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Abstract

System Architecture for Agentic Large Language Models

by

Tianjun Zhang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Associate Professor Joseph E. Gonzalez, Chair

Large Language Models (LLMs) are evolving from serving knowledge passively in chatbots
to actively in- teracting with applications and services. This thesis addresses the integration
of Large Language Models (LLMs) as autonomous agents—hereafter referred to as Agentic
LLMs, in terms of both training and deployment. Although recent advancements in LLM
research have enabled sophisticated reasoning and natural language comprehension, their
e↵ective deployment in autonomous systems remains challenging. Some of the Key issues
includes understanding the dynamics of the environment, ensuring seamless interaction with
the environment, and maintaining rigorous standards of operational safety.

This thesis investigates four critical aspects of Agentic LLMs, aligning with the following
dimensions: (1) Simulation Environments: It explores methods for creating generalizable
and realistic training environments, such as R2E, enabling LLMs to engage with complex,
dynamic tasks like software development in a controlled yet practical setting. (2) Advanced
Reflection and Planning Capabilities: It delves into frameworks that empower LLM-based
agents to iteratively refine their outputs and develop adaptive planning strategies, as demon-
strated in LEAP and TEMPERA. (3) Adaptive Action Spaces: It examines techniques to
enable LLMs to flexibly integrate and utilize external tools in dynamic environments, lever-
aging approaches like Gorilla and RAFT to navigate and adapt to evolving action spaces. (4)
System Reliability and Safety: Finally, it proposes strategies to enhance system-level reliabil-
ity, including rollback mechanisms and post-facto verification, ensuring safe and accountable
autonomous operations.

The findings presented herein advance the state of the art in AI system architecture and o↵er
valuable insights for future research and development. They also hold significant potential
for real-world applications, particularly in fields such as robotics, autonomous vehicles, and
intelligent infrastructure.



i

Contents

Contents i

List of Figures iv

List of Tables x

1 System Architecture for Agentic Large Language Models 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I Gym Environment for LLM Agents 5

2 Build Gym Environment for Coding Agents 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 R2E Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 R2E-Eval Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Towards R2E Programming Agents . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 Examples of R2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

II LLM Agents Planning 24

3 LLM Planning from Learning Mistakes 25
3.1 Background: In-Context Learning . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 LEAP: Learning Principles from Mistakes . . . . . . . . . . . . . . . . . . . 30
3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



ii

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 TEMPERA: Test-Time Prompt Editing Via Reinforcement Learning 38
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Test-Time Prompt Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Test-Time Editing via Reinforcement Learning . . . . . . . . . . . . . . . . . 43
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

IIILLM Interacting with Tools 53

5 Gorilla: Exploring Tool Usage of LLM Agents 54
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 RAFT: Document Understanding of LLM Agents 68
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 LLMs for Open-Book Exam . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 RAFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5 RAFT Generalizes to Top-K RAG . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.8 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

IVDeploying LLM Agents 82

7 GOEX: Towards A Runtime For Autonomous LLM Applications 83
7.1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Evolution of LLM powered Agents . . . . . . . . . . . . . . . . . . . . . . . 86
7.3 Navigating the New Frontier: Challenges in Ubiquitous LLM Deployments . 88
7.4 Designing a Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.5 GoEx: LLM Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



iii

8 Conclusion 101

Bibliography 103

A R2E 120

B In Context Principle Learning 140
B.1 Additional Results on Text Reasoning . . . . . . . . . . . . . . . . . . . . . . 140
B.2 Additional Results on Mathematical Reasoning . . . . . . . . . . . . . . . . 142
B.3 Additional Results on Text Reasoning . . . . . . . . . . . . . . . . . . . . . . 142
B.4 Additional Results on Mathematical Reasoning . . . . . . . . . . . . . . . . 144
B.5 Additional Results on BBH . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.6 Additional Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.7 Learned Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C Tempera 186
C.1 Training Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
C.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
C.3 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
C.4 Natural Instructions and Promptsource . . . . . . . . . . . . . . . . . . . . . 187
C.5 Dataset Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
C.6 Comparison of Di↵erent Method . . . . . . . . . . . . . . . . . . . . . . . . . 188

D Gorilla 193
D.1 Dataset Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
D.2 Gorilla Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
D.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196



iv

List of Figures

1.1 System Architecture of LLM Agents . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 An overview of our R2E framework that takes any GitHub repository and con-
verts it into a programming agent test environment. Given a repository, we
first scan for interesting functions and collect corresponding in-file and external-
file contexts from the repository. Next, we use our test generation approach to
develop high-quality testing harnesses for the function. Our key insight is decou-
pling the test outputs from inputs by relying on the ground truth implementation
to get the expected outputs. Next, we perform specification refinement that im-
proves the natural language docstring, making it amenable for code generation.
Our framework yields problem instances comprising docstrings, test harnesses,
and repository context (instantiated in the form of R2E-Eval benchmark). Our
benchmark can be used to evaluate code generation systems, either static ones
that directly generate code or programming agents that interact with the test
harness and interpreter to improve code generation performance. . . . . . . . . . 7

2.2 An example problem (left) in the R2E-Eval benchmark. The problem con-
tains a function indexer from the Torchsig1 GitHub repository. TorchSig is
an open-source signal processing machine learning toolkit based on the PyTorch

data handling pipeline. The function indexer has dependencies within its file
(_parse_sigmf) and from external files (SignalDesc and SignalCap from the file
torchsig/utils/types.py). On the right is the generated equivalence test harness
from our R2E framework. It contains a complex test setup where files expected
by the function indexer are created and added to the file system. Then, the
test cases generated perform functional equivalence checks for various granular
properties of the returned output. Particularly, we create equivalence tests which
instead of predicting the output behavior of the program, check it directly against
the ground truth program available on GitHub – a simpler problem that requires
constructing diverse inputs to test the function on. . . . . . . . . . . . . . . . . 8



v

2.3 Functional correctness (Pass1) of various models (GPT and CodeLLaMa fami-
lies) on our R2E-Eval. First, we note that, overall, models perform worse on our
benchmark against HumanEval, highlighting the challenging nature of real-world
code generation tasks. GPT-4 performs particularly well, achieving a Pass1 close
to 50%, much better than other models. Next, we study two retrieval settings–
dependency context and full context and find a trade-o↵ between the two (dis-
cussed in Section 2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Pass1 of models as a function of the number of unique dependencies (functions
and global variables) used in the original function. We find that models struggle
to solve problems that require orchestrating multiple existing functionalities in
the file and only perform well when a few dependencies are involved. . . . . . . 18

2.5 We measure whether self-repair using test harnesses and interpreter feedback can
help the models correct mistakes and improve performance. We collect prob-
lems on which GPT-4 and GPT-3.5-turbo fail and ask the models to iteratively
correct by providing some error messages. We find that models improve per-
formance from black-box feedback (33% and 21% respectively for GPT-4 and
GPT-3.5-turbo after 5 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Examples for learned principles using LEAP, with key idea of each principle high-
lighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 An illustration of LEAP: Given a few input-output examples, Chain-of-Thought
(left) generates a response to the test question by directly learning from the (cor-
rect) examples. In contrast, Learning Principles (LEAP, right) first (a) generates
mistaken zero-shot Chain-of-Thought response for each given input-output ex-
ample by sampling with a non-zero temperature; (b) generates explicit principles
by providing the LLM with the mistaken CoT along with the correct output;
and finally (c) generates a response to the test question, by providing the LLM
with both the given input-output examples and the learned principles. Note that
steps (a) and (b) are performed once per task. . . . . . . . . . . . . . . . . . . 27

3.3 LEAP prompt to help LLM evaluate its own generated reasoning and answers,
contrasting them with the correct reasoning and answers. The LLM is prompted
to identify errors in its reasoning and extract key insights for improvement. This
figure specifically represents the ‘GenerateExplanation‘ step in the LEAP algo-
rithm (Chapter 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



vi

3.4 Accuracy in bbh tasks, across gpt-3.5-turbo-0613, gpt-4-0613, and gemini-
pro. The figure presents the results using a scatter plot, where the y-axis rep-
resents scores achieved with LEAP, and the x-axis represents the baseline scores
from CoT. Each task is represented by a point on the plot, with di↵erent shapes
assigned to di↵erent models for easy distinction. Tasks above the y = x line
are those where LEAP leads to an improvement in performance. Chapter B.5
shows the detailed results for all 27 Big-Bench hard tasks. We find that in 37
out of 42 combinations of task and LLM, one of LEAPlow-level or LEAPhigh-level

outperforms the baseline Few-shot CoT. . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Examples from the Boolean Expressions (left) and Object counting (right) tasks

from bbh. The learned principle is highlighted in yellow, the mistaken step of
the baseline is highlighted in red, and the correct use of the principle by LEAP is
highlighted in green. This demonstrates how the learned principles guide LEAP
in generating a better answer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Data E�ciency for TEMPERA: We comopare the data e�ciency of TEM-
PERA and standard fine-tuning in a few-shot setting. Results are averaged across
four tasks: SST2, AG News, RTE and MR. It shows that our method achieves
comparable performance using 4x fewer examples. . . . . . . . . . . . . . . . . . 40

4.2 Test-Time Editing via RL: The RL agent is trained to optimize the perfor-
mance of a downstream task. At test-time, given a query, the agent adopts an
attention-based policy to edit the instructions, in-context exemplars and verbal-
izers for T rounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Data E�ciency for TEMPERA: We compare data e�ciency between TEM-
PERA and few-shot finetuning. Results show that we can achieve a good perfor-
mance with significantly less data (varying from 4x to 8x). . . . . . . . . . . . . 50

5.1 Examples of API calls. Example API calls generated by GPT-4 [130], Claude [8], and Gorilla

for the given prompt. In this example, GPT-4 presents a model that doesn’t exist, and Claude

picks an incorrect library. In contrast, our Gorilla model can identify the task correctly and

suggest a fully-qualified API call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Accuracy (vs) hallucination in four settings, that is, zero-shot (i.e., without any retriever),

and with retrievers. BM25 and GPT are commonly used retrievers and the oracle retriever

returns relevant documents at 100%, indicating an upper bound. Higher in the graph (higher

accuracy) and to the left is better (lower hallucination). Across the entire dataset, our model,

Gorilla, improves accuracy while reducing hallucination. . . . . . . . . . . . . . . . . . . 56
5.3 Gorilla: A system for enabling LLMs to interact with APIs. The upper half represents

the training procedure as described in Sec 3.2. This is the most exhaustive API data-set for ML

to the best of our knowledge. During inference (lower half), Gorilla supports two modes - with

retrieval, and zero-shot. In this example, it is able to suggest the right API call for generating

the image from the user’s natural language query. . . . . . . . . . . . . . . . . . . . . . 58



vii

5.4 Accuracy with GPT-retriever. Methods to the left of the dotted line are closed source.

Gorilla outperforms on Torch Hub and Hugging-Face while matching performance on Tensorflow

Hub for all existing SoTA LLMs - closed source, and open source. . . . . . . . . . . . . . 62
5.5 Gorilla’s retriever–aware training enables it to react to changes in the APIs. The

second column demonstrates changes in model upgrading FCN’s ResNet–50 backbone to

ResNet–101. The third column demonstrate changes in model registry from pytorch/vision

to NVIDIA/DeepLearningExamples:torchhub . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 How best to prepare for an Exam?(a) Fine-tuning based approaches imple-
ment ”studying” by either directly ”memorizing” the input documents or answer-
ing practice QA without referencing the documents. (b) Alternatively, in-context
retrieval methods fail to leverage the learning opportunity a↵orded by the fixed
domain and are equivalent to taking an open-book exam without studying. While
these approaches leverage in-domain learning, they fail to prepare for open-book
tests. In contrast, our approach (c) RAFT leverages fine-tuning with question-
answer pairs while referencing the documents in a simulated imperfect retrieval
setting — thereby e↵ectively preparing for the open-book exam setting. . . . . 69

6.2 Overview of our RAFT method. The top-left figure depicts our approach
of adapting LLMs to reading solution from a set of positive and negative doc-
uments in contrast to standard RAG setup where models are trained based on
the retriever outputs, which is a mixture of both memorization and reading. At
test time, all methods follow the standard RAG setting, provided with a top-k
retrieved documents in the context. . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 RAFT prompt to help LLM evaluate its own generated reasoning and answers,
contrasting them with the correct reasoning and answers. The LLM is prompted
to identify errors in its reasoning and extract key insights for improvement. This
figure specifically represents the ‘GenerateExplanation‘ step in the RAFT algo-
rithm (Chapter 6.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Comparison of RAFT and DSF: We prompt RAFT and DSF fine-tuned
models on the HotpotQA dataset. We can see that the DSF model extracts the
wrong information from the context. For the question, who is the screenwriter,
it responds with a film name. RAFT manages to get the result correctly . . . . . 77

6.5 How many golden documents to involve? We study the hyperparameter P%
which indicates what fraction of the training data contains the oracle document(s)
in its context. Results on NQ, TQA and HotpotQA suggest that mixing a fraction
of data that does not have the oracle document in its context is helpful for in-
domain RAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.6 Test-Time Documents Varying: We study how robust RAFT is to varying
numbers of test-time documents that a retriever might provide. In NQ, we find
that training with 4 documents leads to the best performance, but training with
2 documents is optimal for HotpotQA. However, across both datasets, training
with all datasets consisting of oracle documents hurts performance. . . . . . . . 80



viii

7.1 Evolution of LLMs powered applications and services from chatbots, to decision-
making agents that can interact with applications and services with human-
supervision, to autonomous LLM-agents interacting with LLM-powered apps and
services with minimal and punctuated human supervision. . . . . . . . . . . . . 85

7.2 GoEx’s runtime for executing RESTful API calls. Upon receiving the user’s
prompt, GoEx presents two alternatives. First, an LLM can be prompted to come
up with the (Action, Undo-Action) pair. Second, the application developer can
provide tuples of actions and their corresponding undo-actions (function calls)
from which the LLM can pick amongst. . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Runtime for executing actions on a database. We present two techniques to
determine if a proposed action can be undone. On the left, for non-transactional
databases like MongoDB, and for flexibility, we prompt the LLM to generate
(Action, Undo-Action, test-bed) tuples, which we then evaluate in a isolated
container to catch any false (Action, Undo-Action) pairs. On the right, we
can provide a deterministic undo with guarantees by employing the transaction
semantics of databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.4 Runtime for executing actions on a filesystem. GoEx presents two abstractions.
On the left, the LLM is prompted to come up with an (Action, Undo-Action,
test-bed) which GoEx evaluates in a isolated container to catch any false (Action,
Undo-Action) pairs. On the right presents deterministic guarantees by using ver-
sioning control system like Git or Git LFS. . . . . . . . . . . . . . . . . . . . . 97

A.1 Varying number of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2 Varying number of dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.3 Varying number of branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.4 Varying number of arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.5 Varying number of dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.6 Varying number of context tokens . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.7 Varying number of ground truth tokens . . . . . . . . . . . . . . . . . . . . . . . 139
A.8 Varying File usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

C.1 Data E�ciency for TEMPERA: We plot all the finetuning performance for
8 tasks we tested. We see that TEMPERA often achieves the better few-shot
performance except for MRPC and QNLI. . . . . . . . . . . . . . . . . . . . . . 188

C.2 Comparison of Di↵erent Prompting Methods: We compare the di↵erent
property of di↵erent algorithms. We can see that TEMPERA is gradient-free,
the resulting prompt is interpretable and query-dependent. . . . . . . . . . . . . 189

D.1 Domain names: Domain names with the three dataset. Tensor Hub is the
smallest dataset while the other two hubs contain many more models. . . . . . . 195



ix

D.2 Example of the Dataset: Two examples of the dataset, the above one is zero-
shot (without information retrievers) and the bottom one is with information
retriever. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

D.3 Example of the Dataset: Two examples of the dataset, the above one is zero-
shot (without information retrievers) and the bottom one is with information
retriever. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

D.4 Hallucination Examples: GPT-4 incurs serious hallucination errors in Hug-
gingFace. We show a couple of examples in the figure. . . . . . . . . . . . . . . 198

D.5 Performance: We plot each model’s performance on di↵erent configurations. We see that

Gorilla performs extremely well in the zero-shot setting. While even when the oracle answer is

given, Gorilla is still the best. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
D.6 Accuracy vs Hallucination: We plot each model’s performance on di↵erent configurations.

We found that in the zero-shot setting, Groilla has the most accuracy gain while maintaining

good factual capability. When prompting with di↵erent retrievers, Gorilla is still capable to

avoid the hallucination errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
D.7 The API calls that the Gorilla model is trained on is able to call the right API,

but the supporting zip() code has a bug. . . . . . . . . . . . . . . . . . . . . . . 201



x

List of Tables

2.1 Test generation evaluation results across 3 strategies–Näıve, Full, and Sliced–for
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Chapter 1

System Architecture for Agentic
Large Language Models

1.1 Motivation

A promising direction for leveraging and deploying large language models (LLMs) involves
conceptualizing them as general-purpose decision-making entities—often termed AI agents.
Numerous publications and frameworks have explored potential agent designs and capabili-
ties, yet the field still grapples with fundamental questions: What truly constitutes an LLM
agent? Some define agents by their ability to use tools, others emphasize planning and
iterative refinement, and still others highlight the presence of latent state.

The notion of AI agents arose shortly after World War II, and the term itself dates back
to 1956. Early formative work, such as that of Russell and Norvig (1995), provided a lasting
conceptual framework:

“We define AI as the study of agents that receive percepts from the environment and
perform actions. Each such agent implements a function that maps percept sequences to
actions, and we cover di↵erent ways to represent these functions, such as reactive agents,
real-time planners, and decision-theoretic systems.” – (Russell and Norvig, p. 25)

From the outset, researchers aimed to develop agents capable of autonomous decision-
making in complex domains. Initial progress centered largely on reinforcement learning,
where agents learned optimal strategies through iterative trial and error within a given
environment, guided by a reward structure. Classical milestones in this area often emerged
from well-defined games and control tasks, culminating in achievements such as DeepMind’s
AlphaGo. In 2016, AlphaGo’s victory over one of the world’s top human Go players was a
watershed moment, demonstrating that reinforcement learning, combined with deep neural
networks and strategic search techniques, could surpass human-level performance in complex
decision-making challenges.
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Despite these successes, early agents were typically confined to narrowly defined domains
and depended on carefully engineered training protocols and reward functions. They excelled
where goals and rules were explicit, but faltered in more open-ended, ambiguous environ-
ments that demanded linguistic interaction and flexible reasoning. Over time, improvements
in training methodologies and computational power ushered in a new class of AI agents
rooted in large language models. While these LLM-based agents inherit foundational con-
cepts from their reinforcement learning predecessors, they di↵er in essential ways. Rather
than primarily relying on reinforcement signals, these agents learn from massive corpora of
human-generated text, internalizing statistical patterns, contextual cues, and nuanced se-
mantics. They handle tasks once considered outside the scope of narrow AI: engaging in
natural dialogue, reasoning about abstract concepts, integrating knowledge across domains,
and adapting strategies without explicit instruction.

This transition—from specialized, reward-driven agents like AlphaGo to broader, LLM-
based agents—reflects an evolution in the underlying design, training, and deployment
paradigms. Instead of tailoring agents to single-purpose tasks, we now empower them with
expansive linguistic and conceptual understanding. Such agents can more easily adapt, col-
laborate with human partners, and handle open-ended complexity. They serve as a versatile
foundation of intelligence, readily augmented with new capabilities and minimal retraining.
Moving forward, this progression points toward a future where AI agents are not just adept
at solving well-defined problems, but can operate as adaptable, language-fluent collaborators.
They will interact seamlessly in complex, unstructured environments, interpret ambiguous
objectives, and refine their strategies through an ongoing dialogue with human insight.

These developments motivate a reexamination of LLM agents: situating them within
general environments and devising e↵ective algorithms for their training, ultimately guiding
the field toward more capable, resilient, and context-aware autonomous systems.

Figure 1.1: System Architecture of LLM Agents
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1.2 Outline

This thesis systematically explores four primary areas integral to the development and de-
ployment of large language model (LLM) agents: simulation environments, training algo-
rithms, tool usage, and system assurances. Each chapter identifies limitations in previous
work and demonstrates how the proposed contributions address these gaps.

Building Generalizable Training Environment Traditional simulation environments,
such as OpenAI Gym and robotics-focused platforms, are largely tailored to physical or con-
strained task domains. These environments excel in tasks like control and navigation but
lack the flexibility to model complex, interactive software systems where coding agents can
operate. For instance, they do not accommodate tasks like resolving GitHub pull request
issues, where the environment must be equipped with coding interfaces, version control, and
contextual understanding.

In the first chapter we present R2E, a novel “gym” environment designed generally for
coding agents. Unlike existing platforms, R2E leverages Docker-based containers to create
flexible and reproducible coding environments. It enables LLMs to engage in tasks such as
analyzing, modifying, and resolving GitHub pull requests in a controlled yet realistic setting.
By bridging the gap between simulation and real-world software tasks, R2E provides a robust
platform for both training and evaluating coding agents.

LLM Agents have Advanced Reflection and Planning Capabilities Early re-
inforcement learning methods, exemplified by AlphaGo, demonstrated remarkable success
in well-defined domains with explicit rules and objectives. However, these methods strug-
gle with tasks requiring adaptive planning and self-reflection in open-ended or ambiguous
environments. Existing LLM training methods often neglect structured planning, focusing
instead on task-specific fine-tuning or general language understanding.

The second chapters concludes two works: LEAP (In-Context Principle Learning) shows
that LLMs can learn from their mistakes by leveraging in-context feedback, enabling them
to iteratively refine their outputs. Unlike traditional guided sampling algorithms, LEAP in-
tegrates error histories as part of the learning loop, enhancing the model’s capacity for adap-
tive reasoning. TEMPERA is a reinforcement learning-based training paradigm that enables
LLMs to generalize planning capabilities across unseen scenarios. TEMPERA demonstrates
that models can learn to formulate and execute plans without requiring explicit task-specific
objectives during training. Together, these contributions significantly enhance the planning
and decision-making abilities of LLM agents.

LLM Agents Interact with Adaptive Action Space Previous RL works often pre-
defines an action space, that greatly limited the generalization of an agent. On another
thread, LLM for tool usage often relies on rigid, predefined tool integration, which lacks
adaptability to new tools or evolving tasks. Equiped with the text understanding of tool
documenats, LLMs can now cope with adaptive tooling space, allows more flexibility to cope
with complex environment.

In this chapter, Gorilla is a fine-tuning approach that focuses on enabling e�cient and
contextually appropriate tool usage. By leveraging standard supervised fine-tuning tech-
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niques, Gorilla equips LLMs to seamlessly interface with external tools across a range of
tasks. RAFT (Retriever-Aware Fine-Tuning) enhances the LLM’s ability to retrieve and
interpret tool documents e↵ectively. RAFT optimizes document understanding through a
retriever-aware fine-tuning process, ensuring the model can dynamically adapt to diverse
real-world constraints. These contributions empower LLM agents to handle more complex
tasks that require adaptive external tool integration.

Ensuring System Reliability and Safety in Real-World Deployment Deploying
autonomous agents in real-world environments introduces significant risks, particularly as
LLMs gain the capability to make decisions without continuous human oversight. Existing
systems often lack robust mechanisms for rollback or post-facto verification, which are critical
for mitigating errors and ensuring safe operation.

GOEX addresses these challenges by proposing a set of system design principles aimed at
enhancing reliability and safety. Key features include: (1) Rollback Mechanisms: Allowing
agents to reverse potentially erroneous actions based on contextual or human feedback. (2)
Post-Facto Verification: Enabling thorough evaluation of agent decisions after execution,
ensuring accountability and minimizing risks. These mechanisms establish a framework
for deploying LLM agents in practical applications with increased confidence and reduced
operational hazards.
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Part I

Gym Environment for LLM Agents
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Chapter 2

Build Gym Environment for Coding
Agents

While Large Language Models’ (LLMs) coding capabilities have advanced rapidly, corre-
sponding evaluation benchmarks on real-world programming setups are yet to catch up.
Building a scalable and interactive testbed for evaluating general-purpose AI coding agents
for real-world code has been challenging, particularly due to a lack of high-quality test suites
available. In this paper, we present Repository to Environment (R2E), a framework that
can turn any GitHub repository into a test environment to evaluate the performance of code-
generating systems, both static and interactive. R2E is powered by a synergistic combina-
tion of program analysis and LLMs to construct equivalence test harnesses for any GitHub
function. We instantiate our framework to build the first large-scale benchmark, R2E-Eval,
for building realistic environments for AI coding assistants. Our results demonstrate that
even when SOTA models cannot generate correct solutions with advanced prompting tech-
niques, they can e↵ectively use environment feedback highlighting the need to move from
static functional coding to interactive programming paradigm. We hope that our framework
(and the instantiated benchmark) can motivate research directions by providing web-scale
open-ended coding testbeds.

2.1 Introduction

The rapid improvement of LLMs’ performance on code-related tasks has enabled the de-
velopment of coding assistants deployed in the real world. However, evaluations on such
real-world coding setups have not kept pace. Prior benchmarks [27, 204] used for evaluating
coding capabilities of LLMs only consist of short and isolated functional code completion
problems. On the other hand, real-world software engineering requires more complex work-
flows involving integrating code with existing (large) codebases, using libraries, interacting
with the interpreter, debugging errors, etc. In this work, to capture this interactive aspect
(in contrast with single-shot code generation), we consider programming agents as AI sys-
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tems that can similarly use interpreters and error feedback to improve their own outputs
given a specification. As such programming agents become more powerful, it urges the need
to build real-world test environments to evaluate them.

 Self-
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Figure 2.1: An overview of our R2E framework that takes any GitHub repository and con-
verts it into a programming agent test environment. Given a repository, we first scan for
interesting functions and collect corresponding in-file and external-file contexts from the
repository. Next, we use our test generation approach to develop high-quality testing har-
nesses for the function. Our key insight is decoupling the test outputs from inputs by relying
on the ground truth implementation to get the expected outputs. Next, we perform specifi-
cation refinement that improves the natural language docstring, making it amenable for code
generation. Our framework yields problem instances comprising docstrings, test harnesses,
and repository context (instantiated in the form of R2E-Eval benchmark).
Our benchmark can be used to evaluate code generation systems, either static ones that
directly generate code or programming agents that interact with the test harness and inter-
preter to improve code generation performance.

In this work, we propose Repository to Environment (R2E), a scalable framework
for turning any GitHub repository into a test environment to evaluate the performance of
code generation systems on real-world scenarios. We build on a key insight that test suites if
synthesized for real-world code, can act as checks as well as orchestrators for execution-guided
programming environments. R2E takes a function (from GitHub), constructs an equivalence
test harness – a sca↵old consisting of test cases and a setup that establishes the operational
conditions and dependencies of the function. R2E further refines the docstring and uses the
refined specification along with repository code and test harness as a problem instance for
studying code generation. Figure 2.1 (left) provides an end-to-end diagram of our approach.

These environments serve two evaluation purposes: First, a code generation system can be
evaluated via the environment in these real-world scenarios. Secondly, even for an interactive
programming agent, our environment can provide feedback to the agent using the interpreter
(Figure 2.1 right). Notably, R2E framework is scalable and can be used to build web-scale
open-domain coding datasets. Furthermore, R2E requires minimal human supervision and
can be updated in a live manner for contamination-free evaluation.

Using this framework, we construct R2E-Eval, the first large-scale benchmark of real-
world coding problems consisting of natural-language docstrings, repository contexts, and
equivalence test harnesses. Figure 2.2 shows an example of a function and corresponding
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Figure 2.2: An example problem (left) in the R2E-Eval benchmark. The problem contains
a function indexer from the Torchsig1 GitHub repository. TorchSig is an open-source sig-
nal processing machine learning toolkit based on the PyTorch data handling pipeline. The
function indexer has dependencies within its file (_parse_sigmf) and from external files
(SignalDesc and SignalCap from the file torchsig/utils/types.py). On the right is the
generated equivalence test harness from our R2E framework. It contains a complex test
setup where files expected by the function indexer are created and added to the file system.
Then, the test cases generated perform functional equivalence checks for various granular
properties of the returned output. Particularly, we create equivalence tests which instead
of predicting the output behavior of the program, check it directly against the ground truth
program available on GitHub – a simpler problem that requires constructing diverse inputs
to test the function on.

synthesized test harness from our dataset. Our dataset comprises of 246 tasks extracted from
137 repositories containing 127.2 code tokens, 11.5 tests, and 3.7 dependencies per problem,
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on average.
Finally, we evaluate current LLMs on real-world scenarios from our benchmark. We find

that compared to HumanEval models perform worse on these problems, highlighting the
challenges of real-world programming. Popular techniques like Chain-of-Thought (COT) do
not help with performance. On the other hand, LLM agents that interactively program
using the test harness and execution feedback greatly improve their performance. We also
provide insights into model behavior specific to real-world programs, such as challenges in
understanding interfaces to existing functions and reasoning about complex objects.

Overall, we find that real-world programming is complicated, even for SOTA LLMs
(GPT-4), motivating the use of better workflows that mimic a typical developer’s program-
ming process. This underscores the need to move from static functional coding to interactive
programming, the evaluation of which our framework enables. Finally, the interactions col-
lected in R2E environments can help improve various code-related abilities of LLMs.

2.2 Background

Our R2E pipeline is powered by a synergy of program analysis and LLMs. Here, we provide
background on some concepts used in the following sections.

Testing Testing for functional correctness extends beyond mere input-output pairs, en-
compassing the broader dependencies that real-world software relies on. A Test Harness
encapsulates this by combining Test Cases (defining inputs and expected outputs) and a
Setup (establishing the operational conditions and dependencies like configuration files).The
complexity of test harnesses, as illustrated in Chapter 2.2, surpasses the simple input-output
examples in previous benchmarks, like HumanEval [27]. For instance, in Chapter 2.2, the
test harness contains the required setup of files in a directory (i.e., file system dependency)
that the program expects to run successfully.

Code Coverage The quality of tests is widely measured by its coverage–the fraction
of code elements (e.g., statements or branches) it exercises [61]. For example, a test that
executes all lines of a function is said to have line coverage of 100%. A high coverage is
desirable to ensure a function is tested thoroughly. We use branch coverage to evaluate
the quality of our tests as it o↵ers a more fine-grained measure than line coverage.

Program Analysis for Slicing Context To e↵ectively test repository code, we must
grasp the function’s operational context, which encompasses the functions and global vari-
ables it interacts with. We employ dependency slicing to construct this context, defining a
slice Df for function f as the set of functions F 0 called by f and global variables G0 accessed
by f , both directly and indirectly. The top-left of Chapter 2.2 shows an example of a depen-
dency slice extracted for a function indexer, that serves as a minimal context necessary to
comprehend the function’s behavior. The resulting slice Df provides the minimal context for
understanding f ’s behavior and indicates its connectivity within the repository, quantified
by the slice size |Df |.

1https://github.com/TorchDSP/torchsig



CHAPTER 2. BUILD GYM ENVIRONMENT FOR CODING AGENTS 10

2.3 R2E Framework

GitHub is a rich data source for realistic code problems, but repositories in the wild can be
quite noisy, hard to run, and poorly maintained. We here propose R2E, an automated frame-
work that turns any GitHub repository into a test environment to evaluate the performance
of code generation systems on real-world code.

Section 2.3 details our initial problem curation process. Section 2.3 describes our test
harness synthesis approach. We evaluate the quality of our synthesized tests in Section 2.3.
Finally, we describe how problem specifications can be refined to build a high-quality bench-
mark in Section 2.3.

Problem Curation

Repository Curation

We scraped Python repositories on GitHub created after July’22 that are non-forks, have at
least 40 stars, and contain either a toml or setup.py file. This date aligns with the reported
cuto↵ data for OpenAI models GPT-3.5-turbo and GPT-4, thus preventing contamination.
Each repository was cloned into a Docker container and built using pip install Repositories
with build errors were excluded. However, we are still left with uninstalled packages due
to incomplete build files on GitHub, which we resolve by tuning the docker image with the
relevant pre-installed packages.

Function Curation

We first extract all functions from the collected repositories to identify functions suitable for
natural-language-driven code generation and functional correctness evaluation. We then fil-
ter out functions lacking docstrings to ensure we have a natural language prompt equivalent.
We apply keyword-based filters to exclude functions associated with GPU and cloud-related
tasks since they are not conducive to standard functional correctness evaluations. Lastly,
we estimate the complexity of the functions using its connectivity (detailed in Chapter 7.2).
We filter out functions that do not call other components in the repository.

Through these stages of filtering, we collected candidate 2073 problems from 790 reposi-
tories.

Equivalence Test Harness Generation: A Key to Environments

GitHub repositories lack high-quality tests necessary for evaluating code generation, thus
requiring automated test harness generation to collect problems scalably.

If generated, these tests can act as checks and orchestrators for execution-guided pro-
gramming agents. As checks, they can evaluate the functional correctness of generated code.
As orchestrators, they can run the generated code, capture compiler feedback, enable repair,
and more.
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To tackle this, R2E synthesizes tests for arbitrary GitHub code using a novel synergy
of program analysis with LLM prompting. Below, we summarize some of the key design
choices of R2E’s test generation approach.

Harnesses, not I/O pairs R2E generates equivalence test harnesses (Chapter 7.2)
for each function, which contain the test cases and the required setup, such as database
connections, external files, configurations, etc., that makes it possible to run functions in the
wild. This is a departure from traditional I/O tests in benchmarks such as HumanEval [27].
This is necessary because real-world code often requires more than simple input arguments
to run. They may need several dependencies, such as access to files, environment variables,
and other functions.

Equivalence Tests, not Output Prediction R2E decouples test outputs from inputs.
It instead uses the original function as a reference implementation to generate expected
outputs. This key insight dramatically simplifies test generation since it removes the need to
predict outputs. Consequently, we generate equivalence tests—they check if the outputs of
the original function and the generated function is equivalent against a given set of inputs.

Sliced Context, not Entire Repositories Test generation using LLMs has been
e↵ective in prior work like HumanEval+ [100] for simple isolated functions. However, in a
repository setting, prompting with the function alone is insu�cient, and providing the entire
repository is expensive. R2E uses a novel dependency slicing based prompt to extract the
minimal repository context required to understand the functionality of the function under
test. As described in Chapter 7.2, it finds functions and global variables on which the
function directly or indirectly depends.

Execution and Coverage for Quality Control Finally, recent studies have shown
that execution-based benchmarks can be flawed due to low-quality tests [100]. To avoid
this, we execute the generated test harnesses in the docker container built for the reposi-
tory. Equivalence tests are run in “self-equivalence” mode, so the function under test and
the reference implementation are the same. Inoperative harnesses due to issues like missing
packages are excluded. An (equivalence) test harness is deemed valid if all the (equiva-
lence) tests pass. We further emphasize the quality of test cases by using branch coverage
(Chapter 7.2). This check is critical to ensure that the generated tests cover the function’s
complete behavior and can be used for checking functional equivalence.

We encode our design decisions as guidelines to prompt GPT-4-turbo and use the sliced
context to generate high-quality test harnesses. Chapter 2.2 shows the resulting harnesses
that handle complex data types and unique setups, depending on the function’s requirements.
We outline additional guidelines for test generation in the appendix.

Test Harness Evaluation

Experiment Setup

We evaluate equivalence test harness generation on two fronts. First, measure validity, i.e.,
does it execute the original function while passing all equivalence tests? Then, we also
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In-File Out-File

Strategy Val Cov Val Cov

Näıve 41.4% 95.1% 32.1% 93.6%
Full 48.4% 95.1% 39.4% 92.5%
Sliced 50.0% 96.6% 46.3% 95.0%

Table 2.1: Test generation evaluation results across 3 strategies–Näıve, Full, and Sliced–for
prompt context creation. The results are compared on 2 settings: In-File where the function
under test only depends on the context within its file, and Out-File where it depends on
external files in the repository. The metrics used are Validity (Val) and Coverage (Cov), for
which higher is better.

evaluate the quality using branch coverage (Chapter 7.2) to identify how well the tests cover
the function’s behavior–a critical property for equivalence checking.

We consider three strategies for test generation in a repository context: Naı̈ve, Full,
and Sliced. The Naı̈ve strategy prompt contains the function and no context. The Full

strategy provides the file containing the function and all files it imports (until a 6000 token
limit). Finally, the Sliced strategy implements our proposed dependency slicing to provide
the minimal context required for the function. We compare these strategies in 2 problem
settings: (1) In-File: where the function under test depends only on the context within its
file and (2) Out-File: where it depends on external files in the repository. We generate all
tests using the state-of-the-art GPT-4-turbo model.

Validity and Quality Results

Chapter 2.1 shows the results of our evaluation.
Focussed context improves coverage. The Naı̈ve strategy performs relatively poorly

on validity (as low as 32%), but the valid test harnesses it generates have high coverage
(93.6%). For example, näıvely generated tests often fail to generate correct input argument
types (e.g., schemas or custom classes) due to the lack of necessary context.

Broader context improves validity. On the other hand, the Full strategy generates
more valid tests (as high as 48.4%) but has lower coverage (92.5%). This indicates that a
focused context can be more e↵ective in covering corner cases in the function, but a broader
context is necessary to understand the function’s dependencies.

Our sliced strategy strikes a good balance between the two and achieves the best results
in validity and coverage. Overall, we observe that R2E’s dependency slicing-based strategy
generates ⇡ 50% valid test harnesses with a high ⇡ 95% code coverage.
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Failure Modes

We collected and classified invalid Equivalence test harnesses, and study their failure modes.
We discovered that 40% of errors were due to ValueErrors and TypeErrors, reflecting im-
proper key, attribute, or type usage in tests. Additionally, 15% were DataFormatErrors,
caused by incorrect data formats or schemas, highlighting the complexity of testing GitHub
code beyond primitive types.

AssertionErrors (expected and actual outputs don’t match) accounted for a notable 25%
of errors, showing a nuanced aspect of functional correctness in real-world code. Although
R2E simplifies this to equivalence tests, assertions often need more granularity than simply
checking for equality. For example, checking for class attributes, columns in a dataframe, etc.,
requires a deeper understanding of code and repository context. Lastly, EnvironmentErrors
(21%), like OS and File system errors, indicate challenges with test environment configura-
tion.

Refinement of Specifications

Natural language docstrings in GitHub repositories might be ambiguous or under-specified
to be used for code generation. Here, we propose an automated approach to refine the
natural language docstring of a given function by asking the model to refine the docstring in
a self-instruct-like fashion [202]. Distinctly, however, we provide the model with additional
context in the form of the original docstring, test harness class, argument types, and serialized
input-output arguments available via the test harness.

We note that while we cannot evaluate the quality of refined specifications, we perform
rigorous manual evaluations and filter problems with poor or ambiguous specifications.

2.4 R2E-Eval Benchmark

We showed that R2E enables a scalable framework for building execution-based test envi-
ronments for programming agents. R2E takes a function from a codebase and converts it
into a tuple I = {D, R, T}, where D is a refined docstring for a function, R is the remainder
of the codebase, and T is the generated test harness.

We instantiate this framework to construct R2E-Eval, the first large-scale dataset of
real-world code generation problems with functional correctness tests. Chapter 2.2 compares
R2E-Eval against several popular benchmarks used to evaluate code generation capabilities
of LLMs. Prior work like HumanEval [27] and ODEX [204] support execution-based met-
rics but for isolated simple problems with no real-world repository setting. Recent work
on repository-level code generation like CrossCodeEval [41], RepoBench [103], and Repo-
Eval [238] use repository context, but either forego execution-based evaluation or depend
heavily on human-written tests, which are seldom available at scale on GitHub. R2E-Eval
is the only executable benchmark that has repository context and is automated, enabling
scalability. Following, we describe the construction of R2E-Eval and analysis.
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Dataset Exec? Repo? Auto? LOC #Tests

HumanEval 3 7 7 6.26 6.6
ODEX 3 7 7 3.05 1.9

CrossCodeEval 7 3 3 1.0 -
RepoBench 7 3 3 1.0 -
RepoBench-Func 3 3 7 10.8 -

R2E-Eval 3 3 3 10.5 11.5

Table 2.2: Comparing R2E-Eval with other NL-to-code generation benchmarks, in terms of
test execution-based support (Exec?), use of repository context (Repo?), and the number
of lines in the ground truth function (LOC). R2E-Eval is the only executable benchmark,
has repository context, and is automated, enabling scalability. Additionally, our benchmark
contains more tests (harnesses) per function with diverse input types and quality assurance.

Feature Value

# Problems (# Repos) 246 (137)
Avg. # lines (# tokens) 10.5 (127.2)
Avg. # tests (coverage) 11.5 (92.2)
Avg. # dependencies 3.7
# Unique APIs 70
# Unique Arg Types 118

Table 2.3: Statistics for problems instances in our R2E-Eval.

Benchmark Construction

Dataset Quality

We emphasize heavily on the quality of problems in this work. Quality, here, means how
well the function, docstring, and test cases are written. To ensure this, we only consider
functions with high branch coverage. Our final benchmark problems have an average of 11.5
test cases with 92.2% average branch coverage. An additional round of manual inspection
helps us select high-quality problems. Notably, in the manual inspection, we avoid very
long or complex that is hard to specify precisely using docstrings (like functions with many
peculiar corner cases).

Dataset Composition

We also consider the diversity and interestingness of the problems in the benchmark. We
identify several properties of code that calibrate interestingness, such as # of dependencies,
argument types, lines, libraries used, etc.

Table 2.3 showcases statistics of our benchmark. Our manual analysis also shows that
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R2E-Eval problems are diverse in terms of the domains they cover: pythonic operations
(list, str, dict manipulations), data manipulation (JSON, files, pandas, numpy), algorithm
and protocol implementations (networkx, statistics), domain-specific problems (programming
languages, networks, quantum computing, formal verification, numerical computing), and
more.

We also ensure that the benchmark is diverse in terms of the number of distinct reposito-
ries, preventing bias towards a codebase or domain. Overall this process leads to a curated
set of 246 problems from 137 repositories in R2E-Eval.

Each problem instance I can be used to evaluate a code generation system by providing
docstring D to the system and evaluating its response (in the context of the repository R)
against the generated test harness T .

2.5 Towards R2E Programming Agents

We conduct experiments to understand three important problems about LLM performance
on real-world coding.

Q1 How well can current LLMs solve the real-world code generation tasks statically? (Sec.
2.5)

Q2 What are the typical LLM failure modes? (Sec. 2.5)

Q3 How do programming agent paradigms (like self-repair) perform against static pro-
gramming? (Sec. 2.5)

Our results show that the SOTA LLM model (GPT-4) can only achieve ⇠ 50% performance
in R2E-Eval, despite high accuracy on HumanEval. Throughout the analysis, we find that
LLMs struggle at understanding interfaces to existing functions and reasoning about com-
plex objects. Finally, we compare static coding approaches (e.g., COT) with the proposed
interactive programming paradigm, demonstrating significant benefits from the latter.

Static Code Generation

First, we study direct code generation on the R2E-Eval dataset, i.e., using code generation
without interaction. Owing to the test harnesses generation approach, we perform functional
correctness evaluations for the generated code. This contrasts with prior works [103, 41] that
rely on execution-free exact-match metrics to evaluate code completion in the repository
setting, which can be unreliable and restrict the scope of the evaluation.

We use Pass1 to evaluate the functional correctness, computed by generating 5 candidate
completions for each problem instance and computing the fraction that passes against the
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Figure 2.3: Functional correctness (Pass1) of various models (GPT and CodeLLaMa fami-
lies) on our R2E-Eval. First, we note that, overall, models perform worse on our benchmark
against HumanEval, highlighting the challenging nature of real-world code generation tasks.
GPT-4 performs particularly well, achieving a Pass1 close to 50%, much better than other
models. Next, we study two retrieval settings–dependency context and full context and find
a trade-o↵ between the two (discussed in Section 2.5).

test harness. We consider a mixture of closed access and open access models for our exper-
iments – GPT-4, GPT-3.5-turbo, CodeLLaMa-7B, CodeLLaMa-13B, and CodeLLaMa-
34B2. Since GPT-4 and GPT-3.5-turbo are instruction-tuned models, we use the chat style
prompt for them while using the code completion prompt from the CodeLLaMa models.
We elaborate further on our setup, models, and prompts.

Contamination GPT-4 and GPT-3.5-turbo have a cut-o↵ date of 2021 and are there-
fore not contaminated on our benchmark since we curate our problems from repositories
created after August 2022 (see Section 2.3).

Given a problem instance I = {D, R, T} in our benchmark, we need to use the remaining
repository context to generate the code. Since the entire repository context can be very
large, we retrieve content to provide the model (detailed ahead). We first evaluate how
current models hold up on our benchmark and then study how the choice of retrieval impacts

2We use the Python variants of the CodeLLaMa models.
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performance. Next, we study the e↵ect of using chain-of-thought prompting (COT) [206]
for improving model performance on harder tasks.

Model Performance Figure 2.3 compares the performance of various models on our
benchmark using the Pass1 (CL used for brevity in the figure instead of CodeLLaMa).
We find that the performance of various models is relatively lower than other benchmarks
like HumanEval. This is expected since our benchmark represents more challenging real-
world problems collected from GitHub, which require understanding existing context from
the repository before generating the code. We find that GPT-4 performs significantly better
than all other models with a Pass1 close to 50% whereas other models only achieve Pass1 in
the vicinity of 30%.

E↵ect of retrievalWe study the e↵ect of function-definition retrieval vs. function-usage
retrieval using dependency slicing (Chapter 7.2) on the ground-truth function. Specifically,
dependency-only-context only provides the necessary definitions, while the full context set-
ting adds the remainder of the file and other files until a 6000 token limit. Chapter 2.3
compares the two settings.

The two retrieval methods perform similarly, achieving ±1% of each other’s performance
across most models. On a closer look, we find non-overlapping problems with a Pearson
correlation coe�cient of 0.48. We find that dependency-only-context vs full-context provides
an interesting trade-o↵. On the one hand, dependencies provide a more focused view of
relevant function implementations to the model. At the same time, function usage (present
in full context) is often reused and enables models to copy it directly. See Chapter A in
the Appendix for a more detailed discussion and examples of this trade-o↵. Finally, we
believe that R2E-Eval provides a unique opportunity to study this problem in the future
with execution enabled.

E↵ect of COT We study better-prompting strategies and look at both zero-shot and
two-shot COT prompts that sketch a plan for the function implementation before generating
the code. We study this for the instruct GPT-3.5-turbo and GPT-4 models but find that
COT like setup does not improve performance over direct prompt (Table A.4 in Appendix).

Model Behaviour & Failure Analysis

Performance with problem-complexity We measure the complexity of a problem in-
stance using (1) the number of tokens in the ground-truth implementation, (2) the number
of dependencies used by the ground-truth implementation 3. We find that both these mea-
sures are (inversely) correlated with the Pass1 of the models. In Figures 2.4 and A.7, we
plot the Pass1 of the models against the number of dependencies and the number of tokens
used in the ground-truth implementation showing a downward trend.

Single File vs Multi-File Context We compare how models perform on problems
that require only a single file to be generated against problems that require multiple files to
be generated. Model performance is significantly better on single-file problems than multi-

3counted using the number of unique functions or global variables used in the function body.
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Figure 2.4: Pass1 of models as a function of the number of unique dependencies (functions
and global variables) used in the original function. We find that models struggle to solve
problems that require orchestrating multiple existing functionalities in the file and only
perform well when a few dependencies are involved.

file problems (Figure A.8). This suggests that a.) models struggle with multi-file contexts
compared to single-file contexts and b.) problems in the multi-file category are more complex
than single-file problems in our benchmark, also observed in practice.

Do not understand the interface to provided functions We find that when pro-
vided with complex functions in the context, LLMs do not understand the right input-output
behavior of such functions and pass in wrong inputs or expect wrong outputs. Thus, even
strong LLMs like GPT-4 make mistakes when provided with complex functions in the con-
text. See Listings A.1 for reference. This motivates that if provided access to execution
context, programming agents can understand such interfaces and perform better.

Repeat vs Reuse Code Abstractions are an integral part of writing good code. LLMs,
however, tend to duplicate code instead of using existing context. Specifically, when provided
with some existing function in the context, models re-implement the same functionality
instead of directly using it. Listings 2.1 provide examples. This aligns with findings on how
copilot a↵ects code quality [16].
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Figure 2.5: We measure whether self-repair using test harnesses and interpreter feedback can
help the models correct mistakes and improve performance. We collect problems on which
GPT-4 and GPT-3.5-turbo fail and ask the models to iteratively correct by providing some
error messages. We find that models improve performance from black-box feedback (33%
and 21% respectively for GPT-4 and GPT-3.5-turbo after 5 iterations.
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Self-Repair Agent

So far, we described model evaluations on our benchmark using the direct code generation
approach. However, testing harnesses and access to the interpreter allow us to evaluate
programming agents that can interact with the interpreter and get feedback. Specifically,
we instantiate a self-repair agent that uses the test harness

We study that when provided with feedback from (oracle) testing harnesses (present
in our benchmark instances), can LLMs correct their own mistakes? We sample 56 and
48 instances from our benchmark for GPT-4 and GPT-3.5-turbo on which the models do
not generate a correct solution (detailed experiment setup in Section A in the Appendix).
We consider the incorrect programs generated by the models as the initial programs and
then provide the models with error feedback using the harness iteratively for 5 iterations.
Figure 2.5 shows the self-repair rate of the models on our benchmark as a function of the
number of iterations.

First note that since we subsample only the failing instances where models do not gen-
erate correct solutions, the 0-th iteration score is 0% for both models. Next, we find that
GPT-4 attains a maximum self-repair rate of 33% while GPT-3.5-turbo only attains a
maximum self-repair rate of 20%. This highlights that using execution, interpreter, and
test cases, programming agents can improve code generation. Note that while advanced
prompting techniques do not improve performance (Table A.4), using an interpreter enables
programming agents to achieve strong results.

2.6 Related Work

Code Generation Benchmarks. Code generation is primarily evaluated using functional-
correctness and has been explored in multiple domains. HumanEval [27] and MBPP [10]
study code generation on isolated single-function problems. APPS [56] and Code-Contests [91]
benchmarks are primarily used for evaluating algorithmic code generation capabilities. DS-
1000 [83], Arcade [228], NumpyEval [235], and PandasEval [64] study data science API
code generation. More recently, [204] proposed ODEX that evaluates coding on APIs with
human-written input-output examples. These works evaluate code generation capabilities in
isolated settings devoid of surrounding context or dependencies from other files. In contrast,
R2E coding problems are curated directly from GitHub thus more similar to real-world
setups. InterCode and WebArena provide general environments for domain-specific inter-
active programming and web tasks respectively. We provide a framework and environments
for interactive general-purpose programming tasks extract from GitHub.

For the repository setting, prior works have primarily focused on execution-free evaluation
metrics like exact-match and BLEU due to absence of test harnesses. CoNaLA [227] curated
a large dataset from StackOverflow with paired natural language and program snippets.
[174, 175] study di↵erent context selection methods for prompting and training LLMs for
repository-level code generation.
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RepoEval [233], RepoBench [103], and CrossCodeEval [41] study repository-level code
completion. However, these works only evaluate short context code generation capabilities
without execution or functional correctness restriction to short completions. In contrast,
we synthesize function-level test harnesses using our novel test generation approach and use
them for performing function correctness checks on repository code. Recently, [69] proposed
SWEBench to evaluate whether LLMs can solve GitHub issues. However, they assume
test cases availability from pull requests preventing scalable collection of problems. Our test
harness synthesis in contrast allows collecting problems from diverse set of repositories (137
repositories vs 12 repositories). Finally, [42] proposed, ClassEval, manually curated for
evaluating LLMs.

Other code-related tasks. Beyond codegen, tasks like self-repair [29, 128, 116, 137,
234], test generation [191, 205], execution [10, 96, 52], and optimization [114] have been stud-
ied. These enable various agentic setups as CodeT [26], [75], Parsel [230], FunSearch [153],
Reflexion [173], LEVER [125], CodePlan [13], AlphaCodium [152], React [224], and
ToT [225].

2.7 Limitations

Limitations Natural language is inherently ambiguous and docstrings might not specify
the corner cases properly. We tried to mitigate this e↵ect with our specification refinement
approach along with manual filtering. Future work study this ambiguity in more and also
look into better interaction mechanisms. Next, we use observational equivalence to check
whether the model-generated candidates are correct over a set of inputs. We use branch
coverage as a metric for evaluating tests but it is still a softer check. Future work can apply
mutation testing and oversampling to provide further confidence on generated tests.

Conclusion We propose R2E, a scalable framework to convert GitHub repositories
to programming agent test environments. R2E-Eval constructed via this framework can
evaluate both static and interactive code generation systems, o↵ering valuable insights into
model behaviors and the need for better programming workflows. Prior work has applied
rejection sampling and reinforcement learning to improve coding capabilities of LLMs [177,
65, 85]. We believe R2E can enable such attempts for real-world programs.

2.8 Examples of R2E

���
## paco/evaluation/utils/paco_query_utils.py

import torch

def _product_attr(vision , text , alter):

"""

Args:
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vision: N x D

text: M x D

alter: N x M, to replace results in some cases , see details

in Returns

Returns: N x M.

For (n, m) element , set J_m = {j : text[m, j] == 1}.

- if |J_m| > 0, it equals to (prod_{j in J_m} vision[n, j])

**(1/| J_m|)

- if |J_m| == 0, it equals to alter[n, m]

"""

vision = vision.unsqueeze (1)

text = text.unsqueeze (0)

num_attr = text.sum(-1)

queried_attr = vision * text

queried_attr = queried_attr.masked_fill(text == 0, 1)

queried_attr = torch.float_power(queried_attr.prod(dim =2), 1 /

torch.max(num_attr , torch.ones_like(num_attr))).float ()

no_attr_queries = num_attr.squeeze (0) == 0

queried_attr [:, no_attr_queries] = alter[:, no_attr_queries]

return queried_attr

def obj_with_attributes(input_embeddings , query_embeddings , n_obj ,

n_part , n_attr):

""" Compute the similarity between object embeddings and query

embeddings based on attributes.

This function calculates the similarity score between each pair

of object and query embeddings.

...

Args:

...

Returns:

...

Example:

>>> ... """

���
## CodeLLaMa -34B-Python completion

obj_type = type(obj)

if obj_type is property:

obj = obj.fget
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if not hasattr(obj , '__module__ ') or not hasattr(obj , '
__qualname__ '):

return None

module = inspect.getmodule(obj)

if module is None:

return None

if not hasattr(module , '__file__ '):
return None

if obj_type is type:

obj_source = obj.__qualname__

elif obj_type is types.ModuleType:

obj_source = obj.__name__

else:

obj_source = f'{obj.__module__ }.{obj.__qualname__}'
return f'File "{ module.__file__}", line {inspect.getsourcelines(

obj)[1]} '.replace('\\', '/')

Listing 2.1: CodeLLaMa-34B repeats the code from .
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Chapter 3

LLM Planning from Learning
Mistakes

In-context learning (ICL, also known as few-shot prompting) has been the standard method
of adapting LLMs to downstream tasks, by learning from a few input-output examples.
Nonetheless, all ICL-based approaches only learn from correct input-output pairs. In this
paper, we revisit this paradigm, by learning more from the few given input-output examples.
We introduce Learning Principles (LEAP): First, we intentionally induce the model to make
mistakes on these few examples; then the model itself reflects on these mistakes, and learn
explicit task-specific “principles” from them without any human supervision, which help solve
similar problems and avoid common mistakes; finally, we prompt the model to answer unseen
test questions using the original few-shot examples and these learned general principles.
We evaluate LEAP on a wide range of benchmarks, including multi-hop question answering
(Hotpot QA), textual QA (DROP), Big-Bench Hard reasoning, and math problems (GSM8K
and MATH); in all these benchmarks, LEAP improves the strongest available LLMs such as
GPT-3.5-turbo, GPT-4, GPT-4-turbo and Claude-2.1. For example, LEAP improves over
the standard few-shot prompting using GPT-4 by 7.5% in DROP, and by 3.3% in HotpotQA.
Importantly, LEAP does not require any more input or examples than the standard few-shot
prompting settings.

The rise of large language models [LLMs; 145, 33, 236, 91, 6, 189, 188] that are too costly
to finetune for downstream tasks has led to the growing popularity of in-context learning
(ICL), also known as few-shot prompting [18, 102, 209]. In in-context learning, the LLM is
provided with a few (e.g., three) input-output task-specific examples in its prompt, along
with an unseen test input. Using this emergent ability [207], the LLM is then expected to
generate output for the test input. The LLM generates this output by implicitly learning
the task from the few given examples, at inference time.

ICL was shown to be extremely e↵ective and data-e�cient across a variety of tasks
and domains [119, 3, 98, 111], mainly because it allows for downstream task-adaptation
without training. Further, ICL enables generalization using only a few annotated examples.
Nonetheless, all ICL-based approaches only learn from correct input-output pairs [120]; in
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Learned Principle Benchmark

When solving a problem involv-
ing multiple sources of income
and expenses, it is crucial to keep
track of each component sepa-
rately and calculate the total ac-
curately.

GSM8K

When simplifying complex num-
bers raised to powers, it is im-
portant to remember the follow-
ing rules: (1) i2 = �1 (2) i3 = �i
(3) i4 = 1 (4) i�1 = 1

i = �i

MATH

Perform calculations using the
full precision available and only
round as a final step, if necessary.

DROP

When answering questions about
commonalities between two enti-
ties, it is important to consider all
relevant aspects and not just the
most obvious or prominent one.

HotpotQA

Double negation, as in ‘not not’,
cancels out and returns the origi-
nal value.

Boolean Expr-
essions (BBH)

Sarcasm often involves saying the
opposite of what is meant ... Pay-
ing attention to the incongruity
between the literal meaning of the
words and the intended meaning
can help in accurately identifying
sarcasm.

Snarks
(BBH)

Figure 3.1: Examples for learned principles using LEAP, with key idea of each principle
highlighted.

contrast, learning from mistakes is a foundational aspect of the way humans learn [46, 31,
45]. In fact, learning from mistakes is also a fundamental concept of machine learning, which
goes back to classical work such as [211, 154] and [121], but is not utilized by current ICL
and prompting methods.

Di↵erently from machines, humans can often verbalize their mistakes and articulate ex-
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A: First we can write  as . 
The logarithm base  of  is asking to which power we must raise  to get .
Since , we can see that .

Therefore,   = 7.

Q: Evaluate 

Few-shot Chain-of-Thought (Wei et al., 2022)

Input

Q: Evaluate 
A: To evaluate , you want to find the exponent to which  must be raised to get 9 as the result. 
... 

So . 

Learning Principles (LEAP; this work)
Generating Mistakes Intentionally (performed once)

A: We can write  as . 
The logarithm base  of  is the exponent we need to raise  to get .
Since , we have  for any integer . 
So, we need to find  such that 
Clearly, .

Therefore, .

Model Output

It is crucial to accurately calculate the powers of the base in logarithm problems to correctly determine the
exponent. Additionally understanding the definition of a logarithm is key: the logarithm base b of a number x is the
exponent to which b must be raised to get x.

Learning Principles (performed once)

 

Inference with Learned Principles:

Figure 3.2: An illustration of LEAP: Given a few input-output examples, Chain-of-Thought
(left) generates a response to the test question by directly learning from the (correct) exam-
ples. In contrast, Learning Principles (LEAP, right) first (a) generates mistaken zero-shot
Chain-of-Thought response for each given input-output example by sampling with a non-zero
temperature; (b) generates explicit principles by providing the LLM with the mistaken CoT
along with the correct output; and finally (c) generates a response to the test question, by
providing the LLM with both the given input-output examples and the learned principles.
Note that steps (a) and (b) are performed once per task.

plicit principles, or “lessons”; these principles can further help humans avoid these and
similar mistakes in the future. Inspired by this ability and the benefits it provides, we
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Question: {question}

Generated Reasoning: {response}

Generated Answer: {generated_answer}

Correct Reasoning: {correct_reasoning}

Correct Answer: {correct_answer}

Instruction: Conduct a thorough analysis of the generated answer in comparison to the
correct answer. Also observe how the generated reasoning differs from the correct
reasoning. Identify any discrepancies, misunderstandings, or errors. Provide clear
insights, principles, or guidelines that can be derived from this analysis to improve
future responses. We are not focused on this one data point, but rather on the general
principle.

Reasoning: <discuss why the generated answer is wrong>
Insights: <what principle should be looked at carefully to improve the performance in
the future>

Figure 3.3: LEAP prompt to help LLM evaluate its own generated reasoning and answers,
contrasting them with the correct reasoning and answers. The LLM is prompted to identify
errors in its reasoning and extract key insights for improvement. This figure specifically
represents the ‘GenerateExplanation‘ step in the LEAP algorithm (Chapter 1).

propose Learning Principles (LEAP): A prompting approach for learning principles from
mistakes, and then conditioning on these principles when responding to other inputs. In-
stead of providing the model only with the given (correct) few-shot examples, LEAP begins
by (a) inducing the LLM to make mistakes on each of these given few-shot inputs, in a
zero-shot fashion, by sampling outputs with a non-zero temperature; (b) generating explicit
principles by providing the same LLM with the mistaken outputs along with the correct
output; and finally (c) generating a response to the test question as in standard few-shot
ICL, while providing the LLM with both the given input-output examples and the learned
principles. LEAP is illustrated in Chapter 3.2; examples for some of the learned principles
are provided in Chapter 3.1.

Crucially, LEAP does not require any more input than the standard few-shot prompting
settings. Further, the principle learning step is applied once for a task, and then the same
learned principles are used for the entire test set. If the few-shot examples are given as
Chain-of-Thought [CoT; 206], LEAP is applied seamlessly by generating mistaken chains-
of-thought, contrasting them with the correct chains-of-thought, and generating principles.

We demonstrate the e↵ectiveness of LEAP across a wide range of reasoning benchmarks,
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Algorithm 1 LEAP Algorithm

Require: Few-shot examples P = {hxi, yii}ki=1, a pretrained LLM, number of outputs per input
n, high-temperature setting T

1: for each input-output pair hxi, yii in P do
2: Si  ZeroShotCoT (LLM,xi, n, T ) . Generate solutions using zero-shot chain-of-thought

prompting

3: Mi  {
⇣
xi, yi, ŷ

j
i

⌘
2 Si : â

j
i 6= aji} . Identify incorrect solutions

4: for each xi, yi, ŷi in Mi do
5: Llow-level,i  GenerateLowLevelPrinciples (LLM,xi, ŷi, yi) . Generate principles for

each mistake
6: end for
7: end for
8: Llow-level  

Sk
i=1 Llow-level,i . Aggregate low-level principles

9: Lhigh-level  GenerateHighLevelPrinciples (LLM,Llow-level) . Generate high-level principles
10: plow-level  Concatenate (Llow-level,P) . Create enhanced prompt with low-level principles
11: phigh-level  Concatenate (Lhigh-level,P) . Create enhanced prompt with high-level

principles
12: return plow-level, phigh-level

including mathematical reasoning in GSM8K [35] and MATH [56], multi-hop question an-
swering tasks in HotpotQA [223], textual reasoning in DROP [43], and 27 Big-Bench Hard
[183] tasks. LEAP outperforms the standard practice of few-shot prompting using strong
models such as GPT-3.5-turbo, GPT-4, GPT-4-turbo and Claude-2.1, with and without
Chain-of-Thought. For example, LEAP improves over the standard few-shot CoT using
GPT-4 by 7.5% in DROP, by 3.3% in HotpotQA, and on 16 tasks in Big-Bench Hard. These
results suggest that LEAP revolutionizes the “traditional” concept of few-shot ICL, by lever-
aging the recently emerged abilities of LLMs to follow instructions [122, 208, 132] and explain
mistakes given the correct answer or feedback [116, 29].

3.1 Background: In-Context Learning

In-context learning, also known as few-shot prompting, uses a few (typically between 3 and
8) input-output task-specific examples for teaching a pre-trained LLM to solve a downstream
task [18, 98, 102]. These input-output pairs P = {(xi, yi)}ki=1 are concatenated to form a
prompt p = hx1·y1i�hx2·y2i�. . .�hxk ·yki, where “·” denotes the concatenation of each input
with its corresponding output, and “�” denotes the sequential combination of these pairs.
Then, every new test input xtest is appended to this prompt, resulting in p � hxtest·, which is
then provided to the LLM. The LLM completes this input, and generates the corresponding
output ŷtest.

Typically, the answer y additionally contains an explanation (or thought) for deriving the
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answer [206]. In these settings, each solution y contains a thought t and the final answer a,
forming: yi = ti ·ai, and the LLM is expected to generate the test-thought before generating
the final test-answer: ttest · atest. In this work, we focus on this chain-of-thought setup,
because of its widely demonstrated e↵ectiveness for reasoning tasks [200, 206, 244, 202].

3.2 LEAP: Learning Principles from Mistakes

In LEAP, our goal is to learn general principles that help the model avoid potential mistakes
in a downstream task. Given the few-shot examples P = {hxi, yii}ki=1 for a certain task, we
start by generating mistakes to the few given examples.

Generating Mistakes For each input-output pair hxi, yii 2 P , we generate a diverse set
of solutions in a zero-shot fashion. Specifically, we follow [78], and create a zero-shot chain-
of-thought prompt using xi and the phrase Think step-by-step. For each input xi, we sample
n =15 outputs with a non-zero temperature, producing a varied set of potential solutions
{ŷji }nj=1 for each example xi, such that ŷ

j
i = t̂

j
i · â

j
i , where t̂

j
i represents the intermediate

reasoning steps (thoughts), and â
j
i denotes the final answer.

We identify incorrect solutions by comparing each â
j
i with the ground-truth answer ai

(which is given as part of the task), forming a set of mistakes for each hxi, yii 2 P pair:

Mi =
n�

xi, yi, ŷ
j
i

�on0

j=1
, such that 8j : âji 6= ai.

Generating Low-Level Principles Then, for each such mistake in M, we prompt the
LLM to generate a natural language explanation of the mistake. In this step, the LLM is
provided with the ground truth answer yi, to articulate the rationale behind the solution’s
inaccuracy, as illustrated in Chapter 3.3. The insights of how to avoid these mistakes are
aggregated across all examples to form a set of low-level principles, denoted as Llow-level.

Generating High-Level Principles Subsequently, we use the LLM to condense the
low-level principles into approximately 5 key bullet points, thus creating high-level principles,
denoted as Lhigh-level. The motivation for this step is generating generic, example-agnostic,
principles for solving the downstream task, that do not depend on mistakes made for any
specific example.

Final Inference on Unseen Examples These principles, either low or high-level, are
then appended to the prompt p, forming enhanced prompts: plow-level = Llow-level � p for
low-level feedback, and phigh-level = Lhigh-level � p for high-level feedback, where p is the
prompt constructed using the standard concatenation of the few-shot examples, as described
in Chapter 7.2.

Finally, we use the enhanced prompts plow-level or phigh-level for answering all unseen
examples in the test set. In e↵ect, the one-time process of generating principles helps learn
and articulate insights from the model’s previous mistakes, potentially improving its accuracy
and reasoning capabilities in future responses for other inputs.

The complete algorithm is summarized in Chapter 1. Although di↵erent LLMs can be
used for each step, in all our experiments, we fixed the LLM across all steps: generating
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Table 3.1: Textual Reasoning results: Accuracy in textual reasoning benchmarks. The
best approach for each base LLM in each dataset is in bold; the second-best approach is
underlined. We see a good performance boost by adopting LEAP with high-level feedback
and low-level feedback. Almost all the models can benefit from the principles learned and
fix their previous mistakes.

GPT-3.5-turbo GPT-4 GPT-4-turbo Gemini Pro

HotpotQA
Few-shot CoT 29.10 36.35 38.10 28.25
LEAPlow-level 32.60 39.30 37.85 23.70
LEAPhigh-level 30.35 39.65 38.75 25.50

DROP
Few-shot CoT 63.20 72.05 83.40 64.60
LEAPlow-level 63.35 79.55 83.60 67.15
LEAPhigh-level 63.00 78.60 80.00 67.60

mistakes, generating principles from those mistakes, and testing using these self-generated
principles. This ensures that the di↵erence in results arises only from LEAP rather than any
kind of model ensemble or teaching.

3.3 Evaluation

We evaluated LEAP across various reasoning tasks, including HotpotQA [223], DROP [43],
MATH [56], GSM8K [35], and Big-Bench Hard [183]. We follow the standard few-shot
Chain-of-Thought (CoT); we apply LEAP on top of few-shot CoT using the exact same
number of labeled examples. Importantly, principles are generated once for every LLM and
benchmark.

Experiment Setup

Compared Approaches Our baseline is the standard Few-shot prompting with CoT. We
compare this baseline with two variants of our proposed approach LEAP:

• LEAPhigh-level is our proposed approach, as described in Chapter 3.2.

• LEAPlow-level is similar to LEAPhigh-level , except that we skip the step of “Gener-
ating High-Level Principles”, and test the models on the downstream task using the
few-shot examples and the low-level principles, using Llow-level rather than Lhigh-level

(Chapter 3.2).

Benchmarks We used diverse reasoning benchmarks:
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Table 3.2: Math Reasoning Results: Accuracy in MATH and GSM8K. The best ap-
proach for each LLM and base task is in bold; the second-best approach is underlined.
LEAPhigh-level and LEAPlow-level in both GSM8K and MATH datasets consistently im-
prove the performance over the CoT baseline. We also observe that the learned mathmetical
principles can be generalized to di↵erent test questions.

GPT-3.5-turbo GPT-4 Claude-2 Gemini Pro

GSM8K
Few-shot CoT 76.4 93.6 84.3 77.8
LEAPlow-level 77.4 94.2 82.7 77.3
LEAPhigh-level 76.6 93.8 83.8 78.7

MATH
Few-shot CoT 55.6 63.5 43.2 31.1
LEAPlow-level 56.1 64.5 42.7 29.7
LEAPhigh-level 56.5 64.0 43.4 30.3

• Textual Reasoning: HotpotQA [222] is a question-answering dataset of computa-
tional questions that require multi-hop reasoning. DROP [44] is a reading comprehen-
sion dataset that requires numerical and logical reasoning over textual paragraphs; for
evaluation, we randomly sampled 2000 questions from its dev set.

• Mathematical Reasoning: GSM8K [35] comprises a test set of 1,319 diverse grade
school math word problems, curated by human problem writers. In MATH [56], there
are 5,000 diverse examples consisting of problems from mathematics competitions.
These are the two most common mathematical reasoning benchmarks.

• Big-Bench Hard [183]: contains 27 challenging tasks that test various reasoning
capabilities of LLMs. We repeated every run 3 times with a temperature of zero and
report the average.1

ModelsWe evaluated LEAP across a wide range of base models, including GPT-3.5-turbo
(version -0613), GPT-4 (version -0613), GPT-4-turbo (version -1106), Claude-2.1, and
Gemini Pro [186].

Few-shot examples In Big-Bench Hard, we used the textscCoT prompts from [183]
with three given examples (3-shot) in each benchmark. In MATH and GSM8K, we used
the standard training examples from each dataset, with 3 examples for each. In DROP, we
used 3 given examples that we adopted from Least-to-Most [244]. In HotpotQA we used
6 examples from ReAct [224] (“closed-book”). Importantly, in each benchmark, the exact
same few-shot examples were used across all evaluated approaches, including the baseline
and LEAP.

1Internal non-determinism causes di↵erent outputs even with a temperature of zero, but the variance
was negligible.



CHAPTER 3. LLM PLANNING FROM LEARNING MISTAKES 33

Textual Reasoning Results

Chapter 3.1 shows the results on DROP and HotpotQA. As shown, LEAP improves over the
Few-shot CoT baseline by up to 3.5% on Hotpot QA and 7.5% on DROP. In HotpotQA,
GPT-3.5-Turbo and GPT-4 are consistently improved when using LEAP. In DROP, GPT-4
is significantly improved by LEAP (an absolute gain of 7.5%), Gemini Pro is improved by
3%, while the improvement for GPT-3.5-Turbo and GPT-4-turbo are more minor.

In most tasks and base models, both LEAPlow-level and LEAPhigh-level improve over the
Few-shot CoT baseline. The only case where the Few-shot CoT baseline performs better
than both LEAPlow-level and LEAPhigh-level is in HotpotQA using Gemini Pro. Observing
the low-level principles that Gemini Pro learned in HotpotQA (Chapter B.39), we believe
that the learned principles are correct and useful, but they are overly focused on the examples
they were generated for, more verbose, and similar to each other. These hinder the principles
(and the high-level principles generated from them) from generalizing to other examples. For
zero-shot prompting using principles learned from few examples, additional results are shown
in Chapter B.3.
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Figure 3.4: Accuracy in bbh tasks, across gpt-3.5-turbo-0613, gpt-4-0613, and gemini-
pro. The figure presents the results using a scatter plot, where the y-axis represents scores
achieved with LEAP, and the x-axis represents the baseline scores from CoT. Each task is
represented by a point on the plot, with di↵erent shapes assigned to di↵erent models for easy
distinction. Tasks above the y = x line are those where LEAP leads to an improvement in
performance. Chapter B.5 shows the detailed results for all 27 Big-Bench hard tasks. We find
that in 37 out of 42 combinations of task and LLM, one of LEAPlow-level or LEAPhigh-level

outperforms the baseline Few-shot CoT.
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Table 3.3: Llama-2-chat-70B Results: Accuracy in MATH and GSM8K using Llama-
2-chat-70B as the base LLM, while generating the principles either with Llama-2-chat-70B
or GPT-4. Even when the principles are generated by GPT-4 (GPT-4 Critic), Llama-2-
chat-70B does not leverage the learned principles, and does not improve over the baseline
Few-shot CoT.

Llama-2-chat-70B as the base model, with: Llama-2 Critic GPT-4 Critic

GSM8K
Few-shot CoT 52.5 52.5
LEAPlow-level 50.6 49.8
LEAPhigh-level 47.0 51.0

MATH
Few-shot CoT 16.2 16.2
LEAPlow-level 13.8 12.9
LEAPhigh-level 14.2 13.8

Math Reasoning Results

Chapter 3.2 shows the results on MATH and GSM8K. As shown, in GPT-3.5-turbo and
GPT-4, both LEAPlow-level and LEAPhigh-level outperform the Few-shot CoT baseline.
Claude-2 shows inconclusive results: in GSM8K, Few-shot CoT performs better than LEAP;
in MATH, LEAPhigh-level achieves slightly higher accuracy than Few-shot CoT. Gemini Pro
also shows inconclusive results, where both LEAPlow-level and LEAPhigh-level outperform
the baseline in GSM8K, but perform slightly worse in MATH. Additional results, for zero-
shot prompting using principles learned from few examples, are shown in Chapter B.4.

Does leap work with open-source models? In our preliminary experiments with
open-source models, LEAP did not improve over the few-shot CoT baseline. While the
open-source models did produce useful principles, the open-source models did not follow
these principles at test time.

Chapter 3.3 shows some of these experiments with Llama-2-chat-70B: we used Llama-
2-chat-70B as the base model, but generated the principles using either Llama-2-chat-70B
(“LLama-2 Critic”) or with GPT-4 (“GPT-4 Critic”). As shown, even when the principles are
generated by GPT-4 (which we assume to be useful), Llama-2-chat-70B does not manage to
leverage them to generate better final responses with either LEAPlow-level or LEAPhigh-level

.
In general, we believe that LEAP requires a base LLM with strong enough instruction

following and reflection capabilities; we believe that, unfortunately, most open-source models
are not as powerful as proprietary models yet.
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Boolean Expressions (bbh)

Question: not not ( False and not
False ) is
Principles: .. Double negation, as in
‘not not’, cancels out and returns the
original value. ...
Few-shot CoT: Let’s think step by
step. Remember that (i) expressions
inside brackets are always evaluated
first and that (ii) the order of oper-
ations from highest priority to lowest
priority is ”not”, ”and”, ”or”, respec-
tively. We first simplify this expres-
sion ”Z” as follows: ”Z = not not (
False and not False ) = ... = not not
(False) = not not True = not False =

True. So the answer is True . 7
LEAPlow-level Response: Let’s
think step by step. Remember that (i)
expressions inside brackets are always
evaluated first and that (ii) the order
of operations from highest priority to
lowest priority is ”not”, ”and”, ”or”,
respectively. We first simplify this ex-
pression ”Z” as follows: ”Z = not not
( False and not False ) = ... = not
not (False) = not not False = False.

So the answer is False . 3

Object Counting (bbh)

Question: I have a flute, a piano, a trom-
bone, four stoves, a violin, an accordion, a
clarinet, a drum, two lamps, and a trumpet.
How many musical instruments do I have?
Task Principles: The response should be
directly related to the user’s query or state-
ment. Irrelevant information can confuse the
user and detract from the overall quality of
the response...
Few-shot CoT: Let’s think step by step.
We first identify the musical instruments on
the list and include their quantity in paren-
theses: - flute (1) - piano (1) - trombone (1)
- stoves (4) - violin (1) - accordion (1) - clar-
inet (1) - drum (1) - lamps (2) - trumpet (1)
Now, let’s add the numbers in parentheses:
1 + 1 + 1 + 4 + 1 + 1 + 1 + 1 + 2 + 1 =

14. So the answer is 14 . 7
LEAPlow-level Response: Let’s think step
by step. We first identify the musical instru-
ments on the list and include their quantity
in parentheses: - flute (1) - piano (1) - trom-
bone (1) - violin (1) - accordion (1) - clarinet
(1) - drum (1) - trumpet (1) Now, let’s add
the numbers in parentheses: 1 + 1 + 1 + 1

+ 1 + 1 + 1 + 1 = 8. So the answer is 8 .
3

Figure 3.5: Examples from the Boolean Expressions (left) and Object counting (right) tasks
from bbh. The learned principle is highlighted in yellow, the mistaken step of the baseline
is highlighted in red, and the correct use of the principle by LEAP is highlighted in green.
This demonstrates how the learned principles guide LEAP in generating a better answer.

Big-Bench Hard Results

Chapter 3.4 shows the results on selected bbh tasks; results for the rest of the bbh tasks are
shown in Chapter B.6 in Chapter B.5. We selected tasks to Chapter B.5 where the di↵erence
in results was the most meaningful: there were some tasks where gpt-4-0613 achieved 100%
accuracy with any of the approaches, including both LEAP and the baseline.

As shown in Chapter B.5, in 37 out of 42 combinations of task and LLM, one of
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LEAPlow-level or LEAPhigh-level outperforms the baseline Few-shot CoT. In 24 of the cases,
both LEAPlow-level and LEAPhigh-level outperform the Few-shot CoT baseline. In two
cases, the Few-shot CoT baseline performs equally to LEAPlow-level; and in 3 cases the
Few-shot baseline performs better than both LEAPlow-level and LEAPhigh-level.

We could not identify any particular pattern as to which method should be used: LEAPlow-level

or LEAPhigh-level; it seems that this depends on the reasoning complexity of the task, the
diversity across questions in the benchmark, and the quality of the principles that the LLM
had managed to generate from the 3 given examples for that task. We thus suggest that
in real-life scenarios, both approaches should be tested, and selected using a validation set.
Additional results, for zero-shot prompting using principles learned from a few examples,
are shown in Chapter B.5.

3.4 Qualitative Analysis

Chapter 3.5 shows examples of questions from bbh, along with the task’s learned principles,
the baseline few-shot CoT response, and the LEAPlow-level response, all generated by GPT-
3.5-turbo. The learned principle in each case is highlighted, along with the mistake in the
CoT output and the correct reasoning generated by LEAP.

Additional examples are shown in Chapter B.6. The actual learned principles for some
of the tasks and LLMs are provided in Tables B.7-B.41 in Chapter B.7.

3.5 Related Works

This section focuses on the few works most related to ours. For a complete survey of relevant
papers, see [242, 142, 72, 217, 240].

Comparison to [116] A related work to ours is Self-Refine [116], which, similarly to
LEAP, uses the LLM to reflect on its own previously generated outputs. However, a sig-
nificant di↵erence from Self-Refine is that applying Self-Refine to a test example requires
feedback for that specific test example; contrarily, in this work, we show that principles
that were learned from some examples generalize to other test examples which we do not
have feedback for. Further, Self-Refine uses “intrinsic self-correction”, without any external
feedback; as found by recent work [60, 192], such intrinsic self-correction does not benefit
reasoning tasks. In contrast, in this work, we show that the external signal provided by
as few as 3 examples is su�cient for e↵ective self-reflection in reasoning if these are used
to articulate explicit learned principles. Another related work is MemPrompt [115], which
stores feedback on mistakes in a memory, and retrieves relevant feedback for a new query; in
contrast, LEAP is a one-time process that does not require continuous storage and retrieval.

Comparison to [221] Optimization by PROmpting (OPRO) [221] uses LLMs to im-
prove zero-shot prompts, and both OPRO and LEAP can be thought of as ways of improving
a prompt for a specific task. However, applying OPRO for prompt optimization requires a
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training set, which can be as large as ⇠260 examples for GSM8K; in contrast, LEAP requires
only 3 labeled examples. Further, OPRO calls the LLM for each of these ⇠260 examples in
each step; while the number of steps can be as low as 6, it can also be as high as 107. This
results in between ⇠1500 calls and up to 107⇥260 ⇡ 27,000 inference calls to the LLM. In
contrast, LEAP uses only about 34 inference calls: 3 calls to generate mistakes; one call for
each mistake to generate low-level principles, which results in about 30 calls; and a final call
to generate high-level principles. Moreover, like OPRO, LEAP can also improve zero-shot
prompting by learning principles from a few examples and applying them in a zero-shot
fashion, as we show in Chapter B.3, Chapter B.4, and Chapter B.5. For example, Zero-
shot-LEAP improves the strong GPT-4 model by 1% on GSM8K (Chapter B.4). Similarly,
EvoPrompt [53] requires around 10,000 LLM inference calls, which is also several orders of
magnitude more than LEAP. Other related approaches are AutoPrompt [171], STaR [231],
LMSI [59], and Self-Align [180] but these are based on training the LLM, which is often
either inaccessible or computationally infeasible.

Comparison to [30] Contrastive Chain-of-Thought [30] shares a similar motivation with
our work: learning from negative in-context examples instead of learning only from positive
examples. However, when we reproduced their results, we found that simple improvements
to the post-processing code of extracting the final answer out of the LLM’s raw output led
to di↵erences of more than 10 absolute points from their reported results in GSM8K, which
made the proposed Contrastive CoT approach perform similarly or worse than the baseline
few-shot CoT. We thus believe that generating explicit principles, as in LEAP, is the key
ingredient in learning from negative in-context examples.

3.6 Conclusion

In this paper, we introduce Learning Principles (LEAP), a novel approach that allows LLMs
to learn more out of given few-shot examples, by intentionally making mistakes on these
examples; reflecting on the mistakes; and finally articulating explicit task-specific principles,
which helps avoid similar mistakes in the future. LEAP requires exactly the same number
of labeled examples as few-shot prompting, and allows improving a variety of strong LLMs
(GPT-3.5-turbo, GPT-4, GPT-4-turbo and Gemini Pro) across a broad range of reasoning
tasks (DROP, HotpotQA, GSM8K, MATH, and Big-Bench Hard). We believe that LEAP
unlocks new possibilities from learning in the traditional concept of few-shot in-context
learning, by learning from mistakes, rather than learning from positive examples only.
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Chapter 4

TEMPERA: Test-Time Prompt
Editing Via Reinforcement Learning

Careful prompt design is critical to the use of large language models in zero-shot or few-shot
learning. As a consequence, there is a growing interest in automated methods to design op-
timal prompts. In this work, we propose TEst-tiMe Prompt Editing using Reinforcement
leArning (TEMPERA). In contrast to prior prompt generation methods, TEMPERA can
e�ciently leverage prior knowledge, is adaptive to di↵erent queries, and provides an inter-
pretable prompt for every query. To achieve this, we design a novel action space that allows
flexible editing of the initial prompts covering a comprehensive set of commonly-used compo-
nents like instructions, few-shot exemplars, and verbalizers. The proposed method achieves
significant gains compared with recent SoTA approaches like prompt tuning, AutoPrompt,
and RLPrompt, across a variety of tasks, including sentiment analysis, topic classification,
natural language inference, and reading comprehension. Our method achieves 5.33x on aver-
age improvement in sample e�ciency when compared to the traditional fine-tuning methods.
Our code is available at https://github.com/tianjunz/TEMPERA.

4.1 Introduction

With the recent advances in pre-training large language models [18, 47, 148, 33], prompting,
or in-context learning provides a data-e�cient framework for performing NLU [90, 171, 50].
Such methods achieve impressive zero-shot and few-show performance in many downstream
tasks.

However, the prompt often has to be carefully tuned to achieve consistent performance for
each task [113]. For example, prompt tuning aims to optimize a continuous prefix embedding
via gradient descent and directly takes generated output from the frozen pre-trained language
model [86, 104, 105]. On the contrary, discrete prompt optimization focuses on constructing
meaningful instructions, in-context exemplars and verbalizers [18, 50]. Prior work often
performs black-box optimization or applies RL-based methods for direct generation [37,

https://github.com/tianjunz/TEMPERA
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179, 141]. Recent works in the prompt tuning field have shown that, performing instance-
dependent prompt tuning [216, 67] can improve the performance of some downstream tasks.
The corresponding concept in the discrete prompt optimization domain is intriguing since
it allows users to provide di↵erent instructions for di↵erent inputs and task. Unlike prompt
tuning, such instructions can be more human interpretable. However, finding such query-
dependent prompts is often overlooked and is not feasible given the ine�ciency of black-box
optimization.

In this paper, we investigate the importance of providing query-dependent discrete prompts
and demonstrate how this can be achieved via e�cient search. To this end, we propose the
concept of test-time editing through reinforcement learning (RL) that allows the agent to
perform di↵erent editing techniques at test time to construct query-dependent prompts e�-
ciently.

We formulate discrete prompt optimization as an RL problem by sequentially editing an
initial prompt, which only requires high-level guidance on which part to edit and what tools to
use. Di↵erent from prior work, this formulation strikes a good balance between human prior
knowledge, flexibility, feasibility and interpretability. The method allows easy incorporation
of human knowledge since one can provide a manually chosen initial prompt and allow RL
to perform editing on it. It also achieves a balance between search flexibility and feasibility
because by enabling di↵erent editing techniques, the prompt can be transformed to very
di↵erent forms but the search space is more feasible compared to direct generation. The
final prompt is also more interpretable since the editing tools we adopted usually do not
change the semantic meaning of the sentence.

To summarize, we propose to construct query-dependent prompts through test-time edit-
ing and formulate this as an RL problem. We carefully design the action space, enabling the
agent to flexibly edit the instructions, in-context exemplars and verbalizers. To better train
the RL agent, we propose using the score di↵erence between consecutive prompts before and
after editing as rewards and developing a set of techniques that help improve the final per-
formance (e.g., reward normalization). We also adopt an attention-based policy architecture
to attend over possible candidates or design choices, and show this can be e↵ective for RL
training.

Following the standard few-shot text classification setting, we benchmark our algorithm
extensively on multiple tasks (including those from GLUE [195] and SuperGLUE [196]).
We show that TEMPERA can achieve SoTA performance (e.g., 1.8% better in SST-2 and
3.9% better in CR) compared to few-shot finetuning, prompt tuning and discrete prompt
optimization. We also show that TEMPERA is on 4x more data e�cient (over the average
of 4 tasks SST2, MR, AG News and RTE) compared with traditional finetuning methods
(Figure 4.1). In addition, we perform extensive ablations on di↵erent aspects of the proposed
algorithm. We demonstrate that TEMPERA is robust to the prompt pool size and the
number of few-shot exemplars.
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Figure 4.1: Data E�ciency for TEMPERA: We comopare the data e�ciency of TEM-
PERA and standard fine-tuning in a few-shot setting. Results are averaged across four tasks:
SST2, AG News, RTE and MR. It shows that our method achieves comparable performance
using 4x fewer examples.

4.2 Related Work

Prompting in language models and sensitivity to prompts. Recent research has
shown that as language models scale up, new capabilities could be unlocked such as in-context
learning [18], where the language model is prompted with a few in-context demonstrations
and learns to perform a certain task in a sample-e�cient way. However, several works have
studied the in-context learning ability more closely and found that the task performance can
be highly sensitive to how the in-context prompt is written. For example, [112] found that
the prompt order can have a large e↵ect on the final task performance; [241] show that the
choice of prompt format, training examples, and prompt order can cause the performance
to vary quite significantly.

Automatic prompt generation and search. To address such sensitivity in language
models, multiple approaches have been proposed for better prompt generation. In the con-
tinuous space, [86] propose prompt-tuning to add tunable tokens for each task during the
fine-tuning stage to improve task performance. [243] propose OptiPrompt that optimizes
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the prompts in the input embedding space directly for factual probing. More recently, [216]
found performing instance-independent prompt-tuning can further boost the performance.
In the discrete space, [49] propose prompt-based fine-tuning and utilize pre-trained models to
automatically generate prompt templates. [162] and [160] use a small amount of training data
to automatically identify the best label words to use for few-shot classification. [172] pro-
pose AutoPrompt to perform gradient-guided search to find the best tokens in the prompt,
although the best prompts found are usually not interpretable by humans. [68] propose
mining-based and paraphrasing-based methods to generate meaningful and diverse prompts
for factual knowledge probing. Related to our work, [37] propose an RL-based framework to
directly generate better prompts via black-box optimization. Di↵erent from existing work,
our approach frames the problem as test-time prompt editing with an RL-based framework
to perform e�cient search in the editing space.

E�cient training exemplar retrieval as prompts. In addition, existing work has
shown the choice of the exemplars can also be critical to the final performance. For example,
[99] propose to retrieve exemplars from a training pool that are semantically similar to a
test example, and show it can significantly boost the performance. [156] trained a dense
retriever to e�ciently retrieve good training examples as prompts during test time. In this
work, we show that an attention-based exemplar selection process over the embedding space
can e↵ectively choose performant training examples within our RL framework.

4.3 Test-Time Prompt Editing

We formulate the task of test-time editing in this section. We give some background on the
few-shot text classification and how to use prompts for downstream NLP tasks. Then we
formalize a new setting called test-time editing where users are allowed to perform editing
over a given prompt, depending on the given input and task during test time.

Background

Few-Shot Text Classification. Following the standard few-shot language model classifi-
cation setting [18], we assume that we are given a pretrained language model L and wish to
perform classification on dataset D with label space Y . Assume we are given K samples per
class from the training set, the new few-shot training set is given as Dtrain = {xi, yi}K⇥|Y|

i=1 .
In addition, there is a hold-out test dataset Dtest that we use for evaluation on downstream
NLP tasks.

Optimizing Discrete Prompts. Prompt-based few-shot learning considers the following
problem: given a piece of text p as a prompt, we use the generative distribution of the
language model PL(y|p,x) to perform various NLP tasks without fine-tuning the model. In
particular, for a given objective R, we propose to perform the desired optimization over
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Figure 4.2: Test-Time Editing via RL: The RL agent is trained to optimize the perfor-
mance of a downstream task. At test-time, given a query, the agent adopts an attention-based
policy to edit the instructions, in-context exemplars and verbalizers for T rounds.

the prompt by finding an optimal p⇤ = argminp2VR(PL(y|p,x)). In this paper, we focus
on restricting the prompt p as a piece of text instead of letting p to be any vector in the
latent space. This not only provides more interpretability of the prompt, but also allows
us to use existing natural language tools (e.g., NLTK [15]) to perform a discrete search for
constructing better prompts.

Di↵erent Forms of Discrete Prompts. We consider three popular forms of discrete
prompts: (1) Instructions, which provide a segment of text describing how the task is per-
formed, usually put at the beginning. (2) In-Context Demonstrations {e0, e1, ..., ek}, which
selects several examples and their corresponding labels, usually placed before the query. (3)
Verbalization, which aims to design how the task is asked and which keywords to select as
labels. See Figure 4.2 for an example of di↵erent transformations that we perform when
editing in our RL-based framework.

Test-Time Editing

Prior works have often attempted to identify a query-agnostic prompt or attempted to di-
rectly generate a query-dependent prompt via hyper-networks learning. However, query-
agnostic prompting fails to incorporate any query-related information into the prompts and
directly generating prompts for each individual query is challenging (due to its di�culty to
incorporate human prior knowledge or feedback). In addition, by permuting the order of in-
context exemplars {e0, e1, ..., ek} or searching for the k nearest neighbors of the current test
instance as in-context exemplars yields better performance. These reveal the importance of
constructing query-dependent prompts.
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Algorithm 2 Test-Time Prompt Editing with TEMPERA

1: Input: Language Model L, Initial Prompt p0, Training set Dtrain, Evaluation set Deval,
Iteration N , Fix rounds T

2: Initialize ⇡✓(· | s) to be uniform;
3: for episode n = 1, · · · , N do
4: Random sample batch B ⇠ Dtrain, Set p0
5: for step t = 1, · · · , T do
6: Get st = L(B, pt)
7: Run editing policy at = ⇡✓(st), Get new prompt pt+1

8: Get new state st+1 = L(B, pt+1)
9: Add transition (st, at, st+1) to replay bu↵er
10: end for
11: Update policy parameter ✓ of ⇡✓ with the PPO loss
12: end for
13: Evaluate policy ⇡✓ on evaluation dataset Deval

Unlike prior methods, we perform prompt editing at test-time. The procedure works as
follows: at test time, one is given an initial prompt p0. We want to learn a function f that
takes the initial prompt p0, query x and a pool of examples/verbalizers p0, and outputs a
final prompt: pf = f(p0,x,p0). The overall framework of our algorithm is shown in Fig. 4.2.
We allow f to make edits (e.g., editing verbalizers and/or swapping examples) over the
original prompt to make it more suitable for the downstream task and query x. Since the
editing function f can depend on the query x, we call it the test-time editing function. Note
that we train the function f in a fixed training dataset and directly deploy it at test time
without any addition training. This is di↵erent from the test-time optimization since we
don’t have access to the ground truth label or a surrogate objective. Plese see Algorithm.2
for details.

4.4 Test-Time Editing via Reinforcement Learning

In order to learn the test-time editing function f , we present a novel RL-based framework
that naturally maps the editing process to an MDP. We will present our framework and
discuss how we design the state space, action space and reward in this section.

Reinforcement Learning Formulation. We formulate test-time editing as a Markov
Decision Process (MDP). Given an initial state, s = (p0,x), consisting of an initial prompt
and a query, at each time step t, the RL agent selects one of the editing methods from the
action space A. We can then define the transition function T : S⇥A! S to be the state of
prompt before and after editing (pt,x) ⇥ at ! (pt+1,x). That is, the transition dynamics
are deterministic given the editing action. We can either define a fixed horizon H or design
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Table 4.1: E↵ect of di↵erent editing techniques. For instruction, we tokenize it into phrases
and perform swapping, addition or deletion. We also allow swapping in-context exemplars
or changing di↵erent verbalizers.

Before Editing After Editing

“Given text, classify whether it is good or bad.” “Classify whether it is good or bad, given text.”
“Given text, classify whether it is good or bad.” “Given text, given text, Classify whether it is good or bad.”
“Given text, classify whether it is good or bad.” “Classify whether it is good or bad.”

{Example 1, Example 2, ..., Example k } {Example k, Example 3, ..., Example 1 }
{Example 1, Example 2, ..., Example k } {Example k + 1, Example n, ..., Example 1 }

{ “positive”, “negative”} {“great”, “terrible”}

a termination function to stop editing and get the final prompt. The goal is to maximize the
expected reward R = E[

PT
k=0 �

k
rk] where rt is the reward and � is the discount factor. We

introduce in detail each component of the state representation, action space and rewards in
the following subsections.

State Representation. The RL framework is general and flexible about the representa-
tion of states. The only requirement is that such representation contains text information.
Instead of directly using the raw text representation, we use the last hidden states of the
pretrained language model st = L(pt,x) as the state representation and feed it into the
policy network.

Action Space Design. We include most of the editing actions in our action space. At each
stage, the RL agent can choose the editing objects from instruction, in-context exemplars
or verbalizer. For editing the instruction, we provide the initial instruction from natural
instructions [201]. Then we tokenize the instruction into phrase level using NLTK [15] and
perform swapping, deletion or addition of di↵erent phrases. Suppose we have l phrases, the
action space size will become (l ⇥ (l � 1))/2 + 2l.

For the in-context exemplars, we keep an example pool of N , initialize our prompt by
randomly choose n of them as the initial prompt. We then allow the agent to directly perform
swapping one example from the current prompt with either another one from the current
prompt or from the pool of examples that are not currently used. This results in an action
space for the RL agent of n⇥N � (n⇥ (n� 1))/2 since we do not allow swapping with the
same example.

For the verbalizer, we allow the RL agent to freely choose which verbalizer to use for each
in-context example from PromptSource [12]. We also will enable the agent to freely choose
which verbalizer to use for each query x. Interestingly we found that this helps boost the
performance of our algorithm. We provide some examples of the editing process in Tab. 4.1.
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Reward Design. We adopt the step reward proposed in RLPrompt [37]. For each query
x, we get the log probability of the output label from the language model logPL(ŷ|x,pt)
given the proposed prompt pt with the correct label c, and we define the score di↵erence
s(c) as:

s(c,x,pt) = �1 logPL(ŷc|x,pt)� �2argmaxc0 6=c logPL(ŷc0 |x,pt) (4.1)

where we have introduceed the two balancing hyperparameters �1 > 0 and �2 > 0 for the
positive and negative terms respectively. Intuitively, this score gives a negative reward when
the prediction is not correct and a positive reward otherwise. The goal is to optimize the
score for the final prompt.

However, RL aims to optimize the accumulated reward during the MDP process while
prompt design only cares about the performance of the final prompt. Thus, we propose to
use the score di↵erence between successive edits as the immediate reward:

rt = s(c,x,pt)� s(c,x,pt�1) (4.2)

Ignoring the discounting factor �, this makes the accumulated reward from time 0 to T

correspond to the score di↵erence between the final and the initial prompt s(c,x,pT) �
s(c,x,p0). Now the objective of RL is to maximize the score di↵erence.

Attention-Based Policy Architecture. We adopt an attention-based policy architec-
ture for the reinforcement learning agent. We put attention over a graph of possible can-
didates and let the agent choose which editing technique to perform. We find that the
attention-based architecture helps the agent to emphasize the important examples (e.g.,
examples that are more semantically similar to the test instance).

We use the PPO [165] algorithm in our experiments. The detailed hyperparameter used
can be found in Appendix. C.1. We list here a couple of very important techniques we used
in our experiments. We found these techniques are crucial to the success of our RL-based
framework.

Observation Normalization: Since we take the last hidden states of the language
model as observation, it might have very small variances between di↵erent samples. We
keep a running mean and standard deviation for the observation and normalize it before
feeding it to the policy and value network. This is commonly used in RL and we found this
boosts the performance of our method.

Reward Normalization: For di↵erent training samples, performing editing over prompts
may result in significantly di↵erent reward scales. For some of the samples, di↵erent prompts
might have very marginal e↵ects on the final prediction, either due to the fact that the model
is already confident about the prediction since it is too easy, or the task sample is too hard
to predict and the model is confused regardless of what prompt it is fed. On the other hand,
for other training samples, editing prompts might bring a huge di↵erence in terms of the
accuracy. Thus, we perform sample-wise reward normalization to ensure that the reward
scale between samples is relatively consistent.
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Conditioning Policy on Action History: Directly taking the observation from the
language model can be ine�cient since the policy has no clue about how it has reached the
current state. This will bring a loop that the policy will edit prompts pA ! pB and then
pB ! pA. To mitigate this e↵ect, we build a policy that not only takes in the current hidden
state, but also conditioned on the action history on how it gets to the current state. Thus,
we break the loop between two prompts by considering how each state is reached.

4.5 Experiments

Our experiments first reveal the e↵ectiveness of TEMPERA in the few-shot setting. We
compare TEMPERA with prior baselines like Finetuning [39], Soft Prompt Tuning [86],
Black-Box Tuning [179], RLPrompt [37] and other manually tuned prompt methods. On
various tasks from GLUE [195] and SuperGLUE [196], our method achieves impressive per-
formance comparing to prior baselines. This shows that only using a small amount of training
examples is su�cient for RL and TEMPERA is sample e�cient. We also illustrate the data
e�ciency of our method compared to finetuning, showing that TEMPERA can achieve same
performance with 5.33x less data.

In addition to the performance gains, we aim to understand our method from di↵erent
aspects. In Sec. 4.5, we study how much test-time editing helps compared to query-agnostic
prompts. Our experiments demonstrate the importance of test-time editing and the necessity
of query-dependent prompts. In Sec. 4.5, we show that how di↵erent editing techniques (e.g,
instruction, in-context demonstration and verbalization) a↵ect the final performance of the
downstream task. We also ablate the number of in-context demonstrations used and the size
of the example pool in Sec. 4.5 and Sec. 4.5. Finally, we show some example prompts after
editing to illustrate the editing policy.

Tasks. We conduct our experiments from di↵erent categories including single-sentence
tasks (e.g., sentiment analysis including SST-2, Yelp reviews, MR, CR, topic classification
including AG News). For one-sentence tasks, the goal is to make a prediction based on the
sentence. We also include tasks from di↵erent types like NLI (e.g., SST-2) and multiple
choices (e.g., AG News). Most of the tasks are from the standard GLUE [195].

Task Settings. To ensure a fair comparison, we follow the same setting from LM-BFF [50]
and RLPrompt [37], we test TEMPERA on few-shot text classification tasks. The setting
is devised as follows: We randomly sample 16 training samples per class from the training
dataset of each task and use them as the few-shot dataset. This will result in a total of
16 ⇥ |Y| training samples (please refer to Appendix. C.5 for the number of classes in each
task). We also randomly sample 16 samples per class as the validation dataset. For reporting
the final performance, we use the standard test set and the detailed information can be found
at Appendix C.5. In addition to the common setup, we also randomly select n examples from
the training dataset as the in-context exemplar pool. We average our runs for 4 random seeds
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and report the average performance and corresponding standard deviation. For the language
model, we use L = RoBERTa-large [108]. For the details of these settings and tasks, please
refer to Appendix. C.5. The initial instruction is taken from the Natural Instructions [122].
The initial in context demonstrations are randomly sampled from a fixed example pool of
size 16 and the example pool is also randomly sampled from the training dataset, di↵erent
from the few-shot dataset that used for training the RL policy.

Baselines. We compare TEMPERA with several SoTA prompt tuning and discrete prompt
optimization baselines (including finetuning).

• Finetuning: it finetunes the entire language model with a classification head using
the few-shot dataset.

• Manual Prompt: we take the handcrafted prompt from [12].

• Black-Box Tuning: it is a mixture of discrete and soft prompt. The soft part is
trained using gradient descent and the discrete part is optimized using gradient-free
tuner.

• AutoPrompt: it adds the discrete trigger token and updates the prompts by iterative
gradient search.

• In-Context Demonstration: it randomly selects one training example and concate-
nates them with the input query.

• Instructions: Following Natural Instructions [201], prompts are manually created
instruction for each task. Each prompt is concatenated with inputs. Details are in
Appendix. C.4.

• GrIPS: it performs phrase level editing on the instructions and selects the best one.

• RLPrompt: it generates discrete prompts using RL framework.

Few-Shot Text Classification

Following the settings in existing work, we evaluate our model on some few-shot text clas-
sification tasks. In Tab. 4.2, We compare our method with various baselines including
RLPrompt. We can see that on most tasks we tested, TEMPERA outperforms previous
baselines by a large margin. For example, we have a 1.8% absolute gain on the SST-2 task
(over RLPrompt), 3.9% gain on the CR task and the performance is almost comparable to
finetuning the language model on the AG News task. We also see that our method results in
a much smaller variance between runs than Soft Prompt Tuning and AutoPrompt, indicating
that it is more stable across di↵erent few-shot datasets. Comparing to search-based methods
(e.g., Black-Box Tuning or GrIPS), our method avoids the expensive run-time search if one
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wants to perform test-time editing using one of the black-box optimization methods with a
surrogate reward. Note since the original Black-Box Tuning or GrIPS paper didn’t perform
query-dependent search, this is our conjecture. Thus, out method achieves both test-time
e�ciency and good performances on downstream tasks.

Table 4.2: Few-shot classification results. We compare against di↵erent baselines in this
setting. Results show that TEMPERA surpasses various baselines including finetuning,
prompt tuning and discrete prompt search. The standard deviations are shown in brackets.

SST-2 Yelp P. MR CR AG News

Finetuning Finetuning (few-shot) 80.6 (3.9) 88.7 (4.7) 67.4 (9.7) 73.3 (7.5) 84.9 (3.6)

Continuous Prompt
Soft Prompt Tuning 73.8 (10.9) 88.6 (2.1) 74.1 (14.6) 75.9 (11.8) 82.6 (0.9)

Black-Box Tuning 89.1 (0.9) 93.2 (0.5) 86.6 (1.3) 87.4 (1.0) 83.5 (0.9)

AutoPrompt 75.0 (7.6) 79.8 (8.3) 62.0 (0.8) 57.5 (5.8) 65.7 (1.9)

Discrete Prompt

Manual Prompt 82.8 83.0 80.9 79.6 76.9

In-Context Demo. 85.9 (0.7) 89.6 (0.4) 80.6 (1.4) 85.5 (1.5) 74.9 (0.8)

Instructions 89.0 84.4 85.2 80.8 54.8

GrIPS 87.1 (1.5) 88.2 (0.1) 86.1 (0.3) 80.0 (2.5) 65.4 (9.8)

RLPrompt 90.1 (1.8) 93.9 (1.8) 86.7 (2.4) 87.2 (1.7) 77.2 (2.0)

Discrete Prompt TEMPERA (ours) 91.9 (2.0) 92.6 (1.7) 88.0 (1.1) 91.1 (1.6) 85.5 (1.5)

Importance of Test-time Prompt Editing

To illustrate the importance of test-time prompt editing, we compare our method with
various baselines that do not perform test-time editing. In addition, we also construct
another baseline where we create a RL based method where the policy is not dependent
on the input query x, denoted as “TEMPERA (No TTE)”. Results in Tab. 4.3 show that
TEMPERA even without test-time editing can find better query-agnostic prompts comparing
to manually construct prompts, in-context demonstration and GrIPS. However, adding test-
time editing can further improve the performance when the task is harder: we got 0.8%
improvement on MR task and 3.0% improvement at AG News task. On SST-2, the e↵ect
of test-time editing is not significant as we suspect that the task is too easy. We found on
harder tasks like AG News, the gain of test-time editing is huge.

Data E�ciency for TEMPERA

To illustrate the data e�ciency of our method, we compare the performance of TEMPERA
with some few-shot standard finetuning results in Fig. 4.3. We see that in SST-2, we achieve
similar performance using almost 8x fewer training data. In tasks like Yelp, the gain is about
4x. We see that with fewer examples, TEMPERA strictly dominates fine-tuning methods.
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Table 4.3: We compare our method against di↵erent methods which do not perform test-time
editing. Results show that test-time editing is mostly helpful in harder tasks like AG News.

SST-2 MR AG News

Manual Prompt 82.8 80.9 76.9

In-Context Demo. 85.9 80.6 74.9

Instructions 89.0 85.2 54.8

GrIPS 87.1 87.1 65.4

TEMPERA (No TTE) 92.0 87.4 81.3

TEMPERA 91.9 88.2 84.3

Table 4.4: Ablation on di↵erent editing techniques. Results show that adding verbalizer-
edits helps all the tasks (especially MR and AG News). Adding instruction-edits marginally
helps the performance in SST-2 and MR.

SST-2 MR AG News

TEMPERA (No Inst & Verb) 91.2 87.2 82.2

TEMPERA (No Inst) 91.9 88.2 84.3

TEMPERA 92.4 88.4 85.5

This is critical when applying TEMPERA in the real-world application since labeled data is
expensive to get.

Qualitative Analysis of the Edits

We also visualize our policy by taking a few examples from the final prompts after editing
in Tab. 4.5. We see that our method mostly does example selection, verbalizer swapping
and phrase-level instruction editing. Our editing techniques are flexible and the final prompt
may take di↵erent combinations for each query. In addition, the resulting final prompt is still
interpretable by human, showing that our method achieves flexibility and interpretability at
the same time. Note that in the examples provided in Tab. 4.1, our policy choose to modify
the example selection and verbalization.
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Figure 4.3: Data E�ciency for TEMPERA: We compare data e�ciency between TEM-
PERA and few-shot finetuning. Results show that we can achieve a good performance with
significantly less data (varying from 4x to 8x).

Table 4.5: Qualitative results on the e↵ect of the learned policy. We see that our method
both enables the flexibility of various edits and interpretability of the final results. On the
contrary, many prior methods produce non-readable prompts. Red text is prior to editing
and blue text are the changes.

SST-2
Before
Edit

“In this task, you are given sentences from movie reviews. The task is to
classify a sentence as “positive” if the sentiment of the sentence is positive or
as “negative” if the sentiment of the sentence is negative. Review: of saucy.
Sentiment: positive. Review: cold movie. Sentiment: negative. Review:
heroes. Sentiment: <mask>.”

After
Edit
(better
verbal-
izer)

“In this task, you are given sentences from movie reviews. The task is to
classify a sentence as ”great” if the sentiment of the sentence is positive or
as “terrible” if the sentiment of the sentence is negative. Review: of saucy.
Sentiment: great. Review: cold movie. Sentiment: terrible. Review: heroes.
Sentiment: <mask>.”

AG News
Before
Edit

“Classify the news articles into the categories of World, Sports, Business, and
Technology. Article: What’s in a Name? Well, Matt Is Sexier Than Paul
(Reuters) Reuters - As Shakespeare said, a rose by any other name would
smell as sweet. Right? Answer: Technology. Article: Wall St. Bears Claw
Back Into the Black (Reuters) Reuters - Short-sellers, Wall Street’s dwindling
band of ultra-cynics, are seeing green again. Answer: <mask>.”

After
Edit
(better
exem-
plar
selec-
tion)

“Classify the news articles into the categories of World, Sports, Business, and
Technology. Article: Expansion slows in Japan Economic growth in Japan
slows down as the country experiences a drop in domestic and corporate
spending. Answer: Business. Article: Wall St. Bears Claw Back Into the
Black (Reuters) Reuters - Short-sellers, Wall Street’s dwindling band of ultra-
cynics, are seeing green again. Answer: <mask>.”

Ablation: Di↵erent Editing Techniques

We ablate on the di↵erent editing techniques and study how adding or removing them can
a↵ect the performance. The results are shown in Tab. 4.4. We can see that adding each
component (e.g., verbalizer, instruction) is helpful in terms of the final performance. We
also find that verbalizer is especially helpful in some tasks like AG News, resulting in a 1.2%
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Table 4.6: Ablation on the number of in-context exemplars. Results show that increasing
the number of examples results in a consistent increase of performance except for AG News
(which is due to the length limit).

SST-2 MR AG News

TEMPERA (2 Examples) 91.6 87.9 84.0
TEMPERA (4 Examples) 91.9 88.2 84.3
TEMPERA (8 Examples) 92.4 88.4 82.2

di↵erence in the final performance. This indicates that adding more flexibility to some extent
can help the performance.

Ablation: Number of Shots

We also ablate on the number of examples used in the in-context demonstration part of our
algorithm. We choose the size of 2, 4 and 8 for the analysis. We see that from Tab. 4.6,
in all the tasks we tested (SST-2, MR and AG News), increasing the number of examples
consistently improves the performance. However, the performance improvement is relatively
limited. In addition, due to the input length limit constraint by the language model (512
for RoBERTa), longer sequences of input will be truncated. This results in the performance
decrease when increasing the number of examples from 4 to 8 for AG News, where the input
length is longer than 512.

Table 4.7: Ablation on the size of the prompt pool to select from. We see that the perfor-
mance does not change too much when changing the size of the pool, indicating that the
performance is relatively stable.

SST-2 MR AG News

TEMPERA (Pool Size 8) 91.6 87.9 84.1
TEMPERA (Pool Size 16) 91.9 88.2 84.3
TEMPERA (Pool Size 32) 92.2 88.4 84.7

Ablation: Size of the Prompt Pool

We also ablate on the example size of the prompt pool where we keep the number of examplers
of 4. Intuitively, allowing our method to choose in-context demonstrations from a large range
of example pool can provide better prompts. From Table. 4.7, we can see that increasing the
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example pool size gives the algorithm more flexibility to choose in-context demonstrations,
resulting in a slightly better final performance.

4.6 Conclusion

In this paper we present TEMPERA, a test-time prompt editing method for large language
models via reinforcement learning. We found that perform test-time editing can greatly
improve the performance of downstream tasks for a pretrained language model. The pro-
posed method only requires little guidance on high-level search space design and can easily
incorporate prior human knowledge. It achieves SoTA performance on multiple benchmarks
including those from GLUE. This intersection area of research between NLP and RL can
inspire future research on designing better test-time editing algorithms for practical usage.
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Part III

LLM Interacting with Tools
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Chapter 5

Gorilla: Exploring Tool Usage of LLM
Agents

Large Language Models (LLMs) have seen an impressive wave of advances recently, with
models now excelling in a variety of tasks, such as mathematical reasoning and program
synthesis. However, their potential to e↵ectively use tools via API calls remains unfulfilled.
This is a challenging task even for today’s state-of-the-art LLMs such as GPT-4 largely
due to their unawareness of what APIs are available and how to use them in a frequently
updated toolset. We develop Gorilla, a finetuned LLaMA model that surpasses the perfor-
mance of GPT-4 on writing API calls. When combined with a document retriever, Gorilla
demonstrates a strong capability to adapt to test-time document changes, enabling flexible
user updates or version changes. It also substantially mitigates the issue of hallucination,
commonly encountered when prompting LLMs directly. To evaluate the model’s ability,
we introduce APIBench, a comprehensive dataset consisting of HuggingFace, TorchHub,
and TensorHub APIs. The successful integration of the retrieval system with Gorilla demon-
strates the potential for LLMs to use tools more accurately, keep up with frequently updated
documentation, and consequently increase the reliability and applicability of their outputs.
Gorilla’s code, model, and data will be open-sourced.

5.1 Introduction

The use of API’s and Large Language Models [33, 18, 159, 19, 130, 131] has changed what
it means to program. Previously, building complex machine learning software and systems
required extensive time and specialized skills. Now with tools like the HuggingFace API, an
engineer can set up a deep learning pipeline with a few lines of code. Instead of searching
through StackOverflow and documentation. Developers can ask models like GPT for solu-
tions and receive immediate, actionable code with docstrings. However, using o↵-the-shelf
LLM’s to generate API calls remains unsolved because there are millions of available API’s
which are frequently updated.
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Figure 5.1: Examples of API calls. Example API calls generated by GPT-4 [130], Claude [8], and
Gorilla for the given prompt. In this example, GPT-4 presents a model that doesn’t exist, and Claude
picks an incorrect library. In contrast, our Gorilla model can identify the task correctly and suggest a fully-
qualified API call.

We connect LLM’s and massive API’s with Gorilla, a system which takes in an instruction
like “build me a classifier for medical images” and outputs the corresponding imports and
API calls, along with a step-by-step explanation of the pipeline. Gorilla uses self-instruct,
fine-tuning, and retrieval to enable LLMs to accurately select from a large, overlapping, and
changing set tools expressed using their APIs and API documentation. The model trained
with the our method demonstrates good adaptation behavior to test-time API document
changes such as API version and arguments.

With the development of API generation methods comes a question of how to evaluate,
as many APIs will have overlapping functionality with nuanced limitations and constraints.
Thus, we construct APIBench (⇠ 1600 APIs) by scraping a large corpus of ML APIs and
developing an evaluation framework that uses AST sub-tree matching to check functional
correctness.

Using APIBench, we finetune Gorilla, a LLaMA-7B-based model with document retrieval
and show that it significantly outperforms both open-source and closed-source models like
Claude and GPT-4 in terms of API functionality accuracy as well as a reduction in API argu-
ment hallucination errors (Fig. 5.1). Finally, we demonstrate Gorilla’s ability to understand
and reason about constraints.
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Better

Figure 5.2: Accuracy (vs) hallucination in four settings, that is, zero-shot (i.e., without any retriever),
and with retrievers. BM25 and GPT are commonly used retrievers and the oracle retriever returns relevant
documents at 100%, indicating an upper bound. Higher in the graph (higher accuracy) and to the left is
better (lower hallucination). Across the entire dataset, our model, Gorilla, improves accuracy while reducing
hallucination.

5.2 Related Work

By empowering LLMs to use tools [163], we can grant access to vastly larger and changing
knowledge bases and accomplish complex computational tasks. By providing access to search
technologies and databases, [124, 187, 176] demonstrated that we can augment LLMs to
address a significantly larger and more dynamic knowledge space. Similarly, by providing
access to computational tools, [187, 4, 245, 178, 182] demonstrated that LLMs can accomplish
complex computational tasks. Consequently, leading LLM providers [130], have started to
integrate plugins to allow LLMs to invoke external tools through APIs.

Large Language Models Recent strides in the field of LLMs have renovated many down-
stream domains [33, 189, 236, 232], not only in traditional natural language processing tasks
but also in program synthesis. Many of these advances are achieved by augmenting pre-
trained LLMs by prompting [206] and instruction fine-tuning [34, 158, 203, 62]. Recent
open-sourced models like LLaMa [189], Alpaca [185], and Vicuna [32] have furthered the
understanding of LLMs and facilitated their experimentation. While our approach, Gorilla,
incorporates techniques akin to those mentioned, its primary emphasis is on enhancing the
LLMs’ ability to utilize millions of tools, as opposed to refining their conversational skills.
Additionally, we pioneer the study of fine-tuning a base model by supplementing it with
information retrieval - a first, to the best of our knowledge.

Tool Usage The discussion of tool usage within LLMs has seen an upsurge, with models
like Toolformer taking the lead [163, 79, 84, 124]. Tools often incorporated include web-
browsing [161], calculators [35, 187], translation systems [187], and Python interpreters.
While these e↵orts can be seen as preliminary explorations of marrying LLMs with tool
usage, they generally focus on specific tools. Our paper, in contrast, aims to explore a vast
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array of tools (i.e., API calls) in an open-ended fashion, potentially covering a wide range of
applications.

With the recent launch of Toolformer [163] and GPT-4 [130], the importance of API calls
has been highlighted, encouraging many works in employing API calls as tooling [166, 92].
Moreover, the application of API calls in robotics has been explored to some extent [193, 1].
However, these works primarily aim at showcasing the potential of “prompting” LLMs rather
than establishing a systematic method for evaluation and training (including fine-tuning).
Our work, on the other hand, concentrates on systematic evaluation and building a pipeline
for future use.

LLMs for Program Synthesis Harnessing LLMs for program synthesis has historically
been a challenging task [91, 27, 219, 64, 40, 82]. Researchers have proposed an array of strate-
gies to prompt LLMs to perform better in coding tasks, including in-context learning [206,
78, 27], task decomposition [77, 224], and self-debugging [29, 173]. Besides prompting, there
have also been e↵orts to pretrain language models specifically for code generation [126, 89,
127].

DocPrompting [245] looked at choosing the right subset of code including API along
with a retriever. Gorilla presents distinct advancements over DocPrompting. First, the way
the data-sets are constructed are di↵erent, leading to intersting downstream artifacts. Go-
rilla focuses on model usages where we also collect detailed information about parameters,
performance, e�ciency, etc. This helps our trained model understand and respond to finer
constraints for each API. Docprompting focuses on generic API calls but not on the details
within an API call. Second, Gorilla introduces and uses the AST subtree-matching evalua-
tion metric that helps measure hallucination which we find are more representative of code
structure and API accuracy compared to traiditional NLP metrics. Finally, Gorilla focuses
on instruction-tuning method and has ”agency” to interact with users while DocPrompting
focuses on building an NLP-to-Code generative model. On equal footing, we demonstrate
that Gorilla performs better than DocPrompting in Appendix D.3.

5.3 Method

We first describe APIBench, a comprehensive benchmark constructed from TorchHub, Ten-
sorHub, and HuggingFace API Model Cards. We begin by outlining the process of collecting
the API dataset and how we generated instruction-answer pairs. We then introduce Gorilla,
a novel training paradigm with an information–retriever incorporated into the training and
inference pipelines. Finally, we present our AST tree matching evaluation metric.

Dataset Collection

To collect the dataset, we recorded all online model cards for HuggingFace’s “The Model
Hub”, PyTorch Hub, and TensorFlow Hub Models. Throughout the rest of the paper, we
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Dataset curation: 1,645 API calls. 94 from Torch 
Hub (exhaustive), 626 from TensorFlow Hub v2 

(exhaustive) and 925 from HuggingFace (Top 20 
in each domain). 

Self-instruct with in-context 
examples to generate 

16,450 {instruction,API} pairs

This is then used to 
train Gorilla-7B

Cat
CatCatAPI: torch.hub.load(…)

API Database

“I want to see 
some cats dancing 

in celebration!”

Information 
Retriever

Input:
###Task: Generate image 
from text
###Reference API: 
StableDiffusionPipeline.from_
pretrained (…)

API:StableDiffusionPipelin
e.from_pretrained(stabilit
yai/stable-diffusion-2-1)

Zero-shot
Execution 
Results!

GORILLA

GORILLA

Figure 5.3: Gorilla: A system for enabling LLMs to interact with APIs. The upper half represents
the training procedure as described in Sec 3.2. This is the most exhaustive API data-set for ML to the best
of our knowledge. During inference (lower half), Gorilla supports two modes - with retrieval, and zero-shot.
In this example, it is able to suggest the right API call for generating the image from the user’s natural
language query.

call these HuggingFace, Torch Hub, and TensorFlow Hub respectively for brevity.

API Documentation The HuggingFace platform hosts and servers about 203,681 models.
However, many of them have poor documentation, lack dependencies, have no information
in their model card, etc. To filter these out, we pick the top 20 models from each domain.
We consider 7 domains in multimodal data, 8 in CV, 12 in NLP, 5 in Audio, 2 in tabular
data, and 2 in reinforcement learning. Post filtering, we arrive at a total of 925 models from
HuggingFace. TensorFlow Hub is versioned into v1 and v2. The latest version (v2) has 801
models in total, and we process all of them. After filtering out model cards with little to no
information, we are left with 626 models. Similar to TensorFlow Hub, we extract 95 models
(exhaustive) from Torch Hub. We then converted the model cards for each of these 1,645
API calls into a JSON object with the following fields: {domain, framework, functionality,
api name, api call, api arguments, environment requirements, example code, performance,
description}. We provide more information in D.1. These fields were chosen to generalize
beyond API calls within the ML domain, to other domains, including RESTful, SQL, and
other potential API calls.

Instruction Generation Guided by the self-instruct paradigm [202], we employ GPT-4
to generate synthetic instruction data. We provide three in-context examples, along with
reference API documentation, and task the model with generating real-world use cases that
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call upon the API. We specifically instruct the model to refrain from using any API names
or hints when creating instructions. We constructed 6 examples (Instruction-API pairs) for
each of the 3 model hubs. These 18 examples were the only hand-generated or modified data.
For each of our 1,645 API datapoints, we generate 10 instruction-API pairs by sampling 3
of 6 corresponding instruction examples in each pair (illustrated in Figure 5.3).

API Call with Constraints API calls often come with inherent constraints. These con-
straints necessitate that the LLM not only comprehend the functionality of the API call
but also categorize the calls according to di↵erent constraint parameters. Specifically, for
machine learning API calls, two common sets of constraints are parameter size and a lower
bound on accuracy. Consider, for instance, the following prompt: “Invoke an image classi-
fication model that uses less than 10M parameters, but maintains an ImageNet accuracy of
at least 70%.” Such a prompt presents a substantial challenge for the LLM to accurately
interpret and respond to. Not only must the LLM understand the user’s functional descrip-
tion, but it also needs to reason about the various constraints embedded within the request.
This challenge underlines the intricate demands placed on LLMs in real-world API calls. It
is not su�cient for the model to merely comprehend the basic functionality of an API call;
it must also be capable of navigating the complex landscape of constraints that accompany
such calls. We also incorporate these instructions in our training dataset.

Gorilla

Our model Gorilla, is a retrieval-aware finetuned LLaMA-7B model, specifically for API calls.
As shown in Figure 5.3, we employ self-instruct to generate {instruction, API} pairs. To fine-
tune LLaMA, we convert this to a user-agent chat-style conversation, where each datapoint
is a conversation with one round each for the user and the agent. We then perform standard
instruction finetuning on the base LLaMA-7B model. For our experiments, we train Gorilla
with and without the retriever.

Retriever-Aware training For training with retriever, the instruction-tuned dataset also
appends to the user prompt, “Use this API documentation for reference: API doc JSON”.
Through this, we aim to teach the LLM to parse the second half of the question to answer
the first half. We demonstrate that this (1) makes the LLM adapt to test-time changes
in API documentation, (2) improves performance from in-context learning, and (3) reduces
hallucination error.

Surprisingly, we find that augmenting a LLM with retrieval, does not always lead to
improved performance, and can at-times hurt performance.

Gorilla Inference During inference, the user provides the prompt in natural language
(Figure 5.3). This can be for a simple task (e.g, “I would like to identify the objects in an
image”), or they can specify a vague goal, (e.g, “I am going to the zoo, and would like to
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track animals”). Gorilla, similar to training, can be used for inference in two modes: zero-
shot and with retrieval. In zero-shot, this prompt (with no further prompt tuning) is fed
to the Gorilla LLM model when then returns the API call that will help in accomplishing
the task and/or goal. In retrieval mode, the retriever (either of BM25 or GPT-Index) first
retrieves the most up-to-date API documentation stored in the API Database. Before being
sent to Gorilla, the API documentation is concatenated to the user prompt along with the
message “Use this API documentation for reference.” The output of Gorilla is an API to
be invoked. Besides the concatenation as described, we do no further prompt tuning in our
system. While we also implemented a system to execute these APIs, that is not a focus of
this paper.

Verifying APIs

Inductive program synthesis, where a program is synthesized to satisfy test cases, has found
success in several avenues [14, 117]. However, test cases fall short when evaluating API calls,
as it is often hard to verify the semantic correctness of the code. For example, consider the
task of classifying an image. There are over 40 di↵erent models that can be used for the
task. Even if we were to narrow down to a single family of Densenet, there are four di↵erent
configurations possible. Hence, there exist multiple correct answers and it is hard to tell if
the API being used is functionally equivalent to the reference API by unit tests. Thus, to
evaluate the performance of our model, we compare their functional equivalence using the
dataset we collected. To trace which API in the dataset is the LLM calling, we adopt the
AST tree-matching strategy. Since we only consider one API call in this paper, checking if
the AST of the candidate API call is a sub-tree of the reference API call reveals which API
is being used in the dataset.

Identifying and even defining hallucinations can be challenging. We use the AST match-
ing process to directly identify the hallucinations. We define a hallucination as an API call
that is not a sub-tree of any API in the database – invoking an entirely imagined tool. This
form of hallucination is distinct from invoking an API incorrectly which we instead define
as an error.

AST Sub-Tree Matching We perform AST sub-tree matching to identify which API in
our dataset is the LLM calling. Since each API call can have many arguments, we need
to match on each of these arguments. Further, since, Python allows for default arguments,
for each API, we define which arguments to match in our database. For example, we check
repo or dir and model arguments in our function call. In this way, we can easily check
if the argument matches the reference API or not. We first build the tree, and verify that
it matches a subtree in our dataset along nodes torch.hub.load, pytorch/vision, and
densenet121. We do not check for match along leaf node pretrained=True since that is an
optional argument.
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5.4 Evaluation

When evaluating Gorilla (finetuned on APIBench), we aim to answer the following questions:

1. How does Gorilla compare to other LLMs on API Bench? ( 5.4)

2. How well does Gorilla adapt to test-time changes in API documentation? ( 5.4)

3. How well can Gorilla handle questions with constraints? (5.4)

We show that Gorilla in the specific domain we evaluated on can outperform both open-
source and close-source models. With our retriever-aware training techniques, our model
can generalize to APIs that are outside of its training data. Finally, Gorilla also handles the
constraints pretty well.

Baselines We primarily compare Gorilla with state-of-the-art language models in a zero-
shot setting and with 3-shot in-context learning. The models under consideration include:
GPT-4 by OpenAI with the gpt-4-0314 checkpoint; GPT-3.5-turbo with the gpt-3.5-turbo
checkpoint, both of which are RLHF-tuned models specifically designed for conversation;
Claude with the claude-v1 checkpoint, a language model by Anthropic, renowned for its
lengthy context capabilities; and LLaMA-7B, a state-of-the-art open-source large language
model by Meta.

Retrievers The term zero-shot (abbreviated as 0-shot in tables) refers to scenarios where
no retriever is used. The sole input to the model is the user’s natural language prompt.
For BM25, we consider each API as a separate document. During retrieval, we use the
user’s query to search the index and fetch the most relevant (top-1) API. This API is
concatenated with the user’s prompt to query the LLMs. Similarly, GPT-Index refers to
the embedding model text-embedding-ada-002-v2 from OpenAI where each embedding is
1,536 dimensional. Like BM25, each API call is indexed as an individual document, and the
most relevant document, given a user query, is retrieved and appended to the user prompt.
Lastly, we include an Oracle retriever, which serves two purposes: first, to identify the po-
tential for performance improvement through more e�cient retrievers, and second, to assist
users who know which API to use but may need to help invoking it. In all cases, when a
retriever is used, it is appended to the user’s prompt as follows: ¡user prompt¿ Use this API
documentation for reference: ¡retrieved API doc JSON¿. The dataset for these evaluations
is detailed in Section 3.2. We emphasize that we have maintained a holdout test set on
which we report our findings. The holdout test set was created by dividing the self-instruct
dataset’s instruction, API pairs into training and testing sets.

AST Accuracy on API call

We first demonstrate the results for the AST accuracy for di↵erent models. We present the
results in Table 5.1. We test each model for di↵erent retriever settings defined above. We
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Figure 5.4: Accuracy with GPT-retriever. Methods to the left of the dotted line are closed source.
Gorilla outperforms on Torch Hub and Hugging-Face while matching performance on Tensorflow Hub for all
existing SoTA LLMs - closed source, and open source.

report the overall accuracy, the error by hallucination and the error by selecting wrong API
call. Note that for TorchHub and TensorHub, we evaluate all the models using AST tree
accuracy score. However, for HuggingFace, since the dataset is not exhaustive, for all the
models except Gorilla, we only check if they can provide the correct domain names. So this
problem reduces to picking one of multiple choices.

Finetuning without Retrieval In Table 5.1 we show that lightly fine-tuned Gorilla is
able to match, and often surpass performance in the zero-shot over all the models, 20.43%
better than GPT-4 and 10.75% better than ChatGPT. When compared to other open-
source models LLAMA, the improvement is as big as 83%. his suggests quantitatively, that
finetuning is better than retrieval, at-least in our scope.

In addition, we found that finetuning without the retriever and putting a ground truth
retriever during evaluation improves the performance: 0.88% worse in TensorHub and 0.97%
better in HuggingFace. If we put BM25 or GPT-Index as retriever, results will be significantly
dropped: 21.50% in Torch Hub and 47.57% in HuggingFace. The result illustrates that
adding a non-optimal retriever at test time sometimes misguide the model and result in
more errors.

Finetuning with Retrieval We now discuss an interesting experiment on how finetuning
language with retriever incorporated is helping the performance. The settings for this exper-
iment are finetuning the base LLAMA with the prompt (instruction generated), reference
API document (from golden-truth oracle), and the example output generated by GPT-4. In
Table 5.3, incorporating ground truth retriever in the finetuning pipeline achieves signifi-
cantly better results 12.37% better than training without retriever in Torch Hub and 23.46%
better in HuggingFace. However, we found that at evaluation time, current retrievers still
have a big gap between the ground truth retriever: using GPT-Index at evaluation results
in 29.20% accuracy degradation and using BM25 results in a 52.27% accuracy degrada-
tion. Nevertheless, we can still conclude that with a good retriever, finetuning an LLM to
incorporate retrieved results is preferred than zero-shot finetuning.
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Table 5.1: Evaluating LLMs on Torch Hub, HuggingFace, and Tensorflow Hub APIs

LLM (retriever) TorchHub HuggingFace TensorFlow Hub
overall " hallu # err # overall " hallu # err # overall " hallu # err #

LLAMA (0-shot) 0 100 0 0.00 97.57 2.43 0 100 0
GPT-3.5 (0-shot) 48.38 18.81 32.79 16.81 35.73 47.46 41.75 47.88 10.36
GPT-4 (0-shot) 38.70 36.55 24.7 19.80 37.16 43.03 18.20 78.65 3.13
Claude (0-shot) 18.81 65.59 15.59 6.19 77.65 16.15 9.19 88.46 2.33
Gorilla (0-shot) 59.13 6.98 33.87 71.68 10.95 17.36 83.79 5.40 10.80

LLAMA (BM-25) 8.60 76.88 14.51 3.00 77.99 19.02 8.90 77.37 13.72
GPT-3.5 (BM-25) 38.17 6.98 54.83 17.26 8.30 74.44 54.16 3.64 42.18
GPT-4 (BM-25) 35.48 11.29 53.22 16.48 15.93 67.59 34.01 37.08 28.90
Claude (BM-25) 39.78 5.37 54.83 14.60 15.82 69.58 35.18 21.16 43.64
Gorilla (BM-25) 40.32 4.30 55.37 17.03 6.42 76.55 41.89 2.77 55.32

LLAMA (GPT-Index) 14.51 75.8 9.67 10.18 75.66 14.20 15.62 77.66 6.71
GPT-3.5 (GPT-Index) 60.21 1.61 38.17 29.08 7.85 44.80 65.59 3.79 30.50
GPT-4 (GPT-Index) 59.13 1.07 39.78 44.58 11.18 44.25 43.94 31.53 24.52
Claude (GPT-Index) 60.21 3.76 36.02 41.37 18.81 39.82 55.62 16.20 28.17
Gorilla (GPT-Index) 61.82 0 38.17 47.46 8.19 44.36 64.96 2.33 32.70

LLAMA (Oracle) 16.12 79.03 4.83 17.70 77.10 5.20 12.55 87.00 0.43
GPT-3.5 (Oracle) 66.31 1.60 32.08 89.71 6.64 3.65 95.03 0.29 4.67
GPT-4 (Oracle) 66.12 0.53 33.33 85.07 10.62 4.31 55.91 37.95 6.13
Claude (Oracle) 63.44 3.76 32.79 77.21 19.58 3.21 74.74 21.60 3.64
Gorilla (Oracle) 67.20 0 32.79 91.26 7.08 1.66 94.16 1.89 3.94

Table 5.2: Gorilla 0-shot with GPT 3-shot incontext examples

HF (Acc ↑) TH (Acc ↑) TF (Acc ↑)

GPT-3.5 (0s) 16.81 41.93 41.75
GPT-4 (0s) 19.80 54.30 18.20

GPT-3.5 (3i) 25.77 73.11 71.82
GPT-4 (3i) 26.32 75.80 77.37

Gorilla (0s) 58.05 75.80 83.79

Hallucination with LLM One phenomenon we observe is that zero-shot prompting
with LLMs (GPT-4/GPT-3.5) to call APIs results in dire hallucination errors. These er-
rors, while diverse, commonly manifest in erroneous behavior such as the model invoking
the AutoModel.from pretrained(dir name) command with arbitrary GitHub repository
names. Surprisingly, we also found that in TorchHub, HuggingFace and TensorFlow Hub,
GPT-3.5 has less hallucination errors than GPT-4. This finding is also consistent for the
settings when various retrieving methods are provided: 0-shot, BM25, GPT-Index and the
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Table 5.3: Comparison of retrieval techniques

Gorilla without Retriever Gorilla with Oracle retriever

zero-shot BM25 GPT-Index Oracle zero-shot BM25 GPT-Index Oracle

Torch Hub (overall) " 59.13 37.63 60.21 54.83 0 40.32 61.82 67.20
HuggingFace (overall) " 71.68 11.28 28.10 45.58 0 17.04 47.46 91.26
TensorHub (overall) " 83.79 34.30 52.40 82.91 0 41.89 64.96 94.16

Torch Hub (Hallu) # 6.98 11.29 4.30 15.59 100 4.30 0 0
HuggingFace (Hallu) # 10.95 46.46 41.48 52.77 99.67 6.42 8.19 7.08
TensorHub (Hallu) # 5.40 20.43 19.70 13.28 100 2.77 2.33 1.89

Accuracy

Gorilla AST metric (proposed) 0.78
Eval by Human 0.78
Code Executable (Eval by Human) 0.72

Table 5.4: AST evaluation metric has strong correlation with Accuracy

oracle. This might suggest that RLHF plays a central role in turning the model to be
truthful. Additional examples and discussion are in D.3.

AST as a Hallucination Metric We manually executed Gorilla’s API generations to
evaluate how well AST works as an evaluation metric. Executing every code generated is im-
practical within academic setting—for example, executing the HuggingFace model needs the
required library dependencies (e.g., transformers, sentencepiece, accelerate), correct coupling
of software kernels (e.g., torch vision, torch, cuda, cudnn versions), and required hardware
support (e.g., A100 40G gpus). Hence, to make it tractable, we sampled 100 random Gorilla
generations from our evalualtion set. The accuracy using AST subtree matching is 78%, con-
sistent with human evaluation of 78% accuracy in calling the right API. All the generations
that AST flagged as incorrect, were the same ones that were manually flagged as incorrect.
Additionally, Gorilla also generates supporting code to call the API which includes installing
dependencies e.g., pip install transformers[sentencepiece]), environment variables,
etc. When we manually attempted to execute the code, 72% of all codes generated were
executed successfully. It’s worth noting that the 6% discrepancy are not semantic errors,
but errors that arose due to factors external to the API, and in the supporting code. We have
included the full example to illustrate this further in D.3. Considering the significant time
and e↵ort required for manual validation of each generation, the strong correlation between
human evaluation and the AST evaluation further reinforces our belief in the e�ciency of
using AST as a robust o✏ine metric.
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USER: I want to automatically remove 
the background from an input image 
<Retrieval: ..fcn_resnet101..>

GORILLA: 
    api_call: 
        “torch.hub.load('pytorch/vision', 
'fcn_resnet101', pretrained=True)”

USER: I want to automatically remove the 
background from an input image. <Retrieval: 
..NVIDIA/DeepLearningExamples:torchhub..>

GORILLA:
    api_call: 
        “torch.hub.load(‘NVIDIA / 
DeepLearningExamples:torchhub ', 'fcn_resnet50', 
pretrained=True)”

USER: I want to automatically remove 
the background from an input image. 
<Retrieval:  ..fcn_resnet50..>

GORILLA: 
    api_call: 
        “torch.hub.load('pytorch/vision', 
'fcn_resnet50', pretrained=True)”
 

Default Response Update the model Update the model repository

Figure 5.5: Gorilla’s retriever–aware training enables it to react to changes in the
APIs. The second column demonstrates changes in model upgrading FCN’s ResNet–50 backbone
to ResNet–101. The third column demonstrate changes in model registry from pytorch/vision to
NVIDIA/DeepLearningExamples:torchhub

Test-Time Documentation Change

The rapidly evolving nature of API documentation presents a significant challenge for the
application of LLMs in this field. These documents are often updated at a frequency that
outpaces the re-training or fine-tuning schedule of LLMs, making these models particularly
brittle to changes in the information they are designed to process. This mismatch in update
frequency can lead to a decline in the utility and reliability of LLMs over time.

However, with the introduction of Gorilla’s retriever-aware training, we can readily adapt
to changes in API documentation. This novel approach allows the model to remain updated
and relevant, even as the API documentation it relies on undergoes modifications. This
is a pivotal advancement in the field, as it ensures that the LLM maintains its e�cacy
and accuracy over time, providing reliable outputs irrespective of changes in the underlying
documentation.

For instance, consider the scenario illustrated in Figure 6, where the training of Gorilla has
allowed it to react e↵ectively to changes in APIs. This includes alterations such as upgrading
the FCN’s ResNet-50 backbone to ResNet-101, as demonstrated in the second column of the
figure. This capability ensures that the LLM remains relevant and accurate even as the
underlying models and systems undergo upgrades and improvements. Furthermore, the
third column in Figure 6 shows how Gorilla adapts to changes in the model registry from
pytorch/vision to NVIDIA/DeepLearningExamples:torchhub. This reflects the model’s
ability to adjust to shifts in API sources, which is vital as organizations may change their
preferred model registries over time.

In summary, Gorilla’s ability to adapt to test-time changes in API documentation o↵ers
numerous benefits. It maintains its accuracy and relevance over time, adapts to the rapid
pace of updates in API documentation, and adjusts to modifications in underlying models
and systems. This makes it a robust and reliable tool for API calls, significantly enhancing
its practical utility.
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Table 5.5: Evaluating LLMs on constraint-aware API invocations

GPT-3.5 GPT-4 Gorilla

0-shot BM25 GPT-Index Oracle 0-shot BM25 GPT-Index Oracle 0-shot BM25 GPT-Index Oracle

Torch Hub (overall) 73.94 62.67 81.69 80.98 62.67 56.33 71.11 69.01 71.83 57.04 71.83 78.16
Torch Hub (Hallu) 19.01 30.98 14.78 14.08 15.49 27.46 14.08 9.15 19.71 39.43 26.05 16.90
Torch Hub (err) 7.04 6.33 3.52 4.92 21.83 16.19 14.78 21.83 8.45 3.52 2.11 4.92

Accuracy const 43.66 33.80 33.09 69.01 43.66 29.57 29.57 59.15 47.88 30.28 26.76 67.60

LLAMA Claude

0-shot BM25 GPT-Index Oracle 0-shot BM25 GPT-Index Oracle

Torch Hub (overall) 0 8.45 11.97 19.71 29.92 81.69 82.39 81.69
Torch Hub (Hallu) 100 91.54 88.02 78.87 67.25 16.19 15.49 13.38
Torch Hub (err) 0 0 0 1.4 2.81 2.11 2.11 4.92

Accuracy const 0 6.33 3.52 17.60 17.25 29.57 31.69 69.71

API Call with Constraints

We now focus on the language model’s capability of understanding constraints. For any
given task, which API call to invoke is typically a tradeo↵ between a multitude of factors.
In the case of RESTFul APIs, it could be the cost of each invocation ($), and the latency
of response (ms), among others. Similarly, within the scope of ML APIs, it is desirable
for Gorilla to respect constraints such as accuracy, number of learnable parameters in the
model, the size on disk, peak memory consumption, FLOPS, etc. We present the underlying
ablation study evaluating the ability of di↵erent models in zero-shot and with retrievers
settings to respect a given accuracy constraint. This setting is best understood with an
example. If the user were to ask for an Image classification model that achieves at least 80%
top-1 accuracy on the Imagenet dataset, then while both are classification models hosted by
Torch Hub, ResNeXt-101 32x16d with a top-1 accuracy of 84.2% would be the right model
whose API to call and not, say, MobileNetV2 which has a top-1 accuracy of 71.88%.

For Table 5.5, we filtered a subset of the Torch Hub dataset that had accuracy defined
for at least one-dataset in its model card (65.26% of TorchHub dataset in Table 5.1). We
notice that with constraints, understandably, the accuracy drops across all models, with
and without a retriever. Gorilla is able to match performance with the best-performing
model GPT-3.5 when using retrievals (BM25, GPT-Index) and has the highest accuracy in
the Zero-shot case. This highlights Gorilla’s ability to navigate APIs while considering the
trade-o↵s between di↵erent constraints.

5.5 conclusion

LLMs are swiftly gaining popularity across diverse domains. In our study, we spotlight tech-
niques designed to enhance the LLM’s ability to accurately identify the appropriate API.
Since APIs as a universal language enabling diverse systems to communicate e↵ectively, their
correct usage can boost the ability of LLMs to interact with tools. In this paper, we proposed
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Gorilla, a novel pipeline for finetuning LLMs to call APIs. The finetuned model’s perfor-
mance surpasses prompting the state-of-the-art LLM in three massive datasets we collected.
Gorilla generates reliable API calls to ML models without hallucination, demonstrates an
impressive capability to adapt to test-time API usage changes, and can satisfy constraints
while picking APIs.
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Chapter 6

RAFT: Document Understanding of
LLM Agents

Pretraining Large Language Models (LLMs) on large corpora of textual data is now a stan-
dard paradigm. When using these LLMs for many downstream applications, it is common to
additionally bake in new knowledge (e.g., time-critical news, or private domain knowledge)
into the pretrained model either through RAG-based-prompting, or finetuning. However, the
optimal methodology for the model to gain such new knowledge remains an open question.
In this paper, we present Retrieval Augmented Fine Tuning (RAFT), a training recipe that
improves the model’s ability to answer questions in an ”open-book” in-domain setting. In
RAFT, given a question, and a set of retrieved documents, we train the model to ignore those
documents that don’t help in answering the question, which we call, distractor documents.
RAFT accomplishes this by citing verbatim the right sequence from the relevant document
that would help answer the question. This coupled with RAFT’s chain-of-thought-style
response helps improve the model’s ability to reason. In domain specific RAG, RAFT con-
sistently improves the model’s performance across PubMed, HotpotQA, and Gorilla datasets,
presenting a post-training recipe to improve pre-trained LLMs to in-domain RAG.

6.1 Introduction

Trained on vast quantities of public data, Large Language Models LLMs have achieved
significant advances in a wide range of general knowledge reasoning tasks [18, 206].

However, increasingly LLMs are being employed in specialized domains to support tasks
ranging from code completion for specific software frameworks to question answering on
specific document collections (e.g., legal or medical documents). In these settings, general
knowledge reasoning is less critical but instead, the primary goal is to maximize accuracy
based on a given set of documents. Indeed, adapting LLMs to the specialized domains
(e.g., recent news, enterprise private documents, or program resources constructed after the
training cuto↵) is essential to many emerging applications [194, 84] and is the focus of this
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“Open book”

query answer

“Closed book”

query answer

Bake in Knowledge 
at Train Time

Model can use 
External Docs at Test

RAFT (Proposed)

query answer

Teach Model to
 use External Docs at Test

Figure 6.1: How best to prepare for an Exam?(a) Fine-tuning based approaches imple-
ment ”studying” by either directly ”memorizing” the input documents or answering practice
QA without referencing the documents. (b) Alternatively, in-context retrieval methods fail
to leverage the learning opportunity a↵orded by the fixed domain and are equivalent to
taking an open-book exam without studying. While these approaches leverage in-domain
learning, they fail to prepare for open-book tests. In contrast, our approach (c) RAFT lever-
ages fine-tuning with question-answer pairs while referencing the documents in a simulated
imperfect retrieval setting — thereby e↵ectively preparing for the open-book exam setting.

work.
This paper studies the following question – How to adapt pre-trained LLMs for Retrieval

Augmented Generation (RAG) in specialized domains?
When it comes to adapting LLMs to specialized domains, we consider the following

two candidates: in-context learning through Retrieval-Augmented Generation (RAG) and
supervised fine-tuning. RAG-based methods allow the LLM to reference the documents
when answering questions. However, these methods fail to leverage the learning opportunity
a↵orded by the fixed domain setting and early access to the test documents. Alternatively,
supervised fine-tuning o↵ers the opportunity to learn more general patterns in the documents
and better align to end tasks and user preferences. However, existing fine-tuning based
approaches either fail to leverage the documents at test time (don’t incorporate RAG) or
fail to account for the imperfections in the retrieval process during training.

We can draw an analogy to an open-book exam. Existing in-context retrieval methods
are equivalent to taking an open-book exam without studying. Alternatively, existing fine-
tuning based approaches implement “studying” by either directly “memorizing” [218] the
input documents or answering practice questions [202] without referencing the documents.
While these approaches leverage in-domain learning they fail to prepare for the open-book
nature of test setting.

In this paper, we study how to combine supervised fine-tuning (SFT) with retrieval aug-
mented generation (RAG). We propose a novel adaptation strategy – Retrieval-Augmented
Fine Tuning (RAFT). RAFT specifically addresses the challenge of fine-tuning LLMs to
incorporate domain knowledge while also improving in-domain RAG performance. RAFT
aims to not only enable models to learn domain specific knowledge through fine-tuning, but
also to ensure robustness against inaccurate retrievals. This is achieved by training the mod-
els to understand the dynamics between the question posed (prompt), the domain specific
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documents retrieved, and the appropriate answer. Going back to our analogy, our approach
is analogous to studying for an open-book exam by recognizing relevant, and irrelevant re-
trieved documents.

In RAFT, we train the model to answer the question (Q) from Document(s) (D*) to
generate an answer (A*), where A* includes chain-of-thought [206, 7], and in the pres-
ence of distractor documents (Dk). We explain the methodology in detail in Section 6.3
and analyze the sensitivity to the number of distractor documents (k) at train- and test-
time in Section 6.5. RAFT consistently outperforms Supervised-finetuning both with- and
without- RAG across PubMed [38], HotpotQA [223], and HuggingFace Hub, Torch Hub, and
Tensorflow Hub Gorilla datasets [136], presenting a novel, yet simple technique to improve
pre-trained LLMs for in-domain RAG.

6.2 LLMs for Open-Book Exam

To understand our goal better, we expand on our analogy between training an LLM in the
real-world setting of preparing for an exam.

Closed-Book Exam A closed book exam often refers to a scenario where the LLMs do
not have access to any additional documents or references to answer the questions during
the exam. For LLMs, this is equivalent to the scenario, for example, in which the LLM is
used as a chatbot. In this scenario, the LLM draws from the knowledge baked in during
pre-training and supervised finetuning to respond to the prompt.

Open Book Exam In contrast, we liken the open-book exam setting to the scenario
in which the LLM can refer to external sources of information (e.g., a website or a book
chapter). In such scenarios, typically, the LLM is paired with a retriever which retrieves ‘k’
documents (or specific segments of the document) which are appended to the prompt. It
is only through these documents retrieved that the LLM gains access to “new knowledge”.
As a result, we argue that the LLM’s performance in these settings, where it is trained as a
general-purpose LLM is largely dependent on the quality of the retriever and how accurately
the retriever can identify the most relevant piece of information.

Domain Specific Open-Book Exam In this paper, we focused on a narrower but in-
creasingly popular domain than the general open book exam, called the domain specific open
book exam. In domain specific open book exams, we know apriori the domain in which the
LLM will be tested – used for inference. The LLM can respond to the prompt using use any
and all information from this specific domain, which it has been fine-tuned on. Examples
of domain specific examples include enterprise documents, latest news, code repositories be-
longing to an organization, etc. In all these scenarios, the LLM will be used to respond to the
questions, whose answers can be found within a collection of documents (a small practical
domain). The retrieval technique itself has little to no impact on the mechanism (though
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Figure 6.2: Overview of our RAFT method. The top-left figure depicts our approach of
adapting LLMs to reading solution from a set of positive and negative documents in contrast
to standard RAG setup where models are trained based on the retriever outputs, which is a
mixture of both memorization and reading. At test time, all methods follow the standard
RAG setting, provided with a top-k retrieved documents in the context.

it may impact the accuracy). This paper mainly studies this, domain specific open-book
setting and how to adapt a pretrained LLM to this specific domain, including how to make
it more robust to a varying number of retrieved documents and distractors.

6.3 RAFT

In this section, we present RAFT, a novel way of training LLMs for domain specific open-
book exams. We first introduce the classical technique of supervised fine-tuning, followed by
the key takeaways from our experiments. Then, we introduce RAFT, a modified version of
general instruction tuning. Lastly, we provide an overview of the experiments to expect in
the later sections.

Supervised Finetuning
Consider the supervised fine-tuning (SFT) setting for a Question-Answer dataset. The

formulation consists of the Dataset (D) from which a set of Question (Q) and corresponding
answer (A) pairs are derived or already available. In the classical SFT setting, the model is
trained to improve its ability to answer the questions based on its knowledge - obtained either
during pre-training, or during the SFT training phase. The model so trained can also be
used at test-time with the Retrieval Augmented Generation (RAG) setting, where additional
documents can be introduced in the prompt to help the model answer the question. This
can be represented as follows:

• Train: Q ! A
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• 0-shot Inference: Q ! A

• RAG Inference: Q + D ! A

RAFT
Retrieval Aware Fine-Tuning (RAFT), presents a novel recipe to prepare fine-tuning data

to tailor the models for domain specific open-book settings, equivalent to in-domain RAG
In RAFT, we prepare the training data such that each data point contains a question (Q),
a set of documents (Dk), and a corresponding Chain-of-though style answer (A⇤) generated
from one of the document (D⇤). We di↵erentiate between two types of documents: ‘oracle’
documents (D⇤) i.e. the documents from which the answer to the question can be deduced,
and ‘distractor’ documents (Di) that do not contain answer-relevant information. As an
implementation detail, the ‘oracle’ document doesn’t need to be a single document, but can
be more than one document, as is the case in HotpotQA [223]. Then, for P fraction of
the questions (qi) in the dataset, we retain the oracle document (d⇤i ) along with distractor
documents (dk�1). For (1 � P ) fraction of the questions (qi) in the dataset, we include no
oracle document and only include distractor documents (dk). We then fine-tune the language
model using the standard supervised training (SFT) technique, training it to generate an-
swers from the provided documents and questions. Fig. 6.2 illustrates the high-level design
principal for RAFT.

We demonstrate that our approach trains the model to perform better RAG on the set
of documents it is trained on i.e., in-domain. By removing the oracle documents in some
instances, we are compelling the model to memorize answers instead of deriving them from
the context. The training data for RAFT is as follows, and an example of training data can
be seen in Fig. 6.3:

• P % of data: Q + D⇤ + D2 + . . . + Dk ! A⇤

• (1�P) % of data: Q + D1 + D2 + . . . + Dk ! A⇤

Subsequently, for the test scenario, the model is provided with the Q and top-k documents
retrieved by the RAG pipeline. Note that RAFT is independent of the retriever used.

A key factor in enhancing training quality is the generation of a reasoning process, such as
Chain-of-Thought, to explain the provided answers. RAFT approach is similar: we demon-
strate that creating a full reasoning chain and in addition, clearly citing sources enhances the
model’s accuracy in answering questions. In Fig. 6.3, we illustrate this set-up. Generating
the training data in this fashion, involves presenting the model with a question, context,
and verified answers, and then requesting it to form a reasoning chain that appropriately
references the original context.

For all the datasets in our experiments, we generate the answers using the technique
described above. Note that the Gorilla APIBench dataset, already includes reasoning in
the answers. We provide an example of the generation step in Fig. 6.3, the detailed rea-
soning answer includes a citation from the original context inside ##begin quote## and
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Question: The Oberoi family is part of a hotel company that has a head office in what
city?

context: [The Oberoi family is an Indian family that is famous for its involvement in
hotels, namely through The Oberoi Group]...[It is located in the city center of
Jakarta, near Mega Kuningan, adjacent to the sister JW Marriott Hotel. It is operated
by The Ritz-Carlton Hotel Company. The complex has two towers that comprise a hotel and
the Airlangga Apartment respectively]...[The Oberoi Group is a hotel company with its
head office in Delhi.]

Instruction: Given the question, context, and answer above, provide a logical reasoning
for that answer. Please use the format of: ##Reason: {reason} ##Answer: {answer}.

--------------------------------------------------------------------------

CoT Answer: ##Reason: The document ##begin_quote## The Oberoi family is an Indian
family that is famous for its involvement in hotels, namely through The Oberoi Group.
##end_quote## establishes that the Oberoi family is involved in the Oberoi group, and
the document ##begin_quote## The Oberoi Group is a hotel company with its head office
in Delhi. ##end_quote## establishes the head office of The Oberoi Group. Therefore, the
Oberoi family is part of a hotel company whose head office is in Delhi. ##Answer: Delhi

Figure 6.3: RAFT prompt to help LLM evaluate its own generated reasoning and answers,
contrasting them with the correct reasoning and answers. The LLM is prompted to identify
errors in its reasoning and extract key insights for improvement. This figure specifically
represents the ‘GenerateExplanation‘ step in the RAFT algorithm (Chapter 6.3).

##end quote## as well as the detailed explanation on how to reach the conclusion based on
the citations. We demonstrate that adding detailed reasoning paragraphs helps boost the
model’s performance in our experiment section.

6.4 Evaluation

We design our experiments to study how well RAFT performs compared to various baselines.
We find that the RAFT-7B model (a finetuned version of LlaMA-2) is better at reading and
extracting information from in-domain documents, than domain specific finetuned model,
and general-purpose model with RAG. As an ablation, we also demonstrate how important
it is for the model to learn with Chain-of-Thought responses. In this section, we will first
introduce all the datasets we used in the experiments, then all the baseline model/fine-tuning
techniques that we benchmark against.
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Table 6.1: RAFT improves RAG performance forall specialized domains: Across
PubMed, HotpotQA, HuggingFace, Torch Hub, and Tensorflow Hub, we see that domain
specific Finetuning improves significantly of the performance of the base model, but RAFT
consistently outperforms the existing domain specific finetuning method with or without
RAG. This suggests the need to train the model with context. We compare our model with
LLaMA finetuning receipes, and provide GPT-3.5 for reference.

PubMed HotpotQA HuggingFace Torch
Hub

TensorFlow
Hub

GPT-3.5 + RAG 71.60 41.5 29.08 60.21 65.59

LLaMA2-7B 56.5 0.54 0.22 0 0
LLaMA2-7B +
RAG

58.8 0.03 26.43 08.60 43.06

DSF 59.7 6.38 61.06 84.94 86.56
DSF + RAG 71.6 4.41 42.59 82.80 60.29

RAFT
(LLaMA2-
7B)

73.30 35.28 74.00 84.95 86.86

Datasets

In our experiments, we use the following datasets to evaluate our model and all baselines. We
selected these datasets to represent both popular and diverse domains including Wikipedia,
Coding/API documents, and question-answering on medical documents.

• Natural Questions (NQ) [81], Trivia QA [71] and HotpotQA [223] are the open-domain
question-answers based on Wikipedia, mainly focused on common knowledge (e.g.,
movies, sports, etc).

• HuggingFace, Torch Hub, and TensorFlow Hub are from the APIBench [136] proposed
in the Gorilla paper. These benchmarks measure how to generate the correct, func-
tional, and executable API calls based on the documentation.

• PubMed QA [70] is a question-answering dataset tailored only for biomedical-research
question-answering. It mainly focuses on answering medical and biology questions
based on a given set of documents.

Note that the first category of dataset (NQ, Trivia QA, and HotpotQA) is a relatively
general domain whereas the latter two domains are on very domain specific documents.

Baselines We consider the following baselines for our experiments:
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• LlaMA2-7B-chat model with 0-shot prompting: this is the commonly used instruction-
finetuned model for QA tasks, where we provide clearly written instructions, but no
reference documentation.

• LlaMA2-7B-chat model with RAG (Llama2 + RAG): similar to the previous setting,
except here we include reference documents. This is a popular technique when dealing
with domain specific QA tasks.

• domain specific Finetuning with 0-shot prompting (DSF): Performing standard super-
vised finetuning, without documents in context. We find that it mostly useful to align
the answering style of the model as well as get familiar with the domain context.

• domain specific Finetuning with RAG (DSF + RAG): Equip a domain specific fine-
tuned model with external knowledge using RAG. So, for the “knowledge” the model
does not know, it can still refer to the context.

Results

Using the above datasets and baselines, we evaluate our model RAFT and demonstrate
the e↵ectiveness of RAFT in Tab. 6.1. We see that RAFT consistently and significantly
outperforms the baselines. Compared with the base Llama-2 instruction-tuned model, RAFT
with RAG does much better in terms of extracting information as well as being robust
towards distractors. The gain can be as big as 35.25% on Hotpot QA and 76.35% on Torch
Hub evaluation. Compared with DSF on the specific dataset, our model does better at
relying on the provided context to solve the problem. RAFT does much better on tasks like
HotpotQA and HuggingFace datasets (30.87% on HotpotQA and 31.41% on HuggingFace).
Note that for PubMed QA, since it is a binary yes/no question, we don’t observe significant
gains when we compare our model with DSF + RAG. Even compared with a much larger
and better model GPT-3.5, RAFT demonstrates significant advantages.

Overall, the LLaMA-7B model, both with and without the RAG, performs poorly due to
its answering style not aligning with the ground truth. By applying domain specific tuning,
we significantly enhance its performance. This process enables the model to learn and adopt
the appropriate style of answering. However, introducing RAG to a domain-specifically fine-
tuned (DSF) model doesn’t invariably lead to better outcomes. This might indicate that
the model lacks training in context processing and extracting useful information from it. By
incorporating our method, RAFT, we train the model not only to match its answering style
with that required but also to improve its document processing capabilities. Consequently,
our approach outperforms all others.

E↵ect of CoT

We also conduct an analysis to evaluate the e↵ectiveness of the Chain-of-Thought approach in
enhancing the model’s performance. As indicated in Table 6.2, simply providing the answer
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Table 6.2: Ablation on Chain-of-Thought: The numbers of RAFT and RAFT without
CoT. Results on various datasets show that adding CoT can significantly improve the per-
formance of the finetuned model. With a gain of 9.66% and 14.93% on the Hotpot QA and
HuggingFace datasets respectively.

PubMed HotpotQA HuggingFace Torch
Hub

TensorFlow
Hub

RAFT w.o CoT 68.30 25.62 59.07 86.56 83.21
RAFT 73.30 35.28 74.00 84.95 86.86

to a question may not always be adequate. This approach can lead to a rapid decrease in loss,
resulting in the training process to diverge. Incorporating a reasoning chain that not only
guides the model to the answer but also enriches the model’s understanding can improve
the overall accuracy. In our experiments, integrating the Chain-of-Thought significantly
enhances training robustness. We employ GPT-4-1106 to generate our Chain-of-Thought
prompts and include an example of the prompt we used in Figure 6.3.

Qualitative Analysis

To illustrate the potential advantages of RAFT over the domain-specifically fine-tuned (DSF)
approach, we present a comparative example in Figure 6.4. This example qualitatively
demonstrates a scenario where the DSF model becomes confused by a question asking for
the identity of a screenwriter. Instead of providing the correct name, it mistakenly cites one
of the films written by the screenwriter. In contrast, the RAFT model accurately answers the
question. This discrepancy suggests that training a model solely with question-answer pairs
may impair its ability to derive relevant context from provided documents. The comparison
underscores the importance of incorporating both standard instructional tuning and context
comprehension into the training dataset to preserve and enhance the model’s ability to
process text e↵ectively.

Should we train the LLM always with the oracle context for RAG?

In our exploration of whether large language models (LLMs) should always be trained with
the oracle context for Retrieval-Augmented Generation (RAG), we address a key question:
what proportion (p%) of the training data should include oracle documents? Intuitively, one
might assume that for e↵ective training in reading and extracting information from context
(e.g., RAG tasks), the oracle document should always be included during training (P =
100%). However, our findings challenge this assumption: incorporating a portion of the
training data without the oracle document in the context (P = 80%) appears to enhance the
model’s performance on RAG tasks.
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HotPot QA

Question: What screenwriter with credits for “Evolution”[0/1879]e a film starring
Nicolas Cage and Téa Leoni?
Documents: . . . David Weissman is a screenwriter and director. His film credits
include “The Family Man” (2000), “Evolution” (2001), and “When in Rome” (2010).
. . .

The Family Man is a 2000 American romantic comedy-drama film directed by Brett
Ratner, written by David Diamond and David Weissman, and starring Nicolas Cage
and Téa Leoni. . . .
——————————————————————————————————————
————————–
RAFT: ##Reason: The screenwriter with credits for the film “Evolution,” starring
Nicolas Cage and Téa Leoni, is David Weissman. This information is provided in the
reference documents which mention David Weissman as a screenwriter with film credits
including “The Family Man” (2000), “Evolution” (2001), and “When in Rome” (2010).
Therefore, the screenwriter for “Evolution” is David Weissman. ##Answer: David
Weissman 3
DSF: The Family Man 7

Figure 6.4: Comparison of RAFT and DSF: We prompt RAFT and DSF fine-tuned
models on the HotpotQA dataset. We can see that the DSF model extracts the wrong
information from the context. For the question, who is the screenwriter, it responds with a
film name. RAFT manages to get the result correctly .

Fig. 6.5 presents our investigation into the hyperparameter P%, which represents the
percentage of training instances that should include oracle documents. Our analysis reveals
that the optimal proportion varies across datasets, with figures ranging from 40%, 60%, and
100%. This indicates that training your LLM without the correct corresponding context
at times can be beneficial for the downstream task of answering questions related to the
documents. In our training setup, we include four distractor documents alongside the oracle
document, and at test time, we maintain this format by providing the oracle document
with four distractors. Our findings suggest that, for domain specific RAG tasks, including
a certain percentage of training data without the oracle documents in the context proves to
be advantageous.
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Figure 6.5: How many golden documents to involve? We study the hyperparameter
P% which indicates what fraction of the training data contains the oracle document(s) in its
context. Results on NQ, TQA and HotpotQA suggest that mixing a fraction of data that
does not have the oracle document in its context is helpful for in-domain RAG.

6.5 RAFT Generalizes to Top-K RAG

After demonstrating the performance of RAFT on various benchmarks, we now study another
important problem: How does the number of distractor documents in RAFT a↵ect the
model’s performance when augmented with top-k retriever augmented generation (RAG)
result during the evaluation? Previous research has highlighted the vulnerability of LLMs
to irrelevant text (see studies [167, 210, 101]). This issue is particularly critical for LLMs
+ RAG since top-k RAG is frequently employed at test time to ensure high recall. Such a
scenario necessitates the model to have the ability to discern and disregard irrelevant content,
focusing solely on pertinent information.

Making Model Robust to top-K RAG

To tackle the challenge of enhancing large language models’ (LLMs) ability to sift through
irrelevant text within the retrieval pipeline, our analysis revealed that training solely with
oracle (highly relevant) documents can inadvertently diminish the model’s ability to dis-
cern and disregard irrelevant information. To address this, our algorithm, RAFT, adopts a
strategy that integrates oracle documents with a mix of irrelevant ones. This methodology
prompts us to investigate the ideal fraction of negative (irrelevant) documents to incorpo-
rate throughout the training process and to assess how well this training approach adapts to
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di↵erent volumes of documents encountered by the Retrieval-Augmented Generation (RAG)
during the test phase. Our aim is to refine the balance between relevant and irrelevant in-
formation to strengthen the model’s e�ciency in identifying and utilizing pertinent content.
Notice that Sec 6.4 looked at what P% of training data should include distractors, while in
this section, we study test-time scenarios.

Training with Negative Documents To enhance the robustness of large language
models (LLMs) against irrelevant text in retrieved documents, we adopted a finetuning ap-
proach that incorporates both golden (highly relevant) documents and distractor (irrelevant)
documents. The model was trained with varying numbers of distractor documents, but con-
sistently evaluated using the top-k documents obtained from the retriever - not to be confused
with p.

Our findings, detailed in Fig. 6.6, reveal that finetuning with only the oracle document
frequently results in inferior performance compared to configurations that include a greater
number of distractor documents. As we can see in the figure, the better performance for
Natural Questions is training with D

⇤ + 3D and it is D⇤ + 1D documents with Hotpot QA.
This insight has been particularly beneficial for our algorithm, RAFT. In our experiments,
we typically employ a training setup consisting of one oracle document alongside four dis-
tractor documents. This approach strikes a balance, ensuring the model is not overwhelmed
by distractors while still gaining the ability to e↵ectively discern and prioritize relevant
information.

Generalization to a variable number of test-time documents. We extended our
research to examine the impact of di↵erent quantities of test-time documents on the model’s
performance. Specifically, our experiments focused on assessing how models, trained with
varying numbers of distractor documents, respond to changes in the number of documents
presented at test time.

The results, illustrated in Fig. 6.6, confirm that the inclusion of distractor documents
during training indeed makes the model more resilient to fluctuations in the number of doc-
uments encountered during testing. This ability to maintain consistent performance despite
variations in test-time document numbers further validates the robustness of our approach,
RAFT. This finding underscores the importance of a well-calibrated training environment
to prepare the model for a range of scenarios it may encounter in real-world applications.

6.6 Related Works

Retrieval-Augmented Language Models RAG enhances language models by integrating
a retrieval module that sources relevant information from external knowledge bases, signif-
icantly improving performance across various NLP tasks, including language modeling [54,
17, 76, 170, 93, 169, 9, 220, 198] and open-domain question answering [63, 88]. This integra-
tion follows a “retrieve-and-read” paradigm where the retrieval module provides additional
context from external sources, which the LM then uses to generate the final output. The
retrieval process involves using the input as a query to fetch documents, which the LM
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Figure 6.6: Test-Time Documents Varying: We study how robust RAFT is to varying
numbers of test-time documents that a retriever might provide. In NQ, we find that training
with 4 documents leads to the best performance, but training with 2 documents is optimal
for HotpotQA. However, across both datasets, training with all datasets consisting of oracle
documents hurts performance.

incorporates for final predictions. For instance, Atlas [63] fine-tunes T5 models with the re-
triever, treating documents as latent variables, while RETRO [17] modifies the decoder-only
architecture to include retrieved texts and conducts pre-training from scratch. kNN-LM [76]
interpolates between the LM’s next token distribution and distributions computed from re-
trieved tokens at inference. [170, 149] assume black-box access to an LM and combine it
with either o↵-the-shelf or fine-tuned retriever.

Memorization A key question around large neural language models is whether they
truly “understand” text [48, 140] or simply rely on surface pattern memorization [24,
184]. [48, 24, 23] develop methodologies to quantify the extent of memorization in neural
models. [18, 140, 110] further explored how memorization impacts the models’ generalization
capabilities. Recently, a seminal work by [22, 168] demonstrated the ability of language
models to memorize and regurgitate training data, raising significant privacy concerns [73,
133].

Finetuning of LLMs Recent years have seen rapid progress in developing large-scale
language models (LLMs) [18, 130, 213, 189, 189, 6]. To adapt these foundation models to
downstream tasks, fine-tuning [122, 158, 34, 123, 93, 66] has become a prevalent approach.
Traditional supervised fine-tuning may be limited by the cost and compute required for
adapating LLMs. Addressing these challenges, research in the realm of parameter-e�cient
fine-tuning [57], such as Prompt Tuning [87], Prefix-Tuning [90], P-Tuning [106] and Low-
Rank based fine-tuning [58], has gained traction. These methods enable LLMs to acquire
domain-specific knowledge and adapt to specialized tasks such as question answering, sum-
marization, and dialogue generation. Another branch of finetuning is through RLHF [132,
146, 97, 237], which adopts RL to align LLM’s preference with human.
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Finetuning for RAG More recently, several papers have been exploring the idea of
finetuning a pretrained LLM to be better at RAG tasks [94, 198, 220, 109]. These works
focus on constructing a combination of finetuning dataset for RAG and train a model to
perform well on these tasks. In particular, in their settings, at test time, the domain or
documents can be di↵erent than the training time; whereas our paper studies a slightly
opposite scenario where we only care about testing the LLM on the same set of documents.

6.7 Conclusion

RAFT is a training strategy designed to enhance the model’s performance in answering
questions within a specific domain, in ”open-book” settings. This technique demonstrates
a fine-tuning recipe for LLMs for question-answering tasks based on a selected collection
of documents. We have pinpointed several crucial design decisions, such as training the
model alongside distractor documents, organizing the dataset so a portion lacks oracle doc-
uments in their context, and formulating answers in a chain-of-thought manner with direct
quotations from the relevant text. Our evaluations on PubMed, HotpotQA, and Gorilla
API Bench underline RAFT’s significant potential. Looking forward, we anticipate that in-
domain Retrieval-Augmented Generation (RAG) will continue to gain interest within both
industrial and academic spheres. Unlike general-RAG, our work addresses practical scenarios
where LLMs are tasked with answering questions using domain-specific knowledge. Align-
ing with current trends, our findings suggest that smaller, fine-tuned models are capable of
performing comparably well in domain-specific question-answering tasks, in contrast to their
generic LLM counterparts.
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Deploying LLM Agents
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Chapter 7

GOEX: Towards A Runtime For
Autonomous LLM Applications

Large Language Models (LLMs) are evolving beyond their classical role of providing infor-
mation within dialogue systems to actively engaging with tools and performing actions on
real-world applications and services. Today, humans verify the correctness and appropriate-
ness of the LLM-generated outputs (e.g., code, functions, or actions) before putting them
into real-world execution. This poses significant challenges as code comprehension is well
known to be notoriously di�cult. In this paper, we study how humans can e�ciently col-
laborate with, delegate to, and supervise autonomous LLMs in the future. We argue that
in many cases, “post-facto validation”—verifying the correctness of a proposed action after
seeing the output—is much easier than the aforementioned “pre-facto validation” setting.
The core concept behind enabling a post-facto validation system is the integration of an
intuitive undo feature, and establishing a damage confinement for the LLM-generated ac-
tions as e↵ective strategies to mitigate the associated risks. Using this, a human can now
either revert the e↵ect of an LLM-generated output or be confident that the potential risk
is bounded. We believe this is critical to unlock the potential for LLM agents to interact
with applications and services with limited (post-facto) human involvement. We describe the
design and implementation of our open-source runtime for executing LLM actions, Gorilla
Execution Engine (GoEx), and present open research questions towards realizing the goal of
LLMs and applications interacting with each other with minimal human supervision.

7.1 introduction

Large Language Models (LLMs) are evolving from serving knowledge passively in chatbots
to actively interacting with applications and services. Enabling agents and software systems
to interact with one another has given rise to new innovative applications. In fact, it is no
longer science fiction to imagine that many of the interactions on the internet are going to
be between LLM-powered systems. Agentic systems [199, 214, 135], co-pilots [155], plug-
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ins [129], function calling and tool use [136, 143, 134, 224, 130], are all steps towards this
direction.

The logical next-step in this evolution is towards autonomous LLM-powered microservices,
services, and applications. This paper is a first step towards realizing this goal, and addresses
some of the key trustworthiness challenges associated with it.

As a running example, consider an LLM-powered personal assistant that has access to a
user’s email account. The user asks the assistant to send an important email to their boss,
but instead, the LLM sends a sensitive email to the wrong recipient. In designing such a
system, several critical challenges must be addressed:

Hallucination, stochasticity, and unpredictability. LLM-based applications place
an unpredictable and hallucination-prone LLM at the helm of a system traditionally reliant
on trust. Currently, services and APIs assume a human-in-the-loop, or clear specifications
to govern how and which tools are used in an application. In our running example, the user
clicks the “Send” button after confirming the recipient and body of the email. In contrast,
an LLM-powered assistant may send an email that goes against the user’s intentions, and
may even perform actions unintended by the user. LLMs are not only capable of being
stochastic, but crucially, are capable of unpredictable and unbounded behavior even when
trained not to do so [5].

Unreliability. Given their unpredictability and impossibility to comprehensively test, it
is di�cult for a user to trust an LLM o↵ the shelf. Consequently, LLM-powered applications
are challenging for users to adopt as LLMs are untrusted components that would be running
within a trusted execution context. Trivially, one can ensure safety by restricting the LLM
to have no credentials, at the expense of losing utility. Given that prior work [130, 136, 163]
has surfaced the growing utility of LLM-based systems, mechanisms are needed to express
the safety-utility tradeo↵ to developers and users.

Delayed feedback and downstream visibility. Lastly, from a system-design princi-
ple, unlike chatbots and agents of today, LLM-powered systems of the future will not have
immediate human feedback. This means that the intermediate state of the system is not im-
mediately visible to the user and often only downstream e↵ects are visible. An LLM-powered
assistant may interact with many other tools (e.g., querying a database, browsing the web,
or filtering push notifications) before composing and sending an email. Such interactions
before the email is sent are invisible to the user.

A Runtime that Enables Autonomous LLMs

The question this paper tries to address is: How do we enable an untrusted agent to take
sensitive actions (e.g., code generation, API calls, and tool use) on a user’s behalf and then
verify that those actions aligned with the intent of that user’s request?

Traditional methods such as using containers which guarantee isolation through virtual-
ization falter when adjustments to the environment are required within the user’s context.
For example, a user might want to modify the state of their operating system. Further, iso-
lation alone cannot ensure the final state aligns with the intended actions, especially under
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Figure 7.1: Evolution of LLMs powered applications and services from chatbots, to decision-
making agents that can interact with applications and services with human-supervision, to
autonomous LLM-agents interacting with LLM-powered apps and services with minimal and
punctuated human supervision.

ambiguity or execution errors and ambiguity of stated intent. Both are common flaws when
intent is being specified in natural-language as opposed to a more precise domain-specific
language.

In this paper, we introduce the notion of “post-facto LLM validation” as opposed to
“pre-facto LLM validation”. While in both scenarios humans are the ultimate arbitrators,
in “post-facto validation” human’s arbitrate the output produced by executing the actions
produced by the LLM, as opposed to the process or the intermediate outputs. A natural
risk arising from “post-facto validation” is that the actions we execute may have unintended
consequences. While the benefits of evaluating the output might justify the risks involved
with unintended execution, we recognize that this could be a non-starter in many appli-
cations. To remedy this, we introduce the intuitive abstractions of “undo” and “damage
confinement” or “damage confinement”. The “undo” abstraction allows LLMs to back-track
an action that may be unintended, for example, delete a message that was sent in Slack.
And for those actions which may not have an “undo”, we present “damage confinement”
semantic. “Damage confinement” can be considered as a quantification of the user’s risk
appetite. For example, a user may tolerate the risk of the LLM agent delivering pizza to the
wrong address, but perhaps they might not want to allow their LLM to interact with their
bank.

As a step towards realizing our vision, we developed GoEx, a runtime for executing actions
generated by LLMs. By designing GoEx to exclusively utilize readily available o↵-the-shelf
software components, we aim to assess the readiness of current resources and provide an
ecosystem to empower developers.

In summary, we make the following contributions:

1. We first make the case for the future of deeply-embedded LLM systems with LLMs
powering microservices, applications, etc. In this paradigm, LLMs are not merely used
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for information compression, but also as decision makers (Chapter 7.2). We identify
the key challenges associated with integrating LLMs into existing systems, including
the inherent unpredictability of LLMs, the lack of trust in their execution, and the
di�culty in detecting and mitigating their failures in real-time (Chapter 7.3).

2. We introduce the concept of “post-facto LLM validation” as an approach to ensuring
the safety and reliability of LLM-powered systems, focusing on validating the results
of LLM-generated actions rather than the process itself (Chapter 7.4).

3. We introduce “undo” (Chapter 7.4) and “damage confinement” (Chapter 7.4) ab-
stractions as mechanisms for mitigating the risk of unintended actions taken in LLM-
powered systems.

4. We propose the Gorilla Execution Engine (GoEx), a runtime designed to enable the au-
tonomous interactions of LLM-powered software systems and agents by safely executing
LLM-generated actions and striking a tradeo↵ between safety and utility (Chapter 7.5).

7.2 Evolution of LLM powered Agents

We first present the background on the evolution of LLM-powered-systems to mean appli-
cations, microservices, and other systems that integrate- or interface- with LLMs. Based on
this trend, we then speculate on what such a future would look like.

LLM-Human Interaction: Chatbots, and Search

LLMs have transformed the landscape of human-computer interaction. With early adoption
as chatbots, these models were designed to mimic human conversation, allowing users to
interact with computers in natural language. This era of LLMs focused on understanding
and generating answers, serving as a bridge for humans to interact with vast amounts of
web data in a more intuitive way. Early implementations were primarily used in the read-
only model for information retrieval where the LLM did not make any stateful changes [20],
customer service agents in enterprises, and as educational tools, laying the foundation for
more sophisticated applications.

From Chatbots to Agents: The Rise of Actionable LLMs

Increasing trustworthiness [197], the availability of adapters, and novel-techniques [163, 136],
have expanded the role of LLMs from passive providers of information to active agents ca-
pable of executing simple tasks. These agents, powered by LLMs, can interact with appli-
cations, services, and APIs to perform actions on behalf of the user. This shift represents a
significant leap in the capabilities of LLMs, enabling them to contribute actively to workflows
and processes across various domains.



CHAPTER 7. GOEX: TOWARDS A RUNTIME FOR AUTONOMOUS LLM
APPLICATIONS 87

However, this evolution also brings challenges. The complexity of understanding context,
intent, and the subtleties of human language make it di�cult to ensure the accuracy and
appropriateness of the actions taken by LLMs. As a result, human oversight remains crucial
to manage and validate the set of actions proposed by the LLM.

Towards Ubiquitous LLM Integration

Looking ahead, we expect the integration of LLMs into daily workflows and systems to
deepen. This future envisions LLMs not just as tools or assistants but as pervasive agents
embedded in a myriad of workflows, enhancing functionality and adaptability across the
board. This vision is materialized through the development of advanced LLM-powered mi-
croservices, LLM-powered applications, and LLM-powered workflows all interacting with
each other, constantly, with limited-to-no human interaction.

From an application developer’s perspective, these can be categorized into personalized
systems, hosted agents for collective use, and third-party integrations.

Personalized LLM-powered workflows for individuals. In the personal domain, LLMs
are anticipated to become deeply integrated with individual user experiences, o↵ering tai-
lored assistance that understands and anticipates the unique preferences and needs of each
user. Imagine a personalized LLM-powered version of Siri or Google Voice, not merely re-
sponding to queries but proactively managing schedules, filtering information based on user
preferences, and even performing tasks across a range of applications and services. Such
personalized systems would mark a significant departure from generic assistants to truly
personalized digital companions.

Hosted agents for enterprise and group applications. Within professional and enter-
prise environments, hosted LLM-powered agents will take on specific roles, such as managing
database queries or automating routine administrative tasks, tailored to the unique needs
of an organization. These specialized agents would be operating within the confines of an
organization but would serve a wide set of users.

Third-party agents: expanding the ecosystem of services. The expansion of LLM
capabilities is also expected to include extensive collaboration with third-party service providers
(e.g., Slack, Gmail, Dropbox, etc.), enabling seamless interactions between users and services
through personalized LLM workflows. These third-party agents would allow users to com-
municate with and through them using customized LLM-powered workflows, and integrate
a wide range of services.
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7.3 Navigating the New Frontier: Challenges in
Ubiquitous LLM Deployments

With advancements in LLM capabilities and their applications come new challenges: How
do we contend with the inaccuracies inherent to even the best models currently available?
How do we ensure security for client information? How do we handle system reliability
and quantify risk tolerance to a user? In the following sections, we elaborate on these new
challenges.

Delayed Signals

The challenge of timely feedback. In traditional software development, immediate
feedback through error messages or direct outputs enables quick recovery mechanisms to be
triggered. However, when embedding LLMs, especially in complex systems or applications
interfacing with real-world data and actions, feedback can be significantly delayed. This
delay in obtaining relevant signals to assess the performance or correctness of LLM actions
(especially with text-in, text-out modality) introduces challenges in rapidly iterating and
refining model outputs.

Impact on system development. The lag between action and feedback complicates
the identification of errors and the assessment of system performance, potentially leading
to additional state being built on top of the system. This necessitates designing systems
that can accommodate these delays and implement strategies for asynchronous feedback
collection.

Aggregate Signals

In the realm of LLMs, particularly when applied to large-scale systems or microservices,
individual LLM actions may not provide clear insights into overall system performance,
nor assist in diagnosing the cause of the error. Instead, the true measure of success (or
failure) often emerges from aggregated outcomes, necessitating a shift in how developers and
stakeholders evaluate and account for, in LLM-driven applications.

The Death of Unit-Testing and Integration-Testing

The integration of LLMs into software systems challenges traditional paradigms of unit
testing and integration testing. While closed-source and continuous-pre-trained LLMs from
third-parties pose a new challenge of the model changing constantly, in-house LLMs are
not a panacea either. Given the dynamic, often unpredictable nature of LLM outputs,
establishing a fixed suite of tests that accurately predict and verify all potential behaviors
becomes increasingly di�cult, if not impossible.
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Variable Latency

LLMs’ auto-regressive text-generation by the very nature means inference time may vary as
the LLM can either output a long or short response. This is an important consideration for
hard-deadline real-time systems (RTS) [144].

Protecting Sensitive Data

In order for LLMs to interact with a user’s accounts across multiple applications, the LLM
must be able to reason about having access to credentials granting access to the user’s ac-
counts. When an LLM is hosted by an (untrusted) external service, it is desirable to not
directly pass any credentials or sensitive data to the LLM while still preserving functionality
of the LLM-powered system. LLMs can also generate (untrusted) code and are suscepti-
ble to hallucinations [150, 239], which can result in running potentially malicious code or
inadvertently performing actions that were not intended by the user.

7.4 Designing a Runtime

To address the challenges introduced by the new paradigm of LLM-powered applications, we
propose an LLM runtime—designed specifically to execute actions generated by LLMs—as
a compelling solution. This section discusses the necessity of such a runtime, its envisioned
properties, and strategies to mitigate the risks associated with LLM-generated actions.

LLMs started the problem, can LLMs solve the problem? Despite the rapid
advancements in LLMs, expecting LLMs to self-correct and eliminate all potential errors
or unintended actions through existing training techniques—–such as pre-training, instruc-
tion tuning, DPO [147], or RLHF [246]—is promising (Chapter 7.5) but challenging. The
challenges are manifold, primarily due to ill-defined metrics and the inherent complexities
of accurately predicting the real-world impacts of actions suggested by LLMs. Thus, while
LLMs are at the heart of these challenges, their current evolutionary trajectory suggests they
cannot entirely solve the problem without external frameworks to guide their execution.

Post-facto LLM validation

In the realm of LLM-powered-systems, we introduce “post-facto LLM validation,” which
contrasts with traditional “pre-facto” methods. In “post-facto validation,” humans evalu-
ate the outcomes of actions executed by the LLM, rather than overseeing the intermediate
processes. This approach assumes that validating results over processes, acknowledging that
while verifying outcomes is crucial, understanding and correcting processes based on those
outcomes is equally important.

Forgoing “pre-facto validation” means execution of actions without prior validation,
which introduces risks and potentially leads to undesirable outcomes. We propose two
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abstractions to mitigate the risk associated with post-facto validation: undoing an ac-
tion (Chapter 7.4), and damage confinement (Chapter 7.4).

Reversibility

When possible, actions executed by an LLM should give users the right to undo an action.
This approach may require maintaining multiple versions of the system state, leading to
high costs in terms of memory and computational resources. Furthermore, the feasibility
of implementing undoing an action is often dependent on the level of access granted to the
system. For instance, in file systems or databases, where root access is available, undoing
actions is possible. However, in scenarios where such privileged access is not granted, such
as in email clients like Gmail, the ability to undo an action may be limited or require
alternative approaches. One potential solution is for the runtime to make a local copy of the
email before deleting, which introduces additional state to the runtime but enables undo for
email deletion.

To account for the resource costs associated with maintaining multiple system states, we
adopt the notion of a commit, also called a “watermark” in streaming data-flow systems [21,
2]. By grouping together sets of actions based on their associativity, commutativity, and
distributive properties, it may be possible to define checkpoints at which the system state
can be saved or rolled back. This approach would enable selective undoing of actions within
a defined scope, rather than maintaining the ability to undo every individual action.

Atomiticy. In agent-driven systems, the option for users to demand atomicity of oper-
ations can be crucial. Atomicity ensures that either all of the operations within a task are
successfully completed, or, in the event of a failure in any step, the system is reverted to its
initial state before any operation was applied. This binary outcome—success or a clean-slate
reset—provides a clear, predictable framework for managing tasks, increasing the system’s
reliability and user trust in the LLM agent executing complex sequences of actions.

Damage Confinement

Not all applications or tools provide the ability to undo an action. For example, emails
currently cannot be unsent after some time has elapsed. In scenarios like these, we fall back
to “damage confinement” or “blast-radius confinement”, as it is necessary to provide users
with mechanisms to quantify and assess the associated risks of the actions their LLM-powered
application may take.

One approach to address this challenge is through the implementation of coarse-grained
access control mechanisms. A user could permit their LLM to only read emails instead of
sending emails, thus confining the blast radius to an tolerable level. Such permissioning has
already been explored preliminarily by [215], in the context of a user authorizing independent
LLM applications to interact with one another.
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Symbolic Credentials and Sandboxing

As mentioned in Chapter 7.3, the LLM could be (1) hosted by an (untrusted) external
provider and (2) susceptible to hallucinations [150, 239], resulting in code that may be
unsafe to execute.

In order to protect sensitive user information from and untrusted LLM, the sensitive
information in the input prompt can be substituted with a symbolic credential (e.g., a dummy
API key), similar to the anonymization approach taken by Presidio [118], and sending this
sanitized prompt to the LLM. Then, the LLM will never see the user’s sensitive information
in its input.

We can mitigate this risk of running potentially unsafe code by executing the generated
code in a sandboxed environment, whether it be a container or a bare-metal VM. With this
approach, we only grant the code access to the required dependencies and necessities, such
as a specific API key used for service access, and nothing more. If utilizing a container, we
only mount the necessary files and impose appropriate network restrictions.

Storing Keys and Access Control

As LLMs are inherently untrusted, a user would feel uneasy permitting the LLM based
system to store their credentials. There are two challenges an LLM runtime should address:
how to store and manage the user’s credentials; and determining and projecting the minimal
set of permissions that an LLM needs in order to accomplish its task. More formally, mapping
an action to the least privileges that need to be granted to perform the task. While solutions
such as asking a ML model have the benefits of generalizability and scalability, pre-computing
this permission set manually provides strong security guarantees. Finding a common ground
between these two techniques, remains an interesting open area for research. Further, in an
enterprise use case in which an LLM-powered application is managing many user credentials,
recording an audit trail of credential access is critical.

7.5 GoEx: LLM Runtime

GoEx represents a first step towards building a runtime for executing LLM-generated ac-
tions within a secure and flexible runtime environment. Central to GoEx are its abstractions
for “undo” (Chapter 7.4) and “damage confinement” or “blast-radius confinement” (Chap-
ter 7.4), which provide developers of apps and services the flexibility to tailor policies to
their specific needs, recognizing the impracticality of a one-size-fits-all policy given the var-
ied contexts in which LLMs are deployed. GoEx supports a range of “actions” including
RESTful API requests (Chapter 7.5), databases operation (Chapter 7.5), and filesystem ac-
tions (Chapter 7.5). Each action type, while initiated from a unified GoEx interface, are
handled uniquely as described below.
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RESTful API calls

We first describe how GoEx handles RESTful API calls (illustrated in Chapter 7.2).

Figure 7.2: GoEx’s runtime for executing RESTful API calls. Upon receiving the user’s
prompt, GoEx presents two alternatives. First, an LLM can be prompted to come up with
the (Action, Undo-Action) pair. Second, the application developer can provide tuples of
actions and their corresponding undo-actions (function calls) from which the LLM can pick
amongst.

Authentication. GoEx provides a secure way to handle user secrets, whether using OAuth2
for token-based authentication or API keys for direct service access. GoEx acts as the secure
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intermediary to facilitate authenticated actions across various services. For OAuth2, GoEx
sits between the user and services, facilitating the necessary relay to retrieve access tokens.
These tokens allow users to delegate the GoEx system to perform actions on their behalf.
For other services that authenticate accounts through API keys, GoEx provides an interface
that allows users to insert and retrieve them.

Storing secrets. User secrets and keys are stored locally on the user’s device in a Secret
Intelligent Vault (SIV). SIV maps service name to key and format. When user wishes to
interact with specific service(s), the corresponding keys are requested from the SIV. The
format specifies how the keys are store, that is, in a file, or as a string, etc. The role of
the SIV is to selectively retrieve just the required keys for a given execution. For example,
if a user wants to send an email invite to their friend for lunch, the agent only needs their
OAuth2 token for their email provider, and not, for example, their bank account’s API keys.
The policy used for SIV is user-defined and highly flexible; it could be as simple as parsing
through the user prompt to detect which service’s keywords are present, or as complex as a
fine-tuned prompt-to-service retrieval model.

Generating actions. The GoEx framework supports two techniques to generate the
APIs. In the Chat Completion case, assuming the user prompt is, “send a Slack message
to gorilla yahoo.com”, the user must initially authorize GoEx to use their access token
through the Slack browser. After receiving the user prompt, GoEx requests the SIV for
the necessary secrets from the Secret Store. Slack secrets (OAuth2) are inherently hidden
because they are stored as a file, so GoEx passs the file path along with the prompt directly
to the LLM. GoEx mounts the Slack secret file and passes the LLM-generated code to be
executed in the GoEx container. If the user wishes to revert the execution, the reversion
call will be retrieved from the reversion set if it exists; otherwise, the handler prompts the
LLM to generate it. If the user chooses Function Calling, instead of asking the LLM to come
up with a command to satisfy the user’s prompt, GoEx asks it to select a function from a
user-defined function set and populate the arguments. Secrets will be chosen from the SIV
similarly, and execution occurs in the GoEx container. If the user wishes to revert, another
function from the function set will be chosen by the LLM.

Generating undo actions. Identifying the ‘undo’ action for RESTful APIs, includes the
following steps. First, we check if the reverse call for the action API is in the database
Reversion Set as shown in figure 7.2. GoEx presents the systems abstractions, while de-
velopers are free to define the policies for mapping. For some APIs it might be critical
to check for exact match for all parameters of the API, on the other hand for some other
APIs, perhaps just the API name might be su�cient to uniquely identify what the reverse
API would be. For example it is not su�cient to say the reverse of send slack message is
delete slack message, since number of messages to be deleted could be one of the argu-
ments.
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To populate such a mapping, first, we instruct the LLM to generate a reverse API call
whenever the user attempts to perform an action. We recognize that this gives no guarantees,
but the philosophy is that we allow the LLM to be wrong at most once. Post each new API,
the table is then if the reversion worked or not making this information available for future
invocations. For applications that need guarantee, developers can pre-populate this table
and combined with function-calling mode of operation, the system can be forced to only use
those API’s that are ‘guaranteed’ by the developers to be reversible.

Damage confinement. Often reversibility cannot be guaranteed. For examples sending
an email isn’t really reversible. For such scenarios, GoEx presents abstraction to bound the
worst case. Currently, the way blast-radius-containment is implemented is through coarse-
grained access control, and exact string match. First, GoEx looks at the user’s prompt to
determine the end service that they are then authorized to use. For example, a prompt of I
would like to send a slack message would only need credentials for slack, and not, say, their
bank. GoEx currently does this, through a simple sub-string check of the prompt, while
giving developers the flexibility to adopt any mapping they might choose.

Execution. Once the API, and the set of credentials required are determined, the APIs
are then executed in a Docker container for isolation.

Database Operations

GoEx leverages the mature transaction semantics o↵ered by databases. This section de-
scribes the abstractions available, and the two default policies.

Abstractions

GoEx relies on the LLM to generate database operations, but there are two prerequisites
needed to execute database operations: (1) knowledge of the current database state, and
(2) knowledge on how to access the database. To provide these, DBManager class is used.
This allows the database to readily minimally query for the database state (e.g. only the
schema) to provide additional info to the LLM during prompting without leaking sensistive
data. It also tracks the connection configuration to the database so that connections can be
established without leaking credentials to the LLM as an untrusted third-party by asking
the user to store the credentials locally, and after the LLM generates the operation, GoEx
then executes the operation.

DBManager also assists the user store with storing a previous state. Here, the commit and
undo actions are introduced where a commit means the user permanently saves the executed
changes, and an undo reverses the aforementioned changes. Most modern databases also
provide ACID guarantees [55], including NoSQL databases like DynamoDB and MongoDB,
which we leverage to implement committing and undoing actions.
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Figure 7.3: Runtime for executing actions on a database. We present two techniques to
determine if a proposed action can be undone. On the left, for non-transactional databases
like MongoDB, and for flexibility, we prompt the LLM to generate (Action, Undo-Action,
test-bed) tuples, which we then evaluate in a isolated container to catch any false (Action,
Undo-Action) pairs. On the right, we can provide a deterministic undo with guarantees by
employing the transaction semantics of databases.

Policy

DBManager implements reversibility in two ways. The user chooses which one to use when
they execute a prompt in GoEx.

leftmirgin=* Option 1 (Reversal). Makes use of a reverse database operation to per-
form the undo. It is done by prompting the LLM with the original opera-
tion (action call) along with the schema to generate the reversal operation
(undo call). Committing would require no action, and undoing would just
be performing the undo call after the action call is done. This option scales
better as additional users can continue perform database actions without
needing to wait for the previous user to finish their transaction at the cost
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of relying on the LLM to come up with an undo call, which may or may
not have unexpected behaviors.

leftmiirgiin=* Option 2 (Versioning). Makes use of the traditional ACID transaction
guarantees of the database and holds o↵ on completing a transaction until
the user specifies to do so, or rolls back to the previous state. Committing
would involve committing the transaction, and undoing is synonymous to
a rollback transaction. This branch is able to provide reversal guarantees
that branch 1 cannot, at the expense of higher performance overhead.

Reversibility testing. Within Option 1, GoEx also performs a reversibility test to verify
that the generated reversal operation indeed reverses the original operation. This requires a
containerized environment to be separate from the original database to maintain the original
database state. Since copying over the database into the container is very expensive, the
approach is to ask the LLM to generate a bare-bones version of the database for reversibility
testing, given the action, undo calls, and the database schema. The outcome of the test
is sent back to the user for final confirmation before committing or undoing the operation.
This method allows for e�cient testing by decoupling the testing runtime from being scaled
by the number of entries in the database.

File Systems

GoEx tries to present expressive abstractions to let LLM-powered systems to interact with
file-systems using Git version control. To track the directory tree, on every GoEx filesystem-
type execution, GoEx does an exhaustive, recursive walk of the directory and its subdirec-
tories and stores the directory structure as a formatted string.

Abstractions

Filesystems operation support in GoEx uses abstractions similar to what is used to support
database operations. FSManager, is a filesystems manager that tracks (1) the directory tree
structure with all filenames, and (2) the directory path that the user wishes to execute the
filesystem’s operations in. The tree structure, which is updated with executions, enables the
LLM to generate operations that reflect the actual state of the user’s filesystem.

Utilizing the relevant abstractions presented by journaling and log-structured filesystem
for undo-semantics is left as future work, as the current GoEx system aims for compatibility.

Policy

The options are similar to the database case, where Option 1 is for reversals and Option 2
is for versioning. The largest di↵erences are how FSManager carries out reversibility testing
and that versioning is accomplished using Git.
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Figure 7.4: Runtime for executing actions on a filesystem. GoEx presents two abstractions.
On the left, the LLM is prompted to come up with an (Action, Undo-Action, test-bed)
which GoEx evaluates in a isolated container to catch any false (Action, Undo-Action) pairs.
On the right presents deterministic guarantees by using versioning control system like Git
or Git LFS.

Git. GoEx uses Git to perform versioning. Since Git is already a version-control system
for files, it is a straightforward solution to use, but has several limitations. Git does not have
the ability to version track outside of the directory that it was initialized in. GoEx limits
the user execution scope to the specified path in FSManager—which is always inside of a Git
repository—and its subdirectories in accordance to our blast-radius confinement abstraction
to prevent the LLM from performing arbitrary actions in undesired parts of the user’s system.
With larger directories, Git versioning can be expensive space-wise. GoEx leverages Git LFS
for larger directories as an optimization. A threshold is defined for directory size that GoEx
would then check whether or not to initialize Git LFS (200 MB by default).

Reversibility testing. Similar to supporting databases operations, the LLM generates
the testing code using the action and undo calls, along with the directory tree. Inside



CHAPTER 7. GOEX: TOWARDS A RUNTIME FOR AUTONOMOUS LLM
APPLICATIONS 98

the container, the specified path is mounted in read-only mode to again do blast radius
containment. GoEx begins by duplicating the directory contents in the container, then run
the action and undo calls on the copied directory, and finally compare contents. Depending
on the original operation, the content comparison can just be a check of filenames or an
exhaustive file content comparison of all the files. We rely on the LLM to come up with the
test-case. Unsurprisingly, here GoEx allows you to trade o↵ guarantees for performance.

7.6 Discussion

Is Post-Facto LLM Validation Always Preferable?

It is not lost on us that while post-facto LLM validation has many benefits, our advocacy of
it is also somewhat philosophical. For example, if one were to bake a cake it’s probably better
to taste the cake than check the recipe. But on the the contrary, if one were to produce an
audit report, it might be preferable to check the process. We acknowledge both options—
post-facto LLM validation, and pre-facto LLM validation—as two techniques to evaluate
the LLM’s actions, however, this paper focuses on verifying results as this is, perhaps, more
appropriate in most scenarios we consider, which are complex microservice settings.

Designing LLM-friendly APIs

The conversation around LLM-powered systems design is predominantly centered around
designing systems to conform with the API semantics of existing applications and services.
However, an equally interesting question is what API design in an LLM-centric world would
looks like.

LLMs introduce a paradigm where applications and services can anticipate and adapt
to the intricacies of LLM interactions. A notable feature that embodies this adaptability
is the implementation of “dry-run” semantics, akin to the functionality commonly visible
in infrastructure products such as [11], [80], and where API calls can be tested to predict
their success without executing any real changes. This concept can be extended beyond
mere prediction, serving as a bridge between LLMs’ proposed actions and user consent. By
repurposing “dry-run” operations, service providers can o↵er a preview of the uncommitted
state resulting from an LLM’s actions, allowing users to evaluate and approve these actions
before they are finalized. This process adds an essential layer of user oversight, ensuring that
actions align with user expectations and intentions.

Chaining-aware. Applications and Services should by-default expect their APIs to be
chained with each other when used by agents. To support such a scenario, there needs to be
a way to express which APIs can be commutative, associative or distributive with a given
set of APIs.
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Tracking LLM agents

The introduction of a nonce mechanism (i.e., a session identifier) would enable LLMs to
present their identity and facilitate smoother interactions with API providers. This could
serve various purposes, such as identifying a session initiated by an LLM or providing a
context for transactions. A transaction ID, for example, can enable a system to identify
and potentially rollback actions based on this ID. This not only improves the traceability of
interactions but also contributes to the overall robustness and reliability of the system by
providing an auditable framework for LLM-powered systems.

7.7 Related Work

Isolation. Prior work on enabling automated LLM-powered systems [215] draws on con-
cepts from existing computer systems [36, 151, 212, 95] and emphasizes isolation between
LLM-powered applications in order to secure the overall system. Isolation is one facet of
safely executing LLM-powered systems, as it alone cannot ensure that the final execution
outcome aligns with the user’s intended action.

Trusthworthiness in LLMs. There is a rich body of work benchmarking LLMs on their
robustness [25]. Recently, trustworthiness [197] has been introduced as a multifaceted bench-
mark encapsulating robustness, stereotype bias, toxicity, privacy, ethics, and fairness. [197]
found that more advanced LLMs (e.g., GPT-4) exhibit higher, albeit still imperfect, trust-
worthiness.

Attacks on LLMs and defenses. LLMs are also susceptible to prompt hacking attacks,
of which include prompt injection [138, 51, 229, 164, 107] and jailbreaking [74, 5]. Such
attacks can lead to unpredictable and malicious decisions made by the LLM. There is also
an active line of work on defending against such attacks on LLMs [139, 28, 181, 190, 226].
These attacks and defenses will continue to evolve, and consequently the potential of LLMs
being susceptible to having their trustworthiness undermined necessitates a runtime that
can provide execution of LLM-decided actions while limiting risk.

7.8 Conclusion

The evolution of LLMs from chatbots to deeply embedding them in applications and services
for autonomous operation among themselves and other agents presents an exciting future.
In this paper, we introduce the concept of “post-facto LLM validation,” as opposed to pre-
facto LLM validation, to enable users to verify and roll back the e↵ects caused by executing
LLM generated actions (e.g., code, API invocations, and tool use). We propose GoEx, a
runtime for LLMs with an intuitive undo and damage confinement abstractions, enabling
the safer deployment of LLM agents in practice. We hope our attempt to formalize our
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vision and present open research questions towards realizing the goal of autonomous LLM-
powered systems in the future, is a step towards a world where LLM-powered systems can
independently, with minimal human verification, interact with other tools and services.
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Chapter 8

Conclusion

The combined advancements of R2E, LEAP, TEMPERA, Gorilla, RAFT, and GoEx repre-
sent significant progress toward practical training and deployment of Large Language Models
(LLMs) for interactive and autonomous tasks.

R2E establishes a gym-like environment in which a general-purpose LLM can interact,
o↵ering a realistic platform for honing agent capabilities through real-world scenarios. LEAP
highlights the value of self-reflection, enabling an LLM agent to learn from its previous ac-
tions and improve its future performance. By integrating systematic self-analysis into the
training process, LEAP paves the way for more adaptive and resilient agents. TEMPERA
introduces a novel reinforcement learning approach that equips LLMs with the ability to
dynamically alter their actions at test time. Not only does this facilitate generalization
to out-of-domain tasks, but it also allows for more flexible and responsive decision-making.
Gorilla addresses a key bottleneck by improving LLM competence in understanding and gen-
erating API calls. This advancement extends LLMs beyond passive knowledge repositories,
enabling them to perform intricate, tool-assisted tasks autonomously and e↵ectively. RAFT
streamlines function calling and environmental comprehension without requiring custom
fine-tuning. By granting LLMs seamless access to real-time, contextually relevant informa-
tion, RAFT ensures outputs are increasingly accurate, grounded, and free from irrelevant
distractions. Finally, GoEx introduces a robust runtime system that safeguards the execu-
tion of LLM-generated API calls in user-centric applications. Incorporating well-established
security principles—such as least-privilege access control, undo operations, and damage con-
finement—GoEx ensures that LLMs can be deployed safely as decision-making agents in
complex, real-world settings.

Together, these innovations underscore a new era in LLM-based agent development, one
that emphasizes safety, adaptability, reliability, and practical utility. Looking ahead, training
and deploying the AI “Agents” in a complex system environment still has a long way to go.
We now try to identify some key challenges here.

Training an LLM that can understand environment dynamics. Training a Large
Language Model (LLM) to comprehend the dynamics of a given environment involves nav-
igating multiple layers of complexity. First, the model must be exposed to diverse datasets
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that approximate a range of environmental conditions and outcomes. These include not
only structured data—such as sensor readings and system logs—but also unstructured data
like descriptive text and user feedback. Reinforcement learning techniques can play a vital
role: the model can interact with simulated or real environments, receiving feedback and
refining its behavior over time. Yet, ensuring robust generalization across varied and unpre-
dictable scenarios remains a central challenge. Incorporating domain-specific knowledge into
the LLM may further improve its understanding of complex system dynamics. Achieving
this goal likely requires a holistic training approach that blends supervised and unsuper-
vised methods with expert input, enabling the model to adapt more seamlessly to real-world
conditions.

Enabling an LLM to perform closed-loop decisions. Realizing e↵ective closed-loop
decision-making in an LLM requires continuous monitoring, assessment, and adaptation of
its actions in response to real-time feedback. This capability hinges on the model’s ability to
process incoming data streams e�ciently, quickly identify what information is most salient,
and update its decisions accordingly. Achieving such responsiveness may involve advanced
reinforcement learning strategies, computational optimizations, and algorithms that priori-
tize and filter incoming signals. The model must learn not only when to revise its actions,
but also how to evaluate the potential consequences of di↵erent choices. Additionally, in-
corporating real-time learning and adaptation mechanisms ensures that the LLM remains
e↵ective as conditions evolve. Addressing data noise, anomalies, and system latency is also
crucial, as these factors can significantly impact the model’s performance and reliability in
closed-loop settings.

Designing systems to guarantee LLM execution safety. Safely deploying LLMs in
complex, real-world environments demands careful architectural design, rigorous validation,
and ongoing oversight. Robust testing protocols should evaluate how the model behaves
under diverse conditions, including rare edge cases and potential failure modes. These eval-
uations can inform the development of fail-safes and fallback mechanisms that halt or adjust
the model’s actions if they deviate from acceptable norms. Continuous monitoring and audit-
ing further enhance reliability, allowing for proactive risk mitigation and timely intervention
when issues arise. Establishing clear operational guidelines, ethical standards, and trans-
parent decision-making processes is equally essential. Regular consultations with domain
experts and stakeholders help ensure that the LLM’s safety measures remain current and
aligned with evolving best practices. Together, these strategies help create secure, reliable
systems that maintain the highest standards of performance and integrity.
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Appendix A

R2E

Callgraphs

A callgraph [157] is a directed graph where nodes represent subroutines (functions, methods,
constructors, etc.), and edges denote the calling relationships between them. It is a directed
graph G = (V,E) where V is a set of subroutines (functions, methods, constructors, etc.)
and E is a set of edges representing the calling relationship between these subroutines. If
a subroutine u invokes (i.e., calls) a subroutine v, then there is a directed edge from u to
v in the callgraph. For instance, in Chapter 2.2, the function indexer calls the function
_parse_sigmf_capture. This repository abstraction enables analyzing several properties of
repository code.

For instance, we use it to extract the dependencies that a function relies on for its
execution—a valuable property for test generation. In this work, we use the pycg tool to
generate callgraphs for python repositories.

Dependency Slicing

While callgraphs abstract direct interactions between functions, a python function can inter-
act with parts of the repository through global variables, too–in the same file and imported
from other files. We can summarize these interactions in a dependency slice Df for a
function f , as the set of all functions F

0 that f calls, and all global variables G
0 that f

accesses, both directly and indirectly.
For a function f , we define a mapping called depends which identifies all functions F

0

that f calls, and all global variables G0 that f accesses.
Then a dependency sliceDf is the transitive closure of all functions and global variables

that f depends on, directly or indirectly.

Df =
[

(F 0,G0)2depends⇤(f)

(F 0 [G
0) (A.1)
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Computing this slice is generally an undecidable problem, but we make a few simplifying
assumptions to make it tractable. We begin by utilizing the callgraph to identify the functions
that f calls. We then use bytecode analysis to identify the set of global variables that f

accesses. We add these functions and global variables to the slice and recursively repeat
the process for each function in the slice. We utilize this context for test generation in
Chapter 2.3.
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Below, we list the prompt used for test harness generation.

You are a python programming expert who was hired to write tests for Python func-
tions.
You will be given a python function in a python file and you will write a complete
test that covers the function and all the di↵erent corner cases.
You can assume a compiled reference implementation of the function is available, and
hence do not need to predict the expected output of the function.
That is, the test you write will use the reference implementation to generate the
expected output.
Also, assume the function provided is correct and hence the test should focus on the
behavior that is defined by the function ONLY.
Ensure that the tests align with the function’s expected input types, avoiding scenarios
that the function is not designed to handle.
Completely avoid testing with invalid input types or values, testing for error handling,
and checking ‘assertRaises‘.
Set a fixed random seed in tests involving randomness to ensure consistent and repro-
ducible results when necessary.
Avoid mocking calls to APIs or functions (e.g., builtins.open) when actual implemen-
tations are simple, accessible, and their use does not compromise the test’s isolation
or determinism.
Particularly, avoid mocking calls to any file I/O APIs, and instead try to create
temporary files and directories for testing purposes.
You will return the test for that function and NOT return anything except for the
test.
Put your fixed test program within code delimiters, for example:

”””python

# YOUR CODE HERE

”””

Write a test using the ‘unittest‘ library for the function ‘function name‘. Assume
the reference implementation is ‘reference function name‘. Both the function and the
reference are in the module ‘fut module‘. Only return the test code and do NOT
return anything else. Enclose your code within code delimiters, for example:

”””python

# YOUR CODE HERE

”””
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Analysis of Equivalence Test Generation

Figure A.1: Varying number of lines Figure A.2: Varying number of dependencies

Figure A.3: Varying number of branches Figure A.4: Varying number of arguments
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You are a python programming expert who is refining docstrings in existing programs.
You will be given a python function in a python file with an existing (possibly under-
specified) docstring with corresponding unit tests for the function and optionally some
input-output examples extracted from the unittest in a serialized format. Your goal is
to refine the associated docstring by making it more informative, precise and complete
without adding verbosity or detailed programming logic to the docstring. The doc-
string should particularly describe the format and types of the expected inputs and
output as well as the behavior of the function. You will return the function definition,
docstring enclosed in markdown code delimiters. The docstrings must be formatted
in the google docstring format and examples should be added if they clarify the func-
tion and look helpful without being very long. Do not guess outputs for functions
but only copy the expected outputs as provided. Finally, do not throw away existing
details from the docstrings and only insert content you are sure about. Do NOT have
repeated content in the docstring and ONLY describe the high-level function behavior
without going into implementation details

### Code Snippet:

{original code snippet}
### Unit Tests:

”””python

{test code}
”””

### Argument Types: {argument types}
### Output Types: {output type}
### Examples: {examples substring}

Refine the docstring for the function function name. Return only the updated function
with docstring enclosed in markdown and ignore the remaining code. Remember
to make the docstring precise and informative regarding global function behavior
(input-output properties) without being too verbose. Do not specify detailed function
logic or very domain-specific content in the docstring (unless already described in the
docstring).

Spec-Refinement User Study

We study the quality of the refined docstrings, specifically on their e↵ectiveness as problem
descriptors for code completion. We analyze two high-level aspects of docstrings:

• Interface Understandability: Does the refined docstring clarify the function’s input-
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output interface? Here, we look at how the parameter descriptions and the I/O exam-
ples aid in understanding the interface.

• Problem Intent: Does the refined docstring articulate the problem the function is
intended to solve? Here, we look at how the docstring text and the I/O examples
illustrate how the function solves the problem and if it can lead to alternate solutions
that do not satisfy the original implementation.

Each criterion was evaluated using a 3-point scale, ranging from ‘Poor’ (1) to ‘Excellent’
(3). The lead authors applied this rubric to study a sample of 62 problems. Results in the
following tables.

Param Desc I/O Examples Overall
2.9 2.8 2.9

Table A.1: Interface Understandability
Scores

Text Desc I/O Examples Overall
2.5 2.1 2.5

Table A.2: Problem Intent Scores

The list of unique input and output data types is provided below. This highlights that
problems in our benchmark are interesting.

We list down the list of models considered for code generation experiments here.

Model ID Link

codellama/CodeLlama-34b-Python-hf CodeLlama-34b-Python-hf
codellama/CodeLlama-13b-Python-hf CodeLlama-13b-Python-hf
codellama/CodeLlama-7b-Python-hf CodeLlama-7b-Python-hf
gpt-3.5-turbo-1106-16k OpenAI
gpt-4-1106 OpenAI

Table A.3: List of models

Code Generation

To compute Pass1, we generate 5 completions for each problem instance using each model.
We use nucleus sampling with p = 0.95 and T = 0.2. Below we list the prompts used
(inspired from [128])

https://huggingface.co/codellama/CodeLlama-34b-Python-hf
https://huggingface.co/codellama/CodeLlama-13b-Python-hf
https://huggingface.co/codellama/CodeLlama-7b-Python-hf
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
https://openai.com/blog/new-models-and-developer-products-announced-at-devday
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You are a Python programming expert who is going to generate a Python function in
a file using the function docstring. You will use the existing context of relevant files
provided for implementation and ONLY return the completed function. Enclose the
completed function in markdown code delimiters and do NOT return anything else.

### Code Snippet

{code snippet}

Complete the function {function name}. Only return the completed function enclosed
in markdown code delimiters



APPENDIX A. R2E 127

Self Repair

We use GPT-4 and GPT-4-Turbo models for the self-repair task. We find problems from
R2E where models fail to any generate correct completion and we can extract the failing
scenario (since some of the tests are dynamic, it is not always possible to extract the failing
scenario). Additionally, since our GPT-4 has a context length of 8k, we additionaly filter
very long problems from the repair dataset We then use the failing scenario as the prompt
for the self-repair task.

You are a Python programming expert who is going to generate a Python function in
a file using the function docstring. You will use the existing context of relevant files
provided for implementation and ONLY return the completed function. Enclose the
completed function in markdown code delimiters and do NOT return anything else.

### Code Snippet:

{code snippet}
### Inputs:

{captured inputs}
### Expected Output:

{captured output}
### Error Trace:

{output}
### Instruction

You will first reason using a concise (at most 2-3 sentences) textual ex-
planation of what is wrong with the function. After you have pointed out
what is wrong with the code, you will then generate a fixed version of
the program. You will ONLY return the completed function. Follow the
following format which presents the reason for the failure followed by the
repaired program enclosed in backticks.

### Reasoning

{function name} is failing because of ...

### Repaired Function

”””python

def function name(...): ...

”””

���
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# nobuco/locate/link.py
import inspect

def get_link(file=None , line=None):
""" Print a link in PyCharm to a line in file.

Defaults to line where this function was called. """
if file is None:

file = inspect.stack()[1]. filename
if line is None:

line = inspect.stack()[1]. lineno
string = f'File "{file}", line {max(line , 1)}'.replace ("\\", "/")
return string

def get_link_to_obj(obj): ## CodeLLaMa -34B-Python completion

obj_type = type(obj)
if obj_type is property:

obj = obj.fget
if not hasattr(obj , '__module__ ') or not hasattr(obj , '__qualname__ '):

return None
module = inspect.getmodule(obj)
if module is None:

return None
if not hasattr(module , '__file__ '):

return None
if obj_type is type:

obj_source = obj.__qualname__
elif obj_type is types.ModuleType:

obj_source = obj.__name__
else:

obj_source = f'{obj.__module__ }.{ obj.__qualname__}'
return f'File "{ module.__file__}", line {inspect.getsourcelines(obj)

[1]} '. replace('\\', '/')

���
def standardize_and_get_inchi(mol: Mol , options: str='', log_level=None ,

warnings_as_errors=False) -> str:
""" Return InChI after standardising molecule and inferring stereo from
coordinates ."""
mol = deepcopy(mol)
mol = assert_sanity(mol)
mol = remove_isotopic_info(mol)
has_pose = mol.GetNumConformers () > 0
if has_pose:

RemoveStereochemistry(mol)
mol = RemoveHs(mol)
try:

mol = neutralize_atoms(mol)
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except AtomValenceException:
logger.warning('Failed to neutralize molecule. Using uncharger.

InChI check might fail.')
mol = Uncharger ().uncharge(mol)

mol = add_stereo_hydrogens(mol)
if has_pose:

AssignStereochemistryFrom3D(mol , replaceExistingTags=True)
with CaptureLogger ():

inchi = MolToInchi(mol , options=options , logLevel=log_level ,
treatWarningAsError=warnings_as_errors)
return inchi

...

def check_identity(mol_pred: Mol , mol_true: Mol , inchi_options: str='') ->
dict[str , Any]:
""" Check if two molecules are identical in terms of their InChI
representation.

This function compares the InChI strings of two molecules after
standardizing them and
optionally applying InChI generation options. ...
Args:
...
Returns:

...
Example:

>>> ..."""
���

## CodeLLaMa -13B-Python completion

mol_pred = deepcopy(mol_pred)
mol_true = deepcopy(mol_true)
mol_pred = assert_sanity(mol_pred)
mol_true = assert_sanity(mol_true)
mol_pred = remove_isotopic_info(mol_pred)
mol_true = remove_isotopic_info(mol_true)
has_pose_pred = mol_pred.GetNumConformers () > 0
has_pose_true = mol_true.GetNumConformers () > 0
if has_pose_pred:

RemoveStereochemistry(mol_pred)
if has_pose_true:

RemoveStereochemistry(mol_true)
mol_pred = RemoveHs(mol_pred)
mol_true = RemoveHs(mol_true)
try:

mol_pred = neutralize_atoms(mol_pred)
except AtomValenceException:

logger.warning('Failed to neutralize molecule. Using uncharger.
InChI check might fail.')
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mol_pred = Uncharger ().uncharge(mol_pred)
try:

mol_true = neutralize_atoms(mol_true)
except AtomValenceException:

logger.warning('Failed to neutralize molecule. Using uncharger.
InChI check might fail.')

mol_true = Uncharger ().uncharge(mol_true)
mol_pred = add_stereo_hydrogens(mol_pred)
mol_true = add_stereo_hydrogens(mol_true)
if has_pose_pred:

AssignStereochemistryFrom3D(mol_pred , replaceExistingTags=True)
if has_pose_true:

AssignStereochemistryFrom3D(mol_true , replaceExistingTags=True)
inchi_pred = standardize_and_get_inchi(mol_pred , options=inchi_options

)
inchi_true = standardize_and_get_inchi(mol_true , options=inchi_options

)
results = _compare_inchis(inchi_true , inchi_pred)
results['inchi_crystal_valid '] = _is_valid_inchi(inchi_true)
results['inchi_docked_valid '] = _is_valid_inchi(inchi_pred)
results['inchi_crystal '] = inchi_true
results['inchi_docked '] = inchi_pred
return {'results ': results}

import torch

def get_2d_sincos_pos_embed_from_grid(embed_dim: int , grid: torch.Tensor)
-> torch.Tensor:
"""Get 2D sine -cosine positional embedding from grid.
Args:

embed_dim: embedding dimension.
grid: positions

Returns:
(torch.Tensor): [grid_size*grid_size , embed_dim] or [1+ grid_size*

grid_size , embed_dim ]"""
assert embed_dim % 2 == 0
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid [0])
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid [1])
emb = torch.cat([emb_h , emb_w], dim=1)
return emb

def get_1d_sincos_pos_embed_from_grid(embed_dim: int , pos: torch.Tensor)
-> torch.Tensor:
"""Get 1D sine -cosine positional embedding.
Args:

embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)

Returns:
(torch.Tensor): tensor of shape (M, D)"""

assert embed_dim % 2 == 0
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omega = torch.arange(embed_dim // 2, dtype=torch.float)
omega /= embed_dim / 2.0
omega = 1.0 / 10000 ** omega
pos = pos.reshape (-1)
out = torch.einsum('m,d->md', pos , omega)
emb_sin = torch.sin(out)
emb_cos = torch.cos(out)
emb = torch.cat([emb_sin , emb_cos], dim=1)
return emb

def get_2d_sincos_pos_embed(embed_dim: int , grid_size: int , cls_token:
bool=False) -> torch.Tensor:
""" Generates a 2D sine -cosine positional embedding tensor.

This function creates a positional embedding for a 2D grid using sine
and cosine functions.
The embedding can optionally include a leading zero vector to
represent a classification (CLS) token.

Args:
embed_dim (int): The dimensionality of the embedding for each

position.
grid_size (int): The height and width of the square grid for which

embeddings are generated.
cls_token (bool): If True , the output tensor will include an

additional first row with zeros
to represent a CLS token. Defaults to False.

Returns:
torch.Tensor: A tensor of shape (grid_size * grid_size , embed_dim)

without a CLS token , or
(1 + grid_size * grid_size , embed_dim) with a CLS

token. The tensor contains
the positional embeddings for the grid and is of

type �torch.float32 �."""
grid = torch.stack(torch.meshgrid(torch.arange(grid_size), torch.
arange(grid_size)), dim=-1)
grid = grid.reshape(-1, 2).float()
emb = get_2d_sincos_pos_embed_from_grid(embed_dim , grid)
if cls_token:

cls_emb = torch.zeros(1, embed_dim)
emb = torch.cat([cls_emb , emb], dim=0)

return emb

from typing import Tuple
import torch

def get_3d_sincos_pos_embed(embed_dim: int , tube_shape: Tuple[int , int ,
int], stride , offset , kernel_size , cls_token: bool=False) -> torch.
Tensor:
"""Get 3D sine -cosine positional embedding.
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Args:
tube_shape: (t_size ,
...."""

...
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(

embed_dim_spatial , grid)
...

def get_2d_sincos_pos_embed(embed_dim: int , grid_size: int , cls_token:
bool=False) -> torch.Tensor:
"""Get 2D sine -cosine positional embedding.
Args:

grid_size: int of the grid height and width
cls_token: bool , whether to contain CLS token

Returns:
(torch.Tensor): [grid_size*grid_size , embed_dim] or [1+ grid_size*

grid_size , embed_dim ]"""
...
pos_embed = ...

def get_1d_sincos_pos_embed_from_grid(embed_dim: int , pos: torch.Tensor)
-> torch.Tensor:
"""Get 1D sine -cosine positional embedding.
Args:

embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)

Returns:
(torch.Tensor): tensor of shape (M, D)

"""
assert embed_dim % 2 == 0
omega = torch.arange(embed_dim // 2, dtype=torch.float)
...
return emb

def get_2d_sincos_pos_embed(embed_dim: int , grid_size: int , cls_token:
bool=False) -> torch.Tensor:
""" Generates a 2D sine -cosine positional embedding tensor.

This function creates a positional embedding for a 2D grid using sine
and cosine functions.
The embedding can optionally include a leading zero vector to
represent a classification (CLS) token.

Args:
embed_dim (int): The dimensionality of the embedding for each

position.
grid_size (int): The height and width of the square grid for which

embeddings are generated.
cls_token (bool): If True , the output tensor will include an

additional first row with zeros
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to represent a CLS token. Defaults to False.

Returns:
torch.Tensor: A tensor of shape (grid_size * grid_size , embed_dim)

without a CLS token , or
(1 + grid_size * grid_size , embed_dim) with a CLS

token. The tensor contains
the positional embeddings for the grid and is of

type �torch.float32 �.
"""
assert embed_dim % 2 == 0
grid = torch.arange(grid_size , dtype=torch.float)
grid = torch.meshgrid(grid , grid , indexing='ij ')
grid = torch.stack(grid , dim =0)
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim , grid)
return pos_embed

class Image(BaseImage):

def qvec2rotmat(self):
return qvec2rotmat(self.qvec)

def read_next_bytes(fid , num_bytes , format_char_sequence , endian_character
='<'):
data = fid.read(num_bytes)
return struct.unpack(endian_character + format_char_sequence , data)

def read_images_binary(path_to_model_file):
""" Read camera images and their properties from a binary file. This
function parses a binary file containing the properties of images used
in 3D reconstruction
and returns a dictionary of Image namedtuples , each containing the
properties of an image.

Args:
path_to_model_file (str): The path to the binary model file to be

read.

Returns:
dict: A dictionary where keys are image IDs (int) and values are

Image namedtuples.
Each Image namedtuple has the following fields:
- id (int): The unique identifier of the image.
- qvec (numpy.ndarray): A 4-element array representing the

quaternion vector.
- tvec (numpy.ndarray): A 3-element array representing the

translation vector.
- camera_id (int): The identifier of the camera used to

capture the image.
- name (str): The name of the image file.
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- xys (numpy.ndarray): An Nx2 array of [x, y] coordinates of
2D points in the image.

- point3D_ids (numpy.ndarray): An N-element array of
identifiers of corresponding 3D points """

## GPT -4 Completion

with open(path_to_model_file , 'rb ') as fid:
num_reg_images = read_next_bytes(fid , 4, 'I')[0]
images = {}
for _ in range(num_reg_images):

image_id = read_next_bytes(fid , 4, 'I')[0]
qvec = np.array(read_next_bytes(fid , 4 * 4, 'dddd '))
tvec = np.array(read_next_bytes(fid , 3 * 4, 'fff '))
camera_id = read_next_bytes(fid , 4, 'I')[0]
image_name = read_next_bytes(fid , 1, 'c')[0]
num_points2D = read_next_bytes(fid , 4, 'I')[0]
xys = np.array(read_next_bytes(fid , num_points2D * 2 * 4, 'ff'

* num_points2D))
point3D_ids = np.array(read_next_bytes(fid , num_points2D * 4,

'I' * num_points2D))
images[image_id] = Image(id=image_id , qvec=qvec , tvec=tvec ,

camera_id=camera_id , name=image_name , xys=xys , point3D_ids=point3D_ids)
return images

# xrloc/map/read_write_model.py

def read_next_bytes(fid , num_bytes , format_char_sequence , endian_character
='<'):
...

def write_next_bytes(fid , data , format_char_sequence , endian_character
='<'):
...

def write_images_binary(images , path_to_model_file):
"""
see: src/base/map.cc

void Reconstruction :: ReadImagesBinary(const std:: string& path)
void Reconstruction :: WriteImagesBinary(const std:: string& path)

"""
with open(path_to_model_file , 'wb ') as fid:

write_next_bytes(fid , len(images), 'Q')
for _, img in images.items():

write_next_bytes(fid , img.id , 'i')
write_next_bytes(fid , img.qvec.tolist (), 'dddd ')
write_next_bytes(fid , img.tvec.tolist (), 'ddd ')
write_next_bytes(fid , img.camera_id , 'i')
for char in img.name:

write_next_bytes(fid , char.encode('utf -8'), 'c')
write_next_bytes(fid , b'\\x00 ', 'c')
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write_next_bytes(fid , len(img.point3D_ids), 'Q')
for xy , p3d_id in zip(img.xys , img.point3D_ids):

write_next_bytes(fid , [*xy , p3d_id], 'ddq ')

def read_points3d_binary(path_to_model_file):
...

def write_points3d_binary(points3D , path_to_model_file):
"""
see: src/base/map.cc

void Reconstruction :: ReadPoints3DBinary(const std:: string& path)
void Reconstruction :: WritePoints3DBinary(const std:: string& path)

"""
with open(path_to_model_file , 'wb ') as fid:

write_next_bytes(fid , len(points3D), 'Q')
for _, pt in points3D.items():

write_next_bytes(fid , pt.id , 'Q')
write_next_bytes(fid , pt.xyz.tolist (), 'ddd ')
write_next_bytes(fid , pt.rgb.tolist (), 'BBB ')
write_next_bytes(fid , pt.error , 'd')
track_length = pt.image_ids.shape [0]
write_next_bytes(fid , track_length , 'Q')
for image_id , point2D_id in zip(pt.image_ids , pt.point2D_idxs)

:
write_next_bytes(fid , [image_id , point2D_id], 'ii ')

def read_point3d_feature_binary(path_to_feature_file):
""" Read 3D point features.

Args:
path_to_feature_file (str): Path to point feature file

Returns:
dict{int:np.array(dim)}: 3D point feature dict

"""
point3d_features = {}
with open(path_to_feature_file , 'rb ') as file:

num_points3d = struct.unpack('<Q', file.read (8))[0]
dim_feature = struct.unpack('<Q', file.read (8))[0]
for i in range(num_points3d):

point3d_id = struct.unpack('<Q', file.read (8))[0]
feature_num = struct.unpack('<I', file.read (4))[0]
fmat = '<{0}f'. format(dim_feature)
descriptor = np.array(struct.unpack(fmat , file.read(4 *

dim_feature)))
point3d_features[point3d_id] = descriptor

return point3d_features

def read_images_binary(path_to_model_file):
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"""
Read camera images and their properties from a binary file.

This function parses a binary file containing the properties of images
used in 3D reconstruction
and returns a dictionary of Image namedtuples , each containing the
properties of an image.

Args:
path_to_model_file (str): The path to the binary model file to be

read.

Returns:
dict: A dictionary where keys are image IDs (int) and values are

Image namedtuples.
Each Image namedtuple has the following fields:
- id (int): The unique identifier of the image.
- qvec (numpy.ndarray): A 4-element array representing the

quaternion vector.
- tvec (numpy.ndarray): A 3-element array representing the

translation vector.
- camera_id (int): The identifier of the camera used to

capture the image.
- name (str): The name of the image file.
- xys (numpy.ndarray): An Nx2 array of [x, y] coordinates of

2D points in the image.
- point3D_ids (numpy.ndarray): An N-element array of

identifiers of 3D points corresponding to the 2D points.
"""

## GPT -4 Completion

images = {}
with open(path_to_model_file , 'rb ') as fid:

num_reg_images = read_next_bytes(fid , 8, 'Q')[0]
for _ in range(num_reg_images):

reg_image_id = read_next_bytes(fid , 4, 'i')[0]
qvec = np.array(read_next_bytes(fid , 8 * 4, 'dddd '))
tvec = np.array(read_next_bytes(fid , 8 * 3, 'ddd '))
camera_id = read_next_bytes(fid , 4, 'i')[0]
image_name = ''
while True:

char = read_next_bytes(fid , 1, 'c')[0]
if char == b'\x00 ':

break
image_name += char.decode('utf -8')

num_points2D = read_next_bytes(fid , 8, 'Q')[0]
xys = np.zeros(( num_points2D , 2), dtype=np.float32)
point3D_ids = np.zeros(num_points2D , dtype=np.int64)
for i in range(num_points2D):
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xys[i] = read_next_bytes(fid , 8 * 2, 'dd ')
point3D_ids[i] = read_next_bytes(fid , 8, 'Q')[0]

images[reg_image_id] = Image(id=reg_image_id , qvec=qvec , tvec=
tvec , camera_id=camera_id , name=image_name , xys=xys , point3D_ids=
point3D_ids)
return images

import torch

def _product_attr(vision , text , alter):
"""
Args:

vision: N x D
text: M x D
alter: N x M, to replace results in some cases , see details in

Returns
Returns: N x M.

For (n, m) element , set J_m = {j : text[m, j] == 1}.
- if |J_m| > 0, it equals to (prod_{j in J_m} vision[n, j]) **(1/|

J_m|)
- if |J_m| == 0, it equals to alter[n, m]

"""
vision = vision.unsqueeze (1)
text = text.unsqueeze (0)
num_attr = text.sum(-1)
queried_attr = vision * text
queried_attr = queried_attr.masked_fill(text == 0, 1)
queried_attr = torch.float_power(queried_attr.prod(dim =2), 1 / torch.

max(num_attr , torch.ones_like(num_attr))).float()
no_attr_queries = num_attr.squeeze (0) == 0
queried_attr [:, no_attr_queries] = alter[:, no_attr_queries]
return queried_attr

def obj_with_attributes(input_embeddings , query_embeddings , n_obj , n_part ,
n_attr):
""" Compute the similarity between object embeddings and query
embeddings based on attributes.

This function calculates the similarity score between each pair of
object and query embeddings.
The score is computed as the square root of the product of the object
score and the geometric
mean of the queried attributes , if any attributes are queried. If no
attributes are queried ,
the object score is returned as is.
...
"""
vision = input_embeddings [:, :n_obj]
text = query_embeddings [:, n_obj:n_obj + n_attr]
alter = input_embeddings [:, n_obj + n_attr :]
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queried_attr = _product_attr(vision , text , alter)
obj_score = (input_embeddings [:, :n_obj] * query_embeddings [:, :n_obj

]).sum(dim=1, keepdim=True)
scores = torch.sqrt(obj_score * queried_attr)
return scores

Error
Traceback (most recent call last):

File "<string >", line 17, in test_obj_with_attributes
File "/capture_args.py", line 107, in wrapper

output = func(*args , ** kwargs)
^^^^^^^^^^^^^^^^^^^^^

File "/tmp/tmptgi66m5s/paco_query_utils.py", line 62, in
obj_with_attributes
queried_attr = _product_attr(vision , text , alter)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/tmp/tmptgi66m5s/paco_query_utils.py", line 22, in _product_attr

queried_attr = vision * text
~~~~~~~^~~~~~

RuntimeError: The size of tensor a (5) must match the size of tensor b (2)
at non -singleton dimension 2

Listing A.1: GPT-4 failing to understand the _product_attr helper function used in its
completion of obj_with_attributes.

Dependency vs Usage Tradeo↵

The first example demonstrates dependency context vs full context for get_2d_sincos

pos_embed function. In the dependency context, only two functions which the oracle ground
truth functions calls are provided and the task is to stitch them together. This becomes
simpler in the full context case where how to call those functions is also provided (via other
functions).

Length of retrieval We compare how the performance of the models is impacted by
the length (# tokens) of the retrieval context. Since we perform dependency-only-context
retrieval, we only have the context required to understand the necessary functions for solving
the problem instance. We find that the performance is not strongly correlated with the length
of the retrieval context (Figure A.6). This suggests that the choice of the retrieved context
is a bigger factor than the length.

CoT on R2E We use 0-shot and 2-shot CoT to evaluate more enhanced code generation
approaches. The following table describes performance.
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Figure A.5: Varying number of dependencies
Figure A.6: Varying number of context to-
kens

Figure A.7: Varying number of ground truth
tokens

Figure A.8: Varying File usage

Base CoT-0-shot CoT-2-shot

GPT-4-Turbo 48.9 45.8 -
GPT-4 33.2 33 28.8

Table A.4: E↵ect of CoT on code generation on a subset of our R2E benchmark
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Appendix B

In Context Principle Learning

B.1 Additional Results on Text Reasoning

Chapter B.3 shows additional Text Reasoning results. The upper part of Chapter B.3 is
identical to Chapter 3.1; the lower part of Chapter B.3 contains zero-shot results, with
principles that were learned from the given few-shot examples; this setup is similar to related
work such as [221].
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Table B.1: Text Reasoning Results: Accuracy in textual reasoning datasets. The best ap-
proach for each base LLM in each dataset is in bold; the second-best approach is underlined.

GPT-3.5-turbo GPT-4 Gemini Pro

Few-shot results, identical to Chapter 3.2:

HotpotQA
Few-shot CoT 29.10 36.35 28.25
LEAPlow-level 32.60 39.30 23.70
LEAPhigh-level 30.35 39.65 25.50

DROP
Few-shot CoT 63.20 72.05 64.60
LEAPlow-level 63.35 79.55 67.15
LEAPhigh-level 63.00 78.60 67.60

GPT-3.5-turbo GPT-4 Gemini Pro

Zero-shot results, using principles learned from few-shot examples:

HotpotQA
Zero-shot CoT 12.55 27.80 19.75
LEAPlow-level 6.65 31.20 3.30
LEAPhigh-level 13.10 30.90 2.45

DROP
Zero-shot CoT 59.25 82.20 62.75
LEAPlow-level 55.20 84.10 65.30
LEAPhigh-level 55.25 81.80 62.80
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B.2 Additional Results on Mathematical Reasoning

Table B.2: Math Reasoning Results: Accuracy in MATH and GSM8K. The best approach
for each LLM and base task is in bold; the second-best approach is underlined.

GPT-3.5-turbo GPT-4 Claude-2 Gemini Pro

Few-shot results, identical to Chapter 3.2:

GSM8K
Few-shot CoT 76.4 93.6 84.3
LEAPlow-level 77.4 94.1 82.7
LEAPhigh-level 76.6 93.8 83.8

MATH
Few-shot CoT 55.6 63.5 43.2
LEAPlow-level 56.1 64.5 42.7
LEAPhigh-level 56.5 64.0 43.4

GPT-3.5-turbo GPT-4 Claude-2 Gemini Pro

Zero-shot results, using principles learned from few-shot examples:

GSM8K
Zero-shot CoT 76.9 93.2 75.4
LEAPlow-level 74.4 94.2 76.7
LEAPhigh-level 73.8 94.1 76.9

MATH
Zero-shot CoT 54.2 63.5 40.2
LEAPlow-level 52.0 63.2 40.5
LEAPhigh-level 50.0 61.5 41.8

Chapter B.4 shows additional Mathematical Reasoning results. The upper part of Chap-
ter B.4 is identical to Chapter 3.2; the lower part of Chapter B.4 contains zero-shot results,
with principles that were learned from the given few-shot examples; this setup is similar to
related work such as [221].

B.3 Additional Results on Text Reasoning

Chapter B.3 shows additional Text Reasoning results. The upper part of Chapter B.3 is
identical to Chapter 3.1; the lower part of Chapter B.3 contains zero-shot results, with
principles that were learned from the given few-shot examples; this setup is similar to related
work such as [221].
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Table B.3: Text Reasoning Results: Accuracy in textual reasoning datasets. The best ap-
proach for each base LLM in each dataset is in bold; the second-best approach is underlined.

GPT-3.5-turbo GPT-4 Gemini Pro

Few-shot results, identical to Chapter 3.2:

HotpotQA
Few-shot CoT 29.10 36.35 28.25
LEAPlow-level 32.60 39.30 23.70
LEAPhigh-level 30.35 39.65 25.50

DROP
Few-shot CoT 63.20 72.05 64.60
LEAPlow-level 63.35 79.55 67.15
LEAPhigh-level 63.00 78.60 67.60

GPT-3.5-turbo GPT-4 Gemini Pro

Zero-shot results, using principles learned from few-shot examples:

HotpotQA
Zero-shot CoT 12.55 27.80 19.75
LEAPlow-level 6.65 31.20 3.30
LEAPhigh-level 13.10 30.90 2.45

DROP
Zero-shot CoT 59.25 82.20 62.75
LEAPlow-level 55.20 84.10 65.30
LEAPhigh-level 55.25 81.80 62.80
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B.4 Additional Results on Mathematical Reasoning

Table B.4: Math Reasoning Results: Accuracy in MATH and GSM8K. The best approach
for each LLM and base task is in bold; the second-best approach is underlined.

GPT-3.5-turbo GPT-4 Claude-2 Gemini Pro

Few-shot results, identical to Chapter 3.2:

GSM8K
Few-shot CoT 76.4 93.6 84.3
LEAPlow-level 77.4 94.1 82.7
LEAPhigh-level 76.6 93.8 83.8

MATH
Few-shot CoT 55.6 63.5 43.2
LEAPlow-level 56.1 64.5 42.7
LEAPhigh-level 56.5 64.0 43.4

GPT-3.5-turbo GPT-4 Claude-2 Gemini Pro

Zero-shot results, using principles learned from few-shot examples:

GSM8K
Zero-shot CoT 76.9 93.2 75.4
LEAPlow-level 74.4 94.2 76.7
LEAPhigh-level 73.8 94.1 76.9

MATH
Zero-shot CoT 54.2 63.5 40.2
LEAPlow-level 52.0 63.2 40.5
LEAPhigh-level 50.0 61.5 41.8

Chapter B.4 shows additional Mathematical Reasoning results. The upper part of Chap-
ter B.4 is identical to Chapter 3.2; the lower part of Chapter B.4 contains zero-shot results,
with principles that were learned from the given few-shot examples; this setup is similar to
related work such as [221].

B.5 Additional Results on BBH

Chapter B.6 shows results on additional BBH tasks that we could not fit into Chapter B.5.
We selected tasks to Chapter B.5 in the main paper where the di↵erence was more mean-
ingful. As shown in Chapter B.6, there were some tasks such as temporal sequences,
web of lies and tracking shuffled objects five objects where GPT-4 achieved 100%
accuracy with any of the approaches, including both LEAP and the few-shot baseline.
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B.6 Additional Qualitative Analysis

Object Counting

Question: I have a flute, a piano, a trombone, four stoves, a violin, an accordion, a
clarinet, a drum, two lamps, and a trumpet. How many musical instruments do I have?
Principles: Focus on relevance: The response should be directly related to the user’s
query or statement. Irrelevant information can confuse the user and detract from the
overall quality of the response. ...
CoT Response: Let’s think step by step. We first identify the musical instruments on
the list and include their quantity in parentheses: - flute (1) - piano (1) - trombone (1)
- stoves (4) - violin (1) - accordion (1) - clarinet (1) - drum (1) - lamps (2) - trumpet
(1) Now, let’s add the numbers in parentheses: 1 + 1 + 1 + 4 + 1 + 1 + 1 + 1 + 2 +

1 = 14. So the answer is 14 . 7
LEAPlow-level Response: Let’s think step by step. We first identify the musical in-
struments on the list and include their quantity in parentheses: - flute (1) - piano (1)
- trombone (1) - violin (1) - accordion (1) - clarinet (1) - drum (1) - trumpet (1) Now,
let’s add the numbers in parentheses: 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 8. So the

answer is 8 . 3
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Salient Translation Error Detection

Question: The following translations from German to English contain a particular
error. That error will be one of the following types: Named Entities, Numerical Val-
ues, Modifiers or Adjectives, Negation or Antonyms, Facts, Dropped Content. Please
identify that error. Source: Neu Fahrland ist ein Ortsteil von Potsdam. Translation:
Neu Fahrland is a district of Pots. The translation contains an error pertaining to Op-
tions: (A) Modifiers or Adjectives (B) Numerical Values (C) Negation or Antonyms (D)
Named Entities (E) Dropped Content (F) Facts
Principles: When analyzing translations, it is important to carefully consider the trans-
lation of named entities. Any changes or inaccuracies in the translation of names, places,
or other entities should be identified as named entity errors.
CoT Response: Let’s think step by step. We solve this question by first translating
the source sentence to English and then by comparing our translation with the provided
translation. According to Google Translate, the correct translation of the source sen-
tence from German to English is ”Neu Fahrland is a district of Potsdam.” On the other
hand, the provided translation is ”Neu Fahrland is a district of Pots.” Note that the
provided translation is missing the word ”dam” at the end of Pots. Because a signifi-
cant part of the translation is dropped, the translation contains an error pertaining to

Dropped Content. So the answer is (E) . 7

LEAPlow-level Response: Let’s think step by step. We solve this question by first
translating the source sentence to English and then by comparing our translation with
the provided translation. According to Google Translate, the correct translation of the
source sentence from German to English is ”Neu Fahrland is a district of Potsdam.” On
the other hand, the provided translation is ”Neu Fahrland is a district of Pots.” Note
that the provided translation omits the word ”dam” from Potsdam. Because a signifi-
cant part of the entity name is removed in the translation, the translation contains an

error pertaining to Named Entities. So the answer is (D) . 3
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Boolean Expressions

Question: not not ( False and not False ) is
Principles: . . . 3. Double negation, as in ‘not not’, cancels out and returns the original
value. . . .
CoT Response: Let’s think step by step. Remember that (i) expressions inside brack-
ets are always evaluated first and that (ii) the order of operations from highest priority
to lowest priority is ”not”, ”and”, ”or”, respectively. We first simplify this expression
”Z” as follows: ”Z = not not ( False and not False ) = not not ( A )” where ”A = False
and not False”. Let’s evaluate A: A = False and not False = False and True = False.
Plugging in A, we get: Z = not not ( A ) = not not (False) = not not True = not False

= True. So the answer is True . 7
LEAPlow-level Response: Let’s think step by step. Remember that (i) expressions
inside brackets are always evaluated first and that (ii) the order of operations from
highest priority to lowest priority is ”not”, ”and”, ”or”, respectively. We first simplify
this expression ”Z” as follows: ”Z = not not ( False and not False ) = not not ( A )”
where ”A = False and not False”. Let’s evaluate A: A = False and not False = False
and True = False. Plugging in A, we get: Z = not not ( A ) = not not (False) = not

not False = False. So the answer is False . 3
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Snarks

Question: Which statement is sarcastic? Options: (A) It’s not our job to fund educa-
tion! It should be the government paying the maintenance to keep schools open (B) It’s
not our job to fund education! It should be the kids paying the maintenance to keep
schools open
Principles: To improve future responses, it is important to carefully consider the con-
text and tone of the statements when identifying sarcasm. Sarcasm often involves saying
the opposite of what is meant . . . Paying attention to the incongruity between the lit-
eral meaning of the words and the intended meaning can help in accurately identifying
sarcasm.
CoT Response: Let’s think step by step. If we look at (A), it suggests that funding
education is not the responsibility of the speaker or the people, but rather the govern-
ment. This statement is often used sarcastically to criticize individuals or groups who
do not prioritize or support funding for education. If we look at (B), it suggests that
funding education is not the responsibility of the speaker or the people, but rather the
kids. This statement is not typically used sarcastically and can be seen as a genuine

belief or opinion. Above the above, the sarcastic option is (A). So the answer is (A) .
7
LEAPlow-level Response: Let’s think step by step. If we look at (A), it suggests that
it is not the responsibility of the speaker or their group to fund education, and instead,
it should be the government’s responsibility. This statement aligns with the commonly
accepted understanding that education funding is a shared responsibility between indi-
viduals, communities, and the government. Therefore, (A) does not appear to contain
sarcasm. If we look at (B), it suggests that it is not the responsibility of the speaker or
their group to fund education, and instead, it should be the kids’ responsibility. This
statement contradicts the generally accepted understanding that children should not be
burdened with the financial responsibility of maintaining schools. The presence of such
a contradiction in (B) suggests that it contains a taste of irony and sarcasm. Above the

above, the sarcastic option is (B). So the answer is (B) . 3
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Date Understanding

Question: May 6, 1992 is like yesterday to Jane, but that is actually ten years ago.
What is the date one week ago from today in MM/DD/YYYY? Options: (A) 04/29/2002
(B) 04/24/2002 (C) 04/19/2002 (D) 04/28/2002 (E) 02/13/2002 (F) 05/20/2002
Principles: . . . When subtracting days from a given date, it is important to accurately
calculate the number of days to subtract and perform the subtraction correctly. . . .
CoT Response: Let’s think step by step. If May 6, 1992 is like yesterday to Jane, but
that is actually ten years ago, then today’s date is May 16, 2002. One week ago from

today is May 9, 2002. So the answer is (D) . 7

LEAPlow-level Response: Let’s think step by step. If May 6, 1992 is ten years ago,
then today’s date is May 6, 2002. One week ago from today is April 29, 2002, that is

04/29/2002. So the answer is (A) . 3

Multistep Arithmetic Two

Question: ((5 - 6 - 7 + 6) - (-1 - 1 * -7 + 9)) =
Principles: It is crucial to pay attention to the signs and operations when simplifying
expressions inside parentheses. Any mistake in this step can lead to incorrect results.
CoT Response: Let’s think step by step. Let’s recall that the order of operations
in mathematics is as follows: (1) Parentheses, (2) exponents, (3) multiplication and
division (from left to right), (4) addition and multiplication (from left to right). So,
remember to always compute the expressions inside parentheses or brackets first. This
equation can be written as ”A - B”, where A = (5 - 6 - 7 + 6) and B = (-1 - 1 * -7 +
9). Let’s calculate A = (5 - 6 - 7 + 6) = (5 - (6 - 7) + 6) = (5 - (-1) + 6) = (5 + 1 +
6) = 12. Let’s calculate B = (-1 - 1 * -7 + 9) = (-1 - (-7) + 9) = (-1 + 7 + 9) = 15.

Then, the final equation is A - B = 12 - 15 = -3. So the answer is �3 . 7
LEAPlow-level Response: A: Let’s think step by step. Let’s recall that the order of op-
erations in mathematics is as follows: (1) Parentheses, (2) exponents, (3) multiplication
and division (from left to right), (4) addition and multiplication (from left to right). So,
remember to always compute the expressions inside parentheses or brackets first. This
equation can be written as ”A - B”, where A = (5 - 6 - 7 + 6) and B = (-1 - 1 * -7 +
9). Let’s calculate A = (5 - 6 - 7 + 6) = (5 - 6 - 7 + 6) = (-1 - 7 + 6) = (-8 + 6) = -2.
Let’s calculate B = (-1 - 1 * -7 + 9) = (-1 - (-7) + 9) = (-1 + 7 + 9) = (6 + 9) = 15.
Then, the final equation is A - B = -2 - 15 = -17. So the answer is �17 . 3
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Disambiguation QA

Question: In the following sentences, explain the antecedent of the pronoun (which
thing the pronoun refers to), or state that it is ambiguous. Sentence: The undergrad-
uate applied to work with the scientist because he needed a lab assistant. Options:
(A) The undergraduate needed an assistant (B) The scientist needed an assistant (C)
Ambiguous
Principles: Pay attention to the causality and context of the sentence to identify the
most likely referent for the pronoun. It is not enough to simply assume that the pronoun
could refer to any possible noun mentioned in the sentence.
CoT Response: Let’s think step by step. Here we need to determine who the pronoun
”he” might be referring to. There are two possible referents for ”he”, namely the un-
dergraduate and the scientist. The verb ”applied” might be able to help us determine
which one is more likely (if either). Let X be the undergraduate and Y the scientist.
The sentence is then of the form ”X applied to work with Y because (X or Y) needed
a lab assistant.” Let’s consider Y first: ”X applied to work with Y because Y needed
a lab assistant.” This case makes sense, because X applied to work with Y because Y
had a need for a lab assistant. Now, consider X: ”X applied to work with Y because X
needed a lab assistant.” This case also makes sense, because X applied to work with Y
because X had a need for a lab assistant. Because both X and Y are possible at the same
time, we conclude that the antecedent of the pronoun is ambiguous. So the answer is
(C) . LEAPlow-level Response: Let’s think step by step. Here we need to determine
who the pronoun ”he” might be referring to. There are two possible referents for ”he”,
namely the undergraduate and the scientist. The verb ”applied” might be able to help
us determine which one is more likely (if either). Let X be the undergraduate and Y
the scientist. The sentence is then of the form ”X applied to work with Y because (X or
Y) needed a lab assistant.” Let’s consider Y first: ”X applied to work with Y because
Y needed a lab assistant.” This case makes sense, because X wanted to work with Y
because Y needed assistance in the lab. Now, consider X: ”X applied to work with Y
because X needed a lab assistant.” This case doesn’t make much sense, because X, as
an undergraduate, would typically be the one seeking an opportunity to work with a
scientist, not the other way around. Because in this context, X is the undergraduate

and Y is the scientist, the answer should be the scientist. So the answer is (B) .

B.7 Learned Principles

Tables B.7-B.37 show the high-level principles learned by LEAP. Tables B.38-B.41 show
low-level principles learned by LEAP.
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Table B.5: BBH Results: Accuracy in BBH tasks, across GPT-3.5-turbo, GPT-4, and
Gemini Pro. The best approach for each base LLM in each tasks is in bold; the second-best
approach is underlined. Each number represents the average across 3 identical runs with a
temperature of zero.

Task Approach GPT-3.5-turbo GPT-4 Gemini Pro

boolean expressions
Few-shot CoT 94.13 96.80 91.20
LEAPlow-level 94.93 98.00 93.60

LEAPhigh-level 95.07 97.60 92.40

disambiguation qa
Few-shot CoT 65.73 85.60 66.00
LEAPlow-level 67.20 86.00 66.00
LEAPhigh-level 68.00 85.20 70.40

formal fallacies
Few-shot CoT 56.00 81.60 58.80
LEAPlow-level 56.93 84.00 61.20

LEAPhigh-level 56.80 81.60 57.60

hyperbaton
Few-shot CoT 83.07 98.00 88.40
LEAPlow-level 81.33 99.20 91.20

LEAPhigh-level 84.80 98.80 87.60

logical deduction five objects
Few-shot CoT 60.67 85.20 60.40
LEAPlow-level 59.47 85.60 62.80

LEAPhigh-level 57.73 84.40 60.80

logical deduction seven objects
Few-shot CoT 38.67 56.80 49.20
LEAPlow-level 40.00 58.40 50.00

LEAPhigh-level 39.20 59.60 48.40

movie recommendation
Few-shot CoT 81.47 90.40 83.20
LEAPlow-level 82.53 91.60 84.80

LEAPhigh-level 84.00 92.00 83.60

multistep arithmetic two
Few-shot CoT 81.73 93.20 79.60
LEAPlow-level 82.00 94.00 78.00
LEAPhigh-level 82.00 92.40 81.20

navigate
Few-shot CoT 94.27 98.00 95.20

LEAPlow-level 95.20 98.40 95.20

LEAPhigh-level 94.93 98.40 94.80

object counting
Few-shot CoT 96.80 98.80 94.80

LEAPlow-level 97.87 99.20 93.20
LEAPhigh-level 97.60 99.20 91.60

ruin names
Few-shot CoT 60.13 87.60 72.80
LEAPlow-level 53.47 89.60 72.80
LEAPhigh-level 68.13 87.60 74.40

snarks
Few-shot CoT 67.42 89.89 82.58

LEAPlow-level 70.60 89.33 79.21
LEAPhigh-level 66.48 91.01 80.90

sports understanding
Few-shot CoT 93.87 94.40 98.40

LEAPlow-level 94.80 95.20 98.40

LEAPhigh-level 88.00 94.40 98.00

word sorting
Few-shot CoT 53.07 94.40 82.00
LEAPlow-level 52.00 94.00 83.20
LEAPhigh-level 53.60 95.60 84.80
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Table B.6: Additional results on Big-Bench Hard tasks. The best approach for each base
LLM in each tasks is in bold; the second-best approach is underlined. Each number repre-
sents the average across 3 identical runs with a temperature of zero.

Task Approach GPT-3.5-turbo GPT-4 Gemini-Pro

geometric shapes
Few-shot 67.33 54.40 50.00
+ LEAPlow-level 59.60 57.20 50.00
+ LEAPhigh-level 60.13 58.80 50.40

causal judgement
Few-shot 63.64 73.26 62.57

+ LEAPlow-level 63.64 72.73 62.57

+ LEAPhigh-level 63.10 72.73 62.57

date understanding
Few-shot 86.67 90.00 87.60

+ LEAPlow-level 83.73 91.20 87.60

+ LEAPhigh-level 85.60 90.00 86.40

dyck languages
Few-shot 35.73 56.80 0

+ LEAPlow-level 33.07 56.80 0

+ LEAPhigh-level 35.73 54.00 0

logical deduction
three objects

Few-shot 88.80 99.20 89.20
+ LEAPlow-level 86.80 98.80 90.00
+ LEAPhigh-level 85.73 98.80 90.80

penguins in a table
Few-shot 76.94 97.26 81.51

+ LEAPlow-level 73.74 96.58 78.77
+ LEAPhigh-level 73.97 96.58 76.71

reasoning about
colored objects

Few-shot 82.13 95.20 83.20
+ LEAPlow-level 77.87 91.20 84.00

+ LEAPhigh-level 75.87 94.00 82.40

salient translation
error detection

Few-shot 55.73 68.80 56.00

+ LEAPlow-level 55.20 67.20 52.80
+ LEAPhigh-level 54.27 67.20 55.20

temporal sequences
Few-shot 60.93 100.0 99.60

+ LEAPlow-level 65.20 100.0 98.00
+ LEAPhigh-level 62.80 100.0 99.20

tracking shu✏ed objects
five objects

Few-shot 72.40 100.0 64.00
+ LEAPlow-level 70.93 100.0 64.40

+ LEAPhigh-level 71.33 100.0 64.00

tracking shu✏ed objects
seven objects

Few-shot 65.07 100.0 56.8
+ LEAPlow-level 62.53 100.0 60.0
+ LEAPhigh-level 61.73 98.8 60.8

tracking shu✏ed objects
three objects

Few-shot 83.60 100.0 69.60

+ LEAPlow-level 82.80 100.0 69.20
+ LEAPhigh-level 85.87 100.0 68.40

web of lies
Few-shot 98.67 100.0 100.0

+ LEAPlow-level 99.20 100.0 100.0

+ LEAPhigh-level 99.20 100.0 100.0
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High-level principles (LEAPhigh-level) learned by LEAP for boolean expressions
(BBH) using gpt-4-0613

1. Ensure clarity and conciseness: Responses should be clear and concise to avoid
confusion and maintain the user’s interest.
2. Avoid redundancies: Redundant information should be eliminated to maintain
the user’s attention and improve the e�ciency of communication.
3. Maintain uniqueness: Each response should be unique to keep the user engaged
and provide a personalized experience.
4. Incorporate feedback: User feedback should be analyzed and incorporated into
future responses to improve the quality of interaction.
5. Focus on relevance: Responses should be directly related to the user’s query or
statement to maintain relevance and provide accurate information.
6. Prioritize logical reasoning: Logical reasoning should be the foundation of all
responses to ensure accuracy and credibility.
7. Preserve specific details: Specific details provided by the user should be preserved
in the response to show understanding and maintain context.
8. Continual improvement: Regular introspection and analysis should be conducted
to continually improve the quality of responses.

Table B.7: High-level Principles 1
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High-level principles (LEAPhigh-level) learned by LEAP for causal judgement (BBH)
using gpt-4-0613

1. Consider all relevant details in the scenario: Ensure that all key details are taken
into account when forming a conclusion. Do not overemphasize certain details at
the expense of others.
2. Understand the concept of intentionality: It’s not enough to initiate an action;
the action must be carried out as planned for it to be considered intentional.
3. Consider all factors in a scenario: This includes the actor’s control over the
situation and the predictability of the outcome when determining intentionality.
4. Distinguish between the intent to perform an action and the intent to cause
a specific outcome: In questions of causation, it’s important to understand these
nuances to provide accurate analysis.
5. Understand the context of causation: Intentionality involves not just the initial
action but also the control and predictability of the outcome.
6. Avoid overemphasis on initial decisions: The initial decision to perform an action
should not be overemphasized at the expense of other factors, such as the accidental
nature of the outcome.
7. Improve understanding and interpretation of intent: This includes understanding
the di↵erence between the intent to perform an action and the intent to cause a
specific outcome.
8. Ensure adequate consideration of crucial factors: In any scenario, ensure that all
aspects, especially those that are crucial to the outcome, are adequately considered
before arriving at a conclusion.

Table B.8: High-level Principles 2
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High-level principles (LEAPhigh-level) learned by LEAP for date understanding
(BBH) using gpt-4-0613

1. Ensure clarity and precision: Responses should be clear and concise, avoiding
any ambiguity or unnecessary complexity.
2. Maintain relevance: The responses should be directly related to the query or
topic at hand, avoiding any irrelevant information.
3. Avoid redundancy: Each response should provide unique information, avoiding
repetition of previously stated facts or ideas.
4. Prioritize understanding: The responses should be designed to enhance the user’s
understanding of the topic, rather than simply providing information.
5. Foster engagement: The responses should be engaging and interactive, encour-
aging further dialogue and exploration of the topic.
6. Promote logical reasoning: The responses should be logically sound and well-
reasoned, demonstrating a clear thought process.
7. Respect user’s perspective: The responses should respect the user’s perspective
and knowledge level, avoiding any condescension or oversimplification.
8. Incorporate feedback: The responses should incorporate feedback from previous
interactions, continuously improving in quality and relevance.

Table B.9: High-level Principles 3
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High-level principles (LEAPhigh-level) learned by LEAP for disambiguation qa
(BBH) using gpt-4-0613

1. The system should consider all possible interpretations of a sentence when deter-
mining the antecedent of a pronoun.
2. In ambiguous cases, the system should recognize the ambiguity and avoid making
assumptions.
3. The system should consider the context and logical flow of information in the
sentence to accurately determine the antecedent of a pronoun.
4. The system should improve its understanding of how information is typically
exchanged in conversations or narratives.
5. The system should understand the dynamics of a conversation and the flow of
information to interpret pronouns correctly.
6. The system should consider the likelihood of each potential antecedent based on
the structure and semantics of the sentence.
7. The system should pay closer attention to the context and the logical sequence
of events in the sentence.
8. The system should consider the roles and actions of the subjects in the sentence
to accurately determine the antecedent of the pronoun.

Table B.10: High-level Principles 4
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High-level principles (LEAPhigh-level) learned by LEAP for dyck languages (BBH)
using gpt-4-0613

1. Improve understanding of the rule that parentheses must be closed in the reverse
order they were opened, which is fundamental in programming and mathematics.
2. Enhance the method of analyzing sequences of parentheses by processing each
input one by one and keeping track of the stack configuration.
3. Train the model to recognize that di↵erent types of parentheses (e.g., square
brackets, curly brackets, round brackets) must be matched with their corresponding
closing parentheses.
4. Improve the model’s ability to track the opening and closing of parentheses in a
sequence and identify the ones that are still open at the end of the sequence.
5. Develop a more detailed understanding of the rules of parentheses and the ability
to apply these rules to a given sequence.
6. Train the model to understand and apply the Last In, First Out (LIFO) prin-
ciple when dealing with problems related to sequences, particularly those involving
brackets or parentheses.
7. Ensure the model understands that the sequence ends when all brackets are
properly closed, not when all opening brackets have been matched with a closing
bracket.
8. Enhance the model’s ability to correctly balance sequences of parentheses.

Table B.11: High-level Principles 5
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High-level principles (LEAPhigh-level) learned by LEAP for formal fallacies (BBH)
using gpt-4-0613

1. Ensure clarity and precision: Responses should be clear and concise, avoiding
any ambiguity or unnecessary complexity.
2. Maintain relevance: The responses should be directly related to the query or
topic at hand, avoiding any irrelevant information.
3. Avoid redundancy: Each response should provide unique information, avoiding
repetition of previously stated facts or ideas.
4. Prioritize understanding: The responses should be designed to enhance the user’s
understanding of the topic, rather than simply providing information.
5. Foster engagement: The responses should be engaging and interactive, encour-
aging further discussion or exploration of the topic.
6. Uphold accuracy: The information provided in the responses should be accurate
and reliable, based on verified sources or logical reasoning.
7. Adapt to context: The responses should be tailored to the specific context of the
conversation, taking into account the user’s knowledge level, interests, and potential
biases.
8. Promote introspection: The responses should encourage the user to think criti-
cally and reflect on the information provided, fostering a deeper understanding and
appreciation of the topic.

Table B.12: High-level Principles 6
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High-level principles (LEAPhigh-level) learned by LEAP for geometric shapes (BBH)
using gpt-4-0613

1. Improve the system’s understanding of SVG path data and how it represents
shapes.
2. Recognize that the number of ”L” commands in an SVG path corresponds to the
number of sides in the shape.
3. Understand that the ”M” command in SVG path data moves the current point
to a specified location without creating a line.
4. Count the number of ”L” commands to determine the number of sides in the
shape.
5. Recognize that the final ”L” command that connects back to the initial ”M”
command completes the shape, and should not be counted as creating an additional
side.
6. Improve the system’s ability to interpret when an SVG path starts and ends at
the same point.
7. Ensure that points that are visited more than once in the path, such as the
starting point, are not double-counted when determining the number of sides in the
polygon.
8. Develop a clear understanding of geometric shapes and their properties to accu-
rately analyze and interpret SVG paths.

Table B.13: High-level Principles 7
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High-level principles (LEAPhigh-level) learned by LEAP for hyperbaton (BBH) using
gpt-4-0613

1. The system should have a comprehensive understanding of English grammar
rules, including the correct order of adjectives.
2. The system should be able to correctly apply the identified grammatical rules to
sentence analysis.
3. The system should be programmed to handle cases where not all categories of
adjectives are present, recognizing that the order of the remaining adjectives is still
important.
4. The system should be able to cross-verify its understanding of rules with the
given options to ensure accuracy.
5. The system should be able to correctly identify the category each adjective falls
into and ensure they are in the correct sequence.
6. The system should be able to correctly compare and evaluate multiple options
against these rules to identify the correct answer.
7. The system should be improved to recognize and apply the correct adjective order
of Opinion, Size, Origin, Purpose.
8. The system should be able to recognize when an adjective category (like Age or
Color) is missing, and still maintain the correct order for the remaining adjectives.

Table B.14: High-level Principles 8
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High-level principles (LEAPhigh-level) learned by LEAP for logical deduction five
objects (BBH) using gpt-4-0613

1. Enhance Interpretation Skills: The system should improve its ability to interpret
and integrate multiple pieces of information accurately.
2. Improve Spatial Understanding: The system should be able to visualize or map
out the spatial arrangement of objects based on given descriptions.
3. Understand Spatial Prepositions: The system should have a clear understanding
of spatial prepositions and their implications in a given context.
4. Enhance Inference Capabilities: The system should be able to infer information
that is not explicitly stated but can be logically deduced from the given information.
5. Eliminate Redundancies: The system should focus on capturing the essence of
the feedback while eliminating any redundancies.
6. Maintain Clarity and Conciseness: Each point made by the system should be
clear, concise, and directly derived from the introspection results.
7. Retain Specific Details: The system should retain specific details in its responses
to ensure accuracy and completeness.
8. Limit Principles: The system should limit its principles to a maximum of eight
to maintain focus and e↵ectiveness.

Table B.15: High-level Principles 9
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High-level principles (LEAPhigh-level) learned by LEAP for logical deduction seven
objects (BBH) using gpt-4-0613

1. Ensure clarity and precision: Responses should be clear and concise, avoiding
any ambiguity or unnecessary complexity.
2. Maintain relevance: Responses should directly address the query or topic at hand,
avoiding any unrelated or tangential information.
3. Prioritize uniqueness: Strive to provide unique insights or perspectives in re-
sponses, avoiding repetition or common knowledge.
4. Emphasize logical reasoning: Responses should be logically sound and well-
reasoned, with each point building on the last to form a coherent argument or
explanation.
5. Eliminate redundancies: Avoid repeating the same information or points in a
response, as this can dilute the message and make the response less engaging.
6. Incorporate specific details: Where relevant, include specific details in responses
to add depth and richness to the information provided.
7. Limit response length: Keep responses to a reasonable length to ensure they are
digestible and maintain the reader’s interest.
8. Continually improve: Regularly review and analyze responses to identify areas
for improvement and implement changes as necessary.

Table B.16: High-level Principles 10
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High-level principles (LEAPhigh-level) learned by LEAP for logical deduction three
objects (BBH) using gpt-4-0613

1. Ensure clarity and precision: Responses should be clear and concise, avoiding
any ambiguity or unnecessary complexity.
2. Maintain relevance: Responses should directly address the query or topic at hand,
avoiding any unrelated or tangential information.
3. Prioritize uniqueness: Strive to provide unique insights or perspectives in re-
sponses, avoiding repetition or common knowledge.
4. Foster engagement: Responses should be engaging and interesting, aiming to
stimulate further discussion or thought.
5. Uphold accuracy: Ensure all information provided is accurate and up-to-date,
avoiding any misinformation or outdated facts.
6. Promote comprehensibility: Use language and terminology that is easily under-
stood by the intended audience, avoiding jargon or overly complex language.
7. Encourage brevity: Keep responses succinct and to the point, avoiding unneces-
sary length or verbosity.
8. Respect context: Consider the context of the query or discussion when formulat-
ing responses, ensuring they are appropriate and relevant.

Table B.17: High-level Principles 11
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High-level principles (LEAPhigh-level) learned by LEAP for movie recommendation
(BBH) using gpt-4-0613

1. Ensure Consistency in Labeling: Always cross-check the labels used in the rea-
soning process with those in the question to avoid discrepancies that could lead to
incorrect conclusions.
2. Comprehensive Analysis: Consider all aspects of the subject matter, such as time
period, cultural significance, and popularity, not just the most obvious or immediate
ones.
3. Contextual Understanding: Always consider the broader context of the question
to avoid focusing too narrowly on one aspect. This will help in generating more
accurate and relevant answers.
4. Avoid Redundancies: Strive to eliminate any redundancies in the reasoning
process to maintain clarity and precision.
5. Emphasize Uniqueness: Ensure that each principle is unique and o↵ers a di↵erent
perspective or approach to improve the reasoning process.
6. Clarity and Conciseness: Make sure each principle is clear, concise, and directly
derived from the introspection results.
7. Detail Orientation: Do not omit specific details that could be crucial to the
reasoning process.
8. Continuous Improvement: Regularly review and update the principles based on
new insights or feedback to ensure continuous improvement in the reasoning process.

Table B.18: High-level Principles 12
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High-level principles (LEAPhigh-level) learned by LEAP for multistep arithmetic two
(BBH) using gpt-4-0613

1. Strictly adhere to the order of operations (PEMDAS/BODMAS) when perform-
ing calculations.
2. Correctly apply the rules of arithmetic, including multiplication and subtraction
operations.
3. Handle negative numbers accurately, understanding that the multiplication of
two negative numbers results in a positive number.
4. Interpret mathematical notation correctly, especially when dealing with negative
numbers and subtraction operations.
5. Understand that subtraction of a negative number is equivalent to addition of
the absolute value of that number.
6. Double-check intermediate results to ensure accuracy and avoid simple arithmetic
errors.
7. Ensure that the system is designed to correctly perform operations within paren-
theses.
8. Improve handling of unique cases, such as double negatives, to avoid misinter-
pretation.

Table B.19: High-level Principles 13



APPENDIX B. IN CONTEXT PRINCIPLE LEARNING 166

High-level principles (LEAPhigh-level) learned by LEAP for navigate (BBH) using
gpt-4-0613

1. Ensure clarity and precision: Responses should be clear, concise, and directly
answer the question or statement at hand. Avoid ambiguity or overly complex
language.
2. Maintain relevance: Stay on topic and ensure that the response is directly related
to the query or statement. Avoid going o↵ on tangents or introducing unrelated
information.
3. Avoid redundancy: Each response should provide new information or a unique
perspective. Avoid repeating the same points or ideas.
4. Be insightful: Responses should provide meaningful insights or perspectives.
They should not merely restate the obvious or provide generic answers.
5. Use specific details: When appropriate, include specific details in responses to
enhance understanding and provide context. Avoid being too vague or general.
6. Be logical: Responses should follow a logical structure and reasoning. Avoid
inconsistencies or contradictions in the response.
7. Adapt to the context: The tone, language, and content of the response should
be appropriate for the context. Avoid using inappropriate or irrelevant language or
content.
8. Be respectful: Always maintain a respectful and professional tone in responses.
Avoid o↵ensive or disrespectful language or content.

Table B.20: High-level Principles 14
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High-level principles (LEAPhigh-level) learned by LEAP for object counting (BBH)
using gpt-4-0613

1. Ensure clarity and precision: Responses should be clear, concise, and directly
derived from the information provided. Avoid ambiguity and ensure the response is
easily understood by the user.
2. Eliminate redundancies: Avoid repeating the same information in di↵erent ways.
Each response should provide new, unique insights.
3. Focus on relevance: The response should be directly related to the user’s query or
statement. Irrelevant information can confuse the user and detract from the overall
quality of the response.
4. Maintain logical consistency: The response should follow a logical flow based on
the user’s input. Avoid contradicting previous statements or information.
5. Prioritize user’s needs: The response should be tailored to the user’s needs and
preferences. Consider the context and purpose of the user’s query when formulating
the response.
6. Incorporate feedback: Regularly analyze user feedback to identify areas for im-
provement. Use this feedback to refine and enhance future responses.
7. Promote engagement: The response should encourage further interaction from
the user. This can be achieved by asking follow-up questions or providing additional
relevant information.
8. Uphold ethical standards: Ensure that the response respects the user’s privacy
and adheres to ethical guidelines. Avoid providing information that could potentially
harm the user or others.

Table B.21: High-level Principles 15
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High-level principles (LEAPhigh-level) learned by LEAP for penguins in a table
(BBH) using gpt-4-0613

1. Comprehensive Data Analysis: The system should thoroughly analyze all data
points to ensure no relevant information is missed.
2. Accurate Identification: The system should correctly identify all instances that
meet the given criteria.
3. Counting Accuracy: The system should accurately count all instances that meet
the given criteria.
4. Data Interpretation: The system should improve its ability to interpret data
correctly to ensure accurate results.
5. Error Correction: The system should have mechanisms in place to correct errors
in data analysis and interpretation.
6. Continuous Improvement: The system should continuously strive to improve its
performance based on feedback and introspection results.
7. Redundancy Elimination: The system should focus on capturing the essence of
the data, eliminating redundancies where possible.
8. Clarity and Conciseness: The system should ensure that its responses are clear,
concise, and directly derived from the data.

Table B.22: High-level Principles 16
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High-level principles (LEAPhigh-level) learned by LEAP for reasoning about colored
objects (BBH) using gpt-4-0613

1. Ensure clarity and precision: Responses should be clear and concise, avoiding
any ambiguity or unnecessary complexity.
2. Maintain relevance: The responses should be directly related to the query or
topic at hand, avoiding any irrelevant information.
3. Avoid redundancy: Each response should provide unique information, avoiding
repetition of previously stated facts or ideas.
4. Prioritize understanding: The responses should be designed to enhance the user’s
understanding of the topic, rather than simply providing information.
5. Foster engagement: The responses should be engaging and interactive, encour-
aging further dialogue and exploration of the topic.
6. Uphold accuracy: The information provided in the responses should be accurate
and reliable, based on verified sources.
7. Adapt to user’s needs: The responses should be tailored to the user’s level of
knowledge and interest, providing more detailed information when necessary and
simplifying complex concepts when appropriate.
8. Promote introspection: The responses should encourage the user to think criti-
cally about the topic, promoting deeper understanding and personal growth.

Table B.23: High-level Principles 17
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High-level principles (LEAPhigh-level) learned by LEAP for ruin names (BBH) using
gpt-4-0613

1. Ensure clarity and conciseness: Responses should be clear and concise to avoid
any confusion or misunderstanding. Avoid using complex language or jargon that
may not be understood by all users.
2. Eliminate redundancies: Avoid repeating the same information in di↵erent ways.
This can make responses longer than necessary and can be confusing for the user.
3. Directly derive from introspection results: Responses should be directly based on
the analysis or introspection results. This ensures that the responses are relevant
and accurate.
4. Capture the essence of the feedback: The main points or key messages of the
feedback should be captured in the responses. This ensures that the responses are
meaningful and valuable to the user.
5. Limit the number of principles: Too many principles can be overwhelming and
di�cult to remember. Limit the number of principles to a maximum of 8.
6. Leave specific details in place: While it’s important to be concise, it’s also
important not to remove specific details that are necessary for understanding the
response. These details can provide context and depth to the response.
7. Ensure uniqueness: Each principle should be unique and not overlap with other
principles. This ensures that each principle provides a distinct value.
8. Focus on improvement: The principles should focus on ways to improve future
responses. This ensures that the principles are forward-looking and proactive.

Table B.24: High-level Principles 18
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High-level principles (LEAPhigh-level) learned by LEAP for salient translation error
detection (BBH) using gpt-4-0613

1. The system should enhance its focus on the overall meaning and context of the
sentence, not just the presence or absence of certain words or phrases.
2. The system should improve its ability to identify and classify errors accurately,
particularly those related to dropped content.
3. The system should pay more attention to Named Entities errors, ensuring that
the entity in the translation matches the entity in the source.
4. The system should improve its precision in identifying the number of errors
present in a translation, avoiding overestimation or underestimation.
5. The system should enhance its understanding of the context and specific details
within the text to better identify and di↵erentiate between di↵erent types of errors.
6. The system should improve its ability to accurately translate and compare the
original and translated texts to identify any discrepancies.
7. The system should be able to recognize when a specific name, place, or location
is altered in the translation, which constitutes a named entity error.
8. The system should focus on improving its ability to identify errors related to
named entities, rather than misclassifying them as other types of errors.

Table B.25: High-level Principles 19
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High-level principles (LEAPhigh-level) learned by LEAP for snarks (BBH) using
gpt-4-0613

1. Ensure clarity and precision: Responses should be clear and concise, avoiding
any ambiguity or confusion.
2. Eliminate redundancies: Avoid repeating the same information or ideas in di↵er-
ent ways.
3. Direct derivation: Each response should be directly derived from the information
provided, without making unnecessary assumptions or inferences.
4. Maintain uniqueness: Each response should provide unique insights, rather than
reiterating common knowledge or previously stated information.
5. Focus on relevance: Responses should be directly relevant to the question or topic
at hand, avoiding any irrelevant or o↵-topic information.
6. Prioritize insightful content: Responses should aim to provide new insights or
perspectives, rather than simply restating the obvious.
7. Respect the context: The context in which the question or topic is presented
should be taken into account when formulating responses.
8. Preserve specific details: While responses should be concise, they should not omit
important details that are necessary for a full understanding of the topic.

Table B.26: High-level Principles 20
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High-level principles (LEAPhigh-level) learned by LEAP for sports understanding
(BBH) using gpt-4-0613

1. Understand the Context: The system should focus on understanding the context
and the exact question being asked, di↵erentiating between di↵erent types of ques-
tions and providing reasoning accordingly.
2. Accurate Knowledge: The system should have accurate and up-to-date knowledge
about the subject matter. In this case, understanding the rules of basketball and
the correct terminology is crucial.
3. Avoid Unstated Assumptions: The system should be careful not to make as-
sumptions that are not explicitly stated in the sentence or question.
4. Consider Structure: The system should consider the structure of the subject
matter for accurate analysis. For example, understanding the structure of the NBA
Finals, which includes teams from both conferences.
5. Adapt Response Complexity: The system should adapt its responses based on
the complexity and detail level of the question or task at hand. A simpler, more
direct response may be more appropriate in some cases.
6. Consider All Plausible Scenarios: The system should consider all plausible sce-
narios, not just the most common or current ones. For example, the possibility of
player trades in the NBA.
7. Update Information: The system should be updated with the most recent and
accurate information about the subject matter to provide the most accurate analysis.
8. Unique and Insightful Principles: The system should generate unique and in-
sightful principles to improve future responses, focusing on capturing the essence of
the feedback while eliminating redundancies.

Table B.27: High-level Principles 21
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High-level principles (LEAPhigh-level) learned by LEAP for temporal sequences
(BBH) using gpt-4-0613

1. Ensure clarity and precision: Responses should be clear and concise, avoiding
any ambiguity or confusion.
2. Eliminate redundancies: Avoid repeating the same information or ideas in di↵er-
ent ways.
3. Direct derivation: Each response should be directly derived from the information
provided, without making unnecessary assumptions or inferences.
4. Maintain uniqueness: Each response should provide unique insights, rather than
reiterating common knowledge or previously stated information.
5. Focus on relevance: Responses should be directly relevant to the question or topic
at hand, avoiding any irrelevant or o↵-topic information.
6. Prioritize insightful content: Responses should aim to provide new insights or
perspectives, rather than simply restating the obvious.
7. Respect the context: The context in which the question or topic is presented
should be taken into account when formulating responses.
8. Keep the audience in mind: The responses should be tailored to the needs and
expectations of the intended audience.

Table B.28: High-level Principles 22
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High-level principles (LEAPhigh-level) learned by LEAP for tracking shu✏ed objects
five objects (BBH) using gpt-4-0613

1. Ensure clarity and precision: Responses should be clear and concise, avoiding
any ambiguity or unnecessary complexity.
2. Maintain relevance: The responses should be directly related to the query or
topic at hand, avoiding any irrelevant information or digressions.
3. Prioritize uniqueness: Each response should o↵er a unique perspective or insight,
avoiding repetition or redundancy.
4. Incorporate feedback: Future responses should take into account any feedback
received, using it to improve the quality and relevance of the responses.
5. Focus on logic: Responses should be logically sound, with each point or argument
following logically from the previous one.
6. Be insightful: Responses should aim to provide new insights or perspectives,
rather than simply reiterating known information.
7. Maintain consistency: The tone, style, and content of the responses should be
consistent, ensuring a coherent and cohesive narrative.
8. Respect context: The responses should take into account the context in which the
query or topic is being discussed, ensuring that they are appropriate and relevant.

Table B.29: High-level Principles 23
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High-level principles (LEAPhigh-level) learned by LEAP for tracking shu✏ed objects
seven objects (BBH) using gpt-4-0613

1. Ensure clarity and precision: Responses should be clear and concise, avoiding
any ambiguity or unnecessary complexity.
2. Maintain relevance: The responses should be directly related to the query or
topic at hand, avoiding any irrelevant information or digressions.
3. Prioritize uniqueness: Strive to provide unique insights or perspectives in the
responses, avoiding repetition or common knowledge.
4. Foster engagement: Responses should be engaging and interesting, aiming to
stimulate further discussion or thought.
5. Uphold accuracy: Ensure that all information provided in the responses is accu-
rate and up-to-date, avoiding any misinformation or outdated facts.
6. Promote comprehensibility: Use simple and understandable language in the
responses, ensuring they are accessible to a wide range of audiences.
7. Encourage brevity: Keep responses succinct and to the point, avoiding unneces-
sary length or verbosity.
8. Emphasize logical reasoning: Responses should be logically sound and well-
reasoned, ensuring they are credible and persuasive.

Table B.30: High-level Principles 24
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High-level principles (LEAPhigh-level) learned by LEAP for tracking shu✏ed objects
three objects (BBH) using gpt-4-0613

1. Accurate Tracking: The system should accurately track changes in a sequence of
events to ensure correct interpretation and response.
2. Avoid Assumptions: The system should not make assumptions that are not
supported by the given information. It should only rely on the facts presented.
3. Strict Adherence: The system should strictly adhere to the described events and
changes, without deviating from the provided information.
4. Partner Swaps: In the context of a dance, the system should correctly follow
partner swaps to ensure no dancer is left without a partner.
5. Data Verification: The system should verify the data it receives to ensure it is
accurate and reliable before making any decisions or predictions.
6. Continuous Improvement: The system should continuously learn and improve its
performance based on feedback and analysis of past responses.
7. Contextual Understanding: The system should understand the context of the
information provided to make accurate interpretations.
8. Error Correction: The system should have mechanisms in place to correct errors
and inaccuracies in its responses.

Table B.31: High-level Principles 25

High-level principles (LEAPhigh-level) learned by LEAP for web of lies (BBH) using
gpt-4-0613

1. The AI model should always pay close attention to the format of the question.
2. The model should provide the answer in the same format as the question to
ensure consistency.
3. If the question is a yes/no question, the answer should be given as ”Yes” or ”No”
to directly address the question.
4. The model should be trained to understand the format of the question and
provide the answer in the same format.
5. The model’s responses should align with the expectations set by the question.
6. The answer should be directly relevant to the question and easy for the user to
understand.
7. The model should match the style of the answer to the style of the question.
8. In a conversational style question, the answer should also be given in a conversa-
tional style.

Table B.32: High-level Principles 26
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High-level principles (LEAPhigh-level) learned by LEAP for word sorting (BBH)
using gpt-4-0613

1. Maintain the application of the principle of alphabetical sorting in future tasks.
2. Prepare the model to handle more complex cases, such as words with identical
prefixes.
3. Ensure the model can handle words that di↵er in case or punctuation.
4. Continually assess the model’s understanding and application of alphabetical
order.
5. Maintain the model’s level of understanding and accuracy for similar tasks.
6. Expose the model to a variety of tasks to ensure it can generalize the principle
across di↵erent contexts.
7. Ensure the model can handle sorting words with special characters or numbers.
8. Regularly evaluate and improve the model’s performance based on feedback and
introspection results.

Table B.33: High-level Principles 27

High-level principles (LEAPhigh-level) learned by LEAP for DROP using Gemini
Pro

1. Maintain precision when dealing with percentages to avoid rounding errors.
2. Perform calculations using the full precision available and only round as a final
step, if necessary.
3. Avoid rounding when answering questions that ask for exact values.
4. Consider the level of rounding carefully to ensure that it does not introduce
significant errors.
5. Rounding can lead to incorrect conclusions and misinterpretations of data.
6. Keep the original values and perform calculations using the full precision available.
7. Rounding should be done only after all calculations are complete.
8. Rounding errors can lead to incorrect results.

Table B.34: High-level Principles 28
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High-level principles (LEAPhigh-level) learned by LEAP for DROP using gpt-4-
0613

1. Improve context understanding: The system should be designed to better un-
derstand the context of the question, including specific details and requirements, to
generate accurate answers.
2. Prioritize direct information: The system should prioritize direct information
given in the passage over inferred information to avoid unnecessary assumptions or
calculations.
3. Accurate interpretation: The system should carefully interpret the context of the
question, recognizing specific details and changes in entities or events over time.
4. Adhere to the required format: The system should ensure that the final answer
adheres to the required format, such as providing a single numerical answer when
required.
5. Avoid unnecessary assumptions: The system should not make unnecessary as-
sumptions when the required information is directly provided in the passage.
6. Improve accuracy of analysis: The system should strive to improve the accuracy
of its analysis by focusing on the specific details provided in the passage and the
question.
7. Recognize transitions and transformations: The system should be capable of
recognizing when one entity transitions or transforms into another, as this can a↵ect
the interpretation of the question and the accuracy of the answer.
8. Focus on direct answers: When the answer is directly stated in the passage, the
system should focus on providing that answer rather than attempting to infer or
calculate the answer.

Table B.35: High-level Principles 29
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High-level principles (LEAPhigh-level) learned by LEAP for HotpotQA using Gemini
Pro

1. Verify the accuracy of information before drawing conclusions, especially when
comparing start dates of entities.
2. Consider all relevant aspects when identifying commonalities between entities,
not just the most obvious or prominent ones.
3. Analyze the work of mathematicians or scientists within the broader context of
their field of study, rather than focusing solely on specific subfields or topics.
4. Consider all common professions when answering questions about the professions
of multiple people, not just the most prominent one.
5. Avoid making erroneous conclusions based on incorrect data.
6. Ensure a comprehensive analysis of all shared characteristics to provide accurate
and complete answers about commonalities.
7. Provide a more accurate assessment of similarities and di↵erences in the work of
mathematicians or scientists by considering the broader field of study.
8. Eliminate redundancies and capture the essence of the feedback to create clear,
concise, and directly derived principles.

Table B.36: High-level Principles 30
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High-level principles (LEAPhigh-level) learned by LEAP for HotpotQA using gpt-
4-0613

1. Ensure comprehensive analysis of all relevant information, considering all aspects
of the subject matter, not just the most prominent ones.
2. Improve categorization of work or field of study, understanding the hierarchical
and categorical relationships between di↵erent fields.
3. Always conclude responses with a clear answer statement, such as ”So the answer
is ¡answer¿”.
4. Expand the range of accessible information to answer specific questions accu-
rately.
5. Improve understanding of the topic at hand, pulling from a wider range of data
if necessary.
6. Recognize when a question is asking for a specific piece of information and strive
to provide that.
7. Avoid defaulting to ”unknown” when the answer isn’t immediately apparent,
instead, make an e↵ort to find the required information.
8. Improve the ability to recognize and understand the background and inspirations
of characters or subjects in various fields.

Table B.37: High-level Principles 31
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Low-level principles (LEAPlow-level) learned by LEAP for HotpotQA using gpt-4-
0613

1. The principle that should be looked at carefully to improve the performance in
the future is to ensure a comprehensive analysis of all the relevant information. In
this case, all the professions of the individuals should have been considered, not just
the most prominent one. This will help to provide a more accurate and complete
answer.
2. The system should be more careful when categorizing the type of work or field
of study of individuals. Even if their specific areas of focus or contributions di↵er,
they may still belong to the same broader field or type of work. In this case, both
individuals are mathematicians, so they are known for the same type of work. The
system should be able to recognize and understand the hierarchical and categorical
relationships between di↵erent fields of study or types of work.
3. Pay attention to the format! End your response with ”So the answer is ¡answer¿”.
4. The system should be able to access a broader range of information to answer
specific questions accurately. In this case, it would need to know about the back-
ground and inspirations of Matt Groening’s characters in ’The Simpsons’. This
suggests that the system needs to be able to pull from a wider range of data or have
a more comprehensive understanding of the topic at hand. It’s also important for
the system to recognize when a question is asking for a specific piece of information
and to strive to provide that, rather than defaulting to ”unknown” when the answer
isn’t immediately apparent.

Table B.38: Low-level Principles 1



APPENDIX B. IN CONTEXT PRINCIPLE LEARNING 183

Low-level principles (LEAPlow-level) learned by LEAP for HotpotQA using Gemini
Pro

1. When comparing the start dates of two entities, it is crucial to ensure the accuracy
of the information used. Incorrect data can lead to erroneous conclusions. Always
verify the accuracy of information before drawing conclusions.
2. When answering questions about commonalities between two entities, it is im-
portant to consider all relevant aspects and not just the most obvious or prominent
one. A comprehensive analysis of all shared characteristics is necessary to provide
an accurate and complete answer.
3. When analyzing the work of mathematicians or scientists, it is important to
consider the broader field of study that their contributions belong to, rather than
focusing solely on the specific subfields or topics that they worked on. This broader
perspective allows for a more accurate assessment of the similarities and di↵erences
in their work and helps to avoid incorrect conclusions about the nature of their
contributions.
4. When answering questions about the professions of multiple people, it is impor-
tant to consider all of the professions that they have in common, not just the most
prominent one.

Table B.39: Low-level Principles 2
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Low-level principles (LEAPlow-level) learned by LEAP for DROP using gpt-4-0613

1. The system should be designed to understand the context of the question better.
In this case, it should have recognized that the question was asking for the dura-
tion of existence of the European Coal and Steel Community before it transitioned
into the European Economic Community. Understanding the specific context and
requirements of a question is crucial for generating accurate answers.
2. The system should be designed to carefully interpret the context of the question.
In this case, it should have recognized that the ECSC transformed into the EEC in
1958, and therefore, its existence as the ECSC ended in that year. Understanding
the context and specific details of the question is crucial for generating accurate
answers.
3. The system should prioritize direct information given in the passage over inferred
information. In this case, the direct information was the total number of touchdown
passes thrown by Sta↵ord, which was clearly stated in the passage. The system
should not make unnecessary assumptions or calculations when the required infor-
mation is directly provided. This will help to avoid errors and improve the accuracy
of the analysis.
4. Pay attention to the format! Make sure your final answer should be a single
numerical number, in the form
boxedanswer, at the end of your response.

Table B.40: Low-level Principles 3
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Low-level principles (LEAPlow-level) learned by LEAP for DROP using Gemini Pro

1. When dealing with percentages, it is important to maintain precision and avoid
rounding errors, especially when the di↵erence between values is small. Rounding
should only be done as a final step, if necessary, to ensure that the result is presented
in a clear and concise manner.
2. When dealing with percentages, it is important to maintain precision and avoid
rounding errors. Rounding should only be done as a final step, after all calculations
are complete.
3. When dealing with percentages, it is important to maintain precision and avoid
rounding errors. Rounding can lead to incorrect conclusions and misinterpretations
of data. Always keep the original values and perform calculations using the full
precision available. Rounding should only be done as a final step, if necessary,
and the level of rounding should be carefully considered to ensure that it does not
introduce significant errors.
4. When answering questions that ask for exact values, it is important to not round
the answer unless specifically instructed to do so. Rounding the answer can lead to
incorrect results, as seen in this example.

Table B.41: Low-level Principles 4
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Appendix C

Tempera

C.1 Training Detail

We provide the training details here. We use standard PPO algorithm to do online policy
optimization with GAE. We provide all the hyperparameters here for a reference. We’ll
specify our neural network architecture in the following section. Note that we perform
additional observation normalization (i.e., keeping a running mean and std) and reward
normalization. We also adopt the same number of parallel environment as the few-shot
setting (e.g., 32 in our few-shot experiments). We found a large size of parallel environment
helps boost the performance.

Table C.1: Hyperparameters used for TEMPERA in all the tasks.

Hyperparameter
Value

Steps per training 8
Time limit 8
Number Parallel Processes 256
Learning rate 0.00005
Entropy Coe�cient 0.005
Value loss Coe�cient 0.5
Mini Batch Size 32
Gamma 0.99
GAE Lambda 0.95
Number of in-context Exemplars 4
Number of example pool 16
Positive lambda coe�cient (�1) 2.0
Negative lambda coe�cient (�2) 1.8
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Table C.2: Few-shot classification results. We compare against di↵erent baselines in this
setting. Results show that TEMPERA surpasses various baselines including finetuning,
prompt tuning and discrete prompt search. The standard deviations are shown in brackets.

RTE QNLI SNLI MNLI MRPC

Finetuning Finetuning (few-shot) 58.6 (3.9) 60.2 (4.7) 54.64 (9.7) 47.8 (7.5) 77.4 (3.6)

Continuous Prompt
Soft Prompt Tuning 54.7 (10.9) 49.7 (0.2) 36.13 (14.6) 33.2 (0.0) 51.6 (0.9)
Black-Box Tuning 52.6 (0.9) 48.8 (0.6) 46.58 (1.3) 42.9 (2.0) 61.6 (0.9)

Discrete Prompt
Manual Prompt 51.6 50.8 31.11 51.7 67.4
In-Context Demo. 60.4 (0.7) 53.8 (0.4) 47.11 (1.4) 53.4 (1.5) 45.8 (0.8)

Discrete Prompt TEMPERA (ours) 60.3 (2.2) 57.4 (1.5) 56.4 (3.2) 45.2 (2.0) 74.0 (1.0)

C.2 Network Architecture

We follow the GPT [18] architecture and use the encoder layer for our policy network. Note
that our policy and baseline network shares the same attention-based encoder. The attention
is flat over all the possible candidate examples. We use a 3-layer encoder block with 3 heads
and 48 latent dimension. We build two di↵erent head with 2-layer MLP for each as the
policy head and baseline head. We also don’t use dropout for the policy learning part. We
found this boost up the performance.

C.3 Additional Experiments

We perform additional experiments on some more tasks like RTE, QNLI, SNLI, MNLI and
MRPC. Results show that we are consistently better than most of the discrete prompt
optimization methods and continuous prompt tuning methods. On several tasks, we are also
better than finetuning the entire model.

C.4 Natural Instructions and Promptsource

We provide all the instructions we used in our experiments from Natural Instructions. Here
we just provide a few examples. Please refer to the github for all the instruction they pro-
vided. We also provide all the verbalizers we used in our experiments from Promptsource.
Here we only provide a few examples. Please also refer to their github for the full verbaliza-
tion.

C.5 Dataset Detail
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Figure C.1: Data E�ciency for TEMPERA: We plot all the finetuning performance for
8 tasks we tested. We see that TEMPERA often achieves the better few-shot performance
except for MRPC and QNLI.

For the Finetuning, we use standard finetuning of the RoBERTa model from huggingface for
100 epochs, a learning rate of 0.0003 and the optimizer of Adam.

C.6 Comparison of Di↵erent Method

We compare the di↵erent property of di↵erent prompting methods in this section in order
to give a better understanding of di↵erent algorithms.
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Figure C.2: Comparison of Di↵erent Prompting Methods: We compare the di↵erent
property of di↵erent algorithms. We can see that TEMPERA is gradient-free, the resulting
prompt is interpretable and query-dependent.
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Table C.3: Natural instructions used for TEMPERA in all the tasks.

Task Natural Instructions

SST-2 “In this task, you are given sentences from movie reviews.
The task is to classify a sentence as “great” if the sentiment
of the sentence is positive or as “terrible” if the sentiment of
the sentence is negative.”

AG News “Classify the news articles into the categories of World,
Sports, Business, and Technology.”

CR “In this task, you are given sentences from customer reviews.
The task is to classify a sentence as “great” if the sentiment
of the sentence is positive or as “terrible” if the sentiment of
the sentence is negative.”

MR “In this task, you are given sentences from movie reviews.
The task is to classify a sentence as “great” if the sentiment
of the sentence is positive or as “terrible” if the sentiment of
the sentence is negative.”

Yelp “In this task, you are given sentences from Yelp reviews. The
task is to classify a sentence as “great” if the sentiment of
the sentence is positive or as “terrible” if the sentiment of the
sentence is negative.”

RTE N/A
SNLI “In this task, you’re given a pair of sentences, sentence 1 and

sentence 2. Your job is to choose whether the two sentences
clearly agree (entailment)/disagree (contradiction) with each
other, or if this cannot be determined (neutral). Your answer
must be in the form of the letters Yes, Maybe, and No respec-
tively.”

QNLI “You are given two sentences(Sentence1 and Sentence2). An-
swer “yes” if these sentences are a paraphrase of one another,
otherwise answer “no”.”

MNLI “In this task, you’re given a pair of sentences, sentence 1 and
sentence 2. Your job is to choose whether the two sentences
clearly agree (entailment)/disagree (contradiction) with each
other, or if this cannot be determined (neutral). Your answer
must be in the form of the letters Yes, Maybe, and No respec-
tively.”
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Table C.4: Verbalizers used for TEMPERA in all the tasks.

Task Natural Instructions

SST-2 ‘Someone just said to me “{{sentence}}”. Do you think they
are {{“sad”}} or {{“happy”}}? {{ answer choices[label]}}’

AG News “What label best describes this news article? {{text}}
{{answer choices[label]}}”

CR ‘Someone just said to me “{{sentence}}”. Do you think they
are {{“sad”}} or {{“happy”}}? {{ answer choices[label]}}’

MR ‘{{text}}Did the reviewer find this movie {{“good or bad”}}?
{{ answer choices[label] }}’

Yelp ‘{{ text }} Overall, the experience is {{ answer choices[label]
}}’

RTE ‘Does the claim “{{sentence2}}” follow from the fact
that “{{sentence1}}”? Please answer either {{“yes”}} or
{{“no”}}. {{answer choices[label]}}’

SNLI ‘Suppose {{premise}} Can we infer that “{{hypothesis}}”?
Yes, no, or maybe? {{ answer choices[label] }}’

QNLI ‘{{sentence}} Does that sentence have all you need to answer
the question “{{question}}”? {{answer choices[label]}}’

MNLI ‘Suppose {{premise}} Can we infer that ”{{hypothesis}}”?
Yes, no, or maybe? {{ answer choices[label] }} ’

MRPC ‘Does the sentence {{sentence1}} paraphrase (that is, mean
the same thing as) this sentence? {{sentence2}} {{ an-
swer choices[label] }}’

Table C.5: Scaling results for TEMPERA in 512 training data per class. Results show that
TEMPERA also scales and achieves better results comparing to finetuning.

SST2 MR AG News RTE

Finetuning Finetuning (few-shot) 93.4 87.0 89.5 67.9

Discrete Prompt TEMPERA (ours) 93.8 88.6 88.6 71.4
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Table C.6: Details for the dataset including the type, size of training, evaluation and test.
Note that here all the sizes are few-shot dataset.

Dataset Type |C| |Train| = |Dev| |Test|
SST2 Sentiment 2 32 1.8k
AG News topic 4 64 7.6k
CR Sentiment 2 32 2k
MR Sentiment 2 32 2k
Yelp Sentiment 2 32 38k
RTE NLI 2 32 0.3k
SNLI NLI 3 48 10k
QNLI NLI 3 48 9.8k
MNLI NLI 3 48 9.8k
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Appendix D

Gorilla

D.1 Dataset Details

Our dataset is multi-faceted, comprising three distinct domains: Torch Hub, Tensor Hub,
and HuggingFace. Each entry within this dataset is rich in detail, carrying critical pieces of
information that further illuminate the nature of the data. Delving deeper into the specifics
of each domain, Torch Hub provides 95 APIs. The second domain, Tensor Hub, is more
expansive with a total of 696 APIs. Finally, the most extensive of them all, HuggingFace,
comprises 925 APIs.

To enhance the value and utility of our dataset, we’ve undertaken an additional initiative.
With each API, we have generated a set of 10 unique instructions. These instructions,
carefully crafted and meticulously tailored, serve as a guide for both training and evaluation.
This initiative ensures that every API is not just represented in our dataset, but is also
comprehensively understood and e↵ectively utilizable.

In essence, our dataset is more than just a collection of APIs across three domains. It is
a comprehensive resource, carefully structured and enriched with added layers of guidance
and evaluation parameters.

Domain Classification The unique domain names encompassed within our dataset are
illustrated in Figure D.1. The dataset consists of three sources with a diverse range of do-
mains: Torch Hub houses 6 domains, Tensor Hub accommodates a much broader selection
with 57 domains, while HuggingFace incorporates 37 domains. To exemplify the structure
and nature of our dataset, we invite you to refer to the domain names represented in Fig-
ure D.3.

API Call Task In this task, we test the model’s capability to generate a single line of
code, either in a zero-shot fashion or by leveraging an API reference. Primarily designed for
evaluation purposes, this task e↵ectively gauges the model’s proficiency in identifying and
utilizing the appropriate API call.
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API Provider Component This facet relates to the provision of the programming lan-
guage. In this context, the API provider plays a vital role as it serves as a foundation upon
which APIs are built and executed.

Explanation Element This component o↵ers valuable insights into the rationale behind
the usage of a particular API, detailing how it aligns with the prescribed requirements.
Furthermore, when certain constraints are imposed, this segment also incorporates those
limitations. Thus, the explanation element serves a dual purpose, o↵ering a deep under-
standing of API selection, as well as the constraints that might influence such a selection.
This balanced approach ensures a comprehensive understanding of the API usage within the
given context.

Code Example code for accomplishing the task. We de-prioritize this as we haven’t tested
the execution result of the code. We leave this for future works, but make this data available
in-case others want to build on it.

D.2 Gorilla Details

We provide all the training details for Gorilla in this section. This includes how we divide
up the training, evaluation dataset, training hyperparameters for Gorilla.

Data For HuggingFace, we devise the entire dataset into 90% training and 10% evaluation.
For Torch Hub and Tensor Hub, we devise the data in to 80% training and 20% testing.

Training We train Gorilla for 5 epochs with the 2e-5 learning rate with cosine decay. The
details are provide in Tab. D.1. We finetune it on 8xA100 with 40G memory each.

Table D.1: Hyperparameters for training Gorilla

Hyperparameter Name Value

learning rate 2e-5
batch size 64
epochs 5
warmup ratio 0.03
weight decay 0
max seq length 2048
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Torch Hub domain names: Classification, Semantic Segmentation, Object Detec-
tion, Audio Separation, Video Classification, Text-to-Speech

Tensor Hub domain names: text-sequence-alignment, text-embedding, text-
language-model, text-preprocessing, text-classification, text-generation, text-
question-answering, text-retrieval-question-answering, text-segmentation, text-
to-mel, image-classification, image-feature-vector, image-object-detection, image-
segmentation, image-generator, image-pose-detection, image-rnn-agent, image-
augmentation, image-classifier, image-style-transfer, image-aesthetic-quality, image-
depth-estimation, image-super-resolution, image-deblurring, image-extrapolation,
image-text-recognition, image-dehazing, image-deraining, image-enhancemenmt,
image-classification-logits, image-frame-interpolation, image-text-detection, image-
denoising, image-others, video-classification, video-feature-extraction, video-
generation, video-audio-text, video-text, audio-embedding, audio-event-classification,
audio-command-detection, audio-paralinguists-classification, audio-speech-to-text,
audio-speech-synthesis, audio-synthesis, audio-pitch-extraction

HuggingFace domain names: Multimodal Feature Extraction, Multimodal Text-
to-Image, Multimodal Image-to-Text, Multimodal Text-to-Video, Multimodal Visual
Question Answering, Multimodal Document Question Answer, Multimodal Graph Ma-
chine Learning, Computer Vision Depth Estimation, Computer Vision Image Classi-
fication, Computer Vision Object Detection, Computer Vision Image Segmentation,
Computer Vision Image-to-Image, Computer Vision Unconditional Image Generation,
Computer Vision Video Classification, Computer Vision Zero-Shor Image Classifica-
tion, Natural Language Processing Text Classification, Natural Language Processing
Token Classification, Natural Language Processing Table Question Answering, Natu-
ral Language Processing Question Answering, Natural Language Processing Zero-Shot
Classification, Natural Language Processing Translation, Natural Language Processing
Summarization, Natural Language Processing Conversational, Natural Language Pro-
cessing Text Generation, Natural Language Processing Fill-Mask, Natural Language
Processing Text2Text Generation, Natural Language Processing Sentence Similarity,
Audio Text-to-Speech, Audio Automatic Speech Recognition, Audio Audio-to-Audio,
Audio Audio Classification, Audio Voice Activity Detection, Tabular Tabular Classifi-
cation, Tabular Tabular Regression, Reinforcement Learning Reinforcement Learning,
Reinforcement Learning Robotics

Figure D.1: Domain names: Domain names with the three dataset. Tensor Hub is the
smallest dataset while the other two hubs contain many more models.
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### User: Our customer is a zoo and we want to help them detect movement of
di↵erent animals. Write a python program in 1 to 2 lines to call API in TensorFlowHub.
### Assistant:
domain: image-object-detection,
api call: detector = hub.load(’https://tfhub.dev/google/openimages v4
/ssd mobilenet v2/1’), api provider: TensorFlow Hub,
explanation: This API call loads the pre-trained Single Shot Detector (SSD) Mo-
bileNet V2 model from TensorFlow Hub, which has been trained on the Open Images
v4 dataset. This model is used for object detection in images. Once loaded, you can
pass an image (and an optional score threshold for detection confidence) to the detec-
tor to get back the detected objects along with their bounding boxes, class labels, and
associated confidence scores.
code: import tensorflow as tf; import tensorflow hub as
hub; # Load the SSD MobileNet V2 model; detector =
hub.load(’https://tfhub.dev/google/openimages v4/ssd mobilenet v2/1’); # Use
the model to detect objects in an image (assuming ’image’ is a TensorFlow tensor
representing your image); result = detector(image, score threshold=0.5)

Figure D.2: Example of the Dataset: Two examples of the dataset, the above one is
zero-shot (without information retrievers) and the bottom one is with information retriever.

D.3 Performance Comparison

We provide a full comparison of each model’s performance in this section. In Fig D.5 and
Fig. D.6, the full set of comparisons is provided. We see that especially in zero-shot case,
Gorilla surpasses the GPT-4 and GPT-3.5 by a large margin. The GPT-4 and GPT-3.5
gets around 40% accuracy in Torch Hub and Tensor Hub, which are two structured API
calls. Compared to that, HuggingFace is a more flexible and diverse Hub, as a result, the
performance on HuggingFace is not as competitive.

Evaluation

For ease of evaluation, we manually cleaned up the dataset to make sure each API call
domain only contains the valid call in the form of:

API name(API arg1, API arg2, ..., API argk)

Our framework allows the user to define any combination of the arguments to check. For
Torch Hub, we check for the API name torch.hub.load with arguments repo or dir and
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### User: I am an engineer at Uber and I need to find a API that can classify
pedestrians, cars, etc. from an image of the scene. Write a python program in 1 to 2
lines to call API in TorchHub.
Reference API: domain: Object Detection, framework: PyTorch, functionality:
Tra�c Object Detection, Drivable Area Segmentation, Lane Detection, api name:
HybridNets, api call: torch.hub.load(repo or dir=’datvuthanh/hybridnets’,
model=’hybridnets’, pretrained=True), api arguments: repo or dir, model, pre-
trained, python environment requirements: Python=3.7, PyTorch=1.10, exam-
ple code: ’import torch; model = torch.hub.load(’datvuthanh/hybridnets’, ’hy-
bridnets’, pretrained=True); img = torch.randn(1,3,640,384); features, regression,
classification, anchors, segmentation = model(img), performance: dataset: [name:
BDD100K, accuracy: Tra�c Object Detection: Recall: 92.8, mAP0.5: 77.3, Drivable
Area Segmentation: Drivable mIoU: 90.5, Lane Line Detection: Accuracy: 85.4,
Lane Line IoU: 31.6], description: HybridNets is an end2end perception network for
multi-tasks. Our work focused on tra�c object detection, drivable area segmentation
and lane detection. HybridNets can run real-time on embedded systems, and obtains
SOTA Object Detection, Lane Detection on BDD100K Dataset.
### Assistant:
domain: Object Detection, api call: model =
torch.hub.load(’datvuthanh/hybridnets’, ’hybridnets’, pretrained=True),
api provider: PyTorch,
explanation: Load the pretrained HybridNets model for object detection from Py-
Torch Hub to classify pedestrians, cars, etc. in an image of the scene,
code: import torch; model = torch.hub.load(’datvuthanh/hybridnets’, ’hybridnets’,
pretrained=True)

Figure D.3: Example of the Dataset: Two examples of the dataset, the above one is
zero-shot (without information retrievers) and the bottom one is with information retriever.



APPENDIX D. GORILLA 198

generate video = pipeline(”text-to-video”, model=”your model name”)

vqa = pipeline(”visual-question-answering”, model=”microsoft/clip-vqa-base”,
tokenizer=”microsoft/clip-vqa-base”)

depth estimator = pipeline(”depth-estimation”, model=”intel-isl/MiDaS”,
tokenizer=”intel-isl/MiDaS”)

Figure D.4: Hallucination Examples: GPT-4 incurs serious hallucination errors in Hug-
gingFace. We show a couple of examples in the figure.

model. For Tensor Hub, we check API name hub.KerasLayer and hub.load with argument
handle. For HuggingFace, since there are many API function names, we don’t list all of them
here. One specific note is that we require the pretrained model name or path argument
for all the calls except for pipeline. For pipeline, we don’t require the pretrained model

name or path argument since it automatically select a model for you once task is specified.

Hallucination

We found especially in HuggingFace, the GPT-4 model incurs serious hallucination prob-
lems. It would sometimes put a GitHub name that is not associated with the HuggingFace
repository in to the domain of pretrained model name or path. Fig. D.4 demonstrates
some examples and we also observe that GPT-4 sometimes assumes the user have a local
path to the model like your model name. This is greatly reduced by Gorilla as we see the
hallucination error comparison in Tab. 5.1.

AST as a Hallucination Metric

We evaluated the generated results on 100 LLM generations (randomly chosen from our eval
set). The accuracy using AST subtree matching is 78%, consistent with human evaluation
with 78% accuracy in calling the right API. All the generations that AST flagged as incorrect,
were the same ones that were manually also flagged as incorrect. Additionally, Gorilla
generates supporting code to call the API which includes installing dependencies (e.g., pip
install transformers[sentencepiece]), environment variables, etc. When we manually
attempted to execute end-to-end code, 72% of all codes generated were executed successfully.
It’s worth noting that the 6% discrepancy were NOT semantic errors, but errors that arose
due to factors external to the API in the supporting code - we have included an example
to illustrate this further. Considering the significant time and e↵ort required for manual
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Figure D.5: Performance: We plot each model’s performance on di↵erent configurations. We see that
Gorilla performs extremely well in the zero-shot setting. While even when the oracle answer is given, Gorilla
is still the best.

validation of each generation, our data further reinforces our belief in the e�ciency of using
AST as a robust o✏ine metric.

Here is a representative example, where we are able to load the correct model API.
However, in the supporting code, after we have the output from the API, the zip() function
tries to combine sentiments and scores together. However, since scores is a float, it’s not
iterable. zip() expects both its arguments to be iterable, resulting in an ’float’ object

is not iterable error.
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Figure D.6: Accuracy vs Hallucination: We plot each model’s performance on di↵erent configurations.
We found that in the zero-shot setting, Groilla has the most accuracy gain while maintaining good factual
capability. When prompting with di↵erent retrievers, Gorilla is still capable to avoid the hallucination errors.
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from transformers import pipeline

def load_model ():
classifier = pipeline('sentiment -analysis ',

model='nlptown/bert -base -multilingual -uncased -sentiment ')
return classifier

def process_data(comments , classifier):
response = classifier(comments)
sentiments = response [0]['label ']. split ()
scores = response [0]['score ']
result = [{'sentiment ': sentiment , 'score ': score}

for sentiment , score in zip(sentiments , scores)]
return result

comments = "These comments are about our news website ."
# Load the model
classifier = load_model ()
# Process the data
response = process_data(comments , classifier)
print(response)

Figure D.7: The API calls that the Gorilla model is trained on is able to call the right API,
but the supporting zip() code has a bug.
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