
DigiRL: Training In-The-Wild Device-Control Agents with
Autonomous Reinforcement Learning

Hao Bai
Mert Cemri
Jiayi Pan
Alane Suhr
Sergey Levine
Aviral Kumar

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-43
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-43.html

May 6, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work represents a collaborative effort with Hao Bai, Mert Cemri, Jiayi
Pan, Alane Suhr, Sergey Levine, and Aviral Kumar, where I served as one of
the primary contributors. My contributions focused on formulating the initial
research idea, developing the first experi- mental prototype, and drafting the
manuscript. Hao Bai, a master’s student at the University of Illinois at
Urbana-Champaign at the time of collaboration and the other primary
contributor, played a critical role in establishing the infrastructure for large-
scale experiments, refining the algorithm, and collecting experimental
results. With the consent of my collaborators, I include this collaborative
work in my master thesis.

DigiRL: Training In-The-Wild Device-Control Agents with Autonomous
Reinforcement Learning

by Yifei Zhou

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.
Approval for the Report and Comprehensive Examination:

Committee:

Professor Sergey Levine
Research Advisor

(Date)

* * * * * * *

Professor Alane Suhr
Second Reader

(Date)

5/5/25

Alane Suhr
5/6/2025

Acknowledgements

This work represents a collaborative effort with Hao Bai, Mert Cemri,
Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar, where I
served as one of the primary contributors. My contributions focused
on formulating the initial research idea, developing the first experi-
mental prototype, and drafting the manuscript. Hao Bai, a master’s
student at the University of Illinois at Urbana-Champaign at the time of
collaboration and the other primary contributor, played a critical role
in establishing the infrastructure for large-scale experiments, refining
the algorithm, and collecting experimental results. With the consent
of my collaborators, I include this collaborative work in my master
thesis.

1

DigiRL: Training In-The-Wild Device-Control
Agents with Autonomous Reinforcement Learning

Hao Bai1,2⇤ Yifei Zhou1⇤ Mert Cemri1 Jiayi Pan1

Alane Suhr1 Sergey Levine1 Aviral Kumar3

1UC Berkeley 2UIUC 3Google DeepMind

Abstract

Training corpuses for vision language models (VLMs) typically lack sufficient
amounts of decision-centric data. This renders off-the-shelf VLMs sub-optimal
for decision-making tasks such as in-the-wild device control through graphical
user interfaces (GUIs). While training with static demonstrations has shown
some promise, we show that such methods fall short for controlling real GUIs
due to their failure to deal with real world stochasticity and non-stationarity not
captured in static observational data. This paper introduces a novel autonomous
RL approach, called DigiRL, for training in-the-wild device control agents through
fine-tuning a pre-trained VLM in two stages: offline RL to initialize the model,
followed by offline-to-online RL. To do this, we build a scalable and parallelizable
Android learning environment equipped with a VLM-based evaluator and develop
a simple yet effective RL approach for learning in this domain. Our approach
runs advantage-weighted RL with advantage estimators enhanced to account for
stochasticity along with an automatic curriculum for deriving maximal learning
signal. We demonstrate the effectiveness of DigiRL using the Android-in-the-Wild
(AitW) dataset, where our 1.3B VLM trained with RL achieves a 49.5% absolute
improvement – from 17.7 to 67.2% success rate – over supervised fine-tuning with
static human demonstration data. These results significantly surpass not only the
prior best agents, including AppAgent with GPT-4V (8.3% success rate) and the
17B CogAgent trained with AitW data (38.5%), but also the prior best autonomous
RL approach based on filtered behavior cloning (57.8%), thereby establishing a
new state-of-the-art for digital agents for in-the-wild device control.

1 Introduction
Advances in vision-language models (VLMs), especially in regards to their remarkable common-
sense, reasoning, and generalization abilities imply that realizing a fully autonomous digital AI
assistant, that can simplify human life by automating day-to-day activities on computer devices via
natural language interfaces, is no longer a distant aspiration [16, 45, 56]. An effective device-control
AI assistant should be able to complete tasks in-the-wild through Graphical User Interfaces (GUIs)
on digital devices: make travel plans; experiment with presentation designs; and operate a mobile
device autonomously, all while running amidst stochasticity and distractors on the device, the Internet,
and the tools it interacts with. However, enhanced reasoning or common-sense abilities do not

⇤Equal contribution, listed in alphabetical order; work done at UC Berkeley. E-mails: haob2@illinois.edu,
yifei_zhou@berkeley.edu, aviralkumar@google.com. Project page: https://digirl-agent.github.io/.
Code available at https://github.com/DigiRL-agent/digirl.

Preprint. Under review.

https://digirl-agent.github.io/
https://github.com/DigiRL-agent/digirl

Figure 1: DigiRL overview. DigiRL is built upon a VLM that has been pre-trained on extensive web data
to develop fundamental skills such as common knowledge, reasoning, and visual grounding. Initially, we
employ offline RL to fine-tune the VLM using stale task-specific data, which helps in eliciting goal-oriented
behaviors. Subsequently, our agent engages with real-world graphical user interfaces, continuously enhancing
its performance through online RL and autonomous performance evaluations.

directly transfer to intelligent assistant behavior: ultimately we want AI assistants to accomplish
tasks, exhibit rational behavior, and recover from their mistakes as opposed to simply producing a
plausible completion to a given observation based on the data seen during pre-training. This implies
that a mechanism to channel abilities from pre-training into a deployable AI “agent” is lacking.

Even the strongest proprietary VLMs, such as GPT-4V [24] and Gemini 1.5 Pro [7] 2, still struggle to
produce the right actions when completing tasks on devices. While general-purpose vision-language
abilities help these models still make meaningful abstract deductions about novel scenes when
deployed, these deductions do not transfer to accurate reasoning for control [47, 45, 55, 44]. As a
result, most prior work for building device agents construct complex wrappers around proprietary
VLMs by combining them with prompting, search, or tool use [47, 44, 52, 51, 45]. While building
prompting or retrieval wrappers to improve decision-making performance of existing VLMs enhances
their performance in the short run, without updating the weights, the effectiveness of the resulting
agent is inherently limited by the capabilities of the base model [49, 3]. For example, we found that
off-the-shelf VLMs make reasoning failures that derail the agent (e.g., Figure 2 and Figure 17), as
direct consequences of inability of the base model to reason with low-level device-control actions.
A different solution is to fine-tune the model on demonstrations via imitation learning. However,
the dynamic nature of the web and device means that models trained to mimic actions in stale data
can result in sub-optimalilty as the eco-system changes [26]. Agents trained in this way struggle to
recover from the agents’ own mistakes [8, 12].

If we can instead build an interactive approach to train a VLM to directly adapt and learn from its
own experience on the device and the Internet, that can be used to build a robust and reliable device-
control agent, without needing wrappers on top of proprietary models. However, this learning-based
approach must satisfy some desiderata. First, it must make use of online interaction data since static
demonstration data would not be representative of the task when the model is deployed: for instance,
even in the setting of web navigation alone, dynamic nature of in-the-wild websites means that the
agent will frequently encounter website versions that differ significantly from the scenarios seen
during training and will need to behave reliably despite changes in visual appearance and distractions.
Second, learning on-the-fly means the approach must learn from multi-turn interaction data from
the model itself, a large of chunk of which would consist of failures. Proper mechanisms must be
designed to automatically pick out the correct actions while filtering the wrong ones.

2We use external versions of these models as of June 11, 2024. Experiments with GPT and Gemini models
were performed entirely by Hao Bai, Yifei Zhou, Mert Cemri, and Jiayi Pan.

3

Figure 2: Qualitative comparison between DigiRL and other approaches. AutoUI trained from static
human demonstrations can easily get stuck in out-of-distribution states while GPT-4V often get on a wrong goal
(searched “logitech g933bestbuy.com logitech g933” in Google instead of bestbuy.com). In contrast, DigiRL can
recover from such states and complete complex instruction as requested.

To this end, our main contribution is a novel autonomous RL approach, DigiRL (i.e., RL for
Digital Agents), for training device control agents, as shown in Figure 1. The resulting agent attains
state-of-the-art performance on a number of Android device-control tasks. To train this agent, our
approach operates in two phases: an initial offline RL phase to initialize the agent using existing data,
followed by an offline-to-online RL phase, that further fine-tunes the model obtained from offline
RL on online rollout data. Online RL training requires access to an environment that the agent can
interact with and obtain reliable reward signals, all in a reasonable amount of wall-clock time. To
do so, we build a scalable and parallelizable Android learning environment equipped with a robust
VLM-based general-purpose evaluator [26] (average error rate 2.8% against human judgement) that
supports running up to 64 real Android emulators at the same time to make online RL real-time.
Then, to effectively learn autonomously, we develop an online RL approach that retains the simplicity
of supervised learning, but incorporates several key deep RL insights to enable fast fine-tuning.
Concretely, our approach is a variant of advantage-weighted regression (AWR) [28], equipped with:
(i) an automatic curriculum that uses an instruction-level value function to order tasks so as to extract
maximal learning signal, which is inspired by prioritized replay methods [11, 32, 23], and (ii) another
step-level value function trained via effective cross-entropy loss [17, 5] to extract low-variance and
less-biased learning signal amidst stochasticity and diverse tasks. This RL approach allows us to
fine-tune VLMs on their own experience.

We evaluate our agent trained with DigiRL in carrying out diverse instructions from Android in the
Wild dataset [31] on real Android device emulators and find that our agent can achieve a 28.7%
improvement over the existing state-of-the-art agents (from 38.5% to 67.2% success rate) 18B
CogAgent [9], and over 9% improvement over the prior best autonomous learning approach based
on Filtered Behavior Cloning [18, 26]. The performance of our agent also significantly surpasses
wrappers on top of state-of-the-art proprietary VLMs such as GPT-4V [24] and Gemini 1.5 Pro [7]
(17.7% success rate), despite using a significantly smaller model (with 1.3B parameters). To our
knowledge, this is the first work to successfully build an autonomous offline-to-online RL approach
to enable state-of-the-art performance on device-control problems.

2 Related Work
Multi-modal digital agents. In contrast to language-only agents that largely interact with both
text or code inputs and outputs [33, 49, 3, 30, 46, 20, 13], training multi-modal agents capable of
controlling devices presents different challenges: first, device control is done directly at the pixel-
level and in a coordinate-based action space, instead of natural language [31, 44] that LLM is most
familiar with, and second, the ecosystem of a device and the Internet tends to be quite stochastic and
unpredictable, which is absent with high-level planning in language only. To handle these challenges,

4

prior work largely builds on strong proprietary VLMs [24, 7], and designs complex rule-based
wrappers [47, 51, 45, 52] to enhance the visual grounding capabilities of VLMs in GUI interfaces
and convert text output into pixel interactions. However, without any form of fine-tuning, this limits
the room for possible performance improvement [44, 47, 49, 3, 50], especially when pre-training
corpora only present limited action-labeled data. A separate line of work fine-tunes VLMs with
demonstration data [19, 15, 9, 53] via imitation learning, but maximizing single-step accuracy from
stale demonstrations without accounting for consequences of these actions in subsequent steps may
lead to poor solutions amidst stochasticity [26], as agents trained in such ways will struggle to recover
from out-of-distribution states not included in the demonstration data [8, 12]. The third category, and
perhaps the closest to us, are works that run filtered imitation learning on autonomously-collected
data to directly maximize the episode success rate [26, 18]. In contrast, ours is the first work to scale
autonomous, offline-to-online RL for device control, producing an agent that outperforms prior agents
built via imitation. Even when compared to prior work running on-policy RL in simplified web
navigation settings (MiniWob++ [37, 10]), our approach is 1000x more sample efficient (around 1e3
trajectories compared to around 1e6 trajectories), and operates in real-world GUI navigation tasks.

Environments for device control agents. Recent works have introduced simulated environments
for building device control agents [48, 56, 16, 54, 4, 44]. However, these environments are primarily
designed for evaluation, and present only a limited range of tasks within fully deterministic and
stationary settings, infeasible for acquiring a diverse repertoire of skills needed for device control.
Alternatively, other works use environments with a greater diversity of tasks [48, 37], but these
environments often oversimplify the task complexity, thus failing to transfer to in-the-wild settings.
Coversely, our training environment utilizes autonomous evaluation [26] with Gemini 1.5 Pro [7]
to support diverse, open-ended tasks on parallel actual Android devices, at full scale unlike prior
environments. This also contrasts other prior works that use single-threaded Android emulators [26,
39, 19] and thus inefficient for support online RL at scale.

Reinforcement learning for LLM/VLMs. The majority of prior research employing RL for
foundation models concentrates on tasks that must be solved in a single turn, such as preference
optimization [25, 58, 2] or reasoning [27]. However, optimizing for single-turn interaction from expert
demonstrations may result in sub-optimal strategies for multi-step problems [57, 38, 42], especially
amidst a high degree of stochasticity or non-stationarity. Therefore, we focus on building multi-turn
RL algorithms that can learn from sub-optimal, online interaction data in this work. While prior
works have developed value-based RL algorithms for LLMs [42, 38, 1, 57, 50], they typically require
maintaining multiple models such as Q-networks, value-networks, and policy networks, along with
their delayed target counterparts, and can be subjective to slow convergence and sensitivity to choices
of hyper-parameters. In contrast, we focus on identifying the key design choices for instantiating a
simple yet effective RL algorithm for practitioners to incorporate to substantially improve full-scale
Android device control. Our approach can serve as a base model for future research.

3 Problem Setup and Preliminaries
Problem formulation. We are interested in pixel-based interaction with virtual devices. We scope
our study in the control of Android devices: this is already significantly more challenging and more
general than previous learning-based environments that focus solely on web navigation [16, 56, 4],
where the web browser itself is merely one application within our broader environment, and link-based
device controls [47, 51] are inadequate for tasks like games that do not support link inputs.

Each episode begins with the emulator initialized to the home screen. Subsequently, a task is selected
from a predefined set of language instructions, some examples of which are shown in Appendix A.1.
An agent is then tasked with manipulating the emulator to fulfill this instruction. At each time step,
the agent receives a screenshot of the current screen as the observation. Following the action space
in prior literature [31], the available actions include tapping and sliding based on normalized (x, y)
coordinates (ranging from 0 to 1 relative to the screen dimensions), typing text strings of variable
length, and pressing special buttons such as HOME, BACK, and ENTER, as illustrated in Figure 3.
Our train and test instructions comes from General and Web Shopping subsets in AitW [31]. These
tasks consist of information-gathering tasks like “What’s on the menu of In-n-Out?”, and shopping
tasks on the web like “Go to newegg.com, search for razer kraken, and select the first entry”.

Challenges of stochasticity. Real-world device contrl presents unique challenges of stochasticity ab-
sent in simulated environments [56, 37] such as: (1) the non-stationarity of websites and applications,

5

Figure 3: Environment details. Top: actions space and dynamics of the environment. Bottom: examples of the
read-world non-stationarity and dynamism of the environment.

which undergo frequent updates, causing the online observations to be different from stale offline data,
(2) various unpredictable distractors such as pop-up advertisements, login requests, and the stochastic
order of search results. (3) technical challenges and glitches such as incomplete webpage loading or
temporary access restrictions to certain sites. Examples of scenarios with such stochasticity from
our experiments are shown in Figure 3. We observe that these stochastic elements pose significant
challenges for pre-trained VLMs, including even those fine-tuned on device control data. As a
concrete example, Figure 4 shows an experiment result that illustrates the necessity of continuously
adapting the models to the non-stationarity of websites and applications. After obtaining a good
checkpoint using our approach (DigiRL), that we will introduce in the next section, with autonomous
data from June.1 to June.3, we compare the performance of a frozen policy and a continuously
updating policy using fresh autonomous data from June.7 to June.11. We find that indeed the the
performance of the frozen policy gradually degrades over time due to the changes on websites and
applications, while continuous online updates plays a key role in preventing this degradation.

Figure 4: Performance of our approach (DigiRL) in
different training modes on the Webshop subset. When
utilizing a stale checkpoint, i.e., “frozen” (black+blue
curve) performance generally begins to degrade as time
evolves, whereas autonomous online training (black+red
curve) via DigiRL allows us to retain performance de-
spite non-stationarity and stochasticity.

Setup for reliable and scalable online RL. As
autonomous RL interleaves data collection and
training, to maximize learning amidst stochas-
ticity, it is crucial to have a real-time data col-
lection pipeline to collect enough experience
for gradient updates. While this is not possi-
ble in single-thread Android emulator environ-
ments [26, 39] due to latency, we parallelize our
Android emulator using appropriate error han-
dling as discussed in Appendix A.1. In addition,
the environment must provide a reward signal
by judging whether the current observation in-
dicates the agent has successfully completed the
task. To generalize our evaluator to support a
wide range of tasks, we extend Pan et al. [26]’s
end-to-end autonomous evaluator that does not
require accessing the internal states of the emu-
lator or human-written rules for each task. This
contrasts previous works that manually write
execution functions to verify the functional com-
pleteness of each task [16, 48, 37, 44]. We adopt Gemini 1.5 Pro [6, 7] as the backbone of the
autonomous evaluator. We seed this model with few-shot rollouts and the associated human-labeled
success indicators to guide evaluation of novel queries. This pipeline enables a single evaluator that
can evaluate all AiTW tasks. The evaluator is highly aligned with human annotations (average error
rate 2.8%), validated in Figure 8.

6

4 DigiRL: Autonomous RL for Building a Strong Device-Control
Agent

We now present our autonomous RL framework for training device agents. We pose the device
control problem as a Markov decision process (MDP) and develop RL methods for this MDP. The
core of our approach is based on a simple and scalable off-policy RL method, advantage-weighted
regression (AWR) [29], but we make crucial modifications to handle stochasticity and highly-variable
task difficulty, through the use of value functions trained with appropriate losses, and an automatic
curriculum, induced by an instruction-level value function to maximize learning.

Device control and GUI navigation as a MDP. We conceptualize device control guided by nat-
ural language instructions as a finite horizon Markov Decision Process (MDP) represented by
M = {S,A, T , µ0,R, H} and run policy gradient to solve this MDP. At the beginning, an initial
state s0 and a natural language instruction c are sampled from the initial state distribution µ0. A
reward of 1 is given at the end if the agent successfully fulfills the task per the evaluator, otherwise
a reward of 0 is given. The trajectory terminates either when the agent accomplishes the task or
when the maximum allowed number of interactions H is exceeded. States are represented using the
last two screenshots. To explain our approach in detail, we also include several standard definitions
used in reinforcement learning (RL). The Q function for a policy ⇡ represents the expected long-
term return from taking a specific action at the current step and then following policy ⇡ thereafter:
Q

⇡(sh, ah, c) = E⇡

hP
H

t=h
r(st, at, c)

i
. The value function V

⇡(sh, c) is calculated by averaging
the Q-value, Q⇡(sh, ah, c), over actions ah drawn from the policy ⇡. The advantage A

⇡(sh, ah, c)
for a state-action pair is computed by subtracting the state’s value under the policy from its Q-value:
A

⇡(sh, ah, c) = Q
⇡(sh, ah, c)� V

⇡(sh, c).

4.1 Backbone of Our Approach: Off-Policy RL via Advantage-Weighted
Regression

The starting point we choose to build our approach on is the advantage-weighted regression (AWR)
algorithm [29], which says that we can improve the policy reliably by regressing the policy towards
exponentiated advantages induced by the reward function, as a proxy for optimizing the policy
gradient while staying close to the previous policy [14, 35, 34]:

argmax
⇡
E⌫ [log ⇡(a|s, c) · exp (A(s, a, c)/�)] , (4.1)

for some positive parameter � and the distribution of past experience ⌫, and A(s, a, c) denotes the
advantage of a state-action pair (s, a) given a context c. To avoid tuning the hyperparameter �, we
consider an alternative that does “hard filtering” on the advantages instead of computing exp(A),
similar to prior works [22, 43]. This leads to the following loss function for fine-tuning the model:

L(⇡) = �Efilter(⌫)[log ⇡(a|s, c)]. (4.2)

Typically, these advantages are computed by running Monte-Carlo (MC) rollouts in the environment
to estimate the value of a given state-action pair, and subtracting from it an estimate of the value
of the state given by a learned value estimator alone. However, this approach is likely to produce
high-variance advantages given the stochasticity of the device eco-system that affects MC rollouts.

4.2 Obtaining Reliable Advantage Estimates from Doubly-Robust Estimators
To reliably identify advantageous actions given significant environment stochasticity, we construct a
per-step advantage estimator, inspired by doubly-robust estimators [40, 36]:

A
step(sh, ah, c) := �

H�h
r(sH , aH , c) + (1� �

H�h
r(sH , aH , c))(V step(sh+1, c) + r(sh, ah, c)� V

step(sh, c)),
(4.3)

where � is a weighting hyper-parameter. This construction of the advantage estimator is a simplified
version of Generalized Advantage Estimation (GAE) [36] using only the next-step advantage estimator
and final-step advantage estimator as there are no intermediate rewards in our problem. This construc-
tion balances an advantage estimator with higher variance Monte-Carlo estimates �H�h

r(sH , aH , c)
(due to stochasticity) and an estimator with higher bias V step(sh+1, c) + r(sh, ah, c)� V

step(sh, c)
(due to imperfect fitting of the value function). We observed that combining both high-variance and

7

high-bias estimators gave us a sweet-spot in terms of performance. To implement the step-level hard
filtering, we simply threshold this doubly robust estimator as Astep(sh, ah, c) > 1/H to decide which
actions progress towards the goal.

4.3 Automatic Curriculum using an Instruction-Level Value Function
While the AWR update (Equation 4.1) coupled with a robust advantage estimator (Equation 4.3) is
likely sufficient on standard RL tasks, we did not find it to be effective enough for device control
in preliminary experiments. Often this was the case because the task set presents tasks with highly-
variable difficulties that collecting more data on tasks that the agent was already proficient at affected
sample efficieny negatively. In contrast, maximal learning signal can be derived by experiencing the
most informative tasks for the agent during training. To this end, we design an instruction-level value
function V

instruct(c) to evaluate if a given rollout can provide an effective learning signal:

A
instruct(sh, ah, c) :=

P
H

t=h
r(st, at, c)� V

instruct(c) = r(sH , aH , c)� V
instruct(c), (4.4)

where
P

H

t=h
r(st, at, c) is a Monte-Carlo estimator of Q(sh, ah, c). The equality holds because the

MDP formulation only provides rewards at the end of a rollout. Intuitively, if a rollout attains a
high value of Ainstruct(sh, ah, c), it means the value function V

instruct is small. Therefore, this rollout
represents a valuable experience of the agent accomplishing a difficult task, and thus should be
prioritized, akin to ideas pertaining to prioritized experience [32] or level replay [11]. When training
the actor with a buffer of historical off-policy data, we first perform a filtering step to identify the
top-p datapoints with highest Ainstruct(sh, ah, c). Then, we use it for AWR (Equation 4.1) with the
doubly-robust advantage estimator (Equation 4.3).

Implementation details. Inspired by the findings in some recent works [5, 17] that modern deep
learning architectures like transformers [41] are better trained with cross-entropy losses instead of
mean-squared losses, we utilize a cross-entropy objective based on the Monte-Carlo estimate of the
trajectory reward for training both of our value functions:

L(V traj) = �E⌫ [r(sH , aH , c) log V traj(c) + (1� r(sH , aH , c)) log(1� V traj(c))], (4.5)

L(V step) = �E⌫ [r(sH , aH , c) log V step(sh, ah, c) + (1� r(sH , aH , c)) log(1� V step(sh, ah, c))]. (4.6)

Final algorithm. The final practical algorithm is shown in Figure 5. The instruction-level value
function estimates the values of the trajectories, which is trained with loss shown in Equation (4.5).
The step-level value function estimates the values of states, which is trained with loss shown in Equa-
tion (4.6). When training the actor, we first filter out trajectories and states using the value functions
as shown in Equation (4.4) and Equation (4.3), then train the actor with the MLE loss shown in
Equation (4.2) on the filtered data.

5 Experimental Evaluation
The goal of our experiments is to evaluate the performance of DigiRL on challenging Android device
control problems. Specifically, we are interested in understanding if DigiRL can produce agents that
can effectively learn from autonomous interaction, while still being able to utilize offline data for
learning. To this end, we perform a comparative analysis of DigiRL against several prior approaches,
including state-of-the-art agents in Section 5.1. We also perform several ablation experiments to
understand the necessity and sufficiency of various components of our approach in Section 5.2.

Baselines and comparisons. We compare DigiRL with: (a) state-of-the-art agents built around
proprietary VLMs, with the use of several prompting and retrieval-style techniques; (b) running
imitation learning on static human demonstrations with the same instruction distribution, and (c)a
filtered BC approach [26]. For proprietary VLMs, we evaluate GPT-4V [24] and Gemini 1.5 Pro [7]
both zero-shot and when augmented with carefully-designed prompts. For the zero-shot setting, we
use the prompt from Yang et al. [47] and augment the observation with Set-of-Marks [55]. Set-of-
Marks overlays a number for each interactable element over the screenshot, so that a VLM can directly
output the number of the element to interact with in plain text instead of attempting to calculate pixel
coordinates, which is typically significantly harder. We also compare with AppAgent [47], which first
prompts the VLM to explore the environment, and appends the experience collected to the test-time

8

Figure 5: Algorithm visualization. The two value function are first trained with original distribution of
collected trajectories according to Equation (4.5) and Equation (4.6), then used to filter the trajectories for
training the actor. We use the MLE loss (Maximum Likelihood Estimation loss) to train the actor.

prompt. We also compare with two state-of-the-art fine-tuning methods for Android device control:
AutoUI (specifically AutoUI-Base [53]) and CogAgent [9]. AutoUI-Base uses an LM with 200M
parameters, and a a vision encoder with 1.1B parameters. CogAgent has 11B parameters for its vision
encoder and 7B for its LM. The supervised training corpus for both AutoUI-Base and CogAgent
contains AitW, including the instruction set and the emulator configuration we use.

Base VLM and offline dataset. Both Filtered BC and DigiRL use trained AutoUI-Base checkpoints
with the image encoder frozen. The instruction and step-level value functions for DigiRL employ
this same frozen image encoder. The visual features output from the encoder are concatenated with
instruction features derived from RoBERTa [21]. A two-layer MLP is then used to predict the value
function. In the offline phase, the offline dataset is collected by rolling out the initial AutoUI-Base
supervised trained checkpoint as policy. For fair comparisons, we keep the number of offline data
collected in the pure offline training roughly the same as the total number of data collected in the
offline-to-online training. Due to the dynamic nature of the Internet-device eco-system, our offline
data was stale by the time we were able to run our offline-to-online experiments, and this presented
additional challenge in offline-to-online learning. In both General and Web Shopping subsets, offline
experiments make use of around 1500 trajectories while offline-to-online experiments start with
around 500 offline trajectories and update with another 1000 online trajectories. In the offline phase,
DigiRL skips instruction-level filtering and instead trains the actor with all successful trajectories to
make full use of the offline data. See a detailed breakdown of our dataset in Appendix A.1.

5.1 Main Results
Our main results are summarized in Table 1 and Figure 6. We find that on both AitW General
and AitW Web Shopping subsets, the agent trained via DigiRL significantly outperforms prior
state-of-the-art methods based on prompting and retrieval (AppAgent + GPT-4V/Gemini 1.5 Pro) or
training on static demonstrations (CogAgent and AutoUI), by a large margin with more than 49.5%
absolute improvement (from 17.7% to 71.9% on the General subset and from 17.7% to 67.2% on
the Web Shopping subset). Notably, this improvement from DigiRL is realized fully autonomously
without making use of human supervision (e.g. manually labeled rollouts or hand-written verifiers).

Are inference-time prompting and retrieval techniques or supervised training enough for
device control? Delving into Table 1, we observe that off-the-shelf proprietary VLMs, even when
supplemented with the set-of-marks mechanism, do not attain satisfactory performance: both GPT-4V
and Gemini 1.5 Pro achieve success rates under 20%. One possible cause could be the under-
representation of Android device data in the pre-training data. Moreover, inference-time adaptation
strategies such as AppAgent [47] show minimal improvement, with gains not exceeding 5% for either
model. All this evidence suggests a limited scope for improvement without fine-tuning of some sort.

9

AitW General AitW Web Shopping
Train Test Train Test

Prompting
SET-OF-MARKS

GPT-4V 5.2 13.5 3.1 8.3

Gemini 1.5 Pro 32.3 16.7 6.3 11.5

APPAGENT
GPT-4V 13.5 17.7 12.5 8.3

Gemini 1.5 Pro 14.6 16.7 5.2 8.3

Learning

SUPERVISED

TRAINING

CogAgent 25.0 25.0 31.3 38.5

AutoUI 12.5 14.6 14.6 17.7

OFFLINE
Filtered BC 51.7 ± 5.4 50.7 ± 1.8 44.7 ± 1.6 45.8 ± 0.9

Ours 46.9 ± 5.6 62.8 ± 1.0 39.3 ± 6.0 45.8 ± 6.6

OFF-TO-ON
Filtered BC 53.5 ± 0.8 61.5 ± 1.1 53.6 ± 4.7 57.8 ± 2.6

Ours 63.5 ± 0.0 71.9 ± 1.1 68.2 ± 6.8 67.2 ± 1.5

Table 1: Main comparisons of different agents across various settings. Each offline experiment is repeated
three times and the mean and standard deviation are reported. Each online experiment is repeated two times.
Results are evaluated with our autonomous evaluator with the first 96 instructions in the train and test set.
Correlation of our correlation and human judgements can be found in Figure 8.

Figure 6: Offline-to-online training curves for Filtered BC and DigiRL. Curves are smoothed with expo-
nential weighting over the x-axis. Left: AitW General. Right: AitW Web Shopping. Two runs for each model
are started on two different dates with at least two days apart. Observe that DigiRL is able to improve faster
with a fewer number of samples. Since the data collection frequency is the bottleneck, these performance trends
directly reflect performance trends against wall-clock time as well.

As illustrated in Figure 7, the primary failures of these VLMs stem from hallucinatory reasoning
that lead the VLMs to land on a relevant but wrong page. This suggests that while state-of-the-art
VLMs excel at reasoning problems in code and math, their reliability in less-familiar domains, such
as device control, remains inadequate. For example, for the instruction “Go to newegg.com, search
for alienware area 51, and select the first entry”, a GPT-4V based agent erroneously searched “alien
area 51 ebay” in Google.com and decided that it had made progress towards the task (Figure 17).

Training on domain-specific human demonstrations, however, does boost performance, allowing
the smaller, specialized VLM, AutoUI with 1.5 billion parameters, to match or surpass the larger,
generalist VLMs like GPT-4V and Gemini 1.5 Pro. Nonetheless, this supervised imitation learning
approach still fall short, with success rates on both subsets remaining below 20%. This shortcoming
is not fundamentally addressed via enhancements in model scale or architecture, as evidenced by
CogAgent [9], with 18 billion parameters still achieving performances below 40% success rate. As
depicted in Figure 7, a predominant failure mode for these agents is an inability to rectify their own
errors. An example trajectory that we observed is that for the instruction “what’s on the menu of
In-n-Out”, the agent accidentally activated the voice input button, and failed to quit that page until
the step limit. In contrast, DigiRL is able to recover from the errors more efficiently(Appendix C.2).

10

Figure 7: Failure modes for each approach on both the AiTW General and Web Shopping subsets. We found
that the failure mode RL training is most effective at reducing compared to model supervised trained on human
data is “Fail to recover from mistakes”. A more fine-grained decomposition can be found in Appendix D.

Comparison of different RL approaches. In Table 1 and Figure 6, we present a comparative
analysis of various autonomous approaches. Notably, both offline and offline-to-online configurations
demonstrate that our RL approach, when augmented with a continuous stream of autonomous
interaction data and reward feedback, substantially improves performance. This improvement is
evident from an increase in the success rate from under 20% to over 40%, as the agent learns to
adapt to stochastic and non-stationary device interfaces. Moreover, although the total sample sizes
for offline and offline-to-online settings are equivalent, the top-performing offline-to-online algorithm
markedly surpasses its offline counterpart (75% versus 62.8% on the General subset). This highlights
the efficacy of autonomous environment interaction, and establishes the efficacy of DigiRL in learning
from such uncurated, sub-optimal data. Lastly, DigiRL consistently outperforms the state-of-the-art
alternative, Filtered BC, across both the General and Web Shopping subsets, improving from 61.5%
to 71.9% and 57.8% to 61.4%, respectively, highlighting DigiRL’s performance and efficiency.

5.2 Analysis and Ablations
Failure modes analysis. We conduct an additional user study to annotate the failure modes for each
agent as shown in Figure 7, and a more fine-grained breakdown can be found in Appendix D. At a
high level, we classify the major failure modes of all agents into the following three categories: (1)
Failure to recover from mistakes refers to the scenario where the agent made a mistake that led it to
states from which it failed to quickly recover and resume the task, such as a wrong search page. (2)
Getting stuck midway refers to the failure mode where the agent gets distracted on the right track to
completing the instruction and as a result fails to accomplish the task. For example, failing to click on
the right link or failing to search after typing the key words. (3) Arriving at wrong goal refers to the
failure mode where the agent arrives at a wrong page and mistakenly thinks that it had completed the
task. For e.g, the agent finds a macbook on costco.com instead of finding a macbook on ebay.com.

While all the types of failure modes benefit from offline and offline-to-online RL training as shown
in Figure 7, the most consistent and significant reduction is probably for the failure mode of failing
to recover from mistakes. This is because while pre-trained models, generating plausible future
tokens, can get distracted by the dynamic nature of the environment and, as a result, encounter at
never-before-seen states. With no clue of how to escape such states, these methods are unable to
recover and fail to solve the task. In contrast, by training on autonomously-collected rollouts, our
agent DigiRL is able to learn from its own mistakes and reduces failures to recover over training.

Ablation study of each component in DigiRL. We conduct an ablation study on different components
of DigiRL in Figure 9 (left). We find that all the components used by our approach are necessary: (1)
using cross-entropy for training the value functions boosts performance by around 12% (compare Ours
and Ours w/ Regression); (2) using step-level advantages improves efficiency by 12% (comparing
Ours and Ours w/o step-level advantage); (3) the use of automatic curriculum improves the speed
of learning by around 25% (comparing Ours w/o step-level advantage and Filtered BC); (4) Ours
outperforms vanilla AWR that does not employ a doubly-robust advantage estimator or curriculum.

Additionally, we also observe no degradation in performance as a result of “hard-filtering”, as show
by nearly comparable performance of our approach and the best run of exponential filtering obtained

11

Figure 8: Correlation between our autonomous evaluator and human judgements for all policy models on
General and Web Shopping subsets. For repeated offline and online runs, we report the correlation results for the
run with the highest autonomous evaluation success rate.

Figure 9: Left: Ablation study results on the AitW Web Shopping subset. Right: Emulation speed w.r.t
number of CPUs used. The upper bound can only achieved when there is no communication and error handling
cost. Our design of distributed emulator can significantly improve the efficiency of emulation compaared to the
vanilla method of running all emulations over the same instance.

via an extensive tuning of the temperature hyperparameter ⌧ in naïve AWR (comparing Ours and Ours
w/ vanilla AWR reweighting), despite simplicity of implementation in the hard filtering approach.
Putting together, these choices result in a new state-of-the-art RL approach for device control.

Evaluation of our autonomous evaluator. In Figure 8, we present the findings from a user study
aimed at assessing the accuracy of our autonomous evaluator. Our results indicate that the success
rates reported by our automatic evaluator are remarkably consistent with those assessed by human
evaluators across almost all models, with differences less than 3%. Furthermore, we observed that
evaluations on the Web Shopping subset are more precise compared to those on the General subset.
This increased accuracy likely stems from the fact that tasks in the General subset are formulated in
free-form language, which can introduce ambiguity, whereas the Web Shopping subset features a
narrower range of language expressions, reducing potential variability.

Speedup of emulation parallel. The performance boost with respect to the number of worker
machines is nearly linear, as demonstrated in Figure 9 (right), where we conduct experiments
that examine the scaling performance of our parallel emulator. Our distributed emulator that runs
emulations across multiple servers can reliably collect data with up to 64 parallel emulators on 128
CPUs with near-linear speedup. In contrast, a naive baseline that runs all parallel emulations on the
same server achieves much inferior performance (0.74 compared to 1.74 trajs/min using 64 CPUs).

6 Discussion and Limitations
In this paper, we propose a novel autonomous RL approach, DigiRL, for training in-the-wild, multi-
modal, device-control agents that establish a new state-of-the-art performance on a number of Android
control tasks from Android-in-the-Wild dataset [31]. To achieve this, we first build a scalable and

12

parallelizable Android environment with a robust VLM-based general-purpose evaluator that supports
fast online data collection. We then develop a system for offline RL pre-training, followed by
autonomous RL fine-tuning to learn via interaction, admist the stochasticity of the real-world Internet
and device eco-system. Our agent achieves a 280% improvement over the previous state-of-the-art
agents (from 17.7% to 68.2% in terms of task success rate), including AppAgent based on GPT-4V
and Gemini 1.5 Pro, and supervised trained models such as AutoUI and CogAgent.

Due to computational limitations, and despite the fact that the parallel emulator and autonomous
evaluator can be easily extended to complicated tasks, our agent is trained only with tasks from AitW
instead of a all possible tasks on the device. Our design of the DigiRL algorithm aims for maximal
implementation simplicity, so we hope that our approach to serve as a base algorithm for future
research to build on, including algorithmic research as well as expanding the space of tasks.

Acknowledgements
We thank Yi Su, Izzedin Gur, Xinyang Geng, and Sandra Faust for feedback on an earlier version of
this paper and for informative discussions. This work is supported by NSF IIS-2246811 and ONR
N00014-21-1-2838, and Gemini 1.5 Pro credit donations for academic use and cloud resources from
Google Cloud.

References
[1] Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin

Xu, and Sergey Levine. Lmrl gym: Benchmarks for multi-turn reinforcement learning with
language models, 2023.

[2] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, Tony Wang, Samuel
Marks, Charbel-Raphaël Segerie, Micah Carroll, Andi Peng, Phillip Christoffersen, Mehul
Damani, Stewart Slocum, Usman Anwar, Anand Siththaranjan, Max Nadeau, Eric J. Michaud,
Jacob Pfau, Dmitrii Krasheninnikov, Xin Chen, Lauro Langosco, Peter Hase, Erdem Bıyık,
Anca Dragan, David Krueger, Dorsa Sadigh, and Dylan Hadfield-Menell. Open problems and
fundamental limitations of reinforcement learning from human feedback, 2023.

[3] Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu
Yao. Fireact: Toward language agent fine-tuning. ArXiv, abs/2310.05915, 2023. URL https:
//api.semanticscholar.org/CorpusID:263829338.

[4] Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge
work tasks?, 2024.

[5] Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao,
Alex Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, and Rishabh
Agarwal. Stop regressing: Training value functions via classification for scalable deep rl, 2024.

[6] 2023 Gemini Team. Gemini: A family of highly capable multimodal models, 2024.

[7] 2024 Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context, 2024.

[8] Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine.
Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability.
NeurIPS, 2021.

[9] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang,
Zihan Wang, Yuxuan Zhang, Juanzi Li, Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang.
Cogagent: A visual language model for gui agents, 2023.

13

https://api.semanticscholar.org/CorpusID:263829338
https://api.semanticscholar.org/CorpusID:263829338

[10] Peter C Humphreys, David Raposo, Toby Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Alex Goldin, Adam Santoro, and Timothy Lillicrap.
A data-driven approach for learning to control computers, 2022.

[11] Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. CoRR,
abs/2010.03934, 2020. URL https://arxiv.org/abs/2010.03934.

[12] Yiding Jiang, J Zico Kolter, and Roberta Raileanu. On the importance of exploration for
generalization in reinforcement learning. Advances in Neural Information Processing Systems,
36, 2024.

[13] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024.

[14] Sham M. Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In International Conference on Machine Learning, 2002. URL https://api.
semanticscholar.org/CorpusID:31442909.

[15] Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem
Alshikh, and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal
generalist autonomous agents for desktop and web, 2024.

[16] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang,
Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena:
Evaluating multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

[17] Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline
q-learning on diverse multi-task data both scales and generalizes, 2023.

[18] Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu,
Hanchen Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: Bootstrap and
reinforce a large language model-based web navigating agent, 2024.

[19] Juyong Lee, Taywon Min, Minyong An, Changyeon Kim, and Kimin Lee. Benchmarking
mobile device control agents across diverse configurations, 2024.

[20] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie
Tang. Agentbench: Evaluating llms as agents, 2023.

[21] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.
11692.

[22] Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online re-
inforcement learning with offline datasets. CoRR, abs/2006.09359, 2020. URL https:
//arxiv.org/abs/2006.09359.

[23] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving rubik’s cube with a robot hand, 2019.

[24] 2023 OpenAI Team. Gpt-4 technical report, 2023.

[25] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis
Christiano, Jan Leike, and Ryan J. Lowe. Training language models to follow instructions with
human feedback. ArXiv, abs/2203.02155, 2022. URL https://api.semanticscholar.org/
CorpusID:246426909.

14

https://arxiv.org/abs/2010.03934
https://api.semanticscholar.org/CorpusID:31442909
https://api.semanticscholar.org/CorpusID:31442909
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2006.09359
https://arxiv.org/abs/2006.09359
https://api.semanticscholar.org/CorpusID:246426909
https://api.semanticscholar.org/CorpusID:246426909

[26] Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Au-
tonomous evaluation and refinement of digital agents. arXiv preprint arXiv:2404.06474, 2024.

[27] Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and
Jason Weston. Iterative reasoning preference optimization, 2024.

[28] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. CoRR, abs/1910.00177, 2019. URL
http://arxiv.org/abs/1910.00177.

[29] Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning, 2019.

[30] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou,
Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language
models to master 16000+ real-world apis, 2023.

[31] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android
in the wild: A large-scale dataset for android device control. arXiv preprint arXiv:2307.10088,
2023.

[32] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay,
2016.

[33] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools, 2023.

[34] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
region policy optimization. CoRR, abs/1502.05477, 2015. URL http://arxiv.org/abs/
1502.05477.

[35] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

[36] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation, 2018.

[37] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of
bits: An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 3135–3144. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/shi17a.html.

[38] Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural
language generation with implicit language q learning, 2023.

[39] Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali
Ahmed, Tyler Jackson, Shibl Mourad, and Doina Precup. Androidenv: A reinforcement learning
platform for android. arXiv preprint arXiv:2105.13231, 2021.

[40] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. CoRR, abs/1509.06461, 2015. URL http://arxiv.org/abs/1509.06461.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

[42] Siddharth Verma, Justin Fu, Mengjiao Yang, and Sergey Levine. Chai: A chatbot ai for
task-oriented dialogue with offline reinforcement learning, 2022.

[43] Ziyu Wang, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, and Nando de Freitas.
Critic regularized regression, 2021.

15

http://arxiv.org/abs/1910.00177
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v70/shi17a.html
http://arxiv.org/abs/1509.06461

[44] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

[45] An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang,
Yiwu Zhong, Julian McAuley, Jianfeng Gao, Zicheng Liu, and Lijuan Wang. Gpt-4v in
wonderland: Large multimodal models for zero-shot smartphone gui navigation, 2023.

[46] John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback, 2023.

[47] Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
Appagent: Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

[48] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023.

[49] Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang.
Agenttuning: Enabling generalized agent abilities for llms, 2023.

[50] Yuexiang Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Shengbang Tong, Yifei Zhou, Alane Suhr,
Saining Xie, Yann LeCun, Yi Ma, and Sergey Levine. Fine-tuning large vision-language models
as decision-making agents via reinforcement learning. arXiv preprint arXiv:2405.10292, 2024.

[51] Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang,
Qingwei Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction.
arXiv preprint arXiv:2402.07939, 2024.

[52] Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and
Duyu Tang. Android in the zoo: Chain-of-action-thought for gui agents, 2024.

[53] Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action
agents, 2023.

[54] Ziniu Zhang, Shulin Tian, Liangyu Chen, and Ziwei Liu. Mmina: Benchmarking multihop
multimodal internet agents. arXiv preprint arXiv:2404.09992, 2024.

[55] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist
web agent, if grounded, 2024.

[56] Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web
environment for building autonomous agents. ArXiv, abs/2307.13854, 2023. URL https:
//api.semanticscholar.org/CorpusID:260164780.

[57] Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training
language model agents via hierarchical multi-turn rl. arXiv preprint arXiv:2402.19446, 2024.

[58] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei,
Paul F. Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences.
CoRR, abs/1909.08593, 2019. URL http://arxiv.org/abs/1909.08593.

16

https://api.semanticscholar.org/CorpusID:260164780
https://api.semanticscholar.org/CorpusID:260164780
http://arxiv.org/abs/1909.08593

Appendices
A Environment details

A.1 Post-processing of AitW

The Android in the Wild (AiTW) task set is a large-scale dataset for android device control, containing
five subsets: GoogleApps, Install, Web Shopping, General, and Single, where we select the General
and Web Shopping subsets. Single subset is not considered here because all tasks in Single can be
completed within one step and thus this subset fails to examine the multi-step challenges that we are
interested in this paper. Install and GoogleApps are not considered due to security reasons as those
tasks require an active Google account and parallel emulations can flag security concerns.

General. The General set focuses on searching for information and basic application usage. For
example, it contains searching for latest news in Chile, search for flights from NYC to Sydney,
opening Gmail, etc. We use all 545 tasks in the training set for training and the first 96 tasks in the
test set for testing due to computational and budget constraints. The maximum allowed number of
steps for this subset is 10. Offline data is collected by rolling our the initial AutoUI policy with tasks
from the training set. The offline data used for the offline-to-online setting contains 608 trajectories
while the offline data used for the offline setting contains 1552 trajectories. Some task examples are
shown in Table 3.

Task Example
How do I get to the nearest Verizon Store?
How much does a 2 bedroom apartment rent for in Denver?
Search for flights from Barcelona to Boston
What’s a good restaurant in New York?
What’s on the menu at Burger King?

Table 2: Examples of task descriptions in the AiTW General task set.

Web Shopping. The Web Shopping subset comprises search instructions on various shopping
websites, like searching for razer blader on ebay. As some websites (e.g. Amazon) and operations
(e.g. adding items to cart) frequently require captcha verifications, we post-process the Web Shopping
subset to exclude such operations and websites and also make the task easy to evaluate for our
autonomous evaluator. The resulting task set involves navigating through five websites (costco.com,
bestbuy.com, target.com, walmart.com, newegg.com) and three basic operations (go to website,
search in the website, and select items from the searched results). Our post-processed training set
contains 438 tasks and our testing set contains 96 tasks. Example tasks after post-processing can
be found in Table 3. The maximum allowed number of steps for this subset is 20. Offline data is
collected by rolling our the initial AutoUI policy with tasks from the training set. The offline data
used for the offline-to-online setting contains 528 trajectories while the offline data used for the
offline setting contains 1296 trajectories.

B Other Quantitative Experiments

B.1 Curriculum Learning

When running experiments on the AitW Web Shopping subset, we find solving easier tasks helps
improve solving harder tasks, where the difficulty is identified in Table 3. By specifying the difficulty
DigiRL-Run1 in Figure 6, we empirically show the success rates of each difficulty across the online
learning process in Figure 12, we observe that a significant increase of success rate of tasks of

17

Difficulty Task Example

1 Go to costco.com
Go to walmart.com

2 Go to costco.com, search for "bose soundsport free"
Go to walmart.com, search for "logitech g910"

3 Go to costco.com, search for "bose soundsport free" and select the first entry
Go to walmart.com, search for "logitech g910" and select the first entry

Table 3: Examples of task descriptions in the AiTW Webshopping task set.

difficulty 1 leads to increasing success rate of difficulty 2, and the same pattern for difficulty 2 and 3,
demonstrating effective curriculum learning.

Figure 10: Left: Success rate under different difficulties for the AiTW Webshopping task set. Right:
Success rate under different methods with different horizon length (H 2 {10, 20}) on the AiTW
Google Search task set.

B.2 Learning Method

We ablate on the learning method, i.e. online learning or offline-to-online learning. We find that
offline-to-online learning converges faster than online learning, and is not necessarily worse than
online learning in terms of final performance, as shown in Figure 11.

B.3 Horizon Limit

We investigate the horizon limit of filtered BC and DigiRL on the AitW General subset. As most
tasks can be effectively solved within 10 steps, we specify two horizon limits: a sufficient horizont
H = 10, and a redundant horizon H = 20. Results in Figure 12 show that a redundant horizon
introduces significantly faster learning speed for both filtered BC and DigiRL, presumbaly because
longer horizon means more opportunity to try in a single trajectory. In both horizon settings, we
observe the DigiRL offers a significant speedup of around 100 trajectories over Filtered BC.

B.4 Trajectory Length

We investigate the rollout length of DigiRL compared to filtered BC. Results in Table 4 demonstrate
that DigiRL consistently achieves shorter average rollout lengths compared to filtered BC across both
subsets. This observation holds true whether considering all rollouts for computing this correlation or
only investigating this correlation on rollouts that eventually succeed. This indicates the capability of
DigiRL to solve tasks in a more efficient and directed manner. Qualitative examples can be found
in Figure 16.

18

Figure 11: Success rate with pure online learning or offline-to-online learning w.r.t. the number
of online trajectories trained on the AitW General dataset. The starting points of curves in this figure
look different from the main results figure because the starting points of the main results figure is
smoothed at the average performance of the offline trajectories collected for the offline-to-online
learning.

Figure 12: Success rate with different horizon length (H 2 {10, 20})under different methods on
the AiTW Google Search task set.

AitW General AitW Web Shopping
All Trajectories Successful Trajectories All Trajectories Successful Trajectories

DigiRL Run1 6.31 4.40 11.35 7.23

DigiRL Run2 6.64 5.04 10.86 6.55

Filtered BC Run1 8.08 6.56 12.05 6.88

Filtered BC Run2 7.36 6.13 14.72 9.62

Table 4: Average rollout length of the DigiRL agent compared to filtered BC. Darker green means shorter
rollout length. On both AitW General and AitW Web Shopping test subsets, we find that DigiRL consistently
produces shorter length rollouts than filtered BC.

C Qualitative Examples

C.1 Random sample of trajectories for different agents

In Figures 13 and 14, we provide trajectories of DigiRL, AutoUI, and GPT-4V randomly sampled
from our test set to offer a qualitative understanding of the agents’ performance. As shown in these
examples, DigiRLcan efficiently carry out in-the-wild device control tasks and less likely to get stuck
or get to a wrong page compared to AutoUI and GPT-4V.

19

Figure 13: Agents’ trajectory on two randomly sampled tasks on the General split of AitW.

20

Figure 14: Agents’ trajectory on two randomly sampled tasks on the WebShop split of AitW.

21

Figure 15: Error recovery cases. In bestbuy.com, we systematically find DigiRL able to recover
from its own mistakes, while AutoUI fails to do so.

C.2 Error Recovery

We observe that DigiRL is able to recover from its own mistakes. As shown in Figure 15, we find
that DigiRL explores ways to get back to the original screen in order to perform a search. As a
comparison, AutoUI fails to reset to the original screen and gets stuck at the diverged screen. Under
the hood, we find DigiRL trying to maximize the state value, which usually induces it to reset to the
original screen (that has a large value to success).

C.3 Trajectory Length

Qualitative example on the number of steps in trajectories of DigiRL and filtered BC are shown
in Figure 16. We find consistent cases where DigiRL has shorter trajectory length than filtere BC.

C.4 Reasoning failure of GPT-4V

The performance of GPT-4V failed on AiTW tasks predominantly due to not being able to carry out
control actions as it plans on a high level, and then not being able to recover from these mistakes.
Moreover, one of the main reasons why it is not able to recover from a mistake is that it might
hallucinate and make itself believe that it is a wrong app or website. Indeed, GPT-4V constructs
a plan of further actions when provided a task from either Web Shopping or General dataset of
AiTW. Then, when it makes a misclick and fails to successfully proceed in an intermediate step,
it might think that it actually solved that intermediate step and is in the correct app or website to
execute further actions, causing the overall trajectory to fail. An example of this is provided in
Figure 17. Here, we ask the model to search for an item in a webshopping website, in particular in
“newegg.com”. However, the model fails to proceed to that website due to not being able to precisely
locating the search button. Then, instead of trying to go to that website again, the model thinks it is
already in that webshopping website, and mistakes the search bar of Google with the search bar of

22

Figure 16: Examples where DigiRL has shorter trajectory length than online filtered BC.

“newegg.com”. Hence, the rest of the trajectory also fails. Another slightly different phenomenon is
illustrated in Figure 18. Here, the model is able to proceed to the correct website and search for an
item, but this time it fails to tap on the search button on the website and clicks to an advertisement
instead. Consequently, the model fools itself to think it successfully searched the item, and scrolls
the page hoping to find that item, but it cannot do so because in reality it views the results of the
advertisement. The primary reason of these failures is the challenge of grounding the control actions
in GUI interfaces to realize the intermediary goals laid out by GPT-4V model’s thoughts. As an
example, we provide an illustration of trying to set up an alarm task in Figure 19. Here, in the last
frame, it fails to execute the precise movements in the necessary amount of rounds to correctly set up
the alarm to the desired time, and in the last frame we see that the action taken does not align with
the thought process of the model.

D Fine-grained failure modes

In Figure 20, we present a more fine-grained breakdown for all six failure modes provided in the user
study. Those failure modes include:

• Failure to recover from mistakes refers to the scenario where the agent made a mistake that
led it to states from which it failed to quickly recover and resume the task, such as a wrong
google search page.

• Failure to click on the right link or failure to click refers to the failure mode where the agent
either fails to locate the element that it tries to click on and keeps clicking on the nearby
region, or fails to start typing in the string when it is supposed to do so.

• Failure to take reasonable attempts at all refers to the failure mode where there is no clear
reason that the agent fails to complete the task and does not seem to be on the right track
throughout the trajectory.

23

Figure 17: Failure of GPT-4V, with its thoughts and link-based actions given. A typical cause of
failure is that it cannot tap on the correct “search” button after entering a query and mistakenly tapped
onto the “x” symbol in the search bar as the “search” button. Here the goal is: Go to newegg.com,
search for “alienware area 51” and select the first entry. As seen in red emboldened actions, it fails to
press search button and deletes the query instead. Also, as seen in red highlighted parts in thoughts, it
thinks it is in “newegg.com” website even though it is not.

Figure 18: Failure of GPT-4V, with its thoughts and link-based actions given. This time the reason
for failure is misclick on the wrong button. The task is “Go to costco.com, search for “acer predator”,
and select the first entry”. Notice that up until the fourth frame in this Figure, the trajectory goes
correct. But then it clicks on the generic advertisements on the Costco.com website, and it cannot
recover back. It continues to scroll the page and takes wrong actions thereafter.

24

Figure 19: Failure of GPT-4V, with an example task on the AiTW general test set. The task is “Set
an alarm for 4pm”. Here, GPT-4V is able to successfully navigate to the clock app, and the alarm
settings of that app. However, it cannot take the correct precise actions to set the alarm quickly
enough, and it fails due to maximum rounds reached. In the last round, notice that the action of tap(1)
contradict with its own thought process of setting minutes to “00”.

Figure 20: Failure modes decomposition for each policy model for both General and Web Shopping
subsets.

• Quit or press HOME early refers to the failure mode where the agent decided to finish the
task or press HOME to start over before the task is actually finished.

• Stops at wrong but relevant page refers to the failure mode where the agent arrives at a wrong
page and mistakenly thinks that it had completed the task. For example, the agent finds a
macbook on costco.com while the instruction asked it to find a macbook on ebay.com.

• Technical issues refer to the failure mode that either the task is impossible (e.g. the tasks
asks to open Amazon app but this app is not installed) or the agent is temporarily blocked
from a certain website due to frequent visits.

The translation between fine-grained failure modes and coarse-grained failure modes is presented in
Table 5.

25

Fine-Grained Failure Coarse-Grained Failure
Fail to recover from mistakes Fail to recover from mistakes

Fail to click on the right link or fail to type Get stuck midway
Fail to take reasonable attempts at all Get stuck midway

Quit or Press HOME early Arrive at wrong goal
Stops at wrong but relevant page Arrive at wrong goal

Technical Issues None
Table 5: Examples of task descriptions in the AiTW Webshopping task set.

Figure 21: Multi-machine parallel emulator execution. The host machine is equipped with GPU
accelerators and the worker machines are equipped only with CPUs. The policy update is executed on
the worker machine and the trajectory collections are executed distributedly on the worker machines
and aggregated by the host machine.

E Experiment machines

Our main experiments are conducted on VM instances from Google Cloud Platform. Each VM
instance comes with 1x Tesla T4 GPU and 16x Intel(R) Xeon(R) CPU.

F Setup for parallel environment

Running multiple emulators in parallel can be challenging due to the inefficiency in thread syn-
chronization and frequent fault propagation when one emulator runs into an unknown error. To
address this challenge, we set up a server-client system where all emulator processes are running in
independent server processes. Each emulator process communicates with the main training process
through different UIAutomotor servers. The main training process sends high-level instructions to
UIAutomotor servers (such as reset and step), while UIAutomotor servers parse high-level instruc-
tions into low-level UI commands (such as typing a character and tapping at a coordinate) and such
UI commands are executed by the emulator processes. When an exception is thrown in the emulator,
the UIAutomotor examines if it is recoverable (e.g. an UI command takes too long to execute in the
emulator) and reset the emulator process if it is not. When an exception is thrown in the UIAutomotor
server, the main training process stops and resets the UIAutomotor server to ensure data correctness.

This design can easily be scaled up to a multi-machine setting. As illustrated in Figure 21, one host
machine equipped with GPU accelerator has a local copy of the current policy ⇡t, and distributes
the policy to all worker machines equipped with only one GPU and multiple CPUs. Each worker
machine will then collect trajectories of different tasks using ⇡t. After all collection processes are
synchronized, the host machine gathers all the trajectories together to update the policy to ⇡t+1. This
process keeps iterating until the policy converges.

26

G Autonomous evaluator details

Our autonomous evaluator gives a reward to each observation we get. The observation is composed
of the current screenshot of device and the task. The evaluator gives a reward of 1 if the screenshot
shows a completion of the task, and will terminate the POMDP as a result result.

The optimized prompt is shown in Figure 22 and Figure 23 for General and Web Shopping subsets
respectively.

H Zero-shot Baseline Details

Figure 24 shows the prompt that we used for testing the Set-of-Marks performance for GPT-4V and
Gemini 1.5 Pro. This prompt is directly taken from Yang et al. [47].

I Hyperparameters

Hyperparameters for both Filtered BC and DigiRL are carefully tuned through binary search on the
training set of General and Web Shopping subsets. The final choice of hyperparameters for both
methods can be found in Table 6. As shown in the table, the only hyperparameters introduced by
DigiRL are supervised training hyperparameters for the value function and instruction value function
(including number of iterations and learning rate) and GAE �.

27

Figure 22: Prompt for our autonomous evaluator for tasks in AitW General subset.

28

Figure 23: Prompt for our autonomous evaluator for tasks in AitW Web Shopping subset.

29

Figure 24: Set-of-Marks prompting. The boldened inputs can be changed according to our goal. The
task changes for every different task. The past actions change as we take actions (it is None now
since this is the prompt for the first round).

30

Table 6: Hyperparameters for All Experiments

Method Hyperparameter Offline Offline-to-Online

Filtered
BC

actor lr 3e-3 3e-3
batch size 128 128

rollout trajectories - 16
replay buffer size - 5000

rollout temperature - 1.0
maximum gradient norm 0.01 0.01
actor updates per iteration 20 20

number of iterations for offline actor updates 10 10

DigiRL

actor lr 3e-3 3e-3
value function lr 3e-3 3e-3

instruction value function lr 3e-3 3e-3
instruction value function lr 3e-3 3e-3

batch size 128 128
rollout trajectories - 16
replay buffer size - 5000

rollout temperature - 1.0
maximum gradient norm 0.01 0.01

GAE � 0.5 0.5
actor updates per iteration 20 20

value function updates per iteration 5 5
instruction value function updates per iteration - 5
number of iterations for offline actor updates 10 10

number of iterations for offline value function updates 20 20
number of iterations for offline instruction value function updates - 20

Table 7: Hyperparameters for DigiRL and Filtered BC on both General and Web Shopping subset of
AitW..

31

	Introduction
	Related Work
	Problem Setup and Preliminaries
	DigiRL: Autonomous RL for Building a Strong Device-Control Agent
	Backbone of Our Approach: Off-Policy RL via Advantage-Weighted Regression
	Obtaining Reliable Advantage Estimates from Doubly-Robust Estimators
	Automatic Curriculum using an Instruction-Level Value Function

	Experimental Evaluation
	Main Results
	Analysis and Ablations

	Discussion and Limitations
	Environment details
	Post-processing of AitW

	Other Quantitative Experiments
	Curriculum Learning
	Learning Method
	Horizon Limit
	Trajectory Length

	Qualitative Examples
	Random sample of trajectories for different agents
	Error Recovery
	Trajectory Length
	Reasoning failure of GPT-4V

	Fine-grained failure modes
	Experiment machines
	Setup for parallel environment
	Autonomous evaluator details
	Zero-shot Baseline Details
	Hyperparameters

