
DiT-Serve and DeepCoder: Enabling Video and Code
Generation at Scale

Rachel Xin

Electrical Engineering and Computer Sciences
University of California, Berkeley

Technical Report No. UCB/EECS-2025-46
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2025/EECS-2025-46.html

May 9, 2025

Copyright © 2025, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

DiT-Serve and DeepCoder: Enabling Video and Code Generation at
Scale

by Rachel Xin

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the

degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Joseph Gonzalez
Research Advisor

(Date)

* * * * * * *

Professor Ion Stoica
Second Reader

(Date)

Joseph E. Gonzalez
5/9/2025

Ion Stoica
5/9/2025

DiT-Serve and DeepCoder: Enabling Video and Code Generation at Scale1

by

Rachel Xin

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joseph Gonzalez, Advisor
Professor Ion Stoica

Spring 2025

1This thesis is adapted from DiT-Serve: An E�cient Serving Engine for Di↵usion
Transformers[13] and DeepCoder: A Fully Open-Source 14B Coder at O3-mini Level[8].
It is recommended to cite these papers over this report.

DiT-Serve and DeepCoder: Enabling Video and Code Generation at Scale1

Copyright 2025
by

Rachel Xin

1This thesis is adapted from DiT-Serve: An E�cient Serving Engine for Di↵usion Transform-
ers[13] and DeepCoder: A Fully Open-Source 14B Coder at O3-mini Level[8]. It is recommended
to cite these papers over this report.

1

Abstract

DiT-Serve and DeepCoder: Enabling Video and Code Generation at Scale2

by

Rachel Xin

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Joseph Gonzalez, Advisor

This thesis presents a unified approach to building scalable and intelligent generative systems
by advancing two key areas: high-throughput inference for di↵usion models and reinforce-
ment learning-based training for large language models (LLMs). In the first part, we intro-
duce DiT-Serve[13], a novel system architecture for video di↵usion transformers designed
to meet the high demand of generative workloads. We leverage denoising-level parallelisms
to enable e�cient batching and present a new attention algorithm. By addressing challenges
in staggered request handling, multi-resolution support, and improvement of GPU utiliza-
tion, DiT-Serve[13] contributes to the improvement of throughput and responsiveness of
generative systems in production environments.

In the second part, we transition to explore how reinforcement learning (RL) can be used
to enhance the reasoning capabilities of LLMs. We present a training methodology centered
on curating high-quality, verifiable coding data and algorithmic and system optimizations.
This integration of environment-based feedback and e↵ective reward calculation represents
the future of transforming small language models into powerful reasoning models. We intro-
duce DeepCoder[8], a code reasoning model that matches the performance of much larger
models, illustrating the potential of RL-based scaling.

By coupling e�cient inference infrastructure with intelligent training strategies, this thesis
contributes toward the democratization of generative AI—making high-performance systems
more accessible, interpretable, and adaptable across domains.

2This thesis is adapted from DiT-Serve: An E�cient Serving Engine for Di↵usion Transform-
ers[13] and DeepCoder: A Fully Open-Source 14B Coder at O3-mini Level[8]. It is recommended
to cite these papers over this report.

i

To my family, advisors, and research team.

I would like to extend my sincerest gratitude to UC Berkeley Sky Computing Lab,
particularly the Video Serve and Agentica project teams for their intellectual contributions
and enriching collaboration. I would like to thank Prof. Joseph Gonzalez and Prof. Ion
Stoica for their thoughtful guidance. Most of all, I extend my heartfelt thanks to Dr.

Michael Luo, whose support and mentorship have been instrumental to every stage of this
journey.

ii

Contents

Contents ii

List of Figures iii

List of Tables iv

1 Introduction 1

2 Background 2
2.1 Di↵usion Models . 2
2.2 Training LLMs Using RL . 3

3 DiT-Serve: An E�cient Serving Engine for Di↵usion Transformers 4
3.1 Motivation . 4
3.2 Overall Architecture and Design . 5
3.3 Evaluation . 8

4 DeepCoder: A Code Reasoning Model Finetuned Using RL 12
4.1 Motivation . 12
4.2 Dataset Curation . 12
4.3 Evaluation . 14
4.4 Future Steps . 14

5 Conclusion 15

Bibliography 16

iii

List of Figures

3.1 Continuous Batching For Batch Size 2. Naive batching su↵ers from poor GPU
utilization. When request 1 is finished, the GPU must wait for the longer request 2 to
finish processing, before it can process request 3. However, with continuous batching,
temporal GPU utilization is improved as request 3 can be batched together with request
2 once request 1 is finished running. 6

3.2 Main Results. Average latency and average job completion time for di↵erent Video
Di↵usion models. 10

3.3 Impact of Requests Burstiness. DiT-Serve maintains robust performance across
varying levels of request burstiness. Ablation experiments run Open-Sora on synthetic
workload. 10

iv

List of Tables

4.1 Model Performance Comparison Across Benchmarks 14

1

Chapter 1

Introduction

The rapid progress in generative modeling has given rise to two critical trends: the emergence
of di↵usion transformer models as the state-of-the-art tools for image and video generation,
and the evolution of large language models (LLMs) into systems capable of multi-step rea-
soning. Despite these breakthroughs, real-world deployment remains challenging. Di↵usion
transformer models su↵er from high workloads, and their intensive computation leads to
ine�cient GPU utilization and poor scalability, especially for video generation. Meanwhile,
LLMs often require a dramatic increase in model size and billions of additional parameters
to yield marginal improvements in reasoning ability.

This thesis investigates building scalable and intelligent generative systems to address
these limitations. Starting with the inference side for video generation, we focus on the
bottlenecks in video generation pipelines. Due to the high variance in request lengths and
resolutions, batching and GPU scheduling remains complicated. To address this, we present
DiT-Serve[13], a Di↵usion Transformer serving system designed to maximize throughput
through e�cient batching. The primary contributions are denoising level parallelism and
a novel multi-GPU attention algorithm. Our work builds upon open-source video genera-
tion models, primarily OpenSora[17], CogVideoX[16], and Mochi[12], demonstrating gains
in e�ciency for heterogeneous workloads.

On the other hand, we focus on enabling smaller LLMs to perform complex reasoning
tasks without requiring large model architectures. Specifically, we target the domain of
code generation, where reasoning capabilities are critical. Our approach involves construc-
tuing a RL pipline that integrates high-quality, verifiable coding datasets, e�cient training
algorithms, and a sparse reward function. As a culmination of this e↵ort, we introduce
DeepCoder[8], a 14-billion-parameter code reasoning model fine-tuned from Deepseek-R1-
Distilled-Qwen-14B [1] via distributed reinforcement learning. Evaluating on LiveCodeBench[4],
DeepCoder achieves a 60.6% Pass@1 accuracy, which is an 8% improvement in performance.

Together, these contributions aim to democratize scalable generative systems by improv-
ing both the e�ciency of di↵usion-based inference and the accessibility of RL-based LLM
training.

2

Chapter 2

Background

This thesis tackles two converging frontiers of generative AI: (1) accelerating inference for
video di↵usion models, and (2) training LLMs capable of structured reasoning. To ground
these contributions, this section first introduces the foundations of di↵usion models and
transformers in generative modeling, followed by a survey of recent state-of-the-art models
for video generation. Secondly, reinforcement learning (RL) has become a cornerstone for
training large language models, demonstrating promising results for scaling and accelerating
intelligence.

2.1 Di↵usion Models

Di↵usion models have emerged as the emphasis for generative modeling, particularly for both
image and video generation. Di↵usion models operate by simulating a Markovian forward
process that progressively adds noise to the data, followed by denoising steps to reconstruct
the original signal. Transformers have become the state of the art architecture to create
these videos.

Di↵usion Process

Di↵usion models rely on two primary processes: a forward di↵usion processes that slowly
corrupts data by adding Gaussian noise over T timesteps, and a reverse denoising process
that then reconstructs the data from noise. In the context of our serving system, the reverse
denoising process is crucial in inference execution. We will optimize the reverse di↵usion pro-
cess for real-time serving, where our architecture will enable the system to handle denoising
steps across multiple requests simultaneously.

Transformers

Traditional di↵usion models use convolutional networks during the denoising process. How-
ever, transformers have recently become the new state of the art particularly due to their

CHAPTER 2. BACKGROUND 3

scalability and ability to model long-range dependencies. The use of transformer backbones
allows both for better performance as well as higher-resolution generation tasks. In replace
of convolutional layers, self-attention blocks allow the model to learn richer contextual re-
lationships across both spatial and temporal dimensions. For text-to-video tasks, a text
prompt is tokenized using a language tokenizer, embedded, and cross-attended during the
denoising steps.

Models

Several state-of-the-art models have emerged that demonstrate high quality video genera-
tion. OpenSora[17] is a large-scale open-source text-to-video di↵usion model that is inspired
by both the architecture of DiT and Sora. Mochi[12] is a di↵usion-based video model empha-
sizing on fast decoding by leveraging compact latent space. CogVideoX[16] uses a cascaded
architecture to generate these videos, focused on long-range video generation. For our sys-
tem, we integrated all three of these video generation models, as well as asymmetric di↵user
models for image generation such as Stable Di↵usion Version 3 [2].

2.2 Training LLMs Using RL

Code Reasoning Models

Recent explorations in using reinforcement learning to train LLMs had demonstrated im-
provements in reasoning tasks, such as solving math problems. Among the leading reasoning
models is DeepSeek-R1 [1], which achieves performance comparable to the o1 model on rea-
soning tasks. Deepseek-R1 is trained using a combination of supervised fine-tuning and
reinforcement learning (RL) and builds on top of strong base models (e.g. Qwen-14B).

Distributed RL: Verl

To train LLMs at scale, we leverage verl[11], a distributed reinforcement learning library for
training language models. Verl provides a high-level interface for defining reward functions,
trajectory sampling policies, and gradient updates.

In this work, we use an extended version called verl-pipe, which includes various opti-
mizations to improve throughput and training stability. In particular, one-o↵ pipelining is
introduced, where we sacrifice the first RL iteration for sampling only, and then use that
batch to train the next iteration. Reward calculation is also interleaved with sampling, which
reduces overhead. More detailed information regarding regarding verl optimizations can be
found in the DeepCoder blog [8]. The verl-pipeline is used to train our DeepCoder model
from Deepseek-R1-Distill-Qwen-14B model.

4

Chapter 3

DiT-Serve: An E�cient Serving
Engine for Di↵usion Transformers

3.1 Motivation

Serving video di↵usion models e�ciently remains a major challenge due to the substantial
computational demands of their long denoising sequences. Video inference introduces both
spatial and temporal complexities that hinder GPU utilization and throughput.

Video di↵usion requests are highly heterogeneous. Each request may di↵er in the number
of denoising steps required, the video resolution, as well as the output quality. This varia-
tion among requests makes batching particularly di�cult. Variable denoising steps results
in requests terminating at di↵erent time steps resulting in more complicated static batch-
ing strategies. Higher resolution videos also correspond to longer token sequences during
transformer-based inference, which prevents naive batching because of mismatched context
lengths. While padding is a potential solution, it is ine�cient and results in wasted compu-
tation.

Temporal Ine�ciencies

The variability in requests creates significant obstacles to e�cient temporal scheduling on
GPUs. A naive batching strategy of aggregating all available requests into a batch leads
to ”temporal bubbles” of ine�ciency, as illustrated in (Fig. 3.1). Since di↵erent requests
terminate at di↵erent timesteps, GPUs are left underutilized when they idle for shorter tasks
after completion while waiting for longer requests to finish processing before starting the next
batch. This results in the entire batch being bottlenecked by the longest-running requests,
significantly reducing throughput.

Additionally, requests arrive asynchronously in real-world settings. Serving systems must
handle a mix of bursty and sparse tra�c patterns, where requests can arrive at unpredictable
intervals. Naive batch scheduling struggles to respond to dynamic workloads. Continuous

CHAPTER 3. DIT-SERVE: AN EFFICIENT SERVING ENGINE FOR DIFFUSION
TRANSFORMERS 5

batching improves temporal GPU utilization by dynamically grouping incoming requests as
they arrive.

Spatial Ine�ciencies

In addition to temporal issues, spatial ine�ciencies arise from how multi-GPU inference is
handled. Standard approaches split the computation across attention heads, with each GPU
computing the attention output for a subset of heads. However, for video requests where
context lengths can be extremely long, this becomes a bottleneck.

Context parallelism is more e�cient for long sequences, where the computation is split
across the context length with block-wise parallel transformers. For multi-GPU deployment,
Ring Attention[6] enables each GPU to process each block in a circular fashion, ensuring
balanced workload distribution and maximizing spatial e�ciency. However, Ring Attention
falls short when considering the need to pad shorter requests together with longer ones,
leading to wasted computation. This spatial ine�ciency allowed us to come up with a new
attention mechanism called Brick Attention in order to maximize spatial e�ciency.

3.2 Overall Architecture and Design

We present DiT-Serve’s overall architecture and then explore the two key components: (1)
denoising level request coordinator and (2) a distributed, multi-GPU attention algorithm for
load balancing requests with diverse context lengths.

Overview

DiT-Serve is a online serving engine that processes text-to-video Di↵usion Transformers.
DiT-Serve focuses on two primary objectives: (1) improving the end-to-end latency of each
video generation request and (2) maximizing GPU utilization for providers.

Architecture

The basic architecture is designed to e�ciently serve video di↵usion requests at scale. Each
incoming video request undergoes multiple rounds of Transformer-based model execution,
corresponding to the denoising steps in the di↵usion process. The core of DiT-Serve is a
model execution engine managed by a central scheduler. The high-level workflow proceeds
as follows:

1. Request Ingestion: Video generation requests arrive through a FastAPI interface.
Each request is handled by a coroutine running its own di↵usion algorithm instance.

2. Scheduling: As denoising steps progress, model execution requests are submitted to
a shared scheduler. These requests may come from multiple coroutines and are queued for
processing.

CHAPTER 3. DIT-SERVE: AN EFFICIENT SERVING ENGINE FOR DIFFUSION
TRANSFORMERS 6

Figure 3.1: Continuous Batching For Batch Size 2. Naive batching su↵ers from poor GPU
utilization. When request 1 is finished, the GPU must wait for the longer request 2 to finish
processing, before it can process request 3. However, with continuous batching, temporal GPU
utilization is improved as request 3 can be batched together with request 2 once request 1 is
finished running.

3. Execution Loop: A persistent model loop polls the scheduler for available requests.
When enough compatible requests are available, they are batched and executed by the engine.

4. Response Handling: Once a model call completes, results are returned to the
corresponding coroutine, allowing it to proceed to the next denoising step or complete the
request.

Continuous Batching

We introduce a scheduling strategy termed Continuous Batching, inspired by e�cient
memory management techniques recently proposed for serving large language models [5].
Since a single di↵usion request relies on multiple calls to the same model in sequence, where
the number of calls is a variable parameter, there is the opportunity to batch together distinct
requests. Unlike traditional batching methods, continuous batching does not require all
batched requests to complete simultaneously; instead, it dynamically manages video di↵usion
transformer requests by continuously adding new high-priority requests into the batch and
removing those that have completed processing, resulting in better GPU utilization as shown
in (Fig. 3.1). Specifically, at each timestep, we batch together the highest-priority video
generation requests according to our scheduling policy, and execute their denoising step
in one batch. All requests are then returned to the pool. This approach improves GPU
utilization, reduces unnecessary idle time, and improves overall throughput and inference
e�ciency compared to conventional batching methods.

Scheduling Policy

The choice of scheduling policy significantly impacts average request latency. While Short-
est Job First (SJF) is classically known to minimize average wait time, applying it e↵ec-
tively in the context of video di↵usion inference—especially on multi-GPU clusters—requires
a more nuanced definition of job length.

CHAPTER 3. DIT-SERVE: AN EFFICIENT SERVING ENGINE FOR DIFFUSION
TRANSFORMERS 7

Instead, we schedule based on a Shortest Remaining Processing Time First (SRPTF)
policy, tailored to video di↵usion workloads. We define the length L(reqt) of a video request
as the product of the number of remaining denoising steps and the tokenized sequence length
of the video. Let t be the current denoising timestep and Ttotal the total number of timesteps
in the di↵usion process. Then the number of steps remaining is Ttotal�t, and S(reqt) denotes
the tokenized sequence length for the request at timestep t. Together, the e↵ective remaining
cost of a request is:

L(reqt) =
�
Ttotal � t

�
· S(reqt) (3.1)

This cost formulation captures both time and spatial resource requirements, allowing the
scheduler to prioritize shorter and less compute-intensive requests to improve overall system
throughput and responsiveness.

Brick Attention

Ring Attention [6] is an attention mechanism designed to scale Transformer models to large
context sizes by distributing computation across multiple GPUs arranged in a ring topology.
Each GPU processes a slice of the input sequence and passes its computed key-value (KV)
pairs to the next device in the ring. This approach eliminates the need to materialize the
full attention matrix, significantly reducing memory overhead and latency during inference.

However, standard Ring Attention assumes that all input sequences share the same con-
text length L, making it incompatible with real-world workloads where video requests often
vary in resolution and number of frames—resulting in heterogeneous sequence lengths.

To address this, we introduce Brick Attention, a generalization of Ring Attention that
supports batching across requests with varying context lengths. Rather than enforcing a
uniform ring size, Brick Attention dynamically forms multiple independent rings of di↵erent
sizes (e.g., 1, 2, 4, or 8 GPUs), and allows each GPU to participate in several rings concur-
rently. Each request is assigned to a dedicated ring based on its context size, and the KV
communication pattern is carefully modified to isolate tra�c across rings. This process is
equivalent to calling ring attention on all requests.

A central Brick Coordinator schedules requests and assigns them to rings that best match
their computational profile. During execution, each ring independently processes its assigned
request using Ring Attention. Importantly, Brick Attention introduces no additional com-
munication overhead and preserves the latency benefits of Ring Attention while enabling
high GPU utilization across diverse workloads.

By supporting fine-grained batching and parallelism over heterogeneous requests, Brick
Attention significantly improves both scalability and throughput for multi-GPU di↵usion
inference systems.

More detailed information on the specific implementation can be found in our paper.

CHAPTER 3. DIT-SERVE: AN EFFICIENT SERVING ENGINE FOR DIFFUSION
TRANSFORMERS 8

3.3 Evaluation

We evaluate the performance by simulating realistic workloads representative of diverse sce-
narios encountered by state-of-the-art Video Di↵usion models. Specifically, we generate
synthetic requests using the following configurations and distributions.

Request Generation. Requests are generated using an exponential distribution, param-
eterized by varying lambda (�) values to represent di↵erent request arrival rates. These
request inter-arrival times e↵ectively simulate realistic tra�c conditions ranging from mod-
erate to highly demanding workloads.

Request Specifications. Each generated request includes randomly selected parameters
representative of realistic usage:

• Prompts. Requests randomly choose from a set of predefined textual prompts, such
as “A beautiful waterfall,” and “A Chinese Lunar New Year celebration video with a
Chinese dragon.”

• Resolution. Requests are randomly assigned resolutions from the set 240p, 360p,
480p, 720p, following a uniform categorical distribution.

• Sampling Steps. The number of denoising steps per request is chosen from the set
10, 20, 40, 80, according to a uniform distribution.

• Frame Count. Frame counts di↵er between models due to varying model sizes, con-
figurations, and memory constraints. Specifically, we use 41 frames for CogVideo, 31
frames for Mochi, and 48 frames for Open-Sora.

Baselines. To rigorously evaluate our proposed system, we benchmark its performance
against four distinct baselines. Each baseline leverages the same maximum batch size con-
straint to guarantee a fair comparative analysis. The baselines are described in detail as
follows:

• Naive + Ring Attention. This baseline does not utilize batching; instead, each in-
coming request is individually assigned to GPUs based on its computational demand,
determined by resolution and frame count (requiring 1, 2, 4, or 8 GPUs). Requests
are processed sequentially according to a First-Come First-Served (FCFS) policy. A
significant limitation of this method is head-of-line (HoL) blocking, where longer or
more resource-intensive requests delay subsequent shorter tasks. To distribute com-
putational load e�ciently across multiple GPUs for single requests, ring attention is
employed, allowing parallel processing within GPU clusters.

• Naive Batching + Ring Attention. This method extends the naive approach
by introducing batching to mitigate head-of-line blocking. Requests are grouped into

CHAPTER 3. DIT-SERVE: AN EFFICIENT SERVING ENGINE FOR DIFFUSION
TRANSFORMERS 9

batches according to identical configurations, such as matching resolutions and frame
counts, with each batch having up to a maximum size of 5. While this approach
still processes batches in an FCFS manner, batching improves GPU utilization and
throughput by concurrently processing similar requests. Ring attention is applied to
these batches, facilitating e↵ective distribution of the workload across multiple GPUs.

• Continuous Batching + Brick Attention + FIFO. This baseline incorporates our
proposed continuous batching strategy, which dynamically adjusts batch composition
in real-time. Incoming high-priority requests are continuously integrated into existing
batches, while completed requests are promptly removed, enhancing overall system
responsiveness. Brick Attention, a method optimized for varying context lengths and
resource demands, replaces ring attention to better handle diverse request types within
multiple GPU rings. Scheduling is performed using a First-In-First-Out (FIFO) policy,
ensuring equitable treatment of incoming tasks while dynamically maintaining e�cient
GPU utilization.

• Continuous Batching + Brick Attention + SRPTF. Building upon the previous
continuous batching approach, this baseline di↵erentiates itself through the adoption
of the Shortest Remaining Processing Time First (SRPTF) scheduling policy. Unlike
FIFO, SRPTF explicitly prioritizes requests with fewer remaining computational de-
mands, calculated based on the product of their remaining denoising steps and sequence
length. This prioritization strategy minimizes overall waiting times, particularly ben-
efiting smaller or near-completion tasks, and significantly enhances throughput and
turnaround times for diverse workloads.

Performance

Figure 3.2 illustrates the comparative performance in terms of normalized latency and job
completion times across various scheduling and batching strategies for three Video Di↵usion
models: Open-Sora, Mochi, and CogVideo. The results clearly indicate that Continuous
Batching combined with Brick Attention and SRPTF scheduling consistently outperforms
other methods, achieving the lowest latency and job completion times. This performance
advantage becomes increasingly pronounced under moderate to high request rates, empha-
sizing superior scalability and throughput. In contrast, Naive FIFO and Naive Batching
strategies demonstrate significantly higher latencies due to ine�cient GPU utilization and
pronounced head-of-line (HoL) blocking, which exacerbates delays in processing subsequent
requests.

Specifically, for Open-Sora, the Continuous Batching strategy integrated with Brick At-
tention and SRPTF achieves latency reductions of approximately 2-3× compared to naive
approaches at moderate to high request rates. Similar significant improvements are observed
with Mochi and CogVideo models, underlining the general applicability and e↵ectiveness of
our proposed scheduling methodology in various practical video di↵usion contexts.

CHAPTER 3. DIT-SERVE: AN EFFICIENT SERVING ENGINE FOR DIFFUSION
TRANSFORMERS 10

Figure 3.2: Main Results. Average latency and average job completion time for di↵erent Video
Di↵usion models.

Figure 3.3: Impact of Requests Burstiness. DiT-Serve maintains robust performance across
varying levels of request burstiness. Ablation experiments run Open-Sora on synthetic workload.

Workload Ablation

We ablate the e↵ect of arrival burstiness by varying the coe�cient of variation of request
inter-arrival times, drawing arrivals from a Gamma Distribution. This models a range from
regular (CV = 1) to highly bursty workloads (CV = 8) to capture variability observed in
real-world inference systems. Figure 3.3 shows the e↵ect on normalized latency and aver-
age job completion time. We observe that across all CVs, both latency and JCT remain

CHAPTER 3. DIT-SERVE: AN EFFICIENT SERVING ENGINE FOR DIFFUSION
TRANSFORMERS 11

relatively low with lower request rates, indicating the system absorbs moderate levels of
burstiness. As arrival rate increases, performance degrades with CV but the system main-
tains its scaling. These results demonstrate our baseline is robust across a range of realistic
arrival distributions, with predictable scaling behavior and no sharp performance cli↵s.

Extension to Image Models

While our current implementation targets video di↵usion workloads, the underlying com-
ponents are general and extensible, particularly with text-to-image generation models. We
integrated asymmetric di↵user models such as Stable Di↵usion, a latent di↵usion model in-
troduced to generate high-resolution images. By extending our logic, we envision support
for both video and image generation with the same infrastructure, enabling inference across
various visual modalities.

12

Chapter 4

DeepCoder: A Code Reasoning
Model Finetuned Using RL

4.1 Motivation

Overview

The past year has seen rapid advancements in scaling large language models (LLMs) for
reasoning-heavy domains, such as mathematics. Reinforcement learning (RL) has played
a pivotal role in this progress, such as AReaL[10] and Light-R1[14], where targeted feed-
back and trajectory-level optimization yields models that outperform baselines in complex
reasoning tasks.

Despite these gains, the coding domain has lagged behind. While LLMs have shown
promise in competitive programming benchmarks, the lack of scalable, high-quality reward
signals has made it di�cult to apply RL e↵ectively. Unlike math problems, where correctness
is more clearly defined through proofs and evaluations, code generation tasks require more
complexity, particularly through execution-based verification and environmental control, all
of which pose additional challenges for reward modeling and sample e�ciency.

Deepcoder explores how reinforcement learning can push the boundaries of code genera-
tion. Our goal is to develop scalable RL pipelines that close the performance gap in coding
tasks and enable improved reasoning in smaller language models.

4.2 Dataset Curation

In our preliminary experiments, we evaluated a range of existing coding datasets commonly
used for training and benchmarking code generation models. However, there were certain
limitations. Datasets like KodCode[15] and LeetCode were too easy for our models, resulting
in reward saturation and limiting opportunities for policy improvement. Additionally, other
datasets like APPS[3] and CodeContests su↵ered from noise and inconsistency, resulting in

CHAPTER 4. DEEPCODER: A CODE REASONING MODEL FINETUNED USING
RL 13

missed test cases and flawed ground-truth solutions. These issues led to misleading and null
reward signals that undermined reinforcement learning training.

Dataset. To address these limitations, we curated a high-quality training set optimized for
reliable, reward-based learning. Our dataset consists of:

• TACO Verified problems.

• Verified problems from PrimeIntellect’s SYNTHETIC-1 dataset.

• LiveCodeBench problems submitted between May 1, 2023 and July 31, 2024.

Filtering Pipeline. To ensure that the data was of high quality, our filtering pipeline
consists of:

• Programmatic Verification. We filter our datasets to include only those problems
whose o�cial solutions pass all unit tests.

• Test Filtering. Each problem must include at least 5 unit tests. Problems with fewer
tests led to memorization where the model recognized common test cases.

• Deduplication. We remove duplicate problems across di↵erent datasets to avoid
contamination.

After filtering, we are left with 24K high-quality coding problems that are used for our
RL training, with 7.5K problems from TACO Verified, 16K problems from PrimeIntellect’s
SYNTHETIC-1, and 600 from LiveCodeBench.

Reward Calculation

Our reward function is based on a sparse Outcome Reward Model (ORM), designed to
encourage robust and generalizable code generation while avoiding common pitfalls such as
reward hacking. We intentionally do not assign partial credit (such as proportional rewards
like K/N for passing K out of N tests). Such heuristics often lead models to overfit to
public test cases or exploit shortcuts that do not generalize well, which negatively impacts
reinforcement learning convergence. Thus, our reward function is as follows:

• Reward = 1. The generated code must successfully pass all the sampled unit tests.
For e�ciency, we sample the 15 most challenging tests for each problem, identified by
the length of their input strings.

• Reward = 0. The model receives no reward if it fails any test case or if the output
format is invalid. (ie. missing python [CODE]). Each test case is also assigned a
timeout of 6-12 seconds.

More detailed information on the specific training recipe can be found in our blog.

CHAPTER 4. DEEPCODER: A CODE REASONING MODEL FINETUNED USING
RL 14

4.3 Evaluation

Table 4.1: Model Performance Comparison Across Benchmarks

Model Codeforces* LCB HumanEval+ AIME
Rating Percentile (8/1/24–2/1/25) Pass@1 2024

DeepCoder-14B-Preview 1936 95.3 60.6 92.6 73.8
DeepSeek-R1-Distill-Qwen-14B 1791 92.7 53.0 92.0 69.7
O1-2024-12-17 (Low) 1991 96.1 59.5 90.8 74.4
O3-Mini-2025-1-31 (Low) 1918 94.9 60.9 92.6 60.0
O1-Preview 1658 88.5 42.7 89.0 40.0
DeepSeek-R1 1948 95.4 62.8 92.6 79.8
Llama-4-Behemoth† – – 49.4 – –

*Codeforces metrics estimated from contest performance.
†No available data for HumanEval+ or AIME benchmarks.

We evaluate DeepCoder-14B-Preview [8] across a diverse set of coding and reasoning
benchmarks, including LiveCodeBench (LCB) [4], Codeforces, HumanEval+ [7], and AIME
2024.

Despite its relatively modest scale (14 billion parameters), the model exhibits strong
performance across all evaluated benchmarks. It achieves 60.6% on LiveCodeBench and a
Codeforces Rating of 1936, which places it on par with competitive baselines such as o3-mini
and o1. Notably, although the model was not explicitly trained on mathematical tasks, its
coding-derived reasoning capabilities generalize well to math, as reflected in a 73.8% score
on AIME 2024, which improved by 4.1% on the base model.

These results highlight the model’s robust generalization across both code synthesis and
mathematical reasoning, reinforcing the e↵ectiveness of RL-based training on verifiable cod-
ing datasets.

4.4 Future Steps

Moving forward, we aim to explore how reinforcement learning can enhance LLM-based
agents by extending DeepCoder’s capabilities toward interactive tool use and real-world
software engineering workflows. In particular, we plan to integrate environments such as
SWE-Gym[9], which simulate practical development tasks including bug fixing, code refac-
toring, and test generation. This direction will also allow us to investigate the nuances of
e↵ective tool usage, bringing DeepCoder closer to deployment in realistic engineering set-
tings.

15

Chapter 5

Conclusion

This thesis presents a unified vision for building open, e�cient, and intelligent generative
systems—advancing the state of the art in both high-throughput inference infrastructure
and reinforcement learning-based training for language models.

In the first part, we introduced DiT-Serve, a scalable e�cient system architecture for
video di↵usion transformers. By leveraging denoising-level parallelism, continuous batch-
ing, and novel attention mechanisms, DiT-Serve achieves significant improvements in GPU
utilization and responsiveness by targeting real-world challenges in multi-resolution hetero-
geneous generative workloads.

In the second part, we introduced DeepCoder, a reinforcement learning-trained LLM
focused on code generation tasks. Through meticulous dataset curation, sparse reward de-
sign, and other system-level training optimizations, DeepCoder achieves 60.6% Pass@1 on
LiveCodeBench—matching or surpassing much larger baselines like o3-mini. More impor-
tantly, its learned reasoning capabilities generalize beyond code, as demonstrated by strong
performance on math benchmarks such as AIME 2024. This progress demonstrates that RL
can scale and improve the performance of smaller models.

Together, these two components—DiT-Serve for scalable inference and DeepCoder for
LLM training—embody a holistic approach to building next-generation generative systems.
We believe that the future of AI lies not only in advancing capabiltity, but also in ensuring
that these capabilities are accessible. Through DiT-Serve, we democratize high-throughput
video generation; through DeepCoder, we democratize RL for LLMs. Together, they rep-
resent a step toward building open-source, intelligent, and scalable generative AI.

16

Bibliography

[1] DeepSeek-AI et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Re-
inforcement Learning. 2025. arXiv: 2501.12948 [cs.CL]. url: https://arxiv.org/
abs/2501.12948.

[2] Patrick Esser et al. Scaling Rectified Flow Transformers for High-Resolution Image
Synthesis. 2024. arXiv: 2403.03206 [cs.CV]. url: https://arxiv.org/abs/2403.
03206.

[3] Dan Hendrycks et al. “Measuring Coding Challenge Competence With APPS”. In:
NeurIPS (2021).

[4] Naman Jain et al. “LiveCodeBench: Holistic and Contamination Free Evaluation of
Large Language Models for Code”. In: arXiv preprint arXiv:2403.07974 (2024).

[5] Woosuk Kwon et al. E�cient Memory Management for Large Language Model Serving
with PagedAttention. 2023. arXiv: 2309.06180 [cs.LG]. url: https://arxiv.org/
abs/2309.06180.

[6] Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring Attention with Blockwise Trans-
formers for Near-Infinite Context. 2023. arXiv: 2310.01889 [cs.CL]. url: https:
//arxiv.org/abs/2310.01889.

[7] Jiawei Liu et al. “Is Your Code Generated by ChatGPT Really Correct? Rigorous
Evaluation of Large Language Models for Code Generation”. In: Thirty-seventh Con-
ference on Neural Information Processing Systems. 2023. url: https://openreview.
net/forum?id=1qvx610Cu7.

[8] Michael Luo et al. DeepCoder: A Fully Open-Source 14B Coder at O3-mini Level. No-
tion Blog, https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-
Source- 14B- Coder- at- O3- mini- Level- 1cf81902c14680b3bee5eb349a512a51.
2025.

[9] Jiayi Pan et al. Training Software Engineering Agents and Verifiers with SWE-Gym.
2024. arXiv: 2412.21139 [cs.SE]. url: https://arxiv.org/abs/2412.21139.

[10] Ant Research RL Lab. AReaL: Ant Reasoning RL. https://github.com/inclusionAI/
AReaL. 2025.

[11] Guangming Sheng et al. “HybridFlow: A Flexible and E�cient RLHF Framework”.
In: arXiv preprint arXiv: 2409.19256 (2024).

BIBLIOGRAPHY 17

[12] Genmo Team. Mochi 1. https://github.com/genmoai/models. 2024.

[13] VideoServe Team. “DiT-Serve: An E�cient Serving Engine for Di↵usion Transform-
ers”. Manuscript in preparation. 2025.

[14] Liang Wen et al. Light-R1: Curriculum SFT, DPO and RL for Long COT from Scratch
and Beyond. 2025. arXiv: 2503.10460 [cs.CL]. url: https://arxiv.org/abs/2503.
10460.

[15] Zhangchen Xu et al. “KodCode: A Diverse, Challenging, and Verifiable Synthetic
Dataset for Coding”. In: (2025). arXiv: 2503.02951 [cs.LG]. url: https://arxiv.
org/abs/2503.02951.

[16] Zhuoyi Yang et al. “CogVideoX: Text-to-Video Di↵usion Models with An Expert
Transformer”. In: arXiv preprint arXiv:2408.06072 (2024).

[17] Zangwei Zheng et al. “Open-sora: Democratizing e�cient video production for all”. In:
arXiv preprint arXiv:2412.20404 (2024).

