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ABSTRACT

We investigate the internal representations of vision-language models (VLMs)
to address hallucinations, a persistent challenge despite advances in model size
and training. We project VLMs’ internal image representations to their language
vocabulary and observe more confident output probabilities on real objects than
hallucinated objects. We additionally use these output probabilities to spatially
localize real objects. Building on this approach, we introduce a knowledge erasure
algorithm that removes hallucinations by linearly orthogonalizing image features
with respect to hallucinated object features. We show that targeted edits to a
model’s latent representations can reduce hallucinations by up to 25.7% on the
COCO2014 dataset while preserving performance. Our findings demonstrate how
a deeper understanding of VLMs’ latent representations can enhance reliability and
enable novel capabilities, such as zero-shot segmentation.1

1 INTRODUCTION

Vision-Language Models (VLMs) have recently emerged as powerful tools for understanding images
via text (Dai et al., 2023; Liu et al., 2024a). They have demonstrated remarkable capabilities across
multimodal tasks such as image captioning (Li et al., 2023a), visual question answering (Ye et al.,
2023), and complex multimodal reasoning (Bai et al., 2023). Despite their capabilities, VLMs tend to
hallucinate content that does not appear in the images (Ji et al., 2023), which poses serious concerns
for the reliability of these models in real-world applications (Hu et al., 2023; Luo et al., 2024).

Widespread belief has been that scaling to larger models and more training data will naturally mitigate
hallucinations. However, recent studies have shown that hallucinations persist even in larger and more
advanced models (Rohrbach et al., 2019; Li et al., 2023b), suggesting that this issue cannot be solved
by scale alone. Current methods reduce hallucinations by applying external interventions (e.g. object
detectors; Yin et al. (2023)) or additional model fine-tuning (e.g. on hallucination examples; Zhou
et al. (2024); Zhang et al. (2024a)). Nevertheless, these methods often struggle to distinguish between
subtle hallucinations and existing details, requiring new models or updated model parameters.

In this paper, we aim to introduce fine-grained edits directly to the image latent representations
of VLMs to reduce hallucinations without hindering their performance, an approach that has had
some success in large language models (Zhang et al., 2024b; von Rutte et al., 2024). To edit
the latent representations of VLMs, we first explain their role via text. We employ the logit lens
technique (nostalgebraist, 2020) to directly interpret the spatial VLM image representations with
VLM text vocabulary. Surprisingly, the characteristics of these image representations are different
for real objects that appear in the image and objects that are hallucinated. Moreover, the logit lens
enables spatially localizing objects within the input image.

Relying on the ability to detect hallucinated objects, we edit them out by intervening in their internal
representations. We introduce a knowledge erasure algorithm, PROJECTAWAY, to target and remove
objects by linearly orthogonalizing image features with respect to the text features of target objects.
We find that PROJECTAWAY can erase both real and hallucinated objects with high rates of removal.

∗Equal contribution as first authors.
†Equal contribution as last authors.
1Code: https://github.com/nickjiang2378/vl-interp
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Figure 1: Interpreting VLM internal image representations. (a) Given a VLM, (b) we unembed
the latent representations from image embeddings to the vocabulary and classify hallucinations. We
remove hallucinations by (c) linearly editing them out of the latent representations.

We use our interpretation and editing approach for three tasks. First, we utilize the logit lens on image
features to detect hallucinations in the image. We find that it improves mAP by 22.45% and 47.17%
in two VLMs. Then, we combine our editing and detection method to erase hallucinations from the
VLM’s internal representations, reducing hallucinations up to 25.7% on standard benchmarks, while
preserving accuracy in image captioning. Finally, we use the logit lens to localize objects in the
image features. We find that our spatial mapping provides comparable performance to state-of-the-art
zero-shot segmentation methods. Our results indicate that understanding the internal representations
of VLMs can be achieved and used to repair model hallucinations and introduce new capabilities.

2 RELATED WORK

2.1 INTERPRETING LATENT REPRESENTATIONS IN LANGUAGE MODELS

Interpreting the inner workings of large language models enables fine-grained improvement of the
language model behavior. Recent work involves utilizing the model’s attention maps (Kobayashi
et al., 2020; Chefer et al., 2021), activation patterns (Conmy et al., 2023; Meng et al., 2023; Bronzini
et al., 2024), and latent representations (Ghandeharioun et al., 2024; Cunningham et al., 2023; Bricken
et al., 2023) to understand their behavior with applications such as early exiting (Halawi et al., 2024)
and editing or erasing the model’s knowledge (Dai et al., 2022; Ravfogel et al., 2024). One class of
methods probe the VLMs knowledge with linear classifiers (Hewitt & Manning, 2019; Tucker et al.,
2021; Li et al., 2024; Belrose et al., 2023). The logit lens method (nostalgebraist, 2020), which we
will use in our analysis, finds the output distribution over the vocabulary of the language model at
intermediate layers with the model’s own unembedding matrix. We apply this approach to VLMs to
interpret the model’s understanding of visual information in the model’s textual vocabulary.

2.2 INTERPRETING LATENT REPRESENTATIONS IN VISION MODELS

Understanding the internal dynamics of vision models is critical for ensuring safety and reliability in
multimodal systems. Early works in this area focused on producing saliency maps (Petsiuk et al.,
2018), analyzing individual neurons (Bau et al., 2020; 2019; Dravid et al., 2023), and training networks
to map latent representations to concepts (Esser et al., 2020). With the emergence of transformer-
based vision models like CLIP (Radford et al., 2021), recent methods explain latent tokens (Chen
et al., 2023) and the roles of attention heads and neurons with natural language (Gandelsman et al.,
2024b;a). Few works currently interpret the internal computation of VLMs: Palit et al. (2023) develop
a neuron causal tracing tool; Schwettmann et al. (2023) identifies multi-modal neurons; and Huo
et al. (2024) ablates domain-specific neurons to improve vision question-answering. Whereas past

2



Published as a conference paper at ICLR 2025

papers have primarily studied the mechanisms (e.g. neuron analysis) that drive VLMs, we focus on
interpreting and editing their latent representations for real-world applicability.

2.3 DETECTING AND REDUCING VLM HALLUCINATIONS

While VLM performances on image caption and visual question answering are continually improving,
they continue to hallucinate facts that are not supported by the visual input. Existing methods for
detecting hallucinations in language models during inference utilize latent representations (He et al.,
2024; Su et al., 2024), activations (Chen et al., 2024), and output logit values (Varshney et al.,
2023). SAPLMA (Azaria & Mitchell, 2023) trains a hallucination classifier on the internal latent
representations. LUNA (Song et al., 2024) learns a transition function on latent representations
and identifies abnormal transitions. Varshney et al. (2023) uses the final layer logits to score the
model’s confidence in an entity or keyword and intervenes by instructing the model to either repair
or remove the hallucinated information. Among VLMs, LURE (Zhou et al., 2024) is a fine-tuned
revisor model to detect and reduce hallucinations. OPERA (Huang et al., 2024) uses the model’s
internal attention weights to detect and suppress patterns that align with the beginning of hallucinated
phrases. In contrast to these methods, we leverage the internal image representations in the VLMs for
hallucination reduction and for zero-shot segmentation.

3 EXTRACTING KNOWLEDGE FROM VLMS

We start by introducing VLMs and the general framework of their architectures in most recent work.
We then describe our approach for decoding the features in intermediate image representations in
VLMs into text, and apply it to two types of VLMs. Surprisingly, this approach effectively probes the
knowledge about objects present in images and can localize objects within the image.

3.1 PRELIMINARIES

Vision-Language Models. The architecture of recent state-of-the-art VLMs for text generation
typically involves three main components: a vision encoder to process image inputs, a mapping
network to map image features to image embeddings, and an autoregressive language model to
process the image embeddings and prompt embeddings to generate text. We focus on two recent
state-of-the-art VLMs: LLaVA 1.5 (Liu et al., 2024a) and InstructBLIP (Dai et al., 2023). We use
7B versions of both these models. LLaVA utilizes a frozen CLIP vision encoder and an MLP as
a mapping network to project the vision encoder outputs into image embeddings for the language
model. The MLP is pre-trained on a large vision-language dataset and both the MLP and the language
model are fine-tuned on an instruction-focused dataset. In contrast, InstructBLIP freezes both the
vision encoder and the language model and only trains the mapping network.

Notations. For the purposes of our work, we define the VLM architecture as follows. The vision
encoder processes an input image to produce n image features. These image features are projected
to embedding space via the mapping network, resulting in n d-dimensional image embeddings
{ki : ki ∈ R

d, i = 1, ..., n}. For the language model, the entire set of text tokens constitutes the
vocabulary V with vocabulary size |V |. The image embeddings, followed by m text embeddings
{ti : ti ∈ R

d, i = 1, ...,m} of the prompt tokens, are input to the language model through L decoder
layers. For an input embedding x ∈ R

d, we define hl(x) ∈ R
d to be the latent representation

for embedding x at layer l ∈ {1, ..., L}, the output of the decoder layer, which is conditioned on

previous tokens of the input sequence. An unembedding matrix WU ∈ R
|V |×d maps the last latent

representation hL(tm) to a probability distribution over the vocabulary for the next token tm+1.

Logit Lens. Logit Lens is an interpretability method for intermediate language model representa-
tions introduced in Section 2.1. The logit lens technique applies the unembedding matrix WU to
latent representations hl(x) in the L intermediate layers in the language model to retrieve the logit
distributions over the vocabulary.

fl(tm) = WU · hl(tm) = [logit1, logit2, logit3, . . . , logit|V |] (1)

This is the logit distribution representing the predictions of the model after l layers, where logitj
corresponds to the token j in the vocabulary.
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Figure 2: Comparison of internal confidence in objects present and not present in the image.
We examine the internal confidence of COCO objects that exist and do not exist in the image within
intermediate VLM image representations. We observe that objects that do not exist in the image have
lower internal confidence.

3.2 APPLYING LOGIT LENS ON VLMS

We apply the logit lens to probe the language model as it processes the image representations. This
enables us to interpret the image features’ output distributions as they are transformed by the layers
of the language model and localize objects spatially within the image.

Extracting probability distributions from intermediate image representations. We apply logit
lens on the image representations in the VLM. For a given image embedding ki, we find the latent
representation of the image embedding at layer l, hl(ki), taking the logit lens to get the probability
distribution over the vocabulary, softmax(fl(ki)). We define an object o, an object word composed of
tokens from the vocabulary. We inspect the probability of a specific object o, softmax(fl(ki))o. For
multi-token objects, we take the maximum probability value over the object tokens. This provides a
generalizable framework for analyzing specific latent image representations via text, with respect
to specific objects. Next, we find the maximum probability over all image representations over all
layers. For object o, we compute:

co = max
1≤l≤L
1≤i≤n

{softmax(fl(ki))o} (2)

We define co as the VLMs internal confidence of an object o existing in the image: the highest
probability of object presence across n image representations through L layers of the language model.

Comparing the internal confidence of present and not present objects. To determine if internal
confidence provides meaningful information about objects in the image, we examine co for objects
present and not present in an image. We use InstructBLIP and LLaVA to caption 5000 random
COCO2014 images in the Karpathy validation split (Lin et al., 2015) and determine co for all 80
COCO objects, only a few of which are present in each image. Since there are many more objects
not present than present, we randomly sample a subset of the internal confidences for objects not
present. Figure 2 exhibits the internal confidences for objects present and not present in the image.
We empirically find that the VLMs’ internal confidences are higher for present objects than not
present ones. We use this claim later to classify objects as hallucinations in Section 5.1.

Object localization. Given that the language model can distinguish between objects present and not
present in an image, we examine whether it can attribute high object internal confidence to specific
patches in an image. For each image embedding ki in n image embeddings, we find the maximum
softmax probability of an object within the layers of the model, max1≤l≤L{softmax(fl(ki))o}. Using
these internal confidence values, we localize the objects in the image patches, each of which maps to
an image embedding. We focus on LLaVA for this task, since its image encoder preserves the spatial
mapping of image patches to image features.

We observe that image representations that exhibit higher internal confidence for specific objects
correspond to the image patches in which those objects are visually present (examples in Figure 3).
Building on our previous observation, we see that the intermediate image representations semantically
align with latent token representations of objects present in them while maintaining their spatial
locality. We use this unique finding for zero-shot segmentation in Section 5.3.
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Input image “catˮ probabilities “catˮ localization “bicycleˮ probabilities“bicycleˮ localization

Input image “bottleˮ probabilities “bottleˮ localization “bowlˮ probabilities “bowlˮ localization

Figure 3: Localizing objects using internal confidence values. We find the probabilities of objects
through layers of the language model for every image embedding in LLaVA. We use the highest layer
probability per image embedding to localize an object within the image.

While the model is not directly trained to map the image representations closer to the text represen-
tations of objects within them, we can unembed the image representations in the text vocabulary
for localization and find differences in internal confidence for present and hallucinated objects. In
Section 5.1, we will use this observation for various applications including hallucination detection
and zero-short segmentation.

4 ERASING KNOWLEDGE FROM VLMS

Recognizing that image embeddings are directly interpretable (Section 3.2), we edit these embeddings
to erase the presence of objects from image captions. We propose a linear editing algorithm that
subtracts the text embedding of a target object from all image embeddings. When applied on singular
and multiple object removals, we find that it erases hallucinated objects more effectively than correctly
detected (CD) objects (i.e. real objects that the model correctly detects).

4.1 ERASING OBJECTS FROM IMAGE REPRESENTATIONS

Algorithm 1: PROJECTAWAY

Input: A set of image embeddings K, text em-

bedding �t, and weight factor α
Output: A set of modified image embeddings
K ′ projected away from the text embedding
Initialization: K ′ ← ∅
for �k ∈ K do

p ← �k · �t
if p > 0 then

K ′ ← K ′ ∪ {�k − α · p

‖�t‖2
2

· �t}
else

K ′ ← K ′ ∪ {�k}
end if

end for

Figure 4: Our editing algorithm erases the pres-
ence of an object from image embeddings by or-
thogonalizing them with respect to the object’s text
embedding.

We present an algorithm, PROJECTAWAY (Fig-
ure 4), that orthogonalizes image representations
with respect to text representations in order to
erase objects in image captions, applying it to
remove objects one at a time and all at once.

Given an image and an object to remove, we edit
the latent representations hlI (ki) at a hidden
layer lI across all image embeddings ki. We do
not modify any latent representations outside of
those belonging to image features. We compute
the dot product, p, of hlI (ki) and the object’s

text embedding �t, subtracting a weighted �t from
hlI (ki) only if the dot product is positive. At
α = 1, PROJECTAWAY is equivalent to orthogo-
nalizing the image representations with respect
to the text representation. To compute text rep-

resentation �t, we pass the object (e.g. “hot dog”)
into the VLM’s text model and extract hlT (t-1)
at hidden layer lT , where t-1 is the last token of
the object. We use the last token of the object to
capture the whole of the object’s meaning.
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Edit Scope Model Individual RR (%) Mass RR (%) CD change (%) Ci ↓ Cs ↓

No edits
InstructBLIP - - - 15.0 54.1
LLaVA - - - 14.6 51.1

Hallucinations
InstructBLIP 83.3 74.3 +0.07 8.94 33.2
LLaVA 86.0 72.8 +0.01 11.2 35.5

CD
InstructBLIP 16.2 15.0 -2.2 17.3 58.3
LLaVA 6.9 8.3 -1.6 15.2 52.4

Table 1: Removing mentioned objects individually & in-mass. Using PROJECTAWAY, we remove
hallucinated objects and observe high hallucination reduction with CHAIR, mass-removal rate (Mass
RR), and individual removal rate (Individual RR). We also remove correctly detected (CD) objects
but find that they are more resistant to linear editing. Denote CHAIRS as CS and CHAIRI as CI .

4.1.1 REMOVING OBJECTS ONE BY ONE

We evaluate the PROJECTAWAY algorithm’s effectiveness at erasing individual objects from captions
across multiple images and objects.

Experimental setting. We apply PROJECTAWAY on 5000 random images from the COCO2014
training set on all mentioned COCO objects (i.e. hallucination and CD) individually and measure the
removal rate at which objects no longer appear in the caption. For InstructBLIP, we set (lI , lT , α) =
(1, 2, 1.5). For LLaVA, we set (lI , lT , α) = (19, 21, 3.5). These parameters are fixed irrespective
of image and are chosen for their maximal effect (see ablations in Section 4.2). To differentiate
hallucinations from CD, we compute CHAIR (Rohrbach et al., 2019), an evaluation criteria that
compares model-generated captions to ground-truth human annotations. CHAIR provides two main
scores, CHAIRI and CHAIRS , that quantify hallucinations for instances and sentences, respectively:

CHAIRS =
|{captions with hallucinated objects}|

|{all captions}| ,CHAIRI =
|{hallucinated objects}|
|{all objects mentioned}| (3)

Results. Table 1 shows that PROJECTAWAY is significantly more effective in erasing individual
hallucinated objects at an individual level than CD objects for both InstructBLIP and LLaVA. Along
with the insight that hallucinated objects have lower softmax scores (Figure 2), these results suggest
that hallucinated objects manifest more weakly in image embeddings and are hence easier to remove
than CD objects.

4.1.2 MASS-REMOVING OBJECTS

We iteratively apply PROJECTAWAY to a set of objects, following the same experimental setup and
observing similarly different removal rates for hallucinated objects and CD objects.

Mass-removing hallucinations. We mass-remove hallucinations identified with ground truth an-
notations using PROJECTAWAY. Table 1 shows that editing out all the hallucinations of an image
yields a similar removal rate as individually editing out and, importantly, that erasing hallucinated
objects together does not interfere with each other. We achieve a hallucination reduction rate of
41.3% for InstructBLIP and 23.3% for LLaVA (see Table 4). Recall count slightly increases for both
models, indicating that caption accuracy is preserved. This may be because removed hallucinations
are replaced with objects the model is more confident in. Qualitative results are in Figure 5.

Mass removing CD. We similarly find that applying PROJECTAWAY can successfully remove CD
objects when edited all together in Table 1. Furthermore, CHAIR scores minimally change, which
indicates that this mass-removal merely erases object presence without eroding caption accuracy.
While the removal rate is lower than for hallucinated objects, this insight proves useful when we
apply PROJECTAWAY for hallucination reduction in Section 5.2.

4.2 ABLATION STUDY: MASS-REMOVING HALLUCINATIONS

We perform ablations on parameters of PROJECTAWAY to improve object removal rate for erasing
hallucinations in-mass.
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.

Figure 5: Qualitative results for mass object removal. We present example images and their
captions after mass-removing hallucinations (red) with PROJECTAWAY., which can effectively remove
hallucinations while preserving, even increasing, correctly detected objects (green).

Experimental setting. We ablate the three parameters of PROJECTAWAY: layer lI to edit at, layer
lT to retrieve the text representation, and weight factor α. At lT = −1, we average together the
object’s constituent token embeddings. At lI = −1, we edit the image embeddings directly inputted
to the text model. We evaluate across 500 training samples from COCO 2014 that have at least one
hallucination.

Hidden layers. Figure 6 shows hallucination reduction rate on LLaVA from mass-removing halluci-
nations on every combination of lI and lT (each from -1 to 31). As a core concern is that editing
erodes caption accuracy, we gray out any combination that reduces CD objects. For InstructBLIP
(see Figure 10), the best parameters (lI = 1, lT = 2) reduces hallucinations by 38.5%. For LLaVA,
our best parameters (lI = 19, lT = 21) reduce hallucinations by 25.7%, and the middle layers are
the best to edit and extract latent text embeddings from. Our results also provide a wide range of
reasonable parameter alternatives to use if this reduction rate does not generalize beyond our samples.

Weight factor. Using the best-reduced hidden layers, we ablate the weight factor α for PROJECT-
AWAY across the same 500 randomly selected COCO images. Figure 7 shows that as α increases,
hallucinations are removed at a higher rate, and the overall hallucination count drops significantly. At
high α, we observe through anecdotal examples that captions become nonsensical, as quantitatively
shown by the complete loss of both correctly detected and hallucinated objects from the caption.
Therefore, as a pre-caution, we only select weight factors that do not reduce CD objects when we
apply PROJECTAWAY to erase hallucinated objects.

5 APPLICATIONS

5.1 HALLUCINATION DETECTION

When extracting knowledge from VLMs in Section 3.2, we found that applying logit lens on in-
context image representations exhibit useful information about visual objects present in the image.
Using these observations, we present an approach for object presence classification that only relies
on the VLMs own parameters. We utilize the internal confidence co value to classify object presence,
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Figure 6: Hidden layer ablations for LLaVA.
We track hallucination reduction (%) across dif-
ferent layers to edit at and extract latent embed-
dings for the text embedding, crossing out (red)
parameters from consideration where there is a
decrease in correctly detected objects.

Figure 7: Weight ablations for LLaVA. We
vary the weight factor α and measure changes
in correctly detected objects, removal rate, and
hallucination reduction. We observe a decline in
hallucinations as weight grows and mark a weight
where there is no loss in correctly detected objects.

Figure 8: Object Presence Classification Curves for InstructBLIP and LLaVA. We show the
Precision-Recall and ROC curves of our confidence measure for present object-hallucination clas-
sification on the COCO training subset. Classifying object presence with the internal confidence
outperforms the baseline, indicating that the language model’s image representations know which
objects are hallucinations and which are truly present.

since the internal confidence for objects that are not present in the image, or hallucinated, are lower
within the image representations.

Experimental setting. We evaluate the strength of the internal confidence co as an indicator of
object presence. We sample 5000 images from the MSCOCO training set, using the image captioning
objective to caption methods with both InstructBLIP and LLaVA. We use the co for present objects
and hallucinations within the captions generated by each VLM. We assess how well the internal
confidence aligns with the ground truth labels of object presence, where a negative sample is a
hallucination and a positive sample is a present object.

Baseline. As a baseline, we use the maximum output probability of the object’s tokens. This is
the confidence of the model prediction. Previous works such as Zhou et al. (2024) have found that
hallucinations occur more frequently on objects characterized by high uncertainty during generation.

Results. We present quantitative results in Figure 8 and Table 5. We show qualitative results for
LLaVA (Figure 14) and InstructBLIP (Figure 15) in the Appendix. We find that utilizing internal
confidence to classify object hallucinations provides a 47.17% improvement in mAP in InstructBLIP
and 22.45% in LLaVA. Furthermore, the ROC AUC improves over the baseline by 50.10% in
InstructBLIP and 44.68% in LLaVA, indicating stronger object presence classification.
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Model Method CHAIRi ↓ CHAIRs ↓ Hallucinated Objects ↓

InstructBLIP

Greedy 57.0 23.3 512
Nucleus 58.0 24.0 508
Beam Search 53.4 14.6 564
OPERA 45.6 13.9 472
Ours 43.8 12.5 419

LLaVA

Greedy 49.2 14.2 532
Nucleus 55.8 17.1 618
Beam Search 52.4 15.0 583
OPERA 44.8 12.8 462
Ours 42.0 12.2 444

Table 2: Hallucination intervention performance. We mass-remove hallucinations detected by the
method in Section 5.1 and outperform other baselines. We observe a considerable drop in the raw
count of hallucinated objects.

5.2 HALLUCINATION REMOVAL

We use the mass editing technique to remove hallucinations detected by the prior method. Sec-
tion 4.1.2 successfully removes a significant portion of hallucinations but presupposes a knowledge
of what the hallucinations are. We threshold on the internal confidence of each object to identify hal-
lucinations and mass-remove them using PROJECTAWAY. Our chosen threshold prioritizes precision
over recall (i.e. we allow classification of some CD objects as hallucinations) because CD objects are
less affected by the removal method, as shown in Section 4.1.2.

Experimental setting. We threshold hallucinations as co < 0.2 for InstructBLIP and co < 0.1 for
LLaVA. Based on prior ablations (Section 4.2), we select (lI = 1, lT = 2, α = 1.5) for InstructBLIP
and (lI = 19, lT = 21, α = 3.5) for LLaVA. Our prompt is “Please describe this image in detail.”

Baselines. Since our method intervenes during the decoder step, we compare our method with 3
standard decoding algorithms. Greedy decoding predicts the next token based on the highest logit
probability. Beam search maintains a tree of beams and selects the best beam at generation end.
Nucleus sampling selects the next token from a set of high probability tokens whose cumulative
probability reaches a threshold p. We also evaluate against OPERA (Huang et al., 2024), which
mitigates hallucinations by adding an overtrust penalty during decoder generation. We set p = 0.9
for nucleus sampling. We use beam search in our method and unify Nbeam = 5 for the baseline.

Results. We apply these parameters to 500 COCO images from the Karpathy validation set. We
provide qualitative results in Figure 17 and Figure 16. Quantitative results in Table 2 show that
we outperform our baselines and reduce hallucinations by 25.7% on InstructBLIP and 23.8% on
LLaVA compared to beam search. Our approach achieves a similar hallucination reduction rate
as Section 4.1.2, despite not precisely differentiating hallucinations and some CD objects being
incorrectly edited out. Notably, our method relies on no training or external models, effectively
offering a “free lunch.” We find similar performance on additional models (Appendix A.5) and
attribute hallucinations (Appendix A.7).

5.3 ZERO-SHOT SEGMENTATION

Building upon our findings in Section 3.2, we utilize the internal confidence per image feature for
zero-shot image segmentation. This application leverages the spatial information encoded in the
image representations and demonstrates how VLMs internally represent and localize objects within
images.

Method. Our approach leverages the spatial correspondence between image patches and their
associated image embeddings. We use LLaVA to generate the name of the class in the image and we
focus on the internal confidence of that class per image patch. We take the mean internal confidence
for tokens comprising a class word. We resize the set of 24× 24 internal confidence values per image
patch back into a fixed image size of 336× 366 pixels. We then apply a threshold to these confidence
values to binarize them into a foreground/background segmentation for the object in the image.
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Model Method Pixel Acc. ↑ mIoU ↑ mAP ↑
raw attention (CLIP) Image Encoder 69.81 45.19 77.30
TextSpan (Gandelsman et al., 2024b) Image Encoder 75.57 53.60 80.22
raw attention (VLM) VLM 67.28 39.27 73.96
Ours VLM 76.16 54.26 79.90

Table 3: Segmentation Performance on ImageNet-segmentation. Localizing objects using their
probabilities within the image representations results in more accurate zero-shot segmentation than
previous methods relying on vision encoders and VLMs.

Input Image

raw attention (VLM)

Ours

Figure 9: Zero-shot segmentation. Warmer areas
indicate higher internal confidence for the class at
that image patch. We binarize these values with a
threshold to generate segmentations.

Baseline. As a baseline, we extract the attention
values of generated tokens with the image em-
beddings from LLaVA. We also compare to the
segmentation method introduced by Gandels-
man et al. (2024b), which utilizes the attention
heads of the image encoder without the addi-
tional VLM processing, using the same image
encoder (CLIP-ViT-L/14 at 336px).

Results. We evaluate our method on the Im-
agenet validation set. Qualitative results are
shown in Figure 9 and quantitative comparisons
with the baselines in Section 5.3. We improve
mAP by 8.03% over using the VLMs raw atten-
tion values and provide better and/or comparable
performance to other state-of-the-art methods
that utilize just the image encoder. While the
VLM is not directly trained for segmentation,
our technique reveals that it still encodes signifi-
cant spatial information about objects within its
intermediate image representations.

6 DISCUSSION AND LIMITATIONS

We interpreted VLMs’ image representations through the language model layers and discovered
that linear editing of these representations can selectively remove object information via a simple
orthogonalization. Our findings enabled hallucination reduction and improved zero-shot segmentation.
We present two limitations of our work and conclude with future directions.

Multi-token objects. Our method simplifies the use of object words that may be composed of
multiple tokens, such as by taking the max internal confidence over object tokens or utilizing the
average token embedding for editing. This can introduce noise to the internal confidence if certain
tokens are common in multiple different words and lead to an approximation of the object’s latent
representations when editing.

Fine-grained edits. The editing approach may struggle with highly abstract or longer sentences that
involve attributes or interactions of objects. Removing a full sentence, for example, is not something
we assessed in this paper, since our focus is on the removal of individual objects.

Future work. While our focus was on interpreting objects and object hallucinations in VLMs, we
believe that our approach can be extended to other key elements of visual scenes, such as people,
attributes, and actions. We also focused on object removal, but we believe that editing can also be
extended to inject objects into a caption (by adding instead of subtracting the text embedding). We
hope to explore the applications of our approach in other multimodal architectures. Our insights
may help design better VLMs that are more robust to hallucinations and have improved spatial
understanding. We plan to explore these directions in our future work.

10



Published as a conference paper at ICLR 2025

6.1 ACKNOWLEDGMENTS

We thank Kayo Yin for her comments and feedback on our paper. YG is supported by the Google
Fellowship. Authors, as part of their affiliation with UC Berkeley, were supported in part by the the
Berkeley Artificial Intelligence Research (BAIR) commons program.

REFERENCES

Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it’s lying. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pp. 967–976, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.68. URL https:
//aclanthology.org/2023.findings-emnlp.68.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
text reading, and beyond, 2023. URL https://arxiv.org/abs/2308.12966.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman,
and Antonio Torralba. Gan dissection: Visualizing and understanding generative adversarial
networks. In Proceedings of the International Conference on Learning Representations (ICLR),
2019.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
Understanding the role of individual units in a deep neural network. Proceedings of the National
Academy of Sciences, 2020. ISSN 0027-8424. doi: 10.1073/pnas.1907375117. URL https:
//www.pnas.org/content/early/2020/08/31/1907375117.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned lens,
2023. URL https://arxiv.org/abs/2303.08112.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. URL https://transformer-circuits.
pub/2023/monosemantic-features/index.html.

Marco Bronzini, Carlo Nicolini, Bruno Lepri, Jacopo Staiano, and Andrea Passerini. Unveiling
llms: The evolution of latent representations in a dynamic knowledge graph, 2024. URL https:
//arxiv.org/abs/2404.03623.

Hila Chefer, Shir Gur, and Lior Wolf. Generic attention-model explainability for interpreting bi-modal
and encoder-decoder transformers, 2021. URL https://arxiv.org/abs/2103.15679.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye.
Inside: Llms’ internal states retain the power of hallucination detection, 2024. URL https:
//arxiv.org/abs/2402.03744.

Haozhe Chen, Junfeng Yang, Carl Vondrick, and Chengzhi Mao. Interpreting and controlling vision
foundation models via text explanations, 2023. URL https://arxiv.org/pdf/2310.
10591.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
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Edit Scope Model Hallucinations CD

No edits
InstructBLIP 4545 14178
LLaVA 4372 15053

Hallucinations
InstructBLIP 2672 14189
LLaVA 3348 15061

CD
InstructBLIP 5078 13864
LLaVA 4583 14826

Table 4: Supplemental metrics for Table 1. We measure unique hallucinated and correctly detected
(CD) objects.

Figure 10: Hidden layer ablations for In-
structBLIP. We track hallucination reduction
(%) across different layers to edit at and extract la-
tent embeddings for the text embedding, crossing
out (red) parameters from consideration where
there is a decrease in correctly detected objects.

Figure 11: Weight ablations for InstructBLIP.
We vary the weight factor α and measure changes
in correctly detected objects, object removal rate,
and hallucination reduction. We observe a decline
in hallucinations as weight increases and mark a
weight where there is no loss in correctly detected
objects.

A APPENDIX

A.1 MASS-REMOVING OBJECTS

We mass-remove mentioned objects (hallucinations and correctly detected) with PROJECTAWAY and
tally up the total number of unique hallucinated and CD objects in Table 4.

A.2 ABLATIONS FOR INSTRUCTBLIP

We show hidden layer and weight ablations for mass-removing hallucinations in InstructBLIP
referenced in Section 4.2. The hidden layer ablations indicate that most of the parameter space is
too sensitive to edit and leads to losses in correctly detected objects. We find that smaller lT and lI

parameters are the most effective for reducing hallucinations. Our best parameters (lI = 1, lT = 2)
reduce hallucinations by 38.5%. It is not fully understood why the majority of the parameter
search space is invalid in comparison with LLaVA in Figure 6. It is possible that the fine-tuning
step in LLaVA semantically aligns hidden image representations with text embeddings more than
InstructBLIP, allowing linear edits to have the precise, intended effect.
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A.3 HALLUCINATION DETECTION

We show quantitative comparisons from our hallucination detection approach using internal confi-
dence (Section 5.1) to the baseline in Table 5. We also show qualitative examples for LLaVA in
Figure 14 and for InstructBLIP in Figure 15. These samples exhibit model-generated captions, parsed
objects, and whether they are classified as hallucinated or correctly detected based on their internal
confidence score.

A.4 HALLUCINATION REDUCTION

We exhibit sample results from our hallucination reduction approach (Section 5.2), which linearly
removes text representations of hallucinations from image representations, in Figure 17 for Instruct-
BLIP and Figure 16 for LLaVA. We show the image caption before and after our linear editing
method, removing objects detected as hallucinations.

A.5 QUANTITATIVE EVALUATIONS ON MORE ADVANCED MODELS

We evaluate our approach on two additional models, LLaVA-NeXT 7B (Liu et al., 2024b) and
Cambrian-1 8B (Tong et al., 2024) with Llama 3. We threshold hallucinations as co < 0.4 for
LLaVA-NeXT and co < 0.3 for Cambrian-1. Based on qualitative examples and referencing optimal
parameters from other models in Section 4.2, we select (lI = 24, lT = 22, α = 2) for both models.
We show quantitative results for hallucination detection in Table 6 and for hallucination intervention
in Table 7. With our method, we observe a 27.73% improvement in CHAIRS with LLaVA-NeXT
and a 28.86% improvement with Cambrian-1, demonstrating consistency with our findings on the
LLaVA and InstructBLIP models.

A.6 OBJECT LOCALIZATION

We show qualitative examples for localization with internal confidence for specific image representa-
tions, specifically for the LLaVA model, in Figure 18.

A.7 ATTRIBUTE HALLUCINATIONS

Our analysis in this paper centered on object hallucinations because automated tooling and bench-
marks for attribute (ex. shape, color, number) hallucinations are relatively sparse. However, we
demonstrate the applicability of our editing technique on attribute hallucinations with qualitative
examples filtered from the VQA 2.0 challenge in Figure 12. We reuse the editing hyperparameters
for InstructBLIP (lI = 1, lT = 2, α = 1.5) and only edit attributes with co < 0.05.

A.8 ZERO-SHOT CLASSIFICATION

We evaluate the strength of internal confidence derived from the logit lens on image representations
for classification of the COCO class within patches of the image. We use the COCO ground truth
segmentations to find ground truth classes for image patches. We determine the accuracy of the
rankings found from logit lens internal confidence scores to predict the class per patch and present
our results in Table 8. We find that these values highly vary across classes, which we hypothesize is
because certain classes such as “person” are represented with more specific tokens such as “doctor”,
“skier”, “girl”, etc. resulting in lower internal confidence for the tokens in “person” while other objects
like “toothbrush”, “banana”, and “broccoli” are described in the same word as the COCO class.

A.9 QUALITATIVE EXAMPLES BEYOND COCO 2014

We focus on COCO 2014 in our analyses because CHAIR, our main evaluation criteria, is tied with
the dataset and can automatically categorize objects of interest in image captions. While COCO 2014
is a diverse set of images, we provide qualitative examples of hallucination reduction (see Section 5.2)
on images from LLaVA-Bench (Liu et al., 2024b), a collection of 24 images of varying subjects. The
examples in Figure 13 using InstructBLIP align with the strong hallucination reduction observed with
COCO 2014.
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Figure 12: Qualitative results for attribute hallucinations using InstructBLIP. We filter the
VQA dataset for color and object number inaccuracies and correct answers with low confidence
scores (co < 0.05) using PROJECTAWAY. We reuse the same hyperparameters previously chosen for
InstructBLIP (lI = 1, lT = 2, α = 1.5).

InstructBLIP LLaVA
Method mAP ↑ ROC AUC ↑ mAP ↑ ROC AUC ↑
Baseline 0.53 0.55 0.49 0.47
Ours 0.78 0.83 0.60 0.68

Table 5: Object presence classification performance. We use internal confidence co as a confidence
score to classify whether the object is present in the image. We evaluate the mAP and ROC AUC of
our classification method against the baseline for both the InstructBLIP and LLaVA models over a
subset of 5000 COCO images.

LLaVA-NeXT Cambrian-1
Method mAP ↑ ROC AUC ↑ mAP ↑ ROC AUC ↑
Baseline 0.93 0.66 0.94 0.73
Ours 0.95 0.75 0.97 0.83

Table 6: Object presence classification on more models. We classify whether the object is present
in the image using internal confidence for LLaVA-NeXT and Cambrian-1 over a subset of 500 COCO
images.
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Figure 13: Qualitative results on images from LLaVA-Bench. We randomly select images from the
benchmark and use InstructBLIP to detect and edit out hallucinations. Our hyperparameter selection
is the same as in Section 4.1.1 (lI = 1, lT = 2, α = 1.5).

Model Method CHAIRi ↓ CHAIRs ↓ Recall (%) ↑

LLaVA-NeXT
Beam Search 6.8 23.8 63.12
Ours 5.52 17.2 63.12

Cambrian-1
Beam Search 3.27 9.2 53.28
Ours 2.7 6.6 53.28

Table 7: Hallucination intervention performance on more models. We mass-remove hallucinations
detected by the method in Section 5.1 on two more models, LLaVA-NeXT and Cambrian-1, on the
same subset of 500 COCO images as used in Table 2. We observe consistent improvement over the
baseline while maintaining recall of objects present in the image.
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Figure 14: LLaVA Object Presence Classification. Sample image captions from LLaVA and the
internal confidence scores for objects in the caption used for classification as correctly detected
objects or hallucinations.
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Figure 15: InstructBLIP Object Presence Classification.
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Figure 16: Qualitative results for LLaVA hallucination intervention. Our algorithm removes
hallucinations and, at times, adds correctly detected objects.
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Figure 17: Qualitative results for InstructBLIP hallucination intervention.
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Input Image raw attention VLM Ours Input Image raw attention VLM Ours

Figure 18: Object Localization Samples.
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Class T3% T5% T10% Patches Class T3% T5% T10% Patches

airplane 51.0 61.8 72.5 102 kite 66.7 77.8 88.9 9
apple 70.2 76.6 80.9 47 knife 24.0 26.0 34.0 50
backpack 44.8 48.5 58.5 614 laptop 34.1 38.3 46.1 334
banana 77.2 79.2 83.2 101 microwave 23.8 37.2 55.2 223
baseball bat 0.0 33.3 33.3 3 motorcycle 64.7 70.6 78.3 984
baseball glove 65.4 69.2 73.1 26 mouse 50.0 50.0 66.7 6
bear 37.6 41.4 47.6 739 orange 44.2 50.0 57.7 52
bed 44.0 47.8 52.0 2373 oven 38.9 54.4 78.9 507
bench 61.3 63.9 66.6 524 parking meter 20.9 24.8 29.6 230
bicycle 27.2 32.3 58.3 235 person 0.5 1.1 12.6 11528
bird 75.5 79.4 80.6 155 pizza 41.8 52.1 69.4 3146
boat 26.2 29.7 38.8 516 potted plant 43.8 52.1 63.0 192
book 28.1 39.0 44.8 210 refrigerator 23.7 31.4 50.0 156
bottle 46.2 53.4 62.0 208 remote 14.3 17.3 17.3 98
bowl 22.1 25.0 31.9 1364 sandwich 40.2 44.4 54.3 468
broccoli 75.9 77.2 79.7 79 scissors 71.9 71.9 71.9 32
bus 49.8 54.1 61.3 1786 sheep 49.5 52.6 56.6 489
cake 43.2 51.4 83.5 1182 sink 57.0 60.3 65.1 272
car 29.4 37.7 52.7 714 skateboard 48.1 50.6 57.7 239
carrot 50.0 50.0 75.0 4 skis 27.6 34.2 44.7 76
cat 57.7 61.5 66.5 2239 snowboard 37.5 41.7 47.9 48
cell phone 73.4 76.6 82.8 64 spoon 35.5 43.5 53.2 62
chair 31.6 33.1 37.6 516 sports ball 4.4 8.9 20.0 45
clock 67.6 70.6 75.9 299 stop sign 85.7 88.6 89.9 237
couch 33.4 38.9 63.2 2435 suitcase 38.1 40.7 44.7 472
cow 51.9 58.6 67.0 324 surfboard 48.6 57.5 69.9 146
cup 9.4 14.9 30.4 181 teddy bear 38.5 43.1 47.7 239
dining table 25.4 47.6 74.9 7403 tennis racket 88.9 88.9 88.9 9
dog 45.9 51.3 59.7 1057 tie 46.2 49.7 52.8 197
donut 34.8 40.0 45.2 115 toilet 92.0 97.3 99.6 1131
elephant 47.0 57.4 64.9 902 toothbrush 78.9 78.9 100.0 19
fire hydrant 43.4 47.0 50.1 419 traffic light 45.5 45.5 45.5 11
fork 41.4 45.7 54.3 70 train 40.7 45.0 52.1 3008
frisbee 50.0 60.6 71.2 66 truck 34.5 40.1 54.6 930
giraffe 32.0 39.8 62.8 810 tv 27.2 32.6 37.6 298
handbag 42.2 53.0 57.8 83 umbrella 39.5 40.5 42.8 526
horse 63.7 65.8 68.8 240 vase 29.9 32.6 45.1 264
hot dog 56.9 62.7 69.3 394 wine glass 61.9 67.0 74.3 218
keyboard 43.1 47.7 49.2 65 zebra 33.0 35.9 44.5 373

Overall 32.7 39.3 52.2 55988

Table 8: Per-class patch classification accuracy. For each COCO class, we show the percentage of
patches containing that object that top-k logit lens predictions can correctly identify.
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