f ′ with V in
last n rounds.

In this way, the computation ofPi is equivalent to running the sumcheck protocol in Virgo on Ci. It accelerates
the sumcheck protocol in Virgo by N times without any overhead on the proof size using N distributed
machines, which is optimal for distributed algorithms both in asymptotic complexity and in practice. We give
the complexity of Protocol 19 in the following.

3The approach can extend to the product of two multi-linear polynomials, which matches the case in Virgo.

155

Complexity of the distributed sumcheck protocol. For the multivariate polynomial of f defined in
Equation 6.4, The total prover work is O(2ℓ) while the prover work for each machine is O(2ℓ

N). The
communication between N machines is O(Nℓ). The proof size and the verifier time are both O(ℓ).

6.4.3 Distributed polynomial commitment
In the last step of the sumcheck phase, the prover needs to prove to the verifier y = f(r1, · · · , rℓ) for some
value y. In Virgo, The prover convinces V of the evaluation by invoking the PC scheme. We present the PC
scheme in Virgo and the complexity of the scheme in the following.

Background: the polynomial commitment in Virgo. Let F be a family of ℓ-variate multi-linear
polynomial over F. Let H, L be two disjoint multiplicative subgroups of F such that |H| = 2ℓ and |L| = ρ|H|,
where ρ is a power of 2. The polynomial commitment (PC) in Virgo for f ∈ F and r ∈ Fℓ consists of the
following algorithms:

• pp← PC.KeyGen(1λ): Given the security parameter λ, the algorithm samples a collision resistant hash
function from a hash family as pp.

• commf ← PC.Commit(f, pp): Given a multi-linear polynomial f , the prover treats 2ℓ coefficients of f as
evaluations of a univariate polynomial fU on H. The prover uses the inverse fast Fourier transform (IFFT)
to compute fU . Then the prover computes fL as evaluations of fU on L via the fast Fourier transform (FFT).
Let commf = MT.Commit(fL).

• (y, πf) ← PC.Open(f, r, pp): The prover computes y = f(r). Given c = O(λ) random indexes
(k1, · · · , kc), the prover computes (fL[k1], πk1

) = MT.Open(fL, k1), · · · , (fL[kc], πkc
) = MT.Open(fL, kc).

Let πf = (fL[k1], πk1
, · · · , fL[kc], πkc

).4

• {1, 0} ← PC.Verify(commf , r, y, πf , pp): The verifier parses πf = (qL[k1], πk1
, · · · , qL[kc], πkc

), then
checks that qL[k1], · · · , qL[kc] are consistent with y by a certain equation p(fL[k1], · · · , fL[kc], y) = 0,
5 and checks that fL[k1], · · · , fL[kc] are consistent with commf by MT.Verify (πk1

, fL[k1], commf), · · · ,
MT.Verify (πkc

, fL[kc], commf). If all checks pass, the verifier outputs 1, otherwise the verifier outputs 0.

Complexity of PC in Virgo. The prover time is O(ℓ · 2ℓ). The proof size is O(λℓ2) and the verifier time is
O(λℓ2).

In the setting of distributed PC, Pi knows f (i). With the help of β̃ function, we have

f(r) =
N−1∑
i=0

β̃(r[ℓ− n + 1 : ℓ], i)f (i)(r[1 : ℓ− n]). (6.5)

4The prover also computes log |L| polynomials of f1, · · · , flog |L| depending on f . But sizes of these polynomials
are |L|

2 , · · · , 1 respectively. The prover commits these polynomial and opens them on at most c locations correspondingly.
Our techniques on distributed commitment and opening can apply to these smaller polynomials easily. We omit the
process for simplicity. It brings a logarithmic factor in the size of the polynomial on the proof size and the verification
time.

5p also takes all openings on polynomials of f1, · · · , flog |L| (at most c for each polynomial) as input, we omit them
for simplicity.

156

A straightforward way for distributed PC is that Pi runs the PC scheme on f (i) separately. In particular, Pi

invokes PC.Commit to commit f (i) in the beginning of the sumcheck protocol. In the last round, Pi runs
PC.Open to compute f (i)(r[1 : ℓ−n]) and sends the proof to V . After receiving all f (i)(r[1 : ℓ−n]) fromPi,
V invokes PC.Verify to validate N polynomial commitments separately. Then V computes β̃(r[ℓ−n+1 : ℓ], i)
for each i. Finally, V checks f(r) =

∑N−1
i=0 β̃(r[ℓ− n + 1 : ℓ], i)f (i)(r[1 : ℓ− n]).

Although the aforementioned naïve distributed protocol achieves O(2ℓ(ℓ− n)) in computation time for
each machine, the total proof size is O(λN(ℓ− n)2) as the individual proof size for each Pi is O(λ(ℓ− n)2).
To reduce the proof size, we optimize the algorithm by aggregating N commitments and N proofs altogether.
For simplicity, we assume ρ = 1 without loss of generality in the multi-linear polynomial commitment6. We
present the formal protocol of distributed PC in Protocol 20.

Protocol 20 (Distributed PC). Suppose the prover has N machines of P0, · · · ,PN−1 and suppose
P0 is the master node. Each Pi holds a polynomial f (i) : Fℓ−n → F such that f(x) = β̃(x[ℓ−n+1 :
ℓ], i)f (i)(x[1 : ℓ − n]). Suppose V is the verifier. Let H and L be two disjoint multiplicative
subgroups of F such that |H| = 2ℓ

N
and |L| = ρ|H|. For simplicity, We assume ρ = 1. Let

pp = PC.KeyGen(1λ). The protocol proceeds in following steps.

1. Each Pi invokes PC.Commit(f (i), pp) to compute f (i)
L by IFFT and FFT.

2. Each Pi sends f (i)
L [1], · · · , f (i)

L [N] to P0, · · · , PN−1 separately.

3. EachPi receives f (0)
L [i+1], · · · , f (N−1)

L [i+1] from other machines. Assuming h(i)
L = (f (0)

L [i+1],
· · · , f (N−1)

L [i + 1]), Pi computes comm
h

(i) = MT.Commit(h(i)
L) and sends comm

h
(i) to P0.

4. Suppose h = (comm
h

(0) , · · · , comm
h

(N−1)), P0 computes comm = MT.Commit(h) and sends
comm to V .

5. After receiving the random vector r from V , P0 relays r to each Pi. Each Pi computes
f (i)(r[1 : ℓ− n]) and sends it to V via P0.

6. To prove the correctness of f (i)(r[1 : ℓ − n]), given random index of k1, · · · , kc from V ,
Pk1−1, · · · , Pkc−1 send h(k1−1)

L , · · · , h(kc−1)
L to V via P0.P0 also generates (h[k1], πk1) =

MT.Open(h, k1), · · · , (h[kc], πkc
) = MT.Open(h, kc) and send them to V .

7. V checks f(r) = ∑N−1
i=0 β̃(r[ℓ − n + 1 : ℓ], i)f (i)(r[1 : ℓ − n]). V checks

h[k1]=MT.Commit(h(k1−1)
L), · · · , h[kc]=MT.Commit(h(kc−1)

L). Then V checks πk1 , · · · , πkc

by MT.Verify(πk1 , h[k1], comm), · · · , MT.Verify(πkc
, h[kc], , comm). V also checks

q(f (i)
L [k1], · · · , f (i)

L [kc], f (i)(r[1 : ℓ − n])) = 0 for each i as shown in PC.Verify. If all
checks pass, V outputs 1, otherwise V outputs 0.

The idea of our scheme is that each Pi exchanges data with other machines immediately after computing
6In Virgo, ρ = 32 for security requirements. Our scheme can extend to ρ = 32 easily.

157

f (i)
L instead of invoking MT.Commit on f (i)

L directly. The advantage of such arrangement is that the prover
aggregates evaluation on the same index into one branch and can open them together by a single Merkle tree
proof for this branch. As described in the polynomial commitment of Virgo, the prover needs to open fL
on some random indexes depending on r in PC.Open. As r is identical to each f (i), the prover would open
each f

(i)
L at same indexes. If the prover aggregates f

(i)
L by the indexes, she can open N values in one shot by

providing only one Merkle tree path instead of naïvely providing N Merkle tree paths, which helps her to
save the total proof size by a logarithmic factor in the size of the polynomial.

Specifically, Pi collects evaluations of f (0)
L [i + 1], · · · , f (N−1)

L [i + 1] with identical index of (i + 1) in L
from other machines (step 1 and step 2). ThenPi invokes MT.Commit to get a commitment, com

h
(i) , for these

values, and submits com
h

(i) to P0 (step 3). P0 invokes MT.Commit on com
h

(0) , · · · , com
h

(N−1) to compute
the aggregated commitment, comm, and P0 sends comm to V (step 4). In the PC.Open phase, given a
random index kj from V , P0 retrieves f (N−1)

L [kj], · · · , f (N−1)
L [kj] from Pkj−1, computes (comm

h
(kj −1) , πkj

)
= MT.Open (comm, kj), and sends these messages to V (step 5 and step 6). V can validate N evaluations by
invoking MT.Verify only once (step 7). With this approach, we reduce the proof size to O(λ(N + ℓ2)). And
the complexity of Protocol 20 is shown in the following.

Complexity of distributed PC. Given that f is a multi-linear polynomial with ℓ variables, the total
communication among N machines is O(2ℓ). The total prover work is O(2ℓ · ℓ) while the prover work for
each device is (2ℓ

N · ℓ). The proof size is O(λ(N + ℓ2)). The verification cost is O(λ(N + ℓ2)).

6.4.4 Combining everything together
In this section, we combine the distributed sumcheck and the distributed PC altogether to build deVirgo.

Background: The Virgo protocol. By combining the GKR protocol and the polynomial commitment in
Section 6.4.3 We present the formal protocol of Virgo in Protocol 21 and the the complexity of Protocol 21 in
the following7.

Protocol 21 (Virgo). Let F be a finite field. Let C: Fm → Fk be a d-depth layered arithmetic
circuit. P wants to convince that 1 = C(x, w) where x and w are input and 1 is the output.
Without loss of generality, assume m and k are both powers of 2 and we can pad them if not.

1. Set pp← PC.KeyGen(1λ). P invokes PC.Commit(Ṽd, pp) to generate commṼd
and sends

commṼd
to V .

2. P and V run step 1-3 in Protocol 18.

3. At the input layer d, V has two claims Ṽd(u(d)) and Ṽd(v(d)). P and V invoke PC.Open
and PC.Verify on Ṽd(u(d)) and Ṽd(v(d)) with commṼd

and pp. If they are equal to Ṽd(u(d))
and Ṽd(v(d)) sent by P , V outputs 1, otherwise V outputs 0.

7Protocol 21 is a knowledge argument system rather than a zero-knowledge proof protocol as we actually use the
knowledge argument system in our construction.

158

Complexity of Virgo [ZXZS]. Given a layered arithmetic circuit C with d layers and m inputs, Protocol 21
is a zero-knowledge proof protocol as defined in Definition 6.2.2 for the function computed by C. The
prover time is O(|C|+ m log m). The proof size is O(d log |C|+ λ log2 m) and The verification time is also
O(d log |C|+ λ log2 m).
deVirgo. For a data-parallel layered arithmetic circuit C with N copies and d layers, following the workflow
of Virgo in Protocol 21, our distributed prover replaces d sumcheck schemes in Virgo by d distributed
sumcheck schemes, and replaces the PC scheme in Virgo by our distributed PC scheme to generate the proof.
We present the formal protocol of deVirgo in Protocol 22. And we have the theorem as follows.

Theorem 6.4.1. Protocol 22 is an argument of knowledge satisfying the completeness and knowledge
soundness in Definition 6.2.2 for the relation C(x, w) = 1, where C consists of N identical copies of
C0, · · · , CN−1.

Proof (sketch). Completeness. The completeness is straightforward.

Knowledge soundness. deVirgo generates the same proof as Virgo for d sumcheck protocols. So we only
need to consider the knowledge soundness of distributed PC scheme. If the commitment of f is inconsistent
with the opening of f(r) in the distributed PC scheme, there must exist at least one f (i)(r[1 : ℓ− n]) being
inconsistent with the commitment f by Equation 6.5. Otherwise, when all f (i)(r[1 : ℓ− n]) are consistent
with the commitment of f , f(r) must be consistent with the commitment of f . As shown in Protocol 20,
comf is equivalent to com

f
(i) with additional dummy messages in each element of the vector in the Merkle

tree commitment. It does not affect the soundness of the PC in Virgo in the random oracle model [ZXZS;
ZXHSZ22]. The verifier outputs 0 in the PC.Verify phase with the probability of (1− negl(λ)). Therefore,
deVirgo still satisfies knowledge soundness.

The zero-knowledge property is not necessary as there is no private witness in the setting of zkbridge.
However, we can achieve zero-knowledge for deVirgo by adding some hiding polynomials. Virgo uses the
same method to achieve zero-knowledge.

Additionally, Fiore and Nitulescu [FN16] introduced the notion of O-SNARK for SNARK over authenti-
cated data such as cryptographic signatures. Protocol 22 is an O-SNARK for any oracle family, albeit in
the random oracle model. To see this, Virgo relies on the construction of computationally sound proofs
of Micali [Mic00] to achieve non-interactive proof and knowledge soundness in the random oracle model,
which has been proven to be O-SNARK in [FN16]. Hence Virgo is an O-SNARK, and so is deVirgo because
deVirgo also relies on the same model.

Protocol 22 achieves optimal linear scalability on data-parallel circuits without significant overhead
on the proof size. In particular, our protocol accelerates Virgo by N times given N distributed machines.
Additionally, the proof size in our scheme is reduced by a factor of N compared to the naïve solution of
running each sub-copy of data-parallel circuits separately and generating N proofs. The complexity of
Protocol 22 is shown in the following.

Complexity of distributed Virgo. Given a data-parallel layered arithmetic circuit C with N sub-copies,
each having d layers and m inputs, the total prover work of Protocol 22 is O(|C| + Nm log m). The
prover work for a single machine is O(|C|/N + m log m), and the total communication among machines
is O(Nm + Nd log |C|). The proof size is O(d log |C| + λ(N + log2 m)). The verification cost is
O(d log |C|+ λ(N + log2 m)).

159

Protocol 22 (Distributed Virgo). Let F be a finite field. Let C: FmN → Fk be a d-depth
layered arithmetic circuit. Suppose C is also a data-parallel circuit with N identical copies. P
is a prover with N distributed machines and wants to convince V that 1 = C(x, w) where x
and w are input, and 1 is the output. Without loss of generality, assume m, N , and k are powers
of 2 and we can pad them if not.

1. Set pp ← PC.KeyGen(1λ). Define the multi-linear extension of array (x, w) as Ṽd. P
invokes step 1-4 in Protocol 20 on Ṽd to get commṼd

and sends commṼd
to V .

2. Define the multi-linear extension of array 1 as Ṽ0. V chooses a random g ∈ Fs0 and sends
it to P .

3. P and V run Protocol 19, the distributed sumcheck protocol, on

1 =
∑

x,y∈{0,1}s1

(˜add1(g(0), x, y)(Ṽ1(x) + Ṽ1(y)) + ˜mult1(g(0), x, y)Ṽ1(x)Ṽ1(y))

At the end of the protocol, V receives Ṽ1(u(1)) and Ṽ1(v(1)). V computes
˜mult1(g(0), u(1), v(1)), ˜add1(g(0), u(1), v(1)) and checks that ˜add1(g(0), u(1), v(1))

(Ṽ1(u(1))+ Ṽ1(v(1)))+ ˜mult1(g(0), u(1), v(1)) Ṽ1(u(1))Ṽ1(v(1)) equals to the last message
of the sumcheck.

4. For i = 1, ..., d− 1:

• V randomly selects αi,1, αi,2 ∈ F and sends them to P .
• P and V run Protocol 19, the distributed sumcheck protocol, on

αi,1Ṽi(u(i)) + αi,2Ṽi(v(i)) =∑
x,y∈{0,1}si+1

((αi,1 ˜addi+1u(i), x, y) + αi,2 ˜addi+1(v(i), x, y))(Ṽi+1(x) + Ṽi+1(y))

+(αi,1 ˜multi+1(u(i), x, y) + αi,2 ˜multi+1(v(i), x, y))Ṽi+1(x)Ṽi+1(y))

• At the end of the sumcheck protocol, P sends V Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)).
• V computes the right-hand side of the above equation by replacing x and y by u(i+1)

and v(i+1) respectively. checks if it equals to the last message of the sumcheck. If all
checks in the sumcheck pass, V uses Ṽi+1(u(i+1)) and Ṽi+1(v(i+1)) to proceed to the
(i + 1)-th layer. Otherwise, V outputs 0 and aborts.

5. At the input layer d, V has two claims Ṽd(u(d)) and Ṽd(v(d)). P invokes step 5-6 in
Protocol 20 to open Ṽd(u(d)) and Ṽd(v(d)) while V invokes step 7 in Protocol 20 to validate
Ṽd(u(d)) and Ṽd(v(d)). If they are equal to Ṽd(u(d)) and Ṽd(v(d)) sent by P , V outputs 1,
otherwise V outputs 0.

160

6.5 Reducing proof size and verifier time
Although deVirgo improves the prover time by orders of magnitude, we want to further reduce the cost of
the verification time and the proof size. As mentioned in the above section, the circuit which validates over
100 signatures is giant due to non-compatible instructions on different curves across different blockchains.
Additionally, Virgo’s proof size, which is around 210KB for a circuit with 10 million gates, is large in practice.
Thus we cannot post deVirgo’s proof on-chain and validate the proof directly. Aiming at smaller proof size and
simpler verification on-chain, we propose to further compress the proof by recursive proofs with two layers.
Intuitively, for a large-scale statement (x, w) ∈ R in Definition 6.2.2, the prover generates the proof π1 by a
protocol with fast prover time in the first layer. If the length of π1 is not as short as desired, then the prover
can produce a shorter proof π2 by invoking another protocol for (x, π1) ∈ R′ in the second layer, whereR′

represents that π1 is a valid proof for (x, w) ∈ R. To shrink the proof size and simplify the verification as
much as possible, we choose Groth16 as the second layer ZKP protocol since Groth16 has constant proof
size and fast verification time. Moreover, the curve in Groth16 is natively supported by Ethereum, which is
beneficial for saving on-chain cost on Ethereum. In our approach, the prover invokes deVirgo to generate
π1 on the initial circuit in the first layer. In the second layer, the prover invokes Groth16 to generate π2 on
the circuit implementing the verification algorithm of deVirgo where |π2| ≪ |π1|. The prover only needs to
submit π2 on-chain for verification. The recursion helps cross-chain bridges to reduce gas cost on blockchains
because of simple verification on the compatible curve. The security of recursive proofs relies on random
oracle assumption, which can be instantiated by a cryptographic hash function in practice [COS19].

of sigs Total circuit size Circuit size for GKR part Circuit size for PC part
1 1.2× 107 gates 8.4× 106 gates 3.3× 106 gates
4 1.2× 107 gates 8.4× 106 gates 4.0× 106 gates
32 1.3× 107 gates 8.4× 106 gates 4.7× 106 gates
128 1.4× 107 gates 8.4× 106 gates 5.4× 106 gates

Table 6.1: The verification circuit size of deVirgo

Performance gains. We use the signature validation circuit for Cosmos [Cos] as an example to show concrete
numbers of the verification circuit of deVirgo in Table 6.1. We record the size of the whole verification
circuit in the 2nd column, the size for the GKR part in the 3rd column, and the size for the PC part in the
4th column, as the number of signatures in data-parallel circuits increases from 1 to 128 in the 1st column.
The number of gates in the 2nd column equals the sum of numbers of gates in the 3rd column and the 4th

column. As shown in Table 6.1, although the data-parallel circuit size expands, the size for the sumcheck part
in deVirgo’s verification circuit does not change. That is because the verification for the GKR part is only
based on the structure of the sub-circuit, which is identical among different copies. However, the size for the
PC part in deVirgo’s verification circuit up-scales sub-linearly in the number of copies due to the growth of
the polynomial size. Even given 128 copies of the signature validation circuit, the bottleneck of deVirgo’s
verification circuit is the sumcheck part. Therefore, the recursive proof size and the recursive verification
cost are independent of the number of signatures to validate in our instance. In addition, the prover time of
Groth16 on the verification circuit of deVirgo is only 25% of the prover time of deVirgo in practice. Therefore,

161

our recursive proof scheme reduces the on-chain proof verification cost from ∼ 8× 107 gas (an estimation) to
less than 2.3× 105 gas.

6.6 Implementation and Evaluation
To demonstrate the practicality of zkBridge, we implement a prototype from Cosmos [Cos] (a PoS blockchain
built on top of the Tendermint [Kwo14] protocol) to Ethereum, and from Ethereum to other EVM-compatible
chains such as BSC. Supports for other blockchains can be similarly implemented with additional engineering
effort, as long as they support light client protocols defined in Definition 6.2.1. In this section, we discuss
implementation detail, its performance, as well as operational cost.

The bridge from Cosmos to Ethereum is realized with the full blown zkBridge protocol presented so far to
achieve practical performance. In comparison, the direction from Ethereum to other EVM-compatible chains
incurs much less overhead for proof generation and does not require deVirgo. Therefore, in what follows, we
mainly focus on the direction from Cosmos to Ethereum.

6.6.1 Implementation details
The bridge from Cosmos to Ethereum consists of four components: a relayer that fetches Cosmos block
headers and sends them to Ethereum (implemented in 300+ lines of Python), deVirgo (implemented in 10000+
lines of C++) for distributed proof generation, a handcrafted recursive verification circuit, and an updater
contract on Ethereum (implemented in 600+ lines of Solidity). Our signature verification circuit is based on
the optimized signature verification circuit [Edd]. However, we use Gnark instead of Circom as in [Edd] for
better efficiency for proof generation.

6.6.1.1 Generating correctness proofs.

Relay nodes submit Cosmos block headers to the updater contract on Ethereum along with correctness proofs,
which proves that the block is properly signed by the Cosmos validator committee appointed by the previous
block. (In Cosmos a hash of the validator committee members is included in the previous block.)

In Cosmos, each block header contains about 128 EdDSA signatures (on Curve25519), Merkle roots
for transactions and states, along with other metadata, where 32 top signatures are required to achieve
super-majority stakes. However, the most efficient curve supported by the Ethereum Virtual Machine (EVM)
is BN254. To verify Cosmos digital signatures in EVM, one must simulate Curve25519 on curve BN254,
which will lead to large circuits. Concretely, to verify a Cosmos block header (mainly, to verify about 32
signatures), we need about 64 million gates. We implement deVirgo (Section 6.4) and recursive verification
(Section 6.5) to accelerate proof generation and verification.

Moreover, in practical deployment, multiple relayers can form a pipeline to increase the throughput.
Looking ahead, based on the evaluation results, our implementation can handle 1 second block time in
Cosmos with 120+ capable relayers in the network.

For proof verification, we build an outer circuit that verifies Virgo proofs and use Gnark [Gna] to generate
the final Groth16 proof that can be efficiently verified by the updater contract on Ethereum.

162

6.6.1.2 The updater contract.

We implement the updater contract on Ethereum in Solidity that verifies Groth16 proofs and keeps a list of
the Cosmos block headers in its persistent storage. The cost of verifying a Groth16 proof on-chain is less than
230K gas.

The updater contract exposes a simple API which takes block height as its input, and returns the
corresponding block header. The receiver contracts can then use the block header to complete application-
specific verification.

Batching. Instead of calling the updater contract on every new block header, we implemented batching
where the updater contract stores Merkle roots of batches of B consecutive block headers. The prover will
first collect B consecutive blocks, and then makes a unified proof for all B blocks. The updater contract will
only need to verify one proof for the batch of B blocks. After the verification, the updater contract checks the
difficulty, stores the block headers, and updates the light-client state. Storing one Merkle root every B blocks
also reduces storage cost. Thus B can be set to balance user experience and cost: With a larger B, users need
to wait longer, but the cost of running the system is lower.

We implement the aforementioned batched proof verification and show the experimental results in Section
6.6.2. With batching, the cost for storing block headers and maintaining light-client states is amortized across
B blocks. The bulk of the cost incurred by the updater contract is SNARK proof verification, which is the
focus of our evaluation below.

In addition, we propose a more complex batching optimization presented in the following for further
optimization.

On-chain Gas Cost Optimization To further optimize the on-chain gas cost of block header verification and
storage for a universal zkBridge, we propose the following approach, in which the prover will not bother to
pay for on-chain proof verification or block header storage, and users are encouraged to submit the proof they
need by our incentive design.

In our optimization, the same as the aforementioned batched proof, the prover generates one single proof
for every 2d blocks where d is a system configuration, and each proof checks and shows the validity of all
signatures in the corresponding 2d blocks. However, instead of submitting the Merkle root of the batch along
with the proof on-chain immediately, provers simply post the proof to the users (e.g., through a website), and
it’s up to the users to retrieve and post the proof on-chain. Thus there’s no more on-chain gas cost for provers
through the approach.

For users who want to verify a transaction tx in a block blk, the workflow is as follows.

1. If blk has already been submitted on-chain, go to the next step. Otherwise, retrieve the proofs for the
sequence of blocks from the first unsubmitted one to blk, and then invoke the updater contract to verify
all the proofs on-chain and store the information of the corresponding sequence of blocks. The process
can be expensive. However, once the proofs are verified and the blocks are confirmed by the updater
contract, the user becomes the owner of all these proofs on-chain, and can benefit from the proofs by
charging later users who rely on these proofs to verify their transactions on-chain.

2. Thanks to the previously submitted proofs, the validity of the corresponding block is already proved
at this step. And the work can never be accomplished without the efforts of proving all the blocks
prior to blk (including blk). Suppose blk is the ith block, then for each block with index in the range
[i− t + 1, i], the user should pay a certain amount of fee to the block proof owner in compensation,
where t is a system configuration and the definition of block proof owner is defined in the previous step.

163

In this case, provers don’t bother to pay for on-chain verification any more, and the proofs are only
submitted and verified on demand, which is more cost-efficient and can reduce possible waste. Moreover,
through carefully-designed incentive, we can actually encourage users to submit the proofs as a possible
investment, and it can also help with the popularity of our bridge.

Through the optimization, the cost performance of our bridge can be summarized as follows. If there is
high demand, then each proof will be submitted immediately upon generation, and in this case each user needs
to pay for at most one time of on-chain proof verification. It then degenerates into our original batched proof,
but users are responsible of paying for the on-chain verification instead. If the sender chain is so unpopular
that there is little bridging demand from the chain, then we successfully avoid unnecessarily submitting the
proofs on-chain for meaningless but costly verification. And even if a user suddenly exists and requires
bridging in this case, the request can also be fulfilled by retrieving the proofs from provers and sending them
for on-chain verification one by one.

And thus we can see that, the new design can actually benefit both the provers and the users.

6.6.2 Evaluation
We evaluate the performance of zkBridge (from Cosmos to Ethereum) from four aspects: proof generation
time, proof generation communication cost, proof size, and on-chain verification cost.

6.6.2.1 Experiment setup.

We envision that a relayer node in zkBridge will be deployed as a service in a managed network, therefore we
evaluate zkBridge in a data-center-like environment. Specifically, we run all the experiments on 128 AWS
EC2 c5.24xlarge instances with the Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz and 192GB of
RAM. Our implementation for the proof generation is parallelized with at most 128 machines. We report the
average running time of 10 executions. Whenever applicable, we report costs both in terms of running time
and monetary expenses.

Proof Gen. Time (seconds) Proof Gen. Comm. (GB) Proof Size (Bytes) On-chain Ver. Cost (gas)
of sigs deVirgo RV total total per-machine w/o RV w/ RV w/o RV w/ RV
8 12.52 4.90 17.42 7.34 0.92 1946476 131 78M 227K
32 12.80 5.41 18.21 32.24 1.01 1952492 131 78M 227K
128 13.28 5.49 18.77 131.89 1.03 1958508 131 79M 227K

Table 6.2: Evaluation results. RV is the shorthand for recursive verification.

6.6.2.2 Proof generation time of deVirgo.

We first evaluate the main cryptographic building block—deVirgo—and compare its performance with
the original Virgo [ZXZS]. The source code of the original Virgo is obtained at https://github.com/
sunblaze-ucb/Virgo. We run both protocols on the same circuit for correctness proofs, which mainly
consists of N invocation of EdDSA signature verification.

164

2 8 32 128 512

101

102

103

104

Number of signatures

Pr
ov

er
Ti

m
e

(s
ec

on
ds

)
The original Virgo
8-machine deVirgo
32-machine deVirgo
128-machine deVirgo

Figure 6.2: Prover time of deVirgo and the original Virgo for Cosmos block header verification.

Figure 6.2 shows the prover time (in seconds) against different N . For deVirgo, we repeat the experiment
with 8, 32, 128 distributed machines. According to Fig. 6.2, the prover time of the original Virgo increases
linearly in the number of signatures N , while the prover time of deVirgo is almost independent of N until N is
greater than the number of servers when computation becomes an bottleneck. The linear scalability suggests
that the workload of each machine only depends on its own sub-circuit and the communication overhead
is small. Table 6.2 reports the communication cost among parallel machines. The total communication
cost is linear in the number of machines, consistent with the analysis in Section 6.4.4, with each machine
sending and receiving around 1 GB of data. Since we envision a relayer node in zkBridge to be deployed in a
data-center-like environment, the amount of traffic is reasonable.

In practice, the Cosmos block headers typically have N = 128 signatures while 32 top signatures are
sufficient to achieve super-majority. Therefore, generating a correctness proof for a Cosmos block header
would take more than 400 seconds with the original Virgo, but it decreases to 13.28 seconds with deVirgo,
implying a 30x speedup. In general, as is consistent with the analysis in Section 6.4, deVirgo accelerates
the proof generation on data-parallel circuits with N copies by a factor of almost N , which is optimal for
distributed algorithms.

6.6.2.3 Proof size and verification time.

To reduce on-chain verification cost, we use the recursive verification technique presented in Section 6.5.
Now we report on its efficacy.

165

Recursive proof generation time. We implement recursive verification by invoking Groth16 (constructed
using gnark [Gna]) on the verification circuit. We report the proof time in deVirgo, the generation time of
recursive proofs (the column marked RV), and the sum, in Table 6.2, for various numbers of signatures. The
RV time almost remains constant in the number of signatures verified by the deVirgo proofs. That is because
of the data-parallel structure of the state transition proof circuit: the size of Groth16 verification circuit is
only a function of the size of a sub-circuit.

The main benefit of recursive verification is a reduction in both proof size and verification cost.

Reduced proof size. Table 6.2 shows the proof size both with and without recursive verification. For the
practical scenario where N = 32, the proof size is reduced from 1.9 MB to 131 Bytes. Overall, for N = 32,
with an increase of about 25% in prover time, we get a reduction of around 14000x in proof size.

Reduced on-chain verification cost. The final proof is 131 Bytes while the final verification only costs 3
pairings. As shown in Table 6.2, the on-chain verification cost is constant (227K). In comparison, without
recursive verification, directly verifying Virgo proofs on-chain would be infeasible. (Our estimation of the
gas cost is 78M, which far exceeds the single block gas limit 30M).

6.6.2.4 Comparison with optimistic bridges.

With batching, the confirmation latency of zkBridge is under 2 minutes, including 3× 32 seconds for waiting
for all blocks in the batch and another 20 seconds for proof generation. While this is not blazing fast, in
comparison, optimistic bridges have much longer confirmation time. E.g., NEAR’s Rainbow bridge has a
challenge window of 4 hours [Nea] before which the transfer cannot be confirmed.

6.6.3 Cost analysis
In this section, we analyze the operational cost of zkBridge, which consists of off-chain cost (generating
proofs) and on-chain cost (storing headers and verifying proofs).

Off-chain cost. Off-chain cost can vary significantly based on the deployment. While we use AWS in our
performance benchmark, it may not be the best option for practical deployment. AWS service is expensive
due to its high margin, elastic scaling capability, and high reliability, which isn’t necessary for our proof
generation process. To show a representative range, we consider two deployment options: cloud-based and
self-hosted. For cloud-based deployment, we search for reputable and economical dedicated server rental
services and choose Hetzner[Het] as an example. For self-hosted options, we calculate the cost to purchase
the hardware and the on-going cost (mainly the electricity).

On AWS c5.24xlarge, it takes 18 seconds to generate a proof with 32 machines. Renting a server with
a similar spec as AWS c5.24xlarge from Hetzner costs $253.12 per month, thus the cost of cloud-based
deployment with Hetzner will be around $8100 per month for all 32 machines. It translates to $0.02 per block.

To estimate the cost for self-hosted deployment, we use online tools to configure a machine with a
comparable spec to that in AWS. Table 6.3 reports the configuration and each machine costs around $4.5k.
The total setup cost is thus around $4.5k ×32 = $144k. For self-hosted servers, the main on-going cost
is electricity. With each machine consuming 657W power, a 32-machine cluster consumes 0.105 kWh per
block. Assuming US average electricity rate $0.12/KWh [Use], the electricity cost is $0.012 per block, or
$5184 per month.

166

Hardware type Hardware name Power consumption Price Quantity
CPU AMD Ryzen Threadripper 3970X 435W $2325.99 1
Memory CMK256GX4M8D3600C18 96W $1129.99 1
Motherboard MSI TRX40 PRO WIFI 80W $565.57 1
Power Supply EVGA 220-T2-1000-X1 94% efficiency $332.88 1
SSD MZ-V8P1T0B/AM 6.2W $129.99 1
Total 657W $4484.42

Table 6.3: Prover hardware configuration.

On-chain cost. On-chain cost refers to the total gas used for on-chain operation, and we report the equivalent
USD cost based on the gas price (about 20 gwei) and ETH price (about 1600 USD) at the time of writing
(August 2022). If we use efficient batched proofs, for a batch of N headers, the bulk of the verification cost is
that of verifying one Groth16 proof, which costs less than 230K gas, roughly $7.36. If we choose N = 32
for example, the on-chain cost will be $0.23 per block. Moreover, if we adopt the optimization mentioned in
Section 6.6.1.2, we can further reduce the on-chain cost and offload the cost to users if the number of users is
large.

6.6.4 Ethereum to other EVM-compatible chains
So far we have focused on the bridge from Cosmos to Ethereum because generating and verifying correctness
proofs for that direction is challenging. We also implement a prototype of a bridge from Ethereum to other
EVM-compatible blockchains.

The high level idea is simple: upon receiving a block header, the updater contract on the receiver chain
verifies the PoW and appends it to the list of headers if the verification is passed. However, a wrinkle
to the implementation is that Ethereum uses a memory hard hash function, EthHash [Woo+14], which is
prohibitively inefficient to run on-chain. Basically, EthHash involves randomly accessing elements in a 1
gigabyte dataset (called a DAG) derived from a public seed and the block height. Generating the DAGs
on-chain is prohibitively expensive.

Our idea is to pre-compute many DAGs off-chain and store their hashes on-chain. Specifically, as part of
zkBridge setup, we pre-compute 2,048 DAGs , build a Merkle tree for each DAG using MiMC [AGRRT16],
and store the Merkle roots on-chain. Per EthHash specification, a new DAG is generated every 30,000 blocks,
so 2,048 of them can last for 10 years; the off-chain pre-computation process takes no more than 4 days.
Then, the correctness proofs will show that a given EthHash PoW is correct with respect to the Merkle root
of the DAG corresponding to the block in question. We emphasize that the setup process is verifiable and
anyone can verify the published Merkle roots on their own before using the service. The circuit for verifying
EthHash PoW has around 2 million gates.

The rest of the protocol is the same as a regular light client, which involves storing the headers, following
the longest chain by computing accumulated difficulty, resolving forks, etc.

Cost analysis. Since EthHash PoW verification circuit has only around 2 million constraints, a single
machine with the configuration in Table 6.3 can generate a proof within 10 seconds. As long as the receiver

167

chain is EVM-compatible, the on-chain cost will be close to that presented in Section 6.6.3, since the updater
contract only verifies Groth16 proofs in all cases.

6.7 Related work
In this section, we compare zkBridge to existing cross-chain bridge systems and the line of work on zk-rollups
which also uses ZKPs for scalability and security.

Cross-chain bridges in the wild and security issues. Cross-chain systems are widely deployed and used.
Below we briefly survey the representative ones. The list is not meant to be exhaustive. PolyNetwork [Polb]
is an interoperability protocol using a side-chain as the relay with a two-phase commitment protocol.
Wormhole [Worb] is a generic message-passing protocol secured by a network of guardian nodes, and its
security relies on 2

3 of the committee being honest. Ronin operates in a similar model. While relying on
decentralized committees for security, practical deployment usually opts for relatively small ones for efficiency
(e.g., 9 in case of Ronin). Committee breaches are far from being rare in practice. In a recent exploit against
Ronin [Ron], the attacker obtained five of the nine validator keys, stealing 624 million USD. PolyNetwork and
Wormhole were also recently attacked, losing $611m [Pola] and $326m [Wora] respectively. Key compromise
was suspected in the PolyNetwork attack.

An alternative design is to leverage economic incentives. Nomad [Nomb] (which recently lost more
than $190m to hackers due to an implementation bug [Noma]) and Near’s Rainbow Bridge [Rai] are such
examples. These systems require participants to deposit a collateral, and rely on a watchdog service to
continuously monitor the blockchain and confiscate offenders’ collateral upon detecting invalid updates.
Optimistic protocols fundamentally require a long confirmation latency in order to ensure invalid updates can
be detected with high probability (e.g., Near [Rai] requires 4 hours). Moreover, participants must deposit
significantly collateral (e.g., 20 ETH in Near [Rai]). Both issues can be avoided by zkBridge.

In summary, compared to existing protocols, zkBridge achieve both efficiency and cryptographic assurance.
zkBridge is “trustless” in that it does not require extra assumptions other than those of blockchains and
underlying cryptographic protocols. It also avoids the long confirmation of optimistic protocols.

zk-rollups. Rollups are protocols that batch transaction execution using ZKPs to scale up the layer-1
blockchains. Starkware [Sta], ZkSync [Zks], and Polygon Zero [Pole] are a few examples.

These zk-rollup solutions have not been applied to the bridge setting, where our work is the first to use
ZKP to enable a decentralized trustless bridge. In addition, the current zk-rollup work in general has not dealt
with such large circuits as in zkBridge, whereas in our work, we need to design and develop a number of
techniques including deVirgo and proof recursion to make building a ZKP-based bridge practical for the first
time. In particular, we leverage the data parallelism of the circuits to obtain a ZKP protocol that is more
than 100x faster than existing protocols for the workload in zkBridge and combine it with proof recursion for
efficient on-chain verification. The idea behind deVirgo protocol may be applicable to zk-rollups too.

168

169

Chapter 7

Polynomial Commitment with a
One-to-Many Prover and Applications

Verifiable Secret Sharing (VSS) is a foundational cryptographic primitive that serves as an essential building
block in multi-party computation and decentralized blockchain applications. One of the most practical ways
to construct VSS is through a polynomial commitment, where the dealer commits to a random polynomial
whose 0-th coefficient encodes the secret to be shared, and proves the evaluation of the committed polynomial
at a different point to each of N verifiers, i.e., the polynomial commitment is used in a “one-to-many” fashion.

The recent work of Tomescu et al. (IEEE S&P 2020) was the first to consider polynomial commitment
with “one-to-many prover batching”, such that the prover can prove evaluations at N different points at the
cost of Õ(1) proofs. However, their scheme is not optimal and requires a trusted setup.

In this paper, we asymptotically improve polynomial commitment with one-to-many prover batching.
We propose two novel schemes. First, we propose a scheme with optimal asymptotics in all dimensions in
the trusted setup setting. Second, we are the first to consider one-to-many prover batching for transparent
polynomial commitments, and we propose a transparent scheme whose performance approximately matches
the best-known scheme in the trusted setup setting.

We implement our schemes and evaluate their performance. Our scheme in the trusted setup setting
improves the proof size by 20× and the verifier time by 7.8× for 221 parties, with a small overhead on the
prover time. Our transparent polynomial commitment removes the trusted setup and further improves the
prover time by 2.3×.

This work was previously published in [ZXHSZ22].

7.1 Introduction
In an (N, t + 1) Verifiable Secret Sharing (VSS) protocol [CGMA85; BOGW88; CCD88; RBO89; KZG],
roughly speaking, there is a dealer and N receivers. The dealer has a secret s, and it wants to split s
into N shares, and gives out one share to each receiver. The secret s can be reconstructed if at least
t + 1 receivers combine their shares. However, any coalition of t or fewer receivers cannot learn any
information about s (assuming that the dealer is honest). The scheme is “verifiable” if honest receivers
can reliably detect a cheating dealer who deals internally inconsistent shares to different receivers. VSS is
a foundational building block and widely used in multi-party computation [BOGW88; CCD88; RBO89],
threshold cryptosystems [RBO89; Tom+20], and distributed key generation (DKG) [Tom+20; KG09; Kat10].
Recently, VSS has received increasing attention since decentralized blockchains provide a large-scale
playground for threshold cryptosystems [Tom+20; GKMPS20].

Several recent works [KZG; Tom+20] showed that round-efficient VSS can be constructed from polynomial
commitment schemes — this is one of the most practical approaches for constructing VSS. In a polynomial
commitment scheme, a dealer (also called a prover) can produce a commitment c of a polynomial f whose
coefficients are assumed to be in some finite field. Later, during an opening phase, the dealer can claim that
the committed polynomial evaluates to y at a given point x, and it can prove to a verifier that this is indeed
the correct evaluation result by producing an ideally succinct proof π. Given a polynomial commitment
scheme, it is relatively straightforward to construct a VSS scheme [KZG; Tom+20]. Specifically, the dealer
chooses a random degree-t polynomial f whose 0-th coefficient encodes the secret s. The dealer now commits
to the polynomial and broadcasts the commitment c to all receivers. Next, it chooses N distinct points
x1, x2, . . . , xN , and gives yi = f(xi) to receiver i ∈ [N] respectively, and proves to the receiver that the
purported outcome yi is correct with respect to the commitment c. If the dealer is honest, then optimistically
the protocol can end here. If the dealer is dishonest and deals incorrect shares to many receivers, the receivers
can resort to some complaint mechanism to disqualify the dealer (assuming a synchronous network).

To construct VSS from polynomial commitments, the underlying polynomial commitment scheme is used
in a one-to-many fashion, i.e., for the same committed polynomial, the dealer needs to prove N evaluations
on different points to N different receivers. To produce these N proofs, a naïve approach is for the prover
to repeat N times the proving algorithm of the underlying polynomial commitment scheme, thus incurring
N times the computational overhead. The recent work of Tomescu et al. [Tom+20] showed an elegant
one-to-many prover batching technique for the well-known KZG polynomial commitment [KZG], such that
the dealer can produce N proofs with only Õ(1) slowdown (relative to computing a single proof). Tomescu et
al.’s work, however, does not achieve prove batching directly for the KZG scheme, but rather, a more involved
variant of KZG. It breaks down the proof generation of the KZG scheme into log N steps and constructs an
authenticated multipoint evaluation tree (AMT) to store redundant computations and improve the efficiency
of multiple proofs. Consequently, the verification time and proof size become a logarithmic factor more
costly than the original KZG protocol. Another limitation of Tomescu et al.’s work is that it relies on a trusted
setup. If the trusted setup is compromised, then the soundness of the scheme can be broken. In decentralized
blockchain applications, such a trusted setup is undesirable.

In this paper, we revisit the interesting direction suggested by Tomescu et al. [Tom+20]. We ask the
following two questions:

1. Can we achieve one-to-many prover batching directly for the KZG polynomial commitment? If so, can
we preserve the optimal verification time and proof size of KZG, while computing N proofs for the
cost of one (or for the cost of Õ(1) proofs)?

170

2. Can we approximately match the asymptotic overhead of Tomescu et al. [Tom+20] in all dimensions,
but remove the trusted setup?

7.1.1 Our Results and Contributions
We answer these questions with two novel constructions of “polynomial commitment with one-to-many prover
batching”.

• Prover batching for the KZG polynomial commitment. The first contribution is a new algorithm for
computing N KZG proofs for the same committed polynomial, paying the cost of only Õ(1) proofs. Since
our algorithm does not modify the underlying KZG polynomial commitment, we inherit the constant
verification time and constant proof size of KZG. Our scheme achieves asymptotic optimality in all
dimensions: the proof size and verification time are optimal; the prover time for generating N proofs is
O(N log N) which is also optimal, since simply evaluating the polynomial at N different points would
incur N log N time using the Fast Fourier Transformation (FFT), assuming that t = Θ(N). Therefore,
our scheme also subsumes the results of the original Kate et al.’s paper [KZG] and Tomescu et al.’s
paper [Tom+20]1.

• Transparent polynomial commitment with prover batching. Our second contribution is a transparent
polynomial commitment scheme where a dealer can produce N proofs in O(N log N) time, and the
verification time and proof size are both O(log2 N). Here, the prover time is optimal for the same reason
as mentioned earlier. Both the proof size and the verification time are succinct and only a logarithmic factor
worse than Tomescu et al. [Tom+20].

• Implementation and evaluation. We fully implemented both our schemes and evaluated their performance.
We then used our new “polynomial commitment schemes with prover batching” to implement VSS and DKG
protocols. We compared the efficiency of the resulting schemes with prior work in the same setting. With
N = 221 parties, our KZG-based polynomial commitment and the corresponding VSS scheme reduced the
proof size of the AMT scheme [Tom+20] by 20×, reduced the verifier time by 7.8×, while introducing
a small overhead of 3× on the prover time. These led to 3.3× better computation time and 20× smaller
communication in the DKG scheme. Our transparent scheme not only removes the trusted setup but also
improves the prover time by an order of magnitude. However, it does introduce a large proof size. Our code
is open source (the code is available at https://github.com/sunblaze-ucb/eVSS).

• Techniques: “one-to-many zero-knowledge proof”. To construct our transparent polynomial commitment
with prover batching, we come up with a more general technique which can be of independent interest and
lead to other interesting applications. Basically, consider a circuit C with N outputs, wherein the prover
wants to prove one output to each verifier respectively. We give a “one-to-many zero-knowledge proof”
construction where the prover’s computation is only Õ(|C|) where |C| denotes the size of C, whereas a
straightforward application of existing techniques where the prover produces a separate proof for each
verifier would have incurred at least N · |C| prover time.

Table 7.2 shows how our “polynomial commitment with one-to-many prover batching” compares with
prior schemes. Given such a polynomial commitment scheme, one can directly construct (synchronous) VSS

1After submitting our paper, we found that the same algorithm was also proposed independently by Dankrad Feist
and Dmitry Khovratovich at https://github.com/khovratovich/Kate. We thank Alin Tomescu for pointing it
out.

171

Table 7.1: Polynomial commitment with a one-to-many prover: comparison with prior works. We
assume t = Θ(N).

Scheme Trans. P time V time Proof size
KZG [KZG] no O(N2) O(1) O(1)
AMT [Tom+20] no O(N log N) O(log N) O(log N)
hbACSS [YLFKM21] yes O(N2) O(N) O(log N)
≪TomR 7.1.1: ≫ • Trans. means without a trusted setup. P time represents the dealer
time for producing all N proofs. V time represents the verification time per verifier.

Table 7.2: Polynomial commitment with a one-to-many prover: comparison with prior works. We
assume t = Θ(N).

Scheme Trans. P time V time Proof size
KZG [KZG] no O(N2) O(1) O(1)
AMT [Tom+20] no O(N log N) O(log N) O(log N)
hbACSS [YLFKM21] yes O(N2) O(N) O(log N)
Our KZG-based no O(N log N) O(1) O(1)
Our Transparent yes O(N log N) O(log2 N) O(log2 N)
≪TomR 7.1.2: ≫ • Trans. means without a trusted setup. P time represents the dealer
time for producing all N proofs. V time represents the verification time per verifier.

and DKG using existing techniques described by Tomescu et al. [Tom+20]. Table 7.3 shows the asymptotic
overhead of the resulting VSS and DKG schemes and how our work improves over prior work.

7.1.2 Technical Highlights
7.1.2.1 Transparent Polynomial Commitment with Prover Batching

A naïve idea is to commit to the coefficients of the polynomial f using a vector commitment, resulting in a
concise commitment c. Now, the dealer can use a non-interactive zero-knowledge proof system to produce a
proof that vouches for the evaluation at a specific point. Since the dealer needs to produce a proof for each of
the N verifiers, the naïve approach is to repeat the zero-knowledge proof N times — however, this approach
would result in at least N2 prover time for producing all N proofs (since evaluating the polynomial at each
point requires at least N amount of computation).

Note that if the dealer only had to evaluate the polynomial f at N different points without having to
produce proofs, this could be accomplished through the Fast Fourier Transform (FFT) in O(N log N) time.
The intriguing question is whether we can evaluate the polynomial at all N points and produce all N proofs
in O(N log N) time as well.
A more general problem: one-to-many zero-knowledge proof. To answer this question, we in fact turn our
attention to a more general problem. Suppose that there is some circuit C with N different outputs. There are
N verifiers, and each of them cares about receiving and verifying one of the outputs of C. Can the prover

172

produce all N proofs in time Õ(|C|) where |C| denotes the size of the circuit2? Note that in comparison, the
naïve approach of repeating the ZKP independently N times would result in at least N · |C| prover time.

Table 7.3: Comparison of our schemes and prior works in VSS and DKG settings. We assume
t = Θ(N).

Scheme Trans. Broad- Optimistic case Worst-case‡

cast P time V time Communication P time V time Communication
Feldman-VSS [Fel87] yes O(N) O(N log N) O(N) O(N) O(N log N) O(N2) O(N)
eVSS [KZG] no O(1) O(N2) O(1) O(1) O(N2) O(N) O(N)
AMT-VSS [Tom+20] no O(1) O(N log N) O(log N) O(log N) O(N log N) O(N log N) O(N log N)
hbACSS-VSS [YLFKM21] yes O(1) O(N2) O(N) O(log N) O(N2) O(N log N) O(N log N)
Our KZG-based-VSS no O(1) O(N log N) O(1) O(1) O(N log N) O(N) O(N)
Our Transparent-VSS yes O(1) O(N log N) O(log2 N) O(log2 N) O(N log N) O(N log2 N) O(N log2 N)

Table 7.4: VSS schemes

Scheme Trans. Broadcast Optimistic case Worst-case‡

Computation Communication Computation Communication
JF-DKG [GJKR99] yes O(N) O(N2) O(N) O(N3) O(N2)
eJF-DKG [Kat10] no O(1) O(N2) O(N) O(N2) O(N2)
AMT-DKG [Tom+20] no O(1) O(N log N) O(N log N) O(N2 log N) O(N2 log N)
hbACSS-DKG [YLFKM21] yes O(1) O(N2) O(N log N) O(N2 log N) O(N2 log N)
Our KZG-based-DKG no O(1) O(N log N) O(N) O(N2) O(N2)
Our Transparent-DKG yes O(1) O(N log2 N) O(N log2 N) O(N2 log2 N) O(N2 log2 N)

Table 7.5: DKG schemes (per party overhead)

≪TomR 7.1.3: ≫ In this table we only compare VSS/DKG schemes that are in the same synchronous model and incur
a constant number of rounds. We discuss other schemes in different settings (e.g., asynchronous, gossip model with
O(log N) rounds) in Section 7.1.3. Trans. means without a trusted setup. P time represents the dealer’s computation
for producing N proofs for N receivers. V time represents the verification time per receiver. Communication represents
the proof size for each receiver in VSS setting and the total communication for each party in DKG setting. ‡Worst-case
represents Θ(N) bad shares, which results in the complaint round.

Brief background on GKR. To achieve this, we will base our scheme on Virgo [ZXZS], which is in turn
based on the famous GKR protocol [GKR15]. For simplicity, we will explain our intuition without worrying
about zero-knowledge, and therefore we can think of the original GKR protocol. It helps to first consider the
interactive version, and then we will describe a new Fiat-Shamir-style transformation to make our interactive
protocol non-interactive in the random oracle model.

In the GKR protocol, the prover starts with the output layer (henceforth called the last layer). Proving the
output layer boils down to proving a sumcheck statement for a special polynomial that encodes the wiring
structure of the output layer of the circuit. This sumcheck would then be reduced to proving two sumchecks
for the last but one layer, which can be coalesced into a single sumcheck proof (for the last but one layer) by
taking random linear combinations. This goes on recursively layer by layer. If the prover simply ran GKR
with each verifier separately, the prover would have to prove a different statement to each verifier at every layer.
Idea 1: using an extra sumcheck protocol to unify statements for all layers. Our idea is to introduce
a clever sumcheck protocol after the output layer, such that after the sumcheck protocol with each verifier,
the prover would be proving the same statement to all N verifiers for all other layers, as long as all verifiers
use the same random challenges in every round of the protocol. This way, except for proof component

2We use the notation Õ to hide polylogarithmic factors.

173

corresponding to the extra sumcheck, computing the proof components for all other layers is a shared effort
among all verifiers. Moreover, we propose a new algorithm for the prover to run all sumchecks with N
verifiers in O(N log N) time. We defer the details of the construction to Section 7.3.
Idea 2: a new Fiat-Shamir-style transformation to make it non-interactive. With the first idea, we
could achieve prover batching as long as all verifiers use the same random challenges in every round of
the interactive protocol. Our final construction is non-interactive, and to achieve this we describe a new
Fiat-Shamir-style transformation such that the prover can emulate the verifiers’ challenges non-interactively
by making queries to a random oracle.

Note that applying the standard Fiat-Shamir transformation does not work for us since we additionally
require that the random challenges are shared among all verifiers in each round. Recall that the standard
Fiat-Shamir transformation queries the random oracle on the transcript with the verifier so far. In our case,
the transcript with each verifier differs in the output layer. If we simply hashed the entire transcript, it would
result in different challenges for different verifiers.

A conceptually simple but somewhat inefficient approach to overcome this discrepancy among verifiers is
to use a Merkle tree to hash all verifiers’ transcripts and use the root as a unified random challenge among all
verifiers. The prover also needs to send the corresponding Merkle branch to each individual verifier, such that
a verifier can ascertain that its view of the transcript so far has been incorporated in generating the random
challenge. A similar idea was suggested by Yurek et al. [YLFKM21] but for a somewhat different purpose.
The drawback with this approach is that it incurs a logarithmic blowup in proof size and verifier time for
every round of the protocol.

Our final approach is a hybrid one. We apply the Merkle tree only to the first logarithmically many rounds,
i.e., rounds for the extra sumcheck protocol after the output layer. Recall that for every other layer in the
circuit, the prover would be proving the same statement to all verifiers, and therefore the transcripts among
the verifiers would converge after the extra sumcheck protocol. Thus for all other layers, we can rely on the
standard Fiat-Shamir heuristic. This hybrid approach would save us a logarithmic factor in comparison with
applying Merkle hash tree to every round.
Proving soundness of our new Fiat-Shamir-style transform. In the most general setting, the standard
Fiat-Shamir transformation is known to work only for constant-round interactive proofs if we want the
soundness loss in the reduction to be polynomially bounded. In our case, the original interactive protocol is
O(d · log N) rounds where d denotes the depth of the circuit C. Nonetheless, we can still prove the soundness
of our new Fiat-Shamir-style transformation with only polynomial loss in soundness in our reduction. To
prove this, we suggest a different way to view our transformation. We focus on the perspective of a single
verifier and consider a variant (denoted Tdu) of our original interactive protocol. In Tdu, we introduce
some dummy rounds and dummy messages which correspond to hash computations in the Merkle tree. We
then view our final non-interactive proof as applying an alternative heuristic transformation to the modified
protocol Tdu. Using this alternative view, we are able to use techniques from Ben-Sasson et al. [BSCS16] to
prove soundness. First, we show that the protocol Tdu satisfies a stronger notion of soundness called state
restoration soundness. Given the stronger soundness property, we can show that applying the aforementioned
heuristic transformation to Tdu gives a sound non-interactive protocol in the random oracle model.
Putting everything together. So far, we have described our ideas neglecting the zero knowledge requirement.
It is relatively easy to augment the protocol with zero knowledge using techniques proposed in [CFS17;
XZZPS19b; ZXZS]. The modifications to the protocol do not fundamentally alter the soundness proof of our
Fiat-Shamir-style transformation. We refer to the details of how to achieve zero knowledge in the full version.

174

Summarizing the above, we now have a non-interactive, one-to-many zero-knowledge proof system with
a batched prover. One-to-many polynomial commitment is a special case of this more general problem
where the circuit C is an FFT circuit that evaluates the polynomial at N different points. We emphasize that
in solving the one-to-many polynomial commitment problem, we actually come up with a “one-to-many
zero-knowledge proof” technique that is much more general, and can be of independent interest and will likely
lead to broader applications.

7.1.2.2 New Prover Batching

We propose a new prover batching technique for the KZG polynomial commitment. We review the KZG
polynomial commitment scheme in Section 7.4.1. Our novel technique is the following. We show that if the
dealer needs to open the polynomial f at the points ω, ω2, . . . , ωN where ω is the N -th root of unity, then the
N proof terms can be computed efficiently using a constant number of FFT and inverse FFT invocations.
Moreover, the FFT computation can be directly applied to the public parameters of the KZG commitment
scheme in the base group of a bilinear map, without knowing the trapdoor, as FFT only involves additions and
scalar multiplications. Observing this requires some more involved algebraic manipulations which we defer
to Section 7.4.2.

7.1.3 Related work
VSS. Chor et al. [CGMA85] were the first to introduce the notion of VSS. Feldman [Fel87] constructed the
first efficient Feldman-VSS scheme with homomorphic encryption schemes. Feldman-VSS is computational
hiding and information-theoretic binding. The following work of Pedersen [Ped91] presented a counterpart
protocol with information-theoretic hiding and computational binding. However, both schemes broadcast
O(N) messages during the dealing phase and cost O(N) time for each verifier to check the correctness of
the share. Kate et al. [KZG] reduced the broadcast message and the verification time to O(1) in eVSS by
the constant-sized KZG polynomial commitment. Their polynomial commitment needed a trusted setup
and increased the dealer’s computation to O(N2). Tomescu et al. [Tom+20] achieved a quasi-linear dealing
time at the cost of the O(log N) verification time. The communication for each verifier also increased to
O(log N).
DKG. VSS plays an essential role in constructing DKG protocols. Ingemarsson and Simmons [IS90] first
proposed DKG. Pederson [Ped91] improved their scheme for discrete log-based cryptosystems. Gennaro et
al. [GJKR99] showed that the secret generated by Pederson’s scheme was biased and fixed the problem in
their JF-DKG schemes. Neji et al. [NBBR16] debiased the secret by a more efficient method. Moreover,
JF-DKG scheme was converted into an adaptively secure DKG by Canetti et al. [CGJKR99]. All DKG
protocols mentioned above need O(N) broadcast messages. Later on, Kate’s eJF-DKG [Kat10] tamed
the broadcasting cost to O(1) on top of eVSS. Tomescu et al. [Tom+20] built AMT-DKG based on their
AMT-VSS scheme to achieve a space-time trade-off for eJF-DKG. In this work, our KZG-based-DKG applies
our KZG-based-VSS directly to DKG to remove the overhead on time and space in eJF-DKG and AMT-DKG
respectively. Recently, Gurkan et al. [GJMMST21] presented an aggregatable VUF-DKG without a trusted
setup. It achieves O(N log2 N) computation and communication complexity, which is asymptotically the
same as our Transparent-DKG. However, the scheme is in the “gossip” model where each party sends
messages to her neighbors and has log N rounds.

175

Disambiguation. In our experiments, we focus on VSS and DKG in the synchronous setting. Earlier
works have also shown that polynomial commitment schemes give rise to asynchronous VSS and DKG
schemes [KG09; KKMS20; YLFKM21; GLLTXZ; DXR]. In the asynchronous setting, the resulting VSS and
DKG schemes would also benefit from one-to-many prover batching. An interesting future direction is to
apply our prover batching technique and improve VSS and DKG in the asynchronous setting.

7.2 Preliminary
We use negl(·) : N → R to denote the negligible function, where for each positive polynomial f(·),
negl(k) < 1

f(k) for sufficiently large integer k. We use nonegl(·) : N → R to denote the complement of
negl(·). Let λ denote the security parameter. “PPT" stands for Probabilistic Polynomial Time. We use
f(), h() for polynomials, x, y, z for single variable, x, y, z for vectors of variables and g, u, v for vectors of
values. xi denotes the i-th element in x. We use capital letters such as A to represent arrays in algorithms,
and A[i] denotes the i-th element in the array. For a multivariate polynomial f , its “variable-degree” is the
maximum degree of f in any of its variables. Let [k] denote the set of {0, 1, . . . , k − 1}.

Let F be a prime field. We use w0, . . . ,wN−1 to denote N roots of unity on F such that wN = 1 in
F. Let H = {w0, . . . ,wN−1} be a subset of F. We often rely on polynomial arithmetics, which can be
efficiently performed via fast Fourier transforms (FFT) and their inverses (IFFT). In particular, polynomial
evaluations and interpolations over H can be performed in O(N log N) field operations via the standard FFT
and IFFT algorithms [CLRS09].
Convolution of two vectors: Let A, B be two arrays of length n. Their convolution, denoted as C = A ∗B,
is defined as: C[j] =

∑j
i=0 A[i]B[j − i], for j ∈ [2n], assuming the values of vectors A and B are

zeros when the index is out of range (i.e., ≥ n). It is known that the convolution is equivalent to the
multiplication of two polynomials, which can be computed efficiently using FFT and inverse FFT. In particular,
C = IFFT(FFT(A)⊙ FFT(B)), where ⊙ denotes the Hadamard (element-wise) product, and the two FFTs
evaluate A and B on 2n points.
Merkle Tree. Merkle tree [Mer87] has been widely used for the vector commitment because of its
simplicity and efficiency. The prover time is linear in the size of the vector while the verifier time and proof
size are logarithmic in the size of the vector. Given a vector of r = (r0, . . . , rN−1), it consists of three
algorithms:rt← MT.Commit(r), (ri, pathi)← MT.Open(i, r) and {1, 0} ← MT.Verify(rt, i, ri, pathi).

We require not only the root to be hiding, but also opening r at the index of i does not leak any information
about r other than ri, which is treated as the privacy property of Merkle tree. Formally speaking, for any
vector r of size N , any PPT algorithm A, there exists a simulator SMT such that rt ← MT.Commit(r),
(ri, pathi)← MT.Open(i, r), rt′, path′

i ← SMT(ri, N),

|Pr[A(rt, ri, pathi) = 1]− Pr[A(rt′, ri, path′
i) = 1]| ≤ negl(λ).

The privacy property can be achieved by concatenating a random number on each leaf of Merkle tree when
committing.
Interactive proofs. An interactive proof allows a prover P to convince a verifier V the validity of some
statement through several rounds of interaction. We say that an interactive proof is public coin if V’s challenge
in each round is independent of P’s messages in the previous rounds. The proof system is interesting when
the running time of V is less than the time of directly computing the function F . We formalize the interactive
proofs in the following:

176

Definition 7.2.1. Let F be a function. A pair of interactive machines ⟨P,V⟩ is an interactive proof for
F (x) = y with negligible soundness if the following holds:

• Completeness. For F (x) = y it holds that Pr[⟨P,V⟩(x, y) = 1] = 1.

• Soundness. For F (x) ̸= y and any P∗ it holds that Pr[⟨P∗,V⟩(x, y) = 1] ≤ negl(λ).

Verifiable Secret Sharing. An (N, t + 1) secret sharing scheme [Sha79; Bla79] allows a dealer to split up a
secret s among N verifiers in such a way that only the subset of t + 1 or more participants can recover the
secret s, and the subset of t or fewer participants can not. An (N, t + 1) VSS scheme can be instantiated with
a polynomial commitment scheme. It consists of two phases: the sharing (Sh) phase and the reconstruction
(Rec) phase. In the sharing phase, the dealer P picks a random polynomial f(x) of degree t such that the
secret s = f(0), and then commits to f . Then P sends the shared secret sj = f(uj) and the corresponding
proof πj to the verifier Vj for all j ∈ [N], where each uj is a unique value. Vj accepts sj by checking πj .
In the reconstruction phase, each verifier Vj reveals sj and πj to the reconstructor. The reconstructor uses
Lagrange interpolation to recover s after receiving t + 1 valid shares. The formal VSS protocol instantiated
with the polynomial commitment is presented in Protocol 23.

Protocol 23. (N, t + 1) verifiable secret sharing scheme
Suppose P is the dealer with a secret s ∈ F and V0, . . . ,VN−1 are N verifiers. Let pp← KeyGen(1λ, t).

• Sh phase:

1. P picks f ∈R F[X] of degree t such that s = f(0), computes sj = f(uj) for all j ∈ [N].
2. P runs comf = Commit(f, pp) and broadcasts comf to all verifiers.

3. P runs (f(uj), πj) = Open(f, uj , pp) and sends (f(uj), πj) to Vj for all j ∈ [N].
4. For each j ∈ [N], Vj invokes b ← Verify(comf , uj , f(uj), πj , pp). If b = 0, Vj broadcasts a

complaint against the dealer.

5. If the size of the set S of complaining players is larger than t, the dealer is disqualified. Otherwise,
the dealer reveals the correct shares with proofs by broadcasting {f(uj , πj)}j∈S . If any one
proof does not verify (or dealer did not broadcast), the dealer is disqualified. Otherwise, each Vj

now has her correct share f(uj).

• Rec phase: Given comf and shares (f(uj), πi)i∈T ⊆[N] such that |T | > t, the reconstructor runs
bj ← Verify(comf , uj , f(uj), πj , pp) for all j ∈ T . If bj = 1 for all j ∈ T , the reconstructor recovers
f with {f(uj)}j∈T by Lagrange interpolation and obtains s = f(0).

7.2.1 Polynomial commitment
Univariate polynomial commitment. Let F be a finite field and f be a polynomial on F with degree D. A
univariate polynomial commitment (PC) for f ∈ FD[X] and a ∈ F consists of the following algorithms:

177

• pp ← KeyGen(1λ, D): Given the security parameter and a bound on the degree of the polynomial, the
algorithm generates public parameter pp.

• comf ← Commit(f, rf , pp): Given a polynomial f(x) =
∑D

i=0 cix
i, the prover commits f with the

private randomness rf and the public parameter pp. rf can be none.

• (y, π)← Open(f, rf , a, pp): For an evaluation point a, the prover computes y = f(a) and the proof π.

• {1, 0} ← Verify(comf , a, y, π, pp). Given the commitment comf , the evaluation point a, the answer y and
the proof π, the verifier checks the correctness of the evaluation.

Definition 7.2.2. A PC scheme satisfies the following properties:

• Completeness. For any polynomial f ∈ FD[X] and a ∈ F, the following probability is 1.

Pr

pp← KeyGen(1λ, D)

comf ← Commit(f, rf , pp) : Verify(comf , a, y, π, pp) = 1
(y, π)← Open(f, rf , a, pp)

• Proof of Knowledge. For any polynomial-sized circuit A, there exists a PPT extractor E and a negligible

function negl(·), such that for any auxiliary string z and any λ ∈ N, the following probability is negl(λ).

Pr

pp← KeyGen(1λ, D)

(π∗, com∗, y∗, a∗)← A(1λ, z, pp) : Verify(com∗, a∗, y∗, π∗, pp) = 1

f ∗ ← E(1λ, z, pp) ∧f ∗(a∗) ̸= y∗

If a PC scheme satisfies an additional property of zero knowledge, then it is a zero-knowledge univariate
polynomial commitment scheme (zkPC).

• Zero Knowledge. For security parameter λ, polynomial f , adversary A, and simulator S, consider the
following two experiments:

RealA,f (1λ):

– pp← KeyGen(1λ, D)

– comf ← Commit(f, rf , pp)

– a← A(1λ, comf , pp)

– (y, π)← Open(f, rf , a, pp)

– b← A(1λ, comf , a, y, π, pp)

– Output b

IdealA,S(1λ):

– (comf , pp, trap)← S(1λ, D)

– a← A(1λ, comf , pp)

– π ← S(comf , a, f(a), pp, trap).

– b← A(1λ, comf , a, f(a), π, pp)

– Output b

For any non-uniform polynomial-time adversary A, there exists a simulator S such that for all polynomial
f ∈ FD[X],

|Pr[RealA,f (1λ) = 1]− Pr[IdealA,S(1λ) = 1]| ≤ negl(λ).

178

Protocol 24 (Sumcheck). It proceeds in ℓ rounds.

• In the first round, P sends a univariate polynomial

h1(x1)
def=

∑
b2,...,bℓ∈{0,1}

h(x1, b2, . . . , bℓ) ,

V checks µ = h1(0) + h1(1). Then V sends a random challenge r1 ∈ F to P .

• In the i-th round, where 2 ≤ i ≤ ℓ− 1, P sends a univariate polynomial

hi(xi)
def=

∑
bi+1,...,bℓ∈{0,1}

h(r1, . . . , ri−1, xi, bi+1, . . . , bℓ) ,

V checks hi−1(ri−1) = hi(0) + hi(1), and sends a random challenge ri ∈ F to P .

• In the ℓ-th round, P sends a univariate polynomial

hℓ(xℓ)
def= h(r1, r2, . . . , rℓ−1, xℓ) ,

V checks hℓ−1(rℓ−1) = hℓ(0) + hℓ(1). The verifier generates a random challenge rℓ ∈ F.
Given oracle access to an evaluation h(r1, r2, . . . , rℓ) of h, V will accept if and only if
hℓ(rℓ) = h(r1, r2, . . . , rℓ). The instantiation of the oracle access depends on the application
of the sumcheck protocol.

A polynomial commitment scheme is said to be transparent if the public parameter pp is simply a uniform
random string, i.e., there is no secret state to generate pp.

Multivariate polynomial commitment. The polynomial commitment could be extended for multivariate
polynomials f ∈ F : Fℓ → F. The algorithms and definitions are similar to those of the univariate polynomial,
and we use MVPC and zkMVPC to denote the multivariate schemes.

7.2.2 Interactive Proofs for Layered Circuits
We present the GKR protocol, an efficient interactive proof for layered arithmetic circuits by Goldwasser et al.
[GKR15].

7.2.2.1 Sumcheck Protocol

The GKR protocol uses the sumcheck protocol as a major building block. The problem is to sum a multivariate
polynomial h : Fℓ → F on the Boolean hypercube:

∑
b1,b2,...,bℓ∈{0,1} h(b1, b2, ..., bℓ). Directly computing the

sum requires an exponential time in ℓ, as there are 2ℓ combinations of b1, . . . , bℓ. Lund et al. [LFKN92]
proposed a sumcheck protocol that allows a verifier V to delegate the computation to a computationally
unbounded prover P .We describe the sumcheck protocol in Protocol 24. The proof size of the protocol

179

is O(Dℓ), where D is the variable-degree of h, as in each round, P sends a univariate polynomial of one
variable in h, which can be uniquely defined by D + 1 points. The verifier time is O(Dℓ). The prover
time depends on the degree and the sparsity of h, and we will give the complexity later in our scheme. The
sumcheck protocol is complete and sound with ϵ = Dℓ

|F| .

Definition 7.2.3 (Multilinear Extension). Let V : {0, 1}ℓ → F be a function. The multilinear extension of V
is the unique polynomial Ṽ : Fℓ → F s.t. Ṽ (x1, x2, ..., xℓ) = V (x1, x2, ..., xℓ) for all x1, x2, . . . , xℓ ∈ {0, 1}.
Ṽ can be expressed as:

Ṽ (x1, x2, ..., xℓ) =
∑

b∈{0,1}ℓ

∏ℓ

i=1
((1− xi)(1− bi) + xibi)) · V (b) ,

where bi is the i-th bit of b.

Definition 7.2.4 (Identity function). Let β : {0, 1}ℓ × {0, 1}ℓ → {0, 1} be the identity function such that
β(x, y) = 1 if x = y, and β(x, y) = 0 otherwise. Suppose β̃ is the multilinear extension of β. Then β̃ can
be expressed as: β̃(x, y) =

∏ℓ
i=1((1− xi)(1− yi) + xiyi).

7.2.2.2 GKR Protocol

With the sumcheck protocol as a building block, Goldwasser et al. [GKR15] proposed an interactive proof
for the evaluation of layered arithmetic circuits. Let C be a layered arithmetic circuit with depth d over a
finite field F. Each gate in the i-th layer takes inputs from two gates in the (i + 1)-th layer; layer 0 is the
output layer and layer d is the input layer. The values in layer i of the circuit can be written as a sumcheck
equation of the values in layer i + 1. Following the convention in prior works of GKR protocols [CMT12;
Tha13b; ZGKPP17c; XZZPS19b; ZXZS], we denote the number of gates in the i-th layer as Si and let
si = ⌈log Si⌉. We then define a function Vi : {0, 1}si → F that takes a binary string b ∈ {0, 1}si and
returns the output of gate b in layer i, where b is called the gate label. With this definition, V0 corresponds
to the output of the circuit, and Vd corresponds to the input layer. We also define two additional functions
addi, multi : {0, 1}si−1+2si → {0, 1}, referred to as wiring predicates in the literature. addi (multi) takes
one gate label z ∈ {0, 1}si−1 in layer i− 1 and two gate labels x, y ∈ {0, 1}si in layer i, and outputs 1 if and
only if gate z is an addition (multiplication) gate that takes the output of gates x, y as input. By taking their
multilinear extensions, for any g(i) ∈ Fsi , Ṽi can be written as:

Ṽi(g
(i)) =

∑
x,y∈{0,1}si+1 fi(g

(i), x, y)

=
∑

x,y∈{0,1}si+1
˜addi+1(g(i), x, y)(Ṽi+1(x) + Ṽi+1(y))

+ ˜multi+1(g(i), x, y)Ṽi+1(x)Ṽi+1(y). (7.1)

With Equation 7.1, as ˜addi+1 and ˜multi+1 are publicly known, upon receiving the output, the verifier
can reduce a claim of Ṽ0(g(0)) to a claim Ṽ1(g(1)) about layer 1, and recursively to Ṽd(gd) through
sumcheck protocols layer by layer. With the optimal algorithms for the prover in the GKR protocol proposed
in [XZZPS19b], we have the following theorem:

Theorem 7.2.5. [XZZPS19b]. Let C : Fn → Fk be a depth-d layered arithmetic circuit. There exists
an interactive proof protocol for the function computed by C with soundness O(d log |C|/|F|). The total

180

communication is O(d log |C|) and the running time of the prover P is O(|C|). When C has regular wiring
pattern3, the running time of V is O(n + k + d log |C|).

Lifting GKR protocols to argument systems. The GKR protocol is not an argument system supporting
witness fromP , as in the last round, V needs to evaluate Ṽd defined by the input of the circuit at a random point
locally. To address this problem, in [ZGKPP17c], Zhang et al. first construct an argument system by combining
the polynomial commitments with the GKR protocol. In their scheme, P first commits to the multilinear
extension of P’s witness by MVPC.Commit before the GKR protocol. In the last random of the GKR
protocol, instead of evaluating locally, V queries P the evaluation on P’s witness. P invokes MVPC.Open to
prove the correctness of the evaluation and V validates it using MVPC.Verify. Combined with V’s public
input, V is able to verify the last claim about Ṽd in the GKR protocol. Subsequent works [ZGKPP17a;
WTSTW18; XZZPS19b; ZXZS] improve the efficiency and achieve zero-knowledge based on the framework.
We follow the same framework in our scheme with a transparent setup, and we present the protocol explicitly
in Section 7.3.

7.3 Transparent Polynomial Commitment with Prover Batching
We first present our transparent polynomial commitment scheme with prover batching for multiple evaluations.
There are several candidates of transparent polynomial commitment schemes recently [BFS19; ZXZS;
WTSTW18; Lee20; VP19] with the prover time of Õ(t) for a single evaluation. However, in the application
of the VSS scheme in Protocol 23, if the dealer naively runs the transparent polynomial commitment scheme
on N evaluations separately, the running time will be Õ(Nt).

In our scheme, we reduce the prover time of generating all N proofs to O(N log N) field operations,
which is asymptotically the same as evaluating the polynomial at N points. We propose the notion of
one-to-many zero knowledge arguments, where each verifier receives one output out of the entire output of a
common computation represented by circuit C. Instead of running a zero knowledge proof protocol with each
verifier separately, which may take Õ(N |C|) time for the prover in the worst case, our scheme reduces the
prover time to Õ(|C|+ N log N).

When applied to the polynomial commitment for VSS, we set the evaluations at powers of the N -th
root of unity w (i.e., ωN = 1 mod p). In this way, we realize the polynomial commitment with prover
batching by instantiating the circuit C in our one-to-many zero knowledge argument with the classical butterfly
circuit [Wei69] for the FFT algorithm. The circuit takes the coefficients of the polynomial f as input, and
outputs f(w0), . . . , f(wN−1), where each verifier Vj receives f(wj). With our one-to-many zero knowledge
argument, the prover is able to generate all proofs in time O(N log N).

Below, we will first describe our one-to-many zero knowledge argument scheme assuming that somehow,
all verifiers send the same challenge in every round (Protocol 25) — to aid understanding, the reader may
assume for the time being that all verifiers query a trusted random oracle in each round to generate a
common random challenge. Later, we will describe a new Fiat-Shamir-style transformation (Protocol 26) to
make Protocol 25 non-interactive, such that all verifiers would effectively share the same challenges in this
non-interactive version. Finally, we will prove the soundness of our new Fiat-Shamir transformation using
the techniques inspired by Ben-Sasson, Chiesa, and Spooner [BSCS16]. For simplicity, we first describe

3“Regular” circuits is defined in [CMT12, Theorem A.1]. Roughly speaking, it means the mutilinear extension of
its wiring predicates can be evaluated at a random point in time O(log |C|).

181

a simplified version of our protocol without zero-knowledge. In full version, we will describe how to use
standard techniques to additionally achieve zero-knowledge.

7.3.1 One-to-Many Argument System Given Shared Random Challenges
Following the notation of the GKR protocol in Section 7.2.2, we denote the entire output of circuit C as Ṽ0(x)
for x ∈ {0, 1}log N . Suppose the size of the output is N and each verifier Vj receives one output Ṽ0(j), where
j is the binary representation of j. Using its multilinear extension, we can write each Ṽ0(j) as a sumcheck of
Ṽ0(x) using the identity function β̃:

Ṽ0(⃗j) =
∑

x∈{0,1}log N β̃(j, x)Ṽ0(x).

P and Vj can run one sumcheck protocol to reduce the claim about Ṽ0(j) to the claim about Ṽ0(g(0)) for
g(0) ∈ Flog N . This is equivalent to adding an additional layer of “selector” that selects the j-th output for Vj .
Assuming all verifiers share the same random challenge in every round, they will share the random vector
of g(0) during the sumcheck protocol and share the last claim of Ṽ0(g(0)). Then P invokes the GKR-based
argument on the circuit C to prove to all verifiers the correctness of Ṽ0(g(0)). Given the common randomness
during the invocation, the prover computes the same message for all verifiers in every round. Thus in this step,
the total computational cost of P the same as that of proving to a single verifier, which is Õ(|C|). We present
the formal protocol in Protocol 25.

It remains to show that in Step 4 of Protocol 25, the prover can generate all messages in the sumcheck
protocols with all the verifiers in O(N log N) time. As there are N different sumcheck protocols and the
size of the polynomial in each sumcheck is O(N), naively running Step 4 takes O(N2) time using existing
techniques. However, we observe that all the sumcheck protocols with different Vj share the same polynomial
Ṽ0(x⃗). The only difference is that the identity function β̃ takes different j⃗. By utilizing the special structure
of the identity function β̃, we are able to come up with a new algorithm to run all sumcheck protocols
efficiently. The algorithm initializes and updates a lookup table based on Ṽ0 once for all verifiers in every
round. Then using the lookup table, the prover is able to generate the message for each sumcheck protocol
in every round in a constant time. Thus the prover time is O(N) per round, and thus is O(N log N) in
total. We present the formal algorithm in Algorithm 20. As shown in Step 6 of Algorithm 20, in the i-th
round of the sumcheck (see Protocol 24 for the message in each round of sumcheck), the messages defined
by Ṽ0 are shared among all verifiers and can be computed by the prover in O(N/2i) time. In Step 7, the
lookup table is updated based on the randomness received in this round in O(N/2i). Then in Step 10,
the prover generates the messages for each verifier Vj utilizing the closed form of the identity function as
described in Section 7.2. Since the sumcheck protocol has log N rounds in total, the total prover time is
O(N + N

2 + . . . + 1 + N log N) = O(N log N). Using Algorithm 20 for Step 4 in Protocol 25, and the
transparent zkMVPC scheme in [ZXZS] with O(n log n) prover time, O(log2 n) verifier time and proof size,
where n is the size of the input plus the witness, we have the following theorem.

Theorem 7.3.1. For each Vj and P , Protocol 25 is an argument system for the function [out]j = [C(in)]j
such that out = C(in) with soundness O(d log |C|/|F|). The proof size is O(d log |C| + log2 n) and the
verifier time is O(d log |C|+ log2 n). If N verifiers have the common random challenge in every round, the
total prover time is O(|C|+ N log N + n log n).

182

Protocol 25. Batching prover computation for N verifiers that share random challenges.
Let λ be the security parameter. Let C: Fn → FN be a d-depth layered arithmetic circuit. For
any j ∈ [N], P needs to convince Vj that outj = [C(in)]j where [C(in)]j is the j-th output of the
circuit given input in, and outj is the the claimed result for Vj . Without loss of generality, assume
n and N are both powers of 2 and we can pad them if not.
Here, we assume that all verifiers obtain their random challenge from a common random oracle in
each round.

1. Set pp← MVPC.KeyGen(1λ).

2. P invokes MVPC.Commit(Ṽd, pp) to generate comṼd
and broadcasts comṼd

to all verifiers.
Ṽd is the multilinear extension of input values, as defined in the GKR protocol.

3. For each j ∈ [N], P sends Ṽ0(⃗j) as outj to Vj separately.

4. For each j ∈ [N], P and Vj run a sumcheck protocol on

Ṽ0(⃗j) =
∑

x∈{0,1}log N

β̃(j, x)Ṽ0(x), j is the binary string of j

At the end of the protocol, Vj receives Ṽ0(g(0)) for the common random vector of g(0). Vj

computes β̃(⃗j, g(0)) and checks the last statement of the sumcheck protocol.

5. For all verifiers P invokes the GKR protocol on the circuit C to generate the proof given
Ṽ0(g(0)).

6. For all verifiers, in the last round of the GKR protocol, they have the claim about Ṽd(g(d))
. P and Vj invoke MVPC.Open and MVPC.Verify on Ṽd(g(d)) with comṼd

and pp. If it is
equal to Ṽd(g(d)) sent by P , Vj outputs 1, otherwise Vj outputs 0.

Proof. Completeness. For each Vj and P , the completeness is straightforward.

Soundness. For each j, if Ṽ0(j) ̸= [C(in)]j , let Ṽ †
0 (g(0)) be the correct value corresponding to C. If

Ṽ0(g(0)) ̸= Ṽ †
0 (g(0)), then Vj outputs 0 in Step 6 with the probability of O(d log |C|/|F|) by the soundness

of the GKR protocol. If Ṽ0(g(0)) = Ṽ †
0 (g(0)), V outputs 0 in Step 4 with probability of O(log N/|F|) by the

soundness of the sumcheck protocol. Thus, the total probability is bounded by O(d log |C|/|F|) by the union
bound.
Efficiency. For each verifier Vj , the proof size and the verification time in Step 4 are O(log N) while the
proof size and the verification time in Step 5 are O(d log |C|). If Protocol 25 employs the transparent MVPC
scheme in [ZXZS], the proof size and the verification time are O(log2 n) in Step 6. Thus the verification time
and the proof size are O(d log |C|+ log2 n) for an individual verifier. The prover runs in O(N log N) time
for N verifiers in Step 4 by Algorithm 20. P also invokes the GKR protocol on C in Step 5. Given the same

183

Algorithm 20 {a1,0, . . . , a1,N−1, . . . , alog N,0, . . . , alog N,N−1} ← SumCheck (Ṽ (x), g
(0)
1 , . . . ,

g
(0)
log N)

Input: Ṽ (x) for x ∈ {0, 1}log N , random g
(0)
1 , . . . , g

(0)
log N ;

Output: For each j ∈ [N], log N sumcheck messages (a1,j , . . . , alog N,j) for Ṽ (j) =∑
x∈{0,1}log N

β̃(j, x)Ṽ0(x). Each message ai,j consists of 3 elements (ai0,j , ai1,j , ai2,j);

1: Initialize betaj = 1 for all j ∈ [N].
2: Initialize an array V [B] = Ṽ0(⃗b) for all b⃗ ∈ {0, 1}log N . // b is the binary representation of integer B.
3: for Round i = 1, . . . , log N do
4: for Evaluation point r = 0, 1, 2 do
5: for b ∈ {0, 1}log N−i do

6: Ṽ0(g(0)
1 , . . . , g

(0)
i−1, r, b) = V [B] · (1− r) + V [B + 2log N−i] · r

7: V [B] = V [B] · (1− g
(0)
i) + V [B + 2log N−i] · g(0)

i

8: end for
9: for j = 0, . . . , N − 1 do

10: ait,j = betaj · [(1− ji) · (1− r) + ji · r] · Ṽ0(g(0)
1 , . . . , g

(0)
i−1, r, ji+1, . . . , jlog N) //

j1j2 . . . jlog N is the binary representation of j.
11: betaj = betaj · [(1− ji) · (1− g

(0)
i) + ji · g

(0)
i]

12: end for
13: end for
14: end for
15: return {a1,0, . . . , a1,N−1, . . . , alog N,0, . . . , alog N,N−1};

challenges, P costs O(|C|) time in Step 5 to generate the common proof by Theorem 7.2.5. The prover time is
O(n log n) for the zkMVPC scheme in [ZXZS]. Therefore, the total prover time is O(|C|+N log N +n log n)
asymptotically.

It is not hard to see that our one-to-many zero knowledge argument scheme can be extended to support a
subset of outputs per verifier in a straightforward way, and we omit the details in this paper. By instantiating
the circuit C in Protocol 25 with the FFT circuit of size |C| = O(N log N) and depth d = O(log N), and
the input in with the coefficients of the polynomial f and the N -th root of unity w, we are able to construct a
polynomial commitment scheme with prover batching. Each verifier Vj receives Ṽ0(j) = f(wj), and the
prover generates all proofs in O(N log N) time. Suppose f(x) = c0 + c1x + . . . + ctx

t and t = Θ(N), we
have the following corollary:

Corollary 7.3.2. For proverP and N verifiers Vj for j ∈ [N], there exists an argument system for the function
between every P and Vj that outj = f(wj) and out = FFT(c0, . . . , ct) with soundness O(log2 N/|F|). The
proof size is O(log2 N) and the verifier time is O(log2 N). If N verifiers have the common random challenge
in every round, the total prover time is O(N log N) and communication is O(N log2 N).

184

7.3.2 A New Fiat-Shamir Transformation for Sharing Random Challenges
We now describe a new Fiat-Shamir-style transformation that makes Protocol 25 non-interactive in the
random-oracle model, such that the N verifiers could effectively share the same random challenge in every
round. A strawman approach is to use the standard Fiat-Shamir heuristic [FS] for each verifier Vj and P ,
separately. In the Fiat-Shamir heuristic [FS], P generates V’s random challenge by querying a random oracle
on the entire transcript of messages with V so far. If we directly apply the Fiat-Shamir heuristic on Protocol 25
for each verifier separately, the random challenge will not be the same in every round of the protocol since
each verifier Vj has the possibly different output Ṽ0(j) at the beginning of the protocol. Hence the previous
transcript for Vj are divergent in any round, and thus the random oracle will output different challenges except
with negligible probability.
Warmup: using a Merkle tree to merge random challenges into one. A better but still slightly inefficient
approach is to use a Merkle tree to merge the random challenges into a single one. Precisely, in every round,
the prover builds a Merkle tree on N random points generated by Fiat-Shamir-style transformation on N
transcripts and uses the root as the unique challenge for all verifiers. P also attaches the corresponding Merkle
path to convince each Vj of the correctness of the common randomness. Although the procedure guarantees
the common random challenges, the Merkle tree approach will result in a multiplicative overhead of O(log N)
on the prover time, proof size, and the verifier time of the whole protocol. Specifically, the log N blowup
stems from the need to build the Merkle tree of size N and send a log N -sized Merkle branch to every verifier
in every round.
Our approach. We suggest a more efficient approach that achieves the same prover time as Protocol 25 and
incurs only an additive overhead of O(log2 N) on the proof size. We have the prover generate the verifier’s
random challenge by querying the random oracle at only the last round’s challenge and message instead of the
whole transcript. The advantage of this new heuristic approach is that all verifiers share the same challenge
after Step 4 in Protocol 25 automatically without the Merkle tree. As described in Protocol 25, as long as the
random vector of g(0) is identical in Step 4, all verifiers receive the same claim about Ṽ0(g(0)) with the same
random challenge. Our heuristic transformation assures that the transcript in Steps 5-6 will be the same for
each verifier. Therefore, the prover only needs to insert Merkle trees in every round of Step 4 (i.e., the output
layer). We provide the formal non-interactive protocol in Protocol 26.

In a general setting, the standard Fiat-Shamir transformation usually applies only to constant-round
protocols (assuming only polynomial soundness loss in the security reduction). By contrast, we are applying
our new Fiat-Shamir-style transformation to a non-constant-round protocol. Nonetheless, we can still prove
standard polynomial soundness loss using techniques from Ben-Sasson, Chiesa, and Spooner [BSCS16].

7.3.3 Proving Soundness of Our New Fiat-Shamir-Style Transformation
Below, we focus on Steps 3-6 of Protocol 26 on the circuit C and formally prove that the protocol is complete
and sound. When combined with the MVPC in Steps 1,2 and 7, we are able to obtain a non-interactive
argument by Definition of Zero-knowledge proofs.

There are two key differences between our transformation in Protocol 26 and the standard Fiat-Shamir
transformation: (1) in every round, the randomness is generated by hashing the random challenge and the
message in the previous round, instead of the entire transcript so far; (2) in Step 4 a Merkle tree is constructed
on the hash of each verifier and the root is used as the common randomness in this round for all verifiers.
However, when viewed from the perspective of a single verifier, e.g., V0, the second difference is actually very

185

Protocol 26. Making Protocol 25 non-interactive with a new Fiat-Shamir-style tranformation
Let λ be the security parameter. Let C: Fn → FN be a d-depth layered arithmetic circuit. For
any j ∈ [N], P needs to convince Vj that outj = [C(in)]j where [C(in)]j is the j-th output of the
circuit given input in, and outj is the the claimed result for Vj . Without loss of generality, assume
n and N are both powers of 2 and we can pad them if not. Let ρ be a random oracle.

1. Set pp← MVPC.KeyGen(1λ).
2. P invokes MVPC.Commit(Ṽd, pp) to generate comṼd

and broadcasts comṼd
to all verifiers.

Ṽd is the multilinear extension of in, as defined in the GKR protocol.

3. For each j ∈ [N], P sends V0(j) as outj to Vj separately.

4. For each j ∈ [N], P runs the sumcheck protocol on the equation in Step 4 of Protocol 25.
For i = 1, . . . , log N :

a) Suppose Mi,j is the i-th univariate polynomial P sends to Vj in the sumcheck. If i = 1,
set ri,j = ρ(comṼd

||V0(j)||M1,j). If i > 1, set ri,j = ρ(g(0)
i−1||Mi,j).

b) P builds a Merkle tree on the vector of r(i) = (ri,0, . . . , ri,N−1). Let g
(0)
i =

MT.Commit(r(i)). Then P assigns g
(0)
i as the common random challenge in the

i-th round.
c) P attaches (ri,j, pathi,j)← MT.Open(j, g

(0)
i) in the proof.

In the last round of the sumcheck, P sends Ṽ0(g(0)) to each Vj as they share the same random
vector of g(0).

5. P invokes the GKR protocol with Ṽ0(g(0)). In each round,P generates the random challenges
by querying ρ on the last round’s challenge and message. For all Vj , the random challenges
and the transcript would be exactly the same because they share the same claim about Ṽ0(g(0))
and the same random vector g(0) from the first round of this step.

6. In the last round of the GKR protocol, all verifiers have the same claim about Ṽd(g(d)). P
invokes zkMVPC.Open(Ṽd, g(d), pp) to generate the proof for the claim.

7. For each j ∈ [N], Vj checks the proof with random challenges provided by P and
zkMVPC.Verify. Then Vj checks all authenticated paths in the Merkle tree proof by
MT.Verify. In particular, given pathi,j = (ν1, . . . , νlog N), for k = 1, . . . , log N : if
ji = 0, Vj computes ri,j = ρ(ri,j||νi||(i − 1)(logN + 1) + k); otherwise Vj computes
ri,j = ρ(νi||ri,j||(i− 1)(logN + 1) + k). Vj checks that ri,j = g

(0)
i . Finally, Vj queries ρ to

check the generation process of random challenges.

similar to the first one. This is because in each round, V0 receives log N messages from the prover (claimed
to be the validation path of a Merkle tree). To perform the Merkle tree verification, as shown in Step 6 of

186

Protocol 26, suppose P sends the authentication path of (ν1, . . . , νlog N) to V0 and r is V0’s random challenge
in the current round, V0 computes rt = ρ(. . . ρ(ρ(r||ν1)||ν2) . . . ||νlog N) and use rt as her random challenge
in the next round. When proving soundness, as the prover is malicious, there is no guarantee that these
messages are indeed from the same Merkle tree among all verifiers. Therefore, it is equivalent to extending
one round of the interactive version of the sumcheck protocol in Step 4 of Protocol 25 to log N rounds. In
these additional rounds, the prover does nothing but sending a dummy message νi to the verifier. The verifier
ignores the dummy message and replies with fresh randomness. Finally, the prover and the verifier use the
last randomness to proceed to the next round of the original sumcheck protocol. We give this interactive
protocol with dummy messages for Step 4 of Protocol 25 in Protocol 27.

Observe that when we apply our Fiat-Shamir transformation of hashing only the previous random
challenge and message to Protocol 27, it becomes Protocol 26 from the perspective of each verifier, if we
model the hash function in the Merkle tree as the random oracle. Moreover, intuitively Protocol 27 is sound
as long as the original interactive proof is sound, as the verifier simply picks some additional randomness and
ignores some dummy messages from the prover. Therefore, our strategy to prove the soundness of Protocol 26
is: (1) we first show that as long as an interactive proof protocol is secure against state restoration attacks
defined in [BSCS16], the non-interactive protocol by applying the transformation of hashing only the previous
message and the random challenge is sound; (2) extending one round of an interactive proof protocol to
multiple rounds with dummy messages as in Protocol 27 does not affect the security against state restoration
attacks.

Protocol 27. The interactive proof with dummy messages for Step 4 of Protocol 25

For round i = 1 : . . . , log N of the sumcheck protocol:
For k = 1, . . . , log N :

• P sends νi,k to V .

• V responds with random number of Dui,k ∈ F.

• If jk = 0, set r
(0)
i = ρ(r(0)

i ||νi,k); otherwise, set r
(0)
i = ρ(νi,k||r

(0)
i).

P and Vj use r
(0)
i as the random challenge in round i and continue the sumcheck protocol.

Formally, let T be an interactive proof protocol with η rounds for the statement of F (x) = y. Let
(m1, r1, . . . , mη, rη) denote a complete transcript for T, where mi ∈ F∗ is the prover’s message in round i
while ri ∈ F is the verifier’s randomness in round i. Let ρ : F∗ → F denote the random oracle. In our new
heuristic algorithm, the prover sets required random points as r1 = ρ(x||y||m1||0) and ri = ρ(ri−1||mi||i−1)
or ri = ρ(mi||ri−1||i− 1) for i ∈ {2, . . . , η} to make T non-interactive. We modify the transformation by
taking the round number in T as the extra input to the random oracle and exchanging the order of ri−1 and
mi in certain rounds. We show that if T is sound against the prover with state restoration attacks, then the
non-interactive protocol is sound after the heuristic transformation.

Definition 7.3.3. An interactive protocol T for the statement F (x′) = y′ with η rounds is secure against state
restoration attacks if for every x and y such that F (x) ̸= y, for every P∗ and an honest V , Game 1 outputs 1
with the probability of negl(λ).

187

Game 1. The game between a state-restoring prover P∗(x, y) and a verifier V(x, y).

1. Given x, y satisfying F (x) ̸= y, the game initializes the set of SeenStates to be {null}.

2. Repeat the following at most T times, where T = poly(λ):

a) P∗ chooses an element cvs in SeenStates. (cvs is short for complete verifier’s state.)
b) The game sets V’s state to cvs.
c) If cvs = null: P∗ sends m1 to V . Then V returns a random point r1 to P∗; P∗ adds

m1||r1 into SeenStates.
d) If cvs = m1||r1|| . . . ||mi−1||ri−1 for 1 < i ≤ η: P∗ sets V’s state to cvs, generates mi

according to cvs and sends it to V . After receiving ri randomly sampled by V . P∗ adds
cvs||mi||ri into SeenStates.

e) If cvs = m1||r1|| . . . ||mη||rη, the prover can choose to set V’s state to cvs. V computes
his decision b given (x, y, m1, r1, . . . , mη, rη). Then, the game halts and outputs b.

3. The game halts and outputs 0.

Theorem 7.3.4. If T is an interactive proof for F (x) = y with η rounds and it is secure against state
restoration attacks in Definition 7.3.3, then after the transformation, the non-interactive protocol T′ satisfies
the soundness in interactive proofs.

Proof. We use Pρ and V to represent the prover and the verifier in the non-interactive protocol separately.
Suppose P can query a random oracle ρ at most ∆ times. Given ∆ = poly(λ), we construct a prover P∗ with
state restoration attack ability against verifier V in the original interactive protocol.

Construction of P∗. We use P∗ to simulate the random oracle for Pρ and P∗ works as follows.

1. Let ρ be a table mapping F∗ → F and let δ be a table mapping a random point in F to the verifier’s
state. Both tables are empty in the beginning and are filled with elements as P∗ runs the protocol.
Intuitively, we use ρ to simulate Pρ access to a random oracle while we use δ to keep track of V’s
states that P∗ has “seen in his mind”. Given a verifier’s state cvs, let L(cvs) be the number of rounds
contained in the state, which can be simply treated as the number of || in cvs by the format of cvs.
Suppose the vector e⃗ = (e1, . . . , eη−1) ∈ {0, 1}η−1 is public.

2. Begin simulating Pρ and, for i = 1, . . . , ∆:

a) Let θi denote the i-th query by Pρ.

b) If θi has been inserted into the table ρ, P∗ responds with ρ(θi). Go to next iteration for i.

c) If i < j, P∗ draws a random number r ∈ F, answers the query with r, then sets ρ(θi) := r. Go
to next iteration for i.

188

d) If i = j, P∗ splits θi to x||y||m1||0 (P∗ aborts if he cannot split θi to x||y||m1||0). P∗ starts
the game with V on f(x) = y. P∗ sets V’s state to (null), sends m1 to V , receives the first
randomness of r1 from V . P sets ρ(x||y||m1||0) := r1 and δ(r1) := m1||r1. Go to next iteration
for i.

e) If i > j, suppose the last element of θi is k.

i. If θi = k or k ≥ η or k = 0, P∗ draws a random number r ∈ F, answers the query with r,
then sets ρ(θi) := r. Go to next iteration for i.

ii. If ek = 0, let rk ∈ F be the first element of θi. P
∗ splits θi to rk||mk+1||k. If δ(rk) is

defined and L(δ(rk)) = k − 1, P∗ sets V’ state to cvs = δ(rk). Then P∗ sends mk+1
to V . After receiving rk+1 from V , P∗ answers Pρ with rk+1, sets ρ(θi) := rk+1, and
sets δ(rk+1) := cvs||mk||rk+1. If δ(rk) is note defined or L(δ(rk)) ̸= k − 1, P∗ draws a
random number r ∈ F, answers the query with r, then sets ρ(θi) := r. Go to next iteration
for i.

iii. If ek = 1, let rk ∈ F be the last element ahead of k. P∗ splits θi to mk+1||rk||k. If δ(rk) is
defined and L(δ(rk)) = k − 1, P∗ sets V’ state to cvs = δ(rk). Then P∗ sends mk+1 to
V . After receiving rk+1 from V , P∗ answers Pρ with rk+1, sets ρ(θi) := rk+1, and sets
δ(rk+1) := cvs||mk||rk+1. If δ(rk) is not defined or L(δ(rk)) ̸= k−1, P∗ draws a random
number r ∈ F, answers the query with r, then sets ρ(θi) := r. Go to next iteration for i.

Our construction has two major differences from the construction in [BP]. In the construction above,
P∗ guesses the statement of f(x) = y that P would use in the proof by assuming that the j-th query to the
random oracle is x||y||m1||0, instead of knowing it in advance. This only introduces a polynomial loss on the
probability. Moreover, the query to the random oracle contains the round number. This is because in our
non-interactive argument in Protocol 26, to verify the Merkle tree path, the prover’s message is sometimes on
the left and sometimes on the right of the input of the hash. Our construction of P∗ tracks this information by
the round number in order to determine the ordering of the queries to the random oracle. In particular, P∗ use
k to detect which round is relevant to the query. For each k, with the public indicator ek, P∗ knows that P’s
message is in the head or the tail of the string.
Analysis of P∗. We now analyze P∗’s ability to cheat given P’s ability to cheat.

Let U(λ) denote the uniform distribution over all functions on ρ : F∗ → F. If ρ is uniformly sampled from
U(λ), then we write ρ← U(λ) and say that ρ is a random oracle. We claim that P∗ simulates a ρ ∈ U(λ)
uniformly at random. That is because, given any new input, P∗ responds either with a uniformly random
point generated by himself, or a uniformly random point provided by V . It is equivalent to draw ρ uniformly
at random in the beginning of the non-interactive protocol.

We claim that if Pρ outputs the proof of (x, y, m1, r1, . . . , mη, rη) that makes V accept with probability
nonegl(λ), then P∗ will have cvs = m1||r1|| . . . ||mη||rη for F (x) = y to win the game with probability
nonegl(λ). The formal proof is provided in the following.

Without loss of generality, we suppose ek = 0 for 1 ≤ k < η. We define some events as follows.

1. E1 represents that Pρ outputs (x, y, m1, r1, . . . , mη, rη) that makes V accept. Then it satisfies
r1 = ρ(x||y||m1||0) and ri = ρ(ri−1||mi||i− 1) for 1 < i ≤ η.

2. E2 represents that Pρ queries P∗ at x||y||m1||0, r1||m2||1, . . . , rη−1||mη||η − 1 in order and P∗ does
not return the same value for different queries during the entire query process.

189

3. E3 represents that P∗ predicts that Pρ queries x||y||m1||0 for the first time in the j-th query accurately.

4. E4 represents that cvs = m1||r1|| . . . ||mη||rη for F (x) = y is in P∗’s SeenStates set and P∗ wins
the game.

First, we prove Pr[E1 ∧ neglE2] ≤ negl(λ). Let r0 denote x||y. There are three cases covering E1 ∧ neglE2:
(i) E1 happens but P does not query ri−1||mi||i−1 for some i ∈ {1, . . . , η−1}; (ii) E1 happens but P queries
ri||mi+1||i before querying ri−1||mi||i− 1 for some i ∈ {1, . . . , η − 1}; (iii) E1 happens but P∗ returns the
same value for different queries. The probability of case (i) and the probability of case (ii) are both negl(λ) as
Pρ can not correctly guess the output of ρ for any input except with negl(λ). The probability of case (iii) is also
negl(λ) as Pρ can not find a collision of ρ except with negl(λ). By union bound, Pr[E1 ∧ neglE2] ≤ negl(λ).
Suppose Pr[E1] = p = nonegl(λ), Pr[E1 ∧ E2] = Pr[E1] − Pr[E1 ∧ neglE2] = nonegl(λ) − negl(λ) =
nonegl(λ). Then we have Pr[E1∧E2∧E3] = Pr[E3|E1∧E2] ·Pr[E1∧E2] ≥ 1

∆ ·nonegl(λ) = nonegl(λ).
Next, we show Pr[E4|E1 ∧ E2 ∧ E3] = 1. We prove that if E1 ∧ E2 ∧ E3 happens, δ(ri) =

m1||r1|| . . . ||mi||ri for 1 ≤ i ≤ η by induction. For each i, δ(ri) was included in δ only once as there
is no collision during the query phase. For i = 1, when P queries x||y||m1||0 in the j-th query, P∗ sets
δ(r1) := m1||r1. For i = k, suppose P∗ sets δ(rk) := m1||r1|| . . . ||mk||rk when P queries rk−1||mk||k− 1,
when P queries rk||mk+1||k hereafter, P∗ sets δ(rk+1) := δ(rk)||mk||rk+1 = m1||r1|| . . . ||mk+1||rk+1.
Hence cvs = m1||r1|| . . . ||mη||rη for F (x) = y will be in P∗’s SeenStates set and P∗ will win the game.
Pr[E4] ≥ Pr[E1 ∧ E2 ∧ E3] = nonegl(λ).

Theorem 7.3.5. If the interactive proof T for F (x) = y with η rounds is secure against state restoration
attacks, after inserting c = poly(λ)-round interaction in the i-th round of T as in Protocol 27, the new
interactive protocol Tdu is also secure against state restoration attacks for F (x) = y.

Proof. (sketch) Let P be the prover in T and Pdu be the prover in Tdu. Suppose Tdu inserts c-round
interaction with arbitrary messages of (du1, ν1, . . . , duc, νc) in the i-th round of T. If Pdu can win the
game described in Definition 7.3.3 with probability p for x, y satisfying F (x) ̸= y by generating a cvs of
(m1, r1, . . . , mi, du1, ν1 . . ., duc, νc, ri, mi+1, ri+1, . . . , mη, rη), then P can invoke Pdu to generate the cvs
of (m1, r1, . . . , mi, ri, mi+1, ri+1, . . . , mη, rη) to win Game 1 with probability at least p.

Replacing T with Tdu and applying the non-interactive transformation to Tdu indicate that we can
integrate an authenticated path in the Merkle tree into such a protocol T at the cost of extra log N rounds,
where N is the size of the Merkle tree. Therefore, for each verifier Vj , Protocol 27 integrate log N Merkle
paths into Protocol 25 at the cost of extra log2 N rounds.

In Protocol 26, the statement P wants to convince Vj is equivalent to Fj(comṼd
) = [C(in)]j , where

comṼd
is the commitment of Ṽd and P broadcasts to all verifiers at the beginning. Fj represents that there

exists a degree-t univariate polynomial f(x) = c0 + c1x + . . . + ctx
t such that f(wj) = [C(in)]j and

comṼd
= MVPC.Commit(c̃, pp), where c̃ the multilinear extension of (c0, . . . , ct). For each Vj , Protocol 26

practises our new heuristic transformation on Protocol 27 for Fj(comṼd
) = [C(in)]j to make the proof

non-interactive. The protocol will be sound after the transformation.
And thus we have the following theorem.

Theorem 7.3.6. For each Vj and P , Protocol 26 is a non-interactive argument system for the function
outj = [C(in)]j such that out = C(in). The proof size is O(d log |C| + log2 n + log2 N) and the verifier
time is O(d log |C|+ log2 n + log2 N). The total prover time is O(|C|+ N log N + n log n).

190

Efficiency. Compared to Protocol 25, the extra proof for each verifier is log N authentication paths each being
of length log N . Hence the proof size for each Vj has an extra term of O(log2 N). The extra computation
for each Vj is validating log N authentication paths contained in the proof by querying the random oracle
log2 N times. Thus the verification time for each verifier becomes O(d log |C|+ log2 n + log2 N). The extra
computation on the prover is building log N Merkle trees of size N by querying the random oracle O(N log N)
times to merge the randomness in Step 4. Therefore, the total prover time is still O(|C|+ n log n + N log N)
asymptotically.

Corollary 7.3.7. For prover P and N verifiers Vj for j ∈ [N], there exists a non-interactive argument
system for the function between every P and Vj that outj = f(wj) and out = FFT(c0, . . . , ct) with the
proof size of O(log2 N) and the verification time of O(log2 N). The prover time is O(N log N) and the total
communication cost is O(N log2 N) given t = Θ(N).

7.4 KZG-Based Polynomial Commitment with Prover Batching
In this section, we propose a new scheme based on the KZG polynomial commitment with prover batching,
such that generating all proofs only takes O(N log N) time, without introducing any overhead on the proof
size and the verifier time. We first present the formal algorithms of the original KZG polynomial commitment
and then introduce our new scheme.

7.4.1 KZG Polynomial Commitment
The KZG polynomial commitment relies on the bilinear map, which is defined below.
Bilinear map. Let G,GT be two groups of prime order p and let g ∈ G be a generator. e : G×G→ GT

denotes a bilinear map and we use bp = (p,G,GT , e, g)← BilGen(1λ) for the generation of parameters for
the bilinear map.

The KZG polynomial commitment is as follows.

• pp← KeyGen(1λ, t): Given the security parameter and a bound on the degree of the polynomial, it runs
(p, g,G, e,GT)← BilGen(1λ). Output pp = [p, g,G, e,GT , {gτ

0
, gτ

1
, ..., gτ

t

}].

• comf ← Commit (f, pp): Given a polynomial f(x) =
∑t

i=0 cix
i, it computes comf = gf(τ) =

Πt
i=0(gτ

i

)ci .

• {(y, π)} ← Open (f, a, pp): For an evaluation point a, the prover computes y = f(a) and polynomial
q(x) = f(x)−y

x−a . Let the coefficients of q be (q0, q1, ..., qt−1). The prover computes π = gq(τ) =

Πt−1
i=0(gτ

i

)qi .

• {1, 0} ← Verify (comf , a, y, π, pp): Given the commitment comf , the evaluation point a, the answer y

and the proof π, the verifier checks if e(com/gy, g) ?= e(π, gτ /ga). It outputs 1 if the check passes, and 0
otherwise.

191

The scheme is computationally-hiding under the discrete log assumption and computationally binding
under the l-SBDH assumption. The prover time of the KZG commitment is O(t) modular exponentiations,
the proof size is O(1), a single element in the base group, and the verifier time is O(1), one bilinear pairing.
FFT on group elements. As the FFT algorithm only involves additions and scalar multiplications with
the powers of the root of unity ω, the algorithm can be applied to a vector of elements in the base
group of the bilinear map by replacing the additions with multiplications and the multiplications with
exponentiations in the base group. In particular, let A = (a0, . . . , aN) and gA = (ga0 , . . . , gaN), one can
evaluate FFT(gA) = (gf(ω0), . . . , gf(ωN−1)) for f(x) =

∑N
i=0 aix

i in time O(N log N), without knowing
(a0, . . . , aN). Similarly, one can also compute the convolution with a public vector B = (b0, . . . , bN) “on
the exponent”, i.e., gA∗B = IFFT(FFT(gA)⊙ FFT(B)), where ⊙ denotes element-wise exponentiation.

7.4.2 Our New Prover Batching Technique
In our new scheme, the public parameters pp, the commitment comf and the proof π together with
Keygen, Commit, Verify are exactly the same as the KZG commitment. The main contribution is that we
present a new batched algorithm for the prover to generate proofs for N different evaluation points. The key
idea of our scheme is to evaluate the polynomials at different powers of the N -th root of unity ω, which
enables us to invoke the FFT algorithm to compute the proofs efficiently — but observing how to leverage the
FFT algorithm is non-trivial. Recall that in the dealing round of the VSS scheme, for each party i ∈ [N] the

dealer computes si = f(ui) and πi = gqi(τ) = g
f(τ)−f(ui)

τ−ui . By setting the public evaluation point of party i
as ui = ωi, the dealer can compute all si in O(N log N) time using the FFT algorithm. However, computing
the proofs πi is more challenging, as τ is the secret key and is not explicitly given to the dealer. The dealer
only has access to the public parameters gτ , gτ

2
, . . . , gτ

t

.
To solve this, we examine the structure of the polynomials qi(x) for i ∈ [N]. We define a bivariate

polynomial q(x, y) as

q(x, y) = f(x)− f(y)
x− y

. (7.2)

Then, qi(τ) = q(τ, ωi) and the proofs are πi = gq(τ,y) for y = ωi, i ∈ [N]. Let f(x) =
∑t

j=0 cjxj , we have:

q(τ, y) = f(τ)− f(y)
τ − y

=
∑t

j=0 cj(τ j − yj)
(τ − y) =

t∑
j=1

cj

j∑
k=1

yk−1τ j−k , (7.3)

as τ j − yj = (τ − y) ·
∑j

k=1 yk−1τ j−k for j = 1, . . . , N , and the constant term c0 cancels out for j = 0. By
changing the order of the summations, the equation above equals to

t∑
k=1

yk−1
t∑

j=k

cjτ j−k =
t∑

k=1
hkyk−1 , (7.4)

where hk =
∑t

j=k cjτ j−k. As shown by the equations above, q(τ, y) is a degree-(t − 1) polynomial of
variable y. If we can precompute all ghk for k = 1 . . . , t, we can evaluate gq(τ,y) at y = ωi for i ∈ [N] in
O(N log N) time using the FFT algorithm on the elements in the base group.

192

Algorithm 21 (π0, . . . , πN−1)← multi_proof(f, ω, N, pp)
Input: Polynomial f(x) = ∑t

i=0 cix
i, the number of parties N , the N -th root of unity ω and the

public parameter pp containing gτ , gτ
2
, . . . , gτ

t

and (p, g, e,G,GT).
Output: Proofs of the KZG commitment πi = gqi(τ), for i ∈ [N].

1: Set C = (c1, c2, ..., ct), gT = (gτ
t−1

, gτ
t−2

, ..., gτ
0
).

2: Compute the convolution gH = gC∗T = IFFT(FFT(gT)⊙ FFT(C)), where ⊙ denotes element-
wise exponentiation.

3: ghk = g
∑t

j=k
cjτ

j−k

= gH[k+t−2] for each k = 1, . . . , t.
4: For polynomial h(y) = ∑t

k=1 hkyk−1, compute (gh(ω0), gh(ω1), . . . , gh(ωN−1)) =
FFT(gh1 , gh2 , . . . , ght).

5: Return πi = gqi(τ) = gh(ωi)

Precomputing ghk . We observe that hk is in the form of a convolution, and we can precompute all ghk using
FFT. Let C = (c1, c2, ..., ct), T = (τ t−1, τ t−2, ..., τ0), and let H = C ∗T be their convolution. As described
in Section 7.2, we have:

H[ℓ] =
ℓ∑

m=0
C[m]T [ℓ−m] =

ℓ∑
m=0

cm+1τ t−1−(ℓ−m) . (7.5)

By setting ℓ = k + t− 2 and j = m + 1, cm+1 = cj and τ t−1−(ℓ−m) = τ j−k in Equation 7.5. Moreover, cj

is defined to be nonzero for j ∈ [1, t], and τ j−k is defined to be nonzero for j ∈ [k, k + t− 1]. Therefore,
H[ℓ] =

∑k+t−1
j=1 cjτ j−k =

∑t
j=k cjτ j−k = hk. Thus, the dealer can precompute all ghk for k = 1, . . . , t

using FFT and IFFT on gT and C in O(t log t) time without knowing τ .
Complexity analysis. We present the formal algorithm in Algorithm 21. Combining the two steps, the overall
complexity of the dealer is O(N log N) modular exponentiations. The proof size and the verifier time remain
O(1) per evaluation. In fact, our scheme is a more efficient algorithm to generate multiple proofs, and each
proof size and verification time remain exactly the same as the original KZG polynomial commitment. The
security of our scheme follows directly from the security proofs in [KZG].

Note that both our new scheme and the original KZG scheme only achieve computationally-hiding
and binding, but not the stronger notion of proof of knowledge and zero knowledge in Definition 7.2.2.
However, they suffice to prove security for the application of VSS and DKG as shown in [KZG], as the secret
and the polynomial are randomly generated. Follow-up works such as [ZGKPP17a] propose variants that
achieve proof of knowledge and zero knowledge using randomized commitment and opening, and knowledge
assumptions. Our scheme with prover batching also works on these variants with minimal changes and
achieves stronger notions. We sketch the algorithms in the full version.

7.5 Implementation and Evaluation
We fully implemented our proposed schemes with prover batching and present the experimental results in this
section.

193

211 213 215 217 219 22110−1

104

109

Number of parties N

D
ea

lin
g

Ti
m

e
(s

) Our KZG-based scheme
AMT-VSS
KZG-VSS

211 213 215 217 219 22110−1

100

101

102

Number of parties N
Pr

oo
fS

iz
e

(K
B

yt
e) Our KZG-based scheme

AMT-VSS
KZG-VSS

211 213 215 217 219 22110−3

10−2

Number of parties N

Ve
rifi

ca
tio

n
Ti

m
e

(s
)

Our KZG-based scheme
AMT-VSS
KZG-VSS

Figure 7.1: VSS Comparison, Trusted setup version

Implementation. We implemented our proposed schemes in C++ consisting of around 3000 lines of code.
We used the ate-pairing library [Ate] for bilinear maps in the scheme with the trusted setup, and the GMP
library [Gmp] for large numbers and arithmetic on a finite field. The implementation of our transparent
polynomial commitment was based on the open-source codebase of the scheme in [ZXZS]. We used the same
extension field F

p
2 for p = 261 − 1, which provides 100+ bits of security.

Configuration. We ran the experiments on an AWS c5a.24xlarge instance, which was equipped with an
AMD EYPC 7002 CPU with 96 cores, 187 GB RAM4. All parties were executed on the same machine.
We only report the numbers for the optimistic case of the VSS and DKG schemes where all the proofs are
generated honestly. The polynomial commitment takes the majority of the time in this case, which is the main
focus of this paper. In all the experiments, we set the degree of the polynomial as t = N/2, and the number
of parties N ranges from 211 to 221.
Counterpart comparison. In the VSS setting, we compare our KZG-based polynomial commitment scheme
with two schemes that also require a trusted setup (Section 7.5.1): (i) naïvely running the KZG polynomial
commitment for N verifiers, which incurs a prover time of O(N2); and (ii) the authenticated multipoint
evaluation tree (AMT) scheme in [Tom+20]. We executed the open-source code of [Tom+20] on the same
machine for a fair comparison. We then compare our transparent polynomial commitment scheme with
running a transparent counterpart, named Virgo [ZXZS], N times to produce N proofs (Section 7.5.2).
Finally, we evaluate the performance of our KZG-based and transparent schemes under DKG application,
compared with AMT-DKG instantiation [Tom+20] (Section 7.5.3).

7.5.1 VSS with Trusted Setup
As shown in Figure 7.1, the running time of the dealer in our KZG-based scheme only grows quasi-linearly
with the number of parties. It only takes 2.2s to generate the proofs for 211 parties and takes 3,995s for
221 parties. This is significantly faster than running the KZG commitment naïvely and the speedup is
100–58,000×. We could not run the naïve scheme beyond N = 212 due to its long-running time. Therefore,
we ran up to 212 parties and extrapolated the result for the larger number of parties. Comparing to the AMT
scheme [Tom+20], the prover time of our scheme is slightly worse. It is 2.2× slower than AMT for N = 211

4Our KZG-based scheme only takes 2.8GB of memory in the largest instance. In our transparent scheme, the
memory usage can be reduced to several gigabytes with proper pipelining by streaming the proof to each verifier without
affecting the prover time.

194

211 213 215 217 219 221

100
102
104
106
108

Number of parties N

D
ea

lin
g

Ti
m

e
(s

) Our transparent scheme
Virgo

211 213 215 217 219 221

200

400

Number of parties N

Pr
oo

fS
iz

e
(K

B
yt

e) Our transparent scheme
Virgo

211 213 215 217 219 221

10−2.5

10−2

Number of parties N

Ve
rifi

ca
tio

n
Ti

m
e

(s
)

Our transparent scheme
Virgo

Figure 7.2: VSS Comparison, Transparent setup version

211 213 215 217 219 221100

101

102

103

104

105

Number of parties N

C
om

pu
ta

tio
n

Ti
m

e
pe

rP
ar

ty
(s

)

Our KZG-based DKG
Our transparent DKG
AMT-DKG

211 213 215 217 219 221
102
103
104
105
106
107
108
109

Number of parties N

C
om

m
un

ic
at

io
n

pe
rP

ar
ty

(K
B

yt
e)

Our KZG-based DKG
Our transparent DKG
AMT-DKG

Figure 7.3: DKG Comparison

and 3× slower for N = 221. This is because our scheme involves 3 FFTs on the base group of the bilinear
map, and the constant in our asymptotic complexity is slightly larger than that in AMT.

The proof size and the verifier time in our scheme are much smaller than AMT. They are always 192
bytes and 1.3ms regardless of the number of parties, which are the same as the original KZG scheme. By
contrast, the proof size and the verifier time grow logarithmically in AMT. Specifically, the proof size is 20×
larger than our scheme, and the verifier time is 4.2-7.8× slower. This shows that our schemes achieve much
higher scalability than the state-of-the-art.

7.5.2 VSS with Transparent Setup
Figure 7.2 presents the performance of the VSS scheme with our scheme compared with Virgo. As shown in
the figure, the dealing time of our transparent scheme is very fast. It only takes 0.3s to generate proofs for 211

parties and 560s for 221 parties. This is 700-260,000× faster than the naïve approach, which again takes a
quadratic time and does not scale in practice. One may observe an interesting result that the dealing time of
our transparent scheme is indeed an order of magnitude (i.e., 7-10.5×) faster than the schemes with trusted
setup in Section 7.5.1. This is because our transparent scheme only incurs cheap symmetric-key operations
such as hashing and field arithmetic instead of the costly modular exponentiation. This performance gain is
significant even though it is generally not captured in the asymptotic cost.

195

The proof size and the verifier time of our transparent scheme are comparable to Virgo, as we merely
introduce an additional sumcheck for each verifier. The proof size varies from 200KiB to 390KiB, and the
verifier time varies from 2.8ms to 8.7ms. The proof size is larger than the KZG-based schemes because of the
underlying techniques of interactive proofs. However, notice that our transparent scheme removes the trusted
setup, which is critical in some applications.

7.5.3 Distributed Key Generation Experiment
We report the total computation time and communication for each party of the DKG schemes using our
polynomial commitments in Figure 7.3, and compare it with AMT-DKG [Tom+20].

The overall computation time of our protocols grows quasi-linearly with the number of parties. For
example, it takes 15, 400s for our transparent scheme to run a DKG of 221 participants, and 6, 700s for our
KZG-based scheme. These are 1.5× and 3.3× faster than the AMT scheme respectively. This is because our
transparent scheme only incurs cheap symmetric operations, as discussed above, despite being asymptotically
logarithmically slower than AMT. On the other hand, our KZG-based scheme incurs a lower verification time
for each party to verify the proofs from the other parties. Moreover, our transparent scheme is slower than our
KZG-based scheme in the application of DKG. This is because although the prover time of our transparent
scheme is faster, its verifier time is slower (O(log2 N) vs. O(1)). In DKG, each party verifies the proof of
every other party, which becomes the bottleneck of our transparent scheme.

The total communication of our KZG-based scheme is orders of magnitude smaller than AMT. Specifically,
it is always 192 ·N bytes in our scheme, while the proof size of AMT-DKG grows quasilinearly. Concretely
our KZG-based scheme achieves the communication of only 0.8GB for N = 221, which is 20× smaller than
AMT. Due to techniques to remove the trusted setup, the communication in our transparent scheme is 100×
larger than AMT, which matches their asymptotic cost difference (i.e., O(N log2 N) vs. O(N log N)).

196

197

Bibliography

[ABFG14] G. Ateniese, I. Bonacina, A. Faonio, and N. Galesi. “Proofs of space: When space is of
the essence”. In: International Conference on Security and Cryptography for Networks.
Springer. 2014, pp. 538–557.

[AGRRT16] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. “MiMC: Efficient encryption
and cryptographic hashing with minimal multiplicative complexity”. In: International
Conference on the Theory and Application of Cryptology and Information Security.
Springer. 2016, pp. 191–219.

[AHIV17] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. “Ligero: Lightweight sublinear
arguments without a trusted setup”. In: Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. 2017.

[Ajt96] M. Ajtai. “Generating hard instances of lattice problems”. In: Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing. ACM. 1996, pp. 99–108.

[Amu] A multichain approach is the future of the blockchain industry. 2022. url: https:
//cointelegraph.com/news/a-multichain-approach-is-the-future-of-

the-blockchain-industry (visited on 04/24/2022).

[Ate] Ate-pairing. https://github.com/herumi/ate-pairing.

[Aur] libiop. https://github.com/scipr-lab/libiop.

[Axe] Axelar. https://axelar.network/. 2022.

[BAZB19] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh. “Zether: Towards Privacy in a Smart
Contract World.” In: IACR Cryptology ePrint Archive 2019 (2019), p. 191.

[BBBPWM] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bulletproofs: Short
Proofs for Confidential Transactions and More”. In: Proceedings of the Symposium on
Security and Privacy (SP), 2018. Vol. 00, pp. 319–338.

[BBCDPGL18] C. Baum, J. Bootle, A. Cerulli, R. Del Pino, J. Groth, and V. Lyubashevsky. “Sub-
linear Lattice-Based Zero-Knowledge Arguments for Arithmetic Circuits”. In: Annual
International Cryptology Conference. Springer. 2018, pp. 669–699.

[BBF18] D. Boneh, B. Bünz, and B. Fisch. Batching techniques for accumulators with applications
to iops and stateless blockchains. Tech. rep. Cryptology ePrint Archive, Report 2018/1188,
Tech. Rep, 2018.

[BC99] N. P. Byott and R. J. Chapman. “Power sums over finite subspaces of a field”. In: Finite
Fields and Their Applications 5.3 (1999), pp. 254–265.

[BCCGP16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient zero-knowledge arguments
for arithmetic circuits in the discrete log setting”. In: International Conference on the
Theory and Applications of Cryptographic Techniques. 2016.

[BCGGHJ17] J. Bootle, A. Cerulli, E. Ghadafi, J. Groth, M. Hajiabadi, and S. K. Jakobsen. “Linear-time
zero-knowledge proofs for arithmetic circuit satisfiability”. In: International Conference
on the Theory and Application of Cryptology and Information Security. Springer. 2017,
pp. 336–365.

[BCGJM18] J. Bootle, A. Cerulli, J. Groth, S. Jakobsen, and M. Maller. “Arya: Nearly linear-time
zero-knowledge proofs for correct program execution”. In: International Conference on
the Theory and Application of Cryptology and Information Security. Springer. 2018,
pp. 595–626.

[BCGMMW18] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu. Zexe: Enabling Decentralized
Private Computation. Cryptology ePrint Archive, Report 2018/962. https://eprint.
iacr.org/2018/962. 2018.

[BDLSY12] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. “High-speed high-security
signatures”. In: Journal of cryptographic engineering 2.2 (2012), pp. 77–89.

[Bee] Beeple sold an NFT for $69 million - The Verge. 2022-04-24. url: https://www.
theverge.com/2021/3/11/22325054/beeple-christies-nft-sale-cost-

everydays-69-million.

[BEGKN94] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. “Checking the correctness of
memories”. In: Algorithmica 12.2-3 (1994), pp. 225–244.

[Ben+14] E. Ben-Sasson et al. “Zerocash: Decentralized Anonymous Payments from Bitcoin”. In:
Proceedings of the Symposium on Security and Privacy SP, 2014. 2014.

[BFL91] L. Babai, L. Fortnow, and C. Lund. “Non-deterministic exponential time has two-prover
interactive protocols”. In: Computational complexity 1.1 (1991), pp. 3–40.

[BFRSBW] B. Braun, A. J. Feldman, Z. Ren, S. T. V. Setty, A. J. Blumberg, and M. Walfish. “Verifying
computations with state”. In: ACM SIGOPS 24th Symposium on Operating Systems
Principles, SOSP, 2013.

[BFS19] B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK Compilers.
Cryptology ePrint Archive, Report 2019/1229. 2019.

[BG12] S. Bayer and J. Groth. “Efficient zero-knowledge argument for correctness of a shuffle”.
In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2012, pp. 263–280.

[BGV] S. Benabbas, R. Gennaro, and Y. Vahlis. “Verifiable Delegation of Computation over Large
Datasets”. In: CRYPTO 2011, pp. 111–131.

[BKP11] M. Backes, A. Kate, and A. Patra. “Computational verifiable secret sharing revisited”. In:
International Conference on the Theory and Application of Cryptology and Information
Security. Springer. 2011, pp. 590–609.

[Bla79] G. R. Blakley. “Safeguarding cryptographic keys”. In: Managing Requirements Knowledge,
International Workshop on. IEEE Computer Society. 1979.

198

[BLMR14] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld. “Proof of activity: Extending bitcoin’s
proof of work via proof of stake [extended abstract] y”. In: ACM SIGMETRICS Performance
Evaluation Review 42.3 (2014), pp. 34–37.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. “Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation”. In: STOC. 1988.

[Bot] “Human-guided burrito bots raise questions about the future of robo-delivery”. In: 2019.

[BP] E. Boyle and R. Pass. “Limits of Extractability Assumptions with Distributional Auxiliary
Input”. In: ASIACRYPT 2015, pp. 236–261.

[BPS16] I. Bentov, R. Pass, and E. Shi. “Snow White: Provably Secure Proofs of Stake.” In: IACR
Cryptol. ePrint Arch. 2016.919 (2016).

[BPTG15] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser. “Machine learning classification over
encrypted data.” In: NDSS. Vol. 4324. 2015, p. 4325.

[BSBHR18] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. “Fast Reed-Solomon interactive
oracle proofs of proximity”. In: 45th International Colloquium on Automata, Languages,
and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
2018.

[BSBHR19] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. “Scalable zero knowledge with no
trusted setup”. In: Annual International Cryptology Conference. Springer. 2019, pp. 701–
732.

[BSCGTV] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. “SNARKs for C: Verifying
program executions succinctly and in zero knowledge”. In: CRYPTO 2013.

[BSCGTV15] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. “Secure sampling of public
parameters for succinct zero knowledge proofs”. In: 2015 IEEE Symposium on Security
and Privacy. IEEE. 2015, pp. 287–304.

[BSCRSVW19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. “Aurora:
Transparent succinct arguments for R1CS”. In: Annual international conference on the
theory and applications of cryptographic techniques. Springer. 2019, pp. 103–128.

[BSCS16] E. Ben-Sasson, A. Chiesa, and N. Spooner. “Interactive oracle proofs”. In: TCC. Springer.
2016.

[BSCTV] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Succinct Non-Interactive Zero
Knowledge for a von Neumann Architecture”. In: Proceedings of the USENIX Security
Symposium, 2014.

[BSCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable zero knowledge via cycles
of elliptic curves”. In: CRYPTO 2014. 2014, pp. 276–294.

[BTVW14] A. J. Blumberg, J. Thaler, V. Vu, and M. Walfish. Verifiable computation using multiple
provers. Cryptology ePrint Archive, Report 2014/846. https://eprint.iacr.org/
2014/846. 2014.

199

[But] Vbuterin comments on [AMA] We are the EF’s Research Team (Pt. 7: 07 January,
2022). 2022. url: https://old.reddit.com/r/ethereum/comments/rwojtk/
ama_we_are_the_efs_research_team_pt_7_07_january/hrngyk8/ (visited on
04/24/2022).

[CBC21] P. Chatzigiannis, F. Baldimtsi, and K. Chalkias. “SoK: Blockchain Light Clients”. In:
Cryptology ePrint Archive (2021).

[CCD88] D. Chaum, C. Crépeau, and I. Damgard. “Multiparty Unconditionally Secure Protocols”.
In: STOC. 1988.

[CCHLRR18] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, and R. D. Rothblum.
Fiat-Shamir From Simpler Assumptions. Cryptology ePrint Archive, Report 2018/1004.
2018.

[CD] R. Cramer and I. Damgård. “Zero-knowledge proofs for finite field arithmetic, or: Can
zero-knowledge be for free?” In: Annual International Cryptology Conference, 1998.

[CFQ] M. Campanelli, D. Fiore, and A. Querol. “LegoSNARK: Modular Design and Composition
of Succinct Zero-Knowledge Proofs.” In: CCS 2019.

[CFS17] A. Chiesa, M. A. Forbes, and N. Spooner. “A Zero Knowledge Sumcheck and its
Applications”. In: CoRR abs/1704.02086 (2017). arXiv: 1704.02086. url: http:
//arxiv.org/abs/1704.02086.

[CGGN17] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo. “Zero-knowledge contingent
payments revisited: Attacks and payments for services”. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. ACM. 2017,
pp. 229–243.

[CGJKR99] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Adaptive security for
threshold cryptosystems”. In: CRYPTO. 1999.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. “Verifiable secret sharing and
achieving simultaneity in the presence of faults”. In: FOCS. 1985.

[Cha+17] M. Chase et al. “Post-quantum zero-knowledge and signatures from symmetric-key
primitives”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM. 2017, pp. 1825–1842.

[CHMMVW20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. “Marlin: Preprocessing
zkSNARKs with Universal and Updatable SRS”. In: EUROCRYPT 2020. 2020, pp. 738–
768.

[Cir] ed25519-circom. https://github.com/Electron-Labs/ed25519-circom. 2022.

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
Third Edition. 3rd. The MIT Press, 2009. isbn: 0262033844, 9780262033848.

[CMT12] G. Cormode, M. Mitzenmacher, and J. Thaler. “Practical Verified Computation with
Streaming Interactive Proofs”. In: ITCS. 2012.

[Coi] Cryptocurrency prices, charts and market capitalizations. 2022. url: https://coinmar
ketcap.com/.

200

[Cos] Cosmos. https://cosmos.network/. 2022.

[Cos+] C. Costello et al. “Geppetto: Versatile Verifiable Computation”. In: S&P 2015.

[COS19] A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-Quantum and Transparent Recursive
Proofs from Holography. Cryptology ePrint Archive, Report 2019/1076. https://
eprint.iacr.org/2019/1076. 2019.

[Dar] DARPA SIEVE program. https://www.darpa.mil/news-events/2019-07-18.

[DFKP15] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak. “Proofs of space”. In: Annual
Cryptology Conference. Springer. 2015, pp. 585–605.

[DG17] D. Dua and C. Graff. UCI Machine Learning Repository. 2017. url: http://archive.
ics.uci.edu/ml.

[DGKR17] B. David, P. Ga, A. Kiayias, and A. Russell. “Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake protocol”. In: Cryptology ePrint Archive (2017).

[DXR] S. Das, Z. Xiang, and L. Ren. Asynchronous Data Dissemination and its Applications.
Cryptology ePrint Archive, Report 2021/777.

[Edd] ed25519-circom. https://github.com/Electron-Labs/ed25519-circom. 2022.

[Fel87] P. Feldman. “A practical scheme for non-interactive verifiable secret sharing”. In: FOCS.
1987.

[FFGKOP16] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and B. Parno. “Hash first,
argue later: Adaptive verifiable computations on outsourced data”. In: Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security. 2016.

[FG] D. Fiore and R. Gennaro. “Publicly Verifiable Delegation of Large Polynomials and Matrix
Computations, with Applications”. In: CCS 2012, pp. 501–512.

[Fil] Filecoin: A Decentralized Storage Network. 2014. url: https://filecoin.io/
filecoin.pdf.

[FJR15] M. Fredrikson, S. Jha, and T. Ristenpart. “Model Inversion Attacks that Exploit Confidence
Information and Basic Countermeasures”. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security - CCS '15. ACM Press, 2015.
doi: 10.1145/2810103.2813677. url: https://doi.org/10.1145%2F2810103.
2813677.

[FN16] D. Fiore and A. Nitulescu. “On the (in) security of SNARKs in the presence of oracles”.
In: Theory of Cryptography Conference. Springer. 2016, pp. 108–138.

[FQZDC21] B. Feng, L. Qin, Z. Zhang, Y. Ding, and S. Chu. “ZEN: An optimizing compiler for
verifiable, zero-knowledge neural network inferences”. In: Cryptology ePrint Archive
(2021).

[FS] A. Fiat and A. Shamir. “How to Prove Yourself: Practical Solutions to Identification and
Signature Problems”. In: Crypto 1986.

[GGG17] Z. Ghodsi, T. Gu, and S. Garg. “Safetynets: Verifiable execution of deep neural networks
on an untrusted cloud”. In: Advances in Neural Information Processing Systems. 2017,
pp. 4672–4681.

201

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. “Quadratic Span Programs and Succinct
NIZKs without PCPs”. In: EUROCRYPT 2013. 2013, pp. 626–645.

[GHMVZ17] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. “Algorand: Scaling byzantine
agreements for cryptocurrencies”. In: Proceedings of the 26th symposium on operating
systems principles. 2017, pp. 51–68.

[GJKR99] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure distributed key generation for
discrete-log based cryptosystems”. In: Eurocrypt. 1999.

[GJMMST21] K. Gurkan, P. Jovanovic, M. Maller, S. Meiklejohn, G. Stern, and A. Tomescu. “Aggregat-
able Distributed Key Generation”. In: (2021).

[GKMMM18] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. “Updatable and universal
common reference strings with applications to zk-SNARKS”. In: Annual International
Cryptology Conference. Springer. 2018, pp. 698–728.

[GKMPS20] V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song. Storing and Retrieving
Secrets on a Blockchain. Cryptology ePrint Archive, Report 2020/504. 2020.

[GKR15] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. “Delegating Computation: Interactive
Proofs for Muggles”. In: J. ACM 62.4 (Sept. 2015), 27:1–27:64. issn: 0004-5411.

[GLLTXZ] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang. Efficient Asynchronous Byzantine
Agreement without Private Setups. Cryptology ePrint Archive, Report 2021/810.

[GMO16] I. Giacomelli, J. Madsen, and C. Orlandi. “ZKBoo: Faster Zero-Knowledge for Boolean
Circuits.” In: USENIX Security Symposium. 2016, pp. 1069–1083.

[Gmp] The GNU Multiple Precision Arithmetic Library. https://gmplib.org/.

[GMR] S Goldwasser, S Micali, and C Rackoff. “The Knowledge Complexity of Interactive
Proof-systems”. In: STOC 1985, pp. 291–304.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. “The knowledge complexity of interactive proof
systems”. In: SIAM Journal on computing 18.1 (1989), pp. 186–208.

[Gna] gnark. https://docs.gnark.consensys.net/en/latest/. 2022.

[Gnu] The GNU multiple precision arithmetic library. https://gmplib.org/.

[Gro09] J. Groth. “Linear algebra with sub-linear zero-knowledge arguments”. In: Advances in
Cryptology-CRYPTO 2009. Springer, 2009, pp. 192–208.

[Gro10] J. Groth. “Short pairing-based non-interactive zero-knowledge arguments”. In: Interna-
tional Conference on the Theory and Application of Cryptology and Information Security.
Springer. 2010, pp. 321–340.

[Gro16a] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II. 2016, pp. 305–326.

[Gro16b] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: EUROCRYPT
2016. 2016, pp. 305–326.

202

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. “Plonk: Permutations over lagrange-bases
for oecumenical noninteractive arguments of knowledge”. In: Cryptology ePrint Archive
(2019).

[Het] Hetzner. https://www.hetzner.com/. 2022.

[HJKY95] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. “Proactive secret sharing or: How to
cope with perpetual leakage”. In: Annual International Cryptology Conference. Springer.
1995, pp. 339–352.

[Hyr] Hyrax reference implementation. https://github.com/hyraxZK/hyraxZK.

[IKO] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. “Efficient Arguments without Short PCPs”. In:
22nd Annual IEEE Conference on Computational Complexity (CCC 2007).

[IKOS07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. “Zero-knowledge from secure
multiparty computation”. In: Proceedings of the annual ACM symposium on Theory of
computing. ACM. 2007, pp. 21–30.

[Int] Hyperledger Sawtooth. 2017. url: https://sawtooth.hyperledger.org/ (visited
on 2017).

[IS90] I. Ingemarsson and G. J. Simmons. “A protocol to set up shared secret schemes without
the assistance of a mutually trusted party”. In: Workshop on the Theory and Application of
of Cryptographic Techniques. 1990.

[Jsna] jSNARK. https://github.com/akosba/jsnark.

[Jsnb] jsnark. https://github.com/akosba/jsnark. 2015.

[Kat10] A. Kate. “Distributed Key Generation and Its Applications”. In: (2010).

[KG09] A. Kate and I. Goldberg. “Distributed key generation for the internet”. In: ICDCS. 2009.

[Kil92] J. Kilian. “A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended Ab-
stract)”. In: Proceedings of the ACM Symposium on Theory of Computing. 1992.

[KKMS20] E. Kokoris Kogias, D. Malkhi, and A. Spiegelman. “Asynchronous Distributed Key Gener-
ation for Computationally-Secure Randomness, Consensus, and Threshold Signatures.” In:
CCS. 2020.

[KMSWP] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. “Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts”. In: Proceedings of Symposium
on security and privacy (SP), 2016.

[KRDO17] A. Kiayias, A. Russell, B. David, and R. Oliynykov. “Ouroboros: A provably secure
proof-of-stake blockchain protocol”. In: Annual international cryptology conference.
Springer. 2017, pp. 357–388.

[Kwo14] J. Kwon. “Tendermint: Consensus without mining”. In: Draft v. 0.6, fall 1.11 (2014).

[KZG] A. Kate, G. M. Zaverucha, and I. Goldberg. “Constant-Size Commitments to Polynomials
and Their Applications”. In: ASIACRYPT 2010, pp. 177–194.

[Lay] LayerZero. https://layerzero.network/. 2022.

203

[Lee20] J. Lee. Dory: Efficient, transparent arguments for generalised inner products and polyno-
mial commitments. Cryptology ePrint Archive, Report 2020/1274. 2020.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. “Algebraic Methods for Interactive Proof
Systems”. In: J. ACM 39.4 (Oct. 1992), pp. 859–868. issn: 0004-5411.

[Liba] Libra implementation. https://github.com/sunblaze- ucb/fastZKP/tree/
Libra.

[Libb] “libsnark”. In: 2014.

[Lip12] H. Lipmaa. “Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments”. In: Theory of Cryptography Conference. 2012.

[LMPR] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. “SWIFFT: A Modest Proposal
for FFT Hashing”. In: Fast Software Encryption. Springer Berlin Heidelberg, pp. 54–72.
doi: 10.1007/978-3-540-71039-4_4. url: https://doi.org/10.1007%2F978-
3-540-71039-4_4.

[LXZ21] T. Liu, X. Xie, and Y. Zhang. “ZkCNN: Zero knowledge proofs for convolutional neural
network predictions and accuracy”. In: Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. 2021, pp. 2968–2985.

[Mar+19] S. K. D. Maram et al. CHURP: Dynamic-Committee Proactive Secret Sharing. Cryptology
ePrint Archive, Report 2019/017. https://eprint.iacr.org/2019/017. 2019.

[MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-Knowledge SNARKs
from Linear-Size Universal and Updateable Structured Reference Strings. Cryptology
ePrint Archive, Report 2019/099. https://eprint.iacr.org/2019/099. 2019.

[Mer] R. C. Merkle. “A Certified Digital Signature”. In: CRYPTO 1989, pp. 218–238.

[Mer87] R. C. Merkle. “A digital signature based on a conventional encryption function”. In:
Conference on the theory and application of cryptographic techniques. 1987.

[Mic00] S. Micali. “Computationally Sound Proofs”. In: SIAM J. Comput. (2000).

[Mul] Multi-chain future likely as Ethereum’s DeFi dominance declines | Bloomberg Professional
Services. 2022. url: https://www.bloomberg.com/professional/blog/multi-
chain-future-likely-as-ethereums-defi-dominance-declines/ (visited on
04/24/2022).

[Nak08] S. Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: Decentralized Business
Review (2008), p. 21260.

[NBBR16] W. Neji, K. Blibech, and N. Ben Rajeb. “Distributed key generation protocol with a new
complaint management strategy”. In: Security and communication networks 9.17 (2016),
pp. 4585–4595.

[Nea] ETH-NEAR Rainbow Bridge – NEAR Protocol. 2022. url: https://near.org/blog/
eth-near-rainbow-bridge/ (visited on 05/02/2022).

[Noma] Nomad crypto bridge loses $200 million in “chaotic" hack. https://www.theverge.
com/2022/8/2/23288785/nomad-bridge-200-million-chaotic-hack-smart-

contract-cryptocurrency. 2022.

204

[Nomb] Nomad Protocol. https://docs.nomad.xyz/the-nomad-protocol/overview.
2021.

[Ped91] T. P. Pedersen. “Non-interactive and information-theoretic secure verifiable secret sharing”.
In: CRYPTO. 1991.

[PHGR13] B. Parno, J. Howell, C. Gentry, and M. Raykova. “Pinocchio: Nearly practical verifiable
computation”. In: S&P 2013. 2013, pp. 238–252.

[Pola] At least $611 million stolen in massive cross-chain hack. 2021. url: https://www.
theblockcrypto.com/post/114045/at- least- 611- million- stolen- in-

massive-cross-chain-hack.

[Polb] Poly Network. https://poly.network/. 2020.

[Polc] Polygon Hermez. https://polygon.technology/solutions/polygon-hermez/.
2022.

[Pold] Polygon Miden. https://polygon.technology/solutions/polygon- miden/.
2022.

[Pole] Polygon Zero. https://polygon.technology/solutions/polygon-zero/. 2022.

[PST13] C. Papamanthou, E. Shi, and R. Tamassia. “Signatures of Correct Computation”. In: TCC
2013. 2013, pp. 222–242.

[QZLG21] K. Qin, L. Zhou, B. Livshits, and A. Gervais. “Attacking the defi ecosystem with flash
loans for fun and profit”. In: International Conference on Financial Cryptography and
Data Security. Springer. 2021, pp. 3–32.

[Rai] Rainbow Bridge. https://near.org/bridge/. 2020.

[RBO89] T. Rabin and M. Ben-Or. “Verifiable Secret Sharing and Multiparty Protocols with Honest
Majority”. In: STOC. 1989.

[RD16] L. Ren and S. Devadas. “Proof of space from stacked expanders”. In: Theory of Cryptogra-
phy Conference. Springer. 2016, pp. 262–285.

[Ris] Risc Zero. https://www.risczero.com/. 2022.

[Ron] Ronin Attack Shows Cross-Chain Crypto Is a ‘Bridge’ Too Far. 2022. url: https:
//www.coindesk.com/layer2/2022/04/05/ronin- attack- shows- cross-

chain-crypto-is-a-bridge-too-far/ (visited on 04/24/2022).

[Sch79] J. T. Schwartz. “Probabilistic algorithms for verification of polynomial identities”. In:
International Symposium on Symbolic and Algebraic Manipulation. Springer. 1979,
pp. 200–215.

[SCPTZ21] S. Srinivasan, A. Chepurnoy, C. Papamanthou, A. Tomescu, and Y. Zhang. “Hyperproofs:
Aggregating and Maintaining Proofs in Vector Commitments”. In: IACR Cryptol. ePrint
Arch. (2021), p. 599.

[Set20a] S. Setty. “Spartan: Efficient and general-purpose zkSNARKs without trusted setup”. In:
Annual International Cryptology Conference. Springer. 2020.

[Set20b] S. Setty. “Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup”. In:
CRYPTO 2020. Springer International Publishing, 2020, pp. 704–737.

205

[Sha79] A. Shamir. “How to share a secret”. In: Communications of the ACM 22.11 (1979),
pp. 612–613.

[Sha92] A. Shamir. “Ip= pspace”. In: Journal of the ACM (JACM) 39.4 (1992), pp. 869–877.

[SL20] S. Setty and J. Lee. Quarks: Quadruple-efficient transparent zkSNARKs. Cryptology ePrint
Archive, Report 2020/1275. 2020.

[SLL08] D. A. Schultz, B. Liskov, and M. Liskov. “Mobile proactive secret sharing”. In: Proceedings
of the twenty-seventh ACM symposium on Principles of distributed computing. ACM. 2008,
pp. 458–458.

[Spa] Spartan. https://github.com/microsoft/Spartan. 2020.

[Sta] Starkware. https://starkware.co/. 2022.

[Tam03] R. Tamassia. “Authenticated data structures”. In: European symposium on algorithms.
Springer. 2003, pp. 2–5.

[Tan11] O. Tange. “GNU Parallel - The Command-Line Power Tool”. In: The USENIX Magazine
(2011). url: http://www.gnu.org/s/parallel.

[Tha13a] J. Thaler. “Time-Optimal Interactive Proofs for Circuit Evaluation”. In: Advances in
Cryptology – CRYPTO 2013. Ed. by R. Canetti and J. A. Garay. 2013. isbn: 978-3-642-
40084-1.

[Tha13b] J. Thaler. “Time-Optimal Interactive Proofs for Circuit Evaluation”. In: CRYPTO. Ed. by
R. Canetti and J. A. Garay. 2013.

[Tha15] J. Thaler. A Note on the GKR Protocol. Available at http://people.cs.georgetown.
edu/jthaler/GKRNote.pdf. 2015.

[TKK19] A. Tueno, F. Kerschbaum, and S. Katzenbeisser. “Private evaluation of decision trees
using sublinear cost”. In: Proceedings on Privacy Enhancing Technologies 2019.1 (2019),
pp. 266–286.

[Tom+20] A. Tomescu et al. “Towards scalable threshold cryptosystems”. In: S & P. 2020.

[Tur90] K. Turkowski. “Filters for common resampling tasks”. In: Graphics gems. Academic Press
Professional, Inc. 1990, pp. 147–165.

[Use] Average Price of Electricity. https://www.eia.gov/electricity/monthly/epm_
table_grapher.php?t=epmt_5_6_a. 2022.

[Val08] P. Valiant. “Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency”. In: Theory of Cryptography Conference. Springer. 2008, pp. 1–18.

[VC05] J. Vaidya and C. Clifton. “Privacy-preserving decision trees over vertically partitioned
data”. In: IFIP Annual Conference on Data and Applications Security and Privacy.
Springer. 2005, pp. 139–152.

[Vira] Virgo implementation. https://github.com/sunblaze-ucb/Virgo. 2020.

[Virb] Virgo implementation. https://github.com/TAMUCrypto/virgo-plus. 2021.

[VP19] A. Vlasov and K. Panarin. “Transparent Polynomial Commitment Scheme with Polyloga-
rithmic Communication Complexity.” In: IACR Cryptol. ePrint Arch. (2019).

206

[VSBW13] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. “A Hybrid Architecture for Interactive
Verifiable Computation”. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy. SP ’13. 2013.

[Wah+17] R. S. Wahby et al. “Full accounting for verifiable outsourcing”. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. ACM. 2017.

[WB15] M. Walfish and A. J. Blumberg. “Verifying computations without reexecuting them”. In:
Commun. ACM 58.2 (2015), pp. 74–84.

[Wei69] C. J. Weinstein. Quantization effects in digital filters. Tech. rep. MASSACHUSETTS
INST OF TECH LEXINGTON LINCOLN LAB, 1969.

[WHGSW16] R. S. Wahby, M. Howald, S. Garg, A. Shelat, and M. Walfish. “Verifiable asics”. In: S & P.
2016.

[Woo+14] G. Wood et al. “Ethereum: A secure decentralised generalised transaction ledger”. In:
Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[Wora] Blockchain Bridge Wormhole Suffers Possible Exploit Worth Over $326M. 2022. url:
https://www.coindesk.com/tech/2022/02/02/blockchain-bridge-wormhole

-suffers-possible-exploit-worth-over-250m/ (visited on 2022).

[Worb] Wormhole Solana. https://solana.com/wormhole. 2020.

[WSRBW15] R. S. Wahby, S. T. Setty, Z. Ren, A. J. Blumberg, and M. Walfish. “Efficient RAM and
control flow in verifiable outsourced computation.” In: NDSS. 2015.

[WTSTW18] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. “Doubly-efficient zkSNARKs
without trusted setup”. In: S & P. 2018.

[WZCPS18] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica. “DIZK: A Distributed Zero-
Knowledge Proof System”. In: (2018).

[Xie+22] T. Xie et al. “zkBridge: Trustless Cross-chain Bridges Made Practical”. In: arXiv preprint
arXiv:2210.00264 (2022).

[XZZPS19a] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. “Libra: Succinct zero-knowledge
proofs with optimal prover computation”. In: CRYPTO. 2019.

[XZZPS19b] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. “Libra: Succinct zero-knowledge
proofs with optimal prover computation”. In: CRYPTO. 2019.

[YLFKM21] T. Yurek, L. Luo, J. Fairoze, A. Kate, and A. K. Miller. “hbACSS: How to Robustly Share
Many Secrets.” In: IACR Cryptol. ePrint Arch. 2021 (2021).

[You] YouTube includes NFTs in new creator tools. 2022. url: https://www.nbcnews.
com/pop- culture/viral/youtube- includes- nfts- new- creator- tools-

rcna15813.

[YY13] J. Yuan and S. Yu. “Proofs of retrievability with public verifiability and constant commu-
nication cost in cloud”. In: Proceedings of the 2013 international workshop on Security in
cloud computing. ACM. 2013, pp. 19–26.

207

[ZFZS20] J. Zhang, Z. Fang, Y. Zhang, and D. Song. “Zero knowledge proofs for decision tree
predictions and accuracy”. In: Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. 2020, pp. 2039–2053.

[ZGKPP17a] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. A Zero-Knowledge
Version of vSQL. Cryptology ePrint. 2017.

[ZGKPP17b] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vSQL: Verifying
arbitrary SQL queries over dynamic outsourced databases”. In: Security and Privacy (SP),
2017 IEEE Symposium on. IEEE. 2017, pp. 863–880.

[ZGKPP17c] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vSQL: Verifying
arbitrary SQL queries over dynamic outsourced databases”. In: S& P. 2017.

[ZGKPP18] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vRAM: Faster
verifiable RAM with program-independent preprocessing”. In: Proceeding of IEEE
Symposium on Security and Privacy (S&P). 2018.

[Zha+19] L. Zhao et al. “VeriML: Enabling Integrity Assurances and Fair Payments for Machine
Learning as a Service”. In: arXiv preprint arXiv:1909.06961 (2019).

[Zha+20] J. Zhang et al. Doubly Efficient Interactive Proofs for General Arithmetic Circuits with
Linear Prover Time. Cryptology ePrint Archive, Report 2020/1247. 2020.

[Zip79] R. Zippel. “Probabilistic algorithms for sparse polynomials”. In: International Symposium
on Symbolic and Algebraic Manipulation. Springer. 1979, pp. 216–226.

[Zkc] “Zero knowledge contingent payment”. In: 2016.

[Zks] ZkSync. https://zksync.io/. 2022.

[ZXHSZ22] J. Zhang, T. Xie, T. Hoang, E. Shi, and Y. Zhang. “Polynomial Commitment with a
{One-to-Many} Prover and Applications”. In: 31st USENIX Security Symposium (USENIX
Security 22). 2022, pp. 2965–2982.

[ZXZS] J. Zhang, T. Xie, Y. Zhang, and D. Song. “Transparent Polynomial Delegation and Its
Applications to Zero Knowledge Proof”. In: S&P 2020.

208

