
Unsupervised Online Learning for Seizure Detection and
Prediction

Adelson Chua

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-22
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-22.html

May 1, 2025



Copyright © 2025, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



 
 

Unsupervised Online Learning for Seizure Detection and Prediction 
 
 
 

By 
 
 

Adelson Chua 
 
 
 

A dissertation submitted in partial satisfaction of the 
 

requirements for the degree of 
 

Doctor of Philosophy 
 

in 
 

Engineering – Electrical Engineering and Computer Sciences 
 

in the 
 

Graduate Division 
 

of the 
 

University of California, Berkeley 
 
 
 
 

Committee in charge: 
 

Rikky Muller, PhD, Chair 
Michael I. Jordan, PhD 
Daniela Kaufer, PhD 

 
 
 

Summer 2023 
 



 



1 
 

Abstract 

Unsupervised Online Learning for Seizure Detection and Prediction 

by 

Adelson Chua 

 

Doctor of Philosophy in Electrical Engineering and Computer Sciences 

University of California, Berkeley 

Rikky Muller, PhD, Chair 

 

Implantable devices that record neural activity and detect seizures have been adopted for issuing 
warnings or triggering neurostimulation to suppress epileptic seizures. Traditional seizure 
detection systems rely on high-accuracy offline-trained machine learning classifiers that need 
manual retraining when seizure patterns change over time. For an implantable seizure detection 
system, a low-power, at-the-edge, online learning algorithm can be used to dynamically adapt to 
neural signal drifts, maintaining high accuracy without external intervention. This dissertation 
describes an energy-efficient classification algorithm based on logistic regression that incorporates 
stochastic gradient descent for online and unsupervised updates, ensuring sustained high 
classification accuracies over long periods of time. The online learning framework was 
implemented on two different on-chip variants: one being focused solely on seizure detection 
(which is referred to as SOUL); and another that combines both seizure detection and prediction 
(which is referred to as SPIRIT), which leverages the detector’s outputs to continually improve the 
prediction accuracy without additional external inputs. The systems’ performance was evaluated 
using long-term datasets, including cases with drifting seizure features, demonstrating high 
prediction and detection accuracies over extended periods through on-chip adaptation. 

Both SOUL and SPIRIT managed to achieve comparable, if not better, detection and prediction 
accuracies versus other on-chip state-of-the-art work in this field. The online learning approach 
described in this thesis enabled the systems to maintain high accuracies over long periods of time 
while being very energy efficient. For SOUL, the combination of the proposed algorithmic approach 
and circuit-level optimizations resulted in an energy efficiency of 1.5 nJ/classification, which is at 
least 24x better than the state-of-the-art. It also consumes 0.1 mm2 of area making it the smallest 
seizure detector classifier in the literature by a factor of 10x. For SPIRIT, using the same architectural 
optimizations that made an energy-efficient SOUL, the energy efficiency for prediction was 17.2 
nJ/classification, which is at least 5.6x better than the only other on-chip seizure predictor in the 
literature. Compared to the same work, SPIRIT’s power consumption is about 134x smaller at 17.2 
µW, while also being 28x smaller at 0.14 mm2. SPIRIT is the first on-chip seizure predictor that can 
retrain in an unsupervised manner while being more energy efficient than state-of-the-art. 
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I. INTRODUCTION 
 

A. Epilepsy and EEG 
 

Epilepsy is a serious neurological disorder affecting around 50 million people worldwide 
[1] and is usually characterized by recurrent seizures. Epileptic seizures are manifestations of 
abnormal, excessive, or synchronous neuronal activity in the brain. They arise from the central 
nervous system and can lead to a variety of symptoms, ranging from brief lapses of attention or 
muscle jerks to severe and prolonged convulsions [2]. Seizure frequency varies greatly from 
person to person and can severely impact a person’s quality of life. It can lead to physical injuries. 
Activities such as driving, swimming, or even walking can become hazardous. It also has some 
negative social impacts. People with epilepsy often face social stigma, which can lead to isolation, 
depression, and anxiety. Treating these seizures is crucial not only to improve the quality of life 
of those affected but also to prevent potential physical harm, reduce the risk of life-threatening 
conditions, and mitigate the psychosocial implications associated with the disorder. 
 

Electroencephalography (EEG) is a non-invasive method used to record the electrical 
activity of the brain [3]. Fig. 1 illustrates how such devices are set up. It involves placing electrodes 
on the scalp to detect and record patterns of voltage fluctuations resulting from ionic current flows 
within the neurons of the brain. EEG is a primary tool for monitoring and detecting epileptic 
seizures due to its ability to capture the brain's electrical activity in real-time. This activity is 
displayed as a series of waveforms, with each waveform corresponding to the input from a specific 
electrode. 

 

 
Fig. 1. EEG recording on the scalp and a typical EEG recording waveform.  
(Image credit: https://eastneurology.com.au/eeg-electroencephalogram-brain-wave-tests/) 
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 Seizure activity in the EEG is often characterized by repetitive, evolving, and stereotyped 
waveforms. A real example of an EEG recording with seizures is shown in Fig. 2. These can 
manifest as spikes, sharp waves, or specific rhythmic patterns. These can be in the form of a series 
of high-amplitude, high-frequency electrical signals [4]. The exact appearance can vary based on 
the type of seizure and its location in the brain. Focal seizures, illustrated in Fig. 3, which start in 
one area of the brain, will show abnormal activity limited to electrodes overlying that area, while 
generalized seizures will show widespread abnormalities. The spatial distribution of seizure 
activity on the EEG can provide clues about the seizure's origin, which can also aid in targeted 
treatment.  
 

 
Fig. 2. An actual EEG recording of an ongoing seizure event. Labels on the left indicate the 
electrode placement. Units are shown on the lower right. 
(Image credit: https://thoracickey.com/eeg-in-adult-epilepsy/) 
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Fig. 3. Focal seizures start in one area of the brain (hot spot zone) and can be mapped through 
EEG recordings.  
(Image credit: https://www.mayoclinic.org/img-20456529) 
 

B. Detecting seizures through EEG 
 
 Given the vast amount of data generated during continuous EEG monitoring, automated 
seizure detection algorithms have been developed. These algorithms analyze the EEG data to 
identify patterns consistent with seizure activity. Relevant features from the EEG data can be 
extracted allowing for better identification. These features can include time-domain 
characteristics, frequency-domain attributes, and statistical properties. Machine learning 
algorithms can then use these features to differentiate between normal and seizure activity. 
Commercially available advisory systems have been developed that warn patients when a seizure 
is about to occur. Closed-loop implantable neuromodulators have also been deployed for seizure 
treatment. These systems detect seizure events within an acceptable latency (typically <5 seconds 
[5,6]) and trigger neurostimulation to suppress the seizure. The NeuroPace Responsive 
neurostimulation (RNS) [5-7] and the Medtronic Deep-brain stimulation (DBS) [8,9], shown in 
Fig. 4, are two medically approved devices of this kind. These devices utilize a small, battery-
powered pulse generator surgically implanted in the skull with two electrode leads that are 
implanted intracranially and/or epicortically. This treatment method has demonstrated clinical 
efficacy in terms of reducing long-term seizure occurrence, reporting a reduction of 66% of 
seizures by Year 6 for the NeuroPace RNS [5] and a 75% median reduction of seizures by Year 7 
for the Medtronic DBS [9]. By automating the analysis process and potentially improving 
detection accuracy, machine learning techniques can play a pivotal role in the management and 
treatment of epilepsy. 
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Fig. 4. NeuroPace RNS System (left) [5-7] and the Medtronic DBS System (right) [8,9]  
(Image credit: https://www.medgadget.com/2013/11/neuropace-gets-fda-approval-for-rns-stimulator.html, 
https://www.tga.gov.au/news/safety-alerts/medtronic-deep-brain-stimulation-devices-multiple-models) 
 
 While machine learning algorithms have found applications in seizure detection and 
treatment, there are challenges that need to be addressed for such an approach to be effective and 
efficient. We highlight three related challenges: 1) The changing seizure patterns over time that 
can degrade long-term detection accuracy; 2) The constant need for regular updates to these 
algorithms done by a medical professional to ensure that the machine learning models remain 
accurate; and 3) The trend of increasing computational complexity for seizure detection classifiers 
to remain accurate over long periods of time. 
 

Challenge 1: The changing seizure patterns 
 

The dynamic nature of EEG seizure patterns poses challenges for machine learning-based 
seizure detection. EEG seizure patterns can exhibit variations over time due to a multitude of 
factors. As individuals age, their brain structures and functions evolve, leading to potential changes 
in EEG patterns. This is particularly pronounced in children and adolescents, whose brains are still 
developing. Factors such as stress, sleep deprivation, or hormonal changes can influence seizure 
patterns and their manifestation on EEG. The nature and characteristics of epilepsy can also change 
as the disease progresses. For instance, the focus of the seizures or the pathways they propagate 
through might shift over time. The introduction or alteration of antiepileptic drugs can also 
influence EEG patterns. Similarly, treatments like surgery or neurostimulation can lead to changes 
in the brain's electrical activity. Seizure patterns can vary based on the time of day, implying a 
patient-specific circadian profile [10]. Some individuals might be more prone to seizures during 
sleep or at specific times during the day, leading to variations in EEG patterns. Finally, shifting 
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electrode placement can also play a role as these can dramatically change the impedance seen by 
the EEG electrodes which can degrade signal quality [11]. Overall, as EEG seizure patterns 
change, the underlying data distribution that the machine learning model was trained on might no 
longer be representative. This phenomenon, known as model drift, can lead to decreased model 
accuracy over time. 
 

 
Fig 5. Spectral power of EEG over a 30-day period demonstrating a change in signal power that 
can cause misclassifications from a machine learning algorithm.  
(Image credit: https://www.frontiersin.org/articles/10.3389/fnins.2022.936104/full) 
 
 

Challenge 2: The need for external intervention 
 

Given the potential for changing EEG patterns, machine learning models might require 
regular retraining to maintain their performance. Requiring a medical professional to regularly 
update a machine learning algorithm to maintain high detection accuracies introduces several 
inefficiencies and challenges. The integration of machine learning into medical applications, 
especially in areas like EEG seizure detection, aims to automate and enhance the diagnostic and 
monitoring processes. However, frequent manual intervention can negate some of these benefits. 
Regular updates can lead to increased operational costs. It can also be an inconvenience to the user 
as a regular visit to a medical facility has to be scheduled and the entire retraining process can take 
time. A typical EEG retraining flow is shown in Fig. 6. Manual intervention can also increase the 
risk of errors. Mistakes in data labeling, model configuration, or other aspects of the update process 
can adversely affect the algorithm's performance. Finally, one of the primary advantages of 
machine learning algorithms is their potential for autonomy and efficiency. Requiring regular 
manual updates undermines this autonomy, making the system more dependent on external 
intervention. For the widespread adoption of machine learning-based seizure detection systems, 
scalability is essential. Manual updates by medical professionals are not scalable, especially when 
considering large patient populations or multiple healthcare facilities. 
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Fig. 6. Machine learning models need to be regularly updated to maintain high accuracy, especially 
if the signal patterns change over time. Updating such models takes time as EEG needs to be 
recorded first, then processed, and used for machine learning training. 
(Image credit: https://towardsdatascience.com/disability-diagnostic-using-eeg-time-series-analysis-8035300837ac) 
 

Challenge 3: The trend of increasing computational complexity 
 
Machine learning algorithms, especially when aiming for high accuracy over large datasets 

(such as datasets comprising several hours of EEG recordings on multiple different patients), often 
trend towards increasing computational complexity. Fig. 7 illustrates where machine learning can 
take place for these types of systems. While complex models can capture intricate patterns and 
nuances in the data, they come with their own set of challenges, such as increased latency and cost 
of operation. Complex algorithms, especially deep learning or neural network-based models, 
require significant memory and computational resources and are typically relegated to cloud 
processing. Edge devices, on the other hand, are much more constrained in terms of computational 
complexity but allow for faster response times and lower operational costs. Edge devices are better 
suited for seizure detection systems so that immediate action can be done, such as neurostimulation 
or an in-brain drug delivery to suppress the seizures as they occur. For edge devices such as an 
implantable system, battery life is a primary concern. Increasing complexity of these devices 
would increase power consumption. Frequent recharging or battery replacements are not only 
inconvenient but can also pose risks and discomfort to the patient.  

 
Prior art in seizure prediction and detection utilized long-term datasets to capture such 

variations [12], resulting in seizure detection accuracy greater than 90%. However, the classifier 
algorithms in those works were software-only implementations, where computational complexity 
and memory requirements were not a design consideration. For an at-the-edge, closed-loop, seizure 
detection systems, energy efficiency, area utilization, and long-term accuracy become important 
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design constraints. Balancing accuracy with simplicity, power efficiency, and adaptability is 
crucial. This work will address the three challenges highlighted earlier by developing an 
unsupervised online learning framework, that can be made energy-efficient, to dynamically adapt 
to changes in neural signal patterns over time and maintain high detection accuracy without 
external intervention. 

 

 
Fig. 7. Edge devices allow for faster response times in exchange for reduced complexity. Cloud-
based processing provides more computational power but increases latency. 
(Image credit: https://link.springer.com/article/10.1007/s42979-020-00272-2) 

 
The remainder of this thesis is organized as follows. Chapter II reviews prior work on on-

chip machine learning primarily for seizure detection, highlighting the type of classifiers used and 
the resulting energy efficiency, accuracy measurements, and area consumption. Chapter III 
introduces the unsupervised online learning framework, which will serve as the main innovation 
introduced in this work. Chapter IV describes the on-chip seizure detection architecture that 
leverages the online learning framework so that it maintains high accuracy over time while being 
very energy efficient. Chapter V extends the seizure detection hardware to support seizure 
prediction, which would be the first on-chip unsupervised online learning seizure predictor in the 
literature. Chapter VI showcases the experimental results of both seizure detector and predictor in 
terms of accuracy, highlighting the capability of the online learning scheme. Chapter VII provides 
additional discussion on the key findings and contributions of this work. Chapter VIII presents 
some ideas for potential future research direction that leverages the online learning framework 
which can be further explored. Chapter IX concludes the document.  
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II. REVIEW OF RELATED WORK 
 

When implementing an on-chip classifier, the memory and hardware requirements for 
machine learning need to be factored in. The resulting power and area needed to integrate these 
on-chip classifiers will limit the number of channels that the system can support, thereby reducing 
the recording granularity on a given power budget. Extending the edge device battery life would 
also be a good motivation for the need for low-power, energy-efficient systems. The machine 
learning power consumption is typically determined by the complexity of the feature extraction 
unit and the type of classifier being used [13]. 

 

A. Feature extraction units 
 

Feature extraction is the process of transforming raw data into another form that can 
highlight some inherent time or frequency domain characteristics which can help a classifier to 
differentiate between classes. A common method of feature extraction is through input data 
filtering so that the low and high-frequency characteristics of a signal can be segregated. EEG-
based signals are typically subdivided into various groups [14], as illustrated in Fig. 8. Depending 
on the bandpass filter specifications and chosen topology, implementing them in hardware can be 
costly due to the multiply-and-accumulate operations. Various methods of reducing filter hardware 
overhead have been explored, such as time-division multiplexing [15], where different channels 
use the same filter hardware, and frequency-time division multiplexing [16], which improves on 
the first one by multiplexing the filter coefficients as well to reduce the filter multiplier hardware.  

 

 
Fig. 8. Different frequency bands typically used when analyzing EEG signals. 
(Image credit: https://neurosky.com/2015/05/greek-alphabet-soup-making-sense-of-eeg-bands/) 
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B. Neural network-based classifiers 
 
Classification complexity also matters when implementing machine learning algorithms 

on-chip. Neural networks are one of the popular machine learning classifiers in the field of artificial 
intelligence due to the significantly high accuracies that they can achieve. It utilizes a network of 
parameters, typically hundreds, connected into different layers, which are then multiplied and 
added together to perform classification [17]. This type of classifier is widely used in software-
based applications but is rarely considered in the context of on-chip classification due to the 
hardware-intensive implementation, as illustrated in Fig. 9, requiring large amounts of memory to 
store the parameters and the parallel multipliers and adders needed to combine them The work 
from [18] had an energy efficiency of 1.24 mJ/classification and consumes 31.25 mm2 of area. It 
will be seen later how these numbers are significantly larger compared to more energy-efficient 
approaches. 

 

 
Fig. 9. A representative neural network topology. Each circle represents a parameter, each line 
represents multiplication, and lines converging to a point represents an addition. 
(Image credit: https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964) 
 
 

C. SVM-based classifiers 
 

The most common on-chip seizure event classifiers typically employ support vector 
machines (SVMs) due to their high accuracy and relatively simple implementations. As a 
classifier, an SVM attempts to create a dividing line (or a hyperplane in n-dimensions) that 
separates the two classes together [19], as shown in Fig. 10. The points where the margin lands on 
are called the support vectors. The more complex the classification task is (in higher dimensions), 
the more support vectors are needed to define the dividing hyperplane. 
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Fig. 10. SVM classification demonstration between two classes. 
(Image credit: https://medium.com/@viveksalunkhe80/support-vector-machine-svm-88f360ff5f38) 
 
The general classification function for an SVM is as follows: 

 

Where xt is a vector of feature values, svt is one of the Nsv support vectors, K is the kernel function, 
a and b are modeling parameters. The kernel function allows for the dot product to be translated 
into a higher dimensional space. This enables classification even with non-linearly separable data. 
 

The SVM complexity can vary depending on what kernel is being used [19]. Typical SVM-
based classifiers in the literature [16, 20-24], for instance, utilize linear kernels as they are the 
simplest and most computationally efficient. The hardware complexity (which is generally 
measured as the number of multiplications and additions) for these linear kernels is just 
proportional to the number of features (the length of the vector xt). However, using such kernels 
may limit the overall accuracy that can be achieved if the features are not linearly separable. 
Alternatively, more complex non-linear SVM kernels can be employed to dramatically increase 
the maximum achievable accuracy. A popular kernel of this type is the Radial Basis Function 
(RBF) kernel, also known as a Gaussian SVM, which aims to translate the non-linearly separable 
data into a much higher dimensional space where they become linearly separable. However, while 
this can be a powerful option for SVM classification, it trades off computational complexity for 
accuracy. Specifically, using an RBF kernel would scale the hardware complexity proportional to 
the number of support vectors (Nsv) multiplied by the number of features (the length of the vector 
xt). As a complex classification task may require hundreds of support vectors, utilizing complex 
kernels such as RBF might not be feasible for on-chip classification. Typical SVM-based seizure 
detection classifiers would end up having significant memory requirements to hold the support 
vectors needed for on-chip classification. At least 64 kB [16, 20-24] of memory is required leading 
to high on-chip area and power consumption. The work from [23] utilized a non-linear SVM and 
had an energy efficiency of 170 uJ/classification at 4.5mm2 area consumption. On the other hand, 
the work from [24] utilized a simpler 2nd order polynomial kernel for the SVM leading to an energy 
efficiency of 680 nJ/classification and consuming 2.25mm2 of area. 

𝑓𝑓(𝑥𝑥) = �𝑎𝑎𝑖𝑖𝐾𝐾(𝑠𝑠𝑣𝑣𝑡𝑡 + 𝑥𝑥𝑡𝑡) + 𝑏𝑏
𝑁𝑁𝑠𝑠𝑠𝑠

𝑖𝑖=1
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D. Decision-tree based classifiers 
 
Decision-tree-based classifiers are among the most energy-efficient systems in the 

literature [13,25], achieving <50 nJ/classification, which is an order of magnitude more efficient 
than the SVM-based designs cited earlier. They are also generally smaller, consuming only 1mm2 
[x-x] of area.  Decision trees (also called Random Forests, shown in Fig. 11, when considering 
several decision trees running in parallel) achieve an energy-efficient design due to their simple 
comparator-based nature, as you only need to compare against thresholds (which are stored in 
memory), without the need for multiplications (contrary to neural networks and SVMs) [26]. The 
problem with these types of classifiers is that they tend to easily overfit the training data and can 
be unstable with small changes in the input. Instability refers to the fact that the model parameters 
(in this case, the thresholds, and the tree structures) will vary significantly when a little bit of noise 
is added to the inputs. This makes it difficult to get an interpretable and replicable result after 
training. Decision trees are hard to dynamically retrain since the process involves random sampling 
of data from a collection of training points (implying that all training points need to be stored in 
memory) [27]. It does not have a differentiable loss function that can be optimized for retraining 
purposes. 

 
Fig. 11. Random forest classification is a collection of parallel independent decision trees. 
(https://www.tibco.com/reference-center/what-is-a-random-forest) 
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E. Online learning classifiers 
 

Another potential problem with conventional on-chip seizure detectors is that, while they 
usually incorporate on-chip feature calculations, training, and its associated computational 
complexity is usually completely offloaded to software. The datasets used to test such seizure 
detectors are usually too short such that long-term EEG signal drifts do not significantly affect the 
classifier accuracy. For a seizure detection system to remain accurate over long periods of time on 
patients with changing seizure patterns, regular signal post-processing, labeling, and retraining by 
an expert physician would be required. Such external intervention can also be costly and 
impractical. Recognizing this, a growing trend in seizure detection classifier design for the past 
three years is incorporating some kind of dynamic adaptation to the classifier. 

 
The work in [23] implemented an SVM tuning based on the Alternating Direction Method 

of Multipliers (ADMM). ADMM is a technique that partitions a convex optimization problem into 
several smaller sub-problems so that the weight coefficients can be updated in a parallel manner 
[28]. This optimization algorithm is backed by the theory of computing gradients to optimize for 
the classifier’s loss function [29] making it the mathematically correct way of retraining. The 
process involves matrix inversions where the matrix dimensions scale with the training data. The 
work optimized the tuning algorithm through feature selection and matrix rank approximation so 
that it can be implemented on the chip. The tuning algorithm improved the sensitivity by 1.2% and 
reduced the false alarm rate by 36% across 24 subjects. It ended up with a 170.9 uJ/classification 
energy efficiency. On the other hand, the work in [24] greatly simplified the SVM tuning by adding 
support vectors from a pre-trained set. It utilizes the input features that caused false positives and 
false negatives, normalizes them, and uses those values as additional support vectors for the 
classifier. The additional support vectors will change the decision boundary of the SVM. This 
approach is not an optimization algorithm based on a mathematical theory, compared to the 
previous work which did. Nevertheless, the work demonstrated a 1.8x improvement in classifier 
accuracy on a single test subject. Due to the simplicity of the training algorithm, the entire online 
learning classifier had an energy efficiency of 680 nJ/classification, which is 250x more efficient 
than the previous ADMM-based SVM retraining. 

 
Table I summarizes all the work that has been cited so far so that the energy efficiency and 

classifier area can be compared. Neural networks tend to be the least efficient both in terms of area 
and energy efficiency among all the classifiers, which is expected given the explanations provided 
earlier in this chapter. Decision tree-based classifiers tend to be the best both in terms of area and 
energy efficiency. As explained previously, decision trees are hard to retrain online since all the 
parameters change with every new data. Online tuning was only featured in SVM-based classifiers, 
which were in the middle ground in terms of the metrics being used. 
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TABLE I 

COMPARISON OF ON-CHIP CLASSIFIERS FEATURING DIFFERENT CLASSIFIER TYPES 

 
 

Among all the classifiers presented so far, an SVM-based classifier tends to show some 
promise, especially because online tuning methods are already being explored. However, only the 
work in [23] had the correct mathematical background of computing gradients to ensure that the 
SVM is being retrained to a better optimal point. The work in [24], while being significantly more 
energy efficient, had an online tuning scheme that is not entirely backed by theory and only proved 
the effectiveness of its dynamic adaptation on a single patient. A better approach, therefore, is to 
find a classifier type that can be retrained based on an appropriate mathematical/statistical theory 
(to ensure correct model optimization over time) while being computationally simple, so that 
energy efficiency and long-term high accuracy can be both achieved. 
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III. ALGORITHM DESIGN 
 
 

As highlighted in Chapter I, EEG signal power can drift over long periods of time. On-chip 
state-of-the-art classifiers do not usually see this problem as the datasets that they are working with 
tend to be short (several hours). For longer datasets lasting several days, these signal drifts can 
negatively affect the classifier accuracy. Chapter II has shown that there is now a growing interest 
in dynamically adapting classifiers so that they can track such long-term signal drifts to maintain 
high accuracies over time. Online retraining SVMs have been implemented on-chip, although only 
one has implemented a retraining method based on calculating the gradient [23]. This is an 
important consideration since this ensures that the classifier is always being retrained towards 
optimality over long periods of time [28]. The challenge now is to find a more energy-efficient 
approach to classification that can also be further optimized (i.e. retrained) through gradient 
calculation. After neural networks and SVMs, there is only one other classifier that can be retrained 
through a gradient descent method and is a good candidate for the target system. For this chapter, 
we will explore a binary classifier based on a generalized linear model, logistic regression. 

 

A. Logistic regression as a classifier 
 

Logistic regression is a probabilistic model that utilizes the logistic function to map the 
weighted linear combination of input features to real values between 0 and 1, which can then be 
interpreted as probabilities. Thresholding the output to any value between 0 and 1 (typically 0.5), 
would result in binary classification [30]. The standard logistic function is shown in (1): 
 

 
The wt term refers to the vector of logistic regression feature weights corresponding to the vector 
of feature inputs xt. The values for the weights in wt are calculated through an iterative process to 
best fit the logistic function on the labeled set of feature inputs. That iterative process is how the 
logistic regression classifier is trained and is typically done in software as it uses the gradient 
descent algorithm for the optimization. 
 

Since the output of logistic regression depends on the linear combination of weights and 
features, it performs very well on linearly separable data. As seizure and non-seizure events usually 
exhibit this property (especially using features that can detect the high-amplitude and high-
frequency seizure signals, more on this later in Chapter IV), logistic regression can be used as a 
seizure event classifier. Prior work has compared logistic regression against other classifiers [31-
33] for this application and has shown comparable performance. However, when the feature values 
between seizures and non-seizures vary over time, linear separability between the two classes 
cannot be maintained, leading to accuracy degradation [30]. SVMs, on the other hand, can utilize 
non-linear kernel functions to force class separability leading to better accuracy [19]. This is the 
reason why state-of-the-art seizure classifiers typically use SVMs. 

(1) 𝑝𝑝(𝑤𝑤𝑡𝑡 , 𝑥𝑥𝑡𝑡) =
1

1 + 𝑒𝑒−𝑤𝑤𝑡𝑡
𝑇𝑇𝑥𝑥𝑡𝑡
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The limitation of logistic regression on diminishing linear separability can be mitigated if 
logistic regression can track feature value changes over time. As the feature values xt drift, the 
optimal feature weights wt that was calculated during offline training might not hold true anymore. 
Thus, if a new set of weights can be calculated beyond the initial offline training period (i.e. 
online), the logistic function can shift dynamically, to maintain optimality. Fig. 12 illustrates this 
function shift on a one-dimensional feature example. As a new training point is introduced, the 
curve shifts to the right to ensure that the new point is properly classified.  

 

 
Fig. 12. Logistic function shift towards a new optimal curve due to updated feature weights after 
logistic regression retraining. The function shifts to the right (darker line) due to the introduction 
of a new training point (enlarged circle).  
 

 Note that Fig. 12 demonstrates the logistic regression probability shift on a single feature 
dimension (x-axis). However, for the classification tasks that will be implemented in the later 
chapters of this thesis, the total number of features needed for a single classification is more than 
1. In this case, the logistic function is plotted on a n-dimensional space, where n is the total number 
of features. The logistic function shift corresponds to a calculation of a new vector of n feature 
weights wt that will change the classifier’s decision boundary in the n-dimensional space. 

 

B. Stochastic gradient descent for logistic regression 
 
As logistic regression has a differentiable loss function, it means that it can be retrained 

through gradient descent, an iterative method to search for the minimum point of a function. If the 
loss function is minimized, the classifier achieves the highest classification accuracy given the 
points that it was trained on [30]. However, performing a conventional gradient descent requires 
the whole training data to be processed simultaneously, also called batch gradient descent. While 
this process will give the best accuracy improvement for the classifier, it requires that all training 
data must be saved in the memory and that all training data must be factored in the calculation. 
This increases both memory requirements and computational complexity, which is not practical. 
However, utilizing stochastic gradient descent instead can be further explored. 
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The stochastic gradient descent (SGD) algorithm is an iterative method of optimizing the 
classifier feature weights by approximating the calculation of the gradient descent using a new set 
of feature inputs [34,35]. This algorithm avoids the complex computation of the gradient on the 
whole training data. Fig. 13 illustrates how the stochastic gradient descent differs from the 
conventional gradient descent algorithm in terms of optimization. Gradient descent ensures that 
for every iteration, the direction of the step toward optimization is always correct. On the other 
hand, since SGD is just an approximation of the gradient descent, it only takes an approximate 
step toward where it thinks the correct direction toward optimality is. Indeed, SGD can make the 
classifier less optimal than it should be. However, if the learning rate (i.e. the step size) is tuned 
correctly, then it will not diverge too much away from optimality [35]. Gradient descent is faster 
in reaching the new optimal point but trades off the huge memory requirements and computational 
complexity. SGD only considers a single point as its training data on every iteration, making the 
updates feasible to be done in real-time, while being simple and efficient. 
 

 
Fig. 13. Conventional gradient descent versus stochastic gradient descent on reaching optimality. 
(Image credit: https://www.samvitjain.com/blog/gradient-descent/) 
 

The logistic regression weight update using SGD is computationally simple as shown in 
(2). The derivation for this weight update formula is available in the Appendix section. 

 

 
The wt+1 term refers to the next set of feature weights after the update; η is the learning rate 

of the algorithm, which controls how much the feature weights will change based on new data; 
and yt is the corresponding label for the current feature input. The SGD-based feature weight 
update can be done in a single iteration with minimal hardware. The update is also done in one 
epoch (i.e. one-shot retraining on the new data) as the classifier does not save the previous training 
points to minimize the memory requirements. The logistic function calculation can also be 
implemented using a look-up table to further reduce the computational complexity. Architectural 
optimizations will be covered further in Chapter IV. 

(2) 𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + 𝜂𝜂(𝑦𝑦𝑡𝑡 − 𝑝𝑝(𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡))𝑥𝑥𝑡𝑡 
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While SGD is an approximation, it can be used to dynamically update the feature weights 
online through a defined optimization algorithm.  Fig. 14 describes the procedure. A set of feature 
weights are initially trained offline, using any software-based training algorithm available, to 
achieve the best possible accuracy from the training data. This process provides a good baseline 
for logistic regression classification. Cross-validation is performed by running the classification 
and SGD on validation data without external labels. This is where different hyperparameters are 
tuned to maximize accuracy during the unsupervised online learning phase. Then, upon classifier 
deployment, the classifier can utilize the test data to update the feature weights using SGD on the 
chip.  
 

 
Fig. 14. Feature selection, offline training and cross-validation, and online (on-chip) retraining 
scheme. Feature selection reduces the features to be extracted through L1-norm regularization. 
Offline training phase generates the best possible set of starting feature weights and 
hyperparameter values for on-chip classification. Feature weights are dynamically updated on chip 
using SGD (highlighted in red). 
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C. Enabling unsupervised learning 
 

Traditionally, SGD is meant for supervised learning, where an external label is provided 
for every data input [34,35]. However, for an implantable system operating in situ, externally 
provided labels are not readily available. Thus, this approach places SGD within an unsupervised 
learning paradigm during the online classification phase. This is implemented through 
bootstrapping, which uses the classifier’s predicted probability output to update its own feature 
weights. The classifier’s output probability p(wt, xt) is rounded to either 0 or 1 and is then treated 
as a label yt for SGD. This creates a positive feedback path between the classifier’s output and its 
input training label, highlighted in Fig. 15. Consequently, the cumulative accuracy over time is 
heavily dependent on the initial classifier accuracy after the offline training phase. It is critical that 
the initial logistic regression weights achieve a high classification accuracy during the training 
phase. The feature set used for this work, which will be described later in this section, adequately 
separates seizure and non-seizure events. Therefore, achieving high classification accuracy, at least 
during the training phase, is possible. The unsupervised online learning classifier will be tracking 
the long-term changes in these seizure and non-seizure patterns through feature weight updates in 
situ. 
 

  
 
Fig. 15. Feedback loop when using the classifier’s own output probability (rounded off to 0 or 1) 
as the training label for SGD. 
 

D. Making the unsupervised online learning robust 
 

While high classification accuracy is required for offline training, the classifier can still 
make occasional errors. Generally, any misclassification can degrade the accuracy due to positive 
feedback, as the classifier will retrain in the wrong direction. To avoid such an occurrence, the 
weights are only updated once a specified confidence threshold is reached by the logistic function 
output. Moreover, a series of high-confidence predictions are required to trigger the online feature 
weight update, shown in Fig. 16. Only the last set of features after the consecutive high-confidence 
predictions would then be used as new data for the SGD algorithm on the next weight update. This 
process ensures that short-term misclassifications and glitches will not negatively affect the update. 
The confidence threshold (CT) and high-confidence counter (HC) become additional 
hyperparameters during the offline training phase (Fig. 14) and are tuned on a patient-specific 
basis.  
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Fig. 16. Confidence thresholding technique implemented to only train the classifier once a series 
of high-confidence predictions are generated from the logistic regression output. 
 

E. Tuning the online learning hyperparameters  
 
As stated in the previous section, the HC and CT hyperparameters are tuned on a patient-

specific basis. The values of these hyperparameters depend on both the short-term and long-term 
variability of the EEG signals per patient. Noisy EEG signals require higher confidence thresholds. 
Long-term time-varying signals require shorter HC so that the classifier can track signal changes 
faster. Fig. 17 shows the achieved accuracies of the classifier during the hyperparameter tuning on 
three patients from the iEEG dataset [11]. A full description of the dataset will be provided in 
Chapter VI. HC, measured in terms of the number of samples (each sample corresponds to one 
complete feature window which is 1 ms), was swept from 1 to 15. CT, which thresholds the logistic 
function output, was swept from 0.6 to 0.9. 

 
  Figure 17 shows that for Patient 1, the optimal hyperparameter values are CT = 0.8 and HC 

= 10. The high CT value implies that the EEG signal is relatively noisy. Thus, the threshold needs 
to be high to avoid misclassifications negatively affecting the online training process. The optimal 
HC is also high to further mitigate the noise. Patient 3, on the other hand, has low hyperparameter 
values (CT = 0.7, HC = 5). These imply that the EEG signal is less noisy (lower CT) and that the 
signal varies over the long term (lower HC to stay on track). Fig. 17 also shows that without 
patient-specific tuning, a common value for the hyperparameters (CT = 0.7, HC = 7) can be used 
instead for these three patients, albeit with maximum sensitivities only reaching about 90%.    
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Fig. 17. The classifier accuracies (z-axis) during the tuning phase of the two hyperparameters: 
confidence threshold and high-confidence counter. Different patients have different optimal 
values. 
 

F. Classifier stability 
 
The unsupervised online learning framework was also tested for classification stability, 

which measures how a machine learning algorithm performs when the dataset is perturbed by 
noise. The accuracy of a stable classifier does not significantly change after perturbation since it 
should be able to generalize and not overfit on a given dataset. Artificial white noise was added to 
the same dataset used in the previous section. The standard deviation of the noise was swept from 
1 to 10 µVrms at 1 µVrms increment. At 10 µVrms, the added noise is comparable with the average 
biological noise measured during the non-seizure segments for each dataset. For each level, ten 
training and classification runs were performed to average out the effects of noise on the 
classification accuracy.  
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Fig. 18 shows the performance of the online learning framework when noise was added to 
the long-term EEG data. This is then compared against the other classifiers as a comparison point. 
The average sensitivity for the three patients was plotted. The sensitivity values that are plotted 
reflect the final values after the entire dataset has been run through the classifier. The sensitivity 
values vary within 1-2% from the mean at every noise level, shown as error bars in Fig. 18. It can 
be observed that while all classifier accuracies degrade as the noise level increases, the average 
sensitivity of logistic regression with the online learning enabled degrades much slower. At the 
maximum noise level, the sensitivity decreased by only ~4% allowing it to achieve 11.6% better 
sensitivity than a representative SVM. This demonstrates both classification stability and the 
feasibility of the online learning scheme even with added noise on the dataset. 

 

 
 

Fig. 18. Classifier sensitivities at increasing noise levels on the long-term EEG dataset, averaged 
per patient. Error bars represent the min and max values per run (ten runs per noise level).  

 
 It is worth noting that all classifiers started off with much higher accuracies during testing 
(not shown in the figure), capable of detecting seizures early on in the test set. However, as more 
test inputs are fed to the classifiers, the effect of the added noise coupled with shifting seizure 
patterns over time becomes much more prominent, blurring the difference between seizure and 
non-seizure events. Consequently, the accuracy degrades more as the noise level increases. 
However, the online learning framework enables self-correction. Since the classification started 
off with high accuracies, it was able to track the changing patterns in the EEG signal, and the effect 
of noise is averaged out as the retraining process is done over time. If the noise levels increase to 
the point that classifiers already struggle to maintain high accuracies at the start of the test, then 
the online learning framework will not be able to fix the problem since the retraining process will 
not give any useful information in improving the logistic regression classifier (especially since it 
is unsupervised). Therefore, it is paramount that logistic regression should be able to achieve high 
(~90%) accuracies at the start of the test set so that it has a good enough starting point to be able 
to learn on its own. 
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IV. ON-CHIP SEIZURE DETECTION 
 
To verify the feasibility of the unsupervised online learning framework presented in the 

previous section, we demonstrate the use of this framework on an on-chip seizure detection system. 
This system would dynamically adapt to changes in neural signal patterns over time and maintain 
high detection accuracy without external intervention. This will be referred to as SOUL  
(Stochastic-gradient-descent-based Online Unsupervised Logistic regression classifier) 
[36,37], shown in Fig. 19. SOUL is initially trained offline and then feature weights are updated 
in situ. Moreover, due to the computationally simple algorithm and architectural optimizations 
used, SOUL is significantly more energy efficient than state-of-the-art on-chip seizure detectors. 

 

 
 
Fig. 19. Proposed seizure detection system featuring a fully unsupervised online learning 
framework to maintain long-term high accuracy detection. 

 

A. Classifier features description 
 
The feature extraction unit computes two main feature classes (Fig. 19): line length and 

spectral band powers for three frequency bands. These features are commonly used in seizure 
detection systems since they capture amplitude and frequency-dependent patterns usually 
attributed to seizure events. Other features were also considered, such as spectral entropy and 
time/frequency correlations, but were down-selected after running the initial training with L1-
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norm regularization (Fig. 14), which zeroed out most of these features. The same L1-norm 
penalization was done to remove highly correlated channels which eventually lead to the current 
8 channels supported by the classifier.  After the channel and feature selection processes, the 
classification accuracies only decreased by <2% on average relative to the accuracies on the 
original set of features on all channels included in the datasets. 
 

Line length [38] captures the high amplitude and high-frequency data characteristic of 
seizures, defined by the sum of the absolute value of differences between consecutive points, as 
shown in (3). 

 
Spectral band power captures frequency-dependent patterns, calculated by summing the 

spectral power over a specific frequency band. This feature has been shown to separate seizure 
and non-seizure events very well [13]. This can also be approximated by passing the signal through 
a bandpass filter on a specified frequency range and then performing a sum of squares, exploiting 
Parseval's theorem, as shown in (4). This approximation eliminates the need for dedicated Fast 
Fourier Transform (FFT) hardware in the system. 

 

 
The spectral band power is calculated for three EEG frequency bands: α, 8-16 Hz; β, 16-

32 Hz; γ, 32-96 Hz. Spectral power for the lower frequency bands were removed after the feature 
selection process described previously. 

 
Both line length and spectral band power features require a specific sample window N. For 

this work, a 0.1-second window was used, which translates to a 100-sample sliding window for a 
1 kHz input sampling rate. This feature window size was determined from the offline training 
phase (Fig. 14), as part of the hyperparameters that were optimized. This window controls how 
much input signal noise is smoothed out during the feature extraction process, which tends to 
dampen the feature value response due to averaging. However, the response to sudden signal 
transitions (which can be indicative of seizures) can also be delayed. To capture such changes, a 
99% feature window overlap was chosen. That is, a new feature is calculated for every sample, for 
an effective classification rate of 1 kHz.   
 
 
 

(3) 

(4) 
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B. Feature extraction hardware 
 
The feature extraction hardware unit is shown in Fig. 20. Both line length and approximate 

spectral band power (using the sum of squares approximation) have a similar 100-sample register-
based delay line, corresponding to the feature window, each connected to an accumulator to 
represent the summation of these 100 samples per feature. Each feature has a channel FIFO, 
controlled by the Channel ID signal that also controls the channel multiplexing state machine 
(timing diagram is shown in Fig. 21). Each channel FIFO is an 8-address register file that contains 
the current set of 100 samples for the corresponding active channel. The FIFO separates the feature 
data for each channel during the multiplexing phase. Channel multiplexing and serialization are 
employed to minimize the duplication of hardware. The feature extraction unit is reused for each 
channel, which forces the system to run at 8x the input sampling frequency. 

 

 
Fig. 20. Feature extraction hardware for SOUL. 
 

 
Fig. 21. Timing diagram for the SOUL feature extraction unit. It takes 8 clock cycles to go through 
every channel since the hardware for feature extraction is reused. The features are labeled 
accordingly (L: line length, Γ: γ band power, B: β band power, A: α band power). 
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The spectral band power block uses IIR filters instead of the conventional FIR filter. During 
the feature extraction process, filters with at least 20 dB stopband were required for the spectral 
band power to work as a feature. If the filters do not meet those specifications, the approximated 
spectral band power using the sum of squares gets removed by the feature selection process leading 
to an accuracy degradation of >10%. Designing FIR filters in MATLAB, shown in Fig. 22, for a 
narrow passband, as an example, between 16-32 Hz, would require a minimum of 141 stages: each 
stage containing a register, an adder, and a multiplier. However, if elliptic IIR filters are used 
instead to achieve the same specification, it would only require three second-order sections: each 
section containing four registers, adders, and multipliers. Across all three spectral band power 
calculations, this filter choice translates to a 10x decrease in filter hardware requirements. When 
utilizing the elliptic filter architecture, the effects of frequency-dependent group delay on the 
classifier performance were ignored. It is assumed that this delay would be factored in during the 
offline training phase with minimal impact on detection latency. 
 

 

 
Fig. 22. MATLAB-based implementations of a bandpass filter with similar specifications. The 
Elliptic IIR filter topology has more than 10x lower amount of hardware required compared to a 
conventional FIR filter topology. 
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The feature extraction unit computes in a 16-bit fixed-point format to avoid dedicated 
hardware for floating-point conversions. The Direct Form I IIR filter topology was used to avoid 
internal filter overflow. Fig. 23 demonstrates how the two IIR filter topologies (Direct Form I and 
Direct Form II) behave when the input bits are following a fixed-point (instead of floating-point) 
format. Given the 16-bit input to the system, 6 bits were set to be the integer part and the latter 10 
were set to be the fractional part. This partitioning minimizes the round-off errors within the filter's 
internal states, which can cause instability. Through MATLAB filter design simulations, the 
number of bits can be reduced to 15 (with a 5-10 split between integer and fractional) given the 
datasets that were used for testing. However, 16 bits were retained as the hardware savings are 
marginal and an additional bit allows support for larger input signals to be processed. 
 

 

 
Fig. 23. MATLAB-based implementations of an IIR bandpass filter using two different topologies. 
The topology diagram is superimposed on the corresponding plots. Direct Form I (top) is resilient 
to arithmetic overflow showing an almost similar quantized vs reference magnitude plots.  
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C. Classification and online learning hardware 
 
The SOUL hardware, shown in Fig. 24, merges the two modes of operation of the classifier: 

classification mode and retraining mode.  During the classification mode, shown as the red path in 
the figure, the seizure probability is calculated using (1). The dot product for the logistic function 
is calculated in this mode. Since the four features from each channel are transferred one cycle at a 
time for every channel, the cumulative dot product is temporarily saved. Once all 4x8 features are 
collected, then classification will proceed. 
 

 
Fig. 24. Classification and online learning hardware for SOUL. 
 

The logistic function is approximated using a look-up table (LUT) to minimize 
computation hardware. While the classifier output is rounded-off to determine whether a seizure 
is detected or not, the accuracy for the LUT will matter since the value of the logistic function is 
part of the SGD feature weight update formula, as shown in Fig. 15. For this system, a 10-entry 
LUT was found to be enough, shown in Fig. 25, as it impacts the classifier accuracy by <1% 
compared to a classifier with full precision logistic function calculation. 
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Fig. 25. Logistic LUT approximation impact on classifier accuracy 

 
The output of the LUT provides the input to two sets of comparators within the retraining 

logic shown in Fig. 16, which correspond to the high confidence thresholds as described previously 
in Chapter III. The hardware for the confidence thresholding and the high-confidence counters is 
shown in Fig. 26. Two separate confidence thresholds correspond to seizure and non-seizure. The 
seizure confidence threshold equals the value of CT, while the non-seizure confidence threshold 
equals 1 - CT. The output of these comparators then goes to their corresponding series of shift 
registers representing the high-confidence counters. The HC value for non-seizures is set to 10x 
longer than the HC value for seizures to minimize the retraining frequency during the long non-
seizure periods. This scaling balances the number of training points on the seizure and non-seizure 
events for an unbiased logistic model during the retraining period. Only when there is a series of 
high-confidence probability outputs and either one of the high-confidence counter limits is 
reached, the classifier goes into retraining mode. The retraining process can happen during either 
the seizure or non-seizure interval depending on which set of shift registers first reach the counter 
limit (corresponding to HC). The HC and CT parameters are programmable in hardware. 

 

 
Fig. 26. Hardware implementation of the confidence thresholding and high-confidence counters 
for robust online learning.  
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Fig. 24 (green path) shows the retraining mode calculations following the SGD formula for 
logistic regression. The learning rate for the retraining was set to be approximately 0.015 (1/64) 
and is calculated with simple right shifts. The bootstrap register computes the difference between 
the generated label (thresholded against 0.5 for unsupervised learning) and the actual LUT-based 
logistic function approximation. The retraining mode finishes in 8 cycles, as the multiplier array 
is reused from the previous classification mode. During the update process, the old feature weight 
vectors are overwritten four at a time. Consequently, since the retraining mode consumes the same 
number of cycles as the classification, one input sample is ignored during the process. Once the 
retraining process is complete, the high-confidence counters (shown in Fig. 26) reset, and the 
classification mode begins for the next input sample. Accordingly, the collection of high-
confidence detections starts again. 
 

Fig. 27 shows the overall system architecture. The classifier receives 16-bit digitized neural 
data in 8 channels clocked at 1 kS/s. The implemented system supports 8 channels, but the 
algorithm is scalable to any number of channels. The classifier was fabricated in TSMC’s 28 nm 
HPM process occupying 0.1 mm2 in area, as shown in Fig. 28. The power consumption was 
measured to be 1.5 µW by operating at 0.5V supply and 8 kHz clock frequency. This corresponds 
to an energy efficiency of 1.5 nJ/classification at a 1 kHz classification rate. The experimental 
results for SOUL in terms of long-term accuracy will be presented in Chapter VI of this document. 
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Fig. 27. System architecture (feature extraction unit + SOUL). 

 

          
Fig. 28. Chip micrograph of SOUL in TSMC’s 28 nm process and the power consumption 
breakdown (post-layout estimate).  
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V. ON-CHIP SEIZURE PREDICTION 
 
The same unsupervised online learning framework used for SOUL can be used for a 

predictor-type of classifier. Seizure predictors are algorithms or devices designed to forecast the 
occurrence of a seizure minutes before its actual onset. Utilizing the same EEG signals used in 
seizure detection, these predictors analyze patterns and anomalies that precede a seizure event.  
Fig. 29 illustrates the main difference between what a seizure predictor and a seizure detector 
classify. Seizure detectors, such as SOUL, differentiate between seizure states (called ictal EEG 
segments) and non-seizure states (called interictal EEG segments). They focus on the immediate 
identification of a seizure event by recognizing the specific characteristics and patterns that define 
the ictal phase. The transition from interictal to ictal is the critical point for seizure detectors, and 
their function is to provide real-time detection at the onset of this transition. In contrast, seizure 
predictors are designed to classify between interictal and a new region (within the interictal 
segment) leading up to, but not exactly, the seizure event (which will now be defined as preictal 
EEG segments). The preictal phase, which can also be thought of as the seizure prediction time 
window, represents the period during which certain physiological changes occur that are indicative 
of an impending seizure. The duration of the preictal phase varies among individuals. However, 
there is no standard length on what classifies as a preictal phase or an interictal phase. In some 
studies, this window has been identified to be as long as 30 minutes to an hour before the onset of 
a seizure [39]. Seizure predictors analyze these preictal phases to forecast the likelihood of a 
seizure minutes before it actually happens. This predictive capability allows for early intervention 
and management, providing a window of opportunity that is not available with seizure detectors 
alone.  

 
Fig. 29. Seizure predictor vs seizure detector showing the regions in the EEG that they classify. 
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This chapter covers how a seizure predictor can be realized. The first step is to be able to 
extract relevant features that can help differentiate interictal and preictal phases. As shown in Fig. 
29 earlier, the time domain differences between the interictal and preictal segments are not directly 
obvious, which makes classification between the two very challenging. This would require an 
introduction to new features to be extracted that can better differentiate the two. Afterward, we 
will develop a classifier that would process these features to perform seizure prediction. This can 
be any classifier that is available. However, given that we have already developed SOUL and its 
online learning framework, we can leverage these to also improve the predictor accuracy over 
time. An accurate detector, such as SOUL, can help verify if the prediction was correct within the 
seizure prediction window. Predictor retraining, following the same online learning framework, 
will then be performed whenever the predictor output and the detector output do not match. This 
predictor that will leverage a SOUL to help retrain it to a higher prediction accuracy will be 
referred to as SPIRIT (SOUL-based Predictor with Integrated detector for Retraining and In 
situ accuracy Tuning), illustrated in Fig. 30. By maximizing hardware reuse from the same 
detector hardware (SOUL and SPIRIT will both be based on logistic regression), SPIRIT is 
significantly energy efficient, even compared to state-of-the-art on-chip seizure detectors. 

 

 
Fig. 30. Proposed seizure prediction system with an integrated unsupervised online learning 
detector to dynamically retrain the predictor. 
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A. Classifier features description 
 
Differentiating the interictal and preictal events is challenging due to how similar the events 

are, both in the time and frequency domain. There has been research, primarily using software-
based approaches, on seizure predictors and what features can be relevant to better classify 
between interictal and preictal phases. A crowd-sourced seizure prediction challenge, using a 
human intracranial (iEEG) dataset, has been offered in the past [12] (using the same dataset that 
was used in this work [11]) to analyze what the most common feature sets are to accurately perform 
prediction. From that research, spectral power in conjunction with statistics-based features stood 
out as the most common combination of features that can be utilized for an accurate seizure 
prediction. Spectral power-based feature extraction has already been developed for SOUL’s 
seizure detection classification before, therefore it can be reused for SPIRIT’s seizure prediction. 
However, statistics-based features such as variance, correlation, and standard moments would be 
challenging to implement in hardware as they require significant amounts of memory to hold all 
the data points before being able to calculate a feature value. A sequentially processed dataset 
requires queueing the data points as new data comes in and the oldest data is discarded. This scales 
with the window size where these statistics will be measured from. 

 
There has been research on low-complexity features that can be used for seizure prediction 

[42,43]. It has been observed that ratios of spectral powers can provide a distinctive signature that 
can be associated with an impending seizure, as shown in Fig. 31. While individual spectral band 
powers might not help predict the onset of seizures, the ratios of two different spectral band powers 
showed some promise. The work in [42] has shown that seizures from some patients can be 
perfectly predicted, the false alarm rate is only around 0.1 per hour, between 3 to 75 minutes before 
the seizure onset using only just a single feature of the spectral power ratio. The advantage of using 
these features is that they can be easily calculated from the current feature set SOUL had, as it 
already has parallel spectral band power calculations. 
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Fig. 31. Spectral power of an individual frequency band (top and middle panel) does not seem to 
indicate any incoming seizure events. However, calculating for their ratios would give a 
significant increase in values as the seizure onset approaches. Image credit [x] 
 
 Testing this new feature calculation out on one of the long-term datasets show some 
promise, as seen in Fig. 32. For several minutes before the actual seizure event (i.e. the preictal 
segment), an increased activity in the spectral power ratios can be observed, contrasting the lower 
feature values towards the interictal (left side) region. Therefore, such features can be integrated 
into the feature extraction process which can then be used by the seizure predictor classifier. 
 

 
Fig. 32. Minutes before the actual seizure event, happening at around 1,500 second mark, an 
increase in spectral power ratio is observed. 
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Seizure prediction for SPIRIT would require 10 total features. Four spectral band powers 
are calculated from four EEG frequency bands: θ, 4-8 Hz; α, 8-16 Hz; β, 16-32 Hz; γ, 32-96 Hz. 
It is noted that these are the same set of frequency bands used by the original SOUL 
implementation with the additional θ band to capture the lower frequencies more. Preictal events 
are much quieter in terms of electrical activity, so capturing an additional spectral band power 
towards the lower frequencies is beneficial. Moreover, six spectral band power ratios are also 
calculated from these four spectral band powers: γ/β, γ/α, γ/θ, β/α, β/θ, and α/θ. These specific 
pairs were all the possible combinations of ratios such that the numerator is always the higher 
frequency band. Consequently, as the electrical activity gradually increases as the seizure onset 
approaches, these ratios would have increasing values which can then be used to signal the preictal 
event. All 10 features for SPIRIT follow the same 100-sample sliding window used in SOUL. 

 

B. Feature extraction hardware 
 
The feature extraction hardware unit that supports both seizure detection and prediction is 

shown in Fig. 33. To save on additional hardware due to the increased number of features, only 
five features would be issued by the feature extraction block at any given clock cycle. Five features 
perfectly divide the 10 features needed by SPIRIT for seizure prediction into two. Furthermore, 
the seizure detection aspect would then be allowed to include the θ spectral band power to be part 
of its features in addition to the four original features used by SOUL. This enables five features 
for seizure detection which matches the five-feature issue width of the feature extraction block. 

 

 
Fig 33. Feature extraction unit for SPIRIT featuring a five-feature issue width, enabling detection 
(five features) to be completed in a single phase (8 cycles) and prediction (10 features) to be 
completed in the next two phases (16 cycles). 
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 Supporting both seizure detection and prediction would require the five-feature issue to 
select specific combinations of features at any given cycle, depending on whether the classifier is 
performing detection or prediction. Fig. 34 shows a timing diagram demonstrating how the five-
feature issue width is utilized to support both detection and prediction in three different phases. 
The first phase is meant for detection, supplying the classifier with the five seizure detection 
features: line length, Γ, B, A, Θ. The last four represent the spectral band powers from the γ, β, α, 
and θ frequency bands respectively. Afterward, the next two phases are meant for prediction, 
supplying the classifier with the 10 seizure prediction features: Γ, B, A, Θ, Γ/B, Γ/A, Γ/Θ, B/A, 
B/Θ, B/Θ, and A/Θ. The first four are the same spectral band powers for detection earlier, while 
the next six are the spectral band power ratios coming out of the pairwise divider logic shown in 
Fig. 33. As the feature extraction block remains time multiplexed across all 8 channels supported 
by the classifier, each phase lasts for 8 clock cycles each. As there are three phases in total to 
support both seizure detection and prediction, there are a total of 24 clock cycles to process both 
classifications from a single input sample. Consequently, this requires that the feature extraction 
block (and therefore, the classifier as well, to be shown later) operate at 24 kHz, to match the 1 
kHz sampling speed at the input and maintain the 1 kHz classification rate as with SOUL. 
 
 

 
Fig 34. The timing diagram demonstrating how the five features needed for detection are issued 
in the first phase, and the 10 features needed for prediction are issued in the next two phases. 
Each phase lasts for 8 clock cycles reflecting the channel multiplexing. 
 
 

Supporting the 100-sample sliding window for SPIRIT does not necessarily translate to 
adding FIFO memory for the spectral band power ratios. As can be seen in Fig 33, the outputs of 
the pairwise divider, which computes the spectral band power ratios, do not have the memory at 
its output stage. Only the spectral band powers only require such memory as the ratios can always 
be calculated in real time by the feature extraction block. That is, there is no need to save the values 
of spectral band power ratios into memory as they can always be made available through the 
computation of the always-active divider. This trades off increased dynamic power, as the divider 
is always active every clock cycle, to save on feature extraction area and minimize leakage power 
for the additional memory requirement if ever.  
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C. Classification and online learning hardware 
 
The SPIRIT hardware, shown in Fig. 35, mainly utilizes the same architecture used in 

SOUL before, albeit with additional hardware to support the seizure prediction phase. Since the 
detection and prediction classification would require different sets of feature weights, there is an 
increased memory requirement to contain all of the feature weights. Specifically, seizure detection 
in SPIRIT requires five features to be computed across all 8 channels, translating to 40 feature 
weights, while seizure prediction in SPIRIT requires ten features to be computed across the same 
set of channels, translating to 80 feature weights. Combined, there are 120 unique feature weights 
that need to be loaded into the classifier for it to perform both seizure detection and prediction. As 
a reference, the original implementation for SOUL would only require 32 unique feature weights 
to be stored. The 120 feature weights are issued 5 weights at a time to match the issue width of the 
feature extraction block described earlier. It would then take 24 clock cycles, consistent with the 
timing diagram shown in Fig. 34, to complete both seizure detection and prediction from a single 
sample.  

 
As shown in Fig. 35, throughout all 24 cycles, the same set of array multipliers, used in 

calculating the dot product for classification and the SGD calculation during online retraining, are 
used to compute five parallel multiplications at any given time. During classification, it would still 
pass through the same 10-entry sigmoid LUT used by SOUL. As the classifier supports both 
detection and prediction, the rounded-up output of the LUT (the output label) is processed 
differently depending on whether the classifier is in the detection or prediction phase. 

 

 
Fig. 35. Classification and online learning hardware for SPIRIT. 
 
 During the prediction phase of SPIRIT, the output label goes through a label accumulator 
which accumulates the prediction labels (+1 if the label is 1, and -1 if the label is 0). This 
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accumulation process is done to smooth out the relatively noisy prediction labels, a consequence 
of hard-to-differentiate interictal and preictal events. The accumulator value increases as the 
number of positive predictions outnumbers the negative predictions. Fig. 36 shows how the 
accumulator value increases as the seizure onset approaches at time = 0 (right). Therefore, a 
prediction threshold can be implemented which will then correspond to the final prediction output 
of the classifier, shown in Fig. 35. 
 

 
Fig. 36. The accumulator value increases as the seizure event approaches, which can then be 
compared against a threshold to output the prediction. 
 
 The prediction check logic, also shown in Fig. 35, determines whether the predictor needs 
to be retrained. It compares the output of the detector with the predictor output history within a 
maximum window of 30 minutes. A 30-minute seizure prediction window was chosen as it was 
the average pre-ictal window size when training seizure predictors [39] as well as the average 
seizure prediction times on several seizure prediction studies [39-41]. As the detector and predictor 
have their own independent outputs, there are four possible cases that can arise. Conveniently, this 
matches the statistical confusion matrix in determining actual versus predicted outputs in terms of 
classifier accuracy. Fig. 37 shows the truth table with all the possible combinations of the predictor 
and detector outputs and how these different cases translate into the confusion matrix (whether it 
is a true positive/negative or a false positive/negative). If the predictor and detector outputs match, 
then the predictor was correct so there is no need to retrain the predictor. However, if the predictor 
and detector outputs were different, then it would be assumed that the detector is correct (the 
detector will always be treated as the ground truth for SPIRIT) and that the predictor needs to be 
retrained. 
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Fig 37. Predictor retraining is determined whether the predictor and detector outputs match or not. 
The hardware equivalent of these conditional checks is also shown. 
 
 Fig. 37 also shows the corresponding hardware for the prediction checker. The checker 
maintains a history of the past prediction outputs for the last 30 minutes and uses that information 
to determine whether there was a correct prediction or not. Whenever the detector output is 0 (no 
seizure is detected), then the logic checks what the prediction 30 minutes ago was (checking for 
predict[0] as shown in the diagram, the last bit of the prediction window shift register). If the 
prediction output is 1, then there is a mismatch and the predictor needs to be retrained using an 
interictal sample. An interictal sample is needed for the retraining since the mismatch was due to 
a false alarm, implying that the predictor is too sensitive. Training on an interictal sample will bias 
it towards less sensitivity. On the other hand, if the detector output is 1 (there is a seizure right 
now), then the logic checks whether that seizure event has been predicted anywhere within the 30-
minute window (checking for the OR-reduced predict value as shown in the diagram). If there was 
no positive seizure prediction that happened within the last 30 minutes, then there is a mismatch 
and the predictor needs to be retrained using a pre-ictal sample. This time, a preictal sample is 
needed since the mismatch was due to the predictor not being sensitive enough (which made it 
unable to properly predict the seizure). Training on a preictal sample will bias it towards increased 
sensitivity. This method of retraining the predictor ensures that the retraining is always done due 
to a mismatch between detector and predictor outputs and that the retraining is always done to 
correctly fix the mismatch (deciding whether to use an interictal or a preictal sample for retraining 
biases the model differently). 
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 As a final note on the diagram shown in Fig. 37, the detection label also goes through a 
smoothing filter so that the prediction check logic does not trigger due to a sudden misclassification 
of the detector. The method is similar to how the confidence thresholding and high-confidence 
counters were done for SOUL (Fig. 26). Only a series of positive detections will output a 1. For 
SPIRIT, a consecutive stream of 5 positive detections will output a 1. This ensures that a 
misclassification due to glitches can be safely ignored and will not cause the predictor to retrain 
toward the wrong direction. This is an important step since the detector output will always be held 
as ground truth by SPIRIT. While the detector can still make mistakes (it does not have 100% 
accuracy) and the predictor mistakenly retrains itself, it is assumed that the detector can correct 
the error later as correct detections will outnumber the number of wrong detections. It is important 
to note that only the detector can influence the retraining of the predictor and not the other way 
around. This ensures that even if the predictor is retrained wrongly due to the detector 
misclassification, the detector will not be trained wrongly as well. The detector will remain 
independent of the predictor. 
 
 SPIRIT was also fabricated in TSMC’s 28 nm HPM process, similar to SOUL, occupying 
0.14 mm2 in area. The chip micrograph is shown in Fig. 38. As SPIRIT is operating at 3x the clock 
frequency than SOUL (since it considers three classification phases), the supply voltage was only 
able to go down to 0.65V. The power consumption was measured to be 17.2 µW (power 
breakdown between registers and logic is shown in Fig. 38), which corresponds to an energy 
efficiency of 17.2 nJ/classification at a 1 kHz classification rate. The experimental results for 
SPIRIT in terms of prediction time will be presented in the next section of this document. 
 

 
 

Fig. 38. Chip micrograph for SPIRIT and the power consumption breakdown. 
 

 The next chapter focuses on the classification results of SOUL and SPIRIT. It is worth 
mentioning that SPIRIT can be configured in detection-only mode. In this configuration, SPIRIT 
acts SOUL, performing only seizure detection using the exact same features in SOUL. The weights 
for the additional θ band power in SPIRIT are zeroed out. SPIRIT (in detection-only mode) and 
SOUL have exactly the same performance in terms of accuracy and are interchangeable when 
focusing only on seizure detection. 
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VI. CLASSIFIER PERFORMANCE 
 

A. Dataset description 
 
The performance of SOUL and SPIRIT is tested using the intracranial EEG (iEEG) dataset 

[11] and the CHB-MIT scalp EEG dataset [44]. The former features >100-hour recordings on three 
patients to demonstrate how online learning performs over a long period of time. The latter is a 
collection of relatively short recordings of 24 patients for performance comparisons on a wider 
population. The CHB-MIT dataset also allows for state-of-the-art comparisons as it is a commonly 
used dataset to test seizure classifiers. Moreover, using these two datasets also measures how the 
classifiers perform on datasets having different recording processes (iEEG versus scalp EEG).  

 
The iEEG dataset was divided into 15% training, 15% validation, and 70% testing sets, as 

illustrated in Fig. 39. Contrary to random sampling during offline training, which is typically done 
in conventional machine learning approaches, time-series causality is maintained by considering 
only the first 30% (training + validation) of the data. Due to the limited seizure data for some 
patients in the CHB-MIT dataset, at least 2 seizure events were used for training and validation. 
However, if applicable, an approximate 15-15-70 split is still applied. For both datasets, the non-
seizure samples were trimmed to balance the training data (equal number of seizure and non-
seizure training points). Non-seizure samples closest to the start and end of the seizure events were 
retained to improve classification accuracy. The duration of the training, validation, and test sets, 
as well as the division between seizure and non-seizure samples, are shown in Table II. 

 

 
Fig 39. Dataset partitioning maintaining the causality of the time series data. 
 

When training SPIRIT for seizure prediction, the dataset was labeled differently. Since 
SPIRIT has a 30-minute seizure prediction window, 30 minutes of the interictal dataset leading up 
to every seizure event is labeled as ‘1’ which then becomes the preictal dataset. The actual 
ictal/seizure events were removed during the training process. Since we only want to focus on 
classifying between interictal and preictal events for prediction, the high activity during ictal 
events can degrade the training quality. During the tests, the SPIRIT predictor will inherently 
ignore the ictal events when it sees that the detector output is ‘1’, corresponding to a detected 
seizure event. This prevents any possible predictor misclassifications when the actual seizure event 
is already occurring.  For both seizure detection and prediction, classifier accuracy is reported by 
calculating the sensitivity (true positive rate) and specificity (true negative rate), as shown below: 
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Both sensitivity and specificity are calculated on a sample-per-sample basis. That is, the 

corresponding classifier output for every sample is checked against the true label that was provided 
with the dataset. This method increases the granularity of the reported sensitivity and specificity, 
which is beneficial for datasets that contain very few seizures such as CHB-MIT. 

 
TABLE II 

DATASET PARTITIONING BETWEEN TRAINING, VALIDATION AND TEST 

 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =  
𝑑𝑑𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑𝑡𝑡𝑒𝑒𝑑𝑑 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 (𝑙𝑙𝑎𝑎𝑏𝑏𝑒𝑒𝑙𝑙 1)

𝑛𝑛𝑠𝑠𝑛𝑛𝑏𝑏𝑒𝑒𝑠𝑠 𝑜𝑜𝑓𝑓 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠
 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =  

𝑛𝑛𝑒𝑒𝑛𝑛𝑎𝑎𝑡𝑡𝑠𝑠𝑣𝑣𝑒𝑒 𝑑𝑑𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑𝑡𝑡𝑠𝑠𝑜𝑜𝑛𝑛𝑠𝑠 (𝑙𝑙𝑎𝑎𝑏𝑏𝑒𝑒𝑙𝑙 0)
𝑛𝑛𝑠𝑠𝑛𝑛𝑏𝑏𝑒𝑒𝑠𝑠 𝑜𝑜𝑓𝑓 𝑛𝑛𝑜𝑜𝑛𝑛 − 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠
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B. Seizure detection performance on long-term iEEG data 
 
The iEEG data is comprised of recordings from three human patients that had the lowest 

seizure prediction performances out of the ten patients in a clinical trial done in [11].  A sample 
real-time SOUL classification is shown in Fig. 40. Fig. 41 shows the classification performance 
over time of three classifiers: SPIRIT (in detection-only mode), logistic regression, and a 
representative SVM. The latter two are only trained offline. As stated in the previous chapter, 
SPIRIT (in detection-only mode) acts exactly the same as SOUL and is therefore interchangeable. 
Whenever seizure detection is performed, SOUL will be mentioned instead for brevity. Fig. 41 
shows that incorporating online learning results in an average sensitivity and specificity of 97.9% 
and 98.2% for the three patients. For the three patients, the average sensitivity improvement is 
6.5% with <1% specificity degradation. This degradation is a consequence of utilizing a linear 
classifier, such as the logistic regression used in SOUL. As a new seizure training point is 
introduced during retraining, the classifier tends to bias towards increased sensitivity (so that 
succeeding seizures can be better detected) while sacrificing specificity (as higher sensitivity leads 
to increased false alarms). This effect can be mitigated by also training on the non-seizure 
segments. The overall specificity degradation of <1% is considered an acceptable trade-off for a 
more significant improvement in sensitivity. 

 

 
Fig. 40. SOUL classification in real-time showing the corresponding feature space and logistic 
output probability for the EEG recording. 
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While the performance of SOUL and the SVM is the same for Patients 1 and 2, a significant 
performance difference is observed for Patient 3. The decreasing sensitivities of the conventional 
offline-only-trained classifiers demonstrate that seizure patterns change over time, which leads to 
missed detections. As SOUL tunes the feature weights during classification, it effectively tracks 
the iEEG signal variability, allowing sensitivity to be maintained over time. Fig. 42 shows the 
summary of final sensitivity and specificity values across all three patients after running the test 
dataset. In this work, <1.2 false alarms per day (>95% specificity) are maintained for all patients 
in all algorithms, equivalent to false alarm rates of commercial devices [5,6].   

 

 
Fig. 41. Comparison of cumulative sensitivity over time for different classifiers versus SOUL for 
all three iEEG recordings. For Patients 1 and 2, SOUL and SVM sensitivity performance is 
equivalent.  



45 
 

 

 
Fig. 42. Final sensitivity and specificity values at the end of the iEEG testing period; error bars 
indicate max and min values within the last 24 hours. All classifiers are trained so that specificity 
remains >95%.  
 

C. Seizure detection performance on scalp EEG data 
 
The CHB-MIT dataset consists of scalp EEG recordings from 24 pediatric subjects with 

intractable seizures [44]. Across all subjects, the mean recording time was 41 hours and the mean 
number of recorded seizure events per subject was 7.6. Compared to the iEEG dataset, this is 
significantly shorter in terms of recording time and the number of seizures. However, this dataset 
is used for comparison since most seizure detection systems refer to this dataset. 

 
Fig. 43 shows the comparison to other works which presented their results on a per-patient 

basis across all 24 subjects [16,20]. For some select subjects (subjects 6, 8, 18), greater than 12% 
improvement in sensitivity was observed. For the rest of the subjects, there was a 1-3% 
improvement. Across all 24 subjects, the average sensitivity improved by 14.8% compared to [20], 
and 1.8% compared to [16]. The average specificity for all subjects was 98.2%, which is 2.7% 
better than [20] and 0.2% better than [16]. Since SOUL was able to output the correct label within 
the seizure window for all seizure events, the event-based sensitivity for all patients is 100%. 
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The classification performance of SOUL on the two datasets shows that the proposed 
unsupervised online learning scheme works for both iEEG and scalp EEG. This demonstrates the 
flexibility of the algorithm on different EEG recording methods, as well as on different recording 
lengths. Compared to the other classifiers, SOUL maintains equal or higher sensitivities over the 
entire classification period. As classification goes on for longer, the sensitivity improvement from 
SOUL increases, as seen in Fig. 41 (Patient 3). 

 
Fig. 44 shows the percentage of the test data translating to high-confidence classifications. 

The high confidence percentage for seizure classification is very low (~5% for iEEG and <1% for 
CHB-MIT) with respect to the overall test data. This is directly correlated to the rarity of seizure 
events. Accordingly, the high confidence percentage for non-seizure classification is very high 
(~90%) as these comprise the bulk of the EEG recordings. The amount of retraining enabled from 
the consecutive high-confidence classifications is also shown in the figure. It is more likely for 
SOUL to retrain on a seizure event (>50%) than on non-seizure data (<10%). This is due to how 
the HC hyperparameter for non-seizures is set up. As shown in Chapter IV.C, HC for non-seizures 
is 10x the HC value for seizures. This is to minimize the retraining frequency of SOUL over the 
long non-seizure periods. Effectively, SOUL biases towards higher sensitivity by retraining more 
frequently on rare seizure events.  
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D. Seizure prediction performance 
 
The previous sections focusing on seizure detection only utilized SPIRIT in detection-only 

mode. It has been stated in the previous chapter that in this mode, SPIRIT and SOUL function 
exactly the same. SOUL was the term used in the previous sections to indicate that we were only 
testing seizure detection. For this section, however, the full functionality of SPIRIT will be enabled 
(detection + prediction). The seizure prediction performance of SPIRIT was tested using the same 
datasets and using the exact same dataset splits as explained in Section A of this chapter, shown 
in Fig. 39. Fig. 45 shows a real-time SPIRIT classification showing both detection and prediction 
(through the prediction label accumulator) outputs. As also explained in that section, 30 minutes 
(since SPIRIT has a 30-minute prediction window) of the interictal dataset leading up to every 
seizure event is labeled as ‘1’ which then becomes the preictal dataset.  

 
Table III shows a summary of the accuracy values for both the detection and prediction 

done by SPIRIT. Since SPIRIT utilizes the same seizure detection hardware as SOUL, the 
detection sensitivity and specificity remained the same. The prediction accuracy, given the 30-
minute prediction window used by SPIRIT, was found to be 97.5% and 96.2%, in terms of 
sensitivity and specificity, for the CHB-MIT dataset, and 96.6% and 94.8% on the same metrics 
for the long-term iEEG dataset. Note that since the sensitivity of both the detector and predictor is 
the same for the CHB-MIT dataset, it means that the predictor was able to predict all of the seizures 
that were detected. Consequently, the 96.6% sensitivity of the predictor in the iEEG dataset implies 
that only 98.7% of all the seizures detected were correctly predicted (98.7% or the 97.9% detector 
sensitivity rate equals 96.6%). Finally, it is worth noting, that these results also rely on how much 
of a prediction window is actually being used, which was why there is a need to highlight that 
SPIRIT uses a 30-minute window. If the prediction window is large enough, all seizures will 
always be correctly predicted. However, setting a defined prediction time window allows for the 
identification of false predictions which makes the accuracy measurement more practical. 

 
TABLE III 

SPIRIT SEIZURE DETECTION AND PREDICTION RESULTS FOR THE TWO DATASETS 

 
  

As SPIRIT is a seizure predictor, another metric that can be presented is the prediction 
time, that is, how far ahead into the future can it correctly predict an event. Table III showed the 
average prediction time for the two datasets, 8.4 minutes and 7 minutes for the CHB-MIT and 
iEEG datasets respectively. Fig. 46 shows the maximum, minimum, and average values of these 
prediction times on a patient-per-patient basis, showcasing how the prediction times vary greatly 
from patient to patient. It is also worth noting that the prediction time maxes out at 30 minutes, as 
SPIRIT only considers this maximum window size. If there was supposed to be a correct prediction 
31 minutes away, for example, this is treated as a false alarm instead as it is greater than the 
prediction window of SPIRIT. 
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Fig, 45. Real-time chip testing capture of SPIRIT. Logistic output probability for detection and 
label accumulator output for prediction is shown. 
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VII. RESULTS AND DISCUSSIONS 
 

A. Discussion on SOUL and SPIRIT chip results  
 
As discussed in Chapters IV and V, SOUL and SPIRIT were fabricated in TSMC’s 28 nm 

HPM process occupying 0.1 mm2 and 0.14 mm2 in area, respectively. For SOUL, the power 
consumption was measured to be 1.5 µW. It managed to operate down to 0.5 V at 8 kHz clock 
frequency. This corresponds to an energy efficiency of 1.5 nJ/classification at a 1 kHz 
classification rate. With the additional hardware for seizure prediction and increased clock 
frequency, SPIRIT had an order of magnitude larger power consumption at 17.2 µW. It only 
managed to operate down to 0.65 V mainly caused by the increased clock frequency of 24 kHz (3x 
higher than SOUL). This translates to an energy efficiency of 17.2 nJ/classification at the same 1 
kHz classification rate. Since the power consumption is leakage-dominated in this regime, the 
described hardware reduction and reuse techniques presented in Chapters IV and V significantly 
impact the total power. Further power reduction could be achieved by implementing the classifier 
in a low-power (LP) process, instead of the high-performance mobile (HPM) variant that was used 
in this implementation. Digital logic and memory requirements were significantly reduced due to 
the relative computational simplicity of logistic regression coupled with architectural 
optimizations implemented to support online learning. The classifier-relevant memory is only 200 
bytes for SOUL and about 2 kbytes for SPIRIT, mainly dominated by the feature weight values. 
Moreover, as both online learning classifiers use SGD and retrain in an unsupervised manner once 
deployed, only the current input features are used and stored at any given time. Consequently, 
there is no need to store a large amount of neural data for offline processing or training.  When 
compared to the memory used for SVM-based systems [16, 20-24], typically used to store signal 
data and classifier parameters, SOUL and SPIRIT require 300x and 30x smaller memory 
respectively. A register-based memory implementation (instead of SRAM-based) was used for 
both online-learning classifiers, due to the very low memory requirements. Nevertheless, the 
classifier-relevant memory is still very negligible when compared to the pipeline registers required 
for the filters and feature extraction logic, which dominate the power consumption at about 70% 
for both implementations. 

 
A comparison of this work with the state-of-the-art is shown in Table IV. For SOUL, the 

architectural optimizations lead to at least 10x lower area and 24x better energy efficiency 
compared to other on-chip state-of-the-art classifiers [13,25]. SPIRIT, on the other hand, still has 
about 2x energy efficiency compared to the most energy-efficient seizure detector implementation 
in the literature [25] (aside from SOUL). A work [45] has been published to claim the first on-chip 
implementation of a seizure prediction classifier that also has the capability to tune itself online, 
albeit supervised (i.e. requiring external labels). Yet, SPIRIT still is 5.6x more energy efficient and 
is 28x smaller in terms of area compared to it. This is attributed to both the algorithm choice and 
the hardware optimizations highlighted earlier. Thus, SPIRIT would be the first on-chip 
unsupervised online learning seizure predictor that is also the most energy and area efficient. 
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B. Discussion on the use of logistic regression  
 

 Among the cited works in Table IV, SOUL and SPIRIT were the only ones implemented 
using logistic regression. Neural networks, SVMs, and decision trees are well represented. Chapter 
II has covered their advantages and disadvantages. The logistic regression classifier used in SOUL 
and SPIRIT is the only generalized linear model type of classifier in recent literature. Linear 
models trade off simplicity with accuracy. Consequently, they will have difficulty with non-
linearly separable data. More complex classifiers, such as the ones stated earlier, can achieve 
higher accuracies for such classification tasks. However, for recordings that do not have a very 
good linear separability between seizures and non-seizures, the online learning scheme presented 
in this thesis compensates. It exploits the fact that we tend to get very high accuracies on short data 
and thus we can use those data points to dynamically update the model as it runs over time. This 
online adaptation, which is based on stochastic gradient descent, enables the classifier to update 
the model towards optimality. Compare this to other simplified online tuning approaches [24] that 
might not correctly work over time since it is not based on mathematical optimization techniques. 
A gradient descent-based adaptation scheme has been implemented on an SVM [23] but is 
computationally complex. SOUL and SPIRIT leverage the fact that logistic regression gradient 
descent leads to a very simple formula. Thus, with a gradient descent-based update of logistic 
regression, the work presented here maintains high accuracy over time through online adaptation 
while still being very energy efficient. 
 

It is also worth noting that the unsupervised approach in online learning is relatively robust. 
In this case, samples that are hard to classify would typically have logistic function output 
probabilities very near 0.5, which translates to low confidence. As shown in Chapter III. E, CT 
values are generally in the 0.7 to 0.8 range to represent high confidence. If the output probabilities 
are close to 0.5, then the retraining process cannot begin as a series of high confidence is not 
observed. Consequently, a non-linear classification task will not retrain SOUL in the wrong 
direction. Chapter III. F has also demonstrated that the unsupervised online learning approach is 
noise tolerant (and thus, the machine learning model is stable), mainly because the retraining 
process averages out the noise over time. While that depends on the initial accuracy achieved by 
the logistic regression after the initial offline training, it has been shown here that, at least for the 
datasets used in this work, the unsupervised online learning framework is feasible. 
 

C. Discussion on seizure detection performance 
 

The classifier performance in terms of accuracy has already been reported in Chapter VI. 
It has been shown that SOUL (or SPIRIT – detection mode) performed well for seizure detection 
on both short-term (CHB-MIT) and long-term (iEEG) datasets with differing recording modalities 
and qualities (scalp and intracranial EEG respectively). Table IV also shows the accuracy results 
together with the most recent on-chip state-of-the-art seizure detection systems. Some cited works 
used different datasets that introduced partiality since the EEG signal recording quality can be 
different.  
 

The classifier performance on long-term data (recording times ranging from several days 
to weeks) was not explicitly addressed in the other works. Many algorithms that work well on 
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short EEG recordings (i.e. within a day) may fail to work on longer recordings (i.e. several days). 
As SOUL has demonstrated that maintaining high accuracies over long periods of time is possible 
through SGD-based online learning, it would be interesting to see how the different online learning 
techniques from other implementations [23,24,45,46] would compare on the same long-term data. 

 
The reported seizure detection latency for SOUL was 1.6-2.6 seconds which is relatively 

high when compared to the state-of-the-art. This can be attributed to the frequency-dependent 
group delay introduced by IIR filters on the feature extraction unit, which varies the spectral power 
feature values when it arrives at the classifier. This group delay can be compensated by cascading 
a corresponding phase equalizer after every IIR filter, which increases the filter hardware 
requirements by approximately 2x. The relatively high detection latency might also be a 
consequence of the limited feature set that was used since the feature selection process only 
selected features based on accuracy and not latency. Nevertheless, it has been shown [5,6] that 
latencies less than 5 seconds have demonstrated clinical efficacy in detection-triggered stimulation 
devices. 
 

D. Discussion on seizure prediction performance 
 
 Table IV compared SPIRIT to the only other on-chip seizure prediction system in the 
literature [45]. It also has an online tuning capability that is done following an ADMM-based 
optimization for an SVM-based classifier. Chapter II. C has described that this type of optimization 
is indeed backed by mathematical theory, albeit computationally complex. The approach to online 
tuning is sound and would indeed push the SVM classifier toward optimality for every retraining 
that is performed. However, the tradeoff to support this approach is evident, as it consumes 2.31 
mW of power compared to SPIRIT’s 17.2 µW (a 134x difference). In terms of area, the SVM-
based predictor consumes 4 mm2, while SPIRIT only consumes 0.14 mm2 (a 28x difference). The 
same work highlighted a 96.2 nJ/classification of energy efficiency which is, when compared to 
SPIRIT’s 17.2 nJ/classification, is about 5.6x more.  
 

It is important to note, however, that the 96.2 nJ/classification number that was reported is 
calculated by only considering the SVM latency when performing a classification and does not 
include the feature extraction latency. Therefore, it does not cover the entire classification process 
(as it also needs to include the feature extraction latency) and the reported number is not the real-
time energy efficiency for the classifier. The work stated that the feature extraction latency is 5 
seconds, which would imply a true classification rate of 0.2 classifications/sec. Consequently, this 
translates to a true energy efficiency of 11.5 J/classification for that work. That is about 6 orders 
of magnitude compared to SPIRIT’s energy efficiency. This significant advantage of SPIRIT can 
be attributed to a number of considerations already reported in this thesis:  

1) Algorithm choice of using logistic regression as the base classifier for SPIRIT, making 
the online retraining process computationally simple (Chapter III. B). 

2) Feature extraction that is computed in a sliding window that matches the input sampling 
rate, leading to a very high classification rate (Chapter IV. B. Chapter V. B). 

3) Architectural optimizations in SPIRIT, such as choosing simple features and significant 
hardware reuse, lead to very low power consumption (Chapters V. B and C). 
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VIII. FUTURE WORK 
 
It can be argued that reducing the digital backend power consumption might not offer a 

significant benefit in terms of overall system power when the analog front ends are included. 
However, given that the current implementation is significantly more energy-efficient than the 
state-of-the-art, this gives more room for more complex feature extraction units to be incorporated 
with the classification hardware. This can further improve the classifier performance, especially 
on non-linearly separable data, as well as the long-term performance of the unsupervised online 
learning scheme.  

 
There is another benefit of using logistic regression as the main classifier that has not been 

highlighted that much in this thesis – the feature weights are, in fact, interpretable. The feature 
weights that are being dynamically updated throughout the online learning scheme of SOUL and 
SPIRIT inherently refer to the importance of different features in a given classification model. This 
is a consequence of logistic regression being a linear model. There is a relationship between the 
feature weights and how the model is supposed to be interpreted. The larger the feature weights 
are (in terms of magnitude), the more important those features become. Feature weights that tend 
to approach 0 imply that those features are not relevant at all (as the dot product of values will 
make the corresponding contribution of that specific feature to a model to be almost insignificant). 
Therefore, if these feature weights can be used to dynamically tune the analog front-ends, that is, 
the analog-to-digital converters (ADCs), then a more energy-efficient design can be achieved: 

 
1) If the feature weights corresponding to a channel are very large, then that channel is 

important and should have the best ADC resolution possible.  
 
2) If the feature weights corresponding to a channel are very small, then that channel is not 

that important. Therefore, the ADC resolution can be reduced further, saving power. 
 
3) If the feature weights corresponding to a channel are (or near) 0, then that channel can 

be safely turned off since it does not contribute to the classification model anymore, significantly 
saving power. 

 
Fig. 47 illustrates the concept. The feature weights can be mapped to a look-up table of 

ADC effective number of bits (ENOB). This ENOB mapping can be used by the ADC to change 
the corresponding resolution on a per-channel basis. As the feature weights are dynamically 
changing since SOUL is online learning, the ADC resolution can also dynamically change with 
the retrained classifier. This would enable the entire system, both analog and digital, to be more 
energy-efficient and application specific.  
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Fig. 47. Leveraging the interpretability of logistic regression classifier weights to dynamically tune 
the analog front-end (i.e. ADC resolution) such that the power consumption can be further reduced.  
 
 
 One of the limitations of this work was the use of pre-recorded datasets. Another possible 
future work would be to deploy the chip on an actual subject (say, an animal). This opens up 
questions on whether the algorithm is robust enough given the motion artifacts that may corrupt 
the EEG signals. This also enables much longer experiments and clinical trials to fully verify the 
capabilities of the chip described in this work. Another path to explore is using the classifier tuned 
for a different task, not only seizures. This would require a different set of features, more relevant 
to whatever the target application is, to be included with the unsupervised online learning 
framework. This would also show if the framework would only work for seizure detection or 
prediction, or can be used with other biological sensing as well (such as drowsiness detection, 
gesture recognition, etc.). 
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IX. CONCLUSIONS 
 

This thesis has demonstrated the capability of an unsupervised, online learning framework 
based on logistic regression and stochastic gradient descent to advance the state-of-the-art in long-
term, high-accuracy, energy-efficient classification for seizure detection and prediction. Both of 
the on-chip implementations described in this work achieved the most energy-efficient classifier 
design in the literature to date to our knowledge. While logistic regression, on its own, is not the 
best-performing classifier for this task (which explains why it has not been used in the recent state-
of-the-art), augmenting it with an optimization algorithm and energy-efficient design achieves 
high detection and prediction accuracies with the low area and energy consumption. While there 
has been a growing interest in online tuning algorithms in the literature, the two classifiers 
presented here are the only on-chip implementations to our knowledge that can do it in an 
unsupervised manner. Architectural optimizations also reduced the hardware requirements, 
leading to significantly less overall area and leakage power. The two classifiers presented here also 
have the smallest footprint for seizure detection and prediction on a chip.  

 
SOUL is a logistic regression-based classifier, designed for seizure detection, that 

dynamically retrains itself using SGD without any external intervention. SOUL’s performance has 
been evaluated on two datasets, for a total of 27 human subjects. For the long-term iEEG dataset, 
incorporating online learning results in an average sensitivity and specificity of 97.9% and 98.2% 
respectively, improving sensitivity by 6.5% on average with <1% specificity degradation over three 
patients. For the scalp EEG dataset, the classifier achieves 97.5% and 98.2% average sensitivity and 
specificity over 24 subjects. The sensitivity for the subjects either stayed the same (6/24) or improved 
(15/24) by 1-3%. Moreover, an improvement of >12% was observed on three subjects when 
compared against other state-of-the-art presenting a per-subject sensitivity breakdown.  

 
Leveraging the accurate seizure detector, SPIRIT is also a logistic regression-based classifier, 

now designed for seizure prediction, that utilizes SOUL to train itself also without external 
intervention. The seizure predictor was also evaluated on the same datasets and achieved 96.6% 
average sensitivity and 94.8% average specificity for the long-term iEEG dataset, being able to 
predict incoming seizures up to 7 minutes (on average) before they begin. For the scalp EEG dataset, 
the predictor achieved a 97.5% average sensitivity and 96.2% average specificity, being able to 
predict an incoming seizure event 8.4 minutes (on average) in advance. 

 
The significant benefit of the online learning approach is that the reported high accuracies 

were achieved on energy-efficient hardware. For SOUL, the combination of the proposed 
algorithmic approach and circuit-level optimizations resulted in an energy efficiency of 1.5 
nJ/classification, which is at least 24x better than the state-of-the-art. It also consumes 0.1 mm2 of 
area making it the smallest seizure detector classifier in the literature (by a factor of 10x). For 
SPIRIT, using the same architectural optimizations that made an energy-efficient SOUL, the energy 
efficiency for prediction was 17.2 nJ/classification, which is at least 5.6x better than the only other 
on-chip seizure predictor in the literature. Furthermore, SPIRIT’s power consumption is at about 
134x smaller at 17.2 µW, while also being 28x smaller at 0.14 mm2. The energy efficiency of 
SPIRIT, combined with its unsupervised online learning capability, enables longer-lasting 
neuromodulation devices that require little to no maintenance from the user. 
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APPENDIX 
  

This is the mathematical derivation on how the stochastic gradient descent can be applied 
to logistic regression leading to the simple weight update formula presented in this work. 
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 The final result would now resemble the SGD formula as presented in the text. 
 

𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 + 𝜂𝜂(𝑦𝑦𝑡𝑡 − 𝑝𝑝(𝑤𝑤𝑡𝑡, 𝑥𝑥𝑡𝑡))𝑥𝑥𝑡𝑡 
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