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Abstract

Towards a Wireless Fluorescence Microscope on A Chip

by

Rozhan Rabbani

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Vladimir Stojanovic, Chair

Real-time access to multicellular information from dynamic biological processes in the
body is crucial for understanding disease progression and treatment response. An impactful
application is cancer immunotherapy, an effective therapeutic that unleashes the immune
system to better identify and attack cancer. While immunotherapy has shown high sur-
vival rates in responders, low response rates (<50%) among patients necessitate a deeper
understanding of complex resistance mechanisms early in the treatment to improve outcomes.
However, current clinical imaging techniques such as MRI, CT and PET lack the molecular
contrast, resolution, and chronic usability to enable early recognition of non-responders and
adaption to more personalized therapeutic regimens. Moreover, invasive tissue collection
methods such as biopsies are impractical on a repeated basis limiting detection to snap-shots
of the tumor microenvironment.

Fluorescence microscopy (via injection of fluorescently tagged cell-specific probes) circum-
vents low sensitivity and long delays of the existing modalities, but is yet to be deployed on a
platform compatible with long-term implantation. This thesis presents a miniaturized lensless
fluorescence microscope-on-a-chip capable of 1) chip-scale imaging of multiple cell types with
an image sensor and an optical frontend for multicolor imaging, 2) in-situ illumination through
device-level integration of light sources, and 3) wireless power transfer and communication
via ultrasound (US) for chronic implantation at depth.

The first-generation sensor serves as a proof-of-concept for single-color wireless fluorescence
imaging incorporating a CMOS chip, a micro laser diode (µLD), a mm-sized piezoceramic and
off-chip storage capacitors. The chip consists of a 36×40 array of capacitive trans-impedance
amplifier-based pixels, wireless power management and communication via US and a laser
driver all controlled by a Finite State Machine. The piezoceramic harvests energy from the
acoustic waves at a depth of 2 cm to power up the chip and transfer 11.52 kbits/frame via
backscattering. During Charge-Up, the off-chip capacitor operates with 905 mW/cm2 of US
power density and stores charge to later supply the instantaneous power of the µLD during
Imaging. Proof of concept of the imaging front end is shown by imaging distributions of
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CD8+ T-cells, an indicator of the immune response to cancer, ex vivo, in the lymph nodes of
a functional immune system (BL6 mice) against colorectal cancer consistent with the results
of a fluorescence microscope. The overall system performance is verified by detecting 140 µm
features on a resolution target wirelessly transmitted via US backscattering.

Next, we expand the work to a fully wireless image sensor specifically designed for
multicolor fluorescence imaging deep in tissue. The new sensor operates deeper at 5 cm
depth in oil, harvesting energy with 221 mW/cm2 (4x lower than the first sensor) incident US
power density (31% of FDA limits) and backscattering data at 13 kbps with a bit error rate
<10-6. In-situ fluorescence excitation is controlled with a wirelessly programmable on-chip
driver. An optical frontend combining a multi-bandpass interference filter and a fiber optic
plate provides >60 dB attenuation of the excitation background and enables three-color
fluorescence imaging for multi-cell-type detection. The resolution is <125 µm. The system’s
performance is validated through wireless, dual-color fluorescence imaging of effector and
suppressor immune cells in ex vivo mouse tumor samples with and without immunotherapy.
These results show promise for rapid identification of the underlying control mechanisms in
therapeutic response, guiding more effective therapies.

Finally, we apply deep learning models to images obtained with our customized contact
image sensors to enable 3D reconstruction and depth estimation from 2D images beyond
conventional linear optimization techniques.
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Chapter 1

Introduction

Continuous access to in vivo information through implantable biomedical sensors can
provide insights for diagnosis and personalized treatment guidance based on real-time feed-
back from the patient’s own tissue. Wireless, miniaturized, implantable sensors can monitor
intricate biological processes unfolding in the body in real-time [1, 2, 3, 4, 5]. Typically
accessible only through highly invasive techniques, this data is crucial for advancing per-
sonalized medicine, tailoring treatments to individual patient responses to address the wide
heterogeneity in therapeutic outcomes.

1.1 Real-time Monitoring in Cancer Immunotherapy

Monitoring tumor response is an impactful application in cancer immunotherapy, a
treatment that unlocks the patient’s own immune system to fight cancer. For instance,
immune checkpoint inhibitors (ICIs), a type of immunotherapy, have been shown to nearly
double patient survival rates in melanoma [6] and metastatic lung cancer [7] with a lower
incidence of adverse effects compared to conventional treatments like chemotherapy [8]. ICIs
are now used across cancer types and are estimated to be available to more than 40% of US
cancer patients [9]. However, immunotherapy faces a significant challenge: across most cancer
types, less than 30% of patients respond to therapy [10, 11]. For the majority of patients
who do not respond, time spent on ineffective therapies not only reduces the likelihood of an
eventual cure, but also exposes them to unnecessary toxicity with high-grade adverse events
rates often exceeding 10% [10] and financial burdens of more than $150,000 per year [12,
13]. Rapid assessments of therapeutic response that also provide insight into the underlying
mechanisms of resistance can help clinicians quickly identify non-responders and pivot to
more effective second-line therapies. Therefore, an imaging system for cancer immunotherapy
must be capable of imaging tumor state changes at time intervals frequent enough to capture
cell cluster motion (∼minutes to hours), over long periods (days to months). However, such
an assessment must capture the complex and dynamic interplay between various effector and
suppressor immune cells and cancer that determines response [10]. However, current clinical
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imaging falls short of this goal. Currently, these factors are only visible when looking at the
tissue under a microscope, obtained via a biopsy. However, repeated biopsies, often of sites
deep within the patient, are impractical due to morbidity, cost, and logistics.

1.2 Clinical Imaging vs. Optical Imaging

In clinical practice, the state of the art for monitoring immunotherapy response is to
use the following imaging technologies: computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET), and multimodal techniques (CT/PET,
PET/MRI, etc.) [14, 15]. Anatomical imaging modalities such as CT and MRI capture
changes in tumor size, which take months to manifest and do not reliably correlate with
response [16]. These limitations are apparent in standard response criteria. For example,
iRECIST defines a partial response as at least a 30% reduction in tumor dimensions with
a minimum size of 1 cm and recommends confirmation of disease progression at long 4-8
week intervals [17, 18]. Given a cell is ∼10 µm, a 30% change equates to a minimum
change of 300 million cells, taking months to manifest. Alternatively, PET can image the
underlying biology with molecular contrast [19] but is fundamentally limited to imaging a
single cell type or biomarker [20] at millimeter-scale resolution [21]. As the immune response
depends on interactions between a variety of immune cells, it cannot be reliably predicted
by a single biomarker [22, 23]. Moreover, this millimeter-scale resolution averages out the
spatial distributions of different cell populations within the tumor shown to be increasingly
important in understanding therapeutic resistance [24, 25]. Additionally, the need to utilize
hospital-based imagers preclude serial imaging due to the logistics and cost associated with
repeated imaging spaced only by hours or days. Without continuous monitoring, conventional
techniques are restricted to snap-shots unable to capture the dynamics of the key biological
phenomena. Therefore, an additional method in conjunction with clinical imaging of the
tumor response is needed.

Optical microscopy, on the other hand, enables high-resolution imaging providing key infor-
mation regarding disease progression and treatment efficacy [26]. Fluorescence microscopy is
an optical imaging method that provides multicell-level resolution across multiple biomarkers,
essential to visualizing a more complete picture of the immune response. In fluorescence
microscopy, targeted cells are labeled with fluorescent dyes, or fluorophores, which absorb
light near a specific wavelength and emit light at slightly longer wavelengths [27]. Multiple
cell types can be imaged simultaneously by labeling each with a different color fluorophore.
However, in vivo optical imaging is constrained by scattering in tissue which fundamentally
limits the penetration depth of light in the body to a few millimeters, even at NIR wavelengths
where tissue absorption is minimal and scattering is reduced [28]. For example, intravital
microscopy (IVM) is an optical imaging modality that can leverage fluorescence to visualize
in vivo processes using a surgically implanted window [29, 30]. Despite the high resolution of
IVM, visualization is restricted to depths less than a few millimeters [31, 32]. This imaging
approach is limited to tumors or organs at the tissue surface, unable to be maintained over
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long periods of time, and is fundamentally incompatible with patient imaging. Therefore,
implantable fluorescence imagers with integrated light sources providing in-tissue illumination
are needed for chronic imaging at depth.

1.3 Prior Art Chip-Scale Image Sensors

Fluorescence imagers can be miniaturized to the scale of a single chip by eliminating
bulky lenses through contact imaging [33, 34, 35, 36, 37, 38, 39]. To this end, prior work
has demonstrated on-chip or in-package integration of focusing optics [33, 40] as well as
fluorescence filters [34, 35, 36, 37, 41] and light sources [34, 37]. However, all of these systems
are wired, precluding long-term implantation without risk of infection. Both wireless power
transfer and communication are necessary for chronic use of these devices.

A list of the state-of-the-art chip-scale image sensors is included in Fig. 1.1. The fluoresce
image sensor presented in [34] integrates in-package light sources for in vivo neural recording
and optogenetic stimulation. However, its single color imaging capability limits detection to
a single cell type which is not sufficient for monitoring the complex and multiplexed immune
system. Despite its flexible design, the wired configuration is not suitable for untethered
applications.

The FDA-approved capsule in [35] is designed for in vivo bio-molecular sensing. The
system incorporates a CMOS fluorescence sensor with an integrated filter, an ultraviolet LED
and an optical waveguide. The sensor utilizes wireless radio-frequency (RF) bi-directional
communication and offloads computations to an external base station. However, the system’s
power supply relies on a centimeter-scale battery, which is inadequate for implantable
applications. Additionally, without wireless charging capability, long-term implantation is
not feasible.

The fluorescence sensor developed in [36] integrates multi-color filters in the CMOS chip
for bio-molecular sensing of two fluorescent proteins to distinguish two biochemical signals.
Although it captures the dynamics of E. coli bacterial cell growth, its resolution is inadequate
for tissue imaging, and it has yet to be deployed in a wireless embodiment for deep tissue
monitoring.

The needle-type image sensor in [37] stacks composite multilayer filters for high-spatial-
resolution fluorescence imaging and incorporates a fiber-coupled laser for fluorescence excita-
tion. Although imaging of the green fluorescent proteins (GFP) expressed in mouse brain
slices is demonstrated, this imager lacks wireless interface and in-package light sources for
untethered monitoring in the body.

A wireless thermoacoustic imager has been introduced in [42]. Imaging is performed
with a capacitive micromachined ultrasound transducer (CMUT) array. The sensor uses two
piezoceramic transducers for wireless power and data transfer via ultrasound (US). However,
thermoacoustic imaging does not provide the sensitivity and specificity needed to track
the immune response. Fiber optic probes have shown in vivo imaging but their utility for
continuous monitoring is limited by the invasiveness of the process [43].
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Figure 1.1: Prior art chip-scale image sensors adapted from [34, 35, 36, 37, 42].

1.4 Proposed Solution

To address the challenge of the absence of a wireless implantable image sensor with
multicolor detection capabilities for monitoring the multiplexed biological processes such as
the immune response to cancer immunotherapy, we propose the systems depicted in Fig. 1.2.
To realize this envisioned system, the thesis demonstrates a two-step process by presenting the
design and implementation of two sensors, ultimately achieving the following key capabilities:

1. Wireless power and data transfer via US to supply the sensor and transmit data
using a single US transceiver.

2. Chip-scale fluorescence imaging to detect state changes in cell foci of 100s of cells
enabling the capture of multiple cell types involved in the immune response to cancer.

3. Supply of high instantaneous power to micro laser diodes (µLDs) with limited
available power harvested from US to provide in-situ illumination for the image sensor.

Among wireless power transfer modalities such as near-field inductive coupling, RF,
and optical, US offers low attenuation in tissue (0.5-1 dB/MHz/cm [44]), a high Food
and Drug Administration (FDA) regulatory limit for power density (720 mW/cm2), and
a short wavelength (∼3-4 mm in the PZT material at 1 MHz) enabling power transfer to
millimeter-scale implants at centimeter-scale depths [45, 46].

In this thesis, first, we present a single color fluorescence image sensor. A single piezo-
ceramic is controlled by the sensor for wireless power transfer and data communication up
to a depth of 2 cm. To eliminate bulky optical lenses, a microfabricated angle-selective
collimator is utilized to restrict the angle of incident light resulting in sharper images with
higher resolution building on our previous work [33, 47]. The device powers up using wireless
energy from the US link, and following commands encoded in the US transmissions proceeds
to illumination using a µLD while simultaneously capturing an image from fluorescently
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Figure 1.2: Concept of a fully wireless, implantable imager for real-time monitoring of immune
response.

labeled targets. Next, it serially converts each pixel to a digital value and transmits data
back to an external transducer via US backscattering.

While the first sensor shows significant progress toward a wireless fluorescence imaging
system [48, 49, 50], this system has several limitations. It incorporates a large ∼1 mF off-chip
capacitor for energy storage. It only operates at 2 cm depth, constraining its application to
superficial tumors while exceeding FDA US safety limits by 26% due to high acoustic power
requirements. Moreover, the sensor only images a single fluorescent channel, lacking both a
wirelessly programmable laser driver to take images with multiple excitation lasers as well as a
multi-bandpass optical filter necessary for multicolor fluorescence imaging. Additionally, due
to in-pixel leakage during readout, the sensitivity of the imager when operating wirelessly is
limited to high concentrations of fluorophores, rendering it insufficient for imaging biologically
relevant samples.

Theses limitations motivated the design of the second generation of the sensor, a fully
wireless, miniaturized fluorescence image sensor capable of three-color fluorescence imaging
of fluorescent beads, enabling real-time, chronic monitoring of cellular interactions at depth.
Wired connections and batteries are eliminated by power harvesting and bi-directional
communication through ultrasound (US). The new system achieves significant improvements
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in performance, size, and programmability, specifically designed for multicolor imaging. The
differences between the two sensors are discussed in detail. The new system shows fully
wireless operation at 5 cm depth in oil, requiring 221 mW/cm2 US power flux density (31% of
FDA limits) for power harvesting and transmitting data with a bit error rate (BER) less than
10−6 through US backscatter. It powers three different-wavelength laser diodes programmed
through US downlink and incorporates a multi-bandpass optical frontend building on the
design in [50] to enable three-color fluorescence imaging to detect multiple cell types.

1.5 Thesis Orientation

This thesis is organized into eight chapters. Chapter 2 outlines the design specifications of
a wireless chip-scale fluorescence image sensor and introduces the essential components needed
to develop the device. Chapter 3 discusses the design of the first generation of the sensor,
”A single color wireless fluorescence image sensor”, and chapter 4 presents the performance
expanding on the work in [50]. Following the challenges of the first generation of the sensor
described in chapter 4, in chapter 5, we introduce the second generation, ”A multi color
wireless fluorescence image sensor” and showcase the performance in chapter 6 expanding on
the work in [51]. Chapter 7 introduces an deep learning based image processing technique to
obtain more information from the images acquired with the sensor in the previous chapters.
The conclusion and future directions are provided in chapter 8.

1.6 Contributions

The work presented in this thesis is adapted from the following articles:

1. R. Rabbani*, M. Roschelle*, S. Gweon, R. Kumar, A. Vercruysse, N. W. Cho, M.
H. Spitzer, A. M. Niknejad, V. M. Stojanovic, M. Anwar, ”17.3 A Fully Wireless,
Miniaturized, Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring
in Cancer Therapy,” 2024 IEEE International Solid-State Circuits Conference (ISSCC),
San Francisco, CA, USA, 2024, pp. 318-320. (* Equally credited authors)

2. R. Rabbani, H. Najafiaghdam, M. Roschelle, E. P. Papageorgiou, B. R. Zhao, M. M.
Ghanbari, R. Muller, V. Stojanovic, M. Anwar, ”Towards A Wireless Image Sensor
for Real-Time Fluorescence Microscopy in Cancer Therapy,” in IEEE Transactions on
Biomedical Circuits and Systems (2024).

3. H. Najafiaghdam, R. Rabbani, A. Gharia, E. P. Papageorgiou, M. Anwar, ”3D
Reconstruction of cellular images from microfabricated imagers using fully-adaptive
deep neural networks”. Scientific Reports 12, 7229 (2022).

4. R. Rabbani, H. Najafiaghdam, B. R. Zhao, M. Zeng, V. M. Stojanovic, R. Muller,
M. Anwar ”A 36×40 Wireless Fluorescence Image Sensor for Real-Time Microscopy in
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Cancer Therapy,” 2022 IEEE Custom Integrated Circuits Conference (CICC), Newport
Beach, CA, USA, 2022, pp.

5. R. Rabbani, H. Najafiaghdam, M. M. Ghanbari, E. P. Papageorgiou, B. R. Zhao,
M. Roschelle, V. M. Stojanovic, R. Muller, M. Anwar, ”Towards an Implantable
Fluorescence Image Sensor for Real-Time Monitoring of Immune Response in Cancer
Therapy,” 2021 43rd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), Mexico, 2021, pp. 7399-7403.

Personal Contribution: I have been involved in developing and brainstorming the projects,
design, measurements and debug of the both sensors in chapters 2-6. I have contributed to
the synthesis of the dataset and design and test of the ResNet+CNN model in chapter 7.

Acknowledgments: H. Najafiaghdam, B. R. Zhao, M. M. Ghanbari and E. P. Papageorgiou
contributed to the design and testing of the first generation of the sensor. M. Roschelle
contributed to testing the first generation. M. Roschelle and I have contributed equally
to the design, measurement and figure generation of the second generation. S. Gweon, R.
Kumar and A. Vercruysse have been involved in the design and testing process of the second
generation. M. Roschelle contributed to the ex vivo experiments conducted in collaboration
with N. W. Cho, Prof. M. H. Spitzer. I truly appreciate technical expertise, support and
guidance of Prof. M. Anwar, Prof. V. Stojanovic, Prof. R. Muller and Prof. A. Niknejad for
all the research presented in this thesis.
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Chapter 2

Sensor for Wireless Fluorescence
Imaging

To design a wireless system for fluorescence imaging, as illustrated in Fig. 1.2, system-level
integration of the IC and the optical source (as light cannot penetrate from an external source
deep into the tissue) is essential. Fig. 2.1 shows a diagram and mechanical assembly of the
full system on a flex PCB with all external components. The miniaturized wireless system
consists of 1) µLDs for in-situ illumination, 2) an optical frontend comprising of angle selective
structures, on-chip (angle selective gratings) or off-chip (fiber optic plate), as resolving optics
and a filter for lensless fluorescence imaging, 3) a 1.5×1.5×1.5 mm3 piezoceramic (Lead
Zirconate Titanate, PZT) as the US transceiver; 4) off-chip capacitors for energy storage;
and 5) an ASIC to integrate the imaging, wireless power and data transfer and optical source
control functionality.

Figure 2.1: (a) To-scale diagram of the full system. (b) Mechanical assembly.

Quantifying the fluorescence signal from cell foci in immunotherapy is the key to determin-
ing the specifications of the device, the size of the storage capacitor and the requisite optical
power from the light source. This section describes the approach to quantify the fluorescence
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signal from a cluster of cells, outlines the requirements for the external components of the
system and derives design specifications for the ASIC.

2.1 Fluorescence Imaging

Fig. 2.2 illustrates the principle of fluorescence imaging. The fluorophores are first
conjugated to a probe (Fig. 2.2(a)), such as an antibody, targeted toward a cell type of
interest [27]. For in vivo imaging, the conjugated probe can be administered systemically
through intravenous injection, binding only to targeted cells. The fluorophore determines the
wavelength for imaging, and the antibody specificity ensures labeling the target cell type.
Numerous organic fluorophores have shown low toxicity at doses relevant for imaging [52]
and a number of fluorescent probes are FDA-approved or in clinical trials, including some
using Fluorescein (FAM) and Cyanine5 (Cy5) and Cy5.5, [53], the fluorophores in our ex
vivo studies. The conjugated probes have a half-life of days-weeks before the injections need
to be repeated [54]. A list of probes for fluorescence imaging that are either FDA-approved
for use in humans or are undergoing clinical translation is included in [53]. After labeling
the cells, the fluorophores are excited near their absorption peak (λEX) and emit light at
a slightly longer wavelength with a peak at λEM (Fig. 2.2(b-c)). For organic fluorophores
typically used in in vivo studies, the difference between the absorption and emission peaks,
or Stokes shift, is 10-30 nm (18 nm for Cy5 and 26 nm for FAM). Moreover, due to the small
absorption cross-section of the fluorophores relative to the illuminated field of view (FoV),
the excitation light is often 4 to 6 orders of magnitude stronger than the emission light.

Thus, in order to detect the weak fluorescence signal, an optical filter with an optical
density (OD) ≥ 6 is required to attenuate out-of-band excitation light that would otherwise
saturate the sensor. Avoiding a filter altogether through time-gated imaging [34, 55, 56]–where
excitation and imaging are separated in the time domain–leads to inadequate excitation
rejection and low signal intensities with typical organic fluorophores, which have fluorescence
lifetimes less than 10 ns [57]. Moreover, background subtraction in the electrical domain [36]
adds additional noise to the image and is challenging in vivo as the excitation background is
dependent on tissue scattering.

For multicolor imaging, a variety of organic fluorophores are available with absorption and
emission wavelengths spanning the visible and NIR spectrum [58]. Their narrow absorption
and emission spectra allow for multiplexed imaging using a monochrome sensor, by taking a
separate image at each excitation wavelength. Therefore, multicolor fluorescence imaging
requires multiple excitation sources, and a multi-bandpass filter to block all excitation
wavelengths while passing fluorescence emissions.
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Figure 2.2: Fluorescence imaging. (a) Each cell type is labeled with a different color fluorescent
probe. (b-c) Fluorophores are excited near the absorption peak and emit light at a slightly
long wavelength. For multicolor imaging, a multi-bandpass filter passes emissions while
blocking excitation.

2.2 Light Sources

In addition to the emitted photons, the scattered excitation light from the background
contributes to the photodiode signal. Given the high intensity of excitation compared to
emission, even small tail emissions of the LED at higher wavelengths will obscure the signal.
This can be addressed by covering the LED with an excitation filter or use of a laser diode.
For simplicity, we chose a laser diode.

In order to achieve deeper penetration of the excitation and lower tissue autofluorescence
[59, 60], for the first generation of the sensor, a µLD with a peak wavelength of 635 nm is
chosen over lower wavelengths. The measured power-current-voltage (PIV) characterization
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of the edge-emitting µLD (250x300x100 µm3, CHIP-635-P5, Roithner LaserTechnik GmbH)
using a power meter (PM100D, Thorlabs) is shown in Fig. 2.3. The nominal forward voltage
and current of 2.1 V and 37 mA, respectively, result in a total measured optical power of 3.4
mW and an electrical to optical efficiency of 4.4%, necessitating significant power delivery to
the sensor for fluorescence imaging. Details of supplying the µLD while imaging the samples
are included later in the chapter.

Figure 2.3: PIV characteristic of the 635nm µLD used in the first generation of the sensor.

For the second generation of the ASIC, we use µLDs with wavelengths of 650 nm
(250×300×100 µm3, CHIP-650-P5, Roithner LaserTechnik GmbH) and 455 nm (120×300×90
µm3, LS0512HBE1, Light Avenue). A third 785 nm laser diode (L785P5, ThorLabs) in a
TO-can package is used for proof-of-principle three-color fluorescence imaging and will be
replaced by µLDs in the future. Laser diodes are chosen instead of LEDs because LEDs
have broader spectral bandwidths, which can overlap with fluorescence emissions. These
out-of-band emissions necessitate additional excitation filters on the LEDs that complicate
sensor design and waste optical power output [61]. Fig. 2.4(a) shows measured PIV curves for
all three lasers with their calculated wall plug efficiencies (POptical/PElectrical) in Fig. 2.4(b).
The lasers have different forward voltages: ∼2 V for the 650 nm and 785 nm lasers and
∼4.5 V for the 455 nm laser. Because of their several ∼mA threshold currents, the lasers
operate most efficiently near their maximum current ratings. These characteristics motivate
the design of a laser driver with programmable current that is tolerant of a wide range of
forward voltages.
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Figure 2.4: Measured laser diode (a) PIV curves and (b) wall plug efficiencies of µLD used in
the second generation of the sensor.

2.3 Optical Frontend Design

The optical frontend design expands on our prior work [47] and consists of a multi-bandpass
interference filter and a low-numerical-aperture fiber optic plate (FOP). Interference filters
offer more-ideal filter characteristics than absorption filters [41] or CMOS metal filters [36,
35, 62], which do not allow for optimal excitation and imaging of organic fluorophores due
to their gradual cutoff transitions, weak out-of-band attenuation, and significant passband
losses. Hybrid filters combining interference and absorption filters [34, 37, 63] retain the
poor passband characteristics of absorption filters. Another major advantage of interference
filters is their ability to support multiple passbands across the visible and NIR spectra for
multicolor imaging.

However, interference filters are sensitive to angle of incidence (AOI) [64]. At increasing
AOIs, the filter passbands shift towards shorter wavelengths, eventually transmitting the
excitation light. This property is problematic for lensless imaging where the AOI is not
precisely controlled and the excitation light is often angled between the sensor and the tissue
above it. To mitigate this effect, the FOP acts as an angle filter, blocking off-axis excitation
light that would otherwise pass through the filter. The FOP also improves resolution by
eliminating divergent fluorescent emissions that contribute to blur, albeit at the cost of
reducing the overall collected signal.

Fig. 2.5(a) shows the normal incidence (AOI=0◦) transmittance spectra of the filter
(ZET488/647/780+800lpm, Chroma Technologies Corp) which has three passbands with
greater than 93% average transmittance. The first two bands pass the emissions of FAM
and Cy5, the fluorophores used in our ex vivo imaging studies. The 800 nm band, provides
another fluorescence channel in the NIR-I window (700–900 nm), a preferred region for in
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vivo imaging where tissue scattering, absorption, and autofluorescence are minimal compared
to the visible spectrum (400–700 nm) [65, 66]. At normal incidence, the filter provides more
than 6 OD attenuation at both 450 nm and 650 nm as well as more than 5 OD attenuation at
785 nm, which are the wavelengths of the lasers used in the second generation of the sensor.

Figure 2.5: (a) Normal incidence transmittance spectra of the multi-bandpass interference
filter. (b) Angular transmittance of the filter with and without the FOP measured at the
excitation laser wavelengths.

The 500 µm-thick FOP (LNP121011, Shenzhen Laser, LTD) consists of a matrix of 10
µm optical fibers embedded in black, highly absorptive glass. It has a normal incidence



CHAPTER 2. SENSOR FOR WIRELESS FLUORESCENCE IMAGING 14

transmittance of 35% and a full-width at half maximum (FWHM) of 10◦ at 455 nm, which
both reduce at longer wavelengths. Beyond an AOI of 35◦ the FOP provides more than 6
OD attenuation of all three lasers.

Fig. 2.5(b) shows the transmittance through the filter with and without the FOP across
different AOIs measured at the excitation wavelengths using collimated, fiber-coupled lasers.
The filter attenuation at AOI=0◦ is different from that in Fig. 2.5(a) due to out-of-band
emissions from the lasers. While the filter blocks the excitation lasers near 0◦, the laser
transmittance rapidly increases beyond AOIs of 20◦ for 650 nm and 785 nm and 60◦ for 455
nm. However, with the FOP, the optical frontend provides more than 6 OD of attenuation of
all excitation lasers at AOIs greater than 5◦. The maximum measured attenuation is limited
by the sensitivity of the power meter (PM100D with S120C Photodiode, Thorlabs) used for
this measurement.

For fabrication, the interference filter is directly deposited on the FOP, resulting in a total
thickness of approximately 510 µm. The optical frontend is fixed to the chip using optically
transparent epoxy (SYLGARD 184, Dow Chemicals). The filter is placed in between the chip
and the FOP to ensure that it blocks any excitation light scattered through the FOP [47].

2.4 Ultrasound Link

We use a 1.5×1.5×1.5 mm3 piezoceramic (lead zirconate titanate) as the US transceiver
for wireless power transfer and bi-directional communication. The thickness of the piezo is
directly proportional to the harvested voltage and inversely proportional to the operation
frequency [45]. Therefore, we chose a thickness of 1.5 mm to balance minimizing the overall
size of the piezo with the need for harvesting a high enough voltage (>5 V DC) to drive the
lasers while operating at a lower frequency with less tissue attenuation as tissue attenuation
increases with higher frequencies of operation. An aspect ratio of one is selected as a
compromise between volumetric efficiency and backscattering amplitude, as outlined in [67].

Fig. 2.6 shows the impedance and harvested open circuit voltage of the piezoceramic across
frequency inside canola oil at a depth of 2 cm for the first generation of the sensor. Canola
oil has 0.075 dB/cm acoustic attenuation at ∼1 MHz and 1.34 MRayl acoustic impedance
[68] similar to the impedance (1.4–1.67 MRayl) of tissue [44]. The piezo is mounted on a
flexible PCB for testing. The frequency dependency of the normalized harvested voltage is
shown for the piezoceramic both without loading and loaded with the equivalent model of the
chip (refer to chapter4 for the setup). To maximize the harvested voltage according to the
resonance spectrum of the piezoceramic and the US transducer, the frequency of operation
is tuned in between the series and parallel resonance frequencies of the piezoceramic at 960
kHz.

For the second generation of the device, the piezo is mounted on a similar flex PCB (Fig.
2.7(a)). On the backside of the piezo, an air gap is created by covering a through-hole via
with a 3D-printed lid. The air gap reduces the acoustic impedance of the backside medium
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Figure 2.6: Characterization of the piezoceramic used in the first generation of the sensor:
Frequency spectrum of (a) magnitude and imaginary part of the impedance and (b) normalized
harvested voltage of the piezoceramic with no load vs. being loaded with the equivalent of
the chip’s input impedance.

from 1.34 MRayl in canola oil to ∼0 MRayl in air, decreasing the electrical impedance of the
piezo to improve the power transfer efficiency [69].

Fig. 2.7(b) shows the impedance spectrum of the piezo measured within canola oil. The
series and parallel resonance frequencies of the piezo occur at, fS=894 kHz and fP=960 kHz,
respectively. Fig. 2.7(c) shows the normalized harvested voltage across frequency when the
piezo is unloaded and when it is loaded with the chip (refer to chapter 6 for the setup). While
operating near fS minimizes the impedance, the open circuit voltage is maximized near fP.
Therefore, the maximum harvested voltage with the chip occurs between fS and fP at 920
kHz.

2.5 Fluorescence Signal Quantification

To derive the required harvested energy per image for sizing the storage capacitor, we
estimate the signal detected by a pixel from Cy5-labeled CD8+ T-cells, a type of immune
cell imaged in our ex vivo studies. The total emitted optical power, PCELLS, from a total of
NCELLS fluorescently labeled cells as a function of the input excitation flux is given by

PCELLS = NCELLS NFL σ QY IIN

NFL is the number of fluorophores bound to each cell. Typically, between 0.5–2.1×106

CD8+ antibodies bind to a single CD8+ T-cell [70] with each antibody containing 2–8
fluorophores [71]. σ and QY are the absorption cross-section and quantum yield of the
fluorophore, respectively (9.55×10-16 cm2 and 20% for Cy5 [72]). σ is a measure of the ability
of the fluorophore to absorb photons and QY is the ratio of the number of photons emitted
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Figure 2.7: Piezoceramic used in the second generation of the sensor. (a) Piezo assembly with
the air gap. (b) Measured electrical impedance of the piezo across frequency. (c) Measured
harvested voltage across frequency with the piezo in open circuit condition (VOC) and loaded
by the chip.
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to the number of photon absorbed. Assuming that the 650 nm µLD uniformly illuminates
the FoV of our sensor (2×2.2 mm2) and outputs 10 mW of optical power at ILD=20 mA bias
(see Fig. 2.4), the optical power density, IIN, is approximately 223 mW/cm2. Therefore, the
estimated total fluorescence signal from 100 cells is 20 nW. This signal can be converted to
the expected photodiode current, IPD, according to

IPD = PCELLS
Apixel

4πz2DIST

(1− LFOP ) R

This equation accounts for both the spreading loss over the zDIST≈500 µm distance to the
pixel with area, Apixel (44×44 µm2 in our design) and the insertion loss of the FOP, LFOP

(∼75% at 650 nm). Given that the pixel has a responsivity, R, of 0.21 A/W at 650 nm, we
expect IPD on the order of 6.3 fA.

2.6 System Design Considerations

A simplified diagram of the pixel during imaging is shown in Fig. 2.8. In the capacitive
trans-impedance amplifier (CTIA)-based pixel architecture reused from [33] the photocurrent
is sensed by integrating it on a capacitor, CINT=11 fF, during the exposure time, TEXP,
resulting in a detected signal of

Vsig =
IPD TEXP

CINT

Sensing the fluorescence signal relies on Vsig exceeding the noise floor, characterized by
the signal-to-noise ratio (SNR). SNR is defined as:

SNR =
signal

noise
=

Vsig√
v2shot + v2n

=
Vsig√

2qeIDTEXP

C2
INT

+ v2n

Figure 2.8: Photocurrent integration in a simplified pixel diagram during the exposure time.

The noise has two components: shot noise, v2shot, from the photocurrent and dark current,
ID = IPD + Idark and readout noise, v2n. Readout noise refers to the overall noise contribution
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of the in-pixel circuitry. For a CTIA-based pixel, it consists of the thermal and flicker noise
of the transistors in the pixel amplifier, and the thermal noise of the sample and hold and
reset switches. Fixed pattern noise from dark current and pixel variation can be eliminated
by subtraction of the dark imager or calibration of the pixels, hence they are not included
in the analysis. qe is the charge of an electron. A detailed quantification of pixel noise is
presented in [33].

Generally, SNR can be improved by increasing the total imaging time either through a
longer exposure time, TEXP, or by averaging multiple images. Alternatively, we can maintain
the initial SNR after decreasing TEXP, by averaging to reduce uncorrelated noise by a factor
of

√
n where n is the total number of averages. For the overall measurement time to stay

constant, the number of averages can be scaled by the same ratio of downsizing TEXP. SNR
of the image with an exposure time of TEXP/n after taking n averages is given by

signal =

∑n
i=1 xi

n
=

1

n

n∑
1

IPD
TEXP

n

CINT

=
IPDTEXP

nCINT

noise =
1

n

√√√√ n∑
1

σ2
i =

1

n

√√√√ n∑
1

v2shot + v2n =
1

n

√
TEXP

C2
INT

2qeID + nv2n

SNR(n TEXP/n) =
signal

noise
=

IPDTEXP

CINT√
TEXP

C2
INT

2qeID + nv2n

This equation enables study of the SNR tradeoff between (1) taking a single exposure
of TEXP (n=1) and (2) averaging n images with exposures of TEXP/n. The factor of n only
appears in the readout noise term. Therefore, if shot noise is the dominant source of noise,
for small n, both (1) and (2) result in the same SNR. However, with increasing n and lower
exposure time per frame, readout noise dominates the overall noise of the averaged image,
necessitating a greater number of averages to maintain the same SNR as a single exposure.

Using the estimated IPD and the measured noise values reported in chapter 6, we calculate
that without averaging, a TEXP of 98 ms is required to achieve an SNR of 20 dB (10×). This
result corresponds to a minimum required energy (ILDVLDTEXP ) of 4.16 mJ per image.

Delivering ILD=20 mA from the incident US signal, given a piezo impedance of 5.4 kΩ
at 920 kHz, requires an open circuit voltage of at least 108 V, which is not practical within
FDA limits. Therefore, harvested energy must first be stored on a capacitor to later supply
the lasers when taking an image. To derive requirements for size of the storage capacitor,
CSTORE, the simplified model of the chip in Fig. 2.9 can be used. The laser driver is modeled
with a current source turned on only during the exposure time. During exposure, the current
of the laser diode, ILD, dominates the current consumption of the rest of the chip modeled
with a single current source.

The size of the storage capacitor, CSTORE, is determined by CSTORE = ILDTEXP

∆VCSTORE
in order

to supply ILD for the duration of TEXP. ∆VCSTORE is the voltage drop on the capacitor
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Figure 2.9: Simplified block diagram during the exposure time with linear voltage drop on
VCSTORE to supply the laser driver from CSTORE.

during TEXP. Maximizing ∆VCSTORE results in a smaller capacitor size, but is limited by the
maximum harvested voltage and the minimum supply requirements for operating the chip
or laser. Assuming a ∆VCSTORE=3 V, results in a capacitor size of 650 µF. Capacitors of
this size are large physical components, increasing implant volume as in [50]. Therefore, the
capacitor size can be minimized by reducing the required energy per image by shortening
TEXP through the averaging strategy discussed above while keeping ILD and therefore the
optical power of the µLD constant.

Fig. 2.10(a) compares SNR of the pixel in a dark image with different levels of averaging.
Each data point on the black curve represents an exposure time of TEXPi and a number of
averages ni such that the total exposure time, niTEXPi = 96ms, stays constant. As TEXPi

decreases (and ni increases), readout noise dominates the pixel output noise (as shot noise
decreases with lower TEXPi), requiring additional averages to achieve the same SNR of a
single exposure. The orange curve in Fig. 2.10(a) shows the increased number of averages,
xi>ni, required to reach an SNR (shown in blue) within 90% of the initial SNR for TEXP=96
ms. Therefore, using averaging to decrease exposure time for individual frames increases
the overall imaging time to greater than 96 ms. As shown in Fig. 2.10(b), the capacitor
size decreases linearly with lower TEXPi ranging from 640 µF for TEXPi=96 ms to 50 µF
for TEXPi=8 ms. Charging such a capacitor through US takes several seconds to minutes,
dominating the frame time (see chapters 4 and 6). Thus, for small exposure times, the
additional required averages can significantly increase the total imaging time. The total
imaging time must be less than several minutes to capture the motion of immune cells, which
have mean velocities of 10 µm/min in the tumor microenvironment [73, 74].

Following these guidelines, we chose an 0805 100 µF tantalum capacitor for CSTORE with
a size of 2×1.25×0.9 mm3 (0.002 cm3). This capacitor can supply 20 mA of laser current for
TEXP=16 ms while dropping its voltage by 3 V. Averaging is employed to enhance SNR to
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Figure 2.10: (a) SNR of the pixel in a dark image with different levels of averaging. (b)
Capacitor size vs. exposure time.

levels comparable to those achieved by longer exposure times. We use a tantalum capacitor
as opposed to a ceramic capacitor, which can lose up to 40–80% of its initial capacitance as
the DC bias voltage increases, reducing the dielectric permittivity [75].

2.7 FoM for a Wireless Image Sensor

The design of the imager array is based on our previous work in [33]. Each pixel
incorporates a 44x44 µm2 photodiode and has a pitch of 55 µm. The pixels are fabricated in
a 180 nm 1.8/5/32 V TSMC CMOS process. Imaging is performed using a global shutter
as the µLD only illuminates the sample for a limited time, which is by far the primary
power-consuming operation of the imager, and therefore all pixels must image during this
limited time window. This demands that each pixel be able to amplify, sample and hold
its data until it is read out via a single channel US-based uplink which will be discussed in
chapter 3.

The pixel size (Wpixel) and the integration (exposure) time (TEXP) are chosen to maximize
sensitivity to the dynamics of small cell foci (a few 100 cells) to evaluate the immune
response. To capture cell movements in real-time, the pixel must be small enough to track
the displacement of cells within consecutive frames. The minimum interval between frames is
constrained by the charging time of the storage capacitor as it is used to supply the energy
for the µLD during TEXP. Therefore, given a constant power consumption of the µLD, the
minimum frame time is a function of the time it is switched on, TEXP. For each TEXP, the
pixel dimension must be consistent with the typical displacement of cells with an average
velocity of 10 µm/min between each frame.
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Pixels with dimensions much larger than this displacement may miss the changes in the
cell proliferation profile. Conversely, designing an imager array with the same imaging area
using smaller pixels results in unnecessarily oversampling the scene. As discussed in [76]
there is a fundamental tradeoff for Wpixel between maximizing the signal and maintaining
spatial resolution. The received fluorescence signal is proportional to the active area of the
photodiodes until the field of view of a pixel matches the size of the foci being imaged. It
should be noted that the goal is to track changes in cellular distribution (in response to
therapy), and not to obtain intracellular or single-cell imaging. Thus, too small of a pixel
will capture noise with only a minimal detected signal which results in a low SNR. The
typical ∼10 µm dimension of each cell introduces a lower bound for the pixel size. Given
the size of the pixel’s peripheral circuitry needed to ensure low noise in-pixel amplification
and sample and hold, shrinking Wpixel lowers both the fill factor and the sensitivity to light.
Subtending the same field of view inside the tumor microenvironment with smaller pixels
results in larger arrays with higher power consumption and longer readout times. The spatial
resolution depends on both the resolution of the angle-selective structures as well as the pixel
dimension, and therefore lowering the pixel size significantly beyond the optical resolution
will not result in further improvements in resolution. Conversely, larger pixels that reduce
spatial resolution collect more dark current in addition to the photodiode signal, both as a
linear function of the area. Given that dark current in this technology is the dominant factor
restricting the dynamic range of the pixel, larger pixel area results in higher photodiode shot
noise limiting SNR and thereby the minimum detectable signal.

To quantify the trade-offs outlined above, we propose a figure of merit (FoM) that
incorporates the specifications of both the imaging frontend and the wireless system. The
proposed metric consists of 1) SNR to ensure sufficient image quality while capturing
multicellular dynamics, 2) spatial resolution to enable resolving small feature sizes, and 3)
the value of CSTORE (CSTORE = ILDTEXP

∆VCSTORE
) which determines the overall device form factor

to assess practicality of eventual implantation. Given the importance of image quality (SNR,
resolution), and, secondarily the need to miniaturize the form factor of the implant, we
propose an FoM given by

FoM =
SNR

Res× CSTORE Size.5

Optimization is performed on Wpixel and TEXP. The power of each term is chosen to
balance dependency on the order of the independent variables. The size of the device is
dominated by the storage capacitor which, given a constant µLD power, is proportional to
TEXP. Resolution is proportional to the pixel dimension.

Both the photodiode and dark current are proportional to the area of the pixel Apixel =
W 2

pixel for square-shaped pixels with a width of Wpixel. VSWis the maximum voltage swing
at the output of the pixel. The maximum voltage generated from the photodiode signal is
constrained by the contribution of the dark current in the pixel output voltage (Vdark). This
introduces an upper bound for the maximum signal that can be detected by each pixel.
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The spatial resolution of the imager is defined by the dimension of the pixel and the
optical angle selective structures. Assuming that the optical structures provide sufficient
resolution, the overall resolution is limited by Wpixel. Fig. 2.11 demonstrates FoM and
its contours for combinations of Wpixel and TEXP. The blurred region corresponds to the
design space resulting in SNR values lower than 10 dB which lack adequate image quality for
accurate detection of the desired cell clusters. The dashed line represents the lower bound of
the pixel size needed to capture cell displacements in consecutive frames. This is computed
given average cell velocities (10 µm/min) and the minimum achievable frame time for each
TEXP. Oversampling the scene with an imager made with smaller pixels than the lower bound
increases the number of pixels, and thereby the power consumption and data transmission
period. To maintain adequate resolution in detecting multicellular-level dynamics in the
tumor microenvironment, an upper bound on the pixel size is defined as highlighted in Fig.
2.11(b).

Figure 2.11: (a) Normalized FoM for a range of Wpixel and TEXP. (b) FoM contours with
1) blurred regions corresponding to SNR<10 dB, 2) dashed line representing the sufficient
lower bound Wpixel for each TEXP according to cell dynamics and 3) highlighted region for
the upper bound on Wpixel to ensure sufficient resolution.

According to the FoM optimization analysis, an imaging array of 36×40 pixels with a 55
µm pitch is chosen to fit a 44×44 µm2 photodiode, an in-pixel amplifier, and sample and hold
circuits for each pixel. To visualize multicellular clusters of a few 100 cells illuminated with
the µLD using these pixels, an exposure time equal to 32 ms is chosen to optimize the FoM
within 95% of its maximum. With TEXP programmability, our proposed system can maintain
a high FoM tailored to capture different cell profiles and fluorescence signal intensities in the
tumor microenvironment.
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2.8 Contributions

The figures in this chapter are adapted from the following articles:

1. R. Rabbani*, M. Roschelle*, S. Gweon, R. Kumar, A. Vercruysse, N. W. Cho, M.
H. Spitzer, A. M. Niknejad, V. M. Stojanovic, M. Anwar, ”17.3 A Fully Wireless,
Miniaturized, Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring
in Cancer Therapy,” 2024 IEEE International Solid-State Circuits Conference (ISSCC),
San Francisco, CA, USA, 2024, pp. 318-320. (* Equally credited authors)

2. R. Rabbani, H. Najafiaghdam, M. Roschelle, E. P. Papageorgiou, B. R. Zhao, M. M.
Ghanbari, R. Muller, V. Stojanovic, M. Anwar, ”Towards A Wireless Image Sensor
for Real-Time Fluorescence Microscopy in Cancer Therapy,” in IEEE Transactions on
Biomedical Circuits and Systems (2024).

Acknowledgments: M. Roschelle designed the optical front end for multicolor imaging,
characterized the light sources and collaborated in establishing system level specifications. The
pixel design and pixel noise contributions were adapted from the work of E. P. Papageorgiou.
M. M. Ghanbari contributed to both the design and measurement of the ultrasound link. E.
Yang assisted in assembling the piezoceramic. M. Roschelle and A. Vercruysse contributed to
the design and assembly of the mechanical package.
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Chapter 3

Design of the Single-Color Wireless
Fluorescence Image Sensor

Fig. 3.1 shows the block diagram of the ASIC including 4 main functional blocks: (1)
power management unit (PMU), (2) imaging front-end, (3) laser driver, and (4) finite state
machine (FSM). The PMU incorporates an active rectifier and several low-dropout voltage
regulators (LDOs) to supply various subblocks.

Figure 3.1: Block diagram of the IC including power management, imaging front end, laser
driver, and FSM. The IC is connected to the piezoceramic, external Cstore, and µLD.

The imaging front-end consists of the pixel array shown in Fig. 3.2(a) with the architecture
of the pixel and the sample and hold in Fig. 3.2(b) and (c) as discussed in [33]. The imager
array is followed by the readout circuitry, buffers, and a differential 8-bit SAR ADC for
reading out and digitizing the analog pixel values as illustrated in Fig. 3.1. The laser driver
supplies a constant current to the laser diode from the charge stored in Cstore. The FSM
controls the timing and operation of the chip and synchronizes it with the external US
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transducer. To obviate the need for bulky optical lenses, on-chip microfabricated structures
based on angle-selective gratings (ASGs) with FWHM of 36◦ are utilized to restrict the angle
of incident light resulting in images with higher spatial resolution. The use of ASGs, along
with in-pixel electronics, yields an effective fill factor of 28%.

Figure 3.2: (a) Architecture of the imager array. (b) Schematic of a pixel including the
photodiode, the pixel CTIA and the replica circuit from [33].(c) In-pixel correlated double
sampling.

The micrograph of the ASIC is shown in Fig. 3.3. The chip measures 2.5 mm by 5 mm
with the pixel array taking up 41% of the overall area. The design and operation of each
block are described in detail in the following:

3.1 Power Management and Control

As shown in the timing diagram in Fig. 3.4, the operation of the chip is divided into
4 states: Charge-Up, Imaging, ADC Operation, and Backscatter Modulation. To eliminate
the complexity of data downlink and ensure that on-chip state transitions are synchronized
with the transducer, the transmitted US carrier is modulated with a pulse sequence. The
different pulse widths of the US signal for each state of operation are programmed with
an FPGA which controls the output of the US transducer shown in Fig. 3.4 (Vpiezo+). A
watchdog control signal demodulates the incoming US waveform’s envelope to navigate the
state transitions of the FSM.

The active rectifier converts the US signal to a DC voltage (Vrect) while charging Cstore up
to 5 V. To initialize the chip and reset the FSM, an on-chip power-on reset (POR) signal is
triggered as Vrect reaches 4.2 V to guarantee that the LDO voltages are established. Various
on-chip LDOs (1 V, 1.8 V, 2.1 V, 2.5 V, 3.3 V) with a total current consumption of 8.2 µA
regulate the supply voltage for the analog front-end, the laser driver, and the FSM. Despite
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Figure 3.3: Chip micrograph with pixel array measuring 2x2.2 mm2. Close-up view of the
pixel with a 55 µm pitch including a 44x44 µm2 photodiode area covered with ASGs and the
readout circuitry.

Figure 3.4: Timing diagram and state transitions of the system with the control signals.

the droop in Vrect during the Imaging state, the LDOs are designed to operate with Vrect

as low as 3.5 V to ensure the functionality of the device after Imaging for ADC Operation
and Backscatter Modulation. A CLK signal with a frequency of 960 kHz is extracted directly
from the acoustic carrier.

Power-intensive blocks including the laser diode driver, the pixel array, the ADC, and
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the buffers preceding the ADC are turned off during Charge-Up to prevent disrupting and
extending the chip’s power-up. The enable signals for the laser diode driver (LDEn), ADC
(ADCEn), and ADC buffers (ΦSEL) are shown in Fig. 3.4. Followed by the Imaging state,
the first rising edge of the watchdog signal is indicative of the end of the Charge-up period.
The exact duration of the Charge-Up state can be empirically determined by characterizing
the rise time of Vrect to reach its final value (5 V) for a given Cstore. During Imaging, the
sample is illuminated by the sensor-powered laser diode and after the image is captured,
the pixels are read out, digitized, and backscattered sequentially. Each pixel’s voltage is
wirelessly transmitted by modulating the impedance of the same piezoceramic used for power
transfer. Data transmission continues until the watchdog timer counts the entire 1440 pixels
based on the transitions of the watchdog signal. The data transfer protocol is discussed later
in this chapter.

3.2 Imaging and Laser Driver Operation

During Imaging, the photodiodes convert incoming photons from the fluorescently labeled
cells into a photocurrent, which is integrated into the feedback capacitor of the pixel CTIAs,
Cint as shown in Fig. 3.2(b). The output voltage is sampled twice, once at the beginning
(VRES), and again at the end of the exposure time (VSIG) generating reference and signal
values respectively, which are subtracted from each other to provide the net signal. This
correlated double sampling (CDS) approach in Fig. 3.2(c) suppresses offset and low-frequency
noise of the pixel. The pixel array is turned on only during the Imaging state when it
consumes a total current of 145 µA. A detailed design of the pixels is presented in our
previous work [33]. The laser driver schematic is shown in Fig. 3.1. To prevent the LD from
overheating, the driver supplies the laser diode with 50% duty-cycled 50 kHz current pulses
as opposed to a continuous current. Therefore, the integration time is effectively half of the
duration of the Imaging state (Tint=32 ms for a 64 ms Imaging state). A PWM controller
sets the frequency and duty cycle of the pulses based on the main CLK frequency. The
output of the PWM block drives a complementary set of switches to control the current of
the laser driver. The supply voltage of the laser driver is regulated to 2.5 V to comply with
the maximum voltage allowed for the laser diode. A small off-chip resistor in series with the
laser diode can adjust the voltage in case of variations. Based on the signal intensity and size
of Cstore, 8 integration times ranging from 8 ms to 64 ms in steps of 8 ms can be configured
into the chip at the package level.

3.3 Data Conversion and Backscattering

Once the image is captured, both the laser driver and the pixel array are switched off and
the FSM transitions lead the chip to ADC Operation and Backscatter Modulation states. At
the beginning of each ADC state, the correct row is selected by digital row-driving circuitry.
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In each row, the reset and signal voltages of each pixel from CDS are read sequentially and
sampled during a 5 µs sampling phase of the differential ADC. During this sampling phase
referred to as ΦSEL in Fig. 3.4, the ADC input buffers turn on and the readout circuitry
selects the correct pixel from the imager array. The output of the ADC is serialized with an
8-bit shift register and is backscattered using pulsed-echo on-off keying (OOK) modulation
to sustain a low bit error rate (BER). Backscatter modulation is realized by altering the
electrical load resistance of the piezoceramic which affects the acoustic reflection coefficient
of the incident acoustic signal [67]. The pulsed-echo modulation scheme is implemented to
separate power and data transfer in the time domain while using a single piezoceramic for
both.

The proposed backscatter modulation scheme is shown in Fig. 3.5. For a depth of 2 cm,
the 8-bit packet of each pixel is divided into 4 sets of 2 bits fit within the 26.7 µs roundtrip
(=2ToF, time-of-flight) of the acoustic waves in oil. The US transducer interrogates the
piezoceramic with the modulated waveform shown in Fig. 3.5. After each sequence of 2 bits,
the transducer stops interrogating for 2ToF, to eliminate interference from the high voltage
power waveform with the weaker backscattered signals. Once the signal reaches the piezo
after a single ToF, it is modulated based on the acoustic reflection coefficient resulting from
the impedance of the chip, RLoad. At the series (fs) and parallel (fp) resonance frequencies,
the normalized backscattered echo amplitude is proportional to RLoad/(RLoad+Rpiezo,s) and
Rpiezo,p/(RLoad+Rpiezo,p), respectively, where Rpiezo,s and Rpiezo,p are the equivalent resistances
of the piezo at fs and fp. For the rest of the frequencies, the reflection coefficient can be
computed given the piezoceramic properties and RLoad as quantified in [67]. A modulation
switch, SMod in Fig. 3.1, is used to modulate RLoad and ultimately the echo amplitude
for OOK modulation. A programmable switch with 4 impedance values (1,2,4,8 kΩ) sets
the modulation depth based on the piezoceramic’s equivalent impedance at the operating
frequency. Finally, after the second ToF, the backscattered signal appears on the transducer
which is now in the receiving mode and will be demodulated and post-processed in MATLAB
to reconstruct the image.

For each pixel, the FSM alternates between ADC and Backscattering states until all the
image data for a single frame is transferred. The conversion and backscattering for all pixels
take 389 ms for an implantation depth of 2 cm.

3.4 Contributions

Some of the figures in this chapter are adapted from the following articles:

1. R. Rabbani, H. Najafiaghdam, M. Roschelle, E. P. Papageorgiou, B. R. Zhao, M. M.
Ghanbari, R. Muller, V. Stojanovic, M. Anwar, ”Towards A Wireless Image Sensor
for Real-Time Fluorescence Microscopy in Cancer Therapy,” in IEEE Transactions on
Biomedical Circuits and Systems (2024).
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Figure 3.5: Backscatter modulation scheme (a) The US transducer interrogates the piezoce-
ramic with a sequence. (b) After 1 ToF, the piezoceramic receives the signal and modulates
the pulses with RLoad according to each bit’s value (c) The backscattered signal is received
by the transducer after a second ToF.

2. R. Rabbani, H. Najafiaghdam, B. R. Zhao, M. Zeng, V. M. Stojanovic, R. Muller,
M. Anwar ”A 36×40 Wireless Fluorescence Image Sensor for Real-Time Microscopy in
Cancer Therapy,” 2022 IEEE Custom Integrated Circuits Conference (CICC), Newport
Beach, CA, USA, 2022, pp.

3. R. Rabbani, H. Najafiaghdam, M. M. Ghanbari, E. P. Papageorgiou, B. R. Zhao,
M. Roschelle, V. M. Stojanovic, R. Muller, M. ANwar, ”Towards an Implantable
Fluorescence Image Sensor for Real-Time Monitoring of Immune Response in Cancer
Therapy,” 2021 43rd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), Mexico, 2021, pp. 7399-7403.

Acknowledgments: B. R. Zhao and M. M. Ghanbari contributed to brainstorming and
developing the project. H. Najafiaghdam and B. R. Zhao were involved in the design of
various blocks including the LDOs, POR circuit, laser driver. M. M. Ghanbari provided
valuable experience and expertise for power management design. The pixel array was adapted
from the work of E. P. Papageorgiou.
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Chapter 4

Performance of the Single-Color
Wireless Fluorescence Image Sensor

4.1 System Characterization

Fig. 4.1(a) shows state transitions of the chip after a 150 s Charge-Up. A 64 ms Imaging
state (TEXP=32 ms) and a portion of the ADC and Backscatter Modulation states are shown.
After a linear 1 V drop during the Imaging state, due to the use of a larger 1.2 mF storage
capacitor to lower the voltage drop, Vrect maintains a voltage higher than 3.5 V. In Fig.
4.1(b), the ADC and Backscattering states are shown for a single pixel with the modulated
piezo signal corresponding to the bit values.

Since Vrect cannot drop below 3.5 V to maintain chip operation, we maximize the peak
harvested voltage on Vrect to allow for minimizing the size of Cstore for the same acoustic flux.
In order to obtain Vrect = 5 V, the acoustic power flux density was increased to 905 mW/cm2
which exceeds the FDA-approved limits by 26%. In the future, this can be mitigated by
lowering the required harvested voltage and using a voltage multiplier to reach the final 5 V.

Fig. 4.2 shows the setup to visualize the output optical power of the laser driver, measured
using the photodiode voltage output of a power meter(PM100D, Thorlabs), Vpd. Vpd is
proportional to the detected optical power and is demonstrated in Fig. 4.3(a) for the duration
of the Imaging state as Vrect drops from 5.2 V to 3 V. As shown in Fig. 4.3(b), Vpd is a 50
kHz, 50% duty-cycled signal tracking the current applied to the laser diode.

The laser driver’s current is measured through the voltage across a 1.4 Ω resistor in series
with the µLD. The laser driver current varies from 38.5 mA to 34.3 mA with a mean of 36.1
mA as Vrect drops from 5 V to 3.5 V. These currents correspond to optical powers ranging
from 4.4 mW to 2.2 mW with a mean of 2.9 mW. The 11.5% current drop throughout the
Imaging state stems from the drop in Vrect leading to a change in the PTAT output current
which determines the laser driver current. This can be improved by using a larger storage
capacitor. This results in the laser driver’s average electrical efficiency of 50%.

The laser diode used in this work is a class III laser (Pout<5 mW). According to the
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Figure 4.1: (a) Measured waveforms during sections of Charge-Up, Imaging, and initial part
of ADC and Backscatter Modulation states. (b) ADC and Backscatter Modulation states for
one pixel.

Figure 4.2: Setup for measuring optical power of the laser diode.

American National Standard for Safe Use of Lasers (ANSI Z136.1-2014) the maximum
exposure equal to 1.1t0.25 J/cm2. Where t refers to the total exposure time of the laser. For
an exposure time of TEXP=64 ms, the maximum radiant exposure allowed is 0.55 J/cm2.
With the current optical output power, the radiant exposure He, is 50 mW/cm2 × 64 ms =
0.0032 J/cm2 which is more than 170x lower than the ANSI limit.

The received backscattered waveform is filtered by an FIR bandpass filter in MATLAB to
improve signal quality. For measurement performed inside oil at Vrect = 5 V (when taking a
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Figure 4.3: (a) Vpd during Tint= 96 ms. (b) 50% duty-cycled, 50 kHz Vpd

dark current image and turning off the laser driver during Imaging) the modulation depth
is 14.1% and data transmission is error-free for 11.52 kbits of data transmitted resulting in
a bit error rate (BER) of better than 8.68×10-5. Lowering Vrect to the minimum of 3.5 V
decreases the modulation depth to 7.4% increasing the BER to 3.47×10-3 for the transmitted
data (11.52 kbits). The histograms of the 0 and 1 bits for each value of Vrect are shown in
Fig. 4.4. Future work to add error correction codes to the on-chip transmitter [77] or further
averaging the image can reduce the error in the final reconstructed image.

Figure 4.4: Modulation depth of 14.1% and BER < 8.6×10-5 (error-free 11.52 kbits of data)
for Vrect = 5 V and modulation depth of 7.4% and BER = 3.47×10-3 for Vrect = 3.5 V.
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4.2 Wired Mode Ex Vivo Imaging of the Immune

Response

The performance of the imaging front-end is tested by imaging ex vivo samples of a mouse
model of cancer in an experiment monitoring the response to immunotherapy over 18 days.

Experimental Setup

During the therapy, a group of 30 mice (strain: 006772) with a functional immune system
(BL6 mice) against cancer (colorectal cancer, MC38 cell line) is selected. For each mouse, the
tumor is implanted by injecting 5 x 105 cells in 100 µL of MC38 cells in each flank. Once the
tumors reach an appropriate size (∼5 mm), the mice are injected with 200 µg of immune
checkpoint inhibitors, anti-PD1 and anti-CTLA4 [78, 79], two of the critical therapeutics
that activate the immune system against cancer. The injections were repeated every 2-3 days,
and 3 mice were collected at each serial time point (spanning 18 days with injection only
happening during the first 12 days). The experiment is conducted under IACUC (Institutional
Animal Care and Use Committee) protocol AN194778. At each time point, for each of the 3
mice, the draining lymph nodes from the tumor are harvested, fixed in formalin, embedded
with paraffin and stained for CD8+ T-cells with the Ventana Discovery Ultra automated
slide stainer. To match with the laser diode excitation wavelength, the samples are stained
with the Cyanine5 (Cy5) dye-labeled antibodies targeted CD8+ T-cells with absorption and
emission peaks at 651 nm and 670 nm, respectively. As a proof of concept, CD8+ T-cell
populations in the lymph nodes of the untreated mice (day0, before injection, n=3) as controls
and mice at the latest timepoint (day 18, n=3) are imaged with our proposed sensor and a
fluorescence microscopy scanner (Axio Scan.Z1, Zeiss), to provide the ground truth.

The experiment setup is shown in Fig. 4.5(a). Illumination is provided with the 635
nm µLD controlled and powered by the chip which illuminates the sample from the top via
transillumination. The bottom electrode of the µLD is mounted using conductive epoxy and
the top electrode is wire bonded to the board. In future work, the µLD will be mounted
on the same platform as the sensor. A 500-µm thick chip-size optical filter (ET FITC-Cy5,
Chroma, EM: 675-755 nm) is epoxied on the chip using Sylgard 184 Silicone Elastomer mixed
with a 1:10 ratio, degassed to remove any bubbles under a vacuum desiccator (SP Bel-Art)
chamber, and then cured at 100◦C for 45 minutes. The filter demonstrates OD>6 at the
excitation wavelength. More details on the optical frontend are included in our prior work
[47]. The edges of the imager are covered with black epoxy (EP1046FG, Resinlab) (1:1 mixing
ratio, cured at 65◦C for 30 minutes) to eliminate bleed-through from the sides and reflection
from the wire bonds as shown in Fig. 4.5(b).

To minimize power consumption, the pixel array is turned off outside the Imaging state
as described previously. At the beginning of the Imaging state, in addition to turning on
the pixel array, it is necessary to reset the pixel and drain the previously stored charge on
Cint with the replica circuit as discussed in [33]. Therefore, with the start of the Imaging
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Figure 4.5: (a) Measurement setup for ex vivomicroscopy in wired mode. The chip is powered
up using a 250 kHz sinusoidal from the function generator instead of the 960 kHz piezo input.
(b) Fabrication of the imager with the optical filter on the top and black epoxy on the sides.

state, both the pixel array power gating control and the pixel reset control are turned on by
the FSM. In cases where the pixel array is not fully switched on during parts of the pixel
reset phase, the pixel array settling time affects sensitivity in detecting weak signals from
biological samples. In future work, this can be addressed by an earlier start of the pixel array
to allow sufficient time for settling before the Imaging state. In this work, since the reset
timing control is embedded in the FSM, this was only possible by overriding the power gating
switch assisted with a wired mode setup while still retaining the power management interface.
In future designs, the control over power-gating the imager array will be independently
adjustable via the wireless link, ensuring the pixel array is on and in a settled state prior to
Imaging. For each frame, the serialized pixel data from the on-chip ADC is streamed out to
reconstruct the image.

Measurement Results and Analysis

The exposure time of the fluorescence scanner is 2 s and the chip images are taken with
TEXP=64 ms. The fluorescence images of the slide samples from untreated and treated mice
taken with the scanning microscope and our imager are presented in Fig. 4.6. CD8+ T-cells
(shown in pink) are overlaid with the cell nuclei of the entire sample (DAPI, shown in blue).



CHAPTER 4. PERFORMANCE OF THE SINGLE-COLOR WIRELESS
FLUORESCENCE IMAGE SENSOR 35

Compared to untreated control samples, the treated mice at later time points are expected to
show a significant increase in the population of CD8+ T-cells indicating successful immune
system activation.

Figure 4.6: Ex vivo images from Zeiss fluorescence slide scanner and our sensor. Images
from the 3 untreated mice (M1-M3) are shown on the left panel. The images from the mice
treated with immunotherapy (M4-M6) are shown on the right. The scale bar is the same for
all images. All units are in Volts. The lymph node sample in M6 spans beyond the field of
view of the sensor thereby the full image is a composite of 2 overlapping images taken with
the sensor.

The images from our proposed system are consistent with the results of the high-resolution
microscope. To quantify the therapeutic response, T-cell density in the sample is computed
by taking the average CD8+ T-cell intensity divided by the total nodal area imaged. The
comparison between CD8+ T-cell density in untreated vs. treated mice is shown in Fig. 4.7.
On average, CD8+ T-cell density increases by 9.8% in the microscope images and 17.2%
for the sensor images after immunotherapy, however, owing to inherent mouse-to-mouse
heterogeneity, there is wide variability in the baseline immune activity in different samples
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resulting in outliers such as M3 and M5. Thus, tracking the dynamic response and the
change in cell populations is more informative than capturing a single time point image
without information about the pre-therapy baseline. This inherent heterogeneity motivates
future work for in vivo experiments where dynamic changes in response can be observed
through implantation of the device without the need for sacrificing the mice and losing the
continuous-time data.

Figure 4.7: Normalized CD8+ T-cell density computed for the sensor and fluorescence
microscope images for untreated and treated mice after immunotherapy. The outlier mice
samples (M3 and M5) are circled.

4.3 Wireless Mode Imaging

After verifying the performance of the individual blocks including the imager, the overall
operation of the system is tested by imaging a fluorescent dye (Cyanine5.5-NHS), distributed
underneath a standard resolution test target (USAF, Thorlabs). In this measurement, the
acoustic interrogation from the transducer powers up the device to capture an image, and
then the backscattered pixel data is transmitted back to the transducer to be processed for
image reconstruction.

Experimental Setup

Fig. 4.8 represents the measurement setup. The piezoceramic is placed at a depth of
2 cm away from the US transducer in oil. An acoustic absorber (Aptflex F28P, Precision
Acoustics) is used to minimize the reflection from the bottom and sides of the tank. The
transducer is controlled by a high-voltage pulser board (Max14808, Maxim Integrated) which
is digitally controlled by an FPGA (Opal Kelly XEM6010) to apply the desired interrogation
sequence to the chip as previously presented in Fig. 3.4 (Vpiezo+). Externally, the piezoceramic
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is connected to the chip in the optical setup where it is fabricated with the optical filter
(ET FITC-Cy5, Chroma). The USAF resolution target is covered with Cyanine5.5-NHS
(Excitation: 683 nm, Emission: 703 nm) underneath and is positioned on top of the imager
array to evaluate the image resolution.

Figure 4.8: Measurement setup for imaging patterns on a USAF resolution target covered
with a coverslip containing Cy5.5 fluorescent dye. The image on the right is a snapshot of
the instant the laser diode is turned on. For visibility purposes, a positive USAF resolution
target is chosen over a negative pattern to show the components underneath the target.

Backscattered Images

The backscattered images taken from the highlighted regions on the resolution target are
shown in Fig. 4.9. The images are taken after a 150 s Charge-Up. Instead of a continuous
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waveform, the ultrasound interrogation is 40% duty-cycled to ensure the safe operation of
the transducer without being overheated. The images are taken after a TEXP=32 ms and
the backscattered data after a total readout time of 389 ms is captured by the transducer.
The frame time is sufficient to capture the movements of cells inside the body [73, 74]. Our
platform is successful in distinguishing metallic patterns and features as small as 140 µm with
a contrast higher than 87%, making it a viable solution for the detection of clusters of a few
hundred cells in immunotherapy. Contrast is calculated from (Vmax-Vmin)/(Vmax+Vmin-2Vbk),
where Vmax and Vmin are the values of the bright and dark pixels in a row scan inside the
region of interest and Vbk is the background signal. The outlier pixels in the dark region
correspond to the BER while backscattering with the lower Vrect values. Taking multiple
images and averaging can further improve image quality.

Figure 4.9: Backscattered images from the highlighted regions on the USAF resolution target.
The scale bar is in Volts.

Image Outlier Correction

In wireless measurements, the bit error rate from backscattering can lead to outlier pixels
in the reconstructed images. The outliers can be detected with an algorithm that compares
the value of each pixel with the surrounding pixels. For each pixel, the mean and standard
deviation of the 8 neighboring pixels is computed (except for the edge or corner pixels with
5 and 3 neighboring pixels respectively). Once the pixel value falls outside a certain range
according to the statistics of the surrounding samples (µ± 2σ in this case, where µ is the
mean and σ is the standard deviation of the neighboring pixels excluding the pixel of interest),
its value is replaced by the average of the surrounding pixels. The algorithm is built on the
function proposed in thislink. The images before and after applying the outlier detection are
shown in Fig. 4.10.

https://github.com/EvanCzako/image-spike-removal
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Figure 4.10: Outlier detection and correction for backscattered images. (a) Initial image. (b)
Same image after outlier removal. The units of pixels are in Volts and the scale bar is the
same for all images.

4.4 Comparison of Current Illumination with

Implanted Setup

The implanted setup in the conceptual diagram in Fig. 1.2 requires the laser diode to be
assembled next to the sensor while illuminating the target via epi-illumination. Compared
to trans-illumination in the current setup shown in Fig. 4.8, epi-illumination lowers the
background signal due to the excitation light being reflected off the surface of the sample
and not directly incident on the surface of the imager. This can positively affect signal-to-
background ratio. However, there are additional effects on signal intensity that need to be
addressed:

1. Spacer thickness: To deliver light via epi-illumination from the edge emitter laser
diode to the sample, a glass spacer between the sensor and the target is required. The
thickness of the spacer increases the distance between the source and the target lowering
the light intensity absorbed by the fluorophores due to spreading of the laser beam.
This effect can be studied using the simplified illumination models shown in Fig. 4.11.

The intensity of the light received incident on the same surface area of the sample in
both cases can be calculated as shown below:

E = I/d2

E is the irradiance at distance d from a point source of light with an overall intensity
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Figure 4.11: Trans-illumination and epi-illumination setups with the chip, optical filter, µLD
and glass spacer. The pixel array covers 40% of the chip area. The spacer length (L) is the
same as the pixel array length (2.2 mm). The µLD is placed as close as possible to the spacer.

of I.
Psample,trans = Etrans ASample

Where Psample,trans is the light intensity received by a surface area of ASample trans-
illuminated from a distance of dt.

Psample,epi = Eepi cosθ ASample

Where Psample,epi is the light intensity received by a surface area of ASample from epi-
illumination at a distance of de and incident angle of θ. The irradiance at the sensor
surface from the fluorescent sample is proportional to:

Esensor,trans ∝ Psample,trans 1/(t0)
2

Esensor,epi ∝ Psample,epi 1/(t+ t0)
2

Where t is the thickness of the glass spacer and t0 is the thickness of the optical filter.

2. Reflection due to oblique incidence: Compared to normal incidence, oblique
illumination increases reflection at the interface between air and the spacer reducing
the transmitted light to the target. The reflection of light at the intersection of air and
a second medium with a refractive index of n can be calculated from:

Rp = (
cosϕ− ncosα

cosϕ+ ncosα
)2

Rs = (
cosα− ncosϕ

cosα + ncosϕ
)2
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Where Rp and Rs refer to reflections of TM and TE waves, respectively [80]. α is the
angle of the incoming beam in air and ϕ is the angle of the transmitted rays in the
second medium. For normal incidence reflection can be simplified to

R = (
1− n

1 + n
)2

The ratio of light transmitted at the intersection of air and the medium n can be
calculated from:

T = 1−R

Assuming n=1.45 for tissue, 96.6% of the light will reach the sample in Fig. 4.11(a).
For oblique incidence, the transmitted power from air to glass (n=1.5) for a range of
incoming angles is shown in Fig. 4.12(a). The reflection coefficient is not calculated for
the interface of glass-tissue because of their similar refractive indices.

Combing the effect of distance (part 1) and reflection (part 2) the relative irradiance
of the emitted light for the same laser power is plotted as a function of the thickness of
the spacer in Fig. 4.12(b). The process is repeated for a range of µLD-sample distances
in trans-illumination. The plots are generated considering a 500 µm thick optical filter,
s-polarized light with lower transmission for worse case, and L=2.2 mm in Fig. 4.11(b). The
dashed lines are generated considering the effect of reflection for both trans-illumination and
epi-illumination.

Figure 4.12: (a) Transmission of light from air to glass for different incoming angles of
incident. (b) comparison of the irradiance between epi-illumination and trans-illumination
across spacer thicknesses.
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As shown in Fig. 4.12(b), compared to trans-illumination at distance of dt=7 mm
(similar to the experimental setup), with an optimized spacer width of 400 µm, the intensity
is reduced by 45% for epi-illumination. The loss in signal intensity can be improved by
increasing the integration time for each frame. Another effect is the lower resolution due
to the larger distance of the sample from the sensor caused by the spacer which linearly
diminishes resolution [81].

4.5 US Envelope Detection Glitches

The schematic of the watchdog circuit is shown in Fig. 4.13(a). The inputs VCTRL+ and
VCTRL- are generated in the active rectifier with the architecture shown in Fig. 4.13(b). Upon
arrival of the US signal on the piezo terminals, transistors M1 and M2 pull watchdog down.
During the rise time of the US carrier, due to the lower strength of VCTRL+ and VCTRL- in
turning on M1 and M2 fully, the internal node V0 will not be fully pulled down, therefore
resulting in glitches at the onset of the US signal at the falling edge of the watchdog.

Figure 4.13: (a) Schematic of the watchdog circuit with glitches. (b) Generation of VCTRL+

and VCTRL- in the active rectifier.

An example of a watchdog glitch is demonstrated in Fig. 4.14. Due to the significance of
watchdog in controlling the state transitions of the FSM, any wrong transition interrupts
the operation of the ASIC during operation. A custom digital control circuit is proposed in
chapter 5 to eliminate the glitches in the watchdog upon the arrival of the US signal.

4.6 Sensor Frontend Sensitivity

The choice of the 250 kHz sinewave instead of the 960 kHz frequency was driven by the
need to lengthen the initial reset phase of the pixel array. As shown in Fig. 3.2(b), the pixel
is reset (during ΦRST) at the onset of Imaging to remove any previously stored charge on
the integration capacitor Cint. ΦRST is set to ∼100 µs assuming a 960 kHz clk extracted
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Figure 4.14: Glitch at the falling edge of watchdog.

from the AC input’s frequency (either piezo or sinewave from the function generator). As
mentioned, the pixel array is power-gated to turn on only during the Imaging state to save
power. However, some of the pixel biasing circuits require more than 100 µs to settle after
activating the pixel array power gating switch. Because the control for turning on the pixel
array and ΦRST from the FSM are shared on the chip, some pixel array biasing circuits are
not fully settled during ΦRST. Without the pixel array fully settled during ΦRST, the imager
sensitivity in detecting weak signals from biological samples is compromised. To address
this, a lower frequency source (250 kHz) has been used instead of the piezo to increase the
duration of reset to 400 µs to provide the pixel array with additional time to settle before the
reset phase is over. Below, pixel sensitivity to input light from an LED with varying currents
is plotted for different durations of ΦRST for a pixel with a 1 V dynamic range.

Fig. 4.15 shows the improvement in the sensitivity of the pixel for a tRST = 400µs
compared to the nominal 104 µs achieved with 960 kHz clk.

4.7 In-pixel Leakage

As shown in Fig. 4.16, the correlated double sampling scheme involves sampling the reset
and signal values on CLR and CLS capacitors, respectively. The reset value is sampled shortly
after the start of the Imaging state (after 200 µs) and the signal value is sampled after the
exposure time (ranging from 8-64 ms). The sampling capacitors (200 fF) are larger than
Cint=11 fF to hold the data for a longer time. Despite the use of larger sampling capacitors,
the pixels at the lower rows of the array suffer from leakage. This leakage issue can be
addressed by implementing a faster readout with more ADCs working in parallel, allowing
for improved data storage in a memory block in future work. Another additional approach is
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Figure 4.15: Pixel output voltage across LED currents for different TRST values.

decoupling readout from data transmission such that the readout speed is not determined by
the speed of the communication protocol. For example, the pixels could be quickly digitized
and stored in memory prior to wireless data transmission. Simulation models for leakage in
this process are not highly accurate; therefore, the following measurement was conducted
to characterize leakage during the readout. The reset (VRES), signal (VSIG), and differential
(VDIFF = VSIG-VRES) values are shown after a 100 ms exposure time. During readout, both
sampling switches (ΦRESET and ΦSIGNAL) are open and the sampled values decay due to
leakage through the switch. (The gate leakage of the source follower amplifiers is negligible).
The decay is voltage-dependent resulting in up to 100 mV decay after 389 ms for typical
values of VDIFF.

Figure 4.16: Leakage effect on VRES and VSIG voltages over the data transmission period



CHAPTER 4. PERFORMANCE OF THE SINGLE-COLOR WIRELESS
FLUORESCENCE IMAGE SENSOR 45

4.8 Contributions

Some of the figures in this chapter are adapted from the following articles:

1. R. Rabbani, H. Najafiaghdam, M. Roschelle, E. P. Papageorgiou, B. R. Zhao, M. M.
Ghanbari, R. Muller, V. Stojanovic, M. Anwar, ”Towards A Wireless Image Sensor
for Real-Time Fluorescence Microscopy in Cancer Therapy,” in IEEE Transactions on
Biomedical Circuits and Systems (2024).

2. R. Rabbani, H. Najafiaghdam, B. R. Zhao, M. Zeng, V. M. Stojanovic, R. Muller,
M. Anwar ”A 36×40 Wireless Fluorescence Image Sensor for Real-Time Microscopy in
Cancer Therapy,” 2022 IEEE Custom Integrated Circuits Conference (CICC), Newport
Beach, CA, USA, 2022, pp.

3. R. Rabbani, H. Najafiaghdam, M. M. Ghanbari, E. P. Papageorgiou, B. R. Zhao,
M. Roschelle, V. M. Stojanovic, R. Muller, M. ANwar, ”Towards an Implantable
Fluorescence Image Sensor for Real-Time Monitoring of Immune Response in Cancer
Therapy,” 2021 43rd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), Mexico, 2021, pp. 7399-7403.

Acknowledgments: M. M. Ghanbari assisted with the measurement process. M. Roschelle
designed the optical frontend.



46

Chapter 5

Design of the Multicolor Wireless
Fluorescence Image Sensor

Fig. 5.1 shows the system block diagram of the ASIC with external connections to the
piezo, off-chip storage capacitors, and µLDs. The ASIC has 4 main subsystems: (1) PMU,
(2) digital control, (3) laser driver, and (4) imaging frontend with readout.

The PMU consists of an active rectifier for high-efficiency AC-DC conversion of the
piezo signal and a charge pump for generating an up to 6 V supply for driving the lasers.
Harvested energy is stored on two off-chip capacitors, CVCP=10 µF and CSTORE=100 µF,
which supply power to the sensor throughout its operation. A PTAT develops current and
voltage references and several LDOs generate stable DC power supplies for the chip. The
sensor is programmed and controlled through a finite state machine (FSM) with 6 states of
operation: charging up the storage capacitors (Charge-Up); programming the image sensor
and laser driver parameters through US downlink (Set TEXP and Set LD); taking an image
(Imaging); digitizing and storing the image (Readout); and wirelessly transmitting the data
through US backscatter (Backscattering). To take an image, the laser driver, configured
during downlink, supplies a µLD using energy stored in CSTORE. The image is captured on a
36x40-pixel array. During Readout, the pixel data is digitized by 4 parallel ADCs and saved
in the memory. Finally, image data is transmitted by modulating the reflected amplitude of
incident US pulses with the SMOD switch. The design and operation of the subsystems are
described in detail below.

5.1 Power Management Unit

Fig. 5.2 shows the schematic of the active rectifier and charge pump. The active rectifier
converts the harvested AC signal on the piezo to a 3 V DC voltage (VRECT), which is
stabilized by a 4.7 nF off-chip capacitor. VRECT is then multiplied by 1.83x to a 5.5 V supply
(VCP) with the cross-coupled charge pump. The cross-coupled topology is chosen for its high
power conversion efficiency for an optimized input range [82]. Compared to a rectifier-only
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Figure 5.1: System block diagram.

architecture used in chapter 3, the charge pump reduces the required harvested AC voltage
on the piezo (Vpiezo) to achieve an output voltage (VCP) of 5.5 V by 1.7x, which results in a
3x lower acoustic power density requirement. Acoustic power density is a square function of
acoustic pressure which is linearly proportional to the harvested AC voltage governed by the
following equation:

Acoustic power density:I =
p2

ρc
, p ∝ VPIEZO ∝ VRECT

where p is the pressure of the acoustic waves, ρ is the density of the propagating medium and
c is the velocity of sound in the propagating medium. Lowering the required harvested piezo
voltage reduces the acoustic power density to ensure operation within FDA safety limits.
However, with this architecture, the overall charging time increases due to the energy loss
from the charge pump. A diode-based voltage clamp prevents charging beyond 6 V to protect
the devices from overvoltage.

During Charge-Up, CVCP and CSTORE are connected through the CSTORE switch and
are charged through the PMU. CSTORE stores energy for the lasers and imager array and a
smaller CVCP stores energy for the readout and digital control. The external US transducer is
duty-cycled to prevent overheating. To minimize power consumption during, the laser driver,
pixel array, readout circuits and memory are switched off. Five LDOs regulate the harvested
voltage into stable DC power supplies and are compensated with off-chip 0201 surface mount
capacitors (10-200 nF). They generate reference voltages of 0.5 V and 2.1 V for the ADCs,
separate 1.8 V power supplies for the digital control and for the pixel array and laser driver
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Figure 5.2: PMU schematic consisting of (a) full-wave active rectifier, (b) cross-coupled
charge pump, and (c) storage capacitors.

biasing, and a 3.3 V supply for the readout. A PTAT circuit generates a 200 nA reference
current, and 1 V and 0.5 V references to bias the chip. To ensure that generated references
are stable across the large voltage drop on VCP from 5.5 to 3.5 V, cascode current mirrors
with high output impedance are used throughout the design.

5.2 Digital Control

The chip operates according to the system timing diagram shown in Fig. 5.3. When VCP
reaches 3.9 V, ensuring stable operation of the chip, the FSM is initialized by a power-on-
reset (POR) circuit. The FSM is synchronized to the external US transducer by on-off-key
modulation of the US envelope, which is demodulated by a watchdog circuit.

The schematic of the watchdog circuit is shown in Fig. 5.4. A latched-based control
eliminates glitches in detecting the presence of the US pulses within 3 µs of the initial rising
edge. The unwanted transitions result from insufficient drive strength of the AC inputs
to transistors M1 and M2 during the gradual ramp-up of the US pulse. To relay timing
information to the FSM, the clock is extracted from the US carrier frequency (920 kHz). An
US pulse longer than 1 ms indicates the end of the Charge-Up state. At this moment, the
CSTORE switch is opened to isolate the storage capacitors allowing VCSTORE to drop to a
minimum of 2.5 V during Imaging while maintaining VCP above 3.5 V for the 3.3 V readout.
This approach allows for maximum energy usage from CSTORE, resulting in a 33% smaller
required capacitance assuming a 5.5 V charge-up voltage.

After Charge-Up, the IC is programmed during the Set TEXP and Set LD states. As shown
in Fig. 5.3, the transmitted downlink data is decoded through time-to-digital conversion of
the US pulse width. In each state, 4 LSBs are discarded to account for timing variations
in the watchdog signal. In Set TEXP, the exposure time, TEXP, is set through the 4 MSBs
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Figure 5.3: System timing diagram.

Figure 5.4: Schematic of watchdog circuit with error-free edge detection.

and is programmable from 0-248 ms with an LSB=8 ms. The next 2 bits set the pixel reset
time, TRST, which can be 100, 200, 500, or 1000 µs. In Set LD, 3MSBs set the 1-hot encoded
laser channel and the next 5 bits determine the laser current, ILD. On the falling edge of
the watchdog after Set LD, the laser driver and the pixel array bias circuits are turned on to
prepare for Imaging.
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5.3 Laser Driver

Fig. 5.5 shows the schematic of the 3-channel laser driver with programmable output
current. To minimize the change in driver current, ILD, across the large voltage drop on
VCSTORE (5.5-2.5 V), the driver must have high output impedance. Therefore, a gain-boosted
cascode current source topology is used. With this topology, the output impedance of the
current source (M8-M15) is multiplied by the 65 dB gain of the cascode boost amplifier
(M4-M7). A 5-bit current DAC (M11-M15) enables a programmable output current from 0-115
mA with a 3.9 mA LSB to supply the laser diodes with different bias currents according
to the PIV curves in Fig. 2.4. Since only one laser is turned on at a time, the same driver
circuitry is used for all three lasers. Therefore, the cascode transistors also serve as select
switches for the laser channels. For maximum output swing, Vx is set by a level-shifting
diode, M3, to bias M11-M15 at the edge of the triode. A headroom of 400 mV is required at
the drains of M8-M10 to ensure operation in saturation.

Figure 5.5: Schematic of the programmable 3-channel laser driver.

5.4 Imaging Frontend and Readout

The imaging frontend is similar to that presented in [33], but without the angle selective
gratings (ASGs) as image deblurring is now provided by the FOP. The image sensor consists
of a 36x40 array of pixels with a 44x44 µm2 active photodiode area and a 55 µm pitch,
covering a 2x2.2 mm2 FoV. The pixel architecture, shown in Fig. 5.6(a), is based on a
capacitive trans-impedance amplifier with CINT=11 fF. To reduce low-frequency noise, reset
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switch sampling noise, and pixel offset, a correlated double-sampling scheme is implemented
with the following pixel timing (illustrated in Fig. 5.6(b)). First, the voltage on CINT is
zeroed out during the initial reset phase, TRST, with timing configured in the Set TEXP state.
For the exposure time, TEXP, the photocurrent is integrated on CINT generating the pixel
output voltage, VOUT = V0 + IPD. TEXP/CINT , which is sampled on reset (CR) and signal
(CS) sampling capacitors after intervals of 100 µs and TEXP+100 µs, respectively. The final
pixel value (VPIXEL) is the difference between the signal (VS) and reset (VR) values.

Figure 5.6: (a) Active pixel architecture with correlated double sampling. (b) Pixel timing
diagram.

After Imaging, the analog pixel values are digitized and stored in memory during the
Readout state. Readout duration is set to limit the leakage on the in-pixel sampling capacitors
to less than an LSB. Therefore, the readout is performed in parallel across 4 channels each
spanning 10-pixel columns. Each channel consists of an 8-bit differential SAR ADC driven
by a buffer. The ADC has a dynamic range of 500 mV with an LSB of 1.95 mV, below the
pixel readout noise (see chapter 6). The readout circuits operate on a 3.3 V supply to ensure
sufficient headroom considering that the in-pixel source followers level shift the sampled pixel
voltages up by 1 V. Thus, the size of CVCP is chosen to maintain VCP above 3.5 V throughout
this state. The signal and reset pixel values are subtracted by the differential ADCs, and the
digitized pixel values are stored immediately after conversion in a 11.52 kb latched-based
memory. The schematic of the datapath for reading out one channel (=10 columns) of the
pixel array and the architecture of a memory cell are shown in Fig. 5.7. Unlike the first work
in chapter 4, this design enables a short Readout time of 5.4 ms, which is not limited by the
longer Backscattering state (890 ms at 5 cm depth) that varies with depth.
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Figure 5.7: Readout data path of one of the channels of the pixel array

5.5 Data Transmission

During Backscattering, the memory is read serially (ΦMOD in Fig. 5.1) and transmitted
by modulating the amplitude of the reflected (backscattered) US pulses using a switch (SMOD

in Fig. 5.1). The uplink communication protocol is shown in the timing diagram in Fig. 5.3.
The transmitted data for each pixel comprises a 9-bit packet containing a header (set to 0)
followed by 8 data bits. The header pulse is necessary to impose a one-pulse delay to make
sure memory is read and loaded into the serializer before data transmission. Additionally,
setting the header to a known value of zero can help identify the backscattered bits. The
external transducer generates a sequence of pulses each spanning a few cycles of the US
carrier for the header and 8 individual bits. As shown in Fig. 5.8, after a time of flight
(ToF=33 µs for 5 cm depth) the acoustic pulses reach the piezo and reflect with an amplitude
proportional to the reflection coefficient of the piezo, Γ. Γ is a function of the impedance of
the piezo, Zpiezo, at the operation frequency and is dependent on the electrical impedance
loading the piezo, Rload, and therefore, can be controlled through the SMOD switch. Near
the parallel resonance frequency of the piezo, Γ ∝ Rpiezo/(RLoad+Rpiezo), where Rpiezo is the
equivalent resistance of the piezo [67]. The switch impedance can be configured (hard-coded)
by 2 bits to achieve minimum bit error rate (BER). After a second ToF, the backscattered
signal is received by the external transducer and is demodulated to reconstruct the image. To
avoid overlap of high voltage Tx and low voltage reflected Rx pulses, the external transducer
transmits 2 bits within 2 ToFs and listens for the next 2 ToFs as shown in Fig. 5.3.
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Figure 5.8: System diagram during Backscattering

5.6 Contributions

Some of the figures in this chapter are adapted from the following article:

1. R. Rabbani*, M. Roschelle*, S. Gweon, R. Kumar, A. Vercruysse, N. W. Cho, M.
H. Spitzer, A. M. Niknejad, V. M. Stojanovic, M. Anwar, ”17.3 A Fully Wireless,
Miniaturized, Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring
in Cancer Therapy,” 2024 IEEE International Solid-State Circuits Conference (ISSCC),
San Francisco, CA, USA, 2024, pp. 318-320. (* Equally credited authors)

Acknowledgments: M. Roschelle and I contributed equally to the design of the second
generation of the sensor and generating the figures presented in this chapter. S. Gweon
assisted in designing various blocks including the redesign of the LDOs.
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Chapter 6

Performance of the Multicolor
Wireless Fluorescence Image Sensor

Fig. 6.1(a) shows the die photo of the chip. The IC measures 2.5x5 mm2 and is fabricated
in a TSMC 1.8/5/32 V 180 nm CMOS process. Fig. 6.1(b) shows the power breakdown
for the chip where the laser driver dominates the power consumption. This section presents
system-level measurement results for the wireless link, laser driver, and imaging frontend.

6.1 Measurement Setup

Fig. 6.2 shows the measurement setup for demonstrating fully wireless operation of the
chip. In the acoustic setup, the piezo is submerged at a depth of 5 cm in a tank of canola
oil. Canola oil has 0.075 dB/cm acoustic attenuation at 920 kHz and 1.34 MRayl acoustic
impedance [68] similar to the impedance (1.4-1.67 MRayl) of tissue [44]. An external focused
transducer (V314-SU-F1.90IN-PTF, Evident Scientific) at the surface of the tank transmits
US signals to the piezo. To minimize interference from US reflections on data uplink, an
acoustic absorber (Aptflex F28P, Precision Acoustics) is placed at the bottom of the tank.
An FPGA (Opal Kelly XEM7010) generates the desired US pulse sequence as in Fig. 5.3 to
control the chip. The timing of the pulse sequence is programmed through a custom user
interface that interfaces with the FPGA. The waveforms are sent to a high-voltage transducer
pulser board (Max14808, Maxim Integrated) to drive the external transducer accordingly.

The chip is directly connected with wires to the piezo for wireless power harvesting and
data transfer via US. It is located inside a black box to reduce the background signal from
ambient light during imaging. Slide-mounted samples are placed directly on top of the chip
for imaging. The chip drives the µLDs, mounted on separate PCBs, to transilluminate the
sample from above. It is important to note that in vivo the sample must be epi-illuminated
between the sensor and the tissue. Epi-illumination can be accomplished by directing the
laser light through a glass separator or light guide plate placed on top of the sensor [68, 83].

After taking an image, the backscattered US pulses are received by the external transducer



CHAPTER 6. PERFORMANCE OF THE MULTICOLOR WIRELESS FLUORESCENCE
IMAGE SENSOR 55

Figure 6.1: (a) Chip micrograph. (b) Breakdown of system power consumption.

and the data is captured on an oscilloscope for processing and demodulation. To remove the
pixel-to-pixel DC offsets due to the photodiode dark current and mismatch in the readout
circuitry, a dark image with the same integration time but with the laser off is subtracted from
the final fluorescence image. The dark image is averaged to minimize its noise contribution.

6.2 Ultrasound Wireless Power Transfer

Fig. 6.3(a) shows the measured PMU waveforms (VPiezo, VRECT, VCP, VCSTORE), verifying
wireless operation of the full system at 5 cm depth. In this measurement, the system operates
with 221 mW/cm2 of US power density which falls within 31% of FDA safety limits for US.
Under this minimum required acoustic power condition, VCP charges to 5.5 V in 50 s for the
initial image. Charging time reduces to 35 s for consecutive frames with a nonzero initial VCP.
The Charge-Up time can be further reduced by increasing US power intensity, operating
closer to the FDA limits.

Measured PMU waveforms during the Imaging and Readout states are presented in Fig.
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Figure 6.2: Acoustic and Imaging measurement setups for wireless imaging

6.3(b). During Imaging (TEXP=8 ms), VCSTORE drops from 5.5 V to 2.5 V while supplying the
laser with ILD = 37.5 mA from the energy stored in CSTORE. VCP remains at 5.5 V throughout
Imaging and drops to 3.5 V during Readout. Fig. 6.3(c) shows the measured waveforms while
transmitting a single pixel data packet via backscattering. Vpiezo is modulated according
to the serial output of the memory (ΦMOD) and the backscattered pulses are received by
the external transducer (VBackscatter in Fig. 6.3(c). The one bits corresponding to a smaller
load impedance appear larger in amplitude than the zero bits because the piezo is operated
between series and parallel resonance frequencies for maximum voltage harvesting.

Fig. 6.4(a) shows the total acoustic power and acoustic power density (ISPTA) incident on
the piezo surface area at 5 cm depth for transverse offsets along the X or Y axis. Fig. 6.4(b)
shows a similar measurement as the depth is adjusted along the z axis. The acoustic power
density is measured with a hydrophone (HGL-1000, Onda) and it is integrated over the piezo
area to measure the available acoustic power at the piezo surface. The measurement setup
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Figure 6.3: Measured power harvesting waveforms during (a) Charge-Up, (b) Imaging and
Readout. (c) Measured backscatter waveforms.

inside a water tank is shown in Fig. 6.5. The hydrophone is fixed while the US transducer is
transversed both along the depth and horizontal directions. The output of the hydrophone
is connected to a pre-amplifier (AH-2010, Onda) to boost the signal by 20 dB. The output
voltage of the pre-amplifier is linearly proportional to the measured acoustic pressure, with an
overall gain of 7.37 mV/kPa. The spatial-peak time-average intensity (ISPTA) of the acoustic
field is an important safety parameter to estimate the temperature increase bound by 720
mW/cm2 for diagnostic US applications according to FDA limits [84]. For both transverse
and depth offsets, the power decreases as the piezo moves away from the focal point (near
5 cm depth) of the external transducer. The measured transverse and axial FWHMs for
ISPTA are 4.5 mm and 60 mm, respectively. In the future, misalignment loss can be reduced
through dynamic focusing of the US with beam forming [85].

6.3 Energy Conversion Efficiency

Given that harvesting US energy and supplying the ASIC and the lasers are multiplexed
in the time domain, we use energy efficiency to evaluate the US link. Electrical input energy
is calculated by integrating the instantaneous electrical input power during Charge-Up. The
output energy of the PMU is calculated by measuring the energy stored in the CSTORE and
CVCP and the energy consumption of the ASIC during Charge-Up.

The static current consumption of the chip, IDC, is determined in DC mode by measuring
the DC current of a precision measurement unit (B2912A, Keysight) externally supplying
VCP from 0 to 5.5 V. Multiplying IDC by VCP results in the static power consumption of the
ASIC. The energy stored in CSTORE and CVCP is measured from 1

2
(CSTORE + CV CP )V

2
CP . A

summary of the derivation of power and energy components and the corresponding efficiencies
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Figure 6.4: Harvested acoustic power vs. (a) transverse offset and (b) depth.

Figure 6.5: Experimental setup for measuring acoustic power density.

and the corresponding circuit model are included in Fig. 6.6.
While charging VCP from 0–5.5 V, the overall energy efficiency of the PMU is shown in

Fig. 6.7. The electrical energy conversion efficiency is 12.7%. The efficiency of the system in
converting the available acoustic energy on the face of the piezo to the electrical output energy
of the PMU is 3.3%. The input acoustic energy is calculated by integrating the measured
acoustic power density at the surface of the piezo (Fig. 6.4(a)) throughout this same period.
The acoustic to electrical conversion efficiency of the piezo is 26%.
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Figure 6.6: (a) Power, energy and conversion efficiency equations. (b) Circuit model for
measuring conversion efficiency

Figure 6.7: Energy conversion efficiency while charging VCP from 0–5.5 V

6.4 Laser Driver

Fig. 6.8 shows measurements of the laser driver and PTAT. The output current of the
laser driver (ILD) is measured with a precision measurement unit (B2912A, Keysight). The
measured ILD across all DAC codes is shown in Fig. 6.8(a). Fig. 6.8(b) shows the percent
change in ILD as the output voltage of the laser driver, VLD-, drops from 3.5–0.4 V. This
range corresponds to the output voltage of the laser driver (connected to laser cathode, VLD-)
for a 5.5-3.5 V drop on VCP accounting for the 2 V forward bias voltage of the 650 nm µLD.
For DAC code=5 (ILD=20 mA), there is less than 1% variation across the 3.1 V. drop. These
results are an improvement over chapter 4 where the reference current varied 11.5% over a
1.5 V drop, resulting in a 50% reduction in the laser output power.
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Figure 6.8: Measurements of (a) laser driver current vs. DAC code, (b) laser driver output
current vs. driver voltage.

6.5 Ultrasound Data Uplink

At 5 cm depth, transmission of one image (11.52 kb) takes 890 ms, resulting in a data
rate of 13 kbps. The received backscattered waveform is processed and demodulated to
reconstruct the image as follows. First, the signal is bandpass filtered at the carrier frequency,
windowed to select the bit intervals and then reconstructed with sinc interpolation. The
peak-to-peak amplitude is measured for each pulse and compared with a predetermined
threshold to predict the bit value. The serial output of the chip serves as the ground truth.
Fig. 6.9 shows a histogram of the backscattered signal amplitude for each bit normalized to
the threshold amplitude, demonstrating a clear separation between one and zero bits. The
measurement shows robust error-free transmission of 90 frames including a combination of
dark frames and images taken with the 650 nm and 455 nm lasers. The bimodal nature of
the histogram results from combining data across different imaging conditions in the same
histogram and differing interference from the transmission on the two received pulses within
each interval of 2ToFs. The device archives a bit error rate (BER) better than 10−6 (0 out of
1,036,800 bits). The average modulation index is 5.6%.

6.6 Imaging Frontend

The photodiode responsivity is determined by measuring pixel output voltage across a
range of incident optical powers as shown in Fig. 6.10(a). We use a LED with a collimator and
beam expander to ensure uniform illumination of the sensor. A narrow bandpass interference
filter placed in front of the LED selects a specific wavelength. Measurements are made at
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Figure 6.9: Histogram of bits with a measured bit error rate (BER)< 10−6 at 5 cm depth in
oil.

535 nm and 705 nm, near the center of the optical frontend passbands. The optical power
output of the LED is characterized with a power meter (PM100D, ThorLabs). In Fig. 6.10(a),
the slope indicates pixel gain in mV/pW with TEXP=8 ms. The photodiode responsivity is
calculated by dividing pixel gain by the transimpedance gain of the CTIA. The pixels have a
mean responsivity of 0.13 A/W (quantum efficiency (QE)=30%) and 0.21 A/W (QE=37%),
at 535 nm and 705 nm respectively. A histogram of the measured dark current across pixels
with a Gaussian fit is shown in Fig. 6.10(b). The mean dark current is 14.9 fA (7.7 aA/µm2)
with a standard deviation of 0.7 fA (0.4 aA/µm2). Fig. 6.10(c) shows the measured pixel
output noise in dark condition for different exposure times for a single frame and an average
of 8 frames. The output noise increases with the exposure time due to the shot noise from
the increased dark signal.

The resolution of the imager is measured with a negative standard USAF target (Fig.
6.11(a)) overlaying a uniform layer of Cy5 NHS Ester (λEX = 649 nm, λEM = 670 nm)
dissolved in PBS at 10 µM concentration. The dye is contained with a 150 µm-thick
glass coverslip and the target is placed on the imager. The resolution measurements were
conducted with wired power and data transfer and using a fiber-coupled 650 nm laser for
uniform illumination. Fig. 6.11(b) shows the sensor image of the element with 125 µm line
spacings compared to the microscope reference image in Fig. 6.11(c). The sensor images
this element at 50% contrast as calculated with the line scan in Fig. 6.11(d). Contrast is
calculated as (Vmax - Vmin)/(Vmax + Vmin - Vbk), where Vmax and Vmin are the maximum and
minimum pixel values in the bright and dark bars, respectively, and Vbk is the background
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Figure 6.10: (a) Pixel output voltage vs. incident optical power. (b) Histogram of measured
dark current across pixels. (c) Measured pixel noise under dark condition without averaging
and after 8 averages.

signal. Fig. 6.11(e) shows the full contrast transfer function measured by imaging elements
on the target with line spacings ranging from 79-455 µm and calculating the contrast for
each. These results demonstrate that with the FOP, the imager can distinguish line spacings
as small as 100 µm with greater than 20% contrast.

6.7 3-color Fluorescence Imaging

To demonstrate three-color imaging, we image a sample containing 15 µm-diameter
green (λEX = 505 nm, λEM = 515 nm, F8844, Thermo Fisher Scientific), red (λEX =
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Figure 6.11: Resolution measurements using (a) USAF target. Image of element with 125
µm line width with the sensor (b) and a microscope (c). (d) Line scan of image in (a). (e)
Measured contrast transfer function.

745 nm, λEM = 680 nm, F8843, Thermo Fisher Scientific), and NIR (λEX = 780 nm, λEM =
820 nm, DNQ-L069, CD Bioparticles) fluorescent beads. The beads are suspended in 1x
PBS solution at a concentration of approximately 10 beads/µL. 50 µL of solution is pipetted
into a micro-well chamber slide for imaging. Imaging results are shown in Fig. 6.12. The
sensor images are obtained wirelessly with ILD=18.5 mA, TEXP,GREEN=8 ms, TEXP,RED=16
ms, TEXP,NIR=8 ms. For each color channel, 4 frames are averaged and the channels are
colored and overlaid to make the multicolor image. The sensor images correspond well to
a reference image taken with a benchtop fluorescence microscope (Leica DM-IRB). A few
beads do not appear in the sensor image due to non-uniform illumination from the µLDs.
There is also a line artifact visible in the NIR channel due to reflections off the wire-bonds
and can be mitigated by as detailed in [47].
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Figure 6.12: 3-color imaging of green, red and NIR fluorescent beads.

6.8 Ex Vivo Imaging of Immune Response

We conducted an ex vivo mouse experiment to demonstrate the application of our sensor
to assessing the response to cancer immunotherapy through dual-color fluorescence imaging of
both effector and suppressor cells in the tumor microenvironment. In this study, we measured
response to immune checkpoint inhibitors (ICIs), a common type of immunotherapy that
activates the immune system against cancer by blocking inhibitory interactions between
immune and cancer cells [79, 78]. A successful immune response to ICIs requires the activation
and proliferation of CD8+ T-cells, the most powerful effectors in the anticancer response, into
the tumor microenvironment [86]. Therefore, CD8+ T-cell infiltration has been identified as
an indicator of a favorable immune response [87]. However, CD8+ T-cell activation can be
inhibited by suppressor immune cells such as neutrophils, which regulate the immune system
and inflammation in the body and are associated with resistance to ICI immunotherapy [88,
89]. Dual-color fluorescence imaging enables differential measurement of the two control
mechanisms of the immune response with the same imaging frontend which is not possible
with clinical imaging modalities such as MRI, PET, or CT.

Ex Vivo Experiment Design

Figure 6.13 outlines the ex vivo experiment design, which uses two engineered cancer
models from [67], an LLC breast cancer model (engineered to resist ICIs) and a B16F10
melanoma model (engineered to respond to ICIs). Both tumor models show increased CD8+
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Figure 6.13: Experimental design for the ex vivo mouse experiment.

T-cell infiltration over the course of treatment. However, while the B16F10 tumors reliably
respond, the LLC tumors are resistant to ICI therapy. This resistance has been linked to a
T-cell-driven inflammatory response that triggers an influx of neutrophils into the tumor,
suppressing T-cell activation [90]. The experiment includes two groups of mice each bearing
one type of tumor. Each group consists of a mouse treated with ICI and an untreated mouse
injected with non-therapeutic antibody for control. 2 weeks after the onset of treatment, the
tumors are harvested, sectioned to 4 µm-thick samples, and mounted on glass slides. Two
adjacent sections from each tumor are labeled separately with fluorescent probes targeting
CD8+ T-cells and neutrophils. CD8+ T-cells are stained with a CD8a antibody labeled with
Cy5 (λEX = 649 nm, λEM = 670 nm) and neutrophils are stained with a CD11b antibody
labeled with FAM (λEX = 492 nm, λEM = 518 nm).

Ex Vivo Imaging Results

Images of the tumor samples are captured wirelessly with the sensor and compared with
reference images from a benchtop fluorescence microscope. Figs. 6.14(a) and 6.14(b) show
the imaging results from the LLC (resistant) and B16F10 (responsive) groups, respectively.
For each fluorescent channel, 8 frames are acquired with the chip, using imaging parameters
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of ILD=18.5 mA, TEXP,Cy5=16 ms, and TEXP,FAM=8 ms. The sensor images are averaged
across all frames. The microscope images are overlaid with the cell nuclei of the entire sample,
stained with DAPI (blue in the image) to highlight the tumor area. The white lines within
the images indicate the boundaries of the tumor tissue. The sensor images are qualitatively
consistent with the microscope references, albeit at a lower resolution and with varying
intensity across the image due to non-uniform illumination from the µLDs.

To quantify the results for each tumor model, the percent change in the density of both
cell types between the untreated and treated mice is calculated according to the metrics
in Fig. 6.15(b). Ground truth cell densities are determined using the microscope images
by counting the fraction of cell nuclei (DAPI) labeled with the targeted probe (red and
green channel). As the sensor does not have single-cell resolution, the cell density in the
sensor images is determined by the fluorescence intensity in the tumor normalized by the
area bounded by the dashed white lines in Fig. 6.14(a-b). The background signal is mostly
canceled out by measuring percent change.
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Figure 6.14: Ex vivo imaging of mouse tumors with and without immunotherapy. Imaging
results for (a) the resistant tumor model (LLC) and (b) the responsive model

The quantified results from the sensor and microscope are shown in Fig. 6.15(a). The
sensor captures the general trends observed with the microscope, corresponding with the
results in [90]. The notable increase in the density of CD8+ T-cells in both B16F10 samples
(sensor: 847%, microscope: 582%) and the LLC samples (sensor: 38%, microscope: 191%)
suggests a response to immunotherapy in both models. However, a larger increase in CD11b



CHAPTER 6. PERFORMANCE OF THE MULTICOLOR WIRELESS FLUORESCENCE
IMAGE SENSOR 68

density after treatment in the LLC tumors (sensor: 66%, microscope: 75%) over the B16F10
tumors (sensor: 42%, microscope: 51%), suggests resistance in the LLC model due an
increase in neutrophils. These trends would better reflect the results in [90] with a larger
sample size to account for heterogeneity across the mice and neutrophil-specific biomarkers.
However, these results highlight the utility of multicolor fluorescence imaging in evaluating
the response to cancer immunotherapy, enabling a differential measurement of both effector
(e.g. CD8+ T-cell) and suppressor (e.g. neutrophil) populations. As shown by the increase
in CD8+ T-cells in resistant LLC tumors, an increase in effector populations does not always
correlate with response as the effector cells may not be activated. Therefore, simultaneously
imaging of suppressor populations (e.g. neutrophils) has two advantages: (1) enabling a
more accurate assessment of response and (2) revealing the mechanisms of resistance (e.g.
neutrophil interference with CD8+ T-cells) that can be targeted with second-line therapies
(e.g. blocking neutrophil-T-cell signaling as done in [90]).

Figure 6.15: Quantification of the ex vivo images. (a) Quantified results. (b) Metrics for
quantification of cell populations.

6.9 Contributions

Some of the figures in this chapter are adapted from the following article:

1. R. Rabbani*, M. Roschelle*, S. Gweon, R. Kumar, A. Vercruysse, N. W. Cho, M.
H. Spitzer, A. M. Niknejad, V. M. Stojanovic, M. Anwar, ”17.3 A Fully Wireless,
Miniaturized, Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring
in Cancer Therapy,” 2024 IEEE International Solid-State Circuits Conference (ISSCC),
San Francisco, CA, USA, 2024, pp. 318-320. (* Equally credited authors)
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Chapter 7

3D Reconstruction from 2D Images via
Deep Learning

The presented lensless image sensors are specifically designed to capture 2D images of
the samples within their field of view, in close proximity to their surface. These images
contain critical information about the immune responses crucial for both diagnosing cancer
and guiding treatment. However, visualizing the 3D location of fluorescently labeled cells in
vivo is necessary in order to determine the location of cell clusters harbored in sites farther
from the imager.

Existing imaging platforms are able to obtain this information intraoperatively during
surgery, as described in [91, 92, 93], but they are impractical for minimally invasive monitoring
procedures, particularly in the context of complex and hard-to-reach tumors. These bulky
instruments rely on large optics and lenses to achieve high resolution, making them unsuitable
for miniaturization due to their inherent rigid optical components. Therefore, they are ill-
suited for real-time monitoring of treatment response in implantable settings. Consequently,
a high precision imaging platform with a smaller form factor is necessary.

Miniaturized imagers face challenges in achieving high resolutions comparable to their
larger counterparts. Shrinking the size of the imager imposes limitations on the size of optical
filters and focusing lenses, thereby compromising their performance and image resolution.
Moreover, wirelessly supplying the illumination from the laser diodes restricts the total
photon budget within the system, further limiting the performance of in vivo fluorescence
microscopy. To achieve reliable 3D information using such small form-factor devices, enhanced
custom optical filters and lenses are necessary to match the performance of larger instruments.
However, manufacturing such components is often challenging, and image quality remains
sub-optimal compared to benchtop microscopes. Therefore, computational techniques capable
of enhancing images from small form-factor devices are required.

Miniaturization of these platforms into electronic micro-imagers, as exemplified in [33,
50, 56], enables their placement in hard-to-reach regions, allowing for the visualization of
microscopic diseases intraoperatively in cavities several millimeters deep. Moreover, these
micro-imagers facilitate real-time monitoring of cell dynamics and treatment assessment in
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vivo, aided by a network of wirelessly powered implants. Figs. 7.1(a) and (b) illustrate how
micro-imagers offer comprehensive visualization of tumors without disrupting the flow of
operation or treatment, for intraoperative and implantable applications, respectively. In
intraoperative imaging, multiple image acquisitions from different angles can be obtained by
scanning the tumor bed with a surgical fiducial, as shown in Fig. 7.1(a). Similarly, a network
of implantable imagers can capture images from different angles of the target, as depicted in
Fig. 7.1(b).

Figure 7.1: Concept of multiple visualization of the tumor using micro-imagers: (a) Multiple
images taken by rotating the micro-imager attached to a surgical fiducial intraoperatively.
(b) Network of implantable micro-imagers to capture multiple fields of view. (c) Combination
of neural networks and micro-imagers enabling 3D visualization and resolution enhancement.

7.1 Convectional Image Processing for Customized

Imager

Conventional image processing techniques involve deconvolution, surface projection algo-
rithms and noise enhancement methods. These methods rely on a linear transformation of the
image, based solely on raw image data and the point spread function (PSF) of the imaging
device, without prior knowledge of the target. The PSF, also known as the transfer function
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of the imaging system in spatial domain, describes the response of an imaging system to a
point source of illumination [94] and is crucial in linear image formation processes such as
fluorescence imaging. The image is a superposition of the convolution of each point source
with the PSF. Therefore, the target can be retrieved by deconvolving the image with PSF of
the imager.

However, deconvolution methods require calibration for each depth, limiting processing
speed and posing challenges for images with overlaid cell foci from different depths. Moreover,
the PSF, as a low pass transfer function, removes high-frequency components, leading to a
loss of sharpness in the recovered image. Additionally, applying inverse PSF amplifies high
frequency noise degrading recovery of the original image. Similar to deconvolution, other
linear image processing technique will suffer from similar issues.

To overcome these limitations, a non-linear post-acquisition processing deep learning
model, capable of incorporating physiological and spatial information is proposed to enhance
the resolution of micro-imager images and provide insights into cell positions in 3D.

Deep learning emerges as a promising approach, combining multiple layers of non-linear
transformations to create powerful processing modules capable of complex tasks such as
image enhancement, image classification and feature extraction. Yin et al. [95] investigated
characteristics of neuronal networks by extracting neuronal culture cluster information from
microscopic images of neurons using machine learning models, and Chen et al. [96] were
successfully able to demonstrate label-free tumor cell classification using images of flow
cytometry. Deep learning allows breaking the tradeoffs of fluorescence imaging and using the
computational models to augment hardware complexity and improve upon optical limits, by
using a large collection of training data to build the network [97]. By employing adaptive
network architectures like residual neural networks (ResNets [98]) and convolutional neural
networks (CNNs [99]), this chapter introduces several cancer imaging applications utilizing
deep learning to enhance the resolution and capability of custom-made micro-imagers. Fig.
7.1(c) illustrates how the combination of neural networks and micro-imagers can restore
image sharpness and resolution and create 3D visualizations of specimens without the need
to modify the image sensor.

This chapter presents modules capable of cell presence detection within each layer of
the sample in 3D stacks based on the work in [100]. This model introduces an innovative
imaging approach utilizing two sensors to capture tissue from different angles. This enables
three-dimensional imaging of the sample, offering insights into the spatial distribution of cells
within the sample.

7.2 Dataset Synthesis

A training dataset is critical for using a neural network in 3D cellular imaging of tissue
is. Training deep neural networks necessitates access to an extensive collection of training
data derived from the tumor microenvironment, tailored to each specific application. The
impracticality of obtaining a large dataset, taken at varying depths, from tissue motivates
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synthesis of a diverse dataset of tumor cell images based on the morphology of real-life tissue
samples, to leverage prior knowledge of the tumor cells. To address this, a synthetic and
diverse dataset of tumor cell images based on prior knowledge of morphological characteristics
of real-life tissue samples is needed.

The synthesis method must be programmable to facilitate the generation of a large dataset
by randomly selecting parameters. These parameters lead to images that accurately represent
cell foci, thus ensuring the dataset’s diversity and accuracy.

To tackle this challenge, this section introduces a methodology for generating a substantial
training dataset that mirrors real-life specimens, such as a single layer of cells on a slide,
building on prior work [76]. To simulate the 3D structure of a tumor, we generate stacks
comprising multiple layers of cells spaced 250 µm apart, within 1 mm from the sensor. Given
that the lensless custom imager is optimized for contact imaging of cell clusters, we set 1 mm
as the boundary for proof of concept demonstration.

To generate images resembling real-life cell foci, we incorporate a coherent gradient noise
generation technique known as Perlin noise [101]. Perlin noise is commonly used to create
natural-looking textures, such as marble, wood, and cloud textures for motion picture visual
effects [102].

We generate a binary matrix representing a tumor mask, with high values (>0.5) indicating
tumor areas and low values (<0.5) representing non-cancerous background to pinpoint the
tumor cell foci. Leveraging the inherent structure of Perlin noise, we achieve a smooth cellular
location map filled with signal and background intensity values. Once the cell foci’s locations
are determined using the tumor mask, we render a tumor image by assigning in-pixel signal
and background intensity values based on the mean and variance of real tumor images. To
ensure a close correlation with real images, we verify that the statistical parameters originate
from a representative range of parameters obtained from real data signal-to-noise ratio (SNR)
calculations, demonstrated in [76].

We select an image sensor with a 51×51 array of pixels, assuming a pixel architecture
similar to the lensless chip-scale CMOS imager designed for in vivo intraoperative cancer
imaging [33].

7.3 Deep Learning Model for Depth Estimation

This section introduces a nonlinear model to localize cells from various overlapping and
non-overlapping tissue layers and identify their corresponding depths. Leveraging machine
learning models for multi-layer depth estimation offers a key advantage in distinguishing dim
cell clusters near the imager’s surface from brighter cellular responses further away, otherwise
challenging without further processing. Achieving multi-layer cell detection from a single 2D
image from the customized image sensor with a precision better than 500 µm equips surgeons
with sufficient resolution to scan the tumor bed thoroughly.

Multi-level depth information from planar images of our lensless microscope on-chip
eliminates the need for bulky optical lenses [103, 104, 105]. This section presents separate
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modules for detecting non-overlapping and overlapping multi-layer clusters of cancer cells.
To create the training dataset for non-overlapping cell stacks, pairs of synthesized cell

images from two different depth values are randomly selected within the 0 to 1 mm range,
with a minimum difference of 500 µm between the adjacent layers. Individual cell images
from each layer are convolved with the PSF of the custom-made imager and merged together
to form a multi-layer image, with overlapping regions subtracted to separate cell distributions
from each layer.

In addition to detecting cells in isolated multi-layer clusters, we explore extracting 3D
information from a more complex structure involving overlapping cell stacks. However, the
accuracy of recovering 3D information using a single micro-imager is significantly limited
when extracting spatial information from distant layers due to attenuation of the optical
signal reaching the sensor and PSF non-ideality.

To address this limitation, we add a second sensor to the imaging system, facilitated by the
ultra-small form factor of the sensor itself, enabling implantation and surgical practicality. For
this experiments, the two sensors are positioned 1 mm apart on both sides of the synthesized
three-dimensional tissue.

Both the single and dual-sensor modules comprise a 6-layer CNN (3 convolution and 3
deconvolution layers), with their outputs consisting of 4 binary input-sized layers indicating
cell presence in each, where (>0.5) indicates cell presence and (<0.5) indicates absence. Due
to the binary nature of the outputs, we can evaluate accuracy in terms of pixels incorrectly
labeled (”existence” or ”absence” of cells), a metric we will later use to compare their
performances.

For reliable 3D tissue imaging, it’s imperative that the module maintains sensitivity and
specificity performance across the specimen’s entire depth. However, the limited performance
of this module restricts its use for acquiring reliable 3D information and performing deep
tissue imaging on samples thicker than a few hundred microns. Sensitivity is defined by the
ratio of pixels accurately predicting cell presence over the total number of cancer cells in
the ground truth images, while specificity evaluates the model’s performance in predicting
absence of cells in pixels indicated by the ground truth images to be empty of cells.

One critical application of cellular-level depth estimation in oncology is monitoring and
observing cell movements and dynamics, representing real-time tissue responses to therapy.
The speed, direction, and features of cell clusters undergoing these dynamics hold significant
clinical value. However, due to the complexity and optical limitations of the imagers this goal
remain elusive. Building on the depth estimation module, we present a 3D-reconstruction
model architecture capable of capturing these cell cluster dynamics. The model’s sensitivity
to cell dynamics and movement across layers is evaluated quantitatively with a test set.

7.4 Non-overlapping Multi-layer Depth Estimation

A 6-layer network comprising 3 convolution and 3 deconvolution layers is trained on the
dataset and the performance is evaluated on 1000 test samples. Fig. 7.2(a) demonstrates
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an example of the merged image from the stacks at 250 µm and 800µm depths from the
imagers, the ground truth depth map and the depth map predicted by the model. The error
distribution of the depth map predicted by this network is shown in Fig. 7.2(b). The average
normalized deviation of pixels from their correct value is 6.2% with a standard deviation of
10.4%.

Figure 7.2: Performance of the cell detector module for non-overlapping stacks of cells: (a)
Raw images at each depth before applying the PSF, network input and output images for
a test sample and the corresponding ground truth image. (b) Distribution of average pixel
error for test samples with a mean of 6.2% for 1000 test samples.

7.5 Overlapping Multi-Layer Depth Estimation

After successfully identifying two-layer depth map of tumor cells within a normal tissue
background, we expand the application to a more comprehensive case with overlapping
clusters of cells in this section.

CNN with Single Sensor

The first module for multi-layer cell detection is based on a single sensor, observing a
stack of 4 layers of cells that are randomly spaced between 0 and 1 mm from the sensor
itself.Each layer is at least 200 µm apart from the adjacent layer, ensuring full coverage of the
three-dimensional space [0,1 mm] with only four layers. These layers are uncorrelated, and
contain randomly generated intensities and background levels, providing a realistic emulation
of tissue. After applying the corresponding PSF to each layer, the 4 images are merged
together into one final image, constituting the sensor’s output and serving as raw input to
the module.

After training, the model is evaluated over 1000 distinct test inputs. An example of the
input image and the corresponding output is shown in Fig. 7.3(a). The distribution of the
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performance is shown in Fig. 7.3(b). Our performance metric reveals that the first layer,
closest to the sensor, has a lower error rate of 28%, and the performance degrades with farther
layers, with the rate of error consistently above 37%.

Figure 7.3: Performance of the CNN model with a single sensor. (a) Overlaid input image
from 4 raw images of each layer, network output images and ground truth depth maps for
each layer. (b) Distribution of average pixel error for test samples for each layer with averaged
error rates of 28.3%, 40.3%, 41.8% and 37.3% for layers 1 to 4, respectively.

The performance distribution shown in Fig. 7.3 is influenced by the overlap of cells in the
four layers. Further analysis of the individual data confirms that cases with lower counts of
incorrect pixels observed in the distant layers result from subsequent cell layers significantly
overlapping with the closest one, leading to special cases and lower-than-usual error rates.

CNN with Two Sensors

The effect of adding a second miniaturized imager to the opposite side of the target
under test is investigated with the 4-layer overlapping image dataset and the improvement of
accuracy is reported.

Using the same network as the single-sensor case, we evaluated the module with 1000 test
inputs and the corresponding inputs and outputs for one sample image set is shown in Fig.
7.4(a). The distribution of errors in identifying the depth map in each layers is illustrated in
Fig. 7.4(b). As expected, the first and last layers have very similar performances, as do the
two middle ones, and this network can lower the error rate to 12% (in the two closest layers),
which is less than half of the error rate of its single-sensor model. Compared to the single
sensor approach, adding a second sensor reduces the error in the two middle layers – farthest
from the sensor – reducing it from 40% to 18%.

Subsequently, by identifying the depth map of cancer cells in each layer, we can reconstruct
the 3D distribution of the sample being imaged. Illustrated in Fig. 7.5, using the outputs
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Figure 7.4: Evaluation of the CNN with two sensors. (a) Overlaid input images from 4 raw
images corresponding to each layer before applying the PSF, network output images and
ground truth depth maps. (b) Distribution of average pixel error for each layer with averaged
error rates of 12.2%, 18.1%, 18.4% and 12% for layers 1 to 4, respectively.

shown in Fig. 7.4(a), we have reconstructed the stacked sample, identifying the zones where
cancer cells were detected in each layer. For a complete representation of the proposed
imaging platform, the two sensors are also shown in Fig. 7.5, separated by the 1 mm thick
stack of cell layers in between.

Figure 7.5: Spatial (3D) reconstruction (using network outputs) of the sample test input,
where black, yellow and red respectively represent blank (empty of cells) spaces, regions
containing cells, and sensor locations.
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ResNet+CNN with Two Sensors

In this section, we introduce a module with the capability to identify cell clusters across
all depths while exhibiting high sensitivity to subtle changes in the sample, such as those
arising from cell cluster movements. By leveraging a larger neural network, this module can
detect movements of clusters between layers, enabling visualization of dynamics within the
tissue. Building upon the two-sensor architecture introduced earlier to enhance accuracy, we
employ a pre-trained 18-layer ResNet architecture before the 2-layer CNN network preceded
[106]. We evaluate the performance of the network on the test dataset. The architecture of
the network and its input images and output depth maps are shown in Fig. 7.6. The details
of the CNN used with the ResNet model are included in Fig. 7.7.

Figure 7.6: Architecture of the deep neural network consisting of 18-layer ResNet and CNN
with the corresponding input images from 2 sensors and the output depth maps for 4 layers.
A replica of the image from sensor A is added to the 2 input images to comply with the
3-channel input of ResNet.

The test dataset comprises 100 distinct and randomly generated images with a cluster of
cells within the three-dimensional space moving across different layers, simulating physiological
dynamics observed in real-life scenarios (e.g., immune cells migrating into a tumor or
metastatic tumor migrating or dividing within tissue). Fig. 7.8 illustrates the cluster moving
across the layers.

The distribution of errors of this module is shown in Fig. 7.9 and revealing that the two
closest layers exhibit a very low error rate (∼11%), while the two middle layers show slightly
higher rates (∼16%). The performance of the network for all layers demonstrates noticeable
improvements compared to the CNN-only architecture.

Fig. 7.10 showcases the outputs of the module, consisting of four sections: raw (unblurred)
images at different depths, network outputs, ground truth image, and the two sensor images
captured, serving as input to the module. The cluster of cells highlighted in Fig. 7.10
traverses the four layers (from left to right), affecting the two sensor images every time a
layer change occurs.
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Figure 7.7: Details of the CNN model and upsampling layers following the pre-trained ResNet
model.

Figure 7.8: Test setup for modeling dynamics of a moving cell cluster.

The module tracks the cluster with an average sensitivity of 72.6% and specificity of 91.7%
across all four layers, as depicted in Fig. 7.11(a). The Receiver Operating Characteristic
(ROC) for the average performance of the model across all layers is illustrated in Fig. 7.11(b).

7.6 Future Directions

The models presented here combine the computational advantages of neural networks
to improve cell detection accuracies in images captured with our customized image sensor.
A more thorough exploration to optimize the network architecture is necessary to further
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Figure 7.9: Performance of the ResNet+CNN model in identifying cell locations for each
layer with average error rates of 11.5%, 16.3%, 15% and 11.2% for layers 1-4.

Figure 7.10: Outputs of the module with moving cell foci at each layer including the source
images at each depth, the images captured by the 2 sensors, the network outputs and the
ground truth cell maps at each depth.
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Figure 7.11: Performance of the ResNet+CNN module with the moving cell foci. (a)
Sensitivity and specificity with 2-sensor network in detecting dynamics of the moving cell
cluster for each layer. (b) Receiver Operating Characteristic (ROC) of the model averaged
for all layers.

improve the performance of the proposed models.
However, our work faces several limitations. Despite our efforts to closely replicate real-life

sample sets, we relied on a synthesized dataset. Our primary goal was to establish proof of
concept with this technique, which can be repeated for any available cell imaging dataset
by retraining the neural networks on that specific dataset. Despite the synthetic nature of
the dataset, the final model (ResNet+CNN) demonstrates high level of performance when
applied to real-life images in Fig. 7.12. While acquisition of a large number of real-life images
of cancer cells exceeds the scope of this work, we applied the module to a limited number of
cancer cell slides. Initially, these samples were imaged using a high-resolution fluorescence
microscope (shown in the first column in Fig. 7.12). Subsequently, each slide was assigned a
randomly selected depth, and the corresponding PSF was applied. After applying the PSF,
all 4 layers were merged to generate the sensor image. A similar procedure was repeated for
the second sensor. The sensor images obtained are shown in the second column of Fig. 7.12.
The network output is presented in the third column, and an overlay composite image of
the outputs with the microscope images is also shown in the rightmost column in Fig. 7.12,
showing an almost perfect level of localized cell detection.
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Figure 7.12: Evaluation of the CNN with two sensors on real-life cancer cell slides. (From
left) input images from 4 raw microscope images corresponding to each layer before applying
the PSF, sensor images, network output images showing regions where cells were detected,
and merged image of network output and microscope images for each layer.

7.7 Contributions

The figures in this chapter are adapted from the following article:

1. H. Najafiaghdam, R. Rabbani, A. Gharia, E. P. Papageorgiou, M. Anwar, ”3D
Reconstruction of cellular images from microfabricated imagers using fully-adaptive
deep neural networks”. Scientific Reports 12, 7229 (2022).

Personal Contribution: I contributed to the synthesis of the training dataset for the
non-overlapping and overlapping images. I collaborated on the design and evaluation of the
RESNET+CNN network and generating the ROC plot.

Acknowledgments: H. Najafiaghdam was the main contributor of this work. He designed
of the CNN networks and tested the network’s performance with the moving cell foci and
the real cancer cell images. The image sensor model was adapted from the work of E. P.
Papageorgiou. A. Gharia worked on image data synthesis using Perlin noise.
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Chapter 8

Conclusion

This thesis presents a wireless fluorescence image sensor aiming to monitor the intricate
dynamics of immune system’s response to cancer immunotherapy providing insights for
assessing therapeutic response and disease progression. Detection of resistance mechanisms
at early time points of therapy is essential to enable personalized medicine which is currently
not possible with the clinical modalities such as MRI, CT or PET.

8.1 Summary

To accomplish this goal, we introduced the first chip-scale, multicolor fluorescence image
sensor capable of 1) wireless operation and 2) in-situ illumination for imaging deep in the
tissue. Miniaturization is necessary for chronic implantation and is achieved by 1) device-level
integration of the µLDs and elimination of bulky optics such as focusing lenses and fibers
and 2) wireless power transfer and communication using a 1.5x1.5x1.5 mm3 piezo instead
of batteries or any external wiring. Prior chip-scale fluorescence imagers in [34, 36, 37] lack
wireless compatibility or rely on batteries for power [35], thus they are not practical for
long-term implantation.

In this thesis, we outlined system design requirements for detection of small cell foci to
determine the components needed for the system. Next, we introduced the first generation
of the device, a proof-of-concept platform for wireless, single color fluorescence imaging
and showcased its performance. The system incorporates an off-chip capacitor to store
wireless energy from an ultrasound link and later provide high instantaneous power for
fluorescence excitation. For each frame, 11.52 kbits of image data are transmitted via
ultrasound backscattering using the same piezoceramic transceiver used for power transfer. In
the wired mode, the imager can capture high-resolution ex vivo images of CD8+ T-cell profiles,
an indicator of the immune response, consistent with images taken with a high-resolution
fluorescence microscope. The overall system performance is demonstrated by resolving 140 µm
features on a resolution test target obtained wirelessly with the sensor. However, limitations
such as operation above FDA limits and low imager sensitivity restricted wireless imaging to
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high concentrations of fluorescent dye. Challenges such as size, input power requirements,
leakage, lack of wireless programmability and inadequate depth of operation motivated design
of the next generation of the sensor.

Therefore, we expanded the idea to a fully wireless, multi-color fluorescence image sensor
with new capabilities specifically designed for multiplexed imaging of multiple cell types. The
new system features a three-channel laser driver to supply µLDs with different wavelengths,
a US downlink for programming imaging and laser configurations, and an optical frontend
design comprising a multi-bandpass interference filter and a FOP. Through a power harvesting
frontend incorporating a cross-coupled charge-pump, we achieve safe operation at a 5 cm
depth in oil, with US power densities at 31% of FDA limits. The robust communication link
demonstrates a BER better than 10-6 at a 13 kbps data rate. Additionally, optimizing the
storage capacitor sizing enables a compact form factor of 0.09 cm3, as demonstrated through
mechanical assembly of the implant. The optical frontend provides >6 OD of excitation
rejection to accommodate the small Stokes shift of organic fluorophores.

To showcase the significance of multicolor fluorescence imaging in identifying immune
system’s control mechanisms in immunotherapy, we imaged CD8+ T-cell and neutrophil
populations in ex vivo mouse tumors with or without immunotherapy. A comparison of both
sensors with recent chip-scale fluorescence imagers and sensors is provided in Table 8.1.

As the sensors discussed in this work are lensless contact imagers, detection is limited
to the targets in close proximity to the imager. Therefore, access to 3D information from
the multicellular foci remains elusive. Linear deconvolution techniques with the point spread
function of the image sensor require calibration and are susceptible to noise and they are
blind to the properties of the image. As a result, we proposed deep neural networks for 3D
reconstruction through depth estimation from images acquired with the custom designed
imager. To train the networks, a large synthetic dataset representative of real cancer cell
images is presented. Accuracies of 93.8% and 86.5% for cell localization and depth estimation
of non-overlapping and overlapping stacks of multiple layers of cells are achieved, respectively.

8.2 Future Directions

While we have successfully demonstrated the sensor’s capability in imaging the dynamic,
multiplexed biological processes, key challenges are yet to be addressed before conducting in
vivo experiments in the future. A summary of future steps to facilitate in vivo applications
of the device is listed below:

Efficiency Improvements

With the current power management unit, the charge-up interval (35-50 s) dominates
the frame time. This duration can be significantly reduced by incorporating more efficient
power harvesting interfaces. During charge-Up, the active rectifier extracts the input energy
solely when the AC voltage exceeds the rectified voltage, occurring within a limited portion
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Metric Rustami et al.
TCAS-I 2020

[37]

Moazeni et al.
TBioCAS 2021

[34]

Aghlmand et al.
JSSC 2023 [36]

Zhu et al.
TBioCAS 2023

[35]

This work
Sensor I

This work
Sensor II

Application In vivo neural
imaging

In vivo neural
imag-

ing/stimulation

Bio-molecular
sensing

In vivo
bio-molecular

sensing

In vivo
imaging of
treatment
response

In vivo
imaging of
treatment
response

Technology 350nm 130nm 65nm 65nm 180nm 180nm
Power Source Power Supply Power supply Power supply Battery Wireless (US) Wireless (US)
Wireless Link No No No Yes (RF) Yes (US) Yes (US)
Bit Error Rate N/A N/A N/A 10-3–10-7* 4x10-3–9x10-5** <10-6

Wireless Depth N/A N/R N/A N/A 2cm† Up to 5cm

S
y
st
e
m

Implant Volume N/A N/A N/A 1.37cm3 N/A 0.09cm3††
Filter Type Absorption +

interference
(bandpass)

Absorption +
interference +
time gating
(longpass)

CMOS grating
(single

bandpass)

CMOS
nano-plasmonic

(longpass)

Interference
(bandpass) +

FOP

Multi-
bandpass

Interference +
FOP

Fluorescent
Target

Ex vivo brain
slice

Fluorescent
beads

In vitro E. coli
cells‡

In vitro DNA
assay

Fluorescent
dye

Ex vivo
immune cells

Excitation/
Emission Peak

(nm)

473/510 (GFP) 470/520 (YG
beads)

440/570
(mCherry),
550/600

(LSSmOrange)‡

405/800 (Qdot
800)

683/703
(Cy5.5)

455/500
(FAM),
650/670
(Cy5),
785/800
(beads)

Excitation
Rejection

N/R 5OD 2.8OD 3.9OD >6OD‡‡ >6OD‡‡

Resolution 22µm <60 µm N/A N/A 140µm <125µm
Pixel Array Size 40×400 160×160 3×4 3×5 36×40 36×40
PD Active Area 7.5×7.5µm2 7.5µm

(diameter)
100×100µm2 150×170µm2 44×44µm2 44×44µm2

Total Output
Noise§

N/R N/R 3.8mV§§ 1.4mV# N/R 5.4mV##

F
lu
o
re
sc
e
n
ce

Im
a
g
in
g
F
ro

n
te
n
d

Imager Power¶ N/R 40mW 19.1mW N/R N/R 2.09mW
N/A Not Applicable, N/R Not Reported, OD Optical Density, * Depends on transmitter power, ** Depends on harvested voltage,

† Exceeds FDA limits by 26%, †† Mechanical Assembly, ‡ Other targets and fluorophores also used,
‡‡ at angles > 5◦, § Under dark condition, §§ TEXP=1 s, # Estimated from reported shot and CTIA noise,
## TEXP=8 ms, ¶ Includes power of full pixel array, readout, and control.

Table 8.1: Comparison of state-of-the-art chip-scale fluorescence image sensors

of the complete period of the US carrier. Moreover, the energy extraction window is further
reduced as the rectified voltage stabilizes to its final value.

Synchronized switch harvesting techniques on inductors (SSHI) [107] have been proposed
to minimize the transition period and improve efficiency of the rectifier by up to 4×. In this
method, teh voltage across the piezo is synchronously flipped to minimize energy loss due
to charging the internal capacitor of the piezo (∼10s of pF). However, inductors are not
practical for miniaturized implants due to their large volume. The work in [108] introduces
synchronized switch harvesting techniques on capacitors (SSHC) resulting in up to 9.7×
improvement in performance compared to full bridge rectifiers while significantly reducing
the volume. Designing a full-fledged digital control circuit for the implant to enable switching
the rectifier is critical for employing these techniques.
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Encapsulation

Implantable devices use inorganic (Al2O3, HfO2, SiO2, SiC, etc.) or organic (Polyimide,
Parylene, liquid crystal polymer (LCP), silicone elastomer) materials for biocompatible
encapsulation [109, 110]. The optimal duration of most immune checkpoint inhibitor im-
munotherapy procedures is typically less than 2 years [111]. Biocompatible encapsulations
with Parylene C, Polyimide, PDMS have shown lifetimes ranging from several months to years
according to failure tests ensuring that the device will maintain its performance throughout
the majority of immunotherapy procedures [109, 112]. Thin layers of Parylene C are popular
due to low moisture and gas permeability and have been used in several implants for their
small damping effects on the acoustic vibrations [5, 113].

Possible mechanisms of optical loss in the encapsulation layers for our system are intensity
reduction due to absorption and reflection at the interface of tissue, and degradation of
resolution due to scattering as shown in [114]. The effect of light penetration for the implant
coated with a 10-µm thick layer of Parylene C which has demonstrated an equivalent lifetime
of one or more years at 37◦ [29] is analyzed given its refractive index of 1.592- 1.639.

Absorption: Absorption is negligible due to the small thickness of the Parylene C layer.
I is the light intensity after passing through the coating layer and I0 is the initial intensity.
µa ≈ 1 cm-1 is the absorption coefficient at λ=635 nm [115]. d=20 µm is the round trip
distance to and from the sample passing through the encapsulation layer assuming similar µa

for excitation and emission wavelengths:

I = I0exp(−µad)

Transmittance : T =
I

I0
= 99.8%

Reflection: Transmission at the Parylene(n=1.62)-tissue(n=1.45) interface is plotted in
Fig.8.1 across incidence angles for both TE and TM modes [80]. Transmission is zero for
angles larger than the critical angle (63.4). For angles <50◦, transmission is higher than 97%.

The above results demonstrate an overall transmission higher than 96% (for incident
excitation angles > 50◦) indicating the viability of biocompatible encapsulation for optical
devices. Even though polymer-based encapsulations are preferable due to simplicity and
lower processing temperature, they don’t provide an impermeable barrier. Therefore, better
encapsulation methods using hermetic barriers such as ceramics, and glasses with higher
hermeticity can be used for longer-term applications.

Characterization of Foreign Body Reaction

Foreign body reaction to implanted biosensors is one of the key challenges that need to be
addressed for in vivo experiments. This effect has been investigated extensively, indicating
that factors such as size, shape, flexibility, and material type play an important role in
determining biocompatibility of the device [116, 117].
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Figure 8.1: Transmission in Parylene C - tissue interface across angles of incidence

An important distinction between an image sensor and a fluorescence sensor lies in the
access to cell-type identity information – as determined by molecular markers. By looking for
specific cell types, this allows for elimination of changes of the majority of non-contributory
cell information (such as general tissue inflammation response, tumor stroma changes, etc.).
This feature enhances our ability to discern the tumor microenvironment beyond mere signal
intensity which can give insights into changes in cell distribution, cell movements, and
cell-to-imager distance as real-time images can be obtained wirelessly in the future.

Given that the device is designed for real-time imaging, the immune response can be
monitored during the inflammatory reaction to device implantation. Once the inflammatory
response has settled, we can then focus on capturing the immune response to cancer. A
baseline measurement with the sensor before administration of the therapy can be subtracted
from subsequent measurements after the administration of therapy to rule out any confounding
response to the implant.

With future advancements in system integration in a biocompatible package and min-
imization of the form factor, our platform holds promise for enabling real-time chronic
monitoring of multiple cell populations deep within the body, increasing visibility into the
tumor microenvironment and guiding cancer therapy.
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