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Abstract

Interpreting the Inner-Workings of Vision Models

by

Yossi Gandelsman

Doctor of Philosophy in Engineering- Electrical Engineering & Computer Science

University of California, Berkeley

Professor Alexei A. Efros, Chair

The field of computer vision has recently transitioned from hand-engineering systems to learning
them from large-scale datasets via deep learning. This shift motivates a new kind of observational
science — closer in spirit to experimental biology than traditional engineering — which aims to
discover what is being learned by deep learning models and why these models work. This science
analyzes the emergent internal computation in deep vision models, hoping to discover the basic
computational blocks that enable visual intelligence.

This thesis presents my initial steps in this observational AI science, focusing on interpreting the
internal mechanisms of deep vision models. It showcases how this understanding is used to improve
model generalization and unlock new tasks without any additional learning.

I begin with an in-depth analysis of a single vision-language model, CLIP-ViT, and attempt to
explain the functionality of two main components in its vision encoder — the attention heads
and the neurons. I show that automatic characterization of components is attainable and reveals
surprisingly structured and interpretable behavior, such as heads specializing and polysemantic
neuron roles. These interpretations enable the removal of spurious features from CLIP, zero-shot
image segmentation, and automatic generation of adversarial images. Next, I show that some
similar computational components, “Rosetta Neurons”, emerge across a diverse set of models
trained with different architectures, objectives, and supervision. These findings suggest that certain
visual concepts and structures are inherently embedded in the natural world and can be learned by
different models regardless of the specific task or architecture. That provides a path to a scalable
understanding of vision models that can be used to repair and improve future models.
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Chapter 1

Introduction

The field of artificial intelligence (AI) has changed immensely in the past 10 years. The early models
of intelligence relied on hand-crafted features (e.g., edge detectors) and task-specific algorithms
(e.g., object detection). These models were perfectly understood (by construction) – but they just
didn’t work well. Current models are very different – instead of being engineered, they are learned
from large-scale datasets via deep learning. These models work much better, but they come with a
price – we don’t understand why and how they work.

The shift in AI from manually designing models to learning them from data has created a new
type of science – observational AI science. This science is intellectually closer to experimental
biology than to traditional engineering – it aims to discover what is being learned by deep learning
models and why these models work on some tasks while failing on others. Discovering what is
learned will hopefully allow us to extract the basic computational blocks of intelligence. It also
enables the detection of model limitations and makes models more reliable. Understanding how
these models work – extracting the emergent algorithms that enable generalization, provides a path
to making these models truly intelligent and steering them toward our goals.

1.1 Opening the Black Box
I present initial directions for understanding the high-level algorithms that emerge in deep vision
models. My approach for opening these black boxes is based on the fact that deep neural networks
are programs – sequences of deterministic computations that are applied to the input to produce an
output. To extend a program and to find and correct bugs in it, one should be able to read its code
easily. The code in deep learning is the weights, but they are not easily interpretable by humans. I
show preliminary results that indicate that some of the computation in deep neural networks can be
reverse-engineered and lifted to a level of abstraction that humans can understand.

First, I focus on interpreting one widely-used deep vision model - the CLIP image encoder [64]. I
investigate the encoder by analyzing how individual model components affect the final representation.
I show that the image representation in CLIP can be decomposed as a sum across individual image
patches, model layers, and attention heads. I then use CLIP’s text representation to interpret the
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summands by automatically describing them using text. Then, I extend my analysis beyond CLIP,
and show that similar computations emerge in other models trained on different vision tasks, on
different datasets, and with different architectures. I present a method to automatically draw these
connections between model components and to allow the interpretation of components of other
vision models.

Thesis overview
In Chapter 2, I focus on interpreting the attention head of CLIP. I characterize each head’s role by
automatically finding text representations that span its output space, which reveals property-specific
roles for many heads (e.g. location or shape). Next, interpreting the image patches, I uncover an
emergent spatial localization within CLIP. Finally, I use this understanding to remove spurious
features from CLIP and to create a strong zero-shot image segmenter.

In Chapter 3, I shift from analyzing CLIP’s attention layers to analyzing the complementary
components - the neurons. I show that the method of Chapter 2 (i.e. the flow from a neuron through
the residual stream to the output) or the indirect effects (overall contribution) fails to capture the
neurons’ function in CLIP. Therefore, I present the “second-order lens”, analyzing the effect flowing
from a neuron through the later attention heads, directly to the output. I then describe neurons by
decomposing their effects into sparse sets of text representations. The sets reveal polysemantic
behavior - each neuron corresponds to multiple, often unrelated, concepts (e.g. ships and cars).
Exploiting this neuron polysemy, I mass-produce “semantic” adversarial examples by generating
images with concepts spuriously correlated to the incorrect class. The results indicate that an
automated interpretation of neurons can be used for model deception and for introducing new
capabilities.

In Chapter 4, I aim to extend the capabilities to automatically interpret neurons to models beyond
CLIP. I demonstrate the existence of common neurons (“Rosetta Neurons”) across a range of models
with different architectures, different tasks (generative and discriminative), and different types of
supervision (class-supervised, text-supervised, self-supervised). I present an algorithm for mining a
dictionary of such neurons across several popular vision models: Class Supervised-ResNet50 [34],
DINO-ResNet50, DINO-ViT [11], MAE [35], CLIP-ResNet50 [64], BigGAN [10], StyleGAN-
2 [41], and StyleGAN-XL [72]. The Rosetta Neurons facilitate model-to-model translation, enabling
inversion-based image manipulations and editing without the need for specialized training. These
findings suggest that certain visual concepts and structures are inherently embedded in the natural
world and can be learned by different models regardless of the specific task or architecture.

Finally, In Chapter 5, I discuss future directions for the AI science. I discuss directions for
enabling automated and scalable interpretability of deep neural networks, and possible future use
cases for interpretability.
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Chapter 2

Interpreting CLIP’s Attention Layers

2.1 Introduction
Recently, [64] introduced CLIP, a class of neural networks that produce image representations from
natural language supervision. As language is more expressive than previously used supervision
signals (e.g. object categories) and CLIP is trained on a lot more data, its representations have
proved useful on downstream tasks including classification [96], segmentation [51], and generation
[70]. However, we have a limited understanding of what information is actually encoded in these
representations.

To better understand CLIP, we design methods to study its internal structure, focusing on
CLIP-ViT [17]. Our methods leverage several aspects of CLIP-ViT’s architecture: First, the
architecture uses residual connections, so the output is a sum of individual layer outputs. Moreover,
it uses attention, so the output is also a sum across individual locations in the image. Finally, the
representation lives in a joint vision-language space, so we can label its directions with text. We use
these properties to decompose the representation into text-explainable directions that are attributed
to specific attention heads and image locations.

As a preliminary step, we use the residual structure to investigate which layers have a significant
direct effect on the output. We find that ablating all layers but the last 4 attention layers has only a
small effect on CLIP’s zero-shot classification accuracy (Section 2.3). We conclude that the CLIP
image representation is primarily constructed by these late attention layers.

We next investigate the late attention layers in detail, leveraging the language space to uncover
interpretable structure. We propose an algorithm, TEXTSPAN, that finds a basis for each attention
head where each basis vector is labeled by a text description. The resulting bases reveal specialized
roles for each head: for example, one head’s top 3 basis directions are A semicircular arch, A
isosceles triangle and oval, suggesting that it specializes in shapes (Figure 3.1(a)).

We present two applications of these identified head roles.First, we can reduce spurious correla-
tions by removing heads associated with the spurious cue; we apply this on the Waterbirds dataset

This work was originally published as Interpreting CLIP’s Image Representation via Text-Based Decomposition,
Gandelsman et al, at ICLR 2024 [25]
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Figure 2.1: CLIP-ViT image representation decomposition. By decomposing CLIP’s image representation
as a sum across individual image patches, model layers, and attention heads, we can (a) characterize each
head’s role by automatically finding text-interpretable directions that span its output space, (b) highlight the
image regions that contribute to the similarity score between image and text, and (c) present what regions
contribute towards a found text direction at a specific head.

[71] to improve worst-group accuracy from 48% to 73%. Second, the representations of heads
with a property-specific role can be used to retrieve images according to that property; we use it to
perform retrieval based on discovered senses of similarity, such as color, location, and texture.

We next exploit the spatial structure provided by attention layers. Each attention head’s output is
a weighted sum across image locations, allowing us to decompose the output across these locations.
We use this to visualize how much each location writes along a given text direction (Figure 3.1(b)).
This yields a zero-shot image segmenter that outperforms existing CLIP-based zero-shot methods.

Finally, we consider the spatial structure jointly with the text basis obtained from TEXTSPAN.
For each direction in the basis, the spatial decomposition highlights which image regions affect
that basis direction. We visualize this in Figure 3.1(c), and find that it validates our text labels: for
instance, the regions with triangles are the primary contributors to a direction that is labeled as
isosceles triangle.

In summary, we interpret CLIP’s image representation by decomposing it into text-interpretable
elements that are attributed to individual attention heads and image locations. We discover property-
specific heads and emergent localization, and use our discoveries to reduce spurious cues and
improve zero-shot segmentation, showing that understanding can improve downstream performance.

2.2 Related Work
Vision model explainability. A widely used class of explainability methods produces heatmaps to
highlight parts in the input image that are most significant to the model output [77, 84, 8, 86, 52,
12]. While these heatmaps are useful for explaining the relevance of specific image regions to the
output, they do not show how attributes that lack spatial localization (e.g. object size or shape) affect
the output. To address this, a few methods interpret models by finding counterfactual edits using
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generative models [27, 49, 1]. All these methods aim to explain the output of the model without
interpreting its intermediate computation.

Intermediate representations interpretability. An alternate way to explain vision models is to
study their inner workings. One approach is to invert intermediate features into the input image
space [16, 53, 29]. Another approach is to interpret individual neurons [5, 3, 18] and connections
between neurons [60]. These approaches interpret models by relying only on visual outputs.

Few methods use text to interpret intermediate representations in vision models. [37] provide
text descriptions for image regions in which a neuron is active. [91] project model features into
a bank of text-based concepts. More closely to us, a few methods analyze CLIP’s intermediate
representations via text—[29] find multimodal neurons in CLIP that respond to different renditions
of the same subject in images. [54] study entanglement in CLIP between images of words and
natural images. We differ from these works by using CLIP’s intrinsic language-image space and by
exploiting decompositions in CLIP’s architecture for interpreting intermediate representations.

Contrastive vision-language models. Contrastive vision-and-language models like CLIP
[64] and ALIGN [40] showed promising zero-shot transfer capabilities for downstream tasks,
including OCR, geo-localization, and classification [88]. Moreover, CLIP representations are used
for segmentation [51], querying 3D scenes [42], and text-based image generation [66, 70]. We aim
to interpret what information is encoded in these representations.

2.3 Decomposing CLIP Image Representation into Layers
We start by presenting the CLIP model [64] and describe how the image representation of CLIP-ViT
is computed. We show that this representation can be decomposed into direct contributions of
individual layers of the image encoder ViT architecture. Through this decomposition, we find that
the last few attention layers have most of the direct effects on this representation.

CLIP-ViT Preliminaries
Contrastive pre-training. CLIP is trained to produce visual representations from images I coupled
with text descriptions t. It uses two encoders—a transformer-based text encoder Mtext and an image
encoder Mimage. Both Mtext and Mimage map to a shared vision-and-language latent space, allowing
us to measure similarity between images and text via cosine similarity:

sim(I, t) = ⟨Mimage(I),Mtext(T )⟩/(||Mimage(I)||2||Mtext(t)||2) (2.1)

Given a batch of images and corresponding text descriptions {(Ii, ti)}i∈{1,...,k}, CLIP is trained to
maximize the similarity of the image representation Mimage(Ii) to its corresponding text representa-
tion Mtext(ti), while minimizing sim(Mimage(Ii),Mtext(tj)) for every i ̸= j in the batch.

Zero-shot classification. CLIP can be used for zero-shot image classification. To classify an
image given a fixed set of classes, each name of a class (e.g. “Chihuahua”) is mapped to a fixed
template (e.g. “An image of a {class}”) and encoded by the CLIP text encoder. The prediction for a
given image is the class whose text description has the highest similarity to the image representation.
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CLIP image representation. Several architectures have been proposed for computing CLIP’s
image representation. We focus on the variant that incorporates ViT [17] as a backbone. Here
a vision transformer (ViT) is applied to the input image I ∈ RH×W×3 to obtain a d-dimensional
representation ViT(I). The CLIP image representation Mimage(I) is a linear projection of this output
to a d′-dimensional representation in the joint vision-and-language space. Formally, denoting the
projection matrix by P ∈ Rd′×d:

Mimage(I) = PViT(I) (2.2)

Both the parameters of the ViT and the projection matrix P are learned during training.
ViT architecture. ViT is a residual network built from L layers, each of which contains a

multi-head self-attention (MSA) followed by an MLP block. The input I is first split into N non-
overlapping image patches. The patches are projected linearly into N d-dimensional vectors, and
positional embeddings are added to them to create the image tokens {z0i }i∈{1,...,N}. An additional
learned token z00 ∈ Rd, named the class token, is also included and later used as the output token.

Formally, the matrix Z0 ∈ Rd×(N+1), with the tokens z00 , z
0
1 , ..., z

0
N as columns, constitutes the

initial state of the residual stream. It is updated for L iterations via these two residual steps:

Ẑ l = MSAl(Z l−1) + Z l−1, Z l = MLPl(Ẑ l) + Ẑ l. (2.3)

We denote the first column in the residual stream Z l, corresponding to the class token, by [Z l]cls.
The output of the ViT is therefore [ZL]cls.

MLP neurons in CLIP. The MLP layers are applied separately on each image token and the
class token. They consist of an input linear layer, parametrized by W l

in ∈ RN×d, followed by a
GELU non-linearity σ and an output linear layer, parametrized by W l

out ∈ Rd×N . Here l is the layer
number and N is the width (number of neurons) of the MLP. We next analyze the contributions of
each individual neuron n ∈ {1, ..., N} for each layer.

Decomposition into layers
The residual structure of ViT allows us to express its output as a sum of the direct contributions of
individual layers of the model. Recall that the image representation Mimage(I) is a linear projection
of the ViT output. By unrolling Eq. 2.3 across layers, the image representation can be written as:

Mimage(I) = PViT(I) = P
[
Z0

]
cls

+
L∑
l=1

P
[
MSAl(Z l−1)

]
cls︸ ︷︷ ︸

MSA terms

+
L∑
l=1

P
[
MLPl(Ẑ l)

]
cls︸ ︷︷ ︸

MLP terms

(2.4)

Eq. 2.4 decomposes the image representation into direct contributions of MLPs, MSAs, and the
input class token, allowing us to analyze each term separately. We ignore here the indirect effects
of the output of one layer on another downstream layer. We use this decomposition (and further
decompositions) to analyze CLIP’s representations in the next sections.

Both here and in Eq. 2.3, we ignore a layer-normalization term to simplify derivations. We address layer-
normalization in detail in Section A.
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Base + MLPs ablation
accuracy

ViT-B-16 70.22 67.04
ViT-L-14 75.25 74.12
ViT-H-14 77.95 76.30

Table 2.1: MLPs mean-ablation. We simultane-
ously replace all the direct effects of the MLPs
with their average taken across ImageNet’s valida-
tion set. This results in only a small reduction in
zero-shot classification performance.
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Figure 2.2: MSAs accumulated mean-ablation. We
replace all the direct effects of the MSAs up to a given
layer with their average taken across the ImageNet
validation set. Only the replacement of the last few
layers causes a large decrease in accuracy.

Evaluating the direct contribution of layers. As a preliminary investigation, we study which
of the components in Eq. 2.4 significantly affect the final image representation, and find that the
large majority of the direct effects come from the late attention layers.

To study the direct effect of a component (or set of components), we use mean-ablation [57],
which replaces the component with its mean value across a dataset of images. Specifically, we
measure the drop in zero-shot accuracy on a classification task before and after ablation. Components
with larger direct effects should result in larger accuracy drops.

In our experiments, we compute means for each component over the ImageNet (IN) validation
set and evaluate the drop in IN classification accuracy. We analyze the OpenCLIP ViT-H-14, L-14,
and B-16 models [38], which were trained on LAION-2B [74].

MLPs have a negligible direct effect. Table 2.1 presents the results of simultaneously mean-
ablating all the MLPs. The MLPs do not have a significant direct effect on the image representation,
as ablating all of them leads to only a small drop in accuracy (1%-3%).

Only the last MSAs have a significant direct effect. We next evaluate the direct effect of
different MSA layers. To do so, we mean-ablate all MSA layers up to some layer l. Figure 2.2
presents the results: removing all the early MSA layers (up to the last 4) does not change the
accuracy significantly. Mean-ablating these final MSAs, on the other hand, reduces the performance
drastically.

In summary, the direct effect on the output is concentrated in the last 4 MSA layers. We therefore
focus only on these layers in our subsequent analysis, ignoring the MLPs and the early MSA layers.

Fine-grained decomposition into heads and positions
We present a more fine-grained decomposition of the MSA blocks that will be used in the next two
sections. We focus on the output at the class token, as that is the only term appearing in Eq. 2.4.
Following elhage2021mathematical, we write the MSA output as a sum over H independent
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attention heads and the N input tokens:

[
MSAl(Z l−1)

]
cls

=
H∑

h=1

N∑
i=0

xl,h
i , xl,h

i = αl,h
i W l,h

V Oz
l−1
i (2.5)

where W l,h
V O ∈ Rd′×d′ are transition matrices and αl,h

i ∈ R are the attention weights from the class
token to the i-th token (

∑N
i=0 α

l,h
i = 1). Therefore, the MSA output can be decomposed into direct

effects of individual heads and tokens.
Plugging the MSA output definition in Eq. 3.2 into the MSA term in Eq. 2.4, we obtain:

L∑
l=1

P
[
MSAl(T l−1)

]
cls

=
L∑
l=1

H∑
h=1

N∑
i=0

ci,l,h, ci,l,h = Pxl,h
i (2.6)

In other words, the total direct effect of all attention blocks is the result of contracting the tensor
c across all of its dimensions. By contracting along only some dimensions, we can decompose
effects in a variety of useful ways. For instance, we can contract along the spatial dimension i to get
a contribution for each head: cl,hhead =

∑N
i=0 ci,l,h. Alternatively, we can contract along layers and

heads to get a contribution from each image token: citoken =
∑L

l=1

∑H
h=1 ci,l,h.

The quantities ci,l,h, cl,hhead and citoken all live in the d′-dimensional joint text-image representation
space, which allows us to interpret them via text. For instance, given text description t, the quantity
⟨Mtext(t), c

l,h
head⟩ intuitively measures the similarity of that head’s output to description t.

2.4 Decomposition into Attention Heads
Motivated by the findings in Section 2.3, we turn to understanding the late MSA layers in CLIP.
We use the decomposition into individual attention heads (Section 2.3), and present an algorithm
for labeling the latent directions of each head with text descriptions. Examples of this labeling
are depicted in Table 2.2 and Figure 2.4, with the labeling for all 64 late attention heads given in
Section A.

Our labeling reveals that some heads exhibit specific semantic roles, e.g. “counting” or “loca-
tion”, in which many latent directions in the head track different aspects of that role. We show how
to exploit these labeled roles both for property-specific image retrieval and for reducing spurious
correlations.

Text-interpretable decomposition into heads
We decompose an MSA’s output into text-related directions in the joint representation space. We
rely on two key properties: First, the output of each MSA block is a sum of contributions of
individual attention heads, as demonstrated in Section 2.3. Second, these contributions lie in the
joint text-image representation space and so can be associated with text.
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L21.H11 (“Geo-locations”) L23.H10 (“Counting”) L22.H8 (“Letters”)
Photo captured in the Arizona desert Image with six subjects A photo with the letter V
Picture taken in Alberta, Canada Image with four people A photo with the letter F
Photo taken in Rio de Janeiro, Brazil An image of the number 3 A photo with the letter D
Picture taken in Cyprus An image of the number 10 A photo with the letter T
Photo taken in Seoul, South Korea The number fifteen A photo with the letter X
L22.H11 (“Colors”) L22.H6 (“Animals”) L22.H3 (“Objects”)
A charcoal gray color Curious wildlife An image of legs
Sepia-toned photograph Majestic soaring birds A jacket
Minimalist white backdrop An image with dogs A helmet
High-contrast black and white Image with a dragonfly A scarf
Image with a red color An image with cats A table
L23.H12 (“Textures”) L22.H1 (“Shapes”) L22.H2 (“Locations”)
Artwork with pointillism technique A semicircular arch Urban park greenery
Artwork with woven basket design An isosceles triangle Cozy home interior
Artwork featuring barcode arrangement An oval Urban subway station
Image with houndstooth patterns Rectangular object Energetic street scene
Image with quilted fabric patterns A sphere Tranquil boating on a lake

Table 2.2: Top-5 text descriptions extracted per head by our algorithm. Top 5 components returned by
TEXTSPAN applied to ViT-L, for several selected heads. See Section A for results on all the heads.

Recall from Section 2.3 that the MSA terms of the image representation (Eq. 2.4) can be
written as a sum over heads,

∑
l,h c

l,h
head. To interpret a head’s contribution cl,hhead, we will find a set

of text descriptions that explain most of the variation in the head’s output (the head “principal
components”).

To formalize this, we take input images I1, ..., IK with associated head outputs c1, ..., cK (for
simplicity, we fix the layer l and head h and omit it from the notation). As c1, ..., cK are vectors
in the joint text-image space, each text input t defines a direction Mtext(t) in that space. Given a
collection of text directions T , let ProjT denote the projection onto the span of {Mtext(t) | t ∈ T }.
We define the variance explained by T as the variance under this projection:

Vexplained(T ) =
1

K

K∑
k=1

∥ProjT (ck − cavg)∥22, where cavg =
1

K

K∑
k=1

ck. (2.7)

We aim to find a set of m descriptions T for each head that maximizes Vexplained(T ). Unlike regular
PCA, there is no closed-form solution to this optimization problem, so we take a greedy approach.

Greedy algorithm for descriptive set mining. To approximately maximize the explained
variance in Eq. 2.7, we start with a large pool of candidate descriptions {ti}Mi=1 and greedily select
from it to obtain the set T .
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Algorithm 1: TEXTSPAN

Input: Head (l, h) contribution cl,hhead for K images stacked as rows in a matrix C ∈ RK×d′ , a pool
of M text descriptions {ti}Mi=1, their corresponding CLIP text representations R ∈ RM×d′

(projected to the head output space), and basis size m
Output: A set of text descriptions T and projected representations C ′ ∈ RK×d′

Initialization: C ′ ← 0K×d′ , T ← ϕ
for i in [1, ...,m] do

D ← RCT

j∗ ←M
j=1 (D[j])

T ← T ∪ {tj∗}
for k in [1, ...,K] do

C ′[k]← C ′[k] + ⟨C[k],R[j∗]⟩
||R[j∗]||2 R[j∗]

C[k]← C[k]− ⟨C[k],R[j∗]⟩
||R[j∗]||2 R[j∗]

for k in [1, ...,M ] do
R[k]← R[k]− ⟨R[k],R[j∗]⟩

||R[j∗]||2 R[j∗]
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Figure 2.3: ImageNet classification accuracy for
the image representation projected to TEXTSPAN

bases. We evaluate our algorithm for different
initial description pools, and with different output
sizes.

Our algorithm, TEXTSPAN, is presented in Alg. 1.
It starts by forming the matrix C ∈ RK×d′ of outputs
for head (l, h), as well as the matrix R ∈ RM×d′ of
representations for the candidate descriptions, pro-
jected onto the span of C. In each round, TEXTSPAN

computes the dot product between each row of R and
the head outputs C, and finds the row with the high-
est variance R[j∗] (the first “principle component”).
It then projects that component away from all rows
and repeats the process to find the next components.
The projection step ensures that each new compo-
nent adds variance that is orthogonal to the earlier
components.

TEXTSPAN requires an initial set of descriptions
{ti}Mi=1 that is diverse enough to capture the output
space of each head. We use a set of sentences that
were generated by prompting ChatGPT-3.5 to pro-
duce general image descriptions. After obtaining an
initial set, we manually prompt ChatGPT to generate more examples of specific patterns we found
(e.g. texts that describe more colors). This results in 3498 sentences. In our experiments, we also
consider two simpler baselines—one-word descriptions comprising the most common words in
English, and a set of random d′-dimensional vectors that do not correspond to text (see Section A
for the ChatGPT prompt and more details about the baselines).
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Layer 22, Head 8:  “A photo with the letter V”

Layer 23, Head 12:  “Image with polka dot patterns”

Layer 22, Head 2:  “Urban park greenery”

Layer 22, Head 7: “Serene winter wonderland”

Figure 2.4: Top-4 images for the top head description found by TEXTSPAN. We retrieve images with the
highest similarity score between cl,hhead and the top text representation found by TEXTSPAN. They correspond
to the provided text descriptions. See Figure A.5 in the appendix for randomly selected heads.

Experiments
We apply TEXTSPAN to find a basis of text descriptions for all heads in the last 4 MSA layers. We
first verify that this set captures most of the model’s behavior and that text descriptions track image
properties. We then show that some heads are responsible for capturing specific image properties
(see Figure 3.1(1)). We use this finding for two applications—reducing known spurious cues in
downstream classification and property-specific image retrieval.

Experimental setting. We apply TEXTSPAN to all the heads in the last 4 layers of CLIP ViT-L,
which are responsible for most of the direct effects on the image representation (see Section 2.3).
We consider a variety of output sizes m ∈ {10, 20, 30, 40, 50, 60}.

We first verify that the resulting text representations capture the important variation in the
image representation, as measured by zero-shot accuracy on ImageNet. We simultaneously replace
each head’s direct contribution cl,hhead with its projection to the text representations ProjT (l,h) c

l,h
head

(where T (l, h) is the obtained text set for head (l, h)). We also mean-ablate all other terms in the
representation (MLPs and the rest of the MSA layers).

The results are shown in Fig. 3.4: 60 descriptions per head suffice to reach 72.77% accuracy
(compared to 75.25% base accuracy). Moreover, using our ChatGPT-generated descriptions as the
candidate pool yields higher zero-shot accuracy than either common words or random directions,
for all the different sizes m. In summary, we can approximate CLIP’s representation by projecting
each head output, a 768-dimensional vector, to a (head-specific) 60-dimensional text-interpretable
subspace.

Some attention heads capture specific image properties. We report selected head descriptions
from TEXTSPAN (m = 60) in Table 2.2, with full results in Appendix A. For some heads, the
top descriptions center around a single image property like texture (L23H12), shape (L22H1),
object count (L23H10), and color (L22H11). This suggests that these heads capture specific image
properties. We qualitatively verify that the text tracks these image properties by retrieving the
images with the largest similarity ⟨Mtext(ti), c

l,h
head⟩ for the top extracted text descriptions ti. The

results in Fig. 2.4 and A.5 show that the returned images indeed match the text.
Reducing known spurious cues. We can use our knowledge of head-specific roles to manually
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Input Image

Layer 23, Head 8

Layer 23, Head 7

Layer 20, Head 4

(a “color” head)

(an “object” head)

(a “counting” head)

Input Image

Layer 21, Head 15

Layer 22, Head 11

(a “location” head)

(a “color” head)

Layer 23, Head 12 (a “texture” head)

Figure 2.5: Top-4 nearest neighbors per head and image. We retrieve the most similar images to an input
image by computing the similarity of the direct contributions of individual heads. As some heads capture
specific aspects of the image (e.g. colors/objects), retrieval according to this metric results in images that are
most similar regarding these aspects. See additional results in the appendix (Fig. A.6).

remove spurious correlations. For instance, if the location is being used as a spurious feature, we
can ablate heads that specialize in geolocation to hopefully reduce reliance on the incorrect feature.

We validate this idea on the Waterbirds dataset [71], which combines waterbird and landbird
photographs from the CUB dataset [87] with image backgrounds (water/land background) from
the Places dataset [95]. Here image background is a spurious cue, and models tend to misclassify
waterbirds on land backgrounds (and vice versa).

To reduce spurious cues, we manually annotated the role of each head using the text descriptions
from TEXTSPAN, mean-ablated the direct contributions of all “geolocation” and “image-location”
heads, and then evaluated the zero-shot accuracy on Waterbirds, computing the worst accuracy
across subgroups as in [71]. As a baseline, we also ablated 10 random heads and reported the top
accuracy out of 5 trials. As shown in Table 2.3, the worst-group accuracy increases by a large
margin—by 25.2% for ViT-L. This exemplifies that the head roles we found with TEXTSPAN help
us to design representations with less spurious cues, without any additional training.

Property-based image retrieval. Since some heads specialize to image properties, we can
use their representations to obtain a property-specific similarity metric. To illustrate this, for a
given head (h, l), we compute the inner product ⟨cl,hhead(I), c

l,h
head(I

′)⟩ between a base image I and all
other images in the dataset, retrieving the images with the highest similarity. Figure 2.5 shows the
resulting nearest neighbors for heads that capture different properties. The retrieved images are
different for each head and match the head-specific properties. In the left example, if we use a head
that captures color for retrieval, the nearest neighbors are images with black-and-white objects. If
we use a head that counts objects, the nearest neighbors are images with two objects.
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2.5 Decomposition into Image Tokens
Decomposing the image representation across heads enabled us to answer what each head contributes
to the output representation. We can alternately decompose the representation across image tokens
to tell us which image regions contribute to the output for a given text direction Mtext(t). We find
that these regions match the image parts that t describes, thereby yielding a zero-shot semantic
image segmenter. We compare this segmenter to existing CLIP-based zero-shot methods and find
that it is state-of-the-art. Finally, we decompose each head’s direct contributions into per-head
image tokens and use this to obtain fine-grained visualizations of the information flow from input
images to output semantic representations.

Decomposing MSA outputs into image tokens. Applying the decomposition from Section 2.3,
if we group the terms ci,l,h by position i instead of head (l, h), we obtain the identity Mimage(I) =∑N

i=0 c
i
token(I), where citoken(I) is the sum of the output at location i across all heads (l, h). We

empirically find that the contribution of the class token c0token has a negligible direct effect on
zero-shot accuracy (see mean-ablation in A). Therefore, we focus on the N image tokens.

We use the decomposition into image tokens to generate a heatmap that measures how much
the output from each image position contributes to writing in a given text direction. Given a text
description t, we obtain this heatmap by computing the score ⟨citoken(I),Mtext(t)⟩ for each position i.

Quantitative segmentation results. We follow a standard protocol for evaluating heatmap-
based explainability methods [12]. We first compute image heatmaps given descriptions of the
image class (e.g. “An image of a {class}”). We then binarize them (by applying a threshold) to
obtain a foreground/background segmentation. We compare the segmentation quality to zero-shot
segmentations produced by other explainability methods in the same manner.

We evaluate the methods on ImageNet-segmentation [30], which contains a subset of 4,276
images from the ImageNet validation set with annotated segmentations. Table 2.4 displays the
results: our decomposition is more accurate than existing methods across all metrics. See [12]
for details about the compared methods and metrics, and additional qualitative comparisons in
Section A.

Joint decomposition into per-head image tokens. Finally, we can jointly decompose the
output of CLIP across both heads and locations. We use this decomposition to visualize what
regions affect each of the basis directions found by TEXTSPAN. Recall that ci,l,h from Eq. 2.6 is the
direct contribution of token i at head (h, l) to the representation. For each image token i, we take the
inner products between ci,l,h and a basis direction Mtext(t) and obtain a per-head similarity heatmap.
This visualizes the flow of information from input images to the text-labeled basis directions.

In Figure 2.6, we compute heatmaps for the two TEXTSPAN basis elements that have the largest
and smallest (most negative) coefficients when producing each head’s output. The highlighted
regions match the text description for that basis direction—for instance, L22H13 is a geolocation
head, its highest-activating direction for the top image is “Photo taken in Paris, France”, and the
image tokens that contribute to this direction are those matching the Eiffel Tower.

To normalize out bias terms, we subtract from the heatmap an averaged heatmap computed across all class
descriptions in ImageNet.
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A “geolocation” head A “season” head A “color” head 
Layer 22, Head 13 Layer 22, Head 7 Layer 23, Head 8

“Image taken in 
Brazil”

“Picture taken 
in Pakistan”

“A photo taken 
in the summer”

“Crisp autumn 
leaves”

“An image with 
cold green tones”

“A charcoal 
gray color”

“Photo taken in 
Paris, France”

“Image captured 
in the Australian 

bushlands”

“Blossoming 
springtime 
blooms”

“Serene winter
wonderland”

“Photograph 
with a red color 

palette”

“Soft pastel 
hues”

Input Image

Figure 2.6: Joint decomposition examples. For each head (l, h), the left heatmap (green border) corresponds
to the description that is most similar to cl,hhead among the TEXTSPAN output set. The right heatmap (red
border) corresponds to the least similar text in this set (for m = 60). See Figure A.3 for more results.

top
base random ours

ViT-B-16 45.6 52.3 57.5
ViT-L-14 47.7 57.7 72.9
ViT-H-14 37.2 37.0 43.3

Table 2.3: Worst-group accuracy
on Waterbirds. We reduce spu-
rious cues by ablating property-
specific heads. See Tables A.7-
A.10 for fine-grained results.

Pixel Acc. ↑ mIoU ↑ mAP ↑
LRP [8] 52.81 33.57 54.37
partial-LRP [86] 61.49 40.71 72.29
rollout [2] 60.63 40.64 74.47
raw attention 65.67 43.83 76.05
GradCAM [77] 70.27 44.50 70.30
Chefer et al.[12] 69.21 47.47 78.29
Ours 75.21 54.50 81.61

Table 2.4: Segmentation performance on ImageNet-
segmentation. The image tokens decomposition results in sig-
nificantly more accurate zero-shot segmentation than previous
methods.

2.6 Limitations and Discussion
We studied CLIP’s image representation by analyzing how individual model components affect it.
Our findings allowed us to reduce spurious cues in downstream classification and improve zero-shot
segmentation. We present two limitations of our investigation and conclude with future directions.

Indirect effects. We analyzed only the direct effects of model components on the representation.
Studying indirect effects (e.g. information flow from early layers to deeper ones) can provide
additional insights into the internal structure of CLIP and unlock more downstream applications.

Not all attention heads have clear roles. The outputs of TEXTSPAN show that not every head
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captures a single image property (see results in Section A). We consider three possible explanations
for this: First, some heads may not correspond to coherent properties. Second, the initial descriptions
pool does not include descriptions of any image property. Third, some heads may collaborate and
have a coherent role only when their outputs are addressed together. Uncovering the roles of more
complex structures in CLIP can improve the performance of the described applications.

Future work. We believe that similar analysis for other CLIP architectures (e.g. ResNet) can
shed light on the differences between the output representations of different networks. Moreover,
our insights may help design better CLIP image encoder architectures and feature extractors for
downstream tasks. We plan to explore these directions in future work.
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Chapter 3

Interpreting CLIP’s Neurons

3.1 Introduction
Automated interpretability of the roles of components in neural networks enables the discovery
of model limitations and interventions to overcome them. Recently, such a technique was applied
for interpreting the attention heads in CLIP [25], a widely used class of image representation
models [64]. However, this approach has only scratched the surface, failing to explain a major set
of CLIP’s components—neurons. Here we will introduce a new interpretability lens for studying
the neurons and use the gained understanding for zero-shot segmentation and mass-production of
semantic adversarial examples.

Interpreting the neurons in CLIP is a harder task than interpreting the attention heads. First,
there are more neurons than individual heads, which requires a more automated approach. Second,
their direct effect on the output—the flow from the neuron, through the residual stream directly
to the output—is negligible [25]. Third, most information is stored redundantly—many neurons
encode the same concept, so just ablating a neuron (i.e. examining indirect effects) does not reveal
much since other neurons make up for it.

The limitations presented above mean that we can neither look at the direct effect nor the
indirect effect to analyze a single neuron. To address this, we introduce a “second-order lens” for
investigating the second-order effect of a neuron—its total contribution to the output, flowing via all
the consecutive attention heads (see Chapter 3.1).

We start by analyzing the empirical behavior of second-order effects of neurons. We find that
these effects have high significance in the late layers. Additionally, each neuron is highly selective:
its second-order effect is significant for only a small set (about 2%) of the images. Finally, this
effect can be approximated by a single direction in the joint text-image representation space of
CLIP (Chapter 3.3).

As each direction that corresponds to a neuron lives in a joint representation space, it can be
decomposed as a sparse sum of text representations that describes the neurons’ functionality (see

This work was will be presented as Interpreting the Second-Order Effects of Neurons in CLIP, Gandelsman et al,
at ICLR 2025 [24]
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MSA 0

MLP L

“A cat lounging in the 
sun, with a group of 
elephants in the 
background and a 
value sign in the 
foreground”

Language
Model

Text-to-Image
Model

1. dog
2. elephant
3. value
4. cabbage
...
32. sun

CLIP’s
prediction:

dog: 65%
cat: 35%

Text-based sparse neuron 
decomposition Automatic generation of adversarial examples

Second order effects of CLIP’s neurons

Figure 3.1: Second order effects of CLIP’s neurons. Top: We analyze the second-order effects of neurons
in CLIP-ViT (flow in pink). Bottom-left: Each second-order effect of a neuron can be decomposed to a sparse
set of word directions in the joint text-image space. Bottom-right: co-appearing words in these sets can be
used for mass-generation of semantic adversarial images.

Chapter 3.1). These text representations show that neurons are polysemantic [21]—each neuron
corresponds to multiple semantic concepts. To verify that the neuron decompositions are meaningful,
we show that these concepts correctly track which inputs activate a given neuron (Chapter 3.4).

The polysemantic behavior of neurons allows us to find concepts that inadvertently overlap in
the network, due to being represented by the same neuron. We use these spurious cues for mass
production of “semantic” adversarial examples that will fool CLIP (see bottom of Chapter 3.1). We
apply this technique to automatically produce adversarial images for a variety of classification tasks.
Our qualitative and quantitative analysis shows that incorporating spuriously overlapping concepts
in an image deceives CLIP with a significant success rate (Chapter 3.5).

The text representations that describe the neurons’ functionality enable an additional application—
zero-shot segmentation. Mining for text representations of class names, we can identify class-
relevant neurons with the second-order lens. Averaging the activation patterns of such neurons,
we generate attribution heatmaps. Binarizing them yields a strong zero-shot image segmenter that
outperforms recent work [12, 25].

In summary, we present an automated interpretability approach for CLIP’s neurons by modeling
their second-order effects and spanning them with text descriptions. We use these descriptions
to automatically understand neuron roles and apply this to two applications. This shows that a
scalable understanding of internal mechanisms both uncovers errors and elicits new capabilities
from models.
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3.2 Related work
Contrastive vision-language models. Models like ALIGN [40], CLIP [64], and its variants [93, 50]
produce image representations from pre-training on images and their captions. They demonstrated
impressive zero-shot capabilities for various downstream tasks, including OCR, geo-localization,
and classification [88]. These models’ representations are also used for segmentation [51], image
generation [rombach2021highresolution, 66] and 3D understanding [42]. We aim to reveal the
roles of neurons in such models.

Mechanistic interpretability of vision models. Mechanistic interpretability aims to reverse
engineer the computation process in neural networks. In computer vision, this approach was applied
to model individual network components [78] and to extract intermediate mechanisms like curve
detectors [60], object segmenters [3, 5], high-frequency boundary detectors [73], and multimodal
concepts detectors [29]. More closely to us, a few works made use of the intrinsic language-image
space of CLIP to interpret the direct effect of attention heads and the output representation in CLIP
with automatic text descriptions [25, 6]. We go beyond the output and direct effects of individual
layers to interpret intermediate neurons in CLIP.

Neurons interpretability. The role of individual neurons (post-non-linearity single channel
activations) is broadly studied in computer vision models [3, 5, 29] and language models [63, 26,
56]. [18, 31] demonstrate that neurons can learn universal mechanisms across different models in
both domains. [21] show that neurons can be polysemantic (i.e. activated on multiple concepts)
and exploit this property for generation of L2 adversarial examples. Some work seeks to extract
neurons’ concepts by learning sparse dictionaries [9, 65]. Other methods use large language models
to automatically describe neurons based on which examples they activate on [7, 59, 37, 79]. In
contrast, we focus on the contribution of neurons to the output representation.

3.3 Second-order effects of neurons
We start by deriving the second-order effect of neurons and presenting their benefits over the
first-order and the indirect effects. Finally, we empirically characterize the second-order effects,
setting the stage for automatically interpreting them via text in Chapter 3.4.

Analyzing the neuron effects on the output
As mentioned in Chapter 2.3, each MLP layer in CLIP consists of an input linear layer, parametrized
by W l

in ∈ RN×d, followed by a GELU non-linearity σ and an output linear layer, parametrized
by W l

out ∈ Rd×N , where N is the number of neurons in the MLP (the width). Each individual
neuron n ∈ {1, ..., N} has different types of contributions to the output—the first-order (direct)
effects, second-order effects, and (higher-order) indirect effects. We introduce them and explain
the limitations of the direct and indirect effects before continuing to characterize the second-order
effects in Chapter 3.3.
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Figure 3.3: Mean-ablation of second order effects
(ViT-B-32). We evaluate the performance on Ima-
geNet validation set. Second-order effects concen-
trate in late layers, significant for only a part of the
images, and can be approximated by one direction in
the output space.

First-order effects (logit lens [58]). The first-order effect is the direct contribution of a
component to the residual stream, multiplied by the projection layer (see blue flow in Chapter 3.2).
For an individual neuron n in layer l, let pl,ni (I) ∈ R denote its post-GELU activation on the i-th
token of the input image I . Then the contribution el,ni of the n-th neuron to the i-th token in the
residual stream is:

el,ni = pl,ni (I)wl,n (3.1)

where wl,n ∈ Rd is the the n-th column of W l
out. As the output representation is the class token

(indexed 0) multiplied by P , the first-order effect for neuron n on the output is Pel,n0 .
As observed by [25], the first-order effects of MLP layers are close to constants in CLIP and

most of the first-order contributions are from the late attention layers. We therefore focus on the
second-order effects: the flow of information from the neurons through the attention layers.

Second-order effects. The contribution el,ni to the residual stream directly affects the input to
later layers. We focus on the flow of el,ni through subsequent MSAs and then to the output (pink
flow in Chapter 3.2). We call this interpretability lens the “second-order lens”, in analogy to the
“logit lens”.

Following [20], the output of an MSA layer MSAl that corresponds to the class token is a
weighted sum of its K + 1 input tokens [z0, ..., zK ]:

[
MSAl([z0, ..., zK ])

]
0
=

H∑
h=1

K∑
i=0

al,hi (I)W l,h
V Ozi (3.2)

where W l,h
V O ∈ Rd×d are transition matrices (the OV matrices) and al,hi (I) ∈ R are the attention

weights from the class token to the i-th token (
∑K

i=0 a
l,h
i = 1).

To obtain the second-order effect of a neuron n at layer l, ϕl
n(I), we compute the additive

contribution of the neuron through all the later MSAs and project it to the output space via P .
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effect type
accuracy after
mean-ablation

variance
explained
by first PC

indirect 52.3 11.0
second-order 29.6 48.2

Table 3.1: Comparison to indirect effect. We
compare the second-order effects and the indirect
effects by mean-ablating layer 9 in ViT-B-32 on
ImageNet validation set.
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Figure 3.4: Accuracy for neuron reconstructed
from sparse text representations (ViT-B-32, layer
9). We evaluate the sparse text decompositions for
different initial description pools and description set
sizes.

Plugging in Chapter 3.1 as the contribution to zi in Chapter 3.2 and summing over layers, the second
order effect of neuron n is then:

ϕl
n(I) =

L∑
l′=l+1

H∑
h=1

K∑
i=0

(
pl,ni (I)al

′,h
i (I)

)
︸ ︷︷ ︸

attention-weighted activations

(
PW l′,h

V Ow
l,n
)

︸ ︷︷ ︸
input-independent

(3.3)

Indirect effects. An alternative approach is to analyze the indirect effect of a neuron by measuring
the change in output representation when intervening on a neuron’s output. Specifically, the
intervention is done by replacing the activation pl,ni of the neuron for each token with a pre-computed
per-token mean. However, as was shown by [55], models often learn “self-repair” mechanisms that
can obscure the individual roles of neurons. We illustrate these issues in the next section.

Characterizing the second-order effects
We analyze the empirical behavior of the second-order effects of neurons ϕl

n derived in the previous
section. We find that only neurons from the late MLP layers have a significant second-order effect
and that each individual neuron has a significant effect for less than 2% of the images. Finally, we
show that ϕl

n can be approximated by one linear direction in the output space. These findings will
help motivate our algorithm for describing output spaces of neurons with text in Chapter 3.4.

Experimental setting. To evaluate the second-order effects and their contributions to the output
representation, we measure the downstream performance on the ImageNet classification task [15]
after ablating these effects for each neuron. Specifically, we apply mean-ablation [57], replacing the
additive contributions of individual ϕl

n(I)’s to the representation with the mean computed across
a dataset D. In our experiments, we mean-ablate all the neurons in a layer simultaneously and
evaluate the downstream classification performance before and after ablation. Components with
larger effects should result in larger accuracy drops.
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We take D to be ∼5000 images from the ImageNet training set. We report zero-shot classifica-
tion accuracy on the ImageNet validation set. Our model is OpenAI’s ViT-B-32 CLIP, which has
12 layers. We present additional results for ViT-L-14 and for ImageNet-R [36] in Chapter B and
Chapter B.3.

Second-order effects concentrate in moderately late layers. We evaluate the contributions of
all the ϕl

n across different layers and observe that the neurons with the most significant second-order
effects appear relatively late in the model. The results for different layers in ViT-B-32 CLIP model
are presented in Chapter 3.3 (“w/o all neurons”). As shown, mean-ablating layers 8-10 leads to
the largest drop in performance. These layers appear right before the MSA layers with the most
significant direct effects, as shown in [25] (layers 9-11; see Chapter B). The same trend is preserved
for a larger model size as well (see Chapter B).

The second-order effect is sparse. We find that the second-order effect of each individual
neuron is significant only for less than 2% of the images across the validation set. We repeat the same
experiment as before, but this time we only mean-ablate ϕl

n(I) for a subset of images, while keeping
the original effects for other images. For most of the images, except the subset of images in which
ϕl
n(I) has a large norm, we can mean-ablate ϕl

n(I) without changing the accuracy significantly, as
shown in Chapter 3.3 (“w/o small norm”). Differently, mean-ablating the contributions for the 100
images with the largest ϕl

n(I) norms results in a significant drop in performance (“w/o large norm”).
The same trend is shown for images from ImageNet-R in Chapter B.3.

The second-order effect is approximately rank 1. While the second-order effect for a given
neuron can write to different directions in the joint representation space for each image, we find
that ϕl

n(I) can be approximated by one direction rln ∈ Rd′ in this space, multiplied by a coefficient
xl
n(I) that depends on the image. We use the set Sl

n, which contains the largest second-order effects
in norm from D, and set rln to be the first principle component computed from Sl

n. We approximate
ϕl
n(I) with xl

n(I)r
l
n + bln, where bln ∈ Rd′ is the bias computed by averaging ϕl

n(I) across D, and
xl
n(I) ∈ R is the norm of the projection of ϕl

n(I) onto rln.
To verify that this approximation recovers ϕl

n(I) we replace each ϕl
n(I) for each neuron and

image in the validation set with the approximation. We then evaluate the downstream classification
performance. As shown in Chapter 3.3 (“reconstruction from PC #1”), for each layer l, this
replacement results in a negligible drop in performance from the baseline, that uses the full
representation. The same behavior is observed for ViT-L model and for a different initial set of
images in the Appendix.

Comparison to indirect effect. We compare the second-order effect to the indirect effect and
present the variance explained by the first principle component for each of them and the drop
in performance when simultaneously mean-ablating all the effects from one layer. As shown in
Chapter 3.1, Mean-ablating the indirect effects results in a smaller drop in performance due to
self-repair behavior. Moreover, the first principle component explains significantly less of the
variance in the indirect effect, than in the second-order effect. This demonstrates two advantages of
the second-order effects—uncovering neuron functionality that is obfuscated by self-repair, and
one-dimensional behavior that can be easily modeled and decomposed, as we will show in the next
section.
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Neuron ImageNet class descriptions Common words (30k)

#4

+“Picture with falling snowflakes” +“snowy”
+“Picture portraying a person [...] in extreme weather conditions” +“frost”
-“Picture with a bucket in a construction site” +“closings”
+“Photograph taken during a holiday service” +“advent”

#391

+“Image with a traditional wooden sled” +“woodworking”
+“Image with a wooden cutting board” -“swelling”
+“Picture showcasing beach accessories” +“cedar”
-“Photograph with a syringe and a surgical mask” +“heirloom”

#2137

+“Photo with a lime garnish” +“refreshments”
+“Image with candies in glass containers” +“gelatin”
-“Picture featuring lifeboat equipment” +“sour”
+“Close-up photo of a melting popsicle” +“cosmopolitan”

#2914

+“Photo that features a stretch limousine” +“motorhome”
+“Image capturing a suit with pinstripes” +“yacht”
+“Caricature with a celebrity endorsing the brand” +“cirrus”
+“Image showcasing a Bullmastiff’s prominent neck folds” +“cabriolet”

Table 3.2: Examples of sparse decompositions (ViT-B-32, layer 9). We present the top-4 texts corresponding
to the sparse decomposition of each neuron and the signs of the decomposition coefficients, for two initial
pools (m = 128). See Chapter B.1 for more neurons.

3.4 Sparse decomposition of neurons
We aim to interpret each neuron by associating its second-order effect with text. We build on
the previous observation that each second-order effect of a neuron ϕl

n is associated with a vector
direction rln. Since rln lies in a shared image-text space, we can decompose it to a sparse set of text
directions. We use a sparse coding method [61] to mine for a small set of texts for each neuron,
out of a large pool of descriptions. We evaluate the found texts across different initial pools with
different set sizes.

Decomposing a neuron into a sparse set of descriptions. Given the first principal component
of the second-order effect of each neuron, rln, we will decompose it as a sparse sum of text directions
tj: rln ≈ r̂ln =

∑M
j=1 γ

l,n
j Mtext(tj). To do this, we start from a large pool T of M text descriptions

(e.g. the most common words in English). We apply a sparse coding algorithm to approximate rln as
the sum above, where only m of the γl,n

j ’s are non-zero, for some m≪M .
Experimental settings. We verify that the reconstructed r̂ln from the text representations

captures the variation in the image representation, as measured by zero-shot accuracy on ImageNet.
We simultaneously replace the neurons’ second-order contributions in a single layer with the
approximation xl

n(I)r̂
l
n + bln.

To obtain sparse decomposition for each neuron, we use scikit-learn’s implementation of
orthogonal matching pursuit [61]. We consider two strategies for constructing the pool of text

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.OrthogonalMatchingPursuit.html
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Figure 3.5: Images with largest second-order effect norm per neuron. We present the top images from
10% of ImageNet validation set for the neurons in Chapter 3.2. Note that neurons are polysemantic - they
have large second-order effects on images that show multiple concepts (e.g. cars and boats). See top-50
images in Chapter B.6.

descriptions T . The first type is single words - the 10k and 30k most common words in English.
The second type is image descriptions - we prompt ChatGPT-3.5 to produce descriptions of images
that include an object of a specific class. Repeating this process for all the ImageNet (IN) classes
results in ∼28k unique image descriptions. We then evaluate the reconstruction of rln for different
m’s and pools.

Effect of sparse set size m and different pools. We experiment with m ∈ {4, 8, 16, 32, 64, 128}
and the three text pools, and present the accuracy on 10% of ImageNet validation set in Chapter 3.4.
We approach the original classification accuracy with 128 text descriptions per neuron reconstruction
r̂ln. Using full descriptions outperforms using single words for the text pool, but the gap vanishes
for larger m.

Qualitative results. We present the images with the largest second-order norms in Chapter 3.5,
and the corresponding top-4 text descriptions in Chapter 3.2. As shown, the found descriptions
match the objects in the top 10 images. Moreover, some individual neurons correspond to multiple
concepts (e.g. writing both toward “yacht” and a type of a car - “cabriolet”). This property is even
more apparent if more nearest neighbors are presented (see Chapter B.6 for the top 50 nearest
neighbors). This corroborates with previous literature on neurons’ polysemantic behavior [21] -
single neurons behave as a superposition of multiple interpretable features. This property will allow
us to generate adversarial images in Chapter 3.5.
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3.5 Applications

Automatic generation of adversarial examples
The sparse decomposition of rln’s allows us to find overlapping concepts that neurons are writing
to. We use these spurious cues to generate semantic adversarial images. Our pipeline, shown in
Chapter 3.1, mines for spurious words that correlate with the incorrect class in CLIP (e.g. “elephant”,
that correlates with “dog”), combines them into image descriptions that include the correct class
name (“cat”), and generates adversarial images by providing these descriptions to a text-to-image
model. We explain the steps in the pipeline and provide quantitative and qualitative results.

Finding relevant spurious cues in neurons. Given two classes c1 and c2, we first select neurons
that contribute the most toward the classification direction v = Mtext(c2) −Mtext(c1), then mine
their sparse decompositions for spurious cues. Specifically, we extract the set of neurons N whose
directions are most similar to v: N = top-kn∈N |⟨v, rln⟩|. Utilizing the sparse decomposition from
before, we compute a contribution score wj for each phrase j in the pool T :

wv
j =

∑
n∈N

γl,n
j ⟨v, rln⟩. (3.4)

This looks at the weight that each neuron in N assigns to j in its sparse decomposition, weighted
by how important that neuron is for classification. A phrase with a high contribution score has
significant weight in one or more important neurons, and so is a potential spurious cue. The top
phrases, sorted by the contribution score are collected into a set of phrase candidates Wv.

Generating “semantic” adversarial examples. We use text and image generative models to
create examples with the object c2 that are classified as c1. First, we generate image descriptions
with a large language model (LLM) by providing it phrases from the set W v and the class name c1
and prompting it to generate image descriptions that include elements from both. We prompt the
model to exclude anything related to c2 from the descriptions and use visually distinctive words
from Wv.

The resulting descriptions are fed into a text-to-image model to generate the adversarial images.
Note that the adversarial images lie on the manifold of generated images, differently from non-
semantic adversarial attacks that modify individual pixels.

Experimental settings. We generate adversarial images for classifying between pairs of classes
from CIFAR-10 [47]. We use the 30k most common words as our pool T . We choose the top 100
neurons from layers 8-10 for N , and the top 25 words according to their contribution scores for
prompting the LLM. We prompt LLaMA3 [85] to generate 50 descriptions for each classification
task (see prompt in Chapter B). We then filter out descriptions that include the class name and
choose 10 random descriptions. We generate 10 images for each description with DeepFloyd IF
text-to-image model [83]. This results in 100 images per experiment. We repeat the experiment 3
times and manually remove images that include c2 objects or do not include c1 objects.

We report three additional baselines. First, we repeat the same process with 100 random neurons
instead of the setN . Second, we repeat the same generation process with sparse text decompositions
computed from the first principle components of the indirect effects instead of the second-order
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horse     automobile

A horse is driven by a 
trucker on a road with a 
sign saying "Emissions" in 
the background.

dog       deer

A dog is running through a 
fishery, chasing after a 
squirrel and a rabbit, with 
a scenic view of the 
surrounding forests.

frog       bird

A poodle wearing a ring 
and holding a frog, 
standing next to a sign 
saying "Thanksgiving" in a 
festive atmosphere.

truck        ship

A duo of trainers are run-
ning alongside a truck, with 
a pirate flag waving in the 
background, and a sea of 
people cheering them on.

ship      automobile

A ship sailing through a 
quartet of cyclists on a 
Brooklyn road, with a hus-
band and wife driving a mo-
torcycle in the background.

Figure 3.6: Adversarial images generated by our method. For each binary classification task, we present
the generated images, the input text to the text-to-image model (words from W v are bold), and an attribution
map [25] for the classification (areas that contribute to the incorrect class score are red). See additional results
in Chapter B.8.

effect. Third, we do not rely on the neuron decompositions, and instead prompt the language model
with the words from M for which their text representations are the most similar to v. Both for our
pipeline and the baselines, we automatically filter out synonyms of c2 from the phrases provided to
the language model according to their sentence similarity to c2 [68].

Quantitative results. The classification accuracy results for the adversarial images are pre-
sented in Chapter 3.3. The success rate of our adversarial images is significantly higher than the
indirect effect baseline, the similar words baseline, and the random baseline, which succeeds only
accidentally. For the task of generating “ship” images the will be missclassified as “truck”, no other
baseline manged to generate any adversarial images, while ours generated 5.7 images on average.

Qualitative results. Chapter 3.6 includes generated adversarial examples and the descriptions
that were used in their generation. The presented attribution heatmaps [25] show that the found
spurious objects from Wv contribute the most to the misclassification, while the object from the
correct class (e.g. a horse in the left-most image) contributes the least. We provide more results for
additional classification tasks (e.g. “stop-sign v.s. yield”) in Chapter B.8.

We show that understanding internal components in models can be grounded by exploiting them
for adversarial attacks. Our attack is optimization-free and is not compute-intensive. Hence, it can
be used for measuring interpretability techniques, with better understanding leading to improved
attacks.
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Task Random
Indirect Similar Second
effect words order

horse→ automobile 1.0 (±1.4) 2.8 (±3.7) 1.0 (±1.4) 5.3 (±1.9)

dog→ deer 0.3 (±0.5) 6.3 (±4.8) 3.3 (±0.9) 22.7 (±0.5)

bird→ frog 0.3 (±0.5) 1.0 (±1.4) 5.0 (±2.9) 8.0 (±4.5)

ship→ truck 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 5.7 (±0.9)

ship→ automobile 1.3 (±1.9) 0.0 (±0.0) 1.3 (±0.9) 7.0 (±4.5)

Table 3.3: Accuracy of adversarial images. We report how many generated images out of 100, fooled the
binary classifier (standard deviation in parentheses).

Pix. Acc. ↑ mIoU ↑ mAP ↑

Partial-LRP [86] 55.0 35.5 66.9
Rollout [2] 61.8 42.6 74.0
LRP [8] 62.9 35.8 68.5
GradCAM [77] 67.3 39.3 61.9
Chefer et al.[12] 68.9 49.1 79.7
Raw-attention 69.6 49.8 80.0
TextSpan [25] 76.5 58.1 84.1
Ours 78.1 59.0 84.9

Table 3.4: Segmentation performance on ImageNet-segmentation. Our zero-shot segmentation is more
accurate than previous methods across all metrics.

Zero-shot segmentation
Finally, we use our understanding of neurons for zero-shot segmentation. Each neuron corresponds
to an attribution map, by looking at its activations pl,ni (I) on each image patch. Ensembling all
the neurons that contribute towards a concept results in an aggregated attribution map that can be
binarized to generate reliable segmentations.

Specifically, to generate a segmentation map for an image I , we find a set of neurons with
the largest absolute value of the dot product with the encoded class name ci we aim to segment:
|⟨rln,Mtext(ci)⟩|. We then average their spatial activation maps pl,ni (I), standardize the average
activations into [0, 1], and binarize the values into foreground/background segments by applying a
threshold of 0.5.

Segmentation results. We provide results on ImageNet-Segmentation [30], which includes
foreground/background segmentation maps of ImageNet objects. We use activation maps from
the top 200 neurons of layers 8-10. Chapter 3.4 presents a quantitative comparison to previous
explainability methods. Our method outperforms other zero-shot segmentation methods across
all standard evaluation metrics. We provide qualitative results before thresholding in Chapter 3.7.
While the first-order effects (“TextSpan”) highlight individual discriminative object parts, our
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Ours

TextSpan

Input image

Figure 3.7: Qualitative results on ImageNet-Segmentation (ViT-B-32). Our heatmaps capture more object
parts than the first-order token decomposition of [25].

heatmaps capture more parts of the full object.

3.6 Limitations and discussion
We analyzed the second-order effects of neurons on the CLIP representation and used our understand-
ing to perform zero-shot segmentation and generate adversarial images. We present mechanisms
that we did not analyze in our investigation and conclude with a discussion of broader impact and
future directions.

Neuron-attention maps mechanisms. We investigated how the neurons flow through individual
consecutive attention values, and ignored the effect of neurons on consecutive queries and keys in
the attention mechanism. Investigating these effects will allow us to find neurons that modify the
attention map patterns. We leave it for future work.

Neuron-neuron mechanisms. We did not analyze the mutual effects between neurons in the
same layer or across different layers. Returning to our adversarial “frog/bird” attack example, a
neuron that writes toward “dog” may not be activated if a different neuron writes simultaneously
toward “frog”, thus reducing our attack efficiency. While we can still generate multiple adversarial
images, we believe that understanding dependencies between neurons can improve it further.

Future work and broader impact. The mass production of adversarial images can be harmful
to systems that rely on neural networks (e.g., the adversarial attack that causes misclassification
between “yield” and “stop sign” in Chapter B.8). Automatic extraction of such cases allows the
defender to be prepared for them and, possibly, fine-tune the model on the generated images to
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avoid such attacks. We plan to investigate this approach to improve CLIP’s robustness in future
work.

Currently, our attack pipeline relies on a few independent components, each of which has failure
modes. For example, the language model can fail to generate a coherent sentence that includes
many phrases from Wv, and can omit the class name c2 or accidentally include the class name c1.
Additionally, the text-to-image model can fail to generate an image that follows the exact description
and can drop crucial elements from the description. We believe that future improvements in the
language and vision models will increase the success rate of our attack, and plan to continue to
develop and improve it in the future.
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Chapter 4

Rosetta Neurons: Mining the Common Units
in a Model Zoo

4.1 Introduction
One of the key realizations of modern machine learning is that models trained on one task end up
being useful for many other, often unrelated, tasks. This is evidenced by the success of backbone
pretrained networks and self-supervised training regimes. In computer vision, the prevailing theory
is that neural network models trained for various vision tasks tend to share the same concepts and
structures because they are inherently present in the visual world. However, the precise nature of
these shared elements and the technical mechanisms that enable their transfer remain unclear.

In this chapter, we seek to identify and match units that express similar concepts across different
models. We call them Rosetta Neurons (see fig. 3.1). How do we find them, considering it is
likely that each model would express them differently? Additionally, neural networks are usually
over-parameterized, which suggests that multiple neurons can express the same concept (synonyms).
The layer and channel that express the concept would also differ between models. Finally, the
value of the activation is calibrated differently in each. To address these challenges, we carefully
choose the matching method we use. We found that post ReLU/GeLU values tend to produce

This work was originally published as Rosetta Neurons: Mining the Common Units in a Model Zoo , Dravid et al,
at ICCV 2023 [18]

Figure 4.1: Visualization of all the concepts for one class. An example of the set of all concepts emerging
for ImageNet “Tench” class by matching the five discriminative models from Table 4.2 and clustering within
StyleGAN-XL. GAN heatmaps are visualized over one generated image.
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distinct activation maps, thus these are the values we match. We compare units from different layers
between the models while carefully normalizing the activation maps to overcome these differences.
To address synonym neurons, we also apply our matching method on a model with itself and cluster
units together according to the matches.

We search for Rosetta Neurons across eight different models: Class Supervised-ResNet50 [33],
DINO-ResNet50, DINO-ViT [11], MAE [35], CLIP-ResNet50 [64], BigGAN [10], StyleGAN-
2 [41], StyleGAN-XL [72]. We apply the models to the same dataset and correlate different units of
different models. We mine the Rosetta neurons by clustering the highest correlations. This results
in the emergence of model-free global representations, dictated by the data.

Fig. 4.1 shows an example image and all the activation maps from the discovered Rosetta
Neurons. The activation maps include semantic concepts such as the person’s head, hand, shirt,
and fish as well as non-semantic concepts like contour, shading, and skin tone. In contrast to the
celebrated work of Bau et al. on Network Dissection [3, 4], our method does not rely on human
annotations or semantic segmentation maps. Therefore, we allow for the emergence of non-semantic
concepts.

The Rosetta Neurons allow us to translate from one model’s “language” to another. One
particularly useful type of model-to-model translation is from discriminative models to generative
models as it allows us to easily visualize the Rosetta Neurons. By applying simple transformations
to the activation maps of the desired Rosetta Neurons and optimizing the generator’s latent code, we
demonstrate realistic edits. Additionally, we demonstrate how GAN inversion from real image to
latent code improves when the optimization is guided by the Rosetta Neurons. This can be further
used for out-of-distribution inversion, which performs image-to-image translation using a regular
latent-to-image GAN. All of these edits usually require specialized training (e.g. [22, 39, 97]), but
we leverage the Rosetta Neurons to perform them with a fixed pre-trained model.

The contributions here are as follows:

• We show the existence of Rosetta Neurons that share the same concepts across different
models and training regimes.

• We develop a method for matching, normalizing, and clustering activations across models.
We use this method to curate a dictionary of visual concepts.

• The Rosetta Neurons enables model-to-model translation that bridges the gap between repre-
sentations in generative and discriminative models.

• We visualize the Rosetta Neurons and exploit them as handles to demonstrate manipulations
to generated images that otherwise require specialized training.

The Rosetta Stone is an ancient Egyptian artifact, a large stone inscribed with the same text in three different
languages. It was the key to deciphering Egyptian hieroglyphic script. The original stone is on public display at the
British Museum in London.
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Figure 4.2: Rosetta Neuron Dictionary. A sample from the dictionary curated for the ImageNet class
“Briard”. The full dictionary can be found in the supplementary material. The figure presents 4 emergent
concepts demonstrated in 3 example images. For each model, we present the normalized activation maps of
the Rosetta Neuron matching the shared concept.
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Figure 4.3: Rosetta Neurons guided image inversion. An input image is passed through a discriminative
model D (i.e.: DINO) to obtain the Rosetta Neurons’ activation maps. Then, the latent code Z of the
generator is optimized to match those activation maps, according to the extracted pairs.

4.2 Related Work
Visualizing deep representations. The field of interpreting deep models has been steadily growing,
and includes optimizing an image to maximize the activations of particular neurons [92, 82, 60],
gradient weighted activation maps [81, 62, 67, 76], nearest neighbors of deep feature representations
[48], etc. The seminal work of Bau et al.[4, 3] took a different approach by identifying units that
have activation maps highly correlated with semantic segments in corresponding images, thereby
reducing the search space of meaningful units. However, this method necessitates annotations
provided by a pre-trained segmentation network or a human annotator and is confined to discovering
explainable units from a predefined set of classes and in a single model. Whereas all previous works
focused on analyzing a single, specific neural network model, the focus of our work is in capturing
commonalities across many different networks. Furthermore, unlike [3, 4], our method does not
require semantic annotation.

Explaining discriminative models with generative models. GANAlyze [28] optimized the
latent code of a pre-trained GAN to find directions that affect a classifier decision. Semantic
Pyramid [80] explored the subspaces of generated images to which the activations of a classifier
are invariant. Lang et al. [49] trained a GAN to explain attributes that underlie classifier decisions.
In all of these cases, the point where the generative and discriminative models communicate is in
the one “language” they both speak - pixels; which is the output of the former and an input of the
latter. Our method for bridging this gap takes a more straightforward approach: we directly match
neurons from pre-trained networks and identify correspondences between their internal activations.
Moreover, as opposed to [49] and [80], our method does not require GAN training and can be
applied to any off-the-shelf GAN and discriminative model.

Analyzing representation similarities in neural networks. Our work is inspired by the
neuroscience literature on representational similarity analysis [45, 19] that aims to extract corre-
spondences between different brain areas [32], species [46], individual subjects [13], and between
neural networks and brain neural activities [89]. On the computational side, Kornblith et al. [44]
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aimed to quantify the similarities between different layers of discriminative convolutional neural
networks, focusing on identifying and preserving invariances. Esser, Rombach, and Ommer [23,
69] trained an invertible network to translate non-local concepts, expressed by a latent variable,
across models. In contrast, our findings reveal that individual neurons hold shared concepts across a
range of models and training regimes without the need to train a specialized network for translation.
This leads to another important difference: the concepts we discover are local and have different
responses for different spatial locations in an image. We can visualize these responses and gain
insights into how these concepts are represented in the network.

4.3 Method
Our goal is to find Rosetta Neurons across a variety of models. We define Rosetta Neurons as two
(or more) neurons in different models whose activations (outputs) are positively correlated over a
set of many inputs. Below we explain how to find Rosetta Neurons across a variety of models and
describe how to merge similar Rosetta Neurons into clusters that represent the same concepts.

Mining common units in two models
Preliminaries. Given two models F (1), F (2), we run n inputs through both models. For discrimina-
tive models, this means a set of images {Ii}ni=1. If one of the models is generative, we first sample
n random input noises {Zi}ni=1 and generate images Ii = F (1)(zi) that will be the set of inputs to
the discriminative model F (2). We denote the set of extracted activation maps of F by F act. The
size |F act| is the total number of channels in all the layers. The j-th intermediate activation map of
F when applied to the i-th input is then F j

i . That is F j
i = F j(Ii) for a discriminative model and

F j
i = F j(zi) for a generative one.

Comparing activation maps. To compare units F (1)j and F (2)k, namely, the j-th unit from the
first model with the k-th unit from the second one, we first bilinearly interpolate the feature maps to
have the same spatial dimensions according to the maximum of the two map sizes. Our approach to
perform matching is based on correlation, similar to [45], but taken across both data instances and
spatial dimensions. We then take the mean and variance across the n images and across the spatial
dimensions of the images, where x combines both spatial dimensions of the images.

F j =
1

nm2

∑
i,x

F j
i,x

var(F j) =
1

nm2 − 1

∑
i,x

(
F j
i,x − F j

)2
(4.1)

Next, the measure of distance between two units is calculated by Pearson correlation:

d(F (1)j , F (2)k) =

∑
i,x

(
F

(1)j
i,x − F (1)j

)(
F

(2)k
i,x − F (2)k

)
√
var(F (1)j) · var(F (2)k)

(4.2)
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In our experiments, this matching is computed between a generative model G and a discrimina-
tive model D. The images used for D are generated by G applied to n sampled noises.

Filtering “best buddies” pairs. To detect reliable matches between activation maps, we keep
the pairs that are mutual nearest neighbors (named “best-buddies” pairs by [14]) according to our
distance metric and filter out any other pair. Formally, our set of “best buddies” pairs is:

BB(F (1), F (2);K) = {(j, k)|
F (1)k ∈ KNN(F (2)j , F (1)act;K)

∧ F (2)j ∈ KNN(F (1)k, F (2)act;K)}

(4.3)

Where KNN(F (a)j , F (b)act) is the set of the K-nearest neighbors of the unit j from model F (a) among all
the units in model F (b): beginequation*

As shown in [14], the probability of being mutual nearest neighbors is maximized when the neighbors are
drawn from the same distribution. Thus, keeping the “best buddies” discards noisy matches.

Extracting common units in m models
Merging units between different models. To find similar activation maps across many different discrimina-
tive models Di, i ∈ [m], we merge the “best buddies” pairs calculated between Di and a generator G for all
the i’s. Formally, our Rosetta units are:

R(G,D1...Dm) = {(j, k1, ..., km)|∀i : (j, ki) ∈ BB(G,Di)} (4.4)

This set of tuples includes the “translations” between similar neurons across all the models. Note
that when m = 1, R(G,D1) = BB(G,D1).

Clustering similar units into concepts. Empirically, the set of Rosetta units includes a few units
that have similar activation maps for the n images. For instance, multiple units may be responsible
for edges or concepts such as “face.” We cluster them according to the self “best-buddies” of the
generative model, defined by BB(G,G;K). We set two Rosetta Neurons in R to belong to the
same cluster if their corresponding units in G are in BB(G,G;K).

Curating a dictionary. After extracting matching units for a dataset across a model zoo, we
enumerate the sets of matching Rosetta Neurons in the clustered R. Fig. 4.2 is a sample from
such a dictionary. Fig. 4.1 shows a list of all the concepts for a single image. Since the concepts
emerge and are not related to human annotated labels, we simply enumerate them and present each
concept on several example images to visually identify it. Using 1600 instances generated by the
GAN, Distances are taken between all possible bipartite pairs of units, the K = 5 nearest neighbors
are extracted, from which Best-Buddies are filtered. Typically for the datasets and models we
experimented with, around 50 concepts emerge. The exact list of models used in our experiments
and the datasets they were trained on can be found in Table. 4.2. See supplementary material for the
dictionaries.
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Figure 4.4: Out-of-distribution inversions. By incorporating the Rosetta Neurons in the image inversion
process, we can invert sketches and cartoons (first row), and generate similar in-distribution images (last row).
A subset of the Rosetta Neurons from the input images that were matched during the inversion process is
shown in the middle rows.

4.4 Visualizing the Rosetta Neurons
As we involve a generative model in the Rosetta Neurons mining procedure, we can utilize it for
visualizing the discovered neurons as well. In this section, we present how to visualize the neurons
via a lightweight matches-guided inversion technique. We then present how direct edits of the
activation maps of the neurons can translate into a variety of generative edits in the image space,
without any generator modification or re-training.

Rosetta Neurons-Guided Inversion
To visualize the extracted Rosetta Neurons, we take inspiration from [80], and use the generative
model G to produce images for which the generator activation maps of the Rosetta Neurons best
match to the paired activation maps extracted from D(Iv), as shown in figure 4.3. As opposed to
[80], we do not train the generative model to be conditioned on the activation maps. Instead, we
invert images through the fixed generator into some latent code z, while maximizing the similarity
between the activation maps of the paired Rosetta Neurons. Our objective is:

argmin
z
(−Lact(z, Iv) + αLreg(z)) (4.5)



CHAPTER 4. ROSETTA NEURONS: MINING THE COMMON UNITS IN A MODEL ZOO36

Where α is a loss coefficient, Lreg is a regularization term (L2 or L1), and Lact(z, Iv) is the mean of
normalized similarities between the paired activations:

Lact(z, Iv) =

1

|BB(G,D)|

∑
(j,k)∈

BB(G,D)

∑
x

(
Gj

x −Gj
)(

Dk
x −Dk

)
√
var(Gj) · var(Dk)

(4.6)

Where Gj is the j-th activation map of G(z) and Dk is the k-th activation map of D(Iv). For
obtaining this loss, we use the mean and variance precomputed by Eq. 4.1 over the entire dataset
during the earlier mining phase. However, we calculate the correlation over the spatial dimensions
of a single data instance.

The Rosetta neurons guided inversion has two typical modes. The first mode is when both
the initial activation map and the target one have some intensity somewhere in the map (e.g. two
activation maps that are corresponding to “nose” are activated in different spacial locations). In this
case, the visual effect is an alignment between the two activation maps. As many of the Rosetta
neurons capture object parts, it results in image-to-image alignment (e.g., fig. 4.5). The second
mode is when either the target or the initial activation map is not activated. In this case, a concept
will appear or disappear (e.g., fig. 4.8).

Visualizing a single Rosetta Neuron. We can visualize a single Rosetta Neuron by modifying
the loss in our inversion process (eq. 4.6). Rather than calculating the sum over the entire set of
Rosetta Neurons, we do it for a single pair that corresponds to the specific Rosetta neuron. When
this optimization procedure is applied a few times on the same input neuron pair starting from a few
different randomly initialized latent codes, we get a diverse set of images that are matching to the
same activation map of the wanted Rosetta Neuron. This allows a user to disentangle and detect
what is the concept that is specifically represented by the given neuron. Figure 3.1 present two
optimized images for each of the presented Rosetta Neurons. This visualization allows the viewer
to see that Concept #1 corresponds to the concept “red color,” rather than to the concept “hat.”

Inverting out-of-distribution images. The inversion process presented above does not use the
generated image in the optimization, as opposed to common inversion techniques that calculate the
pixel loss or perceptual loss between the generated image the input image. Our optimization process
does not compare the image pixel values, and as many of the Rosetta Neurons capture high-level
semantic concepts and coarse structure of the image, this allows us to invert images outside of the
training distribution of the generative model. Figure 4.5 presents a cross-class image-to-image
translation that is achieved by Rosetta Neurons guided inversion. As shown, the pose of the input
images of dogs is transferred to the poses of the optimized cat images, as the Rosetta Neurons
include concepts such as “nose,” “ears,” and “contour” (please refer to Figure 3.1 for a subset of the
Rosetta Neurons for this set of models).

Figure 4.4 presents the inversion results for sketches and cartoons, and a subset of the Rosetta
Neurons that were used for optimization. As shown, the matches-guided inversion allows us to
“translate” between the two domains via the shared Rosetta Neurons and preserve the scene layout
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Figure 4.5: Cross-class image-to-image translation. Rosetta Neurons guided inversion of input images
(top row) into a StyleGAN2 trained on LSUN cats [90], allows us to preserve the pose of the animal while
changing it from dog to cat (bottom row). See supplementary material for more examples.

and object pose. Our lightweight method does not require dedicated models or model training, as
opposed to [97, 39].

Inverting in-distribution images. We found that adding the loss term in eq. 4.5 to the simple
reconstruction loss objective improves the inversion quality. Specifically, we optimize:

argmin
z
(Lrec(G(z), Iv) + αLreg(z)− βLact(z, Iv)) (4.7)

Where Lrec is the reconstruction loss between the generated image and the input image, and β is a
loss coefficient. The reconstruction loss can be pixel loss, such as L1 or L2 between the two images,
or a perceptual loss.

We compare the inversion quality with and without the Rosetta Neurons guidance and present
the PSNR, SSIM, and LPIPS [94] for StyleGAN-XL inversion. We use solely a perceptual loss as a
baseline, similarly to [72]. We add our loss term to the optimization, where the Rosetta Neurons
are calculated from 3 sets of matches with StyleGAN-XL: matching to DINO-RN, matching to
CLIP-RN, and matching across all the discriminative models in Table 4.2. We use the same
hyperparameters as in [72], and set α = 0.1 and β = 1.

Table 4.1 presents the quantitative inversion results for 5000 randomly sampled images from the
ImageNet validation set (10% of the validation set, 5 images per class), as done in [72]. Figure 4.6
presents the inversion results for the baseline and for the additional Rosetta Neurons guidance using
the matches between all the models. As shown qualitatively and quantitatively, the inversion quality
improves when the Rosetta Neurons guiding is added. We hypothesize this is due to the optimization
objective that directly guides the early layers of the generator and adds layout constraints. These
soft constraints reduce the optimization search space and avoid convergence to local minima with
low similarity to the input image.
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PSNR ↑ SSIM ↑ LPIPS ↓
Perceptual loss 13.99 0.340 0.48
+DINO matches 15.06 0.360 0.45
+CLIP matches 15.20 0.362 0.44
+All matches 15.42 0.365 0.46

Table 4.1: Inversion quality on ImageNet. We compare the inversion quality for StyleGAN-XL when
Rosetta Neurons guidance is added, for 3 sets of matches - StyleGAN-XL & DINO-RN, StyleGAN-XL &
CLIP-RN and all the models from figure 4.2.

Model Training dataset Resolution
StyleGAN-XL ImageNet 256

StyleGAN2 LSUN(cat) 256
StyleGAN2 LSUN(horse) 512

BigGAN ImageNet 256
ResNet50 ImageNet 224

DINO-ResNet50 ImageNet 224
DINO-VIT-base ImageNet 224

MAE-base ImageNet 224
CLIP WebImageText 224

Table 4.2: Models used in the paper.

Input Image Perceptual Loss +Ours

Figure 4.6: Image inversions for StyleGAN-XL. We compare inversions by optimizing perceptual loss only
(second column), to additional Rosetta Neurons guidance loss, with matches calculated across all the models
presented in Figure 4.2 (third column). See supplementary material for more examples.
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Rosetta Neurons Guided Editing
The set of Rosetta Neurons allows us to apply controlled edits on a generated image Isrc = G(z)
and thus provides a counterfactual explanation to the neurons. Specifically, we modify the activation
maps corresponding to the Rosetta Neurons, extracted from G(z), and re-optimize the latent code
to match the edited activation maps according to the same optimization objective presented in eq.
4.5. As opposed to previous methods like [22], which trained a specifically designed generator to
allow disentangled manipulation of objects at test-time, we use a fixed generator and only optimize
the latent representation. Next, we describe the different manipulations that can be done on the
activation maps, before re-optimizing the latent code:

Zoom-in. We double the size of each activation map that corresponds to a Rosetta Neurons with
bilinear interpolation and crop the central crop to return to the original activation map size. We start
our re-optimization from the same latent code that generated the original image.

Shift. To shift the image, we shift the activation maps directly and pad them with zeros. The
shift stride is relative to the activation map size (e.g. we shift a 4 × 4 activation map by 1, while
shifting 8× 8 activation maps by 2).

Copy & paste. We shift the activation maps into two directions (e.g. left and right), creating
two sets of activation maps - left map, and right map. We merge them by copying and pasting the
left half of the left activation map and the right half of the right activation map. We found that
starting from random z rather than z that generated the original image obtains better results.

Figure 4.7 shows the different image edits that are done via latent optimization to match the
manipulated Rosetta Neurons. We apply the edits for two different generative models (BigGAN
and StyleGAN2) to show the robustness of the method to different architectures.

Fine-grained Rosetta Neurons edit. Our optimization procedure allows us to manipulate
a subset of the Rosetta Neurons, instead of editing all of the neurons together. Specifically, we
can manually find among the Rosetta Neurons a few that correspond to elements in the image
that we wish to modify. We create “ground truth” activations by modifying them manually and
re-optimizing the latent code to match them. For example - to remove concepts specified by Rosetta
Neurons, we set their values to the minimal value in their activation maps. We start our optimization
from the latent that corresponds to the input image and optimize until the picked activation maps
converge to the manually edited activation maps. Figure 4.8 presents examples of removed Rosetta
Neurons. Modifying only a few activation maps (1 or 2 in the presented images) that correspond to
the objects we aimed to remove, allows us to apply realistic manipulations in the image space. As
opposed to [3], we do not rewrite the units in the GAN directly and apply optimization instead, as
we found that direct edits create artifacts in the generated image for large and diverse GANs.

Implementation details. For the re-optimization step, we train z for 500 steps, with Adam
optimizer [43] and a learning rate of 0.1 for StyleGAN2 and 0.01 for BigGAN. Following [72], the
learning rate is ramped up from zero linearly during the first 5% of the iterations and ramped down
to zero using a cosine schedule during the last 25% of the iterations. We use K = 5 for calculating
the nearest neighbors. The inversion and inversion-based editing take less than 5 minutes per image
on one A100 GPU.
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Input Image Zoom In Shift Copy & Paste

Figure 4.7: Rosetta Neurons guided editing. Direct manipulations on the activation maps corresponding
to the Rosetta neurons are translated to manipulations in the image space. We use two models (top row -
StyleGAN2, bottom two rows - BigGAN) and utilize the matches between each of them to DINO-RN.

Figure 4.8: Single Rosetta Neurons Edits. We optimize the latent input s.t. the value of a desired Rosetta
activation reduces. This allows removing elements from the image (e.g. emptying the beer in the glass,
reducing the water stream in the fountain, and removing food from a plate). See appendix for more examples.
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4.5 Limitations
Our method can not calculate GAN-GAN matches directly, only through a discriminative model.
Unlike discriminative models that can receive the same input image, making two GANs generate
the same image is not straightforward. Consequently, we only match GANs with discriminative
models.

Secondly, we were unsuccessful when applying our approach to diffusion models, such as [70].
We speculate that this is due to the autoregressive nature of diffusion models, where each step is a
conditional generative model from image to image. We hypothesize that as a result, the noisy image
input is a stronger signal in determining the outcome of each step, rather than a specific unit. Thus,
the units in diffusion models have more of an enhancing or editing role, rather than a generating
role, which makes it less likely to identify a designated perceptual neuron.

Lastly, our method relies on correlations, and therefore there is a risk of mining spurious
correlations. As shown in Figure 4.2, the dog in the third example does not have its tongue visible,
yet both StyleGAN-XL and DINO-RN activated for Concept #1 in a location where the tongue
would typically be found. This may be due to the correlation between the presence of a tongue and
the contextual information where it usually occurs.

4.6 Conclusion
We introduced a new method for mining and visualizing common representations that emerge in
different visual models. Our results demonstrate the existence of specific units that represent the
same concepts in a diverse set of deep neural networks, and how they can be utilized for various
generative tasks via a lightweight latent optimization process. We believe that the found common
neurons can be used in a variety of additional tasks, including image retrieval tasks and more
advanced generative tasks. Additionally, we hope that the extracted representations will shed light
on the similarities and dissimilarities between models that are trained for different tasks and with
different architectures. We plan to explore this direction in future work.
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Chapter 5

Discussion and Future Work

This thesis presented the first steps in understanding the computation inside pre-trained deep
vision models. First, I showed how different components in one model, CLIP, can be described
automatically. It was achieved by analyzing specific information flows from these components to
the output space and using the fact that the output space can be interpreted with text representations.
Then, I showed that some components in other models, that were trained for different tasks and data,
are sharing the same functionality. The fact that we can automatically interpret CLIP components
and some of them are similar to components in other models paves a way for automatically
interpreting other models as well.

Next, I present my future research plans, ranging from the near future – automating and
extending the presented approaches for interpretability, to longer horizon goals – accelerating
scientific discovery.

Interpreting and reverse-engineering deep neural networks still require manual analysis of
different model components and their interactions. Given a neural network, my ultimate goal is
to automate this reverse-engineering process and to extract a description of a minimal human-
interpretable circuit for specific sub-tasks. Combining the interpretation approach for specific
flows in the model, and iterative hypothesis generation (that becomes more plausible with large
generative language and vision models), together with testing and refinement, can result in a scalable
understanding of model circuits.

I believe that the presented approach for doing AI science (e.g., scalable understanding of model
circuits) will be useful in designing future AI systems. Reasoning about the limitations of different
circuits and the shortcomings of the existing deep learning frameworks can lead to improved training
recipes, architectures, and model safety.

A scalable understanding of model behavior can be useful not only for designing better models
but also for automated scientific discovery. Current deep neural networks that are trained on large
amounts of data already manage to outperform humans on some tasks. In the future, these models
will continue to improve and solve new tasks that humans do not know how to solve. Extracting the
underlying mechanisms that these models learn for solving new problems, and abstracting them to a
human language, can increase the rate of new scientific discoveries. The approach for automated
hypotheses generation, presented earlier, can be applied to explain the steps for solving a task that
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humans don’t know how to solve. Looking forward, I will aim to automatically lift the computation
in models into an algorithmic level of abstraction that humans can understand, to explain previously
unknown phenomena.
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Appendix A

Chapter 2 Supplementary Material

Layer Normalization
We describe here the modifications that are needed to be incorporated in our method to take into
account layer-normalizations. There are two places where layer-normalizations are used - before
the projection layer (to the output of the ViT), and before each layer in the ViT (to the layer input).
We present how the individual contributions of ci,l,h, cl,hhead and citoken should be changed.

Pre-projection layer normalization. As mentioned in the Section 2.3, in many implementations
of CLIP, a layer-normalization LN is applied to the output of the ViT before the projection layer.
Formally, the image representation of image I is then:

Mimage(I) = PLN(ViT(I)) (A.1)

The normalization layer can be rewritten as:

LN(x) = γ ∗ x− µl√
σ2
l + ϵ

+ β =

[
γ√

σ2
l + ϵ

]
∗ x−

[
µlγ√
σ2
l + ϵ

− β

]
(A.2)

where x ∈ Rd is the input token, µl, σl ∈ R are the mean and standard deviation, and γ, β ∈ Rd are
learned vectors. To incorporate the layer normalization in our decomposition, we compute the mean
and the standard deviation during the forward pass of the model. The multiplicative term, γ√

σ2
l +ϵ

is

absorbed into the projection matrix P . The contribution of µlγ√
σ2
l +ϵ
− β is split equally between all

the ci,l,h terms in the Eq. 2.6. We apply these modifications when we decompose OpenCLIP-based
models.

MLPs and MSAs input layer normalizations. In the main paper, we do not describe the
normalization layers that are applied to each input of MLP and MSA in the model. More accurately,
the residual updates of the ViT are:

Ẑ l = MSAl(LNl(Z l−1)) + Z l−1, Z l = MLPl(L̂N
l
(Ẑ l)) + Ẑ l (A.3)
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Where L̂N
l

and LNl are the layer normalizations applied to each token in the input matrix of the
MLP layers and MSA layers. This modification does not affect our corollaries about the direct
contributions of the MLP layers and MSA layers, as we only address the outputs of these layers.
The only other equation in which this modification takes place is in Eq. 3.2:

[
MSAl(Z l−1)

]
cls

=
H∑

h=1

N∑
i=0

xl,h
i , xl,h

i = αl,h
i LNl(zl−1

i )W l,h
V O (A.4)

Mean-Ablation of the Class-Token Attended from Itself
We show that we can ignore the direct effect of the class token in the MSAs term when we
decompose it into tokens (see section 2.5). We mean-ablate the direct contribution of the class token
to the MSAs term in Eq. 2.6. We simultaneously ablate both the class token and the MLPs. The
ImageNet zero-shot classification performances of the three ViT models are shown in Table A.1. As
shown, the direct contributions of all the MLP layers and the direct contributions of the class token
in the decomposed MSAs term results in a negligible drop in performance for all the models.

Base + class token + MLPs
accuracy ablation ablation

ViT-B-16 70.22 69.37 67.32
ViT-L-14 75.25 74.38 73.87
ViT-H-14 77.95 76.89 76.29

Table A.1: Mean-ablation of the class token contribution to the MSAs term. The overall drop in accuracy
is relatively small, even when the MLPs are replaced by their mean across ImageNet validation set.

Text Descriptions
General text descriptions. To generate the set of text descriptions that are used by our algorithm,
we prompted ChatGPT (GPT-3.5) to produce image descriptions. We used the prompt provided
in Table A.2, and manually prompted the language model to generate more examples for specific
patterns we found in the initial result (e.g. more colors, more letters). This process resulted in 3498
sentences.

Most common words. For the set of most common words, we used the same number of
examples, and took the 3498 most common English words, as determined by n-gram frequency
analysis of Google’s Trillion Word Corpus ([75]).

Class-specific text descriptions. We generate additional class-specific text descriptions, by
prompting ChatGPT with the prompt template provided in table A.2. We queried to model for each
of the ImageNet class names. This process resulted in 28767 unique sentences.

Random vectors. As a baseline we created a random set of 3498 vectors sampled from a unit
Gaussian.
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General text descriptions initial prompt
Imagine you are trying to explain a photograph by providing a complete set of image characteristics.
Provide generic image characteristics. Be as general as possible and give short descriptions
presenting one characteristic at a time that can describe almost all the possible images of a wide
range of categories. Try to cover as many categories as possible, and don’t repeat yourself. Here
are some possible phrases: “An image capturing an interaction between subjects”, “Wildlife in
their natural habitat”, “A photo with a texture of mammals”, “An image with cold green tones”,
“Warm indoor scene”, “A photo that presents anger”. Just give the short titles, don’t explain why,
and don’t combine two different concepts (with “or” or “and”). Make each item in the list short but
descriptive. Don’t be too specific.
Class-specific text descriptions prompt
Provide 40 image characteristics that are true for almost all the images of {class}. Be as general
as possible and give short descriptions presenting one characteristic at a time that can describe
almost all the possible images of this category. Don’t mention the category name itself (which
is “{class}”). Here are some possible phrases: “Image with texture of ...”, “Picture taken in the
geographical location of...”, ”Photo that is taken outdoors”, “Caricature with text”, “Image with
the artistic style of...”, “Image with one/two/three objects”, “Illustration with the color palette ...”,
“Photo taken from above/below”, “Photograph taken during ... season”. Just give the short titles,
don’t explain why, and don’t combine two different concepts (with “or” or “and”).

Table A.2: ChatGPT prompts for image descriptions generation.

Additional Initial Description Pool Ablation
We present additional ablation of the initial set of text descriptions provided to TEXTSPAN. The
text description generation processes for each of the pools are described in Section A.

As shown in Figure A.1, using the class-specific descriptions pool that includes around ×8
more examples than the general descriptions pool, allows us to obtain higher accuracy with fewer
descriptions per head (smaller m). Nevertheless, using each of the two pools results in relatively
similar accuracy with m = 60.

TEXTSPAN outputs for CLIP-ViT-L
We apply TEXTSPAN to the attention heads of the last 4 layers of CLIP ViT-L. Tables A.3-A.6
present the first 5 descriptions per head.

Qualitative results for image token decomposition
Figure A.2(a) shows the similarity heatmaps for text descriptions. As presented our heatmaps
highlight the objects that are described in the text. Figure A.2(b) presents the relative similarity
heatmaps given two descriptions (by subtracting between the two heatmaps). The areas in the
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Figure A.1: ImageNet classification accuracy for the image representation projected to TEXTSPAN bases
(additional results). We evaluate our algorithm for different initial description pools, and with different output
sizes.

“An image of a 
tiger”

“An image of a ram 
(adult male sheep)”

“The player with 
the white shirt”

“The player 
with the ball”

“The grown-up 
elephant”

“The baby
 elephant”

“The dog with 
the ginger fur”

“The dog with the 
black and white fur”

(a) (b)

Figure A.2: Heatmaps produced by the image token decomposition. We visualize (a) what areas in the
image directly contribute to the similarity score between the image representation and a text representation
and (b) what areas make an image representation more similar to one text representation rather than another.

images that make the image representations more similar to one of the text representations rather
than the other, correspond to the areas that are mentioned by it and ignored by the other text.

Most similar images to TEXTSPAN results
We randomly choose 3 attention heads from the last 4 layers of CLIP ViT-L. For each head (l, h),
we retrieve the 3 images with the highest similarity score between their cl,hhead and the top 10 text
representations found by our algorithm. The retrieval is done from ImageNet validation set. The
results are presented in Figure A.5. As shown, in most cases, the top text representation corresponds
to the attributes of the images.
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Layer 20, Head 0 Layer 20, Head 1
Picture taken in Hungary Picture taken in Seychelles
Image taken in New England Picture taken in Saudi Arabia
Futuristic technological concept Muted urban tones
Playful siblings Man-made pattern
Picture taken in the English countryside an image of glasgow
Layer 20, Head 2 Layer 20, Head 3
Image of a police car Intrica wood carvingte
Picture taken in Laos Image snapped in Spain
Remote alpine chalet Photo taken in Bora Bora, French Polynesia
A photograph of a small object An image of a Preschool Teacher
Desert sandstorm A breeze
Layer 20, Head 4 Layer 20, Head 5
Image with a pair of subjects an image of samoa
Image with five subjects Urban nostalgia
Image with a trio of friends A photo with the letter K
A photo of an adult Image snapped in the Colorado Rockies
Image with a seven people Serendipitous discovery
Layer 20, Head 6 Layer 20, Head 7
Bustling city square Energetic children
Peaceful village alleyway Grumpy facial expression
ornate cathedral Intricate ceramic patterns
Image taken in the Alaskan wilderness Photo taken in Bangkok, Thailand
Modern airport terminal Subdued moments
Layer 20, Head 8 Layer 20, Head 9
Photo taken in Rioja, Spain Tranquil Asian temple
Photo taken in Borneo Vibrant city nightlife
Vibrant urban energy A photo with the letter R
Picture captured in the Icelandic glaciers intricate mosaic artwork
serene oceanside scene Photo taken in the Rub’ al Khali (Empty Quarter)
Layer 20, Head 10 Layer 20, Head 11
A bowl Photo taken in Beijing, China
A bottle Photo with retro color filters
Nostalgic pathways Image with holographic cyberpunk aesthetics
A laptop Urban street fashion
Reflective ocean view Photograph with the artistic style of tilt-shift
Layer 20, Head 12 Layer 20, Head 13
Photo with grainy, old film effect Image taken from a distance
Detailed illustration Photograph with the artistic style of split toning
Serene beach sunset Photo taken in Beijing, China
An image of the number 10 A close-up shot
An image of the number 5 An image of a Novelist
Layer 20, Head 14 Layer 20, Head 15
Quirky street performer Remote hilltop hut
Antique sculptural element Photo taken in Barcelona, Spain
Celebratory atmosphere Dynamic movement
Overwhelmed facial expression Caricature of an influential leader
Serene winter wonderland A picture of Samoa

Table A.3: Top-5 results of TEXTSPAN. Applied to the heads at layer 20 of CLIP-ViT-L.
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Layer 21, Head 0 Layer 21, Head 1
Timeless black and white Picture taken in the southeastern United States
Vintage sepia tones Picture taken in the Netherlands
Image with a red color Image taken in Brazil
A charcoal gray color Image captured in the Australian bushlands
Soft pastel hues Picture taken in the English countryside
Layer 21, Head 2 Layer 21, Head 3
A photo of a woman Precise timekeeping mechanism
A photo of a man Image snapped in the Canadian lakes
Energetic children An image of Andorra
An image with dogs thrilling sports challenge
A picture of a baby Photo taken in Namib Desert
Layer 21, Head 4 Layer 21, Head 5
An image with dogs Inquisitive facial expression
A picture of a bridge Artwork featuring typographic patterns
A photo with the letter R A photograph of a big object
Dramatic skies Reflective landscape
Ancient castle walls Burst of motion
Layer 21, Head 6 Layer 21, Head 7
Photo taken in the Italian pizzerias A pin
thrilling motorsport race A thimble
Urban street fashion A bookmark
An image of a Animal Trainer Picture taken in Rwanda
Serene countryside sunrise A pen
Layer 21, Head 8 Layer 21, Head 9
Inviting coffee shop Photograph with a blue color palette
Photograph taken in a music store Image with a purple color
An image of a News Anchor Image with a pink color
Joyful family picnic scene Image with a orange color
cozy home library Timeless black and white
Layer 21, Head 10 Layer 21, Head 11
Playful winking facial expression Photo captured in the Arizona desert
Joyful toddlers Picture taken in Alberta, Canada
Close-up of a textured plastic Photo taken in Rio de Janeiro, Brazil
An image of a Teacher Picture taken in Cyprus
Image with a seven people Photo taken in Seoul, South Korea
Layer 21, Head 12 Layer 21, Head 13
Photo with grainy, old film effect Quiet rural farmhouse
Macro botanical photography Lively coastal fishing port
A laptop an image of liechtenstein
Vintage nostalgia Image taken in the Florida Everglades
serene mountain retreat thrilling motorsport race
Layer 21, Head 14 Layer 21, Head 15
Photo taken in Beijing, China Submerged underwater scene
Cheerful adolescents Artwork featuring overlapping scribbles
Picture taken in Ecuador Surrealist artwork with dreamlike elements
Dreamy haze Serene winter wonderland
Image captured in the Greek islands Wildlife in their natural habitat

Table A.4: Top-5 results of TEXTSPAN. Applied to the heads at layer 21 of CLIP-ViT-L.
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Layer 22, Head 0 Layer 22, Head 1
Artwork with pointillism technique A semicircular arch
Artwork with woven basket design An isosceles triangle
Artwork featuring barcode arrangement An oval
Image with houndstooth patterns Rectangular object
Image with quilted fabric patterns A sphere
Layer 22, Head 2 Layer 22, Head 3
Urban park greenery An image of legs
cozy home interior A jacket
Urban subway station A helmet
Energetic street scene A scarf
Tranquil boating on a lake A table
Layer 22, Head 4 Layer 22, Head 5
An image with dogs Harmonious color scheme
Joyful toddlers An image of cheeks
Serene waterfront scene Vibrant vitality
thrilling sports action Captivating scenes
A picture of a baby Dramatic chiaroscuro photography
Layer 22, Head 6 Layer 22, Head 7
Curious wildlife Serene winter wonderland
Majestic soaring birds Blossoming springtime blooms
An image with dogs Crisp autumn leaves
Image with a dragonfly A photo taken in the summer
An image with cats Posed shot
Layer 22, Head 8 Layer 22, Head 9
A photo with the letter V A photo of food
A photo with the letter F delicate soap bubble play
A photo with the letter D Dynamic and high-energy music performance
A photo with the letter T Hands in an embrace
A photo with the letter X Futuristic technology display
Layer 22, Head 10 Layer 22, Head 11
Image with a yellow color A charcoal gray color
Image with a orange color Sepia-toned photograph
An image with cold green tones Minimalist white backdrop
Image with a pink color High-contrast black and white
Sepia-toned photograph Image with a red color
Layer 22, Head 12 Layer 22, Head 13
Photo taken in Namib Desert Image taken in Thailand
Ocean sunset silhouette Picture taken in the Netherlands
Photo taken in the Brazilian rainforest Picture taken in the southeastern United States
Serene countryside sunrise Image captured in the Australian bushlands
Bustling cityscape at night Picture taken in the geographical location of Spain
Layer 22, Head 14 Layer 22, Head 15
A silver color contemplative urban view
Play of light and shadow Photograph revealing frustration
Image with a white color Celebratory atmosphere
A charcoal gray color Captivating authenticity
Cloudy sky Intense athletic competition

Table A.5: Top-5 results of TEXTSPAN. Applied to the heads at layer 22 of CLIP-ViT-L.



APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 59

Layer 23, Head 0 Layer 23, Head 1
Intrica wood carvingte Photograph taken in a retro diner
Nighttime illumination Intense athlete
Image with woven fabric design Detailed illustration of a futuristic bioreactor
Image with shattered glass reflections Image with holographic retro gaming aesthetics
A photo of food Antique historical artifact
Layer 23, Head 2 Layer 23, Head 3
Image showing prairie grouse Bustling city square
Image with a penguin Serene park setting
A magnolia Warm and cozy indoor scene
An image with dogs Modern airport terminal
An image with cats Remote hilltop hut
Layer 23, Head 4 Layer 23, Head 5
Playful siblings Intertwined tree branches
A photo of a young person Flowing water bodies
Image with three people A meadow
A photo of a woman A smoky plume
A photo of a man Blossoming springtime blooms
Layer 23, Head 6 Layer 23, Head 7
Picture taken in Sumatra A paddle
Picture taken in Alberta, Canada A ladder
Picture taken in the geographical location of Spain Intriguing and enigmatic passageway
Image taken in New England A bowl
Photo captured in the Arizona desert A table
Layer 23, Head 8 Layer 23, Head 9
Photograph with a red color palette ornate cathedral
An image with cold green tones detailed reptile close-up
Timeless black and white Image with a seagull
Image with a yellow color A clover
Photograph with a blue color palette Futuristic space exploration
Layer 23, Head 10 Layer 23, Head 11
Image with six subjects A photo with the letter N
Image with a four people A photo with the letter J
An image of the number 3 Serendipitous discovery
An image of the number 10 A fin
The number fifteen Unusual angle
Layer 23, Head 12 Layer 23, Head 13
Image with polka dot patterns Photo taken in a museum
Striped design Surreal digital collage
Checkered design Cinematic portrait with dramatic lighting
Artwork with pointillism technique Collage of vintage magazine clippings
Photo taken in Galápagos Islands Candid documentary photography
Layer 23, Head 14 Layer 23, Head 15
An image with dogs Resonant harmony
Majestic soaring birds Subtle nuance
Graceful swimming fish An image of cheeks
An image with bikes emotional candid gaze
Picture with boats Whimsicachildren’s scenel

Table A.6: Top-5 results of TEXTSPAN. Applied to the heads at layer 23 of CLIP-ViT-L.
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A “location” head A “texture” head A “people” head 
Layer 22, Head 3 Layer 23, Head 12 Layer 23, Head 4

“Photo taken in 
a museum”

“Photo taken in 
a museum”

“Quaint 
villages”

“Serene 
countryside 

sunrise”

“An image of 
friends hanging 

out”

“A photo of a 
woman”

“Checkered 
design”

“Artwork with 
pointillism 
technique”

“Image with polka 
dot patterns”

“Striped design” “A photo of a 
woman”

“Joyful 
toddlers”

Figure A.3: Additional joint decomposition examples.

Input Image rollout raw attention GradCAM partial LRP Chefer et al. Ours

“An image 
of an 
echidna”

“An image 
of a tiger”

“An image 
of a ram 
(adult male 
sheep)”

Figure A.4: Comparison to other explainability methods. The highlighted regions produced by our
decomposition are more aligned with the areas of the image that are mentioned in the text.

base ours
ViT-B-16 76.7 83.8
ViT-L-14 73.1 84.2
ViT-H-14 77.0 84.1

Table A.7: Overall classification accuracy on Waterbirds dataset. We reduce spurious cues by zeroing the
direct effects of property-specific heads.
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water background land background
waterbird class 92.1 (93.1) 77.8 (66.2)
landbird class 72.9 (47.7) 94.9 (94.8)

Table A.8: Zero-shot classification accuracy on Waterbirds dataset, per class and background (ViT-L).
The accuracy for the baseline CLIP model is in parentheses. As shown, we reduce the spurious correlation
between the background and the object class.

water background land background
waterbird class 62.3 (69.8) 43.3 (37.2)
landbird class 87.9 (71.0) 98.0 (96.4)

Table A.9: Zero-shot classification accuracy on Waterbirds dataset, per class and background (ViT-H).
The accuracy for the baseline CLIP model is in parentheses.

water background land background
waterbird class 80.5 (86.1) 81.6 (63.5)
landbird class 57.5 (45.6) 94.3 (96.1)

Table A.10: Zero-shot classification accuracy on Waterbirds dataset, per class and background (ViT-B).
The accuracy for the baseline CLIP model is in parentheses.
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Timeless black and white

Vintage sepia tones

Image with a red color

A charcoal gray color

Soft pastel hues

Picture taken in Laos

Peaceful lakeside retreat

Image with traditional African motifs

Photograph with a blue color palette

Picture taken in Galápagos Islands

Image showing prairie grouse

Image with a penguin

A magnolia

An image with dogs

An image with cats

An irregular hexagon

A parabola

Image with a zebra

A spiky texture

Picture of mammels

A paddle

A ladder

Intriguing and enigmatic passageway

A bowl

A table

A shoelace

Hands in an embrace

contemplative mountain view

A roof

A semicircular arch

Layer 21, Head 10Layer 23, Head 2Layer 23, Head 7

Figure A.5: Top 3 images with highest similarities to TEXTSPAN outputs. For 3 randomly selected
attention heads, we retrieve the images with the highest similarity score between their head contributions
cl,hhead and the top 10 text representations found by our algorithm.
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(a “color” head)

(a “location” head)

(a “people” head)

Figure A.6: Additional results for image retrieval based on head-specific similarity.
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Appendix B

Chapter 3 Supplementary Material

Second order ablations for ViT-L
We repeat the same experiments from Chapter 3.3 for ViT-L-14, trained on LAION dataset [74]. For
this model, we only use 10% of ImageNet validation set. Here, the maximal drop in performance
when ablating the second order is relatively smaller and is spread across more layers. Nevertheless,
the same properties presented and discussed in Chapter 3.3 hold for this model.

First order ablations
For the two models discussed above, ViT-B-32 and ViT-L-14, we provide the mean-ablation results
for the first-order effects of MSA layers, as computed in [25]. For each model, we present the
performance before and after accumulative mean-ablation of all the first-order effects of MSA
layers. As shown in Chapter B.4 and Chapter B.5, the neurons with the significant second-order
effects appear right before the layers with the significant first-order effects.

0.39 ducks
0.20 chickens
0.19 eagle
0.16 clover
0.16 carmel
0.16 park
0.14 hollister
0.14 golfing
0.14 goose
0.13 wynn

1.29 primates
0.66 chimp
0.63 alejandro
0.58 zoology
0.58 kong
0.47 bolivia
0.4 inverter
0.39 ears
0.37 motif
0.36 chests

0.90 bridge
0.36 fog
0.26 staten
0.23 tektronix
0.23 nel
0.21 postmaster
0.21 bridges
0.20 yugioh
0.20 continually
0.20 lisbon

0.69 violin
0.49 guitar
0.40 chords
0.32 faceted
0.32 cranes
0.27 elixir
0.25 sweetwater
0.24 additives
0.24 cello
0.23 parlor

Figure B.1: Concept discovery in images (ViT-B-32). We include top-10 words discovered by aggregating
words in sparse decompositions of activated neurons.
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Additional adversarial images
We present additional semantic adversarial results, generated by our method for ViT-B-32, in
Chapter B.8. We demonstrate a wide variety of tasks, including additional pairs from CIFAR-10
dataset, and adversarial attacks related to traffic signs (e.g. misclassification between a stop sign
and a yield sign or a crossroad). For each image, we provide the text used for generating it, and
highlight the spurious cues words from the sparse decompositions.

Additional sparse decomposition results
We provide additional examples of sparse decompositions of neurons in Chapter B.1 and the images
with the top norms for the second-order effects of the same neurons in Chapter B.7. As shown, the
found descriptions match the objects in the top 10 images.

Concept discovery in images
We present an additional application - concept discovery in images. We aim to discover concepts
in image I , by aggregating phrases that correspond to the neurons that are activated on I . Here,
we start from the set of activated neurons N (for which ||ϕl

n(I)||2 is above the 98th percentile
of norms computed across ImageNet images). Similarly to the contribution score described in
Chapter 3.5, we compute an image-contribution score wI

j for each phrase j according to its combined
weight in the decompositions of neurons in N . Formally, wI

j is the overall sum of weights that
each neuron in N assigns to j in its decomposition, weighted by the neuron second-order norms:
wI

j =
∑

n∈N γl,n
j ||ϕl

n(I)||2. The phrases with the highest image-contribution score are picked to
describe the image concepts.

Qualitative results. We present qualitative results for neurons and the top-10 discovered
concepts from layer 9 of ViT-B-32 in Chapter B.1, when using the most common words as the pool.
The number of neurons activated on these images, |N |, is between 29 and 59, less than 2% of the
neurons in the layer. Nevertheless, the top words extracted from these neurons relate semantically
to the objects in the image and their locations. Surprisingly, the top word for each of the images
appears only in one or two of the neuron sparse decompositions and is not spread across many
activated neurons.

We acknowledge that while this application discovers meaningful concepts that correspond to the
input images, there are other approaches for extracting these concepts (e.g. sparsely decomposing
the image representation, as shown in [6]).

Derivations with Layer Normalization
In many implementations of CLIP, there is a layer normalization between the Vision Transformer
and the projection layer P . In this case, the representation is:

Mimage(I) = P (LN(ViT(I))) (B.1)
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where the LN is the layer normalization. Specifically, LN can be written as:

LN(x) = γ ∗ x− µ√
σ2 + ϵ

+ β =

[
γ√

σ2 + ϵ

]
︸ ︷︷ ︸

=A

∗x−
[

µγ√
σ2 + ϵ

− β

]
︸ ︷︷ ︸

=B

, (B.2)

where x ∈ Rd is the input token, µl, σl ∈ R are the mean and standard deviation, and γ, β ∈ Rd are
learned vectors. To include A and B in the second-order effect of a neuron flow, we replace the
input-independent component in Chapter 3.3, PW l′,h

V Ow
l′,n, with:

P (A ∗W l′,h
V Ow

l,n +
B

c
) (B.3)

Where c is a normalization constant that splits B equally across all the neurons that can additively
contribute to it.

Except for the layer normalization before the projection layer, the input to the MSA layers that
comes from the residual stream also flows through a layer normalization. Thus, if the input to the
MSA layer in layer l is the list of tokens [zl0, ...z

l
K ], the output that corresponds to the class token is:

[
MSAl([z0, ..., zK ])

]
0
=

H∑
h=1

K∑
i=0

al,hi (I)W l,h
V OLN

l(zi), (B.4)

where LN l is the normalization layer at layer l, that can be parameterized similarly to Chapter B.2
by Al, Bl ∈ Rd. We modify the definition of the second-order effect accordingly:

ϕl
n(I) =

L∑
l′=l+1

H∑
h=1

K∑
i=0

(
pl,ni (I)al

′,h
i (I)

)(
P

(
A ∗W l′,h

V O (A
l ∗ wl,n +

Bl′

cl′
) +

B

c

))
, (B.5)

where cl′ is is a normalization coefficient that splits Bl′ equally across all the neurons before layer l′.
In all of our experiments, we use this modification. Most of the elements in the modification add

constant biases. Therefore, they can be ignored in our experiments as in many of the experiments
constant biases do not change the results. For example, in our mean-ablation experiment, we
subtract the mean, computed across a dataset.

Prompts
We provide the prompt that was used for generating sentences given the set of words Wv, as
presented in Chapter 3.5, in Chapter B.2. This prompt is given to LLAMA3 model [85].

Additionally, we provide the prompt that was used for generating the pool of ImageNet class
descriptions, presented in Chapter 3.4. We prompt ChatGPT (GPT 3.5) with the prompt template
provided in Chapter B.3.
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Figure B.2: ViT-L-14 second-order ablations.
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Figure B.3: Mean-ablation of second order effects
on ImageNet-R (ViT-B-32, layers 8-10). We repeat
the evaluation in Chapter 3.3 on ImageNet-R. The
performance of different ablations follows the same
trends as that of ImageNet.
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Figure B.4: ViT-B-32 first-order MSAs ablation.
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Figure B.5: ViT-L-14 first-order MSAs ablation.

Compute
As our method does not require additional training, the time of our experiments depends linearly on
the inference time of CLIP (and other generative models that were used for the adversarial images
generation), and on the number of images we use for the experiments (∼5000 in our case). All our
experiments were run on one A100 GPU. The most time-consuming experiment—computing the
per-layer mean-ablation results for ViT-L-14—took 5 days.
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Neuron
#4

Neuron
#391

Neuron
#2137

Neuron
#2914

Top 5 Top 10 Top 15 Top 20 Top 30 Top 35 Top 40Top 25 Top 45 Top 50

Figure B.6: Images with largest second-order effect norm per neuron. We present the top images from
10% of ImageNet validation set, for the neurons in Chapter 3.2. Notice that additional concepts that are not
captured by the top-4 descriptions in Chapter 3.2 are starting to appear.

Neuron ImageNet class descriptions Common words (30k)

#600

+“Image with a wiry, weather-resistant coat” +“tents”
+“Image showcasing a compact and lightweight sleeping bag” +“svalbard”
+“Picture of a camper towing bicycles” +“miles”
+“Image with a Border Terrier jumping” -“mountainous”

#974

-“Photograph taken during a race” +“runners”
-“Silhouette of a running dog” +“races”
-“Picture taken in a fishing competition” -“dolphin”
+“Silhouette of hammerhead shark with other ocean creatures” +“expiration”

#1517

+“Chair with a foot pedal control” +“bus”
-“Picture that captures the breed’s intelligence” -“filings”
-“Image with snow-capped mountains as scenery” -“percussion”
+“Image with graffiti on a train” +“wheelchairs”

#2002

+“Image depicting a sustainable living option” -“genres”
+“Photo taken in a train yard” +“governance”
-“Image featuring snow-covered rooftops” +“‘gravel”
+“Rescue equipment” +“conserve”

Table B.1: Additional examples of sparse decomposition results. For each neuron, we present the top-4
texts corresponding to the sparse decomposition with m = 128 and the signs of the coefficients in the
decomposition.
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You are a capable instruction-following AI agent.
I want to generate an image by providing image descriptions as input to a text-to-image model.
The image descriptions should be short. Each of them must include the word ”{class 1}”.
They must not include the word ”{class 2}”, any synonym of it, or a plural version!
The image descriptions should include as many words as possible from the next list and almost no other words:
{list}
Do not use names of people or places from the list unless they are famous and there is something visually distinctive
about them. In each of the image descriptions mention as many objects and animals as possible from the list above. If
you want to mention the place in which the image is taken or a name of a person, describe it with visually distinctive
words. For example, if ”Paris” is in the list, instead of saying ”... in Paris”, say ”... with the Eiffel Tower in the
background” or ”... next to a sign saying ’Paris’”. Don’t mention words that are too similar to ”{class 2}”, even if they
are in the list above. For example, if the word was ”tree” you should not mention ”trees”, ”bush” or ”eucalyptus”.
Only use words that you know what they mean.
Generate a list of 50 image descriptions.

Table B.2: The language model prompt for generating image descriptions.

Neuron
#600

Neuron
#974

Neuron
#1517

Neuron
#2002

Figure B.7: Images with largest second-order effect norm per neuron. We present the top images from
10% of ImageNet validation set, for the neurons in Chapter B.1.

Provide 40 image characteristics that are true for almost all the images of {class}. Be as general as possible and give
short descriptions presenting one characteristic at a time that can describe almost all the possible images of this category.
Don’t mention the category name itself (which is “{class}”). Here are some possible phrases: “Image with texture of
...”, “Picture taken in the geographical location of...”, ”Photo that is taken outdoors”, “Caricature with text”, “Image with
the artistic style of...”, “Image with one/two/three objects”, “Illustration with the color palette ...”, “Photo taken from
above/below”, “Photograph taken during ... season”. Just give the short titles, don’t explain why, and don’t combine
two different concepts (with “or” or “and”).

Table B.3: The prompt for generating the pool of class descriptions. We prompt the model with all the
ImageNet classes.
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dog      cat

A dog is sitting on a moon-
light, looking at a group of 
owls perched on a nearby 
branch.

frog       bird

A writer sitting on a winged 
pony, holding a poodle and 
wearing a yuri-themed hat, 
with a frog on its shoulder.

frog       bird

A frog riding on the back of 
an elephant, with auras of 
purple and orange sur-
rounding them.

dog       deer dog       deer

A dog is walking with a pat-
terned leash through a 
forest with rabbits and 
squirrels, with a symmetri-
cal patterned tree in the 
background.

A dog is running through a 
forest, chasing after a 
squirrel, with a helicopter 
flying overhead and a pat-
terned stream in the dis-
tance.

dog      cat

A dog is sitting on a moon-
light, looking at a group of 
owls perched on a nearby 
branch.

bird       frog

A bird sits on a turtle's back, 
as it swims in a pool filled 
with reptiles and butter-
flies.

bird       frog

A bird perched on a green 
fence, with a turtle swimming 
in the nearby pond and a fred 
fisherman in the distance.

bird       frog

A bird perched on a pug's 
back, with a green emerald 
in its beak and a tues flag 
waving in the wind.

bird       cat

A tank driving through a 
jungle, bird soaring above

bird       horse

A bird feeding from a hand 
while elephants bathe in a 
river.

stop sign 
      crossroad

stop sign 
      crossroad

stop sign 
      crossroad

stop sign 
      crossroad

A stop sign stands tall in a 
gorge, surrounded by blocks 
of colorful rocks, with a 
chicken perched on top, and 
a pathway leading to a dis-
tant marathon finish line.

A stop sign is painted on a 
rock, with a chicken 
perched on top, and a path-
way leading to a distant 
journey.

A stop sign is placed on a 
block of wood, with a chick-
en sitting on top, and a 
crossword puzzle laid out 
below.

A stop sign marks the end of 
a journey, with a grandson 
and his grandfather sitting 
on a bench, surrounded by 
perfumes and blocks.

cat       vacuum 
cleaner

A cat is playing with a 
hockey stick near a shovel 
and a venous injection kit.

cat       vacuum 
cleaner

A cat is brushing its fur with 
a blunt comb, surrounded 
by drops of ethanol and a 
dvr recording in the corner.

stop sign 
   yield

stop sign 
   yield

stop sign 
   yield

A group of people wandered 
through a market filled with 
cans, eggs, and perfumes, 
with a stop sign in the dis-
tance.

A stop sign stands in front of 
a building with a sign that 
says "Yu's Banking Ser-
vices".

A stop sign stands in front of 
a building with a sign that 
says "Yu's Banking Ser-
vices".

Figure B.8: Additional adversarial examples generated by our method. We provide the sentence that was
given to the text-to-image model to generate it. Words from W v are highlighted in bold.
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Appendix C

Chapter 4 Supplementary Material

We provide extended examples of Rosetta dictionaries as well as additional edits and visualizations.

Figure C.1: Additional out-of-distribution and cross-class inversions. We show out-of-distribution image
inversions done by Rosetta Neurons guidance for StyleGAN2 model, trained on LSUN cats (left 3 images)
and LSUN horses (right 3 images).
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Figure C.2: Dog-to-cat cross-class inversions. Using Rosetta Neurons guidance for StyleGAN2 model,
trained on LSUN cats.

Input Image Zoom In Shift Copy & Paste

Figure C.3: Additional examples of Rosetta Neurons guided editing. We show examples using BigGAN
and its matches to CLIP-RN.
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ResNet50StyleGAN2 CLIP-RNDINO-RN DINO-ViTMAE

Concept #1

Concept #2

Concept #3

Example Image

Figure C.4: Rosetta Neuron Dictionary for LSUN-horses. A sample from the dictionary curated for the
LSUN-horses dataset. The figure presents 6 emergent concepts demonstrated in 4 example images.
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Example Image ResNet50StyleGAN2 CLIP-RNDINO-RN DINO-ViTMAE

Concept #4

Concept #5

Concept #6

Figure C.5: Rosetta Neuron Dictionary for LSUN-horses (cont.)
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Example Image

ResNet50StyleGAN-XL CLIP-RNDINO-RN DINO-ViTMAE

#1

#2

#3

#4

#5

#1

#2

#3

#4

#5

Example Image

Figure C.6: Rosetta Neuron Dictionary. A sample from the dictionary curated for the ImageNet class
“Church”. The figure presents 5 emergent concepts demonstrated in 2 example images.
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Figure C.7: All the concepts for LSUN-cats. Shown for one StyleGAN2 generated image.

Figure C.8: All the concepts for ImageNet class “Briard”. Shown on one StyleGAN-XL generated image.

Figure C.9: All the concepts for ImageNet class “Goldfish”. Shown on one StyleGAN-XL generated
image.

Figure C.10: All the concepts for ImageNet class “Church”. Shown on one StyleGAN-XL generated
image.
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Figure C.11: All the concepts for ImageNet class “Espresso”. Shown on one StyleGAN-XL generated
image.

Neurons removal Neurons addition

Figure C.12: Additional Single Rosetta Neurons Edits. By decreasing (two left image pairs) or increasing
(two right image pairs) the values of specific manually chosen Rosetta Neurons before the latent optimization
process, we can remove or add elements to the image. In this figure, we demonstrate (left to right): Removing
lava eruptions, removing trees, adding Crema to an Espresso, and adding a dog’s tongue. For the leftmost
example, we also provide the complete list of Rosetta Neurons visualizations. The chosen concept is marked
with a red frame.



APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 78

In
pu

t I
m

ag
e

Pe
rc

ep
tu

al
 lo

ss
+O

ur
s

Figure C.13: Additional image inversions for StyleGAN-XL. We compare using perceptual loss (second
row) to perceptual loss with additional guidance from the Rosetta Neurons (third row).


	Contents
	Introduction
	Opening the Black Box
	Thesis overview


	Interpreting CLIP's Attention Layers
	Introduction
	Related Work
	Decomposing CLIP Image Representation into Layers
	CLIP-ViT Preliminaries
	Decomposition into layers
	Fine-grained decomposition into heads and positions

	Decomposition into Attention Heads
	Text-interpretable decomposition into heads
	Experiments

	Decomposition into Image Tokens
	Limitations and Discussion

	Interpreting CLIP's Neurons
	Introduction
	Related work
	Second-order effects of neurons
	Analyzing the neuron effects on the output
	Characterizing the second-order effects

	Sparse decomposition of neurons
	Applications
	Automatic generation of adversarial examples
	Zero-shot segmentation

	Limitations and discussion

	Rosetta Neurons: Mining the Common Units in a Model Zoo
	Introduction
	Related Work
	Method
	Mining common units in two models
	Extracting common units in m models

	Visualizing the Rosetta Neurons
	Rosetta Neurons-Guided Inversion
	Rosetta Neurons Guided Editing

	Limitations
	Conclusion

	Discussion and Future Work
	Bibliography
	Chapter 2 Supplementary Material
	Layer Normalization
	Mean-Ablation of the Class-Token Attended from Itself
	Text Descriptions
	Additional Initial Description Pool Ablation
	TextSpan outputs for CLIP-ViT-L
	Qualitative results for image token decomposition
	Most similar images to TextSpan results


	Chapter 3 Supplementary Material
	Second order ablations for ViT-L
	First order ablations
	Additional adversarial images
	Additional sparse decomposition results
	Concept discovery in images
	Derivations with Layer Normalization
	Prompts
	Compute


	Chapter 4 Supplementary Material

