
Ensuring Data Freshness Across Clouds for Model Serving

Joseph Gonzalez, Ed.
Ion Stoica, Ed.

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-36
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-36.html

May 1, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Ensuring Data Freshness Across Clouds for Model Serving

By

Sarah Wooders

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

EECS

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Natacha Crooks, Chair
Professor Ion Stoica

Professor Joseph E. Gonzalez
Professor Vincent Liu

Fall 2024

Ensuring Data Freshness Across Clouds for Model Serving

Copyright 2024
by

Sarah Wooders

1

Abstract

Ensuring Data Freshness Across Clouds for Model Serving

by

Sarah Wooders

Doctor of Philosophy in EECS

University of California, Berkeley

Professor Natacha Crooks, Chair

Modern machine learning applications increasingly rely on large volumes of contextual data,
such as pre-computed features and embeddings, to make accurate predictions. However,
maintaining the freshness of this derived data across geographically distributed cloud en-
vironments presents significant challenges. This thesis explores novel approaches to ensure
data freshness for model serving in multi-cloud and multi-region settings, focusing on both
feature maintenance and efficient data transfer.

First, we present RALF, a system that optimizes feature updates by leveraging feedback
from downstream models to prioritize updates that have the greatest impact on prediction
accuracy. RALF introduces the concept of "feature store regret" to quantify the impact of
stale features on model performance, enabling more efficient use of computational resources
while maintaining high prediction quality.

Building on this foundation, we then address the challenge of efficient data transfer
across cloud regions and providers. Skyplane introduces a cloud-aware overlay network that
optimizes both cost and throughput for large-scale data transfers. This approach enables
faster and more cost-effective replication of feature data across distributed environments.

Finally, we present Cloudcast, which extends the ideas from Skyplane to the multicast
setting. Cloudcast leverages cloud pricing models and ephemeral waypoints to minimize the
cost of bulk data replication across multiple destinations, further improving the efficiency of
maintaining fresh data copies across distributed model serving infrastructure.

Together, these systems form a comprehensive approach to maintaining fresh, derived
data for machine learning applications in multi-cloud environments. By addressing both the
computational aspects of feature maintenance and the networking challenges of data transfer,
this thesis provides a foundation for building more efficient and accurate distributed model
serving systems.

i

To my parents

ii

Contents

List of Figures iv

List of Tables vi

Acknowledgments vii

1 Introduction 1
1.1 Background . 1

1.1.1 Freshness of Model Weights . 2
1.1.2 Freshness of Auxilary Data . 2

1.2 Compute Bottlenecks for Freshness . 2
1.3 Network Bottlenecks for Freshness . 3

2 RALF: Accuracy-Aware Scheduling for Feature Store Maintenance 5
2.1 Introduction . 5
2.2 Background . 7

2.2.1 Feature Stores . 9
2.2.2 Feature Maintenance . 9
2.2.3 A Feature Store Reference Model . 10

2.3 Efficient Feature Maintenance . 12
2.3.1 Feature Approximation . 12
2.3.2 Feature Store Regret . 13
2.3.3 Scheduling with Error Feedback: Regret-Proportional Scheduling . . 13

2.4 System Design and Architecture . 15
2.4.1 RALF Server . 15
2.4.2 RALF Client . 16
2.4.3 Scheduling Policy . 16
2.4.4 Implementation . 16

2.5 Evaluation . 16
2.5.1 Workloads . 17
2.5.2 End-to-End Evaluation . 18
2.5.3 Policy Ablations . 20

Contents iii

2.5.4 How well can future error be predicted? 23
2.5.5 Regret-Proportional Scheduling Limitations 23

2.6 Related Work . 23
2.7 Discussion . 24

2.7.1 Feature Materialization . 25
2.7.2 Feature Storage . 25
2.7.3 Limitations of Existing Feature Stores 26

3 Cloudcast: High-Throughput, Cost-Aware Overlay Multicast in the Cloud 28
3.1 Introduction . 28
3.2 Problem Setup . 31

3.2.1 Egress Costs . 31
3.2.2 Bandwidth Variability Across Endpoints 32
3.2.3 Elasticity of Resources . 33
3.2.4 Illustrated Example . 34

3.3 Cost Optimization in Cloudcast . 34
3.3.1 Egress Cost Minimization Algorithms 34
3.3.2 Profiling Cross-region Bandwidth . 35
3.3.3 Optimizing Cost with Time Constraints 36
3.3.4 Reducing Optimizer Runtime . 38
3.3.5 Example Topology . 40

3.4 Architecture of Cloudcast . 40
3.4.1 Control Plane . 40
3.4.2 Data Plane . 42

3.5 Evaluation . 43
3.5.1 Comparison to Multicast Algorithms 44
3.5.2 Cloud Provider and P2P Systems . 48
3.5.3 Ablations of Cloudcast’s Optimizer 49
3.5.4 When to Use Cloudcast for Multicast? 51

3.6 Related Work . 52

4 Conclusion & Future Work 56

Bibliography 58

iv

List of Figures

2.1 Feature stores serve materialized feature values to downstream models. RALF
leverage downstream model feedback to prioritize expensive feature updates (§2.3.3). 6

2.2 The prediction loss (measured by MASE) on the left is correlated with the feature
staleness (time since last update), show on the right. 7

2.3 A ML serving pipeline with a feature store. 8
2.4 Average staleness in a 1-minute time window across all keys as a function as the

cardinality. 11
2.8 Regret-Proportional Improvement over Minimum-Past for users in the training

set (Trained) versus new users (Untrained) in the Recommendation workload. . 22

3.1 Direct replication from a source region (purple) to destination regions (blue) may
traverse expensive or slow links, which can be avoided via waypoint regions (yellow). 29

3.2 Egress fees between regions (in cents per GB). 31
3.3 Bandwidth distribution (in Gbps) between regions. Per-VM egress limits are

marked in red dotted lines. 32
3.4 Overlay node set and distribution trees for a toy example. The source and desti-

nation nodes are marked ‘S’ and ‘D’ respectively, while waypoint nodes in yellow
are marked ‘W’. Expensive, fast paths ($0.1 per GB, 2Gbps) are shown in solid
red, while slow, cheap paths ($0.02 per GB, 1Gbps) are shown in dashed green. 33

3.5 Stripes transferred from the source (purple) to destinations (blue) are placed by
the solver along edges depending on edge capacity (yellow) and node capacity
(green). 36

3.6 Visualized solver output for inter-cloud replication described in §3.5.1, consisting
of source (purple), waypoint (yellow), and destination (blue) regions. The data
is divided into 5 stripes (marked on edges). 39

3.7 Cloudcast system architecture. 41
3.8 Simulated results for Multicast Algorithms. 44
3.9 AWS Intra-Cloud . 46
3.10 Azure Intra-Cloud . 47
3.11 GCP Intra-Cloud . 47
3.12 Inter-cloud multicast results for different algorithms implemented on Cloudcast.

The Cloudcast replication tree is visualized in Figure 3.6. 48

List of Figures v

3.13 Cloudcast outperforms AWS S3 Replication Time Control while reducing total
transfer costs. 49

3.14 Comparison with BitTorrent protocol on the intra-cloud Azure workload in Figure
3.10. 50

3.15 Cloudcast optimizer’s cost and time improvement over direct replication with
varying destination numbers. 51

3.16 Approximations reduce solver runtime from the cutoff of 30 minutes to seconds
for up to 20 destinations. 52

3.17 Estimated break-even point for a 6-destination replication based on VM startup
times (35, 56, and 34 seconds for AWS, Azure, and GCP, respectively) and VM
egress limits. 53

vi

List of Tables

2.1 Workload attributes. The Runtime column refers to the featurization update
runtime for a single key. The Min Loss and Max Loss columns show the overall
loss given infinite budget and zero budget for featurization, respectively. The
minimum loss for the Azure dataset is shown in ??. 17

3.1 Symbol table for Cloudcast’s ILP formulation. 35
3.2 All of the systems and variants we evaluate, covering a mix of academic baselines

and commercial solutions. 43
3.3 Solve time and solution quality with approximations. 51
3.4 Accuracy of the optimizer’s predicted throughput. 52
3.5 Cloudcast builds on prior work by enabling multicast, optimizing cloud costs, and

leveraging cloud resource elasticity and multiple distribution trees. 55

vii

Acknowledgments

First, I would like to thank my advisors, Professor Joseph E. Gonzalez and Ion Stoica.
I am immensely grateful to have had the opportunity to work with both Joey and Ion
throughout my PhD. Joey was always an incredibly supportive and encouraging advisor,
who was willing to spend the time to work through low-levels problems, especially early in
my PhD. Joey’s research group was also exceptionally diverse in its research interests, which
allowed me to work with collaborators in both AI and systems research. Ion was also a
fantastic advisor to have, with the ability to advise on everything from specific mathematical
formulation of problems to strategy around starting companies. I would also like to thank
Professors Natacha Crooks, Joe Hellerstein, and Vincent Liu for their mentorship during my
PhD, even though they were not my official advisors. I especially am grateful for the support
Natacha gave me during difficulties parts of my PhD.

I would also like to my collaborators Simon Mo, Paras Jain, Kevin Lin, Charles Packer,
Shu Liu, Shishir Patil, Sam Kumar, and Amit Narang. Simon in paticular was was longest
collaborator, and I feel incredibly fortunate to have been able to work with such a talented
engineer and researcher throughout my PhD. Kevin Lin was a close second, as we worked
together both on the MemGPT and RALF projects together, and I am very grateful for his
insight, perspectives, and friendship during the projects we worked. I am also very thankful
to Sam Kumar and Paras Jain, who very important mentors to me during my work on
Skyplane and Cloudcast. Paras is an incredible researcher and speaker who taught me a
lot about how to present my work. Sam provided me with wisdom about how to think
of research and the PhD, and also handling paper rejections. I am also grateful to have
worked with Shu Liu, who was a very hardworking and talented researcher who helped make
the Cloudcast paper happen. Charles Packer has also been an amazing collaborator on the
MemGPT project, with incredible sense of optimism, determination, and focus on what’s
most important.

Outside of collaborators, I am also grateful for students in the EECS program who made
the PhD much more enjoyable, such as Audrey Cheng, Jean-Luc Watson, Connor Power,
Lisa Dunlap, Suzie Petryk, Justin Wong, Sukrit Kalra, Shadaj Laddad, Samyu Yagati,
Alejandro Escontrela, Micah Murray, Asim Biswal, Justin Kerr, Ameesh Shah, Jessy Lin,
Ethan Weber, David Chu, Jaewan Hong, Wei-Lin Chiang, Eric Wallace, Ajay Jain, Norman
Mu, Frank Luan, Zhanghao Wu, Zongheng Yang, Zhuohan Li, and Justin Kerr. Outside of
the PhD, Laura power, Kevin Kwok, Jason Siebel, Claire Nord, Uma Roy, and Rikhav Shah

Acknowledgments viii

were also wonderful friends who I am grateful to have had. My roommates, Ameesh Shah,
Justin Kerr, and Jessy Lin were an amazing group of friends to spent time with, and also
were incredibly supportive during stressful times. Jessy, my friend since freshman year and
roommate since graduating undergrad, has been along a parallel path to me for the past
five years, exploring startups right out of undergrad, then moving on to pursue a PhD at
Berkeley together, and I am grateful to have had her as a friend. I am also thankful to
Daniel Rothchild for being an editor to most of what I wrote during my PhD, and also being
my co-organizer for the first ever student social retreat (also with Jean-Luc Watson) which
led to an annual tradition continued over the past three years.

During my PhD, I also had the opportunity to lead the Computer Science Graduate
Entreprenuership club for two years. I am grateful to my co-presidents, Utkarsha Agwan,
Shadaj Laddad, and Karl Kauth, and members who helped organize our many events: Jiwon,
Shadaj, Charles, J.D., Shishir, Silvery, Marius, and Paras. I am also grateful to Andy
Konwinski and Andrew Kriokov for supporting and mentoring the club. I am especially
appreciative of the mentorship of Andy Konwinski, who also encouraged me to run the
Berkeley LLM meetups in my final year, and was an informal advisor to me throughput my
PhD.

I would also like to thank my undergraduate research advisors, Tim Kaler, Professor
Charles Lieserson, and Professor Nir Shavit, for encouraging me to attend graduate school
and giving me the opportunity to learn to do research.

Finally, I’d like to thank my family: my parents, my brother, and my grandma. Having
two professors already in the family (my dad and grandma) made graduate school a much
more approachable option, and helped me know what to expect. My mom helped save me
a lot of time and stress through helping me move (unfortunately, every year of grad school)
and making sure I had nice basics like plates, sheets, and a mattress. My dad is my

1

Chapter 1

Introduction

Modern machine learning applications increasingly rely on large volumes of contextual
data, such as pre-computed features and embeddings, to make accurate predictions. How-
ever, maintaining the freshness of this derived data across geographically distributed cloud
environments presents significant challenges. This thesis explores novel approaches to ensure
data freshness for model serving in multi-cloud and multi-region settings, focusing on both
feature maintenance and efficient data transfer.

First, we present RALF, a system that optimizes feature updates by leveraging feedback
from downstream models to prioritize updates that have the greatest impact on prediction
accuracy. RALF introduces the concept of "feature store regret" to quantify the impact of
stale features on model performance, enabling more efficient use of computational resources
while maintaining high prediction quality. Building on this foundation, we then address the
challenge of efficient data transfer across cloud regions and providers. Skyplane introduces
a cloud-aware overlay network that optimizes both cost and throughput for large-scale data
transfers. This approach enables faster and more cost-effective replication of feature data
across distributed environments.

Finally, we present Cloudcast, which extends the ideas from Skyplane to the multicast
setting. Cloudcast leverages cloud pricing models and ephemeral waypoints to minimize the
cost of bulk data replication across multiple destinations, further improving the efficiency
of maintaining fresh data copies across distributed model serving infrastructure. Together,
these systems form a comprehensive approach to maintaining fresh, derived data for machine
learning applications in multi-cloud environments. By addressing both the computational
aspects of feature maintenance and the networking challenges of data transfer, this thesis
provides a foundation for building more efficient and accurate distributed model serving
systems.

1.1 Background
Modern machine learning pipelines are increasingly dependent on the freshness of various

data components to maintain high prediction accuracy. Two critical elements that require

1.2. COMPUTE BOTTLENECKS FOR FRESHNESS 2

regular updates are model weights and pre-computed features or embeddings. Understanding
the importance of freshness for these components, as well as the challenges in maintaining
it, is crucial for building effective and efficient ML systems.

1.1.1 Freshness of Model Weights
Model weights represent the learned parameters of a machine learning model, encapsu-

lating the patterns and relationships extracted from training data. In dynamic environments
where data distributions can shift rapidly, maintaining fresh model weights is essential for
several reasons:

a) Adapting to Concept Drift: As the underlying relationships in the data change over
time (concept drift), models with stale weights may fail to capture new patterns, leading
to degraded performance. b) Incorporating New Information: Fresh model weights allow
the system to leverage the most recent data, potentially improving prediction accuracy for
current conditions. c) Mitigating Bias: Regularly updated weights help prevent the model
from becoming overly biased towards historical patterns that may no longer be relevant.
However, maintaining fresh model weights faces several challenges:

Computational Cost: Retraining models, especially large ones, can be computationally
expensive and time-consuming. Data Availability: Ensuring a consistent stream of labeled
data for retraining can be challenging in some domains. Deployment Latency: Updating
model weights in production systems often involves complex deployment processes that can
introduce delays.

1.1.2 Freshness of Auxilary Data
Pre-computed features and embeddings serve as crucial inputs to many ML models, pro-

viding rich, contextual information that can significantly improve prediction accuracy. The
importance of their freshness includes: a) Capturing Recent Behavior: In recommendation
systems or fraud detection, recent user actions or transactions are often the most predic-
tive. Stale features may miss critical recent events. b) Reflecting Current Context: For
applications like news recommendation, embeddings must reflect the current state of rapidly
evolving topics and user interests. c) Maintaining Relevance: In domains with high velocity
data, such as financial markets or social media, the relevance of features can decay quickly,
making freshness critical for accurate predictions.

1.2 Compute Bottlenecks for Freshness
As machine learning models become increasingly integrated into real-time applications,

the demand for fresh, accurate features has grown exponentially. This chapter introduces
RALF (Real-time, Accuracy and Lineage-aware Featurization), a novel system designed to
address the critical challenge of maintaining up-to-date features in high-velocity data envi-
ronments. RALF represents a significant advancement in feature store technology, focusing

1.3. NETWORK BOTTLENECKS FOR FRESHNESS 3

on optimizing feature updates to maximize downstream model accuracy while minimizing
computational costs. In modern machine learning pipelines, feature stores have emerged as
a crucial component, serving as a central repository for storing and managing pre-computed
features. These features, often derived from rapidly changing base data sources, are essen-
tial inputs for downstream models, particularly in low-latency prediction serving scenarios.
However, existing feature store systems face a fundamental challenge: how to balance the
need for fresh features against the computational cost of frequent updates, especially when
dealing with complex features like vector embeddings. Traditional approaches to feature
maintenance often apply a one-size-fits-all policy, either updating features as frequently as
possible (which can be prohibitively expensive) or allowing them to become arbitrarily stale
(which can significantly degrade model accuracy). RALF takes a novel approach by explic-
itly considering the impact of feature staleness on downstream task performance, enabling
more intelligent and efficient update strategies. Key contributions of RALF include:

The introduction of "feature store regret," a metric that quantifies the accuracy degra-
dation caused by stale features, providing a principled way to evaluate feature quality. An
accuracy-aware scheduling policy that leverages downstream error feedback to prioritize fea-
ture updates that have the greatest impact on model performance. A system implementation
that enables real-time adaptation to changing data patterns and query workloads, ensuring
efficient use of computational resources. Significant improvements in prediction accuracy
(up to 32.7

RALF represents a fundamental shift in how we approach feature store maintenance,
moving from a data-centric view to an accuracy-centric one. By closely coupling feature
updates with downstream model performance, RALF enables more efficient and effective use
of computational resources in maintaining feature freshness.

1.3 Network Bottlenecks for Freshness
In the context of maintaining data freshness for machine learning pipelines, network bot-

tlenecks pose a significant challenge, particularly when dealing with large-scale data trans-
fers across cloud regions and providers. Skyplane and its extension, Cloudcast, address
these challenges by leveraging cloud-aware overlay networks to optimize both the cost and
performance of data transfers. While Skyplane focuses on point-to-point transfers, Cloud-
cast extends these concepts to multicast scenarios, further improving the efficiency of data
replication for distributed ML systems.

Both Skyplane and Cloudcast are built on several key principles that help alleviate net-
work bottlenecks:

1. Cloud-Aware Overlay Networks: Both systems use application-level routing to identify
and utilize indirect paths that may offer higher throughput than the default direct
path provided by the Internet. This approach allows for more efficient use of available
network resources.

1.3. NETWORK BOTTLENECKS FOR FRESHNESS 4

2. Cost-Performance Trade-offs: By considering both the monetary cost of data transfer
(including egress fees) and the achievable throughput, these systems can navigate the
complex landscape of cloud pricing models to find optimal transfer strategies.

3. Resource Elasticity: Both Skyplane and Cloudcast leverage the elasticity of cloud re-
sources, dynamically allocating VMs to serve as relay points in the overlay network.
This allows for greater flexibility in routing decisions and can help circumvent band-
width limitations on individual instances.

4. Mixed-Integer Linear Programming (MILP) Formulation: Both systems use MILP to
compute optimal data transfer plans, considering factors such as network throughput,
egress costs, and instance limits.

Cloudcast, presented in the NSDI ’24 paper, builds upon Skyplane’s foundation and
extends it to multicast scenarios, further optimizing bulk data replication across multiple
destinations. The optimizations provided by Skyplane and Cloudcast have a significant
positive impact on maintaining data freshness in distributed ML pipelines:

• Faster Model Weight Updates: By reducing transfer times, these systems enable more
frequent updates to model weights across distributed training or serving infrastructure,
allowing models to adapt more quickly to changing data patterns.

• More Timely Feature Replication: For pre-computed features and embeddings, the
improved transfer speeds and cost efficiency allow for more frequent replication of
feature stores across regions, ensuring that serving infrastructure has access to the
most up-to-date feature data.

• Improved Multi-Region, Multi-Cloud Deployments: The ability to efficiently transfer
data across cloud providers enables more flexible ML pipeline architectures, allowing
organizations to leverage the best resources from multiple clouds while maintaining
data freshness.

• Cost-Effective Freshness: By optimizing for both cost and performance, these systems
make it economically viable to maintain higher levels of data freshness, even for large-
scale deployments.

Skyplane and Cloudcast represent significant advancements in alleviating network bottle-
necks for maintaining data freshness in distributed ML pipelines. By leveraging cloud-aware
overlay networks and sophisticated optimization techniques, these systems enable faster,
more cost-effective data transfers, supporting the increasing demands for fresh model weights
and features in modern machine learning applications.

5

Chapter 2

RALF: Accuracy-Aware Scheduling for
Feature Store Maintenance

2.1 Introduction
Most real-world applications of machine learning rely heavily on pre-computed features

to improve model accuracy and reduce prediction latency. Features are raw and derived
data that are passed as input to machine learning models to capture the context around a
prediction. For example, fraud detection and content recommendation models rely on fea-
tures describing merchants, users, and content to make accurate predictions. More recently,
large language models increasingly depend on features of relevant context (eg. embeddings
of past conversational history) to provide more grounded and personalized responses Lee
et al. (2019); Guu et al. (2020); Packer et al. (2023); Lewis et al. (2020).

Consider for example an online news recommendation service that predicts the probability
that a specific user will click on specific article. Standard models for this task Koren et al.
(2009); Naumov et al. (2019) rely on sophisticated features (such as model based embedding)
that summarize the user’s click history, the text in the article, and the click histories of other
users that have clicked on that article. These features are critical to making good predictions,
but are expensive to compute and sensitive to the continuously changing news cycle.

Real-time model serving applications, such as online news recommendation services, re-
quire low latency predictions, and therefore rely heavily on pre-materialized feature tables
stored and maintained by a feature store to hide the latency associated with deriving fea-
tures. In order to provide low-latency access to important contexual information, feature
tables At prediction time, the model serving system queries the pre-computed features from
the feature store by specifying a feature key (e.g. a user ID), as shown in Fig. 2.1. How-
ever, because the features are often derived from data that is constantly changing (e.g., click
streams and purchase history), the pre-materialized features also need to be continuously
updated with the arrival of new data. Unfortunately, updating features with every data
change can be wasteful and expensive for high-velocity data streams if the features are not
read between updates or cannot be updated incrementally. Beyond computation cost, featur-

2.1. INTRODUCTION 6

Feature Maintenance

Model
Serving

Transform

Error Feedback

Feature Store

Key Feature

A ...

B ...

Key BKey A

Key Value

A ...

B ...

R
eg

re
t

Timestep

Cumulative
Regret

R
eg

re
t

Timestep

Cumulative
Regret

Figure 2.1: Feature stores serve materialized feature values to downstream models. RALF
leverage downstream model feedback to prioritize expensive feature updates (§2.3.3).

ization via third party services also may impost hard rate limits on model-based embedding
computations OpenAI (2023); Cohere (2023).

As a consequence, existing feature stores are faced with a choice between (1) greedily
processing new updates as they arrive, and (2) allowing features to become arbitrarily stale.
The former is often prohibitively resource intensive while the latter significantly degrades
downstream model accuracy, as shown in Fig. 2.2. This trade-off is not unusual in this
space: weakly consistent data stores are faced with similar issues. In general, relaxing
consistency and allowing for stale data can break correctness in ways that are difficult to
quantify Sivasubramanian (2012); Cooper et al. (2008).

In the specific context of feature stores, however, “breaking correctness” has a measurable
metric: downstream model accuracy. This is a clean metric that quantifies the prediction
accuracy of a deployed model serving predictions. We can use downstream model accuracy
as a guide for when and how to compute features and reframe the problem of building a
resource-efficient feature store; rather than treating featurization as a task-agnostic data
processing problem, we focus on maximizing downstream model accuracy.

We find that the appropriate feature maintenance policy for optimizing downstream
accuracy can be key-dependent (within a single feature table) and vary across time. Keys that
are rarely queried are unlikely to have significant impacts on overall downstream accuracy.
Furthermore, even if keys are queried and updated at similar rates, the impact of staleness
on accuracy varies dramatically by key. For example, some keys can be updated much
less frequently than others without significantly impacting downstream accuracy, as show in
??. Prioritizing updates across keys can enable better resource efficiency in optimizing for
downstream model accuracy.

In this paper, we introduce RALF (real-time, accuracy and lineage-aware featurization) a
feature store for real-time, high-density feature updates that explicitly leverages downstream
feedback to reduce costs with minimal downstream accuracy degradation. We define a metric,
feature store regret, to estimate accuracy degradation caused by featurization, and present
feature update scheduling policies to minimize feature store regret.
Metrics. We argue the metric for evaluating a featurization pipeline should be based on

2.2. BACKGROUND 7

0 10 20 30 40
Updates

0

10

20

30

Lo
ss

0 10 20 30 40
Updates

0

100

200

St
al

en
es

s (
s)

Feature Updates in Time Interval

Figure 2.2: The prediction loss (measured by MASE) on the left is correlated with the
feature staleness (time since last update), show on the right.

downstream task performance. The ability to capture correctness numerically is a unique op-
portunity in striking the optimal balance between staleness, computation cost, and accuracy.
Specifically, we define feature store regret, to measure the drift between the predictions made
with optimal, high-cost features and predictions made with existing values in the feature
store.
Propagating & Adapting to Feedback. RALF leverages knowledge of error feedback
from downstream applications to estimate and minimize feature store regret in real-time.
RALF achieves this by tracking the lineage between feature values and downstream predic-
tions, and allowing downstream models to provide error feedback to RALF. This feedback
allows RALF to prioritise recomputing the features that have the greatest impact on down-
stream accuracy.

To summarize, we make the following contributions:

1. We formalize the feature maintenance problem and define a feature store regret metric
to evaluate feature store state in terms of downstream accuracy.

2. We introduce accuracy-aware feature maintenance policies to reduce the cost of main-
taining features while also minimizing the feature store regret. We evaluate these
policies with common feature store workloads, anomaly detection and recommenda-
tion.

3. We implement a system, RALF, as real-time featurization pipeline that instantiates
these policies. We evaluate RALF at scale with 257,077 keys for the anomaly detection
workload to show up to 32.7% reduction in loss or 1.6× (i.e. 61%) compute reduction.

2.2 Background
Most machine learning applications rely on features to summarize relevant aspects of the

training data and provide the necessary context to make informed predictions. To illustrate,

2.2. BACKGROUND 8

Feature Maintenance

model(embedding,
"sporting events")

Feature Store

Click Stream

Model Serving

News
Application

Query Stream

feature_table

user_id

embedding

raw_data

user_id
click

query: ("sporting events" , user_id)

event: { user_id: 84,
 click_id: 5329}

prediction: [6, 3943, 1]

Transform

user_id

embedding

Figure 2.3: A ML serving pipeline with a feature store.

we return to our online news recommendation service example (§2.1).
In this setup, the model m must predict the probability ŷ that user u will click on article a

given a search query x. Most papers in the area will denote this seemingly simple prediction
task as

ŷ = m(x, u, a). (2.1)

After all, most papers in the machine learning and systems community are about how to
design, train, and efficiently compute the model m. In this paper, we focus on how to
compute the features, u and a, to optimize accuracy.

Hidden in this notation is the need to transform historical data associated with the user
u and article a into their respective features, which can encode everything from the user’s
entire click history, to the contents of the article, and even the histories of other users that
clicked on that article. As a consequence, a more accurate notation for this task would be:

ŷ = m
(︁
x, fusers

(︁
Dt

u

)︁
, farticles

(︁
Dt

a

)︁)︁
, (2.2)

where the functions fusers and farticles are featurization functions and Dt
u and Dt

a are all the
data up until the present (t) that is associated with the user and article. Each of the feature
functions returns a vector that is combined with the query text x and processed by the model
m. m makes a prediction, calculating the probability that user u will click the article a.

While the aforementioned example described only a couple of features, in practice, there
may be dozens of features from different data sources computed for a single prediction.
Automated feature generation tools make is easy to generate hundreds of unique features
from data Alteryx (2023). For notational simplicity, in this paper we will focus on a single
featurization function f and key k:

ŷ = m
(︁
x, f

(︁
Dt

k

)︁)︁
. (2.3)

where x is the query and Dt
k is the historical data for key k.

Querying available historical data Dt
k and computing the featurization function f for

each prediction request may be prohibitive in low-latency prediction serving settings where

2.2. BACKGROUND 9

recommendations must be generated in real-time a users are scrolling through their news feed.
Each query may need to access large amounts of historical data and run a computationally
expensive feature function f . For example, many recent content recommendation models
employ deep learning techniques to encode click streams and article contents and run online
gradient descent Naumov et al. (2019).

Furthermore, many predictions may query the same keys, resulting in redundant com-
putation. Often the same user features will be used to rank multiple articles and the same
article will be ranked for many users. Executing the query on the entire history of users
and articles for each new prediction is redundant, expensive, and infeasible for latency con-
strained settings.

To guarantee low-latency feature queries and avoid redundant computation, features are
often pre-computed and stored in low-latency data store, referred to as feature stores.

2.2.1 Feature Stores
The feature store is a nascent class of systems which target the problem of storing and

maintaining feature tables. We show an overview of a how feature stores, model serving,
and applications interact in Fig. 2.3. There are several major open-source and commercial
feature store systems Hopsworks (2023a); Tecton (2023); Hopsworks (2023b); Services (2023).
Feature stores can be used to fulfill a variety of requirements, such as enabling sharing of
features across different multiple downstream applications, improving latency and cost by
pre-computing features, and managing metadata about features (e.g. version control), which
we discuss further in Section 2.7. In this paper, we focus specifically on maintaining feature
table over streaming data updates in the context of online prediction serving.

As the underlying, raw data is updated over time, pre-computed features need to be
maintained to prevent feature staleness, which may degrade prediction quality of dependent
downstream models. For example, a feature encoding a user’s interests in news topics can
change rapidly with each new action by that users. If the feature is not updated over time,
the stale encoding may degrade the quality of recommendations made by a model for that
user.

Existing feature store typically rely on external data processing systems (e.g. Spark,
Flink) to compute feature updates from new data. These systems then process new data in
either a streaming or batch fashion to update current feature values.

2.2.2 Feature Maintenance
Maintaining features with new data can be computationally expensive, depending on the

rate of new data arrival, the cost of the featurization function, and the required feature
freshness. While some feature functions can be incrementally applied to new data, many
require significant re-computation over a large window of historical data with the arrival of
each new record. For example, an attention-based text document embedding model will need
to re-compute the embedding of the entire document to reflect a single word change. Even
when feature functions can be applied incrementally, running them in a streaming fashion

2.2. BACKGROUND 10

on high velocity data streams can require expensive computational resources (e.g., GPUs)
and be less efficient than large batch updates Crankshaw et al. (2017, 2020).

Updating features with every data change can be expensive and unnecessary, depending
on how quickly the true feature value is changing and how much impact staleness has on
model predictions. In cases where models are robust to stale features, running a daily batch
job to process new data is sufficient. In other cases where models are sensitive to feature
staleness, features may need to be continuously updated with new data. For example, Splunk
uses Flink for streaming maintenance of time-series features for real-time anomaly detection
Mishra et al. (2021), and has developed application-specific solutions for maintaining fresh
features for high cardinality data streams Mishra et al. (2021). Feature values are typically
eventually consistent with respect to the underlying raw data.

To provide a specific example, we implement a workload similar to Splunk’s in Flink
where we maintain a time-series decomposition for a set of cloud virtual machines, each
streaming CPU utilization data. Updating a feature for a given virtual machine (i.e. the
key) takes about 0.3 seconds, so a single Flink process can only update about 3-4 features per
second. Existing systems do not natively have application awareness to prioritize updates,
so will use a FIFO queue to process new data in incoming order. As a result, increasing the
cardinality of the dataset eventually results in the per-key staleness linearly increasing with
time as updates lag new data, as shown in Fig. 2.4. These increases in feature staleness are
correlated to decreased prediction accuracy, as shown in Fig. 2.2.

In this paper, we show that scheduling feature updates according to each key’s impact
on downstream accuracy allows us to preserve overall accuracy at lower cost. Feature stores
typically lack awareness of downstream query patterns and performance of the predictions
made using queried features. As a result, systems for maintaining features treat all data
updates and keys symmetrically and fail to leverage important information about which
updates are critical and which keys are likely to be accessed in the downstream prediction
workload.

2.2.3 A Feature Store Reference Model
For simplicity, we first describe the standard formulation of a feature store. In Section 2.7,

we discuss the full variety of feature stores presently being used, and how our work applies.
We assume that raw historical data is loaded into a data warehouse, capturing the basic

entities (users, movies) and actions (users seeing ads, users viewing movies, etc) we use in
prediction. We then consider a derived feature table that memoizes featurization functions
over that data. This table can also be stored in the data warehouse, or it can be maintained
in an external cache database like Redis or Memcached; our design does not depend on that
decision. A SQL query that populates the feature table exhaustively would have a template
that looks like this:

1 SELECT key , uda(data)
2 FROM historical_data
3 GROUP BY key

2.2. BACKGROUND 11

10
00

20
00

Timestamp (s)

0

100

200

300

400

Av
er

ag
e

S
ta

le
ne

ss
 (s

)
Average Staleness Over Time (1-Minute Windows)

Total Keys 90
Total Keys 80
Total Keys 70
Total Keys 50
Total Keys 20
Total Keys 5

Figure 2.4: Average staleness in a 1-minute time window across all keys as a function as
the cardinality.

where uda is a user-defined aggregate function. If the feature store is kept in the warehouse,
feature tables can be viewed as traditional materialized views. Materialized views, however,
are typically kept consistent with underlying data, and must be recomputed on every new
update. Systems that support incremental view maintenance incur similar costs when the
supplied feature function cannot be recomputed incrementally. In contrast, RALF focuses
on carefully choosing when and what keys to recompute to minimize resource costs while
preserving accuracy:

1 SELECT key , uda(data)
2 FROM historical_data
3 WHERE key IN <PolicyQuery >
4 GROUP BY key

The fundamental policy decision addressed in this paper is: given the above query can only
be run on a small subset of all possible keys at a time , which keys do we select to ensure
maximum downstream prediction accuracy. We focus on making scheduling decisions across
keys (rather than between updates pertaining to a single key), as large key cardinality is a
common attribute in feature store applications. We use SQL here to illustrate our ideas,
but of course this logic could be implemented in a number of scalable data-centric APIs,
including Spark, Flink, and so on.

As we discuss in Section 2.7, there are many options for materializing and storing features.
Our simple model here is designed to be sufficient to illustrate the key policy issues at hand;

2.3. EFFICIENT FEATURE MAINTENANCE 12

further architectural complexity is discussed in Section 2.7.

2.3 Efficient Feature Maintenance
In this section, we formalize the feature maintenance problem addressed in this paper,

that is, selecting the keys for §2.2.3. In a resource-constrained setting, only a subset of
features can be updated at any given time, resulting in feature staleness which may degrade
prediction accuracy. The focus of this paper is precisely to optimize this issue: deciding
which keys to update in response to new data, with the objective of maximizing downstream
prediction accuracy. As previously highlighted, the core enabling factor is the differentiated
impact that feature staleness has on overall accuracy: stale features may lead to low query
errors, while some features may simply rarely be queried at all.

2.3.1 Feature Approximation
Featurization cost can be reduced by computing features using approximated featuriza-

tion (e.g. sampling) or using stale features, which is the focus of this paper. Reducing the
frequency of updating feature values by tolerating staleness is a simple way to reduce featur-
ization cost, as the same update function can be used on the same data: the only parameter
to change is when the update is triggered. For example, multiple edits to a document can
be batched together so the document only needs to be re-embedded once, or a function over
a window of data can be run less frequently to reduce computational cost.

For feature derived from data Dt, we denote the true feature values at time t as vtk =
f (Dt

k), and the stale feature values as

ṽtk = f
(︂
Dt−δk,t

k

)︂
. (2.4)

where δk,t is the staleness of the current feature value. Delaying update processing, and
thereby increasing the staleness, reduces how often f needs to be run on new data. However,
reducing the frequency of re-computation results in features that are more stale, as entries
in the feature table are more likely to be missing the most recent updates.

Evaluating Approximation Quality
Standard ways to evaluate the quality of approximation is to evaluate the staleness of the

queried data, or the differences in the approximated and unapproximated value. However in
the context of feature stores, these metrics do not necessarily correlate to prediction quality.
Feature staleness or large divergence in feature values is not problematic if the prediction
quality is not impacted. Similarly, slight changes in the feature values can dramatically
change predictions. For example, neural networks can be very sensitive to small perturba-
tions in input, and it is difficult to model how differences in feature values will correlate to
differences in predictions, especially when the input values to the model are unknown.

However, directly using downstream accuracy as a metric for feature quality is problem-
atic, as prediction quality depends on both the features and the model. A model may perform

2.3. EFFICIENT FEATURE MAINTENANCE 13

poorly for an out-of-distribution user regardless of feature approximation quality. In order
to disentangle model performance from feature quality, we propose feature store regret in the
next section.

2.3.2 Feature Store Regret
We propose a feature store metric, feature store regret, to evaluate feature quality. The

feature store regret is the difference in predictions made by the optimal feature values vtk
and approximated features ṽtk.

R(t) = L(m|ṽt)− L(m|vt) (2.5)

where L(m|ṽt) and L(m|vt) are the total loss of predictions made with the approximated and
unapproximated feature values, respectively. For simplicity, we assume L(m|ṽt) ≥ L(m|vt).
We can write the total loss in terms of the sequence of prediction requests with data {xi} at
time t which correspond to predictions ŷi(vt) and true values yi:

L(m|vt) =
∑︂
i

ℓ (ŷi(vt), yi) (2.6)

where ℓ is the loss function used to evaluate the model.

2.3.3 Scheduling with Error Feedback: Regret-Proportional Schedul-
ing

We propose an online scheduling policy in cases where we can observe regret online, which
we refer to as Regret-Proportional update scheduling. In many model serving applications,
the true prediction label can eventually be observed. For example, a recommendation model
can serve recommendations to a user and eventually observe which recommendations the
user did or did not click through. Similarly, a time series feature can be evaluated against
future points observed for the time-series. The observations of the true label can be used to
compute model prediction error, which can be used to provide feedback on feature quality.
While prediction error cannot always be computed online, we constrain the problem to this
setting to consider how error feedback can be used to make better scheduling decisions.

We formalize the online scheduling problem for feature stores in terms of minimizing
feature store regret under resource cost constraints. At a high level, our proposed policy is
to prioritize keys with the highest cumulative regret. This allows us to prioritize updating
keys where feature staleness has the highest impact on the overall loss rather than keys where
the prediction loss is primarily a result of model error. We describe how we estimate regret
with error feedback in §2.3.3.

Formulation
We consider a feature table with keys k ∈ K each mapping to values ṽtk. At time t, the

scheduler can update a subset of keys Ut ⊆ K. For each k ∈ Ut, we recompute the feature

2.3. EFFICIENT FEATURE MAINTENANCE 14

value on all data up to the current timestamp, while other feature values remain the same.
We can denote the approximate feature values at time t with Eq. (2.4) where the staleness
δk,t = 0 if the key k is updated at time t, and otherwise δk,t = 1 + δk,t−1.

Given a constraint C on the number of keys which can be updated at each timestep t,
our goal is to select updates U such that the staleness matrix δ minimizes the cumulative
regret over time:

argmin
δ

∑︂
t

R(t) (2.7)

|Ut| ≤ C, ∀t (2.8)

Error Feedback
We assume that we can observe the per-key loss. Say that for the sequence of queries

{xkt}, we eventually recieve error feedback Et = {ek} denoting the prediction error of
m(xkt, ṽ

t
k). For simplicity, we assume that the error is received before we need to make

scheduling decisions for the next timestep. We can estimate the per-key loss at each timestep
as the sum L(m|ṽkt) ≈

∑︁
ek∈Et

ek.

Scheduling Policy
We propose an online algorithm which selects keys to update based off the cumulative

regret observed since the last update:

argmax
k

δt,k∑︂
s=0

Rk(t− s) (2.9)

To estimate R(t), we also need an estimate of the loss with the ideal features L(m|vkt).
We assume that the expectation of error over queries is temporally stable with respect to
staleness for each key. Thus we can calculate the average error immediately after the feature
was updated at time tu = t − δt,k and multiply with the number of error observations at
time t to estimate L(m|vtk) and subtract this from each error value observed at timestamp t
before taking the sum of all errors observed at t. We can thus write out the estimated regret
at t as:

Rk(t) ≈
∑︂
ek∈Et

ek −
∑︂

ek∈Etu

|Et| · ek
|Etu|

(2.10)

Intuitively, we can think of this as computing how much additional error per query there
is in Et (the current timestep error) as compared to Etu (the post-update timestep error).
Expanding out Eq. (2.9) and denoting the last update time as tu = t− δt,k, we select the key
to update as:

argmax
k

δt,k∑︂
s=0

∑︂
ek∈Et−s

⎛⎝ek −
∑︂

ek∈Etu

ek
|Etu|

⎞⎠ (2.11)

2.4. SYSTEM DESIGN AND ARCHITECTURE 15

We can prevent starvation by upper bounding the regret Rk(t) < Rmax, and assuming
Rk(t) > ϵ for some ϵ > 0. We find in practice, since the errors in Etu are relatively small, we
can remove the second summation term and simply sum ek to estimate regret.

Default Regret
One potential issue with relying on cumulative regret for key prioritization is that a key

may become arbitrarily stale if the key is never queried. Stale keys can be prioritized more
by setting a higher minimum regret value Rk(t) > ϵ, so that keys will incur regret over time.

2.4 System Design and Architecture
In this section, we describe RALF, which orchestrates updates to feature tables with

adaptation to feedback. Downstream clients query the feature tables through the RALF
client so that RALF can track query access patterns and also post feedback to RALF once
prediction labels are observed.

2.4.1 RALF Server
RALF orchestrates data updates to maintain feature values. We show an example of

defining a maintained feature table with RALF in Listing 2.1. RALF schedules and pro-
cesses data updates to compute new values for the feature table using the specified feature
transformation. In addition, RALF receives queries and error feedback from the client in
order to track feature access patterns and quality. RALF requires a feedback loop: a down-
stream model that queries feature values must post the observed error for the corresponding
key back to the server. This data is used by the scheduler to help decide which key to update
next.

Transformation
Feature transformations are defined by user definted functions (UDFs) which can maintain

state and define an on_event function, which define how to transform a data update from
the raw data table to a data update to the feature table. We show an example transformation
in Listing 2.1. These transformations are implemented as Ray actors, so RALF relies on Ray
for concurrency and fault tolerance.

Scheduling
Pending updates are scheduled by RALF with the scheduler, which chooses the next key

to update. The scheduler receives error feedback from downstream models, and uses this to
update a table tracking estimated cumulative regret per key. This table is used to select the
key with the highest estimated regret. The chosen key and corresponding data passed to the
transformation.

2.5. EVALUATION 16

Scaling
RALF scales to large cardinality datasets by sharding keys across multiple replicas, which

each replica can run on separate processing across a single or multiple machines. Each replica
has a separate scheduler and error table to avoid coordination.

2.4.2 RALF Client
The RALF client is used by downstream applications to query RALF for features and to

post feedback. We show an example of a downstream application in Listing 2.2, which queries
the client for feature values to predict the likelihood of cart abandonment. For applications
where true labels are later provided, the application can also post feedback to the client to
inform future scheduling the decisions. The feedback takes in the key of queries feature,
the queried feature version, and the error of the resulting prediction. Feedback is posted to
RALF, which tracks error feedback for current feature versions on the feature view.

2.4.3 Scheduling Policy
RALF schedules feature updates with Regret-Proportional scheduling, that is, prioritizing

updates to keys with the largest cumulative regret. The cumulative regret is calculated by
tracking the reported error for predictions made using the current feature version stored
in the table, and then selecting the key with the largest cumulative regret (as shown in
Algorithm ??). Once a key is chosen, the prior feedback and queue for the key are both
cleared, and the key is marked as being processed and locked until the new feature value is
computed. The scheduler tracks a list of pendingKeys, the list of keys with new data updates,
and processingKeys, the list of keys where new features are currently being computed. Keys
are selected from pendingKeys, and once selected, are removed from pendingKeys and added
to processingKeys. Keys in processingKeys cannot be chosen again by the scheduler until
they are removed once the featurization update is complete - this is to prevent duplicate
updates to keys while they are still processing.

2.4.4 Implementation
We construct a full prototype of RALF in about 1,500 lines of Python code. Our proto-

type is built atop Ray Moritz et al. (2018), because many popular featurization and machine
learning libraries (e.g., Tensorflow Abadi et al. (2016)) use Python, and Ray is designed
to support machine learning workloads. We emphasize that RALF is a set of ideas for
accuracy-aware featurization, and can be implemented on several systems.

2.5 Evaluation
In this section, we address two primary questions: (1) how does Regret-Proportional

scheduling impact downstream prediction accuracy (2) how does RALF with Regret-Proportional

2.5. EVALUATION 17

Table 2.1: Workload attributes. The Runtime column refers to the featurization update
runtime for a single key. The Min Loss and Max Loss columns show the overall loss given
infinite budget and zero budget for featurization, respectively. The minimum loss for the
Azure dataset is shown in ??.
Workload Dataset Keys Runtime Edits Min Max

Loss Loss
Recommendation MovieLens 1M 6041 0.9s 85,297 1.12 6.29

Yahoo Anomaly A1 68 0.25s 43,684 90.79 880.3Time-Series
Decomposition Azure VM Dataset 275,077 0.4s 5,683,390 - -

scheduling scale to processing high-cardinality, high-rate data streams? To answer these
questions, we structure our evaluation as following:

1. We construct representative workloads for two common feature store use-cases, recom-
mendation and anomaly detection, using real-world datasets. For both workloads, we
evaluate feature quality by evaluating model predictions that rely on feature which are
updated over time.

2. We run an end-to-end evaluation with RALF on a large-scale anomaly detection work-
load to evaluate prediction accuracy improvements, system overhead, and scaleability.

3. We run ablations comparing Regret-Proportional scheduling with both baseline and
application-specific policies.

2.5.1 Workloads
To evaluate feature maintenance policies, we construct workloads using real-world data

where model predictions rely on pre-computed features that need to be updated as new
events are streamed in. For each workload, we use real-world data to generate an update
stream (incoming raw data), query stream (queries from downstream models), and feedback
stream (error feedback).

For each workload, we setup to following components to mimic realistic prediction serving
applications: A feature function (the operator that transforms data streams into features
cached in the feature table), feature table (the key/value store contained feature keys and
values), and downstream model (the downstream prediction serving application which
queries feature table values that are used to make predictions).

We describe the dataset, featurization, and downstream models for recommendation and
anomaly detection workloads. A summary of workload attributes is show in §2.5, which also
shows the best and worst-case prediction loss depending on feature quality.

Anomaly Detection
Time series decomposition is a common pre-processing step to many downstream tasks,

such as anomaly detection or forecasting. We construct an time-series anomaly detection
workload based off a real-world application at Splunk Wang et al. (2021); Mishra et al. (2021).

2.5. EVALUATION 18

The anomaly detection task compares predicted points from time-series features, calculated
from windows of past data, with the observed points to detect anomalies. Accurate anomaly
detection depends on estimating the residual of the point accurately, which relies on the
accuracy of the cached time-series features. The query stream periodically queries all keys to
detect anomalies in regular time-intervals, so the distribution of queries over keys is uniform.
Features are maintained over an update stream of new time-series points. Each new time-
series point is compared to previously predicted points to provide a feedback stream.
Dataset. We use both the Yahoo Webscope S5 Dataset’s A1 class Laptev & Amizadeh
(2015) and Azure VM dataset Cortez et al. (2017).We use the Python statsmodels library
Seabold & Perktold (2010) to compute features from windows of data for each time-series.
For the Yahoo dataset, the rate of updates and start time for each time-series is uniform
across keys, so the distribution of queries and feedback across keys is also uniform. However,
the variation in the time-series can vary dramatically across keys, opening opportunity for
optimizing resource allocation across keys. For example, some time-series vary little over
time, while others change rapidly and have complex and variable seasonality components.

Recommendation
Recommendation is another applications where machine learning models are used to make

low-latency recommendations to users, often using user features derived from historical data
to personalize predictions. We construct a recommendation workloads where a downstream
models predicts what a user’s rating for a movie will be user and movie features computed
from past rating data, where user features are updated online. Given a stream of user ratings
for movies, we simulate a query stream over the users to predict what the rating should be.
We return the prediction error of the rating as the feedback stream, and treat the rating
itself as data update from the event stream. The incoming event stream of ratings is used
to update user embeddings over time using partial ALS to update the corresponding feature
vector.
Dataset. We use the MovieLens 1M Grouplens (2023), which has timestamped ratings from
roughly a million user/movie pairs. We use the first half of the data to train a model using
Alternating Least Squares. We treat the resulting movie embeddings as the static model and
the user-ratings as features which are updated over time. We use the second half of the data
as query, event, and feedback streams.

2.5.2 End-to-End Evaluation
We evaluate RALF on 800 cores for end-to-end with the Anomaly Detection workload

using the Azure VM dataset Cortez et al. (2017). We run RALF with both our Regret-
Proportional policy and baseline policy of Round-Robin scheduling to evaluate prediction
accuracy, scheduling overhead, and scaleability.

Experimental Setup
The Azure VM dataset includes of the CPU readings taken every 5 minutes on a pool of

2 million VMs over the span of one month. We send a subsample of 275,077 time-series from

2.5. EVALUATION 19

Azure Dataset on a cluster of 11 m5d.24xlarge machines (800 cores) on AWS. We simulate
higher data send rates by sending at 1000x speed (i.e. ingesting data once every 0.3 seconds,
rather than every 5 minutes as specific in the dataset). We use RALF to compute an STL
decomposition of the time series for each key, using a recent observation window. We set
the STL decomposition seasonality to be 24 hours, and set the observation window size of
data to be 3X the seasonality length (so 72 hours of recent data points) to have a sufficiently
large window to compute the decomposition. We store the resulting STL decomposition as
a feature in the feature store for each key (i.e. a time-series ID), which is updated over time
by RALF as new data arrives. Because of the high data rate, some features will be out
of date with the current observation window. RALF uses either the Regret-proportional or
Round-Robin scheduling policy to choose which features to prioritize updating.

Policy Error
To evaluate feature quality, we compare the MASE (Mean Absolute Squared Error) of

time-series predictions using the STL decomposition features using the Regret-Proportional
and Round-Robin scheduling policies in ??. We can calculate the MASE by comparing
the predicted points with the actual points observed. We show a plot of average MASE
across keys over time for features computed with the Regret-Proportional and Round-Robin
scheduling policies in ??. Although overall MASE varies over time, the Regret-Proportional
policy consistently produces lower MASE than the Round-Round policy features, with error
improvement ranging from 2-32.7% and averaging to 13%.

We additionally calculate the optimal version of the features (described in §2.3.2) for
each query by calculating what the feature value would be with all data up to exactly the
query time. The optimal features correspond to the best case MASE (shown in grey in ??)
enabled by unlimited compute resources (i.e. processing every possible update). We see that
the MASE for optimal features and the Regret-Proportional policies are similar in ??. The
Regret-Proportional policy over the course of the experiment runs 61% fewer updates (i.e.
1.6× less) than would be needed to achieve the optimal features, however averages only 1%
additional error as compared to optimal features.

Scaling Evaluation
We evaluate how RALF’s throughput scales in ?? by measuring the throughput per num-

ber of cores for Round-Robin versus Regret-Proportional scheduling. For both the Round-
Robin and Regret-Proportional policies, the throughput scales linearly with the number of
cores. Because the workload is embarrassingly parallel, we can shard keys across replicas,
where each replica corresponds to one core and has its own scheduling and transformation
operator. As a result, the number of updates scales linearly with with the number of cores.
We use randomized hashing to place keys on replicas and utilize 800 cores of workers.

Scheduling Overhead
We evaluate the scheduling overhead of Regret-Proportional versus standard Round-

Robin scheduling in terms of both compute and memory. The Regret-Proportional policy
requires a constant CPU cost of 300 µs per arrived window queued for update in order

2.5. EVALUATION 20

to evaluate the regret score. Furthermore, maintaining a sorted queue (ordered by per-
key regret) costs 50 µs per addition/removal. Additionally, because the regret calculation
requires previous feature to be cached in memory, the Regret-Proportional policy also costs
about 32 KBs per key, resulting in about 11MB of memory overhead per core. We note
that the per-core compute and memory overhead is constant regardless of the number of
cores used, due to scheduling occurring per-replica rather than globally. This allows us to
mitigate coordination overhead and is sufficient for making scheduling decisions that load
balance across threads and optimize feature quality.

We plot the total throughput as a function of total cores in ??. The Regret-Proportional
policy performed 0.6% less updates as compared to Round-Robin policy. However, despite
fewer number of updates performed, the cached features from Regret-Proportional scheduling
results in significantly better model performance. This is because the Regret-Proportional
policy can achieve similar feature quality with dramatically fewer updates, as shown by
achieving near-optimal feature quality with 61% fewer updates.

2.5.3 Policy Ablations
We compare the Regret-Proportional scheduling policy to other baseline and application-

specific policies that do not consider downstream prediction accuracy. We run simulated
experiments with both the Recommendation workload and the Anomaly Detection workload
(using a smaller time-series dataset, the Yahoo A1 dataset) to show the generality of our
policy improvements.

Policies
We implement the Regret-Proportional policy described in §2.3.3. Similarly, we im-

plement a Query-Proportional policy which updates features proportionally to the rate
they are queried (i.e. the number of times the feature has been queried since last updated),
to understand the impact of regret versus query awareness. We evaluate these policies along
with baseline query-oblivious policies commonly found in stream processing systems.

We implement baseline query-oblivious policies for choosing which keys to update:

• Round-Robin: Iterate over each key and skip keys with no pending updates (equiv-
alent to updating the most stale and least-recently-updated key).

• Random: Randomly select a key with pending updates.

We additionally implement two more sophisticated query-oblivious policies designed to im-
prove accuracy in the Recommendation workload:

• Minimum-Past: Update keys that have the least data incorporated into the feature
(i.e. the number of ratings seen for the user).

• Max-Pending: Update keys with the most pending new data (i.e. the user with the
most new ratings).

2.5. EVALUATION 21

Prediction Error
To evaluate the quality of features derived with different policies under different cost

constraints, we simulate the policies for each workload. At each timestep in the simulation,
there is a set of feature update events and feature queries for a set of prediction at that
timestep. We set an update budget, which limits the number features we can update per
timestep. The subset of features to update is chosen by the scheduling policy. At each
timestep, the simulator processes some subset of feature updates chosen by the scheduler
and generates predictions using the current set of features, which we use to evaluate error
in ??.

Regret-Proportional Policy
The Regret-Proportional policy is able to achieve better error across different workloads

and numbers of udpates, as shown in ??. Query-Proportional updates improves error over
baseline policies for the Anomaly Detection workload, as shown in Figure ??. However for
the Recommendation workload, where it is crucial to update features with little prior data
(e.g. new users), the updating proportionally for the queries fails to account for the non-
uniform benefit of updates across features. As a result, the Minimum-Past policy, which
updates the feature with the fewest prior updates, significantly outperforms the Query-
Proportional policy for Recommendation. Weighing the queries by the regret they incur (as
in the Regret-Proportional policy) improves the results beyond Query-Proportional updates
alone by accounting for both the query pattern and the significance of updates.

New users who have no associated ratings (and hence very poor quality default features)
are prioritized by Minimum-Past and Regret-Proportional policies, which significantly im-
proves performance over other policies. However, Minimum-Past cannot distinguish the
important of updates between users with similar prior update histories, resulting in worse
performance than Regret-Proportional overall. We measure the MSE improvement from the
Regret-Proportional policy over Minimum-Past for users with past ratings (Trained) versus
new users (Untrained) in Fig. 2.8. Although both policies are similar for new users, the
Regret-Proportional policy has substantial improvements over Minimum-Past for existing
users keys. The Regret-Proportional policy is able to account for the importance of priori-
tizing updating new users’ features, while also intelligently prioritizing updates across users
for which features have already been computed.

2.5. EVALUATION 22

0.25 1.0 4.0
Budget (Updates per Timestep)

0.0

0.1

0.2
M

SE
 Im

pr
ov

em
en

t Trained Untrained

Figure 2.8: Regret-Proportional Improvement over Minimum-Past for users in the training
set (Trained) versus new users (Untrained) in the Recommendation workload.

Distribution of Updates
Different policies allocate update budgets in different ways across keys. The variation is

most clearly observed for the Anomaly Detection workload, where keys have raw data updates
and queries arriving at uniform rates, but are updated with very different distributions
depending on the policy, as show in ??. The Regret-Proportional policy is able allocate more
updates to features incurring regret the most rapidly, resulting in large update variations.

Optimizing Feature Staleness versus Feature Quality
Although the staleness of the features is correlated to the prediction accuracy as shown in

Fig. 2.2, we find that the best performing policies in terms of prediction error are not the best
performing in terms of staleness data. As shown in ??, the Regret-Proportional has higher
average staleness than other policies, including Round-Robin. This is because other policies
such as Round-Robin will always prioritize updating the most stale feature, rather than the
most important feature to update to optimize downstream prediction error. As a result,
the Regret-Proportional policy results in better prediction error despite increased staleness,
as shown in ??. Although staleness is strongly correlated to feature quality, optimizing for
staleness does not always have the same results as directly optimizing for feature quality.

Query Distributions
The Anomaly Detection workload has a uniform query distribution over keys, while for

the Recommendation workload, queries for a given user typically come in bursts after long
periods of inactivity. We additionally test the effect of different query distributions by
re-assinging the inter-arrival times for the Recommendation workloads. We re-assign the
inter-arrival times between events to follow an Exponential distribution (equivalent to a
poisson process) and a Gaussian distribution, where the mean inter-arrival time is the same
as the original distribution. We show in ?? that this leads to similar results as the original
distribution of data, showing that Regret-Proportional scheduling is robust to different query

2.6. RELATED WORK 23

distributions.

2.5.4 How well can future error be predicted?
We evaluate how well error from past queries can predict errors in future queries as a

function of the window size of the past queries considered and the lag between the error data
and timestamp which we are trying to predict error for (which we refer to as the offset).
We train a linear regression model on both the Recommendation and Anomaly Detection
workloads to predict error for a future timestep (with some offset) given a window of previous
errors for a given key. We show results in ??, where we plot the MSE of the predicted error.
Both workloads benefit from larger windows, but is especially important for the Anomaly
Detection workload. Varying the offset hurts the accuracy of the model in Recommendation,
suggesting that the freshness of the feedback is critical, while Anomaly Detection relies on
just having a sufficient window size (since the per-key error is much more stable over time).

2.5.5 Regret-Proportional Scheduling Limitations
In our workloads, we assume that that the prediction error can be observed and fed back

to the scheduler; this allows us to make decisions that will minimize future prediction error by
selectively updating certain features. Our purpose in this evaluation is to demonstrate that
such feedback from downstream applications—providing recent prediction errors and query
patterns— can be leveraged to make better scheduling decisions for feature maintenance.
We believe that future work will be able to make progress is learning to effectively estimate
regret from offline data for certain workloads.

There is additionally a concern here with coverage. If we only update features that have
incurred past regret, we will fail to update features that have not been queried in the past
(e.g. a user who has not logged in in a long time suddenly begins a new session). Such keys
form the long tail of the query distribution. To handle this concern, RALF can be used
with a higher default regret value (described in §2.3.3, which will ensure that sufficiently
stale keys will eventually be prioritized. However, even without this, since RALF’s policy is
online, so can react quickly to prioritize features that suddenly start to get quried, as shown
in our results from the Recommendation workload.

2.6 Related Work
Feature Stores. While industry has heavily adopted the use of feature stores Tecton (2023);
Hopsworks (2023b), academic research on these systems is limited, and remains focused on
metadata and lineage management Kakantousis et al. (2019). We discuss feature stores in
depth in §2.7.
Approximate Query Processing. Approximate query processing reduces the cost and
latency of queries by returning approximate results Agarwal et al. (2013); Chaudhuri et al.
(2017). In the machine learning context, recent work investigates how cheaper and more

2.7. DISCUSSION 24

expensive models can be combined to respond to queries Kang et al. (2017) while providing
formal bounds on approximation Kang et al. (2020). RALF focuses on minimizing how fre-
quently feature computation takes place, not on minimizing computation costs. Approximate
query processing could be used in conjunction with RALF to target the latter. Investigating
how these two approaches interplay is a promising avenue for future work.
Materialized View Maintenance. Feature tables can be thought of as a materialized view
Chirkova et al. (2011) over raw data sources. Prior work in incremental view maintenance and
partial view maintenance Zhou et al. (2005) have examined how to efficiently maintain views
over changing data. Noria Gjengset et al. (2018) uses partial state and eventual consistency
to efficiently materialize tables both on events and on queries. Timely Dataflow Murray
et al. (2013) leverages shared arrangements McSherry et al. (2020) to facilitate incremental
recomputation of a view. No existing work focuses on when to recompute a given view and
how to prioritize across view to optimize application correctness.
Prediction Serving. Most prior work in prediction serving Crankshaw et al. (2017, 2020)
focuses on optimizing model serving resource efficiency but does not consider the feature
stores in such pipelines; these systems exclusively target improving model inference and fail
to consider data preprocessing and featurization. Systems that do consider featurization
either focus on making use of cheaper featurization functions which can be approximated
without affecting prediction Kraft et al. (2019), or target specific application use cases such
as video analytics Li et al. (2020); Jiang et al. (2018); Bhardwaj et al. (2020).
Staleness and Consistency. Trading-off consistency for performance is a well-known
strategy in modern large-scale distributed systems. These key-value stores or databases
relax constraints on when and how operations must take effect, reducing the cost of syn-
chronization Cooper et al. (2008); Lloyd et al. (2011); Sivasubramanian (2012); Lloyd et al.
(2011); Bailis et al. (2012); Terry et al. (2013); Yu & Vahdat (2000); Cui et al. (2014). The
flip-side is the increased programmer burden in defending against the potential unexpected
application behaviours that arise from these relaxed guarantees Crooks et al. (2016); Bailis
et al. (2012). To minimize this issue, prior work either 1) distinguishes between operations
whose ordering can be safely relaxed Li et al. (2012); Kraska et al. (2013); Bailis et al. (2014)
2) bounds divergence from the true value when possible Yu & Vahdat (2000); ?); Wu et al.
(1992); Cui et al. (2014); Wong & Agrawal (1992). The former is often restrictive, while the
latter does not discuss the application-level consequences of diverging from the true value.
These limitations have led to skepticism as to whether weak consistency is valuable option for
developers. Feature store systems, in contrast, have explicit metrics and mechanisms to un-
derstand loss of correctness; they are thus uniquely positioned to leverage weak consistency
and the staless/consistency tradeoff that it enables.

2.7 Discussion
In this paper we focused on feature stores in the context of online serving and real-time

maintenance for staleness-sensitive features. However, real-world deployments of feature

2.7. DISCUSSION 25

stores have diverse requirements, design choices, and applications in ML pipelines.

2.7.1 Feature Materialization
Most feature stores do not support feature materialization, and instead support ingestion

of pre-computed features through streaming and batch ingest pipelines. Other feature stores
(e.g. Tecton) offer built-in transformation tools. Existing feature transformation systems
are usually built on top of multiple existing computational engines (e.g. Flink, Spark, AWS
lambda) to support different ways of materializing features, making it difficult to apply
general optimization techniques across them.

For feature stores that support materialization (e.g. Tecton), there are typically three
types of feature materialization:

1. Batch: Features are periodically refreshed (e.g. daily, hourly) with a batch processing
system (e.g. Spark, Airflow).

2. Streaming: Features are continually re-computed with new data arriving in a stream-
ing fashion with a streaming system (e.g. Flink, Spark Streaming).

3. On-Demand (i.e. Lazy): The feature is materialized at query time (e.g. with a
lambda function).

Whether feature should be pre-materialized or materialized in real-time depends on the
cost of featurization, the query latency requirements, and the rate of incoming new data
and queries. Batch feature updates can be more cost effective for features which are not
staleness sensitive. On-demand feature updates are cost effective when the latency of the
feature computation is very low or there is not a requirement for low-latency queries.

Although we primarily focused on the case of steaming materialization of expensive fea-
tures, the policies in RALF can be applied to any case where only a subset of keys can be
processed. This applies to both streaming materialization and batch materialization where
the throughput may be limited.

Prior work in approximate query processing and approximate featurization Kraft et al.
(2019) can also reduce the cost of feature materialization and be used in conjunction with
batch, streaming, or on-demand materialization. We consider this line of work orthogonal,
as both key-prioritization and feature approximation can be combined to reduce cost.

2.7.2 Feature Storage
Feature stores are typically responsible for serving features to online model serving

pipelines with low latency, as well as storing large amounts of historical data and features
for model training pipelines. As a result, feature stores typically contain two separate data-
stores: 1. an offline store for offline training, and 2. a online store online model serving.
The offline store is usually a high-throughput, high-latency storage systems like cloud ob-
ject stores or data lakes. The online store, however, must serve features with tight latency

2.7. DISCUSSION 26

constraints (on the order of 100s of milliseconds). As a result, a smaller subset of features
are often stored in in-memory K/V stores (e.g. Redis Redis (2023)).

One challenge with splitting feature storage between separate online and offline stores is
maintaining offline/online consistency. Differences in the ways that features are ingested,
materialized, or defined between the offline and online store results in slightly different sets
of features being served to training pipelines and inference pipelines. Slight differences in
features can results in data drift for models, which can cause significant depredations in
prediction accuracy. As a result, some feature stores will only allow direct updates to either
the offline or online store, and syncs values from one store to another. While this approach
can reduce the risk of data drift, synchronization can incur additional overhead and latency
in updating features. In this paper, we only focused on materialization for the online store
(as we focused on prediction serving), however future work should explore how scheduling
policies could affect online and offline consistency.

2.7.3 Limitations of Existing Feature Stores
Despite being designed for machine learning workloads, existing feature store systems do

not account for accuracy in how they maintain feature values. Feature store are uniquely
situated between updates to features and feature queried, but typically lack awareness of
downstream query patterns and performance of the predictions made using queried features.
As a result, systems for maintaining features treat all data updates and keys symmetrically
and fail to leverage important information about which updates are critical and which keys
are likely to be accessed in the downstream prediction workload. In the online setting, these
systems make only a best-effort attempt at maintaining feature values up-to date. Features
might become arbitrary stale, significantly hurting accuracy. While the cost of computing
features in the online setting excludes keeping features, fully up-to-date, we find the current
approach suboptimal.

2.7. DISCUSSION 27

1 # Source t a b l e
2 source = r a l f . t a b l e s . kafka_source (t op i c=" user_data ")
3
4 # Queryab l e f e a t u r e t a b l e
5 embedding = source
6 .map(UserEmbeddingModel , mode l_f i l e="model . pt ")
7 . as_queryable (" u s e r_ f e a t u r e s ")
8 . s e t_ r ep l i c a s (4)
9 . s e t_de fau l t_er ror (0 . 0 1)

Listing 2.1: Defining a maintained feature table of user embeddings with RALF.

1 c l a s s CartAbandonmentModel :
2 c l i e n t = r a l f . c l i e n t (t ab l e=" u s e r_ f e a t u r e s ")
3 cache = {}
4
5 # s e r v e p r e d i c t i o n r e q u e s t s
6 de f p r ed i c t (user_id , cart_id) :
7 f ea ture , f i d = c l i e n t . get (user_id)
8 cache [cart_id] = {
9 " pred " : model . p r ed i c t (f ea ture , cart_id) ,

10 " f e a t u r e_ i d " : f i d ,
11 " f ea tu r e_key " : user_id
12 }
13 r e turn cache [cart_id]
14
15 # pos t f e edback when l a b e l i s r e c e i v e d
16 de f on_label (cart_id , checkout : bool) :
17 e r r o r = MSE(cache [cart_id] [" pred "] , checkout)
18 c l i e n t . feedback (
19 key=cache [cart_id] [" f ea tu r e_key "] ,
20 f eature_id=cache [cart_id] [" f e a t u r e_ i d "] ,
21 e r r o r=e r r o r
22)

Listing 2.2: Example of a downstream application serving predictions using queried feature
values and posting error feedback once the result is observed.

28

Chapter 3

Cloudcast: High-Throughput,
Cost-Aware Overlay Multicast in the
Cloud

3.1 Introduction
Increasingly, data in the cloud must be replicated to multiple cloud providers and different

regions within each provider. For example, geo-distributed applications like model serving
require model weights or features computed in a single region to be replicated to multiple
geographic regions to reduce serving latency for users accross the globe Flinn et al. (2022);
Sima et al. (2022); Wu et al. (2013). Data sharing between collaborating organizations
using different providers similarly requires replicating data to multiple locations. Finally,
the growth of multi-cloud applications that leverage resources from multiple providers is
dependent on application data being available across provider boundaries Chasins et al.
(2022); Yang et al. (2023); Wu et al. (2013).

Of course, data replication and multicast are not new. Both topics have been extensively
studied to optimize throughput and scalability in the context of IP networks, peer-to-peer
overlays Flinn et al. (2022); Castro et al. (2003); Kostić et al. (2003); Chu et al. (2001); Tor-
rentFreak (2023), and inter-DC networks Zhang et al. (2018); Fatemipour et al. (2022); Luo
et al. (2019); Tseng et al. (2021). However, replication between cloud regions and providers
introduces first-order concerns beyond just throughput and scalability. In particular, the
monetary cost of the transfer is a critical factor and one that (as we show later in this pa-
per) is poorly handled by existing techniques for optimizing throughput Zhang et al. (2018);
Kostić et al. (2003); Luo et al. (2019). While some existing works consider the monetary
cost for multicast, they either ignore the throughout García-Dorado & Rao (2015) or as-
sume a capacity-based pricing model Luo et al. (2021) which is inconsistent with today’s
cloud. In contrast to capacity-based pricing, cloud providers charge per-GB network egress
fees for data transferred out of a given region to another region or cloud provider. Per-GB
egress fees introduce a multiplicative term into the transfer cost—(egress price)×(amount

3.1. INTRODUCTION 29

Figure 3.1: Direct replication from a source region (purple) to destination regions (blue)
may traverse expensive or slow links, which can be avoided via waypoint regions (yellow).

transferred)—making it significantly more difficult to optimize throughput and cost.
Egress costs can vary by orders of magnitude depending on the source and destina-

tion Prince & Rao (2021), as well as the capacity of cross-region links. As a result, the
structure of the multicast replication tree (i.e., what data is replicated along which paths)
can dramatically affect the end-to-end throughput and monetary cost of replication. As a
concrete example, consider replication from a GCP source region to six AWS regions (Figure
3.1). Direct replication of the data between the source and each destination region (shown in
red arrows) would cost $720 per TB. Instead, replicating to an AWS region with the lowest
cross-region egress fees once and multicasting data from that AWS region to other regions
(shown in dotted green arrows) would reduce the price to $240 per TB. Further modifying
the multicast tree to utilize high-throughput links and offload egress bandwidth from the
source node can also improve throughput.

In this work, we solve the problem of high-throughput, cost-optimized cloud multicast in
which we minimize the cost of data replication while achieving a target replication time
(across all destinations) for bulk multicast replication. Cloud multicast incurs costs from
network egress fees and compute resources needed to mediate the transfer. In addition,
cloud multicast must meet application Service Level Objectives (SLO) for the replication
time, such as providing freshness guarantees on replicated data.

We design an optimizer to determine a multicast tree structure given a user-specified
source region, destination regions, and target replication time. By providing varying target
replication times, our optimizer can generate a Pareto-curve (shown in Figure 3.8) that
improves replication cost and throughput compared to prior approaches for cloud multicast
García-Dorado & Rao (2015); Ganguly et al. (2005). We achieve this by leveraging techniques
such as striping, VM parallelism, and overlay networking, while also accounting for the cloud

3.1. INTRODUCTION 30

providers’ network characteristics, resource constraints, and per-GB network pricing model.
Designing this optimization is challenging for two main reasons. First, the optimizer

must account for path-specific pricing models, resource constraints, and varying performance
across cloud providers. Existing techniques that formulate the optimization problem in terms
of bandwidth allocation cannot be adapted to account for per-GB network pricing without
making the problem non-linear (described further in §3.3). Second, the optimization search
space is combinatorially large, as the optimizer must determine both the set of overlay
waypoint regions (regions which are neither the source nor destination) as well as how data
will be routed along the overlay network. Unlike the traditional overlay settings, the cloud
offers significantly more flexibility in the number and the location of overlay nodes, as cloud
VMs can dynamically be instantiated in specified cloud provider regions. Furthermore,
replicating subsets of data (i.e., stripes) via different paths is critical for achieving high-
throughput Castro et al. (2003). We introduce several approximations (e.g., pre-selecting
the regions and limiting path lengths) to reduce this search space and enable the optimizer
to run within seconds.

To run overlay multicast across clouds, we develop Cloudcast, a system for bulk data
overlay multicast across GCP, AWS, and Azure. Cloudcast has a centralized control plane
that supports pluggable algorithms for determining the number and location of overlay nodes
and replication trees for multiple segments of data. We implement our optimizer as well as
several baseline algorithms as part of Cloudcast’s control plane. We run system experiments
to multicast data across clouds and show that Cloudcast is able to achieve up to 62.4% cost
savings and 2.84× replication speedup depending on the control plane algorithm (Figure
3.12).

We run an end-to-end system evaluation comparing Cloudcast with BitTorrent Torrent-
Freak (2023) and AWS’s commercial offering for multi-region bucket replication Villalba
(2020), which, like most cloud data replication offerings, only supports replication into or
within that cloud. We find that Cloudcast achieves 7.7× replication speedups and 28.4% cost
savings compared to BitTorrent (Figure 3.14). Compared to multi-region bucket replication,
we find that Cloudcast achieves up to 61.5% cost reduction and 2.3× replication speedup
(Figure 3.13).

To summarize, we make the following contributions:
1. We design an optimizer for minimizing replication cost under replication time con-

straints.
2. We introduce several approximations to reduce the search space for the optimizer,

reducing the solver runtime from hours to seconds.
3. We build Cloudcast, an open-source system for cloud overlay multicast with pluggable

data transfer policy.

3.2. PROBLEM SETUP 31

Figure 3.2: Egress fees between regions (in cents per GB).

3.2 Problem Setup
We frame the problem of cloud multicast in terms of constructing an overlay network

for replicating data, which involves defining: (1) the set of overlay nodes (i.e., cloud VMs)
and (2) the paths between those nodes that will be included in a multicast replication tree.
Cloudcast eventually divides the target data into multiple stripes (i.e., partitions), so con-
current replication trees may be used in a single transfer. Our optimization objective is to
minimize the monetary cost of replication while also meeting a replication time constraint.

3.2.1 Egress Costs
A unique aspect of multicast in the cloud is the effect of egress costs incurred for data

transferred across cloud regions. Cloud providers charge for wide-area data transfer per-GB
of data transferred. Egress prices—as a method of keeping data within the provider’s regions
without disincentivizing migration into the provider—dominate data movement costs in the
cloud and fundamentally change the multicast problem. Figure 3.2 visualizes the pricing for
11 regions across AWS, Azure, and GCP. Prices vary depending on the source and destination
cloud or region, with differences of up to 23× across region pairs. Along those lines, one

3.2. PROBLEM SETUP 32

Figure 3.3: Bandwidth distribution (in Gbps) between regions. Per-VM egress limits are
marked in red dotted lines.

particularly important axis is whether the transfer stays within a given cloud provider or
crosses provider boundaries, as inter-cloud egress costs are generally higher than intra-cloud
egress.

Intra-cloud egress (data movement between geographically separated datacenters in the
same cloud provider) is priced between $0.01 − $0.19 per GB transferred. Prices typically
increase with longer-distance transfers. For example, GCP charges $0.08 for transfers be-
tween continents but only $0.02 for transfers within the US. Some smaller providers (e.g.,
IBM, Cloudflare) offer free cross-region egress.

Inter-cloud egress (data movement between different cloud providers) is typically priced
at a much higher rate per GB ($0.08−$0.23). As such, it is essential to minimize cross-cloud
transfers in a multicast replication tree.

3.2.2 Bandwidth Variability Across Endpoints
Meeting replication time constraints can be challenging due to network bandwidth vari-

ability in the cloud. One type of variability arises from cloud providers, who impose con-
straints on per-VM egress and ingress bandwidth. These constraints differ significantly across
providers: for instance, AWS throttles intra-cloud and inter-cloud egress to 5 Gbps per VM,
while Azure imposes no VM-level limits. The impact of these egress limits can be observed
in Figure 3.3, where bandwidth is capped at the VM egress limit for AWS and GCP. Lim-

3.2. PROBLEM SETUP 33

Figure 3.4: Overlay node set and distribution trees for a toy example. The source and
destination nodes are marked ‘S’ and ‘D’ respectively, while waypoint nodes in yellow are
marked ‘W’. Expensive, fast paths ($0.1 per GB, 2Gbps) are shown in solid red, while slow,
cheap paths ($0.02 per GB, 1Gbps) are shown in dashed green.

ited node egress poses a particular challenge for cloud multicast, as the source node’s egress
bandwidth is often the bottleneck.

Even when source-node bandwidth is not the bottleneck, observed network capacity can
also vary considerably across cloud region pairs (up to 202×). Note that these networks are
relatively stable across time; prior work Jain et al. (2022) has found that network through-
puts are stable over periods of at least 24 hours. Instead, variations are primarily observed
across different source and destination regions. Figure 3.3 depicts the distribution of pro-
filed bandwidth between VMs running in AWS, Azure, and GCP. Intra-cloud bandwidth is
typically (but not always) higher than inter-cloud bandwidth.

3.2.3 Elasticity of Resources
A major advantage of the cloud is resource elasticity and the ability to flexibly provision

VMs across many regions. In the face of the source bottlenecks described above, VM elas-
ticity translates to a corresponding elasticity of bandwidth. Allocating multiple parallel VMs
enables users to scale throughput beyond per-VM network bandwidth limits.

Unfortunately, adding elastic VM capacity at the source region has limitations. Addi-
tional VMs add additional costs due to per-second billing on VMs, which can impact the
cost/throughput tradeoff. We note that because the marginal cost of additional VMs is often
relatively small compared to egress fees, the tradeoff is often worth making. However even in
these situations, bandwidth elasticity has limits: for instance, if a network-based bottleneck
is unavoidable or when cloud providers limit the number of vCPUs per region.

Crucially, elastic VM capacity can also be deployed at waypoint regions that are neither
the source nor the destination. These waypoint regions can help mitigate source VM bottle-
necks by distributing load from multicast fan-out across multiple separate regions. Waypoint
regions also mitigate points of congestion by routing data around slow paths.

3.3. COST OPTIMIZATION IN CLOUDCAST 34

3.2.4 Illustrated Example
Selecting overlay nodes and replication trees to optimize cost and throughput is challeng-

ing. Consider the toy example in Figure 3.4 for a 2GB replication with two 1GB stripes.
Assuming a 4 Gbps bandwidth limit for all nodes and one VM per region, the source (“S”)
and destination (“D”) nodes have fast but expensive outgoing paths, capable of sending at
2Gbps but costing 10¢ per GB transferred. Other regions have cheaper but slower outgoing
paths, capable of sending at 1Gbps but costing 2¢ per GB transferred. In a simple direct
replication scenario, the replication will be bottlenecked by the source node’s egress limit
(4Gbps). With two copies of data to send, the total transfer time will be 8 seconds.

Like many bandwidth-optimized techniques Castro et al. (2003); Ganguly et al. (2005);
Kostić et al. (2003), we offload egress bandwidth by sending a single data copy from the
source and leveraging multiple replication trees. Replication cost is reduced by replicating
to a waypoint, and then multicasting to destinations. This doubles replication time to 16
seconds due to stripes being replicated via the slower path (dotted arrows). An 8-second
replication SLO is met by transferring just one stripe via the cheaper waypoint.

This simple example presents a large search space for possible replication trees, and real-
world cloud networks present additional parameters such as choosing the number of VMs
per region and many possible waypoint regions.

3.3 Cost Optimization in Cloudcast
We design an optimizer to minimize replication cost while meeting a replication time SLO

(i.e., a constraint on the maximum replication time to a destination). Our optimizer has
two main contributions. The first is a Mixed-Integer Linear Program (MILP) formulation
of the cost-aware multicast problem, jointly selecting overlay nodes and replication trees.
While others Zhang et al. (2018); Ganguly et al. (2005) have used MILP formulations for
multicast overlay design, they formulate the optimization problem in terms of bandwidth.
Extending these formulations to accommodate per-GB costs would violate linearity as data
transfer volume (cost) is proportional to the product of the key decision variables: allocated
bandwidth and replication time. As a consequence, we propose a new formulation that
reframes the optimization in terms of data volume. Our new formulation assigns discrete
subsets of data (i.e. stripes) to replication paths in the network while ensuring that a
complete copy of the data arrives at all destinations. Unfortunately, solving this MILP
formulation can be intractable for larger numbers of destinations. Our second contribution
is an approximation of the MILP formulation that significantly reduces solve time without
significantly degrading the solution quality.

3.3.1 Egress Cost Minimization Algorithms
The challenge with our optimization problem stems from having to consider both through-

put and cost. Without replication time constraints, we observe that the Steiner Tree Hwang

3.3. COST OPTIMIZATION IN CLOUDCAST 35

Inputs
transfer-size ∈ R Transfer size in GB
time ∈ R Replication time constraint
stripes ∈ Z+ Number of data stripes

Decision Variables
P ∈ {0, 1}|stripes|×|V |×|V | Path indicator variable
N ∈ Z|V |

+ Number of VMs per region
F ∈ R|stripes+1|×|V |×|V |

+ Flow feasibility variable
Constants: Cross-Region Paths (edges)

bandwidthpath ∈ R|V |×|V |
+ Bandwidth profile matrix (Gbps)

costpath ∈ R|V |
+ Network cost ($/Gbit)

Constants: VM Instances (nodes)
egressVM ∈ R|V |

+ Per region per VM egress limit (Gbps)
ingressVM ∈ R|V |

+ Per region per VM ingress limit (Gbps)
costVM ∈ R|V |

+ Per region per VM cost ($/s)
limitVM ∈ Z|V |

+ Max number of VMs per region

Table 3.1: Symbol table for Cloudcast’s ILP formulation.

& Richards (1992) minimizes egress cost. A Steiner Tree is a set of cost-minimizing edges
that form a tree that connects a subset of nodes within a graph. If we do not allow the use
of waypoint regions, the cost-minimizing tree is a Minimum Spanning Tree (MST). While
solving for the MST can be done in linear time, the Steiner Tree problem is NP-hard, though
many approximations exist Rehfeldt & Koch (2021). We cannot use the Steiner Tree to ac-
count for replication throughput or instance costs, since it only optimizes total edge cost,
but we expect our optimizer’s solution to be similar to a Steiner Tree in cases where the
replication time constraint is loose.

3.3.2 Profiling Cross-region Bandwidth
The bandwidth of paths between cloud regions (both intra-cloud and inter-cloud) is

determined by the number of VMs in each region, each VM’s egress and ingress limits,
and the profiled bandwidth. As discussed in §3.2.2, cross-region bandwidth per VM can be
estimated by profiling the bandwidth between region pairs using iperf3. Egress and ingress
limits vary across cloud providers but are static and can be determined by cloud providers’
documentation AWS (2023); Azure (2023); Cloud (2023). We utilize these profiles as an
estimate of expected network bandwidth for the duration of a transfer. Profiling results are

3.3. COST OPTIMIZATION IN CLOUDCAST 36

Figure 3.5: Stripes transferred from the source (purple) to destinations (blue) are placed
by the solver along edges depending on edge capacity (yellow) and node capacity (green).

included as part of our open-source repository and shared across all users of Cloudcast.

3.3.3 Optimizing Cost with Time Constraints
In order to minimize replication price while meeting runtime requirements and cloud

resource constraints, we frame a MILP on a directed graph representing the entire cloud
topology. The input to the optimizer is the transfer size: transfer-size, the runtime budget:
time, and the number of stripes: stripes to divide the data into.

To formulate the optimization problem as a MILP, formulate the problem in terms of
allocating data volume to edges rather than bandwidth, with allocation units per stripe. We
translate cross-region bandwidth and per-region egress/ingress limits into volume capacities,
as shown in Fig. 3.5, this determines how many stripes can fit along each edge. This makes
the MILP similar to a bin packing problem, where we aim to pack stripes into edges such
that all destinations receive all stripes. The volume-based representation allows cost to be
computed as a function of the number of stripes placed on each edge.

Next, we formally describe the MILP decision variables, objectives, and constraints. The
cloud regions and cross-region paths are represented as G = (V,E), where V denotes the set
of cloud regions and E denotes paths between regions. We provide a reference table for the
notation in Table 3.1.

Decision variables
The MILP formulation consists of three decision variables. The path indicator variable

Ps,(v,u) indicates whether a stripe s is sent between regions (u, v) ∈ V . The paths selected by
P make up the multicast replication tree for each stripe. The decision variable Nv represents
the total number of overlay routers in the region v. An additional flow variable Fs,(u,v)

ensures valid paths when constructing the multicast tree. It ensures that the paths selected
by P do not contain cycles and are connected, by allowing flow to be pushed from the source
to all destinations for each stripe (see §3.3.3).

3.3. COST OPTIMIZATION IN CLOUDCAST 37

Objective: minimizing price under a deadline
To minimize the price of a multicast transfer while meeting replication time constraints,

we use a two-part objective function. The first part optimizes the number of virtual machines
(VMs) per region, represented by N , and the second part optimizes the distribution trees
per stripe, represented by P . The objective is formulated as follows:

argminP,N time × ⟨costVM, N⟩⏞ ⏟⏟ ⏞
Instance Cost

(3.1)

+
transfer-size

stripes
×

∑︂
s∈stripes

⟨costpath, Ps⟩⏞ ⏟⏟ ⏞
Egress Cost

(3.2)

The price of a data transfer is the sum of the instance fee and the egress fee. The instance
fee depends on the number of VMs running per region, the job completion time, and the
per-region VM fee. The egress fees are determined by the data distribution path and the
amount of data traversed through the path, as defined by P . We note that the instance
cost is also an upper bound as it can be potentially overestimated if the data transfer is
completed in less than the user-defined time budget. However, this is necessary to ensure
linearity.

Constraints
We represent cross-region bandwidth, node egress/ingress bandwidth, per-region VM

limits, and replication tree structure requirements as constraints within the MILP.
Representing Inter-Region & Inter-Cloud Bandwidth. Cross-region bandwidth is
represented as the per-GB capacity given the run-time budget, i.e., how many stripes can
fit along an edge. Increasing the number of VMs in the source regions linearly increases the
rate at which we can send data. We thus model the bandwidth between two regions as the
per-VM bandwidth profiled between those two regions multiplied by the number of VMs in
the source region:

capacitypath = ⟨N,Bandwidthpath⟩ ∗ time, (3.3)

and constrain P in terms of the path capacity:

∀(u, v) ∈ E sizestripe ∗
∑︂
s

Ps,(u,v) ≤ capacitypath
(u,v). (3.4)

to ensure allocated stripes fit within the capacity.
Representing VM Bandwidth Constraints. Cloud providers impose per-VM bandwidth
constraints on network egress, as described in §3.2.2. As such, a major bottleneck of multicast
transfer is the source region’s limited egress bandwidth. We constrain P in terms of the

3.3. COST OPTIMIZATION IN CLOUDCAST 38

ingress and egress limits:

∀v ∈ V sizestripe ∗
∑︂
s

∑︂
u∈V

Ps,(v,u) (3.5)

≤ egressVM
v ∗Nv ∗ time (3.6)

∀u ∈ V sizestripe ∗
∑︂
s

∑︂
v∈V

Ps,(v,u) (3.7)

≤ ingressVM
u ∗Nu ∗ time (3.8)

Representing VM Capacity Constraints. We account for per region VM limits by
adding the constraint N ≤ limitVM.
Ensuring Valid Multicast Trees. We use an additional variable F to ensure that the
paths selected by P are valid distribution trees, i.e., they are connected and acyclic, and they
deliver all data to each destination. At a high level, we ensure that Fs,(u,v) ≥ 1, if Ps,(u,v) = 1,
and impose conservation of flow constraints on F but not P , since P is an indicator variable
not a flow variable. We then ensure that flow can be pushed from the source node to
destination nodes on F for each stripe, which also ensures that flow can be pushed from the
source to destination for the paths selected by P (without having to impose flow conservation
on P). We leave details on this part of the formulation for ?? due to space.

Solver feasibility
Our formulation so far has a search space of size O(2|V |2×|stripes|). With 71 possible

regions across GCP, AWS, and Azure and 10 stripes, the search space is, therefore, O(250410),
which is infeasible even for advanced solvers to solve within a few minutes, necessitating
approximations.

3.3.4 Reducing Optimizer Runtime
In this section, we describe several mechanisms that we combine to reduce the optimiza-

tion runtime or an order of seconds, while still maintaining solution quality.
Node Clustering. We observe that many regions across cloud providers share similar
characteristics in terms of bandwidth and the costs of their outgoing and incoming paths.
A motivating observation was that sub-sampling regions randomly could produce similar
solutions with much lower solve time, as shown in Figure ??. At a high level, AWS regions
in Europe regions all have similar egress/ingress costs and bandwidth, so only one of those
regions needs to be considered as a potential waypoint. Therefore, to reduce the optimizer
search space, we cluster regions using their incoming and outgoing path costs and bandwidth
as features and select a representative node from each cluster. We empirically find that, with
about 20 clusters (i.e. 20 subsampled regions), the optimizer can generate solutions that are
reliably similar to the original MILP without approximation (more discussion in §3.5.3).
Hop Constraining. To further reduce the optimization space, we only consider a max-
imum of 2-hop overlay waypoints. Previous research has shown that limited numbers of

3.3. COST OPTIMIZATION IN CLOUDCAST 39

Figure 3.6: Visualized solver output for inter-cloud replication described in §3.5.1, con-
sisting of source (purple), waypoint (yellow), and destination (blue) regions. The data is
divided into 5 stripes (marked on edges).

3.4. ARCHITECTURE OF CLOUDCAST 40

overlay hops are often sufficient Andersen et al. (2001); Peter et al. (2014); Stoica et al.
(2002). Our analysis also found solutions using multiple overlay hops to be rare, suggest-
ing that they need not be considered. We implement the hop constraints as an additional
constraint on the MILP.
Stripe-iterative Approximation. To make the optimizer runtime linear with respect to
the number of stripes (rather than exponential), we design a greedy, stripe-iterative ap-
proximation algorithm that solves for one stripe per iteration. We solve for each stripe
independently, then update the input graph for the next stripe by reducing the path capac-
ity (capacitypath), instance limits, and egress/ingress limits per region (limitVM, egressVM,
and ingressVM).

3.3.5 Example Topology
We show an example of the optimizer’s output replication tree topology visualized in

Figure 3.6. Due to variability in cloud provider egress pricing and cross-region throughput,
our optimizer often finds unexpected solutions, such as routing one stripe (marked [3]) from
GCP to AWS, AWS to Azure, then back to GCP. Although questionable at first glance, we
evaluate this same replication in Figure 3.12 and demonstrate both cost and replication time
improvements over baselines.

3.4 Architecture of Cloudcast
A key contribution of this work is the design and implementation of the Cloudcast ar-

tifact, which provides a practical, performant, and extensible system for studying overlay
multicast algorithms in cloud environments. The Cloudcast system simplifies the design and
deployment of multicast overlays spanning cloud object stores. We use it to implement and
deploy the optimizer described in §3.3 and several baseline algorithms.

We provide an overview of Cloudcast in Fig. 3.7. Cloudcast is designed with a centralized
control plane and a distributed data plane. The control plane determines the set of overlay
nodes and routing paths, and it dispatches and monitors multicast jobs. The data plane
consists of overlay routers, which we implement as modular software routers running on
overlay nodes deployed on cloud VMs. The control plane configures overlay routers using
a router program, which specifies a graph of modular operators for processing data. Each
overlay router gets a unique router program, which, in cooperation with other routers in the
system, implements the desired flow of data over the overlay network.

Cloudcast is implemented as part of the Skyplane Jain et al. (2022) open source project
and consisted of additional lines of Python to implement the .

3.4.1 Control Plane
The control plane contains the planner, which supports pluggable algorithms for deter-

mining the placement of overlay routers across cloud providers and paths along which data is

3.4. ARCHITECTURE OF CLOUDCAST 41

Figure 3.7: Cloudcast system architecture.

replicated (shown in Fig. 3.7). The output of the planner is used to provision VMs to act as
overlay routers across cloud regions and to compile a router program for each overlay router
that configures its behavior. Finally, the control plane initiates the transfer and monitors its
progress.
Planner. The planner is responsible for creating a multicast plan based on a target repli-
cation time, source and destination object store paths provided by the user, and profiling
data described in §3.3.2. The planner takes as input the algorithm to use for generating a
multicast plan, which can be the default Cloudcast optimizer described in §3.3.3 or a custom
plan (e.g., a Steiner Tree over the cost graph). The planning algorithm determines how many
overlay nodes to create in each region and how each data stripe should be routed through
the overlay network. The planner uses the algorithm output to generate a router program
for each overlay router, which specifies how the overlay router should process a chunk header
when received. The Cloudcast default optimizer is implemented using Python’s CVXPY
library cvx (2021) (version 1.3.2) with a Gurobi solver Gurobi Optimization, LLC (2023),
implemented in about 1K lines of code.
Provisioner. Once a multicast plan is determined, the provisioner instantiates the overlay
routers. The provisioner creates a VPC in each cloud provider and provisions VMs to act as
overlay routers within these VPCs. The provisioner also sets firewall rules to allow network
traffic between overlay routers, which send and receive data from each other, as specified by
the planner-generated router programs. Once a VM has been instantiated, the provisioner
installs and launches the router programs as containers on the VMs.

3.4. ARCHITECTURE OF CLOUDCAST 42

Chunk Dispatching and Status Tracker. The control plane subdivides replication target
data into chunks, which are at most 64MB in size, to allow for transfer pipelining and
parallelism. Each chunk has a chunk header, which specifies a key (e.g., object store object,
filename), byte range, and an optional multipart ID (required for multipart uploads). The
chunk header also contains a stripe ID, which specifies which path along the overlay the
chunk will take.

The control plane informs each source overlay router (i.e., overlay routers responsible for
reading source data) the chunks for which they are responsible by sending the corresponding
chunk headers. We refer to this as registering a chunk to an overlay router. The control
plane’s status tracker monitors the status of each chunk by querying the status of chunks on
each overlay router.

3.4.2 Data Plane
The data plane is composed of overlay routers, each running on a single VM. The overlay

routers are created and configured by the control plane to execute the transfer according
to the multicast plan. Cloudcast supports configurable overlays by defining processing on
overlay routers using modular operators, inspired by the design of configurable routers Kohler
et al. (2000).

The router program provided by the control plane specifies a directed acyclic graph
(DAG) of operators (analogous to elements) and connections, all of which run on each overlay
router and are used to process incoming chunk headers registered to the overlay router. The
DAGs are created at the overlay router’s startup time based on the router program, and
they allow overlay routers to process chunks without additional coordination with the control
plane.

Operators are implemented as a pool of worker processes running processing steps for a
chunk, such as reading the chunk from the source object store, relaying the chunk to another
overlay router, writing the chunk to a destination object store, or transforming the chunk
data (e.g., compression or encryption). Connections pass chunk headers between operators
via thread-safe queues, and can be configured to send a chunk header to one or all of multiple
downstream operators.

For example, on a source overlay router, chunk registrations from the control plane will
provide chunk headers to the first operator in the DAG, which downloads chunk data from an
object store. All chunk data is stored in a shared memory filesystem to allow for fast access
across operators. Once chunk data is downloaded, the chunk header is passed to the next
operator via a connection, which runs LZ4 compression lz4 (2023)) and secret key encryption
pyn (2023); Denis (2013) on the chunk data. The leaf operators are ‘sender’ operators, which
relay the chunk header and data to other overlay routers.

Chunk data is relayed between overlay routers by a ‘sender’ operator on the sending
router and a ‘receiver’ operator on the receiving overlay router. When the sender operator
is created, it creates parallel TCP connections which are kept open for the duration of the
transfer. Before sending chunk data, the sender will attempt to register the corresponding

3.5. EVALUATION 43

System Description

Direct Data is transferred directly from the source to the destination regions.
MDST Data is transferred along edges selected by a Minimum Directed Spanning Tree

(including source and destination regions) computed from network costs.
Steiner Tree Data is transferred along edges selected by a Steiner tree (including optional way-

point regions) computed from network costs.
SPIDER Data is transferred according to the plan generated by SPIDER, a system designed

for fast bulk replication to multiple destinations.
Skyplane Skyplane’s optimizer is used to select paths for each source-destination pair, which

are combined to build the distribution tree.
CloudMPCast Data is transferred over a set of cost-minimizing edges that meet a minimum

bandwidth threshold.
Deadline-aware
Inter-DC Multicast

Data is transferred to meet deadlines in the inter-DC context according. Note that
due to scalability issues, we needed to modify the candidate tree generation step
to only consider a subset of waypoint regions to achieve tractable runtimes.

AWS S3 Multi-
Region Bucket

Vendor product that supports intra-cloud between AWS regions only. We enable
Replication Time Control.

Bullet Data is transferred according to the plan generated by Bullet, a high-bandwidth
dissemination technique using an overlay mesh.

BitTorrent Peer-to-peer protocol where peers download data from each other in a decentralized
manner.

Cloudcast-Opt (HT) Data is transferred along the highest throughput (HT) multicast tree generated
by our optimizer (tightest time constraint).

Cloudcast-Opt (LC) Data is transferred along a low cost (LC) multicast tree generated by our optimizer
(relatively loose time constraint).

Table 3.2: All of the systems and variants we evaluate, covering a mix of academic baselines
and commercial solutions.

chunk headers with the receiving overlay router to ensure it has space in its shared memory
file system to write the chunk data. Once chunks are registered, the sender will send the
chunk data over the TCP sockets, and the receiver will wait for the written chunk data size
to match the size specified by the chunk header, before sending chunk headers to the next
operator. Successfully sent chunk data is deleted from the shared memory filesystem.
Backpressure. Connections are configured with a maximum size for the underlying queues.
If the queue reaches its maximum size, the upstream operator will wait until the queue size
decreases sending chunk headers to the connection.
Striping. Registered chunk headers with different stripe IDs are placed in different queues
and processed by separate DAGs, so that different stripes can be routed differently.

3.5 Evaluation
In this section, we evaluate Cloudcast across three metrics: replication cost, replication

time, and the optimizer solve time (or simply, runtime). In particular, we show that for

3.5. EVALUATION 44

intra-cloud and inter-cloud bulk data transfer, Cloudcast is able to achieve up to 61.5% cost
improvements under a tight runtime budget when compared to academic, commercial, and
open-source baselines. We also show that our approximations to reduce the optimizer solve
time (as discussed in §3.3.4) are highly effective by reducing the runtime by, on average,
30.68× for 5-destination replications. To simplify evaluation, we disable compression and
encryption in experiments.

The full list of evaluated baselines is shown in Table 3.2. We note that many algorithms
do not determine the number of VMs to use in each region. To present them in the best
light possible, we maximize the number of VMs in each region traversed by data, subject to
per-region quota limits.

Figure 3.8: Simulated results for Multicast Algorithms.

3.5.1 Comparison to Multicast Algorithms
We compare the replication time and cost of existing multicast algorithms with Cloud-

cast’s optimizer to send 100GB of data from one source to six destination regions.
Simulation results. Given the above replication scenario, we start by exploring a wide
range of algorithmic baselines and Cloudcast parameter settings through simulation. While
we tested many configurations through the development of Cloudcast, due to limited space,
we present results for a representative configuration1. Evaluated systems include Cloudcast-
Opt, direct transmission to the destinations, sending along cost-minimizing trees (MDST and

1Simulated Inter-Cloud: from gcp:asia-southeast1-a to azure:eastasia, aws:af-south-1, azure:
brazilsouth, aws:sa-east-1

3.5. EVALUATION 45

Steiner Tree), SPIDER Ganguly et al. (2005), CloudMPCast García-Dorado & Rao (2015),
Skyplane Jain et al. (2022), and a deadline-aware inter-DC optimizer Ji et al. (2018). Al-
though Skyplane’s optimizer is designed for unicast, not multicast, we adapt the optimizer’s
solution to multicast by running the optimization for each source-destination pair, and then
combining all the graphs to build the distribution tree.

For Skyplane, CloudMPCast, and Cloudcast-Opt, we vary the throughput parameter
to evaluate the performance range. For CloudMPCast García-Dorado & Rao (2015), the
optimizer allows for the level of throughput degradation to be controlled by an α ≤ 1 term,
which determines how aggressively edges are filtered out. Our parameter sweep includes
α ∈ [1, 0.5, 0.1], where α = 1 maximizes CloudMPCast’s throughput. For Skyplane, we vary
the target throughput to maximize throughput and minimize cost, and plot both of these
points. For Cloudcast-Opt, we show results for several replication time constraints.

In Fig. 3.8, we see that all baselines improve significantly upon direct transmission, and
while some can match Cloudcast-Opt’s capacity for fast replication time or low cost, no exist-
ing baseline can optimize both metrics simultaneously. Rather, Cloudcast-Opt’s Pareto-curve
can match or beat all baselines on at least one of cost or performance. CloudMPCast, whose
α parameter does provide some flexibility, still offers a worse tradeoff than Cloudcast-Opt.
Skyplane also has a significantly worse tradeoff curve, as it is not designed for multicast, so
does not perform optimizations to alleviate source bottlenecks which are crucial for achieving
high throughput. Despite this, even Skyplane’s can improve throughput (for the throughput-
maximizing solution) and reduce cost (for the cost-minimizing solution) as compared to direct
transfers.
Cloud deployments. The remainder of our evaluations present empirical results from real
cloud data transfers. Due to the high cost of running data multicast in the cloud ($20–
$110 per transfer), we limit our evaluation to four representative configurations and four
representative baselines identified by our simulation results. Among the configurations, three
are intra-cloud replications corresponding to AWS2, Azure3 and GCP4, and one is an inter-
cloud replication workload that covers all three major providers5. These configurations are
chosen to contain a source region with high egress costs to demonstrate potential cost savings.
Among the baselines, we sub-selected the best-performing baselines from our simulation
results in terms of throughput (SPIDER) and cost (Steiner Tree), with direct transmission
providing a naive baseline.

Fig. 3.9, Fig. 3.10, Fig. 3.11 show results for AWS, GCP, and Azure intra-cloud replica-
tion, and Fig. 3.12 shows inter-cloud results. Across all configurations, given a very tight

2AWS Intra-Cloud: from ap-east-1 to us-west-1, ap-northeast-3, eu-north-1, ap-south-1, ca-
central-1, ap-northeast-1

3Azure Intra-Cloud: from brazilsouth to westeurope, westus, koreacentral, australiaeast,
uaenorth, centralindia

4GCP Intra-Cloud: from asia-southeast2-a to australia-southeast1-a, southamerica-east1-a,
europe-west4-a, europe-west6-a, asia-east1-a, europe-west2-a

5Inter-Cloud: from gcp:asia-southeast1-a to azure:australiaeast, azure:eastasia, aws:ap-
southeast-2, azure:brazilsouth, aws:sa-east-1, gcp:australia-southeast1-a

3.5. EVALUATION 46

replication time constraint, Cloudcast-Opt (HT) solution leads to 46−62.4% cost reductions
and 2− 2.84× replication time speedup compared to sending directly to each destination.

Of the baselines tested, SPIDER Ganguly et al. (2005) consistently demonstrates the
lowest replication time, as it did in simulation. However, as SPIDER is not cost-aware,
Cloudcast-Opt (HT) can achieve 28.4 − 44.0% cost savings. Surprisingly, while saving sig-
nificant cost, Cloudcast-Opt (HT) simultaneously speeds up replication by 1.11 − 1.35×,
beating SPIDER on both axes. If, on the other hand, Cloudcast is given a loose replication
time budget, i.e., Cloudcast-Opt (LC), it can find the cost-optimal solution in all setups,
matching Steiner Tree solutions.

Figure 3.9: AWS Intra-Cloud

3.5. EVALUATION 47

Figure 3.10: Azure Intra-Cloud

Figure 3.11: GCP Intra-Cloud

3.5. EVALUATION 48

Figure 3.12: Inter-cloud multicast results for different algorithms implemented on Cloud-
cast. The Cloudcast replication tree is visualized in Figure 3.6.

3.5.2 Cloud Provider and P2P Systems
We run end-to-end evaluation comparing Cloudcast with a commercial baseline (AWS

S3 multi-region bucket replication) and P2P systems (BitTorrent and Bullet).

AWS S3 Multi-Region bucket replication
We run an end-to-end comparison between Cloudcast and AWS’s S3 multi-region bucket

replication AWS Cross-Region Replication (2023) for single-provider multicast. AWS sup-
ports adding multiple replication rules to a source bucket to specify automatic replication to
one or more replication buckets. In the aspect of time control, AWS supports a replication
time control with a minimum 15-minute SLO. However, we found that in our experiments,
replications typically completed much faster than 15 minutes. Therefore, we use the actual
replication time as a point of comparison.

We compare AWS’s replication time and cost to Cloudcast with the planner implemented
with both direct transfer and the optimizer. We transfer an OPT model Zhang et al. (2022)
with 66 billion parameters (122GB in total across 9 files) between regions in a single conti-
nent6. To evaluate AWS replication time and cost, we create buckets with replication rules
from a bucket in the source region to buckets in destination regions. Once the replication
rules are created, we copy data from a bucket in the same region into the source bucket with
16 VMs. After the write completes, we measure the time until the completion of replica-
tion into all destination buckets. We calculate the transfer cost according to AWS’s pricing

6from aws:ap-east-1 to aws:ap-southeast-2, aws:ap-south-1, aws:ap-northeast-3, aws:ap-
northeast-2, aws:ap-northeast-1

3.5. EVALUATION 49

Figure 3.13: Cloudcast outperforms AWS S3 Replication Time Control while reducing
total transfer costs.

page Overview of Data Transfer Costs for Common Architectures (2023). We compare AWS
multi-region bucket replication to Cloudcast implemented with both the direct and optimizer
planner and running. As shown in Figure 3.13, the direct transfer has the same egress costs
as AWS bucket replication, but the VM costs are much less than the service fee charged
by AWS for the replication. Overall, Cloudcast with the optimizer is able to achieve 2.3×
replication speedup and 61.5% cost savings. This is a result of being able to leverage VM
parallelism as well as an overlay network that minimizes total egress costs.

P2P BitTorrent and Bullet
We also compare Cloudcast against P2P systems like BitTorrent and Bullet. We run

the same transfer benchmark in Azure in Figure 3.10, sending 100GB within Azure to 6
destination regions. We host our own BitTorrent tracker and use aria2 Tsujikawa & Maier
(2008) as a BitTorrent client. Since Bullet’s implementation is not available, we evaluate
Bullet by implementing Bullet’s algorithm inside Cloudcast’s planner. The result is shown in
Figure 3.14: both BitTorrent and Bullet have lower egress costs than direct but higher than
Cloudcast. BitTorrent is the slowest because most clients cannot utilize the full bandwidth.
The clients are built for scenarios like background seeding and transfer off the critical path,
rather than for bulk data transfer. Interestingly, without a centralized planner, BitTorrent
is able to find a low-cost multicast replication tree by inferring the bandwidth among peers
and preferring the data from peers who have the highest throughput. However, it is still
significantly more expensive than Cloudcast.

3.5.3 Ablations of Cloudcast’s Optimizer
To understand how our optimizer behaves for different selections of source and destination

regions and different target replication times, we run simulated ablations.

3.5. EVALUATION 50

Figure 3.14: Comparison with BitTorrent protocol on the intra-cloud Azure workload in
Figure 3.10.

Varying region selection
We test the generality of our improvements by randomly selecting source and destination

regions for varying numbers of destinations. We show aggregated results over 100 samples
for different numbers of destinations in Figure 3.15. Cloudcast is able to improve the run-
time and cost of replication consistently across varying numbers of destinations. Cost and
throughput improvement increase with more destinations, since more destinations provide a
larger optimization space.

Impact of approximations on solutions
We evaluate how the optimizer with and without approximations scales to larger num-

bers of destinations in Figure 3.16, by randomly selecting source and destination regions for
varying numbers of destination regions. We find that combining all three approximation
mechanisms is necessary to scale the optimizer: using no approximations, or only one ap-
proximation, takes several minutes for just 10 destinations while using all approximations
together reduces solve time to seconds.

We also evaluate how approximations affect the quality of the solution using the mon-
etary cost of the solver-generated solution. We randomly sample 100 source/destination
combinations for 5 destinations and compute the difference in the solution’s monetary cost
and replication runtime compared to MILP without approximation in Table 3.3. We find
that the difference in cost averages around 1%, and estimate the worst-case approximation
ratio to be 1.4. We find that for even just 5 destinations, the approximated solver runs with
a geometric-mean speedup of 30.68×.

Accuracy of replication time model
We compare optimizer-modeled throughput and real throughput in Table 3.4. As trans-

fer size increases, the approximation becomes more accurate. This is because Cloudcast’s

3.5. EVALUATION 51

(a) Cost Reduction (b) Replication Time Speedup
Figure 3.15: Cloudcast optimizer’s cost and time improvement over direct replication with
varying destination numbers.

Method Mean error Solver speedup
(geomean)

Node Clustering 0.3% 9.04×
Hop Constraining 1.1% 5.72×
Stripe Iterative 0.0% 7.02×
All Approximations 1.1% 30.68×

Table 3.3: Solve time and solution quality with approximations.

optimizer, designed for bulk data replication, makes several simplifying assumptions, such
as perfectly pipelined stripes. Thus, transient inefficiencies during startup and teardown
mean smaller transfers may experience lower throughput than the optimizer expects, but for
larger, more expensive transfers, modeled throughput closely matches empirical results.

3.5.4 When to Use Cloudcast for Multicast?
Cloudcast is designed for bulk multicast replication in the cloud, so should only be used

with data sizes are sufficiently large. Since Cloudcast relies on creating VMs in the cloud at
transfer initiation time, there is a constant overhead from VM startup time. We calculate the
transfer size break-even point (i.e. the minimum data size for using Cloudcast) for varying
providers and VM capacity limits (constraining the throughput for the Cloudcast overlay),
shown in Figure 3.17. We approximate the per-destination replication throughput without
Cloudcast as equal to the per-VM egress bandwidth limit, ignoring congestion between source
and destination VMs. Azure has a higher break-even point than AWS and GCP due to two
effects. First, the VM startup time is the highest of all providers (56 seconds). Second, VMs
in Azure are not subjected to egress constraints (5 Gbps and 7 Gbps for AWS and GCP,
respectively). As a result, the benefits of using Cloudcast’s techniques are only realized for

3.6. RELATED WORK 52

Figure 3.16: Approximations reduce solver runtime from the cutoff of 30 minutes to seconds
for up to 20 destinations.

Transfer Size (GB) Prediction error

16 16.6%
32 8.51%
64 3.31%
128 1.69%

Table 3.4: Accuracy of the optimizer’s predicted throughput.

larger transfer sizes or larger numbers of destinations.

3.6 Related Work
Overlay Unicast. A significant body of prior work uses overlay networks to improve
the performance and resilience of one-to-one data transfers in the Internet and peer-to-peer
networks Andersen et al. (2001); Kostić et al. (2003); Castro et al. (2003). In clouds, previous
work has also leveraged cloud elasticity to further improve performance Matos et al. (2009);
Jain et al. (2022). However, they do not consider multicast, and except Skyplane Jain et al.
(2022), none consider the monetary cost of replication in the cloud. Handling multicast is
challenging. For example, while Jain et al. (2022) can leverage elastic resources, cloud pricing
models, and overlay networking for bulk unicast replication in the cloud, its techniques are
not directly applicable to the multicast setting. More specifically, Skyplane’s flow-based
throughput model results in ambiguous multicast distribution tree solutions as it ignores the
identity of data sent along multiple paths. Furthermore, since Skyplane’s optimizer is not
designed for multicast, it cannot take advantage of techniques such as leveraging multiple
distribution trees to alleviate source bottlenecks.

3.6. RELATED WORK 53

Figure 3.17: Estimated break-even point for a 6-destination replication based on VM
startup times (35, 56, and 34 seconds for AWS, Azure, and GCP, respectively) and VM
egress limits.

Overlay Multicast. End-system multicast Chu et al. (2002) and overlay multicast have
been proposed to efficiently disseminate data from a single source to multiple destina-
tions. Many application-level multicast algorithms have been proposed. Algorithms like
SPIDER Ganguly et al. (2005), SplitStream Castro et al. (2003), Bullet Kostić et al. (2003),
and Overcast Jannotti et al. (2000) are designed for high-bandwidth, cross-internet file dis-
tribution with application-level multicast overlays. However, like with most overlay unicast
systems, these algorithms ignore monetary costs and focus on techniques to maximize band-
width.
Inter-DC Replication. Extensive prior work addresses inter-DC replication Sima et al.
(2022); Flinn et al. (2022); Zhang et al. (2018); Laoutaris et al. (2011); Feng et al. (2012),
including bulk multicast Luo et al. (2019). Recent research includes deadline Luo et al. (2019)
and cost-awareness Fatemipour et al. (2022); Feng et al. (2012). However, the cost model in
the Inter-DC setting cannot be easily adapted to cloud users, for which network pricing is
based on total data volume rather than bandwidth. Furthermore, existing formulations are
not designed for multicast Fatemipour et al. (2022); Feng et al. (2012) or do not consider
more than a few geo-distributed regions Luo et al. (2019). Our work focuses on public clouds,
considering unique per-GB network pricing, elastic resources, and cloud-specific resource
constraints. Our approximation algorithm is also designed to scale to all regions across
multiple cloud vendors.
Traffic Engineering. The classic problem of traffic engineering has also formulated op-
timization problems for minimizing cost under performance constraints. These techniques
have recently been applied to cloud providers and their monetary costs. For example, En-
tact Zhang et al. (2010) studied how to optimize costs for online service providers while still
minimizing user latency. Similarly, Cascara Singh et al. (2021) leveraged latency-equivalent

3.6. RELATED WORK 54

paths to identify cost-minimizing paths for cloud providers. Like Inter-DC Replication, these
approaches have been developed from the perspective of the cloud or service provider and,
thus, present a materially different optimization problem.
Steiner Trees. The Steiner Tree algorithm has been applied in the multicast setting both
to minimize costs in terms of delay Jiang & Chen (2016) and cloud egress costs García-
Dorado & Rao (2015)). CloudMPCast García-Dorado & Rao (2015) minimizes egress costs
in cloud bulk data multicast by constructing a Steiner Tree overlay network that avoids
low-throughput cross-region paths. However, CloudMPCast overlooks VM capacity and
per-VM egress/ingress limits in its MILP formulation. Also, CloudMPCast aims to achieve
comparable performance to direct transfers while minimizing cost, unlike Cloudcast, which
optimizes throughput.
Geo-Distributed Storage. Geo-distributed storage via data replication is supported by a
variety of cloud services, such as AWS Cross-Region Replication AWS Cross-Region Replica-
tion (2023), AWS Multi-Region Access Points Casalboni (2021), and GCP Multi-region buck-
ets GCP Multi-Region bucket (2022). Cross-region replicated buckets (e.g., S3 replication
rules) automatically replicate written data from a bucket in one region to one or more buckets
in other regions. However, these services have limited support for cross-cloud data move-
ment and do not minimize egress costs even for intra-cloud data movement. SPANStore Wu
et al. (2013) designs a system for geo-distributed storage across multiple cloud providers, and
also optimizes egress costs of relaying data on PUT requests. However, its relay strategy is
optimized for latency, not bandwidth.
Peer-to-peer Multicast. Peer-to-peer systems (P2P) support file sharing among a set
of end-user clients. The BitTorrent protocol Cohen (2003) reduces the network load on
the source by allowing clients to upload and download data to each other. BitTorrent is
widely used for data multicast in data center environments by Facebook and Twitter Tor-
rentFreak (2023). Specialized systems for data multicast that use BitTorrent include Uber’s
Kraken Uber (2022) and Ant Group’s Dragonfly Alibaba (2018). These P2P systems have
significant overhead as they are designed for adversarial settings where peers may be unreli-
able or fail. Moreover, P2P systems must scale to millions of destinations and therefore lack
centralized control which prevents custom routing topologies. P2P systems may redundantly
send data over expensive links due to a lack of cost awareness.

3.6. RELATED WORK 55

Method Multicast
Cloud
Pricing

Striping
Resource
Elasticity

Unicast overlay networks
RON Andersen et al. (2001) × × ✓ ×
Skyplane Jain et al. (2022) × ✓ ✓ ✓
COMS Fatemipour et al. (2022) × × × ∼

Peer-to-peer
BitTorrent Cohen (2003) ✓ × ✓ ×
SplitStream Castro et al. (2003) ✓ × ✓ ×
Bullet Kostić et al. (2003) ✓ × ✓ ×

Inter-DC overlay multicast
SPIDER Ganguly et al. (2005) ✓ × ✓ ×
CodedBulk Tseng et al. (2021) ✓ × ✓ ×
BDS Zhang et al. (2018) ✓ × ✓ ×
Deadline-aware Inter-DC Ji et al. (2018) ✓ × × ✓

Cost optimized overlay networks
SPANStore Wu et al. (2013) ✓ ✓ × ×
CloudMPCast García-Dorado & Rao (2015) ✓ ✓ × ×
Jetway Feng et al. (2012) × ✓ ✓ ×

Cloudcast (ours) ✓ ✓ ✓ ✓

Table 3.5: Cloudcast builds on prior work by enabling multicast, optimizing cloud costs,
and leveraging cloud resource elasticity and multiple distribution trees.

56

Chapter 4

Conclusion & Future Work

The increasing complexity and distribution of modern machine learning systems have
brought the challenge of maintaining data freshness to the forefront of ML infrastructure
design. This thesis has presented a comprehensive approach to ensuring data freshness across
clouds for model serving, addressing both the computational aspects of feature maintenance
and the networking challenges of efficient data transfer.

In this work, we studied the challenge of feature maintenance in feature stores, an emerg-
ing new class of systems. First, we identified a critical limitation in existing approaches
to feature store design: current feature stores treat data and keys symmetrically and do
not leverage crucial signal about query access patterns or the impact of features on down-
stream task performance. We then formalized the feature store problem and introduced
feature store regret, a metric that measures the impact of staleness of features on the down-
stream prediction accuracy. Finally, we presented RALF, a feature store system that uses
prediction loss as feedback to prioritize updates that improve the downstream accuracy
via Regret-Proportional scheduling. Experiments on a range of feature maintenance poli-
cies demonstrate that prioritizing replacing features with the highest cumulative regret can
significantly improve prediction accuracy in resource-constrained settings. We believe this
paper will provide a formal foundation for a key problem in the emerging class of feature
store systems and hope that it will inspire future work in the design of more advanced feature
maintenance strategies.

We also explored the problem of cost-optimized cloud multicast by introducing overlay
networks of ephemeral VM waypoints that exploit path-specific cloud pricing to significantly
reduce cost and improve throughput. We developed a MILP formulation of this problem and
introduced approximations that make the solving time feasible for practical applications.
Our evaluation against academic and commercial baselines demonstrated up to a 61.5%
reduction in cost and a 2.3× improvement in runtime. Cloudcast has been released as part
of the Skyplane open source project with pluggable planning algorithms to enable future
research in this space.

Collectively, these systems represent a significant step forward in our ability to ensure data
freshness for model serving in multi-cloud environments. The impact of these contributions

57

extends beyond just improving prediction accuracy or reducing computational costs. By
enabling more efficient maintenance of fresh data across distributed environments, this work
supports the development of more responsive, adaptive, and reliable ML systems. It allows
organizations to more effectively leverage multi-cloud strategies, enables more frequent model
updates, and supports the deployment of ML applications in diverse geographic regions
while maintaining consistent performance. In conclusion, as machine learning continues to
permeate critical applications and services, the importance of maintaining fresh, accurate
data will only grow. The systems and techniques presented in this thesis provide a solid
foundation for addressing these challenges, paving the way for more efficient, effective, and
reliable distributed machine learning infrastructure in the cloud era.

58

Bibliography

2021, CVXPY: A Python Library for Convex Optimization
2023, LZ4 - Extremely fast compression
2023, PyNaCl: Python binding to the libsodium library
Abadi, M., Barham, P., Chen, J., et al. 2016, in 12th {USENIX} symposium on operating

systems design and implementation ({OSDI} 16), 265
Agarwal, S., Mozafari, B., Panda, A., et al. 2013, in Proceedings of the 8th ACM European

Conference on Computer Systems, 29
Alibaba. 2018, Dragonfly, https://github.com/dragonflyoss/Dragonfly, accessed on

12/15/2022
Alteryx. 2023, Feature Tools
Andersen, D., Balakrishnan, H., Kaashoek, F., & Morris, R. 2001, in Proceedings of the

eighteenth ACM symposium on Operating systems principles, 131
AWS, A. 2023, EC2 On-Demand Instance Pricing, https://aws.amazon.com/ec2/pricing/
on-demand

AWS Cross-Region Replication. 2023, AWS Cross-Region Replication, https://
docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html

Azure, M. 2023, Pricing - Bandwidth, https://azure.microsoft.com/en-us/pricing/
details/bandwidth/

Bailis, P., Fekete, A., Franklin, M. J., et al. 2014, Proc. VLDB Endow., 8, 185–196
Bailis, P., Venkataraman, S., Franklin, M. J., Hellerstein, J. M., & Stoica, I. 2012, Proc.

VLDB Endow., 5, 776–787
Bhardwaj, R., Xia, Z., Ananthanarayanan, G., et al. 2020, arXiv preprint arXiv:2012.10557
Casalboni, A. 2021, Amazon S3 Multi-Region Access Points, https://aws.amazon.com/s3/
features/multi-region-access-points/

Castro, M., Druschel, P., Kermarrec, A.-M., et al. 2003, ACM SIGOPS operating systems
review, 37, 298

Chasins, S., Cheung, A., Crooks, N., et al. 2022, arXiv preprint arXiv:2205.07147
Chaudhuri, S., Ding, B., & Kandula, S. 2017, in Proceedings of the 2017 ACM International

Conference on Management of Data, SIGMOD ’17 (New York, NY, USA: Association for
Computing Machinery), 511–519

Chirkova, R., Yang, J., et al. 2011, Foundations and Trends in Databases, 4, 295
Chu, Y., Rao, S., Seshan, S., & Zhang, H. 2001, in Proceedings of the 2001 conference on

https://github.com/dragonflyoss/Dragonfly
https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/ec2/pricing/on-demand
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
http://dx.doi.org/10.14778/2735508.2735509
http://dx.doi.org/10.14778/2212351.2212359
http://dx.doi.org/10.14778/2212351.2212359
https://aws.amazon.com/s3/features/multi-region-access-points/
https://aws.amazon.com/s3/features/multi-region-access-points/
http://dx.doi.org/10.1145/3035918.3056097
http://dx.doi.org/10.1145/3035918.3056097

BIBLIOGRAPHY 59

Applications, technologies, architectures, and protocols for computer communications, 55
Chu, Y.-h., Rao, S. G., Seshan, S., & Zhang, H. 2002, IEEE Journal on selected areas in

communications, 20, 1456
Cloud, G. 2023, All networking pricing, https://cloud.google.com/vpc/network-pricing
Cohen, B. 2003, in Workshop on Economics of Peer-to-Peer systems, Vol. 6, Berkeley, CA,

USA, 68
Cohere. 2023, Scalable, affordable pricing
Cooper, B. F., Ramakrishnan, R., Srivastava, U., et al. 2008, Proceedings of the VLDB

Endowment, 1, 1277
Cortez, E., Bonde, A., Muzio, A., et al. 2017, in Proceedings of the 26th Symposium on

Operating Systems Principles, 153
Crankshaw, D., Sela, G.-E., Mo, X., et al. 2020, in Proceedings of the 11th ACM Symposium

on Cloud Computing, 477
Crankshaw, D., Wang, X., Zhou, G., et al. 2017, in 14th {USENIX} Symposium on Net-

worked Systems Design and Implementation ({NSDI} 17), 613
Crooks, N., Pu, Y., Estrada, N., et al. 2016, in Proceedings of the 2016 International Con-

ference on Management of Data, SIGMOD ’16 (New York, NY, USA: Association for
Computing Machinery), 1615–1628

Cui, H., Cipar, J., Ho, Q., et al. 2014, in Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference, USENIX ATC’14 (USA: USENIX Association),
37–48

Denis, F. 2013, The Sodium cryptography library
Fatemipour, B., Shi, W., & St-Hilaire, M. 2022, in 2022 IEEE Cloud Summit, IEEE, 17
Feng, Y., Li, B., & Li, B. 2012, in Proceedings of the 20th ACM international conference on

Multimedia, 259
Flinn, J., Dou, X., Aggarwal, A., et al. 2022, in 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22), 1
Ganguly, S., Saxena, A., Bhatnagar, S., Izmailov, R., & Banerjee, S. 2005, in Proceedings

IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Soci-
eties., Vol. 4, IEEE, 2246

García-Dorado, J. L., & Rao, S. G. 2015, IEEE Transactions on Cloud Computing, 7, 34
GCP Multi-Region bucket. 2022, GCP Multi-Region bucket, https://cloud.google.com/
storage/docs/locations#location-mr, accessed on 12/15/2022

Gjengset, J., Schwarzkopf, M., Behrens, J., et al. 2018, in 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18), 213

Grouplens. 2023, MovieLens 1M Dataset
Gurobi Optimization, LLC. 2023, Gurobi Optimizer Reference Manual
Guu, K., Lee, K., Tung, Z., Pasupat, P., & Chang, M. 2020, in International conference on

machine learning, PMLR, 3929
Hopsworks. 2023a, Feature Stores Org
—. 2023b, Hopsworks
Hwang, F. K., & Richards, D. S. 1992, Networks, 22, 55

https://cloud.google.com/vpc/network-pricing
http://dx.doi.org/10.1145/2882903.2882951
http://dx.doi.org/10.1145/2882903.2882951
https://cloud.google.com/storage/docs/locations#location-mr
https://cloud.google.com/storage/docs/locations#location-mr

BIBLIOGRAPHY 60

Jain, P., Kumar, S., Wooders, S., et al. 2022, arXiv preprint arXiv:2210.07259
Jannotti, J., Gifford, D. K., Johnson, K. L., Kaashoek, M. F., & O’Toole Jr, J. W. 2000, in

Fourth Symposium on Operating Systems Design and Implementation (OSDI 2000)
Ji, S., Liu, S., & Li, B. 2018, in 2018 IEEE International Conference on Cloud Engineering

(IC2E), 124
Jiang, J., Ananthanarayanan, G., Bodik, P., Sen, S., & Stoica, I. 2018, in Proceedings of the

2018 Conference of the ACM Special Interest Group on Data Communication, 253
Jiang, J.-R., & Chen, S.-Y. 2016, in Proceedings of the 11th International Conference on

Future Internet Technologies, 1
Kakantousis, T., Kouzoupis, A., Buso, F., et al. 2019, in Proc. 2nd SysML Conf., Palo Alto,

USA
Kang, D., Emmons, J., Abuzaid, F., Bailis, P., & Zaharia, M. 2017, arXiv preprint

arXiv:1703.02529
Kang, D., Gan, E., Bailis, P., Hashimoto, T., & Zaharia, M. 2020, arXiv preprint

arXiv:2004.00827
Kohler, E., Morris, R., Chen, B., Jannotti, J., & Kaashoek, M. F. 2000, ACM Transactions

on Computer Systems (TOCS), 18, 263
Koren, Y., Bell, R., & Volinsky, C. 2009, Computer, 42, 30
Kostić, D., Rodriguez, A., Albrecht, J., & Vahdat, A. 2003, in Proceedings of the nineteenth

ACM symposium on Operating systems principles, 282
Kraft, P., Kang, D., Narayanan, D., et al. 2019, arXiv preprint arXiv:1906.01974
Kraska, T., Pang, G., Franklin, M. J., Madden, S., & Fekete, A. 2013, in Proceedings of

the 8th ACM European Conference on Computer Systems, EuroSys ’13 (New York, NY,
USA: Association for Computing Machinery), 113–126

Laoutaris, N., Sirivianos, M., Yang, X., & Rodriguez, P. 2011, in Proceedings of the ACM
SIGCOMM 2011 Conference, 74

Laptev, N., & Amizadeh, S. 2015, http://webscope.sandbox.yahoo.com/catalog.php
Lee, K., Chang, M.-W., & Toutanova, K. 2019, arXiv preprint arXiv:1906.00300
Lewis, P., Perez, E., Piktus, A., et al. 2020, Advances in Neural Information Processing

Systems, 33, 9459
Li, C., Porto, D., Clement, A., et al. 2012, in Proceedings of the 10th USENIX Conference on

Operating Systems Design and Implementation, OSDI’12 (USA: USENIX Association),
265–278

Li, M., Wang, Y.-X., & Ramanan, D. 2020, in European Conference on Computer Vision,
Springer, 473

Lloyd, W., Freedman, M. J., Kaminsky, M., & Andersen, D. G. 2011, in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11 (New York,
NY, USA: Association for Computing Machinery), 401–416

Luo, L., Jin, Q., Xie, J., Sun, G., & Yu, H. 2021, IEEE Transactions on Services Computing
Luo, L., Kong, Y., Noormohammadpour, M., et al. 2019, IEEE Transactions on Cloud

Computing, 10, 304
Matos, M., Sousa, A., Pereira, J., & Oliveira, R. 2009, in Proceedings of the Third Workshop

http://dx.doi.org/10.1109/IC2E.2018.00035
http://dx.doi.org/10.1109/IC2E.2018.00035
http://dx.doi.org/10.1145/2465351.2465363
http://dx.doi.org/10.1145/2465351.2465363
http://webscope. sandbox. yahoo. com/catalog. php
http://dx.doi.org/10.1145/2043556.2043593
http://dx.doi.org/10.1145/2043556.2043593

BIBLIOGRAPHY 61

on Dependable Distributed Data Management, 14
McSherry, F., Lattuada, A., Schwarzkopf, M., & Roscoe, T. 2020, Proc. VLDB Endow., 13,

1793
Mishra, A., Sriharsha, R., & Zhong, S. 2021, arXiv preprint arXiv:2107.09110
Moritz, P., Nishihara, R., Wang, S., et al. 2018, in 13th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 18), 561
Murray, D. G., McSherry, F., Isaacs, R., et al. 2013, in Proceedings of the 24th ACM Sym-

posium on Operating Systems Principles (SOSP), 439
Naumov, M., Mudigere, D., Shi, H. M., et al. 2019, CoRR, abs/1906.00091
OpenAI. 2023, OpenAI, https://platform.openai.com/docs/guides/rate-
limits?context=tier-free, last accessed November 11, 2023

Overview of Data Transfer Costs for Common Architectures. 2023, Overview of
Data Transfer Costs for Common Architectures, https://aws.amazon.com/blogs/
architecture/overview-of-data-transfer-costs-for-common-architectures/, ac-
cessed on 12/15/2022

Packer, C., Fang, V., Patil, S. G., et al. 2023, arXiv preprint arXiv:2310.08560
Peter, S., Javed, U., Zhang, Q., et al. 2014, ACM SIGCOMM Computer Communication

Review, 44, 99
Prince, M., & Rao, N. 2021, AWS’s Egregious Egress, https://blog.cloudflare.com/aws-
egregious-egress/

Redis. 2023, Redis
Rehfeldt, D., & Koch, T. 2021, in Lecture Notes in Computer Science, Vol. 12707, Integer

Programming and Combinatorial Optimization - 22nd International Conference, IPCO
2021, Atlanta, GA, USA, May 19-21, 2021, Proceedings, ed. M. Singh & D. P. Williamson
(Springer), 473

Seabold, S., & Perktold, J. 2010, in 9th Python in Science Conference
Services, A. W. 2023, Amazon SageMaker Feature Store
Sima, C., Fu, Y., Sit, M.-K., et al. 2022, in 16th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 22), 821
Singh, R., Agarwal, S., Calder, M., & Bahl, P. 2021, in 18th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 21), 201
Sivasubramanian, S. 2012, in Proceedings of the 2012 ACM SIGMOD International Confer-

ence on Management of Data, 729
Stoica, I., Adkins, D., Zhuang, S., Shenker, S., & Surana, S. 2002, in Proceedings of the

2002 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, 73

Tecton. 2023, Tecton
Terry, D. B., Prabhakaran, V., Kotla, R., et al. 2013, in Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles, SOSP ’13 (New York, NY, USA:
Association for Computing Machinery), 309–324

TorrentFreak. 2023, Facebook Uses BitTorrent, and They Love It, https://
torrentfreak.com/facebook-uses-bittorrent-and-they-love-it-100625/, accessed

http://dx.doi.org/10.14778/3401960.3401974
http://dx.doi.org/10.14778/3401960.3401974
https://arxiv.org/abs/1906.00091
https://platform.openai.com/docs/guides/rate-limits?context=tier-free
https://platform.openai.com/docs/guides/rate-limits?context=tier-free
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://aws.amazon.com/blogs/architecture/overview-of-data-transfer-costs-for-common-architectures/
https://blog.cloudflare.com/aws-egregious-egress/
https://blog.cloudflare.com/aws-egregious-egress/
http://dx.doi.org/10.1007/978-3-030-73879-2_33
http://dx.doi.org/10.1007/978-3-030-73879-2_33
http://dx.doi.org/10.1007/978-3-030-73879-2_33
http://dx.doi.org/10.1145/2517349.2522731
http://dx.doi.org/10.1145/2517349.2522731
https://torrentfreak.com/facebook-uses-bittorrent-and-they-love-it-100625/
https://torrentfreak.com/facebook-uses-bittorrent-and-they-love-it-100625/

BIBLIOGRAPHY 62

on 12/15/2022
Tseng, S.-H., Agarwal, S., Agarwal, R., Ballani, H., & Tang, A. 2021, in NSDI, 15
Tsujikawa, T., & Maier, N. 2008, aria2 - The ultra fast download utility, https://
github.com/aria2/aria2

Uber. 2022, P2P Docker registry capable of distributing TBs of data in seconds, https:
//github.com/uber/kraken, accessed on 12/15/2022

Villalba, M. 2020, Amazon S3 Replication Adds Support for Multiple Desti-
nation Buckets, https://aws.amazon.com/blogs/aws/new-amazon-s3-replication-
adds-support-for-multiple-destination-buckets/

Wang, Z., Lin, X., Mishra, A., & Sriharsha, R. 2021, in 2021 International Conference on
Data Mining Workshops (ICDMW), IEEE, 414

Wong, M. H., & Agrawal, D. 1992, in Proceedings of the Eleventh ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, PODS ’92 (New York, NY, USA:
Association for Computing Machinery), 236–245

Wu, K.-L., Yu, P., & Pu, C. 1992, in [1992] Eighth International Conference on Data Engi-
neering, 506

Wu, Z., Butkiewicz, M., Perkins, D., Katz-Bassett, E., & Madhyastha, H. V. 2013, in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, 292

Yang, Z., Wu, Z., Luo, M., et al. 2023, in 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’23)

Yu, H., & Vahdat, A. 2000, in Proceedings of the 4th Conference on Symposium on Operating
System Design & Implementation - Volume 4, OSDI’00 (USA: USENIX Association)

Zhang, S., Roller, S., Goyal, N., et al. 2022, OPT: Open Pre-trained Transformer Language
Models, arXiv:2205.01068 [cs.CL]

Zhang, Y., Jiang, J., Xu, K., et al. 2018, in Proceedings of the Thirteenth EuroSys Confer-
ence, 1

Zhang, Z., Zhang, M., Greenberg, A. G., et al. 2010, in NSDI, 33
Zhou, J., Larson, P.-k., & Goldstein, J. 2005, in submitted to this conference

https://github.com/aria2/aria2
https://github.com/aria2/aria2
https://github.com/uber/kraken
https://github.com/uber/kraken
https://aws.amazon.com/blogs/aws/new-amazon-s3-replication-adds-support-for-multiple-destination-buckets/
https://aws.amazon.com/blogs/aws/new-amazon-s3-replication-adds-support-for-multiple-destination-buckets/
http://dx.doi.org/10.1145/137097.137880
http://dx.doi.org/10.1145/137097.137880
http://dx.doi.org/10.1109/ICDE.1992.213158
http://dx.doi.org/10.1109/ICDE.1992.213158
http://arxiv.org/abs/2205.01068

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Background
	Freshness of Model Weights
	Freshness of Auxilary Data

	Compute Bottlenecks for Freshness
	Network Bottlenecks for Freshness

	RALF: Accuracy-Aware Scheduling for Feature Store Maintenance
	Introduction
	Background
	Feature Stores
	Feature Maintenance
	A Feature Store Reference Model

	Efficient Feature Maintenance
	Feature Approximation
	Feature Store Regret
	Scheduling with Error Feedback: Regret-Proportional Scheduling

	System Design and Architecture
	RALF Server
	RALF Client
	Scheduling Policy
	Implementation

	Evaluation
	Workloads
	End-to-End Evaluation
	Policy Ablations
	How well can future error be predicted?
	Regret-Proportional Scheduling Limitations

	Related Work
	Discussion
	Feature Materialization
	Feature Storage
	Limitations of Existing Feature Stores

	Cloudcast: High-Throughput, Cost-Aware Overlay Multicast in the Cloud
	Introduction
	Problem Setup
	Egress Costs
	Bandwidth Variability Across Endpoints
	Elasticity of Resources
	Illustrated Example

	Cost Optimization in Cloudcast
	Egress Cost Minimization Algorithms
	Profiling Cross-region Bandwidth
	Optimizing Cost with Time Constraints
	Reducing Optimizer Runtime
	Example Topology

	Architecture of Cloudcast
	Control Plane
	Data Plane

	Evaluation
	Comparison to Multicast Algorithms
	Cloud Provider and P2P Systems
	Ablations of Cloudcast's Optimizer
	When to Use Cloudcast for Multicast?

	Related Work

	Conclusion & Future Work
	Bibliography

