
Hardware Accelerator for Convolutional Restricted
Boltzmann Machines

Junghoon Han

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-29
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-29.html

May 1, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank Professor Sayeef Salahuddin for his continued
mentorship and generous sponsorship during my master’s program. I thank
Pratik Brahma, who pioneered this research topic, for his close guidance,
ideas, and help on this project. Thanks to the rest of the Unconventional
Computing group members, Chirag Garg, Saavan Patel, and Philip Canoza, in
helping out with this project in various ways.

I am profoundly grateful for the exceptional support of my family
throughout the years. And thanks to all my friends, especially my fellow Ra-
On band members, who made my graduate program fruitful.

Hardware Accelerator for
Convolutional Restricted Boltzmann Machines

by Junghoon Han

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Sayeef Salahuddin
Research Advisor

(Date)

* * * * * * *

Professor Sophia Shao
Second Reader

(Date)

5.07.2024

Sophia Shao
5/6/2024

Copyright 2024
by

Junghoon Han

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission.

Hardware Accelerator for Convolutional

Restricted Boltzmann Machines

by

Junghoon Han

Abstract

Restricted Boltzmann Machines (RBMs) have gained attention for their strength in aiding
Monte Carlo simulations for Combinatorial Optimization, Quantum Applications, and Ma-
chine Learning problems. Convolutional RBM (CRBM), a variant of RBM, has sparked
interest due to its lower parameter counts and e�cient performance for translationally-
symmetric problems. However, the stochastic nature of CRBM often makes it take long
duration to reach the ground-state solution, demanding an approach to accelerate the com-
putation process.

In this work, we demonstrate our hardware accelerator for CRBM, implemented in RTL
and programmed on FPGA. Software applications can harness the accelerator by simply
programming the weights, bias, and lattice sizes. We show that for solving frustrated classical
Hamiltonians for Ising Shastry-Sutherland model, our hardware accelerates the reaching of
ground-state solution by up to 5 orders of magnitude compared to GPUs.

i

Contents

Contents i

1 Introduction 1
1.1 Background . 1
1.2 Motivations and Previous work . 2

2 Convolutional RBM (CRBM) 3
2.1 Restricted Boltzmann Machine (RBM) . 3
2.2 Convolutional RBM (CRBM) . 3
2.3 CRBM Computation Logic . 5
2.4 Shastry-Sutherland model mapping . 8

3 CRBM Hardware Accelerator 10
3.1 Background . 10
3.2 Architecture . 10
3.3 Input and Output (I/O) and Programming Logic 13
3.4 Testing . 14
3.5 Analysis . 14

4 Results 16
4.1 Time to Solution . 16
4.2 Runtime Results . 16
4.3 Evaluation . 17

5 Conclusion 19
5.1 Future Steps . 19
5.2 Conclusion . 20

Bibliography 21

1

Chapter 1

Introduction

1.1 Background

In the ever-evolving landscape of Ising models, the quest for e�cient and robust models
capable of processing complex data remains paramount. Among the myriad of techniques
that have emerged for mapping Ising models, Restricted Boltzmann Machines (RBMs) stand
out as a fundamental building block in the realm of unsupervised learning. With their ability
to capture intricate patterns, parallelize gibbs sampling, and map relationships between
di↵erent neurons, RBMs have garnered considerable attention and acclaim in the field of
Combinatorial Optimization, Quantum problems, and classical Ising models.

Part of this attention is ascribed to Convolutional Restricted Boltzmann Machines (CRBMs).
CRBMs harness the power of probabilistic inference to explore solution spaces more e↵ec-
tively, thereby enabling the discovery of optimal or near-optimal solutions in computation-
ally challenging problems. CRBMs, a convolutional variant of RBMs, have lower parameter
counts, thereby increasing the compute e�ciency for training and inference. Recent work
has sparked interests in its ability to optimally map translationally symmetric problems, in
which convolution weights are repeated every stride.

The transformative potential of CRBMs has immense practical significance in addressing
real-world challenges with profound implications. In materials science, the ability to explore
vast solution spaces with probabilistic methodologies enables researchers to expedite the
search for novel compounds and materials with desired properties. This paper will partially
include demonstration of mapping a classical Ising Shastry-Sutherland model to CRBMs to
accelerate the sampling computations to reach ground-state solution.

Due to their stochastic nature, CRBMs may require significant iterations of sampling to
reach the desired ground-state solution. The required sampling count also increases with the
number of neurons in the CRBM. Thus, to harness the power of CRBMs within a reasonable
compute time, an e�cient implementation is essential. This motivates our approach to
designing hardware accelerators for CRBMs to improve compute time and energy e�ciency.

CHAPTER 1. INTRODUCTION 2

1.2 Motivations and Previous work

Motivation for Hardware Acceleration

Mapping the mathematical logic directly into digital Register Transfer-level (RTL) logic,
rather than encoding them to instructions for general purpose computers, can speed up the
calculations by several orders of magnitude. This process can not only save computation
time, but also reduce the energy required to compute a desired program.

Same logic follows for designing a custom digital hardware accelerator for Convolutional
RBMs. Transistor logic can be customized and optimized to suit the specific requirements
of CRBMs, such as optimizing memory access patterns, exploiting spatial parallelism at the
hardware level, and implementing specific modules tailored for Gibbs sampling computations.
The details of the hardware implementation are noted in Chapter 3.

Relevant Previous work

This research is part of Salahuddin Lab’s Unconventional Computing subgroup, which has
been using RBMs for NP-Hard combinatorial optimizations. Our team’s former members
have demonstrated the used of hardware accelerated RBMs for solving optimization problems
such as MAX-CUT problem and Sherrington-Kirkpatrick spin glass. The FPGA-mapped
RBM has demonstrated similar or better scaling performance compared to Quantum Com-
puters such as DWave 200Q Quantum Adiabatic Computer [1]. Subsequent work has used
the RBM Hardware accelerator for integer factorization of 16-bit numbers. This work showed
a staggering runtime improvement of 10000x over CPUs and 1000x over GPUs. [2]

As previous research on hardware-accelerated RBMs have been meaningful, our group
was motivated to design hardware accelerators to specific variants of RBMs, notably CRBMs.
In this paper, we embark on a journey to explore the design, implementation, and evaluation
of a hardware accelerator tailored specifically for Convolutional Restricted Boltzmann Ma-
chines for non-deterministic polynomial-time computing. Through RTL-level descriptions
and FPGA mappings, we demonstrate the e�cacy and versatility of hardware-accelerated
CRBMs in solving combinatorial optimization problems.

3

Chapter 2

Convolutional RBM (CRBM)

2.1 Restricted Boltzmann Machine (RBM)

The Restricted Boltzmann Machine (RBM) is a stochastic 2-layer graph neural network.
The 2 layers are each called ”visible” and ”hidden” layers, which are all-to-all connected,
containing the form of a bipartite graph. RBMs are used by block Gibbs sampling between
the 2 layers repeatedly, then track the visible layer values every sample to derive the prob-
ability distribution of the resulting node (neuron) values. RBM is an energy-based model,
which means that the objective of sampling is to minimize the energy value associated with
the weight, bias, and node values. [3]

All node values are binary: 0 or 1. The next value of a node is determined by deriving
a probability for it to be of value 1 and conducting random sampling according to the
probability. The next set of values for each layers is sampled by the conditional probability
dependent on the other layer. The values of all nodes in a single layer are sampled jointly;
the next set of hidden nodes will be sampled by probability p(h|v), and the visible nodes by
probability p(v|h). This form of simultaneous sampling is called block Gibbs sampling.

The nodes and edges of the RBM correspond to neurons and synaptic connections. Thus,
when we map di↵erent problems to RBM, we can assign the visible nodes to represent
physical variables (such as spins, direction, group assignment) and the hidden nodes to
interactions between them (such as spin interactions).

2.2 Convolutional RBM (CRBM)

While RBMs are assumed to have fully-connected edges between the visible and hidden
layers, CRBMs work with strides and convolution. CRBMs show translational invariance,
where the pattern of weights are identical across di↵erent parts of the nodes. As the all-to-
all connection of RBM can be memory-heavy and compute-heavy, CRBM helps relax the
logic by using only a set of connections to fully represent the probabilities for block Gibbs
sampling.

CHAPTER 2. CONVOLUTIONAL RBM (CRBM) 4

Figure 2.1: Pictorial representation of RBM and CRBM.

The 2.1 shows the structure of RBM and CRBM. As seen on the right of the figure,
CRBMs have the same weights repeated every a stride (in this case, stride equal to 1). The
figure also notes periodicity, which means when the stride goes out of bounds of the visible
nodes, it wraps back to the first index of the hidden nodes (in this case, connecting v4 with
h1). Periodicity can be turned on or o↵, depending on the problem formulation.

CRBMs can have multiple set of weights. For example, as per Figure 2.1, the first set of
weights can be w1 = (e1, e2) = (1, 2), while the second set of weights can be w2 = (e1, e2) =
(3, 4). Each set of weights will produce a group of hidden nodes. Another set of weights will
produce a separate group of hidden nodes. Hereon, we will note them as convolution groups.

Energy and Probability formulation

The following formulas are derived by converting the general RBM energy and probability
equations to reflect the convolutional nature of CRBM.

Here, the notations are: vij is the visible node at the i-th row and j-th column. k
represents the convolutional group, which corresponds to the kth set of weights, also known
as ’filters’. W k is the k-th filter. W̃ k is the k-th filter, flipped in both horizontal and vertical
axes. hk

ij in turn represents the hidden node at group k, i-th row and j-th column. b is the
hidden bias and c is the visible bias. • is the element-wise product followed by summation:
A •B = trATB. ⇤ operator denotes convolution. � denotes the sigmoid operator. [4]

E(v, h) = �
KX

k=1

hk • (W k ⇤ v)�
KX

k=1

bk
X

i,j

hk
i,j � c

X

i,j

vij (2.1)

P (hk
ij = 1|v) = �((W k ⇤ v)ij + b) (2.2)

CHAPTER 2. CONVOLUTIONAL RBM (CRBM) 5

P (vij = 1|h) = �

0

@

X

k

(W̃ k ⇤ hk)

!

ij

+ c

1

A (2.3)

The objective of our CRBM is to sample repeatedly until the energy reaches the ground-
state solution. (The ground-state solution is also the output with highest-likelihood). The
probabilities are used to sample each of the visible and hidden node values. This probability
is used to randomly sample the node value of 0 or 1, thereby determining the next value of
the nodes.

2.3 CRBM Computation Logic

The CRBM computation logic and sequence is illustrated in Figure 2.2. Note that the logic
flows from visible nodes ! hidden nodes ! visible nodes, and repeats.

2.3.1. Visible nodes

The sampling starts with the initial state of visible nodes. In our setting, the visible layer is
configured as a 2-dimensional array of binary nodes.

Figure 2.2 starts with visible nodes of size 3x3.

2.3.2. Wrapping

Wrapping is done to ensure periodicity is incorporated into the convolution logic. Assume
that the filter size is MxM. If periodicity is ’on’ in the column direction, the first M-1 columns
is copied to the last column index. If periodicity is ’o↵’ in the column direction, there will
be M-1 columns of zeros inserted. The same logic holds for the row direction.

Figure 2.2 notes the wrapping logic for a 2x2 size filter and periodicity on in both column
and row direction. The wrapped nodes are denoted in color orange.

2.3.3. Convolution - Forward

Forward convolution notes the convolution logic necessary for sampling hidden nodes from
visible nodes (visible! hidden). Convolution here occurs as an element-wise matrix multiply
with the filter and current position’s visible nodes, followed by accumulation (mac). This
operation is conducted repeatedly with a stride, which moves the filter to the next respective
location. The stride occurs in both column and row direction, and the process is repeated
until each direction’s index is out of bounds.

The complete process mentioned above is identical for all di↵erent filters. The number
of output groups will be equal to the number of di↵erent filters.

CHAPTER 2. CONVOLUTIONAL RBM (CRBM) 6

Figure 2.2: CRBM Computation logic

CHAPTER 2. CONVOLUTIONAL RBM (CRBM) 7

Figure 2.2 illustrates the convolution logic for 3 di↵erent 2x2 size filters with a stride of
2. For 4x4 visible nodes, this process creates a 2x2 result for each filter group.

2.3.4. Probability and Sampling - Forward

The convolution result is sent to a sigmoid operator to obtain the probability of P (h|v). The
sigmoid is applied element-wise to each of the outputs of the convolution.

Sigmoid will provide a probability value between 0 and 1, which is in-turn used for random
sampling. The sampler will take the probability as the likelihood of result node being equal
to 1. Then, the sampler’s result, either 0 or 1, will be the next value of the hidden nodes. In
practice, this process is done by generating a random floating point value between 0 and 1,
comparing it to the sigmoid output, and setting the result value to 1 if the random number
is less than the sigmoid output.

2.3.5. Hidden nodes

The sampled values will be the next hidden node values. With N di↵erent filters, there will
be N groups of hidden nodes. All hidden node values are binary as well.

2.3.6. Zero Padding

We conduct a zero-padding technique to ensure that the resulting reverse sampling (hidden
! visible) has the same dimension as the starting visible node dimension. That is, we insert
zeros between the hidden nodes in all directions.

Similarly to the wrapping step, zero padding also includes copying the last columns and
rows to the beginning column and row. If periodicity is on, we copy the hidden node values
along with padded zerios. If periodicity is o↵, we simply zeros are added to the beginning
column and row positions.

2.3.7. Convolution - Reverse

The convolution logic here is similar to that of the convolution in forward direction. The
key di↵erence here is that the filters applied are flipped in horizontal and vertical directions.
Moreover, the stride value is always equal to 1 in the reverse direction.

2.3.8. Accumulation

For N di↵erent convolution groups, there will be N di↵erent convolution outputs. This step
accumulates all the node values from the convolution output, element-wise. The dimension
of the output from this step is equal to that of the visible nodes.

CHAPTER 2. CONVOLUTIONAL RBM (CRBM) 8

Figure 2.3: Shastry-Sutherland Magnetization Phases

2.3.10. Probability and Sampling - reverse

Similar to the forward direction process, the sigmoid is applied to produce the probability,
which is used for randomly sampling the next set of visible nodes. This step produces the
next set of visible node values, which completes the full cycle.

2.4 Shastry-Sutherland model mapping

In our work, we map the classical Ising Shastry-Sutherland model on the CRBM structure
to solve frustrated classical Hamiltonian. Our results demonstrate that the CRBM can be
used to simulate any kind of translationally-symmetric classical Hamiltonian. The Shastry-
Sutherland Lattice has discrete translational symmetry, where certain set of spin interactions
are repeated elsewhere on the lattice. The Shastry-Sutherland model can be mapped to
CRBM in the following way: the visible nodes can represent phsyical variables, in this case
the magnetic spins. The hidden nodes can represent interactions between the spins.

To map the Shastry-Sutherland Ising model to the CRBM framework, we equate the
physical lattice’s Boltzmann distribution to RBM’s marginal distribution. The RBM weights
are then mapped to be unique only upto the unit cell on the lattice, of size 3x3. Thus, the

CHAPTER 2. CONVOLUTIONAL RBM (CRBM) 9

filter sizes are 3x3. The Shastry-Sutherland contains unique 10 repeated interactions, leading
to the formulation of 10 di↵erent filters.

We focused our experiment on 4 of the Shastry-Sutherland Magnetization phases, as
noted in Figure 2.3. Each node, mapped to the visible nodes of CRBM, represent the
magnetization spins. The empty circles are represented as 1, and filled circles are represented
as 0. Di↵erent phase problems produce di↵erent filters and biases.

• AFM Phase: Anti-Ferromagnetic Phase. Every non-diagonal nodes have the opposite
spins.

• FM Phase: Ferromagnetic Phase. All nodes have the same magnetization spins

• 1/3 Fractional Phase: the rows of the lattice show a pattern of FM phase row sand-
wiched between two AFM phase rows

• Dimer Phase: certain diagonal set of nodes are expected to be opposite spins of each
other (marked in green boxes)

Detailed mapping result of the Shastry-Sutherland to CRBM will be illustrated in a
coming paper from the Salahuddin Group, in a work pioneered by Pratik Brahma.

10

Chapter 3

CRBM Hardware Accelerator

3.1 Background

The objective of the CRBM hardware accelerator is to significantly reduce the runtime of
reaching the ground-state solution of CRBM.

The hardware design is implemented in RTL (Register Transfer Level) and mapped to
Field Programmable Gate Array (FPGA). We used the Virtex Ultrascale+ FPGA device
(VCU118), a product of Xilinx - AMD. This FPGA represents a cutting-edge solution in the
field of FPGAs with 14nm/16nm FinFET process technology, dynamic power management,
and integrated Gen3 x16 PCIe blocks. We use this FPGA jointly with the experiment server
with 11th Gen Intel Core i9-11900K @ 3.50GHz and 135GB RAM. To program the FPGA,
we use Xilinx’s Vivado tools.

3.2 Architecture

The hardware architecture, as denoted in Figure 3.1, maps each step of CRBM into respective
hardware modules. Note that there are corresponding modules to the described steps in
Figure 2.2.

The hardware is pipelined with 2 stages: forward and reverse. The forward stage contains
logic of sampling from visible nodes! hidden nodes (stages 3.2.1 to 3.2.5). The reverse stage
contains logic of sampling from hidden nodes ! visible nodes (stages 3.2.5 to 3.2.9).

3.2.1. Visible Node Registers

The 2D visible node layer is represented in a single register. As the node values are binary,
they take up a single bit in the register. This technique minimizes the LUT resource usage
on the FPGA.

CHAPTER 3. CRBM HARDWARE ACCELERATOR 11

Figure 3.1: CRBM Hardware Accelerator Architecture

The dimension of the lattice size is noted as LxL, which notes L rows and L columns of
visible nodes, making a total of LxL visible nodes. Thus, there are LxL bits in the visible
node register.

3.2.2. Wrapper

The wrapper module follows the logic of wrapping technique noted in section 2.3.2. It takes
in the visible node register and periodicity signal as inputs, and copies or zeros out the
respective columns and rows accordingly.

3.2.3. Convoluter - Forward

The convoluter module takes in the wrapper and filters to conduct convolution logic as noted
in section 2.3.3. The filter values are provided by the user’s software via PCIe.

In this implementation, the convoluter takes advantage of spatial parallelism. It contains
convolution logic of multiply and accumulate in place for corresponding positions. Same
logic is copied to other positions that are separated in a distance equal to the stride value

CHAPTER 3. CRBM HARDWARE ACCELERATOR 12

in all directions. In summary, all convolution computation is contained in a single spatially
parallelised combinational logic.

3.2.4. Sigmoid and LFSR - Forward

The sigmoid modules are synthesized with the input and output bit count parameters, which
are used to determine the level of precision of the input and output. The input is the result
of the convolution. The output is the corresponding sigmoid value. The sigmoid module
internally contains a pre-coded LUT which is identical to a dictionary of key and value,
input and output. The module selects the closest corresponding sigmoid value that was
synthesized with the given precision parameters.

The Linear Feedback Shift Register (LFSR) module is synthesized according to a set seed
value. The internal register in the module, initialized with the seed value, is shu✏ed every
cycle to produce randomized bits. The LFSR output is converted to a value between 0 and
1.

For N filter groups, there are N sigmoid modules and N LFSR modules. The sigmoid
value is compared with the output of the LFSR module. If the sigmoid value is greater, the
corresponding hidden node will contain value 1. Otherwise, it will contain value 0. This
logic completes the first pipeline stage.

The Sigmoid and LFSR hardware modules are pioneered by our former researchers, Saa-
van Patel and Philip Canoza.

3.2.5. Hidden Node Registers

For N filters, there are N hidden node groups produced. Each of them will have a dimension
of b(L+ 1)/stridecxb(L+ 1)/stridec. Thus, the hidden node register will contain a total of
N x b(L+ 1)/stridecxb(L+ 1)/stridec bits.

3.2.6. Zero Padder

The zero padder module implements the logic noted in section 2.3.6. The hardware keeps
an array of zeros with empty slots for positions that take in hidden node values. The hidden
node values are inserted in a spatially parallel manner. For N filters, there are N zero padder
modules.

3.2.7. Convoluter - Reverse

The convoluter module in the reverse direction is the same module used in the forward
direction (section 3.2.3). The flipped weights are inputs to this module, which are provided
by the user software via PCIe. For N filters, there are N reverse convoluter modules.

CHAPTER 3. CRBM HARDWARE ACCELERATOR 13

3.2.8. Accumulator

The output of the convoluter module is accumulated in this module. As the accumulation
is done element-wise, it is simple to create a combinational logic that adds up the values for
the same positions in N groups. Following the accumulator module, the N filter groups are
aggregated to a single group.

Moreover, visible bias is applied in this module. The bias values are provided by the user
software. We provide an option to use odd bias and even bias, which allows di↵erent bias
values to be applied for odd columns and even columns.

3.2.9. Sigmoid and LFSR - Reverse

The sigmoid and LFSR modules used in the reverse direction are the same modules used
in the forward direction (section 3.2.4). The output of these modules determine the next
visible node values.

This module completes the second pipeline stage, and completes a full cycle of sampling.

3.3 Input and Output (I/O) and Programming Logic

The host machine and the FPGA communicates over the x16 PCIe. We implement the
Input and Output (I/O) logic of the PCIe through an open source module named Xillybus.
Xillybus provides both an FPGA IP core and a driver for the host PC’s operating system.
It provides customized bundles for di↵erent FPGA models.

Although our hardware need not communicate large data within each time steps, the
host machine and FPGA run on di↵erent clock frequencies, producing a clock domain cross-
ing. Thus, we use a First-In-First-Out (FIFO) module to enable sequential communication
between the host and FPGA.

The Xillybus driver creates 2 devices files of the FPGA: one for writing and one for
reading. The user software writes and reads the following values to and from the device files:

• Write (PC to FPGA): weights, flipped weights, biases, lattice sizes (visible layer di-
mensions), periodicity, and clear last hidden rows signal (some applications require
clamping the last row of hidden nodes to zero)

• Read (from FPGA) : Visible node values of each cycle

After the host machine reads the visible node values, the user software calculates the
energy of the nodes.

CHAPTER 3. CRBM HARDWARE ACCELERATOR 14

Figure 3.2: CRBM Hardware Accelerator complexities

3.4 Testing

Each hardware module went through behavioral testing with individually created test benches.
After each module’s functionality was confirmed, all the modules were integrated and tested
under the top-level test bench.

After behavioral testing, we programmed the hardware to the FPGA with integrated IO
modules. Then, the hardware’s correctness was tested once more with simple test samples
of Shastry-Sutherland Ising model.

3.5 Analysis

Computational and Spatial Complexities

Computational and Spatial complexities are noted in Figure 3.5. Here, L is the Lattice size,
which is the row and column count of the 2D visible nodes. F is the filter size, s is the stride,
and H is the hidden layer size. MAC is multiply and accumulate.

Pipelining

As the hardware is pipelined with 2 stages (forward and reverse), it takes 2 cycles to sample
a single set of visible nodes. At the same time, it allows 2 di↵erent independent samplings to
occur in parallel. At every cycle, the visible node register and hidden node registers contain
values for di↵erent chain of sampling. These registers rotate between the 2 chains, thereby

CHAPTER 3. CRBM HARDWARE ACCELERATOR 15

enabling 2 di↵erent independent samplings for odd cycles and even cycles. This process
boosts our expected throughput by a factor of 2.

Dimension and Precision

The maximum dimension that fits on our FPGA is 18x18, total of 324 visible nodes, followed
with 810 hidden nodes. We implemented the hardware with filter size of 3x3, 10 filters, and 15
bits of floating point precision for sigmoid and LFSR. We use 10 precision bits for convolution
calculations, which are allocated to 1 sign bit, 5 integer bits, and 4 floating-point bits.

Clock Frequency and Critical Path

The hardware was synthesized on the FPGA with the clock frequency of 30MHz. For each
sampling chain, the visible node produces new values every 2 cycles. Thus, 1 chain completes
a sampling sequence in approximately 66.66 nanoseconds. As there are 2 chains, there is 1
unique sample produced every 33.33 nanoseconds.

The clock frequency is bottle-necked by the critical path, which is the forward pipeline
stage (visible to hidden). Significant portion of the area is allocated to the sigmoid and LFSR
modules in this stage. Reducing the precision bits of these modules relaxes the critical path
to a certain extent, but in turn reduces accuracy or raises the required sampling counts to
reach ground state solution. Our current choice of precision bits was optimized between
these two factors.

16

Chapter 4

Results

4.1 Time to Solution

As RBM and CRBM demand a Time to Solution framework that accommodates for its
stochastic nature. Our lab’s previous work on RBM acceleration have identified the Time
to Solution framework as follows [1]:

TTS99 =
Ns

fclk

log(0.01)

log(1� pgnd)
(4.1)

TTS99 refers to the time to reach a solution with 99% confidence. Ns is the number
of samples taken, fclk is the clock frequency, and pgnd is the probability of the sampling
sequence hitting the ground state. However, this work focused on sampling enough cycles
so that the mode of the sampling is equal to the ground state.

In our study of CRBM for Shastry-Sutherland Ising model, we focus on the first ever
cycle that hits the ground state solution. Thus, we modify the equation to the following:

TTS99 = Tavg
log(0.01)

log(1� pgnd)
(4.2)

Tavg refers to the average time taken to reach the ground state sample. This is calculated
by multiplying the hardware’s clock frequency and number of cycles taken to reach the ground
state, averaged across the batch size. pgnd is also empirically estimated by calculating fraction
of total experiments that reached the ground solution.

4.2 Runtime Results

The comparative results of GPU and the hardware accelerator are noted in Figure 4.2. Each
phases are labaled in the same color. Both axes are in log scale.

CHAPTER 4. RESULTS 17

Figure 4.1: Runtime results of GPU vs CRBM HW Accelerator

GPU results

The GPU implementation, pioneered by Pratik Brahma, is written in PyTorch and CUDA.
As GPU was used as a parallel machine, it is also used to test larger lattice size than the
hardware accelerator can fit in. The GPU was tested in 36, 144, and 324 visible nodes.

Hardware Accelerator Results

The hardware accelerator boasts significant performance increase compared to the GPU
results. The performance improvement was at least 636x compared to the GPU. These
results confirm that custom digital logic can improve runtime performance by several orders
of magnitude.

The hardware accelerator was tested in 36, 72, 108, 144, 216, 324 visible nodes.

4.3 Evaluation

Table 4.1 shows the hardware accelerator’s runtime performance improvement compared to
GPU. The table includes improvements under overlapping experiment settings.

CHAPTER 4. RESULTS 18

The lowest improvement is for 1/3 Fractional Phase with Lattice size 324. The greatest
improvement is for Dimer Phase with Lattice size 36.

Lattice AFM FM Fractional Dimer
36 18867x 59165x 19459x 107236x
144 9876x 61731x 2222x 49276x
324 16839x 56807x 636x 2974x

Table 4.1: Runtime improvement compared to GPU

19

Chapter 5

Conclusion

5.1 Future Steps

Although the current hardware accelerator design provides promising results, there is always
room for more experimentation and improvement. The objective of the hardware design
was not to show the most optimal design possible, but to demonstrate the potential and
versatility of hardware-accelerating the CRBM.

Other Applications

CRBMs can be used for solving any Ising models with translational symmetry. The Kagome
lattice model is an ideal candidate, due to its repeated bond interactions across its lattice,
which can be mapped to filter size of 4x4. [5]. Same goes for quantum lattice models such
as transverse Ising and Heisenberg models, as they show a similar checkerboard-style lattice
as certain Shastry-Sutherland formations. [6] CRBMs can be an interesting solution to solve
these problems for its parallelizable Gibbs sampling, along with the demonstrated hardware
acceleration.

Area e�ciency techniques

• Correlated Noise: the current critical path involves the multiple copies of sigmoid and
LFSR modules in the forward sampling stage. Instead of using 1 LFSR module per
index and per group, we can experiment on using 1 LFSR module per index and shared
across groups. Assuming correctness holds, this technique can reduce the LFSR LUT
resource usage.

• Pipelining: the hardware currently takes in N filters and generate N filter groups, which
is spatially parallelized. Instead, we can have a single set of convolution, sigmoid, and
LFSR logic so that we sample one group per clock cycle. This technique can also
significantly reduce area usage but will take more cycles per sampling.

CHAPTER 5. CONCLUSION 20

• SLR Floor plans: Xilinx provides timing closure techniques in which one can clamp cer-
tain modules to super logic regions (SLR). If the floor planning is properly constrained,
it is possible to e�ciently use the resources to increase the clock frequency.

FPGA Accelerator Cards

Instead of trying to fit in all hardware logic into a single FPGA, a potential solution is to
use multiple FPGAs to emulate a single hardware design. Our lab is already in the stage
of experimenting on on FPGA Accelerator Cards: Alveo UL3524 FPGA accelerators. If
hardware logic can be parallelized across multiple FPGA Accelerator cards, it can open the
door for numerous hardware techniques under significant freedom from area constraints.

5.2 Conclusion

Convolutional Restricted Boltzmann Machine (CRBM), a variant of RBM, has sparked inter-
est due to its lower parameter counts and optimal performance for translationally-symmetric
problems. As its stochastic nature can render it to take long durations to reach ground-state
solution, we designed a hardware accelerator to speed up the sampling process.

In this work, we demonstrated our hardware accelerator for CRBM, implemented in
RTL and programmed on FPGA. The hardware is harnessed by software that writes in
problem configurations and reads out visible node values. We demonstrated the hardware’s
performance in solving classical Hamiltonians for Ising Shastry-Sutherland model, in which
it showed performance improvement of up to 5 orders of magnitude compared to GPUs.

We believe fulfilled our objective of demonstrating the potential and versatility of imple-
menting a hardware accelerator for stochastic models such as CRBM.

21

Bibliography

[1] Saavan Patel et al. “Ising Model Optimization Problems on a FPGA Accelerated Re-
stricted Boltzmann Machine”. In: arXiv:2008.04436v2 (2020), pp. 1–25.

[2] Saavan Patel, Philip Canoza, and Sayeef Salahuddin. “Logically synthesized and hardware-
accelerated restricted Boltzmann machines for combinatorial optimization and integer
factorization”. In: nature electronics 5 (2022), pp. 92–101.

[3] Asja Fischer and Christian Igel. “An Introduction to Restricted Boltzmann Machines”.
In: CIARP (2012).

[4] Honglak Lee et al. “Convolutional deep belief networks for scalable unsupervised learn-
ing of hierarchical representations”. In: ICML (2009).

[5] Tomonari Mizoguchi, L.D.C. Jaubert, and Masafumi Udagawa. “Clustering of Topolog-
ical Charges in a Kagome Classical Spin Liquid”. In: PRL 119 (2017).

[6] Louis-Paul Henry et al. “Spin-wave analysis of the transverse-field Ising model on the
checkerboard lattice”. In: Physical Review B 85 (2012).

