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Abstract

Quantum Advantages via Fourier Growth Analysis of Boolean Functions

by

Kewen Wu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Assistant Professor Avishay Tal, Chair

Intuitively quantum computations can easily aggregate signals on the Fourier basis whereas
classical algorithms cannot. Raz-Tal (STOC’19, JACM’22) and Bansal-Sinha (STOC’21)
formalized this using the notion of Fourier growth from Boolean function analysis. Contin-
uing this line of work, we establish sharp Fourier growth bounds for classical (parity) query
algorithms, randomized communication protocols, and parallel quantum query algorithms
with limited adaptivity. As such, we obtain unconditional exponential quantum advantages
in various query and communication settings.
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Chapter 1

Introduction

Quantum computing has revolutionized computation by solving some classically intractable
problems. This raises a fascinating and fundamental question:

What is the relative power of quantum versus classical computation?

Most known quantum advantages are conditioned on heuristics or assumptions. A famous
example here is the story of random circuit sampling. In this task, we aim to draw samples
from a distribution induced by shallow random quantum circuits. Formulated directly in
terms of quantum circuits, the problem is easy for quantum devices and considered hard
for classical computers. In 2019, Google [AAB+19] proposed it as a viable demonstration
of quantum supremacy on near-term quantum devices, and they estimated it to take 10,000
years if run on a classical supercomputer. However shortly after their notice, IBM [Cho19]
discussed a better classical simulation algorithm that only takes a few days on a classical
supercomputer. In 2022, Pan, Chen, and Zhang [PCZ22] were even able to execute the
experiment on a conventional computer within a few hours. The key ingredient behind these
improved classical algorithms is the unavoidable physical noise in the quantum circuits. The
culmination of this line of classical attacks is the work by Aharonov, Gao, Landau, Liu, and
Vazirani [AGL+23] in 2023, which developed a classical algorithm that is provably polynomial
time as long as the noise rate is constant. Though very recently Google [MVM+24] reclaimed
quantum advantages for random circuit sampling in the scenario of diminishing noise, this
story shows how fragile our heuristics can be.

Another example comes from post-quantum cryptography. There, Learning With Error
(LWE) is a widely used primitive that is considered hard against quantum computers. How-
ever the work by Chen, Liu, and Zhandry [CLZ22] showed that some natural variants of
LWE are actually vulnerable under some cleverly designed quantum attack. Hence we must
be careful in formulating these assumptions: sometimes even a slight tweak would make the
statement just false.

Though it is generally believed that quantum computers outperform classical ones, such
debates are still disturbing and distracting. This motivates the questions for
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proving rigorous quantum-classical separations, not relying on heuristics or assumptions.

Furthermore, understanding the reasons behind these quantum-classical separations brings
out another question for

characterizing properties of computation tasks that allow for quantum speedups.

This thesis aims to address the above questions through a unified framework of Fourier
growth analysis of Boolean functions.

1.1 Analysis of Boolean Functions

To explain what Fourier growth is, we start with a brief introduction to the analysis of
Boolean functions.

Boolean functions map binary inputs to bounded outputs and capture most computa-
tional tasks and mathematical objects. The analysis of these functions involves studying
their structural and analytic properties to understand their performance, efficiency, and
robustness, which has been an ongoing success and delivered numerous breakthroughs in
complexity theory, social choice theory, learning theory, cryptography, quantum computing,
combinatorics, probability theory, and more. See [O’D14] for a comprehensive introduction
to the analysis of Boolean functions.

A common theme in the analysis of Boolean functions is proving structural results on
special classes of Boolean devices (e.g., decision trees, bounded-depth circuits) and then
exploiting the structure to (1) devise pseudorandom generators fooling these devices [NN93],
(2) prove lower bounds, showing that some explicit function cannot be computed by such
Boolean devices of certain size [RT22], or (3) design learning algorithms for the class of
Boolean devices in either the membership query model or the random sample model [KM93].
Such structural results can involve properties of the Fourier spectrum of Boolean functions
associated with Boolean devices, like concentration on low-degree terms or concentration on
a few terms.

To give a concrete example pertinent to this thesis, we formally define Boolean function
f : {±1}n → [−1, 1] and recall that it can be uniquely represented as a multilinear polynomial

f(x) =
∑
S⊆[n]

f̂(S) ·
∏
i∈S

xi

where each f̂(S) ∈ R is the Fourier coefficient of f , computed by

f̂(S) = E

[
f(x) ·

∏
i∈S

xi

]
with x uniform over {±1}n.
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The seminal paper of Kushilevitz and Mansour [KM93] presents a learning algorithm in the
membership query model, running in time poly(t, n) that can learn the unknown f assuming∥∥∥f̂∥∥∥

1
:=
∑
S⊆[n]

∣∣∣f̂(S)
∣∣∣ ≤ t.

This learning algorithm works by approximating f with a sparse polynomial and then learn
each non-zero coefficient using the membership query oracle.

While having small
∥∥∥f̂∥∥∥

1
implies learning algorithms and also simple pseudorandom

generators fooling f [NN93], this property can be quite restrictive. In particular, very simple

functions (e.g., the tribes function) have
∥∥∥f̂∥∥∥

1
exponential in n. Such examples motivate a

more refined metric for the Fourier spectrum which we now discuss.

1.2 Fourier Growth

Dating back to Mansour [Man95], the notion of Fourier growth captures the scaling of the
Fourier spectrum with respect to different Fourier levels. In a nutshell, functions with small
Fourier growth cannot aggregate many weak signals in the input to obtain a considerable
effect on the output. In contrast, the majority function, which can amplify weak biases, is
an example of a Boolean function with extremely high Fourier growth.

Formally, the level-ℓ Fourier growth of f is the sum of absolute values of its level-ℓ Fourier
coefficients

Lℓ(f) :=
∑

S⊆[n]:|S|=ℓ

∣∣∣f̂(S)
∣∣∣ .

The idea behind this more refined notion is that Fourier coefficients of different levels behave
differently under standard manipulations to the function like random restrictions or noise
operators. For example, under a noise operator with parameter γ, level-ℓ coefficients are
multiplied by γℓ.

Indeed, upper bounds on the Fourier growth, even for the first few Fourier levels, have
interesting applications.

• A bound on the level-1 Fourier growth is sufficient to control the advantage of distin-
guishing biased coins from unbiased ones [Agr20].

• A bound on the level-2 Fourier growth already gives non-trivial pseudorandom genera-
tors [CHLT19], oracle separations between BQP and PH [RT22, Wu22], and separations
between efficient quantum communication and randomized classical communication
[GRT22].

• A bound on higher levels leads to better constructions of pseudorandom generators
[CHHL19, CHRT18, CGL+21], improved quantum-classical separations [BS21], pseu-
dorandomness regarding expander random walks [CPTS21], efficient learing algorithms
[Man95], and more.
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Motivated by above, Fourier growth bounds have been extensively studied and established
for different computation models, including small-width DNFs/CNFs [Man95], AC0 cir-
cuits [Tal17], low-sensitivity Boolean functions [GSTW16], small-width branching programs
[RSV13, SVW17, CHRT18, LPV22], small-depth decision trees [OS07, Tal20, SSW23], func-
tions related to small-cost communication protocols [GRZ21, GRT22], low-degree F2 polyno-
mials [CHHL19, CHLT19, BIJ+21], product tests [Lee19], small-depth parity decision trees
[BTW15], low-degree bounded functions [IRR+21], and more.

We remark that, by Parseval’s identity and Cauchy-Schwarz inequality, we always have

Lℓ(f) ≤
√(

n
ℓ

)
. However, for many natural classes of Boolean functions, this bound is

far from tight and not good enough for applications. Establishing better bounds require
exploring structural properties of the specific class of functions in question. Even for low
Fourier levels, this can be highly non-trivial and tight bounds remain elusive in many cases.
For example, for degree-d F2 polynomials (which well-approximate AC0[⊕] when we set
d = polylog(n) [Raz87, Smo87]), while we know a level-one bound of L1(f) ≤ O(d) due
to [CHLT19], the current best bound for levels ℓ ≥ 2 is roughly 2O(dℓ) [CHHL19], whereas
the conjectured bound is dO(ℓ). Validating such a bound, even for the second level ℓ = 2,
will imply unconditional pseudorandom generators of polylogarithmic seed length for AC0[⊕]
[CHLT19], a longstanding open problem in circuit complexity and pseudorandomness.

1.3 Quantum Advantages and Forrelation Problem

As hinted in Section 1.2, Fourier growth is closely related to quantum advantages. Intu-
itively, quantum computations can aggregate signals on the Fourier basis, whereas classical
algorithms cannot. The notion of Fourier growth helps to justify this intuition and prove
quantum advantages in the query model [RT22, Tal20, BS21] and beyond.

The quantum query model, also known as the black-box or oracle model, has been a suc-
cessful test bed to develop quantum algorithms and to give provable guarantees on speedups
over classical algorithms. In this model, a quantum algorithm has “black-box access” to
the input and is only charged for quantum queries to the input, while any intermediate
computation is considered free. In other words, this model is an abstraction of the cloud
computing setting where the communication with the remote server is the dominating cost.
Most well-known quantum algorithms, such as Grover’s search [Gro96], Deutsch-Josza’s algo-
rithm [DJ92], Bernstein-Vazirani’s algorithm [BV97], Simon’s Algorithm [Sim97], and Shor’s
period-finding algorithm [Sho99], are all captured by this black-box access model.

The focus in the query model has been to compare quantum algorithms with classical
ones. The culmination of this line of work led to the resolution of the following speedup
question:

What is the largest possible quantum speedup over classical algorithms?
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The motivation for this question stems from an attempt to pinpoint the exact limit of
quantum speedups, and it has helped us develop a better understanding of the fundamental
nature of quantum speedups.

Towards this question, Aaronson [Aar10] introduced the Forrelation problem, which mea-
sures the correlation between a Boolean function and the Fourier spectrum of another. To
give some detail, on input x = (x1, x2) ∈ {±1}2n where n is a power of 2, we define

forr(x) =
1

n
· x⊤1Hx2,

where H denotes the n× n Hadamard matrix. The Forrelation problem asks to distinguish
the case when |forr(x)| is large from the case where forr(x) is close to zero. For this problem,
[Aar10] showed that we only need to make 1 quantum query, but would require Ω(

√
n)

classical queries.
This problem was later generalized by Aaronson and Ambainis [AA18] as the k-fold

Forrelation problem (see Definition 2.0.10 for a precise definition). They showed that the
k-fold Forrelation problem can be solved with r := ⌈k/2⌉ quantum queries, or a classical
algorithm with O

(
n1−1/2r

)
queries. Not only they conjectured that this classical simulation

is optimal, they also conjectured that one should be able to simulate any r-query quantum
algorithm with O(n1−1/2r) classical queries, making the k-fold Forrelation problem a witness
for maximal quantum advantage. The latter conjecture was resolved by Bravyi, Gosset,
Grier, and Schaeffer [BGGS22]. Up to low-order terms, the first conjecture was also proved
by Sherstov, Storozhenko, and Wu [SSW23] and Bansal and Sinha [BS21], building on the
work of Raz and Tal [RT22] and Tal [Tal20].

The framework developed in [RT22, BS21, Tal20, SSW23] is rather general. Informally,
they show that if the Fourier growth of f scales slower than (

√
n)(1−1/k)ℓ, which is the level-ℓ

Fourier growth of the k-fold Forrelation function, then f cannot approximately compute the
k-fold Forrelation problem and its variants. Given this and to separate computation model C1
and C2, it suffices to show (1) C1 can compute the k-fold Forrelation problem or its variants,
which is usually easy due to [AA18], and (2) every Boolean function in C2 has small Fourier
growth, which is usually the main effort. Indeed, the results in [RT22, Tal20, SSW23] are
upper bounds on the Fourier growth of classical query algorithms that make limited number
of queries (aka decision trees of small depth).

1.4 Our Contribution

The main contribution of this thesis is to extend the Fourier growth bounds in the standard
classical query model to other meaningful computation models. Along the way and as
illustrated in Section 1.2, we obtain unconditional exponential quantum advantages and
various applications in pseudorandomness and communication complexity:

• Chapter 3 is based on the joint work [GTW21] with Uma Girish and Avishay Tal. We
extend the query model results in [RT22, BS21, Tal20, SSW23] by allowing classical
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algorithms to perform parity queries, a natural generalization of the standard bit query.
We establish near optimal Fourier growth bounds for parity query classical algorithms,
implying that quantum algorithms have significant advantages even when classical
query algorithms have the power to perform parity queries.

• Chapter 4 is based on the joint work [GSTW23] with Uma Girish, Makrand Sinha,
and Avishay Tal. We go beyond the query model and ask for quantum advantages in
the more challenging communication model. We extend the Fourier growth arguments
in [GTW21] and give exponential separation between efficient quantum simultaneous
communication and randomized two-way classical communication, providing quantita-
tive improvements over the prior work [GRT22].

• Chapter 5 is based on the joint work [GSTW24] with Uma Girish, Makrand Sinha,
and Avishay Tal. To get a better understanding of quantum query algorithms, we
study them in term of the number of adaptive query rounds, which is an abstraction
of shallow quantum circuits from near-term quantum devices. We use Fourier growth
to separate deep versus shallow quantum algorithms, demonstrating the necessity of
adaptivity in the query model.

Finally in Chapter 6, I briefly discuss other projects that I was involved in and completed
during my PhD study at UC Berkeley.
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Chapter 2

Preliminaries

Here we define notation and quote standard results that are shared by the later chapters.
Special definitions that are not commonly used will be provided in the corresponding chapter
afterwards.

Standard Notation

We use N = {0, 1, 2, . . .} to denote the set of natural numbers; and use R,C to denote real
numbers and complex numbers respectively. We use log(·) and ln(·) to denote logarithms
with base 2 and e respectively.

For a complex number x ̸= 0, define Phase(x) = x/|x| as its phase; and we additionally
define Phase(0) = 1. For a real number x, define sgn(x) ∈ {−1, 0, 1} to be the sign of x, i.e.,
sgn(x) equals −1 if x < 0; 1 if x > 0; and 0 if x = 0.

For positive integer n, we use [n] to denote {1, 2, . . . , n}; and
(
[n]
k

)
(resp.,

(
[n]
≤k

)
) to denote

the set of all size-k (resp., size-(≤ k)) sets from [n].
For sets S1, S2, we use S1 ⊕ S2 to denote their symmetric difference, i.e., S1 ⊕ S2 =

(S1 \ S2) ∪ (S2 \ S1). If S1, S2 ⊆ Rn, then we define S1 + S2 = {x+ y : x ∈ S1, y ∈ S2}.
For a finite set S, we use 2S to denote the set of all its subsets. If S is a set from universe

U clear from the context, then we write S for its complement U \S. If S ⊆ Rn, then for any
t ∈ R we define tS = {t · x : x ∈ S}.

Asymptotics

We use O(·),Ω(·),Θ(·) to hide universal multiplicative constants that do not depend on any

parameter. Õ(·) and Ω̃(·) hide polylogarithmic factors, i.e., Õ(f) = O(f · polylogf) and

Ω̃(f) = Ω(f ·polylogf). We also use subscript to hide dependence on minor parameters, e.g.,
Or,d(f) = O(f ·K(r, d)) for an implicit function K.

For convenience, we will use ≲,≳,≪,≫ to hide minor factors in bounds; these will only
be used in informal contexts and not in actual proofs.
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Probability

A probability space is a triple (Ω,F , ξ) where Ω is the sample space, F is a σ-algebra which
describes the measurable sets (or events) in the probability space, and ξ is a probability
measure. We use x ∼ ξ to denote a random sample distributed according to ξ and Ex∼ξ[f(x)]
to denote the expectation of a function f under the measure ξ. For a finite set X we use
x ∼ X to denote that x is a random variable sampled uniformly from X .

For any event S ∈ F , we use ξ(S) to denote the measure of S under ξ. We say an event
S holds almost surely if ξ(S) = 1, i.e., the exceptions to the event have measure zero. For
a measurable event E ∈ F , we write F ∩ {E} to denote the intersection of the σ-algebra F
and the σ-algebra generated by E .

Linear Algebra

We use F2 = {0, 1} to denote the binary field, Span ⟨vectors⟩ to denote the subspace spanned
by vectors over F2. For a (complex) vector, we use ∥·∥ to denote its ℓ2-norm; for a (complex)
matrix, we use ∥·∥ and ∥·∥F to denote its operator and Frobenius norm respectively. We say
a vector u is a unit vector if ∥u∥ = 1. We use Im to denote the m by m identity matrix,
and, when m is clear from the context, we will simply use I. We use C[n]×[m] and Cn×m

to denote the space of complex n by m matrices. For nonzero vector x or matrix X, we
define unit(x) or unit(X) as the unit vector or matrix along direction x and X respectively:
unit(x) = x/ ∥x∥ and unit(X) = X/ ∥X∥F.

We write ⊙ to denote the entrywise product for vectors and matrices: in particular, for
any x, y ∈ Rn, we define x⊙y ∈ Rn to be a vector where (x⊙y)i = xiyi for i ∈ [n] and similarly
for any X, Y ∈ Rn×m, we define X ⊙ Y ∈ Rn×m to be a matrix where (X ⊙ Y )ij = XijYij
for i ∈ [n], j ∈ [m].

We write Sn−1 for the unit sphere in Rn, and write Sn×n−1 for the unit sphere (in Frobenius
norm) in Rn×n where additionally the diagonal entries of the n×n matrices are zero. We use
Bn = {x ∈ Rn | ∥x∥ ≤ 1} to denote the unit Euclidean ball in Rn. We use ⟨x, y⟩ to denote
the inner product between vectors x, y ∈ Rn and ⟨X, Y ⟩ to denote the inner product between
matrices X, Y ∈ Rn×n viewing them as n2-dimensional vectors.

Fact 2.0.1. Let M ∈ C[n]×[m] be an n by m matrix. Then for any S ⊆ [n] and T ⊆ [m],
we have ∥M [S, T ]∥ ≤ ∥M∥, where M [S, T ] is the sub-matrix of M formed by rows in S and
columns in T .

Fact 2.0.2. Assume M = diag(M1, . . . ,Mt) is a block diagonal matrix. Then ∥M∥ =
maxi∈[t] ∥Mi∥.

Fact 2.0.3 (Hölder’s Inequality). ∥M∥ ≤
√
∥M∥1 ∥M∥∞ holds for any matrix M ∈ C[n]×[m],

where

∥M∥1 = max
1≤j≤m

n∑
i=1

|M [i, j]| and ∥M∥∞ = max
1≤i≤n

m∑
j=1

|M [i, j]|.
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Gaussian

We use γn to denote the n-dimensional standard Gaussian measure in Rn. We say a random
variable x ∈ Rn is a standard Gaussian in Rn if its probability distribution is γn. We will
drop the subscript if the dimension is clear from context.

We will also need lower dimensional Gaussian measures: given a linear subspace V of
dimension k, there is a k-dimensional standard Gaussian measure on it, which we denote by
γV . For any measurable subset S ⊆ Rn, we define its ambient space to be the smallest affine
subspace V + t that contains it where V is a linear subspace of Rn and t ∈ Rn. The relative
Gaussian measure of S denoted by γrel(S) is then defined to be the Gaussian measure of the
set S − t under γV .

Let Φ: R → [0, 1] be the cumulative distribution function of the standard Gaussian
distribution, i.e., Φ(a) = 1√

2π

∫ a

−∞ e−u2/2 du.

Theorem 2.0.4 (Gaussian Isoperimetric Inequality [Bor75, ST78]). Let A ⊆ Rn be a mea-
surable set and assume γn(A) ≥ Φ(a) for some a ∈ R. Then for any t ≥ 0, we have

γn(A+ tBn) ≥ Φ(a+ t).

In particular, if γn(A) ≥ 1/2, then we can pick a = 0 and have

γn(A+ tBn) ≥ Φ(t) ≥ 1− e−t2/2. (2.1)

Fact 2.0.5 (See e.g., [Ver18]). For any m ∈ N and r ≥ 2m, we have

Pr
x∼γm

[
m∑
i=1

x2
i ≥ r

]
≤ e−r/4.

Theorem 2.0.6 (Level-k Inequality, see e.g., [EM22, Lemma 2.2]). Let k ∈ {1, 2}. Assume
A ⊆ Rn is measurable. Let 1A : Rn → {0, 1} be the indicator function of A and define
µ := Ex∼γ[1A(x)]. Then, we have1

∑
|S|=k

(
E

x∼γn
[1A(x)xS]

)2

≤ 2e2µ2 · lnk(e/µ).

In particular, if µ > 0, we have

∑
|S|=k

(
E

x∼γn
[xS |x ∈ A]

)2

≤ 2e2 · lnk(e/µ).

1Our Theorem 2.0.6 is slightly different from the references, where they additionally require µ ≤ 1/e.
By Parseval’s identity, the left hand side is always at most one. Therefore we use a slightly worse bound for
the right hand side to allow for the whole range of µ.
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Martingale

Given a sequence of real-valued random variables x1,x2, . . . ,xn in a probability space
(Ω,F , ξ) and a function f(x1, . . . ,xn) satisfying E [|f(x1, . . . ,xn)|] < ∞, the sequence of
random variables z(t) = E

[
f(x1, . . . ,xn)

∣∣F (t−1)
]

is called the Doob martingale where F (t−1)

is the σ-algebra generated by x1, . . . ,xt−1 which should be viewed as a record of the random-
ness of the process until time t − 1. The sequence (F (t))t is called a filtration. A sequence
of random variables (z(t))t is called predictable (or adapted) with respect to F (t) if z(t) is
F (t)-measurable for every t, meaning that it is determined by the randomness in F (t).

A discrete random variable τ ∈ N is called a stopping time with respect to the filtration
(F (t))t if the event {τ = t} ∈ F (t) for all t ∈ N, or in words, whether the event τ = t occurs
is determined by the history of the process until time t. All stopping times considered in this
paper will be finite. The σ-algebra F (τ ) which contains all events that imply the stopping
condition is defined as the set of all events E such that E ∩ {τ = t} ∈ F (t) for all t ∈ N.
We also note if one takes an increasing sequence of stopping times (τm)m then the process
defined by (z(τm))m is also a martingale.

Let ∆z(t) := z(t) − z(t−1) be the martingale differences. Note that E
[
∆z(t)

∣∣F (t−1)
]

= 0
and thus

E
[(
z(t)
)2]

= E

( n∑
t=1

∆z(t)

)2
 = E

[
n∑

t=1

(
∆z(t)

)2]
, (2.2)

where the cross terms disappear upon taking expectation. In other words, the martingale dif-
ferences are orthogonal under taking expectations. The right hand side above is the expected
quadratic variation of the martingale

(
z(t)
)
t
. If the sequence (z(t))t is vector-valued (resp.,

matrix-valued) and satisfies E
[
∆z(t)

∣∣F (t−1)
]

= 0 where 0 is zero vector (resp., matrix), then

we say it is a vector-valued (resp., matrix-valued) martingale with respect to (F (t))t. Since
each coordinate of a vector or matrix-valued martingale is itself a real-valued martingale,
vector-valued or matrix-valued martingale differences are also orthogonal under Euclidean
norms:

E
[∥∥z(t)

∥∥2
F

]
= E

∥∥∥∥∥
n∑

t=1

∆z(t)

∥∥∥∥∥
2

F

 = E

[
n∑

t=1

∥∥∆z(t)
∥∥2
F

]
. (2.3)

Boolean Function

Here we recall definitions in the analysis of Boolean functions (see [O’D14] for a detailed
introduction). Let Un be the uniform probability measure over {±1}n.

Let f : {±1}n → R be any Boolean function. The restriction of f refers to fixing some
of its input bits to ±1. For any p > 0, the p-norm of f is defined as

∥f∥p =

(
E

x∼Un

[|f(x)|p]
)1/p

.
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For any subset S ⊆ [n], xS denotes
∏

i∈S xi (in particular, x∅ = 1). It is a well-known fact
that we can uniquely represent f as a linear combination of {xS}S⊆[n]:

f(x) =
∑
S⊆[n]

f̂(S)xS,

where the coefficients
{
f̂(S)

}
S⊆[n]

are referred to as the Fourier coefficients of f and are

given by f̂(S) = Ex∼Un [f(x)xS]. The above representation expresses f as a multilinear
polynomial and is called the Fourier representation of f . We say that f is of degree at most
d if its Fourier representation is a polynomial of degree at most d, i.e., if f̂(S) = 0 for all
S ⊆ [n], |S| > d.

The level-ℓ Fourier growth of f is denoted by Lℓ(f) and defined as the sum of absolute
values of its level-ℓ Fourier coefficients

Lℓ(f) :=
∑

S⊆[n]:|S|=ℓ

∣∣∣f̂(S)
∣∣∣ .

Theorem 2.0.7 ([Bon70], see also [O’D14, (2, q)-hypercontractivity]). Let f : {±1}n → R
be a degree-d polynomial. Then for any q ≥ 2, we have ∥f∥q ≤ (q − 1)d/2 ∥f∥2.

We use the standard notion of k-wise independence and some relevant concentration
bounds.

Definition 2.0.8 (k-Wise Independence). A distribution D over {±1}n is k-wise indepen-
dent if for x ∼ D and any k-indices 1 ≤ i1 < i2 < · · · < ik ≤ n, the vector (xi1 , . . . ,xik) has
distribution Uk.

Lemma 2.0.9. Let f : {±1}n → R be a degree-d polynomial. Let D be a 2k-wise independent
distribution over {±1}n, where k ≥ d. Let µ = Ex∼D [f(x)] and σ2 = Ex∼D [(f(x)− µ)2].
Then for any α > 0 and any integer 1 ≤ ℓ ≤ k/d, we have

E
x∼D

[
(f(x)− µ)2ℓ

]
≤ σ2ℓ · (2ℓ− 1)d·ℓ .

In particular we have

Pr
x∼D

[|f(x)− µ| ≥ α · σ] ≤ α2 ·
(

2k

d · α2/d

)k

.

Proof. Since (f(x)−µ)2ℓ is a polynomial of degree at most 2ℓ ·d ≤ 2k, its expectation under
D is the same as its expectation under Un. By Theorem 2.0.7, we have

∥f − µ∥2ℓ ≤ (2ℓ− 1)d/2 ∥f − µ∥2 = σ · (2ℓ− 1)d/2.

Hence we obtain the first bound by Markov’s inequality. For the second bound, the RHS is
trivial if α ≤ 1 and follows from the first bound by setting ℓ = ⌊k/d⌋ if α ≥ 1.
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(Parallel) Quantum Query Algorithm

We use the following standard model for quantum query algorithms with parallel queries
[Mon10]. Let Ox be the standard quantum query oracle of input x = x1 · · ·xn ∈ {±1}n.
That is, Ox acts on an (n + 1)-dimensional space indexed by basis states |0⟩ , |1⟩ , . . . , |n⟩,
and performs the operation Ox |0⟩ = |0⟩ and Ox |i⟩ = xi |i⟩ for each i ∈ [n].

Let A be a quantum query algorithm that makes r rounds of adaptive queries with t
parallel queries per round. Assume it uses w auxiliary qubits, and computes a Boolean
function f : {±1}n → {±1} with probability at least 1 − ε, then it is equivalent to the
existence of

• a unit state |ψ⟩ ∈ C{0,...,n}t×[2w],

• r − 1 unitary matrices U1, . . . , Ur−1,

• a measurement matrix M that ∥M∥ ≤ 1 and M is positive semi-definite,

such that∥∥∥√M(O⊗t
x ⊗ I2w)Ur−1 · · ·U2(O

⊗t
x ⊗ I2w)U1(O

⊗t
x ⊗ I2w) |ψ⟩

∥∥∥2{≥ 1− ε for all x ∈ f−1(1),

≤ ε for all x ∈ f−1(0).

Note that standard quantum query algorithm will have t = 1 and r being its quantum query
complexity.

We remark that another natural way of describing the quantum query is through an oracle
O′

x, which acts on a 2(n+1)-dimensional space indexed by basis states {|i⟩ |b⟩}i∈{0,...,n},b∈{±1},
and performs the operation O′

x |0⟩ |b⟩ = |0⟩ |b⟩ and O′
x |i⟩ |b⟩ = |i⟩ |b · xi⟩ for each i ∈ [n], b ∈

{±1}. It turns out that the two models are equivalent [HS05, Mon10] in the sense that

O′
x = V1 (Ox ⊗ I2)V2

for some unitary matrices V1, V2. We will use the standard model with the Ox oracle, which
is more convenient for our purposes.

Folded Forrelation

We give a formal definition of the folded Forrelation problem, introduced by Aaronson and
Ambainis [AA18].

Definition 2.0.10 (k-fold Forrelation Problem). For an integer k ≥ 2, the k-fold Forrelation
problem is a partial Boolean function on n bits. Let H = Hn denote the n×n (orthonormal)
Hadamard matrix where n = 2m for m ∈ N. Let x1, . . . , xk ∈ {±1}n denote truth tables of k
different Boolean functions. Define the degree-k polynomial forrk : {±1}kn → R as follows

forrk(x) =
1

n

∑
(i1,...,ik)∈[n]k

x1(i1) ·Hi1,i2 · x2(i2) ·Hi2,i3 · · · · xk−1(ik−1) ·Hik−1,ik · xk(ik).
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The k-fold Forrelation problem is to decide whether |forrk(x)| ≤ δ
2
or forrk(x) ≥ δ for a

parameter δ. For the applications in this paper, we take δ = 2−5k.

As shown in [AA18], the folded Forrelation problem has an efficient quantum query
algorithm.

Fact 2.0.11 ([AA18]). There exists a quantum circuit Q that makes ⌈k/2⌉ queries and uses
O(k log n) gates, such that for any input x ∈ {±1}kn, it holds that

Pr [Q accepts x] =
1 + forrk(x)

2
.

The following theorem relates the hardness of computing folded Forrelation problem with
Fourier growth.

Theorem 2.0.12 ([BS21, Theorem 3.2]). Let f : {±1}n → [0, 1] such that f and all its
restrictions satisfy Lℓ(f) ≤ tℓ for ℓ = {k, . . . , k(k − 1)}. Let δ = 2−5k. Suppose f is δ-close
to the value of k-fold Forrelation of x for all x on which k-fold Forrelation is defined. Then

t ≥ Ω

(
n(1−1/k)/2

k15

)
.



14

Chapter 3

Quantum Advantages over Parity
Query Algorithms

We prove that for every parity decision tree of depth d on n variables, the sum of absolute
values of Fourier coefficients at level ℓ is at most

dℓ/2 ·O(ℓ · log(n))ℓ.

Our result is nearly tight for small values of ℓ and extends a previous Fourier bound for
standard decision trees by Sherstov, Storozhenko, and Wu (STOC, 2021).

As an application of our Fourier bounds, using the results of Bansal and Sinha (STOC,
2021), we show that the k-fold Forrelation problem has (randomized) parity decision tree

complexity Ω̃
(
n1−1/k

)
, while having quantum query complexity ⌈k/2⌉.

Our proof follows a random-walk approach, analyzing the contribution of a random path
in the decision tree to the level-ℓ Fourier expression. To carry the argument, we apply a
careful cleanup procedure to the parity decision tree, ensuring that the value of the random
walk is bounded with high probability. We observe that step sizes for the level-ℓ walks can
be computed by the intermediate values of level ≤ ℓ− 1 walks, which calls for an inductive
argument. Our approach differs from previous proofs of Tal (FOCS, 2020) and Sherstov,
Storozhenko, and Wu (STOC, 2021) that relied on decompositions of the tree. In particular,
for the special case of standard decision trees we view our proof as slightly simpler and more
intuitive.

In addition, we prove a similar bound for noisy decision trees of cost at most d – a model
that was introduced by Ben-David and Blais (FOCS, 2020).

Organization. In Section 3.1, we give a brief introduction on the literature of parity deci-
sion tree. Then in Section 3.2, we discuss our main results and applications. In Section 3.3,
we give an overview of our analysis. In Section 3.4, we state and prove an adaptive version of
Azuma’s inequality for later referencing. In Section 3.5, we present the cleanup process for
parity decision trees. Finally we prove the Fourier growth bounds for parity decision trees
in Section 3.6 and for noisy decision trees in Section 3.7.
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3.1 Introduction

A parity decision tree (PDT) is an extension of the standard decision tree model. On input
x = (x1, . . . , xn) ∈ {±1}n, a PDT is a binary tree where each internal node is marked by
a linear function (i.e., a product of coordinates), with two outgoing edges marked with ±1,
and each leaf is marked with either 0 or 1. A PDT naturally describes a computation model:
on input x, start at the root and at each step query the linear function specified by the
current node on the input x and continue on the edge marked with the value of the linear
function evaluated on x. Finally, when reaching a leaf, output the value specified in the leaf.
PDTs naturally generalize standard decision trees that can only query the value of a single
input bit in each internal node. See Definition 3.1.1 for a formal definition.

PDTs were introduced in the seminal paper of Kushilevitz and Mansour [KM93], which
proved a structural result for PDTs and used it to design learning algorithms for PDTs.
They showed that every PDT of size s computing a Boolean function f : {±1}n → {0, 1}
has ∥∥∥f̂∥∥∥

1
:=
∑
S⊆[n]

∣∣∣f̂(S)
∣∣∣ ≤ s.

Then, they gave a learning algorithm in the membership query model, running in time

poly(t, n) that can learn any function f with
∥∥∥f̂∥∥∥

1
≤ t. Combining the two results together,

they obtained a poly(s, n)-time algorithm for learning PDTs of size s.
Parity decision trees were also studied in relation to communication complexity and the

log-rank conjecture [MO09, ZS09, ZS10, TWXZ13, STlV17, OWZ+14, CS16, KQS15, HHL18,
San19, MS20]. Suppose Alice gets input x ∈ {±1}n, Bob gets input y ∈ {±1}n and they want
to compute some function f(x, y). When f is an XOR function, namely f(x, y) = g(x⊙ y)
for some g : {±1}n → {±1}. Then any PDT for g of depth d can be translated into a
communication protocol for f at cost 2d: Alice and Bob simply traverse the PDT together,
both exchanging the parity of their part of the input to simulate each query in the PDT.
With this view, parity decision trees can be thought of as special cases of communication
protocols for XOR functions. A surprising result by Hatami, Hosseini, and Lovett [HHL18],
shows that this is not far from the optimal strategy for XOR functions. Namely, if the
communication cost for computing f is c, then the parity decision tree complexity of g is at
most poly(c). Due to this connection, the log-rank conjecture for XOR functions reduces to
the question of whether Boolean functions with at most s non-zero Fourier coefficients can be
computed by PDTs of depth polylog(s) [MO09, ZS09]. The best known upper bound is that
such functions can be computed by PDTs of depth O(

√
s) [TWXZ13] (or even non-adaptive

PDTs of depth Õ(
√
s) [San19]).

The most relevant result to our Fourier growth analysis is the tight Fourier growth
bounds for decision trees of depth d. Sherstov, Storozhenko and Wu [SSW23] proved
that for any randomized decision tree of depth d computing a function f , it holds that

Lℓ(f) ≤
√(

d
ℓ

)
·O(log(n))ℓ−1. Their bound is nearly tight (see [Tal20, Section 7] and [O’D14,

Chapter 5.3] for tightness examples). As mentioned in Section 1.3, one motivation for show-
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ing such a bound for decision trees is that it demonstrates a stark difference between quantum
algorithms making few queries and randomized algorithms making many queries. Based on
that difference, both [SSW23] and [BS21] showed that there are partial functions, relevant
to k-fold Forrelation, that can be correctly computed with probability at least 1/2 + Ω(1) by

quantum algorithms making ⌈k/2⌉ queries, but require Ω̃
(
n1−1/k

)
queries for any random-

ized algorithm. Moreover, due to the result of Aaronson and Ambainis [AA18] this is the
largest possible separation between the two models.

For parity decision trees, the work of Blais, Tan, and Wan [BTW15] established a tight

bound of O
(√

d
)

on the first level ℓ = 1. To the best of our knowledge, bounds on higher

levels were not considered previously in the literature (in fact, even for standard decision
trees, such bounds were not considered prior to [Tal20]).

Here we formally define parity decision trees.

Definition 3.1.1 (Parity Decision Tree). A parity decision tree T is a representation of
a Boolean function f : {±1}n → {0, 1}. It consists of a rooted binary tree in which each
internal node v is labeled by a non-empty set Qv ⊆ [n], the outgoing edges of each internal
node are labeled by +1 and −1, and the leaves are labeled by 0 and 1.

On input x ∈ {±1}n, the tree T constructs a computation path P from the root to a leaf.
Specifically, when P reaches an internal node v we say that T queries Qv; then P follows
the outgoing edge labeled by

∏
i∈Qv

xi. We require that Qv is not implied by its ancestors’
queries. The output of T (and hence f) on input x is the label of the leaf reached by the
computation path. Conversely, we say x is consistent with the path P if P is the computation
path (possibly ending before reaching a leaf) for x.

We make a few more remarks on a parity decision tree T : {±1}n → {0, 1}.

• A node v in T can be either an internal node or a leaf, and we use T (v) ∈ {0, 1} to
denote the label on v when v is a leaf. Meanwhile, we use Tv to denote the sub parity
decision tree starting with node v.

• The depth of a node is the number of its ancestors (e.g., the root has depth 0) and the
depth of T is the maximum depth over all its leaves.

• We say that two parity decision trees T and T ′ are equivalent (denoted by T ≡ T ′) if
they compute the same function.

3.2 Our Results

We prove level-ℓ bounds for any parity decision tree of depth d.

Theorem 3.2.1 (Informal, see Theorem 3.6.5 and Theorem 3.6.12). Let T be a depth-d
parity decision tree on n variables. Then

Lℓ(T ) ≤ dℓ/2 ·O(ℓ · log(n))ℓ .
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Theorem 3.2.1 extends the result of [SSW23] from standard decision trees to parity de-
cision trees at the cost of an (ℓ · log(n))O(ℓ) multiplicative factor. We remark that even for

standard decision tree there is a lower bound of Lℓ(T ) ≥
√(

d
ℓ

)
· (log(n))ℓ−1 [Tal20, Section 7]

for constant ℓ and Lℓ(T ) ≥ 1
poly(ℓ)

·
√(

d
ℓ

)
for all ℓ [O’D14, Chapter 5.3]. Thus, our bounds are

tight up to polylog(n) factors for constant ℓ, and they deteriorate as ℓ grows. Nevertheless,
our main application relies on the bounds for small values of ℓ from Theorem 2.0.12.

Noisy Decision Trees

We also investigate the Fourier spectrum of noisy decision trees. Noisy decision trees are
a different generalization of the standard model; here in each internal node v we query a
noisy version of an input bit, that equals the true bit with probability (1 + γv)/2. Any such
query costs γ2v . We say that a noisy decision tree has cost at most d if the total cost in any
root-to-leaf path is at most d. See Definition 3.7.2 for a formal definition.

Recent work studied this model and established connections to the question of how
randomized decision tree complexity behaves under composition [BB20]. We prove level-
ℓ bounds for any noisy decision tree of cost at most d.

Theorem 3.2.2 (Informal, see Theorem 3.7.5). Let T be a noisy decision tree of cost at
most d on n variables. Then

Lℓ(T ) ≤ O(d)ℓ/2 · (ℓ · log(n))(ℓ−1)/2 .

Extension to Randomized Query Models

It is simple to verify that if f is a convex combination of Boolean functions f1, . . . , fm each
with Lℓ(fi) ≤ tℓ then also f satisfy Lℓ(f) ≤ tℓ. Thus, if we take a distribution over PDTs of
depth d (resp., noisy decision trees of cost d) we get the same bounds on their L1,ℓ as those
in Theorem 3.2.1 (resp., Theorem 3.2.2). This is captured in the following corollary.

Corollary 3.2.3. Let T be a randomized parity decision tree of depth at most d on n vari-
ables. Then,

∀ℓ ∈ [n] : Lℓ(T ) ≤ dℓ/2 ·O(ℓ · log(n))ℓ.

Let T ′ be a randomized noisy decision tree of cost at most d on n variables. Then,

∀ℓ ∈ [n] : Lℓ(T ′) ≤ O(d)ℓ/2 · (ℓ · log(n))(ℓ−1)/2.

Quantum versus Randomized Query Complexity

Let k ≤ log(n). Bansal and Sinha [BS21] gave a ⌈k/2⌉ versus Ω̃
(
n1−1/k

)
separation between

the quantum and randomized query complexity of k-fold Forrelation. Our main application is
an extension of Bansal and Sinha’s lower bound for the model of randomized parity decision
trees. This follows from their main technical result Theorem 2.0.12 and Theorem 3.2.1.



CHAPTER 3. QUANTUM ADVANTAGES OVER PARITY QUERY 18

Corollary 3.2.4. If T is a randomized parity decision tree of depth d computing k-fold
Forrelation with success probability 1

2
+ γ, then

d ≥ γ2 · n1−1/k

poly(k) log2 n
.

Proof. We can amplify the success probability of the randomized parity decision tree from
1/2+γ to 1−2−5k by repeating the query algorithm O(k/γ2) times independently and taking
majority. This results in a randomized parity decision tree T ′ of depth d′ = O(d · k/γ2).
Now, Corollary 3.2.3 gives Lℓ(T ′) ≤ (d′)ℓ/2 ·O(ℓ · log(n))ℓ for all ℓ. In particular, Lℓ(T ′) ≤ tℓ

for all ℓ ≤ k(k − 1) where t = O
(√

d′ · k(k − 1) · log(n)
)

.

This is also true for any restriction of T ′, since fixing variables to constants yields another
randomized parity decision tree of depth at most d′. Combining the bounds on Lℓ(T ′) for
ℓ ∈ {k, . . . , k(k − 1)} with Theorem 2.0.12 gives

d′ ≥ n1−1/k

O(k34) · log2(n)

and thus the claimed bound.

For constant k and γ = 2−O(k), we get a ⌈k/2⌉ versus Ω̃
(
n1−1/k

)
separation between

the quantum query complexity and the randomized parity query complexity of k-fold For-
relation. We remark that separations in the reverse direction are also known: for the n-bit
parity function, the (randomized) parity query complexity is 1 whereas the quantum query
complexity is Ω(n) [MNR11].

Similarly, we can obtain the following corollary for noisy decision trees.

Corollary 3.2.5. If T is a randomized noisy decision tree of cost at most d computing k-fold
Forrelation with success probability 1

2
+ γ, then

d ≥ γ2 · n1−1/k

poly(k) log(n)
.

Towards Communication Complexity Lower Bounds

We recall an open question from [GRT22], which, if true, would demonstrate that the ran-
domized communication complexity of the Forrelation problem composed with the XOR
gadget is Ω̃(n1/2). The simultaneous quantum communication complexity of this problem is

O(polylog(n)) and the best known randomized lower bound is Ω̃(n1/4) due to [GRT22]. See
[GRT22] for more references on this problem.

Conjecture 3.2.6. Let f : {±1}n×{±1}n → {0, 1} computed by a deterministic communi-
cation protocol of cost at most c. Let h : {±1}n → [0, 1] defined by h(z) = Ex[f(x,x ⊙ z)].
Then L2(h) ≤ c · polylog(n).
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We view Theorem 3.2.1 as a first step towards this conjecture. Indeed, for communication
protocols that follow a parity decision tree strategy according to some tree T , it is simple to
verify that h = T (as functions), and thus L2(h) = L2(T ) ≤ c · polylog(n).

Application to Expander Random Walk

The work by Cohen, Peri, and Ta-Shma [CPTS21] showed that expander random walks fool
symmetric functions and also general functions with bounded Fourier growth. To be more
precise, assume Lℓ(f) ≤ tℓ for all ℓ ≥ 1. Let G be an expander, with second eigenvalue
λ ≪ 1/t4, where half of G’s vertices are labeled by +1 and the rest are labeled by −1.
Then the expected value of f on bits sampled by an (m − 1)-step random walk on G is
approximately the value it would get on a uniformly random string in {±1}m. Combined
with our Theorem 3.2.1, this shows that if f can be computed by low-depth parity decision
trees then f can be fooled by the expander random walk.

Fourier Bounds for Small-Size Parity Decision Trees

By a simple size-to-depth reduction, we also obtain Fourier growth bounds for parity decision
trees of bounded size.

Corollary 3.2.7. Let T be a parity decision tree of size at most s > 1 on n variables. Then

∀ℓ ∈ [n] : L1,ℓ(f) ≤ (log(s))ℓ/2 ·O(ℓ · log(n))1.5ℓ.

Proof. We approximate T with error ε = 1/nℓ by another parity decision tree T ′ of depth
d = ⌈log

(
s · nℓ

)
⌉, where we simply replace all nodes of depth d in T with leaves that return

0. Since there are at most s nodes in T , the probability that a random input would reach
one of the nodes of depth d is at most 2−d · s ≤ 1/nℓ. Hence Prx [T (x) ̸= T ′(x)] ≤ ε. This

implies that
∣∣∣T̂ (S)− T̂ ′(S)

∣∣∣ ≤ ε for any subset S ⊆ [n]. Thus,

Lℓ(T ) =
∑

S:|S|=ℓ

∣∣∣T̂ (S)
∣∣∣ ≤ ∑

S:|S|=ℓ

(∣∣∣T̂ ′(S)
∣∣∣+ ε

)
≤ Lℓ(T ′) + 1.

Since T ′ is of depth at most d = ⌈log(s) + ℓ · log(n)⌉ = O (log(s) · ℓ · log(n)), we obtain our
bound using Theorem 3.2.1.

3.3 Proof Overview

Let ℓ ≥ 1 and ε ∈ (0, 1/2]. We will use ≲,≳ to hide minor factors like polylog(n/ε) and
dependence on ℓ. We first describe the proof for standard decision trees and then show how
to generalize to parity decision trees.
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Standard Decision Trees

Let T be a decision tree and for simplicity, assume that every leaf is of depth d. Let v0, . . . ,vd

be a random root-to-leaf path in T and v(0), . . . ,v(d) ∈ {−1, 0, 1}n denote the sequence of
partial assignments, i.e., for j ∈ [n] and i ∈ {0, . . . , d}, let

v
(i)
j =


1 if xj is fixed to 1 before reaching vi,

−1 if xj is fixed to −1 before reaching vi,

0 otherwise.

(3.1)

For u ∈ Rn, we use uS to denote
∏

j∈S uj. Let aS = sgn
(
T̂ (S)

)
for |S| = ℓ and 0 otherwise.

Note that ∑
S:|S|=ℓ

∣∣∣T̂ (S)
∣∣∣ =

∑
S:|S|=ℓ

aS · T̂ (S) =
∑

S:|S|=ℓ

aS · E
vd

[
T (vd)v

(d)
S

]

= E
vd

T (vd) ·

 ∑
S:|S|=ℓ

aS · v(d)
S

 . (3.2)

Thus, to bound
∑

S:|S|=ℓ |T̂ (S)| it suffices to show that
∣∣∣∑S:|S|=ℓ aS · v

(d)
S

∣∣∣ ≲ dℓ/2 in expecta-

tion.
Denote by X(i) :=

∑
S:|S|=ℓ aS · v

(i)
S for i = 0, 1, . . . , d. We write X(d) as a telescoping

sum X(d) =
∑d

i=1

(
X(i) −X(i−1)

)
. To analyze the difference sequence, observe that in the

expression

X(i) −X(i−1) =
∑

S:|S|=ℓ

aS ·
(
v
(i)
S − v

(i−1)
S

)
,

if set S contributes to the sum, then S must include the bit queried at the (i− 1)-th step of
the path. Conditioning on v0, . . . ,vi−1, let xj be the variable queried in vi−1, then we have

X(i) −X(i−1) =
∑

S:|S|=ℓ,j∈S

aS · v(i)
S = xj ·

 ∑
S:|S|=ℓ,j∈S

aS · v(i−1)
S\{j}

 .

Furthermore, we observe that the sum
∑

S:|S|=ℓ,j∈S aS · v
(i−1)
S\{j} is determined by vi−1; thus

conditioning on v0, . . . ,vi−1 the value of X(i) −X(i−1) is a random coin in {±1} multiplied
by some fixed integer. In other words, X(0), . . . ,X(d) is a martingale with varying step sizes.

Recall that Azuma’s inequality provides concentration bounds for martingales with step

sizes bounded, thus now we need to bound
∣∣∣∑S:|S|=ℓ,j∈S aS · v

(i−1)
S\{j}

∣∣∣, which is similar to our

initial goal. Put differently, we wish to analyze the sum∑
S′⊆[n]\{j}:|S′|=ℓ−1

aS′∪{j} · v(i−1)
S′ ,
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which calls for an inductive argument on ℓ. In addition, since we eventually apply a union

bound on all steps, we need to show that
∣∣∣∑S′ aS′∪{j}v

(i−1)
S′

∣∣∣ is bounded with high probability

(and not just in expectation).
More generally, to carry an inductive argument we define for any set T ⊆ [n], |T | ≤ ℓ and

any i ∈ {0, . . . , d}, the random variable

X
(i)
T :=

∑
S⊇T :|S|=ℓ

aS · v(i)
S\T =

∑
S′⊆T :|S′|=ℓ−|T |

aS′∪T · v(i)
S′ .

Note that our initial goal was to bound
∣∣∣X(d)

∅

∣∣∣ =
∣∣X(d)

∣∣, which is analyzed by (reverse)

induction on |T | going from larger sets to smaller sets as Lemma 3.3.1.

Lemma 3.3.1. For all t ∈ {0, . . . , ℓ} and ε > 0, the probability that there exist i ∈ {0, . . . , d}
and T ⊆ [n] of size at least t such that

∣∣∣X(i)
T

∣∣∣ ≳ d(ℓ−t)/2 is at most ε · (ℓ− t).

The main observation for the proof is that X
(0)
T ,X

(1)
T , . . . ,X

(d)
T is a martingale whose

difference sequence consists of terms of the form X
(i−1)
T ′ where T ⊊ T ′. To see this, if we are

querying xj at vi−1, then

X
(i)
T −X

(i−1)
T =


0 j ∈ T,

xj ·

( ∑
j /∈S⊆T

aS∪T∪{j} · v(i−1)
S

)
= xj ·X(i−1)

T∪j j /∈ T.

Note that X
(i−1)
T∪j depends only on the history until vi−1, and xj is a uniformly random bit

independent of this history, thus X
(i)
T is a martingale. The inductive hypothesis implies

that with at least 1 − ε · (ℓ − t − 1) probability,
∣∣∣X(i−1)

T∪j

∣∣∣ ≲ d(ℓ−t−1)/2 for all T of size t and

j ∈ [n] \ T . Whenever this happens, Azuma’s inequality implies that1 with probability at
least 1− ε/ (d · nt), we have

∣∣∣X(i)
T

∣∣∣ ≲ 2
√

log(d · nt/ε) ·

√√√√ d∑
i=1

dℓ−t−1 ≲ d(ℓ−t)/2.

This, along with a union bound over T of size t and i ∈ {0, . . . , d} completes the inductive
step. The Fourier growth bound for noisy decision trees can be proved using a similar
approach.

1Technically this is not true, since a martingale after conditioning may not still be a martingale. We
handle this by truncating the martingale when a bad event happens instead of conditioning on the good
event.
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Parity Decision Trees

The basic approach is as before. Let T be a parity decision tree. As in (3.1), we use vi and
v(i) to denote the random walk and the partial assignments to the variables respectively. We
say vi is k-clean if

∀S ⊆ [n], |S| ≤ k, v
(i)
S =


1 if xS is fixed to 1 before reaching vi,

−1 if xS is fixed to −1 before reaching vi,

0 otherwise.

(3.3)

For (3.2) to be true, we need that at least vd is ℓ-clean. Note that this is not always true,2 but
it is useful as it simplifies the study of high-level Fourier coefficients. To address this issue,
we define a cleanup process for parity decision trees in which we make additional queries
to ensure that certain key nodes are k-clean. We do this by recursively cleaning nodes in a
top-down fashion so that for every node v in the original tree T , any node v′ in the new tree
T ′ obtained at the end of the cleanup step for v is k-clean.

The cleanup process is simple to describe: let v1, . . . , vd be any root-to-leaf path in T .
Assume we have completed the cleanup process for v1, . . . , vi−1. We then query the parity
at vi. While there exists a (minimal) set S violating (3.3), we pick and query an arbitrary
coordinate in S. Once (3.3) is satisfied, we proceed to the cleanup process for vi+1. This
process increases the depth by a factor of at most k. We set k = Θ(ℓ · log(n)) and work with
the new tree T ′ of depth D ≤ k · d.

Let v0, . . . ,vD be a random root-to-leaf path in T ′ and Ii, i ∈ [D] be the set of coordinates
fixed due to the query at vi−1. Note that this set might be of size larger than 1.3 It follows
from simple linear algebra that

∑D
i=1 |Ii| ≤ D. Since vD is k-clean, (3.2) holds. Defining

X
(i)
T exactly as before, our goal is to prove Lemma 3.3.1 with D instead of d. The proof is

still by induction on ℓ− t. It turns out that X
(0)
T ,X

(1)
T , . . . ,X

(D)
T is no longer a martingale;

instead, X
(i)
T −X

(i−1)
T = Yi + Zi where

Yi :=
∑

∅̸=J⊆Ii∩T
|J | is even

xJ ·X(i−1)
J∪T and Zi :=

∑
∅≠J⊆Ii∩T
|J | is odd

xJ ·X(i−1)
J∪T . (3.4)

and Zi (resp., Yi) is an odd (resp., even) polynomial of degree at most ℓ over the newly
fixed variables {xj | j ∈ Ii}. Conditioning on vi−1, every pair of random bits (xj,xj′) from
{xj | j ∈ Ii} is either identical (xj ≡ xj′) or opposite (xj ≡ −xj′), which means Yi is a
constant and Zi can be written as zi · |Zi| where |Zi| is a constant and zi ∼ {±1}.

For now, let us ignore Yi and assume that we have a martingale X
(i)
T such that X

(i)
T −

X
(i−1)
T = zi ·|Zi|, where zi ∼ {±1} is a uniformly random bit independent of z0, . . . ,zi−1 and

2For example, let S = {1, 2} and consider the parity decision tree whose only query is x1x2. At any leaf,
the value of x1x2 is fixed, however, the values of x1 and x2 are free, hence S violates (3.3).

3For example, suppose we query x1x2, x1x3, x1x4 and finally x1. Then, the last query reveals 4 coordi-
nates.
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|Zi| depends only on vi−1. Combined with an adaptive version of Azuma’s inequality, we only

need to show the sum of squares of step sizes
∑D

i=1 |Zi|2 ≲ Dℓ−t to prove
∣∣∣X(i)

T

∣∣∣ ≲ D(ℓ−t)/2.

By the induction hypothesis, with probability at least 1− ε · (ℓ− t− 1) the coefficients of Zi

are bounded appropriately. Since
∑D

i=1 |Ii| ≤ D and in particular |Ii| ≤ D, we have

|Zi| ≤
∑

odd j≥1

(
|Ii|
j

)
· max
|T ′|=j+t

∣∣∣X(i−1)
T ′

∣∣∣ ≲ ℓ−t∑
j≥1

(
|Ii|
j

)
·D(ℓ−j−t)/2 ≲ |Ii| ·D(ℓ−t−1)/2

and thus
∑D

i=1 |Zi|2 ≲ D2 ·Dℓ−t−1. This is too loose for our purpose.
We instead try to bound the sum of squares of step sizes with high probability. Imag-

ine for now that vi−1 is 2-clean.4 Then, the variables {xj | j ∈ Ii} are 2-wise independent
conditioning on vi−1. This gives

E
[
|Zi|2

∣∣vi−1

]
≤

∑
odd j≥1

(
|Ii|
j

)
· max
|T ′|=j+t

∣∣∣X(i−1)
T ′

∣∣∣2
≲

ℓ−t∑
j≥1

(
|Ii|
j

)
·Dℓ−j−t

≲ |Ii| ·Dℓ−t−1

and thus E
[∑D

i=1 |Zi|2
]
≲ Dℓ−t. To show this bound holds with high probability, we use

concentration properties of degree-ℓ polynomials under k-wise independent distributions for
k ≫ ℓ.

In the actual proof, we proceed by conditioning on C(vi−1), the nearest ancestor of vi−1

that is k-clean, instead of conditioning on vi−1, which allows to remove the assumption that
vi−1 is 2-clean. This is because the queries within a cleanup step are non-adaptive, thus Zi

depends only on C(vi−1) and not on vi−1.

Meanwhile, although X
(i)
T is not quite a martingale sequence (due to Yi) and the step sizes

(i.e., |Zi|) are adaptive and not always bounded, we are nonetheless able to prove an adaptive

version of Azuma’s inequality of the form Pr
[
maxi∈[D]

∣∣∣X(i)
T

∣∣∣ ≥ µ+ t · σ
]
≤ e−Ω(t2) + ε

provided Pr
[(∑D

i=1 |Yi| ≤ µ
)
∧
(∑D

i=1 |Zi|2 ≤ σ2
)]
≥ 1 − ε. Then it suffices to bound∑D

i=1 |Yi| similarly to
∑D

i=1 |Zi|2 above.

Related Work

We remark that our proof for level-ℓ Fourier growth (even when specialized to the case of
standard decision trees) differs from the proofs appearing in [Tal20] and [SSW23]. There,

4This assumption immediately implies that |Ii| ≤ 1 and trivially proves our inequality, however, this
type of reasoning doesn’t generalize to the case when vi−1 is not 2-clean.
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the results were based on decompositions of decision trees. We view our martingale approach
as natural and intuitive. We wonder if one can obtain the tight results from [SSW23] using
this approach. It seems that the main bottleneck is a union bound on events related to all
sets T ⊆ [n] of size at most ℓ.

Our bounds for level-1 improve those obtained by [BTW15]. They prove that L1(T ) ≤
O(
√
p · d) when p = Prx[T (x) = 1], whereas we obtain a bound of

L1(T ) ≤ O
(
p
√
d · log(1/p)

)
.

In particular, our bound is almost quadratically better for small values of p. It remains open

whether the bound can be further improved to O
(
p
√
d · log(1/p)

)
, which is the optimal

bound for standard decision trees.
Our cleanup technique is inspired by [BTW15], which used cleanup to prove their level-1

bound. However, our proof strategies and the way we use the cleanup procedure is quite
different than that of [BTW15].

3.4 Adaptive Azuma’s Inequality

We show an adaptive version of Azuma’s inequality for martingales.

Lemma 3.4.1 (Adaptive Azuma’s inequality). Let X(0), . . . ,X(D) be a martingale and
∆(1), . . . ,∆(D) be a sequence of magnitudes such that X(0) = 0 and X(i) = X(i−1)+∆(i) ·z(i)

for i ∈ [D], where if conditioning on z(1), . . . ,z(i−1),

(1) z(i) is a mean-zero random variable and
∣∣z(i)

∣∣ ≤ 1 always holds;

(2) ∆(i) is a fixed value.

If there exists some constant U ≥ 0 such that
∑D

i=1

∣∣∆(i)
∣∣2 ≤ U always holds, then for any

β ≥ 0 we have

Pr

[
max

i=0,1,...,D

∣∣X(i)
∣∣ ≥ β ·

√
2U

]
≤ 2 · e−β2/2.

We will use the definition of sub-Gaussian random variables.

Definition 3.4.2 (Sub-Gaussian). A random variable x is ∆-sub-Gaussian if E [et·x] ≤ et
2∆2

holds for all t ∈ R.

Now we prove the following sub-Gaussian adaptive Azuma’s inequality, which generalizes
Lemma 3.4.1

Lemma 3.4.3 (Sub-Gaussian adaptive Azuma’s inequality). Let X(0), . . . ,X(D) be a mar-

tingale with respect to a filtration
(
F (i)

)D
i=0

and ∆(1), . . . ,∆(D) be a sequence of magnitudes
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such that X(0) = 0 and X(i) = X(i−1) + δ(i) for i ∈ [D], where if conditioning on F (i−1), δ(i)

is a ∆(i)-sub-Gaussian random variable and ∆(i) is a fixed value.

If there exists some constant U ≥ 0 such that
∑D

i=1

∣∣∆(i)
∣∣2 ≤ U always holds, then for

any β ≥ 0 we have

Pr

[
max

i=0,1,...,D

∣∣X(i)
∣∣ ≥ β ·

√
2U

]
≤ 2 · e−β2/2.

Proof. The bound holds trivially when β = 0, hence we assume β > 0 from now on. We
construct another martingale X̂(0), . . . , X̂(D) as follows:

X̂(i) =

{
X(i) 0 ≤ i ≤ d,

X(d) i > d,
where d = min {D} ∪

{
i ∈ {0, 1 . . . , D}

∣∣∣ ∣∣X(i)
∣∣ ≥ β ·

√
2U
}
.

We write δ̂(i) = X̂(i) − X̂(i−1), then δ̂(i) = δ(i) for all i ≤ d; and δ̂(i) ≡ 0 for all i > d. Let
∆̂(i) = ∆(i) for all i ≤ d; and ∆̂(i) ≡ 0 for all i > d. Thus δ̂(i) is ∆̂(i)-sub-Gaussian given
F (i−1); and

D∑
i=1

∣∣∣∆̂(i)
∣∣∣2 =

d∑
i=1

∣∣∆(i)
∣∣2 ≤ U.

Moreover, we have

Pr

[
max

i=0,1,...,D

∣∣X(i)
∣∣ ≥ β ·

√
2U

]
= Pr

[∣∣∣X̂(D)
∣∣∣ ≥ β ·

√
2U
]
.

Let t > 0 be a parameter and we bound E
[
et·X̂

(D)
]

as follows

E
[
et·X̂

(D)
]

= E
F(D−1)

[
et·X̂

(D−1) · E
F(D)

[
et·(X̂

(D)−X̂(D−1))
∣∣∣F (D−1)

]]
(3.5)

= E
F(D−1)

[
et·X̂

(D−1) · E
F(D)

[
et·δ̂

(D)
∣∣∣F (D−1)

]]
(3.6)

≤ E
F(D−1)

[
et·X̂

(D−1) · et2(∆̂(D))
2]

(since δ̂(D) is ∆̂(D)-sub-Gaussian)

≤ E
F(D−1)

[
et·X̂

(D−1) · et
2
(
U−(∆̂(1))

2
−···−(∆̂(D−1))

2
)]

≤ E
F(D−2)

[
et·X̂

(D−2) · et
2
(
U−(∆̂(1))

2
−···−(∆̂(D−1))

2
)
et

2(∆̂(D−1))
2
]

(similar to (3.5) and (3.6))

= E
F(D−2)

[
et·X̂

(D−2) · et
2
(
U−(∆̂(1))

2
−···−(∆̂(D−2))

2
)]

≤ · · · ≤ E
F(D−k)

[
et·X̂

(D−k) · et
2
(
U−(∆̂(1))

2
−···−(∆̂(D−k))

2
)]
≤ · · ·
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≤ et
2U . (3.7)

Setting t = β/
√

2U implies that

Pr
[
X̂(D) ≥ β ·

√
2U
]
≤

E
[
et·X̂

(D)
]

et·β·
√
2U

≤ et
2U

eβ2 = e−β2/2.

Similarly we can show Pr
[
X̂(D) ≤ −β ·

√
2U
]
≤ e−β2/2, which completes the proof by a

union bound.

For our Lemma 3.4.1, we need the following fact.

Fact 3.4.4. Let x be a mean-zero random variable and assume |x| ≤ ∆ always holds. Then
x is ∆-sub-Gaussian.

Proof. Note that et·x is convex for all t ∈ R. By Jensen’s inequality, we have

E
[
et·x
]
≤ 1

2

(
e−t∆ + et∆

)
=

+∞∑
i=0

(t∆)2i

(2i)!
≤

+∞∑
i=0

(t∆)2i

i!
= et

2∆2

.

As a corollary of Lemma 3.4.3 and Fact 3.4.4, we obtain Lemma 3.4.1. Next, we generalize
Lemma 3.4.1 as Lemma 3.4.5, which will be frequently used later.

Lemma 3.4.5. Let m ≥ 1 be an integer. For each t ∈ [m], let X
(0)
t , . . . ,X

(D)
t be a sequence

of random variables and ∆
(1)
t , . . . ,∆

(D)
t be a sequence of magnitudes such that X

(0)
t = 0 and

X
(i)
t = X

(i−1)
t + ∆

(i)
t · z

(i)
t + µ

(i)
t for i ∈ [D], where if conditioning on z

(1)
t , . . . ,z

(i−1)
t ,

1. z
(i)
t is a mean-zero random variable and

∣∣∣z(i)
t

∣∣∣ ≤ 1 always holds;

2. ∆
(i)
t is a fixed value and µ

(i)
t is a random variable.

If there exist some constants U, V ≥ 0 and η ∈ [0, 1] such that

Pr

[
∃t ∈ [m],

(
D∑
i=1

∣∣∣∆(i)
t

∣∣∣2 > U

)
∨

(
D∑
i=1

∣∣∣µ(i)
t

∣∣∣ > V

)]
≤ η,

then for any β ≥ 0 we have

Pr

[
∃t ∈ [m], max

i=0,1,...,D

∣∣∣X(i)
t

∣∣∣ ≥ V + β ·
√

2U

]
≤ η + 2m · e−β2/2.

Proof. We divide the proof into the following two cases.
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The η = 0 Case. Let X̂
(i)
t = X

(i)
t −

∑i
j=1µ

(j)
t for each t and i. Then

∣∣∣X(i)
t

∣∣∣ =

∣∣∣∣∣X̂(i)
t +

i∑
j=1

µ
(j)
t

∣∣∣∣∣ ≤ V +
∣∣∣X̂(i)

t

∣∣∣ .
By a union bound, it suffices to show for any fixed t, we have

Pr

[
max

i=0,1,...,D

∣∣∣X̂(i)
t

∣∣∣ ≥ β ·
√

2U

]
≤ 2 · e−β2/2,

which follows from Lemma 3.4.1.

The η ≥ 0 Case. Consider X̃
(0)
t , . . . , X̃

(D)
t defined by setting X̃

(0)
t = 0 and X̃

(i)
t =

X̃
(i−1)
t + ∆̃

(i)
t · z

(i)
t + µ̃

(i)
t , where

∆̃
(i)
t =

∆
(i)
t

∑i
j=1

∣∣∣∆(j)
t

∣∣∣2 ≤ U,

0 otherwise,
and µ̃

(i)
t =

{
µ

(i)
t

∑i
j=1

∣∣∣µ(j)
t

∣∣∣ ≤ V,

0 otherwise.

Then Item 1 and Item 2 hold for
(
X̃

(i)
t

)
t,i

and
(
∆̃

(i)
t

)
t,i
,
(
µ̃

(i)
t

)
t,i

. Note that we always have

Pr
[
∃t ∈ [m], i ∈ {0, 1 . . . , D} , X̃(i)

t ̸= X
(i)
t

]
≤ η

and
D∑
i=1

∣∣∣∆̃(i)
t

∣∣∣2 ≤ U,
D∑
i=1

∣∣∣µ̃(i)
t

∣∣∣ ≤ V.

Hence from the previous case, we have

Pr

[
∃t ∈ [m], max

i=0,1,...,D

∣∣∣X(i)
t

∣∣∣ ≥ V + β ·
√

2U

]
≤ Pr

[
∃t ∈ [m], i ∈ {0, 1 . . . , D} , X̃(i)

t ̸= X
(i)
t

]
+ Pr

[
∃t ∈ [m], max

i=0,1,...,D

∣∣∣X̃(i)
t

∣∣∣ ≥ V + β ·
√

2U

]
≤ η + 2m · e−β2/2.

3.5 How to Clean Up Parity Decision Trees

In this section we show how to clean up a given parity decision tree to make it easier to
analyze.
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It will be useful to identify Fn
2 with {±1}n by Enc : (x1, . . . , xn) 7→ ((−1)x1 , . . . , (−1)xn).

For a subset X ⊆ Fn
2 we will denote Enc(X) = {Enc(x) : x ∈ X}. Thus, we may think

of Boolean functions also as f : Fn
2 → {0, 1}. We observe that under this representation of

the input, a parity decision tree T : Fn
2 → {0, 1} indeed queries parity functions (i.e., linear

functions over F2) of the input bits x ∈ Fn
2 and decides whether to go left or right based on

their outcome. Thus, the set of all possible inputs in Fn
2 that reach a given node in a parity

decision tree is an affine subspace of Fn
2 .

Notation 3.5.1. Let T : {±1}n → {0, 1} be a parity decision tree and let v be a node in it.

• We use Pv ⊆ {±1}n to denote the set of all points reaching node v. Note that Pv =
Enc(Hv +a) where Hv is a linear subspace of Fn

2 of dimension n−depth(v) and a ∈ Fn
2 .

• For any S ⊆ [n], we define P̂v(S) = Ex∼Pv [xS].

• We use Sv to denote all fully correlated sets with Pv, i.e.,

Sv =
{
S ⊆ [n]

∣∣∣ P̂v(S) ∈ {±1}
}
.

We observe that if Pv = Enc(Hv + a), then Sv = H⊥
v . Additionally, if the queries on

the path from root to v are Qv0 , . . . , Qvi−1
, then Sv = Span⟨{Qv0 , . . . , Qvi−1

}⟩.
• If v is an internal node, then define J(v) as the set of newly fixed coordinates after
querying Qv, i.e., i ∈ J(v) iff {i} /∈ Sv but {i} ∈ Span ⟨Sv ∪ {Qv}⟩.

The following simple fact shows that there is no weakly correlated set.

Fact 3.5.2. For any parity decision tree T and any node v in T , P̂v(S) ∈ {+1, 0,−1} holds
for any set S.

Proof. Since Pv = Enc(Hv + a) where Hv + a is an affine subspace, Pv falls into one of the
following 3 cases: (a) all points in Pv satisfy χS(x) = 1, (b) all points satisfy χS(x) = −1,
(c) exactly half of the points satisfy χS(x) = 1.

Let S ⊆ Fn
2 be a subspace and S ⊆ [n]. For simplicity, we write S ∈ S iff the indicator

vector of S is contained in S. Now we describe the desired property: k-clean.

Definition 3.5.3 (k-Clean Subspace and Mess-Witness). Let k be a positive integer. A
subspace S is k-clean if for any set S ∈ S such that |S| ≤ k, we have that {i} ∈ S holds for
any i ∈ S.

Moreover, when S is not k-clean, we say i is a mess-witness if there exists some S ∋
i, |S| ≤ k such that S ∈ S but {i} /∈ S.

Definition 3.5.4 (k-Clean Parity Decision Tree). A parity decision tree T is k-clean if the
following holds:
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• For any internal node v, either (a) Sv is k-clean, or (b) Qv = {i} where i is a mess-
witness for Sv. Moreover, we say v is k-clean if (a) holds; and we say v is cleaning if
(b) holds.

• For any leaf v, Sv is k-clean (in such a case, we say that v is k-clean).

• For any k-clean internal node v, Tv starts with ℓ(v) non-adaptive queries5 where ℓ(v) ≥
1. In addition, for any i ∈ {1, . . . , ℓ(v)− 1}, any node of depth i in Tv is cleaning; and
all node of depth ℓ(v) are k-clean.6

Example 3.5.5. If T is a decision tree (i.e., |Qv| ≡ 1 for any internal node v) then it is
k-clean for any k, where each internal node is k-clean.

If T is the depth-1 parity decision tree for T (x) = x1x2x3 (i.e., T only has a root v0
querying Qv0 = {1, 2, 3}), then it is 2-clean but not 3-clean, since for either leaf v we have
{1, 2, 3} ∈ Sv but {1} /∈ Sv.

The benefit of having a k-clean parity decision tree is that it makes the expression of
Fourier coefficients simpler.

Lemma 3.5.6. Let T : {±1}n → {0, 1} be a k-clean parity decision tree and let S be a set of
size ℓ ≤ k. Let v0, . . . ,vd be a random root-to-leaf path. Define v(0), . . . ,v(d) ∈ {−1, 0,+1}n

by setting v
(i)
j = P̂vi

(j) for each i, j. Recall that v
(d)
S =

∏
j∈S v

(d)
j . Then we have

T̂ (S) = E
v0,...,vd

[
T (vd) · v(d)

S

]
.

Proof. Observe that for any j ∈ J(vi) ⊆ J , the j-th coordinate is fixed after querying Qvi
.

Therefore we have

T̂ (S) = E
y∼{±1}n

[T (y) · yS] = E [T (vd) · E [yS]] = E
[
T (vd) · P̂vd

(S)
]

By Fact 3.5.2, P̂vd
(S) ̸= 0 iff S ∈ Svd

, which, due to ℓ ≤ k and vd being a k-clean leaf, is

equivalent to all coordinates in S being fixed along this path. Hence P̂vd
(S) =

∏
j∈S v

(d)
j .

Cleanup Process

We first analyze the cleanup process for a subspace.7

5This means for any i ∈ {0, 1 . . . , ℓ(v)− 1}, all nodes of depth i in Tv make the same query.
6This “leveled adaptive” condition is required just for convenience of proofs. In fact, one can show that

the first few queries in Tv can be rearranged to make sure they are non-adaptive until we reach a k-clean
node. See Lemma 3.5.7.

7The k = 2 case of Lemma 3.5.7 is essentially [BTW15, Proposition 3.5]. However there is a gap in their
proof. For example, if the parity decision tree non-adaptively queries x1x2x3x4, x1x5, x2x6 in order, then
their analysis fails.
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Lemma 3.5.7 (Clean Subspace). Let k ≥ 2 be an integer and S be a subspace of rank at most
d. We construct a new subspace S ′ (initialized as S) as follows: while S ′ is not k-clean, we
continue to update S ′ ← Span ⟨S ′ ∪ {{i}}⟩ with some mess-witness i. Then rank(S ′) ≤ d · k
and any update choice of mess-witnesses will result in the same final subspace S ′.

Proof. Assume S is a subspace of Fn
2 . Then first note that the number of updates is finite,

since we can update for at most n times.
Next we show that the number of updates and the final S ′ does not depend on the choice

of mess-witnesses. We do so by an exchange argument. Let i1, . . . , ir and i′1, . . . , i
′
r′ be two

rounds of execution using different mess-witnesses. Then there exists some t < min {r, r′}
such that ij = i′j for all j ≤ t, but it+1 ̸= i′t+1. Let St = Span ⟨S ∪ {{i1} , . . . , {it}}⟩. Then

there exist S ∋ it+1 and S ′ ∋ i′t+1 (possibly S = S ′) such that S, S ′ ∈ St but {it+1} ,
{
i′t+1

}
/∈

St. Since the final subspace is k-clean, we know there exists some T ≥ t such that

{it+1} /∈ Span ⟨S ∪ {{i′1} , . . . , {i′T}}⟩ but {it+1} ∈ Span
〈
S ∪

{
{i′1} , . . . ,

{
i′T+1

}}〉
,

which means
{
i′T+1, it+1

}
∈ Span ⟨S ∪ {{i′1} , . . . , {i′T}}⟩. Hence we can safely replace i′T+1

with it+1, and then swap it+1 with i′t+1. We can perform this process as long as (i1, . . . , ir) ̸=
(i′1, . . . , i

′
r′), which means r = r′ and the final S ′ is always the same.

For any subspace H, we define rank1(H) = |{i | {i} ∈ H}| and thus rank(H)− rank1(H) ≥
0. Now we analyze the following particular way to construct S ′: We initialize S ′ as S.
While S ′ is not k-clean, we find a minimal S = {i1, . . . , is} ∈ S ′ such that i1 is a mess-
witness; then we update S ′ ← Span ⟨S ′ ∪ {{i1} , . . . , {is−1}}⟩. Note that before the update,
1 < s ≤ k and {ij} /∈ S ′ holds for each j ∈ [s], since S is minimal and S ′ is not k-clean. Thus
after the update, rank(S ′) grows by s − 1 ≤ k − 1 and rank1(S ′) grows by s, which means
rank(S ′) − rank1(S ′) shrinks by 1. Hence we have at most rank(S) − rank1(S) ≤ d updates
before S ′ is k-clean; and the final S ′ has rank at most rank(S) + (k − 1) · d ≤ d · k.

We now show how to convert an arbitrary parity decision tree into a k-clean parity
decision tree which still has a small depth and fixes a small number of variables along each
path. The latter quantity is in fact bounded by the depth as shown in Fact 3.5.8.

Fact 3.5.8. Let T be a depth-d parity decision tree. Let v0, . . . , vd′ be any root-to-leaf path.
Then we have

∑d′−1
i=0 |J(vi)| ≤ d′.

Proof. Observe that
∑d′−1

i=0 |J(vi)| =
∣∣{i ∣∣ {i} ∈ Span

〈
Qv0 , . . . , Qvd′−1

〉}∣∣ ≤ d′.

Corollary 3.5.9. Let T be a depth-D k-clean parity decision tree. Let v0, . . . , vD′ be any
root-to-leaf path where at most d of v0, . . . , vD′−1 are k-clean. Then

∑
i:|J(vi−1)|>1 |J(vi)| ≤ 2d.

Proof. By Fact 3.5.8 we have
∑D′−1

i=0 |J(vi)| − 1 ≤ 0. Since any vi with J(vi) = ∅ is not
cleaning and therefore must be k-clean. Thus∑

i:|J(vi)|>1

|J(vi)| − 1 ≤ |{i : J(vi) = ∅}| ≤ d.
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For |J(vi)| > 1, we have |J(vi)| − 1 ≥ |J(vi)|/2 and thus
∑

i:|J(vi)|>1 |J(vi)| ≤ 2d.

Lemma 3.5.10 (Clean Parity Decision Tree). Let k ≥ 2 be an integer. Let T be an arbitrary
depth-d parity decision tree. Then there exists a k-clean parity decision tree T ′ of depth at
most d · k equivalent to T . Moreover, any root-to-leaf path in T ′ has at most d nodes that
are k-clean.

Proof. We build T ′ by the following recursive algorithm. An example of the algorithm is
provided in Figure 3.1.

Algorithm 1: Clean parity decision tree: build T ′ from T
Input: an arbitrary depth-d parity decision tree T
Output: a parity decision tree T ′ with desired properties

1 r ← root of T
2 Initialize the root of T ′ as r′

3 Build(r, r′, 1)
4 Procedure Build(v, v′, ℓ)

/* (v, v′) are current nodes on (T , T ′); ℓ is the recursion depth. */

5 if v is a leaf then Label v′ with the label of v
6 else
7 (v−, v+)← the left and right child of v

8 if P̂v′(Qv) = −1 then Build(v−, v
′, ℓ+ 1)

9 else if P̂v′(Qv) = +1 then Build(v+, v
′, ℓ+ 1)

10 else /* P̂v′(Qv) = 0 due to Fact 3.5.2 */

11 Qv′ ← Qv

12 (v′−, v
′
+)← the left and right child of v′

13 Initialize O ← ∅
14 while Span ⟨Sv′ ∪ {Qv′} ∪O⟩ is not k-clean do
15 Update O ← O ∪ {{i}}, where i is a mess-witness
16 end
17 T ′ non-adaptively queries every set (which is a singleton) in O under v′ in

arbitrary order
18 foreach leaf v̂ under v′− do Build(v−, v̂, ℓ+ 1)
19 foreach leaf v̂ under v′+ do Build(v+, v̂, ℓ+ 1)
20

21 end

22 end

Then the correctness of Algorithm 1 follows from the following claims.

Claim 3.5.11. For any internal node v′ ∈ T ′, Qv′ is not implied by its ancestors’ queries.



CHAPTER 3. QUANTUM ADVANTAGES OVER PARITY QUERY 32

x1x2

x2 x4

x3

1 1 0

0 1

x1x2

x1 x1

x3 x4 x4

1

0 1 1 01 0

Figure 3.1: An example of the cleanup process with k = 2 where the LHS is T and the
RHS is T ′. All the left (resp., right) outgoing edges are labeled with −1 (resp., +1). Red
nodes and leaves are k-clean, and blue nodes are cleaning (i.e., non-adaptive queries). Nodes
connected with dashed curves are invoked by Build.

Proof. We apply Fact 3.5.2. This is equivalent to Qv′ /∈ Sv′ , which follows from the conditions
in Line 8/9/13.

Claim 3.5.12. The depth of T ′ is at most d · k.

Proof. Let v0, . . . , vd′ be any root-to-leaf path of T and let P ′ be its corresponding path in T ′.
The construction process of P ′ corresponds to the cleanup process for Span

〈
Qv0 , . . . , Qvd′−1

〉
in Lemma 3.5.7; hence the depth of T ′ equals rank(S ′) ≤ d′ · k ≤ d · k where S ′ is the k-clean
subspace produced by applying Lemma 3.5.7.

Claim 3.5.13. T ≡ T ′ and any root-to-leaf path in T ′ has at most d k-clean nodes.

Proof. This is evident, as T ′ only refines T by inserting cleaning nodes.

Claim 3.5.14. Whenever we call Build(·, v′, ·), v′ is k-clean.

Proof. We prove by induction on ℓ. The base case Line 3 is obvious. For Line 8/9, we
recurse on the same v′, which is k-clean by induction. For Line 17/18, note that Sv̂ =
Span ⟨Sv′ ∪ {Qv′} ∪O⟩; hence from the condition in Line 13, it is k-clean.

Claim 3.5.15. Nodes created in Line 16 are cleaning.

Proof. Let o = |O| and let i1, i2, . . . , io be the query order. For any j ∈ [o], let v′j be any one
of the nodes created for ij, then Sv′j = Span ⟨Sv′ ∪ {Qv′} ∪ {{i1} , . . . , {ij−1}}⟩, which is not

k-clean by Line 13; hence v′j is cleaning by the condition in Line 13.

This completes the proof of Lemma 3.5.10.
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3.6 Fourier Growth Bounds for Parity Decision Trees

Our goal in this section is to prove Theorem 3.2.1 with detailed bounds provided.

Level-1 Bound

We first prove the concentration result for level-1. We start with the following simple bound
for general parity decision trees.

Lemma 3.6.1. Let T : {±1}n → {0, 1} be a depth-D parity decision tree. Let v0, . . . , vD′ be

any root-to-leaf path. Define v(0), . . . , v(D
′) ∈ {−1, 0,+1}n by setting v

(i)
j = P̂vi(j) for each

0 ≤ i ≤ D′ and j ∈ [n]. Then for any a1, . . . , an ∈ {−1, 0, 1}, we have
∣∣∣∑n

j=1 aj · v
(D′)
j

∣∣∣ ≤
D′ ≤ D.

Proof. Note that the set of non-zero coordinates in v(D
′) is exactly

⋃D′−1
i=0 J(vi). Hence by

Fact 3.5.8, we have ∣∣∣∣∣
n∑

j=1

aj · v(D
′)

j

∣∣∣∣∣ ≤
n∑

j=1

∣∣∣v(D′)
j

∣∣∣ =
D′−1∑
i=0

|J(vi)| ≤ D′ ≤ D.

Now we give an improved bound for k-clean parity decision trees. To do so, we need one
more notation which will be crucial in our analysis.

Notation 3.6.2. Let T be a k-clean parity decision tree. For any node v, we define C(v)
as the nearest ancestor of v (including itself) that is k-clean.

Lemma 3.6.3. There exists a universal constant κ ≥ 1 such that the following holds. Let
T : {±1}n→ {0, 1} be a depth-D 2k-clean parity decision tree where k ≥ 1 and any root-to-
leaf path has at most d nodes that are 2k-clean.

Let v0, . . . ,vD′ be a random root-to-leaf path. Define v(0), . . . ,v(D′) ∈ {−1, 0,+1}n by

setting v
(i)
j = P̂vi

(j) for each 0 ≤ i ≤ D′ and j ∈ [n]. Then for any a1, . . . , an ∈ {−1, 0, 1}
and any ε ≤ 1/2, we have Pr

[∣∣∣∑n
j=1 aj · v

(D′)
j

∣∣∣ ≥ R(D, d, k, ε)
]
≤ ε, where

R(D, d, k, ε) = κ ·

√√√√(D + dk

(
1

ε

) 1
k

)
log

(
1

ε

)
.

In the proof of Lemma 3.6.3 we will use the following simple claim.

Fact 3.6.4. Let p1, . . . , pn be a sub-probability distribution, i.e., pi ≥ 0 and
∑n

i=1 pi ≤ 1. Let

a1, . . . , an ∈ R. Then for any k ∈ N, we have
∑n

i=1 pia
2k
i ≥ (

∑n
i=1 pia

2
i )

k
.
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Proof. We add pn+1 = 1−(
∑n

i=1 pi) and an+1 = 0 so p is a probability distribution. Then the
claim follows from E[Xk] ≥ E[X]k, where random variable X gets value a2i with probability
pi.

Proof of Lemma 3.6.3. Extend v(D′+1) = · · · = v(D) to equal v(D′). For each 0 ≤ i ≤ D, let
X(i) =

∑n
j=1 aj · v

(i)
j . We define δ(i) = 0 for D′ < i ≤ D. For 1 ≤ i ≤D′, we let

δ(i) = X(i) −X(i−1) =
n∑

j=1

aj ·
(
v
(i)
j − v

(i−1)
j

)
=

∑
j∈J(vi−1)

aj · v(i)
j ,

where J(vi−1) depends only on C(vi−1) since TC(vi−1) performs non-adaptive queries before
(and possibly even after) reaching vi. Note that for the two possible outcomes of querying

Qvi
, v

(i)
j is fixed to ±1 respectively for each j ∈ J(vi−1). Thus δ(i) = ∆(i) · z(i) where ∆(i)

is a fixed value given z(1), . . . ,z(i−1) and z(1), . . . ,z(D′) are independent unbiased coins in
{±1}.

Since C(vi−1) is 2k-clean, the collection of random variables
{
v
(i)
j

∣∣∣ j ∈ J(vi−1)
}

is 2k-

wise independent conditioning on C(vi−1). Note that δ(i) is a linear function and

E
[
δ(i)
∣∣C(vi−1)

]
= 0 and E

[(
δ(i)
)2 ∣∣∣C(vi−1)

]
=

∑
j∈J(vi−1)

a2j ≤ |J(vi−1)| .

By the first bound in Lemma 2.0.9, we have

E
[(
δ(i)
)2k ∣∣∣C(vi−1)

]
≤ (2k − 1)k · |J(vi−1)|k . (3.8)

Meanwhile
∣∣δ(i)

∣∣ ≤ |J(vi−1)|. Our first goal is to bound Pr
[∑D

i=1

(
δ(i)
)2
> D + 2α2d

]
.

Observe that whenever the event
∑D

i=1

(
δ(i)
)2
> D+ 2α2d happens, it must be the case that∑

i:|J(vi−1)|>1

(
δ(i)
)2
> 2α2d. Thus,

Pr

[
D∑
i=1

(
δ(i)
)2
> D + 2α2d

]
≤ Pr

 ∑
i:|J(vi−1)|>1

(
δ(i)
)2
> 2α2d


= Pr

 ∑
i:|J(vi−1)|>1

|J(vi−1)|
2d

·
(
δ(i)
)2

|J(vi−1)|
> α2


≤ Pr

 ∑
i:|J(vi−1)|>1

|J(vi−1)|
2d

·
(
δ(i)
)2k

|J(vi−1)|k
> α2k


(by Fact 3.6.4 and Corollary 3.5.9)
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= Pr

 ∑
i:|J(vi−1)|>1

(
δ(i)
)2k

|J(vi−1)|k−1
> 2d · α2k


≤ E

 ∑
i:|J(vi−1)|>1

(
δ(i)
)2k

|J(vi−1)|k−1

 · 1

2d · α2k
.

(by Markov’s inequality)

On the other hand,

E

 ∑
i:|J(vi−1)|>1

(
δ(i)
)2k

|J(vi−1)|k−1

 =
D∑
i=1

E
C(vi−1)

[
1|J(vi−1)|>1

|J(vi−1)|k−1
· E
[(
δ(i)
)2k ∣∣∣C(vi−1)

]]

≤
D∑
i=1

E
C(vi−1)

[
1|J(vi−1)|>1 · (2k − 1)k · |J(vi−1)|

]
(by (3.8))

= (2k − 1)k · E

 ∑
i:|J(vi−1|>1

|J(vi−1)|


≤ (2k − 1)k · 2d. (by Corollary 3.5.9)

Overall, we have

Pr

[
D∑
i=1

(
δ(i)
)2
> D + 2α2d

]
≤ (2k − 1)k

α2k
.

Then by Lemma 3.4.5 with m = 1, we have

Pr

[∣∣X(D)
∣∣ =

∣∣∣∣∣
n∑

j=1

aj · v(D)
j

∣∣∣∣∣ ≥ β
√

2 · (D + 2α2d)

]
≤ 2 · e−β2/2 +

(2k − 1)k

α2k
.

The desired bound follows from setting

α =

(
2

ε

) 1
2k √

2k − 1, and β = Θ

(√
log

(
1

ε

))
.

Now we prove the complete level-1 bound for parity decision trees.

Theorem 3.6.5. Let T : {±1}n → {0, 1} be a depth-d parity decision tree. Let p =
Pr [T (x) = 1] ∈

[
2−d, 1/2

]
.8 Then we have

n∑
j=1

∣∣∣T̂ (j)
∣∣∣ ≤ p ·min

{
d,O

(√
d · log

(
1

p

))}
= O

(√
d
)
.

Proof. For any i ∈ [n], let ai = sgn
(
T̂ (i)

)
. Now we prove the two bounds separately.

8If p < 2−d, then p = 0 and T ≡ 0. If p > 1/2, we can consider T̃ = 1− T by symmetry.
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The First Bound. Let v0, . . . ,vd′ be a random root-to-leaf path in T . Then define
v(0), . . . ,v(d′) ∈ {−1, 0,+1}n by setting v

(i)
j = P̂vi

(j) for each 0 ≤ i ≤ d′ and j ∈ [n]. Since
T is 1-clean in itself, by Lemma 3.5.6 we have

n∑
j=1

∣∣∣T̂ (j)
∣∣∣ =

n∑
j=1

ai · T̂ (j) = E
v0,...,vd′

[
T (vd′) ·

n∑
j=1

aj · v(d′)
j

]
≤ E

v0,...,vd′
[T (vd′) · |V |] , (3.9)

where V =
∑n

j=1 aj · v
(d′)
j . Hence by Lemma 3.6.1, we have (3.9) ≤ d · E [T (vd′)] = p · d.

The Second Bound. By Lemma 3.5.10, we construct a 2k-clean parity decision tree T ′

of depth D ≤ 2d · k equivalent to T , where k = Θ(log(1/p)). Let U =
∑n

j=1 aj ·u
(D′)
j . Then

we have

n∑
j=1

∣∣∣T̂ (j)
∣∣∣ =

n∑
j=1

∣∣∣T̂ ′(j)
∣∣∣ = E

u0,...,uD′

[
T ′(uD′) ·

n∑
j=1

aj · u(D′)
j

]
≤ E

u0,...,uD′
[T ′(uD′) · |U |] .

(3.10)
Lemma 3.6.3 implies that for all ε > 0, Pr [|U | ≥ R(ε)] ≤ ε where

R(ε) = R(D, d, k, ε) = O

√dk ·
(

1

ε

) 1
k

· log

(
1

ε

) .

For integer i ≥ 1, let Ii = [R (p/2i) , R (p/2i+1)] and I0 = [0, R(p/2)] be intervals. Then for
each i ≥ 1, Pr [|U | ∈ Ii] ≤ p/2i. We also know that Eu0,...,uD′ [T ′(uD′)] ≤ p. Thus,

(3.10) = E
u0,...,uD′

[
T ′(uD′) · |U | ·

+∞∑
i=0

1|U |∈Ii

]

≤ R
(p

2

)
· E
u0,...,uD′

[T ′(uD′)] +
+∞∑
i=1

R
( p

2i+1

)
· E
u0,...,uD′

[
1|U |∈Ii

]
≤

+∞∑
i=0

R
( p

2i+1

)
· p

2i

=
+∞∑
i=0

O

p ·
√
dk ·

(
2i+1

p

) 1
k

·
(

log

(
1

p

)
+ i+ 1

) · 1

2i

= O

(
p ·

√
dk · log

(
1

p

))
= O

(
p ·
√
d · log

(
1

p

))
.

Level-ℓ Bound

Now we turn to the general levels.
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Lemma 3.6.6. There exists a universal constant τ ≥ 1 such that the following holds. Let
ℓ ≥ 1 be an integer. Let T : {±1}n → {0, 1} be a depth-D 2k-clean parity decision tree
where k ≥ 4 · ℓ and n ≥ max {τ, k,D} and any root-to-leaf path has at most d nodes that are
2k-clean.

Let v0, . . . ,vD′ be a random root-to-leaf path. Define v(0), . . . ,v(D′) ∈ {−1, 0,+1}n by

setting v
(i)
j = P̂vi

(j) for each 0 ≤ i ≤ D′ and j ∈ [n]. Extend v(D′+1) = · · · = v(D) to equal

v(D′). Then for any sequence aS ∈ {−1, 0, 1} , S ∈
(
[n]
ℓ

)
, any ε ≤ 1/2 and t ∈ {0, . . . , ℓ}, we

have

Pr

[
∃t′ ∈ {0, . . . , t},∃T ∈

(
[n]

ℓ− t′

)
, ∃i ∈ [D],∣∣∣∣∣∣

∑
S⊆T ,|S|=t′

aS∪T · v(i)
S

∣∣∣∣∣∣ ≥M(D, d, k, ℓ, t′, ε)

]
≤ ε · t,

where we recall that v
(i)
S =

∏
j∈S v

(i)
j and where

M(D, d, k, ℓ, t′, ε) =

(
τ · (D + dk) ·

(
nℓ

ε

) 6
k

log

(
nℓ

ε

))t′/2

.

Proof. We prove the bound by induction on t = 0, 1, . . . , ℓ and show τ = 104 suffices. The

base case t = 0 is trivial, since for any fixed T and i, we always have
∣∣∣aT · v(i)

∅

∣∣∣ ≤ 1 =

M(D, d, k, ℓ, 0, ε).
Now we focus on the case where 1 ≤ t ≤ ℓ. For each 0 ≤ i ≤ D and T ∈

(
[n]
ℓ−t

)
, let

X
(i)
T =

∑
S⊆T ,|S|=t

aS∪T · v(i)
S .

For 1 ≤ i ≤D′, we have

X
(i)
T −X

(i−1)
T =

∑
S⊆T ,|S|=t,S∩J(vi−1 )̸=∅

aS∪T · v(i)
S

=
t∑

r=1

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
V⊆T∪J(vi−1),

|U |+|V |=t

aT∪U∪V · v(i)
V

=
t∑

r=1

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
V⊆T∪J(vi−1),

|U |+|V |=t

aT∪U∪V · v(i−1)
V

(since v
(i)
j = v

(i−1)
j for all j /∈ J(vi−1))
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=
t∑

r=1

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
V⊆T∪U,
|U |+|V |=t

aT∪U∪V · v(i−1)
V

︸ ︷︷ ︸
A(T,r,i)

.

(since v
(i−1)
j = 0 for all j ∈ J(vi−1))

Observe that conditioning on vi−1,

• if r is an even number, then A(T, r, i) is a fixed value independent of v(i);

• if r is an odd number, then A(T, r, i) is an unbiased coin with magnitude independent
of v(i).

Therefore, trying to apply Lemma 3.4.5, we write X
(i)
T −X

(i−1)
T = µ

(i)
T + ∆

(i)
T · z

(i)
T , where

z
(1)
T , . . . ,z

(D)
T are independent unbiased coins in {±1} and µ

(i)
T = ∆

(i)
T = 0 for D′ < i ≤ D

and

µ
(i)
T =

t∑
r=2,
even

A(T, r, i) and ∆
(i)
T =

∣∣∣∣∣∣∣
t∑

r=1,
odd

A(T, r, i)

∣∣∣∣∣∣∣ for 1 ≤ i ≤D′. (3.11)

The First Bound on A(T, r, i). Let E1 be the following event:

E1 = “ ∃t̂ ∈ {0, . . . , t− 1} ,∃T ′ ∈
(

[n]

ℓ− t̂

)
,∃i′ ∈ [D],

∣∣∣X(i′)
T ′

∣∣∣ ≥M
(
D, k, ℓ, t̂, ε

)
”.

By the induction hypothesis, we have

Pr [E1] ≤ (t− 1) · ε. (3.12)

We first derive a simple bound, that will be effective for small values of |J(vi−1)|.

Claim 3.6.7. When E1 does not happen, |A(T, r, i)| ≤ |J(vi−1)|r ·M(D, d, k, ℓ, t− r, ε) holds
for all r ∈ [t], i ∈ [D], T ∈

(
[n]
ℓ−t

)
.

Proof. Since E1 does not happen, by union bound we have

|A(T, r, i)| =

∣∣∣∣∣∣∣∣
∑

U⊆J(vi−1)∩T ,
|U |=r

v
(i)
U

∑
V⊆T∪U,
|U |+|V |=t

aT∪U∪V · v(i−1)
V

∣∣∣∣∣∣∣∣ ≤ |J(vi−1)|r max
U⊆T ,|U |=r

∣∣∣X(i−1)
T∪U

∣∣∣
≤ |J(vi−1)|r ·M(D, d, k, ℓ, t− r, ε).
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The Second Bound on A(T, r, i). The second bound requires a more refined decompo-
sition on A(T, r, i).

Assume that c(i− 1) is the index of C(vi−1) in v0, . . . ,vD′ , i.e., vc(i−1) = C(vi−1). This
means that vc(i−1) is the closest ancestor to vi−1 that is 2k-clean. Then define

L(vi−1) =
⋃

c(i−1)≤i′<i−1

J(vi′).

The elements of L(vi−1) are precisely the coordinates fixed by the queries from Qvc(i−1)
to

Qvi−1
, excluding the latter. Since TC(vi−1) makes non-adaptive queries before (and possibly

even after) reaching vi, L(vi−1) and J(vi−1) depend only on C(vi−1) and i. We now expand
A(T, r, i) by also grouping terms based on the number of coordinates in L(vi−1) as follows:

A(T, r, i) =
∑

U⊆J(vi−1)∩T ,
|U |=r

v
(i)
U

∑
V⊆T∪U,
|U |+|V |=t

aT∪U∪V · v(i−1)
V

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W

∑
W ′⊆T∪U∪L(vi−1)

|W ′|=t−r−r′

aT∪U∪W∪W ′ · v(i−1)
W ′

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W

∑
W ′⊆T∪U∪L(vi−1)

|W ′|=t−r−r′

aT∪U∪W∪W ′ · vc(i−1)
W ′

(since v
(i−1)
j = v

c(i−1)
j for all j /∈ L(vi−1))

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W

∑
W ′⊆T∪U∪W
|W ′|=t−r−r′

aT∪U∪W∪W ′ · vc(i−1)
W ′

(since v
c(i−1)
j = 0 for all j ∈ L(vi−1))

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W ·Xc(i−1)

T∪U∪W

︸ ︷︷ ︸
Γ
(i)
T (r,r′)

.

Since C(vi−1) is 2k-clean, by Fact 3.5.2, the collection of random variables{
v
(i)
j

∣∣∣ j ∈ J(vi−1)
}
∪
{
v
(i−1)
j

∣∣∣ j ∈ L(vi−1)
}

is 2k-wise independent conditioning on C(vi−1). Note that Γ
(i)
T (r, r′) is a polynomial of
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degree at most r + r′ ≤ ℓ < k, that E
[
Γ

(i)
T (r, r′)

∣∣∣C(vi−1)
]

= 0, and

σ2
T (r, r′, C(vi−1), i) := E

[(
Γ

(i)
T (r, r′)

)2 ∣∣∣∣C(vi−1)

]
=

∑
U⊆J(vi−1)∩T ,

|U |=r

∑
W⊆L(vi−1)∩T ,

|W |=r′

(
X

c(i−1)
T∪U∪W

)2

≤ (|J(vi−1)|)r (|L(vi−1)|)r
′
(

max
|T ′|=r+r′+ℓ−t,i′∈[D]

∣∣∣X(i′)
T ′

∣∣∣)2

≤ (|J(vi−1)|)rDr′
(

max
|T ′|=r+r′+ℓ−t,i′∈[D]

∣∣∣X(i′)
T ′

∣∣∣)2

.

(since |L(vi−1)| ≤ D by Fact 3.5.8)

We also have the following claim, the proof of which follows from Lemma 2.0.9 applied to
the low degree polynomial Γ

(i)
T . The proof is deferred to the end of this section.

Claim 3.6.8. Pr [E2] ≤ ε/3, where E2 is the following event:

“ ∃T ∈
(

[n]

ℓ− t

)
, i, r, r′,

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≥ (100 min
{
k, log

(
nℓ

ε

)}
·
(

nℓ

ε

) 6
k

) r+r′
2

· σT (r, r′, C(vi−1), i)”.

On the other hand, when E1 ∨ E2 does not happen, the following calculation holds for all
T ∈

(
[n]
ℓ−t

)
, i ∈ [D′], r ∈ [t], 0 ≤ r′ ≤ t− r:∣∣∣Γ(i)

T (r, r′)
∣∣∣

≤M (D, k, ℓ, t− r − r′, ε) ·

√(
100 min

{
k, log

(
nℓ

ε

)}
·
(

nℓ

ε

) 6
k

)r+r′

(|J(vi−1)|)r ·Dr′

≤M (D, k, ℓ, t− r − r′, ε) ·

√(
100 ·

(
nℓ

ε

) 6
k

)r+r′

(|J(vi−1)| · k)r ·
(
D · log

(
nℓ

ε

))r′
=

√(
τ(D + dk)

(
nℓ

ε

) 6
k

log
(

nℓ

ε

))t−r−r′(
100

(
nℓ

ε

) 6
k

)r+r′

(|J(vi−1)| · k)r
(
D · log

(
nℓ

ε

))r′
≤

√(
τ(D + dk)

(
nℓ

ε

) 6
k

log
(

nℓ

ε

))t (
100
τ

)r+r′
(

|J(vi−1)|
d·log(nℓ/ε)

)r

≤

√(
τ(D + dk)

(
nℓ

ε

) 6
k

log
(

nℓ

ε

))t (
200
τ

)r+r′
(

|J(vi−1)|
2d

)r
1

log(nℓ/ε)

= M(D, d, k, ℓ, t, ε) ·
√(

200
τ

)r+r′
(

|J(vi−1)|
2d

)r
1

log(nℓ/ε)
.

Hence we have a second bound on A(T, r, i).
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Claim 3.6.9. When E1 ∨ E2 does not happen, the following holds for all r ∈ [t], i ∈ [D], T ∈(
[n]
ℓ−t

)
:

|A(T, r, i)| ≤ M(D, d, k, ℓ, t, ε)√
log (nℓ/ε)

·

√(
800

τ

)r ( |J(vi−1)|
2d

)r

.

Proof. Since E1 ∨ E2 does not happen, by union bound and noticing τ ≥ 800 we have

|A(T, r, i)| ≤
t−r∑
r′=0

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≤ M(D, d, k, ℓ, t, ε)√
log (nℓ/ε)

·

√(
200

τ

)r ( |J(vi−1)|
2d

)r

·
+∞∑
r′=0

(
200

τ

)r′/2

≤ M(D, d, k, ℓ, t, ε)√
log (nℓ/ε)

·

√(
800

τ

)r ( |J(vi−1)|
2d

)r

.

The Final Bound on µ
(i)
T and δ

(i)
T . Combining Claim 3.6.7 and Claim 3.6.9, if E1 ∨ E2

does not happen we have

|A(T, r, i)| ≤M(D, d, k, ℓ, t− r, ε)

+
M(D, d, k, ℓ, t, ε)√

log (nℓ/ε)
·

√(
800

τ

)r ( |J(vi−1)|
2d

)r

· 1|J(vi−1)|>1. (3.13)

To see this, if |J(vi−1)| ≤ 1, we use the bound from Claim 3.6.7 as the first term in (3.13).
Otherwise |J(vi−1)| > 1, in which case we use the bound from Claim 3.6.9 as the second
term in (3.13).

By Corollary 3.5.9, we can now bound
∑D

i=1

∣∣∣µ(i)
T

∣∣∣ and
∑D

i=1

∣∣∣∆(i)
T

∣∣∣2 as Claim 3.6.10. Its

proof is deferred to the end of this section.

Claim 3.6.10. When E1 ∨ E2 does not happen,
∑D

i=1

∣∣∣µ(i)
T

∣∣∣ ≤ R and
∑D

i=1

∣∣∣∆(i)
T

∣∣∣2 ≤ R2 hold

for all T ∈
(
[n]
ℓ−t

)
, where

R =
M(D, d, k, ℓ, t, ε)

5 ·
√

log (nℓ/ε)
. (3.14)

Complete Induction. Let β =
√

2 · log (nℓ/ε) ≥ 1 and observe that

R + β ·
√

2 ·R ≤ β · 2
√

2 ·R (due to β ≥ 1)

=
2
√

2 ·
√

2 · log (nℓ/ε)

5 ·
√

log (nℓ/ε)
·M(D, d, k, ℓ, t, ε) (due to (3.14))

≤M(D, d, k, ℓ, t, ε).
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Then we have

Pr

[
∃t′ ∈ {0, . . . , t} ,∃T ′ ∈

(
[n]

ℓ− t′

)
,∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥M (D, d, k, ℓ, t′, ε)

]
= Pr

[
E1
∨(

∃T ∈
(

[n]

ℓ− t

)
,∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥M (D, d, k, ℓ, t, ε)

)]
≤ Pr

[
(E1 ∨ E2)

∨(
∃T ∈

(
[n]

ℓ− t

)
,∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥ R + β ·
√

2 ·R
)]

≤ (t− 1) · ε+
ε

3
+ 2nℓ−t · e−β2/2

(due to (3.12), Claim 3.6.8, Lemma 3.4.5, and Claim 3.6.10)

≤ (t− 1) · ε+
ε

3
+

1

3
· nℓ · e−β2/2

≤ t · ε.

Before we prove the complete level-ℓ bound for parity decision trees, we first prove a
simple bound for the number of vectors with a given weight in a subspace.

Lemma 3.6.11. Let ℓ ≥ 1 be an integer and S be a subspace of rank at most d. Let
U = {S : |S| = ℓ, S ∈ S}, then |U | ≤ min

{(
d·ℓ
ℓ

)
, 2d − 1

}
.

Proof. Let {S1, . . . , Sd′} be a maximal set of independent vectors in U . Then d′ ≤ d and
|Si| = ℓ holds for all i ∈ [d′]. Since U ⊆ Span ⟨S1, . . . , Sd′⟩ and ∅ /∈ U , we have

|U | ≤ |Span ⟨S1, . . . , Sd′⟩| − 1 = 2d′ − 1 ≤ 2d − 1.

On the other hand, observe that U ⊆
(
S1∪···∪Sd′

ℓ

)
, hence we also have

|U | ≤
∣∣∣∣(S1 ∪ · · · ∪ Sd′

ℓ

)∣∣∣∣ ≤ (d′ · ℓℓ
)
≤
(
d · ℓ
ℓ

)
.

We remark that in Lemma 3.6.11, it is conjectured the bound should be
(
d+1
ℓ

)
when

d ≥ 2 · ℓ [Kra10, BP18].

Theorem 3.6.12. Let ℓ ≥ 1 be an integer. Let T : {±1}n → {0, 1} be a depth-d parity
decision tree where n ≥ max {d, ℓ}. Let p = Pr [T (x) = 1] ≥ 2−d.9 Then we have∑

S⊆[n]:|S|=ℓ

∣∣∣T̂ (S)
∣∣∣ ≤ p ·min

{(
d · ℓ
ℓ

)
, 2d − 1, O

(√
d · log

(
nℓ

p

))ℓ}
= O

(√
d · ℓ · log(n)

)ℓ
.

Proof. For any S ∈
(
[n]
ℓ

)
, let aS = sgn

(
T̂ (S)

)
. Now we prove the bounds separately.

9If p < 2−d, then p = 0 and T ≡ 0.
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The First Two Bounds. Let v0, . . . ,vd′ be a random root-to-leaf path. Then by the
definition of P̂v and Sv and Fact 3.5.2, we have

∑
S

∣∣∣T̂ (S)
∣∣∣ =

∑
S

aS · T̂ (S) = E
v0,...,vd′

[
T (vd′) ·

∑
S

aS · P̂vd′
(S)

]

≤ E
v0,...,vd′

[
T (vd′) ·

∑
S

∣∣∣P̂vd′
(S)
∣∣∣] = E

v0,...,vd′
[T (vd′) · |V |] , (3.15)

where aS = sgn
(
T̂ (S)

)
and V =

{
S ∈

(
[n]
ℓ

) ∣∣∣S ∈ Svd′

}
. Note that

rank
(
Svd′

)
= rank

(
Span

〈
Qv0 , . . . , Qvd′−1

〉)
≤ d′ ≤ d.

Hence by Lemma 3.6.11, we have

(3.15) ≤ min

{(
d · ℓ
ℓ

)
, 2d − 1

}
· E [T (vd′)] = p ·min

{(
d · ℓ
ℓ

)
, 2d − 1

}
.

The Third Bound. By Lemma 3.5.10, we construct a 2k-clean parity decision tree T ′ of
depth D ≤ 2d · k equivalent to T , where k = Θ

(
log
(
nℓ/p

))
≥ 4 · ℓ. We also add dummy

variables to make sure n′ = max {τ, k, 6D,n}, where T ′ has n′ inputs and τ is the universal
constant in Lemma 3.6.6.

Let u0, . . . ,uD′ be a random root-to-leaf path in T ′. Define u(0), . . . ,u(D′) ∈ {−1, 0,+1}n

by setting u
(i)
j = P̂ui

(j) for each 0 ≤ i ≤ D′ and j ∈ [n]. Then extend u(D′+1) = u(D′+2) =

· · · = u(D) to equal u(D′). By Lemma 3.5.6, we have

∑
S

∣∣∣T̂ (S)
∣∣∣ =

∑
S

∣∣∣T̂ ′(S)
∣∣∣ = E

u0,...,uD′

[
T (uD′) ·

∑
S

aS · u(D)
S

]
≤ E

u0,...,uD′
[T (uD′) · |U |] ,

(3.16)

where U =
∑

S aS · u
(D)
S .

Now we apply Lemma 3.6.6 with t = ℓ, ε = Θ
(
p/dℓ/2

)
≤ 1/2 to obtain the following

bound10

M = M(D, d, k, ℓ, ℓ, ε) =
(
O
(√

d · log
(

nℓ

p

)))ℓ
such that Pr [|U | ≥M ] ≤ ℓ · ε. Then, combining the first bound, we have

(3.16) = E
[
T (uD′) · |U | ·

(
1|U |<M + 1|U |≥M

)]
≤M · E [T (uD′)] + ℓ · ε ·

(
d · ℓ
ℓ

)
10Since n ≥ max {ℓ, d}, we know k = Θ

(
log
(
nℓ/p

))
= O(n2) and D ≤ 2d · k = O(n3). Hence n′ =

max {τ, k, 6D,n} = O(n3). Also nℓ/ε ≤ nO(ℓ)/p and by our choice of k = Θ
(
log(nℓ/p)

)
we have

(
nℓ/ε

)6/k
=

O(1).
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= p ·
(
O
(√

d · log
(

nℓ

p

)))ℓ
,

which is maximized at p = 1, hence (3.16) = O
(√

d · ℓ · log(n)
)ℓ

as desired.

Finally we complete the missing proofs.

Proof of Claim 3.6.8

Claim (Claim 3.6.8 restated). Pr [E2] ≤ ε/3, where E2 is the following event:

“ ∃T ∈
(

[n]

ℓ− t

)
, i, r, r′,

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≥ (100 min
{
k, log

(
nℓ

ε

)}
·
(

nℓ

ε

) 6
k

) r+r′
2

· σT (r, r′, C(vi−1), i)”.

Proof. Let k′ = min
{
k,
⌈
6 log

(
nℓ/ε

)⌉}
≤ 12 min

{
k, log

(
nℓ/ε

)}
. Then T is also a depth-D

2k′-clean parity decision tree. Observe that

Pr

[∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≥ ( 4k′

η2/k′

)(r+r′)/2

· σT (r, r′, C(vi−1), i)

]

≤ max
C(vi−1)

Pr

[∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≥ ( 4k′

η2/k′

)(r+r′)/2

· σT (r, r′, C(vi−1), i)

∣∣∣∣∣C(vi−1)

]

≤ (4 · k′)r+r′

(2 · (r + r′))k′︸ ︷︷ ︸
≤1

· η2−
2(r+r′)

k′︸ ︷︷ ︸
≤η

(due to the second bound in Lemma 2.0.9 and k ≥ 4 · ℓ ≥ 4 · (r + r′))

≤ η.

Thus by union bound over all T ∈
(
[n]
ℓ−t

)
, i ∈ [D′], r ∈ [t], 0 ≤ r′ ≤ t− r, we have

Pr

[
∃T, i, r, r′,

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≥ ( 4k
η2/k

)(r+r′)/2

· σT (r, r′, C(vi−1), i)

]
≤ Dt2nℓ−t · η

≤ nℓ+2·η
3

≤ n3·ℓ·η
3
,

where we use the fact n ≥ max {D, 3 · t} and t ≥ 1. By setting η = ε/n3·ℓ, we have

4k′

η2/k′
= 4k′

(
n3·ℓ

ε

) 2
k′

≤ 4k′
(
nℓ

ε

) 6
k′

≤ 4 · 12 min

{
k, log

(
nℓ

ε

)}
· 2
(
nℓ

ε

) 6
k

,

as desired.
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Proof of Claim 3.6.10

We first need the following simple bound on M .

Lemma 3.6.13. For any integer s ≥ 1, we have

t∑
r=s

M(D, d, k, ℓ, t− r, ε) ≤ 2 ·M(D, d, k, ℓ, t, ε)

(τD · log (nℓ/ε))s/2
.

Proof. We simply expand the formula of M as follows:∑t
r=sM(D, d, k, ℓ, t− r, ε)
M(D, d, k, ℓ, t, ε)

=
t∑

r=s

(
τ · (D + dk) ·

(
nℓ

ε

)6/k
log
(

nℓ

ε

))−r/2

≤
+∞∑
r=s

(
τ · (D + dk) ·

(
nℓ

ε

)6/k
log
(

nℓ

ε

))−r/2

≤ 2 ·
(
τ · (D + dk) ·

(
nℓ

ε

)6/k
log
(

nℓ

ε

))−s/2

(due to τ ≥ 4 and s ≥ 1)

≤ 2 ·
(
τD · log

(
nℓ/ε

))−s/2
.

Now we prove Claim 3.6.10.

Claim (Claim 3.6.10 restated). When E1∨E2 does not happen, we have
∑D

i=1

∣∣∣µ(i)
T

∣∣∣ ≤ R and∑D
i=1

∣∣∣δ(i)
T

∣∣∣2 ≤ R2 hold for all T ∈
(
[n]
ℓ−t

)
, where

R =
M(D, d, k, ℓ, t, ε)

5 ·
√

log (nℓ/ε)
.

Proof. We verify for each T ∈
(
[n]
ℓ−t

)
as follows:

D∑
i=1

∣∣∣µ(i)
T

∣∣∣ =
D′∑
i=1

∣∣∣µ(i)
T

∣∣∣ ≤ D′∑
i=1

t∑
r=2,
even

|A(T, r, i)| (due to (3.11))

≤
D′∑
i=1

t∑
r=2,
even

(
M(D, d, k, ℓ, t− r, ε) + M(D,d,k,ℓ,t,ε)√

log(nℓ/ε)
·
√(

800
τ

)r ( |J(vi−1)|
2d

)r
· 1|J(vi−1)|>1

)
(due to (3.13))

≤
D′∑
i=1

t∑
r=2,
even

(
M(D, d, k, ℓ, t− r, ε) + M(D,d,k,ℓ,t,ε)√

log(nℓ/ε)
·
(

|J(vi−1)|
2d

) (
800
τ

)r/2 · 1|J(vi−1)|>1

)
(Since |J(vi−1)| ≤ 2d from Corollary 3.5.9)
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≤ 2·M(D,d,k,ℓ,t,ε)

τ ·log(nℓ/ε)
+ 1.1·800·M(D,d,k,ℓ,t,ε)

τ ·
√

log(nℓ/ε)
(due to Lemma 3.6.13 and Corollary 3.5.9 and τ = 104)

≤ M(D,d,k,ℓ,t,ε)

5·
√

log(nℓ/ε)
= R

and with similar calculation, we have

D∑
i=1

∣∣∣δ(i)
T

∣∣∣2

≤
D′∑
i=1

 t∑
r=1,
odd

(
M(D, d, k, ℓ, t− r, ε) + M(D,d,k,ℓ,t,ε)√

log(nℓ/ε)
·
√

|J(vi−1)|
2d

(
800
τ

)r/2 · 1|J(vi−1)|>1

)
2

≤
D′∑
i=1

(
2·M(D,d,k,ℓ,t,ε)√

τD·log(nℓ/ε)
+ 1.1·

√
800·M(D,d,k,ℓ,t,ε)

√
τ
√

log(nℓ/ε)
·
√

|J(vi−1)|
2d

· 1|J(vi−1)|>1

)2

(due to τ = 104)

≤
(

M(D,d,k,ℓ,t,ε)√
log(nℓ/ε)

)2 D′∑
i=1

2 ·
(

4

τD
+ 968

τ
· |J(vi−1)|

2d
· 1|J(vi−1)|>1

)
(due to (a+ b)2 ≤ 2(a2 + b2))

≤
(

2000·M(D,d,k,ℓ,t,ε)

τ ·
√

log(nℓ/ε)

)2

= R2.

3.7 Fourier Growth Bounds for Noisy Decision Trees

We establish the Fourier growth bounds for noisy decision trees in this section. We begin by
defining the model.

Definition 3.7.1 (Noisy oracle). A noisy query to a bit b ∈ {±1} with correlation γ ∈ [−1, 1]
returns a bit b′ ∈ {±1} where

b′ =

{
b with probability (1 + γ)/2,

−b with probability (1− γ)/2.

The cost of a noisy query with correlation γ is defined to be γ2.

Definition 3.7.2 (Noisy decision tree). A noisy decision tree T is a rooted binary tree in
which each internal node v is labeled by an index qv ∈ [n] and a correlation γv ∈ [−1, 1]. The
outgoing edges are labeled by +1 and −1 and the leaves are labeled by 0 and 1.

On input x ∈ {±1}n, the tree T constructs a computation path P from the root to
leaf as follows. When P reaches an internal node v, it makes a noisy query to xqv with
correlation γv and follows the edge labeled by the outcome of this noisy query. The output of
the tree is defined by sampling a root-to-leaf path and returning the label of the leaf. Since the
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computation path P is probabilistic, this is an inherently randomized model of computation.
We use T (x) ∈ {0, 1} to denote the (probabilistic) output of T on input x. We also use
T (v) ∈ {0, 1} to denote the label on v when v is a leaf. We do not require that the indices
qv queried along a path P are distinct. The cost of any path is the sum of costs of the noisy
queries along that path; and the cost of T is the maximum cost of any root-to-leaf path.

We remark that for any noisy decision tree T , its Fourier coefficient T̂ (S) is given by
E [T (x)xS] where the expectation is over the randomness of both x ∼ Un and T .

Let T be a noisy decision tree. By adding queries with zero correlation, we assume
without loss of generality each root-to-leaf path in the noisy decision tree is of the same
length. Let v be any node of T . We use Pv to denote the uniform distribution over {±1}n
conditioning on reaching v. Note that Pv is always a product distribution. As before, for any
S ⊆ [n] we define P̂v(S) = Ex∼Pv [xS].

Claim 3.7.3. Let T : {±1}n → {0, 1} be a cost-d noisy decision tree. Let v0, . . . ,vD be

any root-to-leaf path in T . Define v(0), . . . ,v(D) ∈ [−1, 1]n by setting v
(i)
j = P̂vi

(j) for each

0 ≤ i ≤ D and j ∈ [n]. Then for any i ∈ {0, . . . , D−1}, v(i+1)
qvi
−v

(i)
qvi

is a mean-zero random
variable with magnitude bounded by 2 · |γvi

|.

Proof. Fix i ∈ {0, . . . , D − 1}. For convenience, let j = qvi
, γ = γvi

, and α = v
(i)
j . Suppose

|γ| = 1 then
∣∣∣v(i+1)

j − v
(i)
j

∣∣∣ ≤ 2 = 2 · |γvi
| as desired. Now we turn to the case |γ| < 1.

Note that for the distribution Pvi
, the measure of xj = 1 (resp., xj = −1) inputs is

(1 + α)/2 (resp., (1 − α)/2). The measure of xj = 1 (resp., xj = −1) inputs that follow
the edge labeled 1 is a := (1 + α)(1 + γ)/4 (resp., b := (1 − α)(1 − γ)/4). The total
measure of inputs that take the edge labeled 1 is a+ b and the resulting node vi+1 satisfies

v
(i+1)
j = (a− b)/(a+ b). This implies that

v
(i+1)
j =

{
α+γ
1+γ·α with probability 1+γ·α

2
,

α−γ
1−γ·α with probability 1−γ·α

2
.

The above calculation implies

v
(i+1)
j − v

(i)
j =

{
γ · 1−α2

1+γ·α with probability 1+γ·α
2
,

−γ · 1−α2

1−γ·α with probability 1−γ·α
2
,

and thus v
(i+1)
j − v

(i)
j is a mean-zero random variable. Since α ∈ [−1, 1] and γ ∈ (−1, 1), we

have

max

{
1− α2

1− γ · α
,

1− α2

1 + γ · α

}
≤ 1− α2

1− |α|
= 1 + |α| ≤ 2,

which implies
∣∣∣v(i+1)

j − v
(i)
j

∣∣∣ ≤ 2 · |γ|.
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We now prove the general Fourier bounds. As before, for any S ⊆ [n], let v
(i)
S be

∏
j∈S v

(i)
j .

Lemma 3.7.4. There exists a universal constant τ such that the following holds. Let ℓ ≥ 1
be an integer. Let T : {±1}n → {0, 1} be a cost-d noisy decision tree.

Let v0, . . . ,vD be a random root-to-leaf path in T . Define v(0), . . . ,v(D) ∈ [−1, 1]n by

setting v
(i)
j = P̂vi

(j) for each 0 ≤ i ≤ D and j ∈ [n]. Then for any sequence aS ∈
{−1, 0, 1} , S ∈

(
[n]
ℓ

)
, any ε ≤ 1/2 and t ∈ {0, . . . , ℓ}, we have

Pr

∃T ∈ ( [n]

ℓ− t

)
,∃i ∈ [D],

∣∣∣∣∣∣
∑

S⊆T ,|S|=t

aS∪T · v(i)
S

∣∣∣∣∣∣ ≥ S(d, ℓ, t, ε)

 ≤ ε · t,

where S(d, ℓ, 0, ε) = 1 and

S(d, ℓ, t, ε) =

√
(τ · d)t · log

(
nℓ−t

ε

)
· · · log

(
nℓ−1

ε

)
for t ∈ [ℓ].

Proof. We prove the bound by induction on t and show τ = 32 suffices. The base case t = 0

is trivial, since for any T of size ℓ and any i, we have
∣∣∣aT · v(i)

∅

∣∣∣ ≤ 1 = S(d, ℓ, 0, ε).

Now we focus on the case 1 ≤ t ≤ ℓ. For any T ∈
(
[n]
≤ℓ

)
, define X

(0)
T , . . . ,X

(D)
T by

X
(i)
T =

∑
S⊆T ,|S|+|T |=ℓ aS∪T · v

(i)
S . Define δ

(i)
T for i ∈ [D] as follows:

δ
(i)
T = X

(i)
T −X

(i−1)
T =

∑
S⊆T ,|S|=t,S∋qvi−1

aS∪T ·
(
v
(i)
S − v

(i−1)
S

)
=
(
v(i)
qvi−1

− v(i−1)
qvi−1

)
·

∑
S′⊆T∪{qvi−1},|S′|=t−1

aS′∪{qvi−1}∪T · v
(i−1)
S

=
(
v(i)
qvi−1

− v(i−1)
qvi−1

)
·X(i−1)

T∪{qvi−1}
.

Note that by Claim 3.7.3 and conditioning on vi−1, δ
(i)
T is a mean-zero random variable.

The induction hypothesis implies that with all but ε · (t − 1) probability, for all i ∈ [D]

and T ′ ∈
(

[n]
ℓ−t+1

)
, we have

∣∣∣X(i)
T ′

∣∣∣ ≤ S(d, ℓ, t− 1, ε). By Claim 3.7.3, we have∣∣∣δ(i)
T

∣∣∣ =
∣∣∣v(i)

qvi−1
− v(i−1)

qvi−1

∣∣∣ · ∣∣∣∣X(i−1)

T∪{qvi−1}

∣∣∣∣ ≤ 2 ·
∣∣γvi−1

∣∣ · S(d, ℓ, t− 1, ε).

Denote by ∆
(i)
T = 2 ·

∣∣γvi−1

∣∣ · S(d, ℓ, t − 1, ε). We can thus express X
(i)
T = X

(i−1)
T +

∆
(i)
T · z

(i)
T where

∣∣∣z(i)
T

∣∣∣ ≤ 1. Then we apply Lemma 3.4.5 to the family of martingales

X
(0)
T , . . . ,X

(D)
T , |T | ∈

(
[n]
ℓ−t

)
with difference sequence δ

(i)
T = ∆

(i)
T · z

(i)
T satisfying

D∑
i=1

(
∆

(i)
T

)2
= 4 · (S(d, ℓ, t− 1, ε))2 ·

D∑
i=1

∣∣γvi−1

∣∣2 ≤ 4d · (S(d, ℓ, t− 1, ε))2 .
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Hence for any β ≥ 0, we have

Pr

[
∃T ∈

(
[n]

ℓ− t

)
, ∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥ 2β ·
√

2d · S(d, ℓ, t− 1, ε)

]
≤ ε · (t−1)+2 ·nℓ−t ·e−β2/2.

Since ε ≤ 1/2, we can set β = 2 ·
√

log(nℓ−t/ε) so that 2 · nℓ−t · e−β2/2 ≤ ε, which completes
the induction by noticing

2β ·
√

2d · S(d, ℓ, t− 1, ε) =

√
32 · d · log

(
nℓ−t

ε

)
· S(d, ℓ, t− 1, ε) ≤ S(d, ℓ, t, ε).

Theorem 3.7.5. Let ℓ ≥ 1 and n ≥ max {ℓ, 2} be integers. Let T : {±1}n → {0, 1} be a
cost-d noisy decision tree. Let p = Pr[T (x) = 1] ∈ (0, 1/2].11 Then we have

∑
S⊆[n],|S|=ℓ

∣∣∣T̂ (S)
∣∣∣ ≤ p ·O(d)ℓ/2 ·

√
log
(

1
p

)(
log
(

nℓ

p

))ℓ−1

= O(d)ℓ/2 ·
√

1 + (ℓ log(n))ℓ−1.

Proof. For any S ∈
(
[n]
ℓ

)
, let aS = sgn

(
T̂ (S)

)
. Let v0, . . . ,vD be a random root-to-leaf path

in T . Note that∑
S

∣∣∣T̂ (S)
∣∣∣ =

∑
S

aS · T̂ (S) = E

[
T (vD) ·

∑
S

aS · v(D)
S

]
≤ E [T (vD) · |V |] , (3.17)

where V =
∑

S aS ·S v
(D)
S . By Lemma 3.7.4, we know Pr [|V | ≥ S(ε)] ≤ ε · ℓ, where

S(ε) = S(d, ℓ, ℓ, ε) =

√
O(d)ℓ · log

(
nℓ−1

ε

)
· · · log

(
n0

ε

)
≤
√
O(d)ℓ ·

(
log
(

nℓ−1

ε

))ℓ−1

· log
(
1
ε

)
.

For integer i ≥ 1, let Ii = [S (p/ (ℓ2i)) , S (p/ (ℓ2i+1))] and I0 = [0, S(p/ℓ)] be intervals.
Then for each i ≥ 1, Pr [|V | ∈ Ii] ≤ p/2i. We also know that Ev0,...,vD

[T (vD)] ≤ p. Thus,

(3.17) ≤ E
v0,...,vD

[
T (vD) · |V | ·

+∞∑
i=0

1|V |∈Ii

]

≤ S
(p
ℓ

)
· E [T (vD)] +

+∞∑
i=1

S
( p

ℓ · 2i+1

)
· E
[
1|V |∈Ii

]
≤

+∞∑
i=0

S
( p

ℓ · 2i+1

)
· p

2i

=
+∞∑
i=0

p ·
√
O(d)ℓ ·

(
log
(

nℓ−1·ℓ
p

)
+ i+ 1

)ℓ−1

·
(

log
(

1
p

)
+ log(ℓ) + i+ 1

)
· 1

2i

11If p > 1/2, then we can consider T̃ = 1− T by symmetry.
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≤
+∞∑
i=0

p ·

√
O(d)ℓ ·

((
log
(

nℓ

p

))ℓ−1

+ (i+ 1)ℓ−1

)
·
(

log
(

1
p

)
+ i+ 1

)
· 1

2i

(since n ≥ ℓ, and (x+ y)b ≤ 2b ·
(
xb + yb

)
and
√
x+ y ≤

√
x+
√
y for x, y, b ≥ 0)

≤ p ·
√
O(d)ℓ · log

(
1
p

)(
log
(

nℓ

p

))ℓ−1

,

where the last inequality follows from p ≤ 1/2, n ≥ 2 and

+∞∑
i=0

(i+ 1)ℓ/2 · 2−i = O(ℓ)ℓ/2 ≤ O(1)ℓ · ℓ(ℓ−1)/2 ≤ O(1)ℓ ·
(
log
(
nℓ/p

))(ℓ−1)/2
.

Note that p · (log(1/p))k ≤ O(k)k for p ∈ (0, 1) and k ≥ 0, thus

p ·
√

log
(

1
p

)(
log
(

nℓ

p

))ℓ−1

= p ·
√

log
(

1
p

)(
ℓ log(n) + log

(
1
p

))ℓ−1

≤ O(1)ℓ ·
(√

(ℓ log(n))ℓ−1 + ℓℓ/2
)

= O(1)ℓ ·
√

1 + (ℓ log(n))ℓ−1.
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Chapter 4

Quantum Advantages over Classical
Communication

The level-k Fourier weight of a Boolean function refers to the sum of absolute values of
its level-k Fourier coefficients. Fourier growth refers to the growth of these weights as k
grows. It has been extensively studied for various computational models, and bounds on the
Fourier growth, even for the first few levels, have proven useful in learning theory, circuit
lower bounds, pseudorandomness, and quantum-classical separations.

In this work, we investigate the Fourier growth of certain functions that naturally arise
from communication protocols for XOR functions (partial functions evaluated on the bitwise
XOR x ⊙ y of the inputs x and y to Alice and Bob). If a protocol C computes an XOR
function, then C(x, y) depends only on x ⊙ y. This motivates us to analyze the XOR-fiber
of the communication protocol C, defined as h(z) := Ex,y[C(x,y)|x⊙ y = z].

We present improved Fourier growth bounds for the XOR-fibers of randomized protocols
that communicate d bits. For the first level, we show a tight O(

√
d) bound and obtain a new

coin theorem, as well as an alternative proof for the tight randomized communication lower
bound for the Gap-Hamming problem. For the second level, we show an d3/2 · polylog(n)
bound, which improves the previous O(d2) bound by Girish, Raz, and Tal (ITCS 2021)
and implies a polynomial improvement on the randomized communication lower bound for
the XOR-lift of the Forrelation problem, which extends the quantum-classical gap for this
problem.

Our analysis is based on a new way of adaptively partitioning a relatively large set
in Gaussian space to control its moments in all directions. We achieve this via martingale
arguments and allowing protocols to transmit real values. We also show a connection between
Fourier growth and lifting theorems with constant-sized gadgets as a potential approach to
prove optimal bounds for the second level and beyond.

Organization. In Section 4.1, we give a brief introduction on XOR functions. In Sec-
tion 4.2, we summarize our main results and applications. An overview of our proofs is given
in Section 4.3. In Section 4.4, we quote a useful concentration inequality and give a self-
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contained proof. Section 4.5 explains a way to associate the Fourier growth to a martingale
process. The proof of level-one bound (Theorem 4.2.1) is given in Section 4.6, and the level-
two bound (Theorem 4.2.2) in Section 4.7. The Fourier growth reductions between general
gadgets are presented in Section 4.8. The future directions are discussed in Section 4.9.

4.1 Introduction

In this work, we study the Fourier growth of certain functions that naturally arise from
communication protocols for XOR-lifted functions, also referred to as XOR functions. XOR
functions are an important and well-studied class of functions in communication complexity
with connections to the log-rank conjecture and quantum versus classical separations [MO09,
HHL18, TWXZ13, SZ08, Zha14].

In this setting, Alice gets an input x ∈ {±1}n and Bob gets an input y ∈ {±1}n and they
wish to compute f(x⊙y) where f is some partial Boolean function and x⊙y is in the domain
of f . Here, x⊙y denotes the bitwise product of x and y. Given any communication protocol
C that computes an XOR function exactly, the output C(x, y) of the protocol depends only
on x ⊙ y, whenever f is defined on x ⊙ y. This gives a natural motivation to analyze the
XOR-fiber of a communication protocol defined below. We note that a similar notion first
appeared in an earlier work of Raz [Raz95].

Definition 4.1.1. Let C : {±1}n × {±1}n → {±1} be any deterministic communication
protocol. The XOR-fiber of the communication protocol C is the function h : {±1}n → [−1, 1]
defined at z ∈ {±1}n as

h(z) = E
x,y∼Un

[C(x,y) | x⊙ y = z].

We remark that XOR-fiber is the “inverse” of XOR-lift of a function: if C computes the
XOR function of f , then the XOR-fiber h of C is equal to f on the domain of f .

In this work, we investigate the Fourier growth of XOR-fibers of small-cost communication
protocols and apply these bounds in several contexts. Before stating our results, we first
discuss several related works.

Related Works in the Query Model. Showing optimal Fourier growth bounds for
XOR-fibers is a complex undertaking in general and a first step towards this end is to obtain
optimal Fourier growth bounds for parity decision trees. This is because a parity decision
tree for a Boolean function f naturally gives rise to a structured communication protocol for
the XOR-function corresponding to f . This protocol perfectly simulates the parity decision
tree by having Alice and Bob exchange one bit each to simulate a parity query. Moreover, the
XOR-fiber of this protocol exactly computes the parity decision tree. As such, parity decision
trees can be seen as a special case of communication protocols, and Fourier growth bounds
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on XOR-fibers of communication protocols immediately imply Fourier growth bounds on
parity decision trees.

Fourier growth bounds for decision trees and parity decision trees are well-studied. It
is not too difficult to obtain a level-k bound of O(d)k for parity decision trees of depth d,
however, obtaining improved bounds is significantly more challenging. For decision trees
of depth d (which form a subclass of parity decision trees of depth d), O’Donnell and
Servedio [OS07] proved a tight bound of O(

√
d) on the level-1 Fourier growth. By in-

ductive tree decompositions, Tal [Tal20] obtained bounds for the higher levels of the form
Lk(f) ≤

√
dk ·O(log(n))k−1. This was later sharpened by Sherstov, Storozhenko, and

Wu [SSW23] to the asymptotically tight bound of Lk(f) ≤
√(

d
k

)
·O(log(n))k−1 using a

more sophisticated layered partitioning strategy on the tree.
When it comes to parity decision trees, despite all the similarities, the structural decom-

position approach does not seem to carry over due to the correlations between the parity
queries. For parity decision trees of depth d, Blais, Tan, and Wan [BTW15] proved a tight
level-1 bound of O(

√
d). For higher levels, Girish, Tal, and Wu [GTW21] showed that

Lk(f) ≤
√
dk ·O(k log(n))2k. See Chapter 3 for details. These works imply almost tight

Fourier growth bounds on the XOR-fibers of structured protocols that arise from simulating
decision trees or parity decision trees.

Related Works in the Communication Model. For the case of XOR-fibers of arbitrary
deterministic/randomized communication protocols (which do not necessarily simulate parity
decision trees or decision trees), Girish, Raz, and Tal [GRT22] showed an O(dk) Fourier
growth1 for level-k. For level-1 and level-2, these bounds are O(d) and O(d2) respectively
and are sub-optimal — as mentioned previously, such weaker bounds for parity decision trees
are easy to obtain, while obtaining optimal bounds (for parity decision trees) of O(

√
d) for

level one and d · polylog(n) for level two already requires sophisticated ideas.
The bounds in [GRT22] follow by analyzing the Fourier growth of XOR-fibers of commu-

nication rectangles of measure ≈ 2−d and then adding up the contributions from all the leaf
rectangles induced by the protocol. Such a per-rectangle-based approach cannot give bet-
ter bounds than the ones in [GRT22], while they also conjectured that the optimal Fourier
growth of XOR-fibers of arbitrary protocols should match the growth for parity decision
trees.

Showing the above is a challenging task even for the first two Fourier levels. The difficulty
arises primarily since in the absence of a per-rectangle-based argument, one has to crucially
leverage cancellations between different rectangles induced by the communication protocol.
In the simpler case of parity decision trees (or protocols that exchange parities), such cancel-
lations are leveraged in [GTW21] by ensuring k-wise independence at each node of the tree
— this can be achieved by adding extra parity queries. In a general protocol, the parties
can send arbitrary partial information about their inputs and correlate the coordinates in

1Technically, [GRT22] only proved a level-2 bound (as it suffices for their analysis), but a level-k bound
follows easily from their proof approach, as noted by [GRZ21].
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complicated ways that such methods break down. This is one of the key difficulties we face
here.

4.2 Our Results

We prove new and improved bounds on the Fourier growth of the XOR-fibers associated
with small-cost protocols for levels k = 1 and k = 2.

Theorem 4.2.1. Let C : {±1}n×{±1}n → {±1} be a deterministic communication protocol
with at most d bits of communication. Let h be its XOR-fiber as in Definition 4.1.1. Then,

L1(h) = O
(√

d
)
.

Theorem 4.2.2. Let C : {±1}n×{±1}n → {±1} be a deterministic protocol communicating
at most d bits. Let h be its XOR-fiber as in Definition 4.1.1. Then, L2(h) = O

(
d3/2 log3(n)

)
.

Our bounds in Theorems 4.2.1 and 4.2.2 extend directly to randomized communication
protocols. This is because Lk is convex and any randomized protocol is a convex combination
of deterministic protocols with the same cost. Moreover, we can use Fourier growth reduc-
tions, as described in Theorem 4.2.8, to demonstrate that these bounds apply to general
constant-sized gadgets g and the corresponding g-fiber.

Our level-1 and level-2 bounds improve previous bounds in [GRT22] by polynomial fac-
tors. Additionally, our level-1 bound is tight since a deterministic protocol with d + 1 bits
of communication can compute the majority vote of x1 · y1, . . . , xd · yd, which corresponds to
h(z) = MAJ(z1, . . . , zd) with L1(h) = Θ(

√
d).

In terms of techniques, our analysis presents a key new idea that enables us to exploit
cancellations between different rectangles induced by the protocol. This idea involves using a
novel process to adaptively partition a relatively large set in Gaussian space, which enables
us to control its k-wise moments in all directions — this can be thought of as a spectral
notion of almost k-wise independence. We achieve this by utilizing martingale arguments
and allowing protocols to transmit real values rather than just discrete bits. This notion
and procedure may be of independent interest. See Section 4.3 for a detailed discussion.

Below, we describe some applications and connections of our main theorems.

The Coin Problem and the Gap-Hamming Problem

The coin problem studies the advantage that a class of Boolean functions has in distinguishing
biased coins from unbiased ones. More formally, let F be a class of n-variate Boolean
functions. Let ρ ∈ [−1, 1] and π⊗n

ρ denote the product distribution over {±1}n where each
coordinate has expectation ρ. The Coin Problem asks what is the maximum advantage that
functions in F have in distinguishing π⊗n

ρ from the uniform distribution π⊗n
0 .

This quantity essentially captures how well F can approximate threshold functions, and
in particular, the majority function. The coin problem has been studied for various models
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of computation including branching programs [BV10], AC0 and AC0[⊕] circuits [CGR14,
LSS+19], product tests [LV18], and more. Recently, Agrawal [Agr20] showed that the coin
problem is closely related to the level-1 Fourier growth of functions in F .

Lemma 4.2.3 ([Agr20, Lemma 3.2]). Assume that F is closed under restrictions and satis-
fies L1(f) ≤ t for all f ∈ F . Then, for all ρ ∈ (−1, 1) and f ∈ F ,∣∣∣∣∣ E

z∼π⊗n
ρ

[f(z)]− E
z∼π⊗n

0

[f(z)]

∣∣∣∣∣ ≤ ln
(

1
1−|ρ|

)
· t.

Note that communication protocols of small cost are closed under restrictions, so are their

XOR-fibers (see [GRT22, Lemma 5.5]). By noting that ln
(

1
1−|ρ|

)
≈ |ρ| for small values of ρ,

we obtain the following corollary.2 We also remark that, using the Fourier growth reductions
(see Theorem 4.2.8), Theorem 4.2.4 can be established for general gadgets of small size.

Theorem 4.2.4. Let h be the XOR-fiber of a protocol with total communication d. Then for
all ρ, ∣∣∣∣∣ E

z∼π⊗n
ρ

[h(z)]− E
z∼π⊗n

0

[h(z)]

∣∣∣∣∣ ≤ O
(
|ρ| ·
√
d
)
.

In particular, consider the following distinguishing task: Alice and Bob either receive two
uniformly random strings in {±1}n or they receive two uniformly random strings in {±1}n
conditioned on their XOR distributed according to π⊗n

ρ for ρ = 1/
√
n (the latter is often

referred to as ρ-correlated strings). Theorem 4.2.4 implies that any protocol communicat-
ing o(n) bits cannot distinguish these two distributions with constant advantage. This is
essentially a communication lower bound for the well-known Gap-Hamming Problem.

The Gap-Hamming Problem. In the Gap-Hamming Problem, Alice and Bob receive
strings x, y ∈ {±1}n respectively and they want to distinguish if ⟨x, y⟩ ≤ −

√
n or ⟨x, y⟩ ≥√

n.
This is essentially the XOR-lift of the Coin Problem with ρ = ±1/

√
n because the

distribution of (x, y) conditioned on x⊙ y ∼ π⊗n
ρ with ρ = −1/

√
n and ρ = 1/

√
n is mostly

supported on the Yes and No instances of Gap-Hamming respectively. Thus immediately
from Theorem 4.2.4, we derive a new proof for the Ω(n) lower bound on the communication
complexity of the Gap-Hamming Problem.

Theorem 4.2.5. The randomized communication complexity of the Gap-Hamming Problem
is Ω(n).

2Here we also use the fact that the upper bound O(|ρ| ·
√
d) is vacuous for large enough ρ as it is larger

than 1.
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Proof. Set ρ = 10/
√
n. Fix the randomness to be any r ∈ {0, 1}∗ and let Cr refer to the

deterministic protocol C with randomness fixed to r. Suppose d ≤ τ · n for a sufficiently
small constant τ , we apply Theorem 4.2.4 on ρ as well as −ρ, and apply triangle inequality
to conclude that ∣∣∣∣∣ E

z∼π⊗n
ρ

[hr(z)]− E
z∼π⊗n

−ρ

[hr(z)]

∣∣∣∣∣ ≤ 2 ·O
(√

d/n
)
< 1/9.

Let σρ be the distribution of (x,y) induced by sampling x ∼ π⊗n
0 and z ∼ π⊗n

ρ and letting
y = x⊙z, similarly define σ−ρ but with z ∼ π⊗n

−ρ . We now expand hr(z) in terms of C(x, y),
take an expectation over r and apply triangle inequality to conclude that∣∣∣∣ E

(x,y)∼σρ

[C(x,y)]− E
(x,y)∼σ−ρ

[C(x,y)]

∣∣∣∣ < 1/9. (4.1)

Hoeffding’s inequality implies that for z ∼ π⊗n
ρ , we have

Pr

[∣∣∣∣∣∑
i

zi − 10
√
n

∣∣∣∣∣ ≥ 5
√
n

]
≤ 2 exp

{
−2·(5

√
n)2

4n

}
< 1/18.

This implies that a random (x,y) ∼ σρ is a yes instance of the Gap-Hamming problem
with probability larger than 17/18. Let σ̃ρ denote σρ conditioned on Yes instances of the
Gap-Hamming problem. Similarly define σ̃−ρ to be σ−ρ conditioned on No instances. Since
C(x, y) has outputs in [−1, 1], we have∣∣∣∣ E

(x,y)∼σρ

[C(x,y)]− E
(x,y)∼σ̃ρ

[C(x,y)]

∣∣∣∣ < 1/9

and ∣∣∣∣ E
(x,y)∼σ−ρ

[C(x,y)]− E
(x,y)∼σ̃−ρ

[C(x,y)]

∣∣∣∣ < 1/9.

This, along with (4.1) and triangle inequality, implies that∣∣∣∣ E
(x,y)∼σ̃ρ

[C(x,y)]− E
(x,y)∼σ̃−ρ

[C(x,y)]

∣∣∣∣ < 1/3.

However, this contradicts the assumption that the protocol C solves the Gap-Hamming
problem with advantage at least 2/3.

We note that there are various different proofs [CR12, She12, Vid12, RY22] that obtain
the above lower bound but the perspective taken here is perhaps conceptually simpler: (1)
Gap-Hamming is essentially the XOR-lift of the Gap-Majority function, and (2) any func-
tion that approximates the Gap-Majority function must have large level-1 Fourier growth,
whereas XOR-fibers of small-cost protocols have small Fourier growth.
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Quantum versus Classical Communication Separation via Lifting

One natural approach to proving quantum versus classical separations in communication
complexity is via lifting: Consider a function f separating quantum and classical query
complexity and lift it using a gadget g. Naturally, an algorithm computing f with few queries
to z can be translated into a communication protocol computing f ◦g where we replace each
query to a bit zi with a short conversation that allows the calculation of zi = g(xi, yi). Göös,
Pitassi, and Watson [GPW20] showed that for randomized query/communication complexity
and for various gadgets, this is essentially the best possible. Such results are referred to as
lifting theorems.

Lifting theorems apply to different models of computation, such as deterministic decision
trees [RM99, GPW15], randomized decision trees [GPW20, CFK+19], and more. A beautiful
line of work shows how to “lift” many lower bounds in the query model to the communication
model [RM99, GPW15, GLM+15, Göö15, dRNV16, HHL18, WYY17, CKLM19, KMR17,
SZ09, She11, RS10, RPRC16, GKPW19, LRS15]. For quantum query complexity, only one
direction (considered the “easier” direction) is known: Any quantum query algorithm for f
can be translated to a communication protocol for f ◦ g with a small logarithmic overhead
[BCW98]. It remains widely open whether the other direction holds as well. However, this
query-to-communication direction for quantum, combined with the communication-to-query
direction for classical, is already sufficient for lifting quantum versus classical separations
from the query model to the communication model.

One drawback of this approach to proving communication complexity separations is that
the state-of-the-art lifting results [CFK+19, LMM+22] work for gadgets with alphabet size
at least n (recall that n denotes f ’s input length) and it is a significant challenge to reduce
the alphabet size to O(1) or even polylog(n). These large gadgets will usually result in
larger overheads in terms of communication rounds, communication bits, and computations
for both parties. As demonstrated next, lifting with simpler gadgets like XOR allows for a
simpler quantum protocol for the lifted problem.

Lifting Forrelation with XOR. The Forrelation function introduced by [Aar10] is de-
fined as follows: on input x = (x1, x2) ∈ {±1}n where n is a power of 2,

forr(x) =
2

n
⟨Hx1, x2⟩ ,

where H denotes the (n/2)× (n/2) (unitary) Hadamard matrix.
Girish, Raz, and Tal [GRT22] studied the XOR-lift of the Forrelation problem and ob-

tained new separations between quantum and randomized communication protocols. In more
detail, they considered the partial function3 forr ◦XOR: {±1}n×{±1}n → {±1} defined as

forr ◦ XOR(x, y) =

{
1 forr(x⊙ y) ≥ 1

200 ln(n/2)
,

−1 forr(x⊙ y) ≤ 1
400 ln(n/2)

,
3We are overloading the notation here: technically, forr ◦ XOR is the XOR-lift of the partial boolean

function which on input x outputs 1 if forr(x) is large and −1 if forr(x) is small.
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and showed that if Alice and Bob use a randomized communication protocol, then they
must communicate at least Ω̃(n1/4) bits to compute forr ◦ XOR; while it can be solved by
two entangled parties in the quantum simultaneous message passing model with a polylog(n)-
qubit communication protocol and additionally the parties can be implemented with efficient
quantum circuits.

The lower bound in [GRT22] was obtained from a second level Fourier growth bound
(higher levels are not needed) on the XOR-fiber of classical communication protocols. Our
level-2 bound strengthens their bound and immediately gives an improved communication
lower bound.

Theorem 4.2.6. The randomized communication complexity of forr ◦ XOR is Ω̃(n1/3).

Theorem 4.2.6 above gives an polylog(n) versus Ω̃(n1/3) separation between the above
quantum communication model and the randomized two-party communication model, im-
proving upon the polylog(n) versus Ω̃(n1/4) separation from [GRT22]. We emphasize that our
separations are for players with efficient quantum running time, where the only prior separa-
tion was shown by the aforementioned work [GRT22]. Such efficiency features can also benefit
real-world implementations to demonstrate quantum advantage in experiments; for instance,
one such proposal was introduced recently by Aaronson, Buhrman, and Kretschmer [ABK23].

Without the efficiency assumption, a better polylog(n) versus Ω̃(
√
n) separation is known

[Gav20] (see [GRT22, Section 1.1] for a more detailed comparison). Optimal Fourier growth
bounds of d · polylog(n) for level two, which we state later in Conjecture 4.2.7, would also
imply such a separation with XOR-lift of Forrelation.

Lifting k-Fold Forrelation with XOR. k-fold Forrelation [AA18] is a generalization
of the Forrelation problem and was originally conjectured to be a candidate that exhibits
a maximal separation between quantum and classical query complexity. In a recent work,
[BS21] showed that the randomized query complexity of k-fold Forrelation is Ω̃(n1−1/k),
confirming this conjecture, and a similar separation was proven in [SSW23] for variants of
k-fold Forrelation. These separations, together with lifting theorems with the inner product
gadget [CFK+19], imply an O(k log(n)) vs Ω̃(n1−1/k) separation between two-party quantum
and classical communication complexity, where additionally, the number of rounds4 in the
two-party quantum protocol is 2 · ⌈k/2⌉.

Replacing the inner product gadget with the XOR gadget above would yield an improved
quantum-classical communication separation where the gadget is simpler and the number
of rounds required by the quantum protocol to achieve the same quantitative separation
is reduced by half. Bansal and Sinha [BS21] showed that for any computational model,
small Fourier growth for the first O(k2)-levels implies hardness of k-fold Forrelation in that
particular model. See Theorem 2.0.12. Thus, in conjunction with their results, to prove the

4We remark that for k = 2, this is exactly the XOR-lift of the Forrelation problem and can even be
computed in the quantum simultaneous model, as shown in [GRT22].
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above XOR lifting result for the k-fold Forrelation problem, it suffices to prove the following
Fourier growth bounds for XOR-fibers.

Conjecture 4.2.7. Let C : {±1}n × {±1}n → {±1} be a deterministic communication
protocol with at most d bits of communication. Let h be its XOR-fiber as in Definition 4.1.1.
Then for all k ∈ N, we have that Lk(h) ≤ (

√
d · poly(k, log(n)))k.

Note that these bounds are consistent with the Fourier growth of parity decision trees
(or protocols that only send parities) as shown in [GTW21].

We prove the above conjecture for the case k = 1 and make progress for the case k = 2.
While our techniques can be extended to higher levels in a straightforward manner, the
bounds obtained are farther from the conjectured ones. Thus, we decided to defer dealing
with higher levels to future work as we believe one needs to first prove the optimal bound
for level k = 2.

In the next subsection, we give another motivation to study the above conjecture by
showing a connection to lifting theorems for constant-sized gadgets.

General Gadgets and Fourier Growth from Lifting

Our main results are Fourier growth bounds for XOR-fibers, which corresponds to XOR-
lifts of functions. To complement this, we show that similar bounds hold for general lifted
functions.

Let g : Σ×Σ→ {±1} be a gadget and C : Σn×Σn → {±1} be a communication protocol.
Define the g-fiber of C, denoted by C↓g : {±1}n → [−1, 1], as

C↓g(z) = E [C(x,y) | g(xi,yi) = zi, ∀i] ,

where x and y are uniform over Σ. We use Lk(g, d) to denote the upper bound of the level-k
Fourier growth for the g-fibers of protocols with at most d bits of communication. Using this
notation, the XOR-fiber of C is simply C↓XOR, and our main results Theorems 4.2.1 and 4.2.2
can be rephrased as

L1(XOR, d) ≤ O
(√

d
)

and L2(XOR, d) ≤ O
(
d3/2 log3(n)

)
.

In Section 4.8, we relate Lk(g, d) to Lk(XOR, d), and the main takeaway is, in the study
of Fourier growth bounds, constant-sized gadgets are all equivalent.

Theorem 4.2.8 (Informal, see Theorem 4.8.5 and Theorem 4.8.6). Let g : Σ × Σ → {±1}
be a “balanced” gadget. Then

|Σ|−k · Lk(XOR, d) ≤ Lk(g, d) ≤ |Σ|k · Lk(XOR, d).

Theorem 4.2.8 also proposes a different approach towards Conjecture 4.2.7: it suffices
to establish tight Fourier growth bound for g-fibers for some constant-sized (actually, poly-
logarithmic size suffices) gadget g, and then apply the reduction. The benefit of switching
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to a different gadget is that we can perhaps first prove a lifting theorem, and then appeal
to the known Fourier growth bounds of (randomized) decision trees [Tal20, SSW23]. See
Section 4.9 for detail.

As mentioned earlier, lifting theorems show how to simulate communication protocols of
cost d for lifted functions with decision trees of depth at most O(d) (see e.g., [GPW20]). A
problem at the frontier of this fruitful line of work has been establishing lifting theorems for
decision trees with constant-sized gadgets. Note that the XOR gadget itself cannot have such
a generic lifting result: Indeed, the parity function serves as a counterexample. Nevertheless,
it is speculative that some larger gadget works, which suffices for our purposes.5 On the other
hand, for lifting from parity decision trees, we do know an XOR-lifting theorem [HHL18].
However, it only holds for deterministic communication protocols and has a sextic blowup
in the cost.

Thus, one can see Conjecture 4.2.7 as either a further motivation for establishing lifting
results for decision trees with constant-sized gadgets, or as a necessary milestone before
proving such lifting results.

Pseudorandomness for Communication Protocols

We say G : {±1}ℓ → {±1}n×{±1}n is a pseudorandom generator (PRG) for a (randomized)
communication protocol C : {±1}n × {±1}n → [−1, 1] with error ε and seed length ℓ if∣∣∣∣ E

x,y∼Un

[C(x,y)]− E
r∼{±1}ℓ

[C(G(r))]

∣∣∣∣ ≤ ε.

[INW94] showed that for the class of protocols sending at most d communication bits, there
exists an explicit PRG of error 2−d and seed length n + O(d) from expander graphs. Note
that the overhead n is inevitable even if the protocol is only sending one bit, since it can
depend arbitrarily on Alice/Bob’s input.

Combining Conjecture 4.2.7 and the PRG construction from [CHLT19, Theorem 4.5], we
would obtain a completely different explicit PRG for this class with error ε and seed length
n+ d · polylog(n/ε).

4.3 Proof Overview

We first briefly outline the proof strategy, which consists of three main components:

• First, we show that the level-1 bound can be characterized as the expected absolute
value of a martingale defined as follows: Consider the random walk induced on the
protocol tree when Alice and Bob are given inputs x and y uniformly from {±1}n. Let

5In terms of the separations between quantum and classical communication, even restricted lifting results
for the specific outer function being the Forrelation function would suffice.
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X(t)×Y (t) be the rectangle associated with the random walk at time t. The martingale
process tracks the inner product

〈
µ(X(t)), µ(Y (t))

〉
where µ(X(t)) = E

[
x
∣∣x ∈X(t)

]
and µ(Y (t)) = E

[
y
∣∣y ∈ Y (t)

]
are Alice’s and Bob’s center of masses.

• Second, to bound the value of the martingale, it is necessary to ensure that neither X(t)

nor Y (t) become excessively elongated in any direction during the protocol execution.
To measure the length of X(t) in a particular direction θ ∈ Sn−1, we calculate the
variance Var

[
⟨x, θ⟩

∣∣x ∈X(t)
]
, i.e. the variance of a uniformly random x ∈ X(t) in

the direction θ. If the set is not elongated in any direction, this can be thought of as
a spectral notion of almost pairwise independence. Such a notion also generalizes to
almost k-wise independence by considering higher moments.

To achieve the property that the sets are not elongated, one of the main novel ideas in
our paper is to modify the original protocol to a new one that incorporates additional
cleanup steps where the parties communicate real values ⟨x, θ⟩. Through these com-
munication steps, the sets X(t) and Y (t) are recursively divided into affine slices along
problematic directions.

• Last, one needs to show that the number of cleanup steps are small in order to bound
the value of the martingale for the new protocol. This is the most involved part of our
proof and requires considerable effort because the cleanup steps are real-valued and
adaptively depend on the entire history, including the previous real values communi-
cated.

The strategy outlined above also generalizes to level-2 Fourier growth by considering
higher moments and sending values of quadratic forms in the inputs. We also remark that
since we view the sets X(t) and Y (t) above as embedded in Rn and allow the protocol to
send real values, it is more natural for us to work in Gaussian space by doing a standard
transformation. The rotational invariance of the Gaussian space also seems to be essential
for us to obtain optimal level-1 bound without losing additional polylogarithmic factors.

We now elaborate on the above components in detail and also highlight the differences
between the level-1 and level-2 settings.

Level-One Fourier Growth

The level-1 Fourier growth of the XOR-fiber h is given by

L1(h) =
n∑

i=1

∣∣∣ĥ({i})
∣∣∣ =

n∑
i=1

∣∣∣∣ E
z∼Un

[h(z)zi]

∣∣∣∣ =
n∑

i=1

∣∣∣∣ E
x,y∼Un

[C(x,y)xiyi]

∣∣∣∣ .
To bound the above, it suffices to bound

∑n
i=1 ηi · E[C(x,y)xiyi] for any sign vector

η ∈ {±1}n. Here for simplicity we assume ηi ≡ 1 and the probability of reaching every leaf
is ≈ 2−d.
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A Martingale Perspective. To evaluate the quantity
∑n

i=1 E[C(x,y)xiyi], consider a
random leaf ℓ of the protocol and let Xℓ×Yℓ be the corresponding rectangle. Since the leaf
determines the answer of the protocol, denoted by C(ℓ), the quantity above equals

n∑
i=1

E
ℓ

[C(ℓ) · E[xi |x ∈Xℓ] · E[yi |y ∈ Yℓ]] = E
ℓ
[C(ℓ) · ⟨µ(Xℓ), µ(Yℓ)⟩] ≤ E

ℓ
[| ⟨µ(Xℓ), µ(Yℓ)⟩ |],

where µ(Xℓ) = E [x |x ∈Xℓ] and µ(Yℓ) = E [y |y ∈ Yℓ] are the center of masses of the
rectangle. Our goal is to bound the magnitude of the random variable z = ⟨µ(Xℓ), µ(Yℓ)⟩.

We shall show that Eℓ[|z|] ≲
√
d. Note that |z| can be as large as d in the worst case —

for instance if the first d coordinates of Xℓ and Yℓ are fixed to the same value — thus we
cannot argue for each leaf separately.

To analyze it for a random leaf, we first characterize the above as a martingale process
using the tree structure of the protocol. The martingale process is defined as

(
z(t)
)
t

where

z(t) :=
〈
µ(X(t)), µ(Y (t))

〉
tracks the inner product between the center of masses µ(X(t)) and

µ(Y (t)) of the current rectangle X(t) × Y (t) at step t. Denote the martingale differences by
∆z(t+1) = z(t+1) − z(t) and note that if in the tth step Alice sends a message, then

∆z(t+1) =
〈
∆µ(X(t+1)), µ(Y (t+1))

〉
,

where ∆µ(X(t+1)) = µ(X(t+1))− µ(X(t)) is the change in Alice’s center of mass. A similar
expression holds if Bob sends a message. Then it suffices to bound the expected quadratic
variation (see Chapter 2) since

(
E
[∣∣z(d)

∣∣])2 ≤ E
[(
z(d)
)2]

= E

[
d−1∑
t=0

(
∆z(t+1)

)2]
, (4.2)

where the equality holds due to the martingale property: E
[
∆z(t+1)

∣∣ z(1), . . . z(t)
]

= 0.
To obtain the desired bound, we need to bound the expected quadratic variation by

O(d). Note that it could be the case that a single ∆z(t+1) scales like
√
d. For instance, if

Bob first announces his first d coordinates, y1, . . . , yd, and then Alice sends a majority of
x1 · y1, . . . , xd · yd, then in the last step Alice’s center of mass µ(X(t+1)) changes by ≈ 1/

√
d

in each of the first d coordinates, and the inner product with Bob’s center of mass changes
by ≈

√
d in a single step.

Such cases make it difficult to directly control the individual step sizes of the martingale
and we will only be able to obtain an amortized bound. It turns out, as we explain later,
that such an amortized bound on the martingale can be obtained if Alice and Bob’s sets
are not elongated in any direction. Therefore, we will transform the original protocol into a
clean protocol by introducing real communication steps that slice the elongated directions.
For this, it will be convenient to work in Gaussian space which also turns out to be essential
in proving the optimal O(

√
d) bound.
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Protocols in Gaussian Space. A communication protocol in Gaussian space takes as
inputs x,y ∈ Rn where x,y are independently sampled from the Gaussian distribution
γn. One can embed the original Boolean protocol in the Gaussian space by running the
protocol on the uniformly distributed Boolean inputs sgn(x) and sgn(y) where sgn(·) takes
the sign of each coordinate. Note that any node of the protocol tree in the Gaussian space
corresponds to a rectangle X×Y where X, Y ⊆ Rn. Abusing the notation and defining their
Gaussian centers of masses as µ(X) = Ex∼γn [x |x ∈ X] and µ(Y ) = Ey∼γn [y |y ∈ Y ], one
can associate the same martingale (z(t))t with the protocol in the Gaussian space:

z(t) =
〈
µ(X(t)), µ(Y (t))

〉
.

It turns out that bounding the quadratic variation of this martingale suffices to give a bound
on L2(h) (see Section 4.5), so we will stick to the Gaussian setting. We now describe the
ideas behind the cleanup process so that the step sizes can be controlled more easily.

Cleanup with Real Communication. The cleanup protocol runs the original protocol
interspersed with some cleanup steps where Alice and Bob send real values. As outlined
before, one of the goals of these cleanup steps is to ensure that the sets are not elongated in
any direction, in order to control the martingale steps. In more detail, recall that we want
to control

E
[
(∆z(t+1))2

∣∣ z(1), . . . ,z(t)
]

= E
[〈

∆µ(X(t+1)), µ(Y (t+1))
〉2 ∣∣∣ z(1), . . . ,z(t)

]
in the tth step where Alice speaks. There are two key underlying ideas for the cleanup steps:

• Gram-Schmidt Orthogonalization. At each round, if the current rectangle is
X × Y , before Alice sends the actual message, she sends the inner product ⟨x, µ(Y )⟩
between her input and Bob’s current center of mass µ(Y ). This partitions Alice’s set
X into affine slices orthogonal to Bob’s current center of mass µ(Y ). Thus the change
in Alice’s center of mass in later rounds is orthogonal to µ(Y ) since it only takes place
inside the affine slice.

Recall that the martingale z(t) is the inner product of Alice and Bob’s center of masses,
and Bob’s center of mass does not change when Alice speaks. The original communica-
tion steps now do not contribute to the martingale and only the steps where the inner
products are revealed do. In particular, if tprev < t are two consecutive times where
Alice revealed the inner product, then the change in Alice’s center of mass is orthog-
onal to change in Bob’s center of mass between time tprev and t. Thus, conditioned
on the rectangle X(t) × Y (t) fixed by the messages until time t, we have, by Jensen’s
inequality,

E
[
(∆z(t+1))2

∣∣X(t),Y (t)
]

= E
[〈

∆µ(X(t+1)), µ(Y (t))− µ(Y (tprev))
〉2 ∣∣∣X(t),Y (t)

]
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≤ E
[〈
x− µ(X(t)), µ(Y (t))− µ(Y (tprev))

〉2 ∣∣∣X(t),Y (t)
]
.

(4.3)

Note that the quantity on the right-hand side above is of the form ⟨x− E[x], v⟩. In
other words, it is the variance of the random vector x along direction v. To maintain
a bound on this quantity, we introduce the notion of “not being elongated in any
direction”.

• Not Elongated in any Direction. We define the following notion to capture the
fact that the random vector is not elongated in any direction: we say that a mean-zero
random vector x′ = x− E[x] in Rn is λ-pairwise clean, if for every v ∈ Rn,

E
[
⟨x′, v⟩2

]
≤ λ · ∥v∥2, (4.4)

or equivalently, the operator norm of the covariance matrix E[x′x′⊤] is at most λ. This
can be considered a spectral notion of almost pairwise independence, since the pairwise
moments are well-behaved in every direction.

If the input distribution conditioned on Alice’s set X(t) is O(1)-pairwise clean, we say
that her set is pairwise clean. Based on the above ideas, after Alice sends the initial message,
if her set is not yet clean, she partitions it recursively by taking affine slices and transmitting
real values. More precisely, while there is direction θ ∈ Sn−1 violating (4.4), Alice does a
cleanup of her set by sending the inner product ⟨x, θ⟩. This direction is known to Bob as it
only depends on Alice’s current space. In addition, this cleanup does not contribute to the
martingale in the future because the inner product along this direction is fixed now.

The resulting protocol is pairwise clean in the sense that at each step6, Alice’s current
set is pairwise clean. Similar arguments work for Bob.

Let d be the total number of communication rounds including all the cleanup steps.
Then, by the above argument, and denoting by (τm)m and (τ ′

m)m the indices of the inner
product steps for Alice and Bob, we can ultimately bound

E
[
(z(d))2

]
≲ E

[∑
m

∥∥µ(X(τm))− µ(X(τm−1))
∥∥2 +

∥∥∥µ(Y (τ ′
m))− µ(Y (τ ′

m−1))
∥∥∥2]

= E
[∥∥µ(X(d))

∥∥2 +
∥∥µ(Y (d))

∥∥2] , (4.5)

where again, the last equality follows from the martingale property. The right hand side
above can be bounded by the expected number of communication rounds E[d] using the
level-1 inequality (see Theorem 2.0.6) — this inequality bounds the Euclidean norm of the
center of mass of a set in terms of its Gaussian measure.

6We remark that the sets are only clean at intermediate steps where a cleanup phase ends, but we show
that because of the orthogonalization step, the other steps do not contribute to the value of the martingale.
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Expected Number of Cleanup Steps. Since the original communication only consists
of d rounds, the analysis essentially reduces to bounding the expected number of cleanup
steps by O(d), which is technically the most involved part of the proof.

It is implicit in the previous works on the Gap-Hamming Problem [CR12, Vid12] that
large sets are not elongated in many directions: if a set X ⊆ Rn has Gaussian measure
≈ 2−d, then for a random vector x sampled from X, there are at most m ≲ d orthogonal
directions θ1, . . . , θm such that E[⟨x′, θi⟩2] ≳ 1 where x′ = x − E[x]. This is a consequence
of the fact that the expectation of q =

∑m
i=1 ⟨x′, θi⟩2 can be bounded by O(d) provided that

X has measure ≈ 2−d.
The above argument suggests that maybe we can clean up the set X along these O(d) bad

orthogonal directions. However this is not enough for our purposes: after taking an affine
slice, the set may not be clean in a direction where it was clean before. Moreover, since the
parties take turns to send messages and clean up, the bad directions will also depend on the
entire history of the protocol, including the previous real and Boolean communication. This
adaptivity makes the analysis more delicate and to prove the optimal bound we crucially
utilize the rotational symmetry of the Gaussian distribution. Indeed, the fact that a large set
is not elongated in many directions also holds even when we replace the Gaussian distribution
with the uniform distribution on {±1}n, but it is unclear how to obtain an optimal level-1
bound using the latter.

In the final protocol, since the parties only send Boolean bits and linear forms of their
inputs, conditioned on the history of the martingale, one can still say what the distribution
of the next cleanup ⟨x, θ⟩ looks like, as the Gaussian distribution is well-behaved under linear
projections. We then use martingale concentration and stopping time arguments to show
that the expected number of cleanup steps is indeed bounded by O(d) even if the cleanup is
adaptive.

We make two remarks in passing: First, we can also prove the optimal level-1 bound
using information-theoretic ideas but they do not seem to generalize to the level-2 setting,
so we adopt the alternative concentration-based approach here and they are similar in spirit.
Second, it is possible from our proof approach (in particular, the approach for level two
described next) to derive a weaker upper bound of

√
d · polylog(n) for the level one while

directly working with the uniform distribution on the hypercube.

Level-Two Fourier Growth

We start by noting that the level-2 Fourier growth of the XOR-fiber h is given by

L2(h) =
∑
i ̸=j

∣∣∣ĥ({i, j})
∣∣∣ =

∑
i ̸=j

∣∣∣∣ E
z∼Un

[h(z)zizj]

∣∣∣∣ =
∑
i ̸=j

∣∣∣∣ E
x,y∼Un

[C(x,y)xixjyiyj]

∣∣∣∣ .
To bound the above, it suffices to bound

∑
i ̸=j ηij ·E[C(x,y)xixjyiyj] for any symmetric

sign matrix (ηij). For this proof overview, we assume for simplicity that ηij ≡ 1.
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Martingales and Gram-Schmidt Orthogonalization. Similar to the case of level one,
the level-2 Fourier growth also has a martingale formulation. In particular, let X(t) and Y (t)

be Alice and Bob’s sets at time t as before and define

σ(X(t)) = E
[
x

•

⊗ x
∣∣∣x ∈X(t)

]
, σ(Y (t)) = E

[
y

•

⊗ y
∣∣∣y ∈ Y (t)

]
to be the n × n matrices that represent the level-2 center of masses of the two sets. Here

x
•

⊗y denotes the tensor product x⊗y with the diagonal zeroed out.7 To bound the level-2
Fourier growth, it suffices to bound the expected quadratic variation of the martingale

(
z(t)
)
t

defined by taking the inner product of the level-2 center of masses z(t) :=
〈
σ(X(t)), σ(Y (t))

〉
where ⟨·, ·⟩ is the inner product of two matrices viewed as vectors.

To this end, we again move to Gaussian space where the inputs x, y ∈ Rn and transform
the protocol to a clean protocol. First, we need an analog of the Gram-Schmidt orthogonaliza-

tion step — this is achieved in a natural way by Alice sending inner product
〈
x

•

⊗ x, σ(Y (t))
〉

with Bob’s level-2 center of mass, and Bob does the same. Note that Alice and Bob are now
exchanging values of quadratic polynomials in their inputs. Thus, to control the step sizes,
we now need to control the second moment of quadratic forms which naturally motivates
the following spectral analogue of 4-wise independence.

4-Wise Cleanup with Quadratic Forms. We say a random vector x is 4-wise clean
with parameter λ if the operator norm of the n2 × n2 covariance matrix

E
[(

x
•

⊗ x− E
[
x

•

⊗ x
])(

x
•

⊗ x− E
[
x

•

⊗ x
])⊤]

is at most λ where we view x
•

⊗x−E[x
•

⊗x] as an n2-dimensional vector. This is equivalent

to saying that for any quadratic form
〈
M,x

•

⊗ x
〉

,

E
[〈
M,x

•

⊗ x− E
[
x

•

⊗ x
]〉2]

≤ λ ∥M∥2F , (4.6)

where ∥M∥F denotes the Euclidean norm of M when viewed as a vector. Thus, this allows
us to control the second moment of any quadratic polynomial (and in particular, fourth
moments of linear functions). We note that one can generalize the above spectral notion to
k-wise independence in the natural way by looking at the covariance matrix of the tensor

x
•

⊗k.
We say a set is 4-wise clean with parameter λ if (4.6) is preserved for all M with zero

diagonal8. Combined with this notion, one can define the cleanup in an analogous way to the
level-1 cleanup: While there exists some M ∈ Rn×n violating (4.6), Alice sends the quadratic

form
〈
x

•

⊗ x,M
〉

to Bob until her set is 4-wise clean with parameter λ.

7Here x
•

⊗ y is an n× n matrix. We will also interchangeably view n× n matrices as n2-length vectors.
8The requirement of zero diagonal is for analysis purposes only and can be assumed without loss of

generality since x
•

⊗ x is zero diagonal anyway.
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Cleanup Analysis via Hanson-Wright Inequalities. The crux of the proof is to bound
the number of cleanup steps which, together with a similar analysis as in the level-1 case,
gives us the desired bound. We show that m ≲ d cleanup steps suffice in expectation to make
the sets 4-wise clean for λ ≤ d · polylog(n). Analogous to (4.2) and (4.5), this gives a bound
of d3 · polylog(n) on the expected quadratic variation and implies L2(h) ≤ d3/2 · polylog(n).

Since the parties send values of quadratic forms now, the analysis here is significantly
more involved compared to the level-1 case, even after moving to the Gaussian setting, where
one could previously use the fact that the Gaussian distribution behaves nicely under linear
projections. We rely on a powerful generalization of the Hanson-Wright inequality to a
Banach-space-valued setting due to Adamczak, Lata la, and Meller [Tal20]. This inequality
gives a tail bound for sum of squares of quadratic forms: In particular if M1, . . . ,Mm are
matrices with zero diagonal which form an orthonormal set when viewed as n2 dimensional

vectors, then the random variable q =
∑m

i=1

〈
x

•

⊗ x,Mi

〉2
satisfies Prx∼γn [q ≥ t] ≤ e−Ω(

√
t)

for any t ≳ m2 (see Theorem 4.4.1 for a precise statement). We remark that this tail bound
relies on the orthogonality of the quadratic forms and is much sharper than, for example,
the bound obtained from hypercontractivity or other standard polynomial concentration
inequalities.

In our setting, the matrices are being chosen adaptively. In addition, the parties are

sending quadratic forms in their inputs, and the distribution of the next
〈
x

•

⊗ x,M
〉

condi-

tioned on the history is hard to determine, unlike the level-1 case. To handle this, we replace
the real communication with Boolean communication of finite precision ±1/poly(n). This
means that whenever Alice wants to perform cleanup ⟨x⊗ x,M⟩ for some M known to both
parties, she sends only O(log(n)) bits. On the one hand, this modification is similar enough
to the cleanup protocol with real messages so that most of the argument carries through.
On the other hand, now the protocol is completely discrete, which allows us to condition on
any particular transcript.

For intuition, assume we fix a transcript of L = d + O(m log(n)) bits which has gone
through m cleanups. Typically, this transcript should capture ≈ 2−L of the probability mass.
More crucially, the matrices M1, . . . ,Mm for the cleanups are also fixed along the transcript,

and one can apply the aforementioned Hanson-Wright inequality on q =
∑m

i=1

〈
x

•

⊗ x,Mi

〉2
.

Combining the two facts together, we can apply the non-adaptive tail bound above and then
condition on obtaining such typical transcript. This shows E[q] ≤ d2 · polylog(n). However,
each quadratic form comes from a violation of (4.6) and contributes at least λ to q in
expectation. This implies that E[q] ≥ λ · m and by taking λ = d · polylog(n), we derive
that the number of cleanup steps m ≲ d. This shows that the level-2 Fourier growth is
O((m+ d) ·

√
λ) = d3/2 · polylog(n) completing the proof.

Note that if we could take λ = polylog(n) while having the same number of cleanup steps
m = d ·polylog(n), then we would obtain an optimal level-2 bound of d ·polylog(n). However,
it is not clear how to use current approach to show this. In Section 4.9, we identify examples
showing the tightness of our current analysis and also discuss potential ways to circumvent
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the obstacles within.
We remark that by replacing the Hanson-Wright inequality with its higher-degree variants

and performing level-k cleanups, we can analyze level-k Fourier growth in the similar way.
However, since the first two levels already suffice for our applications and we believe that
our level-2 bound can be further improved, we do not make the effort of generalizing it to
higher levels here.

4.4 Concentration for Sum of Squares of Quadratics

Recall that We use
•

⊗ to denote a tensor with zeros on the diagonal, i.e., for any x ∈ Rn,

x
•

⊗ x is a n× n matrix where
(
x

•

⊗ x
)
ij

= xixj if i ̸= j and zero if i = j.

We will need a concentration inequality for sums of squares of orthogonal quadratic
forms over Gaussian random variables. In particular, we prove the following inequality
which follows from a generalization of the Hanson-Wright inequality to a Banach space-
valued setting [ALM20, Theorem 6]. Since we only need a special case that is easier to
prove, we include a self-contained proof.

Theorem 4.4.1. Let m ∈ N be arbitrary. Let M1, . . . ,Mm be n×n real matrices where each
Mi has zero diagonal, ⟨Mi,Mi⟩ = 1 and ⟨Mi,Mj⟩ = 0 for i ̸= j. Then for any r ≥ 98m, we
have

Pr
x∼γn

[
m∑
i=1

〈
x

•

⊗ x,Mi

〉2
≥ r

]
≤ exp

{
−Ω

(
r

m+
√
r

)}
.

Proof. Note that the bound is trivial when m = 0. Thus from now on we assume without
loss of generality m ≥ 1.

For each x ∈ Rn, let Kx =
∑m

i=1

〈
x

•

⊗ x,Mi

〉2
. We first write Kx as a squared Euclidean

norm of a vector:

• For i ∈ [m], we view Mi as a length-n2 row vector.

• Let M ∈ Rm×n2
be a matrix where the i-th row is Mi.

Therefore we have

Kx =
∥∥∥M(x

•

⊗ x)
∥∥∥2 = ∥M(x⊗ x)∥2 , (4.7)

where ⊗ is the standard tensor product and the second equality follows since each Mi has
zero diagonal.

Define f(y) = ∥M(y ⊗ y)∥, g(y) = supz∈Sn−1 ∥M(z ⊗ y)∥, h(y) = supz∈Sn−1 ∥M(y ⊗ z)∥.
Let F = Ey∼γn [f(y)], G = Ey∼γn [g(y)], and H = Ey∼γn [h(y)] be their mean. Define the set

A = {y ∈ Rn | f(y) < 6F, g(y) < 6G, and h(y) < 6H} .
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By Markov’s inequality and union bound, we have the Gaussian measure of A is γn(A) ≥ 1/2.
Then by (2.1), we have

γn(A+ tBn) ≥ 1− e−t2/2 holds for all t ≥ 0. (4.8)

Now for an arbitrary x ∈ A+ tBn, we write x = y + tz where y ∈ A and z ∈ Bn. Then

∥M(x⊗ x)∥ ≤ ∥M(y ⊗ y)∥+ t · ∥M(y ⊗ z)∥+ t · ∥M(z ⊗ y)∥+ t2 · ∥M(z ⊗ z)∥
< 6F + 6t(G+H) + t2V,

where V = supz∈Sn−1 ∥M(z ⊗ z)∥. This, together with (4.7) and (4.8), implies

Pr
x∼γn

[
Kx ≥

(
6F + 6t(G+H) + t2V

)2] ≤ Pr
x∼γn

[x /∈ A+ tBn] = 1− γn(A+ tBn) ≤ e−t2/2.

(4.9)
Now we calculate F,G,H, V in the following claim, the proof of which will be presented
later.

Claim 4.4.2. F ≤
√

2m, G,H ≤
√
m, and V ≤ 1.

Plugging Claim 4.4.2 into (4.9), we have

Pr
x∼γn

[
Kx ≥

(
6
√

2m+ 12t
√
m+ t2

)2]
≤ e−t2/2 holds for any t ≥ 0.

Now we set

t =
1

168

√
r

m+
√
r
≥ 0

and assume r ≥ 98m. Then 6
√

2m ≤ 6
7

√
r, 12t

√
m ≤ 1

14

√
r, and t2 ≤ 1

14

√
r. Therefore

Pr
x∼γn

[
m∑
i=1

〈
x

•

⊗ x,Mi

〉2
≥ r

]
= Pr

x∼γn
[Kx ≥ r] ≤ e−t2/2 = exp

{
− 1

56448
· r

m+
√
r

}
.

Finally we present the missing proof of Claim 4.4.2.

Proof of Claim 4.4.2. First we observe that rows of M are unit vectors, therefore

∥M∥F =
√
m. (4.10)

In addition, rows of M are orthogonal to each other, therefore the operator norm of M is

∥M∥op ≤ 1. (4.11)

We index the columns of M by [n]2 and let the column vectors of M be (bi,j)i,j∈[n]. Since
rows of M are flattened matrices with zero diagonal, we have

bi,i = 0m for all i ∈ [n]. (4.12)

Now we bound F,G,H, V separately.
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Bounding F . Observe that

F 2 =

(
E

y∼γn
[∥M(y ⊗ y)∥]

)2

≤ E
y∼γn

[
∥M(y ⊗ y)∥2

]
= E

y∼γn

∥∥∥∥∥∥
∑
i,j∈[n]

bi,jyiyj

∥∥∥∥∥∥
2

(by convexity)

= E
y∼γn

 ∑
i,j,i′,j′∈[n]

⟨bi,j, bi′,j′⟩yiyjyi′yj′

 =
∑
i,j∈[n]

(
∥bi,j∥2 + ⟨bi,j, bj,i⟩

)
(by (4.12))

≤
∑
i,j∈[n]

(
∥bi,j∥2 +

1

2

(
∥bi,j∥2 + ∥bj,i∥2

))
= 2

∑
i,j∈[n]

∥bi,j∥2

= 2 ∥M∥2F = 2m. (by (4.10))

Bounding G and H. Fix an arbitrary y ∈ Rn and we first simplify g(y). For each i ∈ [n],
define vector bi =

∑
j∈[n] bi,jyj and let B be the matrix with bi’s as column vectors. Then

g(y) = sup
z∈Sn−1

∥∥∥∥∥∥
∑
i,j∈[n]

bi,jziyj

∥∥∥∥∥∥ = sup
z∈Sn−1

∥∥∥∥∥∥
∑
i∈[n]

bizi

∥∥∥∥∥∥ = ∥B∥op ≤ ∥B∥F =

√√√√√∑
i∈[n]

∥∥∥∥∥∥
∑
j∈[n]

bi,jyj

∥∥∥∥∥∥
2

.

(4.13)
Now we bound G:

G2 =

(
E

y∼γn
[g(y)]

)2

≤ E
y∼γn

[
g(y)2

]
(by convexity)

≤ E
y∼γn

∑
i∈[n]

∥∥∥∥∥∥
∑
j∈[n]

bi,jyj

∥∥∥∥∥∥
2 = E

y∼γn

∑
i∈[n]

∑
j,j′∈[n]

⟨bi,j, bi,j′⟩yjyj′

 (by (4.13))

=
∑
i,j∈[n]

∥bi,j∥2 = ∥M∥2F = m. (by (4.10))

Similar argument works for H.

Bounding V . Note that for any z ∈ Sn−1, we have ∥z ⊗ z∥ = ∥z∥2 = 1. Thus, by (4.11),
we have

V = sup
z∈Sn−1

∥M(z ⊗ z)∥ ≤ ∥M∥op ≤ 1.
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4.5 Fourier Growth via Martingales in Gaussian

Space

In this section, we reduce the question of bounding the level-1 and level-2 Fourier growth to
bounding the expected quadratic variation of certain martingales. To analyze these martin-
gales and to prove the optimal bound for the level-1 setting, it seems to be crucial to work in
the Gaussian setting, so first we give a generic transformation from Boolean to Gaussian. We
shall also additionally allow protocols that communicate real numbers to make the analysis
easier.

Communication Protocols in Gaussian Space

Let C : {±1}n × {±1}n → {±1} be a communication protocol with total communication d
and h be its XOR-fiber defined in Definition 4.1.1.

We embed the protocol in the Gaussian space by allowing Alice’s and Bob’s inputs, x
and y respectively, to be real vectors in Rn — the new protocol C̃ runs the original protocol
C with Boolean inputs sgn(x) and sgn(y) where sgn(v) = (sgn(v1), . . . , sgn(vn)) denotes the
sign function applied pointwise to each coordinate for a vector v ∈ Rn. The behavior of the
communication protocol C̃ can be defined arbitrarily if any coordinate of sgn(x) or sgn(y)
is zero since such points have zero measure under the standard n-dimensional Gaussian
measure γn.

This translation from the Boolean hypercube to the Gaussian space preserves the measure
of sets: for any subset S ⊆ {±1}n, we have Un(S) = γn({x ∈ Rn | sgn(x) ∈ S}). Moreover,
up to some normalizing factor, the Fourier coefficients of h can also be computed by looking
at Gaussian inputs. In particular, denoting by xS =

∏
i∈S xi for a subset S ⊆ [n], we have

the following fact.

Fact 4.5.1. For all S ⊆ [n], we have Ez∼Un [h(z)zS] = (π/2)|S| Ex,y∼γn

[
C̃(x,y)xSyS

]
.

Proof. Note that for x ∼ γn, the random variable sgn(x) is distributed as Un. Thus, by the

definition of the XOR-fiber h and the protocol C̃, we have

E
z∼Un

[h(z)zS] = E
x,y∼γn

[
C(sgn(x), sgn(y)) ·

∏
i∈S

sgn(xi) · sgn(yi)

]

= (π/2)|S| E
x,y∼γn

[
C(sgn(x), sgn(y)) ·

∏
i∈S

xi · yi

]
= (π/2)|S| E

x,y∼γn

[
C̃(x,y)xSyS

]
,
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where the second line follows since the expected value of a standard Gaussian in R condi-

tioned on its sign being fixed to η is
√

2
π
· η by the following calculation:

E
xi∼γ

[xi | sgn(xi) = η] = η ·
∫ ∞

0

√
2

π
· r · e−r2/2 d r =

√
2

π
· η.

Remark 4.5.2. We remark that instead of the Gaussian distribution above, one can work
with any distribution where the coordinates are i.i.d. and symmetric around zero. In par-
ticular, if ξ is a symmetric probability measure on the real line, and x,y are independently
drawn vectors in Rn where each coordinate is i.i.d. sampled from ξ, then Ez∼Un [h(z)zS] =

c
|S|
ξ Ex,y∼ξ⊗n

[
C̃(x,y)xSyS

]
where cξ = (Exi∼ξ[|xi|])−2. In the case of level-2 we will need

to work with the truncated Gaussian distribution where each coordinate is sampled indepen-
dently from the one dimensional standard Gaussian conditioned on being in some interval
[−T, T ] for T = Ω(1) in which case cξ is upper bounded by a universal constant.

Generalized Communication Protocols

In the protocol C̃ defined above, Alice and Bob’s inputs x and y are real vectors in Rn,
but in each round they still exchange a single bit based on sgn(x) and sgn(y). In order to
bound the Fourier growth, it will be more convenient for us to define a notion of generalized
communication protocols where parties are also allowed to send real numbers with arbitrary
precision in each round. To define this formally, we place certain restrictions on the real
communication in the protocol. More formally, in a generalized communication protocol, in
each round a player with input z ∈ Rn can either send:

(i) a bit in {0, 1} which is purely a function of the Boolean input sgn(z) and the previous
Boolean messages, or

(ii) a real number that is a measurable function of z and the previous (real or Boolean)
messages.

The depth of a generalized communication protocol is defined to be the maximum number
of rounds of communication.

Note that a generalized protocol also generates a “protocol tree” where if in a round
a real number is sent, the “children” of that particular “node” are indexed by all possible
values in R. A “transcript” of the protocol can be defined in an analogous way. The set of
inputs that reach a particular node of this generalized protocol tree still form a rectangle
X × Y where X, Y ⊆ Rn. We say that a generalized protocol C is equivalent to the protocol
C̃ if C(x, y) = C̃(x, y) for every x, y ∈ Rn except on a measure zero set.

We will be interested in random walks on such generalized protocol trees when the inputs
x and y are sampled from a product measure ξx × ξy on Rn × Rn and the parties send
messages according to the protocol to reach a “leaf”. The random variables corresponding
to the messages until any time t generate a filtration (F (t))t — this filtration can be thought
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of as specifying a particular node of the generalized protocol at depth t (equivalently, a
partial transcript of the protocol till time t) that was sampled by the process. In this case,
conditioned on any event in F (t), (e.g., any realization of the transcript till time t), almost
surely the conditional probability measure on the inputs x,y is some product measure on
ξ
(t)
x × ξ(t)y supported on a rectangle X(t) × Y (t) where X(t),Y (t) ⊆ Rn. We shall refer to the

random variable X(t) × Y (t) as the current rectangle determined by F (t). Since we will be
working with product measures on inputs x,y, the reader can think of conditioning on the
filtration F (t) as essentially conditioning on the inputs being in the rectangle X(t) ×Y (t) or
equivalently a partial transcript till time t.

Fourier Growth via Martingales

We will now relate Fourier growth to the quadratic variation of a martingale. Towards this
end, we first note that in light of Fact 4.5.1, the level-k Fourier growth of the XOR-fiber h
of the original communication protocol is given by

Lk(h) =
∑
S⊆[n]
|S|=k

∣∣∣∣ E
z∼Un

[h(z)zS]

∣∣∣∣ = (π/2)k
∑
S⊆[n]
|S|=k

∣∣∣∣ E
x,y∼γn

[C(x,y)xSyS]

∣∣∣∣
= (π/2)k max

(ηS)|S|=k

∑
S⊆[n]
|S|=k

ηS E
x,y∼γn

[
C(x,y)xSyS

]
, (4.14)

where C is any generalized protocol that is equivalent to C̃ and ηS ∈ {±1}.
We now express the right hand side above as an inner product. Let ℓ be a random

leaf of the generalized protocol tree C induced by taking x,y ∼ γn and let Xℓ × Yℓ be the
corresponding rectangle in the generalized protocol tree. Then,∑

S⊆[n],|S|=k

ηS E
x,y∼γn

[
C(x,y)xSyS

]
(4.15)

= E
ℓ

 E
x,y∼γ

 ∑
S⊆[n],|S|=k

ηS · C(x,y)xSyS

∣∣∣∣∣∣ (x,y) ∈Xℓ × Yℓ


= E

ℓ

C(ℓ) E
x,y∼γ

 ∑
S⊆[n],|S|=k

ηS · xSyS

∣∣∣∣∣∣ (x,y) ∈Xℓ × Yℓ


≤ E

ℓ

 ∣∣∣∣∣∣
∑

S⊆[n],|S|=k

ηS E [xS |x ∈Xℓ] · E [yS |y ∈ Yℓ]

∣∣∣∣∣∣
 , (4.16)

where the second line follows since ℓ is a leaf and determines the answer and the third line
follows since x and y are independent conditioned on being in the rectangle Xℓ × Yℓ.
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Thus, specializing (4.15) to the level-1 (k = 1) and level-2 cases (k = 2), from (4.14) we
get that

L1(h) ≤ π

2
·max

η
E
ℓ

[ ∣∣∣∣∣
n∑

i=1

ηi · E [xi |x ∈Xℓ] · E [yi |y ∈ Yℓ]

∣∣∣∣∣
]
,

L2(h) ≤ π2

4
·max

η
E
ℓ

[ ∣∣∣∣∣
n∑

i,j=1

ηij · E [xij |x ∈Xℓ] · E [yij |y ∈ Yℓ]

∣∣∣∣∣
]
,

where for L1 we optimize over η ∈ {±1}n and for L2 we optimize over η being an n × n
symmetric matrix with zeros on the diagonals and ±1 entries otherwise.

To make the above more compact, we respectively define µ(X) ∈ Rn and σ(X) ∈ Rn×n

to be the level-1 and level-2 centers of mass of a set X ⊆ Rn:

µ(X) = E
x∼γn

[x |x ∈ X] and σ(X) = E
x∼γn

[
x

•

⊗ x
∣∣∣x ∈ X] . (4.17)

Then, upper bounding the constants in the above inequality (π/2 and π2/4) by 4, we get

L1(h) ≤ 4 ·max
η

E
ℓ

[|⟨µ(Xℓ), η ⊙ µ(Yℓ)⟩|] ,

L2(h) ≤ 4 ·max
η

E
ℓ

[|⟨σ(Xℓ), η ⊙ σ(Yℓ)⟩|] ,
(4.18)

where η is understood to be the same as before.
Moving forward, we fix an arbitrary η for both cases k ∈ {1, 2} and define a martingale

process
(
z
(t)
k

)
t

that captures the right hand side above. For this we note that a generalized

communication protocol, where Alice’s and Bob’s inputs are sampled from the Gaussian dis-
tribution, naturally induces a discrete-time random walk on the corresponding (generalized)
protocol tree where at time t we are at a node at depth t with the corresponding rectangle
X(t) × Y (t). Then, we have the following proposition.

Proposition 4.5.3. µ(X(t)) and µ(Y (t)) are vector-valued martingales taking values in Rn

and σ(X(t)) and σ(Y (t)) are matrix-valued martingales taking values in Rn×n.

Note that if in the tth round Alice speaks, then µ(Y (t)) and σ(Y (t)) do not change and
similarly if Bob speaks, then µ(X(t)) and σ(X(t)) do not change. The above proposition
implies that the real-valued processes

z
(t)
1 =

〈
µ(X(t)), η ⊙ µ(Y (t))

〉
and z

(t)
2 =

〈
σ(X(t)), η ⊙ σ(Y (t))

〉
, (4.19)

each form a Doob martingale with respect to the natural filtration induced by the random
walk on the protocol tree. Note that taking a random walk on the tree until we hit a
leaf generates the marginal distribution on ℓ given in (4.18). Let d be the stopping time
when this martingale hits a leaf and stops (i.e., the depth of the random leaf). Thus, by

the orthogonality of martingale differences ∆z
(t)
k = z

(t)
k − z

(t−1)
k from (2.2), we get that for

k ∈ {1, 2}, one can upper bound the Fourier growth in terms of expected quadratic variation
of the above martingales:
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Proposition 4.5.4. For k ∈ {1, 2}, we have

1

4
· Lk(h) ≤ max

η

√
E
[(

z
(d)
k

)2]
= max

η

√√√√E

[
d∑

t=1

(
∆z

(t)
k

)2]
.

The martingale implicitly depends on η as used in (4.18) and hence the maximum. More-
over, the martingale also depends on the underlying generalized communication protocol C.
In the next two sections, we will show that after transforming the original communication
protocol into “clean” protocols, the expected quadratic variations of (z

(t)
1 )t and (z

(t)
2 )t are

O(d) and O(d3) · polylog(n) respectively. This will then imply our main theorems.

Remark 4.5.5. Note that Proposition 4.5.3 still holds even if the input distribution is not the
Gaussian distribution, but some other product probability measure on the inputs x,y. This
also implies that z

(t)
k for k ∈ {1, 2} is a martingale. In particular, for the level-2 case, we will

need to use a truncated Gaussian distribution. In light of Remark 4.5.2, Proposition 4.5.4
still suffices for us with a different constant instead of 1/4. We also remark that we shall also
need to truncate the real messages being used in the protocol for the level-2 case to a finite
precision, so the generalized protocols for the level-2 case only have Boolean communication.
However, to obtain the optimal level-1 bound allowing generalized protocols that communicate
real values seems to be crucial.

4.6 Level-One Fourier Growth

In this section, we will give a proof of Theorem 4.2.1 that L1(h) = O(
√
d). We start with a

d-round communication protocol C̃ over the Gaussian space as defined in Section 4.5. Given
the discussion in the previous section and Proposition 4.5.4, our task ultimately reduces to
bounding the expected quadratic variation of the martingale that results from the protocol
C. For example, one can simply take C = C̃, but, as discussed in Section 4.3, the individual
step sizes of this martingale can be quite large in the worst-case and it is not so easy to
leverage cancellations here to bound the quadratic variation by O(d).

So, we first define a generalized communication protocol C that is equivalent to the
original protocol C̃ but has additional “cleanup” rounds where Alice and Bob reveal certain
linear forms of their inputs so that their sets are pairwise clean in the sense described in the
overview. These cleanup steps allow us to keep track of the quadratic variation more easily.

Pairwise Clean Protocols

To define a clean protocol, we first define the notion of a pairwise clean set. Let X ⊆ Rn.
We say that the set X is pairwise clean in a direction a ∈ Sn−1 with parameter λ if

E
x∼γ

[
⟨x− µ(X), a⟩2

∣∣x ∈ X] ≤ λ, (4.20)
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where we recall that µ(X) = Ex∼γ [x |x ∈ X] is the level-1 center of mass of X.
The above condition implies that for a random vector x sampled from γ conditioned on

X, its variance along the direction a is bounded by λ. We say that the set X is pairwise
clean (with parameter λ) if it is clean in every direction a ∈ Sn−1. Equivalently, the operator
norm of the covariance matrix of the random vector x is bounded by λ.

We call a generalized communication protocol pairwise clean with parameter λ if at
the start of a new “phase” of the protocol, the corresponding rectangle X × Y satisfies that
both X and Y are pairwise clean. Starting from a communication protocol C̃ in the Gaussian
space, we will transform it into a pairwise clean protocol C by proceeding from top to bottom
and adding certain Gram-Schmidt orthogonalization and cleanup steps.

In particular, consider an intermediate node in the protocol tree of C̃. Before Alice sends
her bit as in the original protocol C̃, she first performs an orthogonalization step by revealing
the inner-product between her input and Bob’s current level-1 center of mass. After this,
she sends her bit according to the original protocol and afterwards she repeatedly cleans her
current set X by revealing ⟨x, a⟩ ∈ R while X is not clean along the direction a orthogonal
to previous directions. Once X becomes clean, they proceed to the next round. We now
describe this formally.

Construction of Pairwise Clean Protocol C from C̃. We set λ = 100. The con-
struction of the new protocol is recursive and we first define some notation. Consider an
intermediate node of the new protocol C at depth t. We use the random variable X(t) ⊆ Rn

(resp., Y (t) ⊆ Rn) to denote the set of inputs of Alice (resp., Bob) reaching the node. If
Alice reveals a linear form in this step, we use a(t) ∈ Rn to denote the vector of the linear
form; otherwise, we set a(t) to be the all-zeroes vector. We define b(t) similarly for Bob.
Throughout the protocol, we will abbreviate u(t) = µ(X(t)) and v(t) = µ(Y (t)) for Alice’s
and Bob’s current center of mass respectively.

1. At the beginning, Alice receives an input x ∈ Rn and Bob receives an input y ∈ Rn.

2. We initialize t← 0, X(0),Y (0) ← Rn, and a(0), b(0) ← 0n.

3. For each phase i = 1, 2, . . . , d: suppose we are starting the cleanup for a node at depth
i in the original protocol C̃ and suppose we are at a node of depth t in the new protocol
C. If it is Alice’s turn to speak in C̃:

a) Orthogonalization by Revealing Correlation with Bob’s Center of Mass.
Alice begins by revealing the inner product of her input x with Bob’s current
(signed) center of mass η ⊙ v(t). Since in the previous steps, she has already
revealed the inner product with Bob’s previous centers of mass, for technical
reasons, we will only have Alice announce the inner product with the component of
η⊙v(t) that is orthogonal to the previous directions along which Alice announced
the inner product. More formally, let a(t+1) be the component of η ⊙ v(t) that is
orthonormal to all previous directions a(1), . . . ,a(t), i.e.,

a(t+1) = unit
(
η ⊙ v(t) −

∑t
τ=1

〈
η ⊙ v(t),a(τ)

〉
· a(τ)

)
.
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Alice computes c(t+1) ←
〈
x,a(t+1)

〉
and sends c(t+1) to Bob. Set b(t+1) ← 0n.

Increment t by 1 and go to step (b).

b) Original Communication. Alice sends the bit c(t+1) that she was supposed to

send in C̃ based on previous messages and the input x. Set a(t+1), b(t+1) ← 0n.
Increment t by 1 and go to step (c).

c) Cleanup Steps. While there exists some direction a ∈ Sn−1 orthogonal to the
previous directions (i.e., satisfying

〈
a,a(τ)

〉
= 0 for all τ ∈ [t]) such that X(t) is

not pairwise clean in direction a, Alice computes c(t+1) ← ⟨x, a⟩ and sends this
to Bob. Set a(t+1) ← a and b(t+1) ← 0n. Increment t by 1. Repeat step (c) as
long as X(t) is not pairwise clean; otherwise increment i by 1 and go back to the
for-loop in step 3 which starts the new phase.

If it is Bob’s turn to speak, we define everything similarly with the role of x,a,X,v
switched with y, b,Y ,U .

4. Finally at the end of the protocol, the value C(x, y) is determined based on all the

previous communication and the corresponding output it defines in C̃.

We note some basic properties that directly follow from the description. First we note
that the steps 3(a), 3(b), and 3(c) always occur in sequence for each party and we refer to
such a sequence of steps as a phase for that party. Note that there are at most d phases. If a
new phase starts at time t, then the current rectangle X(t) ×Y (t) is pairwise clean for both
parties by construction. Also, note that the non-zero vectors in the sequence (a(t))t (resp.,
(b(t))t) form an orthonormal set. We also note that the Boolean communication in step 3(b)
is solely determined by the original protocol and hence only depends on the previous Boolean
messages.

Lastly, each phase has one 3(a) and 3(b) step, followed by potentially many 3(c) steps.
However, the following claim shows that it is always finite.

Claim 4.6.1. Let ℓ be an arbitrary leaf of the protocol C and D(ℓ) be its depth. Then
D(ℓ) ≤ 2n+ 2d. Moreover, along this path there are at most 2d many steps 3(a) and 3(b).

Proof. We count the number of communication steps separately:

• Steps 3(a) and 3(b). Steps 3(a) and 3(b) occur once in every phase, thus at most d
times.

• Step 3(c). For Alice, each time she communicates at step 3(c) a ∈ Rn, the direction
is orthogonal to all previous a(t)’s. Since the dimension of Rn is n, this happens at
most n times. Similar argument works for Bob.

Thus in total we have at most 2n+ 2d steps.

We will eventually show that the expected depth of the protocol C is O(d) when x,y ∼ γn.
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Bounding the Expected Quadratic Variation

Consider a random walk on the protocol tree generated by the new protocol C when the par-
ties are given independent inputs x,y ∼ γn. Consider the corresponding level-1 martingale
process defined in (4.19). Formally, at time t the process is defined by

z
(t)
1 =

〈
u(t), η ⊙ v(t)

〉
,

where we recall that u(t) = µ(X(t)) and v(t) = µ(Y (t)) and η ∈ {±1}n is a fixed sign vector.
The martingale process stops once it hits a leaf of the protocol C. Let d denote the

(stopping) time when this happens. Note that E[d] is exactly the expected depth of the
protocol C. Then, in light of Proposition 4.5.4, to prove Theorem 4.2.1, it suffices to prove
the following.

Lemma 4.6.2. E
[∑d

t=1

(
∆z

(t)
1

)2]
= O(d).

We will prove this in two steps. We first show that the only change in the value of the
martingale occurs during the orthogonalization step 3(a). This is because in each phase,
Alice’s change of center of mass in steps 3(b) and 3(c) is always orthogonal to η ⊙ v(t) so

they do not change the value of the martingale z
(t)
1 as discussed in Section 4.3. Moreover,

recalling (4.3), since Alice’s node was pairwise clean just before Alice sent the message in

step 3(a), the expected change E
[(

∆z
(t+1)
1

)2]
can be bounded in terms of the squared norm

of the change that occurred in u(t) between the current round and the last round where Alice
was in step 3(a). A similar argument works for Bob.

Formally, this is encapsulated by the next lemma for which we need some additional
definition. Let (F (t))t be the natural filtration induced by the random walk on the gener-

alized protocol tree with respect to which z
(t)
1 is a Doob martingale and also u(t),v(t) form

vector-valued martingales (recall Proposition 4.5.3). Note that F (t) fixes all the rectangles

encountered during times 0, . . . , t and thus for τ ≤ t, the random variables u(τ),v(τ), z
(τ)
1 are

determined, in particular, they are F (t)-measurable. Recalling that λ = 100 is the cleanup
parameter, we then have the following. Below we assume without any loss of generality that
Alice speaks first and, in particular, we note that Alice speaks in step 3(a) for the first time
at time zero.

Lemma 4.6.3 (Step Size). Let 0 = τ1 < τ2 < · · · ≤ d be a sequence of stopping times with
τm being the index of the round where Alice speaks in step 3(a) for the mth time or d if there
is no such round. Then, for any integer m ≥ 2,

E
[(

∆z
(τm+1)
1

)2 ∣∣∣∣ F (τm)

]
≤ λ ·

∥∥v(τm) − v(τm−1)
∥∥2 ,
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and moreover, for any t ∈ N, we have that

E
[(

∆z
(t+1)
1

)2 ∣∣∣∣ F (t), τm−1 < t < τm,Alice speaks at time t

]
= 0.

A similar statement also holds if Bob speaks where v is replaced by U and the sequence (τm)
is replaced by (τ ′

m) where τ ′
m is the index of the round where Bob speaks in step 3(a) for the

mth time or d if there is no such round.

In particular, we see that the steps 3(b) and 3(c) do not contribute to the quadratic
variation and only the steps 3(a) do. Also, since the first time Alice and Bob speak, they
start in step 3(a), we also note that u(τ1) and v(τ ′

1) are their initial centers of mass which are
both zero.

We shall prove the above lemma later and continue with the bound on the quadratic
variation here. Using Lemma 4.6.3, we have

E

[
d∑

t=1

(
∆z

(t)
1

)2]
≤ λ · E

[∑
m≥2

∥∥v(τm) − v(τm−1)
∥∥2 +

∥∥∥U (τ ′
m) −U (τ ′

m−1)
∥∥∥2] .

On the other hand, by the orthogonality of vector-valued martingale differences from (2.3),
we have

E

[∑
m≥2

∥∥v(τm) − v(τm−1)
∥∥2] = E

[∥∥v(d)
∥∥2] .

A similar statement holds for (u(t))t. Therefore,

E

[
d∑

t=1

(
∆z

(t)
1

)2]
≤ λ ·

(
E
[∥∥U (d)

∥∥2
F

]
+ E

[∥∥v(d)
∥∥2
F

])
. (4.21)

We will soon prove the following to upper bound the quantity on the right hand side
above. Loosely speaking, by an application of level-1 inequalities (see Theorem 2.0.6), the
lemma below ultimately boils down to a bound on the expected number of cleanup steps.

Lemma 4.6.4 (Final Center of Mass). E
[∥∥u(d)

∥∥2 +
∥∥v(d)

∥∥2] = O(d).

Since λ = 100, plugging in the bounds from the above into (4.21) readily implies
Lemma 4.6.2. Together with Proposition 4.5.4, this completes the proof of Theorem 4.2.1.

Bounds on Step Sizes (Proof of Lemma 4.6.3)

Let us abbreviate τ = τm. Observe that

E
[(

∆z
(τ+1)
1

)2 ∣∣∣∣F (τ )

]
= E

[〈
U (τ+1) −U (τ ), η ⊙ v(τ )

〉2 ∣∣∣F (τ )
]
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= E
[〈
U (τ+1), η ⊙ v(τ )

〉2 − 〈U (τ ), η ⊙ v(τ )
〉2 ∣∣∣F (τ )

]
, (4.22)

where the second line is due to (u(t))t being a vector-valued martingale and thus

E
[
U (τ+1)

∣∣F (τ )
]

= U (τ ).

We first consider the case that at time τ a new phase starts for Alice. By construction,
this means that the current rectangle X(τ )×Y (τ ) determined by F (τ ) is pairwise clean with
parameter λ, and since Alice is in step 3(a) at the start of a new phase, a(τ+1) is chosen to be
the (normalized) component of η⊙v(τ ) that is orthogonal to previous directions a(0), . . . ,a(τ ).
Let β(τ+1) :=

〈
η ⊙ v(τ ),a(τ+1)

〉
be the length of this component before normalization. Note

that β(τ+1) is F (τ )-measurable (i.e., it is determined by F (τ )).
We now claim that components of u(τ+1) and u(τ ) are the same along any of the previous

directions a(0), . . . ,a(τ ). So in (4.22), they cancel out and the only relevant quantity is the
component in the direction a(τ+1). This follows since, in all the previous steps t ≤ τ , Alice
has already fixed

〈
x,a(t)

〉
. This implies that for any X(τ ) and X(τ+1) that are determined

by F (τ+1), the inner product with all the previous a(0), . . . ,a(τ ) is fixed over the choice of
x from both rectangles. Formally, we have that for any x ∈ X(τ ) and x′ ∈ X(τ+1), it
holds that

〈
x,a(t)

〉
=
〈
x′,a(t)

〉
for any t ≤ τ . In particular, since U (τ ) = µ(X(τ )) and

U (τ+1) = µ(X(τ+1)) are the corresponding centers of mass, we have that〈
U (τ+1),a(t)

〉
=
〈
U (τ ),a(t)

〉
for all t ≤ τ . (4.23)

This, together with (4.22) and recalling that β(τ+1) is determined by F (τ ), implies that

E
[(

∆z
(τ+1)
1

)2 ∣∣∣∣F (τ )

]
=
(
β(τ+1)

)2 · E [〈U (τ+1),a(τ+1)
〉2 − 〈U (τ ),a(τ+1)

〉2 ∣∣∣F (τ )
]
. (4.24)

We now bound the term outside the expectation by the change in the center of mass v(·)

and the term inside the expectation by the fact that the set is pairwise clean.

Term Outside the Expectation. Recall that a(τ+1) is chosen to be the (normalized)
component of η⊙ v(τ ) that is orthogonal to the span of a(0), . . . ,a(τ ). Since η⊙ v(τm−1) is in
the span of a(1), . . . ,a(τm−1+1) and τm−1 + 1 ≤ τ = τm, it is orthogonal to a(τ+1). Hence,

β(τ+1) =
〈
η ⊙ v(τ ),a(τ+1)

〉
=
〈
η ⊙

(
v(τ ) − v(τm−1)

)
,a(τ+1)

〉
.

Since a(τ+1) is a unit vector and each entry of η is in {±1}, this implies that(
β(τ+1)

)2 ≤ ∥∥v(τ ) − v(τm−1)
∥∥2 . (4.25)
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Term Inside the Expectation. Since (u(τ)) is a vector-valued martingale with respect
to F (τ), and a(τ+1) is F (τ)-measurable (determined by F (τ)), we have that

E
[〈
U (τ+1),a(τ+1)

〉2 − 〈U (τ ),a(τ+1)
〉2 ∣∣∣F (τ )

]
= E

[〈
u(τ+1) − u(τ),a(τ+1)

〉2 ∣∣∣F (τ)
]
.

Since Alice is in step 3(a), her message fixes
〈
x,a(τ+1)

〉
at time τ for every x ∈X(τ+1).

Thus,

E
[〈
U (τ+1) −U (τ ),a(τ+1)

〉2 ∣∣∣F (τ )
]

= E

[〈
E

x∼γ

[
x
∣∣x ∈X(τ+1)

]
− u(τ),a(τ+1)

〉2
∣∣∣∣∣F (τ )

]

= E
[
E

x∼γ

[〈
x− u(τ ),a(τ+1)

〉2 ∣∣∣x ∈X(τ+1)
] ∣∣∣∣F (τ )

]
= E

[〈
x− u(τ ),a(τ+1)

〉2 ∣∣∣F (τ )
]
, (4.26)

where the last line follows from the tower property of conditional expectation.
Recall that u(τ ) = µ(X(τ )) is the center of mass. Moreover, the unit vector a(τ+1) is

determined by F (τ) and also the conditional distribution of x conditioned on F (τ) is that of
x ∼ γ conditioned on x ∈X(τ). Thus, using the fact that X(τ ) is pairwise clean since Alice
is in step 3(a), the right hand side in (4.26) is at most λ.

Final Bound. Substituting the above in (4.24), we have

E
[(

∆z
(τ+1)
1

)2 ∣∣∣∣F (τ )

]
≤ λ ·

(
β(τ+1)

)2 ≤ λ ·
∥∥v(τ ) − v(τm−1)

∥∥2 ,
where the second inequality follows from (4.25). This completes the proof of the first state-
ment.

For the moreover part, let us condition on the event τm−1 < t < τm where Alice speaks
at time t. Note that such t must all lie in the same phase of the protocol where Alice is
the only one speaking. So, Bob’s center of mass does not change from the time τm−1 till t,

i.e., v(t+1) = v(τm−1). Thus we have ∆z
(t+1)
1 =

〈
U (t+1) −U (t), η ⊙ v(τm−1)

〉
. Analogous to

(4.23), the component of Alice’s center of mass along the previous directions are fixed. Thus〈
U (t+1),a(r)

〉
=
〈
U (t),a(r)

〉
for all r ≤ t. Furthermore, by construction, η ⊙ v(τm−1) lies in

the linear subspace spanned by a(0), . . . ,a(τm−1+1). Therefore, since τm−1 + 1 ≤ t, it follows

that ∆z
(t+1)
1 = 0.

Expected Norm of Final Center of Mass (Proof of Lemma 4.6.4)

Let HA = H
(d)
A be the (random) linear subspace spanned by the vectors a(0), . . . ,a(d) and

similarly, let HB = H
(d)
B be the linear subspace spanned by the vectors b(0), . . . , b(d). For
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any linear subspace V of Rn, we denote by ΠV and ΠV ⊥ the projectors on the subspace V
and its orthogonal complement V ⊥ respectively. Then, we have that∥∥u(d)

∥∥2 =
∥∥ΠHA

u(d)
∥∥2 +

∥∥∥ΠH⊥
A
u(d)

∥∥∥2 and
∥∥v(d)

∥∥2 =
∥∥ΠHB

v(d)
∥∥2 +

∥∥∥ΠH⊥
B
v(d)

∥∥∥2 .
Note that the non-zero vectors in (a(t))t and (b(t))t form an orthonormal basis for the

subspaces HA and HB respectively. Moreover, for each t ≤ d, the inner product
〈
x,a(t)

〉
is fixed for every x ∈ X(d) and the inner product

〈
y, b(t)

〉
is also fixed for every y ∈ Y (d)

where X(d) × Y (d) is the current rectangle determined by F (d). In particular, since u(d) is
the center of mass of X(d), this implies that

∥∥ΠHA
u(d)

∥∥2 =
d∑

t=1

〈
u(d),a(t)

〉2
=

d∑
t=1

(
E

x∼γ

[〈
x,a(t)

〉 ∣∣x ∈X(d)
])2

=
d∑

t=1

E
x∼γ

[〈
x,a(t)

〉2 ∣∣∣x ∈X(d)
]
,

where the second line follows from the inner product being fixed in X(d). Therefore, we have

∥∥u(d)
∥∥2 =

d∑
t=1

E
x∼γ

[〈
x,a(t)

〉2 ∣∣∣x ∈X(d)
]

︸ ︷︷ ︸
pA

+
∥∥∥ΠH⊥

A
u(d)

∥∥∥2︸ ︷︷ ︸
qA

.

In an analogous fashion,

∥∥v(d)
∥∥2 =

d∑
t=1

E
y∼γ

[〈
y, b(t)

〉2 ∣∣∣y ∈ Y (d)
]

︸ ︷︷ ︸
pB

+
∥∥∥ΠH⊥

B
v(d)

∥∥∥2︸ ︷︷ ︸
qB

.

We next show that both E[pA +pB] and E[qA +qB] are at most O(d). The former follows
from stopping time and concentration arguments laid out in the overview that there cannot

be too many orthogonal directions where E
[〈
x,a(t)

〉2]
is large. The latter follows from an

application of level-1 inequalities.
We will bound the norm of the projection on the subspaces HA and HB, which corre-

sponds to the quantity E[pA +pB], and bound the norm of the projection on the orthogonal
subspaces H⊥

A and H⊥
B , which corresponds to the quantity E[qA + qB].

Projection on the Subspaces HA and HB

We shall show that the expected norm of the final center of mass when projected on the
subspaces HA and HB is

E[pA + pB] = O(d).
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Towards this end, define the random variable kt = kt(x,y) =
〈
x,a(t)

〉2
+
〈
y, b(t)

〉2
for

each t ∈ N. Note that the vectors a(t)’s are being chosen adaptively depending on the
previous inner products

〈
x,a(τ)

〉
for τ < t, as well as the Boolean communication bits from

step 3(b), thus they are functions of x and y as well here. Observe that

E [pA + pB] = E

[
d∑

t=1

E
[
kt

∣∣F (d)
]]

= E
x,y∼γ

[
d∑

t=1

kt

]
.

We now divide the time sequence into successive intervals of different lengths r · 4d for
r = 1, 2, . . .. Then we bound the expected sum of kt within each time interval by O(rd).
We further argue that the probability that the stopping time d lies in the r-th interval is
at most 2 · 2−r. In particular, for r ∈ N, letting interval Ir =

{(
r
2

)
· 4d+ 1, . . . ,

(
r+1
2

)
· 4d
}

,
which is of length 4dr, we show the following.

Claim 4.6.5. For any r ∈ N, we have

E
x,y∼γ

[∑
t∈Ir

kt

∣∣∣∣∣d >
(
r

2

)
· 4d

]
≤ 20dr + 4 ln

(
1

Pr
[
d >

(
r
2

)
· 4d
]) .

We shall prove the above claim later since it is the most involved part of the proof. The
previous claim readily implies the following probability bounds.

Claim 4.6.6. For any r ∈ N, we have Pr
[
d >

(
r
2

)
· 4d
]
≤ 2 · 2−r.

Proof of Claim 4.6.6. We bound Pr
[
d >

(
r
2

)
· 4d
]

by induction on r. The claim trivially
holds for r = 1.

Now we proceed to analyze the event d ≥
(
r+1
2

)
· 4d. Observe that Claim 4.6.1 implies

that there are at most 2d many step 3(a) and 3(b) throughout the protocol. Thus if the
event above occurs, there are at least 4dr − 2d ≥ 2dr many time steps t ∈ Ir where the
process is in step 3(c).

By the definition of the cleanup step, if X×Y is a rectangle determined9 by F (t−1)∩{d >(
r
2

)
· 4d} where the process is in step 3(c) and Alice speaks, then

E
x∼γ

[kt | (x,y) ∈ X × Y ] = E
x∼γ

[〈
x,a(t)

〉2 ∣∣∣x ∈ X] ≥ E
x∼γ

[〈
x− µ(X),a(t)

〉2 ∣∣∣x ∈ X] ≥ λ,

where λ = 100 is the cleanup parameter and µ(X) = Ex∼γ[x | x ∈ X] is the center of
mass. This is because a(t) is chosen to be a unit vector in a direction where the current set
(conditioned on the history) is not pairwise clean. A similar statement holds if Bob speaks

in step 3(c) for the random variable
〈
y, b(t)

〉2
where y is sampled from γ conditioned on Y .

9It suffices to consider such events since we have a product measure on X(t) × Y (t) conditioned on F (t)

and d is a stopping time and is F (t)-measurable (i.e., determined by the randomness in F (t)).
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By the tower property of conditional expectation, the above implies that

100 · 2dr ·Pr
[
d >

(
r+1
2

)
· 4d

∣∣d > (r
2

)
· 4d
]
≤ E

[∑
t∈Ir

kt

∣∣∣∣∣d > (r2) · 4d
]
.

Recall that Claim 4.6.5 implies that the right hand side is at most 20dr+4 ln

(
1

Pr[d>
(
r
2

)
·4d]

)
.

We consider two cases:

(i) if Pr[d >
(
r
2

)
· 4d] ≤ 2−r, then clearly Pr[d >

(
r+1
2

)
· 4d] ≤ 2−r as well as required;

(ii) otherwise Pr[d >
(
r
2

)
· 4d] ≥ 2−r and 20dr + 4

(
1

Pr[d>
(
r
2

)
·4d]

)
≤ 20dr + 4r, then it

follows that
Pr
[
d >

(
r+1
2

)
· 4d

∣∣d > (r
2

)
· 4d
]
≤ 1/2,

and by induction this implies Pr
[
d >

(
r+1
2

)
· 4d
]
≤ 1/2 ·Pr

[
d >

(
r
2

)
· 4d
]
≤ 2−r.

These claims imply that

E[pA + pB] ≤ E

[
∞∑
r=0

1
[
d >

(
r
2

)
· 4d
]
·
∑
t∈Ir

kt

]

=
∞∑
r=0

Pr[d >
(
r
2

)
· 4d] · E

[∑
t∈Ir

kt

∣∣∣∣∣d > (r2) · 4d
]

≤
∞∑
r=0

(
21−r ·O(rd) + 4 ·Pr[d >

(
r
2

)
· 4d] · ln

(
1

Pr

[
d>
(
r
2

)
·4d

]
))

≤
∞∑
r=0

(
21−r ·O(rd) +O

(
(r + 1)2−r

))
≤ O(d),

where the last line uses the fact that x ln(1/x) ≤ O((r+1)2−r) for 0 ≤ x ≤ 2 ·2−r and r ∈ N.
This proves the desired bound on E[pA + pB] assuming Claim 4.6.5 which we prove next.

Proof of Claim 4.6.5. To prove the claim, we need to analyze the expectation of
∑

t∈Ir kt

under x,y sampled from γ conditioned on the event d ≥
(
r
2

)
· 4d.

We first describe an equivalent way of sampling from this distribution which will be easier
for analysis. First, we recall that the definition of the cleanup protocol implies that the
Boolean communication in C is solely determined by the previous Boolean communication,
since it is specified by the original protocol C̃ (and thus C) before the cleanup.

Let us fix any Boolean string c ∈ {0, 1}∗ that is a valid Boolean transcript in the original

communication protocol C̃. This defines a rectangle Xc×Yc ⊆ Rn×Rn consisting of all pairs
of inputs to Alice and Bob that result in the Boolean transcript c in C̃. If we sample x,y ∼ γ
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conditioned on d >
(
r
2

)
· 4d and output the unique (Xc,Yc) such that (x,y) ∈ Xc × Yc, we

obtain a distribution on rectangles. We use γ(Xc×Yc |d >
(
r
2

)
·4d) to denote the probability

of obtaining Xc × Yc by this sampling process so that
∑

c γ(Xc × Yc |d >
(
r
2

)
· 4d) = 1.

Now consider the following two-stage sampling process. First, we sample a rectangle
Xc × Yc according to the above distribution, and then we sample the inputs x,y sampled
from γn conditioned on the event that {(x,y) ∈ Xc × Yc} ∧ {d >

(
r
2

)
· 4d}. We shall show

the following claim for any rectangle Xc × Yc that could be sampled in the first step.

Claim 4.6.7. Ex,y∼γ

[∑
t∈Ir kt

∣∣d > 4d
(
r
2

)
, (x,y) ∈ Xc × Yc

]
is at most

12dr + 4 ln

(
1

Pr[d>4d
(
r
2

)
,(x,y)∈Xc×Yc]

)
.

Assuming the above, and taking an expectation over Xc × Yc drawn with probability
γ(Xc × Yc |d >

(
r
2

)
· 4d), we immediately obtain Claim 4.6.5:

E
x,y∼γ

[∑
t∈Ir

kt

∣∣∣∣∣d > (r2) · 4d
]

≤ 12dr+

4 ·
∑

c∈{0,1}∗,|c|≤d

γ(Xc × Yc|d >
(
r
2

)
· 4d) ·

(
ln

(
1

γ(Xc×Yc|d>(r
2)·4d)

)
+ ln

(
1

Pr[d>(r
2)·4d]

))

≤ 12dr + 4 · ln(3d) + 4 · ln
(

1

Pr[d>(r
2)·4d]

)
(by concavity of ln(·))

≤ 20dr + 4 · ln
(

1

Pr[d>(r
2)·4d]

)
.

To complete the proof, we now prove Claim 4.6.7.

Proof of Claim 4.6.7. Fix any c such that γ(Xc × Yc |d >
(
r
2

)
· 4d) > 0. We will bound the

expectation of the quantity
∑

t∈Ir kt =
∑

t∈Ir

〈
x,a(t)

〉2
+
〈
y, b(t)

〉2
where x,y are sampled

from γn conditioned on the event that {(x,y) ∈ Xc × Yc} ∧ {d >
(
r
2

)
· 4d}. Note that

a(t), b(t),d are functions of the previous messages of the protocol and hence also the inputs
x,y. Once we condition on the above event, the Boolean communication is also fixed to be
c.

To analyze the above conditioning, we first do a thought experiment and consider a
different protocol that takes standard Gaussian inputs (without any conditioning) and show
a tail bound for the random variable

∑
t∈Ir kt for this new protocol. In the last step, we will

use it to compute the expectation we ultimately want.
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Protocol Cc. The protocol Cc always communicates according to the fixed transcript c in a
Boolean communication step and otherwise according to the cleanup protocol C on any input
x, y. Consider the random walk on this new protocol tree where the inputs x,y ∼ γ (without
any conditioning). Let (G(t))t be the associated filtration of the new protocol Cc which can
be identified with the collection of all partial transcripts till time t. Note that the vectors
a(t) and b(t) in this new protocol are determined only by the previous real communication
since the Boolean communication is fixed to c. This also implies that the vectors a(t) and b(t)

form a predictable sequence with respect to the filtration (G(t))t. Moreover, by the definition
of the protocol the next non-zero vector a(·) is chosen to be a unit vector orthogonal to the
previously chosen a(·)’s and the same holds for the vectors b(·).

We denote by k
(c)
t the random variable that captures kt for the protocol Cc, i.e., k

(c)
t =〈

x,a(t)
〉2

+
〈
y, b(t)

〉2
for x,y ∼ γ and a(t), b(t) defined by the protocol Cc. Observe that if

(x,y) ∈ Xc × Yc then k
(c)
t = kt.

Consider the behavior of the protocol Cc at some fixed time t. The nice thing about
the protocol Cc is that conditioned on all previous real messages for τ < t, both x and y
are standard Gaussian distributions on an affine subspace of Rn (defined by the previous
messages). Then, at time t, since a(t) is orthogonal to the directions used in all previous real
messages, it follows that the distribution of

〈
x,a(t)

〉
conditioned on any event in G(t−1) is an

independent standard Gaussian for every t if a(t) is non-zero. The same holds for
〈
y, b(t)

〉
as well. This last fact uses that the projection of a multi-variate standard Gaussian γn in
orthonormal directions yields independent real-valued standard Gaussians.

This implies that each new
〈
x,a(t)

〉2
and

〈
y, b(t)

〉2
is an independent chi-squared random

variable conditioned on the history (up to depth
(
r
2

)
· 4d) of the random walk. Therefore,

Fact 2.0.5 implies that

Pr
x,y∼γ

[∑
t∈Ir

k
(c)
t (x,y) ≥ 2|Ir|+ s

∣∣∣∣∣G((r
2)·4d)

]
≤ e−s/4.

Since |Ir| ≤ 4dr, we have Prx,y∼γ

[∑
t∈Ir k

(c)
t (x,y) ≥ 8dr + s

]
≤ e−s/4.

Computing the Original Expectation. Let us compare the probability of the above
tail event in the original protocol C where inputs x,y are sampled from γ conditioned on
the event that {(x,y) ∈ Xc × Yc} ∧ {d >

(
r
2

)
· 4d}. We can write

Pr
(x,y)∼γ

[∑
t∈Ir

kt(x,y) ≥ 8dr + s

∣∣∣∣∣d > (r2) · 4d, (x,y) ∈ Xc × Yc

]
(4.27)

=
Prx,y∼γ

[∑
t∈Ir kt(x,y) ≥ 8dr + s, (x,y) ∈ Xc × Yc,d >

(
r
2

)
· 4d
]

Prx,y∼γ

[
(x,y) ∈ Xc × Yc,d >

(
r
2

)
· 4d
] .



CHAPTER 4. QUANTUM ADVANTAGES OVER CLASSICAL COMMUNICATION 87

We then bound the numerator by

Pr
x,y∼γ

[∑
t∈Ir

kt(x,y) ≥ 8dr + s, (x,y) ∈ Xc × Yc,d >
(
r
2

)
· 4d

]

= Pr
x,y∼γ

[∑
t∈Ir

k
(c)
t (x,y) ≥ 8dr + s, (x,y) ∈ Xc × Yc,d >

(
r
2

)
· 4d

]
(if (x,y) ∈ Xc × Yc then k

(c)
t = kt)

≤ Pr
x,y∼γ

[∑
t∈Ir

k
(c)
t (x,y) ≥ 8dr + s

]
≤ e−s/4.

Note that the inequality gives us an exponential tail on (4.27):

(4.27) ≤ e−s/4 ·
(

Pr
x,y∼γ

[
(x,y) ∈ Xc × Yc,d >

(
r

2

)
· 4d
])−1

.

We can now integrate the above inequality to get an upper bound on the expected value of∑
t∈Ir kt under the distribution of interest. In particular, since for any non-negative random

variable w, the following holds for any parameter α ≥ 0:

E[w] =

∫ +∞

0

Pr[w ≥ z] d z ≤ α +

∫ +∞

α

Pr[w ≥ z] d z = α +

∫ +∞

0

Pr[w ≥ α + z] d z,

we derive the following by taking α = 8dr + 4 ln

(
1

Prx,y∼γ[(x,y)∈Xc×Yc,d>(r
2)·4d]

)
:

E
(x,y)∼γ

[∑
i∈Ir

kt(x,y)

∣∣∣∣∣d > (r2) · 4d, (x,y) ∈ Xc × Yc

]

≤ α +

∫ +∞

0

e−z/4 d z = α + 4

≤ 12dr + 4 ln

(
1

Prx,y∼γ

[
(x,y) ∈ Xc × Yc,d >

(
r
2

)
· 4d
]) .

This completes the proof of Claim 4.6.7.

Projection on the Orthogonal Subspaces H⊥
A and H⊥

B

We shall show that the expected norm of the final center of mass when projected on the
subspaces H⊥

A and H⊥
B is

E[qA + qB] = O(d).



CHAPTER 4. QUANTUM ADVANTAGES OVER CLASSICAL COMMUNICATION 88

Recall that qA =
∥∥∥ΠH⊥

A
u(d)

∥∥∥2 where HA is the (random) linear subspace spanned by

the orthonormal set of vectors a(0), . . . ,a(d) and H⊥
A its orthogonal complement. Moreover,

the vectors a(t) are determined by the previous Boolean and real communication. A similar
statement holds for qB and the vectors b(t) as well.

The proof will follow in two steps. We will first show that one can bound the norm of
the projection ΠH⊥

A
u(d), which turns out to be the Gaussian center of mass of a set that

lives in the subspace H⊥
A , in terms of the logarithm of the inverse relative measure with

respect to the subspace. Note that the Gaussian measure here is the Gaussian measure
γH⊥

A
on the subspace H⊥

A . The case for ΠH⊥
B
u(d) will be similar. The second step will use

information theory-esque convexity argument to show that on average the logarithm of the
inverse relative measure is small.

For the first part, we observe that if we sample x,y ∼ γ and take a random walk on this
protocol tree, we obtain a probability measure over transcripts which includes both real and
Boolean values. Recall that the Boolean transcript is determined by the original protocol and
only depends on the previous Boolean communication and the real transcript is sandwiched
between the Boolean communication. Let ℓ = (c, r) denote the random variable representing
the full transcript of the generalized protocol where c is the Boolean communication and r
is the real communication. For any given transcript ℓ, let Xℓ×Yℓ denote the corresponding
rectangle consists of inputs reaching the leaf, and let Xc × Yc (for Xc,Yc ⊆ Rn) denote
the rectangle consisting of all pairs of inputs to Alice and Bob that result in the Boolean
transcript c. Note that the real communication r together with c fixes the subspaces HA

and HB and particular affine shifts sA and sB of those subspaces depending on the value of
the inner products determined by the full transcript. In particular, the rectangle Xℓ × Yℓ

consistent with the full transcript ℓ = (c, r) is given by Xℓ = Xc ∩ (HA + sA) and Yℓ =
Yc ∩ (HB + sB), i.e., taking (random) affine slices of the original sets.

Note that u(d) and v(d) are distributed as the center of masses of the final rectangle
Xℓ×Yℓ, and thus is suffices to look at the rectangles for the rest of the argument. Since Xℓ

(resp., Yℓ) lies in some affine shift of H⊥
A (resp., H⊥

B ), defining the relative center of mass
for a set A that lives in the ambient linear subspace V , as µV (A) = Ex∼γV [x | x ∈ A] where
the Gaussian measure γV is on the subspace V , it follows that

E [qA + qB] = E
[∥∥∥ΠH⊥

A
u(d)

∥∥∥2 +
∥∥∥ΠH⊥

A
u(d)

∥∥∥2]
= E

ℓ

[
∥µH⊥

A
(ΠH⊥

A
Xℓ)∥2 + ∥µH⊥

B
(ΠH⊥

B
Yℓ)∥2

]
.

Recalling that γrel is the Gaussian measure of a set relative to its ambient space, we will
show:

Claim 4.6.8. ∥µH⊥
A

(ΠH⊥
A
Xℓ)∥2 ≤ 2e2 ln

(
e

γrel (Xℓ)

)
and

∥µH⊥
B

(ΠH⊥
B
Yℓ)∥2 ≤ 2e2 ln

(
e

γrel (Yℓ)

)
.
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Note that we can ignore the case when γrel(Xℓ) is zero above, since we will eventually
take an expectation over ℓ and almost surely this measure is non-zero.

Using the previous claim,

E [qA + qB] = E
[∥∥∥ΠH⊥

A
u(d)

∥∥∥2 +
∥∥∥ΠH⊥

A
u(d)

∥∥∥2] ≤ 2e2 · E
ℓ

[
ln

(
e

γrel (Xℓ × Yℓ)

)]
.

For the second step of the proof, we show the next claim which relies on convexity
arguments to bound the right hand side above by O(d). This is similar in spirit to chain-
style arguments from information theory.

Claim 4.6.9. Eℓ

[
ln

(
e

γrel (Xℓ × Yℓ)

)]
= O(d).

This gives us the final bound E [qA + qB] = O(d) assuming the claims which we now
prove.

Proof of Claim 4.6.8. We can bound the norm of the above projection by an application of
the Gaussian level-1 inequality (Theorem 2.0.6), which, by rotational symmetry, implies that
if A is a subset of a linear subspace V with non-zero measure, then

∥µV (A)∥2 ≤ 2e2 ln

(
e

γV (A)

)
, (4.28)

where recall that µV (A) = Ex∼γV [x | x ∈ A] is the center of mass with respect to the
Gaussian measure γV on the subspace V .

If we run the generalized protocol on x,y ∼ γ and condition on getting the full tran-
script ℓ, the conditional probability measure on ΠH⊥

A
x is that of the Gaussian measure γH⊥

A

conditioned on x ∈ Xℓ − sA and ΠH⊥
A
y is that of the Gaussian measure γH⊥

B
conditioned

on y ∈ Yℓ − sB and they are independent. This follows from the fact that so far the parties
have fixed inner products along a basis for the orthogonal subspaces HA and HB and the
fact the projection of a standard Gaussian on orthogonal subspaces are independent.

Thus, applying (4.28), we have

∥µH⊥
A

(ΠH⊥
A
Xℓ)∥2 ≤ 2e2 ln

(
e

γH⊥
A

(Xℓ − sA)

)
= 2e2 ln

(
e

γrel(Xℓ)

)
,

where the last line follows since HA + sA is the ambient space for Xℓ (this holds almost
surely) and γrel(S) = γV (S− t) if V + t is the ambient space of S. A similar argument proves
the bound on ∥µH⊥

B
(ΠH⊥

B
Yℓ)∥2.

Proof of Claim 4.6.9. For this claim, it will be convenient to consider a different generalized
protocol C ′ that generates the same distribution on the leaves ℓ. In particular, since the
Boolean messages in the generalized protocol C only depend on the previous Boolean mes-
sages, one can first send all the Boolean messages c, and then send all the real messages r
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choosing them according to the protocol C depending on the previous real messages and the
(partial) Boolean transcript. Note that the protocol C ′ generates the same distribution on
the leaves ℓ when the inputs x,y ∼ γn. In particular, the real communication only partitions
10 each rectangles Xc × Yc that corresponds to the Boolean transcript c into affine slices.

For rest of the claim, we now work with the protocol C ′ where the Boolean communication
happens first. To prove the claim, we condition on a Boolean transcript c = c and by
induction show that

E
r

[
ln

(
e

γrel(X(c,r) × Y(c,r))

) ∣∣∣∣ c = c

]
≤ ln

(
e

γrel(Xc × Yc)

)
, (4.29)

where (c, r) is the full transcript and Xc × Yc is the rectangle containing all the inputs such
that Boolean transcript is c. Note that γrel(Xc × Yc) is the probability of obtaining the
Boolean transcript c since the ambient space of Xc and Yc is Rn.

Then, taking expectation over the Boolean transcript c,

E
ℓ

[
ln

(
e

γrel(Xℓ × Yℓ)

)]
≤ E

c

[
ln

(
e

γrel(Xc × Yc)

)]
=

∑
c∈{0,1}∗,|c|≤d

Pr[c = c] ln

(
e

Pr[c = c]

)
≤ ln(2e · 2d) = O(d),

where the last line follows from concavity.

Induction. To complete the proof, we now show (4.29) by induction. For this, let us look
at an intermediate step t in C ′ where the Boolean communication is fixed to c and Alice and
Bob have exchanged some real messages r<t := r1, . . . , rt−1. Let the current rectangle be
X(c,r<t) × Y(c,r<t) and it is Alice’s turn to speak. Note that X(c,r<t) and Y(c,r<t) live in some
affine subspaces at this point and in the current round, Alice sends the inner product of her
input x with a vector a(t) that is determined by the previous messages and orthogonal to
the ambient space of X(c,r<t). At this step, Bob’s set Y(c,r<t) does not change at all. We shall
show that in each step, the log of the inverse of the relative measure of the current rectangle
does not increase on average over the next message:

E
r≤t

[
ln

(
e

γrel(X(c,r≤t))

) ∣∣∣∣ c = c, r<t = r<t

]
≤ ln

(
e

γrel(X(c,r<t))

)
, (4.30)

and an analogous statement holds when Bob speaks. Taking an expectation over r<t, the
above directly applies (4.29) by a straightforward backward induction:

E
r≤t

[
ln

(
e

γrel(X(c,r≤t) × Y(c,r≤t))

) ∣∣∣∣ c = c

]
≤ E

r<t

[
ln

(
e

γrel(X(c,r<t) × Y(c,r<t))

) ∣∣∣∣ c = c

]
10We remark that this protocol C′ suffices for proving this claim since we are looking only at the leaves.

However, unlike Lemma 4.6.3, directly bounding the expected quadratic variation of the martingale corre-
sponding to the protocol C′ is difficult.
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≤ · · · ≤ ln

(
e

γrel(Xc × Yc)

)
.

To see (4.30), let us write X := X(c,r<t) for Alice’s current set. Recall that since we have
fixed the history, Alice has fixed inner product with some orthogonal directions a(1), . . . , a(t−1)

and she has decided on the next direction a := a(t) along which she will send the next
inner product. Thus, X lives in some fixed affine subspace V ⊥ + s where V is the span
of a(1), . . . , a(t−1) and the next message r := rt = ⟨x, a⟩. Moreover, conditioned on the
history till this point, the conditional probability distribution on Alice’s input x ∈ Rn can
be described as follows: the projections corresponding to the non-zero vectors in the sequence
a(1), . . . , a(t−1), i.e., the inner products

〈
x, a(τ)

〉
where a(τ) ̸= 0 for τ < t, are fixed according

to the shift s, while the distribution on the orthogonal complement V ⊥ is that of the Gaussian
measure γV ⊥ on the subspace V ⊥ after conditioning on the event that x ∈ X − s (which
lives in V ⊥). This uses that projections of a standard n-dimensional Gaussian in orthogonal
directions are independent.

Let k be the dimension of V where k < n. Then, by doing a linear transformation, we
may assume that V ⊥ = Rn−k (and thus X ⊆ Rn−k and the shift s fixes the coordinates
n−k+1 through n) and a = e1, i.e., in the current message Alice reveals the first coordinate
of x ∈ Rn−k where x is sampled from γn−k conditioned on x ∈ X. In this case, γrel in the
left hand side of (4.30) is exactly γrel(X ∩{x1 = r}) if Alice sends r as the message, while for
the right hand side of (4.30), we have γrel(X) = γn−k(X). Denoting by dµx1 the probability
density function of x1, our statement boils down to showing∫

R
ln

(
e

γrel(X ∩ {x1 = r})

)
dµx1(r) ≤ ln

(
e

γn−k(X)

)
.

We show the above by explicitly writing the probability density function dµx1 . Denote by
d γn−k(x1, . . . , xn−k) the standard Gaussian density function11 in Rn−k. The density function
of the random vector x sampled from γn−k conditioned on x ∈ X, is given γn−k(X)−1 ·
d γn−k(x1, . . . , xn−k) for x ∈ X and zero outside. Thus, we have

dµx1(r) =

∫
X∩{x1=r} d γn−k(x1, . . . , xn−k)

γn−k(X)

= d γ1(r) ·

∫
X∩{x1=r} d γn−k−1(x2, . . . , xn−k)

γn−k(X)
= d γ1(r) ·

γrel(X ∩ {x1 = r})
γn−k(X)

.

Then, by concavity, the left hand side of (4.30) is exactly given by∫
R

ln

(
e

γrel(X ∩ {x1 = r})

)
dµx1(r) ≤ ln

(∫
R

e

γrel(X ∩ {x1 = r})
dµx1(r)

)
= ln

(
e

γn−k(X)

∫
R

d γ1(r)

)
= ln

(
e

γn−k(X)

)
.

11Explicitly d γm(x1, . . . , xm) =
∏m

i=1 d γ1(xi) where d γ1(r) = 1√
2π

e−r2/2 is the density function for

one-dimensional standard Gaussian.



CHAPTER 4. QUANTUM ADVANTAGES OVER CLASSICAL COMMUNICATION 92

4.7 Level-Two Fourier Growth

In this section, we prove Theorem 4.2.2 that L2(h) = O
(
d3/2 log3(n)

)
. Similar to the proof

of level-1 bound Theorem 4.2.1, we start with a d-round communication protocol C̃ over the
Gaussian space as defined in Section 4.5. Note that C̃ in turn comes from the original Boolean
communication protocol C. Thus in the following we assume without loss of generality d ≤ n.

Given the discussion in Section 4.5, to bound the second-level Fourier growth, one can
attempt to bound the expected quadratic variation of the martingale that results from the
protocol C directly, but similar to the case of level-1 it is hard to leverage cancellations here
to prove the bound we aim for. So, starting from C̃, we will define a communication protocol
C that computes the same function as C̃, but satisfies some additional “clean” property where
it is easier to control the quadratic variation. This new protocol will differ from C̃ in two
ways. Firstly, the protocol C will consist of additional “cleanup steps” where Alice and Bob
reveal certain quadratic forms of their input. Secondly, the protocol C will send the real
value of the quadratic form with certain precision. Note that this protocol will not involve
sending real messages at all, instead, any potential real messages will be truncated to a few
bits of precision and be sent as Boolean messages.

We emphasize that the main difference in the protocol C from the corresponding level-1
variant comes from the precision control, which is not needed there due to the fact that
Gaussian distribution remains a (lower-dimensional) Gaussian under linear projections. For
technical reasons we shall also need to analyze the martingale under a truncated Gaussian
distribution, where all coordinates are bounded in some large interval [−T, T ]. This intu-
itively doesn’t incur a noticeable difference on the distribution since it is highly unlikely that
coordinates drawn from Gaussian distribution will be outside such intervals and recalling
Remark 4.5.2 and Proposition 4.5.4, it still suffices to analyze the corresponding martingale
under the truncated Gaussian distribution.

We next define the notion of a 4-wise clean protocol.

4-Wise Clean Protocols

Consider an intermediate node in the protocol and let X ⊆ Rn refer to the set of Alice’s
inputs reaching this node. We denote by Sn×n−1 the set of all matrices in Rn×n with zero
diagonal and unit norm (when viewed as n2-dimensional vectors). For a parameter λ > 0,
we say that the set X is 4-wise clean in a direction a ∈ Sn×n−1 if

E
x∼γ

[〈
x

•

⊗ x− σ(X), a
〉2 ∣∣∣∣x ∈ X] < λ,

where we recall that σ(X) = Ex∼γ

[
x

•

⊗ x
∣∣∣x ∈ X] is the level-2 center of mass of X under

the Gaussian measure. We say that the set X is 4-wise clean if it is 4-wise clean in every
direction a. Our new protocol will consist of the original protocol, interspersed by clean-
ing steps. Once Alice sends her bit as in the original protocol, she cleans X by revealing
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〈
x

•

⊗ x, a
〉

with a few bits of precision while there exists direction a ∈ Sn×n−1 such that X

not clean in direction a. Once X becomes clean, Alice proceeds to the next round and Bob
does an analogous cleanup. We now describe this formally.

Communication with Finite Precision. Let positive integer L be a precision parameter
that we will use for truncation. In our new communication protocol, we will send real
numbers with precision 2−L. This is formalized as the truncL(z) function defined at z ∈ R
as

truncL(z) =
⌊
z · 2L

⌋
/2L.

Construct C from C̃. As described before, C will consist of the original protocol along
with extra steps where Alice or Bob reveal the (approximate) value of a quadratic form on
their input. Consider an intermediate node of this new protocol at depth t. We always
use the random variable X(t) (resp., Y (t)) to denote the set of inputs of Alice (resp., Bob)
reaching the node. If Alice is revealing a quadratic form in this step, we use a(t) to denote
the matrix of the quadratic form revealed at this node, otherwise set a(t) to be the all-zeroes
matrix. We define b(t) similarly for Bob. Throughout the protocol, we will always set u(t)

and v(t) to denote σ(X(t)) and σ(Y (t)) respectively.
Recall that λ > 0 is the parameter for cleanup to be optimized later. Since we will now

send real numbers (with certain precision) as bit-strings, their magnitudes should also be
well controlled to guarantee bounded message length. This is managed by a parameter T > 0
and we will restrict the inputs to the parties in C to come from the box [−T, T ]n. Note that,

by Gaussian concentration, T = Θ
(√

log(n)
)

suffices.

1. At the beginning, Alice receives an input x ∈ [−T, T ]n and Bob receives an input
y ∈ [−T, T ]n.

2. We initialize t← 0, X(0),Y (0) ← [−T, T ]n, and a(0), b(0) ← 0n×n.

3. For each phase i = 1, 2, . . . , d: suppose we are starting the cleanup for a node at depth
i in the original protocol C̃ and suppose we are at a node of depth t in the new protocol
C. If it is Alice’s turn to speak in C̃:

a) Orthogonalization by Revealing Correlation with Bob’s Center of Mass.
Alice begins by revealing the inner product of her input x with Bob’s current
(signed) level-2 center of mass η⊙v(t). Since in the previous steps, she has already
revealed the inner product with Bob’s previous centers of mass, for technical
reasons, we will only have Alice announce the inner product with the component of
η⊙v(t) that is orthogonal to the previous directions along which Alice announced
the inner product. More formally, let a(t+1) be the component of η ⊙ v(t) that is
orthonormal to the span of the previous directions a(τ) for τ ≤ t, i.e.,

a(t+1) = unit
(
η ⊙ v(t) −

∑t
τ=1

〈
η ⊙ v(t),a(τ)

〉
· a(τ)

)
.
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Alice computes c(t+1) ← truncL

(〈
x

•

⊗ x,a(t+1)
〉)

and sends c(t+1) to Bob. Set

b(t+1) ← 0n×n. Increment t by 1 and go to step (b).

b) Original Communication. Alice sends the bit c(t+1) that she was supposed to

send in C̃ based on previous messages and x. Set a(t+1), b(t+1) ← 0n×n. Increment
t by 1 and go to step (c).

c) Cleanup Steps. While there exists some direction a ∈ Sn×n−1 orthogonal to
previous directions, i.e.,

〈
a,a(τ)

〉
= 0 for all τ ≤ t, and X(t) is not 4-wise clean

in direction a, Alice computes c(t+1) ← truncL

(〈
x

•

⊗ x, a
〉)

and sends c(t+1) to

Bob. Set a(t+1) ← a and b(t+1) ← 0n×n. Increment t by 1. Repeat step (c) while
X(t) is not 4-wise clean; otherwise, increment i by 1 and go back to the for-loop
in step 3 which starts a new phase.

If it is Bob’s turn to speak, we define everything similarly with the role of x,a,X,U
switched with y, b,Y ,v.

4. Finally at the end of the protocol, the value C(x, y) is determined based on all the

previous communication and the corresponding output it defines in C̃.

Remark 4.7.1. Note that by construction, the non-zero matrices among a(1),a(2), . . . form
an orthonormal set when viewed as n2-dimensional vectors (similarly for b(1), b(2), . . .) and
moreover, their diagonals are zero. Lastly, a(t) and b(t) are known to both Alice and Bob as
they are canonically determined by previous messages.

We remark that the steps 3(a), 3(b), and 3(c) always occur in sequence for each party
and we refer to such a sequence of steps as a phase for that party. Note that there are at
most d phases. If a new phase starts at time t, then the current rectangle X(t) × Y (t) is
4-wise clean for both parties by construction.

Now we formalize a few useful properties regarding the communication protocol C. The

first fact below follows since each u(t) is an expectation of x
•

⊗x over some distribution and

x
•

⊗ x has zero diagonal.

Fact 4.7.2. u(0) = v(0) = 0n×n and each u(t),v(t) has zero diagonal.

The following follows from tail bounds for the univariate standard normal distribution.

Fact 4.7.3. Let γ∗ = γ(X(0)) · γ(Y (0)). Then γ∗ ≥ 1−O
(
n · e−T 2/2

)
.

The next fact says that when a node fixes a quadratic form with 2−L precision, for any
two inputs that reach this node, the quadratic forms differ by at most 2−L.

Fact 4.7.4. In step 3(a) and 3(c), any x, x′ ∈X(t+1) satisfies∣∣∣〈x •

⊗ x,a(t+1)
〉
−
〈
x′

•

⊗ x′,a(t+1)
〉∣∣∣ < 2−L.
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Similarly any y, y′ ∈ Y (t+1) satisfies
∣∣∣〈y •

⊗ y, b(t+1)
〉
−
〈
y′

•

⊗ y′, b(t+1)
〉∣∣∣ < 2−L.

The next claim bounds the maximum attainable norms for Alice and Bob’s level-2 center
of masses at any point in the protocol. This uses the fact that the inputs come from the
truncated Gaussian distribution.

Claim 4.7.5.
∥∥u(t)

∥∥
F

=
∥∥η ⊙ u(t)

∥∥
F
< nT and

∥∥v(t)
∥∥
F

=
∥∥η ⊙ v(t)

∥∥
F
< nT for all possible

t and u(t),v(t) throughout the communication.

Proof. Since η is a matrix with zero diagonal and {±1} entries off diagonal and u(t) also has
zero diagonal,

∥∥u(t)
∥∥
F

=
∥∥η ⊙ u(t)

∥∥
F
. In addition, since X(t) ⊆X(0) = [−T, T ]n, we have∥∥u(t)

∥∥
F
≤ E

x∼γ

[∥∥∥(x •

⊗ x
)∥∥∥

F

∣∣∣x ∈X(t)
]
≤
√

(n2 − n) · T 2 < nT.

A similar analysis works for v(t).

The next claim gives a bound on the length of any message in the protocol C.

Claim 4.7.6. For any x ∈ X(0) and y ∈ Y (0), any message in C(x, y) consists of at most
L+ log(Tn) many bits.

Proof. Assume without loss of generality it is Alice’s turn to speak. On step 3(b) she sends

one bits. On steps 3(a) and 3(c), she computes truncL(
〈
x

•

⊗ x, a
〉

) for some a ∈ Sn×n−1 and

send the result. Since∣∣∣〈x •

⊗ x, a
〉∣∣∣ ≤ ∥∥∥x •

⊗ x
∥∥∥
F
· ∥a∥F ≤

√
(n2 − n) · T 2 < nT,

and the message is a multiple of 2−L that means truncL yields a message with L + log(nT )
many bits.

The last claim bounds the maximum depth of the new protocol C.

Claim 4.7.7. Let ℓ be an arbitrary leaf of the protocol C and D(ℓ) be its depth. Then
D(ℓ) ≤ 2n2. Moreover, along this path there are at most n2 − n many non-zero a(t) and at
most n2 − n many non-zero b(t) for t ∈ {1, . . . , D(ℓ)}.

Proof. We count the number of communication steps separately:

• Steps 3(a) and 3(b). Steps 3(a) and 3(b) occur once in every phase, thus at most d
times.

• Step 3(c). For Alice, each time she communicates at step 3(c), the direction a ∈
Sn×n−1 is non-zero and orthogonal to all previous a(t)’s. Since the dimension of Sn×n−1

is n2 − n, this happens at most n2 − n times. Similar argument works for Bob.

Thus in total we have at most 2(n2 − n) + 2d ≤ 2n2 steps.

We will eventually show that, with suitable choice of λ, T, L, typically D(ℓ) is at most
d · polylog(n).



CHAPTER 4. QUANTUM ADVANTAGES OVER CLASSICAL COMMUNICATION 96

Bounding the Expected Quadratic Variation

Consider the martingale process defined in (4.19) from a random walk on the protocol tree
generated by C where the inputs x,y are sampled from γn conditioned on being in the
bounded cube [−T, T ]n. Recall that Proposition 4.5.3 still holds (see Remark 4.5.5).

Formally, at time t the process is defined by

z
(t)
2 =

〈
u(t), η ⊙ v(t)

〉
,

where we recall that u(t) = σ(X(t)) and v(t) = σ(Y (t))) and η is a fixed sign matrix with
a zero diagonal. The martingale process stops once it hits a leaf of C. Let d denote the
(stopping) time when this happens. Note that E[d] is exactly the expected depth of the
protocol C.

In light of Remark 4.5.2 and Proposition 4.5.4, to prove Theorem 4.2.2, it suffices to
prove the following.

Lemma 4.7.8. E
[∑d

t=1

(
∆z

(t)
2

)2]
= O

(
d3 log6(n)

)
.

Lemma 4.7.8 is proved in three steps. We first show that essentially the only change in
the value of the martingale is the orthogonalization step 3(a). The reason is the same as
the level-1 bound: Alice’s messages sent in step 3(b) and 3(c) are always near-orthogonal to

Bob’s current level-2 center of mass, thus they do not change the value of the martingale z
(t)
2

much. Moreover, by level-2 analog of (4.3), since Alice’s current node was clean just before

Alice sent the message in step 3(a), the expected change E
[(

∆z
(t+1)
2

)2]
can be bounded in

terms of the squared norm of the change that occurred in u(t) (or v(t)) between the current
round and the last round where Alice was in step 3(a). Similar argument works for Bob.

Formally, this is encapsulated by the next lemma for which we need some additional
definitions. Let (F (t))t denote the natural filtration induced by the random walk on the gen-

eralized protocol tree with respect to which z
(t)
2 is a Doob martingale and also u(t),v(t) form

vector-valued martingales (recall Proposition 4.5.3). Note that F (t) fixes all the rectangles

encountered during times 0, . . . , t and thus for τ ≤ t, the random variables u(τ),v(τ), z
(τ)
2

are determined, in particular, they are F (t)-measurable. Recalling that λ is the cleanup
parameter to be optimized later, we then have the following. Below we assume without any
loss of generality that Alice speaks first and, in particular, we note that Alice speaks in step
3(a) for the first time at time zero when both Alice and Bob’s center of masses are at zero:
u(0) = v(0) = 0.

Lemma 4.7.9 (Step Size). Let 0 = τ1 < τ2 < · · · ≤ d be a sequence of stopping times with
τm being the index of the round where Alice speaks in step 3(a) for the mth time or d if there
is no such round. Then, for any integer m ≥ 2,

E
[(

∆z
(τm+1)
2

)2 ∣∣∣∣F (τm)

]
≤ λ ·

∥∥v(τm) − v(τm−1)
∥∥2 + 16n7T 3 · 2−L.
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and moreover, for any t ∈ N, we have that

E
[(

∆z
(t+1)
2

)2 ∣∣∣∣F (t), τm−1 < t < τm,Alice speaks at time t

]
≤ 4n6T 2 · 2−2L

A similar statement also holds if Bob speaks where v is replaced by U and the sequence (τm)
is replaced by (τ ′

m) where τ ′
m is the index of the round where Bob speaks in step 3(a) for the

mth time or d if there is no such round.

We indeed see that, if L = Ω(log(n)) and T = O(
√

log(n)), then poly(T, n) · 2−L = o(1),
and steps 3(b) and 3(c) do not contribute much to the quadratic variation and only the steps
3(a) do. Also, since the first time Alice and Bob speak, they start in step 3(a), we also note
that u(τ1) and v(τ ′

1) are their initial centers of mass which are both zero.
We shall prove the above lemma later and continue with the bound on the quadratic

variation here. Using the bounds on the step sizes from Lemma 4.7.9,

E

[
d∑

t=1

(
∆z

(t)
2

)2]

≤ λ · E

[∑
m≥2

∥∥v(τm) − v(τm−1)
∥∥2 +

∥∥∥U (τ ′
m) −U (τ ′

m−1)
∥∥∥2]+ 16n7T 3 · 2−L · E[d]

≤ λ · E

[∑
m≥2

∥∥v(τm) − v(τm−1)
∥∥2 +

∥∥∥U (τ ′
m) −U (τ ′

m−1)
∥∥∥2]+ 16n7T 3 · 2−L · 2n2.

(by Claim 4.7.7)

On the other hand, using the orthogonality of vector-valued martingale differences from
(2.3),

E

[∑
m≥2

∥∥v(τm) − v(τm−1)
∥∥2] = E

[∥∥v(d)
∥∥2] .

A similar statement holds for (u(t)) as well. Therefore,

E

[
d∑

t=1

(
∆z

(t)
2

)2]
≤ λ ·

(
E
[∥∥U (d)

∥∥2
F

]
+ E

[∥∥v(d)
∥∥2
F

])
+ 64n9T 3 · 2−L. (4.31)

Then we will apply level-2 inequalities (see Theorem 2.0.6) to convert the bounding

E
[∥∥U (d)

∥∥2
F

+
∥∥v(d)

∥∥2
F

]
into bounding the second moment E[d2]. This reduction is formalized

as Lemma 4.7.10 below and its proof is similar to [GRT22, Claim 1].
For each leaf ℓ, let γ(ℓ) = γ(X(D(ℓ))) ·γ(Y (D(ℓ))) be the Gaussian measure of the rectangle

at ℓ. Recall γ∗ = γ(X(0))× γ(Y (0)).
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Lemma 4.7.10. E
[∥∥u(d)

∥∥2
F

+
∥∥v(d)

∥∥2
F

]
≤ O

(
1
γ∗ + L2 E[d2]

)
.

Finally, we will bound the second moment E[d2] for a suitable choice of parameters.

Lemma 4.7.11. It holds that E[d2] = O(d2) and γ∗ ≥ 3
4
for

L = Θ(log(n)), T = Θ(
√

log(n)), and λ = Θ(d log4(n)).

Given Lemmas 4.7.10 and 4.7.11,the proof of Lemma 4.7.8 naturally follows.

Proof of Lemma 4.7.8. With the parameters chosen in Lemma 4.7.11, we have

E

[
d∑

t=1

(
∆z

(t)
2

)2]
≤ O(d log4(n)) ·

(
E
[∥∥U (d)

∥∥2
F

]
+ E

[∥∥v(d)
∥∥2
F

])
+ 1 (by (4.31))

≤ O(d log4(n)) ·
(
1 + log2(n) · E[d2]

)
+ 1 (by Lemma 4.7.10)

≤ O(d log4(n)) ·
(
1 + log2(n) · d2

)
+ 1 (by Lemma 4.7.11)

= O(d3 log6(n)).

Remark 4.7.12. Note that our proof for level-2 Fourier growth actually holds for a slightly
more general setting, where Alice and Bob are allowed to send O(L) = O(log(n)) bits dur-
ing each original communication round. This can be viewed as balancing the length of the
messages in step 3(b) with step 3(a) and step 3(c).

Since one can always convert a d-round 1-bit communication protocol into a 2d
log log(n)

-

round log(n)-bit communication protocol, we obtain a slightly better level-2 Fourier growth
bound of

O

(
d3/2 log3(n)

(log log(n))3/2

)
.

The conversion is done by Alice (resp., Bob) enumerating the next log log(n)/2 bits from Bob
(resp., Alice), and providing the corresponding log log(n)/2 bits responses for each possibility.

It is also possible to improve the log3(n) factor to log2(n) by varying the cleanup parameter
λ with depth. For example, for depth in the interval [4rd, 4(r + 1)d], one could pick λr =
Θ(d · log2(n) · r2). Since our focus is mostly on improving the polynomial dependence in d
where there is still room for improvement, we do not make an effort here to improve the
polylog terms.

Bounds on Step Sizes (Proof of Lemma 4.7.9)

Let us abbreviate τ = τm and note that at time τ a new phase starts for Alice. By
construction, this means that the current rectangle X(τ ) × Y (τ ) determined by F (τ ) is 4-
wise clean with parameter λ, and since Alice is in step 3(a) at the start of a new phase,
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a(τ+1) is chosen to be the (normalized) component of η⊙v(τ ) that is orthogonal to previous
directions a(1), . . . ,a(τ ).

For each r = 1, . . . , τ + 1, let β(r) :=
〈
η ⊙ v(τ ),a(r)

〉
be the length of η ⊙ v(τ ) along

direction a(r). Each β(r) is F (τ )-measurable (i.e., it is determined by F (τ )) and η ⊙ v(τ ) =∑
r≤τ+1 β

(r) · a(r). In this case, we have

E
[(

∆z
(τ+1)
2

)2 ∣∣∣∣F (τ )

]
= E

[〈
U (τ+1) −U (τ ), η ⊙ v(τ )

〉2 ∣∣∣F (τ )
]

= E

(τ+1∑
r=1

β(r) ·
〈
u(τ+1) − u(τ ),a(r)

〉)2
∣∣∣∣∣∣F (τ )

 . (4.32)

Similar to the level-1 proof, the components of u(τ+1) and u(τ ) are roughly the same
along any of the previous directions a(1), . . . ,a(τ ) and so they almost cancel out and the
major quantity is in the direction a(τ+1). This follows since, in all the previous steps r ≤ τ ,

Alice has already fixed
〈
x

•

⊗ x,a(r)
〉

with precision 2−L. This implies that for any X(τ ) and

X(τ+1) that are determined by F (τ+1), the inner product with all the previous a(1), . . . ,a(τ )

is fixed with precision 2−L over the choice of x. Formally, by Fact 4.7.4, we have that for

any x ∈ X(τ ) and x′ ∈ X(τ+1), it holds that
∣∣∣〈x •

⊗ x,a(r)
〉
−
〈
x′

•

⊗ x′,a(r)
〉∣∣∣ ≤ 2−L for all

r ≤ τ . In particular, since u(τ ) = σ(X(τ )) and u(τ+1) = σ(X(τ+1)) are the corresponding
centers of mass, we have that∣∣〈u(τ+1) − u(τ ),a(r)

〉∣∣ ≤ 2−L for all r ≤ τ . (4.33)

On the other hand, since X(τ+1) ⊆ X(τ ) ⊆ X(0) = [−T, T ]n and a(τ+1) is a unit direction,
we have ∣∣〈u(τ+1) − u(τ ),a(τ+1)

〉∣∣ ≤ ∥∥u(τ+1) − u(τ )
∥∥ ≤ 2nT. (4.34)

Similarly, noting that η is a sign matrix, we can bound∣∣β(r)
∣∣ =

∣∣〈η ⊙ v(τ ),a(r)
〉∣∣ ≤ ∥∥η ⊙ v(τ )

∥∥ ≤ ∥∥v(τ )
∥∥ ≤ nT for all r ≤ τ + 1. (4.35)

Expanding the square in (4.32) and plugging these estimates to each one of the (τ + 1)2

terms gives

E
[(

∆z
(τ+1)
2

)2 ∣∣∣∣F (τ )

]
(4.36)

≤ E
[(
β(τ+1)

)2 〈
u(τ+1) − u(τ ),a(τ+1)

〉2
+ ((τ + 1)2 − 1) · 2(nT )3

2L

∣∣∣F (τ )
]

≤
(
β(τ+1)

)2 E [〈u(τ+1) − u(τ ),a(τ+1)
〉2 ∣∣∣F (τ )

]
+ 12n7T 3 · 2−L, (4.37)

where the second line follows from Claim 4.7.7.
We now bound the term outside the expectation by the change in the center of mass v(·)

and the term inside the expectation by the fact that the set is 4-wise clean.
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Term Outside the Expectation. Recall that a(τ+1) is chosen to be the (normalized)
component of η ⊙ v(τ ) that is orthogonal to the span of a(1), . . . ,a(τ ). Since η ⊙ v(τm−1) is
in the span of a(1), . . . ,a(τm−1+1) and τm−1 + 1 ≤ τ = τm, it is orthogonal to a(τ+1). Hence

β(τ+1) =
〈
η ⊙ v(τ ),a(τ+1)

〉
=
〈
η ⊙

(
v(τ ) − v(τm−1)

)
,a(τ+1)

〉
.

Since a(τ+1) is a unit direction and η is a sign matrix, this implies that(
β(τ+1)

)2 ≤ ∥∥v(τ ) − v(τm−1)
∥∥2 . (4.38)

Term Inside the Expectation. Recall that Alice is in step 3(a), she sends
〈
x

•

⊗ x,a(τ+1)
〉

with precision 2−L at time τ , and thus the same inner product with a(τ+1) is fixed with
precision 2−L for every point in X(τ+1) determined by F (τ+1). Thus

〈
u(τ+1),a(τ+1)

〉2
=

(
E

x∼γ

[〈
x

•

⊗ x,a(τ+1)
〉 ∣∣∣x ∈X(τ+1)

])2

=

(〈
x

•

⊗ x,a(τ+1)
〉

+ E
x∼γ

[
εx
∣∣x ∈X(τ+1)

])2

(|εx| ≤ 2−L is the truncation error by Fact 4.7.4)

≤
〈
x

•

⊗ x,a(τ+1)
〉2

+ 2−2L + 21−L ·
∣∣∣〈x •

⊗ x,a(τ+1)
〉∣∣∣

≤
〈
x

•

⊗ x,a(τ+1)
〉2

+ nT · 22−L, (4.39)

where the last line follows from
∣∣∣〈x •

⊗ x,a(τ+1)
〉∣∣∣ ≤ ∥∥∥x •

⊗ x
∥∥∥ and x ∈X(0) = [−T, T ]n.

Final Bound. Since (u(r))r is a matrix-valued martingale and thus E
[
u(τ+1)

∣∣F (τ )
]

=

u(τ ), we have

E
[〈
u(τ+1) − u(τ ),a(τ+1)

〉2 ∣∣∣F (τ )
]

= E
[〈
u(τ+1),a(τ+1)

〉2 − 〈u(τ ),a(τ+1)
〉2 ∣∣∣F (τ )

]
Then by (4.39), we upper bound the right hand side by

nT · 22−L + E
x∼γ

[〈
x

•

⊗ x,a(τ+1)
〉2
−
〈
u(τ ),a(τ+1)

〉2 ∣∣∣∣F (τ )

]
.

Since X(τ ) is 4-wise clean with parameter λ, it can be bounded by nT · 22−L + λ:

E
[〈
u(τ+1) − u(τ ),a(τ+1)

〉2 ∣∣∣F (τ )
]
≤ nT · 22−L + λ (4.40)
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Putting everything together, we have

E
[(

∆z
(τ+1)
2

)2 ∣∣∣∣F (τ )

]
≤
(
β(τ+1)

)2 E [〈u(τ+1) − u(τ ),a(τ+1)
〉2 ∣∣∣F (τ )

]
+ 12n7T 3 · 2−L

(by (4.37))

≤
(
β(τ+1)

)2 · (nT · 22−L + λ
)

+ 12n7T 3 · 2−L (by (4.40))

≤ λ ·
(
β(τ+1)

)2
+ n3T 3 · 22−L + 12n7T 3 · 2−L (by (4.35))

≤ λ ·
∥∥v(τ ) − v(τm−1)

∥∥2 + n3T 3 · 22−L + 12n7T 3 · 2−L (by (4.38))

≤ λ ·
∥∥v(τ ) − v(τm−1)

∥∥2 + 16n7T 3 · 2−L.

This completes the proof of the first statement in the lemma.
For the moreover part, let us condition on the event τm−1 < t < τm where Alice speaks

at time t. Note that such t must all lie in the same phase of the protocol where Alice is the
only one speaking. So, Bob’s center of mass does not change from the time τm−1 till t, i.e.,
v(t+1) = v(τm−1). Thus we have

∆z
(t+1)
2 =

〈
u(t+1) − u(t), η ⊙ v(τm−1)

〉
. (4.41)

Analogous to (4.33), the component of Alice’s center of mass along the previous directions
are fixed with precision 2−L. Thus by Fact 4.7.4,∣∣〈u(t+1) − u(t),a(r)

〉∣∣ ≤ 2−L for all r ≤ t. (4.42)

Furthermore, by construction, η ⊙ v(τm−1) lies in the space spanned by a(1), . . . ,a(τm−1+1).
Note that τm−1 + 1 ≤ t. Similar to the previous analysis, for each r = 1, . . . , t, let β(r) :=〈
η ⊙ v(t),a(r)

〉
be the length of η ⊙ v(t) along direction a(r). Then (4.35) also holds here.

Therefore∣∣∣∆z
(t+1)
2

∣∣∣ =

∣∣∣∣∣
t∑

r=1

β(r) ·
〈
u(t+1) − u(t),a(r)

〉∣∣∣∣∣ (by (4.41))

≤
t∑

r=1

∣∣β(r)
∣∣ · ∣∣〈u(t+1) − u(t),a(r)

〉∣∣ ≤ t∑
r=1

nT · 2−L (by (4.35) and (4.42))

≤ 2n3T · 2−L. (by Claim 4.7.7)

Conversion to Bounds on Depth (Proof of Lemma 4.7.10)

Recall γ∗ = γ(X(0))× γ(Y (0)) and γ(ℓ) = γ(X(D(ℓ))) · γ(Y (D(ℓ))) for each leaf ℓ. The goal of
this subsection is to prove Lemma 4.7.10.

We first note the following basic fact.
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Fact 4.7.13.
∑

ℓ γ(ℓ) = γ∗ and

Pr
x∼X(0),y∼Y (0)

[
C(x,y) reaches leaf ℓ

]
= γ(ℓ)/γ∗.

Now we apply Theorem 2.0.6 with k = 2 to relate the LHS of Lemma 4.7.10 with an
entropy-type bound.

Lemma 4.7.14. E
[∥∥u(d)

∥∥2
F

+
∥∥v(d)

∥∥2
F

]
≤ 4e2

γ∗

∑
ℓ γ(ℓ) · ln2

(
e

γ(ℓ)

)
.

Proof. Let ℓ be a fixed leaf and D = D(ℓ) be its depth. Note that this also fixes the
rectangle X(D) × Y (D) and thus the centers of mass u(D), v(D). Define the indicator function
1ℓ : R2n → {0, 1} by

1ℓ(x, y) =

{
1 (x, y) ∈ X(D) × Y (D),

0 otherwise.

Then we have∥∥u(D)
∥∥2
F

+
∥∥v(D)

∥∥2
F

=

∥∥∥∥ E
x∼γ

[
x

•

⊗ x
∣∣∣x ∈ X(D)

]∥∥∥∥2
F

+

∥∥∥∥ E
y∼γ

[
y

•

⊗ y
∣∣∣y ∈ Y (D)

]∥∥∥∥2
F

=
n∑

i,j=1
i ̸=j

(
E

x∼γ

[
xixj

∣∣x ∈ X(D)
])2

+
n∑

i,j=1
i ̸=j

(
E

y∼γ

[
yiyj

∣∣y ∈ Y (D)
])2

=
n∑

i,j=1
i ̸=j

(
E

x,y∼γ

[
xixj

∣∣ (x,y) ∈ X(D) × Y (D)
])2

+
n∑

i,j=1
i ̸=j

(
E

x,y∼γ

[
yiyj

∣∣ (x,y) ∈ X(D) × Y (D)
])2

=
2

γ(ℓ)2

 ∑
S∈([n]

2 )

(
E

x∼γ,y∼γ
[1ℓ(x,y)xS]

)2

+
∑

S∈([n]
2 )

(
E

x∼γ,y∼γ
[1ℓ(x,y)yS]

)2


≤ 2

γ(ℓ)2

∑
S∈([2n]

2 )

(
E

w∼γn×γn
[1ℓ(w)wS]

)2

≤ 2

γ(ℓ)2
· 2e2γ(ℓ)2 · ln2

(
e

γ(ℓ)

)
(by Theorem 2.0.6)

= 4e2 · ln2

(
e

γ(ℓ)

)
.

Therefore taking expectation over a random ℓ, by Fact 4.7.13, we have

E
[∥∥u(d)

∥∥2
F

+
∥∥v(d)

∥∥2
F

]
≤ 4e2 · E

ℓ

[
ln2

(
e

γ(ℓ)

)]
=

4e2

γ∗

∑
ℓ

γ(ℓ) · ln2

(
e

γ(ℓ)

)
.
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Now in the next lemma, we bound the right hand side of Lemma 4.7.14 in terms of the
second moment of the depth, which immediately proves Lemma 4.7.10.

Lemma 4.7.15. Assume that Tn ≤ 2L. Then,
∑

ℓ γ(ℓ) · ln2 (e/γ(ℓ)) ≤ O(1 + γ∗ · L2 E[d2]).

Proof. By Claim 4.7.6, and the assumption Tn ≤ 2L each message is of length at most
L+ log(Tn) ≤ 2L. We divide ℓ into two cases based on γ(ℓ):∑

ℓ:γ(ℓ)<2−3L·D(ℓ)

γ(ℓ) · ln2

(
e

γ(ℓ)

)
≤

∑
ℓ:γ(ℓ)<2−3L·D(ℓ)

2−3L·D(ℓ) · ln2
(
e · 23L·D(ℓ)

)
(x ln2(e/x) is increasing when 0 ≤ x ≤ 0.2)

≤
∞∑
t=1

2−3L·t · 2(9L2t2 + 1) · |{ℓ : D(ℓ) = t}| (since ln2(ab) ≤ 2 ln2(a) + 2 ln2(b))

≤
∞∑
t=1

2−3L·t · 2(9L2t2 + 1) · 2(2L)·t (each message is of length ≤ 2L)

≤
∞∑
t=1

2(9L2t2 + 1) · 2−Lt = O(1) (since L ≥ 2)

and ∑
ℓ:γ(ℓ)≥2−3L·D(ℓ)

γ(ℓ) · ln2

(
e

γ(ℓ)

)
≤

∑
ℓ:γ(ℓ)≥2−3L·D(ℓ)

γ(ℓ) · ln2
(
e · 23L·D(ℓ)

)
≤ 2 · 9L2

∑
ℓ

γ(ℓ)D(ℓ)2 + 2
∑
ℓ

γ(ℓ)

= 18L2γ∗ · E
ℓ

[
D(ℓ)2

]
+ 2

= 18L2γ∗ · E
[
d2
]

+ 2.

Adding up the two estimates above gives the desired bound.

Second Moment Bounds for the Depth (Proof of Lemma 4.7.11)

The final ingredient is an estimate for the second moment E[d2]. This subsection is devoted
to this goal and proving Lemma 4.7.11.

For messages ℓ′ = (c(1), . . . , c(t)), we define γ(ℓ′) = γ(X(t)) · γ(Y (t)) where X(t),Y (t) is
defined by the protocol using the messages ℓ′. Note that this definition is consistent with
γ(ℓ) for a leaf ℓ.
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Lemma 4.7.16. There exists a universal constant α > 0 such that the following holds. Let
0 ≤ d1 < d2 be two arbitrary integers with d2 − d1 ≥ 2d + 1. Let ℓ∗ = (c(1), . . . , c(d1)) be
arbitrary messages of the first d1 communication steps. Assume 2L ≥ 8n4T 2. Then

Pr [d ≥ d2 | ℓ∗] ≤
α · d22L2

λ · (d2 − d1 − 2d)
+

1

4
· 2−3L·d1

γ(ℓ∗)
.

Proof. Let x,y be sampled from γ conditioned on x ∈ X(0),y ∈ Y (0). Let ℓ be its corre-
sponding leaf in C and d be the depth of ℓ. By Claim 4.7.7, ℓ always has finite depth. We
extend a(t) = b(t) = 0n×n and X(t) = X(d),Y (t) = Y (d) for all t > d. Then define

k(x,y) =

d2∑
t=d1+1

(〈
x

•

⊗ x,a(t)
〉2

+
〈
y

•

⊗ y, b(t)
〉2)

and K = E
x,y∼γ

[k(x,y) | ℓ∗] ,

where a(·)’s and b(·)’s depend only on ℓ.12 Equivalently, we can write K as

K = E
x,y∼γ

[
k(x,y)

∣∣ (x,y) ∈ X(d1) × Y (d1)
]
,

where X(d1) and Y (d1) are fixed due to ℓ∗.
Observe that for any fixed t ≥ d1, X(t) × Y (t) induced by different ℓ, conditioned on

ℓ∗, is a disjoint partition of X(d1) × Y (d1). Therefore sampling x,y ∼ γ conditioned on
(x,y) ∈ X(d1) × Y (d1) is equivalent to

• first sample random messages ℓ′ = (c(d1+1), . . . , c(t)) conditioned on ℓ∗,

• then sample x,y ∼ γ conditioned on (x,y) ∈X(t) × Y (t) given ℓ′.

Note that we can further expand ℓ′ to a leaf ℓ as a full communication path, and obtain the
following equivalent sampling process:

• Sample a random leaf ℓ conditioned on ℓ∗.

• Sample x,y ∼ γ conditioned on (x,y) ∈X(t)×Y (t) defined by the first t messages of
ℓ.

As a result, we have

K =

d2∑
t=d1+1

E
ℓ

[
E

x,y∼γ

[〈
x

•

⊗ x,a(t)
〉2

+
〈
y

•

⊗ y, b(t)
〉2 ∣∣∣∣ (x,y) ∈X(t) × Y (t)

] ∣∣∣∣ ℓ∗]

= E
ℓ

[
d2∑

t=d1+1

E
x∼γ

[〈
x

•

⊗ x,a(t)
〉2 ∣∣∣∣x ∈X(t)

]
+ E

y∼γ

[〈
y

•

⊗ y, b(t)
〉2 ∣∣∣∣y ∈ Y (t)

] ∣∣∣∣∣ ℓ∗
]
.

12Note that ℓ specifies all the communication messages, which allows us to simulate the protocol and
obtain each a(·) and b(·).
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Observe that there are at most 2d many step 3(a) and 3(b) in ℓ. This means, if d ≥ d2,
then from the (d1 + 1)-th to the d2-th communication steps, there are at least d2 − d1 − 2d
cleanup steps (i.e., step 3(c)), each of which contributes at least λ to K. Thus we can lower
bound K by

K ≥ λ · (d2 − d1 − 2d) ·Pr [d ≥ d2 | ℓ∗] . (4.43)

On the other hand by Claim 4.7.7, there are at most n2 non-zero a(·)’s and at most n2

non-zero b(·)’s in each communication path. Thus

k(x,y) ≤ n2 ·
(

max
x∈X(0)

∥∥∥x •

⊗ x
∥∥∥2
F

+ max
y∈Y (0)

∥∥∥y •

⊗ y
∥∥∥2
F

)
< 2n4T 2. (4.44)

We now obtain another upper bound using Theorem 4.4.1. Let ℓ = (c(1), . . . , c(d2)) extend
ℓ∗ for the next d2−d1 messages.13 Then K = Eℓ

[
k(ℓ)

∣∣ ℓ∗] where k(ℓ) := Ex,y∼γ

[
k(x,y)

∣∣ ℓ].
Note that ℓ fixes a(·)’s and b(·)’s in k(x,y). Therefore we use kℓ(x,y) to denote k(x,y) with
the directions a(·)’s and b(·)’s fixed by ℓ. We now continue the bound on k(ℓ):

k(ℓ) ≤
∞∑
t=0

Pr
x,y∼γ

[
kℓ(x,y) ≥ t

∣∣ ℓ] =
∞∑
t=0

Prx,y∼γ

[
kℓ(x,y) ≥ t, ℓ

]
Prx,y∼γ

[
ℓ
]

=
∞∑
t=0

min

{
1,

Prx,y∼γ

[
kℓ(x,y) ≥ t, ℓ

]
γ(ℓ)

}
(by the definition of γ(·))

≤
∞∑
t=0

min

{
1,

Prx,y∼γ [kℓ(x,y) ≥ t]

γ(ℓ)

}
. (4.45)

We now analyze Prx,y∼γ [kℓ(x,y) ≥ t] using Theorem 4.4.1. Since a(t), b(t) cannot be non-
zero simultaneously, we rearrange the matrices and assume a(d1+1), . . . , a(d

′), b(d
′+1), . . . , b(d

′′)

are the only non-zero matrices where d′′ ≤ d2. Then

kℓ(x,y) =
d′∑

t=d1+1

〈
x

•

⊗ x, a(t)
〉2

+
d′′∑

t=d′+1

〈
y

•

⊗ y, b(t)
〉2
.

Note that a’s (resp., b’s) satisfy the condition in Theorem 4.4.1. Let 1/κ be the constant14

in Ω in Theorem 4.4.1. Hence

Pr [kℓ(x,y) ≥ t] ≤ Pr

[
d′∑

t=d1+1

〈
x

•

⊗ x, a(t)
〉2
≥ t/2

]
+ Pr

[
d′′∑

t=d′+1

〈
y

•

⊗ y, b(t)
〉2
≥ t/2

]

≤ 2 exp

{
−1

κ
· t/2

d′ − d1 +
√
t/2

}
+ 2 exp

{
−1

κ
· t/2

d′′ − d′ +
√
t/2

}
(by Theorem 4.4.1 and assuming t ≥ 196 ·max {d′ − d1, d′′ − d′})

13If ℓ becomes a leaf before d2, then we can simply pad dummy messages to it.
14In particular κ = 56448 suffices from our proof in Section 4.4.
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≤ 4 exp

{
−1

κ
· t/2

d2 − d1 +
√
t/2

}
. (since d1 ≤ d′ ≤ d′′ ≤ d2)

Thus for any t ≥ 196 · (d2 − d1) ≥ 196 ·max {d′ − d1, d′′ − d′}, we have

Pr [kℓ(x,y) ≥ t] ≤ 4 exp

{
−1

κ
· t/2

d2 − d1 +
√
t/2

}
. (4.46)

For γ(ℓ) ≥ 2−3L·d2 , we plug (4.46) into (4.45) and obtain

k(ℓ) ≤
196·(d2−d1)2∑

t=0

1 +
∑

t>196·(d2−d1)2

min

{
1, 23L·d2+1 · exp

{
−1

κ
· t/2

d2 − d1 +
√
t/2

}}
(by (4.46))

≤ 196 · (d2 − d1)2 + 1 +
∑

t≥196·(d2−d1)2

min

{
1, 23L·d2+1 · e−

1
κ
· t/2

2
√

t/2

}

≤ 197 · d22 +
∑
t≥1

min

{
1, 23L·d2+1 · e−

√
t/2

2κ

}
≤ α · d22L2, (4.47)

where α is another universal constant. Now we have

K = E
ℓ

[
k(ℓ)

∣∣ ℓ∗] =
∑
ℓ

γ(ℓ)

γ(ℓ∗)
· k(ℓ) =

∑
ℓ:γ(ℓ)<2−3L·d2

γ(ℓ)

γ(ℓ∗)
· k(ℓ) +

∑
ℓ:γ(ℓ)≥2−3L·d2

γ(ℓ)

γ(ℓ∗)
· k(ℓ),

where the first summation can be bounded by

∑
ℓ:γ(ℓ)<2−3L·d2

γ(ℓ)

γ(ℓ∗)
· k(ℓ) ≤ 2−3L·d1

γ(ℓ∗)
·
∑
ℓ

2−3L·(d2−d1) · n4T 2 (by (4.44))

≤ 2−3L·d1

γ(ℓ∗)
· 22L·(d2−d1) · 2−3L·(d2−d1) · n4T 2

(since ℓ∗ is fixed and each message is at most 2L bits)

=
2−3L·d1

γ(ℓ∗)
· 2n4T 2

2L
(since d2 − d1 ≥ 1)

and the second summation is bounded by

∑
ℓ:γ(ℓ)≥2−3L·d2

γ(ℓ)

γ(ℓ∗)
· k(ℓ) ≤

∑
ℓ

γ(ℓ)

γ(ℓ∗)
· α · d22L2 = α · d22L2. (by (4.47))
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Then combining (4.43), we have

λ · (d2 − d1 − 2d) ·Pr [d ≥ d2 | ℓ∗] ≤ α · d22L2 +
2−3L·d1

γ(ℓ∗)
· 2n4T 2

2L
.

Assume 2L ≥ 8n4T 2 and d2 − d1 ≥ 2d+ 1. Then

Pr [d ≥ d2 | ℓ∗] ≤
α · d22L2

λ · (d2 − d1 − 2d)
+

1

4
· 2−3L·d1

γ(ℓ∗)
.

Corollary 4.7.17. Assume γ∗ ≥ 3/4, T ≤ n, L ≥ Θ(log(n)), and λ ≥ Θ(dL2 log2(n)).
Then for each k = 0, 1, . . . , 4 log(n), we have

Pr [d ≥ 4kd] ≤ 2−k +
k

n5
.

Proof. We prove the bound by induction on k. The base case k = 0 is trivial. For the
inductive case, let ℓ∗ be the first 4(k − 1)d communication messages. Then we bound

P :=
∑

ℓ∗:γ(ℓ∗)/γ∗<2−3L·4(k−1)d

γ(ℓ∗)

γ∗
·Pr [d ≥ 4kd | ℓ∗]

and

Q :=
∑

ℓ∗:γ(ℓ∗)/γ∗≥2−3L·4(k−1)d

γ(ℓ∗)

γ∗
·Pr [d ≥ 4kd | ℓ∗]

separately.
For P , observe that if k = 1 then ℓ∗ is root of the protocol, thus γ(ℓ∗) = γ∗ and P = 0.

On the other hand, if k ≥ 2, then

P ≤
∑

ℓ∗:γ(ℓ∗)/γ∗<2−3L·4(k−1)d

2−3L·4(k−1)d ≤
∑
ℓ∗

2−3L·4(k−1)d

≤ 22L·4(k−1)d · 2−3L·4(k−1)d (each communication message is at most 2L bits)

= 2−L·4(k−1)d ≤ n−5. (since k ≥ 2 and L ≥ Θ(log(n)))

Now we turn to Q. Applying Lemma 4.7.16 with ℓ∗ and d1 = 4(k − 1)d, d2 = 4kd, we have

Q ≤
∑

ℓ∗:γ(ℓ∗)/γ∗≥2−3L·4(k−1)d

γ(ℓ∗)

γ∗
·
(

16α · k2d2L2

2dR
+

1

4
· 2−3L·4(k−1)d

γ(ℓ∗)

)

≤
∑
ℓ∗

γ(ℓ∗)

γ∗
·
(

8α · k2dL2

λ
+

1

4γ∗

)
= Pr [d ≥ 4(k − 1)d] ·

(
8α · k2dL2

λ
+

1

4γ∗

)
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≤ Pr [d ≥ 4(k − 1)d] · 1

2
(since γ∗ ≥ 3/4 and λ ≥ Θ(dL2 log2(n)), k ≤ 4 log(n))

≤
(

2−(k−1) +
k − 1

n5

)
· 1

2
≤ 2−k +

k − 1

n5
. (by induction hypothesis)

By adding up P and Q, we complete the induction.

Given Corollary 4.7.17 and suitable choice of the parameters, we now prove the second
moment bound.

Proof of Lemma 4.7.11. With L = Θ(log(n)), T = Θ(
√

log(n)), and λ = Θ(d log4(n)), by
Fact 4.7.3, we have γ∗ ≥ 3/4. Therefore the second moment of d is

E[d2] ≤
4 log(n)∑
k=0

(4(k + 1)d)2 ·Pr [d ≥ 4kd] + Pr [d ≥ 16d log(n)] · (2n2)2 (by Claim 4.7.7)

≤
4 log(n)∑
k=0

(4(k + 1)d)2 ·
(

2−k +
k

n5

)
+

(
n−4 +

4 log(n)

n5

)
· (2n2)2

(by Corollary 4.7.17)

= O(d2).

4.8 Fourier Growth Reductions For General Gadgets

In this section, we show that Fourier growth bounds of communication protocols for general
(constant-sized) gadgets can be reduced to the bounds of XOR-fiber, and vice versa. This
implies that in the study of Fourier growth, they are all equivalent.

Let a, b be two positive integers. Let g : {±1}a × {±1}b → {±1} be a gadget. We define
the g-fiber of communication protocols similar to the XOR-fiber:

Definition 4.8.1. For any randomized two-party protocol C : ({±1}a)n×({±1}b)n → [−1, 1],
its g-fiber, denoted by C↓g : {±1}n → [−1, 1], is defined by

C↓g(z) = E
x∼Uan,y∼Ubn

[C(x,y) | g(xi,yi) = zi, ∀i] ,

where the expectation is also over the internal randomness of C.

To compare the Fourier growth bounds between gadgets, we use Lk(g, d, a, b, n) to de-
note the upper bound of the level-k Fourier growth for the g-fiber of an arbitrary randomized
communication protocol C : ({±1}a)n × ({±1}b)n → [−1, 1] with at most d bits of commu-
nication, where g : {±1}a × {±1}b → {±1} is the gadget. Since randomized protocols are
convex combinations of deterministic protocols of the same cost, using this notation, our
main results Theorems 4.2.1 and 4.2.2 can be rephrased as

L1(XOR, d, 1, 1, n) ≤ O
(√

d
)

and L2(XOR, d, 1, 1, n) ≤ O
(
d3/2 log3(n)

)
.
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For any set S ⊆ [a], define xS =
∏

i∈S xi, and similarly for yT with T ⊆ [b]. Similar to
the standard Fourier representation of Boolean functions, the gadget g, which is a two-party
function, also has Fourier representation:

g(x, y) =
∑

S⊆[a],T⊆[b]

ĝ(S, T ) · xSyT , where ĝ(S, T ) = E
x∼Ua,y∼Ub

[g(x,y) · xSyT ] .

For convenience, we will assume g satisfies the following assumption. It’s easy to see that
the XOR gadget satisfies it.

Assumption 4.8.2. ĝ(S, T ) = 0 if S = ∅ or T = ∅.

Remark 4.8.3. This assumption is equivalent to the fact that, restricted on any input to
Alice’s side, the remaining function on Bob’s side is balanced, and vice versa.

Even if g does not satisfy the assumption, then we can embed it inside a similar gadget
g′ : {±1}a+1 × {±1}b+1 → {±1}, where we XOR the last bit of Alice and the last bit of Bob
to the old gadget g applied to Alice’s first a bits and Bob’s first b bits, i.e.,

g′(x, y) = xa+1yb+1 · g(x≤a, y≤b).

Then g′ satisfies the assumption and inherits most properties of g sufficient for studies in
communication complexity tasks.

Now for a protocol C : ({±1}a)n× ({±1}b)n → [−1, 1], it is also a two-party function and
thus admitting similar Fourier representation. We view an input from ({±1}a)n as indexed by
a tuple in [n]× [a]. Therefore any subset of ({±1}a)n is uniquely identified as

⋃
i∈[n] {i}×Si,

where each Si ⊆ [a]. We use S[n] to denote (Si)i∈[n]. Thus the Fourier coefficients of C can
be written as

Ĉ(S[n], T [n]) := Ĉ

⋃
i∈[n]

{i} × Si,
⋃
i∈[n]

{i} × Ti

 ,

and the Fourier representation of C is

C(x, y) =
∑

S[n],J [n]

Ĉ(S[n], T [n]) ·
∏
i∈[n]

xi,Si
·
∏
j∈[n]

yj,Tj
,

where xi,S =
∏

j∈S xi,j and similar for yj,T .
Under this notation and assuming Assumption 4.8.2, we can effectively compute the

Fourier coefficients of any g-fiber.

Fact 4.8.4. Assume gadget g : {±1}a×{±1}b → {±1} satisfies Assumption 4.8.2. Then we
have

Ĉ↓g(I) =
∑
SI ,T I

Si ̸=∅,Ti ̸=∅,∀i∈I

Ĉ(SI , T I) ·
∏
i∈I

ĝ(Si, Ti) for any I ⊆ [n],

where we use SI to denote S[n] with Sj fixed to ∅ for all j /∈ I.
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Proof. Observe that

Ĉ↓g(I) = E
z∼Un

[
C↓g(z) ·

∏
i∈I

zi

]

= E
z∼Un

[
E

x∼Uan,y∼Ubn

[C(x,y) | g(xi,yi) = zi, ∀i] ·
∏
i∈I

zi

]

= E
z∼Un

[
E

x∼Uan,y∼Ubn

[
C(x,y) ·

∏
i∈I

g(xi,yi)

∣∣∣∣∣ g(xi,yi) = zi, ∀i

]]
.

Since ĝ(∅, ∅) = 0 by Assumption 4.8.2, every pair (x, y) is sampled with the same probability
under the conditional distribution. Thus we get

Ĉ↓g(I) = E
x∼Uan,y∼Ubn

[
C(x,y) ·

∏
i∈I

g(xi,yi)

]
.

Now we expand C and g in the Fourier basis and obtain

Ĉ↓g(I)

= E
x∼Uan,y∼Ubn

 ∑
S[n],T [n]

Ĉ(S[n], T [n])
∏
i∈[n]

xi,Si

∏
j∈[n]

yj,Tj

 ·∏
i∈I

(∑
Si,Ti

ĝ(Si, Ti)xi,Si
yi,Ti

)
= E

x∼Uan,y∼Ubn

 ∑
S[n],T [n]

Ĉ(S[n], T [n])
∏
i∈[n]

xi,Si

∏
j∈[n]

yj,Tj

∑
SI ,T I

∏
i∈I

ĝ(Si, Ti)xi,Si
yi,Ti


=
∑
SI ,T I

Ĉ(SI , T I) ·
∏
i∈I

ĝ(Si, Ti)

=
∑
SI ,T I

Si ̸=∅,Ti ̸=∅,∀i∈I

Ĉ(SI , T I) ·
∏
i∈I

ĝ(Si, Ti), (by Assumption 4.8.2)

as desired.

Now we present the reduction from XOR-fiber to a general g-fiber.

Theorem 4.8.5. Assume gadget g : {±1}a × {±1}b → {±1} satisfies Assumption 4.8.2.
Then

Lk(XOR, d, 1, 1, n) ≤
(

max
S,T
|ĝ(S, T )|

)−k

· Lk(g, d, a, b, n)

≤ 2(a+b)·k/2 · Lk(g, d, a, b, n).
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Proof. Let C : {±1}n × {±1}n → [−1, 1] be an arbitrary protocol of cost at most d. Then
for a fixed set I ⊆ [n], by Fact 4.8.4 applied to the XOR gadget, we have

Ĉ↓XOR(I) = Ĉ(1I , 1I). (4.48)

Let S ⊆ [a] and T ⊆ [b] maximize |ĝ(S, T )|. Since g satisfies Assumption 4.8.2, we know S
and T are not empty sets.

Now define a different protocol C ′ : ({±1}a)n × ({±1}b)n → [−1, 1] as follows: After
receiving input x, Alice computes x′i = xi,S for each block xi; and Bob computes similarly
y′i = yi,T upon receiving input y. Then they execute the protocol C on x′ and y′. That is,
C ′(x, y) = C(x′, y′). Therefore, for any I ⊆ [n] and SI , T I satisfying Si ̸= ∅, Ti ̸= ∅ for i ∈ I,
we have

Ĉ ′(SI , T I) =

{
Ĉ(1I , 1I) Si = S, Ti = T, ∀i ∈ I,
0 otherwise.

Then by (4.48) and Fact 4.8.4 applied to C ′ with gadget g, we have

Ĉ ′↓g(I) = Ĉ(1I , 1I) · ĝ(S, T )|I| = Ĉ↓XOR(I) · ĝ(S, T )|I|.

Now summing over all I ⊆ [n] of size k, we have

Lk(C↓XOR) =
∑

I⊆[n]:|I|=k

∣∣∣Ĉ↓XOR(I)
∣∣∣ = |ĝ(S, T )|−k ·

∑
I⊆[n]:|I|=k

∣∣∣Ĉ ′↓g(I)
∣∣∣ = |ĝ(S, T )|−k · Lk(C ′↓g)

≤ |ĝ(S, T )|−k · Lk(g, d, a, b, n). (since C ′ has cost at most d)

Since C is arbitrary, this proves the first half of Theorem 4.8.5. To prove the second half, we
use an averaging argument and Parseval’s identity on g:

|ĝ(S, T )| ≥
√

2−a−b
∑
S′,T ′

ĝ(S ′, T ′)2 =
√

2−a−b.

Using similar analysis, we also have a reduction from a general g-fiber to XOR-fiber.

Theorem 4.8.6. Assume gadget g : {±1}a × {±1}b → {±1} satisfies Assumption 4.8.2.
Then

Lk(g, d, a, b, n) ≤

(∑
S,T

|ĝ(S, T )|

)k

· Lk(XOR, d, 1, 1, n)

≤ 2(a+b)·k/2 · Lk(XOR, d, 1, 1, n).

Proof. Let C : ({±1}a)n × ({±1}b)n → [−1, 1] be an arbitrary protocol of cost at most d.
Then for a fixed set I ⊆ [n], by Fact 4.8.4 applied to gadget g and using Assumption 4.8.2,
we have

Ĉ↓g(I) =
∑
SI ,T I

Ĉ(SI , T I) ·
∏
i∈I

ĝ(Si, Ti).
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Therefore

Lk(C↓g) ≤
∑

I⊆[n]:|I|=k

∑
SI ,T I

∣∣∣Ĉ(SI , T I)
∣∣∣ · ∣∣∣∣∣∏

i∈I

ĝ(Si, Ti)

∣∣∣∣∣ .
Now let M =

∑
S,T |ĝ(S, T )|. Let ρ be a distribution over subsets of [a] × [b] and its

probability density function is defined as:

ρ(S, T ) = |ĝ(S, T )|/M.

Then we can rewrite Lk(C↓g) as

Lk(C↓g) ≤
∑

I⊆[n]:|I|=k

E
(SI ,T I)∼ρI

[∣∣∣Ĉ(SI ,T I)
∣∣∣ ·Mk

]

= Mk · E
(S[n],T [n])∼ρ[n]

 ∑
I⊆[n]:|I|=k

∣∣∣Ĉ(SI ,T I)
∣∣∣
 . (4.49)

Now we fix an arbitrary (S[n], T [n]) sampled from ρ[n]. Note that Si and Ti are not empty
by the definition of ρ and Assumption 4.8.2. Then define a different protocol C ′ : {±1}n ×
{±1}n → [−1, 1] as follows: After receiving input x, Alice samples x′ ∈ ({±1}a)n uniformly
conditioned on x′i,Si

= xi for all i ∈ [n]; and Bob samples similarly y′ ∈ ({±1}b)n conditioned
on y′i,Ti

= yi for all i ∈ [n]. Then they execute the protocol C on x′ and y′. That is,
C ′(x, y) = Ex′,y′ [C(x′,y′)]. Therefore, for any I ⊆ [n], we have

Ĉ ′(1I , 1I) = Ĉ(SI , T I).

By Fact 4.8.4 applied to C ′ and the XOR gadget, we have

Ĉ ′↓XOR(I) = Ĉ ′(1I , 1I) = Ĉ(SI , T I).

Since C ′ has cost at most d, we have∑
I⊆[n]:|I|=k

∣∣∣Ĉ(SI , T I)
∣∣∣ =

∑
I⊆[n]:|I|=k

∣∣∣Ĉ ′↓XOR(I)
∣∣∣ = Lk(C ′↓XOR) ≤ Lk(XOR, d, 1, 1, n).

Putting back to (4.49), we have

Lk(C↓g) ≤Mk · Lk(XOR, d, 1, 1, n),

which proves the first half of Theorem 4.8.6 since C is arbitrary. To prove the second half,
we use Cauchy-Schwarz inequality and Parseval’s identity on g:

M =
∑
S,T

|ĝ(S, T )| ≤
√

2a+b
∑
S,T

ĝ(S, T )2 =
√

2a+b.
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As a corollary, to study the Fourier growth bounds, we can switch between gadgets
conveniently, as long as the gadgets have small size.

Corollary 4.8.7. Assume Assumption 4.8.2 holds for gadgets g : {±1}a × {±1}b → {±1}
and g′ : {±1}a′ × {±1}b′ → {±1}. Then

Lk(g, d, a, b, n) ≤ 2(a+b+a′+b′)·k/2 · Lk(g′, d, a′, b′, n).

4.9 Directions Towards Further Improvements

In this section we propose potential directions for further improving our second level bounds.
In one approach, we show that better Fourier growth bounds can be obtained from strong
lifting theorems in a black-box way. This relies on the Fourier growth reductions in Sec-
tion 4.8. In another direction, we examine the bottleneck in our analysis and identify major
obstacles within.

Better Lifting Theorems Imply Better Fourier Growth

Let f : {±1}n → {±1} be a Boolean function. Let g : {±1}a × {±1}b → {±1} be a gadget.
A lifting theorem connects the communication complexity of f ◦g with the query complexity
of f . Some lifting theorems show that a low-cost communication protocol can be simulated
by a low-cost query algorithm.

To be more precise, let C : ({±1}a)n × ({±1}b)n → [−1, 1] be a randomized two-party
protocol. Recall Definition 4.8.1, the g-fiber of C, denoted C↓g(z) : {±1}n → [−1, 1], is
defined by

C↓g(z) = E
x∼Uan,y∼Ubn

[C(x,y) | g(xi,yi) = zi, ∀i] .

We say that g satisfies a strong lifting theorem if for all randomized protocols C of small
communication bits, there is a randomized decision tree of small depth that approximates
C↓g on each input with error 1/poly(n) (see e.g., [GPW20]).

Theorem 4.9.1. Assume gadget g : {±1}a × {±1}b → {±1} satisfies Assumption 4.8.2.
Assume for any randomized protocol C : ({±1}a)n × ({±1}b)n → [−1, 1] with at most d
bits of communication, there exists a randomized decision tree T of depth at most D that
approximates C↓g with pointwise error at most 1/nk, i.e.,

|T (z)− C↓g(z)| ≤ n−k ∀z ∈ {±1}n.

Then, for any randomized protocol C ′ : {±1}n × {±1}n → [−1, 1] with at most d bits of
communication, its XOR-fiber C ′↓XOR has level-k Fourier growth

Lk(C ′↓XOR) ≤
(

max
S,T
|ĝ(S, T )|

)−k

·
√
Dk ·O (log(n))k−1

≤ 2(a+b)·k/2 ·
√
Dk ·O (log(n))k−1.
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As a simple corollary, we see that if the assumption of Theorem 4.9.1 holds with k = 2,
D = d · polylog(n), and a polylogarithmic-sized gadget g (i.e., 2a, 2b ≤ polylog(n)), then the
second level Fourier growth of the XOR-fiber of any randomized protocol of cost d is at most
d ·polylog(n) as desired. In addition, by a majority vote of O(k log(n)) independent copies of
the randomized decision tree, the error condition above can be relaxed to any small constant.

We also remark that state-of-the-art lifting results hold with the gadget g being:

• The inner product on a = b = O(log(n)) bits [CFK+19]. However, for such g the largest
Fourier coefficient squared is 1/poly(n), which yields a trivial bound in Theorem 4.9.1.

• The index function with a = poly(n), b = log(a) [GPW20].15 In this case the largest
Fourier coefficient squared is 1/a2, which again yields a trivial bound in Theorem 4.9.1.
Nonetheless, even a polynomial improvement on a, say a = n0.01, would give new non-
trivial bounds in Theorem 4.9.1 and in turn improves our lower bound on the XOR-lift
of Forrelation.

Proof of Theorem 4.9.1. Let C : ({±1}a)n × ({±1}b)n → [−1, 1] be a randomized protocol
of cost at most d. Then by assumption, C↓g can be approximated up to error 1/nk by a
randomized decision tree T of depth at most D. Thus any Fourier coefficient of C↓g and
T differs by at most 1/nk. Therefore by the level-k Fourier growth bounds on randomized
decision trees [Tal20, SSW23], we have

Lk(C↓g) ≤
∑

S⊆[n]:|S|=k

(
n−k +

∣∣∣T̂ (S)
∣∣∣) ≤√Dk ·O(log(n))k−1.

Since C is arbitrary, the claimed bound for C ′↓XOR follows from Theorem 4.8.5.

Sums of Squares of Quadratic Forms for Pairwise Clean Sets

In our analysis for the level-2 bound, we showed that one can transform a general protocol to
a 4-wise clean protocol with parameter λ = d · polylog(n) by adding O(d) additional cleanup
steps in expectation. If one could show that with essentially the same number of steps, one
could take λ = polylog(n), then we would obtain the optimal level-2 bound of d · polylog(n).

We recall that to bound the number of cleanup steps, we rely on a concentration inequality
for sums of squares of orthonormal quadratic forms (Theorem 4.4.1), which says that if
M1, . . . ,Mm are matrices with zero diagonal and form an orthonormal set when viewed as n2

dimensional vectors, then the random variable q =
∑m

i=1

〈
x

•

⊗ x,Mi

〉2
satisfies Prx∼γn [q ≥

t] ≤ e−Ω(
√
t) for any t ≳ m2. Using this tail bound for m = Θ(d) and conditioning on x ∈ X

where X is an arbitrary subset of Rn with Gaussian measure ≈ 2−d, we obtained a bound
Ex∼γ[q | x ∈ X] ≲ d2. This shows that there can be at most O(d) such quadratic forms Mi’s

15For deterministic lifting, a better bound a = O(n log(n)) is known [LMM+22], but it doesn’t suffice for
our reduction.
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where the value Ex∼γ

[〈
x

•

⊗ x,Mi

〉2 ∣∣∣∣x ∈ X] can be larger than d and hence, the reason

we can only take λ ≈ d. We note that the argument just described is for the non-adaptive
setting, while in our case the Mi’s are also being chosen adaptively, so additional work is
needed.

The next example shows that the aforementioned statement is tight even in the non-
adaptive setting where the Mi’s are fixed: in particular, there is a set X of large measure
and ≈ d such orthonormal quadratic forms where the above expectation after conditioning
on x ∈ X is Θ(d2).

Example 4.9.2. For 1 ≤ i < j ≤
√
d, let Mij = Eij for i < j where Eij denotes the n× n

matrix where only the (i, j) entry is one. Note that the matrices Mij form an orthonormal
set and they all have a zero diagonal. Let X =

{
x ∈ Rn

∣∣ |xi| ≳ d1/4 for all i ≤ d1/2
}
. Then,

the Gaussian measure γ(X) = 2−Θ(d) but

E
x∼γ

 ∑
1≤i<j≤

√
d

〈
x

•

⊗ x,Mij

〉2 ∣∣∣∣∣∣x ∈ X
 = Θ(d2).

Note that the set X in the example above is not pairwise clean and for our application,
one can get around it by first ensuring that the protocol is pairwise clean and then proceeding
with the 4-wise cleanup process. Motivated by this, we speculate that when the set is pairwise
clean, then the expected value of the sum of squares of orthonormal quadratic forms is much
smaller unlike the example above. Assuming such a statement and combining it with our
ideas for handling the adaptivity suggests a potential way of improving the level-2 bounds.
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Chapter 5

The Power of Adaptivity in Quantum
Query Algorithms

Motivated by limitations on the depth of near-term quantum devices, we study the depth-
computation trade-off in the query model, where the depth corresponds to the number of
adaptive query rounds and the computation per layer corresponds to the number of parallel
queries per round. We achieve the strongest known separation between quantum algorithms
with r versus r − 1 rounds of adaptivity. We do so by using the k-fold Forrelation problem
introduced by Aaronson and Ambainis (SICOMP’18). For k = 2r, this problem can be
solved using an r round quantum algorithm with only one query per round, yet we show
that any r − 1 round quantum algorithm needs an exponential (in the number of qubits)
number of parallel queries per round.

Our results are proven following the Fourier analytic machinery developed in recent works
on quantum-classical separations. The key new component in our result are bounds on the
Fourier weights of quantum query algorithms with bounded number of rounds of adaptivity.
These may be of independent interest as they distinguish the polynomials that arise from
such algorithms from arbitrary bounded polynomials of the same degree.

Organization. In Section 5.1, we give a brief introduction on adaptivity in quantum query
algorithms. In Section 5.2, we explain our main results. An overview of our Fourier growth
analysis is provided in Section 5.3. Section 5.4 contains the full proof of our Fourier growth
bounds. In Section 5.5, we discuss the tightness of our result in the non-adaptive setting. In
Section 5.6, we generalize our result to quantum query algorithms with classical preprocessing
power.

5.1 Introduction

A quantum query algorithm has “black-box access” to the input and is only charged for
quantum queries to the input, while any intermediate computation is considered free. Most
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well-known quantum algorithms, such as Grover’s search [Gro96], Deutsch-Josza’s algo-
rithm [DJ92], Bernstein-Vazirani’s algorithm [BV97], Simon’s Algorithm [Sim97], and Shor’s
period-finding algorithm [Sho99], are captured by this black-box access model. There are
slightly different models of black-box access to the input and in this work, we consider the
most basic access model where each query returns a bit of the input.

Our focus is to identify the exact limits of quantum depth in the query model. One of the
primary motivations for studying the power of depth comes from near-term quantum hard-
ware which is restricted to quantum circuits of small depth in order to combat decoherence
due to noise. Because of depth limitations, one needs to use wider circuits with more gates
in each layer to perform computation, thus making parallel operations quite desirable. This
makes optimizing the depth-width trade-off a fundamental task in quantum circuit synthesis
for the near-term: reducing circuit depth allows the computation to be completed before the
qubits decohere too much, but it also requires more quantum gates per layer.

On the positive side, Cleve and Watrous [CW00] showed how to implement the quantum
Fourier transform in a parallel fashion, which leads to the parallelization of Shor’s factor-
ing algorithm [Sho99]. Regev [Reg25] employed parallelization followed by polynomial-time
classical post-processing, to design a more efficient quantum algorithm for factoring under
certain number-theoretic conjectures. On the other hand, Moore and Nilsson [MN01] con-
jectured that certain staircase-shaped quantum circuits cannot be efficiently parallelized.

In the query model abstraction, the circuit depth corresponds to the number of adaptive
rounds, denoted by r, and the circuit width corresponds to the maximal number of parallel
queries, denoted by t, per round. An extreme case r = 1 is the non-adaptive quantum
query algorithm, where all queries are made in parallel. Perhaps surprisingly, van Dam
[vD98] showed that any n-bit Boolean function can be computed with bounded error using
only t ≤ n/2 + O(

√
n) non-adaptive quantum queries, which is essentially tight for total

functions [Mon10]. Techniques have been developed to establish lower bounds for various
problems in this non-adaptive setting [NY04, KLPY10, Bur19], but less is known when we
have more adaptive rounds. Zalka [Zal99] considered the unordered search problem on n-bit
database and showed that t = Ω(n/r2) is needed. This matches the simple divide-and-
search algorithm: Partition the space into O(n/r2) parts of O(r2) size each and execute
Grover’s algorithm [Gro96] on each part in parallel in r steps. Jeffery, Magniez, and de Wolf
[JMdW17] proved tight t = Θ(n/r3/2) trade-off for the element distinctness problem and
tight t = Θ(n/r1+1/k) trade-off for the k-sum problem.

The above results show that being more adaptive indeed reduces the need of quantum
queries. However the improvement is quite marginal: Even if we double the number of
rounds, the saving is still only a constant factor. This naturally leads to the following
question:

What is the largest possible saving in queries offered by more rounds of adaptivity?
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5.2 Our Results

We answer the above question in the strongest sense and along the way prove structural
theorems about the Fourier spectrum of polynomials that arise from low-depth quantum
algorithms.

Our main result shows that the aforementioned k-fold Forrelation problem separates dif-
ferent levels of quantum computational power, measured in terms of adaptivity. Informally,
the saving in the number of parallel queries can be unbounded, even when we just have one
more adaptive round.

Theorem 5.2.1. For any constant r ≥ 2, the 2r-fold Forrelation problem on n-bit inputs

1. can be solved with advantage 2−10r by r adaptive rounds of queries with one quantum
query per round, yet

2. any quantum query algorithm with r − 1 adaptive rounds requires Ω̃(n1/r2) parallel
queries to approximate it.

Item 2 continues to hold even in the presence of a large amount of classical pre-processing.
In more detail, we consider algorithms that are allowed to first make classical queries and
based on the outputs, choose a quantum algorithm to run that has k− 1 rounds of t parallel
queries each. We show that any such algorithm must either make Ω(n1/(2r)) classical queries

or Ω̃(n1/r2) quantum queries. See Section 5.6 for more details.
We note two easy modifications of the above theorem that also follow from our work,

which we do not state in the theorem statement above for brevity. First, in the first item
above, one can boost the advantage of the quantum algorithm to any constant close to 1 by
making 2O(r) parallel queries per round without increasing the number of rounds since error
amplification can be done by making parallel queries. Second, we can more generally obtain
an r versus r′ separation for any r′ < r where the lower bound in the second item improves
as r′ decreases and is of the form Ω̃(nc(r,r′)) where

c(r, r′) =

{
1− 1

r
for r′ = 1,

r−r′

rr′+r/2
≥ 1

r2
for 2 ≤ r′ ≤ r − 1.

(5.1)

For example, reducing the number of rounds by a factor of 2, i.e., when r = 2r′, gives
c(r, r′) = 1/(r + 1). Furthermore, notice that the case when r′ = 1 corresponds to a non-
adaptive lower bound: here we obtain that any non-adaptive quantum algorithm that solves
2r-fold Forrelation must make Ω̃(n1−1/r) parallel queries.

Remark 5.2.2. We recall that k-fold Forrelation is a partial function and being a partial
function is necessary for Item 1. [Zal99, JMdW17] showed that for any total Boolean function
f , the number of parallel quantum queries needed with r rounds is t = Ω(bs(f)/r2), where
bs(f) is the block sensitivity complexity of f . Note that Simon [Sim83] proved that bs(f) =
Ω(log n) if f is a non-degenerate n-bit Boolean function. This implies that t = Ω(log n)
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when r is a constant. Similarly, Ambainis and de Wolf [AdW14] showed that any non-
degenerate n-bit total function requires Ω(log n/ log log n) quantum queries in total, which
implies t = Ω(log n/(r log log n)). In summary, for total functions and constant rounds, the
best possible separation is only logarithmic-vs-polynomial, instead of the O(1)-vs-polynomial
separation we obtain.

As mentioned previously, Item 1 of Theorem 5.2.1 was already known since the work
of [AA18] and the crux of our result is the lower bound in Item 2. Lower bounds for
k-fold Forrelation are quite non-trivial to prove even for classical query algorithms and
the known techniques rely on the polynomial method. The polynomial method cannot be
directly applied since k-fold Forrelation is a low-degree bounded polynomial and as such one
needs to find a way to distinguish it from the polynomials of much higher degree that are
computed by the computational model of interest. In particular, we use Fourier growth as
the distinguisher.

Fourier Growth of Low-Depth Quantum Algorithms

Following [RT22, Tal20], Bansal and Sinha [BS21] successfully related the advantage of
approximating k-fold Forrelation for k = 2r with the (low-level) Fourier growth of the model
of computation in question. See Theorem 2.0.12 for detail. As a direct application, Item 2
of Theorem 5.2.1 follows from the following Fourier growth bounds.

Theorem 5.2.3. Let A be a quantum query algorithm on n-bit inputs with arbitrarily
many auxiliary qubits. Assume A has r adaptive rounds of t ≤ n parallel queries. De-
fine f : {±1}n → [0, 1] by f(x) = Pr [A accepts x]. Then

Lℓ(f) ≤ Or,ℓ

(
tℓ ·
(√

n/t
)⌊(1− 1

2r )ℓ⌋)
.

Moreover, this bound holds when some bits of x are fixed in advance.

Remark 5.2.4. In the non-adaptive case (i.e., r = 1), the bound in Theorem 5.2.3 can be
improved (see Section 5.3 for detail) to

Lℓ(f) ≤ Oℓ

(
tℓ/4 · nℓ/4

)
.

This is also tight as shown in Section 5.5.

Proof of Theorem 5.2.1 and (5.1). Since Item 1 follows from Fact 2.0.11, we focus on Item 2.
By Theorem 2.0.12, it suffices to show(

1√
n

)1− 1
2r

· (Lℓ(f))1/ℓ ≤ r−20 for all 2r ≤ ℓ ≤ 2r · (2r − 1) and t ≤ Or

(
nc(r,r′)

)
(5.2)
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where the Fourier growth bound Lℓ(f) is from Theorem 5.2.3 and satisfies

Lℓ(f) ≤ Or′,ℓ

(
tℓ ·
(√

n/t
)⌊(1− 1

2r′ )ℓ⌋
)
≤ Or

(
t
1
2
+ 1

4r′ · n
1
2
− 1

4r′
)ℓ

for low levels of ℓ ≤ O(r2). Putting c(r, r′) = r−r′

rr′+r/2
gives the desired bound in (5.1).

For the special case r′ = 1, we apply the improved bound from Remark 5.2.4:

Lℓ(f) ≤ Oℓ

(
tℓ/4 · nℓ/4

)
≤ Or

(
t1/4 · n1/4

)ℓ
for low levels of ℓ ≤ O(r2). Now (5.2) holds with c(r, r′) = 1− 1/r as desired.

The acceptance probability of any quantum query algorithm that makes d queries can
be expressed as a degree-2d bounded polynomial. Most of the techniques in the literature
do not distinguish polynomials that come from quantum algorithms from general bounded
polynomials and we lack a sufficiently good understanding of such distinctions.

Our Fourier growth bounds are far better than the bounds that can be obtained by
directly applying the Fourier growth estimates for low-degree bounded polynomials [IRR+21,
EI22]. Thus, this points to one way in which polynomials computed by low-depth quantum
algorithms are different than general bounded polynomials of the same degree.

Classically Simulating Low-Depth Quantum Algorithms

We mention an open problem related to the question of where the exact limits of the trade-
offs between depth and the number of parallel queries lie. As mentioned before, if there is
only one query per round (t = 1), then Aaronson and Ambainis [AA18] conjectured that
any r-round quantum algorithm can be simulated with O(n1−1/2r) classical queries and this
conjecture was proved by [BGGS22]. Does such a classical simulation continue to exist for
low-depth quantum algorithms that make multiple parallel queries per round? We believe
this is the case and make the following conjecture.

Conjecture 5.2.5. Any quantum query algorithm on n-bit inputs with r adaptive rounds
and t parallel queries per round can be classically simulated with Õt,r

(
n1−1/2r

)
queries.

It is worth mentioning that the Fourier growth bounds of classical query models (aka
decision trees) [Tal20, SSW23] scales roughly like (D · log n)ℓ/2 where D is the number of
classical queries. Our Fourier bound matches the Fourier bound for decision trees of depth
Õr,t

(
n1−1/2r

)
giving some support to the above conjecture.

Related Works in Communication Models. Aside from the aforementioned results in
the quantum query complexity, the round-query trade-off in the query model can also be
deduced from the round-communication trade-off in the model of communication complexity.
In this model, Alice and Bob are given n-bit inputs x and y separately and their goal is to
evaluate some function F (x, y) by communication.
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Given such a communication task F , we immediately get a query task f by letting
z = (x, y) and defining f(z) = F (x, y). Then each quantum query to z can be implemented
in the communication setting by Alice and Bob exchanging one round of O(log n) qubits.1

Therefore if F requires sending t log n qubits in each round, then the corresponding f requires
Ω(t) parallel queries in each round. Via this reduction, the pointer chasing problem with r

jumps needs Ω̃r(n) parallel queries with r− 1 adaptive rounds [KNTZ01, JRS02], whereas it
can be solved with r adaptive rounds of O(log n) queries. Since the pointer chasing problem
is a total function, by Remark 5.2.2 this logarithmic-vs-polynomial separation cannot be
further improved to an O(1)-vs-polynomial separation.

We remark that2 it is possible to define a variant of the pointer chasing problem which
only uses one quantum query per round. This is achieved by using the Bernstein-Vazirani
trick (see [Wat09]) to encode the address of each jump by the Hadamard code. Note that
this is a partial function (due to the Bernstein-Vazirani trick), and it is conceivable that it
will require nΩ(1) queries if the number of adaptive rounds is reduced. In light of this, we
highlight that our results generalize to the setting of quantum query algorithms with classical
preprocessing, where the algorithm is allowed to first perform nΩ(1) classical queries, then
adaptively choose a quantum query algorithm with prescribed number of rounds and parallel
queries. See details in Section 5.6. In this setting, variants of the pointer chasing problem
would be solved already in the classical preprocessing phase, whereas the 2r-fold Forrelation
problem still exhibits an O(1)-vs-polynomial separation.

Related Works in Hybrid Models. There is another line of work on hybrid quantum-
classical query algorithms that is related to the questions studied here. In particular, this line
of work [CM20, CH23, HG22, ACC+23] considers the trade-off between quantum depth and
the number of classical queries in a model that allows both. Although some of these works
prove a fine-grained depth separation that seems similar to ours, the models considered
in these works do not allow parallel queries (or only allow polylog(n)-parallel queries in
[CM20]) and they do not study the trade-offs between depth and parallel quantum queries.
Consequently, these results are not comparable to ours.

5.3 Proof Overview

Describing Quantum Algorithms with Parallel Queries. Quantum algorithms which
make parallel queries have the following form. First, we have an initial state |u⟩; this state
has some registers to index coordinates of the input and some registers for workspace. The
algorithm has several rounds, where each round consists of a few parallel oracle queries
followed by a unitary operator. The parallel queries are modelled by O⊗t

x ⊗ I. Here, Ox is an

1Here log n is required for indexing an n-bit string in superposition, which is not needed classically. By
switching the role of Alice and Bob between communication rounds, we can simulate r queries in r rounds
of communication and one party in the end will compute the answer.

2We thank an anonymous QIP’24 reviewer for pointing this out.
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(n+ 1)× (n+ 1) unitary that maps |i⟩ to xi |i⟩ for all i ∈ [n] and keeps |0⟩ fixed, and this is
equivalent to the usual quantum query oracle. The operator O⊗t

x implements t parallel oracle
queries and I acts as the identity matrix on the workspace. Finally, the algorithm applies
some two-outcome measurement and returns the outcome as the output. See Figure 5.1 for
depiction.

|u⟩ O⊗t
x O⊗t

xU1 Ur

output

Figure 5.1: Quantum algorithm with r adaptive rounds of t parallel queries each.

For simplicity, let us imagine that there is no workspace memory. Additionally, let us
ignore the action of the oracle Ox on the basis state |0⟩ and treat Ox as an n × n unitary
matrix. These simplifications are only for the proof overview, and our proof works in full
generality. In this case, the acceptance probability of this algorithm can be expressed as

f(x) = u†O⊗t
x M1O

⊗t
x · · ·Mk−1O

⊗t
x v, (5.3)

where k is twice the number of rounds, u = v corresponds to the initial state, M1 =
M †

k−1,M2 = M †
k−2, . . . ,Mk/2−1 = M †

k/2+1 are the k
2
− 1 unitary operators applied by the

quantum algorithm and Mk/2 is the final measurement operator. For the rest of our proof,
we can forget about the exact details of these matrices, we will only need that M1, . . . ,Mk−1

have bounded operator norm and u, v are unit vectors.

Fourier Growth of Quantum Algorithms. Let us now understand the Fourier growth
of functions as in (5.3) where M1, . . . ,Mk−1 have bounded operator norm and u, v are unit
vectors. We first set up some notation. We use I ∈ [n]t to denote a t-tuple of elements in
[n]. We can view I as an ordered multiset of [n] of size t (when counted with multiplicity).
Accordingly, we use ⊕I to denote the set of elements that appear an odd number of times
in I and use ⊕I ⊕ I ′ to denote (⊕I)⊕ (⊕I ′) for I, I ′ ∈ [n]t.

When we expand the matrix multiplication in (5.3), many variables cancel out due to
the identity x2i = 1. Assume for simplicity that u and v are real vectors, i.e., (u[I])∗ = u[I].
Thus, for all S ⊆ [n], the coefficient of the monomial

∏
i∈S xi in (5.3) is given by

f̂(S) =
∑

I1,...,Ik∈[n]t
⊕I1⊕...⊕Ik=S

u[I1]M1[I1, I2]M2[I2, I3] · · ·Mk−1[Ik−1, Ik]v[Ik].

Fix complex numbers αS = f̂(S)∗/|f̂(S)| for each S ⊆ [n] of size ℓ. We wish to upper bound

Lℓ(f) =
∑

|S|=ℓ αS · f̂(S), which by the above is

Lℓ(f) =
∑

I1,...,Ik∈[n]t
|⊕I1⊕···⊕Ik|=ℓ

α[⊕I1 ⊕ · · · ⊕ Ik] · u[I1]M1[I1, I2]M2[I2, I3] · · ·Mk−1[Ik−1, Ik]v[Ik]. (5.4)
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To highlight the difficulties in upper bounding (5.4), we first present a few failed ap-
proaches and then describe our high-level proof approach. First, let us focus on the base
case k = 2. For ease of notation, we will switch from indices I1, I2 to indices I, J and from
the matrix M1 to M . Our goal is to upper bound

Lℓ(f) =
∑

I,J∈[n]t
|⊕I⊕J |=ℓ

α[⊕I ⊕ J ] · u[I]M [I, J ]v[J ].

One natural approach is to express Lℓ(f) as a product of matrices (with bounded operator
norms). One way to do this is to incorporate the phases α[⊕I ⊕ J ] and the constraint

|⊕I ⊕ J | = ℓ into the matrix M [I, J ]. For instance, define M̃ such that

M̃ [I, J ] := α[⊕I ⊕ J ] · 1[|⊕I ⊕ J | = ℓ] ·M [I, J ].

It is easy to see that Lℓ(f) = u†M̃v and consequently, Lℓ(f) ≤ ∥M̃∥. What is the best upper

bound that we can prove for ∥M̃∥? At first glance, it might seem that we cannot do better
than

√
nt. Indeed, given an nt×nt unitary matrix M , if we multiply each entry by arbitrary

numbers in the unit disk, this could blow up the operator norm by as much as
√
nt (the

Hadamard matrix gives a tight example of this). However, we can do much better. This is
because the terms multiplying each entry of M are highly constrained; the term multiplying
the (I, J)-th entry depends only on ⊕I ⊕ J .

To get an improved bound, consider the matrix D whose rows and columns are indexed by
all possible ⊕I and ⊕J respectively, and the (⊕I,⊕J)-th entry is α[⊕I⊕J ] ·1 [|⊕I ⊕ J | = ℓ].

It is not too difficult to convince oneself that M̃ is a sub-matrix of M ⊗ D. Therefore,
∥M̃∥ ≤ ∥M∥ · ∥D∥ ≤ ∥D∥. Now, what is the best upper bound we can show for ∥D∥?
Consider the row corresponding to ⊕I = ∅. For this row, we need to choose a column ⊕J
such that |⊕J | = ℓ and there are

(
n
ℓ

)
such columns. This already means that ∥D∥ ≥

√(
n
ℓ

)
(and this turns out to be tight). While a bound of Lℓ(f) ≤

√(
n
ℓ

)
would already be a

great improvement over the previous bound, it is still a trivial bound that holds for all
bounded functions! Indeed, all Boolean functions which map into the complex unit disk

satisfy Lℓ(f) ≤
√(

n
ℓ

)
.

To get the optimal bound of nℓ/4 · tℓ/4, the idea is to reduce the operator norm of D.
For instance, suppose we defined D̃ to be D, except that we zero out entries for which
|⊕I \ ⊕J | ≠ ℓ/2 (or equivalently |⊕J \ ⊕I| ≠ ℓ/2). In this case, for any fixed⊕I, the number

of possibilities for ⊕J is only
(

n
ℓ/2

)
·
(

t
ℓ/2

)
and we can actually prove that ∥D̃∥ ≤ nℓ/4 · tℓ/4 as

desired. Of course this doesn’t suffice as we also need to sum over terms zeroed out.
In the full proof, the idea is to implicitly consider all possible values of |⊕I \ ⊕J |. We fix

any ℓ1, ℓ2 such that |⊕I \ ⊕J | = ℓ1 and |⊕J \ ⊕I| = ℓ2. Since ℓ1 + ℓ2 = ℓ, either (1) ℓ1 ≤ ℓ/2
or (2) ℓ2 ≤ ℓ/2. We will define two different matrix product decompositions to handle each
of these cases separately. It will turn out that the decomposition for case (1) satisfies an
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operator norm bound of nℓ1/2 · tℓ2/2 and the decomposition for case (2) satisfies a bound of
nℓ2/2 · tℓ1/2. Together, taking the geometric mean of the two bounds would give the desired
bound of nℓ/4 · tℓ/4.

We remark that our proof does not explicitly list out these cases; instead, it defines two
different decompositions and simply takes the minimum of the two bounds which essentially
captures these two cases. We describe the details of this soon. For k > 2, it turns out that
there is a subtle but crucial over-counting issue that is too technical to describe at this point.
To address this, we need to introduce new matrices in the decompositions as well as carry
out a step similar to Möbius inversion to undo the over-counting. We will highlight this issue
later.

Technical Overview: k = 2

Recall from (5.4) that we wish to upper bound

Lℓ(f) =
∑

I,J∈[n]t
|⊕I⊕J |=ℓ

α[⊕I ⊕ J ] · u[I]M [I, J ]v[J ]. (5.5)

The high-level idea is as follows. We will express Lℓ(f) as
∑

s1,s2∈N
s1+s2=ℓ

g(s) for some function

g(s), where s = (s1, s2) and we shall group the terms based on the sizes s1 and s2 of the
sets ⊕I \ ⊕J and ⊕J \ ⊕I respectively. We shall then upper bound g(s) for any s1, s2 ∈ N
satisfying s1 + s2 = ℓ. To do this, we will express g(s) in two different ways, namely, as
u†WR′v and as u†W ′Rv, for some matrices W,W ′, R,R′ with bounded operator norms, and
we will upper bound these by ∥u∥∥W∥∥R′∥∥v∥ and ∥u∥∥W ′∥∥R∥∥v∥ respectively. Recall
that ∥u∥ = ∥v∥ = 1. We will show that ∥R∥, ∥R′∥ ≤ 1 and

∥W∥ ≤

√(
n

s2

)
·
(
t

s1

)
and ∥W ′∥ ≤

√(
n

s1

)
·
(
t

s2

)
.

We upper bound the minimum of the two bounds by their geometric mean and use the fact
that s1 + s2 = ℓ to obtain

g(s) ≤
√
ns2ts1 · ns1ts2 = nℓ/4tℓ/4

as desired. We now describe the function g(s) and the matrices W,W ′, R,R′ in more detail.
We group the terms in (5.5) based on the sizes of ⊕I \ ⊕J and ⊕J \ ⊕I. For any

(s1, s2) ∈ N× N, define the indicator function Sizes(S1, S2) for any subsets S1, S2 ⊆ [n] by

Sizes(S1, S2) = 1 [|S1 \ S2| = s1 and |S2 \ S1| = s2] .

We will consider Sizes(⊕I,⊕J) as depicted in Figure 5.2.
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Size s1
Size s2

Union is ⊕I ⊕ J

⊕I ⊕J

Figure 5.2: The constraint Sizes(⊕I,⊕J) = 1.

Let g(s) denote the contribution to (5.5) from terms satisfying Sizes(⊕I,⊕J) = 1, that
is,

g(s) :=
∑

I,J∈[n]t
Sizes(⊕I,⊕J) · α[⊕I ⊕ J ] · u[I]M [I, J ]v[J ].

From (5.5), we have Lℓ(f) =
∑

s1,s2∈N
s1+s2=ℓ

g(s). Fix any s1, s2 ∈ N such that s1 + s2 = ℓ. We

will now bound g(s). As described before, we will express g(s) in two different ways, namely,
as u†WR′v and as u†W ′Rv, for some matrices W,W ′, R,R′ with bounded operator norms.

Expressing g(s) as u†WR′v. The rows and columns of W are indexed by I and (I ′,⊕J)
respectively, and those of R′ by (I ′,⊕J) and J ′ respectively. These matrices are defined as
follows

W [I, (I ′,⊕J)] = 1 [I = I ′] · Sizes(⊕I,⊕J) · α[⊕I ⊕ J ],

R′[(I ′,⊕J), J ′] = 1 [⊕J ′ = ⊕J ] ·M [I ′, J ′].

Intuitively, W is a matrix that multiplies by the signs α[⊕I ⊕ J ] as well as enforces the
Sizes constraint on ⊕I and ⊕J , and R′ is a matrix that implements the action of M , as well
propagates information about ⊕J backwards. This is depicted in Figure 5.3.

I

I

J

I,⊕J

J

I,⊕J

u

vW

R′

Figure 5.3: Expressing g(s) as u†WR′v.



CHAPTER 5. POWER OF ADAPTIVITY IN QUANTUM QUERY 126

It is not too difficult to see that indeed g(s) = u†WR′v. We now show the desired upper

bounds of ∥R′∥ ≤ 1 and ∥W∥ ≤
√(

n
s2

)
·
(

t
s1

)
.

• Bounding ∥R′∥: We rearrange the columns ofR′ according to⊕J . Under this ordering
of the columns, observe that R′ is a block diagonal matrix, where each block is a
submatrix of M . Since ∥M∥ ≤ 1, this implies that ∥R′∥ ≤ 1.

• Bounding ∥W∥: We rearrange the columns of W according to I and with this or-
dering, W is block-diagonal. We now use the fact that ∥W∥ ≤

√
∥W∥1 · ∥W∥∞ where

∥W∥1 and ∥W∥∞ are the max-column-norm and the max-row-norm respectively. Ob-
serve that ∥W∥1 ≤ 1, since each column has at most one non-zero entry, which in turn
is of unit magnitude. We now bound ∥W∥∞. For any row I ∈ [n]t, observe that there
are at most

(
n
s2

)
·
(

t
s1

)
many columns ⊕J such that Sizes(⊕I,⊕J) ̸= 0. Since each

non-zero entry of W is of unit magnitude, this implies that ∥W∥∞ ≤
(
n
s2

)
·
(

t
s1

)
. This

gives us the desired bound of

∥W∥ ≤

√(
n

s2

)
·
(
t

s1

)
. (5.6)

Expressing g(s) as u†RW ′v. The rows and columns of R are indexed by I and (J ′,⊕I ′)
respectively and those of W ′ are indexed by (J ′,⊕I ′) and J respectively, and

W ′[(J ′,⊕I ′), J ] = 1 [J = J ′] · Sizes(⊕I ′,⊕J) · α[⊕I ′ ⊕ J ],

R[I, (J ′,⊕I ′)] = 1 [⊕I = ⊕I ′] ·M [I, J ′].

Here, W ′ implements α[⊕I ⊕ J ] as well as enforces the Sizes constraint on ⊕I and ⊕J , and
R implements the action of M , as well propagates information about ⊕I forward. This is
depicted in Figure 5.4. A calculation similar to the previous case implies the desired bound
of

∥W ′∥ ≤

√(
n

s1

)
·
(
t

s2

)
. (5.7)

This completes the proof overview for k = 2.

Technical Overview: k = 3

For simplicity of notation, we will switch from indices I1, I2, I3 to indices I, J,K. We need
to upper bound

Lℓ(f) =
∑

I,J,K∈[n]t
|⊕I⊕J⊕K|=ℓ

α[⊕I ⊕ J ⊕K] · u[I]M1[I, J ]M2[J,K]v[K].
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I

I

J

J,⊕I

J

J,⊕I

u

vR

W ′

Figure 5.4: Expressing g(s) as u†RW ′v.

As before, we will express Lℓ(f) as
∑

s1,...,s4∈N
s1+···+s4=ℓ

g(s) grouping terms based on sizes of certain

sets and in order to bound each g(s), we will try to express it in three different ways as
u†W1R

′
1R

′
2v, u†R1W2R

′
2v and u†R1R2W3v. It will turn out that ∥R1∥, ∥R′

1∥, ∥R2∥, ∥R′
2∥ ≤ 1

and that

∥W1∥ ≤ (n/t)(s2+s3)/2 · tℓ, ∥W2∥ ≤ (n/t)(s1+s3)/2 · tℓ, ∥W3∥ ≤ (n/t)(s1+s2)/2 · tℓ. (5.8)

Since s1 + s2 + s3 ≤ ℓ, taking the minimum of the three bounds would give us the desired
bound of (n/t)ℓ/3 ·tℓ. There is an issue that comes up that we will later highlight. To describe
it now in a nutshell, it turns out we cannot express g(s) in the form of a matrix product
with operator norms bounded as desired. Nevertheless, with some additional work, we can
express a different function h(s) in this form, furthermore, h(s) =

∑
s′ P [s, s′]g(s′) for some

invertible matrix P such that P−1 has bounded norms. Therefore, using bounds on h(s), we
can derive the desired bounds on g(s). We describe all this in more detail.

We start with the description of g(s). Similar to the previous case, we will fix the sizes
of certain sets in the Venn diagram of ⊕I,⊕J,⊕K as depicted in Figure 5.5. More formally,

Size s3

Size s2

⊕K

⊕J⊕I

Union is ⊕I ⊕ J ⊕K

Size s1

Size s4

Figure 5.5: The constraint Sizes(⊕I,⊕J) = 1.
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let s ∈ N4. Define Sizes(S1, S2, S3) to be the indicator function of

|S1 \ (S2 ∪ S3)| = s1, |S2 \ (S1 ∪ S3)| = s2, |S3 \ (S1 ∪ S2)| = s3, |S1 ∩ S2 ∩ S3| = s4.

Let

g(s) :=
∑

I,J,K∈[n]t
|⊕I⊕J⊕K|=ℓ

Sizes(⊕I,⊕J,⊕K) · α[⊕I ⊕ J ⊕K] · u[I]M1[I, J ]M2[J,K]v[J ].

We attempt to express g(s) in three different ways as

u†W1R
′
1R

′
2v, u†R1W2R

′
2v, and u†R1R2W3v.

The simplest to describe is the second expression. Here, we have matrices R1,W2, R
′
2 whose

indices are as depicted in Figure 5.6.

I

I

K

J,⊕K

K

J,⊕I

u

vR1

W2

J,⊕I

J,⊕K

R′
2

Figure 5.6: Expressing g(s) as u†R1W2R
′
2v.

Based on the intuition from before, there is a very natural way to define these matrices,
namely,

R1[I, (⊕I ′, J)] = 1 [⊕I = ⊕I ′] ·M1[I, J ] and R′
2[(J,⊕K), K ′] = 1 [⊕K ′ = ⊕K] ·M2[J,K

′],

W2[(J,⊕I), (J ′,⊕K)] = 1 [J = J ′] · Sizes(⊕I,⊕J,⊕K) · α[⊕I ⊕ J ⊕K].

Note that given the row (J,⊕I) and the column (J,⊕K), we can compute Sizes(⊕I,⊕J,⊕K)
and α[⊕I ⊕ J ⊕K]. A similar calculation to before shows that ∥R1∥, ∥R′

2∥ ≤ 1 and

∥W2∥ ≤

√(
n

s3

)
·
(
t

s1

)(
t

s2

)(
t

s4

)
·

√(
n

s1

)
·
(
t

s2

)(
t

s3

)(
t

s4

)
= (n/t)(s1+s3)/2 · tℓ.

Let us try to define the other two decompositions u†W1R
′
1R

′
2v and u†R1R2W2v as depicted

in Figure 5.7. Suppose we could define W1 and W2 such that
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I K

K

I,⊕J ⊕K

u

vW1

R′
1

J,⊕K

R′
2

I K

K

J,⊕I

u

vR1

R2

K,⊕I ⊕ J

W2

Figure 5.7: Expressing g(s) as u†W1R
′
1R

′
2v and u†R1R2W2v respectively.

W1[I, (I
′,⊕J ⊕K)] = 1 [I = I ′] · Sizes(⊕I,⊕J,⊕K) · α[⊕I ⊕ J ⊕K],

W3[K, (K
′,⊕I ⊕K)] = 1 [K = K ′] · Sizes(⊕I,⊕J,⊕K) · α[⊕I ⊕ J ⊕K].

(5.9)

Then, a calculation similar to the previous case would give the desired operator norm
bounds on W1 and W3 as in (5.8). The problem is that we cannot define matrices W1,W3

that satisfy (5.9). We explain this issue for W1. Given a row I and a column (I,⊕J⊕K), we
cannot compute Sizes(⊕I,⊕J,⊕K). After all, we only have the information about ⊕I and
⊕J ⊕K, and hence the matrix W1 can only enforce the constraints that |⊕I \ (⊕J ⊕K)| =
s1 + s4 and |(⊕J ⊕K) \ ⊕I| = s2 + s3, but it cannot enforce |⊕J \ (⊕I ∪ ⊕K)| = s2 or
|⊕K \ (⊕I ∪ ⊕J)| = s3. In particular, if we only define W1 to enforce the constraints that
it is able to enforce, we will end up counting terms corresponding to I ′, J ′, K ′ which satisfy
Sizes

′
(⊕I,⊕J,⊕K) for s′ with s′2 ̸= s2 and s′3 ̸= s3. In this case, instead of estimating the

target g(s), we would be over-counting. We need two new ideas here.

1. First we need to provide W1 some additional information. One might hope that with
a little extra information, W1 can enforce Sizes, but this turns out to be false. Giving
this information will increase the operator norms by too much. Instead, the idea is to
provide some information that enforces a variant of the Sizes constraint.

2. This variant will allow us to bound a different function h(s). This function is still an
over-counting of g(s), but the important point is that it is a predictable over-counting,
that is, h(s) =

∑
s′ P [s, s′]g(s′) for some invertible matrix P such that P−1 has bounded

norm. Therefore, we can derive bounds on g(s) using bounds on h(s).

We first explain step (2). Let L(I, J,K) = α[⊕I ⊕ J ⊕ K] · u[I]M1[I, J ]M2[J,K]v[K].
While we would like to bound the expression

g(s) :=
∑

I,J,K∈[n]t
L(I, J,K) · Sizes(I, J,K),
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what we can bound turns out to be the expression

h(s) :=
∑

I,J,K∈[n]t
L(I, J,K) ·

∑
A,B,C,D∈[n]t

A,B,C,D are disjoint
A∪B∪C∪D=⊕I⊕J⊕K

Subsets(A,B,C,D),

where Subsets(A,B,C,D) is the indicator function of the constraint that

A ⊆ ⊕I, |A| = s1, B ⊆ ⊕J, |B| = s2, C ⊆ ⊕K, |C| = s3, D ⊆ ⊕I∩⊕J ∩⊕K, |D| = s4.
(5.10)

This is depicted in Figure 5.8.

(a) What we want to sum over (b) What we end up summing over

Size s3

Size s2

Size s1

Size s4

Size s3

Size s2

⊕K

⊕J⊕I

Size s1

Size s4

⊕K

⊕J⊕I

Figure 5.8: The summation in g(s) versus h(s).

Observe that one of the terms in h(s) is A = ⊕I \ (⊕J ∪⊕K), B = ⊕J \ (⊕I ∪⊕K), C =
⊕K \ (⊕I ∪⊕J) and D = ⊕I ∩⊕J ∩⊕K. Hence, h(s) consists of g(s) plus some additional
terms. For example, elements from D can be moved to either A, B, or C and still satisfy
the constraints in (5.10). However, we can express

h(s) =
∑
s′

P [s, s′]g(s′)

for a structured matrix P . This matrix is invertible and has bounded ∥P−1∥1. Therefore,
our goal of bounding ∥g∥1 reduces to bounding ∥h∥1 as h = Pg. This is done in step (1)
which we now explain.

We now explain how to bound h(s). We will blow up the matrices in the decomposition
u†W1R

′
1R

′
2v to include information about A,B,C,D ⊆ [n]. We will also introduce new

matrices Q1, Q
′
1, Q

′
2, Q

′
3 to enumerate A,B,C,D and verify that they satisfy the Subsets

constraints in (5.10). Consider the expression u†Q1W1Q
′
1R

′
1Q

′
2R

′
2Q

′
3v, where the matrices

are as depicted in Figure 5.9.
The matrices W1, R

′
2, R

′
3 perform the same role as before and in addition, propagate

information about the sets A,B,C,D. The matrices Q1, Q
′
1, Q

′
2, Q

′
3 impose constraints on

A,B,C,D as well as add and delete information as required. In more detail,



CHAPTER 5. POWER OF ADAPTIVITY IN QUANTUM QUERY 131

I

u

Q1

W1

I, A,D
I,⊕J ⊕K
A,D,B,C

I,⊕J ⊕K
C,D,B

J,⊕K
C,D,B

Q′
1

R′
2

J,⊕K
C,D K,C,D

K

K

Q′
2

R′
3 Q′

3

v

enforce D,A ⊆ ⊕I enforce D,A ⊆ ⊕I enforce B,D ⊆ ⊕J enforce C,D ⊆ ⊕K

Figure 5.9: Expressing h(s) = u†Q1W1Q
′
1R

′
1Q

′
2R

′
2Q

′
3v.

1. Q1 propagates I and introduces A,D such that that A,D ⊆ ⊕I, |A| = s1 and |D| =
s4. Given I, there are at most

(
t
s1

)
·
(

t
s4

)
possibilities for (A,D) and it follows that

∥Q1∥ ≤
√
ts1 · ts4 .

2. W1 enforces A ∪ B ∪ C ∪ D = ⊕I ⊕ J ⊕K and the size constraints on B,C. It also
applies α[⊕I ⊕ J ⊕K]. For each I, A,D, there are at most

(
n
s2

)
·
(
n
s3

)
possibilities for

(B,C) and once we fix A,B,C,D and I, we also fix ⊕J ⊕K = ⊕I ⊕ (A∪B ∪C ∪D).
So ∥W1∥ ≤

√
ns2 · ns3 .

3. Q′
3 back-propagates K and introduces C,D such that C,D ⊆ ⊕K, |C| = s3, and
|D| = s4. Given K, there are at most

(
t
s3

)
·
(

t
s4

)
possibilities for (C,D) and hence

∥Q′
3∥ ≤

√
ts3 · ts4 .

4. R′
3 back-propagates ⊕K,C,D and introduces J . It also applies the operator M2. As

before, ∥R′
3∥ ≤ 1.

5. Q′
2 back-propagates J,⊕K,C,D, introduces B, and enforces that B,D ⊆ ⊕J and
|B| = s2. Given J , there are at most

(
t
s2

)
possibilities for B, hence, ∥Q′

2∥ ≤
√
ts2 .

6. R′
2 back-propagates D,B,C,⊕J ⊕K, introduces I, and applies the operator M1. As

before, ∥R′
2∥ ≤ 1.

7. Q′
1 back-propagates D,B,C,⊕J ⊕ K, I, introduces A, and enforces D,A ⊆ ⊕I and
|A| = s1. Given I, there at most

(
t
s1

)
possibilities A, hence ∥Q′

1∥ ≤
√
ts1 .

Combining all these bounds gives us an upper bound on h(s) of

√
ns2+s3 · ts4+s1+(s2+s3)/2 = (n/t)(s2+s3)/2 · tℓ.

By a symmetric argument, we blow up the matrices in the decomposition u†R1R2W3v to
include information about A,B,C,D ⊆ [n] and get

h(s) ≤ (n/t)(s1+s2)/2 · tℓ.

Combining the three upper bounds on h(s) we get h(s) ≤ (n/t)ℓ/3 · tℓ.
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5.4 Fourier Growth of the Quantum Query Model

One way to think of Ox is to view the input x as a truth table of length (n+ 1) where x0 is
fixed to 1. In this sense, the oracle query can be unified as Ox |i⟩ = xi |i⟩ for all i ∈ {0, . . . , n}.
Meanwhile, for our purposes, it is desired to obtain Fourier growth bounds for downwards
closed families. That is, the Fourier growth bounds should hold for the function even after
fixing variables to values. This is usually not an issue regarding complexity measures, but the
quantum query model is not evidently downwards closed. Therefore we prove the following
more general theorem.

Theorem 5.4.1. Let n, t ≥ 1 and m ≥ 0 and d ≥ 2 be integers. Define A = [n]t × [m]. Let
u, v ∈ CA be two unit vectors. Let M1, . . . ,Md−1 ∈ CA×A be matrices satisfying ∥Mi∥ ≤ 1
for each i ∈ [d− 1]. Define f : {±1}[n] → C as

f(x) = u†
(
O⊗t

x ⊗ Im
)
M1

(
O⊗t

x ⊗ Im
)
M2 · · ·Md−1

(
O⊗t

x ⊗ Im
)
v.

Let ρ ∈ {±1, ∗}[n] be an arbitrary restriction3 and ñ = |ρ−1(∗)|. Then for any ℓ ≥ 0, we
have

Lℓ(f |ρ) =
∑

S⊆ρ−1(∗),|S|=ℓ

∣∣∣f̂ |ρ(S)
∣∣∣ ≤ 2κ(d,ℓ) · tℓ ·max

{
1, (ñ/t)

1
2
⌊(d−1)ℓ/d⌋

}
,

where κ(d, ℓ) = O(dℓ) ·min
{

2dℓ, ℓ2
d
}
.

Before proving Theorem 5.4.1, we first summarize its application to the Fourier growth
of quantum query algorithms, via the conversion stated in Chapter 2.

Corollary 5.4.2 (Formal Version of Theorem 5.2.3). Assume A is a query algorithm given
oracle access Ox and uses arbitrarily many auxiliary qubits. Assume A makes r rounds of
queries where each round consists of t ≤ n parallel queries. Let f : {±1}[n] → [0, 1] be its
acceptance probability, i.e., f(x) = Pr [A accepts x]. Then

Lℓ(f) ≤ 2κ(r,ℓ) · tℓ · (n/t)
1
2⌊ (2r−1)ℓ

2r ⌋,

where κ(r, ℓ) = O(rℓ) ·min
{

22rℓ, ℓ4
r}
.

Moreover, this bound holds when some bits of x are fixed in advance.

Now we proceed to the proof of Theorem 5.4.1. Note that

f(x) =
∑

α1,...,αd∈[m]
I1,...,Id∈[n]t

u[(I1, α1)]v[(Id, αd)]
∏

i∈[d−1]

Mi[(Ii, αi), (Ii+1, αi+1)]

 · ∏
j∈[d],k∈[t]

x[Ij(k)].

3f |ρ is a sub-function on ñ variables of f by fixing xi to ρ(i) for i /∈ ρ−1(∗).
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By rearranging coordinates, we assume without loss of generality ρ−1(∗) = [ñ], i.e., ρ fixes
all but the first ñ bits of x. Now we expand f |ρ as

f |ρ(x) =
∑

α1,...,αd∈[m]
I1,...,Id∈[n]t

u[(I1, α1)]v[(Id, αd)]
∏

i∈[d−1]

Mi[(Ii, αi), (Ii+1, αi+1)]



·

 ∏
j∈[d],k∈[t]
Ij(k)>ñ

ρ[Ij(k)]


 ∏

j∈[d],k∈[t]
Ij(k)≤ñ

x[Ij(k)]

 .

Recall that A = [n]t× [m] is the space of parallel queries and ancillary qubits. Now we define

matrices M̃1, . . . , M̃d−1 ∈ CA×A as

M̃i[(Ii, αi), (Ii+1, αi+1)] = Mi[(Ii, αi), (Ii+1, αi+1)] ·
∏

k∈[t],Ii(k)>ñ

ρ[Ii(k)]

then define vectors ũ, ṽ ∈ CA as ũ = u and

ṽ[(Id, αd)] = v[(Id, αd)] ·
∏

k∈[t],Id(k)>ñ

ρ[Id(k)].

Therefore we have

f |ρ(x) =
∑

α1,...,αd∈[m]
I1,...,Id∈[n]t

ũ[(I1, α1)]ṽ[(Id, αd)]
∏

i∈[d−1]

M̃i[(Ii, αi), (Ii+1, αi+1)]

 · ∏
j∈[d],k∈[t]
Ij(k)≤ñ

x[Ij(k)].

In addition, each M̃i, ũ, ṽ is the original Mi, u, v left multiplied by a ±1-diagonal matrix. By
the norm guarantees of Mi, u, v, this means

∥ũ∥ = ∥ṽ∥ = 1 and
∥∥∥M̃i

∥∥∥ ≤ 1. (5.11)

Note that any index appearing twice in the multi-set {Ij(k)}j∈[d],k∈[t] cancels due to

(±1)2 = 1. We can compute each Fourier coefficient f̂ |ρ(S) as

f̂ |ρ(S) =
∑

(I1,α1),...,(Id,αd)∈A
⊕I1⊕···⊕Id=S

ũ[(I1, α1)]ṽ[(Id, αd)]
∏

i∈[d−1]

M̃i[(Ii, αi), (Ii+1, αi+1)],

where, from now on, we use ⊕T1 ⊕ T2 ⊕ · · · ⊆ [ñ] to denote the set of indices in [ñ] that
appear odd times in the multi-set consisting of indices from T1, T2, . . ..
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Now we introduce a(S) = Phase−1
(
f̂ |ρ(S)

)
to denote the inverse of the phase of f̂ |ρ(S),

then

Lℓ(f |ρ) (5.12)

=
∑

S⊆[ñ],|S|=ℓ

a(S) · f̂ |ρ(S)

=
∑

(I1,α1),...,(Id,αd)∈A
|⊕I1⊕···⊕Id|=ℓ

a(⊕I1 ⊕ · · · ⊕ Id) · ũ[(I1, α1)]ṽ[(Id, αd)]
∏

i∈[d−1]

M̃i[(Ii, αi), (Ii+1, αi+1)]︸ ︷︷ ︸
L(I1,α1,...,Id,αd)

.

(5.13)

For the analysis purpose, we will partition the binary strings {0, 1}d and for this we
introduce some notation. For each b, b′ ∈ {0, 1}d, we say b′ ≥ b if b′ is no smaller than b
entrywise; and we say b′ > b if b′ ≥ b and b′ ̸= b. For i ∈ [d], we write i ∈ b if bi = 1, and
i /∈ b if bi = 0.

Let B =
{
b ∈ {0, 1}d

∣∣ ∥b∥1 ≡ 1 mod 2
}

be the set of strings of odd Hamming weights,
according to which we will partition ⊕I1 ⊕ · · · ⊕ Id into parts based on the membership in
each ⊕Ii. Formally, for each I = (I1, . . . , Id) ∈ ([n]t)

d
and b ∈ B, define I(b) ⊆ [ñ] to be the

set of indices in [ñ] that appears in and only in those ⊕Ii satisfying bi = 1. Formally,

I(b) =

(⋂
i∈b

⊕Ii

)
\

(⋃
i/∈b

⊕Ii

)
.

We emphasize that the intersection ∩ and union ∪ operators are applied to the inner sets
⊕Ii. Due to the construction, |B| = 2d−1 and ⊕I1 ⊕ · · · ⊕ Id equals the (disjoint) union of
all I(b)’s.

Recall the definition of L(I1, α1, . . . , Id, αd) from (5.13). Now for each s = (s(b))b∈B ∈ NB

satisfying ∥s∥1 = ℓ, we write the contribution of all the (I1, α1, . . . , Id, αd) consistent with s
as

g(s) =
∑

(I1,α1),...,(Id,αd)∈A
|I(b)|=s(b),∀b∈B

L(I1, α1, . . . , Id, αd). (5.14)

Then we can express Lℓ(f |ρ) equivalently as

Lℓ(f |ρ) =
∑

s∈NB ,∥s∥1=ℓ

g(s). (5.15)

Here we are grouping (I1, . . . , Id) based on the sizes of the intersections and bounding the
contribution from each group separately. We now count the number of possible sizes of
intersection patterns. By a balls-into-bins counting, there are only

D :=

(
ℓ+ |B| − 1

|B| − 1

)
=

(
ℓ+ 2d−1 − 1

2d−1 − 1

)
= Od,ℓ(1) (5.16)



CHAPTER 5. POWER OF ADAPTIVITY IN QUANTUM QUERY 135

many possible s in the summation of (5.15).
Thus, our goal becomes bounding ∥g∥1 =

∑
∥s∥1=ℓ |g(s)| and to do this we would like to

bound each g(s). However, as described in the proof overview, what we can bound turns
out to be a function h(s) where h(s) =

∑
∥s′∥1=ℓ g(s′) · P [s, s′] for some matrix P . We will

now describe this function h and the matrix P . Lemma 5.4.3 will prove an upper bound on
each |h(s)| and we will use this lemma and properties about P to show the desired bound
on ∥g∥1.

For each s = (s(b))b∈B ∈ NB satisfying ∥s∥1 = ℓ, define

h(s) =
∑

(I1,α1),...,(Id,αd)∈A
|⊕I1⊕···⊕Id|=ℓ

∑
J(b)⊆[ñ] of size s(b),∀b∈B
J(b)’s are pairwise disjoint

J(b)⊆
⋃

b′≥b I
(b′),∀b∈B

L(I1, α1, . . . , Id, αd). (5.17)

See Section 5.3 for a concrete example for the relation between h and g.
Each h(·) will be reformulated as a product of matrices that we can bound.

Lemma 5.4.3. |h(s)| ≤ tℓ ·max
{

1, (ñ/t)
1
2
⌊(d−1)ℓ/d⌋

}
.

The proof of Lemma 5.4.3 is deferred to the end of this section. Now we continue the task
of bounding Lℓ(f |ρ) assuming Lemma 5.4.3. To relate h(·) with g(·), we count for any fixed
(I1, α1), . . . , (Id, αd) ∈ A satisfying |⊕I1 ⊕ · · · ⊕ Id| = ℓ, the number of possible (J (b))b∈B.
By the condition J (b) ⊆

⋃
b′≥b I

(b′), ∀b ∈ B, we enumerate J (b) in the decreasing order of

∥b∥1 , b ∈ B. Then the number of possibilities for each J (b) is exactly(∑
b′≥b

∣∣I(b′)∣∣−∑b′>b

∣∣J (b′)
∣∣

|J (b)|

)
=

(∑
b′≥b

∣∣I(b′)∣∣−∑b′>b s
(b′)

s(b)

)
,

where we fix s = (s(b))b∈B and each J (b) has size s(b). Therefore the total number of choices
is the telescoping product

∏
b∈B

(∑
b′≥b

∣∣I(b′)∣∣−∑b′>b s
(b′)

s(b)

)
,

which allows us to rewrite h(s) as

h(s) =
∑

(I1,α1),...,(Id,αd)∈A
|⊕I1⊕···⊕Id|=ℓ

L(I1, α1, . . . , Id, αd) ·
∏
b∈B

(∑
b′≥b

∣∣I(b′)∣∣−∑b′>b s
(b′)

s(b)

)
(recall (5.17))

=
∑

s′∈NB ,∥s′∥1=ℓ

∏
b∈B

(∑
b′≥b s

′(b′) −
∑

b′>b s
(b′)

s(b)

)
·

∑
(I1,α1),...,(Id,αd)∈A∣∣∣I(b′)∣∣∣=s′(b

′),∀b′∈B

L(I1, α1, . . . , Id, αd)
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=
∑

s′∈NB ,∥s′∥1=ℓ

g(s′) ·
∏
b∈B

(∑
b′≥b s

′(b′) −
∑

b′>b s
(b′)

s(b)

)
(recall (5.14))

=:
∑

s′∈NB ,∥s′∥1=ℓ

g(s′) · P [s, s′]. (5.18)

Therefore, viewing h and g as two vectors, they satisfy the relation h = Pg where P is the
coefficient matrix defined above and the dimension of P is D × D by (5.16). Recall the ℓ1
norm of a matrix from Fact 2.0.3. The following lemma studies the properties of P itself.

Lemma 5.4.4. P is an invertible matrix over C and ∥P−1∥1 ≤ D ·
(
ℓ·2d−1

ℓ

)D
.

Then with the same linear algebraic notation, (5.15) completes the proof:

Lℓ(f |ρ) = (1D)⊤g ≤ ∥g∥1 =
∥∥P−1h

∥∥
1
≤
∥∥P−1

∥∥
1
∥h∥1 ≤ D ·

(
ℓ · 2d−1

ℓ

)D

· ∥h∥1
(by Lemma 5.4.4)

≤ D ·
(
ℓ · 2d−1

ℓ

)D

·D · ∥h∥∞

≤ D2 ·
(
ℓ · 2d−1

ℓ

)D

· tℓ ·max
{

1, (ñ/t)
1
2
⌊(d−1)ℓ/d⌋

}
(by Lemma 5.4.3)

≤ 2O(dℓD) · tℓ ·max
{

1, (ñ/t)
1
2
⌊(d−1)ℓ/d⌋

}
.

Finally by (5.16), we note that

D =

{(
ℓ+2d−1−1

ℓ

)
≤
(
2d

ℓ

)
≤ 2dℓ ℓ ≤ 2d−1 − 1,(

ℓ+2d−1−1
2d−1−1

)
≤
(

2ℓ
2d−1−1

)
≤ (2ℓ)2

d−1−1 ≤ ℓ2
d

ℓ ≥ 2d−1.

This gives the desired bounds in Corollary 5.4.2.
Now we prove Lemma 5.4.4.

Proof of Lemma 5.4.4. We extend the partial order > on elements in B to an arbitrary total
order, denoted as ≫.4 Let T =

{
s ∈ NB

∣∣ ∥s∥1 = ℓ
}

and let ≫ be the lexicographical order

on T induced by ≫ on B, i.e., s ≫ s′ iff there exists some b ∈ B such that s(b) > s′(b) and
s(b

′) = s′(b
′) holds for all b′ ≫ b.

Now we show that the matrix P , with rows and columns sorted according to ≫, is
lower-triangular with ones on the diagonal. This proves that P is invertible and det(P ) = 1.

4For example, one can think of ≫ as the decreasing order in the Hamming weight, and lexicographical
order within the same Hamming weight.
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Let s ≫ s′ be arbitrary elements from T and let b∗ ∈ B be such that s(b
∗) > s′(b

∗) and
s(b

′) = s′(b
′) holds for all b′ ≫ b∗. Then we have

P [s, s′] =
∏
b∈B

(∑
b′≥b s

′(b′) −
∑

b′>b s
(b′)

s(b)

)
(recall (5.18))

=

(
s′(b

∗) +
∑

b′>b∗ s
′(b′) −

∑
b′>b∗ s

(b′)

s(b∗)

)
·
∏
b̸=b∗

(∑
b′≥b s

′(b′) −
∑

b′>b s
(b′)

s(b)

)

=

(
s′(b

∗) +
∑

b′≫b∗ s
′(b′) −

∑
b′≫b∗ s

(b′)

s(b∗)

)
·
∏
b ̸=b∗

(∑
b′≥b s

′(b′) −
∑

b′>b s
(b′)

s(b)

)
(since ≫ is extended from >)

= 0 ·
∏
b̸=b∗

(∑
b′≥b s

′(b′) −
∑

b′>b s
(b′)

s(b)

)
= 0.

(since s(b
∗) > s′(b

∗) and s(b
′) = s′(b

′) for all b′ ≫ b∗)

The diagonal values can be calculated similarly:

P [s, s] =
∏
b∈B

(∑
b′≥b s

(b′) −
∑

b′>b s
(b′)

s(b)

)
=
∏
b∈B

(
s(b)

s(b)

)
= 1.

Now we bound ∥P−1∥1. Let P−s,−s′ be matrix P removing the s-th row and the s′-th
column. Then the matrix inversion formula (See e.g., [Wik23]) gives∣∣P−1[s, s′]

∣∣ =

∣∣∣∣det (P−s′,−s)

det(P )

∣∣∣∣ = |det (P−s′,−s)| ≤ per(P ) ≤ ∥P∥D1 ,

where per(·) denotes the permanent and the last inequality uses the fact that the dimension
of P is D. Thus ∥∥P−1

∥∥
1
≤ D · max

s,s′∈T

∣∣P−1[s, s′]
∣∣ ≤ D · ∥P∥D1 (5.19)

and it suffices to bound ∥P∥1 = maxs′∈T
∑

s∈T |P [s, s′]|. Fix the maximizer s′, we have

∥P∥1 =
∑
s∈T

∏
b∈B

(∑
b′≥b s

′(b′) −
∑

b′>b s
(b′)

s(b)

)
≤
∑
s∈T

∏
b∈B

(∑
b′≥b s

′(b′)

s(b)

)
≤
∑
s∈T

∏
b∈B

(
ℓ

s(b)

)
(since ∥s′∥1 = ℓ)

= the coefficient of xℓ in
(
(1 + x)ℓ

)|B|
(since ∥s∥1 = ℓ)

=

(
ℓ · 2d−1

ℓ

)
, (since |B| = 2d−1)

which completes the proof by plugging into (5.19).
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Finally we prove Lemma 5.4.3 which bounds h(·) entrywise. For convenience, we recall
the definition of h(s) and L(I1, α1, . . . , Id, αd) from (5.17) and (5.13):

h(s) =
∑

(I1,α1),...,(Id,αd)∈A
|⊕I1⊕···⊕Id|=ℓ

∑
J(b)⊆[ñ] of size s(b),∀b∈B
J(b)’s are pairwise disjoint

J(b)⊆
⋃

b′≥b I
(b′),∀b∈B

L(I1, α1, . . . , Id, αd)

and

L(I1, α1, . . . , Id, αd) = a(⊕I1 ⊕ · · · ⊕ Id) · ũ[(I1, α1)]ṽ[(Id, αd)]
∏

i∈[d−1]

M̃i[(Ii, αi), (Ii+1, αi+1)].

Proof of Lemma 5.4.3. Let r ∈ [d] be an index to be optimized later. We will write h(s) as
a product of matrices:

h(s) = u†Q1R1Q2R2 · · ·Qr−1Rr−1QrWQ′
rR

′
rQ

′
r+1R

′
r+1 · · ·Q′

d−1R
′
d−1Q

′
dv, (5.20)

where

• Qi enforces constraints on J (b)s and propagates information about them forward,

• Q′
i enforces constraints on J (b)s and propagates information about them backward,

• Ri implements the action of M̃i and propogates information about⊕I1⊕· · ·⊕Ii forward,

• R′
i implements the action of M̃i and propogates information about ⊕Ii+1 ⊕ · · · ⊕ Id−1

backward,

• W is a sign matrix constructed to multiply by the phases a(·), as well as aggregate
information about J (b),⊕I1 ⊕ . . .⊕ Ii and ⊕Ii+1 ⊕ . . .⊕ Id−1 .

• the vector u (resp., v) is simply the vector u (resp., v) padded with zeros to fit with
the dimension of Q1 (resp., Q′

d).

In the following, we use the symbol ⊥ to denote the value is unassigned. For any b ∈ {0, 1}d
and i ∈ [d], we use b≤i to denote string (b1, b2, . . . , bi), and define similarly for b<i, b≥i, b>i.

We index the rows of matrix □ ∈ {Qi, Ri,W,Q
′
i, R

′
i} by (I□, α□) ∈ A, S□ ⊆ [ñ], and

J
(b)
□ ∈ 2[ñ] ∪ {⊥} for all b ∈ B; and its columns are similarly indexed by (I ′□, α

′
□), S ′

□, and

J ′
□
(b).

Likewise, we index the coordinates of vector ♢ ∈ {u, v} by (I♢, α♢), S♢, and J
(b)
♢ . In

particular for the vectors, we assign

♢[(I♢, α♢, S♢, J
(b)
♢ )] =

{
♢[(I♢, α♢)] S♢ = ∅ and J

(b)
♢ = ⊥, ∀b ∈ B,

0 otherwise.

Despite the dimension of the vectors u, v being increased, they are simply padded by zeros.
Therefore the norm is preserved from (5.11):

∥u∥ = ∥v∥ = 1. (5.21)

Now we turn to the matrices.
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Construction of the Blow-Up Matrix Qi. Each □ = Qi is a zero-one matrix where
the entry is assigned one iff I ′□ = I□, α′

□ = α□, S ′
□ = S□, and for each b ∈ B,

1. if i ∈ b, then J ′
□
(b) ⊆ ⊕I□,

2. a) If b≤i = 0i−11, then J
(b)
□ = ⊥ and

∣∣∣J ′
□
(b)
∣∣∣ = s(b),

b) If b≤i ̸= 0i−11, then J
(b)
□ = J ′

□
(b),

The intuition behind this expression is the following. We need to ensure two conditions,
namely, (1) for all i, we have J (b) ⊆ ⊕Ii if b ∋ i, and, (2)

∣∣J (b)
∣∣ = s(b) for all b. Condition (1)

will be checked by the matrix Qi in Item 1. Condition (2) will be checked by the matrix Qi

in Item 2a, where i is the first non-zero coordinate in b. In contrast, Item 2b is to inherent
Condition (2) from previous blow-up matrices. It will turn out that these conditions are
enough to guarantee that the sets J (b) are pairwise disjoint (as shown in (5.32) and (5.33)).

We now upper bound the operator norm of Qi. On the one hand, each column of □ has
at most one non-zero entry since the row index is a refinement of the column index. On
the other hand, each row of □ only has the possible freedom to select J ′

□
(b) if b≤i = 0i−11 in

Item 2a, each of which amounts to at most
(|⊕I□|

s(b)

)
≤
(

t
s(b)

)
options. Therefore by Fact 2.0.3,

we have

∥Qi∥ ≤

√√√√ ∏
b:b≤i=0i−11

(
t

s(b)

)
. (5.22)

Construction of the Blow-Up Matrix Q′
i. Each □ = Q′

i is a zero-one blow-up matrix
similar to Qi, with the role of the columns and rows exchanged: The entry is assigned one
iff I□ = I ′□, α□ = α′

□, S□ = S ′
□, and for each b ∈ B,

1. if i ∈ b, then J□
(b) ⊆ ⊕I□, and

2. a) if b≥i = 10d−i, then J ′
□
(b) = ⊥ and

∣∣∣J□(b)
∣∣∣ = s(b),

b) if b≥i ̸= 10d−i, then J ′
□
(b) = J

(b)
□ .

By the same argument for (5.22), we have

∥Q′
i∥ ≤

√√√√ ∏
b:b≥i=10d−i

(
t

s(b)

)
. (5.23)

Construction of the Operator Matrices Ri, R
′
i. Each □ = Ri is constructed to imple-

ment the action of M̃i as well as to propagate forward information about ⊕I1 ⊕ · · · ⊕ Ii and
this information will be captured by S ′

□. Each entry of Ri is either M̃i[(I□, α□), (I ′□, α
′
□)] or

zero, where the former case requires S ′
□ = ⊕S□ ⊕ I□ and J ′

□
(b) = J

(b)
□ for all b ∈ B.
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To bound operator norm, we view row index (I□, α□, S□, {J (b)
□ }) as (I□, α□, T□, {J (b)

□ })
where T□ = ⊕S□ ⊕ I□. Note that this is indeed a bijection since S□ = ⊕T□ ⊕ I□. Moreover
in the new indexing way, the entry is M̃i[(I□, α□), (I ′□, α□)] iff S ′

□ = T□ and J ′
□
(b) = J

(b)
□ ,

which means □ = Ri is a block diagonal matrix with block indexed by (T□, {J (b)
□ }). Since

each block is a sub-matrix of M̃i, by Fact 2.0.2 and Fact 2.0.1 the operator norm is preserved
from (5.11):

∥Ri∥ ≤ 1. (5.24)

Each □ = R′
i is similarly constructed to implement M̃i, as well as to propagate infor-

mation about ⊕Ii+1 ⊕ · · · ⊕ Id−1 using S□: Its entry is either M̃i[(I□, α□), (I ′□, α
′
□)] or zero,

where the former case requires S□ = ⊕S ′
□ ⊕ I ′□ and J

(b)
□ = J ′

□
(b) for all b ∈ B. By the same

argument, we have
∥R′

i∥ ≤ 1. (5.25)

Construction of the Sign Matrix W . The final piece is to incorporate phases a(·) in
the matrix □ = W . To this end, the entry is assigned a(⊕S□ ⊕ I□ ⊕ S ′

□) if (otherwise the
entry is assigned zero)

1. I□ = I ′□, α□ = α′
□, and |⊕S□ ⊕ I□ ⊕ S ′

□| = ℓ,

2. for each b ∈ B,

a) if b≤r = 0r, then J
(b)
□ = ⊥, J ′

□
(b) ̸= ⊥, and

∣∣∣J ′
□
(b)
∣∣∣ = s(b),

b) else if b≥r = 0d−r+1, then J ′
□
(b) = ⊥, J

(b)
□ ̸= ⊥, and

∣∣∣J (b)
□

∣∣∣ = s(b),

c) else (i.e., b≤r ̸= 0r and b≥r ̸= 0d−r+1), then J
(b)
□ = J ′

□
(b) ⊆ [ñ] of size s(b),

3. ⊕S□ ⊕ I□ ⊕ S ′
□ =

⋃
b:b≤r=0r J

′(b) ∪
⋃

b:b≤r ̸=0r J
(b).

The analysis of ∥W∥ is similar to the one of ∥Qi∥. Each row of □ is allowed to select J ′
□
(b)

if b≤r = 0r in Item 2a, each of which has at most
(

ñ
s(b)

)
options. Let S =

⋃
b:b≤r=0r J

′(b) ∪⋃
b:b≤r ̸=0r J

(b), which is fixed after enumerating J ′
□
(b)’s. By Item 3, we have S ′

□ = ⊕S□⊕I□⊕S
which is also fixed. Since each a(·) is a phase which has unit norm, we have

∥W∥∞ ≤
∏

b:b≤r=0r

(
ñ

s(b)

)
.

Similarly, we can bound ∥W∥1 ≤
∏

b:b≥r=0d−r+1

(
ñ

s(b)

)
. Therefore by Fact 2.0.3, we have

∥W∥ ≤

√√√√ ∏
b:b≤r=0r

(
ñ

s(b)

)
·

∏
b:b≥r=0d−r+1

(
ñ

s(b)

)
. (5.26)



CHAPTER 5. POWER OF ADAPTIVITY IN QUANTUM QUERY 141

Optimizing Bounds. To conclude the proof of Lemma 5.4.3, it suffices to verify (5.20)
and optimize the choice of r ∈ [d]. We will deal with the former later, and focus on the
bounds first.

Assuming (5.20), we have

|h(s)| ≤ ∥u∥ ∥Q1∥ ∥R1∥ · · · ∥Qr−1∥ ∥Rr−1∥ ∥Qr∥ ∥W∥ ∥Q′
r∥ ∥R′

r∥ · · ·
∥∥Q′

d−1

∥∥∥∥R′
d−1

∥∥ ∥Q′
d∥ ∥v∥

≤

√√√√ r∏
i=1

∏
b:b≤i=0i−11

(
t

s(b)

)
·

d∏
i=r

∏
b:b≥i=10d−i

(
t

s(b)

)
·
∏

b:b≤r=0r

(
ñ

s(b)

)
·

∏
b:b≥r=0d−r+1

(
ñ

s(b)

)
(by (5.21), (5.22), (5.23), (5.24), (5.25), and (5.26))

=

√√√√ ∏
b:b≤r ̸=0r

(
t

s(b)

)
·

∏
b:b≥r ̸=0d−r+1

(
t

s(b)

)
·
∏

b:b≤r=0r

(
ñ

s(b)

)
·

∏
b:b≥r=0d−r+1

(
ñ

s(b)

)

≤ (
√
t)

∑
b:b≤r ̸=0r s(b)+

∑
b:b≥r ̸=0d−r+1 s(b)

(
√
ñ)

∑
b:b≤r=0r s(b)+

∑
b:b≥r=0d−r+1 s(b)

= tℓ · (
√
ñ/t)

∑
b:b≤r=0r s(b)+

∑
b:b≥r=0d−r+1 s(b)

(since ∥s∥1 = ℓ)

=: tℓ · (
√
ñ/t)er .

If t ≥ ñ, then |h(s)| ≤ tℓ since er ≥ 0. Now consider the case t ≤ ñ. For each b ∈ B,
define

z(b) = max {r ∈ N | j /∈ b,∀j ≤ r} and z′(b) = min {r ∈ N | j /∈ b,∀j ≥ r} .

Since ∥b∥1 ≥ 1, we have 0 ≤ z(b) < d, 0 < z′(b) ≤ d+ 1, and z(b) ≤ z′(b)− 2. Therefore

d∑
r=1

er =
d∑

r=1

∑
b:b≤r=0r

s(b) +
d∑

r=1

∑
b:b≥r=0d−r+1

s(b) =
∑
b∈B

s(b) · (z(b) + d+ 1− z′(b))

≤
∑
b∈B

s(b) · (d− 1) = (d− 1)ℓ, (since z(b) ≤ z′(b)− 2 and ∥s∥1 = ℓ)

which by averaging argument implies there exists a choice r ∈ [d] such that er ≤ ⌊(d− 1)ℓ/d⌋.
This particular choice of r allows us to bound

|h(s)| ≤ tℓ · (ñ/t)
1
2
⌊(d−1)ℓ/d⌋

as desired.

Verifying (5.20). Finally we verify the multiplication in (5.20) is consistent with the
definition of h(s) in (5.17).

For each i ∈ [r], define vector y(i) =
(
u†Q1R1Q2 · · ·Ri−1Qi

)†
. For any fixed I1, . . . , Ii,

define the following indicator functions.

Size
(i)
< ({J (b)}) := 1

[
J (b) = ⊥ if b≤i = 0i∣∣J (b)

∣∣ = s(b) if b≤i ̸= 0i

]
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Subset
(i)
< ({J (b)}) := 1

[
⊕Ij ⊇ J (b), ∀j ≤ i, b ∋ j

]
We also define an indicator functions that captures the constraints of Qi.

Q(i)({J (b), J ′(b)}) := 1

 J (b) = ⊥, J ′(b) ⊆ ⊕I has size s(b) b≤i = 0i−11

J ′(b) = J (b) ⊆ ⊕I b≤i−1 ̸= 0i−1, bi = 1

J ′(b) = J (b) bi = 0

 .
Claim 5.4.5. The (I, α, S, {J (b)})-th entry of y(i) equals

∑
(I1,α1),...,(Ii,αi)∈A

Ii=I,αi=α
⊕I1⊕···⊕Ii−1=S

Size
(i)
< ({J (b)})·Subset(i)< ({J (b)})·ũ[(I1, α1)]

i−1∏
j=1

M̃j[(Ij, αj), (Ij+1, αj+1)] (5.27)

We proof Claim 5.4.5 by induction. We now verify the base case i = 1. In this case, the

expression in Claim 5.4.5 reduces to 1

[
J (b) = ⊥ if b1 = 0∣∣J (b)

∣∣ = s(b) if b1 = 1

]
·

∑
⊕I1⊇J(b),∀b∋1

ũ[(I, α)]. We

have y(1) =
(
u†Q1

)†
, and the (I, α, S, {J (b)})-th entry of y(1) equals

=
∑

(I′,α′,S′,{J ′(b)})

u[(I ′, α′, S ′, {J ′(b)})] ·Q1[(I
′, α′, S ′, {J ′(b)}), (I, α, S, {J (b)})]

=
∑

(I′,α′,∅,{⊥})

u[(I ′, α′)] ·Q1[(I
′, α′, ∅, {⊥}), (I, α, S, {J (b)})] (by the definition of u)

= u[(I, α)] · 1[S = ⊥] · 1
[
J (b) ⊆ ⊕I,

∣∣J (b)
∣∣ = s(b) if b ∋ 1,

= ⊥ if b ̸∋ 1

]
. (by the definition of Q1)

This proves the base case of i = 1 for Claim 5.4.5. We now handle the inductive case i ≥ 2.

We have y(i) =
((
y(i−1)

)†
Ri−1Qi

)†
and hence, the (I, α, S, {J (b)})-th entry of y(i) equals

the sum over all possible (I ′, α′, S ′, {J ′(b)}) and (I ′′, α′′, S ′′, {J ′′(b)}) of the product of the
following three terms:

1. y(i−1)[(I ′, α′, S ′, {J ′(b)})],
2. Ri−1[(I

′, α′, S ′, {J ′(b)}), (I ′′, α′′, S ′′, {J ′′(b)})], and

3. Qi[(I
′′, α′′, S ′′, {J ′′(b)}), (I, α, S, {J (b)})].

It is easy to see from the definition of Ri−1 that (2) is non-zero only if S ′′ = ⊕I ′ ⊕ S ′ and

J ′′(b) = J ′(b). Similarly, it follows from the definition of Qi that (3) is non-zero only if I ′′ = I,
α′′ = α, and S ′′ = S. We now use the inductive hypothesis to express the (I, α, S, {J (b)})-th
entry of y(i) as the sum over all possible (I ′, α′, S ′, {J ′(b)}) where S = ⊕I ′⊕S ′ of the product
of the following three terms:
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1. y(i−1)[(I ′, α′, S ′, {J ′(b)})], which by induction can be expressed as∑
(I1,α1),...,(Ii−1,αi−1)∈A

Ii−1=I′,αi−1=α′

⊕I1⊕···⊕Ii−2=S′

Size
(i−1)
< ({J ′(b)}) · Subset(i−1)

< ({J ′(b)})

· ũ[(I1, α1)]
i−2∏
j=1

M̃j[(Ij, αj), (Ij+1, αj+1)].

2. Ri−1[(I
′, α′, S ′, {J ′(b)}), (I, α, S, {J ′(b)})], which is equal to M̃i−1[(I

′, α′), (I, α)].

3. Qi[(I, α, S, {J ′(b)}), (I, α, S, {J (b)})], which is equal to Q(i−1)({J ′(b), J (b)})

We now combine the indicator functions in (1) and (3) by a case analysis. It is not too
difficult to show that

Size
(i−1)
< ({J ′(b)}) · Q(i−1)({J ′(b), J (b)})

= Size
(i)
< ({J (b)}) · 1


J ′(b) = J (b) = ⊥ if b≤i = 0i

J ′(b) = ⊥, J (b) ⊆ ⊕I if b≤i = 0i−11

J ′(b) = J (b) ⊆ ⊕I if b≤i ̸= 0i−1, bi = 1

J ′(b) = J (b) if b≤i ̸= 0i−1, bi = 0

 .
Furthermore, setting Ii = I, we have

1


J ′(b) = J (b) = ⊥ if b≤i = 0i

J ′(b) = ⊥, J (b) ⊆ ⊕I if b≤i = 0i−11

J ′(b) = J (b) ⊆ ⊕I if b≤i ̸= 0i−1, bi = 1

J ′(b) = J (b) if b≤i ̸= 0i−1, bi = 0

 · Subset(i−1)
< ({J ′(b)}) = Subset

(i)
< ({J (b)}).

Putting this together with the above facts completes the proof of Claim 5.4.5.
The (I, α, S, {J (b)})-th entry of y′(i) := Q′

iR
′
i · · ·Q′

d−1R
′
d−1Q

′
dv can be analyzed analo-

gously as

∑
(Ii,αi),...,(Id,αd)∈A

Ii=I,αi=α
⊕Ii+1⊕···⊕Id=S

Size
(i)
> ({J (b)}) · Subset(i)> ({J (b)}) · ṽ[(Id, αd)]

d−1∏
j=i

M̃j[(Ij, αj), (Ij+1, αj+1)].

(5.28)
where any fixed I1, . . . , Ii, we define the following indicator functions.

Size
(i)
> ({J (b)}) := 1

[
J (b) = ⊥ if b≥i = 0d−i+1∣∣J (b)

∣∣ = s(b) if b≥i ̸= 0d−i+1

]
Subset

(i)
> ({J (b)}) := 1

[
⊕Ij ⊇ J (b), ∀j ≥ i, b ∋ j

]
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Hence the RHS of (5.20) equals
(
y(r)
)†
Wy′(r) and evaluates to∑

(I,α,S,{J(b)})
(I′,α′,S′,{J ′(b)})

y(r)[(I, α, S, {J (b)})]W [(I, α, S, {J (b)}), (I ′, α′, S′, {J ′(b)})]y′(r)[(I ′, α′, S′, {J ′(b)})]

=
∑

I,α,S,S′

{J(b)},{J ′(b)}
|⊕S⊕I⊕S′|=ℓ

y(r)[(I, α, S, {J (b)})]W [(I, α, S, {J (b)}), (I, α, S′, {J ′(b)})]y′(r)[(I, α, S′, {J ′(b)})]

(by condition Item 1 of the definition of W )

=
∑

I,α,S,S′

{J(b)},{J ′(b)}
|⊕S⊕I⊕S′|=ℓ

W [(I, α, S, {J (b)}), (I, α, S′, {J ′(b)})]

·
∑

(I1,α1),...,(Ir,αr)∈A
Ir=I,αr=α

⊕I1⊕···⊕Ir−1=S

Size
(r)
< ({J (b)}) · Subset(r)< ({J (b)}) · ũ[(I1, α1)]

r−1∏
i=1

M̃i[(Ii, αi), (Ii+1, αi+1)]

(by Claim 5.4.5)

·
∑

(Ir,αr),...,(Id,αd)∈A
Ir=I,αr=α

⊕Ir+1⊕···⊕Id=S′

Size
(r)
> ({J ′(b)}) · Subset(r)> ({J ′(b)}) · ṽ[(Id, αd)]

d−1∏
i=r

M̃i[(Ii, αi), (Ii+1, αi+1)]

(by (5.28))

=
∑

(I1,α1),...,(Id,αd)∈A
|⊕I1⊕···⊕Id|=ℓ

ũ[(I1, α1)]ṽ[(Id, αd)]
d−1∏
i=1

M̃i[(Ii, αi), (Ii+1, αi+1)] (5.29)

·
∑

{J(b)},{J ′(b)}

W [(Ir, αr,⊕I1 ⊕ · · · ⊕ Ir−1, {J (b)}), (Ir, αr,⊕Ir+1 ⊕ · · · ⊕ Id, {J ′(b)})] (5.30)

· Size(r)< ({J (b)}) · Subset(r)< ({J (b)}) · Size(r)> ({J ′(b)}) · Subset(r)> ({J ′(b)}). (5.31)

Notice that b≤r and b≥r cannot both be zeros for b ∈ B. Thus conditions Items 2a to 2c

of W show that we can enumerate J ′′(b) ⊆ [ñ] of size s(b) and then let J (b), J ′(b) be ⊥ or

J ′′(b) based on b. After this, (5.31) simply becomes the indicator of J ′′(b) ⊆
⋂

i∈b⊕Ii, and

condition Item 3 of W becomes ⊕I1⊕ · · ·⊕ Id =
⋃

b∈B J
′′(b). That is, (5.30) and (5.31) when

combined, is equal to

a(⊕I1 ⊕ · · · ⊕ Id) ·
∑

J ′′(b)⊆[ñ] of size s(b),∀b∈B
J ′′(b)⊆

⋂
i∈b ⊕Ii

[
⊕I1 ⊕ · · · ⊕ Id =

⋃
b∈B

J ′′(b)

]
.
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Now recall the definition of L(I1, α1, . . . , Ld, αd) from (5.13) and combine (5.29). The RHS
of (5.20) equals∑

(I1,α1),...,(Id,αd)∈A
|⊕I1⊕···⊕Id|=ℓ

J ′′(b)⊆[ñ] of size s(b)

[
J ′′(b) ⊆

⋂
i∈b

⊕Ii ∧ ⊕I1 ⊕ · · · ⊕ Id =
⋃
b∈B

J ′′(b)

]
· L(I1, α1, . . . , Id, αd).

(5.32)
Finally it suffices to show this is equivalent to the summation in (5.17) which we restate
here: ∑

(I1,α1),...,(Id,αd)∈A
|⊕I1⊕···⊕Id|=ℓ

J(b)⊆[ñ] of size s(b)

[
J (b) ⊆

⋃
b′≥b

I(b
′) ∧ J (b)’s are pairwise disjoint

]
· L(I1, α1, . . . , Id, αd),

(5.33)
where we recall that I(b

′) =
(⋂

i∈b′ ⊕Ii
)
\
(⋃

i/∈b′ ⊕Ii
)
. To this end, we fix (I1, α1), . . . , (Id, αd) ∈

A satisfying |⊕I1 ⊕ · · · ⊕ Id| = ℓ and show each possible {J ′′(b)} from (5.32) is also counted
as {J (b)} in (5.33), and vice versa.

From (5.32) to (5.33). By the definition of I(b
′), we know⊕Ii∩I(b

′) = ∅ whenever i /∈ b′.
Since J ′′(b) ⊆

⋂
i∈b⊕Ii, we have J ′′(b) ∩ I(b′) ̸= ∅ implies b′ ≥ b. Note that ⊕I1 ⊕ · · · ⊕ Id =⋃

b I
(b). Therefore

⋃
b J

′′(b) =
⋃

b J
(b), and thus J ′′(b) ⊆

⋃
b′≥b I

(b′) as desired in (5.33). On the

other hand,
∑

b |J ′′(b)| = ∥s∥1 = ℓ = |⊕I1 ⊕ · · · ⊕ Id|. Thus ⊕I1⊕ · · · ⊕ Id =
⋃

b J
′′(b) implies

that J ′′(b)’s are pairwise disjoint as desired in (5.33).
From (5.33) to (5.32). Since ⊕I1⊕· · ·⊕Id =

⋃
b I

(b), we have
⋃

b J
(b) ⊆

⋃
b

⋃
b′≥b I

(b′) =⋃
b I

(b′) = ⊕I1 ⊕ · · · ⊕ Id. On the other hand,
∑

b |J (b)| = ∥s∥1 = ℓ = |⊕I1 ⊕ · · · ⊕ Id|. Thus
J (b)’s being pairwise disjoint implies that ⊕I1⊕· · ·⊕Id =

⋃
b J

(b) as desired in (5.32). By the
definition of I(b

′), we know I(b
′) ⊆

⋂
i∈b′ ⊕Ii. Therefore J (b) ⊆

⋃
b′≥b I

(b′) ⊆
⋃

b′≥b

⋂
i∈b′ ⊕Ii =⋂

i∈b⊕Ii as desired in (5.32).

5.5 Tightness of the Non-Adaptive Case

Recall the definition of k-fold Forrelation problem from Definition 2.0.10. Here we show the
tightness of our Fourier growth bounds for the non-adaptive parallel query algorithms using
two-fold Forrelation function:

forr2(x1, x2) =
1

n

∑
i,j∈[n]

x1(i) ·Hi,j · x2(j).

Since H is the orthonormal Hadamard matrix, each Hi,j is ±1/
√
n. As a result, forr2 is a

degree-2 homogeneous function with

L2(forr2) =
√
n. (5.34)
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Let Q be the quantum query algorithm from Fact 2.0.11 for k = 2. Then its acceptance
probability function f(x) = Pr [Q accepts x] equals (1 + forr2(x))/2.

Now, for a fixed positive odd number s, let Majs : {±1}s → {±1} be the majority function
on s bits. Define forr2 ◦Majs : {±1}2sn → R by replacing input bits of forr2 with majorities
on disjoint sets of s bits:

forr2 ◦Majs(y) =
1

n

∑
i,j∈[n]

Majs(y1,i) ·Hi,j ·Majs(y2,j), (5.35)

where y = (y1,1, . . . , y1,n, y2,1, . . . , y2,n) and each y1,i, y2,j ∈ {±1}s.
We substitute the quantum query of Q on x by s parallel queries on y. This produces a

non-adaptive quantum query algorithm Q with s parallel queries, and its acceptance proba-
bility function is

f(y) =
1 + forr2 ◦Majs(y)

2
.

Now for a fixed positive integer L, consider executing Q in parallel on L disjoint inputs
and taking the parity of the results. This is a non-adaptive quantum query algorithm Q′

with t = sL parallel queries, and its acceptance probability function is

f ′(z) =
1

2
+

1

2

∏
k∈[L]

forr2 ◦Majs(y
k), (5.36)

where z = (y1, . . . , yL) and each yk = (yk1,1, . . . , y
k
1,n, y

k
2,1, . . . , y

k
2,n) ∈ {±1}2sn.

We lower bound the level-ℓ Fourier weight of f ′ with ℓ = 2L. To this end, we observe

that M̂ajs(∅) = 0 and recall that forr2 is degree-2 homogeneous. Since f ′ is essentially the
product of L disjoint copies of forr2 ◦ Majs (see (5.36)) and each forr2 ◦ Majs is a sum of
products of two disjoint Majs (see (5.35)), the level-ℓ Fourier coefficients of f ′ comes from
expanding the products of level-1 Fourier weight of Majs, weighed by the level-2 Fourier
coefficients of forr2. Therefore

Lℓ(f
′) =

1

2
·
(
L2(forr2) · L1(Majs)

2
)L

= Ω
(√

n · s
)L

(by (5.34) and L1(Majs) = Θ(
√
s))

Recall that ℓ = 2L, t = sL, and f ′ is a function on n = 2sLn input bits. This implies

Lℓ(f
′) ≥ Ωℓ

(
nℓ/4 · tℓ/4

)
,

matching the bound in Remark 5.2.4.

5.6 Quantum Query with Classical Preprocessing

In this section, we show that our Fourier analytic approach can be generalized to handle a
more general setting, where the quantum query algorithm is allowed to first perform many
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classical queries as a preprocessing phase. More precisely, we prove Lemma 5.6.1 analogous
to Theorem 5.2.3.

Lemma 5.6.1. Let A be an algorithm on n-bit inputs:

• Classical Preprocessing Phase. First A performs at most d classical queries.

• Quantum Parallel Query Phase. Then based on the results of the previous phase, A
executes a quantum query algorithm B with arbitrarily many auxiliary qubits and r
adaptive rounds of t ≤ n parallel quantum queries per round.

Define f : {±1}n → [0, 1] by f(x) = Pr [A accepts x]. Then

Lℓ(f) ≤ Or,ℓ

(
(d · t)ℓ ·

(√
n/t
)⌊(1− 1

2r )ℓ⌋)
.

Moreover, this bound holds when some bits of x are fixed in advance.

By a similar calculation as in the proof of Theorem 5.2.1, Lemma 5.6.1 strengthens
Theorem 5.2.1 as the following theorem.

Theorem 5.6.2. For any constant r ≥ 2, the 2r-fold Forrelation problem on n-bit inputs

1. can be solved with advantage 2−10r by r adaptive rounds of queries with one quantum
query per round, yet

2. any algorithm with n1/(2r) classical preprocessing queries and r − 1 adaptive quantum
query rounds requires Ω̃(n1/r2) parallel quantum queries to approximate it.

Now we prove Lemma 5.6.1 which is a simple black-box reduction to Theorem 5.2.3.

Proof of Lemma 5.6.1. We view the classical preprocessing phase of A as a decision tree D of
depth at most d, where each leaf z of D selects a quantum query algorithm Bz. In addition,
we identify each z as a partial assignment in {±1, ∗}n where the ±1 values correspond to
classical queries and their outcome, and ∗’s correspond to bits that are not queried in this
phase. In particular, there are at most d non-∗ values for each z and we use z−1(∗) ⊆ [n] to
denote the entries of these non-∗ values.

For each z, define gz(x) = Pr[Bz accepts x|z] as the acceptance probability function of
Bz conditioned that x is consistent with z on entries in z−1(∗). By Theorem 5.2.3, we have

Lk(gz) ≤ Or,k

(
tk ·
(√

n/t
)⌊(1− 1

2r )k⌋)
for each k ≥ 0 (5.37)

For each S ⊆ [n] of size ℓ, define aS = sgn(f̂(S)) as the sign of the Fourier coefficients at
level ℓ. Then we have

Lℓ(f) = E
x

f(x)
∑
|S|=ℓ

aS · xS

 = E
z

E
x

f(x)
∑
|S|=ℓ

aS · xS

∣∣∣∣∣∣ z

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= E
z

E
x

gz(x)
∑
|S|=ℓ

aS · xS

∣∣∣∣∣∣ z


(z is sampled by a random root-to-leaf path in D)

= E
z

Ex
gz(x)

∑
T1⊆z−1(∗)

T2⊆[n]\z−1(∗)
|T1|+|T2|=ℓ

aT1∪T2 · zT1 · xT2

∣∣∣∣∣∣∣∣∣∣∣
z



 (by the definition of z)

= E
z

 ∑
T1⊆z−1(∗),|T1|≤ℓ

zT1 · E
x

gz(x)
∑

T2⊆[n]\z−1(∗)
|T2|=ℓ−|T1|

aT1∪T2 · xT2



(by the definition of gz)

≤ E
z

 ∑
T1⊆z−1(∗),|T1|≤ℓ

Lℓ−|T1|(gz)

 (by the definition of Lℓ−k and since zT1 ∈ {±1})

≤
ℓ∑

k=0

dk · E
z

[Lℓ−k(gz)] (since |z−1(∗)| ≤ d)

≤
ℓ∑

k=0

dk ·Or,k

(
tℓ−k ·

(√
n/t
)⌊(1− 1

2r )(ℓ−k)⌋)
(by (5.37))

= Or,ℓ

(
(d · t)ℓ ·

(√
n/t
)⌊(1− 1

2r )ℓ⌋)
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Chapter 6

Other Projects

The theme of this thesis is quantum advantages via Fourier growth analysis of Boolean func-
tions, which includes the works described in detail above. There are several other projects
that I was involved in and completed during the PhD study, which do not fit within scope.
Nevertheless, I give short descriptions on them here in chronological order.

Sketching Algorithm for Edit Distance. This is the work [JNW21] joint with Ce Jin
and Jelani Nelson.

The edit distance between two binary strings x and y is defined to be the minimal number
of changes on x to get y, where each change can be deletion, insertion, and substitution.
This metric captures DNA edits and document similarities.

We consider the setting where x and y are stored apart by Alice and Bob respectively; and
they aim to compute the edit distance (and recover a corresponding edit sequence) by some
efficient communication with a referee Carol. More formally, Alice computes a bit-string
sketch sx based on her string x; and Bob computes sy from y; then Carol should be able
to compute the edit distance between x and y solely from sx and sy, with high probability.
In real life, Carol can be seen as a central server that stores sketches of documents for
comparisons of similarity, and Alice Bob are users to upload their documents.

One natural approach for this is to set sx = x and sy = y. It turns out that in many
cases this is not necessary. In our work, we show that if the edit distance between x and y is
guaranteed to be small, say, at most k. Then Alice and Bob can efficiently prepare sketches of
length roughly k3 where n is an upper bound on the lengths of x, y. Our bound quantitatively
improved the previous k8 bound by Belazzougui and Zhang [BZ16], and was subsequently
improved by Kociumaka, Porat, and Starikovskaya [KPS22] to k2 and by Kouckỳ and Saks
[KS24] to k.

Sample Solutions to Local-Lemma-Type k-CNFs. This is the work [HSW21] joint
with Kun He and Xiaoming Sun.

A k-CNF is a conjunction of clauses, where each clause is a disjunction of exactly k
variables or their negations. It is well-known that the satisfiability of k-CNFs is NP-complete
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even for k = 3. However in some cases, the k-CNFs in question have some additional
assumption, for example, every variable appears in at most d clauses for d being relatively
small. This is what we call local-lemma-type k-CNFs, as the celebrated Lovász local lemma
[Erd75] guarantees satisfiability if d ≲ 2k and the famous Moser-Tardos algorithm [MT10]
efficiently finds a solution in this regime.

Our focus is to sample a uniformly random solution of these local-lemma-type k-CNFs.
This is closely related to the partition function in statistical physics and inference of graphical
models [Moi19]. One natural approach for this sampling task is to do rejection sampling,
which unfortunately fails as the solution space is exponentially small. Another tempting
algorithm to try is the metropolis algorithm, which however also fails due to large distances
between solutions. We analyzed a Markov chain algorithm that is intuitively metropolis
algorithm under projection, and showed how to sample a uniform solution in polynomial
time as long as d ≲ 20.175k. This bound was further improved to d ≲ 20.2k by He, Wang,
and Yin [HWY23a]. Our algorithm was also the first perfect sampler that samples a perfect
uniformly random solution, and the idea extended easily to larger alphabets for sampling
random coloring of local-lemma-type hypergraphs.

Sample Solutions to Random k-CNFs. This is the work [HWY23b] joint with Kun
He and Kuan Yang.

Pertinent to the local-lemma-type k-CNFs above, here we consider random k-CNFs,
where each clause is itself uniformly random. This model is particularly interesting as each
variable appears limited number of times in average but a small fraction of variables will
appear for many times with high probability. Hence, the Lovász local lemma and Moser-
Tardos algorithm, served as a worst-case analysis, do not apply here and the satisfiability of
random k-CNFs is highly non-trivial [DSS15] and relates to phase transitions in statistical
physics. Nevertheless, let d be the average degree of variables; then for d ≲ 2k, a random
k-CNF is satisfiable with high probability and a solution can be found efficiently [CO10].

Our focus is again trying to sample a solution uniformly at random. Just like the local-
lemma-type k-CNFs, the solution space of random k-CNFs is also highly fragmented and
prohibits many natural samplers. We analyzed a recursive sampling algorithm inspired by
[HWY23a] to sample bit by bit of a random solution, and showed that it runs in polynomial
time as long as d ≲ 2k/3. This was a significant improvement over the d ≲ 2k/300 from
previous work [GGGY21] and our 2k/3 threshold was, for the first time, better than the
threshold of worst-case local-lemma-type k-CNFs for efficiently sampling solutions. Our
result was recently improved by Chen, Lonkar, Wang, Yang, and Yin [CLW+24] to d ≲ 2k,
which, up to low order terms, matches the satisfiability threshold of random k-CNFs [DSS15].

Differential Private Algorithm for The Counting Problem on Trees. This is the
work [GKK+23] joint with Badih Ghazi, Pritish Kamath, Ravi Kumar, and Pasin Manu-
rangsi.
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Consider the scenario where Google wants to analyze the popularity of each webpage
by the number of user clicks on it. This can be abstracted as a rooted tree with some
non-negative integers weight on each leaf node, and the task is to compute for each internal
node the total weight of leaves below it. Here, the tree structure represents the hierarchical
nature of domains and sub-domains, and the value for each internal node represents the
total number of user clicks accumulated on it, by visiting its sub-domains. This is, of course,
a simple algorithmic task that only needs a linear-time bottom-up dynamic programming.
The extra demand here is privacy.

The simple algorithm that outputs each node value is not considered private, as each
leaf weight change will influence all its ancestors and can be detected easily. In real life,
this is saying that each user’s behavior, though subtle, can be detected. A private algorithm
should be resilient to such perturbation, i.e., the algorithm’s output should not be too
sensitive to any individual change. This is formalized in a mathematically rigorous way as
differential privacy [DKM+06]. In a nutshell, the privacy is guaranteed by blurring the exact
output values with some random, but still controlled, shifts. The contribution of our work
is differential private algorithms for the above problem with (optimal) trade-offs regarding
privacy and accuracy.

Parameterized PCP and Hardness of Approximation. This is the works [GLR+24,
GLR+25] joint with Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, and Yican Sun.

The satisfiability of Boolean formula is a well-known NP-complete problem, meaning
that, given a solution x of the input formula ϕ, we can verify its correctness in polynomial
time; however we do not expect to find such a solution in polynomial time, unless P = NP.
The celebrated PCP theorem [AS98, ALM+98] shows that the verification of ϕ(x) = True
can be further sped up, if we moderately increase the size of the proof. More precisely, let
V be a verifier of the satisfiability of ϕ. If ϕ is satisfiable, then we can write a proof π of
binary bits and polynomial length, such that V always accepts the proof π; however if ϕ
is not satisfiable, then any proposed proof π will fail to convince V with high probability.
Moreover, V only reads a constant number of random locations in π. Of course a natural V
will be the one directly verifying if π is a solution of ϕ, but this is inefficient as it necessarily
needs to read every bit of π. Indeed the PCP theorem is highly non-trivial.

One motivation for proving such a PCP theorem is to prove hardness of approximation.
For example, it is well-known that the clique number is NP-hard to compute [Kar09], but
what if we are satisfied by a constant approximation of the clique number. With the help of
the PCP theorem above, it was shown that this relaxation remains NP-hard [FGL+91].

The contribution of our works is to study the trade-off between the alphabet size and
proof length in the PCP theorem. More concretely, we show that for any parameter k,
the PCP theorem holds with proofs of alphabet size 2n/k and length k1+o(1), where n is
the size of the input ϕ. This parameterized version recovers the classic PCP theorem when
k = Θ(n), but is more flexible to use. Indeed, it implies that, under the standard assumption
Exponential Time Hypothesis [IP01], finding a clique of size k/10 in a graph promised to have
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size-k cliques still requires time Nk1−o(1)
, where N is the size of the input graph. Note that

Nk is the runtime of the brute-force algorithm, and hence this bound is essentially optimal.

(Post-Quantum) Security of Cryptographic Salting. This is the work [DLW24] joint
with Fangqi Dong and Qipeng Liu.

Imagine that Alice and Bob want to use some public channel for communication, and the
adversary Eve aims to steal their secret. As a public-key protocol, the messages between Alice
and Bob are broadcasted and the security of the protocol heavily relies on some cryptographic
primitive such as hash function f . It is usually the case that Eve succeeds if f is broken,
e.g., Eve discovers some x ̸= y producing a collision f(x) = f(y).

While the primitive f can be highly complicated to prevent an efficient way of finding
collisions, Eve, in real life, can study f with unlimited time and efforts, before executing an
efficient attack. This is because both the protocol and the primitive are announced in public
in advance. Under this consideration, Eve can trivially store some particular collision as a
witness for breaking f . In fact, it is not hard to see that any fixed hash function becomes
vulnerable against adversaries with a preprocessing phase like this.

To regain security, Morris and Thompson [MT79] proposed a natural fix, called crypto-
graphic salting, as follows. Instead of announcing a single hash function, the public protocol
includes many different hash functions f1, . . . , fK and Alice and Bob will later pick a uni-
form random k from {1, 2, . . . , K} and use fk for their communication. This heuristically
prevents attacks if K is sufficiently large, as a space-bounded adversary cannot store colli-
sions of every hash function possibility now. The contribution of our work is to rigorously
analyze this enhanced protocol against both classical and quantum adversaries. Our bound
quantitatively improves the prior works [CDGS18, Liu23]; in fact, our result achieves asymp-
totically optimal security parameter in most settings and generalizes beyond hash functions
and colision finding problems.

Optimal Clifford+T Circuit for Preparing Quantum States. This is the work
[GKW24] joint with David Gosset and Robin Kothari.

Quantum state preparation is a fundamental subroutine in many quantum algorithms,
metrologies, communication, and more. In this problem, we are given a classical description
of some n-qubit quantum state |ψ⟩ and aim to construct it from scratch. More formally, we
start with the all-zero state, then apply some amount of quantum gates, to convert the state
into a quantum state that is close enough to the target |ψ⟩. A natural and standard choice
of quantum gates is the Clifford+T gate set, consisting of Clifford gates (Hadamard gate,
phase gate, and CNOT gate) and T gate. Interestingly, T gate is considered more expensive
than Clifford gates for various reasons from classical simulation [GOT98], quantum error
correction [BK05], and quantum magic [VMGE14]. Hence, reducing the number of T gates
used in the state preparation scheme becomes a vital task.

While an n-qubit state has roughly 2n degrees of freedom, surprisingly it can always be
prepared in a Clifford+T circuit with roughly

√
2n · n log n T gates due to Low, Kliuchnikov,
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Schaeffer [LKS24]. They also proved a lower bound of
√

2n, almost matching the upper
bound. The main contribution of our work is to bring down the upper bound to

√
2n, and,

more generally, to achieve an optimal trade-off regarding the dimension n, the approximation
error ε, and the number of T gates in the state preparation circuit. Our techniques also have
interesting consequences and savings for implementing certain unitaries.

Sampling Power of Shallow Boolean Circuits. This is the works [KOW24, KOW25]
joint with Daniel M. Kane and Anthony Ostuni.

A Boolean circuit consists of AND, OR, and negation gates with bounded fan-in, as well
as designated input gates and output gates. The depth of a Boolean circuit is the maximum
length of a computation path from input to output. We consider shallow Boolean circuits
that have constant (or slightly superconstant) depth. This computation model is typically
not interesting, as every output bit depends only on constant number of input bits; hence it
cannot compute any function that needs to aggregate information of many input bits. For
example, the parity function on n bits is obviously not computable here.

However things become interesting as we move to sampling tasks, where we view input
bits as independent unbiased coins and aim to produce some target output distribution. In
this setting, we can actually sample a distribution naturally induced by the parity function:
uniform n-bit strings with even Hamming weight. To see this, assume r1, . . . , rn are unbiased
coins, then the joint distribution of (r1⊕ r2, r2⊕ r3, . . . , rn⊕ r1) is uniform over even strings.
If we could compute the parity function, this distribution can be sampled in a more direct
way by (r1, . . . , rn−1, r1 ⊕ r2 ⊕ · · · ⊕ rn−1), which is, of course, not feasible in our model.

It is now natural to ask if there are other examples like above: can we use shallow circuits
to sample a uniform n-bit string conditioned on some Hamming weight constraint, despite
that the constraint function itself is not computable by shallow circuits. Our work shows
that unfortunately the above example is the only miracle, confirming a conjecture by Filmus,
Leigh, Riazanov, and Sokolov [FLRS23]. Our result also leads to interesting applications in
data structure lower bounds [Vio12], quantum-classical separation [BGK18], and learning
theory [Dia16].
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