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Figure 1. A Unified Framework: We fine-tune a pre-trained Diffusion Model (DM) for visual perception tasks. We take a RGB image,
and a conditional image (i.e. next video frame, occlusion mask, etc.), along with the noised image of the ground truth prediction. Our
model generates predictions for visual tasks such as depth estimation, optical flow prediction, and amodal segmentation, based on the
conditional task embedding. We train a generalist model that can perform all three tasks with exceptional performance.

Abstract

In this paper, we argue that iterative computation with dif-
fusion models offers a powerful paradigm for not only gen-
eration but also visual perception tasks. We unify tasks
such as depth estimation, optical flow, and amodal segmen-
tation under the framework of image-to-image translation,
and show how diffusion models benefit from scaling training
and test-time compute for these perceptual tasks. Through
a careful analysis of these scaling properties, we formu-
late compute-optimal training and inference recipes to scale
diffusion models for visual perception tasks. Our models
achieve competitive performance to state-of-the-art meth-
ods using significantly less data and compute. We release
code and models at scaling-diffusion-perception.github.io.

1. Introduction
Diffusion models have emerged as a powerful tool for gen-
erating images and videos with excellent scaling behaviors.
In this paper, we present a unified framework to perform a
variety of perceptual tasks — depth estimation, optical flow
estimation, and amodal segmentation — with a single dif-
fusion model, as illustrated in Fig. 1.

Previous works such as Marigold [20], FlowDif-
fuser [28], and pix2gestalt [31] demonstrate the potential
of repurposing image diffusion models for various inverse
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vision tasks individually. Building on these prior works, we
systematically explore the benefits of scaling across the axes
of pre-training, fine-tuning, and test-time compute for im-
age diffusion models. We establish scaling power laws for
depth estimation and display their transferability to other
perceptual tasks. Using these scaling laws, we formulate
compute-optimal recipes for diffusion training and infer-
ence for multiple downstream perceptual tasks. Our work
shows that a limited compute budget can be efficiently allo-
cated for strong downstream performance.

Recent works in other fields have also focused on scal-
ing test-time compute to enhance the capabilities of modern
LLMs [7, 30]. We show that increasing test-time compute
compensates for the 3-4 orders of magnitude reduced
pre-training budgets we use. This redistribution allows us
to achieve competitive results while using significantly less
data and overall training compute, highlighting the tradeoff
between training and test-time compute.

We scale test-time compute by exploiting the iterative
and stochastic nature of diffusion. By increasing the num-
ber of denoising steps, allocating more compute to early
denoising steps, and ensembling multiple denoised predic-
tions, we consistently achieve higher accuracy on these per-
ceptual tasks. Our results provide evidence on the benefits
of scaling test-time compute for inverse vision problems un-
der constrained compute budgets, bringing a new perspec-
tive to the conventional paradigm of training-centric scaling
for generative models.

https://scaling-diffusion-perception.github.io


2. Related Work

2.1. Generative Modeling

Generative modeling has been studied under various meth-
ods, including VAEs [21], GANs [14], Normalizing
Flows [35], Autoregressive models [48], and Diffusion
models [16, 43]. Denoising Diffusion Probabilistic Mod-
els (DDPMs) [16] have shown impressive scaling behav-
iors for many image and video generation models. Notable
examples include Latent Diffusion Models [36], which en-
hance efficiency by operating in a compressed latent space,
Imagen [38], which generates samples in pixel space with
increasing resolution, and Consistency Models [45], which
accelerate sampling while maintaining generation quality.
Flow Matching [25, 27] employs training objectives in-
spired by optimal transport to model continuous vector
fields that map data to target distributions, eliminating the
discrete formulation of diffusion models.

2.2. Scaling Diffusion Models

Diffusion modeling has shown impressive scaling behaviors
in terms of data, model size, and compute. Latent Diffusion
Models [36] first showed that training with large-scale web
datasets can achieve high quality image generation results
with a U-Net backbone. DiT [32] explored scaling diffusion
models with the transformer architecture, presenting desir-
able scaling properties for class-conditional image genera-
tion. Later, Li et al. [24] studied alignment scaling laws
of text-to-image diffusion models. Recently, Fei et al. [11]
trained mixture-of-experts DiT models up to 16B parame-
ters, achieving high-quality image generation results. Upcy-
cling can also help scale transformer models. Komatsuzaki
et al. [22] used upcycling to convert a dense transformer-
based language model to a mixture-of-experts model with-
out pre-training from scratch. Similarly, EC-DiT [46] ex-
plores how to exploit heterogeneous compute allocation in
mixture-of-experts training for DiT models through expert-
choice routing and learning to adaptively optimize the com-
pute allocated to specific text-image data samples.

2.3. Diffusion Models for Perception Tasks

Diffusion models have also been used for various down-
stream visual tasks such as depth estimation [8, 19, 39, 40,
54]. More recently, Marigold [20] and GeoWizard [13] dis-
played impressive results by repurposing pre-trained dif-
fusion models for monocular depth estimation. Diffusion
models with few modifications are used for semantic seg-
mentation for categorical distributions [1–3, 17, 47, 52], in-
stance segmentation [15], and panoptic segmentation [6].
Diffusion models are also used for optical flow [28, 40] and
3D understanding [18, 26, 33, 49, 50].

3. Generative Pre-Training
We first explore how to efficiently scale diffusion model
pre-training. We pre-train diffusion models for class-
conditional image generation using a diffusion transformer
(DiT) backbone and follow the original model training
recipe [32].

Starting with a target RGB image I ∈ Ru×u×3, where
the resolution of the image is u × u, our pretrained, frozen
Stable Diffusion variational autoencoder [36] compresses
the target to a latent z0 ∈ Rw×w×4, where w = u/8. Gaus-
sian noise is added at sampled time steps to obtain a noisy
target latent. Noisy samples are generated as:

zt =
√
αt · z0 +

√
1− αt · ϵt (1)

for timestep t. The noise is distributed as ϵ ∼ N (0, I),
t ∼ Uniform(T ), with T = 1000 and αt :=

∏t
s=1(1−βs),

with {β1, . . . , βT } as the variance schedule of a process.
In the denoising process, the class-conditional DiT fθ(·),
parameterized by learned parameters θ, gradually removes
noise from zt to obtain zt−1. The parameters θ are updated
by noising z0 with sampled noise ϵ at a random timestep
t, computing the noise estimate, and optimizing the mean
squared loss between the generated noise and estimated
noise in an n batch size sample. We formally represent this
as the following minimization problem:

θ∗ = argmin
θ

Et∼U({1,...,T}),ϵ∼N (0,I)

[
∥ϵ − fθ(zt; t)∥2

]
,

(2)
where θ∗ are the DiT learned parameters and fθ(zt; t) is the
DiT noise prediction for sample i.

3.1. Model Size
We pre-train six different dense DiT models as in Table 1,
increasing model size by varying the number of layers and
hidden dimension size. We use ImageNet-1K [37] as our
pre-training dataset and train all models for 400k iterations
with a fixed learning rate of 1e-4 and a batch size of 256.
Fig. 2 shows that larger models converge to lower loss with
a clear power law scaling behavior. We show the train loss
as a function of compute (in MACs), and our predictions in-
dicate a power law relationship of L(C) = 0.23×C−0.0098.
Our pre-training experiments display the ease of scaling
DiT with a small training dataset, which translates directly
to efficiently scaling downstream model performance.

3.2. Mixture of Experts
We also pre-train Sparse Mixture of Experts (MoE) mod-
els [41], following the S/2 and L/2 model configurations
in [10]. We use three different MoE configurations listed
in Table 2, scaling the total parameter count by increasing
hidden size, number of experts, layers, and attention heads.
Each MoE block activates the top-2 experts per token and



Model Params Dimension Heads Layers

a1 14.8M 256 16 12
a2 77.2M 512 16 16
a3 215M 768 16 20
a4 458M 1024 16 24
a5 1.2B 1536 16 28
a6 1.9B 1792 16 32

Table 1. Dense DiT Models: We scale dense DiT model size by
increasing hidden dimension and number of layers linearly while
keeping number of heads constant following [34, 53].

Model Active / Total Dim Heads Layers

S/2-8E2A 71M / 199M 384 6 12
S/2-16E2A 71M / 369M 384 6 12
L/2-8E2A 1.0B / 2.8B 1024 16 24

Table 2. MoE DiT Models: We scale the MoE DiT models by
increasing dimension size, number attention heads, layers, and ex-
perts following [10].

has a shared expert that is used by all tokens. To allevi-
ate issues with expert balance, we use the proposed expert
balance loss function from [10] which distributes the load
across experts more efficiently. Sparse MoE pre-training al-
lows for a higher parameter count while increasing through-
put, making it more compute efficient than training a dense
DiT model of the same size. We train our DiT-MoE models
with the same training recipe as the dense DiT model us-
ing ImageNet-1K. Our approach enables training DiT-MoE
models to increase model capacity without increasing com-
pute usage by another order of magnitude, which would be
required to train dense models of similar sizes.

4. Fine-Tuning for Perceptual tasks

In this section, we explore how to scale the fine-tuning of
the pre-trained DiT models to maximize performance on
downstream perception tasks. During fine-tuning, we uti-
lize the image-to-image diffusion process from [20] and [4]
as our training recipe. We pose all our visual tasks as condi-
tional denoising diffusion generation. Give an RGB image
I ∈ Ru×u×3 and its pair ground truth image D ∈ Ru×u×3,
we first project them to the latent space, i0 ∈ Rw×w×4

and d0 ∈ Rw×w×4, respectively. We only add noise to the
ground truth latent to obtain dt and concatenate it with the
RGB latent which results in a tensor zt = {i0, dt}. The first
convolutional layer of the DiT model is modified to match
the doubled number of input channels, and its values are re-
duced by half to make sure the predictions are the same if
the inputs are just RGB images [20]. Finally, we perform
diffusion training by denoising the ground truth image. We
ablate several fine-tuning compute scaling techniques on the
monocular depth estimation task and report Absolute Rela-

Figure 2. Scaling at Model Size: For generative pre-training of
DiT models, we observe clear power law scaling behavior as we
increase the model size.

tive error and Delta1 error. We transfer the best configura-
tions from the depth estimation ablation study to fine-tune
for other visual perception tasks.

4.1. Effect of Model Size
We fine-tune the pre-trained a1-a6 dense models on the
depth estimation task to study the effect of model size. We
scale model size as shown in as described in Section 3.1.
Fig. 3 shows that larger dense DiT models predictably con-
verge to a lower fine-tuning loss, presenting a clear power
law scaling behavior. We plot the train loss and validation
metrics as a function of compute (in MACs). Our fine-
tuned model predictions show a power law relationship in
both depth Absolute Relative error and Delta1 error. The
power law relationship shows that scaling fine-tuning com-
pute by increasing model size can provide significant gains
on downstream tasks.

4.2. Effect of Pre-training Compute
We investigate the behavior of fine-tuning as we scale the
number of pre-training steps for the DiT backbone. We
train four models with the a4 configuration, only varying
the number of pre-training steps. We then fine-tune these
four models on the same depth estimation dataset. Fig. 4
displays the power law scaling behavior of the validation
metrics for depth estimation as we increase DiT pre-training
steps. Our experiments show that having stronger pre-
trained representations has profound impact on model per-
formance when scaling fine-tuning compute.

4.3. Effect of Image Resolution
The sequence length of each image also affects the total
compute spent during training. For each forward pass, we
can scale the amount of compute used by simply increasing
the resolution of the image, which will increase the number



Figure 3. Effect of Model Size: We fine-tune a1-a6 models on the Hypersim dataset for 30K iterations with an exponential decay learning
rate schedule from 3e-5 to 3e-7. We observe a strong correlation between the scaling laws of the fine-tuning loss and validation metrics.

of tokens in the image embedding. By increasing the num-
ber of tokens, we can increase the amount of information
the model can learn from at training time to build stronger
internal representations, which can in turn improve down-
stream performance. We use dense DiT-XL models with
resolutions of 256 × 256 and 512 × 512 from [32] and we
pre-train DiT-MoE L/2-8E2A models with 256 × 256 and
512× 512 resolutions following the recipe in [10]. We then
fine-tune each of these models with the corresponding res-
olution for the depth estimation task.

Fig. 5 displays that increasing image resolution to scale
fine-tuning compute provides significant gains on down-
stream depth estimation performance. In our case, we effec-
tively use 4× the amount of tokens to represent each image,
which also scales the total compute utilization by 4×.

4.4. Effect of Upcycling

Sparse MoE models are efficient options for increasing
model capacity, but pre-training MoE models from scratch
can be expensive. One way to alleviate this issue is Sparse
MoE Upcycling [23]. Upcycling converts dense trans-
former models to MoE models by copying the MLP layer
in each transformer block E times, where E is the number
of experts, and adding a learnable router module to send
each token to the top-k selected experts. The outputs of the
selected experts are combined in a weighted sum at the end
of each MoE block. We upcycle various dense DiT mod-
els after they are fine-tuned for depth estimation and then
continue fine-tuning the upcycled model. Fig. 6 displays
the scaling laws for upcycling, providing an average im-
provement of 5.3% on Absolute Relative Error and 8.6% on
Delta1 error. Our results show that upcycling is an inex-
pensive and effective way to scale fine-tuning compute and
significantly improves downstream performance.

Figure 4. Effect of Scaling Model Pre-training Compute on
Depth Estimation: (a) Depth Absolute Relative Error vs. MACs.
(b) Depth Delta1 Error vs. MACs. We pre-train four a4 models
with 60K, 80K, 100K, and 120K steps. These models are then
fine-tuned for 30K steps on the Hypersim depth estimation dataset.
We observe a clear power law as we increase the DiT pre-training
compute across depth estimation validation metrics.



Figure 5. Effect of Image Resolution. We fine-tune DiT-XL and
DiT-MoE L/2 models with resolutions of 256×256 and 512×512.
We observe a power law when increasing image resolution during
training. By scaling the number of tokens per image by 4×, we
achieve strong performance on Depth Absolute Error, displaying
the effect of increasing total dataset tokens for dense visual per-
ception tasks such as depth estimation.

5. Scaling Test-Time Compute

Scaling test-time compute has been explored for autore-
gressive Large Language Models (LLMs) to improve per-
formance on long-horizon reasoning tasks [5, 9, 30, 42].
In this section, we show how to reliably improve diffusion
model performance for perceptual tasks by scaling test-time
compute. We summarize our approach in Fig. 7. We use
the Stable-Diffusion VAE to encode the input image into
latent space [36]. Then, we sample a target noise latent
from a standard Gaussian distribution, which is iteratively
denoised with DDIM [44] to generate the downstream pre-
diction.

5.1. Effect of Scaling Inference Steps

The most natural way of scaling diffusion inference is by
increasing denoising steps. Since the model is trained to
denoise the input at various timesteps, we can scale the
number of diffusion denoising steps at test-time to produce
finer, more accurate predictions. This coarse-to-fine denois-
ing paradigm is also reflected in the generative case, and

Figure 6. Effect of Upcycling. We upcycle a2, a3, and a4
models fine-tuned for depth estimation with a varying number of
total/active model experts. We continue fine-tuning each upcy-
cled model for 15K iterations on the Hypersim depth estimation
dataset. We observe a clear scaling law in the validation metrics
as we increase fine-tuning compute with upcycling. The upcycled
models can also achieve equivalent or superior performance to our
dense a5 and a6 checkpoints, each of which utilize more compute
during pre-training and fine-tuning. Increasing the total model ex-
perts and total active experts can also improve the downstream
performance.

we can take advantage of it for the discriminative case by
increasing the number of denoising steps. In Fig. 8a, 8d,
we observe that increasing the total test-time compute by
simply increasing the number of diffusion sampling steps
provides substantial gains in depth estimation performance.
This shows that scaling the number of sampling steps is cru-
cial to maximize the downstream performance of diffusion
models trained for discriminative tasks.

5.2. Effect of Test-Time Ensembling

We also explore scaling inference compute with test-time
ensembling. We exploit the fact that denoising differ-
ent noise latents will generate different downstream pre-
dictions. In test-time ensembling, we compute N for-
ward passes for each input sample and reduce the outputs
through one of two methods. The first technique is naive
ensembling where we use the pixel-wise median across



Figure 7. Inference Scaling: Diffusion models by design allow efficient scaling of test-time compute. First, we can simply increase the
number of denoising steps to increase the compute spent at inference. Since we are estimating deterministic outputs, we can then initialize
multiple noise latents and ensemble the predictions to get a better estimation. Finally, we can also reallocate our test-time compute budget
for low and high frequency denoising by modifying the noise variance schedule.

all outputs. The second technique presented in Marigold
[20] is median compilation, where we collect predictions
{d̂1, . . . , d̂N} that are affine-invariant, estimate scale and
shift parameters ŝi and t̂i, and minimize the distances be-
tween each pair of scaled and shifted predictions (d̂′i, d̂

′
j)

where d̂′ = d̂ × ŝ + t̂. For each step, we take the pixel-
wise median m(x, y) = median( ˆd′1(x, y), . . . ,

ˆd′N (x, y)) to
compute the merged depth m. Since it requires no ground
truth, we scale ensembling by increasing N to utilize more
test-time compute. Figs. 8b, 8e display the power law scal-
ing behavior of test-time ensembling.

5.3. Effect of Noise Variance Schedule
We can also scale test-time compute by increasing com-
pute usage at different points of the denoising process. In
diffusion noise schedulers, we can define a schedule for
the variance of the Gaussian noise applied to the image
over the total diffusion timesteps T . Tuning the noise vari-
ance schedule allows for reorganizing compute by allocat-
ing more compute to denoising steps earlier or later in the
noise schedule. We experiment with three different noise
level settings for DDIM: linear, scaled linear, and cosine.
Cosine scheduling from [29] linearly declines from the mid-
dle of the corruption process, ensuring the image is not cor-
rupted too quickly as in linear schedules. Fig. 8c, 8f shows
that the cosine schedule outperforms linear schedules for
DDIM on depth estimation under a fixed compute budget.

6. Putting It All Together
Using the lessons from our scaling experiments on depth
estimation, we train diffusion models for optical flow pre-
diction and amodal segmentation. We show that using dif-
fusion models while considering efficient methods to scale
training and test-time compute can provide substantial per-
formance gains on visual perception tasks, achieving im-
proved or similar performance as current state-of-the-art
techniques. Our experiments provide insight on how to ef-

ficiently apply diffusion models for these visual perception
tasks under limited compute budgets. Finally, we train a
unified expert model, capable of performing all three vi-
sual perception tasks previously mentioned, displaying the
generalizability. Our results show the effectiveness of our
training and test-time scaling strategies, removing the need
to use pre-trained models trained on internet-scale datasets
to enable high-quality visual perception in diffusion mod-
els. Fig. 9 displays the predicted samples from our model.

6.1. Depth Estimation
We combine our findings from the ablation studies on depth
estimation to create a model with the best training and in-
ference configurations. We train a DiT-XL model from [32]
on depth estimation data from Hypersim for 30K steps with
a batch size of 1024, resolution of 512×512, and a learning
rate exponentially decaying from 1.2e-4 to 1.2e-6. We use
median compilation ensembling with a cosine noise vari-
ance schedule. From our scaling experiments, we found
the optimal configuration for inference to be 200 denois-
ing steps with N = 5 samples for ensembling. As shown
in Table 3, our model achieves the same validation perfor-
mance as Marigold on the Hypersim dataset and better per-
formance on the ETH3D test set while being trained with
lower resolution images and approximately three orders of
magnitude less pre-training data and compute.

6.2. Optical Flow Prediction
Optical flow estimation involves predicting the motion of
objects between consecutive frames in a video, represented
as a dense vector field indicating pixel-wise displacement.
We use a similar configuration as the depth estimation
model for optical flow training. We train a DiT-XL model
on the FlyingChairs dataset for 40K steps with batch size
of 1024, resolution of 512 × 512, and learning rate ex-
ponentially decaying from 1.2e-4 to 1.2e-6. We compare
our model’s performance with other specialized optical flow
prediction techniques in Table 4.



(a) Delta1 Error vs. Number of Steps (c) Delta1 Error vs. Number of Samples (e) Delta1 Error vs. Beta Schedules

(b) AbsRel Error vs. Number of Steps (d) AbsRel Error vs. Number of Samples (f) AbsRel Error vs. Beta Schedules

Figure 8. Effect of Scaling Test-Time Compute and Different Noise Variance Schedules. (a, b) Delta1 Error and Absolute Relative
Error vs. Number of Sampling Steps measured at 1, 2, 5, 10, 20, 50, 100, 200 steps. (c, d) Delta1 Error and Absolute Relative Error vs.
Number of Forward Passes measured at 1, 2, 5, 10, 20, 50 samples. (e, f) Delta1 Error and Absolute Relative Error with Different Variance
Schedules measured at intervals of 5k training steps. We present different test-time scaling techniques and noise variance schedules on
depth estimation metrics, highlighting power-law scaling and improved performance with optimized noise variance schedules.

Method Hypersim ETH3D NYUv2 ScanNet DIODE
AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

DiverseDepth − − 22.8 69.4 11.7 87.5 10.9 88.2 37.6 63.1
MiDaS − − 18.4 75.2 11.1 88.5 12.1 84.6 33.2 71.5
LeReS − − 17.1 77.7 9.0 91.6 9.1 91.7 27.1 76.6
Omnidata − − 16.6 77.8 7.4 94.5 7.5 93.6 33.9 74.2
HDN − − 12.1 83.3 6.9 94.8 8.0 93.9 24.6 78.0
DPT − − 7.8 94.6 9.8 90.3 8.2 93.4 18.2 75.8
Marigold 13.5 87.5 6.5 96.0 5.5 96.4 6.4 95.1 30.8 77.3
Ours 13.6 87.6 4.8 97.8 6.8 95.0 7.7 93.7 31.0 77.2

Table 3. Depth Estimation Performance Comparison on Multiple Datasets. We achieve state-of-the-art performance on the ETH3D
dataset and competitive performance across all other benchmarks. Notably, we closely match the performance of Marigold across all
datasets with significantly less training compute.

6.3. Amodal Segmentation

Amodal segmentation is the process of segmenting a com-
plete object in an image, including the portions that are
occluded or not directly visible, which can require higher-
level reasoning for complex scenes. We provide the RGB
input, a mask prompt of the visible portions of the object
to segment, and a CLIP task embedding, which helps our
model learn to complete the semantic object from the visi-

ble portions. This task is particularly challenging in scenes
with significant occlusions or clutter, where accurate recon-
struction often relies on contextual cues and prior knowl-
edge of object shapes. We fine-tune a DiT-XL model on
the pix2gestalt dataset [31] for 6K steps with a batch size
of 4096, resolution of 256 × 256, and learning rate expo-
nentially decaying from 1.2e-4 to 1.2e-6. We compare our
model with other methods in Table 5, demonstrating com-
petitive performance across a variety of occlusion levels.



Figure 9. Depth Estimation, Optical Flow Estimation, and Amodal Segmentation Examples: Each row showcases results from
our models for different tasks. (a) Depth estimation, with relative scale and shift. (b) Optical flow, with scale and shift. (c) Amodal
segmentation, where the model sees an RGB image and segmentation of the occluded object; the task is to predict the amodal image.

Method FlyingChairs EPE ↓
DeepFlow 3.53
FlowNetS 2.71
FlowNetS+v 2.86
FlowNetS+ft 3.04
FlowNetC 2.19
FlowNetC+v 2.61
FlowNetC+ft 2.27
Ours (w/o ensembling) 3.45
Ours (w/ ensembling) 3.08

Table 4. Optical Flow Comparison with Specialized Tech-
niques. We evaluate our optical flow model on the FlyingChairs
validation set. Our model achieves similar end-point error as spe-
cialized methods, including DeepFlow [51] and FlowNet [12]. We
train with significantly less data compared to other specialized
methods, which use a several optical flow datasets. We generate
predictions with and without test-time ensembling.

Method COCO-A P2G MP3D

PCNet 81.35 − −
PCNet-Sup 82.53 − −
SAM 67.21 − −
SD-XL Inpainting 76.52 − −
pix2gestalt 82.9 88.7 61.5
Ours 82.9 88.6 63.9

Table 5. Amodal Segmentation Performance (mIOU) Com-
parison Across Different Datasets. This table compares mIOU
performance across COCO-A, Pix2Gestalt, and MP3D datasets,
showing the effectiveness of various methods. Our method is able
to achieve competitive performance across all tasks, while training
only on Pix2Gestalt.

6.4. One Model for All

We train a unified DiT-XL model for each of the differ-
ent tasks. We train this model on a mixed dataset consist-
ing of all three tasks. To train this generalist model, we
modify the DiT-XL architecture by replacing the patch em-
bedding layer with a separate PatchEmbedRouter mod-
ule, which routes each VAE embedding to a specific in-
put convolutional layer based perception task. This ensures
the DiT-XL model is able to distinguish between the task-
specific embeddings during fine-tuning. We use a similar
training recipe as the previous experiments, using images
with 512× 512 resolution and a learning rate exponentially
decaying from 1.2e-4 to 1.2e-6. Then, we upcycle the fine-
tuned DiT-XL checkpoint to an DiT-XL-8E2A model, and
continue fine-tuning for another 4K iterations. We display
the generated predictions in Fig. 9, which exemplify the
generalizability and transferability of our scaling techniques
across a variety of perception tasks.

7. Conclusion

In our work, we examine the scaling properties of diffu-
sion models for visual perception tasks. We explore var-
ious approaches to scale diffusion training, including in-
creasing model size, mixture-of-experts models, increas-
ing image resolution, and upcycling. We also efficiently
scale test-time compute by exploiting the iterative nature of
diffusion, which significantly improves downstream perfor-
mance. Our experiments provide strong evidence of scal-
ing, uncovering power laws across various training and in-
ference scaling techniques. Finally, using our scaling laws,
we train a generalist model that performs several perceptual
tasks under a unified framework. We hope to inspire future
work in scaling training and test-time compute for iterative
generative paradigms such as diffusion for other tasks.
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8. Scaling Power Law Derivation
We derive all scaling laws in our figures using an iterative
method based on the convex hull. This procedure ensures
the curve accurately captures the minimal envelope of the
data, representing the scaling behavior of loss as a function
of computational cost. The algorithm begins by aggregat-
ing all data points representing the relationship between the
loss and MACs. We compute the convex hull of the ag-
gregated points, which forms the smallest convex boundary
enclosing all points. From this hull, the lower envelope is
extracted. These lower hull points represent the minimal set
of points along the loss vs. MACs curve, which define the
primary trend. The scaling law is modeled as:

L(C) = a× Cb, (3)

where L(C) is the loss/error, C represents the compute in
MACs, and a, b are parameters to be optimized. The fit-
ting process is initialized with reasonable guesses for these
parameters and constraints to ensure the solution remains
physically meaningful (e.g., non-negative losses). After fit-
ting the initial curve to the lower hull points, the method
identifies any data points that lie below the fitted curve.
These points indicate regions where the current fit does not
fully encapsulate the minimal envelope of the data. These
points are added to the lower hull, and the convex hull is
recalculated to include them. The fitting process is repeated
iteratively until convergence, where either fewer than Nmax
points are found below the fitted curve or a maximum num-
ber of iterations is reached. This iterative process ensures
the scaling law curve fully captures the trend defined by the
lower envelope of the data. The final parameters a and b are
determined after convergence, and the resulting curve rep-
resents the optimal scaling power law for the loss/error vs.
compute relationship.

9. Noise Variance Schedule Visualization
During the denoising process, our mixture-of-experts gen-
eralist model refines depth latents from timestep t =
1000 to t = 0. At selected timesteps (t ∈
{1000, 800, 600, 400, 200, 0}), we project the current de-
noised depth latent into RGB space and compress the rep-
resentation along the channel dimension to retrieve depth
predictions.

To align these predictions with the ground truth, we
apply least squares regression at each timestep to deter-
mine scaling and shifting parameters, γ and β, respectively.
These parameters are used to scale and shift the predictions,

ensuring consistency with the ground truth depth. Fig. 10 il-
lustrates the progression of the denoising process, with the
predictions approaching the ground truth as t → 0.

10. Additional Results From Generalist Model
We visualize additional samples from our mixture-of-
experts generalist model for depth estimation, optical flow
estimation, and amodal segmentation in Fig. 11. Our model
is able to generalize across the three tasks with accurate vi-
sual results, displaying the effectiveness of our scaling tech-
niques to train a generalist diffusion model for perception.

11. Evaluation Metrics
We use a variety of metrics to evaluate our models. For
depth estimation, we use Delta1 Accuracy and Absolute
Relative Error metrics. The δ1 accuracy measures the per-
centage of predicted depth values where the ratio between
the prediction and ground truth (or its inverse) is within a
threshold. The absolute relative error quantifies the mean of
the absolute difference between the predicted and ground
truth depths relative to the ground truth.

δ1 =
1

N

N∑
i=1

I
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max
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Di
,
Di

D̂i

)
< 1.25

)
, (4)
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For optical flow estimation, we measure end-point error,
which measures the average Euclidean distance between the
predicted flow vectors and the ground truth flow vectors.

EPE =
1

N

N∑
i=1

∥∥∥F̂i − Fi

∥∥∥
2
, (6)

Finally, for amodal segmentation, we evaluate our model by
computing the mIOU, calculated as the average IoU over all
samples. IoU provides an intuitive measure of the overlap
between the predicted segmentation and the ground truth,
with values ranging from 0 (no overlap) to 1 (perfect over-
lap).

IoUi =
TPi

TPi + FPi + FNi
(7)

mIoU =
1

N

N∑
i=1

IoUi (8)



Figure 10. Noise Variance Schedule Progression: We project depth latents at uniform timesteps in the denoising process to show the
predicted depth maps. The samples in this figure are generated from the Hypersim dataset.



Figure 11. Generalist Model Predictions: We visualize additional samples generated from our mixture-of-experts generalist diffusion
model. We generate the depth estimation samples from Hypersim, the optical flow estimation samples from FlyingChairs, and the amodal
segmentation samples from Pix2Gestalt.
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